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121 THEORY OF AGENTS AND MESSAGES FOR SECURITY PROTOCOLS

1 Theory of Agents and Messages for Security
Protocols

theory Message
imports Main
begin

lemma [simp] : "A ∪ (B ∪ A) = B ∪ A"
〈proof 〉

type_synonym
key = nat

consts
all_symmetric :: bool — true if all keys are symmetric
invKey :: "key⇒key" — inverse of a symmetric key

specification (invKey)
invKey [simp]: "invKey (invKey K) = K"
invKey_symmetric: "all_symmetric −→ invKey = id"
〈proof 〉

The inverse of a symmetric key is itself; that of a public key is the private key
and vice versa

definition symKeys :: "key set" where
"symKeys == {K. invKey K = K}"

datatype — We allow any number of friendly agents
agent = Server | Friend nat | Spy

datatype
msg = Agent agent — Agent names

| Number nat — Ordinary integers, timestamps, ...
| Nonce nat — Unguessable nonces
| Key key — Crypto keys
| Hash msg — Hashing
| MPair msg msg — Compound messages
| Crypt key msg — Encryption, public- or shared-key

Concrete syntax: messages appear as {|A,B,NA |}, etc...

syntax
"_MTuple" :: "[’a, args] ⇒ ’a * ’b" (‹(‹indent=2 notation=‹mixfix message

tuple››{|_,/ _|})›)
syntax_consts

"_MTuple" 
 MPair
translations

"{|x, y, z |}" 
 "{|x, {|y, z |}|}"
"{|x, y |}" 
 "CONST MPair x y"

definition HPair :: "[msg,msg] ⇒ msg" (‹(4Hash[_] /_)› [0, 1000]) where
— Message Y paired with a MAC computed with the help of X
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"Hash[X] Y == {|Hash{|X,Y |}, Y |}"

definition keysFor :: "msg set ⇒ key set" where
— Keys useful to decrypt elements of a message set

"keysFor H == invKey ‘ {K. ∃ X. Crypt K X ∈ H}"

1.1 Inductive Definition of All Parts of a Message
inductive_set

parts :: "msg set ⇒ msg set"
for H :: "msg set"
where

Inj [intro]: "X ∈ H =⇒ X ∈ parts H"
| Fst: "{|X,Y |} ∈ parts H =⇒ X ∈ parts H"
| Snd: "{|X,Y |} ∈ parts H =⇒ Y ∈ parts H"
| Body: "Crypt K X ∈ parts H =⇒ X ∈ parts H"

Monotonicity

lemma parts_mono_aux: " [[G ⊆ H; X ∈ parts G ]] =⇒ X ∈ parts H"
〈proof 〉

lemma parts_mono: "G ⊆ H =⇒ parts(G) ⊆ parts(H)"
〈proof 〉

Equations hold because constructors are injective.

lemma Friend_image_eq [simp]: "(Friend x ∈ Friend‘A) = (x ∈A)"
〈proof 〉

lemma Key_image_eq [simp]: "(Key x ∈ Key‘A) = (x ∈A)"
〈proof 〉

lemma Nonce_Key_image_eq [simp]: "(Nonce x /∈ Key‘A)"
〈proof 〉

1.2 Inverse of keys
lemma invKey_eq [simp]: "(invKey K = invKey K’) = (K=K’)"
〈proof 〉

1.3 The keysFor operator
lemma keysFor_empty [simp]: "keysFor {} = {}"

〈proof 〉

lemma keysFor_Un [simp]: "keysFor (H ∪ H’) = keysFor H ∪ keysFor H’"
〈proof 〉

lemma keysFor_UN [simp]: "keysFor (
⋃

i ∈A. H i) = (
⋃

i ∈A. keysFor (H i))"
〈proof 〉

Monotonicity

lemma keysFor_mono: "G ⊆ H =⇒ keysFor(G) ⊆ keysFor(H)"
〈proof 〉
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lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor
H"
〈proof 〉

lemma keysFor_insert_Nonce [simp]: "keysFor (insert (Nonce N) H) = keysFor
H"
〈proof 〉

lemma keysFor_insert_Number [simp]: "keysFor (insert (Number N) H) = keysFor
H"
〈proof 〉

lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H"
〈proof 〉

lemma keysFor_insert_Hash [simp]: "keysFor (insert (Hash X) H) = keysFor
H"
〈proof 〉

lemma keysFor_insert_MPair [simp]: "keysFor (insert {|X,Y |} H) = keysFor H"
〈proof 〉

lemma keysFor_insert_Crypt [simp]:
"keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)"

〈proof 〉

lemma keysFor_image_Key [simp]: "keysFor (Key‘E) = {}"
〈proof 〉

lemma Crypt_imp_invKey_keysFor: "Crypt K X ∈ H =⇒ invKey K ∈ keysFor H"
〈proof 〉

1.4 Inductive relation "parts"
lemma MPair_parts:

" [[{|X,Y |} ∈ parts H;
[[X ∈ parts H; Y ∈ parts H ]] =⇒ P ]] =⇒ P"

〈proof 〉

declare MPair_parts [elim!] parts.Body [dest!]

NB These two rules are UNSAFE in the formal sense, as they discard the com-
pound message. They work well on THIS FILE. MPair_parts is left as SAFE
because it speeds up proofs. The Crypt rule is normally kept UNSAFE to avoid
breaking up certificates.
lemma parts_increasing: "H ⊆ parts(H)"
〈proof 〉

lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD]

lemma parts_empty_aux: "X ∈ parts{} =⇒ False"
〈proof 〉
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lemma parts_empty [simp]: "parts{} = {}"
〈proof 〉

lemma parts_emptyE [elim!]: "X ∈ parts{} =⇒ P"
〈proof 〉

WARNING: loops if H = Y, therefore must not be repeated!
lemma parts_singleton: "X ∈ parts H =⇒ ∃ Y ∈H. X ∈ parts {Y}"
〈proof 〉

1.4.1 Unions
lemma parts_Un [simp]: "parts(G ∪ H) = parts(G) ∪ parts(H)"
〈proof 〉

lemma parts_insert: "parts (insert X H) = parts {X} ∪ parts H"
〈proof 〉

TWO inserts to avoid looping. This rewrite is better than nothing. But its
behaviour can be strange.
lemma parts_insert2:

"parts (insert X (insert Y H)) = parts {X} ∪ parts {Y} ∪ parts H"
〈proof 〉

lemma parts_image [simp]:
"parts (f ‘ A) = (

⋃
x ∈A. parts {f x})"

〈proof 〉

Added to simplify arguments to parts, analz and synth.

This allows blast to simplify occurrences of parts (G ∪ H) in the assumption.
lemmas in_parts_UnE = parts_Un [THEN equalityD1, THEN subsetD, THEN UnE]

declare in_parts_UnE [elim!]

lemma parts_insert_subset: "insert X (parts H) ⊆ parts(insert X H)"
〈proof 〉

1.4.2 Idempotence and transitivity
lemma parts_partsD [dest!]: "X ∈ parts (parts H) =⇒ X ∈ parts H"
〈proof 〉

lemma parts_idem [simp]: "parts (parts H) = parts H"
〈proof 〉

lemma parts_subset_iff [simp]: "(parts G ⊆ parts H) = (G ⊆ parts H)"
〈proof 〉

lemma parts_trans: " [[X ∈ parts G; G ⊆ parts H ]] =⇒ X ∈ parts H"
〈proof 〉

Cut
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lemma parts_cut:
" [[Y ∈ parts (insert X G); X ∈ parts H ]] =⇒ Y ∈ parts (G ∪ H)"
〈proof 〉

lemma parts_cut_eq [simp]: "X ∈ parts H =⇒ parts (insert X H) = parts H"
〈proof 〉

1.4.3 Rewrite rules for pulling out atomic messages
lemmas parts_insert_eq_I = equalityI [OF subsetI parts_insert_subset]

lemma parts_insert_Agent [simp]:
"parts (insert (Agent agt) H) = insert (Agent agt) (parts H)"
〈proof 〉

lemma parts_insert_Nonce [simp]:
"parts (insert (Nonce N) H) = insert (Nonce N) (parts H)"
〈proof 〉

lemma parts_insert_Number [simp]:
"parts (insert (Number N) H) = insert (Number N) (parts H)"
〈proof 〉

lemma parts_insert_Key [simp]:
"parts (insert (Key K) H) = insert (Key K) (parts H)"
〈proof 〉

lemma parts_insert_Hash [simp]:
"parts (insert (Hash X) H) = insert (Hash X) (parts H)"
〈proof 〉

lemma parts_insert_Crypt [simp]:
"parts (insert (Crypt K X) H) = insert (Crypt K X) (parts (insert X H))"

〈proof 〉

lemma parts_insert_MPair [simp]:
"parts (insert {|X,Y |} H) = insert {|X,Y |} (parts (insert X (insert Y H)))"

〈proof 〉

lemma parts_image_Key [simp]: "parts (Key‘N) = Key‘N"
〈proof 〉

In any message, there is an upper bound N on its greatest nonce.

lemma msg_Nonce_supply: "∃ N. ∀ n. N≤n −→ Nonce n /∈ parts {msg}"
〈proof 〉

1.5 Inductive relation "analz"
Inductive definition of "analz" – what can be broken down from a set of messages,
including keys. A form of downward closure. Pairs can be taken apart; messages
decrypted with known keys.

inductive_set
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analz :: "msg set ⇒ msg set"
for H :: "msg set"
where

Inj [intro,simp]: "X ∈ H =⇒ X ∈ analz H"
| Fst: "{|X,Y |} ∈ analz H =⇒ X ∈ analz H"
| Snd: "{|X,Y |} ∈ analz H =⇒ Y ∈ analz H"
| Decrypt [dest]:

" [[Crypt K X ∈ analz H; Key(invKey K) ∈ analz H ]] =⇒ X ∈ analz H"

Monotonicity; Lemma 1 of Lowe’s paper
lemma analz_mono_aux: " [[G ⊆ H; X ∈ analz G ]] =⇒ X ∈ analz H"
〈proof 〉

lemma analz_mono: "G⊆H =⇒ analz(G) ⊆ analz(H)"
〈proof 〉

Making it safe speeds up proofs
lemma MPair_analz [elim!]:

" [[{|X,Y |} ∈ analz H;
[[X ∈ analz H; Y ∈ analz H ]] =⇒ P ]] =⇒ P"

〈proof 〉

lemma analz_increasing: "H ⊆ analz(H)"
〈proof 〉

lemma analz_into_parts: "X ∈ analz H =⇒ X ∈ parts H"
〈proof 〉

lemma analz_subset_parts: "analz H ⊆ parts H"
〈proof 〉

lemma analz_parts [simp]: "analz (parts H) = parts H"
〈proof 〉

lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD]

lemma parts_analz [simp]: "parts (analz H) = parts H"
〈proof 〉

lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD]

1.5.1 General equational properties
lemma analz_empty [simp]: "analz{} = {}"
〈proof 〉

Converse fails: we can analz more from the union than from the separate parts,
as a key in one might decrypt a message in the other
lemma analz_Un: "analz(G) ∪ analz(H) ⊆ analz(G ∪ H)"
〈proof 〉

lemma analz_insert: "insert X (analz H) ⊆ analz(insert X H)"
〈proof 〉
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1.5.2 Rewrite rules for pulling out atomic messages
lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert]

lemma analz_insert_Agent [simp]:
"analz (insert (Agent agt) H) = insert (Agent agt) (analz H)"
〈proof 〉

lemma analz_insert_Nonce [simp]:
"analz (insert (Nonce N) H) = insert (Nonce N) (analz H)"
〈proof 〉

lemma analz_insert_Number [simp]:
"analz (insert (Number N) H) = insert (Number N) (analz H)"
〈proof 〉

lemma analz_insert_Hash [simp]:
"analz (insert (Hash X) H) = insert (Hash X) (analz H)"
〈proof 〉

Can only pull out Keys if they are not needed to decrypt the rest
lemma analz_insert_Key [simp]:

"K /∈ keysFor (analz H) =⇒
analz (insert (Key K) H) = insert (Key K) (analz H)"

〈proof 〉

lemma analz_insert_MPair [simp]:
"analz (insert {|X,Y |} H) = insert {|X,Y |} (analz (insert X (insert Y H)))"

〈proof 〉

Can pull out encrypted message if the Key is not known
lemma analz_insert_Crypt:

"Key (invKey K) /∈ analz H
=⇒ analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)"

〈proof 〉

lemma analz_insert_Decrypt:
assumes "Key (invKey K) ∈ analz H"
shows "analz (insert (Crypt K X) H) = insert (Crypt K X) (analz (insert

X H))"
〈proof 〉

Case analysis: either the message is secure, or it is not! Effective, but can cause
subgoals to blow up! Use with if_split ; apparently split_tac does not cope
with patterns such as analz (insert (Crypt K X) H)

lemma analz_Crypt_if [simp]:
"analz (insert (Crypt K X) H) =

(if (Key (invKey K) ∈ analz H)
then insert (Crypt K X) (analz (insert X H))
else insert (Crypt K X) (analz H))"

〈proof 〉

This rule supposes "for the sake of argument" that we have the key.
lemma analz_insert_Crypt_subset:



1.5 Inductive relation "analz" 19

"analz (insert (Crypt K X) H) ⊆
insert (Crypt K X) (analz (insert X H))"

〈proof 〉

lemma analz_image_Key [simp]: "analz (Key‘N) = Key‘N"
〈proof 〉

1.5.3 Idempotence and transitivity
lemma analz_analzD [dest!]: "X ∈ analz (analz H) =⇒ X ∈ analz H"
〈proof 〉

lemma analz_idem [simp]: "analz (analz H) = analz H"
〈proof 〉

lemma analz_subset_iff [simp]: "(analz G ⊆ analz H) = (G ⊆ analz H)"
〈proof 〉

lemma analz_trans: " [[X ∈ analz G; G ⊆ analz H ]] =⇒ X ∈ analz H"
〈proof 〉

Cut; Lemma 2 of Lowe

lemma analz_cut: " [[Y ∈ analz (insert X H); X ∈ analz H ]] =⇒ Y ∈ analz
H"
〈proof 〉

This rewrite rule helps in the simplification of messages that involve the for-
warding of unknown components (X). Without it, removing occurrences of X
can be very complicated.

lemma analz_insert_eq: "X ∈ analz H =⇒ analz (insert X H) = analz H"
〈proof 〉

A congruence rule for "analz"

lemma analz_subset_cong:
" [[analz G ⊆ analz G’; analz H ⊆ analz H’]]

=⇒ analz (G ∪ H) ⊆ analz (G’ ∪ H’)"
〈proof 〉

lemma analz_cong:
" [[analz G = analz G’; analz H = analz H’]]

=⇒ analz (G ∪ H) = analz (G’ ∪ H’)"
〈proof 〉

lemma analz_insert_cong:
"analz H = analz H’ =⇒ analz(insert X H) = analz(insert X H’)"
〈proof 〉

If there are no pairs or encryptions then analz does nothing

lemma analz_trivial:
" [[∀ X Y. {|X,Y |} /∈ H; ∀ X K. Crypt K X /∈ H ]] =⇒ analz H = H"
〈proof 〉
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1.6 Inductive relation "synth"
Inductive definition of "synth" – what can be built up from a set of messages.
A form of upward closure. Pairs can be built, messages encrypted with known
keys. Agent names are public domain. Numbers can be guessed, but Nonces
cannot be.

inductive_set
synth :: "msg set => msg set"
for H :: "msg set"
where

Inj [intro]: "X ∈ H =⇒ X ∈ synth H"
| Agent [intro]: "Agent agt ∈ synth H"
| Number [intro]: "Number n ∈ synth H"
| Hash [intro]: "X ∈ synth H =⇒ Hash X ∈ synth H"
| MPair [intro]: " [[X ∈ synth H; Y ∈ synth H ]] =⇒ {|X,Y |} ∈ synth H"
| Crypt [intro]: " [[X ∈ synth H; Key(K) ∈ H ]] =⇒ Crypt K X ∈ synth H"

Monotonicity

lemma synth_mono: "G⊆H =⇒ synth(G) ⊆ synth(H)"
〈proof 〉

NO Agent_synth, as any Agent name can be synthesized. The same holds for
Number

inductive_simps synth_simps [iff]:
"Nonce n ∈ synth H"
"Key K ∈ synth H"
"Hash X ∈ synth H"
"{|X,Y |} ∈ synth H"
"Crypt K X ∈ synth H"

lemma synth_increasing: "H ⊆ synth(H)"
〈proof 〉

1.6.1 Unions

Converse fails: we can synth more from the union than from the separate parts,
building a compound message using elements of each.

lemma synth_Un: "synth(G) ∪ synth(H) ⊆ synth(G ∪ H)"
〈proof 〉

lemma synth_insert: "insert X (synth H) ⊆ synth(insert X H)"
〈proof 〉

1.6.2 Idempotence and transitivity
lemma synth_synthD [dest!]: "X ∈ synth (synth H) =⇒ X ∈ synth H"
〈proof 〉

lemma synth_idem: "synth (synth H) = synth H"
〈proof 〉

lemma synth_subset_iff [simp]: "(synth G ⊆ synth H) = (G ⊆ synth H)"
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〈proof 〉

lemma synth_trans: " [[X ∈ synth G; G ⊆ synth H ]] =⇒ X ∈ synth H"
〈proof 〉

Cut; Lemma 2 of Lowe
lemma synth_cut: " [[Y ∈ synth (insert X H); X ∈ synth H ]] =⇒ Y ∈ synth
H"
〈proof 〉

lemma Crypt_synth_eq [simp]:
"Key K /∈ H =⇒ (Crypt K X ∈ synth H) = (Crypt K X ∈ H)"
〈proof 〉

lemma keysFor_synth [simp]:
"keysFor (synth H) = keysFor H ∪ invKey‘{K. Key K ∈ H}"
〈proof 〉

1.6.3 Combinations of parts, analz and synth
lemma parts_synth [simp]: "parts (synth H) = parts H ∪ synth H"
〈proof 〉

lemma analz_analz_Un [simp]: "analz (analz G ∪ H) = analz (G ∪ H)"
〈proof 〉

lemma analz_synth_Un [simp]: "analz (synth G ∪ H) = analz (G ∪ H) ∪ synth
G"
〈proof 〉

lemma analz_synth [simp]: "analz (synth H) = analz H ∪ synth H"
〈proof 〉

1.6.4 For reasoning about the Fake rule in traces
lemma parts_insert_subset_Un: "X ∈ G =⇒ parts(insert X H) ⊆ parts G ∪
parts H"
〈proof 〉

More specifically for Fake. See also Fake_parts_sing below
lemma Fake_parts_insert:

"X ∈ synth (analz H) =⇒
parts (insert X H) ⊆ synth (analz H) ∪ parts H"

〈proof 〉

lemma Fake_parts_insert_in_Un:
" [[Z ∈ parts (insert X H); X ∈ synth (analz H)]]

=⇒ Z ∈ synth (analz H) ∪ parts H"
〈proof 〉

H is sometimes Key ‘ KK ∪ spies evs, so can’t put G = H.
lemma Fake_analz_insert:

"X ∈ synth (analz G) =⇒
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analz (insert X H) ⊆ synth (analz G) ∪ analz (G ∪ H)"
〈proof 〉

lemma analz_conj_parts [simp]:
"(X ∈ analz H ∧ X ∈ parts H) = (X ∈ analz H)"
〈proof 〉

lemma analz_disj_parts [simp]:
"(X ∈ analz H | X ∈ parts H) = (X ∈ parts H)"
〈proof 〉

Without this equation, other rules for synth and analz would yield redundant
cases

lemma MPair_synth_analz [iff]:
"{|X,Y |} ∈ synth (analz H) ←→ X ∈ synth (analz H) ∧ Y ∈ synth (analz H)"
〈proof 〉

lemma Crypt_synth_analz:
" [[Key K ∈ analz H; Key (invKey K) ∈ analz H ]]

=⇒ (Crypt K X ∈ synth (analz H)) = (X ∈ synth (analz H))"
〈proof 〉

lemma Hash_synth_analz [simp]:
"X /∈ synth (analz H)

=⇒ (Hash{|X,Y |} ∈ synth (analz H)) = (Hash{|X,Y |} ∈ analz H)"
〈proof 〉

1.7 HPair: a combination of Hash and MPair
1.7.1 Freeness
lemma Agent_neq_HPair: "Agent A 6= Hash[X] Y"
〈proof 〉

lemma Nonce_neq_HPair: "Nonce N 6= Hash[X] Y"
〈proof 〉

lemma Number_neq_HPair: "Number N 6= Hash[X] Y"
〈proof 〉

lemma Key_neq_HPair: "Key K 6= Hash[X] Y"
〈proof 〉

lemma Hash_neq_HPair: "Hash Z 6= Hash[X] Y"
〈proof 〉

lemma Crypt_neq_HPair: "Crypt K X’ 6= Hash[X] Y"
〈proof 〉

lemmas HPair_neqs = Agent_neq_HPair Nonce_neq_HPair Number_neq_HPair
Key_neq_HPair Hash_neq_HPair Crypt_neq_HPair

declare HPair_neqs [iff]
declare HPair_neqs [symmetric, iff]
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lemma HPair_eq [iff]: "(Hash[X’] Y’ = Hash[X] Y) = (X’ = X ∧ Y’=Y)"
〈proof 〉

lemma MPair_eq_HPair [iff]:
"({|X’,Y’|} = Hash[X] Y) = (X’ = Hash{|X,Y |} ∧ Y’=Y)"
〈proof 〉

lemma HPair_eq_MPair [iff]:
"(Hash[X] Y = {|X’,Y’|}) = (X’ = Hash{|X,Y |} ∧ Y’=Y)"
〈proof 〉

1.7.2 Specialized laws, proved in terms of those for Hash and MPair
lemma keysFor_insert_HPair [simp]: "keysFor (insert (Hash[X] Y) H) = keysFor
H"
〈proof 〉

lemma parts_insert_HPair [simp]:
"parts (insert (Hash[X] Y) H) =

insert (Hash[X] Y) (insert (Hash{|X,Y |}) (parts (insert Y H)))"
〈proof 〉

lemma analz_insert_HPair [simp]:
"analz (insert (Hash[X] Y) H) =

insert (Hash[X] Y) (insert (Hash{|X,Y |}) (analz (insert Y H)))"
〈proof 〉

lemma HPair_synth_analz [simp]:
"X /∈ synth (analz H)

=⇒ (Hash[X] Y ∈ synth (analz H)) =
(Hash {|X, Y |} ∈ analz H ∧ Y ∈ synth (analz H))"

〈proof 〉

We do NOT want Crypt... messages broken up in protocols!!
declare parts.Body [rule del]

Rewrites to push in Key and Crypt messages, so that other messages can be
pulled out using the analz_insert rules
lemmas pushKeys =

insert_commute [of "Key K" "Agent C"]
insert_commute [of "Key K" "Nonce N"]
insert_commute [of "Key K" "Number N"]
insert_commute [of "Key K" "Hash X"]
insert_commute [of "Key K" "MPair X Y"]
insert_commute [of "Key K" "Crypt X K’"]
for K C N X Y K’

lemmas pushCrypts =
insert_commute [of "Crypt X K" "Agent C"]
insert_commute [of "Crypt X K" "Agent C"]
insert_commute [of "Crypt X K" "Nonce N"]
insert_commute [of "Crypt X K" "Number N"]
insert_commute [of "Crypt X K" "Hash X’"]
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insert_commute [of "Crypt X K" "MPair X’ Y"]
for X K C N X’ Y

Cannot be added with [simp] – messages should not always be re-ordered.

lemmas pushes = pushKeys pushCrypts

1.8 The set of key-free messages
inductive_set

keyfree :: "msg set"
where

Agent: "Agent A ∈ keyfree"
| Number: "Number N ∈ keyfree"
| Nonce: "Nonce N ∈ keyfree"
| Hash: "Hash X ∈ keyfree"
| MPair: " [[X ∈ keyfree; Y ∈ keyfree ]] =⇒ {|X,Y |} ∈ keyfree"
| Crypt: " [[X ∈ keyfree ]] =⇒ Crypt K X ∈ keyfree"

declare keyfree.intros [intro]

inductive_cases keyfree_KeyE: "Key K ∈ keyfree"
inductive_cases keyfree_MPairE: "{|X,Y |} ∈ keyfree"
inductive_cases keyfree_CryptE: "Crypt K X ∈ keyfree"

lemma parts_keyfree: "parts (keyfree) ⊆ keyfree"
〈proof 〉

lemma analz_keyfree_into_Un: " [[X ∈ analz (G ∪ H); G ⊆ keyfree ]] =⇒ X ∈
parts G ∪ analz H"
〈proof 〉

1.9 Tactics useful for many protocol proofs
〈ML〉
By default only o_apply is built-in. But in the presence of eta-expansion this
means that some terms displayed as f ◦ g will be rewritten, and others will
not!

declare o_def [simp]

lemma Crypt_notin_image_Key [simp]: "Crypt K X /∈ Key ‘ A"
〈proof 〉

lemma Hash_notin_image_Key [simp] :"Hash X /∈ Key ‘ A"
〈proof 〉

lemma synth_analz_mono: "G⊆H =⇒ synth (analz(G)) ⊆ synth (analz(H))"
〈proof 〉

lemma Fake_analz_eq [simp]:
"X ∈ synth(analz H) =⇒ synth (analz (insert X H)) = synth (analz H)"
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〈proof 〉

Two generalizations of analz_insert_eq

lemma gen_analz_insert_eq [rule_format]:
"X ∈ analz H =⇒ ∀ G. H ⊆ G −→ analz (insert X G) = analz G"
〈proof 〉

lemma synth_analz_insert_eq:
" [[X ∈ synth (analz H); H ⊆ G ]]

=⇒ (Key K ∈ analz (insert X G)) ←→ (Key K ∈ analz G)"
〈proof 〉

lemma Fake_parts_sing:
"X ∈ synth (analz H) =⇒ parts{X} ⊆ synth (analz H) ∪ parts H"
〈proof 〉

lemmas Fake_parts_sing_imp_Un = Fake_parts_sing [THEN [2] rev_subsetD]

〈ML〉

end

2 Theory of Events for Security Protocols
theory Event imports Message begin

consts — Initial states of agents — a parameter of the construction
initState :: "agent ⇒ msg set"

datatype
event = Says agent agent msg

| Gets agent msg
| Notes agent msg

consts
bad :: "agent set" — compromised agents

Spy has access to his own key for spoof messages, but Server is secure
specification (bad)

Spy_in_bad [iff]: "Spy ∈ bad"
Server_not_bad [iff]: "Server /∈ bad"
〈proof 〉

primrec knows :: "agent ⇒ event list ⇒ msg set"
where

knows_Nil: "knows A [] = initState A"
| knows_Cons:

"knows A (ev # evs) =
(if A = Spy then
(case ev of

Says A’ B X ⇒ insert X (knows Spy evs)
| Gets A’ X ⇒ knows Spy evs
| Notes A’ X ⇒
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if A’ ∈ bad then insert X (knows Spy evs) else knows Spy evs)
else
(case ev of

Says A’ B X ⇒
if A’=A then insert X (knows A evs) else knows A evs

| Gets A’ X ⇒
if A’=A then insert X (knows A evs) else knows A evs

| Notes A’ X ⇒
if A’=A then insert X (knows A evs) else knows A evs))"

The constant "spies" is retained for compatibility’s sake

abbreviation (input)
spies :: "event list ⇒ msg set" where
"spies ≡ knows Spy"

Set of items that might be visible to somebody: complement of the set of fresh
items

primrec used :: "event list ⇒ msg set"
where

used_Nil: "used [] = (UN B. parts (initState B))"
| used_Cons: "used (ev # evs) =

(case ev of
Says A B X ⇒ parts {X} ∪ used evs

| Gets A X ⇒ used evs
| Notes A X ⇒ parts {X} ∪ used evs)"

— The case for Gets seems anomalous, but Gets always follows Says in real pro-
tocols. Seems difficult to change. See Gets_correct in theory Guard/Extensions.thy.

lemma Notes_imp_used: "Notes A X ∈ set evs =⇒ X ∈ used evs"
〈proof 〉

lemma Says_imp_used: "Says A B X ∈ set evs =⇒ X ∈ used evs"
〈proof 〉

2.1 Function knows

lemmas parts_insert_knows_A = parts_insert [of _ "knows A evs"] for A evs

lemma knows_Spy_Says [simp]:
"knows Spy (Says A B X # evs) = insert X (knows Spy evs)"
〈proof 〉

Letting the Spy see "bad" agents’ notes avoids redundant case-splits on whether
A = Spy and whether A ∈ bad

lemma knows_Spy_Notes [simp]:
"knows Spy (Notes A X # evs) =

(if A∈bad then insert X (knows Spy evs) else knows Spy evs)"
〈proof 〉

lemma knows_Spy_Gets [simp]: "knows Spy (Gets A X # evs) = knows Spy evs"
〈proof 〉

lemma knows_Spy_subset_knows_Spy_Says:
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"knows Spy evs ⊆ knows Spy (Says A B X # evs)"
〈proof 〉

lemma knows_Spy_subset_knows_Spy_Notes:
"knows Spy evs ⊆ knows Spy (Notes A X # evs)"
〈proof 〉

lemma knows_Spy_subset_knows_Spy_Gets:
"knows Spy evs ⊆ knows Spy (Gets A X # evs)"
〈proof 〉

Spy sees what is sent on the traffic

lemma Says_imp_knows_Spy:
"Says A B X ∈ set evs =⇒ X ∈ knows Spy evs"

〈proof 〉

lemma Notes_imp_knows_Spy [rule_format]:
"Notes A X ∈ set evs =⇒ A ∈ bad =⇒ X ∈ knows Spy evs"

〈proof 〉

Elimination rules: derive contradictions from old Says events containing items
known to be fresh

lemmas Says_imp_parts_knows_Spy =
Says_imp_knows_Spy [THEN parts.Inj, elim_format]

lemmas knows_Spy_partsEs =
Says_imp_parts_knows_Spy parts.Body [elim_format]

lemmas Says_imp_analz_Spy = Says_imp_knows_Spy [THEN analz.Inj]

Compatibility for the old "spies" function

lemmas spies_partsEs = knows_Spy_partsEs
lemmas Says_imp_spies = Says_imp_knows_Spy
lemmas parts_insert_spies = parts_insert_knows_A [of _ Spy]

2.2 Knowledge of Agents
lemma knows_subset_knows_Says: "knows A evs ⊆ knows A (Says A’ B X # evs)"
〈proof 〉

lemma knows_subset_knows_Notes: "knows A evs ⊆ knows A (Notes A’ X # evs)"
〈proof 〉

lemma knows_subset_knows_Gets: "knows A evs ⊆ knows A (Gets A’ X # evs)"
〈proof 〉

Agents know what they say

lemma Says_imp_knows [rule_format]: "Says A B X ∈ set evs =⇒ X ∈ knows
A evs"
〈proof 〉

Agents know what they note
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lemma Notes_imp_knows [rule_format]: "Notes A X ∈ set evs =⇒ X ∈ knows
A evs"
〈proof 〉

Agents know what they receive
lemma Gets_imp_knows_agents [rule_format]:

"A 6= Spy =⇒ Gets A X ∈ set evs =⇒ X ∈ knows A evs"
〈proof 〉

What agents DIFFERENT FROM Spy know was either said, or noted, or got,
or known initially
lemma knows_imp_Says_Gets_Notes_initState:

" [[X ∈ knows A evs; A 6= Spy ]] =⇒
∃ B. Says A B X ∈ set evs ∨ Gets A X ∈ set evs ∨ Notes A X ∈ set evs

∨ X ∈ initState A"
〈proof 〉

What the Spy knows – for the time being – was either said or noted, or known
initially
lemma knows_Spy_imp_Says_Notes_initState:

"X ∈ knows Spy evs =⇒
∃ A B. Says A B X ∈ set evs ∨ Notes A X ∈ set evs ∨ X ∈ initState Spy"

〈proof 〉

lemma parts_knows_Spy_subset_used: "parts (knows Spy evs) ⊆ used evs"
〈proof 〉

lemmas usedI = parts_knows_Spy_subset_used [THEN subsetD, intro]

lemma initState_into_used: "X ∈ parts (initState B) =⇒ X ∈ used evs"
〈proof 〉

New simprules to replace the primitive ones for used and knows

lemma used_Says [simp]: "used (Says A B X # evs) = parts{X} ∪ used evs"
〈proof 〉

lemma used_Notes [simp]: "used (Notes A X # evs) = parts{X} ∪ used evs"
〈proof 〉

lemma used_Gets [simp]: "used (Gets A X # evs) = used evs"
〈proof 〉

lemma used_nil_subset: "used [] ⊆ used evs"
〈proof 〉

NOTE REMOVAL: the laws above are cleaner, as they don’t involve "case"
declare knows_Cons [simp del]

used_Nil [simp del] used_Cons [simp del]

For proving theorems of the form X /∈ analz (knows Spy evs) −→ P New events
added by induction to "evs" are discarded. Provided this information isn’t
needed, the proof will be much shorter, since it will omit complicated reasoning
about analz.
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lemmas analz_mono_contra =
knows_Spy_subset_knows_Spy_Says [THEN analz_mono, THEN contra_subsetD]
knows_Spy_subset_knows_Spy_Notes [THEN analz_mono, THEN contra_subsetD]
knows_Spy_subset_knows_Spy_Gets [THEN analz_mono, THEN contra_subsetD]

lemma knows_subset_knows_Cons: "knows A evs ⊆ knows A (e # evs)"
〈proof 〉

lemma initState_subset_knows: "initState A ⊆ knows A evs"
〈proof 〉

For proving new_keys_not_used

lemma keysFor_parts_insert:
" [[K ∈ keysFor (parts (insert X G)); X ∈ synth (analz H)]]
=⇒ K ∈ keysFor (parts (G ∪ H)) | Key (invKey K) ∈ parts H"

〈proof 〉

lemmas analz_impI = impI [where P = "Y /∈ analz (knows Spy evs)"] for Y evs

〈ML〉

Useful for case analysis on whether a hash is a spoof or not
lemmas syan_impI = impI [where P = "Y /∈ synth (analz (knows Spy evs))"]
for Y evs

〈ML〉

end

theory Public
imports Event
begin

lemma invKey_K: "K ∈ symKeys =⇒ invKey K = K"
〈proof 〉

2.3 Asymmetric Keys
datatype keymode = Signature | Encryption

consts
publicKey :: "[keymode,agent] ⇒ key"

abbreviation
pubEK :: "agent ⇒ key" where
"pubEK == publicKey Encryption"

abbreviation
pubSK :: "agent ⇒ key" where
"pubSK == publicKey Signature"
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abbreviation
privateKey :: "[keymode, agent] ⇒ key" where
"privateKey b A == invKey (publicKey b A)"

abbreviation

priEK :: "agent ⇒ key" where
"priEK A == privateKey Encryption A"

abbreviation
priSK :: "agent ⇒ key" where
"priSK A == privateKey Signature A"

These abbreviations give backward compatibility. They represent the simple
situation where the signature and encryption keys are the same.

abbreviation (input)
pubK :: "agent ⇒ key" where
"pubK A == pubEK A"

abbreviation (input)
priK :: "agent ⇒ key" where
"priK A == invKey (pubEK A)"

By freeness of agents, no two agents have the same key. Since True 6= False,
no agent has identical signing and encryption keys

specification (publicKey)
injective_publicKey:

"publicKey b A = publicKey c A’ =⇒ b=c ∧ A=A’"
〈proof 〉

axiomatization where

privateKey_neq_publicKey [iff]: "privateKey b A 6= publicKey c A’"

lemmas publicKey_neq_privateKey = privateKey_neq_publicKey [THEN not_sym]
declare publicKey_neq_privateKey [iff]

2.4 Basic properties of pubEK and priEK

lemma publicKey_inject [iff]: "(publicKey b A = publicKey c A’) = (b=c ∧
A=A’)"
〈proof 〉

lemma not_symKeys_pubK [iff]: "publicKey b A /∈ symKeys"
〈proof 〉

lemma not_symKeys_priK [iff]: "privateKey b A /∈ symKeys"
〈proof 〉

lemma symKey_neq_priEK: "K ∈ symKeys =⇒ K 6= priEK A"
〈proof 〉
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lemma symKeys_neq_imp_neq: "(K ∈ symKeys) 6= (K’ ∈ symKeys) =⇒ K 6= K’"
〈proof 〉

lemma symKeys_invKey_iff [iff]: "(invKey K ∈ symKeys) = (K ∈ symKeys)"
〈proof 〉

lemma analz_symKeys_Decrypt:
" [[Crypt K X ∈ analz H; K ∈ symKeys; Key K ∈ analz H ]]
=⇒ X ∈ analz H"

〈proof 〉

2.5 "Image" equations that hold for injective functions
lemma invKey_image_eq [simp]: "(invKey x ∈ invKey‘A) = (x ∈ A)"
〈proof 〉

lemma publicKey_image_eq [simp]:
"(publicKey b x ∈ publicKey c ‘ AA) = (b=c ∧ x ∈ AA)"

〈proof 〉

lemma privateKey_notin_image_publicKey [simp]: "privateKey b x /∈ publicKey
c ‘ AA"
〈proof 〉

lemma privateKey_image_eq [simp]:
"(privateKey b A ∈ invKey ‘ publicKey c ‘ AS) = (b=c ∧ A∈AS)"

〈proof 〉

lemma publicKey_notin_image_privateKey [simp]: "publicKey b A /∈ invKey ‘
publicKey c ‘ AS"
〈proof 〉

2.6 Symmetric Keys
For some protocols, it is convenient to equip agents with symmetric as well as
asymmetric keys. The theory Shared assumes that all keys are symmetric.

consts
shrK :: "agent => key" — long-term shared keys

specification (shrK)
inj_shrK: "inj shrK"
— No two agents have the same long-term key
〈proof 〉

axiomatization where
sym_shrK [iff]: "shrK X ∈ symKeys" — All shared keys are symmetric

Injectiveness: Agents’ long-term keys are distinct.

lemmas shrK_injective = inj_shrK [THEN inj_eq]
declare shrK_injective [iff]

lemma invKey_shrK [simp]: "invKey (shrK A) = shrK A"
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〈proof 〉

lemma analz_shrK_Decrypt:
" [[Crypt (shrK A) X ∈ analz H; Key(shrK A) ∈ analz H ]] =⇒ X ∈ analz H"

〈proof 〉

lemma analz_Decrypt’:
" [[Crypt K X ∈ analz H; K ∈ symKeys; Key K ∈ analz H ]] =⇒ X ∈ analz

H"
〈proof 〉

lemma priK_neq_shrK [iff]: "shrK A 6= privateKey b C"
〈proof 〉

lemmas shrK_neq_priK = priK_neq_shrK [THEN not_sym]
declare shrK_neq_priK [simp]

lemma pubK_neq_shrK [iff]: "shrK A 6= publicKey b C"
〈proof 〉

lemmas shrK_neq_pubK = pubK_neq_shrK [THEN not_sym]
declare shrK_neq_pubK [simp]

lemma priEK_noteq_shrK [simp]: "priEK A 6= shrK B"
〈proof 〉

lemma publicKey_notin_image_shrK [simp]: "publicKey b x /∈ shrK ‘ AA"
〈proof 〉

lemma privateKey_notin_image_shrK [simp]: "privateKey b x /∈ shrK ‘ AA"
〈proof 〉

lemma shrK_notin_image_publicKey [simp]: "shrK x /∈ publicKey b ‘ AA"
〈proof 〉

lemma shrK_notin_image_privateKey [simp]: "shrK x /∈ invKey ‘ publicKey b
‘ AA"
〈proof 〉

lemma shrK_image_eq [simp]: "(shrK x ∈ shrK ‘ AA) = (x ∈ AA)"
〈proof 〉

For some reason, moving this up can make some proofs loop!

declare invKey_K [simp]

2.7 Initial States of Agents
Note: for all practical purposes, all that matters is the initial knowledge of the
Spy. All other agents are automata, merely following the protocol.

overloading
initState ≡ initState

begin
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primrec initState where

initState_Server:
"initState Server =

{Key (priEK Server), Key (priSK Server)} ∪
(Key ‘ range pubEK) ∪ (Key ‘ range pubSK) ∪ (Key ‘ range shrK)"

| initState_Friend:
"initState (Friend i) =

{Key (priEK(Friend i)), Key (priSK(Friend i)), Key (shrK(Friend i))}
∪

(Key ‘ range pubEK) ∪ (Key ‘ range pubSK)"

| initState_Spy:
"initState Spy =

(Key ‘ invKey ‘ pubEK ‘ bad) ∪ (Key ‘ invKey ‘ pubSK ‘ bad) ∪
(Key ‘ shrK ‘ bad) ∪
(Key ‘ range pubEK) ∪ (Key ‘ range pubSK)"

end

These lemmas allow reasoning about used evs rather than knows Spy evs, which
is useful when there are private Notes. Because they depend upon the definition
of initState, they cannot be moved up.
lemma used_parts_subset_parts [rule_format]:

"∀ X ∈ used evs. parts {X} ⊆ used evs"
〈proof 〉

lemma MPair_used_D: "{|X,Y |} ∈ used H =⇒ X ∈ used H ∧ Y ∈ used H"
〈proof 〉

There was a similar theorem in Event.thy, so perhaps this one can be moved up
if proved directly by induction.
lemma MPair_used [elim!]:

" [[{|X,Y |} ∈ used H;
[[X ∈ used H; Y ∈ used H ]] =⇒ P ]]

=⇒ P"
〈proof 〉

Rewrites should not refer to initState (Friend i) because that expression is
not in normal form.
lemma keysFor_parts_initState [simp]: "keysFor (parts (initState C)) = {}"
〈proof 〉

lemma Crypt_notin_initState: "Crypt K X /∈ parts (initState B)"
〈proof 〉

lemma Crypt_notin_used_empty [simp]: "Crypt K X /∈ used []"
〈proof 〉
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lemma shrK_in_initState [iff]: "Key (shrK A) ∈ initState A"
〈proof 〉

lemma shrK_in_knows [iff]: "Key (shrK A) ∈ knows A evs"
〈proof 〉

lemma shrK_in_used [iff]: "Key (shrK A) ∈ used evs"
〈proof 〉

lemma Key_not_used [simp]: "Key K /∈ used evs =⇒ K /∈ range shrK"
〈proof 〉

lemma shrK_neq: "Key K /∈ used evs =⇒ shrK B 6= K"
〈proof 〉

lemmas neq_shrK = shrK_neq [THEN not_sym]
declare neq_shrK [simp]

2.8 Function knows Spy

lemma not_SignatureE [elim!]: "b 6= Signature =⇒ b = Encryption"
〈proof 〉

Agents see their own private keys!
lemma priK_in_initState [iff]: "Key (privateKey b A) ∈ initState A"
〈proof 〉

Agents see all public keys!
lemma publicKey_in_initState [iff]: "Key (publicKey b A) ∈ initState B"
〈proof 〉

All public keys are visible
lemma spies_pubK [iff]: "Key (publicKey b A) ∈ spies evs"
〈proof 〉

lemmas analz_spies_pubK = spies_pubK [THEN analz.Inj]
declare analz_spies_pubK [iff]

Spy sees private keys of bad agents!
lemma Spy_spies_bad_privateKey [intro!]:

"A ∈ bad =⇒ Key (privateKey b A) ∈ spies evs"
〈proof 〉

Spy sees long-term shared keys of bad agents!
lemma Spy_spies_bad_shrK [intro!]:

"A ∈ bad =⇒ Key (shrK A) ∈ spies evs"
〈proof 〉

lemma publicKey_into_used [iff] :"Key (publicKey b A) ∈ used evs"



2.9 Fresh Nonces 35

〈proof 〉

lemma privateKey_into_used [iff]: "Key (privateKey b A) ∈ used evs"
〈proof 〉

lemma Crypt_Spy_analz_bad:
" [[Crypt (shrK A) X ∈ analz (knows Spy evs); A ∈ bad ]]
=⇒ X ∈ analz (knows Spy evs)"

〈proof 〉

2.9 Fresh Nonces
lemma Nonce_notin_initState [iff]: "Nonce N /∈ parts (initState B)"
〈proof 〉

lemma Nonce_notin_used_empty [simp]: "Nonce N /∈ used []"
〈proof 〉

2.10 Supply fresh nonces for possibility theorems
In any trace, there is an upper bound N on the greatest nonce in use
lemma Nonce_supply_lemma: "∃ N. ∀ n. N≤n −→ Nonce n /∈ used evs"
〈proof 〉

lemma Nonce_supply1: "∃ N. Nonce N /∈ used evs"
〈proof 〉

lemma Nonce_supply: "Nonce (SOME N. Nonce N /∈ used evs) /∈ used evs"
〈proof 〉

2.11 Specialized Rewriting for Theorems About analz and
Image

lemma insert_Key_singleton: "insert (Key K) H = Key ‘ {K} ∪ H"
〈proof 〉

lemma insert_Key_image: "insert (Key K) (Key‘KK ∪ C) = Key ‘ (insert K KK)
∪ C"
〈proof 〉

lemma Crypt_imp_keysFor :" [[Crypt K X ∈ H; K ∈ symKeys ]] =⇒ K ∈ keysFor
H"
〈proof 〉

Lemma for the trivial direction of the if-and-only-if of the Session Key Compro-
mise Theorem
lemma analz_image_freshK_lemma:

"(Key K ∈ analz (Key‘nE ∪ H)) −→ (K ∈ nE | Key K ∈ analz H) =⇒
(Key K ∈ analz (Key‘nE ∪ H)) = (K ∈ nE | Key K ∈ analz H)"

〈proof 〉
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lemmas analz_image_freshK_simps =
simp_thms mem_simps — these two allow its use with only:
disj_comms
image_insert [THEN sym] image_Un [THEN sym] empty_subsetI insert_subset
analz_insert_eq Un_upper2 [THEN analz_mono, THEN subsetD]
insert_Key_singleton
Key_not_used insert_Key_image Un_assoc [THEN sym]

〈ML〉

2.12 Specialized Methods for Possibility Theorems
〈ML〉

end

3 Needham-Schroeder Shared-Key Protocol
theory NS_Shared imports Public begin

From page 247 of Burrows, Abadi and Needham (1989). A Logic of Authenti-
cation. Proc. Royal Soc. 426

definition

Issues :: "[agent, agent, msg, event list] ⇒ bool"
(‹_ Issues _ with _ on _›) where

"A Issues B with X on evs =
(∃ Y. Says A B Y ∈ set evs ∧ X ∈ parts {Y} ∧

X /∈ parts (spies (takeWhile (λz. z 6= Says A B Y) (rev evs))))"

inductive_set ns_shared :: "event list set"
where

Nil: "[] ∈ ns_shared"

| Fake: " [[evsf ∈ ns_shared; X ∈ synth (analz (spies evsf))]]
=⇒ Says Spy B X # evsf ∈ ns_shared"

| NS1: " [[evs1 ∈ ns_shared; Nonce NA /∈ used evs1]]
=⇒ Says A Server {|Agent A, Agent B, Nonce NA |} # evs1 ∈ ns_shared"

| NS2: " [[evs2 ∈ ns_shared; Key KAB /∈ used evs2; KAB ∈ symKeys;
Says A’ Server {|Agent A, Agent B, Nonce NA |} ∈ set evs2]]

=⇒ Says Server A
(Crypt (shrK A)
{|Nonce NA, Agent B, Key KAB,

(Crypt (shrK B) {|Key KAB, Agent A |})|})
# evs2 ∈ ns_shared"
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| NS3: " [[evs3 ∈ ns_shared; A 6= Server;
Says S A (Crypt (shrK A) {|Nonce NA, Agent B, Key K, X |}) ∈ set evs3;
Says A Server {|Agent A, Agent B, Nonce NA |} ∈ set evs3]]

=⇒ Says A B X # evs3 ∈ ns_shared"

| NS4: " [[evs4 ∈ ns_shared; Nonce NB /∈ used evs4; K ∈ symKeys;
Says A’ B (Crypt (shrK B) {|Key K, Agent A |}) ∈ set evs4]]

=⇒ Says B A (Crypt K (Nonce NB)) # evs4 ∈ ns_shared"

| NS5: " [[evs5 ∈ ns_shared; K ∈ symKeys;
Says B’ A (Crypt K (Nonce NB)) ∈ set evs5;
Says S A (Crypt (shrK A) {|Nonce NA, Agent B, Key K, X |})
∈ set evs5]]

=⇒ Says A B (Crypt K {|Nonce NB, Nonce NB |}) # evs5 ∈ ns_shared"

| Oops: " [[evso ∈ ns_shared; Says B A (Crypt K (Nonce NB)) ∈ set evso;
Says Server A (Crypt (shrK A) {|Nonce NA, Agent B, Key K, X |})

∈ set evso ]]
=⇒ Notes Spy {|Nonce NA, Nonce NB, Key K |} # evso ∈ ns_shared"

declare Says_imp_knows_Spy [THEN parts.Inj, dest]
declare parts.Body [dest]
declare Fake_parts_insert_in_Un [dest]
declare analz_into_parts [dest]

A "possibility property": there are traces that reach the end
lemma " [[A 6= Server; Key K /∈ used []; K ∈ symKeys ]]

=⇒ ∃ N. ∃ evs ∈ ns_shared.
Says A B (Crypt K {|Nonce N, Nonce N |}) ∈ set evs"

〈proof 〉

3.1 Inductive proofs about ns_shared

3.1.1 Forwarding lemmas, to aid simplification

For reasoning about the encrypted portion of message NS3
lemma NS3_msg_in_parts_spies:

"Says S A (Crypt KA {|N, B, K, X |}) ∈ set evs =⇒ X ∈ parts (spies evs)"
〈proof 〉

For reasoning about the Oops message
lemma Oops_parts_spies:

"Says Server A (Crypt (shrK A) {|NA, B, K, X |}) ∈ set evs
=⇒ K ∈ parts (spies evs)"

〈proof 〉

Theorems of the form X /∈ parts (knows Spy evs) imply that NOBODY sends
messages containing X

Spy never sees another agent’s shared key! (unless it’s bad at start)
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lemma Spy_see_shrK [simp]:
"evs ∈ ns_shared =⇒ (Key (shrK A) ∈ parts (spies evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_analz_shrK [simp]:
"evs ∈ ns_shared =⇒ (Key (shrK A) ∈ analz (spies evs)) = (A ∈ bad)"

〈proof 〉

Nobody can have used non-existent keys!
lemma new_keys_not_used [simp]:

" [[Key K /∈ used evs; K ∈ symKeys; evs ∈ ns_shared ]]
=⇒ K /∈ keysFor (parts (spies evs))"

〈proof 〉

3.1.2 Lemmas concerning the form of items passed in messages

Describes the form of K, X and K’ when the Server sends this message.
lemma Says_Server_message_form:

" [[Says Server A (Crypt K’ {|N, Agent B, Key K, X |}) ∈ set evs;
evs ∈ ns_shared ]]

=⇒ K /∈ range shrK ∧
X = (Crypt (shrK B) {|Key K, Agent A |}) ∧
K’ = shrK A"

〈proof 〉

If the encrypted message appears then it originated with the Server
lemma A_trusts_NS2:

" [[Crypt (shrK A) {|NA, Agent B, Key K, X |} ∈ parts (spies evs);
A /∈ bad; evs ∈ ns_shared ]]

=⇒ Says Server A (Crypt (shrK A) {|NA, Agent B, Key K, X |}) ∈ set evs"
〈proof 〉

lemma cert_A_form:
" [[Crypt (shrK A) {|NA, Agent B, Key K, X |} ∈ parts (spies evs);

A /∈ bad; evs ∈ ns_shared ]]
=⇒ K /∈ range shrK ∧ X = (Crypt (shrK B) {|Key K, Agent A |})"

〈proof 〉

EITHER describes the form of X when the following message is sent, OR reduces
it to the Fake case. Use Says_Server_message_form if applicable.
lemma Says_S_message_form:

" [[Says S A (Crypt (shrK A) {|Nonce NA, Agent B, Key K, X |}) ∈ set evs;
evs ∈ ns_shared ]]

=⇒ (K /∈ range shrK ∧ X = (Crypt (shrK B) {|Key K, Agent A |}))
∨ X ∈ analz (spies evs)"

〈proof 〉

NOT useful in this form, but it says that session keys are not used to encrypt
messages containing other keys, in the actual protocol. We require that agents
should behave like this subsequently also.
lemma " [[evs ∈ ns_shared; Kab /∈ range shrK ]] =⇒

(Crypt KAB X) ∈ parts (spies evs) ∧



3.2 Guarantees available at various stages of protocol 39

Key K ∈ parts {X} −→ Key K ∈ parts (spies evs)"
〈proof 〉

3.1.3 Session keys are not used to encrypt other session keys

The equality makes the induction hypothesis easier to apply
lemma analz_image_freshK [rule_format]:
"evs ∈ ns_shared =⇒
∀ K KK. KK ⊆ - (range shrK) −→

(Key K ∈ analz (Key‘KK ∪ (spies evs))) =
(K ∈ KK ∨ Key K ∈ analz (spies evs))"

〈proof 〉

lemma analz_insert_freshK:
" [[evs ∈ ns_shared; KAB /∈ range shrK ]] =⇒

(Key K ∈ analz (insert (Key KAB) (spies evs))) =
(K = KAB ∨ Key K ∈ analz (spies evs))"

〈proof 〉

3.1.4 The session key K uniquely identifies the message

In messages of this form, the session key uniquely identifies the rest
lemma unique_session_keys:

" [[Says Server A (Crypt (shrK A) {|NA, Agent B, Key K, X |}) ∈ set evs;
Says Server A’ (Crypt (shrK A’) {|NA’, Agent B’, Key K, X’|}) ∈ set evs;
evs ∈ ns_shared ]] =⇒ A=A’ ∧ NA=NA’ ∧ B=B’ ∧ X = X’"

〈proof 〉

3.1.5 Crucial secrecy property: Spy doesn’t see the keys sent in NS2

Beware of [rule_format] and the universal quantifier!
lemma secrecy_lemma:

" [[Says Server A (Crypt (shrK A) {|NA, Agent B, Key K,
Crypt (shrK B) {|Key K, Agent A |}|})

∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ ns_shared ]]

=⇒ (∀ NB. Notes Spy {|NA, NB, Key K |} /∈ set evs) −→
Key K /∈ analz (spies evs)"

〈proof 〉

Final version: Server’s message in the most abstract form
lemma Spy_not_see_encrypted_key:

" [[Says Server A (Crypt K’ {|NA, Agent B, Key K, X |}) ∈ set evs;
∀ NB. Notes Spy {|NA, NB, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ ns_shared ]]

=⇒ Key K /∈ analz (spies evs)"
〈proof 〉

3.2 Guarantees available at various stages of protocol
If the encrypted message appears then it originated with the Server
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lemma B_trusts_NS3:
" [[Crypt (shrK B) {|Key K, Agent A |} ∈ parts (spies evs);

B /∈ bad; evs ∈ ns_shared ]]
=⇒ ∃ NA. Says Server A

(Crypt (shrK A) {|NA, Agent B, Key K,
Crypt (shrK B) {|Key K, Agent A |}|})

∈ set evs"
〈proof 〉

lemma A_trusts_NS4_lemma [rule_format]:
"evs ∈ ns_shared =⇒

Key K /∈ analz (spies evs) −→
Says Server A (Crypt (shrK A) {|NA, Agent B, Key K, X |}) ∈ set evs −→
Crypt K (Nonce NB) ∈ parts (spies evs) −→
Says B A (Crypt K (Nonce NB)) ∈ set evs"

〈proof 〉

This version no longer assumes that K is secure

lemma A_trusts_NS4:
" [[Crypt K (Nonce NB) ∈ parts (spies evs);

Crypt (shrK A) {|NA, Agent B, Key K, X |} ∈ parts (spies evs);
∀ NB. Notes Spy {|NA, NB, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ ns_shared ]]

=⇒ Says B A (Crypt K (Nonce NB)) ∈ set evs"
〈proof 〉

If the session key has been used in NS4 then somebody has forwarded component
X in some instance of NS4. Perhaps an interesting property, but not needed
(after all) for the proofs below.

theorem NS4_implies_NS3 [rule_format]:
"evs ∈ ns_shared =⇒

Key K /∈ analz (spies evs) −→
Says Server A (Crypt (shrK A) {|NA, Agent B, Key K, X |}) ∈ set evs −→
Crypt K (Nonce NB) ∈ parts (spies evs) −→
(∃ A’. Says A’ B X ∈ set evs)"

〈proof 〉

lemma B_trusts_NS5_lemma [rule_format]:
" [[B /∈ bad; evs ∈ ns_shared ]] =⇒

Key K /∈ analz (spies evs) −→
Says Server A

(Crypt (shrK A) {|NA, Agent B, Key K,
Crypt (shrK B) {|Key K, Agent A |}|}) ∈ set evs −→

Crypt K {|Nonce NB, Nonce NB |} ∈ parts (spies evs) −→
Says A B (Crypt K {|Nonce NB, Nonce NB |}) ∈ set evs"

〈proof 〉

Very strong Oops condition reveals protocol’s weakness

lemma B_trusts_NS5:
" [[Crypt K {|Nonce NB, Nonce NB |} ∈ parts (spies evs);

Crypt (shrK B) {|Key K, Agent A |} ∈ parts (spies evs);
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∀ NA NB. Notes Spy {|NA, NB, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ ns_shared ]]

=⇒ Says A B (Crypt K {|Nonce NB, Nonce NB |}) ∈ set evs"
〈proof 〉

Unaltered so far wrt original version

3.3 Lemmas for reasoning about predicate "Issues"
lemma spies_Says_rev: "spies (evs @ [Says A B X]) = insert X (spies evs)"
〈proof 〉

lemma spies_Gets_rev: "spies (evs @ [Gets A X]) = spies evs"
〈proof 〉

lemma spies_Notes_rev: "spies (evs @ [Notes A X]) =
(if A∈bad then insert X (spies evs) else spies evs)"

〈proof 〉

lemma spies_evs_rev: "spies evs = spies (rev evs)"
〈proof 〉

lemmas parts_spies_evs_revD2 = spies_evs_rev [THEN equalityD2, THEN parts_mono]

lemma spies_takeWhile: "spies (takeWhile P evs) ⊆ spies evs"
〈proof 〉

lemmas parts_spies_takeWhile_mono = spies_takeWhile [THEN parts_mono]

3.4 Guarantees of non-injective agreement on the session
key, and of key distribution. They also express forms
of freshness of certain messages, namely that agents
were alive after something happened.

lemma B_Issues_A:
" [[ Says B A (Crypt K (Nonce Nb)) ∈ set evs;

Key K /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ ns_shared ]]

=⇒ B Issues A with (Crypt K (Nonce Nb)) on evs"
〈proof 〉

Tells A that B was alive after she sent him the session key. The session key
must be assumed confidential for this deduction to be meaningful, but that
assumption can be relaxed by the appropriate argument.
Precisely, the theorem guarantees (to A) key distribution of the session key to
B. It also guarantees (to A) non-injective agreement of B with A on the session
key. Both goals are available to A in the sense of Goal Availability.

lemma A_authenticates_and_keydist_to_B:
" [[Crypt K (Nonce NB) ∈ parts (spies evs);

Crypt (shrK A) {|NA, Agent B, Key K, X |} ∈ parts (spies evs);
Key K /∈ analz(knows Spy evs);
A /∈ bad; B /∈ bad; evs ∈ ns_shared ]]
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=⇒ B Issues A with (Crypt K (Nonce NB)) on evs"
〈proof 〉

lemma A_trusts_NS5:
" [[ Crypt K {|Nonce NB, Nonce NB |} ∈ parts(spies evs);

Crypt (shrK A) {|Nonce NA, Agent B, Key K, X |} ∈ parts(spies evs);
Key K /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ ns_shared ]]

=⇒ Says A B (Crypt K {|Nonce NB, Nonce NB |}) ∈ set evs"
〈proof 〉

lemma A_Issues_B:
" [[ Says A B (Crypt K {|Nonce NB, Nonce NB |}) ∈ set evs;

Key K /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ ns_shared ]]

=⇒ A Issues B with (Crypt K {|Nonce NB, Nonce NB |}) on evs"
〈proof 〉

Tells B that A was alive after B issued NB.
Precisely, the theorem guarantees (to B) key distribution of the session key to
A. It also guarantees (to B) non-injective agreement of A with B on the session
key. Both goals are available to B in the sense of Goal Availability.
lemma B_authenticates_and_keydist_to_A:

" [[Crypt K {|Nonce NB, Nonce NB |} ∈ parts (spies evs);
Crypt (shrK B) {|Key K, Agent A |} ∈ parts (spies evs);
Key K /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ ns_shared ]]

=⇒ A Issues B with (Crypt K {|Nonce NB, Nonce NB |}) on evs"
〈proof 〉

end

4 The Kerberos Protocol, BAN Version
theory Kerberos_BAN imports Public begin

From page 251 of Burrows, Abadi and Needham (1989). A Logic of Authenti-
cation. Proc. Royal Soc. 426
Confidentiality (secrecy) and authentication properties are also given in a termpo-
ral version: strong guarantees in a little abstracted - but very realistic - model.
consts

sesKlife :: nat

authlife :: nat

The ticket should remain fresh for two journeys on the network at least
specification (sesKlife)

sesKlife_LB [iff]: "2 ≤ sesKlife"
〈proof 〉
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The authenticator only for one journey
specification (authlife)

authlife_LB [iff]: "authlife 6= 0"
〈proof 〉

abbreviation
CT :: "event list ⇒ nat" where
"CT == length "

abbreviation
expiredK :: "[nat, event list] ⇒ bool" where
"expiredK T evs == sesKlife + T < CT evs"

abbreviation
expiredA :: "[nat, event list] ⇒ bool" where
"expiredA T evs == authlife + T < CT evs"

definition

Issues :: "[agent, agent, msg, event list] ⇒ bool"
(‹_ Issues _ with _ on _›) where

"A Issues B with X on evs =
(∃ Y. Says A B Y ∈ set evs ∧ X ∈ parts {Y} ∧

X /∈ parts (spies (takeWhile (λz. z 6= Says A B Y) (rev evs))))"

definition

before :: "[event, event list] ⇒ event list" (‹before _ on _›)
where "before ev on evs = takeWhile (λz. z 6= ev) (rev evs)"

definition

Unique :: "[event, event list] ⇒ bool" (‹Unique _ on _›)
where "Unique ev on evs = (ev /∈ set (tl (dropWhile (λz. z 6= ev) evs)))"

inductive_set bankerberos :: "event list set"
where

Nil: "[] ∈ bankerberos"

| Fake: " [[ evsf ∈ bankerberos; X ∈ synth (analz (spies evsf)) ]]
=⇒ Says Spy B X # evsf ∈ bankerberos"

| BK1: " [[ evs1 ∈ bankerberos ]]
=⇒ Says A Server {|Agent A, Agent B |} # evs1

∈ bankerberos"

| BK2: " [[ evs2 ∈ bankerberos; Key K /∈ used evs2; K ∈ symKeys;
Says A’ Server {|Agent A, Agent B |} ∈ set evs2 ]]

=⇒ Says Server A
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(Crypt (shrK A)
{|Number (CT evs2), Agent B, Key K,
(Crypt (shrK B) {|Number (CT evs2), Agent A, Key K |})|})

# evs2 ∈ bankerberos"

| BK3: " [[ evs3 ∈ bankerberos;
Says S A (Crypt (shrK A) {|Number Tk, Agent B, Key K, Ticket |})
∈ set evs3;

Says A Server {|Agent A, Agent B |} ∈ set evs3;
¬ expiredK Tk evs3 ]]

=⇒ Says A B {|Ticket, Crypt K {|Agent A, Number (CT evs3)|} |}
# evs3 ∈ bankerberos"

| BK4: " [[ evs4 ∈ bankerberos;
Says A’ B {|(Crypt (shrK B) {|Number Tk, Agent A, Key K |}),

(Crypt K {|Agent A, Number Ta |}) |} ∈ set evs4;
¬ expiredK Tk evs4; ¬ expiredA Ta evs4 ]]

=⇒ Says B A (Crypt K (Number Ta)) # evs4
∈ bankerberos"

| Oops: " [[ evso ∈ bankerberos;
Says Server A (Crypt (shrK A) {|Number Tk, Agent B, Key K, Ticket |})

∈ set evso;
expiredK Tk evso ]]

=⇒ Notes Spy {|Number Tk, Key K |} # evso ∈ bankerberos"

declare Says_imp_knows_Spy [THEN parts.Inj, dest]
declare parts.Body [dest]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]

A "possibility property": there are traces that reach the end.

lemma " [[Key K /∈ used []; K ∈ symKeys ]]
=⇒ ∃ Timestamp. ∃ evs ∈ bankerberos.

Says B A (Crypt K (Number Timestamp))
∈ set evs"

〈proof 〉

4.1 Lemmas for reasoning about predicate "Issues"
lemma spies_Says_rev: "spies (evs @ [Says A B X]) = insert X (spies evs)"
〈proof 〉

lemma spies_Gets_rev: "spies (evs @ [Gets A X]) = spies evs"
〈proof 〉

lemma spies_Notes_rev: "spies (evs @ [Notes A X]) =
(if A∈bad then insert X (spies evs) else spies evs)"

〈proof 〉
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lemma spies_evs_rev: "spies evs = spies (rev evs)"
〈proof 〉

lemmas parts_spies_evs_revD2 = spies_evs_rev [THEN equalityD2, THEN parts_mono]

lemma spies_takeWhile: "spies (takeWhile P evs) ⊆ spies evs"
〈proof 〉

lemmas parts_spies_takeWhile_mono = spies_takeWhile [THEN parts_mono]

Lemmas for reasoning about predicate "before"

lemma used_Says_rev: "used (evs @ [Says A B X]) = parts {X} ∪ (used evs)"
〈proof 〉

lemma used_Notes_rev: "used (evs @ [Notes A X]) = parts {X} ∪ (used evs)"
〈proof 〉

lemma used_Gets_rev: "used (evs @ [Gets B X]) = used evs"
〈proof 〉

lemma used_evs_rev: "used evs = used (rev evs)"
〈proof 〉

lemma used_takeWhile_used [rule_format]:
"x ∈ used (takeWhile P X) −→ x ∈ used X"

〈proof 〉

lemma set_evs_rev: "set evs = set (rev evs)"
〈proof 〉

lemma takeWhile_void [rule_format]:
"x /∈ set evs −→ takeWhile (λz. z 6= x) evs = evs"

〈proof 〉

Forwarding Lemma for reasoning about the encrypted portion of message BK3

lemma BK3_msg_in_parts_spies:
"Says S A (Crypt KA {|Timestamp, B, K, X |}) ∈ set evs
=⇒ X ∈ parts (spies evs)"

〈proof 〉

lemma Oops_parts_spies:
"Says Server A (Crypt (shrK A) {|Timestamp, B, K, X |}) ∈ set evs
=⇒ K ∈ parts (spies evs)"

〈proof 〉

Spy never sees another agent’s shared key! (unless it’s bad at start)

lemma Spy_see_shrK [simp]:
"evs ∈ bankerberos =⇒ (Key (shrK A) ∈ parts (spies evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_analz_shrK [simp]:
"evs ∈ bankerberos =⇒ (Key (shrK A) ∈ analz (spies evs)) = (A ∈ bad)"



46 4 THE KERBEROS PROTOCOL, BAN VERSION

〈proof 〉

lemma Spy_see_shrK_D [dest!]:
" [[ Key (shrK A) ∈ parts (spies evs);

evs ∈ bankerberos ]] =⇒ A∈bad"
〈proof 〉

lemmas Spy_analz_shrK_D = analz_subset_parts [THEN subsetD, THEN Spy_see_shrK_D,
dest!]

Nobody can have used non-existent keys!

lemma new_keys_not_used [simp]:
" [[Key K /∈ used evs; K ∈ symKeys; evs ∈ bankerberos ]]
=⇒ K /∈ keysFor (parts (spies evs))"

〈proof 〉

4.2 Lemmas concerning the form of items passed in mes-
sages

Describes the form of K, X and K’ when the Server sends this message.

lemma Says_Server_message_form:
" [[ Says Server A (Crypt K’ {|Number Tk, Agent B, Key K, Ticket |})

∈ set evs; evs ∈ bankerberos ]]
=⇒ K’ = shrK A ∧ K /∈ range shrK ∧

Ticket = (Crypt (shrK B) {|Number Tk, Agent A, Key K |}) ∧
Key K /∈ used(before

Says Server A (Crypt K’ {|Number Tk, Agent B, Key K, Ticket |})
on evs) ∧

Tk = CT(before
Says Server A (Crypt K’ {|Number Tk, Agent B, Key K, Ticket |})
on evs)"

〈proof 〉

If the encrypted message appears then it originated with the Server PROVIDED
that A is NOT compromised! This allows A to verify freshness of the session
key.

lemma Kab_authentic:
" [[ Crypt (shrK A) {|Number Tk, Agent B, Key K, X |}

∈ parts (spies evs);
A /∈ bad; evs ∈ bankerberos ]]

=⇒ Says Server A (Crypt (shrK A) {|Number Tk, Agent B, Key K, X |})
∈ set evs"

〈proof 〉

If the TICKET appears then it originated with the Server

FRESHNESS OF THE SESSION KEY to B

lemma ticket_authentic:
" [[ Crypt (shrK B) {|Number Tk, Agent A, Key K |} ∈ parts (spies evs);

B /∈ bad; evs ∈ bankerberos ]]
=⇒ Says Server A

(Crypt (shrK A) {|Number Tk, Agent B, Key K,
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Crypt (shrK B) {|Number Tk, Agent A, Key K |}|})
∈ set evs"

〈proof 〉

EITHER describes the form of X when the following message is sent, OR reduces
it to the Fake case. Use Says_Server_message_form if applicable.

lemma Says_S_message_form:
" [[ Says S A (Crypt (shrK A) {|Number Tk, Agent B, Key K, X |})

∈ set evs;
evs ∈ bankerberos ]]

=⇒ (K /∈ range shrK ∧ X = (Crypt (shrK B) {|Number Tk, Agent A, Key K |}))
| X ∈ analz (spies evs)"

〈proof 〉

Session keys are not used to encrypt other session keys

lemma analz_image_freshK [rule_format (no_asm)]:
"evs ∈ bankerberos =⇒

∀ K KK. KK ⊆ - (range shrK) −→
(Key K ∈ analz (Key‘KK ∪ (spies evs))) =
(K ∈ KK | Key K ∈ analz (spies evs))"

〈proof 〉

lemma analz_insert_freshK:
" [[ evs ∈ bankerberos; KAB /∈ range shrK ]] =⇒
(Key K ∈ analz (insert (Key KAB) (spies evs))) =
(K = KAB | Key K ∈ analz (spies evs))"

〈proof 〉

The session key K uniquely identifies the message

lemma unique_session_keys:
" [[ Says Server A

(Crypt (shrK A) {|Number Tk, Agent B, Key K, X |}) ∈ set evs;
Says Server A’
(Crypt (shrK A’) {|Number Tk’, Agent B’, Key K, X’|}) ∈ set evs;

evs ∈ bankerberos ]] =⇒ A=A’ ∧ Tk=Tk’ ∧ B=B’ ∧ X = X’"
〈proof 〉

lemma Server_Unique:
" [[ Says Server A

(Crypt (shrK A) {|Number Tk, Agent B, Key K, Ticket |}) ∈ set evs;
evs ∈ bankerberos ]] =⇒

Unique Says Server A (Crypt (shrK A) {|Number Tk, Agent B, Key K, Ticket |})
on evs"

〈proof 〉

4.3 Non-temporal guarantees, explicitly relying on non-
occurrence of oops events - refined below by temporal
guarantees

Non temporal treatment of confidentiality



48 4 THE KERBEROS PROTOCOL, BAN VERSION

Lemma: the session key sent in msg BK2 would be lost by oops if the spy could
see it!

lemma lemma_conf [rule_format (no_asm)]:
" [[ A /∈ bad; B /∈ bad; evs ∈ bankerberos ]]

=⇒ Says Server A
(Crypt (shrK A) {|Number Tk, Agent B, Key K,

Crypt (shrK B) {|Number Tk, Agent A, Key K |}|})
∈ set evs −→

Key K ∈ analz (spies evs) −→ Notes Spy {|Number Tk, Key K |} ∈ set evs"
〈proof 〉

Confidentiality for the Server: Spy does not see the keys sent in msg BK2 as
long as they have not expired.

lemma Confidentiality_S:
" [[ Says Server A

(Crypt K’ {|Number Tk, Agent B, Key K, Ticket |}) ∈ set evs;
Notes Spy {|Number Tk, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ bankerberos

]] =⇒ Key K /∈ analz (spies evs)"
〈proof 〉

Confidentiality for Alice

lemma Confidentiality_A:
" [[ Crypt (shrK A) {|Number Tk, Agent B, Key K, X |} ∈ parts (spies evs);

Notes Spy {|Number Tk, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ bankerberos

]] =⇒ Key K /∈ analz (spies evs)"
〈proof 〉

Confidentiality for Bob

lemma Confidentiality_B:
" [[ Crypt (shrK B) {|Number Tk, Agent A, Key K |}

∈ parts (spies evs);
Notes Spy {|Number Tk, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ bankerberos

]] =⇒ Key K /∈ analz (spies evs)"
〈proof 〉

Non temporal treatment of authentication

Lemmas lemma_A and lemma_B in fact are common to both temporal and non-
temporal treatments

lemma lemma_A [rule_format]:
" [[ A /∈ bad; B /∈ bad; evs ∈ bankerberos ]]
=⇒

Key K /∈ analz (spies evs) −→
Says Server A (Crypt (shrK A) {|Number Tk, Agent B, Key K, X |})
∈ set evs −→
Crypt K {|Agent A, Number Ta |} ∈ parts (spies evs) −→

Says A B {|X, Crypt K {|Agent A, Number Ta |}|}
∈ set evs"

〈proof 〉
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lemma lemma_B [rule_format]:
" [[ B /∈ bad; evs ∈ bankerberos ]]
=⇒ Key K /∈ analz (spies evs) −→

Says Server A (Crypt (shrK A) {|Number Tk, Agent B, Key K, X |})
∈ set evs −→
Crypt K (Number Ta) ∈ parts (spies evs) −→
Says B A (Crypt K (Number Ta)) ∈ set evs"

〈proof 〉

The "r" suffix indicates theorems where the confidentiality assumptions are re-
laxed by the corresponding arguments.

Authentication of A to B

lemma B_authenticates_A_r:
" [[ Crypt K {|Agent A, Number Ta |} ∈ parts (spies evs);

Crypt (shrK B) {|Number Tk, Agent A, Key K |} ∈ parts (spies evs);
Notes Spy {|Number Tk, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ bankerberos ]]

=⇒ Says A B {|Crypt (shrK B) {|Number Tk, Agent A, Key K |},
Crypt K {|Agent A, Number Ta |}|} ∈ set evs"

〈proof 〉

Authentication of B to A

lemma A_authenticates_B_r:
" [[ Crypt K (Number Ta) ∈ parts (spies evs);

Crypt (shrK A) {|Number Tk, Agent B, Key K, X |} ∈ parts (spies evs);
Notes Spy {|Number Tk, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ bankerberos ]]

=⇒ Says B A (Crypt K (Number Ta)) ∈ set evs"
〈proof 〉

lemma B_authenticates_A:
" [[ Crypt K {|Agent A, Number Ta |} ∈ parts (spies evs);

Crypt (shrK B) {|Number Tk, Agent A, Key K |} ∈ parts (spies evs);
Key K /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ bankerberos ]]

=⇒ Says A B {|Crypt (shrK B) {|Number Tk, Agent A, Key K |},
Crypt K {|Agent A, Number Ta |}|} ∈ set evs"

〈proof 〉

lemma A_authenticates_B:
" [[ Crypt K (Number Ta) ∈ parts (spies evs);

Crypt (shrK A) {|Number Tk, Agent B, Key K, X |} ∈ parts (spies evs);
Key K /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ bankerberos ]]

=⇒ Says B A (Crypt K (Number Ta)) ∈ set evs"
〈proof 〉
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4.4 Temporal guarantees, relying on a temporal check that
insures that no oops event occurred. These are avail-
able in the sense of goal availability

Temporal treatment of confidentiality

Lemma: the session key sent in msg BK2 would be EXPIRED if the spy could
see it!
lemma lemma_conf_temporal [rule_format (no_asm)]:

" [[ A /∈ bad; B /∈ bad; evs ∈ bankerberos ]]
=⇒ Says Server A

(Crypt (shrK A) {|Number Tk, Agent B, Key K,
Crypt (shrK B) {|Number Tk, Agent A, Key K |}|})

∈ set evs −→
Key K ∈ analz (spies evs) −→ expiredK Tk evs"

〈proof 〉

Confidentiality for the Server: Spy does not see the keys sent in msg BK2 as
long as they have not expired.
lemma Confidentiality_S_temporal:

" [[ Says Server A
(Crypt K’ {|Number T, Agent B, Key K, X |}) ∈ set evs;
¬ expiredK T evs;
A /∈ bad; B /∈ bad; evs ∈ bankerberos

]] =⇒ Key K /∈ analz (spies evs)"
〈proof 〉

Confidentiality for Alice
lemma Confidentiality_A_temporal:

" [[ Crypt (shrK A) {|Number T, Agent B, Key K, X |} ∈ parts (spies evs);
¬ expiredK T evs;
A /∈ bad; B /∈ bad; evs ∈ bankerberos

]] =⇒ Key K /∈ analz (spies evs)"
〈proof 〉

Confidentiality for Bob
lemma Confidentiality_B_temporal:

" [[ Crypt (shrK B) {|Number Tk, Agent A, Key K |}
∈ parts (spies evs);

¬ expiredK Tk evs;
A /∈ bad; B /∈ bad; evs ∈ bankerberos

]] =⇒ Key K /∈ analz (spies evs)"
〈proof 〉

Temporal treatment of authentication

Authentication of A to B
lemma B_authenticates_A_temporal:

" [[ Crypt K {|Agent A, Number Ta |} ∈ parts (spies evs);
Crypt (shrK B) {|Number Tk, Agent A, Key K |}
∈ parts (spies evs);
¬ expiredK Tk evs;
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A /∈ bad; B /∈ bad; evs ∈ bankerberos ]]
=⇒ Says A B {|Crypt (shrK B) {|Number Tk, Agent A, Key K |},

Crypt K {|Agent A, Number Ta |}|} ∈ set evs"
〈proof 〉

Authentication of B to A
lemma A_authenticates_B_temporal:

" [[ Crypt K (Number Ta) ∈ parts (spies evs);
Crypt (shrK A) {|Number Tk, Agent B, Key K, X |}
∈ parts (spies evs);
¬ expiredK Tk evs;
A /∈ bad; B /∈ bad; evs ∈ bankerberos ]]

=⇒ Says B A (Crypt K (Number Ta)) ∈ set evs"
〈proof 〉

4.5 Treatment of the key distribution goal using trace in-
spection. All guarantees are in non-temporal form,
hence non available, though their temporal form is
trivial to derive. These guarantees also convey a stronger
form of authentication - non-injective agreement on
the session key

lemma B_Issues_A:
" [[ Says B A (Crypt K (Number Ta)) ∈ set evs;

Key K /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ bankerberos ]]

=⇒ B Issues A with (Crypt K (Number Ta)) on evs"
〈proof 〉

lemma A_authenticates_and_keydist_to_B:
" [[ Crypt K (Number Ta) ∈ parts (spies evs);

Crypt (shrK A) {|Number Tk, Agent B, Key K, X |} ∈ parts (spies evs);
Key K /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ bankerberos ]]

=⇒ B Issues A with (Crypt K (Number Ta)) on evs"
〈proof 〉

lemma A_Issues_B:
" [[ Says A B {|Ticket, Crypt K {|Agent A, Number Ta |}|}

∈ set evs;
Key K /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ bankerberos ]]

=⇒ A Issues B with (Crypt K {|Agent A, Number Ta |}) on evs"
〈proof 〉

lemma B_authenticates_and_keydist_to_A:
" [[ Crypt K {|Agent A, Number Ta |} ∈ parts (spies evs);

Crypt (shrK B) {|Number Tk, Agent A, Key K |} ∈ parts (spies evs);
Key K /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ bankerberos ]]

=⇒ A Issues B with (Crypt K {|Agent A, Number Ta |}) on evs"
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〈proof 〉

end

5 The Kerberos Protocol, BAN Version, with
Gets event

theory Kerberos_BAN_Gets imports Public begin

From page 251 of Burrows, Abadi and Needham (1989). A Logic of Authenti-
cation. Proc. Royal Soc. 426
Confidentiality (secrecy) and authentication properties rely on temporal checks:
strong guarantees in a little abstracted - but very realistic - model.
consts

sesKlife :: nat

authlife :: nat

The ticket should remain fresh for two journeys on the network at least

The Gets event causes longer traces for the protocol to reach its end
specification (sesKlife)

sesKlife_LB [iff]: "4 ≤ sesKlife"
〈proof 〉

The authenticator only for one journey

The Gets event causes longer traces for the protocol to reach its end
specification (authlife)

authlife_LB [iff]: "2 ≤ authlife"
〈proof 〉

abbreviation
CT :: "event list ⇒ nat" where
"CT == length"

abbreviation
expiredK :: "[nat, event list] ⇒ bool" where
"expiredK T evs == sesKlife + T < CT evs"

abbreviation
expiredA :: "[nat, event list] ⇒ bool" where
"expiredA T evs == authlife + T < CT evs"
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definition

before :: "[event, event list] ⇒ event list" (‹before _ on _›)
where "before ev on evs = takeWhile (λz. z 6= ev) (rev evs)"

definition

Unique :: "[event, event list] ⇒ bool" (‹Unique _ on _›)
where "Unique ev on evs = (ev /∈ set (tl (dropWhile (λz. z 6= ev) evs)))"

inductive_set bankerb_gets :: "event list set"
where

Nil: "[] ∈ bankerb_gets"

| Fake: " [[ evsf ∈ bankerb_gets; X ∈ synth (analz (knows Spy evsf)) ]]
=⇒ Says Spy B X # evsf ∈ bankerb_gets"

| Reception: " [[ evsr∈ bankerb_gets; Says A B X ∈ set evsr ]]
=⇒ Gets B X # evsr ∈ bankerb_gets"

| BK1: " [[ evs1 ∈ bankerb_gets ]]
=⇒ Says A Server {|Agent A, Agent B |} # evs1

∈ bankerb_gets"

| BK2: " [[ evs2 ∈ bankerb_gets; Key K /∈ used evs2; K ∈ symKeys;
Gets Server {|Agent A, Agent B |} ∈ set evs2 ]]

=⇒ Says Server A
(Crypt (shrK A)
{|Number (CT evs2), Agent B, Key K,
(Crypt (shrK B) {|Number (CT evs2), Agent A, Key K |})|})

# evs2 ∈ bankerb_gets"

| BK3: " [[ evs3 ∈ bankerb_gets;
Gets A (Crypt (shrK A) {|Number Tk, Agent B, Key K, Ticket |})
∈ set evs3;

Says A Server {|Agent A, Agent B |} ∈ set evs3;
¬ expiredK Tk evs3 ]]

=⇒ Says A B {|Ticket, Crypt K {|Agent A, Number (CT evs3)|} |}
# evs3 ∈ bankerb_gets"

| BK4: " [[ evs4 ∈ bankerb_gets;
Gets B {|(Crypt (shrK B) {|Number Tk, Agent A, Key K |}),

(Crypt K {|Agent A, Number Ta |}) |} ∈ set evs4;
¬ expiredK Tk evs4; ¬ expiredA Ta evs4 ]]

=⇒ Says B A (Crypt K (Number Ta)) # evs4
∈ bankerb_gets"

| Oops: " [[ evso ∈ bankerb_gets;
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Says Server A (Crypt (shrK A) {|Number Tk, Agent B, Key K, Ticket |})
∈ set evso;

expiredK Tk evso ]]
=⇒ Notes Spy {|Number Tk, Key K |} # evso ∈ bankerb_gets"

declare Says_imp_knows_Spy [THEN parts.Inj, dest]
declare parts.Body [dest]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]
declare knows_Spy_partsEs [elim]

A "possibility property": there are traces that reach the end.

lemma " [[Key K /∈ used []; K ∈ symKeys ]]
=⇒ ∃ Timestamp. ∃ evs ∈ bankerb_gets.

Says B A (Crypt K (Number Timestamp))
∈ set evs"

〈proof 〉

Lemmas about reception invariant: if a message is received it certainly was sent

lemma Gets_imp_Says :
" [[ Gets B X ∈ set evs; evs ∈ bankerb_gets ]] =⇒ ∃ A. Says A B X ∈ set

evs"
〈proof 〉

lemma Gets_imp_knows_Spy:
" [[ Gets B X ∈ set evs; evs ∈ bankerb_gets ]] =⇒ X ∈ knows Spy evs"

〈proof 〉

lemma Gets_imp_knows_Spy_parts[dest]:
" [[ Gets B X ∈ set evs; evs ∈ bankerb_gets ]] =⇒ X ∈ parts (knows Spy

evs)"
〈proof 〉

lemma Gets_imp_knows:
" [[ Gets B X ∈ set evs; evs ∈ bankerb_gets ]] =⇒ X ∈ knows B evs"

〈proof 〉

lemma Gets_imp_knows_analz:
" [[ Gets B X ∈ set evs; evs ∈ bankerb_gets ]] =⇒ X ∈ analz (knows B evs)"

〈proof 〉

Lemmas for reasoning about predicate "before"

lemma used_Says_rev: "used (evs @ [Says A B X]) = parts {X} ∪ (used evs)"
〈proof 〉

lemma used_Notes_rev: "used (evs @ [Notes A X]) = parts {X} ∪ (used evs)"
〈proof 〉

lemma used_Gets_rev: "used (evs @ [Gets B X]) = used evs"
〈proof 〉

lemma used_evs_rev: "used evs = used (rev evs)"
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〈proof 〉

lemma used_takeWhile_used [rule_format]:
"x ∈ used (takeWhile P X) −→ x ∈ used X"

〈proof 〉

lemma set_evs_rev: "set evs = set (rev evs)"
〈proof 〉

lemma takeWhile_void [rule_format]:
"x /∈ set evs −→ takeWhile (λz. z 6= x) evs = evs"

〈proof 〉

Forwarding Lemma for reasoning about the encrypted portion of message BK3

lemma BK3_msg_in_parts_knows_Spy:
" [[Gets A (Crypt KA {|Timestamp, B, K, X |}) ∈ set evs; evs ∈ bankerb_gets

]]
=⇒ X ∈ parts (knows Spy evs)"

〈proof 〉

lemma Oops_parts_knows_Spy:
"Says Server A (Crypt (shrK A) {|Timestamp, B, K, X |}) ∈ set evs
=⇒ K ∈ parts (knows Spy evs)"

〈proof 〉

Spy never sees another agent’s shared key! (unless it’s bad at start)

lemma Spy_see_shrK [simp]:
"evs ∈ bankerb_gets =⇒ (Key (shrK A) ∈ parts (knows Spy evs)) = (A

∈ bad)"
〈proof 〉

lemma Spy_analz_shrK [simp]:
"evs ∈ bankerb_gets =⇒ (Key (shrK A) ∈ analz (knows Spy evs)) = (A

∈ bad)"
〈proof 〉

lemma Spy_see_shrK_D [dest!]:
" [[ Key (shrK A) ∈ parts (knows Spy evs);

evs ∈ bankerb_gets ]] =⇒ A∈bad"
〈proof 〉

lemmas Spy_analz_shrK_D = analz_subset_parts [THEN subsetD, THEN Spy_see_shrK_D,
dest!]

Nobody can have used non-existent keys!

lemma new_keys_not_used [simp]:
" [[Key K /∈ used evs; K ∈ symKeys; evs ∈ bankerb_gets ]]
=⇒ K /∈ keysFor (parts (knows Spy evs))"

〈proof 〉
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5.1 Lemmas concerning the form of items passed in mes-
sages

Describes the form of K, X and K’ when the Server sends this message.
lemma Says_Server_message_form:

" [[ Says Server A (Crypt K’ {|Number Tk, Agent B, Key K, Ticket |})
∈ set evs; evs ∈ bankerb_gets ]]

=⇒ K’ = shrK A ∧ K /∈ range shrK ∧
Ticket = (Crypt (shrK B) {|Number Tk, Agent A, Key K |}) ∧
Key K /∈ used(before

Says Server A (Crypt K’ {|Number Tk, Agent B, Key K, Ticket |})
on evs) ∧

Tk = CT(before
Says Server A (Crypt K’ {|Number Tk, Agent B, Key K, Ticket |})
on evs)"

〈proof 〉

If the encrypted message appears then it originated with the Server PROVIDED
that A is NOT compromised! This allows A to verify freshness of the session
key.
lemma Kab_authentic:

" [[ Crypt (shrK A) {|Number Tk, Agent B, Key K, X |}
∈ parts (knows Spy evs);

A /∈ bad; evs ∈ bankerb_gets ]]
=⇒ Says Server A (Crypt (shrK A) {|Number Tk, Agent B, Key K, X |})

∈ set evs"
〈proof 〉

If the TICKET appears then it originated with the Server

FRESHNESS OF THE SESSION KEY to B
lemma ticket_authentic:

" [[ Crypt (shrK B) {|Number Tk, Agent A, Key K |} ∈ parts (knows Spy evs);
B /∈ bad; evs ∈ bankerb_gets ]]

=⇒ Says Server A
(Crypt (shrK A) {|Number Tk, Agent B, Key K,

Crypt (shrK B) {|Number Tk, Agent A, Key K |}|})
∈ set evs"

〈proof 〉

EITHER describes the form of X when the following message is sent, OR reduces
it to the Fake case. Use Says_Server_message_form if applicable.
lemma Gets_Server_message_form:

" [[ Gets A (Crypt (shrK A) {|Number Tk, Agent B, Key K, X |})
∈ set evs;

evs ∈ bankerb_gets ]]
=⇒ (K /∈ range shrK ∧ X = (Crypt (shrK B) {|Number Tk, Agent A, Key K |}))

| X ∈ analz (knows Spy evs)"
〈proof 〉

Reliability guarantees: honest agents act as we expect
lemma BK3_imp_Gets:
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" [[ Says A B {|Ticket, Crypt K {|Agent A, Number Ta |}|} ∈ set evs;
A /∈ bad; evs ∈ bankerb_gets ]]

=⇒ ∃ Tk. Gets A (Crypt (shrK A) {|Number Tk, Agent B, Key K, Ticket |})
∈ set evs"

〈proof 〉

lemma BK4_imp_Gets:
" [[ Says B A (Crypt K (Number Ta)) ∈ set evs;

B /∈ bad; evs ∈ bankerb_gets ]]
=⇒ ∃ Tk. Gets B {|Crypt (shrK B) {|Number Tk, Agent A, Key K |},

Crypt K {|Agent A, Number Ta |}|} ∈ set evs"
〈proof 〉

lemma Gets_A_knows_K:
" [[ Gets A (Crypt (shrK A) {|Number Tk, Agent B, Key K, Ticket |}) ∈ set evs;

evs ∈ bankerb_gets ]]
=⇒ Key K ∈ analz (knows A evs)"
〈proof 〉

lemma Gets_B_knows_K:
" [[ Gets B {|Crypt (shrK B) {|Number Tk, Agent A, Key K |},

Crypt K {|Agent A, Number Ta |}|} ∈ set evs;
evs ∈ bankerb_gets ]]

=⇒ Key K ∈ analz (knows B evs)"
〈proof 〉

Session keys are not used to encrypt other session keys
lemma analz_image_freshK [rule_format (no_asm)]:

"evs ∈ bankerb_gets =⇒
∀ K KK. KK ⊆ - (range shrK) −→

(Key K ∈ analz (Key‘KK ∪ (knows Spy evs))) =
(K ∈ KK | Key K ∈ analz (knows Spy evs))"

〈proof 〉

lemma analz_insert_freshK:
" [[ evs ∈ bankerb_gets; KAB /∈ range shrK ]] =⇒
(Key K ∈ analz (insert (Key KAB) (knows Spy evs))) =
(K = KAB | Key K ∈ analz (knows Spy evs))"

〈proof 〉

The session key K uniquely identifies the message
lemma unique_session_keys:

" [[ Says Server A
(Crypt (shrK A) {|Number Tk, Agent B, Key K, X |}) ∈ set evs;

Says Server A’
(Crypt (shrK A’) {|Number Tk’, Agent B’, Key K, X’|}) ∈ set evs;

evs ∈ bankerb_gets ]] =⇒ A=A’ ∧ Tk=Tk’ ∧ B=B’ ∧ X = X’"
〈proof 〉

lemma unique_session_keys_Gets:
" [[ Gets A

(Crypt (shrK A) {|Number Tk, Agent B, Key K, X |}) ∈ set evs;
Gets A
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(Crypt (shrK A) {|Number Tk’, Agent B’, Key K, X’|}) ∈ set evs;
A /∈ bad; evs ∈ bankerb_gets ]] =⇒ Tk=Tk’ ∧ B=B’ ∧ X = X’"

〈proof 〉

lemma Server_Unique:
" [[ Says Server A

(Crypt (shrK A) {|Number Tk, Agent B, Key K, Ticket |}) ∈ set evs;
evs ∈ bankerb_gets ]] =⇒

Unique Says Server A (Crypt (shrK A) {|Number Tk, Agent B, Key K, Ticket |})
on evs"

〈proof 〉

5.2 Non-temporal guarantees, explicitly relying on non-
occurrence of oops events - refined below by temporal
guarantees

Non temporal treatment of confidentiality

Lemma: the session key sent in msg BK2 would be lost by oops if the spy could
see it!
lemma lemma_conf [rule_format (no_asm)]:

" [[ A /∈ bad; B /∈ bad; evs ∈ bankerb_gets ]]
=⇒ Says Server A

(Crypt (shrK A) {|Number Tk, Agent B, Key K,
Crypt (shrK B) {|Number Tk, Agent A, Key K |}|})

∈ set evs −→
Key K ∈ analz (knows Spy evs) −→ Notes Spy {|Number Tk, Key K |} ∈ set

evs"
〈proof 〉

Confidentiality for the Server: Spy does not see the keys sent in msg BK2 as
long as they have not expired.
lemma Confidentiality_S:

" [[ Says Server A
(Crypt K’ {|Number Tk, Agent B, Key K, Ticket |}) ∈ set evs;

Notes Spy {|Number Tk, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ bankerb_gets

]] =⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉

Confidentiality for Alice
lemma Confidentiality_A:

" [[ Crypt (shrK A) {|Number Tk, Agent B, Key K, X |} ∈ parts (knows Spy evs);
Notes Spy {|Number Tk, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ bankerb_gets

]] =⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉

Confidentiality for Bob
lemma Confidentiality_B:

" [[ Crypt (shrK B) {|Number Tk, Agent A, Key K |}
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∈ parts (knows Spy evs);
Notes Spy {|Number Tk, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ bankerb_gets

]] =⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉

Non temporal treatment of authentication

Lemmas lemma_A and lemma_B in fact are common to both temporal and non-
temporal treatments

lemma lemma_A [rule_format]:
" [[ A /∈ bad; B /∈ bad; evs ∈ bankerb_gets ]]
=⇒

Key K /∈ analz (knows Spy evs) −→
Says Server A (Crypt (shrK A) {|Number Tk, Agent B, Key K, X |})
∈ set evs −→
Crypt K {|Agent A, Number Ta |} ∈ parts (knows Spy evs) −→

Says A B {|X, Crypt K {|Agent A, Number Ta |}|}
∈ set evs"

〈proof 〉
lemma lemma_B [rule_format]:

" [[ B /∈ bad; evs ∈ bankerb_gets ]]
=⇒ Key K /∈ analz (knows Spy evs) −→

Says Server A (Crypt (shrK A) {|Number Tk, Agent B, Key K, X |})
∈ set evs −→
Crypt K (Number Ta) ∈ parts (knows Spy evs) −→
Says B A (Crypt K (Number Ta)) ∈ set evs"

〈proof 〉

The "r" suffix indicates theorems where the confidentiality assumptions are re-
laxed by the corresponding arguments.

Authentication of A to B

lemma B_authenticates_A_r:
" [[ Crypt K {|Agent A, Number Ta |} ∈ parts (knows Spy evs);

Crypt (shrK B) {|Number Tk, Agent A, Key K |} ∈ parts (knows Spy evs);
Notes Spy {|Number Tk, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ bankerb_gets ]]

=⇒ Says A B {|Crypt (shrK B) {|Number Tk, Agent A, Key K |},
Crypt K {|Agent A, Number Ta |}|} ∈ set evs"

〈proof 〉

Authentication of B to A

lemma A_authenticates_B_r:
" [[ Crypt K (Number Ta) ∈ parts (knows Spy evs);

Crypt (shrK A) {|Number Tk, Agent B, Key K, X |} ∈ parts (knows Spy evs);
Notes Spy {|Number Tk, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ bankerb_gets ]]

=⇒ Says B A (Crypt K (Number Ta)) ∈ set evs"
〈proof 〉

lemma B_authenticates_A:
" [[ Crypt K {|Agent A, Number Ta |} ∈ parts (spies evs);



605 THE KERBEROS PROTOCOL, BAN VERSION, WITH GETS EVENT

Crypt (shrK B) {|Number Tk, Agent A, Key K |} ∈ parts (spies evs);
Key K /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ bankerb_gets ]]

=⇒ Says A B {|Crypt (shrK B) {|Number Tk, Agent A, Key K |},
Crypt K {|Agent A, Number Ta |}|} ∈ set evs"

〈proof 〉

lemma A_authenticates_B:
" [[ Crypt K (Number Ta) ∈ parts (spies evs);

Crypt (shrK A) {|Number Tk, Agent B, Key K, X |} ∈ parts (spies evs);
Key K /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ bankerb_gets ]]

=⇒ Says B A (Crypt K (Number Ta)) ∈ set evs"
〈proof 〉

5.3 Temporal guarantees, relying on a temporal check that
insures that no oops event occurred. These are avail-
able in the sense of goal availability

Temporal treatment of confidentiality

Lemma: the session key sent in msg BK2 would be EXPIRED if the spy could
see it!
lemma lemma_conf_temporal [rule_format (no_asm)]:

" [[ A /∈ bad; B /∈ bad; evs ∈ bankerb_gets ]]
=⇒ Says Server A

(Crypt (shrK A) {|Number Tk, Agent B, Key K,
Crypt (shrK B) {|Number Tk, Agent A, Key K |}|})

∈ set evs −→
Key K ∈ analz (knows Spy evs) −→ expiredK Tk evs"

〈proof 〉

Confidentiality for the Server: Spy does not see the keys sent in msg BK2 as
long as they have not expired.
lemma Confidentiality_S_temporal:

" [[ Says Server A
(Crypt K’ {|Number T, Agent B, Key K, X |}) ∈ set evs;
¬ expiredK T evs;
A /∈ bad; B /∈ bad; evs ∈ bankerb_gets

]] =⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉

Confidentiality for Alice
lemma Confidentiality_A_temporal:

" [[ Crypt (shrK A) {|Number T, Agent B, Key K, X |} ∈ parts (knows Spy evs);
¬ expiredK T evs;
A /∈ bad; B /∈ bad; evs ∈ bankerb_gets

]] =⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉

Confidentiality for Bob
lemma Confidentiality_B_temporal:
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" [[ Crypt (shrK B) {|Number Tk, Agent A, Key K |}
∈ parts (knows Spy evs);

¬ expiredK Tk evs;
A /∈ bad; B /∈ bad; evs ∈ bankerb_gets

]] =⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉

Temporal treatment of authentication

Authentication of A to B
lemma B_authenticates_A_temporal:

" [[ Crypt K {|Agent A, Number Ta |} ∈ parts (knows Spy evs);
Crypt (shrK B) {|Number Tk, Agent A, Key K |}
∈ parts (knows Spy evs);
¬ expiredK Tk evs;
A /∈ bad; B /∈ bad; evs ∈ bankerb_gets ]]

=⇒ Says A B {|Crypt (shrK B) {|Number Tk, Agent A, Key K |},
Crypt K {|Agent A, Number Ta |}|} ∈ set evs"

〈proof 〉

Authentication of B to A
lemma A_authenticates_B_temporal:

" [[ Crypt K (Number Ta) ∈ parts (knows Spy evs);
Crypt (shrK A) {|Number Tk, Agent B, Key K, X |}
∈ parts (knows Spy evs);
¬ expiredK Tk evs;
A /∈ bad; B /∈ bad; evs ∈ bankerb_gets ]]

=⇒ Says B A (Crypt K (Number Ta)) ∈ set evs"
〈proof 〉

5.4 Combined guarantees of key distribution and non-
injective agreement on the session keys

lemma B_authenticates_and_keydist_to_A:
" [[ Gets B {|Crypt (shrK B) {|Number Tk, Agent A, Key K |},

Crypt K {|Agent A, Number Ta |}|} ∈ set evs;
Key K /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ bankerb_gets ]]

=⇒ Says A B {|Crypt (shrK B) {|Number Tk, Agent A, Key K |},
Crypt K {|Agent A, Number Ta |}|} ∈ set evs

∧ Key K ∈ analz (knows A evs)"
〈proof 〉

lemma A_authenticates_and_keydist_to_B:
" [[ Gets A (Crypt (shrK A) {|Number Tk, Agent B, Key K, Ticket |}) ∈ set

evs;
Gets A (Crypt K (Number Ta)) ∈ set evs;
Key K /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ bankerb_gets ]]

=⇒ Says B A (Crypt K (Number Ta)) ∈ set evs
∧ Key K ∈ analz (knows B evs)"

〈proof 〉



62 6 THE KERBEROS PROTOCOL, VERSION IV

end

6 The Kerberos Protocol, Version IV
theory KerberosIV imports Public begin

The "u" prefix indicates theorems referring to an updated version of the proto-
col. The "r" suffix indicates theorems where the confidentiality assumptions are
relaxed by the corresponding arguments.

abbreviation
Kas :: agent where "Kas == Server"

abbreviation
Tgs :: agent where "Tgs == Friend 0"

axiomatization where
Tgs_not_bad [iff]: "Tgs /∈ bad"
— Tgs is secure — we already know that Kas is secure

definition

authKeys :: "event list ⇒ key set" where
"authKeys evs = {authK. ∃ A Peer Ta. Says Kas A

(Crypt (shrK A) {|Key authK, Agent Peer, Number Ta,
(Crypt (shrK Peer) {|Agent A, Agent Peer, Key authK, Number

Ta |})
|}) ∈ set evs}"

definition

Issues :: "[agent, agent, msg, event list] ⇒ bool"
(‹_ Issues _ with _ on _› [50, 0, 0, 50] 50) where

"(A Issues B with X on evs) =
(∃ Y. Says A B Y ∈ set evs ∧ X ∈ parts {Y} ∧

X /∈ parts (spies (takeWhile (λz. z 6= Says A B Y) (rev evs))))"

definition

before :: "[event, event list] ⇒ event list" (‹before _ on _› [0, 50] 50)
where "(before ev on evs) = takeWhile (λz. z 6= ev) (rev evs)"

definition

Unique :: "[event, event list] ⇒ bool" (‹Unique _ on _› [0, 50] 50)
where "(Unique ev on evs) = (ev /∈ set (tl (dropWhile (λz. z 6= ev) evs)))"

consts
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authKlife :: nat

servKlife :: nat

authlife :: nat

replylife :: nat

specification (authKlife)
authKlife_LB [iff]: "2 ≤ authKlife"
〈proof 〉

specification (servKlife)
servKlife_LB [iff]: "2 + authKlife ≤ servKlife"
〈proof 〉

specification (authlife)
authlife_LB [iff]: "Suc 0 ≤ authlife"
〈proof 〉

specification (replylife)
replylife_LB [iff]: "Suc 0 ≤ replylife"
〈proof 〉

abbreviation

CT :: "event list ⇒ nat" where
"CT == length"

abbreviation
expiredAK :: "[nat, event list] ⇒ bool" where
"expiredAK Ta evs == authKlife + Ta < CT evs"

abbreviation
expiredSK :: "[nat, event list] ⇒ bool" where
"expiredSK Ts evs == servKlife + Ts < CT evs"

abbreviation
expiredA :: "[nat, event list] ⇒ bool" where
"expiredA T evs == authlife + T < CT evs"

abbreviation
valid :: "[nat, nat] ⇒ bool" (‹valid _ wrt _› [0, 50] 50) where
"valid T1 wrt T2 == T1 ≤ replylife + T2"

definition AKcryptSK :: "[key, key, event list] ⇒ bool" where
"AKcryptSK authK servK evs ==
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∃ A B Ts.
Says Tgs A (Crypt authK

{|Key servK, Agent B, Number Ts,
Crypt (shrK B) {|Agent A, Agent B, Key servK, Number

Ts |} |})
∈ set evs"

inductive_set kerbIV :: "event list set"
where

Nil: "[] ∈ kerbIV"

| Fake: " [[ evsf ∈ kerbIV; X ∈ synth (analz (spies evsf)) ]]
=⇒ Says Spy B X # evsf ∈ kerbIV"

| K1: " [[ evs1 ∈ kerbIV ]]
=⇒ Says A Kas {|Agent A, Agent Tgs, Number (CT evs1)|} # evs1
∈ kerbIV"

| K2: " [[ evs2 ∈ kerbIV; Key authK /∈ used evs2; authK ∈ symKeys;
Says A’ Kas {|Agent A, Agent Tgs, Number T1|} ∈ set evs2 ]]

=⇒ Says Kas A
(Crypt (shrK A) {|Key authK, Agent Tgs, Number (CT evs2),

(Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK,
Number (CT evs2)|})|}) # evs2 ∈ kerbIV"

| K3: " [[ evs3 ∈ kerbIV;
Says A Kas {|Agent A, Agent Tgs, Number T1|} ∈ set evs3;
Says Kas’ A (Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta,

authTicket |}) ∈ set evs3;
valid Ta wrt T1

]]
=⇒ Says A Tgs {|authTicket,

(Crypt authK {|Agent A, Number (CT evs3)|}),
Agent B |} # evs3 ∈ kerbIV"

| K4: " [[ evs4 ∈ kerbIV; Key servK /∈ used evs4; servK ∈ symKeys;
B 6= Tgs; authK ∈ symKeys;
Says A’ Tgs {|
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(Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK,
Number Ta |}),

(Crypt authK {|Agent A, Number T2|}), Agent B |}
∈ set evs4;

¬ expiredAK Ta evs4;
¬ expiredA T2 evs4;
servKlife + (CT evs4) ≤ authKlife + Ta

]]
=⇒ Says Tgs A

(Crypt authK {|Key servK, Agent B, Number (CT evs4),
Crypt (shrK B) {|Agent A, Agent B, Key servK,

Number (CT evs4)|} |})
# evs4 ∈ kerbIV"

| K5: " [[ evs5 ∈ kerbIV; authK ∈ symKeys; servK ∈ symKeys;
Says A Tgs

{|authTicket, Crypt authK {|Agent A, Number T2|},
Agent B |}

∈ set evs5;
Says Tgs’ A
(Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})
∈ set evs5;

valid Ts wrt T2 ]]
=⇒ Says A B {|servTicket,

Crypt servK {|Agent A, Number (CT evs5)|} |}
# evs5 ∈ kerbIV"

| K6: " [[ evs6 ∈ kerbIV;
Says A’ B {|

(Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}),
(Crypt servK {|Agent A, Number T3|})|}

∈ set evs6;
¬ expiredSK Ts evs6;
¬ expiredA T3 evs6

]]
=⇒ Says B A (Crypt servK (Number T3))

# evs6 ∈ kerbIV"

| Oops1: " [[ evsO1 ∈ kerbIV; A 6= Spy;
Says Kas A

(Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta,
authTicket |}) ∈ set evsO1;
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expiredAK Ta evsO1 ]]
=⇒ Says A Spy {|Agent A, Agent Tgs, Number Ta, Key authK |}

# evsO1 ∈ kerbIV"

| Oops2: " [[ evsO2 ∈ kerbIV; A 6= Spy;
Says Tgs A

(Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})
∈ set evsO2;

expiredSK Ts evsO2 ]]
=⇒ Says A Spy {|Agent A, Agent B, Number Ts, Key servK |}

# evsO2 ∈ kerbIV"

declare Says_imp_knows_Spy [THEN parts.Inj, dest]
declare parts.Body [dest]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]

6.1 Lemmas about lists, for reasoning about Issues
lemma spies_Says_rev: "spies (evs @ [Says A B X]) = insert X (spies evs)"
〈proof 〉

lemma spies_Gets_rev: "spies (evs @ [Gets A X]) = spies evs"
〈proof 〉

lemma spies_Notes_rev: "spies (evs @ [Notes A X]) =
(if A∈bad then insert X (spies evs) else spies evs)"

〈proof 〉

lemma spies_evs_rev: "spies evs = spies (rev evs)"
〈proof 〉

lemmas parts_spies_evs_revD2 = spies_evs_rev [THEN equalityD2, THEN parts_mono]

lemma spies_takeWhile: "spies (takeWhile P evs) ⊆ spies evs"
〈proof 〉

lemmas parts_spies_takeWhile_mono = spies_takeWhile [THEN parts_mono]

6.2 Lemmas about authKeys

lemma authKeys_empty: "authKeys [] = {}"
〈proof 〉

lemma authKeys_not_insert:
"(∀ A Ta akey Peer.

ev 6= Says Kas A (Crypt (shrK A) {|akey, Agent Peer, Ta,
(Crypt (shrK Peer) {|Agent A, Agent Peer, akey, Ta |})|}))

=⇒ authKeys (ev # evs) = authKeys evs"
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〈proof 〉

lemma authKeys_insert:
"authKeys

(Says Kas A (Crypt (shrK A) {|Key K, Agent Peer, Number Ta,
(Crypt (shrK Peer) {|Agent A, Agent Peer, Key K, Number Ta |})|}) # evs)
= insert K (authKeys evs)"

〈proof 〉

lemma authKeys_simp:
"K ∈ authKeys
(Says Kas A (Crypt (shrK A) {|Key K’, Agent Peer, Number Ta,
(Crypt (shrK Peer) {|Agent A, Agent Peer, Key K’, Number Ta |})|}) # evs)

=⇒ K = K’ | K ∈ authKeys evs"
〈proof 〉

lemma authKeysI:
"Says Kas A (Crypt (shrK A) {|Key K, Agent Tgs, Number Ta,

(Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key K, Number Ta |})|}) ∈ set evs
=⇒ K ∈ authKeys evs"

〈proof 〉

lemma authKeys_used: "K ∈ authKeys evs =⇒ Key K ∈ used evs"
〈proof 〉

6.3 Forwarding Lemmas
–For reasoning about the encrypted portion of message K3–

lemma K3_msg_in_parts_spies:
"Says Kas’ A (Crypt KeyA {|authK, Peer, Ta, authTicket |})

∈ set evs =⇒ authTicket ∈ parts (spies evs)"
〈proof 〉

lemma Oops_range_spies1:
" [[ Says Kas A (Crypt KeyA {|Key authK, Peer, Ta, authTicket |})

∈ set evs ;
evs ∈ kerbIV ]] =⇒ authK /∈ range shrK ∧ authK ∈ symKeys"

〈proof 〉

–For reasoning about the encrypted portion of message K5–

lemma K5_msg_in_parts_spies:
"Says Tgs’ A (Crypt authK {|servK, Agent B, Ts, servTicket |})

∈ set evs =⇒ servTicket ∈ parts (spies evs)"
〈proof 〉

lemma Oops_range_spies2:
" [[ Says Tgs A (Crypt authK {|Key servK, Agent B, Ts, servTicket |})

∈ set evs ;
evs ∈ kerbIV ]] =⇒ servK /∈ range shrK ∧ servK ∈ symKeys"

〈proof 〉

lemma Says_ticket_parts:
"Says S A (Crypt K {|SesKey, B, TimeStamp, Ticket |}) ∈ set evs
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=⇒ Ticket ∈ parts (spies evs)"
〈proof 〉

lemma Spy_see_shrK [simp]:
"evs ∈ kerbIV =⇒ (Key (shrK A) ∈ parts (spies evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_analz_shrK [simp]:
"evs ∈ kerbIV =⇒ (Key (shrK A) ∈ analz (spies evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_see_shrK_D [dest!]:
" [[ Key (shrK A) ∈ parts (spies evs); evs ∈ kerbIV ]] =⇒ A∈bad"

〈proof 〉

lemmas Spy_analz_shrK_D = analz_subset_parts [THEN subsetD, THEN Spy_see_shrK_D,
dest!]

Nobody can have used non-existent keys!

lemma new_keys_not_used [simp]:
" [[Key K /∈ used evs; K ∈ symKeys; evs ∈ kerbIV ]]
=⇒ K /∈ keysFor (parts (spies evs))"

〈proof 〉

lemma new_keys_not_analzd:
" [[evs ∈ kerbIV; K ∈ symKeys; Key K /∈ used evs ]]
=⇒ K /∈ keysFor (analz (spies evs))"

〈proof 〉

6.4 Lemmas for reasoning about predicate "before"
lemma used_Says_rev: "used (evs @ [Says A B X]) = parts {X} ∪ (used evs)"
〈proof 〉

lemma used_Notes_rev: "used (evs @ [Notes A X]) = parts {X} ∪ (used evs)"
〈proof 〉

lemma used_Gets_rev: "used (evs @ [Gets B X]) = used evs"
〈proof 〉

lemma used_evs_rev: "used evs = used (rev evs)"
〈proof 〉

lemma used_takeWhile_used [rule_format]:
"x ∈ used (takeWhile P X) −→ x ∈ used X"

〈proof 〉

lemma set_evs_rev: "set evs = set (rev evs)"
〈proof 〉

lemma takeWhile_void [rule_format]:
"x /∈ set evs −→ takeWhile (λz. z 6= x) evs = evs"
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〈proof 〉

6.5 Regularity Lemmas
These concern the form of items passed in messages

Describes the form of all components sent by Kas

lemma Says_Kas_message_form:
" [[ Says Kas A (Crypt K {|Key authK, Agent Peer, Number Ta, authTicket |})

∈ set evs;
evs ∈ kerbIV ]] =⇒

K = shrK A ∧ Peer = Tgs ∧
authK /∈ range shrK ∧ authK ∈ authKeys evs ∧ authK ∈ symKeys ∧
authTicket = (Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |})

∧
Key authK /∈ used(before

Says Kas A (Crypt K {|Key authK, Agent Peer, Number Ta, authTicket |})
on evs) ∧

Ta = CT (before
Says Kas A (Crypt K {|Key authK, Agent Peer, Number Ta, authTicket |})
on evs)"

〈proof 〉

lemma SesKey_is_session_key:
" [[ Crypt (shrK Tgs_B) {|Agent A, Agent Tgs_B, Key SesKey, Number T |}

∈ parts (spies evs); Tgs_B /∈ bad;
evs ∈ kerbIV ]]

=⇒ SesKey /∈ range shrK"
〈proof 〉

lemma authTicket_authentic:
" [[ Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |}

∈ parts (spies evs);
evs ∈ kerbIV ]]

=⇒ Says Kas A (Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |}|})

∈ set evs"
〈proof 〉

lemma authTicket_crypt_authK:
" [[ Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |}

∈ parts (spies evs);
evs ∈ kerbIV ]]

=⇒ authK ∈ authKeys evs"
〈proof 〉

Describes the form of servK, servTicket and authK sent by Tgs

lemma Says_Tgs_message_form:
" [[ Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})

∈ set evs;
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evs ∈ kerbIV ]]
=⇒ B 6= Tgs ∧

authK /∈ range shrK ∧ authK ∈ authKeys evs ∧ authK ∈ symKeys ∧
servK /∈ range shrK ∧ servK /∈ authKeys evs ∧ servK ∈ symKeys ∧
servTicket = (Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |})

∧
Key servK /∈ used (before

Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})
on evs) ∧

Ts = CT(before
Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})

on evs) "
〈proof 〉

lemma authTicket_form:
" [[ Crypt (shrK A) {|Key authK, Agent Tgs, Ta, authTicket |}

∈ parts (spies evs);
A /∈ bad;
evs ∈ kerbIV ]]

=⇒ authK /∈ range shrK ∧ authK ∈ symKeys ∧
authTicket = Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Ta |}"

〈proof 〉

This form holds also over an authTicket, but is not needed below.

lemma servTicket_form:
" [[ Crypt authK {|Key servK, Agent B, Ts, servTicket |}

∈ parts (spies evs);
Key authK /∈ analz (spies evs);
evs ∈ kerbIV ]]

=⇒ servK /∈ range shrK ∧ servK ∈ symKeys ∧
(∃ A. servTicket = Crypt (shrK B) {|Agent A, Agent B, Key servK, Ts |})"

〈proof 〉

Essentially the same as authTicket_form

lemma Says_kas_message_form:
" [[ Says Kas’ A (Crypt (shrK A)

{|Key authK, Agent Tgs, Ta, authTicket |}) ∈ set evs;
evs ∈ kerbIV ]]

=⇒ authK /∈ range shrK ∧ authK ∈ symKeys ∧
authTicket =

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Ta |}
| authTicket ∈ analz (spies evs)"

〈proof 〉

lemma Says_tgs_message_form:
" [[ Says Tgs’ A (Crypt authK {|Key servK, Agent B, Ts, servTicket |})

∈ set evs; authK ∈ symKeys;
evs ∈ kerbIV ]]

=⇒ servK /∈ range shrK ∧
(∃ A. servTicket =

Crypt (shrK B) {|Agent A, Agent B, Key servK, Ts |})
| servTicket ∈ analz (spies evs)"

〈proof 〉
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6.6 Authenticity theorems: confirm origin of sensitive mes-
sages

lemma authK_authentic:
" [[ Crypt (shrK A) {|Key authK, Peer, Ta, authTicket |}

∈ parts (spies evs);
A /∈ bad; evs ∈ kerbIV ]]

=⇒ Says Kas A (Crypt (shrK A) {|Key authK, Peer, Ta, authTicket |})
∈ set evs"

〈proof 〉

If a certain encrypted message appears then it originated with Tgs

lemma servK_authentic:
" [[ Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}

∈ parts (spies evs);
Key authK /∈ analz (spies evs);
authK /∈ range shrK;
evs ∈ kerbIV ]]

=⇒ ∃ A. Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})
∈ set evs"

〈proof 〉

lemma servK_authentic_bis:
" [[ Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}

∈ parts (spies evs);
Key authK /∈ analz (spies evs);
B 6= Tgs;
evs ∈ kerbIV ]]

=⇒ ∃ A. Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})
∈ set evs"

〈proof 〉

Authenticity of servK for B

lemma servTicket_authentic_Tgs:
" [[ Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}

∈ parts (spies evs); B 6= Tgs; B /∈ bad;
evs ∈ kerbIV ]]

=⇒ ∃ authK.
Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts,

Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}|})
∈ set evs"

〈proof 〉

Anticipated here from next subsection

lemma K4_imp_K2:
" [[ Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})

∈ set evs; evs ∈ kerbIV ]]
=⇒ ∃ Ta. Says Kas A

(Crypt (shrK A)
{|Key authK, Agent Tgs, Number Ta,

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |}|})
∈ set evs"

〈proof 〉
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Anticipated here from next subsection
lemma u_K4_imp_K2:
" [[ Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})

∈ set evs; evs ∈ kerbIV ]]
=⇒ ∃ Ta. (Says Kas A (Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta,

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |}|})
∈ set evs

∧ servKlife + Ts ≤ authKlife + Ta)"
〈proof 〉

lemma servTicket_authentic_Kas:
" [[ Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}

∈ parts (spies evs); B 6= Tgs; B /∈ bad;
evs ∈ kerbIV ]]

=⇒ ∃ authK Ta.
Says Kas A

(Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |}|})

∈ set evs"
〈proof 〉

lemma u_servTicket_authentic_Kas:
" [[ Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}

∈ parts (spies evs); B 6= Tgs; B /∈ bad;
evs ∈ kerbIV ]]

=⇒ ∃ authK Ta. Says Kas A (Crypt(shrK A) {|Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |}|})
∈ set evs

∧ servKlife + Ts ≤ authKlife + Ta"
〈proof 〉

lemma servTicket_authentic:
" [[ Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}

∈ parts (spies evs); B 6= Tgs; B /∈ bad;
evs ∈ kerbIV ]]

=⇒ ∃ Ta authK.
Says Kas A (Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta,

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number
Ta |}|})

∈ set evs
∧ Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts,

Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}|})
∈ set evs"

〈proof 〉

lemma u_servTicket_authentic:
" [[ Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}

∈ parts (spies evs); B 6= Tgs; B /∈ bad;
evs ∈ kerbIV ]]

=⇒ ∃ Ta authK.
(Says Kas A (Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta,

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number
Ta |}|})

∈ set evs
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∧ Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts,
Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}|})

∈ set evs
∧ servKlife + Ts ≤ authKlife + Ta)"

〈proof 〉

lemma u_NotexpiredSK_NotexpiredAK:
" [[ ¬ expiredSK Ts evs; servKlife + Ts ≤ authKlife + Ta ]]
=⇒ ¬ expiredAK Ta evs"

〈proof 〉

6.7 Reliability: friendly agents send something if some-
thing else happened

lemma K3_imp_K2:
" [[ Says A Tgs

{|authTicket, Crypt authK {|Agent A, Number T2|}, Agent B |}
∈ set evs;

A /∈ bad; evs ∈ kerbIV ]]
=⇒ ∃ Ta. Says Kas A (Crypt (shrK A)

{|Key authK, Agent Tgs, Number Ta, authTicket |})
∈ set evs"

〈proof 〉

Anticipated here from next subsection. An authK is encrypted by one and only
one Shared key. A servK is encrypted by one and only one authK.

lemma Key_unique_SesKey:
" [[ Crypt K {|Key SesKey, Agent B, T, Ticket |}

∈ parts (spies evs);
Crypt K’ {|Key SesKey, Agent B’, T’, Ticket’|}
∈ parts (spies evs); Key SesKey /∈ analz (spies evs);

evs ∈ kerbIV ]]
=⇒ K=K’ ∧ B=B’ ∧ T=T’ ∧ Ticket=Ticket’"

〈proof 〉

lemma Tgs_authenticates_A:
" [[ Crypt authK {|Agent A, Number T2|} ∈ parts (spies evs);

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |}
∈ parts (spies evs);

Key authK /∈ analz (spies evs); A /∈ bad; evs ∈ kerbIV ]]
=⇒ ∃ B. Says A Tgs {|

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |},
Crypt authK {|Agent A, Number T2|}, Agent B |} ∈ set evs"

〈proof 〉

lemma Says_K5:
" [[ Crypt servK {|Agent A, Number T3|} ∈ parts (spies evs);

Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts,
servTicket |}) ∈ set evs;

Key servK /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ kerbIV ]]

=⇒ Says A B {|servTicket, Crypt servK {|Agent A, Number T3|}|} ∈ set evs"
〈proof 〉
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Anticipated here from next subsection
lemma unique_CryptKey:

" [[ Crypt (shrK B) {|Agent A, Agent B, Key SesKey, T |}
∈ parts (spies evs);

Crypt (shrK B’) {|Agent A’, Agent B’, Key SesKey, T’|}
∈ parts (spies evs); Key SesKey /∈ analz (spies evs);

evs ∈ kerbIV ]]
=⇒ A=A’ ∧ B=B’ ∧ T=T’"

〈proof 〉

lemma Says_K6:
" [[ Crypt servK (Number T3) ∈ parts (spies evs);

Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts,
servTicket |}) ∈ set evs;

Key servK /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ kerbIV ]]

=⇒ Says B A (Crypt servK (Number T3)) ∈ set evs"
〈proof 〉

Needs a unicity theorem, hence moved here
lemma servK_authentic_ter:
" [[ Says Kas A

(Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta, authTicket |}) ∈ set evs;
Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}
∈ parts (spies evs);

Key authK /∈ analz (spies evs);
evs ∈ kerbIV ]]

=⇒ Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})
∈ set evs"

〈proof 〉

6.8 Unicity Theorems
The session key, if secure, uniquely identifies the Ticket whether authTicket or
servTicket. As a matter of fact, one can read also Tgs in the place of B.
lemma unique_authKeys:

" [[ Says Kas A
(Crypt Ka {|Key authK, Agent Tgs, Ta, X |}) ∈ set evs;

Says Kas A’
(Crypt Ka’ {|Key authK, Agent Tgs, Ta’, X’|}) ∈ set evs;

evs ∈ kerbIV ]] =⇒ A=A’ ∧ Ka=Ka’ ∧ Ta=Ta’ ∧ X=X’"
〈proof 〉

servK uniquely identifies the message from Tgs
lemma unique_servKeys:

" [[ Says Tgs A
(Crypt K {|Key servK, Agent B, Ts, X |}) ∈ set evs;

Says Tgs A’
(Crypt K’ {|Key servK, Agent B’, Ts’, X’|}) ∈ set evs;

evs ∈ kerbIV ]] =⇒ A=A’ ∧ B=B’ ∧ K=K’ ∧ Ts=Ts’ ∧ X=X’"
〈proof 〉

Revised unicity theorems
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lemma Kas_Unique:
" [[ Says Kas A

(Crypt Ka {|Key authK, Agent Tgs, Ta, authTicket |}) ∈ set evs;
evs ∈ kerbIV ]] =⇒

Unique (Says Kas A (Crypt Ka {|Key authK, Agent Tgs, Ta, authTicket |}))
on evs"

〈proof 〉

lemma Tgs_Unique:
" [[ Says Tgs A

(Crypt authK {|Key servK, Agent B, Ts, servTicket |}) ∈ set evs;
evs ∈ kerbIV ]] =⇒

Unique (Says Tgs A (Crypt authK {|Key servK, Agent B, Ts, servTicket |}))
on evs"

〈proof 〉

6.9 Lemmas About the Predicate AKcryptSK

lemma not_AKcryptSK_Nil [iff]: "¬ AKcryptSK authK servK []"
〈proof 〉

lemma AKcryptSKI:
" [[ Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, X |}) ∈ set evs;

evs ∈ kerbIV ]] =⇒ AKcryptSK authK servK evs"
〈proof 〉

lemma AKcryptSK_Says [simp]:
"AKcryptSK authK servK (Says S A X # evs) =

(Tgs = S ∧
(∃ B Ts. X = Crypt authK

{|Key servK, Agent B, Number Ts,
Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}

|})
| AKcryptSK authK servK evs)"

〈proof 〉

lemma Auth_fresh_not_AKcryptSK:
" [[ Key authK /∈ used evs; evs ∈ kerbIV ]]
=⇒ ¬ AKcryptSK authK servK evs"

〈proof 〉

lemma Serv_fresh_not_AKcryptSK:
"Key servK /∈ used evs =⇒ ¬ AKcryptSK authK servK evs"
〈proof 〉

lemma authK_not_AKcryptSK:
" [[ Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, tk |}

∈ parts (spies evs); evs ∈ kerbIV ]]
=⇒ ¬ AKcryptSK K authK evs"

〈proof 〉
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A secure serverkey cannot have been used to encrypt others

lemma servK_not_AKcryptSK:
" [[ Crypt (shrK B) {|Agent A, Agent B, Key SK, Number Ts |} ∈ parts (spies evs);

Key SK /∈ analz (spies evs); SK ∈ symKeys;
B 6= Tgs; evs ∈ kerbIV ]]

=⇒ ¬ AKcryptSK SK K evs"
〈proof 〉

Long term keys are not issued as servKeys

lemma shrK_not_AKcryptSK:
"evs ∈ kerbIV =⇒ ¬ AKcryptSK K (shrK A) evs"

〈proof 〉

The Tgs message associates servK with authK and therefore not with any other
key authK.

lemma Says_Tgs_AKcryptSK:
" [[ Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, X |})

∈ set evs;
authK’ 6= authK; evs ∈ kerbIV ]]

=⇒ ¬ AKcryptSK authK’ servK evs"
〈proof 〉

Equivalently

lemma not_different_AKcryptSK:
" [[ AKcryptSK authK servK evs;

authK’ 6= authK; evs ∈ kerbIV ]]
=⇒ ¬ AKcryptSK authK’ servK evs ∧ servK ∈ symKeys"

〈proof 〉

lemma AKcryptSK_not_AKcryptSK:
" [[ AKcryptSK authK servK evs; evs ∈ kerbIV ]]
=⇒ ¬ AKcryptSK servK K evs"

〈proof 〉

The only session keys that can be found with the help of session keys are those
sent by Tgs in step K4.

We take some pains to express the property as a logical equivalence so that the
simplifier can apply it.

lemma Key_analz_image_Key_lemma:
"P −→ (Key K ∈ analz (Key‘KK ∪ H)) −→ (K∈KK | Key K ∈ analz H)
=⇒
P −→ (Key K ∈ analz (Key‘KK ∪ H)) = (K∈KK | Key K ∈ analz H)"

〈proof 〉

lemma AKcryptSK_analz_insert:
" [[ AKcryptSK K K’ evs; K ∈ symKeys; evs ∈ kerbIV ]]
=⇒ Key K’ ∈ analz (insert (Key K) (spies evs))"

〈proof 〉

lemma authKeys_are_not_AKcryptSK:
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" [[ K ∈ authKeys evs ∪ range shrK; evs ∈ kerbIV ]]
=⇒ ∀ SK. ¬ AKcryptSK SK K evs ∧ K ∈ symKeys"

〈proof 〉

lemma not_authKeys_not_AKcryptSK:
" [[ K /∈ authKeys evs;

K /∈ range shrK; evs ∈ kerbIV ]]
=⇒ ∀ SK. ¬ AKcryptSK K SK evs"

〈proof 〉

6.10 Secrecy Theorems
For the Oops2 case of the next theorem

lemma Oops2_not_AKcryptSK:
" [[ evs ∈ kerbIV;

Says Tgs A (Crypt authK
{|Key servK, Agent B, Number Ts, servTicket |})

∈ set evs ]]
=⇒ ¬ AKcryptSK servK SK evs"

〈proof 〉

Big simplification law for keys SK that are not crypted by keys in KK It helps
prove three, otherwise hard, facts about keys. These facts are exploited as
simplification laws for analz, and also "limit the damage" in case of loss of a key
to the spy. See ESORICS98. [simplified by LCP]

lemma Key_analz_image_Key [rule_format (no_asm)]:
"evs ∈ kerbIV =⇒
(∀ SK KK. SK ∈ symKeys ∧ KK ⊆ -(range shrK) −→
(∀ K ∈ KK. ¬ AKcryptSK K SK evs) −→
(Key SK ∈ analz (Key‘KK ∪ (spies evs))) =
(SK ∈ KK | Key SK ∈ analz (spies evs)))"

〈proof 〉

First simplification law for analz: no session keys encrypt authentication keys
or shared keys.

lemma analz_insert_freshK1:
" [[ evs ∈ kerbIV; K ∈ authKeys evs ∪ range shrK;

SesKey /∈ range shrK ]]
=⇒ (Key K ∈ analz (insert (Key SesKey) (spies evs))) =

(K = SesKey | Key K ∈ analz (spies evs))"
〈proof 〉

Second simplification law for analz: no service keys encrypt any other keys.

lemma analz_insert_freshK2:
" [[ evs ∈ kerbIV; servK /∈ (authKeys evs); servK /∈ range shrK;

K ∈ symKeys ]]
=⇒ (Key K ∈ analz (insert (Key servK) (spies evs))) =

(K = servK | Key K ∈ analz (spies evs))"
〈proof 〉

Third simplification law for analz: only one authentication key encrypts a certain
service key.
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lemma analz_insert_freshK3:
" [[ AKcryptSK authK servK evs;

authK’ 6= authK; authK’ /∈ range shrK; evs ∈ kerbIV ]]
=⇒ (Key servK ∈ analz (insert (Key authK’) (spies evs))) =

(servK = authK’ | Key servK ∈ analz (spies evs))"
〈proof 〉

lemma analz_insert_freshK3_bis:
" [[ Says Tgs A

(Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})
∈ set evs;

authK 6= authK’; authK’ /∈ range shrK; evs ∈ kerbIV ]]
=⇒ (Key servK ∈ analz (insert (Key authK’) (spies evs))) =

(servK = authK’ | Key servK ∈ analz (spies evs))"
〈proof 〉

a weakness of the protocol
lemma authK_compromises_servK:

" [[ Says Tgs A
(Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})

∈ set evs; authK ∈ symKeys;
Key authK ∈ analz (spies evs); evs ∈ kerbIV ]]

=⇒ Key servK ∈ analz (spies evs)"
〈proof 〉

lemma servK_notin_authKeysD:
" [[ Crypt authK {|Key servK, Agent B, Ts,

Crypt (shrK B) {|Agent A, Agent B, Key servK, Ts |}|}
∈ parts (spies evs);

Key servK /∈ analz (spies evs);
B 6= Tgs; evs ∈ kerbIV ]]

=⇒ servK /∈ authKeys evs"
〈proof 〉

If Spy sees the Authentication Key sent in msg K2, then the Key has expired.
lemma Confidentiality_Kas_lemma [rule_format]:

" [[ authK ∈ symKeys; A /∈ bad; evs ∈ kerbIV ]]
=⇒ Says Kas A

(Crypt (shrK A)
{|Key authK, Agent Tgs, Number Ta,

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |}|})
∈ set evs −→

Key authK ∈ analz (spies evs) −→
expiredAK Ta evs"

〈proof 〉

lemma Confidentiality_Kas:
" [[ Says Kas A

(Crypt Ka {|Key authK, Agent Tgs, Number Ta, authTicket |})
∈ set evs;

¬ expiredAK Ta evs;
A /∈ bad; evs ∈ kerbIV ]]

=⇒ Key authK /∈ analz (spies evs)"
〈proof 〉
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If Spy sees the Service Key sent in msg K4, then the Key has expired.

lemma Confidentiality_lemma [rule_format]:
" [[ Says Tgs A

(Crypt authK
{|Key servK, Agent B, Number Ts,

Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}|})
∈ set evs;

Key authK /∈ analz (spies evs);
servK ∈ symKeys;
A /∈ bad; B /∈ bad; evs ∈ kerbIV ]]

=⇒ Key servK ∈ analz (spies evs) −→
expiredSK Ts evs"

〈proof 〉

In the real world Tgs can’t check wheter authK is secure!

lemma Confidentiality_Tgs:
" [[ Says Tgs A

(Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})
∈ set evs;

Key authK /∈ analz (spies evs);
¬ expiredSK Ts evs;
A /∈ bad; B /∈ bad; evs ∈ kerbIV ]]

=⇒ Key servK /∈ analz (spies evs)"
〈proof 〉

In the real world Tgs CAN check what Kas sends!

lemma Confidentiality_Tgs_bis:
" [[ Says Kas A

(Crypt Ka {|Key authK, Agent Tgs, Number Ta, authTicket |})
∈ set evs;

Says Tgs A
(Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})

∈ set evs;
¬ expiredAK Ta evs; ¬ expiredSK Ts evs;
A /∈ bad; B /∈ bad; evs ∈ kerbIV ]]

=⇒ Key servK /∈ analz (spies evs)"
〈proof 〉

Most general form

lemmas Confidentiality_Tgs_ter = authTicket_authentic [THEN Confidentiality_Tgs_bis]

lemmas Confidentiality_Auth_A = authK_authentic [THEN Confidentiality_Kas]

Needs a confidentiality guarantee, hence moved here. Authenticity of servK for
A

lemma servK_authentic_bis_r:
" [[ Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta, authTicket |}

∈ parts (spies evs);
Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}
∈ parts (spies evs);

¬ expiredAK Ta evs; A /∈ bad; evs ∈ kerbIV ]]
=⇒Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})



80 6 THE KERBEROS PROTOCOL, VERSION IV

∈ set evs"
〈proof 〉

lemma Confidentiality_Serv_A:
" [[ Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta, authTicket |}

∈ parts (spies evs);
Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}
∈ parts (spies evs);

¬ expiredAK Ta evs; ¬ expiredSK Ts evs;
A /∈ bad; B /∈ bad; evs ∈ kerbIV ]]

=⇒ Key servK /∈ analz (spies evs)"
〈proof 〉

lemma Confidentiality_B:
" [[ Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}

∈ parts (spies evs);
Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}
∈ parts (spies evs);

Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta, authTicket |}
∈ parts (spies evs);

¬ expiredSK Ts evs; ¬ expiredAK Ta evs;
A /∈ bad; B /∈ bad; B 6= Tgs; evs ∈ kerbIV ]]

=⇒ Key servK /∈ analz (spies evs)"
〈proof 〉

lemma u_Confidentiality_B:
" [[ Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}

∈ parts (spies evs);
¬ expiredSK Ts evs;
A /∈ bad; B /∈ bad; B 6= Tgs; evs ∈ kerbIV ]]

=⇒ Key servK /∈ analz (spies evs)"
〈proof 〉

6.11 Parties authentication: each party verifies "the iden-
tity of another party who generated some data" (quoted
from Neuman and Ts’o).

These guarantees don’t assess whether two parties agree on the same session
key: sending a message containing a key doesn’t a priori state knowledge of the
key.

Tgs_authenticates_A can be found above

lemma A_authenticates_Tgs:
" [[ Says Kas A

(Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta, authTicket |}) ∈ set evs;
Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}
∈ parts (spies evs);

Key authK /∈ analz (spies evs);
evs ∈ kerbIV ]]

=⇒ Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})
∈ set evs"

〈proof 〉
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lemma B_authenticates_A:
" [[ Crypt servK {|Agent A, Number T3|} ∈ parts (spies evs);

Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}
∈ parts (spies evs);

Key servK /∈ analz (spies evs);
A /∈ bad; B /∈ bad; B 6= Tgs; evs ∈ kerbIV ]]

=⇒ Says A B {|Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |},
Crypt servK {|Agent A, Number T3|}|} ∈ set evs"

〈proof 〉

The second assumption tells B what kind of key servK is.
lemma B_authenticates_A_r:

" [[ Crypt servK {|Agent A, Number T3|} ∈ parts (spies evs);
Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}
∈ parts (spies evs);

Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}
∈ parts (spies evs);

Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta, authTicket |}
∈ parts (spies evs);

¬ expiredSK Ts evs; ¬ expiredAK Ta evs;
B 6= Tgs; A /∈ bad; B /∈ bad; evs ∈ kerbIV ]]

=⇒ Says A B {|Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |},
Crypt servK {|Agent A, Number T3|} |} ∈ set evs"

〈proof 〉

u_B_authenticates_A would be the same as B_authenticates_A because the servK
confidentiality assumption is yet unrelaxed
lemma u_B_authenticates_A_r:

" [[ Crypt servK {|Agent A, Number T3|} ∈ parts (spies evs);
Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}
∈ parts (spies evs);

¬ expiredSK Ts evs;
B 6= Tgs; A /∈ bad; B /∈ bad; evs ∈ kerbIV ]]

=⇒ Says A B {|Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |},
Crypt servK {|Agent A, Number T3|} |} ∈ set evs"

〈proof 〉

lemma A_authenticates_B:
" [[ Crypt servK (Number T3) ∈ parts (spies evs);

Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}
∈ parts (spies evs);

Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta, authTicket |}
∈ parts (spies evs);

Key authK /∈ analz (spies evs); Key servK /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ kerbIV ]]

=⇒ Says B A (Crypt servK (Number T3)) ∈ set evs"
〈proof 〉

lemma A_authenticates_B_r:
" [[ Crypt servK (Number T3) ∈ parts (spies evs);

Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}
∈ parts (spies evs);
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Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta, authTicket |}
∈ parts (spies evs);

¬ expiredAK Ta evs; ¬ expiredSK Ts evs;
A /∈ bad; B /∈ bad; evs ∈ kerbIV ]]

=⇒ Says B A (Crypt servK (Number T3)) ∈ set evs"
〈proof 〉

6.12 Key distribution guarantees An agent knows a ses-
sion key if he used it to issue a cipher. These guar-
antees also convey a stronger form of authentication
- non-injective agreement on the session key

lemma Kas_Issues_A:
" [[ Says Kas A (Crypt (shrK A) {|Key authK, Peer, Ta, authTicket |}) ∈ set

evs;
evs ∈ kerbIV ]]

=⇒ Kas Issues A with (Crypt (shrK A) {|Key authK, Peer, Ta, authTicket |})

on evs"
〈proof 〉

lemma A_authenticates_and_keydist_to_Kas:
" [[ Crypt (shrK A) {|Key authK, Peer, Ta, authTicket |} ∈ parts (spies evs);

A /∈ bad; evs ∈ kerbIV ]]
=⇒ Kas Issues A with (Crypt (shrK A) {|Key authK, Peer, Ta, authTicket |})

on evs"
〈proof 〉

lemma honest_never_says_newer_timestamp_in_auth:
" [[ (CT evs) ≤ T; A /∈ bad; Number T ∈ parts {X}; evs ∈ kerbIV ]]
=⇒ ∀ B Y. Says A B {|Y, X |} /∈ set evs"

〈proof 〉

lemma honest_never_says_current_timestamp_in_auth:
" [[ (CT evs) = T; Number T ∈ parts {X}; evs ∈ kerbIV ]]
=⇒ ∀ A B Y. A /∈ bad −→ Says A B {|Y, X |} /∈ set evs"

〈proof 〉

lemma A_trusts_secure_authenticator:
" [[ Crypt K {|Agent A, Number T |} ∈ parts (spies evs);

Key K /∈ analz (spies evs); evs ∈ kerbIV ]]
=⇒ ∃ B X. Says A Tgs {|X, Crypt K {|Agent A, Number T |}, Agent B |} ∈ set evs
∨

Says A B {|X, Crypt K {|Agent A, Number T |}|} ∈ set evs"
〈proof 〉

lemma A_Issues_Tgs:
" [[ Says A Tgs {|authTicket, Crypt authK {|Agent A, Number T2|}, Agent B |}

∈ set evs;
Key authK /∈ analz (spies evs);
A /∈ bad; evs ∈ kerbIV ]]

=⇒ A Issues Tgs with (Crypt authK {|Agent A, Number T2|}) on evs"
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〈proof 〉

lemma Tgs_authenticates_and_keydist_to_A:
" [[ Crypt authK {|Agent A, Number T2|} ∈ parts (spies evs);

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |}
∈ parts (spies evs);

Key authK /∈ analz (spies evs);
A /∈ bad; evs ∈ kerbIV ]]

=⇒ A Issues Tgs with (Crypt authK {|Agent A, Number T2|}) on evs"
〈proof 〉

lemma Tgs_Issues_A:
" [[ Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket

|})
∈ set evs;

Key authK /∈ analz (spies evs); evs ∈ kerbIV ]]
=⇒ Tgs Issues A with

(Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}) on evs"
〈proof 〉

lemma A_authenticates_and_keydist_to_Tgs:
" [[Crypt authK {|Key servK, Agent B, Number Ts, servTicket |} ∈ parts (spies evs);

Key authK /∈ analz (spies evs); B 6= Tgs; evs ∈ kerbIV ]]
=⇒ ∃ A. Tgs Issues A with

(Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}) on evs"
〈proof 〉

lemma B_Issues_A:
" [[ Says B A (Crypt servK (Number T3)) ∈ set evs;

Key servK /∈ analz (spies evs);
A /∈ bad; B /∈ bad; B 6= Tgs; evs ∈ kerbIV ]]

=⇒ B Issues A with (Crypt servK (Number T3)) on evs"
〈proof 〉

lemma B_Issues_A_r:
" [[ Says B A (Crypt servK (Number T3)) ∈ set evs;

Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}
∈ parts (spies evs);

Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}
∈ parts (spies evs);

Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta, authTicket |}
∈ parts (spies evs);

¬ expiredSK Ts evs; ¬ expiredAK Ta evs;
A /∈ bad; B /∈ bad; B 6= Tgs; evs ∈ kerbIV ]]

=⇒ B Issues A with (Crypt servK (Number T3)) on evs"
〈proof 〉

lemma u_B_Issues_A_r:
" [[ Says B A (Crypt servK (Number T3)) ∈ set evs;

Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}
∈ parts (spies evs);

¬ expiredSK Ts evs;
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A /∈ bad; B /∈ bad; B 6= Tgs; evs ∈ kerbIV ]]
=⇒ B Issues A with (Crypt servK (Number T3)) on evs"

〈proof 〉

lemma A_authenticates_and_keydist_to_B:
" [[ Crypt servK (Number T3) ∈ parts (spies evs);

Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}
∈ parts (spies evs);

Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta, authTicket |}
∈ parts (spies evs);

Key authK /∈ analz (spies evs); Key servK /∈ analz (spies evs);
A /∈ bad; B /∈ bad; B 6= Tgs; evs ∈ kerbIV ]]

=⇒ B Issues A with (Crypt servK (Number T3)) on evs"
〈proof 〉

lemma A_authenticates_and_keydist_to_B_r:
" [[ Crypt servK (Number T3) ∈ parts (spies evs);

Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}
∈ parts (spies evs);

Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta, authTicket |}
∈ parts (spies evs);

¬ expiredAK Ta evs; ¬ expiredSK Ts evs;
A /∈ bad; B /∈ bad; B 6= Tgs; evs ∈ kerbIV ]]

=⇒ B Issues A with (Crypt servK (Number T3)) on evs"
〈proof 〉

lemma A_Issues_B:
" [[ Says A B {|servTicket, Crypt servK {|Agent A, Number T3|}|}

∈ set evs;
Key servK /∈ analz (spies evs);
B 6= Tgs; A /∈ bad; B /∈ bad; evs ∈ kerbIV ]]

=⇒ A Issues B with (Crypt servK {|Agent A, Number T3|}) on evs"
〈proof 〉

lemma A_Issues_B_r:
" [[ Says A B {|servTicket, Crypt servK {|Agent A, Number T3|}|}

∈ set evs;
Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta, authTicket |}
∈ parts (spies evs);

Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}
∈ parts (spies evs);

¬ expiredAK Ta evs; ¬ expiredSK Ts evs;
B 6= Tgs; A /∈ bad; B /∈ bad; evs ∈ kerbIV ]]

=⇒ A Issues B with (Crypt servK {|Agent A, Number T3|}) on evs"
〈proof 〉

lemma B_authenticates_and_keydist_to_A:
" [[ Crypt servK {|Agent A, Number T3|} ∈ parts (spies evs);

Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}
∈ parts (spies evs);

Key servK /∈ analz (spies evs);
B 6= Tgs; A /∈ bad; B /∈ bad; evs ∈ kerbIV ]]

=⇒ A Issues B with (Crypt servK {|Agent A, Number T3|}) on evs"
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〈proof 〉

lemma B_authenticates_and_keydist_to_A_r:
" [[ Crypt servK {|Agent A, Number T3|} ∈ parts (spies evs);

Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}
∈ parts (spies evs);

Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}
∈ parts (spies evs);

Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta, authTicket |}
∈ parts (spies evs);

¬ expiredSK Ts evs; ¬ expiredAK Ta evs;
B 6= Tgs; A /∈ bad; B /∈ bad; evs ∈ kerbIV ]]

=⇒ A Issues B with (Crypt servK {|Agent A, Number T3|}) on evs"
〈proof 〉

u_B_authenticates_and_keydist_to_A would be the same as B_authenticates_and_keydist_to_A
because the servK confidentiality assumption is yet unrelaxed
lemma u_B_authenticates_and_keydist_to_A_r:

" [[ Crypt servK {|Agent A, Number T3|} ∈ parts (spies evs);
Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}
∈ parts (spies evs);

¬ expiredSK Ts evs;
B 6= Tgs; A /∈ bad; B /∈ bad; evs ∈ kerbIV ]]

=⇒ A Issues B with (Crypt servK {|Agent A, Number T3|}) on evs"
〈proof 〉

end

7 The Kerberos Protocol, Version IV
theory KerberosIV_Gets imports Public begin

The "u" prefix indicates theorems referring to an updated version of the proto-
col. The "r" suffix indicates theorems where the confidentiality assumptions are
relaxed by the corresponding arguments.
abbreviation

Kas :: agent where "Kas == Server"

abbreviation
Tgs :: agent where "Tgs == Friend 0"

axiomatization where
Tgs_not_bad [iff]: "Tgs /∈ bad"
— Tgs is secure — we already know that Kas is secure

definition

authKeys :: "event list ⇒ key set" where
"authKeys evs = {authK. ∃ A Peer Ta. Says Kas A

(Crypt (shrK A) {|Key authK, Agent Peer, Number Ta,
(Crypt (shrK Peer) {|Agent A, Agent Peer, Key authK, Number

Ta |})
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|}) ∈ set evs}"

definition

Unique :: "[event, event list] ⇒ bool" (‹Unique _ on _› [0, 50] 50)
where "(Unique ev on evs) = (ev /∈ set (tl (dropWhile (λz. z 6= ev) evs)))"

consts

authKlife :: nat

servKlife :: nat

authlife :: nat

replylife :: nat

specification (authKlife)
authKlife_LB [iff]: "2 ≤ authKlife"
〈proof 〉

specification (servKlife)
servKlife_LB [iff]: "2 + authKlife ≤ servKlife"
〈proof 〉

specification (authlife)
authlife_LB [iff]: "Suc 0 ≤ authlife"
〈proof 〉

specification (replylife)
replylife_LB [iff]: "Suc 0 ≤ replylife"
〈proof 〉

abbreviation

CT :: "event list ⇒ nat" where
"CT == length"

abbreviation
expiredAK :: "[nat, event list] ⇒ bool" where
"expiredAK Ta evs == authKlife + Ta < CT evs"

abbreviation
expiredSK :: "[nat, event list] ⇒ bool" where
"expiredSK Ts evs == servKlife + Ts < CT evs"

abbreviation
expiredA :: "[nat, event list] ⇒ bool" where
"expiredA T evs == authlife + T < CT evs"
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abbreviation
valid :: "[nat, nat] ⇒ bool" (‹valid _ wrt _› [0, 50] 50) where
"valid T1 wrt T2 == T1 ≤ replylife + T2"

definition AKcryptSK :: "[key, key, event list] ⇒ bool" where
"AKcryptSK authK servK evs ==
∃ A B Ts.

Says Tgs A (Crypt authK
{|Key servK, Agent B, Number Ts,

Crypt (shrK B) {|Agent A, Agent B, Key servK, Number
Ts |} |})

∈ set evs"

inductive_set "kerbIV_gets" :: "event list set"
where

Nil: "[] ∈ kerbIV_gets"

| Fake: " [[ evsf ∈ kerbIV_gets; X ∈ synth (analz (spies evsf)) ]]
=⇒ Says Spy B X # evsf ∈ kerbIV_gets"

| Reception: " [[ evsr ∈ kerbIV_gets; Says A B X ∈ set evsr ]]
=⇒ Gets B X # evsr ∈ kerbIV_gets"

| K1: " [[ evs1 ∈ kerbIV_gets ]]
=⇒ Says A Kas {|Agent A, Agent Tgs, Number (CT evs1)|} # evs1
∈ kerbIV_gets"

| K2: " [[ evs2 ∈ kerbIV_gets; Key authK /∈ used evs2; authK ∈ symKeys;
Gets Kas {|Agent A, Agent Tgs, Number T1|} ∈ set evs2 ]]

=⇒ Says Kas A
(Crypt (shrK A) {|Key authK, Agent Tgs, Number (CT evs2),

(Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK,
Number (CT evs2)|})|}) # evs2 ∈ kerbIV_gets"

| K3: " [[ evs3 ∈ kerbIV_gets;
Says A Kas {|Agent A, Agent Tgs, Number T1|} ∈ set evs3;
Gets A (Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta,

authTicket |}) ∈ set evs3;
valid Ta wrt T1
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]]
=⇒ Says A Tgs {|authTicket,

(Crypt authK {|Agent A, Number (CT evs3)|}),
Agent B |} # evs3 ∈ kerbIV_gets"

| K4: " [[ evs4 ∈ kerbIV_gets; Key servK /∈ used evs4; servK ∈ symKeys;
B 6= Tgs; authK ∈ symKeys;
Gets Tgs {|
(Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK,

Number Ta |}),
(Crypt authK {|Agent A, Number T2|}), Agent B |}
∈ set evs4;

¬ expiredAK Ta evs4;
¬ expiredA T2 evs4;
servKlife + (CT evs4) ≤ authKlife + Ta

]]
=⇒ Says Tgs A

(Crypt authK {|Key servK, Agent B, Number (CT evs4),
Crypt (shrK B) {|Agent A, Agent B, Key servK,

Number (CT evs4)|} |})
# evs4 ∈ kerbIV_gets"

| K5: " [[ evs5 ∈ kerbIV_gets; authK ∈ symKeys; servK ∈ symKeys;
Says A Tgs

{|authTicket, Crypt authK {|Agent A, Number T2|},
Agent B |}

∈ set evs5;
Gets A
(Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})
∈ set evs5;

valid Ts wrt T2 ]]
=⇒ Says A B {|servTicket,

Crypt servK {|Agent A, Number (CT evs5)|} |}
# evs5 ∈ kerbIV_gets"

| K6: " [[ evs6 ∈ kerbIV_gets;
Gets B {|

(Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}),
(Crypt servK {|Agent A, Number T3|})|}

∈ set evs6;
¬ expiredSK Ts evs6;
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¬ expiredA T3 evs6
]]
=⇒ Says B A (Crypt servK (Number T3))

# evs6 ∈ kerbIV_gets"

| Oops1: " [[ evsO1 ∈ kerbIV_gets; A 6= Spy;
Says Kas A

(Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta,
authTicket |}) ∈ set evsO1;

expiredAK Ta evsO1 ]]
=⇒ Says A Spy {|Agent A, Agent Tgs, Number Ta, Key authK |}

# evsO1 ∈ kerbIV_gets"

| Oops2: " [[ evsO2 ∈ kerbIV_gets; A 6= Spy;
Says Tgs A

(Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})
∈ set evsO2;

expiredSK Ts evsO2 ]]
=⇒ Says A Spy {|Agent A, Agent B, Number Ts, Key servK |}

# evsO2 ∈ kerbIV_gets"

declare Says_imp_knows_Spy [THEN parts.Inj, dest]
declare parts.Body [dest]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]

7.1 Lemmas about reception event

lemma Gets_imp_Says :
" [[ Gets B X ∈ set evs; evs ∈ kerbIV_gets ]] =⇒ ∃ A. Says A B X ∈ set

evs"
〈proof 〉

lemma Gets_imp_knows_Spy:
" [[ Gets B X ∈ set evs; evs ∈ kerbIV_gets ]] =⇒ X ∈ knows Spy evs"

〈proof 〉

declare Gets_imp_knows_Spy [THEN parts.Inj, dest]

lemma Gets_imp_knows:
" [[ Gets B X ∈ set evs; evs ∈ kerbIV_gets ]] =⇒ X ∈ knows B evs"

〈proof 〉
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7.2 Lemmas about authKeys

lemma authKeys_empty: "authKeys [] = {}"
〈proof 〉

lemma authKeys_not_insert:
"(∀ A Ta akey Peer.

ev 6= Says Kas A (Crypt (shrK A) {|akey, Agent Peer, Ta,
(Crypt (shrK Peer) {|Agent A, Agent Peer, akey, Ta |})|}))

=⇒ authKeys (ev # evs) = authKeys evs"
〈proof 〉

lemma authKeys_insert:
"authKeys

(Says Kas A (Crypt (shrK A) {|Key K, Agent Peer, Number Ta,
(Crypt (shrK Peer) {|Agent A, Agent Peer, Key K, Number Ta |})|}) # evs)
= insert K (authKeys evs)"

〈proof 〉

lemma authKeys_simp:
"K ∈ authKeys
(Says Kas A (Crypt (shrK A) {|Key K’, Agent Peer, Number Ta,
(Crypt (shrK Peer) {|Agent A, Agent Peer, Key K’, Number Ta |})|}) # evs)

=⇒ K = K’ | K ∈ authKeys evs"
〈proof 〉

lemma authKeysI:
"Says Kas A (Crypt (shrK A) {|Key K, Agent Tgs, Number Ta,

(Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key K, Number Ta |})|}) ∈ set evs
=⇒ K ∈ authKeys evs"

〈proof 〉

lemma authKeys_used: "K ∈ authKeys evs =⇒ Key K ∈ used evs"
〈proof 〉

7.3 Forwarding Lemmas
lemma Says_ticket_parts:

"Says S A (Crypt K {|SesKey, B, TimeStamp, Ticket |}) ∈ set evs
=⇒ Ticket ∈ parts (spies evs)"

〈proof 〉

lemma Gets_ticket_parts:
" [[Gets A (Crypt K {|SesKey, Peer, Ta, Ticket |}) ∈ set evs; evs ∈ kerbIV_gets

]]
=⇒ Ticket ∈ parts (spies evs)"

〈proof 〉

lemma Oops_range_spies1:
" [[ Says Kas A (Crypt KeyA {|Key authK, Peer, Ta, authTicket |})

∈ set evs ;
evs ∈ kerbIV_gets ]] =⇒ authK /∈ range shrK ∧ authK ∈ symKeys"

〈proof 〉

lemma Oops_range_spies2:
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" [[ Says Tgs A (Crypt authK {|Key servK, Agent B, Ts, servTicket |})
∈ set evs ;

evs ∈ kerbIV_gets ]] =⇒ servK /∈ range shrK ∧ servK ∈ symKeys"
〈proof 〉

lemma Spy_see_shrK [simp]:
"evs ∈ kerbIV_gets =⇒ (Key (shrK A) ∈ parts (spies evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_analz_shrK [simp]:
"evs ∈ kerbIV_gets =⇒ (Key (shrK A) ∈ analz (spies evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_see_shrK_D [dest!]:
" [[ Key (shrK A) ∈ parts (spies evs); evs ∈ kerbIV_gets ]] =⇒ A∈bad"

〈proof 〉
lemmas Spy_analz_shrK_D = analz_subset_parts [THEN subsetD, THEN Spy_see_shrK_D,
dest!]

Nobody can have used non-existent keys!

lemma new_keys_not_used [simp]:
" [[Key K /∈ used evs; K ∈ symKeys; evs ∈ kerbIV_gets ]]
=⇒ K /∈ keysFor (parts (spies evs))"

〈proof 〉

lemma new_keys_not_analzd:
" [[evs ∈ kerbIV_gets; K ∈ symKeys; Key K /∈ used evs ]]
=⇒ K /∈ keysFor (analz (spies evs))"

〈proof 〉

7.4 Regularity Lemmas
These concern the form of items passed in messages

Describes the form of all components sent by Kas

lemma Says_Kas_message_form:
" [[ Says Kas A (Crypt K {|Key authK, Agent Peer, Number Ta, authTicket |})

∈ set evs;
evs ∈ kerbIV_gets ]] =⇒

K = shrK A ∧ Peer = Tgs ∧
authK /∈ range shrK ∧ authK ∈ authKeys evs ∧ authK ∈ symKeys ∧
authTicket = (Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |})"

〈proof 〉

lemma SesKey_is_session_key:
" [[ Crypt (shrK Tgs_B) {|Agent A, Agent Tgs_B, Key SesKey, Number T |}

∈ parts (spies evs); Tgs_B /∈ bad;
evs ∈ kerbIV_gets ]]

=⇒ SesKey /∈ range shrK"
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〈proof 〉

lemma authTicket_authentic:
" [[ Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |}

∈ parts (spies evs);
evs ∈ kerbIV_gets ]]

=⇒ Says Kas A (Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |}|})

∈ set evs"
〈proof 〉

lemma authTicket_crypt_authK:
" [[ Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |}

∈ parts (spies evs);
evs ∈ kerbIV_gets ]]

=⇒ authK ∈ authKeys evs"
〈proof 〉

lemma Says_Tgs_message_form:
" [[ Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})

∈ set evs;
evs ∈ kerbIV_gets ]]

=⇒ B 6= Tgs ∧
authK /∈ range shrK ∧ authK ∈ authKeys evs ∧ authK ∈ symKeys ∧
servK /∈ range shrK ∧ servK /∈ authKeys evs ∧ servK ∈ symKeys ∧
servTicket = (Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |})"

〈proof 〉

lemma authTicket_form:
" [[ Crypt (shrK A) {|Key authK, Agent Tgs, Ta, authTicket |}

∈ parts (spies evs);
A /∈ bad;
evs ∈ kerbIV_gets ]]

=⇒ authK /∈ range shrK ∧ authK ∈ symKeys ∧
authTicket = Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Ta |}"

〈proof 〉

This form holds also over an authTicket, but is not needed below.
lemma servTicket_form:

" [[ Crypt authK {|Key servK, Agent B, Ts, servTicket |}
∈ parts (spies evs);

Key authK /∈ analz (spies evs);
evs ∈ kerbIV_gets ]]

=⇒ servK /∈ range shrK ∧ servK ∈ symKeys ∧
(∃ A. servTicket = Crypt (shrK B) {|Agent A, Agent B, Key servK, Ts |})"

〈proof 〉

Essentially the same as authTicket_form

lemma Says_kas_message_form:
" [[ Gets A (Crypt (shrK A)

{|Key authK, Agent Tgs, Ta, authTicket |}) ∈ set evs;
evs ∈ kerbIV_gets ]]

=⇒ authK /∈ range shrK ∧ authK ∈ symKeys ∧
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authTicket =
Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Ta |}

| authTicket ∈ analz (spies evs)"
〈proof 〉

lemma Says_tgs_message_form:
" [[ Gets A (Crypt authK {|Key servK, Agent B, Ts, servTicket |})

∈ set evs; authK ∈ symKeys;
evs ∈ kerbIV_gets ]]

=⇒ servK /∈ range shrK ∧
(∃ A. servTicket =

Crypt (shrK B) {|Agent A, Agent B, Key servK, Ts |})
| servTicket ∈ analz (spies evs)"

〈proof 〉

7.5 Authenticity theorems: confirm origin of sensitive mes-
sages

lemma authK_authentic:
" [[ Crypt (shrK A) {|Key authK, Peer, Ta, authTicket |}

∈ parts (spies evs);
A /∈ bad; evs ∈ kerbIV_gets ]]

=⇒ Says Kas A (Crypt (shrK A) {|Key authK, Peer, Ta, authTicket |})
∈ set evs"

〈proof 〉

If a certain encrypted message appears then it originated with Tgs

lemma servK_authentic:
" [[ Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}

∈ parts (spies evs);
Key authK /∈ analz (spies evs);
authK /∈ range shrK;
evs ∈ kerbIV_gets ]]

=⇒ ∃ A. Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})
∈ set evs"

〈proof 〉

lemma servK_authentic_bis:
" [[ Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}

∈ parts (spies evs);
Key authK /∈ analz (spies evs);
B 6= Tgs;
evs ∈ kerbIV_gets ]]

=⇒ ∃ A. Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})
∈ set evs"

〈proof 〉

Authenticity of servK for B

lemma servTicket_authentic_Tgs:
" [[ Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}

∈ parts (spies evs); B 6= Tgs; B /∈ bad;
evs ∈ kerbIV_gets ]]

=⇒ ∃ authK.
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Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts,
Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}|})

∈ set evs"
〈proof 〉

Anticipated here from next subsection

lemma K4_imp_K2:
" [[ Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})

∈ set evs; evs ∈ kerbIV_gets ]]
=⇒ ∃ Ta. Says Kas A

(Crypt (shrK A)
{|Key authK, Agent Tgs, Number Ta,

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |}|})
∈ set evs"

〈proof 〉

Anticipated here from next subsection

lemma u_K4_imp_K2:
" [[ Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})

∈ set evs; evs ∈ kerbIV_gets ]]
=⇒ ∃ Ta. (Says Kas A (Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta,

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |}|})
∈ set evs

∧ servKlife + Ts ≤ authKlife + Ta)"
〈proof 〉

lemma servTicket_authentic_Kas:
" [[ Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}

∈ parts (spies evs); B 6= Tgs; B /∈ bad;
evs ∈ kerbIV_gets ]]

=⇒ ∃ authK Ta.
Says Kas A

(Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |}|})

∈ set evs"
〈proof 〉

lemma u_servTicket_authentic_Kas:
" [[ Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}

∈ parts (spies evs); B 6= Tgs; B /∈ bad;
evs ∈ kerbIV_gets ]]

=⇒ ∃ authK Ta. Says Kas A (Crypt(shrK A) {|Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |}|})
∈ set evs

∧ servKlife + Ts ≤ authKlife + Ta"
〈proof 〉

lemma servTicket_authentic:
" [[ Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}

∈ parts (spies evs); B 6= Tgs; B /∈ bad;
evs ∈ kerbIV_gets ]]

=⇒ ∃ Ta authK.
Says Kas A (Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta,
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Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number
Ta |}|})

∈ set evs
∧ Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts,

Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}|})
∈ set evs"

〈proof 〉

lemma u_servTicket_authentic:
" [[ Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}

∈ parts (spies evs); B 6= Tgs; B /∈ bad;
evs ∈ kerbIV_gets ]]

=⇒ ∃ Ta authK.
(Says Kas A (Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta,

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number
Ta |}|})

∈ set evs
∧ Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts,

Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}|})
∈ set evs

∧ servKlife + Ts ≤ authKlife + Ta)"
〈proof 〉

lemma u_NotexpiredSK_NotexpiredAK:
" [[ ¬ expiredSK Ts evs; servKlife + Ts ≤ authKlife + Ta ]]
=⇒ ¬ expiredAK Ta evs"

〈proof 〉

7.6 Reliability: friendly agents send something if some-
thing else happened

lemma K3_imp_K2:
" [[ Says A Tgs

{|authTicket, Crypt authK {|Agent A, Number T2|}, Agent B |}
∈ set evs;

A /∈ bad; evs ∈ kerbIV_gets ]]
=⇒ ∃ Ta. Says Kas A (Crypt (shrK A)

{|Key authK, Agent Tgs, Number Ta, authTicket |})
∈ set evs"

〈proof 〉

Anticipated here from next subsection. An authK is encrypted by one and only
one Shared key. A servK is encrypted by one and only one authK.
lemma Key_unique_SesKey:

" [[ Crypt K {|Key SesKey, Agent B, T, Ticket |}
∈ parts (spies evs);

Crypt K’ {|Key SesKey, Agent B’, T’, Ticket’|}
∈ parts (spies evs); Key SesKey /∈ analz (spies evs);

evs ∈ kerbIV_gets ]]
=⇒ K=K’ ∧ B=B’ ∧ T=T’ ∧ Ticket=Ticket’"

〈proof 〉

lemma Tgs_authenticates_A:
" [[ Crypt authK {|Agent A, Number T2|} ∈ parts (spies evs);
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Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |}
∈ parts (spies evs);

Key authK /∈ analz (spies evs); A /∈ bad; evs ∈ kerbIV_gets ]]
=⇒ ∃ B. Says A Tgs {|

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |},
Crypt authK {|Agent A, Number T2|}, Agent B |} ∈ set evs"

〈proof 〉

lemma Says_K5:
" [[ Crypt servK {|Agent A, Number T3|} ∈ parts (spies evs);

Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts,
servTicket |}) ∈ set evs;

Key servK /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ kerbIV_gets ]]

=⇒ Says A B {|servTicket, Crypt servK {|Agent A, Number T3|}|} ∈ set evs"
〈proof 〉

Anticipated here from next subsection
lemma unique_CryptKey:

" [[ Crypt (shrK B) {|Agent A, Agent B, Key SesKey, T |}
∈ parts (spies evs);

Crypt (shrK B’) {|Agent A’, Agent B’, Key SesKey, T’|}
∈ parts (spies evs); Key SesKey /∈ analz (spies evs);

evs ∈ kerbIV_gets ]]
=⇒ A=A’ ∧ B=B’ ∧ T=T’"

〈proof 〉

lemma Says_K6:
" [[ Crypt servK (Number T3) ∈ parts (spies evs);

Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts,
servTicket |}) ∈ set evs;

Key servK /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ kerbIV_gets ]]

=⇒ Says B A (Crypt servK (Number T3)) ∈ set evs"
〈proof 〉

Needs a unicity theorem, hence moved here
lemma servK_authentic_ter:
" [[ Says Kas A

(Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta, authTicket |}) ∈ set evs;
Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}
∈ parts (spies evs);

Key authK /∈ analz (spies evs);
evs ∈ kerbIV_gets ]]

=⇒ Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})
∈ set evs"

〈proof 〉

7.7 Unicity Theorems
The session key, if secure, uniquely identifies the Ticket whether authTicket or
servTicket. As a matter of fact, one can read also Tgs in the place of B.
lemma unique_authKeys:
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" [[ Says Kas A
(Crypt Ka {|Key authK, Agent Tgs, Ta, X |}) ∈ set evs;

Says Kas A’
(Crypt Ka’ {|Key authK, Agent Tgs, Ta’, X’|}) ∈ set evs;

evs ∈ kerbIV_gets ]] =⇒ A=A’ ∧ Ka=Ka’ ∧ Ta=Ta’ ∧ X=X’"
〈proof 〉

servK uniquely identifies the message from Tgs
lemma unique_servKeys:

" [[ Says Tgs A
(Crypt K {|Key servK, Agent B, Ts, X |}) ∈ set evs;

Says Tgs A’
(Crypt K’ {|Key servK, Agent B’, Ts’, X’|}) ∈ set evs;

evs ∈ kerbIV_gets ]] =⇒ A=A’ ∧ B=B’ ∧ K=K’ ∧ Ts=Ts’ ∧ X=X’"
〈proof 〉

Revised unicity theorems
lemma Kas_Unique:

" [[ Says Kas A
(Crypt Ka {|Key authK, Agent Tgs, Ta, authTicket |}) ∈ set evs;

evs ∈ kerbIV_gets ]] =⇒
Unique (Says Kas A (Crypt Ka {|Key authK, Agent Tgs, Ta, authTicket |}))
on evs"

〈proof 〉

lemma Tgs_Unique:
" [[ Says Tgs A

(Crypt authK {|Key servK, Agent B, Ts, servTicket |}) ∈ set evs;
evs ∈ kerbIV_gets ]] =⇒

Unique (Says Tgs A (Crypt authK {|Key servK, Agent B, Ts, servTicket |}))
on evs"

〈proof 〉

7.8 Lemmas About the Predicate AKcryptSK

lemma not_AKcryptSK_Nil [iff]: "¬ AKcryptSK authK servK []"
〈proof 〉

lemma AKcryptSKI:
" [[ Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, X |}) ∈ set evs;

evs ∈ kerbIV_gets ]] =⇒ AKcryptSK authK servK evs"
〈proof 〉

lemma AKcryptSK_Says [simp]:
"AKcryptSK authK servK (Says S A X # evs) =

(Tgs = S ∧
(∃ B Ts. X = Crypt authK

{|Key servK, Agent B, Number Ts,
Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}

|})
| AKcryptSK authK servK evs)"

〈proof 〉
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lemma Auth_fresh_not_AKcryptSK:
" [[ Key authK /∈ used evs; evs ∈ kerbIV_gets ]]
=⇒ ¬ AKcryptSK authK servK evs"

〈proof 〉

lemma Serv_fresh_not_AKcryptSK:
"Key servK /∈ used evs =⇒ ¬ AKcryptSK authK servK evs"
〈proof 〉

lemma authK_not_AKcryptSK:
" [[ Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, tk |}

∈ parts (spies evs); evs ∈ kerbIV_gets ]]
=⇒ ¬ AKcryptSK K authK evs"

〈proof 〉

A secure serverkey cannot have been used to encrypt others

lemma servK_not_AKcryptSK:
" [[ Crypt (shrK B) {|Agent A, Agent B, Key SK, Number Ts |} ∈ parts (spies evs);

Key SK /∈ analz (spies evs); SK ∈ symKeys;
B 6= Tgs; evs ∈ kerbIV_gets ]]

=⇒ ¬ AKcryptSK SK K evs"
〈proof 〉

Long term keys are not issued as servKeys

lemma shrK_not_AKcryptSK:
"evs ∈ kerbIV_gets =⇒ ¬ AKcryptSK K (shrK A) evs"

〈proof 〉

The Tgs message associates servK with authK and therefore not with any other
key authK.

lemma Says_Tgs_AKcryptSK:
" [[ Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, X |})

∈ set evs;
authK’ 6= authK; evs ∈ kerbIV_gets ]]

=⇒ ¬ AKcryptSK authK’ servK evs"
〈proof 〉

Equivalently

lemma not_different_AKcryptSK:
" [[ AKcryptSK authK servK evs;

authK’ 6= authK; evs ∈ kerbIV_gets ]]
=⇒ ¬ AKcryptSK authK’ servK evs ∧ servK ∈ symKeys"

〈proof 〉

lemma AKcryptSK_not_AKcryptSK:
" [[ AKcryptSK authK servK evs; evs ∈ kerbIV_gets ]]
=⇒ ¬ AKcryptSK servK K evs"

〈proof 〉

The only session keys that can be found with the help of session keys are those
sent by Tgs in step K4.
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We take some pains to express the property as a logical equivalence so that the
simplifier can apply it.
lemma Key_analz_image_Key_lemma:

"P −→ (Key K ∈ analz (Key‘KK ∪ H)) −→ (K ∈ KK | Key K ∈ analz H)
=⇒
P −→ (Key K ∈ analz (Key‘KK ∪ H)) = (K ∈ KK | Key K ∈ analz H)"

〈proof 〉

lemma AKcryptSK_analz_insert:
" [[ AKcryptSK K K’ evs; K ∈ symKeys; evs ∈ kerbIV_gets ]]
=⇒ Key K’ ∈ analz (insert (Key K) (spies evs))"

〈proof 〉

lemma authKeys_are_not_AKcryptSK:
" [[ K ∈ authKeys evs ∪ range shrK; evs ∈ kerbIV_gets ]]
=⇒ ∀ SK. ¬ AKcryptSK SK K evs ∧ K ∈ symKeys"

〈proof 〉

lemma not_authKeys_not_AKcryptSK:
" [[ K /∈ authKeys evs;

K /∈ range shrK; evs ∈ kerbIV_gets ]]
=⇒ ∀ SK. ¬ AKcryptSK K SK evs"

〈proof 〉

7.9 Secrecy Theorems
For the Oops2 case of the next theorem
lemma Oops2_not_AKcryptSK:

" [[ evs ∈ kerbIV_gets;
Says Tgs A (Crypt authK

{|Key servK, Agent B, Number Ts, servTicket |})
∈ set evs ]]

=⇒ ¬ AKcryptSK servK SK evs"
〈proof 〉

Big simplification law for keys SK that are not crypted by keys in KK It helps
prove three, otherwise hard, facts about keys. These facts are exploited as
simplification laws for analz, and also "limit the damage" in case of loss of a key
to the spy. See ESORICS98.
lemma Key_analz_image_Key [rule_format (no_asm)]:

"evs ∈ kerbIV_gets =⇒
(∀ SK KK. SK ∈ symKeys ∧ KK ⊆ -(range shrK) −→
(∀ K ∈ KK. ¬ AKcryptSK K SK evs) −→
(Key SK ∈ analz (Key‘KK ∪ (spies evs))) =
(SK ∈ KK | Key SK ∈ analz (spies evs)))"

〈proof 〉

First simplification law for analz: no session keys encrypt authentication keys
or shared keys.
lemma analz_insert_freshK1:

" [[ evs ∈ kerbIV_gets; K ∈ authKeys evs ∪ range shrK;
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SesKey /∈ range shrK ]]
=⇒ (Key K ∈ analz (insert (Key SesKey) (spies evs))) =

(K = SesKey | Key K ∈ analz (spies evs))"
〈proof 〉

Second simplification law for analz: no service keys encrypt any other keys.
lemma analz_insert_freshK2:

" [[ evs ∈ kerbIV_gets; servK /∈ (authKeys evs); servK /∈ range shrK;
K ∈ symKeys ]]

=⇒ (Key K ∈ analz (insert (Key servK) (spies evs))) =
(K = servK | Key K ∈ analz (spies evs))"

〈proof 〉

Third simplification law for analz: only one authentication key encrypts a certain
service key.
lemma analz_insert_freshK3:
" [[ AKcryptSK authK servK evs;

authK’ 6= authK; authK’ /∈ range shrK; evs ∈ kerbIV_gets ]]
=⇒ (Key servK ∈ analz (insert (Key authK’) (spies evs))) =

(servK = authK’ | Key servK ∈ analz (spies evs))"
〈proof 〉

lemma analz_insert_freshK3_bis:
" [[ Says Tgs A

(Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})
∈ set evs;

authK 6= authK’; authK’ /∈ range shrK; evs ∈ kerbIV_gets ]]
=⇒ (Key servK ∈ analz (insert (Key authK’) (spies evs))) =

(servK = authK’ | Key servK ∈ analz (spies evs))"
〈proof 〉

a weakness of the protocol
lemma authK_compromises_servK:

" [[ Says Tgs A
(Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})

∈ set evs; authK ∈ symKeys;
Key authK ∈ analz (spies evs); evs ∈ kerbIV_gets ]]

=⇒ Key servK ∈ analz (spies evs)"
〈proof 〉

lemma servK_notin_authKeysD:
" [[ Crypt authK {|Key servK, Agent B, Ts,

Crypt (shrK B) {|Agent A, Agent B, Key servK, Ts |}|}
∈ parts (spies evs);

Key servK /∈ analz (spies evs);
B 6= Tgs; evs ∈ kerbIV_gets ]]

=⇒ servK /∈ authKeys evs"
〈proof 〉

If Spy sees the Authentication Key sent in msg K2, then the Key has expired.
lemma Confidentiality_Kas_lemma [rule_format]:

" [[ authK ∈ symKeys; A /∈ bad; evs ∈ kerbIV_gets ]]
=⇒ Says Kas A
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(Crypt (shrK A)
{|Key authK, Agent Tgs, Number Ta,

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |}|})
∈ set evs −→

Key authK ∈ analz (spies evs) −→
expiredAK Ta evs"

〈proof 〉

lemma Confidentiality_Kas:
" [[ Says Kas A

(Crypt Ka {|Key authK, Agent Tgs, Number Ta, authTicket |})
∈ set evs;

¬ expiredAK Ta evs;
A /∈ bad; evs ∈ kerbIV_gets ]]

=⇒ Key authK /∈ analz (spies evs)"
〈proof 〉

If Spy sees the Service Key sent in msg K4, then the Key has expired.

lemma Confidentiality_lemma [rule_format]:
" [[ Says Tgs A

(Crypt authK
{|Key servK, Agent B, Number Ts,

Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}|})
∈ set evs;

Key authK /∈ analz (spies evs);
servK ∈ symKeys;
A /∈ bad; B /∈ bad; evs ∈ kerbIV_gets ]]

=⇒ Key servK ∈ analz (spies evs) −→
expiredSK Ts evs"

〈proof 〉

In the real world Tgs can’t check wheter authK is secure!

lemma Confidentiality_Tgs:
" [[ Says Tgs A

(Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})
∈ set evs;

Key authK /∈ analz (spies evs);
¬ expiredSK Ts evs;
A /∈ bad; B /∈ bad; evs ∈ kerbIV_gets ]]

=⇒ Key servK /∈ analz (spies evs)"
〈proof 〉

In the real world Tgs CAN check what Kas sends!

lemma Confidentiality_Tgs_bis:
" [[ Says Kas A

(Crypt Ka {|Key authK, Agent Tgs, Number Ta, authTicket |})
∈ set evs;

Says Tgs A
(Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})

∈ set evs;
¬ expiredAK Ta evs; ¬ expiredSK Ts evs;
A /∈ bad; B /∈ bad; evs ∈ kerbIV_gets ]]

=⇒ Key servK /∈ analz (spies evs)"
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〈proof 〉

Most general form

lemmas Confidentiality_Tgs_ter = authTicket_authentic [THEN Confidentiality_Tgs_bis]

lemmas Confidentiality_Auth_A = authK_authentic [THEN Confidentiality_Kas]

Needs a confidentiality guarantee, hence moved here. Authenticity of servK for
A

lemma servK_authentic_bis_r:
" [[ Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta, authTicket |}

∈ parts (spies evs);
Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}
∈ parts (spies evs);

¬ expiredAK Ta evs; A /∈ bad; evs ∈ kerbIV_gets ]]
=⇒Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})

∈ set evs"
〈proof 〉

lemma Confidentiality_Serv_A:
" [[ Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta, authTicket |}

∈ parts (spies evs);
Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}
∈ parts (spies evs);

¬ expiredAK Ta evs; ¬ expiredSK Ts evs;
A /∈ bad; B /∈ bad; evs ∈ kerbIV_gets ]]

=⇒ Key servK /∈ analz (spies evs)"
〈proof 〉

lemma u_Confidentiality_B:
" [[ Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}

∈ parts (spies evs);
¬ expiredSK Ts evs;
A /∈ bad; B /∈ bad; B 6= Tgs; evs ∈ kerbIV_gets ]]

=⇒ Key servK /∈ analz (spies evs)"
〈proof 〉

7.10 2. Parties’ strong authentication: non-injective agree-
ment on the session key. The same guarantees also
express key distribution, hence their names

Authentication here still is weak agreement - of B with A

lemma A_authenticates_B:
" [[ Crypt servK (Number T3) ∈ parts (spies evs);

Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}
∈ parts (spies evs);

Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta, authTicket |}
∈ parts (spies evs);

Key authK /∈ analz (spies evs); Key servK /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ kerbIV_gets ]]
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=⇒ Says B A (Crypt servK (Number T3)) ∈ set evs"
〈proof 〉

lemma shrK_in_initState_Server[iff]: "Key (shrK A) ∈ initState Kas"
〈proof 〉

lemma shrK_in_knows_Server [iff]: "Key (shrK A) ∈ knows Kas evs"
〈proof 〉

lemma A_authenticates_and_keydist_to_Kas:
" [[ Gets A (Crypt (shrK A) {|Key authK, Peer, Ta, authTicket |}) ∈ set evs;

A /∈ bad; evs ∈ kerbIV_gets ]]
=⇒ Says Kas A (Crypt (shrK A) {|Key authK, Peer, Ta, authTicket |}) ∈ set

evs
∧ Key authK ∈ analz(knows Kas evs)"

〈proof 〉

lemma K3_imp_Gets_evs:
" [[ Says A Tgs {|Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |},

Crypt authK {|Agent A, Number T2|}, Agent B |}
∈ set evs; A /∈ bad; evs ∈ kerbIV_gets ]]

=⇒ Gets A (Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |}|})

∈ set evs"
〈proof 〉

lemma Tgs_authenticates_and_keydist_to_A:
" [[ Gets Tgs {|

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |},
Crypt authK {|Agent A, Number T2|}, Agent B |} ∈ set evs;

Key authK /∈ analz (spies evs); A /∈ bad; evs ∈ kerbIV_gets ]]
=⇒ ∃ B. Says A Tgs {|

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |},
Crypt authK {|Agent A, Number T2|}, Agent B |} ∈ set evs

∧ Key authK ∈ analz (knows A evs)"
〈proof 〉

lemma K4_imp_Gets:
" [[ Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})

∈ set evs; evs ∈ kerbIV_gets ]]
=⇒ ∃ Ta X.

Gets Tgs {|Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |},
X |}

∈ set evs"
〈proof 〉

lemma A_authenticates_and_keydist_to_Tgs:
" [[ Gets A (Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta, authTicket |})

∈ set evs;
Gets A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})
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∈ set evs;
Key authK /∈ analz (spies evs); A /∈ bad;
evs ∈ kerbIV_gets ]]

=⇒ Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket |})
∈ set evs

∧ Key authK ∈ analz (knows Tgs evs)
∧ Key servK ∈ analz (knows Tgs evs)"

〈proof 〉

lemma K5_imp_Gets:
" [[ Says A B {|servTicket, Crypt servK {|Agent A, Number T3|}|} ∈ set evs;

A /∈ bad; evs ∈ kerbIV_gets ]]
=⇒ ∃ authK Ts authTicket T2.

Gets A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket |}) ∈ set
evs
∧ Says A Tgs {|authTicket, Crypt authK {|Agent A, Number T2|}, Agent B |} ∈

set evs"
〈proof 〉

lemma K3_imp_Gets:
" [[ Says A Tgs {|authTicket, Crypt authK {|Agent A, Number T2|}, Agent B |}

∈ set evs;
A /∈ bad; evs ∈ kerbIV_gets ]]

=⇒ ∃ Ta. Gets A (Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta, authTicket |})
∈ set evs"
〈proof 〉

lemma B_authenticates_and_keydist_to_A:
" [[ Gets B {|Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |},

Crypt servK {|Agent A, Number T3|}|} ∈ set evs;
Key servK /∈ analz (spies evs);
A /∈ bad; B /∈ bad; B 6= Tgs; evs ∈ kerbIV_gets ]]

=⇒ Says A B {|Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |},
Crypt servK {|Agent A, Number T3|}|} ∈ set evs

∧ Key servK ∈ analz (knows A evs)"
〈proof 〉

lemma K6_imp_Gets:
" [[ Says B A (Crypt servK (Number T3)) ∈ set evs;

B /∈ bad; evs ∈ kerbIV_gets ]]
=⇒ ∃ Ts X. Gets B {|Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |},X |}

∈ set evs"
〈proof 〉

lemma A_authenticates_and_keydist_to_B:
" [[ Gets A {|Crypt authK {|Key servK, Agent B, Number Ts, servTicket |},

Crypt servK (Number T3)|} ∈ set evs;
Gets A (Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta, authTicket |})

∈ set evs;
Key authK /∈ analz (spies evs); Key servK /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ kerbIV_gets ]]

=⇒ Says B A (Crypt servK (Number T3)) ∈ set evs
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∧ Key servK ∈ analz (knows B evs)"
〈proof 〉

end

8 The Kerberos Protocol, Version V
theory KerberosV imports Public begin

The "u" prefix indicates theorems referring to an updated version of the proto-
col. The "r" suffix indicates theorems where the confidentiality assumptions are
relaxed by the corresponding arguments.

abbreviation
Kas :: agent where
"Kas == Server"

abbreviation
Tgs :: agent where
"Tgs == Friend 0"

axiomatization where
Tgs_not_bad [iff]: "Tgs /∈ bad"
— Tgs is secure — we already know that Kas is secure

definition

authKeys :: "event list ⇒ key set" where
"authKeys evs = {authK. ∃ A Peer Ta.

Says Kas A {|Crypt (shrK A) {|Key authK, Agent Peer, Ta |},
Crypt (shrK Peer) {|Agent A, Agent Peer, Key authK, Ta |}

|} ∈ set evs}"

definition

Issues :: "[agent, agent, msg, event list] ⇒ bool"
(‹_ Issues _ with _ on _›) where

"A Issues B with X on evs =
(∃ Y. Says A B Y ∈ set evs ∧ X ∈ parts {Y} ∧

X /∈ parts (spies (takeWhile (λz. z 6= Says A B Y) (rev evs))))"

consts

authKlife :: nat

servKlife :: nat

authlife :: nat



106 8 THE KERBEROS PROTOCOL, VERSION V

replylife :: nat

specification (authKlife)
authKlife_LB [iff]: "2 ≤ authKlife"
〈proof 〉

specification (servKlife)
servKlife_LB [iff]: "2 + authKlife ≤ servKlife"
〈proof 〉

specification (authlife)
authlife_LB [iff]: "Suc 0 ≤ authlife"
〈proof 〉

specification (replylife)
replylife_LB [iff]: "Suc 0 ≤ replylife"
〈proof 〉

abbreviation

CT :: "event list ⇒ nat" where
"CT == length"

abbreviation
expiredAK :: "[nat, event list] ⇒ bool" where
"expiredAK T evs == authKlife + T < CT evs"

abbreviation
expiredSK :: "[nat, event list] ⇒ bool" where
"expiredSK T evs == servKlife + T < CT evs"

abbreviation
expiredA :: "[nat, event list] ⇒ bool" where
"expiredA T evs == authlife + T < CT evs"

abbreviation
valid :: "[nat, nat] ⇒ bool" (‹valid _ wrt _›) where
"valid T1 wrt T2 == T1 ≤ replylife + T2"

definition AKcryptSK :: "[key, key, event list] ⇒ bool" where
"AKcryptSK authK servK evs ==
∃ A B tt.

Says Tgs A {|Crypt authK {|Key servK, Agent B, tt |},
Crypt (shrK B) {|Agent A, Agent B, Key servK, tt |} |}

∈ set evs"

inductive_set kerbV :: "event list set"
where

Nil: "[] ∈ kerbV"
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| Fake: " [[ evsf ∈ kerbV; X ∈ synth (analz (spies evsf)) ]]
=⇒ Says Spy B X # evsf ∈ kerbV"

| KV1: " [[ evs1 ∈ kerbV ]]
=⇒ Says A Kas {|Agent A, Agent Tgs, Number (CT evs1)|} # evs1
∈ kerbV"

| KV2: " [[ evs2 ∈ kerbV; Key authK /∈ used evs2; authK ∈ symKeys;
Says A’ Kas {|Agent A, Agent Tgs, Number T1|} ∈ set evs2 ]]

=⇒ Says Kas A {|
Crypt (shrK A) {|Key authK, Agent Tgs, Number (CT evs2)|},

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number (CT evs2)|}

|} # evs2 ∈ kerbV"

| KV3: " [[ evs3 ∈ kerbV; A 6= Kas; A 6= Tgs;
Says A Kas {|Agent A, Agent Tgs, Number T1|} ∈ set evs3;
Says Kas’ A {|Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta |},

authTicket |} ∈ set evs3;
valid Ta wrt T1

]]
=⇒ Says A Tgs {|authTicket,

(Crypt authK {|Agent A, Number (CT evs3)|}),
Agent B |} # evs3 ∈ kerbV"

| KV4: " [[ evs4 ∈ kerbV; Key servK /∈ used evs4; servK ∈ symKeys;
B 6= Tgs; authK ∈ symKeys;
Says A’ Tgs {|
(Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK,

Number Ta |}),
(Crypt authK {|Agent A, Number T2|}), Agent B |}
∈ set evs4;

¬ expiredAK Ta evs4;
¬ expiredA T2 evs4;
servKlife + (CT evs4) ≤ authKlife + Ta

]]
=⇒ Says Tgs A {|

Crypt authK {|Key servK, Agent B, Number (CT evs4)|},
Crypt (shrK B) {|Agent A, Agent B, Key servK, Number (CT evs4)|}

|} # evs4 ∈ kerbV"

| KV5: " [[ evs5 ∈ kerbV; authK ∈ symKeys; servK ∈ symKeys;
A 6= Kas; A 6= Tgs;
Says A Tgs

{|authTicket, Crypt authK {|Agent A, Number T2|},
Agent B |}

∈ set evs5;
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Says Tgs’ A {|Crypt authK {|Key servK, Agent B, Number Ts |},
servTicket |}

∈ set evs5;
valid Ts wrt T2 ]]

=⇒ Says A B {|servTicket,
Crypt servK {|Agent A, Number (CT evs5)|} |}

# evs5 ∈ kerbV"

| KV6: " [[ evs6 ∈ kerbV; B 6= Kas; B 6= Tgs;
Says A’ B {|

(Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}),
(Crypt servK {|Agent A, Number T3|})|}

∈ set evs6;
¬ expiredSK Ts evs6;
¬ expiredA T3 evs6

]]
=⇒ Says B A (Crypt servK (Number Ta2))

# evs6 ∈ kerbV"

| Oops1:" [[ evsO1 ∈ kerbV; A 6= Spy;
Says Kas A {|Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta |},

authTicket |} ∈ set evsO1;
expiredAK Ta evsO1 ]]

=⇒ Notes Spy {|Agent A, Agent Tgs, Number Ta, Key authK |}
# evsO1 ∈ kerbV"

| Oops2: " [[ evsO2 ∈ kerbV; A 6= Spy;
Says Tgs A {|Crypt authK {|Key servK, Agent B, Number Ts |},

servTicket |} ∈ set evsO2;
expiredSK Ts evsO2 ]]

=⇒ Notes Spy {|Agent A, Agent B, Number Ts, Key servK |}
# evsO2 ∈ kerbV"

declare Says_imp_knows_Spy [THEN parts.Inj, dest]
declare parts.Body [dest]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]

8.1 Lemmas about lists, for reasoning about Issues
lemma spies_Says_rev: "spies (evs @ [Says A B X]) = insert X (spies evs)"
〈proof 〉

lemma spies_Gets_rev: "spies (evs @ [Gets A X]) = spies evs"
〈proof 〉

lemma spies_Notes_rev: "spies (evs @ [Notes A X]) =
(if A∈bad then insert X (spies evs) else spies evs)"
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〈proof 〉

lemma spies_evs_rev: "spies evs = spies (rev evs)"
〈proof 〉

lemmas parts_spies_evs_revD2 = spies_evs_rev [THEN equalityD2, THEN parts_mono]

lemma spies_takeWhile: "spies (takeWhile P evs) ⊆ spies evs"
〈proof 〉

lemmas parts_spies_takeWhile_mono = spies_takeWhile [THEN parts_mono]

8.2 Lemmas about authKeys

lemma authKeys_empty: "authKeys [] = {}"
〈proof 〉

lemma authKeys_not_insert:
"(∀ A Ta akey Peer.

ev 6= Says Kas A {|Crypt (shrK A) {|akey, Agent Peer, Ta |},
Crypt (shrK Peer) {|Agent A, Agent Peer, akey, Ta |} |})

=⇒ authKeys (ev # evs) = authKeys evs"
〈proof 〉

lemma authKeys_insert:
"authKeys

(Says Kas A {|Crypt (shrK A) {|Key K, Agent Peer, Number Ta |},
Crypt (shrK Peer) {|Agent A, Agent Peer, Key K, Number Ta |} |} # evs)

= insert K (authKeys evs)"
〈proof 〉

lemma authKeys_simp:
"K ∈ authKeys
(Says Kas A {|Crypt (shrK A) {|Key K’, Agent Peer, Number Ta |},

Crypt (shrK Peer) {|Agent A, Agent Peer, Key K’, Number Ta |} |} # evs)
=⇒ K = K’ | K ∈ authKeys evs"

〈proof 〉

lemma authKeysI:
"Says Kas A {|Crypt (shrK A) {|Key K, Agent Tgs, Number Ta |},

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key K, Number Ta |} |} ∈ set evs
=⇒ K ∈ authKeys evs"

〈proof 〉

lemma authKeys_used: "K ∈ authKeys evs =⇒ Key K ∈ used evs"
〈proof 〉

8.3 Forwarding Lemmas
lemma Says_ticket_parts:

"Says S A {|Crypt K {|SesKey, B, TimeStamp |}, Ticket |}
∈ set evs =⇒ Ticket ∈ parts (spies evs)"

〈proof 〉
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lemma Says_ticket_analz:
"Says S A {|Crypt K {|SesKey, B, TimeStamp |}, Ticket |}

∈ set evs =⇒ Ticket ∈ analz (spies evs)"
〈proof 〉

lemma Oops_range_spies1:
" [[ Says Kas A {|Crypt KeyA {|Key authK, Peer, Ta |}, authTicket |}

∈ set evs ;
evs ∈ kerbV ]] =⇒ authK /∈ range shrK ∧ authK ∈ symKeys"

〈proof 〉

lemma Oops_range_spies2:
" [[ Says Tgs A {|Crypt authK {|Key servK, Agent B, Ts |}, servTicket |}

∈ set evs ;
evs ∈ kerbV ]] =⇒ servK /∈ range shrK ∧ servK ∈ symKeys"

〈proof 〉

lemma Spy_see_shrK [simp]:
"evs ∈ kerbV =⇒ (Key (shrK A) ∈ parts (spies evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_analz_shrK [simp]:
"evs ∈ kerbV =⇒ (Key (shrK A) ∈ analz (spies evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_see_shrK_D [dest!]:
" [[ Key (shrK A) ∈ parts (spies evs); evs ∈ kerbV ]] =⇒ A∈bad"

〈proof 〉

lemmas Spy_analz_shrK_D = analz_subset_parts [THEN subsetD, THEN Spy_see_shrK_D,
dest!]

Nobody can have used non-existent keys!

lemma new_keys_not_used [simp]:
" [[Key K /∈ used evs; K ∈ symKeys; evs ∈ kerbV ]]
=⇒ K /∈ keysFor (parts (spies evs))"

〈proof 〉

lemma new_keys_not_analzd:
" [[evs ∈ kerbV; K ∈ symKeys; Key K /∈ used evs ]]
=⇒ K /∈ keysFor (analz (spies evs))"

〈proof 〉

8.4 Regularity Lemmas
These concern the form of items passed in messages

Describes the form of all components sent by Kas

lemma Says_Kas_message_form:
" [[ Says Kas A {|Crypt K {|Key authK, Agent Peer, Ta |}, authTicket |}
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∈ set evs;
evs ∈ kerbV ]]

=⇒ authK /∈ range shrK ∧ authK ∈ authKeys evs ∧ authK ∈ symKeys ∧

authTicket = (Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Ta |}) ∧
K = shrK A ∧ Peer = Tgs"

〈proof 〉

lemma SesKey_is_session_key:
" [[ Crypt (shrK Tgs_B) {|Agent A, Agent Tgs_B, Key SesKey, Number T |}

∈ parts (spies evs); Tgs_B /∈ bad;
evs ∈ kerbV ]]

=⇒ SesKey /∈ range shrK"
〈proof 〉

lemma authTicket_authentic:
" [[ Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Ta |}

∈ parts (spies evs);
evs ∈ kerbV ]]

=⇒ Says Kas A {|Crypt (shrK A) {|Key authK, Agent Tgs, Ta |},
Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Ta |}|}

∈ set evs"
〈proof 〉

lemma authTicket_crypt_authK:
" [[ Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |}

∈ parts (spies evs);
evs ∈ kerbV ]]

=⇒ authK ∈ authKeys evs"
〈proof 〉

Describes the form of servK, servTicket and authK sent by Tgs
lemma Says_Tgs_message_form:

" [[ Says Tgs A {|Crypt authK {|Key servK, Agent B, Ts |}, servTicket |}
∈ set evs;

evs ∈ kerbV ]]
=⇒ B 6= Tgs ∧

servK /∈ range shrK ∧ servK /∈ authKeys evs ∧ servK ∈ symKeys ∧
servTicket = (Crypt (shrK B) {|Agent A, Agent B, Key servK, Ts |}) ∧
authK /∈ range shrK ∧ authK ∈ authKeys evs ∧ authK ∈ symKeys"

〈proof 〉

8.5 Authenticity theorems: confirm origin of sensitive mes-
sages

lemma authK_authentic:
" [[ Crypt (shrK A) {|Key authK, Peer, Ta |}

∈ parts (spies evs);
A /∈ bad; evs ∈ kerbV ]]

=⇒ ∃ AT. Says Kas A {|Crypt (shrK A) {|Key authK, Peer, Ta |}, AT |}
∈ set evs"
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〈proof 〉

If a certain encrypted message appears then it originated with Tgs
lemma servK_authentic:

" [[ Crypt authK {|Key servK, Agent B, Ts |}
∈ parts (spies evs);

Key authK /∈ analz (spies evs);
authK /∈ range shrK;
evs ∈ kerbV ]]

=⇒ ∃ A ST. Says Tgs A {|Crypt authK {|Key servK, Agent B, Ts |}, ST |}
∈ set evs"

〈proof 〉

lemma servK_authentic_bis:
" [[ Crypt authK {|Key servK, Agent B, Ts |}

∈ parts (spies evs);
Key authK /∈ analz (spies evs);
B 6= Tgs;
evs ∈ kerbV ]]

=⇒ ∃ A ST. Says Tgs A {|Crypt authK {|Key servK, Agent B, Ts |}, ST |}
∈ set evs"

〈proof 〉

Authenticity of servK for B
lemma servTicket_authentic_Tgs:

" [[ Crypt (shrK B) {|Agent A, Agent B, Key servK, Ts |}
∈ parts (spies evs); B 6= Tgs; B /∈ bad;

evs ∈ kerbV ]]
=⇒ ∃ authK.

Says Tgs A {|Crypt authK {|Key servK, Agent B, Ts |},
Crypt (shrK B) {|Agent A, Agent B, Key servK, Ts |}|}

∈ set evs"
〈proof 〉

Anticipated here from next subsection
lemma K4_imp_K2:
" [[ Says Tgs A {|Crypt authK {|Key servK, Agent B, Number Ts |}, servTicket |}

∈ set evs; evs ∈ kerbV ]]
=⇒ ∃ Ta. Says Kas A

{|Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta |},
Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |} |}

∈ set evs"
〈proof 〉

Anticipated here from next subsection
lemma u_K4_imp_K2:
" [[ Says Tgs A {|Crypt authK {|Key servK, Agent B, Number Ts |}, servTicket |} ∈
set evs; evs ∈ kerbV ]]

=⇒ ∃ Ta. Says Kas A {|Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta |},
Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |} |}
∈ set evs

∧ servKlife + Ts ≤ authKlife + Ta"
〈proof 〉
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lemma servTicket_authentic_Kas:
" [[ Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}

∈ parts (spies evs); B 6= Tgs; B /∈ bad;
evs ∈ kerbV ]]

=⇒ ∃ authK Ta.
Says Kas A
{|Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta |},

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |} |}
∈ set evs"

〈proof 〉

lemma u_servTicket_authentic_Kas:
" [[ Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}

∈ parts (spies evs); B 6= Tgs; B /∈ bad;
evs ∈ kerbV ]]

=⇒ ∃ authK Ta.
Says Kas A
{|Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta |},

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |} |}
∈ set evs ∧

servKlife + Ts ≤ authKlife + Ta"
〈proof 〉

lemma servTicket_authentic:
" [[ Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}

∈ parts (spies evs); B 6= Tgs; B /∈ bad;
evs ∈ kerbV ]]

=⇒ ∃ Ta authK.
Says Kas A {|Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta |},

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number
Ta |} |} ∈ set evs

∧ Says Tgs A {|Crypt authK {|Key servK, Agent B, Number Ts |},
Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}|}

∈ set evs"
〈proof 〉

lemma u_servTicket_authentic:
" [[ Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}

∈ parts (spies evs); B 6= Tgs; B /∈ bad;
evs ∈ kerbV ]]

=⇒ ∃ Ta authK.
Says Kas A {|Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta |},

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number
Ta |}|} ∈ set evs

∧ Says Tgs A {|Crypt authK {|Key servK, Agent B, Number Ts |},
Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}|}

∈ set evs
∧ servKlife + Ts ≤ authKlife + Ta"

〈proof 〉

lemma u_NotexpiredSK_NotexpiredAK:
" [[ ¬ expiredSK Ts evs; servKlife + Ts ≤ authKlife + Ta ]]
=⇒ ¬ expiredAK Ta evs"
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〈proof 〉

8.6 Reliability: friendly agents send something if some-
thing else happened

lemma K3_imp_K2:
" [[ Says A Tgs

{|authTicket, Crypt authK {|Agent A, Number T2|}, Agent B |}
∈ set evs;

A /∈ bad; evs ∈ kerbV ]]
=⇒ ∃ Ta AT. Says Kas A {|Crypt (shrK A) {|Key authK, Agent Tgs, Ta |},

AT |} ∈ set evs"
〈proof 〉

Anticipated here from next subsection. An authK is encrypted by one and only
one Shared key. A servK is encrypted by one and only one authK.
lemma Key_unique_SesKey:

" [[ Crypt K {|Key SesKey, Agent B, T |}
∈ parts (spies evs);

Crypt K’ {|Key SesKey, Agent B’, T’|}
∈ parts (spies evs); Key SesKey /∈ analz (spies evs);

evs ∈ kerbV ]]
=⇒ K=K’ ∧ B=B’ ∧ T=T’"

〈proof 〉

This inevitably has an existential form in version V
lemma Says_K5:

" [[ Crypt servK {|Agent A, Number T3|} ∈ parts (spies evs);
Says Tgs A {|Crypt authK {|Key servK, Agent B, Number Ts |},

servTicket |} ∈ set evs;
Key servK /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ kerbV ]]

=⇒ ∃ ST. Says A B {|ST, Crypt servK {|Agent A, Number T3|}|} ∈ set evs"
〈proof 〉

Anticipated here from next subsection
lemma unique_CryptKey:

" [[ Crypt (shrK B) {|Agent A, Agent B, Key SesKey, T |}
∈ parts (spies evs);

Crypt (shrK B’) {|Agent A’, Agent B’, Key SesKey, T’|}
∈ parts (spies evs); Key SesKey /∈ analz (spies evs);

evs ∈ kerbV ]]
=⇒ A=A’ ∧ B=B’ ∧ T=T’"

〈proof 〉

lemma Says_K6:
" [[ Crypt servK (Number T3) ∈ parts (spies evs);

Says Tgs A {|Crypt authK {|Key servK, Agent B, Number Ts |},
servTicket |} ∈ set evs;

Key servK /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ kerbV ]]

=⇒ Says B A (Crypt servK (Number T3)) ∈ set evs"
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〈proof 〉

Needs a unicity theorem, hence moved here
lemma servK_authentic_ter:
" [[ Says Kas A

{|Crypt (shrK A) {|Key authK, Agent Tgs, Ta |}, authTicket |} ∈ set evs;
Crypt authK {|Key servK, Agent B, Ts |}
∈ parts (spies evs);

Key authK /∈ analz (spies evs);
evs ∈ kerbV ]]

=⇒ Says Tgs A {|Crypt authK {|Key servK, Agent B, Ts |},
Crypt (shrK B) {|Agent A, Agent B, Key servK, Ts |} |}

∈ set evs"
〈proof 〉

8.7 Unicity Theorems
The session key, if secure, uniquely identifies the Ticket whether authTicket or
servTicket. As a matter of fact, one can read also Tgs in the place of B.
lemma unique_authKeys:

" [[ Says Kas A
{|Crypt Ka {|Key authK, Agent Tgs, Ta |}, X |} ∈ set evs;

Says Kas A’
{|Crypt Ka’ {|Key authK, Agent Tgs, Ta’|}, X’|} ∈ set evs;

evs ∈ kerbV ]] =⇒ A=A’ ∧ Ka=Ka’ ∧ Ta=Ta’ ∧ X=X’"
〈proof 〉

servK uniquely identifies the message from Tgs
lemma unique_servKeys:

" [[ Says Tgs A
{|Crypt K {|Key servK, Agent B, Ts |}, X |} ∈ set evs;

Says Tgs A’
{|Crypt K’ {|Key servK, Agent B’, Ts’|}, X’|} ∈ set evs;

evs ∈ kerbV ]] =⇒ A=A’ ∧ B=B’ ∧ K=K’ ∧ Ts=Ts’ ∧ X=X’"
〈proof 〉

8.8 Lemmas About the Predicate AKcryptSK

lemma not_AKcryptSK_Nil [iff]: "¬ AKcryptSK authK servK []"
〈proof 〉

lemma AKcryptSKI:
" [[ Says Tgs A {|Crypt authK {|Key servK, Agent B, tt |}, X |} ∈ set evs;

evs ∈ kerbV ]] =⇒ AKcryptSK authK servK evs"
〈proof 〉

lemma AKcryptSK_Says [simp]:
"AKcryptSK authK servK (Says S A X # evs) =

(S = Tgs ∧
(∃ B tt. X = {|Crypt authK {|Key servK, Agent B, tt |},

Crypt (shrK B) {|Agent A, Agent B, Key servK, tt |} |})
| AKcryptSK authK servK evs)"

〈proof 〉
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lemma AKcryptSK_Notes [simp]:
"AKcryptSK authK servK (Notes A X # evs) =

AKcryptSK authK servK evs"
〈proof 〉

lemma Auth_fresh_not_AKcryptSK:
" [[ Key authK /∈ used evs; evs ∈ kerbV ]]
=⇒ ¬ AKcryptSK authK servK evs"

〈proof 〉

lemma Serv_fresh_not_AKcryptSK:
"Key servK /∈ used evs =⇒ ¬ AKcryptSK authK servK evs"
〈proof 〉

lemma authK_not_AKcryptSK:
" [[ Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, tk |}

∈ parts (spies evs); evs ∈ kerbV ]]
=⇒ ¬ AKcryptSK K authK evs"

〈proof 〉

A secure serverkey cannot have been used to encrypt others

lemma servK_not_AKcryptSK:
" [[ Crypt (shrK B) {|Agent A, Agent B, Key SK, tt |} ∈ parts (spies evs);

Key SK /∈ analz (spies evs); SK ∈ symKeys;
B 6= Tgs; evs ∈ kerbV ]]

=⇒ ¬ AKcryptSK SK K evs"
〈proof 〉

Long term keys are not issued as servKeys

lemma shrK_not_AKcryptSK:
"evs ∈ kerbV =⇒ ¬ AKcryptSK K (shrK A) evs"

〈proof 〉

The Tgs message associates servK with authK and therefore not with any other
key authK.

lemma Says_Tgs_AKcryptSK:
" [[ Says Tgs A {|Crypt authK {|Key servK, Agent B, tt |}, X |}

∈ set evs;
authK’ 6= authK; evs ∈ kerbV ]]

=⇒ ¬ AKcryptSK authK’ servK evs"
〈proof 〉

lemma AKcryptSK_not_AKcryptSK:
" [[ AKcryptSK authK servK evs; evs ∈ kerbV ]]
=⇒ ¬ AKcryptSK servK K evs"

〈proof 〉

lemma not_different_AKcryptSK:
" [[ AKcryptSK authK servK evs;

authK’ 6= authK; evs ∈ kerbV ]]
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=⇒ ¬ AKcryptSK authK’ servK evs ∧ servK ∈ symKeys"
〈proof 〉

The only session keys that can be found with the help of session keys are those
sent by Tgs in step K4.

We take some pains to express the property as a logical equivalence so that the
simplifier can apply it.
lemma Key_analz_image_Key_lemma:

"P −→ (Key K ∈ analz (Key‘KK ∪ H)) −→ (K∈KK ∨ Key K ∈ analz H)
=⇒
P −→ (Key K ∈ analz (Key‘KK ∪ H)) = (K∈KK ∨ Key K ∈ analz H)"

〈proof 〉

lemma AKcryptSK_analz_insert:
" [[ AKcryptSK K K’ evs; K ∈ symKeys; evs ∈ kerbV ]]
=⇒ Key K’ ∈ analz (insert (Key K) (spies evs))"

〈proof 〉

lemma authKeys_are_not_AKcryptSK:
" [[ K ∈ authKeys evs ∪ range shrK; evs ∈ kerbV ]]
=⇒ ∀ SK. ¬ AKcryptSK SK K evs ∧ K ∈ symKeys"

〈proof 〉

lemma not_authKeys_not_AKcryptSK:
" [[ K /∈ authKeys evs;

K /∈ range shrK; evs ∈ kerbV ]]
=⇒ ∀ SK. ¬ AKcryptSK K SK evs"

〈proof 〉

8.9 Secrecy Theorems
For the Oops2 case of the next theorem
lemma Oops2_not_AKcryptSK:

" [[ evs ∈ kerbV;
Says Tgs A {|Crypt authK

{|Key servK, Agent B, Number Ts |}, servTicket |}
∈ set evs ]]

=⇒ ¬ AKcryptSK servK SK evs"
〈proof 〉

Big simplification law for keys SK that are not crypted by keys in KK It helps
prove three, otherwise hard, facts about keys. These facts are exploited as
simplification laws for analz, and also "limit the damage" in case of loss of a key
to the spy. See ESORICS98.
lemma Key_analz_image_Key [rule_format (no_asm)]:

"evs ∈ kerbV =⇒
(∀ SK KK. SK ∈ symKeys ∧ KK ⊆ -(range shrK) −→
(∀ K ∈ KK. ¬ AKcryptSK K SK evs) −→
(Key SK ∈ analz (Key‘KK ∪ (spies evs))) =
(SK ∈ KK | Key SK ∈ analz (spies evs)))"

〈proof 〉
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First simplification law for analz: no session keys encrypt authentication keys
or shared keys.

lemma analz_insert_freshK1:
" [[ evs ∈ kerbV; K ∈ authKeys evs ∪ range shrK;

SesKey /∈ range shrK ]]
=⇒ (Key K ∈ analz (insert (Key SesKey) (spies evs))) =

(K = SesKey | Key K ∈ analz (spies evs))"
〈proof 〉

Second simplification law for analz: no service keys encrypt any other keys.

lemma analz_insert_freshK2:
" [[ evs ∈ kerbV; servK /∈ (authKeys evs); servK /∈ range shrK;

K ∈ symKeys ]]
=⇒ (Key K ∈ analz (insert (Key servK) (spies evs))) =

(K = servK | Key K ∈ analz (spies evs))"
〈proof 〉

Third simplification law for analz: only one authentication key encrypts a certain
service key.

lemma analz_insert_freshK3:
" [[ AKcryptSK authK servK evs;

authK’ 6= authK; authK’ /∈ range shrK; evs ∈ kerbV ]]
=⇒ (Key servK ∈ analz (insert (Key authK’) (spies evs))) =

(servK = authK’ | Key servK ∈ analz (spies evs))"
〈proof 〉

lemma analz_insert_freshK3_bis:
" [[ Says Tgs A {|Crypt authK {|Key servK, Agent B, Number Ts |}, servTicket |}

∈ set evs;
authK 6= authK’; authK’ /∈ range shrK; evs ∈ kerbV ]]

=⇒ (Key servK ∈ analz (insert (Key authK’) (spies evs))) =
(servK = authK’ | Key servK ∈ analz (spies evs))"

〈proof 〉

a weakness of the protocol

lemma authK_compromises_servK:
" [[ Says Tgs A {|Crypt authK {|Key servK, Agent B, Number Ts |}, servTicket |}
∈ set evs; authK ∈ symKeys;
Key authK ∈ analz (spies evs); evs ∈ kerbV ]]

=⇒ Key servK ∈ analz (spies evs)"
〈proof 〉

lemma servK_notin_authKeysD not needed in version V

If Spy sees the Authentication Key sent in msg K2, then the Key has expired.

lemma Confidentiality_Kas_lemma [rule_format]:
" [[ authK ∈ symKeys; A /∈ bad; evs ∈ kerbV ]]
=⇒ Says Kas A

{|Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta |},
Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta |}|}
∈ set evs −→

Key authK ∈ analz (spies evs) −→
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expiredAK Ta evs"
〈proof 〉

lemma Confidentiality_Kas:
" [[ Says Kas A

{|Crypt Ka {|Key authK, Agent Tgs, Number Ta |}, authTicket |}
∈ set evs;

¬ expiredAK Ta evs;
A /∈ bad; evs ∈ kerbV ]]

=⇒ Key authK /∈ analz (spies evs)"
〈proof 〉

If Spy sees the Service Key sent in msg K4, then the Key has expired.
lemma Confidentiality_lemma [rule_format]:

" [[ Says Tgs A
{|Crypt authK {|Key servK, Agent B, Number Ts |},

Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}|}
∈ set evs;

Key authK /∈ analz (spies evs);
servK ∈ symKeys;
A /∈ bad; B /∈ bad; evs ∈ kerbV ]]

=⇒ Key servK ∈ analz (spies evs) −→
expiredSK Ts evs"

〈proof 〉

In the real world Tgs can’t check wheter authK is secure!
lemma Confidentiality_Tgs:

" [[ Says Tgs A
{|Crypt authK {|Key servK, Agent B, Number Ts |}, servTicket |}

∈ set evs;
Key authK /∈ analz (spies evs);
¬ expiredSK Ts evs;
A /∈ bad; B /∈ bad; evs ∈ kerbV ]]

=⇒ Key servK /∈ analz (spies evs)"
〈proof 〉

In the real world Tgs CAN check what Kas sends!
lemma Confidentiality_Tgs_bis:

" [[ Says Kas A
{|Crypt Ka {|Key authK, Agent Tgs, Number Ta |}, authTicket |}

∈ set evs;
Says Tgs A

{|Crypt authK {|Key servK, Agent B, Number Ts |}, servTicket |}
∈ set evs;

¬ expiredAK Ta evs; ¬ expiredSK Ts evs;
A /∈ bad; B /∈ bad; evs ∈ kerbV ]]

=⇒ Key servK /∈ analz (spies evs)"
〈proof 〉

Most general form
lemmas Confidentiality_Tgs_ter = authTicket_authentic [THEN Confidentiality_Tgs_bis]

lemmas Confidentiality_Auth_A = authK_authentic [THEN exE, THEN Confidentiality_Kas]
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Needs a confidentiality guarantee, hence moved here. Authenticity of servK for
A

lemma servK_authentic_bis_r:
" [[ Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta |}

∈ parts (spies evs);
Crypt authK {|Key servK, Agent B, Number Ts |}
∈ parts (spies evs);

¬ expiredAK Ta evs; A /∈ bad; evs ∈ kerbV ]]
=⇒ Says Tgs A {|Crypt authK {|Key servK, Agent B, Number Ts |},

Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |} |}
∈ set evs"

〈proof 〉

lemma Confidentiality_Serv_A:
" [[ Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta |}

∈ parts (spies evs);
Crypt authK {|Key servK, Agent B, Number Ts |}
∈ parts (spies evs);

¬ expiredAK Ta evs; ¬ expiredSK Ts evs;
A /∈ bad; B /∈ bad; B 6= Tgs; evs ∈ kerbV ]]

=⇒ Key servK /∈ analz (spies evs)"
〈proof 〉

lemma Confidentiality_B:
" [[ Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}

∈ parts (spies evs);
Crypt authK {|Key servK, Agent B, Number Ts |}
∈ parts (spies evs);

Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta |}
∈ parts (spies evs);

¬ expiredSK Ts evs; ¬ expiredAK Ta evs;
A /∈ bad; B /∈ bad; B 6= Tgs; evs ∈ kerbV ]]

=⇒ Key servK /∈ analz (spies evs)"
〈proof 〉

lemma u_Confidentiality_B:
" [[ Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}

∈ parts (spies evs);
¬ expiredSK Ts evs;
A /∈ bad; B /∈ bad; B 6= Tgs; evs ∈ kerbV ]]

=⇒ Key servK /∈ analz (spies evs)"
〈proof 〉

8.10 Authentication
Each party verifies "the identity of another party who generated some data"
(quoted from Neuman and Ts’o).

These guarantees don’t assess whether two parties agree on the same session
key: sending a message containing a key doesn’t a priori state knowledge of the
key.

These didn’t have existential form in version IV
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lemma B_authenticates_A:
" [[ Crypt servK {|Agent A, Number T3|} ∈ parts (spies evs);

Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}
∈ parts (spies evs);

Key servK /∈ analz (spies evs);
A /∈ bad; B /∈ bad; B 6= Tgs; evs ∈ kerbV ]]

=⇒ ∃ ST. Says A B {|ST, Crypt servK {|Agent A, Number T3|} |} ∈ set evs"
〈proof 〉

The second assumption tells B what kind of key servK is.
lemma B_authenticates_A_r:

" [[ Crypt servK {|Agent A, Number T3|} ∈ parts (spies evs);
Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}
∈ parts (spies evs);

Crypt authK {|Key servK, Agent B, Number Ts |}
∈ parts (spies evs);

Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta |}
∈ parts (spies evs);

¬ expiredSK Ts evs; ¬ expiredAK Ta evs;
B 6= Tgs; A /∈ bad; B /∈ bad; evs ∈ kerbV ]]

=⇒ ∃ ST. Says A B {|ST, Crypt servK {|Agent A, Number T3|} |} ∈ set evs"
〈proof 〉

u_B_authenticates_A would be the same as B_authenticates_A because the servK
confidentiality assumption is yet unrelaxed
lemma u_B_authenticates_A_r:

" [[ Crypt servK {|Agent A, Number T3|} ∈ parts (spies evs);
Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}
∈ parts (spies evs);

¬ expiredSK Ts evs;
B 6= Tgs; A /∈ bad; B /∈ bad; evs ∈ kerbV ]]

=⇒ ∃ ST. Says A B {|ST, Crypt servK {|Agent A, Number T3|} |} ∈ set evs"
〈proof 〉

lemma A_authenticates_B:
" [[ Crypt servK (Number T3) ∈ parts (spies evs);

Crypt authK {|Key servK, Agent B, Number Ts |}
∈ parts (spies evs);

Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta |}
∈ parts (spies evs);

Key authK /∈ analz (spies evs); Key servK /∈ analz (spies evs);
A /∈ bad; B /∈ bad; evs ∈ kerbV ]]

=⇒ Says B A (Crypt servK (Number T3)) ∈ set evs"
〈proof 〉

lemma A_authenticates_B_r:
" [[ Crypt servK (Number T3) ∈ parts (spies evs);

Crypt authK {|Key servK, Agent B, Number Ts |}
∈ parts (spies evs);

Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta |}
∈ parts (spies evs);

¬ expiredAK Ta evs; ¬ expiredSK Ts evs;
A /∈ bad; B /∈ bad; evs ∈ kerbV ]]

=⇒ Says B A (Crypt servK (Number T3)) ∈ set evs"
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〈proof 〉

8.11 Parties’ knowledge of session keys

An agent knows a session key if he used it to issue a cipher. These guarantees can
be interpreted both in terms of key distribution and of non-injective agreement
on the session key.

lemma Kas_Issues_A:
" [[ Says Kas A {|Crypt (shrK A) {|Key authK, Peer, Ta |}, authTicket |} ∈ set

evs;
evs ∈ kerbV ]]

=⇒ Kas Issues A with (Crypt (shrK A) {|Key authK, Peer, Ta |})
on evs"

〈proof 〉

lemma A_authenticates_and_keydist_to_Kas:
" [[ Crypt (shrK A) {|Key authK, Peer, Ta |} ∈ parts (spies evs);

A /∈ bad; evs ∈ kerbV ]]
=⇒ Kas Issues A with (Crypt (shrK A) {|Key authK, Peer, Ta |})

on evs"
〈proof 〉

lemma Tgs_Issues_A:
" [[ Says Tgs A {|Crypt authK {|Key servK, Agent B, Number Ts |}, servTicket |}

∈ set evs;
Key authK /∈ analz (spies evs); evs ∈ kerbV ]]

=⇒ Tgs Issues A with
(Crypt authK {|Key servK, Agent B, Number Ts |}) on evs"

〈proof 〉

lemma A_authenticates_and_keydist_to_Tgs:
" [[ Crypt authK {|Key servK, Agent B, Number Ts |}

∈ parts (spies evs);
Key authK /∈ analz (spies evs); B 6= Tgs; evs ∈ kerbV ]]

=⇒ ∃ A. Tgs Issues A with
(Crypt authK {|Key servK, Agent B, Number Ts |}) on evs"

〈proof 〉

lemma B_Issues_A:
" [[ Says B A (Crypt servK (Number T3)) ∈ set evs;

Key servK /∈ analz (spies evs);
A /∈ bad; B /∈ bad; B 6= Tgs; evs ∈ kerbV ]]

=⇒ B Issues A with (Crypt servK (Number T3)) on evs"
〈proof 〉

lemma A_authenticates_and_keydist_to_B:
" [[ Crypt servK (Number T3) ∈ parts (spies evs);

Crypt authK {|Key servK, Agent B, Number Ts |}
∈ parts (spies evs);

Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta |}
∈ parts (spies evs);

Key authK /∈ analz (spies evs); Key servK /∈ analz (spies evs);
A /∈ bad; B /∈ bad; B 6= Tgs; evs ∈ kerbV ]]
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=⇒ B Issues A with (Crypt servK (Number T3)) on evs"
〈proof 〉

But can prove a less general fact conerning only authenticators!
lemma honest_never_says_newer_timestamp_in_auth:

" [[ (CT evs) ≤ T; Number T ∈ parts {X}; A /∈ bad; evs ∈ kerbV ]]
=⇒ Says A B {|Y, X |} /∈ set evs"

〈proof 〉

lemma honest_never_says_current_timestamp_in_auth:
" [[ (CT evs) = T; Number T ∈ parts {X}; A /∈ bad; evs ∈ kerbV ]]
=⇒ Says A B {|Y, X |} /∈ set evs"

〈proof 〉

lemma A_Issues_B:
" [[ Says A B {|ST, Crypt servK {|Agent A, Number T3|}|} ∈ set evs;

Key servK /∈ analz (spies evs);
B 6= Tgs; A /∈ bad; B /∈ bad; evs ∈ kerbV ]]

=⇒ A Issues B with (Crypt servK {|Agent A, Number T3|}) on evs"
〈proof 〉

lemma B_authenticates_and_keydist_to_A:
" [[ Crypt servK {|Agent A, Number T3|} ∈ parts (spies evs);

Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts |}
∈ parts (spies evs);

Key servK /∈ analz (spies evs);
B 6= Tgs; A /∈ bad; B /∈ bad; evs ∈ kerbV ]]

=⇒ A Issues B with (Crypt servK {|Agent A, Number T3|}) on evs"
〈proof 〉

8.12 Novel guarantees, never studied before
Because honest agents always say the right timestamp in authenticators, we
can prove unicity guarantees based exactly on timestamps. Classical unicity
guarantees are based on nonces. Of course assuming the agent to be different
from the Spy, rather than not in bad, would suffice below. Similar guarantees
must also hold of Kerberos IV.

Notice that an honest agent can send the same timestamp on two different traces
of the same length, but not on the same trace!
lemma unique_timestamp_authenticator1:

" [[ Says A Kas {|Agent A, Agent Tgs, Number T1|} ∈ set evs;
Says A Kas’ {|Agent A, Agent Tgs’, Number T1|} ∈ set evs;
A /∈bad; evs ∈ kerbV ]]

=⇒ Kas=Kas’ ∧ Tgs=Tgs’"
〈proof 〉

lemma unique_timestamp_authenticator2:
" [[ Says A Tgs {|AT, Crypt AK {|Agent A, Number T2|}, Agent B |} ∈ set evs;
Says A Tgs’ {|AT’, Crypt AK’ {|Agent A, Number T2|}, Agent B’|} ∈ set evs;

A /∈bad; evs ∈ kerbV ]]
=⇒ Tgs=Tgs’ ∧ AT=AT’ ∧ AK=AK’ ∧ B=B’"
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〈proof 〉

lemma unique_timestamp_authenticator3:
" [[ Says A B {|ST, Crypt SK {|Agent A, Number T |}|} ∈ set evs;

Says A B’ {|ST’, Crypt SK’ {|Agent A, Number T |}|} ∈ set evs;
A /∈bad; evs ∈ kerbV ]]

=⇒ B=B’ ∧ ST=ST’ ∧ SK=SK’"
〈proof 〉

The second part of the message is treated as an authenticator by the last sim-
plification step, even if it is not an authenticator!
lemma unique_timestamp_authticket:

" [[ Says Kas A {|X, Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key AK, T |}|} ∈
set evs;

Says Kas A’ {|X’, Crypt (shrK Tgs’) {|Agent A’, Agent Tgs’, Key AK’,
T |}|} ∈ set evs;

evs ∈ kerbV ]]
=⇒ A=A’ ∧ X=X’ ∧ Tgs=Tgs’ ∧ AK=AK’"

〈proof 〉

The second part of the message is treated as an authenticator by the last sim-
plification step, even if it is not an authenticator!
lemma unique_timestamp_servticket:

" [[ Says Tgs A {|X, Crypt (shrK B) {|Agent A, Agent B, Key SK, T |}|} ∈ set
evs;

Says Tgs A’ {|X’, Crypt (shrK B’) {|Agent A’, Agent B’, Key SK’, T |}|}
∈ set evs;

evs ∈ kerbV ]]
=⇒ A=A’ ∧ X=X’ ∧ B=B’ ∧ SK=SK’"

〈proof 〉

lemma Kas_never_says_newer_timestamp:
" [[ (CT evs) ≤ T; Number T ∈ parts {X}; evs ∈ kerbV ]]
=⇒ ∀ A. Says Kas A X /∈ set evs"

〈proof 〉

lemma Kas_never_says_current_timestamp:
" [[ (CT evs) = T; Number T ∈ parts {X}; evs ∈ kerbV ]]
=⇒ ∀ A. Says Kas A X /∈ set evs"

〈proof 〉

lemma unique_timestamp_msg2:
" [[ Says Kas A {|Crypt (shrK A) {|Key AK, Agent Tgs, T |}, AT |} ∈ set evs;
Says Kas A’ {|Crypt (shrK A’) {|Key AK’, Agent Tgs’, T |}, AT’|} ∈ set evs;

evs ∈ kerbV ]]
=⇒ A=A’ ∧ AK=AK’ ∧ Tgs=Tgs’ ∧ AT=AT’"

〈proof 〉

lemma Tgs_never_says_newer_timestamp:
" [[ (CT evs) ≤ T; Number T ∈ parts {X}; evs ∈ kerbV ]]
=⇒ ∀ A. Says Tgs A X /∈ set evs"

〈proof 〉
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lemma Tgs_never_says_current_timestamp:
" [[ (CT evs) = T; Number T ∈ parts {X}; evs ∈ kerbV ]]
=⇒ ∀ A. Says Tgs A X /∈ set evs"

〈proof 〉

lemma unique_timestamp_msg4:
" [[ Says Tgs A {|Crypt (shrK A) {|Key SK, Agent B, T |}, ST |} ∈ set evs;

Says Tgs A’ {|Crypt (shrK A’) {|Key SK’, Agent B’, T |}, ST’|} ∈ set evs;
evs ∈ kerbV ]]

=⇒ A=A’ ∧ SK=SK’ ∧ B=B’ ∧ ST=ST’"
〈proof 〉

end

9 The Original Otway-Rees Protocol
theory OtwayRees imports Public begin

From page 244 of Burrows, Abadi and Needham (1989). A Logic of Authenti-
cation. Proc. Royal Soc. 426
This is the original version, which encrypts Nonce NB.
inductive_set otway :: "event list set"

where
Nil: "[] ∈ otway"
— Initial trace is empty

| Fake: " [[evsf ∈ otway; X ∈ synth (analz (knows Spy evsf)) ]]
=⇒ Says Spy B X # evsf ∈ otway"

— The spy can say almost anything.
| Reception: " [[evsr ∈ otway; Says A B X ∈set evsr ]] =⇒ Gets B X # evsr
∈ otway"

— A message that has been sent can be received by the intended recipient.
| OR1: " [[evs1 ∈ otway; Nonce NA /∈ used evs1]]

=⇒ Says A B {|Nonce NA, Agent A, Agent B,
Crypt (shrK A) {|Nonce NA, Agent A, Agent B |} |}

# evs1 ∈ otway"
— Alice initiates a protocol run

| OR2: " [[evs2 ∈ otway; Nonce NB /∈ used evs2;
Gets B {|Nonce NA, Agent A, Agent B, X |} ∈ set evs2]]

=⇒ Says B Server
{|Nonce NA, Agent A, Agent B, X,

Crypt (shrK B)
{|Nonce NA, Nonce NB, Agent A, Agent B |}|}

# evs2 ∈ otway"
— Bob’s response to Alice’s message. Note that NB is encrypted.

| OR3: " [[evs3 ∈ otway; Key KAB /∈ used evs3;
Gets Server

{|Nonce NA, Agent A, Agent B,
Crypt (shrK A) {|Nonce NA, Agent A, Agent B |},
Crypt (shrK B) {|Nonce NA, Nonce NB, Agent A, Agent B |}|}

∈ set evs3]]
=⇒ Says Server B

{|Nonce NA,
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Crypt (shrK A) {|Nonce NA, Key KAB |},
Crypt (shrK B) {|Nonce NB, Key KAB |}|}

# evs3 ∈ otway"
— The Server receives Bob’s message and checks that the three NAs match. Then

he sends a new session key to Bob with a packet for forwarding to Alice
| OR4: " [[evs4 ∈ otway; B 6= Server;

Says B Server {|Nonce NA, Agent A, Agent B, X’,
Crypt (shrK B)

{|Nonce NA, Nonce NB, Agent A, Agent B |}|}
∈ set evs4;

Gets B {|Nonce NA, X, Crypt (shrK B) {|Nonce NB, Key K |}|}
∈ set evs4]]

=⇒ Says B A {|Nonce NA, X |} # evs4 ∈ otway"
— Bob receives the Server’s (?) message and compares the Nonces with those in the

message he previously sent the Server. Need B 6= Server because we allow messages
to self.
| Oops: " [[evso ∈ otway;

Says Server B {|Nonce NA, X, Crypt (shrK B) {|Nonce NB, Key K |}|}
∈ set evso ]]

=⇒ Notes Spy {|Nonce NA, Nonce NB, Key K |} # evso ∈ otway"
— This message models possible leaks of session keys. The nonces identify the

protocol run

declare Says_imp_analz_Spy [dest]
declare parts.Body [dest]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]

A "possibility property": there are traces that reach the end

lemma " [[B 6= Server; Key K /∈ used []]]
=⇒ ∃ evs ∈ otway.

Says B A {|Nonce NA, Crypt (shrK A) {|Nonce NA, Key K |}|}
∈ set evs"

〈proof 〉

lemma Gets_imp_Says [dest!]:
" [[Gets B X ∈ set evs; evs ∈ otway ]] =⇒ ∃ A. Says A B X ∈ set evs"

〈proof 〉

lemma OR2_analz_knows_Spy:
" [[Gets B {|N, Agent A, Agent B, X |} ∈ set evs; evs ∈ otway ]]
=⇒ X ∈ analz (knows Spy evs)"

〈proof 〉

lemma OR4_analz_knows_Spy:
" [[Gets B {|N, X, Crypt (shrK B) X’|} ∈ set evs; evs ∈ otway ]]
=⇒ X ∈ analz (knows Spy evs)"

〈proof 〉

lemmas OR2_parts_knows_Spy =
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OR2_analz_knows_Spy [THEN analz_into_parts]

Theorems of the form X /∈ parts (knows Spy evs) imply that NOBODY sends
messages containing X!

Spy never sees a good agent’s shared key!

lemma Spy_see_shrK [simp]:
"evs ∈ otway =⇒ (Key (shrK A) ∈ parts (knows Spy evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_analz_shrK [simp]:
"evs ∈ otway =⇒ (Key (shrK A) ∈ analz (knows Spy evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_see_shrK_D [dest!]:
" [[Key (shrK A) ∈ parts (knows Spy evs); evs ∈ otway ]] =⇒ A ∈ bad"

〈proof 〉

9.1 Towards Secrecy: Proofs Involving analz

Describes the form of K and NA when the Server sends this message. Also for
Oops case.

lemma Says_Server_message_form:
" [[Says Server B {|NA, X, Crypt (shrK B) {|NB, Key K |}|} ∈ set evs;

evs ∈ otway ]]
=⇒ K /∈ range shrK ∧ (∃ i. NA = Nonce i) ∧ (∃ j. NB = Nonce j)"

〈proof 〉

Session keys are not used to encrypt other session keys

The equality makes the induction hypothesis easier to apply

lemma analz_image_freshK [rule_format]:
"evs ∈ otway =⇒
∀ K KK. KK ⊆ -(range shrK) −→

(Key K ∈ analz (Key‘KK ∪ (knows Spy evs))) =
(K ∈ KK | Key K ∈ analz (knows Spy evs))"

〈proof 〉

lemma analz_insert_freshK:
" [[evs ∈ otway; KAB /∈ range shrK ]] =⇒

(Key K ∈ analz (insert (Key KAB) (knows Spy evs))) =
(K = KAB | Key K ∈ analz (knows Spy evs))"

〈proof 〉

The Key K uniquely identifies the Server’s message.

lemma unique_session_keys:
" [[Says Server B {|NA, X, Crypt (shrK B) {|NB, K |}|} ∈ set evs;

Says Server B’ {|NA’,X’,Crypt (shrK B’) {|NB’,K |}|} ∈ set evs;
evs ∈ otway ]] =⇒ X=X’ ∧ B=B’ ∧ NA=NA’ ∧ NB=NB’"

〈proof 〉
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9.2 Authenticity properties relating to NA
Only OR1 can have caused such a part of a message to appear.
lemma Crypt_imp_OR1 [rule_format]:
" [[A /∈ bad; evs ∈ otway ]]
=⇒ Crypt (shrK A) {|NA, Agent A, Agent B |} ∈ parts (knows Spy evs) −→

Says A B {|NA, Agent A, Agent B,
Crypt (shrK A) {|NA, Agent A, Agent B |}|}

∈ set evs"
〈proof 〉

lemma Crypt_imp_OR1_Gets:
" [[Gets B {|NA, Agent A, Agent B,

Crypt (shrK A) {|NA, Agent A, Agent B |}|} ∈ set evs;
A /∈ bad; evs ∈ otway ]]

=⇒ Says A B {|NA, Agent A, Agent B,
Crypt (shrK A) {|NA, Agent A, Agent B |}|}

∈ set evs"
〈proof 〉

The Nonce NA uniquely identifies A’s message
lemma unique_NA:

" [[Crypt (shrK A) {|NA, Agent A, Agent B |} ∈ parts (knows Spy evs);
Crypt (shrK A) {|NA, Agent A, Agent C |} ∈ parts (knows Spy evs);
evs ∈ otway; A /∈ bad ]]

=⇒ B = C"
〈proof 〉

It is impossible to re-use a nonce in both OR1 and OR2. This holds because OR2
encrypts Nonce NB. It prevents the attack that can occur in the over-simplified
version of this protocol: see OtwayRees_Bad.
lemma no_nonce_OR1_OR2:

" [[Crypt (shrK A) {|NA, Agent A, Agent B |} ∈ parts (knows Spy evs);
A /∈ bad; evs ∈ otway ]]

=⇒ Crypt (shrK A) {|NA’, NA, Agent A’, Agent A |} /∈ parts (knows Spy evs)"
〈proof 〉

Crucial property: If the encrypted message appears, and A has used NA to start
a run, then it originated with the Server!
lemma NA_Crypt_imp_Server_msg [rule_format]:

" [[A /∈ bad; evs ∈ otway ]]
=⇒ Says A B {|NA, Agent A, Agent B,

Crypt (shrK A) {|NA, Agent A, Agent B |}|} ∈ set evs −→
Crypt (shrK A) {|NA, Key K |} ∈ parts (knows Spy evs)
−→ (∃ NB. Says Server B

{|NA,
Crypt (shrK A) {|NA, Key K |},
Crypt (shrK B) {|NB, Key K |}|} ∈ set evs)"

〈proof 〉

Corollary: if A receives B’s OR4 message and the nonce NA agrees then the key
really did come from the Server! CANNOT prove this of the bad form of this
protocol, even though we can prove Spy_not_see_encrypted_key
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lemma A_trusts_OR4:
" [[Says A B {|NA, Agent A, Agent B,

Crypt (shrK A) {|NA, Agent A, Agent B |}|} ∈ set evs;
Says B’ A {|NA, Crypt (shrK A) {|NA, Key K |}|} ∈ set evs;

A /∈ bad; evs ∈ otway ]]
=⇒ ∃ NB. Says Server B

{|NA,
Crypt (shrK A) {|NA, Key K |},
Crypt (shrK B) {|NB, Key K |}|}
∈ set evs"

〈proof 〉

Crucial secrecy property: Spy does not see the keys sent in msg OR3 Does not
in itself guarantee security: an attack could violate the premises, e.g. by having
A = Spy

lemma secrecy_lemma:
" [[A /∈ bad; B /∈ bad; evs ∈ otway ]]
=⇒ Says Server B

{|NA, Crypt (shrK A) {|NA, Key K |},
Crypt (shrK B) {|NB, Key K |}|} ∈ set evs −→

Notes Spy {|NA, NB, Key K |} /∈ set evs −→
Key K /∈ analz (knows Spy evs)"

〈proof 〉

theorem Spy_not_see_encrypted_key:
" [[Says Server B

{|NA, Crypt (shrK A) {|NA, Key K |},
Crypt (shrK B) {|NB, Key K |}|} ∈ set evs;

Notes Spy {|NA, NB, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ otway ]]

=⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉

This form is an immediate consequence of the previous result. It is similar to
the assertions established by other methods. It is equivalent to the previous
result in that the Spy already has analz and synth at his disposal. However,
the conclusion Key K /∈ knows Spy evs appears not to be inductive: all the cases
other than Fake are trivial, while Fake requires Key K /∈ analz (knows Spy evs).
lemma Spy_not_know_encrypted_key:

" [[Says Server B
{|NA, Crypt (shrK A) {|NA, Key K |},

Crypt (shrK B) {|NB, Key K |}|} ∈ set evs;
Notes Spy {|NA, NB, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ otway ]]

=⇒ Key K /∈ knows Spy evs"
〈proof 〉

A’s guarantee. The Oops premise quantifies over NB because A cannot know
what it is.
lemma A_gets_good_key:

" [[Says A B {|NA, Agent A, Agent B,
Crypt (shrK A) {|NA, Agent A, Agent B |}|} ∈ set evs;

Says B’ A {|NA, Crypt (shrK A) {|NA, Key K |}|} ∈ set evs;
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∀ NB. Notes Spy {|NA, NB, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ otway ]]

=⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉

9.3 Authenticity properties relating to NB
Only OR2 can have caused such a part of a message to appear. We do not know
anything about X: it does NOT have to have the right form.

lemma Crypt_imp_OR2:
" [[Crypt (shrK B) {|NA, NB, Agent A, Agent B |} ∈ parts (knows Spy evs);

B /∈ bad; evs ∈ otway ]]
=⇒ ∃ X. Says B Server

{|NA, Agent A, Agent B, X,
Crypt (shrK B) {|NA, NB, Agent A, Agent B |}|}

∈ set evs"
〈proof 〉

The Nonce NB uniquely identifies B’s message

lemma unique_NB:
" [[Crypt (shrK B) {|NA, NB, Agent A, Agent B |} ∈ parts(knows Spy evs);

Crypt (shrK B) {|NC, NB, Agent C, Agent B |} ∈ parts(knows Spy evs);
evs ∈ otway; B /∈ bad ]]

=⇒ NC = NA ∧ C = A"
〈proof 〉

If the encrypted message appears, and B has used Nonce NB, then it originated
with the Server! Quite messy proof.

lemma NB_Crypt_imp_Server_msg [rule_format]:
" [[B /∈ bad; evs ∈ otway ]]
=⇒ Crypt (shrK B) {|NB, Key K |} ∈ parts (knows Spy evs)

−→ (∀ X’. Says B Server
{|NA, Agent A, Agent B, X’,

Crypt (shrK B) {|NA, NB, Agent A, Agent B |}|}
∈ set evs
−→ Says Server B

{|NA, Crypt (shrK A) {|NA, Key K |},
Crypt (shrK B) {|NB, Key K |}|}

∈ set evs)"
〈proof 〉

Guarantee for B: if it gets a message with matching NB then the Server has
sent the correct message.

theorem B_trusts_OR3:
" [[Says B Server {|NA, Agent A, Agent B, X’,

Crypt (shrK B) {|NA, NB, Agent A, Agent B |}|}
∈ set evs;

Gets B {|NA, X, Crypt (shrK B) {|NB, Key K |}|} ∈ set evs;
B /∈ bad; evs ∈ otway ]]

=⇒ Says Server B
{|NA,

Crypt (shrK A) {|NA, Key K |},
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Crypt (shrK B) {|NB, Key K |}|}
∈ set evs"

〈proof 〉

The obvious combination of B_trusts_OR3 with Spy_not_see_encrypted_key

lemma B_gets_good_key:
" [[Says B Server {|NA, Agent A, Agent B, X’,

Crypt (shrK B) {|NA, NB, Agent A, Agent B |}|}
∈ set evs;

Gets B {|NA, X, Crypt (shrK B) {|NB, Key K |}|} ∈ set evs;
Notes Spy {|NA, NB, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ otway ]]

=⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉

lemma OR3_imp_OR2:
" [[Says Server B

{|NA, Crypt (shrK A) {|NA, Key K |},
Crypt (shrK B) {|NB, Key K |}|} ∈ set evs;

B /∈ bad; evs ∈ otway ]]
=⇒ ∃ X. Says B Server {|NA, Agent A, Agent B, X,

Crypt (shrK B) {|NA, NB, Agent A, Agent B |}|}
∈ set evs"

〈proof 〉

After getting and checking OR4, agent A can trust that B has been active. We
could probably prove that X has the expected form, but that is not strictly
necessary for authentication.
theorem A_auths_B:

" [[Says B’ A {|NA, Crypt (shrK A) {|NA, Key K |}|} ∈ set evs;
Says A B {|NA, Agent A, Agent B,

Crypt (shrK A) {|NA, Agent A, Agent B |}|} ∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ otway ]]

=⇒ ∃ NB X. Says B Server {|NA, Agent A, Agent B, X,
Crypt (shrK B) {|NA, NB, Agent A, Agent B |}|}

∈ set evs"
〈proof 〉

end

10 The Otway-Rees Protocol as Modified by Abadi
and Needham

theory OtwayRees_AN imports Public begin

This simplified version has minimal encryption and explicit messages.
Note that the formalization does not even assume that nonces are fresh. This
is because the protocol does not rely on uniqueness of nonces for security, only
for freshness, and the proof script does not prove freshness properties.
From page 11 of Abadi and Needham (1996). Prudent Engineering Practice for
Cryptographic Protocols. IEEE Trans. SE 22 (1)
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inductive_set otway :: "event list set"
where
Nil: — The empty trace

"[] ∈ otway"

| Fake: — The Spy may say anything he can say. The sender field is correct, but
agents don’t use that information.

" [[evsf ∈ otway; X ∈ synth (analz (knows Spy evsf))]]
=⇒ Says Spy B X # evsf ∈ otway"

| Reception: — A message that has been sent can be received by the intended
recipient.

" [[evsr ∈ otway; Says A B X ∈set evsr ]]
=⇒ Gets B X # evsr ∈ otway"

| OR1: — Alice initiates a protocol run
"evs1 ∈ otway
=⇒ Says A B {|Agent A, Agent B, Nonce NA |} # evs1 ∈ otway"

| OR2: — Bob’s response to Alice’s message.
" [[evs2 ∈ otway;

Gets B {|Agent A, Agent B, Nonce NA |} ∈set evs2]]
=⇒ Says B Server {|Agent A, Agent B, Nonce NA, Nonce NB |}

# evs2 ∈ otway"

| OR3: — The Server receives Bob’s message. Then he sends a new session key to
Bob with a packet for forwarding to Alice.

" [[evs3 ∈ otway; Key KAB /∈ used evs3;
Gets Server {|Agent A, Agent B, Nonce NA, Nonce NB |}
∈set evs3]]

=⇒ Says Server B
{|Crypt (shrK A) {|Nonce NA, Agent A, Agent B, Key KAB |},

Crypt (shrK B) {|Nonce NB, Agent A, Agent B, Key KAB |}|}
# evs3 ∈ otway"

| OR4: — Bob receives the Server’s (?) message and compares the Nonces with
those in the message he previously sent the Server. Need B 6= Server because we
allow messages to self.

" [[evs4 ∈ otway; B 6= Server;
Says B Server {|Agent A, Agent B, Nonce NA, Nonce NB |} ∈set evs4;
Gets B {|X, Crypt(shrK B){|Nonce NB,Agent A,Agent B,Key K |}|}
∈set evs4]]

=⇒ Says B A X # evs4 ∈ otway"

| Oops: — This message models possible leaks of session keys. The nonces identify
the protocol run.

" [[evso ∈ otway;
Says Server B

{|Crypt (shrK A) {|Nonce NA, Agent A, Agent B, Key K |},
Crypt (shrK B) {|Nonce NB, Agent A, Agent B, Key K |}|}

∈set evso ]]
=⇒ Notes Spy {|Nonce NA, Nonce NB, Key K |} # evso ∈ otway"
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declare Says_imp_knows_Spy [THEN analz.Inj, dest]
declare parts.Body [dest]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]

A "possibility property": there are traces that reach the end

lemma " [[B 6= Server; Key K /∈ used []]]
=⇒ ∃ evs ∈ otway.

Says B A (Crypt (shrK A) {|Nonce NA, Agent A, Agent B, Key K |})
∈ set evs"

〈proof 〉

lemma Gets_imp_Says [dest!]:
" [[Gets B X ∈ set evs; evs ∈ otway ]] =⇒ ∃ A. Says A B X ∈ set evs"

〈proof 〉

For reasoning about the encrypted portion of messages

lemma OR4_analz_knows_Spy:
" [[Gets B {|X, Crypt(shrK B) X’|} ∈ set evs; evs ∈ otway ]]
=⇒ X ∈ analz (knows Spy evs)"

〈proof 〉

Theorems of the form X /∈ parts (knows Spy evs) imply that NOBODY sends
messages containing X!

Spy never sees a good agent’s shared key!

lemma Spy_see_shrK [simp]:
"evs ∈ otway =⇒ (Key (shrK A) ∈ parts (knows Spy evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_analz_shrK [simp]:
"evs ∈ otway =⇒ (Key (shrK A) ∈ analz (knows Spy evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_see_shrK_D [dest!]:
" [[Key (shrK A) ∈ parts (knows Spy evs); evs ∈ otway ]] =⇒ A ∈ bad"

〈proof 〉

10.1 Proofs involving analz
Describes the form of K and NA when the Server sends this message.

lemma Says_Server_message_form:
" [[Says Server B

{|Crypt (shrK A) {|NA, Agent A, Agent B, Key K |},
Crypt (shrK B) {|NB, Agent A, Agent B, Key K |}|}

∈ set evs;
evs ∈ otway ]]

=⇒ K /∈ range shrK ∧ (∃ i. NA = Nonce i) ∧ (∃ j. NB = Nonce j)"
〈proof 〉

Session keys are not used to encrypt other session keys



13410 THE OTWAY-REES PROTOCOL AS MODIFIED BY ABADI AND NEEDHAM

The equality makes the induction hypothesis easier to apply

lemma analz_image_freshK [rule_format]:
"evs ∈ otway =⇒
∀ K KK. KK ⊆ -(range shrK) −→

(Key K ∈ analz (Key‘KK ∪ (knows Spy evs))) =
(K ∈ KK | Key K ∈ analz (knows Spy evs))"

〈proof 〉

lemma analz_insert_freshK:
" [[evs ∈ otway; KAB /∈ range shrK ]] =⇒

(Key K ∈ analz (insert (Key KAB) (knows Spy evs))) =
(K = KAB | Key K ∈ analz (knows Spy evs))"

〈proof 〉

The Key K uniquely identifies the Server’s message.

lemma unique_session_keys:
" [[Says Server B

{|Crypt (shrK A) {|NA, Agent A, Agent B, K |},
Crypt (shrK B) {|NB, Agent A, Agent B, K |}|}

∈ set evs;
Says Server B’
{|Crypt (shrK A’) {|NA’, Agent A’, Agent B’, K |},

Crypt (shrK B’) {|NB’, Agent A’, Agent B’, K |}|}
∈ set evs;

evs ∈ otway ]]
=⇒ A=A’ ∧ B=B’ ∧ NA=NA’ ∧ NB=NB’"

〈proof 〉

10.2 Authenticity properties relating to NA
If the encrypted message appears then it originated with the Server!

lemma NA_Crypt_imp_Server_msg [rule_format]:
" [[A /∈ bad; A 6= B; evs ∈ otway ]]
=⇒ Crypt (shrK A) {|NA, Agent A, Agent B, Key K |} ∈ parts (knows Spy evs)
−→ (∃ NB. Says Server B

{|Crypt (shrK A) {|NA, Agent A, Agent B, Key K |},
Crypt (shrK B) {|NB, Agent A, Agent B, Key K |}|}

∈ set evs)"
〈proof 〉

Corollary: if A receives B’s OR4 message then it originated with the Server.
Freshness may be inferred from nonce NA.

lemma A_trusts_OR4:
" [[Says B’ A (Crypt (shrK A) {|NA, Agent A, Agent B, Key K |}) ∈ set evs;

A /∈ bad; A 6= B; evs ∈ otway ]]
=⇒ ∃ NB. Says Server B

{|Crypt (shrK A) {|NA, Agent A, Agent B, Key K |},
Crypt (shrK B) {|NB, Agent A, Agent B, Key K |}|}

∈ set evs"
〈proof 〉

Crucial secrecy property: Spy does not see the keys sent in msg OR3 Does not



10.3 Authenticity properties relating to NB 135

in itself guarantee security: an attack could violate the premises, e.g. by having
A = Spy

lemma secrecy_lemma:
" [[A /∈ bad; B /∈ bad; evs ∈ otway ]]
=⇒ Says Server B

{|Crypt (shrK A) {|NA, Agent A, Agent B, Key K |},
Crypt (shrK B) {|NB, Agent A, Agent B, Key K |}|}

∈ set evs −→
Notes Spy {|NA, NB, Key K |} /∈ set evs −→
Key K /∈ analz (knows Spy evs)"

〈proof 〉

lemma Spy_not_see_encrypted_key:
" [[Says Server B

{|Crypt (shrK A) {|NA, Agent A, Agent B, Key K |},
Crypt (shrK B) {|NB, Agent A, Agent B, Key K |}|}

∈ set evs;
Notes Spy {|NA, NB, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ otway ]]

=⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉

A’s guarantee. The Oops premise quantifies over NB because A cannot know
what it is.
lemma A_gets_good_key:

" [[Says B’ A (Crypt (shrK A) {|NA, Agent A, Agent B, Key K |}) ∈ set evs;
∀ NB. Notes Spy {|NA, NB, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; A 6= B; evs ∈ otway ]]

=⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉

10.3 Authenticity properties relating to NB
If the encrypted message appears then it originated with the Server!
lemma NB_Crypt_imp_Server_msg [rule_format]:
" [[B /∈ bad; A 6= B; evs ∈ otway ]]
=⇒ Crypt (shrK B) {|NB, Agent A, Agent B, Key K |} ∈ parts (knows Spy evs)

−→ (∃ NA. Says Server B
{|Crypt (shrK A) {|NA, Agent A, Agent B, Key K |},

Crypt (shrK B) {|NB, Agent A, Agent B, Key K |}|}
∈ set evs)"

〈proof 〉

Guarantee for B: if it gets a well-formed certificate then the Server has sent the
correct message in round 3.
lemma B_trusts_OR3:

" [[Says S B {|X, Crypt (shrK B) {|NB, Agent A, Agent B, Key K |}|}
∈ set evs;

B /∈ bad; A 6= B; evs ∈ otway ]]
=⇒ ∃ NA. Says Server B

{|Crypt (shrK A) {|NA, Agent A, Agent B, Key K |},
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Crypt (shrK B) {|NB, Agent A, Agent B, Key K |}|}
∈ set evs"

〈proof 〉

The obvious combination of B_trusts_OR3 with Spy_not_see_encrypted_key

lemma B_gets_good_key:
" [[Gets B {|X, Crypt (shrK B) {|NB, Agent A, Agent B, Key K |}|}

∈ set evs;
∀ NA. Notes Spy {|NA, NB, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; A 6= B; evs ∈ otway ]]

=⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉

end

11 The Otway-Rees Protocol: The Faulty BAN
Version

theory OtwayRees_Bad imports Public begin

The FAULTY version omitting encryption of Nonce NB, as suggested on page
247 of Burrows, Abadi and Needham (1988). A Logic of Authentication. Proc.
Royal Soc. 426
This file illustrates the consequences of such errors. We can still prove impressive-
looking properties such as Spy_not_see_encrypted_key, yet the protocol is open
to a middleperson attack. Attempting to prove some key lemmas indicates the
possibility of this attack.
inductive_set otway :: "event list set"

where
Nil: — The empty trace

"[] ∈ otway"

| Fake: — The Spy may say anything he can say. The sender field is correct, but
agents don’t use that information.

" [[evsf ∈ otway; X ∈ synth (analz (knows Spy evsf))]]
=⇒ Says Spy B X # evsf ∈ otway"

| Reception: — A message that has been sent can be received by the intended
recipient.

" [[evsr ∈ otway; Says A B X ∈set evsr ]]
=⇒ Gets B X # evsr ∈ otway"

| OR1: — Alice initiates a protocol run
" [[evs1 ∈ otway; Nonce NA /∈ used evs1]]
=⇒ Says A B {|Nonce NA, Agent A, Agent B,

Crypt (shrK A) {|Nonce NA, Agent A, Agent B |}|}
# evs1 ∈ otway"

| OR2: — Bob’s response to Alice’s message. This variant of the protocol does
NOT encrypt NB.

" [[evs2 ∈ otway; Nonce NB /∈ used evs2;
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Gets B {|Nonce NA, Agent A, Agent B, X |} ∈ set evs2]]
=⇒ Says B Server

{|Nonce NA, Agent A, Agent B, X, Nonce NB,
Crypt (shrK B) {|Nonce NA, Agent A, Agent B |}|}

# evs2 ∈ otway"

| OR3: — The Server receives Bob’s message and checks that the three NAs match.
Then he sends a new session key to Bob with a packet for forwarding to Alice.

" [[evs3 ∈ otway; Key KAB /∈ used evs3;
Gets Server

{|Nonce NA, Agent A, Agent B,
Crypt (shrK A) {|Nonce NA, Agent A, Agent B |},
Nonce NB,
Crypt (shrK B) {|Nonce NA, Agent A, Agent B |}|}

∈ set evs3]]
=⇒ Says Server B

{|Nonce NA,
Crypt (shrK A) {|Nonce NA, Key KAB |},
Crypt (shrK B) {|Nonce NB, Key KAB |}|}

# evs3 ∈ otway"

| OR4: — Bob receives the Server’s (?) message and compares the Nonces with
those in the message he previously sent the Server. Need B 6= Server because we
allow messages to self.

" [[evs4 ∈ otway; B 6= Server;
Says B Server {|Nonce NA, Agent A, Agent B, X’, Nonce NB,

Crypt (shrK B) {|Nonce NA, Agent A, Agent B |}|}
∈ set evs4;

Gets B {|Nonce NA, X, Crypt (shrK B) {|Nonce NB, Key K |}|}
∈ set evs4]]

=⇒ Says B A {|Nonce NA, X |} # evs4 ∈ otway"

| Oops: — This message models possible leaks of session keys. The nonces identify
the protocol run.

" [[evso ∈ otway;
Says Server B {|Nonce NA, X, Crypt (shrK B) {|Nonce NB, Key K |}|}
∈ set evso ]]

=⇒ Notes Spy {|Nonce NA, Nonce NB, Key K |} # evso ∈ otway"

declare Says_imp_knows_Spy [THEN analz.Inj, dest]
declare parts.Body [dest]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]

A "possibility property": there are traces that reach the end

lemma " [[B 6= Server; Key K /∈ used []]]
=⇒ ∃ NA. ∃ evs ∈ otway.

Says B A {|Nonce NA, Crypt (shrK A) {|Nonce NA, Key K |}|}
∈ set evs"

〈proof 〉

lemma Gets_imp_Says [dest!]:
" [[Gets B X ∈ set evs; evs ∈ otway ]] =⇒ ∃ A. Says A B X ∈ set evs"
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〈proof 〉

11.1 For reasoning about the encrypted portion of mes-
sages

lemma OR2_analz_knows_Spy:
" [[Gets B {|N, Agent A, Agent B, X |} ∈ set evs; evs ∈ otway ]]
=⇒ X ∈ analz (knows Spy evs)"

〈proof 〉

lemma OR4_analz_knows_Spy:
" [[Gets B {|N, X, Crypt (shrK B) X’|} ∈ set evs; evs ∈ otway ]]
=⇒ X ∈ analz (knows Spy evs)"

〈proof 〉

lemma Oops_parts_knows_Spy:
"Says Server B {|NA, X, Crypt K’ {|NB,K |}|} ∈ set evs
=⇒ K ∈ parts (knows Spy evs)"

〈proof 〉

Forwarding lemma: see comments in OtwayRees.thy

lemmas OR2_parts_knows_Spy =
OR2_analz_knows_Spy [THEN analz_into_parts]

Theorems of the form X /∈ parts (knows Spy evs) imply that NOBODY sends
messages containing X!

Spy never sees a good agent’s shared key!

lemma Spy_see_shrK [simp]:
"evs ∈ otway =⇒ (Key (shrK A) ∈ parts (knows Spy evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_analz_shrK [simp]:
"evs ∈ otway =⇒ (Key (shrK A) ∈ analz (knows Spy evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_see_shrK_D [dest!]:
" [[Key (shrK A) ∈ parts (knows Spy evs); evs ∈ otway ]] =⇒ A ∈ bad"

〈proof 〉

11.2 Proofs involving analz
Describes the form of K and NA when the Server sends this message. Also for
Oops case.

lemma Says_Server_message_form:
" [[Says Server B {|NA, X, Crypt (shrK B) {|NB, Key K |}|} ∈ set evs;

evs ∈ otway ]]
=⇒ K /∈ range shrK ∧ (∃ i. NA = Nonce i) ∧ (∃ j. NB = Nonce j)"

〈proof 〉

Session keys are not used to encrypt other session keys
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The equality makes the induction hypothesis easier to apply
lemma analz_image_freshK [rule_format]:
"evs ∈ otway =⇒
∀ K KK. KK ⊆ -(range shrK) −→

(Key K ∈ analz (Key‘KK ∪ (knows Spy evs))) =
(K ∈ KK | Key K ∈ analz (knows Spy evs))"

〈proof 〉

lemma analz_insert_freshK:
" [[evs ∈ otway; KAB /∈ range shrK ]] =⇒

(Key K ∈ analz (insert (Key KAB) (knows Spy evs))) =
(K = KAB | Key K ∈ analz (knows Spy evs))"

〈proof 〉

The Key K uniquely identifies the Server’s message.
lemma unique_session_keys:

" [[Says Server B {|NA, X, Crypt (shrK B) {|NB, K |}|} ∈ set evs;
Says Server B’ {|NA’,X’,Crypt (shrK B’) {|NB’,K |}|} ∈ set evs;
evs ∈ otway ]] =⇒ X=X’ ∧ B=B’ ∧ NA=NA’ ∧ NB=NB’"

〈proof 〉

Crucial secrecy property: Spy does not see the keys sent in msg OR3 Does not
in itself guarantee security: an attack could violate the premises, e.g. by having
A = Spy

lemma secrecy_lemma:
" [[A /∈ bad; B /∈ bad; evs ∈ otway ]]
=⇒ Says Server B

{|NA, Crypt (shrK A) {|NA, Key K |},
Crypt (shrK B) {|NB, Key K |}|} ∈ set evs −→

Notes Spy {|NA, NB, Key K |} /∈ set evs −→
Key K /∈ analz (knows Spy evs)"

〈proof 〉

lemma Spy_not_see_encrypted_key:
" [[Says Server B

{|NA, Crypt (shrK A) {|NA, Key K |},
Crypt (shrK B) {|NB, Key K |}|} ∈ set evs;

Notes Spy {|NA, NB, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ otway ]]

=⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉

11.3 Attempting to prove stronger properties
Only OR1 can have caused such a part of a message to appear. The premise A
6= B prevents OR2’s similar-looking cryptogram from being picked up. Original
Otway-Rees doesn’t need it.
lemma Crypt_imp_OR1 [rule_format]:

" [[A /∈ bad; A 6= B; evs ∈ otway ]]
=⇒ Crypt (shrK A) {|NA, Agent A, Agent B |} ∈ parts (knows Spy evs) −→

Says A B {|NA, Agent A, Agent B,
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Crypt (shrK A) {|NA, Agent A, Agent B |}|} ∈ set evs"
〈proof 〉

Crucial property: If the encrypted message appears, and A has used NA to
start a run, then it originated with the Server! The premise A 6= B allows use
of Crypt_imp_OR1

Only it is FALSE. Somebody could make a fake message to Server substituting
some other nonce NA’ for NB.

lemma " [[A /∈ bad; A 6= B; evs ∈ otway ]]
=⇒ Crypt (shrK A) {|NA, Key K |} ∈ parts (knows Spy evs) −→

Says A B {|NA, Agent A, Agent B,
Crypt (shrK A) {|NA, Agent A, Agent B |}|}

∈ set evs −→
(∃ B NB. Says Server B

{|NA,
Crypt (shrK A) {|NA, Key K |},
Crypt (shrK B) {|NB, Key K |}|} ∈ set evs)"

〈proof 〉

end

12 Bella’s version of the Otway-Rees protocol
theory OtwayReesBella imports Public begin

Bella’s modifications to a version of the Otway-Rees protocol taken from the
BAN paper only concern message 7. The updated protocol makes the goal of key
distribution of the session key available to A. Investigating the principle of Goal
Availability undermines the BAN claim about the original protocol, that "this
protocol does not make use of Kab as an encryption key, so neither principal
can know whether the key is known to the other". The updated protocol makes
no use of the session key to encrypt but informs A that B knows it.

inductive_set orb :: "event list set"
where

Nil: "[]∈ orb"

| Fake: " [[evsa∈ orb; X∈ synth (analz (knows Spy evsa))]]
=⇒ Says Spy B X # evsa ∈ orb"

| Reception: " [[evsr∈ orb; Says A B X ∈ set evsr ]]
=⇒ Gets B X # evsr ∈ orb"

| OR1: " [[evs1∈ orb; Nonce NA /∈ used evs1]]
=⇒ Says A B {|Nonce M, Agent A, Agent B,

Crypt (shrK A) {|Nonce NA, Nonce M, Agent A, Agent B |}|}
# evs1 ∈ orb"

| OR2: " [[evs2∈ orb; Nonce NB /∈ used evs2;
Gets B {|Nonce M, Agent A, Agent B, X |} ∈ set evs2]]

=⇒ Says B Server
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{|Nonce M, Agent A, Agent B, X,
Crypt (shrK B) {|Nonce NB, Nonce M, Nonce M, Agent A, Agent B |}|}

# evs2 ∈ orb"

| OR3: " [[evs3∈ orb; Key KAB /∈ used evs3;
Gets Server
{|Nonce M, Agent A, Agent B,

Crypt (shrK A) {|Nonce NA, Nonce M, Agent A, Agent B |},
Crypt (shrK B) {|Nonce NB, Nonce M, Nonce M, Agent A, Agent

B |}|}
∈ set evs3]]

=⇒ Says Server B {|Nonce M,
Crypt (shrK B) {|Crypt (shrK A) {|Nonce NA, Key KAB |},

Nonce NB, Key KAB |}|}
# evs3 ∈ orb"

| OR4: " [[evs4∈ orb; B 6= Server; ∀ p q. X 6= {|p, q |};
Says B Server {|Nonce M, Agent A, Agent B, X’,

Crypt (shrK B) {|Nonce NB, Nonce M, Nonce M, Agent A, Agent
B |}|}

∈ set evs4;
Gets B {|Nonce M, Crypt (shrK B) {|X, Nonce NB, Key KAB |}|}
∈ set evs4]]

=⇒ Says B A {|Nonce M, X |} # evs4 ∈ orb"

| Oops: " [[evso∈ orb;
Says Server B {|Nonce M,

Crypt (shrK B) {|Crypt (shrK A) {|Nonce NA, Key KAB |},
Nonce NB, Key KAB |}|}

∈ set evso ]]
=⇒ Notes Spy {|Agent A, Agent B, Nonce NA, Nonce NB, Key KAB |} # evso

∈ orb"

declare knows_Spy_partsEs [elim]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]

Fragile proof, with backtracking in the possibility call.

lemma possibility_thm: " [[A 6= Server; B 6= Server; Key K /∈ used[]]]
=⇒ ∃ evs ∈ orb.

Says B A {|Nonce M, Crypt (shrK A) {|Nonce Na, Key K |}|} ∈ set evs"
〈proof 〉

lemma Gets_imp_Says :
" [[Gets B X ∈ set evs; evs ∈ orb ]] =⇒ ∃ A. Says A B X ∈ set evs"

〈proof 〉

lemma Gets_imp_knows_Spy:
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" [[Gets B X ∈ set evs; evs ∈ orb ]] =⇒ X ∈ knows Spy evs"
〈proof 〉

declare Gets_imp_knows_Spy [THEN parts.Inj, dest]

lemma Gets_imp_knows:
" [[Gets B X ∈ set evs; evs ∈ orb ]] =⇒ X ∈ knows B evs"

〈proof 〉

lemma OR2_analz_knows_Spy:
" [[Gets B {|Nonce M, Agent A, Agent B, X |} ∈ set evs; evs ∈ orb ]]
=⇒ X ∈ analz (knows Spy evs)"

〈proof 〉

lemma OR4_parts_knows_Spy:
" [[Gets B {|Nonce M, Crypt (shrK B) {|X, Nonce Nb, Key Kab |}|} ∈ set evs;

evs ∈ orb ]] =⇒ X ∈ parts (knows Spy evs)"
〈proof 〉

lemma Oops_parts_knows_Spy:
"Says Server B {|Nonce M, Crypt K’ {|X, Nonce Nb, K |}|} ∈ set evs
=⇒ K ∈ parts (knows Spy evs)"

〈proof 〉

lemmas OR2_parts_knows_Spy =
OR2_analz_knows_Spy [THEN analz_into_parts]

〈ML〉

lemma Spy_see_shrK [simp]:
"evs ∈ orb =⇒ (Key (shrK A) ∈ parts (knows Spy evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_analz_shrK [simp]:
"evs ∈ orb =⇒ (Key (shrK A) ∈ analz (knows Spy evs)) = (A ∈ bad)"
〈proof 〉

lemma Spy_see_shrK_D [dest!]:
" [[Key (shrK A) ∈ parts (knows Spy evs); evs ∈ orb ]] =⇒ A ∈ bad"

〈proof 〉

lemma new_keys_not_used [simp]:
" [[Key K /∈ used evs; K ∈ symKeys; evs ∈ orb ]] =⇒ K /∈ keysFor (parts (knows

Spy evs))"
〈proof 〉

12.1 Proofs involving analz

Describes the form of K and NA when the Server sends this message. Also for
Oops case.

lemma Says_Server_message_form:
" [[Says Server B {|Nonce M, Crypt (shrK B) {|X, Nonce Nb, Key K |}|} ∈ set evs;
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evs ∈ orb ]]
=⇒ K /∈ range shrK ∧ (∃ A Na. X=(Crypt (shrK A) {|Nonce Na, Key K |}))"
〈proof 〉

lemma Says_Server_imp_Gets:
" [[Says Server B {|Nonce M, Crypt (shrK B) {|Crypt (shrK A) {|Nonce Na, Key K |},

Nonce Nb, Key K |}|} ∈ set evs;
evs ∈ orb ]]

=⇒ Gets Server {|Nonce M, Agent A, Agent B,
Crypt (shrK A) {|Nonce Na, Nonce M, Agent A, Agent B |},

Crypt (shrK B) {|Nonce Nb, Nonce M, Nonce M, Agent A, Agent
B |}|}

∈ set evs"
〈proof 〉

lemma A_trusts_OR1:
" [[Crypt (shrK A) {|Nonce Na, Nonce M, Agent A, Agent B |} ∈ parts (knows Spy
evs);

A /∈ bad; evs ∈ orb ]]
=⇒ Says A B {|Nonce M, Agent A, Agent B, Crypt (shrK A) {|Nonce Na, Nonce

M, Agent A, Agent B |}|} ∈ set evs"
〈proof 〉

lemma B_trusts_OR2:
" [[Crypt (shrK B) {|Nonce Nb, Nonce M, Nonce M, Agent A, Agent B |}

∈ parts (knows Spy evs); B /∈ bad; evs ∈ orb ]]
=⇒ (∃ X. Says B Server {|Nonce M, Agent A, Agent B, X,

Crypt (shrK B) {|Nonce Nb, Nonce M, Nonce M, Agent A, Agent B |}|}

∈ set evs)"
〈proof 〉

lemma B_trusts_OR3:
" [[Crypt (shrK B) {|X, Nonce Nb, Key K |} ∈ parts (knows Spy evs);

B /∈ bad; evs ∈ orb ]]
=⇒ ∃ M. Says Server B {|Nonce M, Crypt (shrK B) {|X, Nonce Nb, Key K |}|}

∈ set evs"
〈proof 〉

lemma Gets_Server_message_form:
" [[Gets B {|Nonce M, Crypt (shrK B) {|X, Nonce Nb, Key K |}|} ∈ set evs;

evs ∈ orb ]]
=⇒ (K /∈ range shrK ∧ (∃ A Na. X = (Crypt (shrK A) {|Nonce Na, Key K |})))

| X ∈ analz (knows Spy evs)"
〈proof 〉

lemma unique_Na: " [[Says A B {|Nonce M, Agent A, Agent B, Crypt (shrK A) {|Nonce
Na, Nonce M, Agent A, Agent B |}|} ∈ set evs;

Says A B’ {|Nonce M’, Agent A, Agent B’, Crypt (shrK A) {|Nonce Na,
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Nonce M’, Agent A, Agent B’|}|} ∈ set evs;
A /∈ bad; evs ∈ orb ]] =⇒ B=B’ ∧ M=M’"

〈proof 〉

lemma unique_Nb: " [[Says B Server {|Nonce M, Agent A, Agent B, X, Crypt (shrK
B) {|Nonce Nb, Nonce M, Nonce M, Agent A, Agent B |}|} ∈ set evs;

Says B Server {|Nonce M’, Agent A’, Agent B, X’, Crypt (shrK B) {|Nonce
Nb,Nonce M’, Nonce M’, Agent A’, Agent B |}|} ∈ set evs;

B /∈ bad; evs ∈ orb ]] =⇒ M=M’ ∧ A=A’ ∧ X=X’"
〈proof 〉

lemma analz_image_freshCryptK_lemma:
"(Crypt K X ∈ analz (Key‘nE ∪ H)) −→ (Crypt K X ∈ analz H) =⇒

(Crypt K X ∈ analz (Key‘nE ∪ H)) = (Crypt K X ∈ analz H)"
〈proof 〉

〈ML〉

lemma analz_image_freshCryptK [rule_format]:
"evs ∈ orb =⇒

Key K /∈ analz (knows Spy evs) −→
(∀ KK. KK ⊆ - (range shrK) −→

(Crypt K X ∈ analz (Key‘KK ∪ (knows Spy evs))) =
(Crypt K X ∈ analz (knows Spy evs)))"

〈proof 〉

lemma analz_insert_freshCryptK:
" [[evs ∈ orb; Key K /∈ analz (knows Spy evs);

Seskey /∈ range shrK ]] =⇒
(Crypt K X ∈ analz (insert (Key Seskey) (knows Spy evs))) =
(Crypt K X ∈ analz (knows Spy evs))"

〈proof 〉

lemma analz_hard:
" [[Says A B {|Nonce M, Agent A, Agent B,

Crypt (shrK A) {|Nonce Na, Nonce M, Agent A, Agent B |}|} ∈set evs;

Crypt (shrK A) {|Nonce Na, Key K |} ∈ analz (knows Spy evs);
A /∈ bad; B /∈ bad; evs ∈ orb ]]

=⇒ Says B A {|Nonce M, Crypt (shrK A) {|Nonce Na, Key K |}|} ∈ set evs"
〈proof 〉

lemma Gets_Server_message_form’:
" [[Gets B {|Nonce M, Crypt (shrK B) {|X, Nonce Nb, Key K |}|} ∈ set evs;

B /∈ bad; evs ∈ orb ]]
=⇒ K /∈ range shrK ∧ (∃ A Na. X = (Crypt (shrK A) {|Nonce Na, Key K |}))"

〈proof 〉
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lemma OR4_imp_Gets:
" [[Says B A {|Nonce M, Crypt (shrK A) {|Nonce Na, Key K |}|} ∈ set evs;

B /∈ bad; evs ∈ orb ]]
=⇒ (∃ Nb. Gets B {|Nonce M, Crypt (shrK B) {|Crypt (shrK A) {|Nonce Na, Key

K |},
Nonce Nb, Key K |}|} ∈ set evs)"

〈proof 〉

lemma A_keydist_to_B:
" [[Says A B {|Nonce M, Agent A, Agent B,

Crypt (shrK A) {|Nonce Na, Nonce M, Agent A, Agent B |}|} ∈set evs;

Gets A {|Nonce M, Crypt (shrK A) {|Nonce Na, Key K |}|} ∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ orb ]]

=⇒ Key K ∈ analz (knows B evs)"
〈proof 〉

Other properties as for the original protocol

end

13 The Woo-Lam Protocol
theory WooLam imports Public begin

Simplified version from page 11 of Abadi and Needham (1996). Prudent Engi-
neering Practice for Cryptographic Protocols. IEEE Trans. S.E. 22(1), pages
6-15.
Note: this differs from the Woo-Lam protocol discussed by Lowe (1996): Some
New Attacks upon Security Protocols. Computer Security Foundations Work-
shop

inductive_set woolam :: "event list set"
where

Nil: "[] ∈ woolam"

| Fake: " [[evsf ∈ woolam; X ∈ synth (analz (spies evsf))]]
=⇒ Says Spy B X # evsf ∈ woolam"

| WL1: "evs1 ∈ woolam =⇒ Says A B (Agent A) # evs1 ∈ woolam"

| WL2: " [[evs2 ∈ woolam; Says A’ B (Agent A) ∈ set evs2]]
=⇒ Says B A (Nonce NB) # evs2 ∈ woolam"

| WL3: " [[evs3 ∈ woolam;
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Says A B (Agent A) ∈ set evs3;
Says B’ A (Nonce NB) ∈ set evs3]]

=⇒ Says A B (Crypt (shrK A) (Nonce NB)) # evs3 ∈ woolam"

| WL4: " [[evs4 ∈ woolam;
Says A’ B X ∈ set evs4;
Says A’’ B (Agent A) ∈ set evs4]]

=⇒ Says B Server {|Agent A, Agent B, X |} # evs4 ∈ woolam"

| WL5: " [[evs5 ∈ woolam;
Says B’ Server {|Agent A, Agent B, Crypt (shrK A) (Nonce NB)|}
∈ set evs5]]

=⇒ Says Server B (Crypt (shrK B) {|Agent A, Nonce NB |})
# evs5 ∈ woolam"

declare Says_imp_knows_Spy [THEN analz.Inj, dest]
declare parts.Body [dest]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]

lemma "∃ NB. ∃ evs ∈ woolam.
Says Server B (Crypt (shrK B) {|Agent A, Nonce NB |}) ∈ set evs"

〈proof 〉

lemma Spy_see_shrK [simp]:
"evs ∈ woolam =⇒ (Key (shrK A) ∈ parts (spies evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_analz_shrK [simp]:
"evs ∈ woolam =⇒ (Key (shrK A) ∈ analz (spies evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_see_shrK_D [dest!]:
" [[Key (shrK A) ∈ parts (knows Spy evs); evs ∈ woolam ]] =⇒ A ∈ bad"

〈proof 〉
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lemma NB_Crypt_imp_Alice_msg:
" [[Crypt (shrK A) (Nonce NB) ∈ parts (spies evs);

A /∈ bad; evs ∈ woolam ]]
=⇒ ∃ B. Says A B (Crypt (shrK A) (Nonce NB)) ∈ set evs"

〈proof 〉

lemma Server_trusts_WL4 [dest]:
" [[Says B’ Server {|Agent A, Agent B, Crypt (shrK A) (Nonce NB)|}

∈ set evs;
A /∈ bad; evs ∈ woolam ]]

=⇒ ∃ B. Says A B (Crypt (shrK A) (Nonce NB)) ∈ set evs"
〈proof 〉

lemma Server_sent_WL5 [dest]:
" [[Says Server B (Crypt (shrK B) {|Agent A, NB |}) ∈ set evs;

evs ∈ woolam ]]
=⇒ ∃ B’. Says B’ Server {|Agent A, Agent B, Crypt (shrK A) NB |}

∈ set evs"
〈proof 〉

lemma NB_Crypt_imp_Server_msg [rule_format]:
" [[Crypt (shrK B) {|Agent A, NB |} ∈ parts (spies evs);

B /∈ bad; evs ∈ woolam ]]
=⇒ Says Server B (Crypt (shrK B) {|Agent A, NB |}) ∈ set evs"

〈proof 〉

lemma B_trusts_WL5:
" [[Says S B (Crypt (shrK B) {|Agent A, Nonce NB |}) ∈ set evs;

A /∈ bad; B /∈ bad; evs ∈ woolam ]]
=⇒ ∃ B. Says A B (Crypt (shrK A) (Nonce NB)) ∈ set evs"

〈proof 〉

lemma B_said_WL2:
" [[Says B A (Nonce NB) ∈ set evs; B 6= Spy; evs ∈ woolam ]]
=⇒ ∃ A’. Says A’ B (Agent A) ∈ set evs"

〈proof 〉

lemma " [[A /∈ bad; B 6= Spy; evs ∈ woolam ]]
=⇒ Crypt (shrK A) (Nonce NB) ∈ parts (spies evs) ∧

Says B A (Nonce NB) ∈ set evs
−→ Says A B (Crypt (shrK A) (Nonce NB)) ∈ set evs"

〈proof 〉
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end

14 The Otway-Bull Recursive Authentication Pro-
tocol

theory Recur imports Public begin

End marker for message bundles
abbreviation

END :: "msg" where
"END == Number 0"

inductive_set
respond :: "event list ⇒ (msg*msg*key)set"
for evs :: "event list"
where
One: "Key KAB /∈ used evs

=⇒ (Hash[Key(shrK A)] {|Agent A, Agent B, Nonce NA, END |},
{|Crypt (shrK A) {|Key KAB, Agent B, Nonce NA |}, END |},
KAB) ∈ respond evs"

| Cons: " [[(PA, RA, KAB) ∈ respond evs;
Key KBC /∈ used evs; Key KBC /∈ parts {RA};
PA = Hash[Key(shrK A)] {|Agent A, Agent B, Nonce NA, P |}]]

=⇒ (Hash[Key(shrK B)] {|Agent B, Agent C, Nonce NB, PA |},
{|Crypt (shrK B) {|Key KBC, Agent C, Nonce NB |},

Crypt (shrK B) {|Key KAB, Agent A, Nonce NB |},
RA |},

KBC)
∈ respond evs"

inductive_set
responses :: "event list => msg set"
for evs :: "event list"
where

Nil: "END ∈ responses evs"

| Cons: " [[RA ∈ responses evs; Key KAB /∈ used evs ]]
=⇒ {|Crypt (shrK B) {|Key KAB, Agent A, Nonce NB |},

RA |} ∈ responses evs"

inductive_set recur :: "event list set"
where

Nil: "[] ∈ recur"
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| Fake: " [[evsf ∈ recur; X ∈ synth (analz (knows Spy evsf))]]
=⇒ Says Spy B X # evsf ∈ recur"

| RA1: " [[evs1 ∈ recur; Nonce NA /∈ used evs1]]
=⇒ Says A B (Hash[Key(shrK A)] {|Agent A, Agent B, Nonce NA, END |})

# evs1 ∈ recur"

| RA2: " [[evs2 ∈ recur; Nonce NB /∈ used evs2;
Says A’ B PA ∈ set evs2]]

=⇒ Says B C (Hash[Key(shrK B)] {|Agent B, Agent C, Nonce NB, PA |})
# evs2 ∈ recur"

| RA3: " [[evs3 ∈ recur; Says B’ Server PB ∈ set evs3;
(PB,RB,K) ∈ respond evs3]]

=⇒ Says Server B RB # evs3 ∈ recur"

| RA4: " [[evs4 ∈ recur;
Says B C {|XH, Agent B, Agent C, Nonce NB,

XA, Agent A, Agent B, Nonce NA, P |} ∈ set evs4;
Says C’ B {|Crypt (shrK B) {|Key KBC, Agent C, Nonce NB |},

Crypt (shrK B) {|Key KAB, Agent A, Nonce NB |},
RA |} ∈ set evs4]]

=⇒ Says B A RA # evs4 ∈ recur"

declare Says_imp_knows_Spy [THEN analz.Inj, dest]
declare parts.Body [dest]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]

Simplest case: Alice goes directly to the server
lemma "Key K /∈ used []

=⇒ ∃ NA. ∃ evs ∈ recur.
Says Server A {|Crypt (shrK A) {|Key K, Agent Server, Nonce NA |},

END |} ∈ set evs"
〈proof 〉

Case two: Alice, Bob and the server
lemma " [[Key K /∈ used []; Key K’ /∈ used []; K 6= K’;

Nonce NA /∈ used []; Nonce NB /∈ used []; NA < NB ]]
=⇒ ∃ NA. ∃ evs ∈ recur.
Says B A {|Crypt (shrK A) {|Key K, Agent B, Nonce NA |},

END |} ∈ set evs"
〈proof 〉

lemma " [[Key K /∈ used []; Key K’ /∈ used [];
Key K’’ /∈ used []; K 6= K’; K’ 6= K’’; K 6= K’’;
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Nonce NA /∈ used []; Nonce NB /∈ used []; Nonce NC /∈ used [];
NA < NB; NB < NC ]]

=⇒ ∃ K. ∃ NA. ∃ evs ∈ recur.
Says B A {|Crypt (shrK A) {|Key K, Agent B, Nonce NA |},

END |} ∈ set evs"
〈proof 〉

lemma respond_imp_not_used: "(PA,RB,KAB) ∈ respond evs =⇒ Key KAB /∈ used
evs"
〈proof 〉

lemma Key_in_parts_respond [rule_format]:
" [[Key K ∈ parts {RB}; (PB,RB,K’) ∈ respond evs ]] =⇒ Key K /∈ used evs"

〈proof 〉

Simple inductive reasoning about responses

lemma respond_imp_responses:
"(PA,RB,KAB) ∈ respond evs =⇒ RB ∈ responses evs"

〈proof 〉

lemmas RA2_analz_spies = Says_imp_spies [THEN analz.Inj]

lemma RA4_analz_spies:
"Says C’ B {|Crypt K X, X’, RA |} ∈ set evs =⇒ RA ∈ analz (spies evs)"

〈proof 〉

lemmas RA2_parts_spies = RA2_analz_spies [THEN analz_into_parts]
lemmas RA4_parts_spies = RA4_analz_spies [THEN analz_into_parts]

lemma Spy_see_shrK [simp]:
"evs ∈ recur =⇒ (Key (shrK A) ∈ parts (spies evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_analz_shrK [simp]:
"evs ∈ recur =⇒ (Key (shrK A) ∈ analz (spies evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_see_shrK_D [dest!]:
" [[Key (shrK A) ∈ parts (knows Spy evs); evs ∈ recur ]] =⇒ A ∈ bad"

〈proof 〉
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lemma resp_analz_image_freshK_lemma:
" [[RB ∈ responses evs;

∀ K KK. KK ⊆ - (range shrK) −→
(Key K ∈ analz (Key‘KK ∪ H)) =
(K ∈ KK | Key K ∈ analz H)]]

=⇒ ∀ K KK. KK ⊆ - (range shrK) −→
(Key K ∈ analz (insert RB (Key‘KK ∪ H))) =
(K ∈ KK | Key K ∈ analz (insert RB H))"

〈proof 〉

Version for the protocol. Proof is easy, thanks to the lemma.
lemma raw_analz_image_freshK:
"evs ∈ recur =⇒
∀ K KK. KK ⊆ - (range shrK) −→

(Key K ∈ analz (Key‘KK ∪ (spies evs))) =
(K ∈ KK | Key K ∈ analz (spies evs))"

〈proof 〉

lemmas resp_analz_image_freshK =
resp_analz_image_freshK_lemma [OF _ raw_analz_image_freshK]

lemma analz_insert_freshK:
" [[evs ∈ recur; KAB /∈ range shrK ]]
=⇒ (Key K ∈ analz (insert (Key KAB) (spies evs))) =

(K = KAB | Key K ∈ analz (spies evs))"
〈proof 〉

Everything that’s hashed is already in past traffic.
lemma Hash_imp_body:

" [[Hash {|Key(shrK A), X |} ∈ parts (spies evs);
evs ∈ recur; A /∈ bad ]] =⇒ X ∈ parts (spies evs)"

〈proof 〉

lemma unique_NA:
" [[Hash {|Key(shrK A), Agent A, B, NA, P |} ∈ parts (spies evs);

Hash {|Key(shrK A), Agent A, B’,NA, P’|} ∈ parts (spies evs);
evs ∈ recur; A /∈ bad ]]

=⇒ B=B’ ∧ P=P’"
〈proof 〉

lemma shrK_in_analz_respond [simp]:
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" [[RB ∈ responses evs; evs ∈ recur ]]
=⇒ (Key (shrK B) ∈ analz (insert RB (spies evs))) = (B∈bad)"

〈proof 〉

lemma resp_analz_insert_lemma:
" [[Key K ∈ analz (insert RB H);

∀ K KK. KK ⊆ - (range shrK) −→
(Key K ∈ analz (Key‘KK ∪ H)) =
(K ∈ KK | Key K ∈ analz H);

RB ∈ responses evs ]]
=⇒ (Key K ∈ parts{RB} | Key K ∈ analz H)"

〈proof 〉

lemmas resp_analz_insert =
resp_analz_insert_lemma [OF _ raw_analz_image_freshK]

The last key returned by respond indeed appears in a certificate

lemma respond_certificate:
"(Hash[Key(shrK A)] {|Agent A, B, NA, P |}, RA, K) ∈ respond evs
=⇒ Crypt (shrK A) {|Key K, B, NA |} ∈ parts {RA}"

〈proof 〉

lemma unique_lemma [rule_format]:
"(PB,RB,KXY) ∈ respond evs =⇒
∀ A B N. Crypt (shrK A) {|Key K, Agent B, N |} ∈ parts {RB} −→
(∀ A’ B’ N’. Crypt (shrK A’) {|Key K, Agent B’, N’|} ∈ parts {RB} −→
(A’=A ∧ B’=B) | (A’=B ∧ B’=A))"

〈proof 〉

lemma unique_session_keys:
" [[Crypt (shrK A) {|Key K, Agent B, N |} ∈ parts {RB};

Crypt (shrK A’) {|Key K, Agent B’, N’|} ∈ parts {RB};
(PB,RB,KXY) ∈ respond evs ]]

=⇒ (A’=A ∧ B’=B) | (A’=B ∧ B’=A)"
〈proof 〉

lemma respond_Spy_not_see_session_key [rule_format]:
" [[(PB,RB,KAB) ∈ respond evs; evs ∈ recur ]]
=⇒ ∀ A A’ N. A /∈ bad ∧ A’ /∈ bad −→

Crypt (shrK A) {|Key K, Agent A’, N |} ∈ parts{RB} −→
Key K /∈ analz (insert RB (spies evs))"

〈proof 〉

lemma Spy_not_see_session_key:
" [[Crypt (shrK A) {|Key K, Agent A’, N |} ∈ parts (spies evs);

A /∈ bad; A’ /∈ bad; evs ∈ recur ]]
=⇒ Key K /∈ analz (spies evs)"

〈proof 〉
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The response never contains Hashes

lemma Hash_in_parts_respond:
" [[Hash {|Key (shrK B), M |} ∈ parts (insert RB H);

(PB,RB,K) ∈ respond evs ]]
=⇒ Hash {|Key (shrK B), M |} ∈ parts H"

〈proof 〉

Only RA1 or RA2 can have caused such a part of a message to appear. This
result is of no use to B, who cannot verify the Hash. Moreover, it can say
nothing about how recent A’s message is. It might later be used to prove B’s
presence to A at the run’s conclusion.

lemma Hash_auth_sender [rule_format]:
" [[Hash {|Key(shrK A), Agent A, Agent B, NA, P |} ∈ parts(spies evs);

A /∈ bad; evs ∈ recur ]]
=⇒ Says A B (Hash[Key(shrK A)] {|Agent A, Agent B, NA, P |}) ∈ set evs"

〈proof 〉

Certificates can only originate with the Server.

lemma Cert_imp_Server_msg:
" [[Crypt (shrK A) Y ∈ parts (spies evs);

A /∈ bad; evs ∈ recur ]]
=⇒ ∃ C RC. Says Server C RC ∈ set evs ∧

Crypt (shrK A) Y ∈ parts {RC}"
〈proof 〉

end

15 The Yahalom Protocol
theory Yahalom imports Public begin

From page 257 of Burrows, Abadi and Needham (1989). A Logic of Authenti-
cation. Proc. Royal Soc. 426
This theory has the prototypical example of a secrecy relation, KeyCryptNonce.

inductive_set yahalom :: "event list set"
where

Nil: "[] ∈ yahalom"

| Fake: " [[evsf ∈ yahalom; X ∈ synth (analz (knows Spy evsf))]]
=⇒ Says Spy B X # evsf ∈ yahalom"

| Reception: " [[evsr ∈ yahalom; Says A B X ∈ set evsr ]]
=⇒ Gets B X # evsr ∈ yahalom"

| YM1: " [[evs1 ∈ yahalom; Nonce NA /∈ used evs1]]
=⇒ Says A B {|Agent A, Nonce NA |} # evs1 ∈ yahalom"
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| YM2: " [[evs2 ∈ yahalom; Nonce NB /∈ used evs2;
Gets B {|Agent A, Nonce NA |} ∈ set evs2]]

=⇒ Says B Server
{|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, Nonce NB |}|}

# evs2 ∈ yahalom"

| YM3: " [[evs3 ∈ yahalom; Key KAB /∈ used evs3; KAB ∈ symKeys;
Gets Server

{|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, Nonce NB |}|}
∈ set evs3]]

=⇒ Says Server A
{|Crypt (shrK A) {|Agent B, Key KAB, Nonce NA, Nonce NB |},

Crypt (shrK B) {|Agent A, Key KAB |}|}
# evs3 ∈ yahalom"

| YM4:
— Alice receives the Server’s (?) message, checks her Nonce, and uses the

new session key to send Bob his Nonce. The premise A 6= Server is needed for
Says_Server_not_range. Alice can check that K is symmetric by its length.

" [[evs4 ∈ yahalom; A 6= Server; K ∈ symKeys;
Gets A {|Crypt(shrK A) {|Agent B, Key K, Nonce NA, Nonce NB |}, X |}
∈ set evs4;

Says A B {|Agent A, Nonce NA |} ∈ set evs4]]
=⇒ Says A B {|X, Crypt K (Nonce NB)|} # evs4 ∈ yahalom"

| Oops: " [[evso ∈ yahalom;
Says Server A {|Crypt (shrK A)

{|Agent B, Key K, Nonce NA, Nonce NB |},
X |} ∈ set evso ]]

=⇒ Notes Spy {|Nonce NA, Nonce NB, Key K |} # evso ∈ yahalom"

definition KeyWithNonce :: "[key, nat, event list] ⇒ bool" where
"KeyWithNonce K NB evs ==
∃ A B na X.

Says Server A {|Crypt (shrK A) {|Agent B, Key K, na, Nonce NB |}, X |}
∈ set evs"

declare Says_imp_analz_Spy [dest]
declare parts.Body [dest]
declare Fake_parts_insert_in_Un [dest]
declare analz_into_parts [dest]

A "possibility property": there are traces that reach the end

lemma " [[A 6= Server; K ∈ symKeys; Key K /∈ used []]]
=⇒ ∃ X NB. ∃ evs ∈ yahalom.

Says A B {|X, Crypt K (Nonce NB)|} ∈ set evs"
〈proof 〉
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15.1 Regularity Lemmas for Yahalom
lemma Gets_imp_Says:

" [[Gets B X ∈ set evs; evs ∈ yahalom ]] =⇒ ∃ A. Says A B X ∈ set evs"
〈proof 〉

Must be proved separately for each protocol
lemma Gets_imp_knows_Spy:

" [[Gets B X ∈ set evs; evs ∈ yahalom ]] =⇒ X ∈ knows Spy evs"
〈proof 〉

lemmas Gets_imp_analz_Spy = Gets_imp_knows_Spy [THEN analz.Inj]
declare Gets_imp_analz_Spy [dest]

Lets us treat YM4 using a similar argument as for the Fake case.
lemma YM4_analz_knows_Spy:

" [[Gets A {|Crypt (shrK A) Y, X |} ∈ set evs; evs ∈ yahalom ]]
=⇒ X ∈ analz (knows Spy evs)"

〈proof 〉

lemmas YM4_parts_knows_Spy =
YM4_analz_knows_Spy [THEN analz_into_parts]

For Oops
lemma YM4_Key_parts_knows_Spy:

"Says Server A {|Crypt (shrK A) {|B,K,NA,NB |}, X |} ∈ set evs
=⇒ K ∈ parts (knows Spy evs)"

〈proof 〉

Theorems of the form X /∈ parts (knows Spy evs) imply that NOBODY sends
messages containing X!

Spy never sees a good agent’s shared key!
lemma Spy_see_shrK [simp]:

"evs ∈ yahalom =⇒ (Key (shrK A) ∈ parts (knows Spy evs)) = (A ∈ bad)"
〈proof 〉

lemma Spy_analz_shrK [simp]:
"evs ∈ yahalom =⇒ (Key (shrK A) ∈ analz (knows Spy evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_see_shrK_D [dest!]:
" [[Key (shrK A) ∈ parts (knows Spy evs); evs ∈ yahalom ]] =⇒ A ∈ bad"

〈proof 〉

Nobody can have used non-existent keys! Needed to apply analz_insert_Key

lemma new_keys_not_used [simp]:
" [[Key K /∈ used evs; K ∈ symKeys; evs ∈ yahalom ]]
=⇒ K /∈ keysFor (parts (spies evs))"

〈proof 〉

Earlier, all protocol proofs declared this theorem. But only a few proofs need
it, e.g. Yahalom and Kerberos IV.
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lemma new_keys_not_analzd:
" [[K ∈ symKeys; evs ∈ yahalom; Key K /∈ used evs ]]
=⇒ K /∈ keysFor (analz (knows Spy evs))"

〈proof 〉

Describes the form of K when the Server sends this message. Useful for Oops
as well as main secrecy property.
lemma Says_Server_not_range [simp]:

" [[Says Server A {|Crypt (shrK A) {|Agent B, Key K, na, nb |}, X |}
∈ set evs; evs ∈ yahalom ]]

=⇒ K /∈ range shrK"
〈proof 〉

15.2 Secrecy Theorems
Session keys are not used to encrypt other session keys
lemma analz_image_freshK [rule_format]:
"evs ∈ yahalom =⇒
∀ K KK. KK ⊆ - (range shrK) −→

(Key K ∈ analz (Key‘KK ∪ (knows Spy evs))) =
(K ∈ KK | Key K ∈ analz (knows Spy evs))"

〈proof 〉

lemma analz_insert_freshK:
" [[evs ∈ yahalom; KAB /∈ range shrK ]] =⇒
(Key K ∈ analz (insert (Key KAB) (knows Spy evs))) =
(K = KAB | Key K ∈ analz (knows Spy evs))"

〈proof 〉

The Key K uniquely identifies the Server’s message.
lemma unique_session_keys:

" [[Says Server A
{|Crypt (shrK A) {|Agent B, Key K, na, nb |}, X |} ∈ set evs;

Says Server A’
{|Crypt (shrK A’) {|Agent B’, Key K, na’, nb’|}, X’|} ∈ set evs;

evs ∈ yahalom ]]
=⇒ A=A’ ∧ B=B’ ∧ na=na’ ∧ nb=nb’"

〈proof 〉

Crucial secrecy property: Spy does not see the keys sent in msg YM3
lemma secrecy_lemma:

" [[A /∈ bad; B /∈ bad; evs ∈ yahalom ]]
=⇒ Says Server A

{|Crypt (shrK A) {|Agent B, Key K, na, nb |},
Crypt (shrK B) {|Agent A, Key K |}|}

∈ set evs −→
Notes Spy {|na, nb, Key K |} /∈ set evs −→
Key K /∈ analz (knows Spy evs)"

〈proof 〉

Final version
lemma Spy_not_see_encrypted_key:
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" [[Says Server A
{|Crypt (shrK A) {|Agent B, Key K, na, nb |},

Crypt (shrK B) {|Agent A, Key K |}|}
∈ set evs;

Notes Spy {|na, nb, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ yahalom ]]

=⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉

15.2.1 Security Guarantee for A upon receiving YM3

If the encrypted message appears then it originated with the Server
lemma A_trusts_YM3:

" [[Crypt (shrK A) {|Agent B, Key K, na, nb |} ∈ parts (knows Spy evs);
A /∈ bad; evs ∈ yahalom ]]

=⇒ Says Server A
{|Crypt (shrK A) {|Agent B, Key K, na, nb |},

Crypt (shrK B) {|Agent A, Key K |}|}
∈ set evs"

〈proof 〉

The obvious combination of A_trusts_YM3 with Spy_not_see_encrypted_key

lemma A_gets_good_key:
" [[Crypt (shrK A) {|Agent B, Key K, na, nb |} ∈ parts (knows Spy evs);

Notes Spy {|na, nb, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ yahalom ]]

=⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉

15.2.2 Security Guarantees for B upon receiving YM4

B knows, by the first part of A’s message, that the Server distributed the key
for A and B. But this part says nothing about nonces.
lemma B_trusts_YM4_shrK:

" [[Crypt (shrK B) {|Agent A, Key K |} ∈ parts (knows Spy evs);
B /∈ bad; evs ∈ yahalom ]]

=⇒ ∃ NA NB. Says Server A
{|Crypt (shrK A) {|Agent B, Key K,

Nonce NA, Nonce NB |},
Crypt (shrK B) {|Agent A, Key K |}|}

∈ set evs"
〈proof 〉

B knows, by the second part of A’s message, that the Server distributed the key
quoting nonce NB. This part says nothing about agent names. Secrecy of NB
is crucial. Note that Nonce NB /∈ analz (knows Spy evs) must be the FIRST
antecedent of the induction formula.
lemma B_trusts_YM4_newK [rule_format]:

" [[Crypt K (Nonce NB) ∈ parts (knows Spy evs);
Nonce NB /∈ analz (knows Spy evs); evs ∈ yahalom ]]

=⇒ ∃ A B NA. Says Server A
{|Crypt (shrK A) {|Agent B, Key K, Nonce NA, Nonce NB |},
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Crypt (shrK B) {|Agent A, Key K |}|}
∈ set evs"

〈proof 〉

15.2.3 Towards proving secrecy of Nonce NB

Lemmas about the predicate KeyWithNonce

lemma KeyWithNonceI:
"Says Server A

{|Crypt (shrK A) {|Agent B, Key K, na, Nonce NB |}, X |}
∈ set evs =⇒ KeyWithNonce K NB evs"

〈proof 〉

lemma KeyWithNonce_Says [simp]:
"KeyWithNonce K NB (Says S A X # evs) =

(Server = S ∧
(∃ B n X’. X = {|Crypt (shrK A) {|Agent B, Key K, n, Nonce NB |}, X’|})

| KeyWithNonce K NB evs)"
〈proof 〉

lemma KeyWithNonce_Notes [simp]:
"KeyWithNonce K NB (Notes A X # evs) = KeyWithNonce K NB evs"

〈proof 〉

lemma KeyWithNonce_Gets [simp]:
"KeyWithNonce K NB (Gets A X # evs) = KeyWithNonce K NB evs"

〈proof 〉

A fresh key cannot be associated with any nonce (with respect to a given trace).

lemma fresh_not_KeyWithNonce:
"Key K /∈ used evs =⇒ ¬ KeyWithNonce K NB evs"

〈proof 〉

The Server message associates K with NB’ and therefore not with any other
nonce NB.

lemma Says_Server_KeyWithNonce:
" [[Says Server A {|Crypt (shrK A) {|Agent B, Key K, na, Nonce NB’|}, X |}

∈ set evs;
NB 6= NB’; evs ∈ yahalom ]]

=⇒ ¬ KeyWithNonce K NB evs"
〈proof 〉

The only nonces that can be found with the help of session keys are those dis-
tributed as nonce NB by the Server. The form of the theorem recalls analz_image_freshK,
but it is much more complicated.

As with analz_image_freshK, we take some pains to express the property as a
logical equivalence so that the simplifier can apply it.

lemma Nonce_secrecy_lemma:
"P −→ (X ∈ analz (G ∪ H)) −→ (X ∈ analz H) =⇒
P −→ (X ∈ analz (G ∪ H)) = (X ∈ analz H)"
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〈proof 〉

lemma Nonce_secrecy:
"evs ∈ yahalom =⇒
(∀ KK. KK ⊆ - (range shrK) −→

(∀ K ∈ KK. K ∈ symKeys −→ ¬ KeyWithNonce K NB evs) −→
(Nonce NB ∈ analz (Key‘KK ∪ (knows Spy evs))) =
(Nonce NB ∈ analz (knows Spy evs)))"

〈proof 〉

Version required below: if NB can be decrypted using a session key then it was
distributed with that key. The more general form above is required for the
induction to carry through.

lemma single_Nonce_secrecy:
" [[Says Server A

{|Crypt (shrK A) {|Agent B, Key KAB, na, Nonce NB’|}, X |}
∈ set evs;
NB 6= NB’; KAB /∈ range shrK; evs ∈ yahalom ]]

=⇒ (Nonce NB ∈ analz (insert (Key KAB) (knows Spy evs))) =
(Nonce NB ∈ analz (knows Spy evs))"

〈proof 〉

15.2.4 The Nonce NB uniquely identifies B’s message.
lemma unique_NB:

" [[Crypt (shrK B) {|Agent A, Nonce NA, nb |} ∈ parts (knows Spy evs);
Crypt (shrK B’) {|Agent A’, Nonce NA’, nb |} ∈ parts (knows Spy evs);

evs ∈ yahalom; B /∈ bad; B’ /∈ bad ]]
=⇒ NA’ = NA ∧ A’ = A ∧ B’ = B"

〈proof 〉

Variant useful for proving secrecy of NB. Because nb is assumed to be secret,
we no longer must assume B, B’ not bad.

lemma Says_unique_NB:
" [[Says C S {|X, Crypt (shrK B) {|Agent A, Nonce NA, nb |}|}

∈ set evs;
Gets S’ {|X’, Crypt (shrK B’) {|Agent A’, Nonce NA’, nb |}|}
∈ set evs;

nb /∈ analz (knows Spy evs); evs ∈ yahalom ]]
=⇒ NA’ = NA ∧ A’ = A ∧ B’ = B"

〈proof 〉

15.2.5 A nonce value is never used both as NA and as NB
lemma no_nonce_YM1_YM2:

" [[Crypt (shrK B’) {|Agent A’, Nonce NB, nb’|} ∈ parts(knows Spy evs);
Nonce NB /∈ analz (knows Spy evs); evs ∈ yahalom ]]

=⇒ Crypt (shrK B) {|Agent A, na, Nonce NB |} /∈ parts(knows Spy evs)"
〈proof 〉

The Server sends YM3 only in response to YM2.

lemma Says_Server_imp_YM2:
" [[Says Server A {|Crypt (shrK A) {|Agent B, k, na, nb |}, X |} ∈ set evs;
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evs ∈ yahalom ]]
=⇒ Gets Server {|Agent B, Crypt (shrK B) {|Agent A, na, nb |}|}

∈ set evs"
〈proof 〉

A vital theorem for B, that nonce NB remains secure from the Spy.
theorem Spy_not_see_NB :

" [[Says B Server
{|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, Nonce NB |}|}

∈ set evs;
(∀ k. Notes Spy {|Nonce NA, Nonce NB, k |} /∈ set evs);
A /∈ bad; B /∈ bad; evs ∈ yahalom ]]

=⇒ Nonce NB /∈ analz (knows Spy evs)"
〈proof 〉

B’s session key guarantee from YM4. The two certificates contribute to a single
conclusion about the Server’s message. Note that the "Notes Spy" assumption
must quantify over ∀ POSSIBLE keys instead of our particular K. If this run
is broken and the spy substitutes a certificate containing an old key, B has no
means of telling.
lemma B_trusts_YM4:

" [[Gets B {|Crypt (shrK B) {|Agent A, Key K |},
Crypt K (Nonce NB)|} ∈ set evs;

Says B Server
{|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, Nonce NB |}|}
∈ set evs;

∀ k. Notes Spy {|Nonce NA, Nonce NB, k |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ yahalom ]]

=⇒ Says Server A
{|Crypt (shrK A) {|Agent B, Key K,

Nonce NA, Nonce NB |},
Crypt (shrK B) {|Agent A, Key K |}|}

∈ set evs"
〈proof 〉

The obvious combination of B_trusts_YM4 with Spy_not_see_encrypted_key

lemma B_gets_good_key:
" [[Gets B {|Crypt (shrK B) {|Agent A, Key K |},

Crypt K (Nonce NB)|} ∈ set evs;
Says B Server
{|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, Nonce NB |}|}
∈ set evs;

∀ k. Notes Spy {|Nonce NA, Nonce NB, k |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ yahalom ]]

=⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉

15.3 Authenticating B to A
The encryption in message YM2 tells us it cannot be faked.
lemma B_Said_YM2 [rule_format]:

" [[Crypt (shrK B) {|Agent A, Nonce NA, nb |} ∈ parts (knows Spy evs);
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evs ∈ yahalom ]]
=⇒ B /∈ bad −→

Says B Server {|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, nb |}|}
∈ set evs"

〈proof 〉

If the server sends YM3 then B sent YM2
lemma YM3_auth_B_to_A_lemma:

" [[Says Server A {|Crypt (shrK A) {|Agent B, Key K, Nonce NA, nb |}, X |}
∈ set evs; evs ∈ yahalom ]]

=⇒ B /∈ bad −→
Says B Server {|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, nb |}|}
∈ set evs"

〈proof 〉

If A receives YM3 then B has used nonce NA (and therefore is alive)
theorem YM3_auth_B_to_A:

" [[Gets A {|Crypt (shrK A) {|Agent B, Key K, Nonce NA, nb |}, X |}
∈ set evs;

A /∈ bad; B /∈ bad; evs ∈ yahalom ]]
=⇒ Says B Server {|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, nb |}|}
∈ set evs"

〈proof 〉

15.4 Authenticating A to B using the certificate Crypt K

(Nonce NB)

Assuming the session key is secure, if both certificates are present then A has
said NB. We can’t be sure about the rest of A’s message, but only NB matters
for freshness.
theorem A_Said_YM3_lemma [rule_format]:

"evs ∈ yahalom
=⇒ Key K /∈ analz (knows Spy evs) −→

Crypt K (Nonce NB) ∈ parts (knows Spy evs) −→
Crypt (shrK B) {|Agent A, Key K |} ∈ parts (knows Spy evs) −→
B /∈ bad −→
(∃ X. Says A B {|X, Crypt K (Nonce NB)|} ∈ set evs)"

〈proof 〉

If B receives YM4 then A has used nonce NB (and therefore is alive). Moreover,
A associates K with NB (thus is talking about the same run). Other premises
guarantee secrecy of K.
theorem YM4_imp_A_Said_YM3 [rule_format]:

" [[Gets B {|Crypt (shrK B) {|Agent A, Key K |},
Crypt K (Nonce NB)|} ∈ set evs;

Says B Server
{|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, Nonce NB |}|}
∈ set evs;

(∀ NA k. Notes Spy {|Nonce NA, Nonce NB, k |} /∈ set evs);
A /∈ bad; B /∈ bad; evs ∈ yahalom ]]

=⇒ ∃ X. Says A B {|X, Crypt K (Nonce NB)|} ∈ set evs"
〈proof 〉
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end

16 The Yahalom Protocol, Variant 2
theory Yahalom2 imports Public begin

This version trades encryption of NB for additional explicitness in YM3. Also
in YM3, care is taken to make the two certificates distinct.
From page 259 of Burrows, Abadi and Needham (1989). A Logic of Authenti-
cation. Proc. Royal Soc. 426
This theory has the prototypical example of a secrecy relation, KeyCryptNonce.

inductive_set yahalom :: "event list set"
where

Nil: "[] ∈ yahalom"

| Fake: " [[evsf ∈ yahalom; X ∈ synth (analz (knows Spy evsf))]]
=⇒ Says Spy B X # evsf ∈ yahalom"

| Reception: " [[evsr ∈ yahalom; Says A B X ∈ set evsr ]]
=⇒ Gets B X # evsr ∈ yahalom"

| YM1: " [[evs1 ∈ yahalom; Nonce NA /∈ used evs1]]
=⇒ Says A B {|Agent A, Nonce NA |} # evs1 ∈ yahalom"

| YM2: " [[evs2 ∈ yahalom; Nonce NB /∈ used evs2;
Gets B {|Agent A, Nonce NA |} ∈ set evs2]]

=⇒ Says B Server
{|Agent B, Nonce NB, Crypt (shrK B) {|Agent A, Nonce NA |}|}

# evs2 ∈ yahalom"

| YM3: " [[evs3 ∈ yahalom; Key KAB /∈ used evs3;
Gets Server {|Agent B, Nonce NB,

Crypt (shrK B) {|Agent A, Nonce NA |}|}
∈ set evs3]]

=⇒ Says Server A
{|Nonce NB,

Crypt (shrK A) {|Agent B, Key KAB, Nonce NA |},
Crypt (shrK B) {|Agent A, Agent B, Key KAB, Nonce NB |}|}
# evs3 ∈ yahalom"

| YM4: " [[evs4 ∈ yahalom;
Gets A {|Nonce NB, Crypt (shrK A) {|Agent B, Key K, Nonce NA |},

X |} ∈ set evs4;
Says A B {|Agent A, Nonce NA |} ∈ set evs4]]
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=⇒ Says A B {|X, Crypt K (Nonce NB)|} # evs4 ∈ yahalom"

| Oops: " [[evso ∈ yahalom;
Says Server A {|Nonce NB,

Crypt (shrK A) {|Agent B, Key K, Nonce NA |},
X |} ∈ set evso ]]

=⇒ Notes Spy {|Nonce NA, Nonce NB, Key K |} # evso ∈ yahalom"

declare Says_imp_knows_Spy [THEN analz.Inj, dest]
declare parts.Body [dest]
declare Fake_parts_insert_in_Un [dest]
declare analz_into_parts [dest]

A "possibility property": there are traces that reach the end

lemma "Key K /∈ used []
=⇒ ∃ X NB. ∃ evs ∈ yahalom.

Says A B {|X, Crypt K (Nonce NB)|} ∈ set evs"
〈proof 〉

lemma Gets_imp_Says:
" [[Gets B X ∈ set evs; evs ∈ yahalom ]] =⇒ ∃ A. Says A B X ∈ set evs"

〈proof 〉

Must be proved separately for each protocol

lemma Gets_imp_knows_Spy:
" [[Gets B X ∈ set evs; evs ∈ yahalom ]] =⇒ X ∈ knows Spy evs"

〈proof 〉

declare Gets_imp_knows_Spy [THEN analz.Inj, dest]

16.1 Inductive Proofs
Result for reasoning about the encrypted portion of messages. Lets us treat
YM4 using a similar argument as for the Fake case.

lemma YM4_analz_knows_Spy:
" [[Gets A {|NB, Crypt (shrK A) Y, X |} ∈ set evs; evs ∈ yahalom ]]
=⇒ X ∈ analz (knows Spy evs)"

〈proof 〉

lemmas YM4_parts_knows_Spy =
YM4_analz_knows_Spy [THEN analz_into_parts]

Spy never sees a good agent’s shared key!

lemma Spy_see_shrK [simp]:
"evs ∈ yahalom =⇒ (Key (shrK A) ∈ parts (knows Spy evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_analz_shrK [simp]:
"evs ∈ yahalom =⇒ (Key (shrK A) ∈ analz (knows Spy evs)) = (A ∈ bad)"

〈proof 〉
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lemma Spy_see_shrK_D [dest!]:
" [[Key (shrK A) ∈ parts (knows Spy evs); evs ∈ yahalom ]] =⇒ A ∈ bad"

〈proof 〉

Nobody can have used non-existent keys! Needed to apply analz_insert_Key

lemma new_keys_not_used [simp]:
" [[Key K /∈ used evs; K ∈ symKeys; evs ∈ yahalom ]]
=⇒ K /∈ keysFor (parts (spies evs))"

〈proof 〉

Describes the form of K when the Server sends this message. Useful for Oops
as well as main secrecy property.

lemma Says_Server_message_form:
" [[Says Server A {|nb’, Crypt (shrK A) {|Agent B, Key K, na |}, X |}

∈ set evs; evs ∈ yahalom ]]
=⇒ K /∈ range shrK"

〈proof 〉

lemma analz_image_freshK [rule_format]:
"evs ∈ yahalom =⇒
∀ K KK. KK ⊆ - (range shrK) −→

(Key K ∈ analz (Key‘KK ∪ (knows Spy evs))) =
(K ∈ KK | Key K ∈ analz (knows Spy evs))"

〈proof 〉

lemma analz_insert_freshK:
" [[evs ∈ yahalom; KAB /∈ range shrK ]] =⇒
(Key K ∈ analz (insert (Key KAB) (knows Spy evs))) =
(K = KAB | Key K ∈ analz (knows Spy evs))"

〈proof 〉

The Key K uniquely identifies the Server’s message

lemma unique_session_keys:
" [[Says Server A

{|nb, Crypt (shrK A) {|Agent B, Key K, na |}, X |} ∈ set evs;
Says Server A’
{|nb’, Crypt (shrK A’) {|Agent B’, Key K, na’|}, X’|} ∈ set evs;

evs ∈ yahalom ]]
=⇒ A=A’ ∧ B=B’ ∧ na=na’ ∧ nb=nb’"

〈proof 〉

16.2 Crucial Secrecy Property: Spy Does Not See Key KAB

lemma secrecy_lemma:
" [[A /∈ bad; B /∈ bad; evs ∈ yahalom ]]
=⇒ Says Server A

{|nb, Crypt (shrK A) {|Agent B, Key K, na |},
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Crypt (shrK B) {|Agent A, Agent B, Key K, nb |}|}
∈ set evs −→

Notes Spy {|na, nb, Key K |} /∈ set evs −→
Key K /∈ analz (knows Spy evs)"

〈proof 〉

Final version
lemma Spy_not_see_encrypted_key:

" [[Says Server A
{|nb, Crypt (shrK A) {|Agent B, Key K, na |},

Crypt (shrK B) {|Agent A, Agent B, Key K, nb |}|}
∈ set evs;
Notes Spy {|na, nb, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ yahalom ]]

=⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉

This form is an immediate consequence of the previous result. It is similar to
the assertions established by other methods. It is equivalent to the previous
result in that the Spy already has analz and synth at his disposal. However,
the conclusion Key K /∈ knows Spy evs appears not to be inductive: all the cases
other than Fake are trivial, while Fake requires Key K /∈ analz (knows Spy evs).
lemma Spy_not_know_encrypted_key:

" [[Says Server A
{|nb, Crypt (shrK A) {|Agent B, Key K, na |},

Crypt (shrK B) {|Agent A, Agent B, Key K, nb |}|}
∈ set evs;
Notes Spy {|na, nb, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ yahalom ]]

=⇒ Key K /∈ knows Spy evs"
〈proof 〉

16.3 Security Guarantee for A upon receiving YM3
If the encrypted message appears then it originated with the Server. May now
apply Spy_not_see_encrypted_key, subject to its conditions.
lemma A_trusts_YM3:

" [[Crypt (shrK A) {|Agent B, Key K, na |} ∈ parts (knows Spy evs);
A /∈ bad; evs ∈ yahalom ]]

=⇒ ∃ nb. Says Server A
{|nb, Crypt (shrK A) {|Agent B, Key K, na |},

Crypt (shrK B) {|Agent A, Agent B, Key K, nb |}|}
∈ set evs"

〈proof 〉

The obvious combination of A_trusts_YM3 with Spy_not_see_encrypted_key

theorem A_gets_good_key:
" [[Crypt (shrK A) {|Agent B, Key K, na |} ∈ parts (knows Spy evs);

∀ nb. Notes Spy {|na, nb, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ yahalom ]]

=⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉
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16.4 Security Guarantee for B upon receiving YM4
B knows, by the first part of A’s message, that the Server distributed the key
for A and B, and has associated it with NB.

lemma B_trusts_YM4_shrK:
" [[Crypt (shrK B) {|Agent A, Agent B, Key K, Nonce NB |}

∈ parts (knows Spy evs);
B /∈ bad; evs ∈ yahalom ]]

=⇒ ∃ NA. Says Server A
{|Nonce NB,

Crypt (shrK A) {|Agent B, Key K, Nonce NA |},
Crypt (shrK B) {|Agent A, Agent B, Key K, Nonce NB |}|}

∈ set evs"
〈proof 〉

With this protocol variant, we don’t need the 2nd part of YM4 at all: Nonce
NB is available in the first part.

What can B deduce from receipt of YM4? Stronger and simpler than Yahalom
because we do not have to show that NB is secret.

lemma B_trusts_YM4:
" [[Gets B {|Crypt (shrK B) {|Agent A, Agent B, Key K, Nonce NB |}, X |}

∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ yahalom ]]

=⇒ ∃ NA. Says Server A
{|Nonce NB,

Crypt (shrK A) {|Agent B, Key K, Nonce NA |},
Crypt (shrK B) {|Agent A, Agent B, Key K, Nonce NB |}|}

∈ set evs"
〈proof 〉

The obvious combination of B_trusts_YM4 with Spy_not_see_encrypted_key

theorem B_gets_good_key:
" [[Gets B {|Crypt (shrK B) {|Agent A, Agent B, Key K, Nonce NB |}, X |}

∈ set evs;
∀ na. Notes Spy {|na, Nonce NB, Key K |} /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ yahalom ]]

=⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉

16.5 Authenticating B to A
The encryption in message YM2 tells us it cannot be faked.

lemma B_Said_YM2:
" [[Crypt (shrK B) {|Agent A, Nonce NA |} ∈ parts (knows Spy evs);

B /∈ bad; evs ∈ yahalom ]]
=⇒ ∃ NB. Says B Server {|Agent B, Nonce NB,

Crypt (shrK B) {|Agent A, Nonce NA |}|}
∈ set evs"

〈proof 〉

If the server sends YM3 then B sent YM2, perhaps with a different NB
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lemma YM3_auth_B_to_A_lemma:
" [[Says Server A {|nb, Crypt (shrK A) {|Agent B, Key K, Nonce NA |}, X |}

∈ set evs;
B /∈ bad; evs ∈ yahalom ]]

=⇒ ∃ nb’. Says B Server {|Agent B, nb’,
Crypt (shrK B) {|Agent A, Nonce NA |}|}

∈ set evs"
〈proof 〉

If A receives YM3 then B has used nonce NA (and therefore is alive)
theorem YM3_auth_B_to_A:

" [[Gets A {|nb, Crypt (shrK A) {|Agent B, Key K, Nonce NA |}, X |}
∈ set evs;

A /∈ bad; B /∈ bad; evs ∈ yahalom ]]
=⇒ ∃ nb’. Says B Server

{|Agent B, nb’, Crypt (shrK B) {|Agent A, Nonce NA |}|}
∈ set evs"

〈proof 〉

16.6 Authenticating A to B
using the certificate Crypt K (Nonce NB)

Assuming the session key is secure, if both certificates are present then A has
said NB. We can’t be sure about the rest of A’s message, but only NB matters
for freshness. Note that Key K /∈ analz (knows Spy evs) must be the FIRST
antecedent of the induction formula.

This lemma allows a use of unique_session_keys in the next proof, which oth-
erwise is extremely slow.
lemma secure_unique_session_keys:

" [[Crypt (shrK A) {|Agent B, Key K, na |} ∈ analz (spies evs);
Crypt (shrK A’) {|Agent B’, Key K, na’|} ∈ analz (spies evs);
Key K /∈ analz (knows Spy evs); evs ∈ yahalom ]]

=⇒ A=A’ ∧ B=B’"
〈proof 〉

lemma Auth_A_to_B_lemma [rule_format]:
"evs ∈ yahalom
=⇒ Key K /∈ analz (knows Spy evs) −→

K ∈ symKeys −→
Crypt K (Nonce NB) ∈ parts (knows Spy evs) −→
Crypt (shrK B) {|Agent A, Agent B, Key K, Nonce NB |}
∈ parts (knows Spy evs) −→

B /∈ bad −→
(∃ X. Says A B {|X, Crypt K (Nonce NB)|} ∈ set evs)"

〈proof 〉

If B receives YM4 then A has used nonce NB (and therefore is alive). Moreover,
A associates K with NB (thus is talking about the same run). Other premises
guarantee secrecy of K.
theorem YM4_imp_A_Said_YM3 [rule_format]:
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" [[Gets B {|Crypt (shrK B) {|Agent A, Agent B, Key K, Nonce NB |},
Crypt K (Nonce NB)|} ∈ set evs;

(∀ NA. Notes Spy {|Nonce NA, Nonce NB, Key K |} /∈ set evs);
K ∈ symKeys; A /∈ bad; B /∈ bad; evs ∈ yahalom ]]

=⇒ ∃ X. Says A B {|X, Crypt K (Nonce NB)|} ∈ set evs"
〈proof 〉

end

17 The Yahalom Protocol: A Flawed Version
theory Yahalom_Bad imports Public begin

Demonstrates of why Oops is necessary. This protocol can be attacked because
it doesn’t keep NB secret, but without Oops it can be "verified" anyway. The
issues are discussed in lcp’s LICS 2000 invited lecture.

inductive_set yahalom :: "event list set"
where

Nil: "[] ∈ yahalom"

| Fake: " [[evsf ∈ yahalom; X ∈ synth (analz (knows Spy evsf))]]
=⇒ Says Spy B X # evsf ∈ yahalom"

| Reception: " [[evsr ∈ yahalom; Says A B X ∈ set evsr ]]
=⇒ Gets B X # evsr ∈ yahalom"

| YM1: " [[evs1 ∈ yahalom; Nonce NA /∈ used evs1]]
=⇒ Says A B {|Agent A, Nonce NA |} # evs1 ∈ yahalom"

| YM2: " [[evs2 ∈ yahalom; Nonce NB /∈ used evs2;
Gets B {|Agent A, Nonce NA |} ∈ set evs2]]

=⇒ Says B Server
{|Agent B, Nonce NB, Crypt (shrK B) {|Agent A, Nonce NA |}|}

# evs2 ∈ yahalom"

| YM3: " [[evs3 ∈ yahalom; Key KAB /∈ used evs3; KAB ∈ symKeys;
Gets Server

{|Agent B, Nonce NB, Crypt (shrK B) {|Agent A, Nonce NA |}|}
∈ set evs3]]

=⇒ Says Server A
{|Crypt (shrK A) {|Agent B, Key KAB, Nonce NA, Nonce NB |},

Crypt (shrK B) {|Agent A, Key KAB |}|}
# evs3 ∈ yahalom"

| YM4: " [[evs4 ∈ yahalom; A 6= Server; K ∈ symKeys;
Gets A {|Crypt(shrK A) {|Agent B, Key K, Nonce NA, Nonce NB |}, X |}
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∈ set evs4;
Says A B {|Agent A, Nonce NA |} ∈ set evs4]]

=⇒ Says A B {|X, Crypt K (Nonce NB)|} # evs4 ∈ yahalom"

declare Says_imp_knows_Spy [THEN analz.Inj, dest]
declare parts.Body [dest]
declare Fake_parts_insert_in_Un [dest]
declare analz_into_parts [dest]

A "possibility property": there are traces that reach the end
lemma " [[A 6= Server; Key K /∈ used []; K ∈ symKeys ]]

=⇒ ∃ X NB. ∃ evs ∈ yahalom.
Says A B {|X, Crypt K (Nonce NB)|} ∈ set evs"

〈proof 〉

17.1 Regularity Lemmas for Yahalom
lemma Gets_imp_Says:

" [[Gets B X ∈ set evs; evs ∈ yahalom ]] =⇒ ∃ A. Says A B X ∈ set evs"
〈proof 〉

lemma Gets_imp_knows_Spy:
" [[Gets B X ∈ set evs; evs ∈ yahalom ]] =⇒ X ∈ knows Spy evs"

〈proof 〉

declare Gets_imp_knows_Spy [THEN analz.Inj, dest]

17.2 For reasoning about the encrypted portion of mes-
sages

Lets us treat YM4 using a similar argument as for the Fake case.
lemma YM4_analz_knows_Spy:

" [[Gets A {|Crypt (shrK A) Y, X |} ∈ set evs; evs ∈ yahalom ]]
=⇒ X ∈ analz (knows Spy evs)"

〈proof 〉

lemmas YM4_parts_knows_Spy =
YM4_analz_knows_Spy [THEN analz_into_parts]

Theorems of the form X /∈ parts (knows Spy evs) imply that NOBODY sends
messages containing X!

Spy never sees a good agent’s shared key!
lemma Spy_see_shrK [simp]:

"evs ∈ yahalom =⇒ (Key (shrK A) ∈ parts (knows Spy evs)) = (A ∈ bad)"
〈proof 〉

lemma Spy_analz_shrK [simp]:
"evs ∈ yahalom =⇒ (Key (shrK A) ∈ analz (knows Spy evs)) = (A ∈ bad)"

〈proof 〉
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lemma Spy_see_shrK_D [dest!]:
" [[Key (shrK A) ∈ parts (knows Spy evs); evs ∈ yahalom ]] =⇒ A ∈ bad"

〈proof 〉

Nobody can have used non-existent keys! Needed to apply analz_insert_Key

lemma new_keys_not_used [simp]:
" [[Key K /∈ used evs; K ∈ symKeys; evs ∈ yahalom ]]
=⇒ K /∈ keysFor (parts (spies evs))"

〈proof 〉

17.3 Secrecy Theorems
17.4 Session keys are not used to encrypt other session

keys
lemma analz_image_freshK [rule_format]:
"evs ∈ yahalom =⇒
∀ K KK. KK ⊆ - (range shrK) −→

(Key K ∈ analz (Key‘KK ∪ (knows Spy evs))) =
(K ∈ KK | Key K ∈ analz (knows Spy evs))"

〈proof 〉

lemma analz_insert_freshK:
" [[evs ∈ yahalom; KAB /∈ range shrK ]] =⇒
(Key K ∈ analz (insert (Key KAB) (knows Spy evs))) =
(K = KAB | Key K ∈ analz (knows Spy evs))"

〈proof 〉

The Key K uniquely identifies the Server’s message.
lemma unique_session_keys:

" [[Says Server A
{|Crypt (shrK A) {|Agent B, Key K, na, nb |}, X |} ∈ set evs;

Says Server A’
{|Crypt (shrK A’) {|Agent B’, Key K, na’, nb’|}, X’|} ∈ set evs;

evs ∈ yahalom ]]
=⇒ A=A’ ∧ B=B’ ∧ na=na’ ∧ nb=nb’"

〈proof 〉

Crucial secrecy property: Spy does not see the keys sent in msg YM3
lemma secrecy_lemma:

" [[A /∈ bad; B /∈ bad; evs ∈ yahalom ]]
=⇒ Says Server A

{|Crypt (shrK A) {|Agent B, Key K, na, nb |},
Crypt (shrK B) {|Agent A, Key K |}|}

∈ set evs −→
Key K /∈ analz (knows Spy evs)"

〈proof 〉

Final version
lemma Spy_not_see_encrypted_key:

" [[Says Server A
{|Crypt (shrK A) {|Agent B, Key K, na, nb |},

Crypt (shrK B) {|Agent A, Key K |}|}
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∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ yahalom ]]

=⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉

17.5 Security Guarantee for A upon receiving YM3
If the encrypted message appears then it originated with the Server

lemma A_trusts_YM3:
" [[Crypt (shrK A) {|Agent B, Key K, na, nb |} ∈ parts (knows Spy evs);

A /∈ bad; evs ∈ yahalom ]]
=⇒ Says Server A

{|Crypt (shrK A) {|Agent B, Key K, na, nb |},
Crypt (shrK B) {|Agent A, Key K |}|}

∈ set evs"
〈proof 〉

The obvious combination of A_trusts_YM3 with Spy_not_see_encrypted_key

lemma A_gets_good_key:
" [[Crypt (shrK A) {|Agent B, Key K, na, nb |} ∈ parts (knows Spy evs);

A /∈ bad; B /∈ bad; evs ∈ yahalom ]]
=⇒ Key K /∈ analz (knows Spy evs)"

〈proof 〉

17.6 Security Guarantees for B upon receiving YM4
B knows, by the first part of A’s message, that the Server distributed the key
for A and B. But this part says nothing about nonces.

lemma B_trusts_YM4_shrK:
" [[Crypt (shrK B) {|Agent A, Key K |} ∈ parts (knows Spy evs);

B /∈ bad; evs ∈ yahalom ]]
=⇒ ∃ NA NB. Says Server A

{|Crypt (shrK A) {|Agent B, Key K, Nonce NA, Nonce NB |},
Crypt (shrK B) {|Agent A, Key K |}|}

∈ set evs"
〈proof 〉

17.7 The Flaw in the Model
Up to now, the reasoning is similar to standard Yahalom. Now the doubtful
reasoning occurs. We should not be assuming that an unknown key is secure,
but the model allows us to: there is no Oops rule to let session keys become
compromised.

B knows, by the second part of A’s message, that the Server distributed the key
quoting nonce NB. This part says nothing about agent names. Secrecy of K is
assumed; the valid Yahalom proof uses (and later proves) the secrecy of NB.

lemma B_trusts_YM4_newK [rule_format]:
" [[Key K /∈ analz (knows Spy evs); evs ∈ yahalom ]]
=⇒ Crypt K (Nonce NB) ∈ parts (knows Spy evs) −→

(∃ A B NA. Says Server A
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{|Crypt (shrK A) {|Agent B, Key K,
Nonce NA, Nonce NB |},

Crypt (shrK B) {|Agent A, Key K |}|}
∈ set evs)"

〈proof 〉

B’s session key guarantee from YM4. The two certificates contribute to a single
conclusion about the Server’s message.
lemma B_trusts_YM4:

" [[Gets B {|Crypt (shrK B) {|Agent A, Key K |},
Crypt K (Nonce NB)|} ∈ set evs;

Says B Server
{|Agent B, Nonce NB, Crypt (shrK B) {|Agent A, Nonce NA |}|}
∈ set evs;

A /∈ bad; B /∈ bad; evs ∈ yahalom ]]
=⇒ ∃ na nb. Says Server A

{|Crypt (shrK A) {|Agent B, Key K, na, nb |},
Crypt (shrK B) {|Agent A, Key K |}|}

∈ set evs"
〈proof 〉

The obvious combination of B_trusts_YM4 with Spy_not_see_encrypted_key

lemma B_gets_good_key:
" [[Gets B {|Crypt (shrK B) {|Agent A, Key K |},

Crypt K (Nonce NB)|} ∈ set evs;
Says B Server
{|Agent B, Nonce NB, Crypt (shrK B) {|Agent A, Nonce NA |}|}
∈ set evs;

A /∈ bad; B /∈ bad; evs ∈ yahalom ]]
=⇒ Key K /∈ analz (knows Spy evs)"

〈proof 〉

Assuming the session key is secure, if both certificates are present then A has
said NB. We can’t be sure about the rest of A’s message, but only NB matters
for freshness.
lemma A_Said_YM3_lemma [rule_format]:

"evs ∈ yahalom
=⇒ Key K /∈ analz (knows Spy evs) −→

Crypt K (Nonce NB) ∈ parts (knows Spy evs) −→
Crypt (shrK B) {|Agent A, Key K |} ∈ parts (knows Spy evs) −→
B /∈ bad −→
(∃ X. Says A B {|X, Crypt K (Nonce NB)|} ∈ set evs)"

〈proof 〉

If B receives YM4 then A has used nonce NB (and therefore is alive). Moreover,
A associates K with NB (thus is talking about the same run). Other premises
guarantee secrecy of K.
lemma YM4_imp_A_Said_YM3 [rule_format]:

" [[Gets B {|Crypt (shrK B) {|Agent A, Key K |},
Crypt K (Nonce NB)|} ∈ set evs;

Says B Server
{|Agent B, Nonce NB, Crypt (shrK B) {|Agent A, Nonce NA |}|}
∈ set evs;
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A /∈ bad; B /∈ bad; evs ∈ yahalom ]]
=⇒ ∃ X. Says A B {|X, Crypt K (Nonce NB)|} ∈ set evs"

〈proof 〉

end

theory ZhouGollmann imports Public begin

abbreviation
TTP :: agent where "TTP == Server"

abbreviation f_sub :: nat where "f_sub == 5"
abbreviation f_nro :: nat where "f_nro == 2"
abbreviation f_nrr :: nat where "f_nrr == 3"
abbreviation f_con :: nat where "f_con == 4"

definition broken :: "agent set" where
— the compromised honest agents; TTP is included as it’s not allowed to use the

protocol
"broken == bad - {Spy}"

declare broken_def [simp]

inductive_set zg :: "event list set"
where

Nil: "[] ∈ zg"

| Fake: " [[evsf ∈ zg; X ∈ synth (analz (spies evsf))]]
=⇒ Says Spy B X # evsf ∈ zg"

| Reception: " [[evsr ∈ zg; Says A B X ∈ set evsr ]] =⇒ Gets B X # evsr ∈ zg"

| ZG1: " [[evs1 ∈ zg; Nonce L /∈ used evs1; C = Crypt K (Number m);
K ∈ symKeys;
NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C |}]]

=⇒ Says A B {|Number f_nro, Agent B, Nonce L, C, NRO |} # evs1 ∈ zg"

| ZG2: " [[evs2 ∈ zg;
Gets B {|Number f_nro, Agent B, Nonce L, C, NRO |} ∈ set evs2;
NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C |};
NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C |}]]

=⇒ Says B A {|Number f_nrr, Agent A, Nonce L, NRR |} # evs2 ∈ zg"

| ZG3: " [[evs3 ∈ zg; C = Crypt K M; K ∈ symKeys;
Says A B {|Number f_nro, Agent B, Nonce L, C, NRO |} ∈ set evs3;
Gets A {|Number f_nrr, Agent A, Nonce L, NRR |} ∈ set evs3;
NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C |};
sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K |}]]
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=⇒ Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K |}
# evs3 ∈ zg"

| ZG4: " [[evs4 ∈ zg; K ∈ symKeys;
Gets TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K |}
∈ set evs4;

sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K |};
con_K = Crypt (priK TTP) {|Number f_con, Agent A, Agent B,

Nonce L, Key K |}]]
=⇒ Says TTP Spy con_K

#
Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K |}
# evs4 ∈ zg"

declare Says_imp_knows_Spy [THEN analz.Inj, dest]
declare Fake_parts_insert_in_Un [dest]
declare analz_into_parts [dest]

declare symKey_neq_priEK [simp]
declare symKey_neq_priEK [THEN not_sym, simp]

A "possibility property": there are traces that reach the end
lemma " [[A 6= B; TTP 6= A; TTP 6= B; K ∈ symKeys ]] =⇒

∃ L. ∃ evs ∈ zg.
Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K,

Crypt (priK TTP) {|Number f_con, Agent A, Agent B, Nonce L,
Key K |}|}

∈ set evs"
〈proof 〉

17.8 Basic Lemmas
lemma Gets_imp_Says:

" [[Gets B X ∈ set evs; evs ∈ zg ]] =⇒ ∃ A. Says A B X ∈ set evs"
〈proof 〉

lemma Gets_imp_knows_Spy:
" [[Gets B X ∈ set evs; evs ∈ zg ]] =⇒ X ∈ spies evs"

〈proof 〉

Lets us replace proofs about used evs by simpler proofs about parts (knows
Spy evs).
lemma Crypt_used_imp_spies:

" [[Crypt K X ∈ used evs; evs ∈ zg ]]
=⇒ Crypt K X ∈ parts (spies evs)"

〈proof 〉

lemma Notes_TTP_imp_Gets:
" [[Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K |}

∈ set evs;
sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K |};
evs ∈ zg ]]
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=⇒ Gets TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K |} ∈ set evs"
〈proof 〉

For reasoning about C, which is encrypted in message ZG2
lemma ZG2_msg_in_parts_spies:

" [[Gets B {|F, B’, L, C, X |} ∈ set evs; evs ∈ zg ]]
=⇒ C ∈ parts (spies evs)"

〈proof 〉

lemma Spy_see_priK [simp]:
"evs ∈ zg =⇒ (Key (priK A) ∈ parts (spies evs)) = (A ∈ bad)"

〈proof 〉

So that blast can use it too
declare Spy_see_priK [THEN [2] rev_iffD1, dest!]

lemma Spy_analz_priK [simp]:
"evs ∈ zg =⇒ (Key (priK A) ∈ analz (spies evs)) = (A ∈ bad)"

〈proof 〉

17.9 About NRO: Validity for B

Below we prove that if NRO exists then A definitely sent it, provided A is not
broken.

Strong conclusion for a good agent
lemma NRO_validity_good:

" [[NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C |};
NRO ∈ parts (spies evs);
A /∈ bad; evs ∈ zg ]]

=⇒ Says A B {|Number f_nro, Agent B, Nonce L, C, NRO |} ∈ set evs"
〈proof 〉

lemma NRO_sender:
" [[Says A’ B {|n, b, l, C, Crypt (priK A) X |} ∈ set evs; evs ∈ zg ]]

=⇒ A’ ∈ {A,Spy}"
〈proof 〉

Holds also for A = Spy !
theorem NRO_validity:

" [[Gets B {|Number f_nro, Agent B, Nonce L, C, NRO |} ∈ set evs;
NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C |};
A /∈ broken; evs ∈ zg ]]

=⇒ Says A B {|Number f_nro, Agent B, Nonce L, C, NRO |} ∈ set evs"
〈proof 〉

17.10 About NRR: Validity for A

Below we prove that if NRR exists then B definitely sent it, provided B is not
broken.

Strong conclusion for a good agent
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lemma NRR_validity_good:
" [[NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C |};

NRR ∈ parts (spies evs);
B /∈ bad; evs ∈ zg ]]

=⇒ Says B A {|Number f_nrr, Agent A, Nonce L, NRR |} ∈ set evs"
〈proof 〉

lemma NRR_sender:
" [[Says B’ A {|n, a, l, Crypt (priK B) X |} ∈ set evs; evs ∈ zg ]]

=⇒ B’ ∈ {B,Spy}"
〈proof 〉

Holds also for B = Spy !
theorem NRR_validity:

" [[Says B’ A {|Number f_nrr, Agent A, Nonce L, NRR |} ∈ set evs;
NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C |};
B /∈ broken; evs ∈ zg ]]

=⇒ Says B A {|Number f_nrr, Agent A, Nonce L, NRR |} ∈ set evs"
〈proof 〉

17.11 Proofs About sub_K

Below we prove that if sub_K exists then A definitely sent it, provided A is not
broken.

Strong conclusion for a good agent
lemma sub_K_validity_good:

" [[sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K |};
sub_K ∈ parts (spies evs);
A /∈ bad; evs ∈ zg ]]

=⇒ Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K |} ∈ set evs"
〈proof 〉

lemma sub_K_sender:
" [[Says A’ TTP {|n, b, l, k, Crypt (priK A) X |} ∈ set evs; evs ∈ zg ]]

=⇒ A’ ∈ {A,Spy}"
〈proof 〉

Holds also for A = Spy !
theorem sub_K_validity:

" [[Gets TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K |} ∈ set evs;
sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K |};
A /∈ broken; evs ∈ zg ]]

=⇒ Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K |} ∈ set evs"
〈proof 〉

17.12 Proofs About con_K

Below we prove that if con_K exists, then TTP has it, and therefore A and B) can
get it too. Moreover, we know that A sent sub_K

lemma con_K_validity:
" [[con_K ∈ used evs;
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con_K = Crypt (priK TTP)
{|Number f_con, Agent A, Agent B, Nonce L, Key K |};

evs ∈ zg ]]
=⇒ Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K |}

∈ set evs"
〈proof 〉

If TTP holds con_K then A sent sub_K. We assume that A is not broken. Impor-
tantly, nothing needs to be assumed about the form of con_K !

lemma Notes_TTP_imp_Says_A:
" [[Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K |}

∈ set evs;
sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K |};
A /∈ broken; evs ∈ zg ]]

=⇒ Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K |} ∈ set evs"
〈proof 〉

If con_K exists, then A sent sub_K. We again assume that A is not broken.

theorem B_sub_K_validity:
" [[con_K ∈ used evs;

con_K = Crypt (priK TTP) {|Number f_con, Agent A, Agent B,
Nonce L, Key K |};

sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K |};
A /∈ broken; evs ∈ zg ]]

=⇒ Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K |} ∈ set evs"
〈proof 〉

17.13 Proving fairness
Cannot prove that, if B has NRO, then A has her NRR. It would appear that B
has a small advantage, though it is useless to win disputes: B needs to present
con_K as well.

Strange: unicity of the label protects A?

lemma A_unicity:
" [[NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, Crypt K M |};

NRO ∈ parts (spies evs);
Says A B {|Number f_nro, Agent B, Nonce L, Crypt K M’, NRO’|}
∈ set evs;

A /∈ bad; evs ∈ zg ]]
=⇒ M’=M"

〈proof 〉

Fairness lemma: if sub_K exists, then A holds NRR. Relies on unicity of labels.

lemma sub_K_implies_NRR:
" [[NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, Crypt K M |};

NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, Crypt K M |};
sub_K ∈ parts (spies evs);
NRO ∈ parts (spies evs);
sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K |};
A /∈ bad; evs ∈ zg ]]

=⇒ Gets A {|Number f_nrr, Agent A, Nonce L, NRR |} ∈ set evs"
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〈proof 〉

lemma Crypt_used_imp_L_used:
" [[Crypt (priK TTP) {|F, A, B, L, K |} ∈ used evs; evs ∈ zg ]]
=⇒ L ∈ used evs"

〈proof 〉

Fairness for A : if con_K and NRO exist, then A holds NRR. A must be uncompro-
mised, but there is no assumption about B.
theorem A_fairness_NRO:

" [[con_K ∈ used evs;
NRO ∈ parts (spies evs);
con_K = Crypt (priK TTP)

{|Number f_con, Agent A, Agent B, Nonce L, Key K |};
NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, Crypt K M |};
NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, Crypt K M |};
A /∈ bad; evs ∈ zg ]]

=⇒ Gets A {|Number f_nrr, Agent A, Nonce L, NRR |} ∈ set evs"
〈proof 〉

Fairness for B : NRR exists at all, then B holds NRO. B must be uncompromised,
but there is no assumption about A.
theorem B_fairness_NRR:

" [[NRR ∈ used evs;
NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C |};
NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C |};
B /∈ bad; evs ∈ zg ]]

=⇒ Gets B {|Number f_nro, Agent B, Nonce L, C, NRO |} ∈ set evs"
〈proof 〉

If con_K exists at all, then B can get it, by con_K_validity. Cannot conclude
that also NRO is available to B, because if A were unfair, A could build message
3 without building message 1, which contains NRO.
end

18 Conventional protocols: rely on conventional
Message, Event and Public – Shared-key pro-
tocols

theory Auth_Shared
imports

NS_Shared
Kerberos_BAN
Kerberos_BAN_Gets
KerberosIV
KerberosIV_Gets
KerberosV
OtwayRees
OtwayRees_AN
OtwayRees_Bad
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OtwayReesBella
WooLam
Recur
Yahalom
Yahalom2
Yahalom_Bad
ZhouGollmann

begin

end

19 The Needham-Schroeder Public-Key Proto-
col (Flawed)

Flawed version, vulnerable to Lowe’s attack. From Burrows, Abadi and Need-
ham. A Logic of Authentication. Proc. Royal Soc. 426 (1989), p. 260
theory NS_Public_Bad imports Public begin

inductive_set ns_public :: "event list set"
where
Nil: "[] ∈ ns_public"
— Initial trace is empty

| Fake: " [[evsf ∈ ns_public; X ∈ synth (analz (spies evsf))]]
=⇒ Says Spy B X # evsf ∈ ns_public"

— The spy can say almost anything.
| NS1: " [[evs1 ∈ ns_public; Nonce NA /∈ used evs1]]

=⇒ Says A B (Crypt (pubEK B) {|Nonce NA, Agent A |})
# evs1 ∈ ns_public"

— Alice initiates a protocol run, sending a nonce to Bob
| NS2: " [[evs2 ∈ ns_public; Nonce NB /∈ used evs2;

Says A’ B (Crypt (pubEK B) {|Nonce NA, Agent A |}) ∈ set evs2]]
=⇒ Says B A (Crypt (pubEK A) {|Nonce NA, Nonce NB |})

# evs2 ∈ ns_public"
— Bob responds to Alice’s message with a further nonce

| NS3: " [[evs3 ∈ ns_public;
Says A B (Crypt (pubEK B) {|Nonce NA, Agent A |}) ∈ set evs3;
Says B’ A (Crypt (pubEK A) {|Nonce NA, Nonce NB |}) ∈ set evs3]]

=⇒ Says A B (Crypt (pubEK B) (Nonce NB)) # evs3 ∈ ns_public"
— Alice proves her existence by sending NB back to Bob.

declare knows_Spy_partsEs [elim]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]

A "possibility property": there are traces that reach the end
lemma "∃ NB. ∃ evs ∈ ns_public. Says A B (Crypt (pubEK B) (Nonce NB)) ∈ set
evs"
〈proof 〉

19.1 Inductive proofs about ns_public

Spy never sees another agent’s private key! (unless it’s bad at start)
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lemma Spy_see_priEK [simp]:
"evs ∈ ns_public =⇒ (Key (priEK A) ∈ parts (spies evs)) = (A ∈ bad)"
〈proof 〉

lemma Spy_analz_priEK [simp]:
"evs ∈ ns_public =⇒ (Key (priEK A) ∈ analz (spies evs)) = (A ∈ bad)"
〈proof 〉

19.2 Authenticity properties obtained from term NS1
It is impossible to re-use a nonce in both term NS1 and term NS2, provided the
nonce is secret. (Honest users generate fresh nonces.)
lemma no_nonce_NS1_NS2:

" [[evs ∈ ns_public;
Crypt (pubEK C) {|NA’, Nonce NA |} ∈ parts (spies evs);
Crypt (pubEK B) {|Nonce NA, Agent A |} ∈ parts (spies evs)]]

=⇒ Nonce NA ∈ analz (spies evs)"
〈proof 〉

Unicity for term NS1: nonce term NA identifies agents term A and term B
lemma unique_NA:

assumes NA: "Crypt(pubEK B) {|Nonce NA, Agent A |} ∈ parts(spies evs)"
"Crypt(pubEK B’) {|Nonce NA, Agent A’|} ∈ parts(spies evs)"
"Nonce NA /∈ analz (spies evs)"

and evs: "evs ∈ ns_public"
shows "A=A’ ∧ B=B’"
〈proof 〉

Secrecy: Spy does not see the nonce sent in msg term NS1 if term A and term
B are secure The major premise "Says A B ..." makes it a dest-rule, hence the
given assumption order.
theorem Spy_not_see_NA:

assumes NA: "Says A B (Crypt(pubEK B) {|Nonce NA, Agent A |}) ∈ set evs"
"A /∈ bad" "B /∈ bad"

and evs: "evs ∈ ns_public"
shows "Nonce NA /∈ analz (spies evs)"
〈proof 〉

Authentication for term A: if she receives message 2 and has used term NA to
start a run, then term B has sent message 2.
lemma A_trusts_NS2_lemma:

" [[evs ∈ ns_public;
Crypt (pubEK A) {|Nonce NA, Nonce NB |} ∈ parts (spies evs);
Says A B (Crypt(pubEK B) {|Nonce NA, Agent A |}) ∈ set evs;
A /∈ bad; B /∈ bad ]]

=⇒ Says B A (Crypt(pubEK A) {|Nonce NA, Nonce NB |}) ∈ set evs"
〈proof 〉

theorem A_trusts_NS2:
" [[Says A B (Crypt(pubEK B) {|Nonce NA, Agent A |}) ∈ set evs;

Says B’ A (Crypt(pubEK A) {|Nonce NA, Nonce NB |}) ∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ ns_public ]]
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=⇒ Says B A (Crypt(pubEK A) {|Nonce NA, Nonce NB |}) ∈ set evs"
〈proof 〉

If the encrypted message appears then it originated with Alice in term NS1
lemma B_trusts_NS1:

" [[evs ∈ ns_public;
Crypt (pubEK B) {|Nonce NA, Agent A |} ∈ parts (spies evs);
Nonce NA /∈ analz (spies evs)]]

=⇒ Says A B (Crypt (pubEK B) {|Nonce NA, Agent A |}) ∈ set evs"
〈proof 〉

19.3 Authenticity properties obtained from term NS2
Unicity for term NS2: nonce term NB identifies nonce term NA and agent term
A [proof closely follows that for unique_NA ]
lemma unique_NB [dest]:

assumes NB: "Crypt(pubEK A) {|Nonce NA, Nonce NB |} ∈ parts(spies evs)"
"Crypt(pubEK A’) {|Nonce NA’, Nonce NB |} ∈ parts(spies evs)"
"Nonce NB /∈ analz (spies evs)"

and evs: "evs ∈ ns_public"
shows "A=A’ ∧ NA=NA’"
〈proof 〉

term NB remains secret provided Alice never responds with round 3
theorem Spy_not_see_NB [dest]:

assumes NB: "Says B A (Crypt (pubEK A) {|Nonce NA, Nonce NB |}) ∈ set evs"
"∀ C. Says A C (Crypt (pubEK C) (Nonce NB)) /∈ set evs"
"A /∈ bad" "B /∈ bad"

and evs: "evs ∈ ns_public"
shows "Nonce NB /∈ analz (spies evs)"
〈proof 〉

Authentication for term B: if he receives message 3 and has used term NB in
message 2, then term A has sent message 3 (to somebody)
lemma B_trusts_NS3_lemma:

" [[evs ∈ ns_public;
Crypt (pubEK B) (Nonce NB) ∈ parts (spies evs);
Says B A (Crypt (pubEK A) {|Nonce NA, Nonce NB |}) ∈ set evs;
A /∈ bad; B /∈ bad ]]

=⇒ ∃ C. Says A C (Crypt (pubEK C) (Nonce NB)) ∈ set evs"
〈proof 〉

theorem B_trusts_NS3:
" [[Says B A (Crypt (pubEK A) {|Nonce NA, Nonce NB |}) ∈ set evs;

Says A’ B (Crypt (pubEK B) (Nonce NB)) ∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ ns_public ]]

=⇒ ∃ C. Says A C (Crypt (pubEK C) (Nonce NB)) ∈ set evs"
〈proof 〉

Can we strengthen the secrecy theorem Spy_not_see_NB? NO
lemma " [[evs ∈ ns_public;

Says B A (Crypt (pubEK A) {|Nonce NA, Nonce NB |}) ∈ set evs;



182 20 THE NEEDHAM-SCHROEDER PUBLIC-KEY PROTOCOL

A /∈ bad; B /∈ bad ]]
=⇒ Nonce NB /∈ analz (spies evs)"

〈proof 〉

end

20 The Needham-Schroeder Public-Key Proto-
col

Flawed version, vulnerable to Lowe’s attack. From Burrows, Abadi and Need-
ham. A Logic of Authentication. Proc. Royal Soc. 426 (1989), p. 260
theory NS_Public imports Public begin

inductive_set ns_public :: "event list set"
where
Nil: "[] ∈ ns_public"
— Initial trace is empty

| Fake: " [[evsf ∈ ns_public; X ∈ synth (analz (spies evsf))]]
=⇒ Says Spy B X # evsf ∈ ns_public"

— The spy can say almost anything.
| NS1: " [[evs1 ∈ ns_public; Nonce NA /∈ used evs1]]

=⇒ Says A B (Crypt (pubEK B) {|Nonce NA, Agent A |})
# evs1 ∈ ns_public"

— Alice initiates a protocol run, sending a nonce to Bob
| NS2: " [[evs2 ∈ ns_public; Nonce NB /∈ used evs2;

Says A’ B (Crypt (pubEK B) {|Nonce NA, Agent A |}) ∈ set evs2]]
=⇒ Says B A (Crypt (pubEK A) {|Nonce NA, Nonce NB, Agent B |})

# evs2 ∈ ns_public"
— Bob responds to Alice’s message with a further nonce

| NS3: " [[evs3 ∈ ns_public;
Says A B (Crypt (pubEK B) {|Nonce NA, Agent A |}) ∈ set evs3;
Says B’ A (Crypt (pubEK A) {|Nonce NA, Nonce NB, Agent B |}) ∈ set

evs3]]
=⇒ Says A B (Crypt (pubEK B) (Nonce NB)) # evs3 ∈ ns_public"

— Alice proves her existence by sending NB back to Bob.

declare knows_Spy_partsEs [elim]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]

A "possibility property": there are traces that reach the end
lemma "∃ NB. ∃ evs ∈ ns_public. Says A B (Crypt (pubEK B) (Nonce NB)) ∈ set
evs"
〈proof 〉

20.1 Inductive proofs about ns_public

Spy never sees another agent’s private key! (unless it’s bad at start)
lemma Spy_see_priEK [simp]:
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"evs ∈ ns_public =⇒ (Key (priEK A) ∈ parts (spies evs)) = (A ∈ bad)"
〈proof 〉

lemma Spy_analz_priEK [simp]:
"evs ∈ ns_public =⇒ (Key (priEK A) ∈ analz (spies evs)) = (A ∈ bad)"
〈proof 〉

20.2 Authenticity properties obtained from term NS1
It is impossible to re-use a nonce in both term NS1 and term NS2, provided the
nonce is secret. (Honest users generate fresh nonces.)
lemma no_nonce_NS1_NS2:

" [[evs ∈ ns_public;
Crypt (pubEK C) {|NA’, Nonce NA, Agent D |} ∈ parts (spies evs);
Crypt (pubEK B) {|Nonce NA, Agent A |} ∈ parts (spies evs)]]

=⇒ Nonce NA ∈ analz (spies evs)"
〈proof 〉

Unicity for term NS1: nonce term NA identifies agents term A and term B
lemma unique_NA:

assumes NA: "Crypt(pubEK B) {|Nonce NA, Agent A |} ∈ parts(spies evs)"
"Crypt(pubEK B’) {|Nonce NA, Agent A’|} ∈ parts(spies evs)"
"Nonce NA /∈ analz (spies evs)"

and evs: "evs ∈ ns_public"
shows "A=A’ ∧ B=B’"
〈proof 〉

Secrecy: Spy does not see the nonce sent in msg term NS1 if term A and term
B are secure The major premise "Says A B ..." makes it a dest-rule, hence the
given assumption order.
theorem Spy_not_see_NA:

assumes NA: "Says A B (Crypt(pubEK B) {|Nonce NA, Agent A |}) ∈ set evs"
"A /∈ bad" "B /∈ bad"

and evs: "evs ∈ ns_public"
shows "Nonce NA /∈ analz (spies evs)"
〈proof 〉

Authentication for term A: if she receives message 2 and has used term NA to
start a run, then term B has sent message 2.
lemma A_trusts_NS2_lemma:

" [[evs ∈ ns_public;
Crypt (pubEK A) {|Nonce NA, Nonce NB, Agent B |} ∈ parts (spies evs);
Says A B (Crypt(pubEK B) {|Nonce NA, Agent A |}) ∈ set evs;
A /∈ bad; B /∈ bad ]]

=⇒ Says B A (Crypt(pubEK A) {|Nonce NA, Nonce NB, Agent B |}) ∈ set evs"
〈proof 〉

theorem A_trusts_NS2:
" [[Says A B (Crypt(pubEK B) {|Nonce NA, Agent A |}) ∈ set evs;

Says B’ A (Crypt(pubEK A) {|Nonce NA, Nonce NB, Agent B |}) ∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ ns_public ]]

=⇒ Says B A (Crypt(pubEK A) {|Nonce NA, Nonce NB, Agent B |}) ∈ set evs"
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〈proof 〉

If the encrypted message appears then it originated with Alice in term NS1

lemma B_trusts_NS1:
" [[evs ∈ ns_public;

Crypt (pubEK B) {|Nonce NA, Agent A |} ∈ parts (spies evs);
Nonce NA /∈ analz (spies evs)]]

=⇒ Says A B (Crypt (pubEK B) {|Nonce NA, Agent A |}) ∈ set evs"
〈proof 〉

20.3 Authenticity properties obtained from term NS2

Unicity for term NS2: nonce term NB identifies nonce term NA and agent term
A [proof closely follows that for unique_NA ]

lemma unique_NB [dest]:
assumes NB: "Crypt(pubEK A) {|Nonce NA, Nonce NB, Agent B |} ∈ parts(spies

evs)"
"Crypt(pubEK A’) {|Nonce NA’, Nonce NB, Agent B’|} ∈ parts(spies

evs)"
"Nonce NB /∈ analz (spies evs)"

and evs: "evs ∈ ns_public"
shows "A=A’ ∧ NA=NA’ ∧ B=B’"
〈proof 〉

term NB remains secret

theorem Spy_not_see_NB [dest]:
assumes NB: "Says B A (Crypt (pubEK A) {|Nonce NA, Nonce NB, Agent B |}) ∈

set evs"
"A /∈ bad" "B /∈ bad"

and evs: "evs ∈ ns_public"
shows "Nonce NB /∈ analz (spies evs)"
〈proof 〉

Authentication for term B: if he receives message 3 and has used term NB in
message 2, then term A has sent message 3.

lemma B_trusts_NS3_lemma:
" [[evs ∈ ns_public;

Crypt (pubEK B) (Nonce NB) ∈ parts (spies evs);
Says B A (Crypt (pubEK A) {|Nonce NA, Nonce NB, Agent B |}) ∈ set evs;
A /∈ bad; B /∈ bad ]]

=⇒ Says A B (Crypt (pubEK B) (Nonce NB)) ∈ set evs"
〈proof 〉

theorem B_trusts_NS3:
" [[Says B A (Crypt (pubEK A) {|Nonce NA, Nonce NB, Agent B |}) ∈ set evs;

Says A’ B (Crypt (pubEK B) (Nonce NB)) ∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ ns_public ]]

=⇒ Says A B (Crypt (pubEK B) (Nonce NB)) ∈ set evs"
〈proof 〉
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20.4 Overall guarantee for term B
If NS3 has been sent and the nonce NB agrees with the nonce B joined with
NA, then A initiated the run using NA.
theorem B_trusts_protocol:

" [[A /∈ bad; B /∈ bad; evs ∈ ns_public ]] =⇒
Crypt (pubEK B) (Nonce NB) ∈ parts (spies evs) −→
Says B A (Crypt (pubEK A) {|Nonce NA, Nonce NB, Agent B |}) ∈ set evs

−→
Says A B (Crypt (pubEK B) {|Nonce NA, Agent A |}) ∈ set evs"

〈proof 〉

end

21 The TLS Protocol: Transport Layer Security
theory TLS imports Public "HOL-Library.Nat_Bijection" begin

definition certificate :: "[agent,key] ⇒ msg" where
"certificate A KA == Crypt (priSK Server) {|Agent A, Key KA |}"

TLS apparently does not require separate keypairs for encryption and signature.
Therefore, we formalize signature as encryption using the private encryption key.
datatype role = ClientRole | ServerRole

consts

PRF :: "nat*nat*nat ⇒ nat"

sessionK :: "(nat*nat*nat) * role ⇒ key"

abbreviation
clientK :: "nat*nat*nat ⇒ key" where
"clientK X == sessionK(X, ClientRole)"

abbreviation
serverK :: "nat*nat*nat ⇒ key" where
"serverK X == sessionK(X, ServerRole)"

specification (PRF)
inj_PRF: "inj PRF"
— the pseudo-random function is collision-free
〈proof 〉

specification (sessionK)
inj_sessionK: "inj sessionK"
— sessionK is collision-free; also, no clientK clashes with any serverK.
〈proof 〉

axiomatization where
— sessionK makes symmetric keys
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isSym_sessionK: "sessionK nonces ∈ symKeys" and

— sessionK never clashes with a long-term symmetric key (they don’t exist in TLS
anyway)

sessionK_neq_shrK [iff]: "sessionK nonces 6= shrK A"

inductive_set tls :: "event list set"
where
Nil: — The initial, empty trace

"[] ∈ tls"

| Fake: — The Spy may say anything he can say. The sender field is correct, but
agents don’t use that information.

" [[evsf ∈ tls; X ∈ synth (analz (spies evsf))]]
=⇒ Says Spy B X # evsf ∈ tls"

| SpyKeys: — The spy may apply PRF and sessionK to available nonces
" [[evsSK ∈ tls;

{Nonce NA, Nonce NB, Nonce M} ⊆ analz (spies evsSK)]]
=⇒ Notes Spy {| Nonce (PRF(M,NA,NB)),

Key (sessionK((NA,NB,M),role))|} # evsSK ∈ tls"

| ClientHello:
— (7.4.1.2) PA represents CLIENT_VERSION, CIPHER_SUITES and COMPRESSION_METHODS.

It is uninterpreted but will be confirmed in the FINISHED messages. NA is CLIENT
RANDOM, while SID is SESSION_ID. UNIX TIME is omitted because the protocol
doesn’t use it. May assume NA /∈ range PRF because CLIENT RANDOM is 28 bytes
while MASTER SECRET is 48 bytes

" [[evsCH ∈ tls; Nonce NA /∈ used evsCH; NA /∈ range PRF ]]
=⇒ Says A B {|Agent A, Nonce NA, Number SID, Number PA |}

# evsCH ∈ tls"

| ServerHello:
— 7.4.1.3 of the TLS Internet-Draft PB represents CLIENT_VERSION, CIPHER_SUITE

and COMPRESSION_METHOD. SERVER CERTIFICATE (7.4.2) is always present. CERTIFICATE_REQUEST
(7.4.4) is implied.

" [[evsSH ∈ tls; Nonce NB /∈ used evsSH; NB /∈ range PRF;
Says A’ B {|Agent A, Nonce NA, Number SID, Number PA |}
∈ set evsSH ]]

=⇒ Says B A {|Nonce NB, Number SID, Number PB |} # evsSH ∈ tls"

| Certificate:
— SERVER (7.4.2) or CLIENT (7.4.6) CERTIFICATE.
"evsC ∈ tls =⇒ Says B A (certificate B (pubK B)) # evsC ∈ tls"

| ClientKeyExch:
— CLIENT KEY EXCHANGE (7.4.7). The client, A, chooses PMS, the

PREMASTER SECRET. She encrypts PMS using the supplied KB, which ought to be
pubK B. We assume PMS /∈ range PRF because a clash betweem the PMS and another
MASTER SECRET is highly unlikely (even though both items have the same length,
48 bytes). The Note event records in the trace that she knows PMS (see REMARK
at top).

" [[evsCX ∈ tls; Nonce PMS /∈ used evsCX; PMS /∈ range PRF;
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Says B’ A (certificate B KB) ∈ set evsCX ]]
=⇒ Says A B (Crypt KB (Nonce PMS))

# Notes A {|Agent B, Nonce PMS |}
# evsCX ∈ tls"

| CertVerify:
— The optional Certificate Verify (7.4.8) message contains the specific com-

ponents listed in the security analysis, F.1.1.2. It adds the pre-master-secret, which is
also essential! Checking the signature, which is the only use of A’s certificate, assures
B of A’s presence

" [[evsCV ∈ tls;
Says B’ A {|Nonce NB, Number SID, Number PB |} ∈ set evsCV;
Notes A {|Agent B, Nonce PMS |} ∈ set evsCV ]]

=⇒ Says A B (Crypt (priK A) (Hash{|Nonce NB, Agent B, Nonce PMS |}))
# evsCV ∈ tls"

— Finally come the FINISHED messages (7.4.8), confirming PA and PB
among other things. The master-secret is PRF(PMS,NA,NB). Either party may send
its message first.

| ClientFinished:
— The occurrence of Notes A {|Agent B, Nonce PMS |} stops the rule’s ap-

plying when the Spy has satisfied the Says A B by repaying messages sent by the true
client; in that case, the Spy does not know PMS and could not send ClientFinished.
One could simply put A 6= Spy into the rule, but one should not expect the spy to be
well-behaved.

" [[evsCF ∈ tls;
Says A B {|Agent A, Nonce NA, Number SID, Number PA |}
∈ set evsCF;

Says B’ A {|Nonce NB, Number SID, Number PB |} ∈ set evsCF;
Notes A {|Agent B, Nonce PMS |} ∈ set evsCF;
M = PRF(PMS,NA,NB)]]

=⇒ Says A B (Crypt (clientK(NA,NB,M))
(Hash{|Number SID, Nonce M,

Nonce NA, Number PA, Agent A,
Nonce NB, Number PB, Agent B |}))

# evsCF ∈ tls"

| ServerFinished:
— Keeping A’ and A” distinct means B cannot even check that the two

messages originate from the same source.
" [[evsSF ∈ tls;

Says A’ B {|Agent A, Nonce NA, Number SID, Number PA |}
∈ set evsSF;

Says B A {|Nonce NB, Number SID, Number PB |} ∈ set evsSF;
Says A’’ B (Crypt (pubK B) (Nonce PMS)) ∈ set evsSF;
M = PRF(PMS,NA,NB)]]

=⇒ Says B A (Crypt (serverK(NA,NB,M))
(Hash{|Number SID, Nonce M,

Nonce NA, Number PA, Agent A,
Nonce NB, Number PB, Agent B |}))

# evsSF ∈ tls"

| ClientAccepts:
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— Having transmitted ClientFinished and received an identical message en-
crypted with serverK, the client stores the parameters needed to resume this session.
The "Notes A ..." premise is used to prove Notes_master_imp_Crypt_PMS.

" [[evsCA ∈ tls;
Notes A {|Agent B, Nonce PMS |} ∈ set evsCA;
M = PRF(PMS,NA,NB);
X = Hash{|Number SID, Nonce M,

Nonce NA, Number PA, Agent A,
Nonce NB, Number PB, Agent B |};

Says A B (Crypt (clientK(NA,NB,M)) X) ∈ set evsCA;
Says B’ A (Crypt (serverK(NA,NB,M)) X) ∈ set evsCA ]]

=⇒
Notes A {|Number SID, Agent A, Agent B, Nonce M |} # evsCA ∈ tls"

| ServerAccepts:
— Having transmitted ServerFinished and received an identical message en-

crypted with clientK, the server stores the parameters needed to resume this session.
The "Says A” B ..." premise is used to prove Notes_master_imp_Crypt_PMS.

" [[evsSA ∈ tls;
A 6= B;
Says A’’ B (Crypt (pubK B) (Nonce PMS)) ∈ set evsSA;
M = PRF(PMS,NA,NB);
X = Hash{|Number SID, Nonce M,

Nonce NA, Number PA, Agent A,
Nonce NB, Number PB, Agent B |};

Says B A (Crypt (serverK(NA,NB,M)) X) ∈ set evsSA;
Says A’ B (Crypt (clientK(NA,NB,M)) X) ∈ set evsSA ]]

=⇒
Notes B {|Number SID, Agent A, Agent B, Nonce M |} # evsSA ∈ tls"

| ClientResume:
— If A recalls the SESSION_ID, then she sends a FINISHED message using

the new nonces and stored MASTER SECRET.
" [[evsCR ∈ tls;

Says A B {|Agent A, Nonce NA, Number SID, Number PA |} ∈ set evsCR;
Says B’ A {|Nonce NB, Number SID, Number PB |} ∈ set evsCR;
Notes A {|Number SID, Agent A, Agent B, Nonce M |} ∈ set evsCR ]]

=⇒ Says A B (Crypt (clientK(NA,NB,M))
(Hash{|Number SID, Nonce M,

Nonce NA, Number PA, Agent A,
Nonce NB, Number PB, Agent B |}))

# evsCR ∈ tls"

| ServerResume:
— Resumption (7.3): If B finds the SESSION_ID then he can send a FIN-

ISHED message using the recovered MASTER SECRET
" [[evsSR ∈ tls;

Says A’ B {|Agent A, Nonce NA, Number SID, Number PA |} ∈ set evsSR;
Says B A {|Nonce NB, Number SID, Number PB |} ∈ set evsSR;
Notes B {|Number SID, Agent A, Agent B, Nonce M |} ∈ set evsSR ]]

=⇒ Says B A (Crypt (serverK(NA,NB,M))
(Hash{|Number SID, Nonce M,

Nonce NA, Number PA, Agent A,
Nonce NB, Number PB, Agent B |})) # evsSR
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∈ tls"

| Oops:
— The most plausible compromise is of an old session key. Losing the

MASTER SECRET or PREMASTER SECRET is more serious but rather unlikely.
The assumption A 6= Spy is essential: otherwise the Spy could learn session keys
merely by replaying messages!

" [[evso ∈ tls; A 6= Spy;
Says A B (Crypt (sessionK((NA,NB,M),role)) X) ∈ set evso ]]

=⇒ Says A Spy (Key (sessionK((NA,NB,M),role))) # evso ∈ tls"

declare Says_imp_knows_Spy [THEN analz.Inj, dest]
declare parts.Body [dest]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]

Automatically unfold the definition of "certificate"
declare certificate_def [simp]

Injectiveness of key-generating functions
declare inj_PRF [THEN inj_eq, iff]
declare inj_sessionK [THEN inj_eq, iff]
declare isSym_sessionK [simp]

lemma pubK_neq_sessionK [iff]: "publicKey b A 6= sessionK arg"
〈proof 〉

declare pubK_neq_sessionK [THEN not_sym, iff]

lemma priK_neq_sessionK [iff]: "invKey (publicKey b A) 6= sessionK arg"
〈proof 〉

declare priK_neq_sessionK [THEN not_sym, iff]

lemmas keys_distinct = pubK_neq_sessionK priK_neq_sessionK

21.1 Protocol Proofs
Possibility properties state that some traces run the protocol to the end. Four
paths and 12 rules are considered.

Possibility property ending with ClientAccepts.
lemma " [[∀ evs. (SOME N. Nonce N /∈ used evs) /∈ range PRF; A 6= B ]]

=⇒ ∃ SID M. ∃ evs ∈ tls.
Notes A {|Number SID, Agent A, Agent B, Nonce M |} ∈ set evs"

〈proof 〉

And one for ServerAccepts. Either FINISHED message may come first.
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lemma " [[∀ evs. (SOME N. Nonce N /∈ used evs) /∈ range PRF; A 6= B ]]
=⇒ ∃ SID NA PA NB PB M. ∃ evs ∈ tls.

Notes B {|Number SID, Agent A, Agent B, Nonce M |} ∈ set evs"
〈proof 〉

Another one, for CertVerify (which is optional)

lemma " [[∀ evs. (SOME N. Nonce N /∈ used evs) /∈ range PRF; A 6= B ]]
=⇒ ∃ NB PMS. ∃ evs ∈ tls.

Says A B (Crypt (priK A) (Hash{|Nonce NB, Agent B, Nonce PMS |}))

∈ set evs"
〈proof 〉

Another one, for session resumption (both ServerResume and ClientResume).
NO tls.Nil here: we refer to a previous session, not the empty trace.

lemma " [[evs0 ∈ tls;
Notes A {|Number SID, Agent A, Agent B, Nonce M |} ∈ set evs0;
Notes B {|Number SID, Agent A, Agent B, Nonce M |} ∈ set evs0;
∀ evs. (SOME N. Nonce N /∈ used evs) /∈ range PRF;
A 6= B ]]

=⇒ ∃ NA PA NB PB X. ∃ evs ∈ tls.
X = Hash{|Number SID, Nonce M,

Nonce NA, Number PA, Agent A,
Nonce NB, Number PB, Agent B |} ∧

Says A B (Crypt (clientK(NA,NB,M)) X) ∈ set evs ∧
Says B A (Crypt (serverK(NA,NB,M)) X) ∈ set evs"

〈proof 〉

21.2 Inductive proofs about tls

Spy never sees a good agent’s private key!

lemma Spy_see_priK [simp]:
"evs ∈ tls =⇒ (Key (privateKey b A) ∈ parts (spies evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_analz_priK [simp]:
"evs ∈ tls =⇒ (Key (privateKey b A) ∈ analz (spies evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_see_priK_D [dest!]:
" [[Key (privateKey b A) ∈ parts (knows Spy evs); evs ∈ tls ]] =⇒ A ∈ bad"

〈proof 〉

This lemma says that no false certificates exist. One might extend the model
to include bogus certificates for the agents, but there seems little point in doing
so: the loss of their private keys is a worse breach of security.

lemma certificate_valid:
" [[certificate B KB ∈ parts (spies evs); evs ∈ tls ]] =⇒ KB = pubK B"

〈proof 〉

lemmas CX_KB_is_pubKB = Says_imp_spies [THEN parts.Inj, THEN certificate_valid]
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21.2.1 Properties of items found in Notes
lemma Notes_Crypt_parts_spies:

" [[Notes A {|Agent B, X |} ∈ set evs; evs ∈ tls ]]
=⇒ Crypt (pubK B) X ∈ parts (spies evs)"

〈proof 〉

C may be either A or B

lemma Notes_master_imp_Crypt_PMS:
" [[Notes C {|s, Agent A, Agent B, Nonce(PRF(PMS,NA,NB))|} ∈ set evs;

evs ∈ tls ]]
=⇒ Crypt (pubK B) (Nonce PMS) ∈ parts (spies evs)"

〈proof 〉

Compared with the theorem above, both premise and conclusion are stronger

lemma Notes_master_imp_Notes_PMS:
" [[Notes A {|s, Agent A, Agent B, Nonce(PRF(PMS,NA,NB))|} ∈ set evs;

evs ∈ tls ]]
=⇒ Notes A {|Agent B, Nonce PMS |} ∈ set evs"

〈proof 〉

21.2.2 Protocol goal: if B receives CertVerify, then A sent it

B can check A’s signature if he has received A’s certificate.

lemma TrustCertVerify_lemma:
" [[X ∈ parts (spies evs);

X = Crypt (priK A) (Hash{|nb, Agent B, pms |});
evs ∈ tls; A /∈ bad ]]

=⇒ Says A B X ∈ set evs"
〈proof 〉

Final version: B checks X using the distributed KA instead of priK A

lemma TrustCertVerify:
" [[X ∈ parts (spies evs);

X = Crypt (invKey KA) (Hash{|nb, Agent B, pms |});
certificate A KA ∈ parts (spies evs);
evs ∈ tls; A /∈ bad ]]

=⇒ Says A B X ∈ set evs"
〈proof 〉

If CertVerify is present then A has chosen PMS.

lemma UseCertVerify_lemma:
" [[Crypt (priK A) (Hash{|nb, Agent B, Nonce PMS |}) ∈ parts (spies evs);

evs ∈ tls; A /∈ bad ]]
=⇒ Notes A {|Agent B, Nonce PMS |} ∈ set evs"

〈proof 〉

Final version using the distributed KA instead of priK A

lemma UseCertVerify:
" [[Crypt (invKey KA) (Hash{|nb, Agent B, Nonce PMS |})

∈ parts (spies evs);
certificate A KA ∈ parts (spies evs);
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evs ∈ tls; A /∈ bad ]]
=⇒ Notes A {|Agent B, Nonce PMS |} ∈ set evs"

〈proof 〉

lemma no_Notes_A_PRF [simp]:
"evs ∈ tls =⇒ Notes A {|Agent B, Nonce (PRF x)|} /∈ set evs"

〈proof 〉

lemma MS_imp_PMS [dest!]:
" [[Nonce (PRF (PMS,NA,NB)) ∈ parts (spies evs); evs ∈ tls ]]
=⇒ Nonce PMS ∈ parts (spies evs)"

〈proof 〉

21.2.3 Unicity results for PMS, the pre-master-secret

PMS determines B.
lemma Crypt_unique_PMS:

" [[Crypt(pubK B) (Nonce PMS) ∈ parts (spies evs);
Crypt(pubK B’) (Nonce PMS) ∈ parts (spies evs);
Nonce PMS /∈ analz (spies evs);
evs ∈ tls ]]

=⇒ B=B’"
〈proof 〉

In A’s internal Note, PMS determines A and B.
lemma Notes_unique_PMS:

" [[Notes A {|Agent B, Nonce PMS |} ∈ set evs;
Notes A’ {|Agent B’, Nonce PMS |} ∈ set evs;
evs ∈ tls ]]

=⇒ A=A’ ∧ B=B’"
〈proof 〉

21.3 Secrecy Theorems
Key compromise lemma needed to prove analz_image_keys. No collection of
keys can help the spy get new private keys.
lemma analz_image_priK [rule_format]:

"evs ∈ tls
=⇒ ∀ KK. (Key(priK B) ∈ analz (Key‘KK ∪ (spies evs))) =

(priK B ∈ KK | B ∈ bad)"
〈proof 〉

slightly speeds up the big simplification below
lemma range_sessionkeys_not_priK:

"KK ⊆ range sessionK =⇒ priK B /∈ KK"
〈proof 〉

Lemma for the trivial direction of the if-and-only-if
lemma analz_image_keys_lemma:

"(X ∈ analz (G ∪ H)) −→ (X ∈ analz H) =⇒
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(X ∈ analz (G ∪ H)) = (X ∈ analz H)"
〈proof 〉

lemma analz_image_keys [rule_format]:
"evs ∈ tls =⇒
∀ KK. KK ⊆ range sessionK −→

(Nonce N ∈ analz (Key‘KK ∪ (spies evs))) =
(Nonce N ∈ analz (spies evs))"

〈proof 〉

Knowing some session keys is no help in getting new nonces

lemma analz_insert_key [simp]:
"evs ∈ tls =⇒
(Nonce N ∈ analz (insert (Key (sessionK z)) (spies evs))) =
(Nonce N ∈ analz (spies evs))"

〈proof 〉

21.3.1 Protocol goal: serverK(Na,Nb,M) and clientK(Na,Nb,M) re-
main secure

Lemma: session keys are never used if PMS is fresh. Nonces don’t have to agree,
allowing session resumption. Converse doesn’t hold; revealing PMS doesn’t force
the keys to be sent. THEY ARE NOT SUITABLE AS SAFE ELIM RULES.

lemma PMS_lemma:
" [[Nonce PMS /∈ parts (spies evs);

K = sessionK((Na, Nb, PRF(PMS,NA,NB)), role);
evs ∈ tls ]]

=⇒ Key K /∈ parts (spies evs) ∧ (∀ Y. Crypt K Y /∈ parts (spies evs))"
〈proof 〉

lemma PMS_sessionK_not_spied:
" [[Key (sessionK((Na, Nb, PRF(PMS,NA,NB)), role)) ∈ parts (spies evs);

evs ∈ tls ]]
=⇒ Nonce PMS ∈ parts (spies evs)"

〈proof 〉

lemma PMS_Crypt_sessionK_not_spied:
" [[Crypt (sessionK((Na, Nb, PRF(PMS,NA,NB)), role)) Y

∈ parts (spies evs); evs ∈ tls ]]
=⇒ Nonce PMS ∈ parts (spies evs)"

〈proof 〉

Write keys are never sent if M (MASTER SECRET) is secure. Converse fails;
betraying M doesn’t force the keys to be sent! The strong Oops condition can
be weakened later by unicity reasoning, with some effort. NO LONGER USED:
see clientK_not_spied and serverK_not_spied

lemma sessionK_not_spied:
" [[∀ A. Says A Spy (Key (sessionK((NA,NB,M),role))) /∈ set evs;

Nonce M /∈ analz (spies evs); evs ∈ tls ]]
=⇒ Key (sessionK((NA,NB,M),role)) /∈ parts (spies evs)"
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〈proof 〉

If A sends ClientKeyExch to an honest B, then the PMS will stay secret.

lemma Spy_not_see_PMS:
" [[Notes A {|Agent B, Nonce PMS |} ∈ set evs;

evs ∈ tls; A /∈ bad; B /∈ bad ]]
=⇒ Nonce PMS /∈ analz (spies evs)"

〈proof 〉

If A sends ClientKeyExch to an honest B, then the MASTER SECRET will
stay secret.

lemma Spy_not_see_MS:
" [[Notes A {|Agent B, Nonce PMS |} ∈ set evs;

evs ∈ tls; A /∈ bad; B /∈ bad ]]
=⇒ Nonce (PRF(PMS,NA,NB)) /∈ analz (spies evs)"

〈proof 〉

21.3.2 Weakening the Oops conditions for leakage of clientK

If A created PMS then nobody else (except the Spy in replays) would send a
message using a clientK generated from that PMS.

lemma Says_clientK_unique:
" [[Says A’ B’ (Crypt (clientK(Na,Nb,PRF(PMS,NA,NB))) Y) ∈ set evs;

Notes A {|Agent B, Nonce PMS |} ∈ set evs;
evs ∈ tls; A’ 6= Spy ]]

=⇒ A = A’"
〈proof 〉

If A created PMS and has not leaked her clientK to the Spy, then it is completely
secure: not even in parts!

lemma clientK_not_spied:
" [[Notes A {|Agent B, Nonce PMS |} ∈ set evs;

Says A Spy (Key (clientK(Na,Nb,PRF(PMS,NA,NB)))) /∈ set evs;
A /∈ bad; B /∈ bad;
evs ∈ tls ]]

=⇒ Key (clientK(Na,Nb,PRF(PMS,NA,NB))) /∈ parts (spies evs)"
〈proof 〉

21.3.3 Weakening the Oops conditions for leakage of serverK

If A created PMS for B, then nobody other than B or the Spy would send a
message using a serverK generated from that PMS.

lemma Says_serverK_unique:
" [[Says B’ A’ (Crypt (serverK(Na,Nb,PRF(PMS,NA,NB))) Y) ∈ set evs;

Notes A {|Agent B, Nonce PMS |} ∈ set evs;
evs ∈ tls; A /∈ bad; B /∈ bad; B’ 6= Spy ]]

=⇒ B = B’"
〈proof 〉

If A created PMS for B, and B has not leaked his serverK to the Spy, then it is
completely secure: not even in parts!
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lemma serverK_not_spied:
" [[Notes A {|Agent B, Nonce PMS |} ∈ set evs;

Says B Spy (Key(serverK(Na,Nb,PRF(PMS,NA,NB)))) /∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ tls ]]

=⇒ Key (serverK(Na,Nb,PRF(PMS,NA,NB))) /∈ parts (spies evs)"
〈proof 〉

21.3.4 Protocol goals: if A receives ServerFinished, then B is present
and has used the quoted values PA, PB, etc. Note that it is
up to A to compare PA with what she originally sent.

The mention of her name (A) in X assures A that B knows who she is.

lemma TrustServerFinished [rule_format]:
" [[X = Crypt (serverK(Na,Nb,M))

(Hash{|Number SID, Nonce M,
Nonce Na, Number PA, Agent A,
Nonce Nb, Number PB, Agent B |});

M = PRF(PMS,NA,NB);
evs ∈ tls; A /∈ bad; B /∈ bad ]]

=⇒ Says B Spy (Key(serverK(Na,Nb,M))) /∈ set evs −→
Notes A {|Agent B, Nonce PMS |} ∈ set evs −→
X ∈ parts (spies evs) −→ Says B A X ∈ set evs"

〈proof 〉

This version refers not to ServerFinished but to any message from B. We don’t
assume B has received CertVerify, and an intruder could have changed A’s
identity in all other messages, so we can’t be sure that B sends his message
to A. If CLIENT KEY EXCHANGE were augmented to bind A’s identity with
PMS, then we could replace A’ by A below.

lemma TrustServerMsg [rule_format]:
" [[M = PRF(PMS,NA,NB); evs ∈ tls; A /∈ bad; B /∈ bad ]]
=⇒ Says B Spy (Key(serverK(Na,Nb,M))) /∈ set evs −→

Notes A {|Agent B, Nonce PMS |} ∈ set evs −→
Crypt (serverK(Na,Nb,M)) Y ∈ parts (spies evs) −→
(∃ A’. Says B A’ (Crypt (serverK(Na,Nb,M)) Y) ∈ set evs)"

〈proof 〉

21.3.5 Protocol goal: if B receives any message encrypted with clientK
then A has sent it

ASSUMING that A chose PMS. Authentication is assumed here; B cannot verify
it. But if the message is ClientFinished, then B can then check the quoted values
PA, PB, etc.

lemma TrustClientMsg [rule_format]:
" [[M = PRF(PMS,NA,NB); evs ∈ tls; A /∈ bad; B /∈ bad ]]
=⇒ Says A Spy (Key(clientK(Na,Nb,M))) /∈ set evs −→

Notes A {|Agent B, Nonce PMS |} ∈ set evs −→
Crypt (clientK(Na,Nb,M)) Y ∈ parts (spies evs) −→
Says A B (Crypt (clientK(Na,Nb,M)) Y) ∈ set evs"

〈proof 〉
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21.3.6 Protocol goal: if B receives ClientFinished, and if B is able to
check a CertVerify from A, then A has used the quoted values
PA, PB, etc. Even this one requires A to be uncompromised.

lemma AuthClientFinished:
" [[M = PRF(PMS,NA,NB);

Says A Spy (Key(clientK(Na,Nb,M))) /∈ set evs;
Says A’ B (Crypt (clientK(Na,Nb,M)) Y) ∈ set evs;
certificate A KA ∈ parts (spies evs);
Says A’’ B (Crypt (invKey KA) (Hash{|nb, Agent B, Nonce PMS |}))
∈ set evs;

evs ∈ tls; A /∈ bad; B /∈ bad ]]
=⇒ Says A B (Crypt (clientK(Na,Nb,M)) Y) ∈ set evs"

〈proof 〉

end

22 The Certified Electronic Mail Protocol by
Abadi et al.

theory CertifiedEmail imports Public begin

abbreviation
TTP :: agent where
"TTP == Server"

abbreviation
RPwd :: "agent ⇒ key" where
"RPwd == shrK"

consts
NoAuth :: nat
TTPAuth :: nat
SAuth :: nat
BothAuth :: nat

We formalize a fixed way of computing responses. Could be better.
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definition "response" :: "agent ⇒ agent ⇒ nat ⇒ msg" where
"response S R q == Hash {|Agent S, Key (shrK R), Nonce q |}"

inductive_set certified_mail :: "event list set"
where

Nil: — The empty trace
"[] ∈ certified_mail"

| Fake: — The Spy may say anything he can say. The sender field is correct, but
agents don’t use that information.

" [[evsf ∈ certified_mail; X ∈ synth(analz(spies evsf))]]
=⇒ Says Spy B X # evsf ∈ certified_mail"

| FakeSSL: — The Spy may open SSL sessions with TTP, who is the only agent
equipped with the necessary credentials to serve as an SSL server.

" [[evsfssl ∈ certified_mail; X ∈ synth(analz(spies evsfssl))]]
=⇒ Notes TTP {|Agent Spy, Agent TTP, X |} # evsfssl ∈ certified_mail"

| CM1: — The sender approaches the recipient. The message is a number.
" [[evs1 ∈ certified_mail;

Key K /∈ used evs1;
K ∈ symKeys;
Nonce q /∈ used evs1;
hs = Hash{|Number cleartext, Nonce q, response S R q, Crypt K (Number m)|};
S2TTP = Crypt(pubEK TTP) {|Agent S, Number BothAuth, Key K, Agent R, hs |}]]

=⇒ Says S R {|Agent S, Agent TTP, Crypt K (Number m), Number BothAuth,
Number cleartext, Nonce q, S2TTP |} # evs1

∈ certified_mail"

| CM2: — The recipient records S2TTP while transmitting it and her password to TTP
over an SSL channel.
" [[evs2 ∈ certified_mail;

Gets R {|Agent S, Agent TTP, em, Number BothAuth, Number cleartext,
Nonce q, S2TTP |} ∈ set evs2;

TTP 6= R;
hr = Hash {|Number cleartext, Nonce q, response S R q, em |}]]

=⇒
Notes TTP {|Agent R, Agent TTP, S2TTP, Key(RPwd R), hr |} # evs2
∈ certified_mail"

| CM3: — TTP simultaneously reveals the key to the recipient and gives a receipt to
the sender. The SSL channel does not authenticate the client (R), but TTP accepts the
message only if the given password is that of the claimed sender, R. He replies over the
established SSL channel.
" [[evs3 ∈ certified_mail;

Notes TTP {|Agent R, Agent TTP, S2TTP, Key(RPwd R), hr |} ∈ set evs3;
S2TTP = Crypt (pubEK TTP)

{|Agent S, Number BothAuth, Key k, Agent R, hs |};
TTP 6= R; hs = hr; k ∈ symKeys ]]

=⇒
Notes R {|Agent TTP, Agent R, Key k, hr |} #
Gets S (Crypt (priSK TTP) S2TTP) #
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Says TTP S (Crypt (priSK TTP) S2TTP) # evs3 ∈ certified_mail"

| Reception:
" [[evsr ∈ certified_mail; Says A B X ∈ set evsr ]]
=⇒ Gets B X#evsr ∈ certified_mail"

declare Says_imp_knows_Spy [THEN analz.Inj, dest]
declare analz_into_parts [dest]

lemma " [[Key K /∈ used []; K ∈ symKeys ]] =⇒
∃ S2TTP. ∃ evs ∈ certified_mail.

Says TTP S (Crypt (priSK TTP) S2TTP) ∈ set evs"
〈proof 〉

lemma Gets_imp_Says:
" [[Gets B X ∈ set evs; evs ∈ certified_mail ]] =⇒ ∃ A. Says A B X ∈ set evs"
〈proof 〉

lemma Gets_imp_parts_knows_Spy:
" [[Gets A X ∈ set evs; evs ∈ certified_mail ]] =⇒ X ∈ parts(spies evs)"

〈proof 〉

lemma CM2_S2TTP_analz_knows_Spy:
" [[Gets R {|Agent A, Agent B, em, Number AO, Number cleartext,

Nonce q, S2TTP |} ∈ set evs;
evs ∈ certified_mail ]]

=⇒ S2TTP ∈ analz(spies evs)"
〈proof 〉

lemmas CM2_S2TTP_parts_knows_Spy =
CM2_S2TTP_analz_knows_Spy [THEN analz_subset_parts [THEN subsetD]]

lemma hr_form_lemma [rule_format]:
"evs ∈ certified_mail
=⇒ hr /∈ synth (analz (spies evs)) −→

(∀ S2TTP. Notes TTP {|Agent R, Agent TTP, S2TTP, pwd, hr |}
∈ set evs −→

(∃ clt q S em. hr = Hash {|Number clt, Nonce q, response S R q, em |}))"
〈proof 〉

Cannot strengthen the first disjunct to R 6= Spy because the fakessl rule allows
Spy to spoof the sender’s name. Maybe can strengthen the second disjunct with
R 6= Spy.
lemma hr_form:
" [[Notes TTP {|Agent R, Agent TTP, S2TTP, pwd, hr |} ∈ set evs;

evs ∈ certified_mail ]]
=⇒ hr ∈ synth (analz (spies evs)) |

(∃ clt q S em. hr = Hash {|Number clt, Nonce q, response S R q, em |})"
〈proof 〉
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lemma Spy_dont_know_private_keys [dest!]:
" [[Key (privateKey b A) ∈ parts (spies evs); evs ∈ certified_mail ]]
=⇒ A ∈ bad"

〈proof 〉

lemma Spy_know_private_keys_iff [simp]:
"evs ∈ certified_mail
=⇒ (Key (privateKey b A) ∈ parts (spies evs)) = (A ∈ bad)"

〈proof 〉

lemma Spy_dont_know_TTPKey_parts [simp]:
"evs ∈ certified_mail =⇒ Key (privateKey b TTP) /∈ parts(spies evs)"

〈proof 〉

lemma Spy_dont_know_TTPKey_analz [simp]:
"evs ∈ certified_mail =⇒ Key (privateKey b TTP) /∈ analz(spies evs)"

〈proof 〉

Thus, prove any goal that assumes that Spy knows a private key belonging to
TTP

declare Spy_dont_know_TTPKey_parts [THEN [2] rev_notE, elim!]

lemma CM3_k_parts_knows_Spy:
" [[evs ∈ certified_mail;

Notes TTP {|Agent A, Agent TTP,
Crypt (pubEK TTP) {|Agent S, Number AO, Key K,
Agent R, hs |}, Key (RPwd R), hs |} ∈ set evs ]]

=⇒ Key K ∈ parts(spies evs)"
〈proof 〉

lemma Spy_dont_know_RPwd [rule_format]:
"evs ∈ certified_mail =⇒ Key (RPwd A) ∈ parts(spies evs) −→ A ∈ bad"

〈proof 〉

lemma Spy_know_RPwd_iff [simp]:
"evs ∈ certified_mail =⇒ (Key (RPwd A) ∈ parts(spies evs)) = (A∈bad)"

〈proof 〉

lemma Spy_analz_RPwd_iff [simp]:
"evs ∈ certified_mail =⇒ (Key (RPwd A) ∈ analz(spies evs)) = (A∈bad)"

〈proof 〉

Unused, but a guarantee of sorts
theorem CertAutenticity:

" [[Crypt (priSK TTP) X ∈ parts (spies evs); evs ∈ certified_mail ]]
=⇒ ∃ A. Says TTP A (Crypt (priSK TTP) X) ∈ set evs"

〈proof 〉

22.1 Proving Confidentiality Results
lemma analz_image_freshK [rule_format]:
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"evs ∈ certified_mail =⇒
∀ K KK. invKey (pubEK TTP) /∈ KK −→

(Key K ∈ analz (Key‘KK ∪ (spies evs))) =
(K ∈ KK | Key K ∈ analz (spies evs))"

〈proof 〉

lemma analz_insert_freshK:
" [[evs ∈ certified_mail; KAB 6= invKey (pubEK TTP)]] =⇒

(Key K ∈ analz (insert (Key KAB) (spies evs))) =
(K = KAB | Key K ∈ analz (spies evs))"

〈proof 〉

S2TTP must have originated from a valid sender provided K is secure. Proof is
surprisingly hard.
lemma Notes_SSL_imp_used:

" [[Notes B {|Agent A, Agent B, X |} ∈ set evs ]] =⇒ X ∈ used evs"
〈proof 〉

lemma S2TTP_sender_lemma [rule_format]:
"evs ∈ certified_mail =⇒

Key K /∈ analz (spies evs) −→
(∀ AO. Crypt (pubEK TTP)

{|Agent S, Number AO, Key K, Agent R, hs |} ∈ used evs −→
(∃ m ctxt q.

hs = Hash{|Number ctxt, Nonce q, response S R q, Crypt K (Number m)|}
∧

Says S R
{|Agent S, Agent TTP, Crypt K (Number m), Number AO,

Number ctxt, Nonce q,
Crypt (pubEK TTP)
{|Agent S, Number AO, Key K, Agent R, hs |}|} ∈ set evs))"

〈proof 〉

lemma S2TTP_sender:
" [[Crypt (pubEK TTP) {|Agent S, Number AO, Key K, Agent R, hs |} ∈ used evs;

Key K /∈ analz (spies evs);
evs ∈ certified_mail ]]

=⇒ ∃ m ctxt q.
hs = Hash{|Number ctxt, Nonce q, response S R q, Crypt K (Number m)|}

∧
Says S R
{|Agent S, Agent TTP, Crypt K (Number m), Number AO,

Number ctxt, Nonce q,
Crypt (pubEK TTP)
{|Agent S, Number AO, Key K, Agent R, hs |}|} ∈ set evs"

〈proof 〉

Nobody can have used non-existent keys!
lemma new_keys_not_used [simp]:

" [[Key K /∈ used evs; K ∈ symKeys; evs ∈ certified_mail ]]
=⇒ K /∈ keysFor (parts (spies evs))"
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〈proof 〉

Less easy to prove m’ = m. Maybe needs a separate unicity theorem for cipher-
texts of the form Crypt K (Number m), where K is secure.
lemma Key_unique_lemma [rule_format]:

"evs ∈ certified_mail =⇒
Key K /∈ analz (spies evs) −→
(∀ m cleartext q hs.
Says S R
{|Agent S, Agent TTP, Crypt K (Number m), Number AO,

Number cleartext, Nonce q,
Crypt (pubEK TTP) {|Agent S, Number AO, Key K, Agent R, hs |}|}

∈ set evs −→
(∀ m’ cleartext’ q’ hs’.
Says S’ R’

{|Agent S’, Agent TTP, Crypt K (Number m’), Number AO’,
Number cleartext’, Nonce q’,
Crypt (pubEK TTP) {|Agent S’, Number AO’, Key K, Agent R’, hs’|}|}

∈ set evs −→ R’ = R ∧ S’ = S ∧ AO’ = AO ∧ hs’ = hs))"
〈proof 〉

The key determines the sender, recipient and protocol options.
lemma Key_unique:

" [[Says S R
{|Agent S, Agent TTP, Crypt K (Number m), Number AO,

Number cleartext, Nonce q,
Crypt (pubEK TTP) {|Agent S, Number AO, Key K, Agent R, hs |}|}

∈ set evs;
Says S’ R’
{|Agent S’, Agent TTP, Crypt K (Number m’), Number AO’,

Number cleartext’, Nonce q’,
Crypt (pubEK TTP) {|Agent S’, Number AO’, Key K, Agent R’, hs’|}|}

∈ set evs;
Key K /∈ analz (spies evs);
evs ∈ certified_mail ]]

=⇒ R’ = R ∧ S’ = S ∧ AO’ = AO ∧ hs’ = hs"
〈proof 〉

22.2 The Guarantees for Sender and Recipient
A Sender’s guarantee: If Spy gets the key then R is bad and S moreover gets his
return receipt (and therefore has no grounds for complaint).
theorem S_fairness_bad_R:

" [[Says S R {|Agent S, Agent TTP, Crypt K (Number m), Number AO,
Number cleartext, Nonce q, S2TTP |} ∈ set evs;

S2TTP = Crypt (pubEK TTP) {|Agent S, Number AO, Key K, Agent R, hs |};
Key K ∈ analz (spies evs);
evs ∈ certified_mail;
S 6=Spy ]]

=⇒ R ∈ bad ∧ Gets S (Crypt (priSK TTP) S2TTP) ∈ set evs"
〈proof 〉

Confidentially for the symmetric key
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theorem Spy_not_see_encrypted_key:
" [[Says S R {|Agent S, Agent TTP, Crypt K (Number m), Number AO,

Number cleartext, Nonce q, S2TTP |} ∈ set evs;
S2TTP = Crypt (pubEK TTP) {|Agent S, Number AO, Key K, Agent R, hs |};
evs ∈ certified_mail;
S 6=Spy; R /∈ bad ]]

=⇒ Key K /∈ analz(spies evs)"
〈proof 〉

Agent R, who may be the Spy, doesn’t receive the key until S has access to the
return receipt.

theorem S_guarantee:
" [[Says S R {|Agent S, Agent TTP, Crypt K (Number m), Number AO,

Number cleartext, Nonce q, S2TTP |} ∈ set evs;
S2TTP = Crypt (pubEK TTP) {|Agent S, Number AO, Key K, Agent R, hs |};
Notes R {|Agent TTP, Agent R, Key K, hs |} ∈ set evs;
S 6=Spy; evs ∈ certified_mail ]]

=⇒ Gets S (Crypt (priSK TTP) S2TTP) ∈ set evs"
〈proof 〉

If R sends message 2, and a delivery certificate exists, then R receives the nec-
essary key. This result is also important to S, as it confirms the validity of the
return receipt.

theorem RR_validity:
" [[Crypt (priSK TTP) S2TTP ∈ used evs;

S2TTP = Crypt (pubEK TTP)
{|Agent S, Number AO, Key K, Agent R,

Hash {|Number cleartext, Nonce q, r, em |}|};
hr = Hash {|Number cleartext, Nonce q, r, em |};
R 6=Spy; evs ∈ certified_mail ]]

=⇒ Notes R {|Agent TTP, Agent R, Key K, hr |} ∈ set evs"
〈proof 〉

end

23 Conventional protocols: rely on conventional
Message, Event and Public – Public-key pro-
tocols

theory Auth_Public
imports

NS_Public_Bad
NS_Public
TLS
CertifiedEmail

begin

end
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24 Theory of Events for Security Protocols that
use smartcards

theory EventSC
imports

"../Message"
"HOL-Library.Simps_Case_Conv"

begin

consts
initState :: "agent => msg set"

datatype card = Card agent

Four new events express the traffic between an agent and his card

datatype
event = Says agent agent msg

| Notes agent msg
| Gets agent msg
| Inputs agent card msg
| C_Gets card msg
| Outpts card agent msg
| A_Gets agent msg

consts
bad :: "agent set"
stolen :: "card set"
cloned :: "card set"
secureM :: "bool"

abbreviation
insecureM :: bool where
"insecureM == ¬secureM"

Spy has access to his own key for spoof messages, but Server is secure

specification (bad)
Spy_in_bad [iff]: "Spy ∈ bad"
Server_not_bad [iff]: "Server /∈ bad"
〈proof 〉

specification (stolen)

Card_Server_not_stolen [iff]: "Card Server /∈ stolen"
Card_Spy_not_stolen [iff]: "Card Spy /∈ stolen"
〈proof 〉

specification (cloned)

Card_Server_not_cloned [iff]: "Card Server /∈ cloned"
Card_Spy_not_cloned [iff]: "Card Spy /∈ cloned"
〈proof 〉

primrec
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knows :: "agent => event list => msg set" where
knows_Nil: "knows A [] = initState A" |
knows_Cons: "knows A (ev # evs) =

(case ev of
Says A’ B X =>

if (A=A’ | A=Spy) then insert X (knows A evs) else knows A
evs

| Notes A’ X =>
if (A=A’ | (A=Spy & A’∈bad)) then insert X (knows A evs)

else knows A evs
| Gets A’ X =>

if (A=A’ & A 6= Spy) then insert X (knows A evs)
else knows A evs

| Inputs A’ C X =>
if secureM then

if A=A’ then insert X (knows A evs) else knows A evs
else

if (A=A’ | A=Spy) then insert X (knows A evs) else knows A
evs

| C_Gets C X => knows A evs
| Outpts C A’ X =>

if secureM then
if A=A’ then insert X (knows A evs) else knows A evs

else
if A=Spy then insert X (knows A evs) else knows A evs

| A_Gets A’ X =>
if (A=A’ & A 6= Spy) then insert X (knows A evs)

else knows A evs)"

primrec

used :: "event list => msg set" where
used_Nil: "used [] = (UN B. parts (initState B))" |
used_Cons: "used (ev # evs) =

(case ev of
Says A B X => parts {X} ∪ (used evs)

| Notes A X => parts {X} ∪ (used evs)
| Gets A X => used evs
| Inputs A C X => parts{X} ∪ (used evs)
| C_Gets C X => used evs
| Outpts C A X => parts{X} ∪ (used evs)
| A_Gets A X => used evs)"

— Gets always follows Says in real protocols. Likewise, C_Gets will always have
to follow Inputs and A_Gets will always have to follow Outpts

lemma Notes_imp_used [rule_format]: "Notes A X ∈ set evs −→ X ∈ used evs"
〈proof 〉

lemma Says_imp_used [rule_format]: "Says A B X ∈ set evs −→ X ∈ used evs"
〈proof 〉

lemma MPair_used [rule_format]:
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"MPair X Y ∈ used evs −→ X ∈ used evs & Y ∈ used evs"
〈proof 〉

24.1 Function knows

lemmas parts_insert_knows_A = parts_insert [of _ "knows A evs"] for A evs

lemma knows_Spy_Says [simp]:
"knows Spy (Says A B X # evs) = insert X (knows Spy evs)"

〈proof 〉

Letting the Spy see "bad" agents’ notes avoids redundant case-splits on whether
A = Spy and whether A ∈ bad

lemma knows_Spy_Notes [simp]:
"knows Spy (Notes A X # evs) =

(if A∈bad then insert X (knows Spy evs) else knows Spy evs)"
〈proof 〉

lemma knows_Spy_Gets [simp]: "knows Spy (Gets A X # evs) = knows Spy evs"
〈proof 〉

lemma knows_Spy_Inputs_secureM [simp]:
"secureM =⇒ knows Spy (Inputs A C X # evs) =

(if A=Spy then insert X (knows Spy evs) else knows Spy evs)"
〈proof 〉

lemma knows_Spy_Inputs_insecureM [simp]:
"insecureM =⇒ knows Spy (Inputs A C X # evs) = insert X (knows Spy evs)"

〈proof 〉

lemma knows_Spy_C_Gets [simp]: "knows Spy (C_Gets C X # evs) = knows Spy
evs"
〈proof 〉

lemma knows_Spy_Outpts_secureM [simp]:
"secureM =⇒ knows Spy (Outpts C A X # evs) =

(if A=Spy then insert X (knows Spy evs) else knows Spy evs)"
〈proof 〉

lemma knows_Spy_Outpts_insecureM [simp]:
"insecureM =⇒ knows Spy (Outpts C A X # evs) = insert X (knows Spy

evs)"
〈proof 〉

lemma knows_Spy_A_Gets [simp]: "knows Spy (A_Gets A X # evs) = knows Spy
evs"
〈proof 〉

lemma knows_Spy_subset_knows_Spy_Says:
"knows Spy evs ⊆ knows Spy (Says A B X # evs)"

〈proof 〉
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lemma knows_Spy_subset_knows_Spy_Notes:
"knows Spy evs ⊆ knows Spy (Notes A X # evs)"

〈proof 〉

lemma knows_Spy_subset_knows_Spy_Gets:
"knows Spy evs ⊆ knows Spy (Gets A X # evs)"

〈proof 〉

lemma knows_Spy_subset_knows_Spy_Inputs:
"knows Spy evs ⊆ knows Spy (Inputs A C X # evs)"

〈proof 〉

lemma knows_Spy_equals_knows_Spy_Gets:
"knows Spy evs = knows Spy (C_Gets C X # evs)"

〈proof 〉

lemma knows_Spy_subset_knows_Spy_Outpts: "knows Spy evs ⊆ knows Spy (Outpts
C A X # evs)"
〈proof 〉

lemma knows_Spy_subset_knows_Spy_A_Gets: "knows Spy evs ⊆ knows Spy (A_Gets
A X # evs)"
〈proof 〉

Spy sees what is sent on the traffic

lemma Says_imp_knows_Spy [rule_format]:
"Says A B X ∈ set evs −→ X ∈ knows Spy evs"

〈proof 〉

lemma Notes_imp_knows_Spy [rule_format]:
"Notes A X ∈ set evs −→ A∈ bad −→ X ∈ knows Spy evs"

〈proof 〉

lemma Inputs_imp_knows_Spy_secureM [rule_format (no_asm)]:
"Inputs Spy C X ∈ set evs −→ secureM −→ X ∈ knows Spy evs"

〈proof 〉

lemma Inputs_imp_knows_Spy_insecureM [rule_format (no_asm)]:
"Inputs A C X ∈ set evs −→ insecureM −→ X ∈ knows Spy evs"

〈proof 〉

lemma Outpts_imp_knows_Spy_secureM [rule_format (no_asm)]:
"Outpts C Spy X ∈ set evs −→ secureM −→ X ∈ knows Spy evs"

〈proof 〉

lemma Outpts_imp_knows_Spy_insecureM [rule_format (no_asm)]:
"Outpts C A X ∈ set evs −→ insecureM −→ X ∈ knows Spy evs"

〈proof 〉
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Elimination rules: derive contradictions from old Says events containing items
known to be fresh

lemmas knows_Spy_partsEs =
Says_imp_knows_Spy [THEN parts.Inj, elim_format]
parts.Body [elim_format]

24.2 Knowledge of Agents
lemma knows_Inputs: "knows A (Inputs A C X # evs) = insert X (knows A evs)"
〈proof 〉

lemma knows_C_Gets: "knows A (C_Gets C X # evs) = knows A evs"
〈proof 〉

lemma knows_Outpts_secureM:
"secureM −→ knows A (Outpts C A X # evs) = insert X (knows A evs)"

〈proof 〉

lemma knows_Outpts_insecureM:
"insecureM −→ knows Spy (Outpts C A X # evs) = insert X (knows Spy

evs)"
〈proof 〉

lemma knows_subset_knows_Says: "knows A evs ⊆ knows A (Says A’ B X # evs)"
〈proof 〉

lemma knows_subset_knows_Notes: "knows A evs ⊆ knows A (Notes A’ X # evs)"
〈proof 〉

lemma knows_subset_knows_Gets: "knows A evs ⊆ knows A (Gets A’ X # evs)"
〈proof 〉

lemma knows_subset_knows_Inputs: "knows A evs ⊆ knows A (Inputs A’ C X #
evs)"
〈proof 〉

lemma knows_subset_knows_C_Gets: "knows A evs ⊆ knows A (C_Gets C X # evs)"
〈proof 〉

lemma knows_subset_knows_Outpts: "knows A evs ⊆ knows A (Outpts C A’ X #
evs)"
〈proof 〉

lemma knows_subset_knows_A_Gets: "knows A evs ⊆ knows A (A_Gets A’ X # evs)"
〈proof 〉

Agents know what they say

lemma Says_imp_knows [rule_format]: "Says A B X ∈ set evs −→ X ∈ knows
A evs"
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〈proof 〉

Agents know what they note
lemma Notes_imp_knows [rule_format]: "Notes A X ∈ set evs −→ X ∈ knows
A evs"
〈proof 〉

Agents know what they receive
lemma Gets_imp_knows_agents [rule_format]:

"A 6= Spy −→ Gets A X ∈ set evs −→ X ∈ knows A evs"
〈proof 〉

lemma Inputs_imp_knows_agents [rule_format (no_asm)]:
"Inputs A (Card A) X ∈ set evs −→ X ∈ knows A evs"

〈proof 〉

lemma Outpts_imp_knows_agents_secureM [rule_format (no_asm)]:
"secureM −→ Outpts (Card A) A X ∈ set evs −→ X ∈ knows A evs"

〈proof 〉

lemma Outpts_imp_knows_agents_insecureM [rule_format (no_asm)]:
"insecureM −→ Outpts (Card A) A X ∈ set evs −→ X ∈ knows Spy evs"

〈proof 〉

lemma parts_knows_Spy_subset_used: "parts (knows Spy evs) ⊆ used evs"
〈proof 〉

lemmas usedI = parts_knows_Spy_subset_used [THEN subsetD, intro]

lemma initState_into_used: "X ∈ parts (initState B) =⇒ X ∈ used evs"
〈proof 〉

simps_of_case used_Cons_simps[simp]: used_Cons

lemma used_nil_subset: "used [] ⊆ used evs"
〈proof 〉

lemma Says_parts_used [rule_format (no_asm)]:
"Says A B X ∈ set evs −→ (parts {X}) ⊆ used evs"

〈proof 〉

lemma Notes_parts_used [rule_format (no_asm)]:
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"Notes A X ∈ set evs −→ (parts {X}) ⊆ used evs"
〈proof 〉

lemma Outpts_parts_used [rule_format (no_asm)]:
"Outpts C A X ∈ set evs −→ (parts {X}) ⊆ used evs"

〈proof 〉

lemma Inputs_parts_used [rule_format (no_asm)]:
"Inputs A C X ∈ set evs −→ (parts {X}) ⊆ used evs"

〈proof 〉

NOTE REMOVAL–laws above are cleaner, as they don’t involve "case"

declare knows_Cons [simp del]
used_Nil [simp del] used_Cons [simp del]

lemma knows_subset_knows_Cons: "knows A evs ⊆ knows A (e # evs)"
〈proof 〉

lemma initState_subset_knows: "initState A ⊆ knows A evs"
〈proof 〉

For proving new_keys_not_used

lemma keysFor_parts_insert:
" [[ K ∈ keysFor (parts (insert X G)); X ∈ synth (analz H) ]]
=⇒ K ∈ keysFor (parts (G ∪ H)) ∨ Key (invKey K) ∈ parts H"

〈proof 〉

end
theory All_Symmetric
imports Message
begin

All keys are symmetric

overloading all_symmetric ≡ all_symmetric
begin

definition "all_symmetric ≡ True"
end

lemma isSym_keys: "K ∈ symKeys"
〈proof 〉

end

25 Theory of smartcards
theory Smartcard
imports EventSC "../All_Symmetric"
begin

As smartcards handle long-term (symmetric) keys, this theoy extends and su-
persedes theory Private.thy
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An agent is bad if she reveals her PIN to the spy, not the shared key that
is embedded in her card. An agent’s being bad implies nothing about her
smartcard, which independently may be stolen or cloned.

axiomatization
shrK :: "agent => key" and
crdK :: "card => key" and
pin :: "agent => key" and

Pairkey :: "agent * agent => nat" and
pairK :: "agent * agent => key"

where
inj_shrK: "inj shrK" and — No two smartcards store the same key
inj_crdK: "inj crdK" and — Nor do two cards
inj_pin : "inj pin" and — Nor do two agents have the same pin

inj_pairK [iff]: "(pairK(A,B) = pairK(A’,B’)) = (A = A’ & B = B’)" and
comm_Pairkey [iff]: "Pairkey(A,B) = Pairkey(B,A)" and

pairK_disj_crdK [iff]: "pairK(A,B) 6= crdK C" and
pairK_disj_shrK [iff]: "pairK(A,B) 6= shrK P" and
pairK_disj_pin [iff]: "pairK(A,B) 6= pin P" and
shrK_disj_crdK [iff]: "shrK P 6= crdK C" and
shrK_disj_pin [iff]: "shrK P 6= pin Q" and
crdK_disj_pin [iff]: "crdK C 6= pin P"

definition legalUse :: "card => bool" (‹legalUse (_)›) where
"legalUse C == C /∈ stolen"

primrec illegalUse :: "card => bool" where
illegalUse_def: "illegalUse (Card A) = ( (Card A ∈ stolen ∧ A ∈ bad) ∨

Card A ∈ cloned )"

initState must be defined with care

overloading
initState ≡ initState

begin

primrec initState where

initState_Server: "initState Server =
(Key‘(range shrK ∪ range crdK ∪ range pin ∪ range pairK)) ∪
(Nonce‘(range Pairkey))" |

initState_Friend: "initState (Friend i) = {Key (pin (Friend i))}" |

initState_Spy: "initState Spy =
(Key‘((pin‘bad) ∪ (pin ‘{A. Card A ∈ cloned}) ∪

(shrK‘{A. Card A ∈ cloned}) ∪
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(crdK‘cloned) ∪
(pairK‘{(X,A). Card A ∈ cloned})))

∪ (Nonce‘(Pairkey‘{(A,B). Card A ∈ cloned & Card B ∈ cloned}))"

end

Still relying on axioms

axiomatization where
Key_supply_ax: "finite KK =⇒ ∃ K. K /∈ KK & Key K /∈ used evs" and

Nonce_supply_ax: "finite NN =⇒ ∃ N. N /∈ NN & Nonce N /∈ used evs"

25.1 Basic properties of shrK
declare inj_shrK [THEN inj_eq, iff]
declare inj_crdK [THEN inj_eq, iff]
declare inj_pin [THEN inj_eq, iff]

lemma invKey_K [simp]: "invKey K = K"
〈proof 〉

lemma analz_Decrypt’ [dest]:
" [[ Crypt K X ∈ analz H; Key K ∈ analz H ]] =⇒ X ∈ analz H"

〈proof 〉

Now cancel the dest attribute given to analz.Decrypt in its declaration.

declare analz.Decrypt [rule del]

Rewrites should not refer to initState (Friend i) because that expression is
not in normal form.

Added to extend initstate with set of nonces

lemma parts_image_Nonce [simp]: "parts (Nonce‘N) = Nonce‘N"
〈proof 〉

lemma keysFor_parts_initState [simp]: "keysFor (parts (initState C)) = {}"
〈proof 〉

lemma keysFor_parts_insert:
" [[ K ∈ keysFor (parts (insert X G)); X ∈ synth (analz H) ]]
=⇒ K ∈ keysFor (parts (G ∪ H)) | Key K ∈ parts H"

〈proof 〉

lemma Crypt_imp_keysFor: "Crypt K X ∈ H =⇒ K ∈ keysFor H"
〈proof 〉

25.2 Function "knows"
lemma Spy_knows_bad [intro!]: "A ∈ bad =⇒ Key (pin A) ∈ knows Spy evs"
〈proof 〉
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lemma Spy_knows_cloned [intro!]:
"Card A ∈ cloned =⇒ Key (crdK (Card A)) ∈ knows Spy evs &

Key (shrK A) ∈ knows Spy evs &
Key (pin A) ∈ knows Spy evs &

(∀ B. Key (pairK(B,A)) ∈ knows Spy evs)"
〈proof 〉

lemma Spy_knows_cloned1 [intro!]: "C ∈ cloned =⇒ Key (crdK C) ∈ knows Spy
evs"
〈proof 〉

lemma Spy_knows_cloned2 [intro!]: " [[ Card A ∈ cloned; Card B ∈ cloned ]]

=⇒ Nonce (Pairkey(A,B))∈ knows Spy evs"
〈proof 〉

lemma Spy_knows_Spy_bad [intro!]: "A∈ bad =⇒ Key (pin A) ∈ knows Spy evs"
〈proof 〉

lemma Crypt_Spy_analz_bad:
" [[ Crypt (pin A) X ∈ analz (knows Spy evs); A∈bad ]]

=⇒ X ∈ analz (knows Spy evs)"
〈proof 〉

lemma shrK_in_initState [iff]: "Key (shrK A) ∈ initState Server"
〈proof 〉

lemma shrK_in_used [iff]: "Key (shrK A) ∈ used evs"
〈proof 〉

lemma crdK_in_initState [iff]: "Key (crdK A) ∈ initState Server"
〈proof 〉

lemma crdK_in_used [iff]: "Key (crdK A) ∈ used evs"
〈proof 〉

lemma pin_in_initState [iff]: "Key (pin A) ∈ initState A"
〈proof 〉

lemma pin_in_used [iff]: "Key (pin A) ∈ used evs"
〈proof 〉

lemma pairK_in_initState [iff]: "Key (pairK X) ∈ initState Server"
〈proof 〉

lemma pairK_in_used [iff]: "Key (pairK X) ∈ used evs"
〈proof 〉
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lemma Key_not_used [simp]: "Key K /∈ used evs =⇒ K /∈ range shrK"
〈proof 〉

lemma shrK_neq [simp]: "Key K /∈ used evs =⇒ shrK B 6= K"
〈proof 〉

lemma crdK_not_used [simp]: "Key K /∈ used evs =⇒ K /∈ range crdK"
〈proof 〉

lemma crdK_neq [simp]: "Key K /∈ used evs =⇒ crdK C 6= K"
〈proof 〉

lemma pin_not_used [simp]: "Key K /∈ used evs =⇒ K /∈ range pin"
〈proof 〉

lemma pin_neq [simp]: "Key K /∈ used evs =⇒ pin A 6= K"
〈proof 〉

lemma pairK_not_used [simp]: "Key K /∈ used evs =⇒ K /∈ range pairK"
〈proof 〉

lemma pairK_neq [simp]: "Key K /∈ used evs =⇒ pairK(A,B) 6= K"
〈proof 〉

declare shrK_neq [THEN not_sym, simp]
declare crdK_neq [THEN not_sym, simp]
declare pin_neq [THEN not_sym, simp]
declare pairK_neq [THEN not_sym, simp]

25.3 Fresh nonces
lemma Nonce_notin_initState [iff]: "Nonce N /∈ parts (initState (Friend i))"
〈proof 〉

25.4 Supply fresh nonces for possibility theorems.
lemma Nonce_supply1: "∃ N. Nonce N /∈ used evs"
〈proof 〉

lemma Nonce_supply2:
"∃ N N’. Nonce N /∈ used evs & Nonce N’ /∈ used evs’ & N 6= N’"

〈proof 〉

lemma Nonce_supply3: "∃ N N’ N’’. Nonce N /∈ used evs & Nonce N’ /∈ used evs’
&

Nonce N’’ /∈ used evs’’ & N 6= N’ & N’ 6= N’’ & N 6= N’’"
〈proof 〉

lemma Nonce_supply: "Nonce (SOME N. Nonce N /∈ used evs) /∈ used evs"
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〈proof 〉

Unlike the corresponding property of nonces, we cannot prove finite KK =⇒
∃ K. K /∈ KK ∧ Key K /∈ used evs. We have infinitely many agents and there is
nothing to stop their long-term keys from exhausting all the natural numbers.
Instead, possibility theorems must assume the existence of a few keys.

25.5 Specialized Rewriting for Theorems About analz and
Image

lemma subset_Compl_range_shrK: "A ⊆ - (range shrK) =⇒ shrK x /∈ A"
〈proof 〉

lemma subset_Compl_range_crdK: "A ⊆ - (range crdK) =⇒ crdK x /∈ A"
〈proof 〉

lemma subset_Compl_range_pin: "A ⊆ - (range pin) =⇒ pin x /∈ A"
〈proof 〉

lemma subset_Compl_range_pairK: "A ⊆ - (range pairK) =⇒ pairK x /∈ A"
〈proof 〉
lemma insert_Key_singleton: "insert (Key K) H = Key ‘ {K} ∪ H"
〈proof 〉

lemma insert_Key_image: "insert (Key K) (Key‘KK ∪ C) = Key‘(insert K KK)
∪ C"
〈proof 〉

lemmas analz_image_freshK_simps =
simp_thms mem_simps — these two allow its use with only:
disj_comms
image_insert [THEN sym] image_Un [THEN sym] empty_subsetI insert_subset
analz_insert_eq Un_upper2 [THEN analz_mono, THEN [2] rev_subsetD]
insert_Key_singleton subset_Compl_range_shrK subset_Compl_range_crdK
subset_Compl_range_pin subset_Compl_range_pairK
Key_not_used insert_Key_image Un_assoc [THEN sym]

lemma analz_image_freshK_lemma:
"(Key K ∈ analz (Key‘nE ∪ H)) −→ (K ∈ nE | Key K ∈ analz H) =⇒

(Key K ∈ analz (Key‘nE ∪ H)) = (K ∈ nE | Key K ∈ analz H)"
〈proof 〉

25.6 Tactics for possibility theorems
〈ML〉

lemma invKey_shrK_iff [iff]:
"(Key (invKey K) ∈ X) = (Key K ∈ X)"
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〈proof 〉

〈ML〉

lemma knows_subset_knows_Cons: "knows A evs ⊆ knows A (e # evs)"
〈proof 〉

declare shrK_disj_crdK[THEN not_sym, iff]
declare shrK_disj_pin[THEN not_sym, iff]
declare pairK_disj_shrK[THEN not_sym, iff]
declare pairK_disj_crdK[THEN not_sym, iff]
declare pairK_disj_pin[THEN not_sym, iff]
declare crdK_disj_pin[THEN not_sym, iff]

declare legalUse_def [iff] illegalUse_def [iff]

end

26 Original Shoup-Rubin protocol
theory ShoupRubin imports Smartcard begin

axiomatization sesK :: "nat*key => key"
where

inj_sesK [iff]: "(sesK(m,k) = sesK(m’,k’)) = (m = m’ ∧ k = k’)" and

shrK_disj_sesK [iff]: "shrK A 6= sesK(m,pk)" and
crdK_disj_sesK [iff]: "crdK C 6= sesK(m,pk)" and
pin_disj_sesK [iff]: "pin P 6= sesK(m,pk)" and
pairK_disj_sesK[iff]:"pairK(A,B) 6= sesK(m,pk)" and

Atomic_distrib [iff]: "Atomic‘(KEY‘K ∪ NONCE‘N) =
Atomic‘(KEY‘K) ∪ Atomic‘(NONCE‘N)" and

shouprubin_assumes_securemeans [iff]: "evs ∈ sr =⇒ secureM"

definition Unique :: "[event, event list] => bool" (‹Unique _ on _›) where
"Unique ev on evs ==

ev /∈ set (tl (dropWhile (% z. z 6= ev) evs))"

inductive_set sr :: "event list set"
where

Nil: "[]∈ sr"
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| Fake: " [[ evsF∈ sr; X∈ synth (analz (knows Spy evsF));
illegalUse(Card B) ]]

=⇒ Says Spy A X #
Inputs Spy (Card B) X # evsF ∈ sr"

| Forge:
" [[ evsFo ∈ sr; Nonce Nb ∈ analz (knows Spy evsFo);

Key (pairK(A,B)) ∈ knows Spy evsFo ]]
=⇒ Notes Spy (Key (sesK(Nb,pairK(A,B)))) # evsFo ∈ sr"

| Reception: " [[ evsR∈ sr; Says A B X ∈ set evsR ]]
=⇒ Gets B X # evsR ∈ sr"

| SR1: " [[ evs1∈ sr; A 6= Server ]]
=⇒ Says A Server {|Agent A, Agent B |}

# evs1 ∈ sr"

| SR2: " [[ evs2∈ sr;
Gets Server {|Agent A, Agent B |} ∈ set evs2 ]]

=⇒ Says Server A {|Nonce (Pairkey(A,B)),
Crypt (shrK A) {|Nonce (Pairkey(A,B)), Agent B |}

|}
# evs2 ∈ sr"

| SR3: " [[ evs3∈ sr; legalUse(Card A);
Says A Server {|Agent A, Agent B |} ∈ set evs3;
Gets A {|Nonce Pk, Certificate |} ∈ set evs3 ]]

=⇒ Inputs A (Card A) (Agent A)
# evs3 ∈ sr"

| SR4: " [[ evs4∈ sr; A 6= Server;
Nonce Na /∈ used evs4; legalUse(Card A);
Inputs A (Card A) (Agent A) ∈ set evs4 ]]

=⇒ Outpts (Card A) A {|Nonce Na, Crypt (crdK (Card A)) (Nonce Na)|}
# evs4 ∈ sr"

| SR4Fake: " [[ evs4F∈ sr; Nonce Na /∈ used evs4F;
illegalUse(Card A);
Inputs Spy (Card A) (Agent A) ∈ set evs4F ]]
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=⇒ Outpts (Card A) Spy {|Nonce Na, Crypt (crdK (Card A)) (Nonce Na)|}
# evs4F ∈ sr"

| SR5: " [[ evs5∈ sr;
Outpts (Card A) A {|Nonce Na, Certificate |} ∈ set evs5;
∀ p q. Certificate 6= {|p, q |} ]]

=⇒ Says A B {|Agent A, Nonce Na |} # evs5 ∈ sr"

| SR6: " [[ evs6∈ sr; legalUse(Card B);
Gets B {|Agent A, Nonce Na |} ∈ set evs6 ]]

=⇒ Inputs B (Card B) {|Agent A, Nonce Na |}
# evs6 ∈ sr"

| SR7: " [[ evs7∈ sr;
Nonce Nb /∈ used evs7; legalUse(Card B); B 6= Server;
K = sesK(Nb,pairK(A,B));
Key K /∈ used evs7;
Inputs B (Card B) {|Agent A, Nonce Na |} ∈ set evs7]]

=⇒ Outpts (Card B) B {|Nonce Nb, Key K,
Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
Crypt (pairK(A,B)) (Nonce Nb)|}

# evs7 ∈ sr"

| SR7Fake: " [[ evs7F∈ sr; Nonce Nb /∈ used evs7F;
illegalUse(Card B);
K = sesK(Nb,pairK(A,B));
Key K /∈ used evs7F;
Inputs Spy (Card B) {|Agent A, Nonce Na |} ∈ set evs7F ]]

=⇒ Outpts (Card B) Spy {|Nonce Nb, Key K,
Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
Crypt (pairK(A,B)) (Nonce Nb)|}

# evs7F ∈ sr"

| SR8: " [[ evs8∈ sr;
Inputs B (Card B) {|Agent A, Nonce Na |} ∈ set evs8;
Outpts (Card B) B {|Nonce Nb, Key K,

Cert1, Cert2|} ∈ set evs8 ]]
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=⇒ Says B A {|Nonce Nb, Cert1|} # evs8 ∈ sr"

| SR9: " [[ evs9∈ sr; legalUse(Card A);
Gets A {|Nonce Pk, Cert1|} ∈ set evs9;
Outpts (Card A) A {|Nonce Na, Cert2|} ∈ set evs9;
Gets A {|Nonce Nb, Cert3|} ∈ set evs9;
∀ p q. Cert2 6= {|p, q |} ]]

=⇒ Inputs A (Card A)
{|Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Cert1, Cert3, Cert2|}

# evs9 ∈ sr"

| SR10: " [[ evs10∈ sr; legalUse(Card A); A 6= Server;
K = sesK(Nb,pairK(A,B));
Inputs A (Card A) {|Agent B, Nonce Na, Nonce Nb,

Nonce (Pairkey(A,B)),
Crypt (shrK A) {|Nonce (Pairkey(A,B)),

Agent B |},
Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},

Crypt (crdK (Card A)) (Nonce Na)|}
∈ set evs10 ]]

=⇒ Outpts (Card A) A {|Key K, Crypt (pairK(A,B)) (Nonce Nb)|}
# evs10 ∈ sr"

| SR10Fake: " [[ evs10F∈ sr;
illegalUse(Card A);
K = sesK(Nb,pairK(A,B));
Inputs Spy (Card A) {|Agent B, Nonce Na, Nonce Nb,

Nonce (Pairkey(A,B)),
Crypt (shrK A) {|Nonce (Pairkey(A,B)),

Agent B |},
Crypt (pairK(A,B)) {|Nonce Na, Nonce

Nb |},
Crypt (crdK (Card A)) (Nonce Na)|}

∈ set evs10F ]]
=⇒ Outpts (Card A) Spy {|Key K, Crypt (pairK(A,B)) (Nonce Nb)|}

# evs10F ∈ sr"

| SR11: " [[ evs11∈ sr;
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Says A Server {|Agent A, Agent B |} ∈ set evs11;
Outpts (Card A) A {|Key K, Certificate |} ∈ set evs11 ]]

=⇒ Says A B (Certificate)
# evs11 ∈ sr"

| Oops1:
" [[ evsO1 ∈ sr;

Outpts (Card B) B {|Nonce Nb, Key K, Certificate,
Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evsO1 ]]

=⇒ Notes Spy {|Key K, Nonce Nb, Agent A, Agent B |} # evsO1 ∈ sr"

| Oops2:
" [[ evsO2 ∈ sr;

Outpts (Card A) A {|Key K, Crypt (pairK(A,B)) (Nonce Nb)|}
∈ set evsO2 ]]

=⇒ Notes Spy {|Key K, Nonce Nb, Agent A, Agent B |} # evsO2 ∈ sr"

declare Fake_parts_insert_in_Un [dest]
declare analz_into_parts [dest]

lemma Gets_imp_Says:
" [[ Gets B X ∈ set evs; evs ∈ sr ]] =⇒ ∃ A. Says A B X ∈ set evs"

〈proof 〉

lemma Gets_imp_knows_Spy:
" [[ Gets B X ∈ set evs; evs ∈ sr ]] =⇒ X ∈ knows Spy evs"

〈proof 〉

lemma Gets_imp_knows_Spy_parts_Snd:
" [[ Gets B {|X, Y |} ∈ set evs; evs ∈ sr ]] =⇒ Y ∈ parts (knows Spy evs)"

〈proof 〉

lemma Gets_imp_knows_Spy_analz_Snd:
" [[ Gets B {|X, Y |} ∈ set evs; evs ∈ sr ]] =⇒ Y ∈ analz (knows Spy evs)"

〈proof 〉
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lemma Inputs_imp_knows_Spy_secureM_sr:
" [[ Inputs Spy C X ∈ set evs; evs ∈ sr ]] =⇒ X ∈ knows Spy evs"

〈proof 〉

lemma knows_Spy_Inputs_secureM_sr_Spy:
"evs ∈sr =⇒ knows Spy (Inputs Spy C X # evs) = insert X (knows Spy

evs)"
〈proof 〉

lemma knows_Spy_Inputs_secureM_sr:
" [[ A 6= Spy; evs ∈sr ]] =⇒ knows Spy (Inputs A C X # evs) = knows Spy

evs"
〈proof 〉

lemma knows_Spy_Outpts_secureM_sr_Spy:
"evs ∈sr =⇒ knows Spy (Outpts C Spy X # evs) = insert X (knows Spy

evs)"
〈proof 〉

lemma knows_Spy_Outpts_secureM_sr:
" [[ A 6= Spy; evs ∈sr ]] =⇒ knows Spy (Outpts C A X # evs) = knows Spy

evs"
〈proof 〉

lemma Inputs_A_Card_3:
" [[ Inputs A C (Agent A) ∈ set evs; A 6= Spy; evs ∈ sr ]]
=⇒ legalUse(C) ∧ C = (Card A) ∧
(∃ Pk Certificate. Gets A {|Pk, Certificate |} ∈ set evs)"

〈proof 〉

lemma Inputs_B_Card_6:
" [[ Inputs B C {|Agent A, Nonce Na |} ∈ set evs; B 6= Spy; evs ∈ sr ]]
=⇒ legalUse(C) ∧ C = (Card B) ∧ Gets B {|Agent A, Nonce Na |} ∈ set evs"

〈proof 〉

lemma Inputs_A_Card_9:
" [[ Inputs A C {|Agent B, Nonce Na, Nonce Nb, Nonce Pk,

Cert1, Cert2, Cert3|} ∈ set evs;

A 6= Spy; evs ∈ sr ]]
=⇒ legalUse(C) ∧ C = (Card A) ∧

Gets A {|Nonce Pk, Cert1|} ∈ set evs ∧
Outpts (Card A) A {|Nonce Na, Cert3|} ∈ set evs ∧
Gets A {|Nonce Nb, Cert2|} ∈ set evs"
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〈proof 〉

lemma Outpts_A_Card_4:
" [[ Outpts C A {|Nonce Na, (Crypt (crdK (Card A)) (Nonce Na))|} ∈ set evs;

evs ∈ sr ]]
=⇒ legalUse(C) ∧ C = (Card A) ∧

Inputs A (Card A) (Agent A) ∈ set evs"
〈proof 〉

lemma Outpts_B_Card_7:
" [[ Outpts C B {|Nonce Nb, Key K,

Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
Cert2|} ∈ set evs;

evs ∈ sr ]]
=⇒ legalUse(C) ∧ C = (Card B) ∧

Inputs B (Card B) {|Agent A, Nonce Na |} ∈ set evs"
〈proof 〉

lemma Outpts_A_Card_10:
" [[ Outpts C A {|Key K, (Crypt (pairK(A,B)) (Nonce Nb))|} ∈ set evs;

evs ∈ sr ]]
=⇒ legalUse(C) ∧ C = (Card A) ∧

(∃ Na Ver1 Ver2 Ver3.
Inputs A (Card A) {|Agent B, Nonce Na, Nonce Nb, Nonce (Pairkey(A,B)),

Ver1, Ver2, Ver3|} ∈ set evs)"
〈proof 〉

lemma Outpts_A_Card_10_imp_Inputs:
" [[ Outpts (Card A) A {|Key K, Certificate |} ∈ set evs; evs ∈ sr ]]
=⇒ (∃ B Na Nb Ver1 Ver2 Ver3.

Inputs A (Card A) {|Agent B, Nonce Na, Nonce Nb, Nonce (Pairkey(A,B)),

Ver1, Ver2, Ver3|} ∈ set evs)"
〈proof 〉

lemma Outpts_honest_A_Card_4:
" [[ Outpts C A {|Nonce Na, Crypt K X |} ∈set evs;

A 6= Spy; evs ∈ sr ]]
=⇒ legalUse(C) ∧ C = (Card A) ∧

Inputs A (Card A) (Agent A) ∈ set evs"
〈proof 〉
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lemma Outpts_honest_B_Card_7:
" [[ Outpts C B {|Nonce Nb, Key K, Cert1, Cert2|} ∈ set evs;

B 6= Spy; evs ∈ sr ]]
=⇒ legalUse(C) ∧ C = (Card B) ∧

(∃ A Na. Inputs B (Card B) {|Agent A, Nonce Na |} ∈ set evs)"
〈proof 〉

lemma Outpts_honest_A_Card_10:
" [[ Outpts C A {|Key K, Certificate |} ∈ set evs;

A 6= Spy; evs ∈ sr ]]
=⇒ legalUse (C) ∧ C = (Card A) ∧

(∃ B Na Nb Pk Ver1 Ver2 Ver3.
Inputs A (Card A) {|Agent B, Nonce Na, Nonce Nb, Pk,

Ver1, Ver2, Ver3|} ∈ set evs)"
〈proof 〉

lemma Outpts_which_Card_4:
" [[ Outpts (Card A) A {|Nonce Na, Crypt K X |} ∈ set evs; evs ∈ sr ]]
=⇒ Inputs A (Card A) (Agent A) ∈ set evs"

〈proof 〉

lemma Outpts_which_Card_7:
" [[ Outpts (Card B) B {|Nonce Nb, Key K, Cert1, Cert2|} ∈ set evs;

evs ∈ sr ]]
=⇒ ∃ A Na. Inputs B (Card B) {|Agent A, Nonce Na |} ∈ set evs"

〈proof 〉

lemma Outpts_which_Card_10:
" [[ Outpts (Card A) A {|Key (sesK(Nb,pairK(A,B))),

Crypt (pairK(A,B)) (Nonce Nb) |} ∈ set evs;
evs ∈ sr ]]

=⇒ ∃ Na. Inputs A (Card A) {|Agent B, Nonce Na, Nonce Nb, Nonce (Pairkey(A,B)),

Crypt (shrK A) {|Nonce (Pairkey(A,B)), Agent B |},

Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
Crypt (crdK (Card A)) (Nonce Na) |} ∈ set evs"

〈proof 〉

lemma Outpts_A_Card_form_4:
" [[ Outpts (Card A) A {|Nonce Na, Certificate |} ∈ set evs;

∀ p q. Certificate 6= {|p, q |}; evs ∈ sr ]]
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=⇒ Certificate = (Crypt (crdK (Card A)) (Nonce Na))"
〈proof 〉

lemma Outpts_B_Card_form_7:
" [[ Outpts (Card B) B {|Nonce Nb, Key K, Cert1, Cert2|} ∈ set evs;

evs ∈ sr ]]
=⇒ ∃ A Na.

K = sesK(Nb,pairK(A,B)) ∧
Cert1 = (Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |}) ∧
Cert2 = (Crypt (pairK(A,B)) (Nonce Nb))"

〈proof 〉

lemma Outpts_A_Card_form_10:
" [[ Outpts (Card A) A {|Key K, Certificate |} ∈ set evs; evs ∈ sr ]]

=⇒ ∃ B Nb.
K = sesK(Nb,pairK(A,B)) ∧
Certificate = (Crypt (pairK(A,B)) (Nonce Nb))"

〈proof 〉

lemma Outpts_A_Card_form_bis:
" [[ Outpts (Card A’) A’ {|Key (sesK(Nb,pairK(A,B))), Certificate |} ∈ set evs;

evs ∈ sr ]]
=⇒ A’ = A ∧

Certificate = (Crypt (pairK(A,B)) (Nonce Nb))"
〈proof 〉

lemma Inputs_A_Card_form_9:
" [[ Inputs A (Card A) {|Agent B, Nonce Na, Nonce Nb, Nonce Pk,

Cert1, Cert2, Cert3|} ∈ set evs;
evs ∈ sr ]]

=⇒ Cert3 = Crypt (crdK (Card A)) (Nonce Na)"
〈proof 〉

lemma Inputs_Card_legalUse:
" [[ Inputs A (Card A) X ∈ set evs; evs ∈ sr ]] =⇒ legalUse(Card A)"

〈proof 〉

lemma Outpts_Card_legalUse:
" [[ Outpts (Card A) A X ∈ set evs; evs ∈ sr ]] =⇒ legalUse(Card A)"

〈proof 〉

lemma Inputs_Card: " [[ Inputs A C X ∈ set evs; A 6= Spy; evs ∈ sr ]]
=⇒ C = (Card A) ∧ legalUse(C)"
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〈proof 〉

lemma Outpts_Card: " [[ Outpts C A X ∈ set evs; A 6= Spy; evs ∈ sr ]]
=⇒ C = (Card A) ∧ legalUse(C)"

〈proof 〉

lemma Inputs_Outpts_Card:
" [[ Inputs A C X ∈ set evs ∨ Outpts C A Y ∈ set evs;

A 6= Spy; evs ∈ sr ]]
=⇒ C = (Card A) ∧ legalUse(Card A)"

〈proof 〉

lemma Inputs_Card_Spy:
" [[ Inputs Spy C X ∈ set evs ∨ Outpts C Spy X ∈ set evs; evs ∈ sr ]]

=⇒ C = (Card Spy) ∧ legalUse(Card Spy) ∨
(∃ A. C = (Card A) ∧ illegalUse(Card A))"

〈proof 〉

lemma Outpts_A_Card_unique_nonce:
" [[ Outpts (Card A) A {|Nonce Na, Crypt (crdK (Card A)) (Nonce Na)|}

∈ set evs;
Outpts (Card A’) A’ {|Nonce Na, Crypt (crdK (Card A’)) (Nonce Na)|}

∈ set evs;
evs ∈ sr ]] =⇒ A=A’"

〈proof 〉

lemma Outpts_B_Card_unique_nonce:
" [[ Outpts (Card B) B {|Nonce Nb, Key SK, Cert1, Cert2|} ∈ set evs;

Outpts (Card B’) B’ {|Nonce Nb, Key SK’, Cert1’, Cert2’|} ∈ set evs;

evs ∈ sr ]] =⇒ B=B’ ∧ SK=SK’ ∧ Cert1=Cert1’ ∧ Cert2=Cert2’"
〈proof 〉

lemma Outpts_B_Card_unique_key:
" [[ Outpts (Card B) B {|Nonce Nb, Key SK, Cert1, Cert2|} ∈ set evs;
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Outpts (Card B’) B’ {|Nonce Nb’, Key SK, Cert1’, Cert2’|} ∈ set evs;

evs ∈ sr ]] =⇒ B=B’ ∧ Nb=Nb’ ∧ Cert1=Cert1’ ∧ Cert2=Cert2’"
〈proof 〉

lemma Outpts_A_Card_unique_key: " [[ Outpts (Card A) A {|Key K, V |} ∈ set evs;

Outpts (Card A’) A’ {|Key K, V’|} ∈ set evs;
evs ∈ sr ]] =⇒ A=A’ ∧ V=V’"

〈proof 〉

lemma Outpts_A_Card_Unique:
" [[ Outpts (Card A) A {|Nonce Na, rest |} ∈ set evs; evs ∈ sr ]]

=⇒ Unique (Outpts (Card A) A {|Nonce Na, rest |}) on evs"
〈proof 〉

lemma Spy_knows_Na:
" [[ Says A B {|Agent A, Nonce Na |} ∈ set evs; evs ∈ sr ]]
=⇒ Nonce Na ∈ analz (knows Spy evs)"

〈proof 〉

lemma Spy_knows_Nb:
" [[ Says B A {|Nonce Nb, Certificate |} ∈ set evs; evs ∈ sr ]]
=⇒ Nonce Nb ∈ analz (knows Spy evs)"

〈proof 〉

lemma Pairkey_Gets_analz_knows_Spy:
" [[ Gets A {|Nonce (Pairkey(A,B)), Certificate |} ∈ set evs; evs ∈ sr ]]

=⇒ Nonce (Pairkey(A,B)) ∈ analz (knows Spy evs)"
〈proof 〉

lemma Pairkey_Inputs_imp_Gets:
" [[ Inputs A (Card A)

{|Agent B, Nonce Na, Nonce Nb, Nonce (Pairkey(A,B)),
Cert1, Cert3, Cert2|} ∈ set evs;

A 6= Spy; evs ∈ sr ]]
=⇒ Gets A {|Nonce (Pairkey(A,B)), Cert1|} ∈ set evs"

〈proof 〉
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lemma Pairkey_Inputs_analz_knows_Spy:
" [[ Inputs A (Card A)

{|Agent B, Nonce Na, Nonce Nb, Nonce (Pairkey(A,B)),
Cert1, Cert3, Cert2|} ∈ set evs;

evs ∈ sr ]]
=⇒ Nonce (Pairkey(A,B)) ∈ analz (knows Spy evs)"

〈proof 〉

declare shrK_disj_sesK [THEN not_sym, iff]
declare pin_disj_sesK [THEN not_sym, iff]
declare crdK_disj_sesK [THEN not_sym, iff]
declare pairK_disj_sesK [THEN not_sym, iff]

〈ML〉

lemma Spy_parts_keys [simp]: "evs ∈ sr =⇒
(Key (shrK P) ∈ parts (knows Spy evs)) = (Card P ∈ cloned) ∧
(Key (pin P) ∈ parts (knows Spy evs)) = (P ∈ bad ∨ Card P ∈ cloned) ∧

(Key (crdK C) ∈ parts (knows Spy evs)) = (C ∈ cloned) ∧
(Key (pairK(A,B)) ∈ parts (knows Spy evs)) = (Card B ∈ cloned)"

〈proof 〉

lemma Spy_analz_shrK[simp]: "evs ∈ sr =⇒
(Key (shrK P) ∈ analz (knows Spy evs)) = (Card P ∈ cloned)"

〈proof 〉

lemma Spy_analz_crdK[simp]: "evs ∈ sr =⇒
(Key (crdK C) ∈ analz (knows Spy evs)) = (C ∈ cloned)"

〈proof 〉

lemma Spy_analz_pairK[simp]: "evs ∈ sr =⇒
(Key (pairK(A,B)) ∈ analz (knows Spy evs)) = (Card B ∈ cloned)"

〈proof 〉
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lemma analz_image_Key_Un_Nonce:
"analz (Key ‘ K ∪ Nonce ‘ N) = Key ‘ K ∪ Nonce ‘ N"
〈proof 〉

〈ML〉

lemma analz_image_freshK [rule_format]:
"evs ∈ sr =⇒ ∀ K KK.

(Key K ∈ analz (Key‘KK ∪ (knows Spy evs))) =
(K ∈ KK ∨ Key K ∈ analz (knows Spy evs))"

〈proof 〉

lemma analz_insert_freshK: "evs ∈ sr =⇒
Key K ∈ analz (insert (Key K’) (knows Spy evs)) =
(K = K’ ∨ Key K ∈ analz (knows Spy evs))"

〈proof 〉

lemma Na_Nb_certificate_authentic:
" [[ Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |} ∈ parts (knows Spy evs);

¬illegalUse(Card B);
evs ∈ sr ]]

=⇒ Outpts (Card B) B {|Nonce Nb, Key (sesK(Nb,pairK(A,B))),
Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evs"

〈proof 〉

lemma Nb_certificate_authentic:
" [[ Crypt (pairK(A,B)) (Nonce Nb) ∈ parts (knows Spy evs);

B 6= Spy; ¬illegalUse(Card A); ¬illegalUse(Card B);
evs ∈ sr ]]

=⇒ Outpts (Card A) A {|Key (sesK(Nb,pairK(A,B))),
Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evs"

〈proof 〉

lemma Outpts_A_Card_imp_pairK_parts:
" [[ Outpts (Card A) A

{|Key K, Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evs;
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evs ∈ sr ]]
=⇒ ∃ Na. Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |} ∈ parts (knows Spy

evs)"
〈proof 〉

lemma Nb_certificate_authentic_bis:
" [[ Crypt (pairK(A,B)) (Nonce Nb) ∈ parts (knows Spy evs);

B 6= Spy; ¬illegalUse(Card B);
evs ∈ sr ]]

=⇒ ∃ Na. Outpts (Card B) B {|Nonce Nb, Key (sesK(Nb,pairK(A,B))),
Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evs"

〈proof 〉

lemma Pairkey_certificate_authentic:
" [[ Crypt (shrK A) {|Nonce Pk, Agent B |} ∈ parts (knows Spy evs);

Card A /∈ cloned; evs ∈ sr ]]
=⇒ Pk = Pairkey(A,B) ∧

Says Server A {|Nonce Pk,
Crypt (shrK A) {|Nonce Pk, Agent B |}|}

∈ set evs"
〈proof 〉

lemma sesK_authentic:
" [[ Key (sesK(Nb,pairK(A,B))) ∈ parts (knows Spy evs);

A 6= Spy; B 6= Spy; ¬illegalUse(Card A); ¬illegalUse(Card B);
evs ∈ sr ]]

=⇒ Notes Spy {|Key (sesK(Nb,pairK(A,B))), Nonce Nb, Agent A, Agent B |}

∈ set evs"
〈proof 〉

lemma Confidentiality:
" [[ Notes Spy {|Key (sesK(Nb,pairK(A,B))), Nonce Nb, Agent A, Agent B |}

/∈ set evs;
A 6= Spy; B 6= Spy; ¬illegalUse(Card A); ¬illegalUse(Card B);
evs ∈ sr ]]

=⇒ Key (sesK(Nb,pairK(A,B))) /∈ analz (knows Spy evs)"
〈proof 〉
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lemma Confidentiality_B:
" [[ Outpts (Card B) B {|Nonce Nb, Key K, Certificate,

Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evs;
Notes Spy {|Key K, Nonce Nb, Agent A, Agent B |} /∈ set evs;
A 6= Spy; B 6= Spy; ¬illegalUse(Card A); Card B /∈ cloned;
evs ∈ sr ]]

=⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉

lemma A_authenticates_B:
" [[ Outpts (Card A) A {|Key K, Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evs;

¬illegalUse(Card B);
evs ∈ sr ]]

=⇒ ∃ Na.
Outpts (Card B) B {|Nonce Nb, Key K,

Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evs"

〈proof 〉

lemma A_authenticates_B_Gets:
" [[ Gets A {|Nonce Nb, Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |}|}

∈ set evs;
¬illegalUse(Card B);
evs ∈ sr ]]

=⇒ Outpts (Card B) B {|Nonce Nb, Key (sesK(Nb, pairK (A, B))),
Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evs"

〈proof 〉

lemma B_authenticates_A:
" [[ Gets B (Crypt (pairK(A,B)) (Nonce Nb)) ∈ set evs;

B 6= Spy; ¬illegalUse(Card A); ¬illegalUse(Card B);
evs ∈ sr ]]

=⇒ Outpts (Card A) A
{|Key (sesK(Nb,pairK(A,B))), Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evs"

〈proof 〉

lemma Confidentiality_A: " [[ Outpts (Card A) A
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{|Key K, Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evs;
Notes Spy {|Key K, Nonce Nb, Agent A, Agent B |} /∈ set evs;
A 6= Spy; B 6= Spy; ¬illegalUse(Card A); ¬illegalUse(Card B);
evs ∈ sr ]]

=⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉

lemma Outpts_imp_knows_agents_secureM_sr:
" [[ Outpts (Card A) A X ∈ set evs; evs ∈ sr ]] =⇒ X ∈ knows A evs"

〈proof 〉

lemma A_keydist_to_B:
" [[ Outpts (Card A) A

{|Key K, Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evs;
¬illegalUse(Card B);
evs ∈ sr ]]

=⇒ Key K ∈ analz (knows B evs)"
〈proof 〉

lemma B_keydist_to_A:
" [[ Outpts (Card B) B {|Nonce Nb, Key K, Certificate,

(Crypt (pairK(A,B)) (Nonce Nb))|} ∈ set evs;
Gets B (Crypt (pairK(A,B)) (Nonce Nb)) ∈ set evs;
B 6= Spy; ¬illegalUse(Card A); ¬illegalUse(Card B);
evs ∈ sr ]]

=⇒ Key K ∈ analz (knows A evs)"
〈proof 〉

lemma Nb_certificate_authentic_B:
" [[ Gets B (Crypt (pairK(A,B)) (Nonce Nb)) ∈ set evs;

B 6= Spy; ¬illegalUse(Card B);
evs ∈ sr ]]

=⇒ ∃ Na.
Outpts (Card B) B {|Nonce Nb, Key (sesK(Nb,pairK(A,B))),

Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
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Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evs"
〈proof 〉

lemma Pairkey_certificate_authentic_A_Card:
" [[ Inputs A (Card A)

{|Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Crypt (shrK A) {|Nonce Pk, Agent B |},
Cert2, Cert3|} ∈ set evs;

A 6= Spy; Card A /∈ cloned; evs ∈ sr ]]
=⇒ Pk = Pairkey(A,B) ∧

Says Server A {|Nonce (Pairkey(A,B)),
Crypt (shrK A) {|Nonce (Pairkey(A,B)), Agent B |}|}

∈ set evs "
〈proof 〉

lemma Na_Nb_certificate_authentic_A_Card:
" [[ Inputs A (Card A)

{|Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Cert1,
Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |}, Cert3|} ∈ set evs;

A 6= Spy; ¬illegalUse(Card B); evs ∈ sr ]]
=⇒ Outpts (Card B) B {|Nonce Nb, Key (sesK(Nb, pairK (A, B))),

Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
Crypt (pairK(A,B)) (Nonce Nb)|}

∈ set evs "
〈proof 〉

lemma Na_authentic_A_Card:
" [[ Inputs A (Card A)

{|Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Cert1, Cert2, Cert3|} ∈ set evs;

A 6= Spy; evs ∈ sr ]]
=⇒ Outpts (Card A) A {|Nonce Na, Cert3|}

∈ set evs"
〈proof 〉

lemma Inputs_A_Card_9_authentic:
" [[ Inputs A (Card A)

{|Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Crypt (shrK A) {|Nonce Pk, Agent B |},
Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |}, Cert3|} ∈ set evs;
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A 6= Spy; Card A /∈ cloned;¬illegalUse(Card B); evs ∈ sr ]]
=⇒ Says Server A {|Nonce Pk, Crypt (shrK A) {|Nonce Pk, Agent B |}|}

∈ set evs ∧
Outpts (Card B) B {|Nonce Nb, Key (sesK(Nb, pairK (A, B))),

Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
Crypt (pairK(A,B)) (Nonce Nb)|}

∈ set evs ∧
Outpts (Card A) A {|Nonce Na, Cert3|}
∈ set evs"

〈proof 〉

lemma SR4_imp:
" [[ Outpts (Card A) A {|Nonce Na, Crypt (crdK (Card A)) (Nonce Na)|}

∈ set evs;
A 6= Spy; evs ∈ sr ]]

=⇒ ∃ Pk V. Gets A {|Pk, V |} ∈ set evs"
〈proof 〉

lemma SR7_imp:
" [[ Outpts (Card B) B {|Nonce Nb, Key K,

Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
Cert2|} ∈ set evs;

B 6= Spy; evs ∈ sr ]]
=⇒ Gets B {|Agent A, Nonce Na |} ∈ set evs"

〈proof 〉

lemma SR10_imp:
" [[ Outpts (Card A) A {|Key K, Crypt (pairK(A,B)) (Nonce Nb)|}

∈ set evs;
A 6= Spy; evs ∈ sr ]]

=⇒ ∃ Cert1 Cert2.
Gets A {|Nonce (Pairkey (A, B)), Cert1|} ∈ set evs ∧
Gets A {|Nonce Nb, Cert2|} ∈ set evs"

〈proof 〉
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lemma Outpts_Server_not_evs: "evs ∈ sr =⇒ Outpts (Card Server) P X /∈ set
evs"
〈proof 〉

step2_integrity also is a reliability theorem
lemma Says_Server_message_form:

" [[ Says Server A {|Pk, Certificate |} ∈ set evs;
evs ∈ sr ]]

=⇒ ∃ B. Pk = Nonce (Pairkey(A,B)) ∧
Certificate = Crypt (shrK A) {|Nonce (Pairkey(A,B)), Agent B |}"

〈proof 〉

step4integrity is Outpts_A_Card_form_4

step7integrity is Outpts_B_Card_form_7

lemma step8_integrity:
" [[ Says B A {|Nonce Nb, Certificate |} ∈ set evs;

B 6= Server; B 6= Spy; evs ∈ sr ]]
=⇒ ∃ Cert2 K.

Outpts (Card B) B {|Nonce Nb, Key K, Certificate, Cert2|} ∈ set evs"
〈proof 〉

step9integrity is Inputs_A_Card_form_9

step10integrity is Outpts_A_Card_form_10.
lemma step11_integrity:

" [[ Says A B (Certificate) ∈ set evs;
∀ p q. Certificate 6= {|p, q |};
A 6= Spy; evs ∈ sr ]]

=⇒ ∃ K.
Outpts (Card A) A {|Key K, Certificate |} ∈ set evs"

〈proof 〉

end

27 Bella’s modification of the Shoup-Rubin pro-
tocol

theory ShoupRubinBella imports Smartcard begin

The modifications are that message 7 now mentions A, while message 10 now
mentions Nb and B. The lack of explicitness of the original version was dis-
covered by investigating adherence to the principle of Goal Availability. Only
the updated version makes the goals of confidentiality, authentication and key
distribution available to both peers.
axiomatization sesK :: "nat*key => key"
where

inj_sesK [iff]: "(sesK(m,k) = sesK(m’,k’)) = (m = m’ ∧ k = k’)" and
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shrK_disj_sesK [iff]: "shrK A 6= sesK(m,pk)" and
crdK_disj_sesK [iff]: "crdK C 6= sesK(m,pk)" and
pin_disj_sesK [iff]: "pin P 6= sesK(m,pk)" and
pairK_disj_sesK[iff]: "pairK(A,B) 6= sesK(m,pk)" and

Atomic_distrib [iff]: "Atomic‘(KEY‘K ∪ NONCE‘N) =
Atomic‘(KEY‘K) ∪ Atomic‘(NONCE‘N)" and

shouprubin_assumes_securemeans [iff]: "evs ∈ srb =⇒ secureM"

definition Unique :: "[event, event list] => bool" (‹Unique _ on _›) where
"Unique ev on evs ==

ev /∈ set (tl (dropWhile (% z. z 6= ev) evs))"

inductive_set srb :: "event list set"
where

Nil: "[]∈ srb"

| Fake: " [[ evsF ∈ srb; X ∈ synth (analz (knows Spy evsF));
illegalUse(Card B) ]]

=⇒ Says Spy A X #
Inputs Spy (Card B) X # evsF ∈ srb"

| Forge:
" [[ evsFo ∈ srb; Nonce Nb ∈ analz (knows Spy evsFo);

Key (pairK(A,B)) ∈ knows Spy evsFo ]]
=⇒ Notes Spy (Key (sesK(Nb,pairK(A,B)))) # evsFo ∈ srb"

| Reception: " [[ evsrb∈ srb; Says A B X ∈ set evsrb ]]
=⇒ Gets B X # evsrb ∈ srb"

| SR_U1: " [[ evs1 ∈ srb; A 6= Server ]]
=⇒ Says A Server {|Agent A, Agent B |}

# evs1 ∈ srb"

| SR_U2: " [[ evs2 ∈ srb;
Gets Server {|Agent A, Agent B |} ∈ set evs2 ]]

=⇒ Says Server A {|Nonce (Pairkey(A,B)),
Crypt (shrK A) {|Nonce (Pairkey(A,B)), Agent B |}

|}
# evs2 ∈ srb"
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| SR_U3: " [[ evs3 ∈ srb; legalUse(Card A);
Says A Server {|Agent A, Agent B |} ∈ set evs3;
Gets A {|Nonce Pk, Certificate |} ∈ set evs3 ]]

=⇒ Inputs A (Card A) (Agent A)
# evs3 ∈ srb"

| SR_U4: " [[ evs4 ∈ srb;
Nonce Na /∈ used evs4; legalUse(Card A); A 6= Server;
Inputs A (Card A) (Agent A) ∈ set evs4 ]]

=⇒ Outpts (Card A) A {|Nonce Na, Crypt (crdK (Card A)) (Nonce Na)|}
# evs4 ∈ srb"

| SR_U4Fake: " [[ evs4F ∈ srb; Nonce Na /∈ used evs4F;
illegalUse(Card A);
Inputs Spy (Card A) (Agent A) ∈ set evs4F ]]

=⇒ Outpts (Card A) Spy {|Nonce Na, Crypt (crdK (Card A)) (Nonce Na)|}
# evs4F ∈ srb"

| SR_U5: " [[ evs5 ∈ srb;
Outpts (Card A) A {|Nonce Na, Certificate |} ∈ set evs5;
∀ p q. Certificate 6= {|p, q |} ]]

=⇒ Says A B {|Agent A, Nonce Na |} # evs5 ∈ srb"

| SR_U6: " [[ evs6 ∈ srb; legalUse(Card B);
Gets B {|Agent A, Nonce Na |} ∈ set evs6 ]]

=⇒ Inputs B (Card B) {|Agent A, Nonce Na |}
# evs6 ∈ srb"

| SR_U7: " [[ evs7 ∈ srb;
Nonce Nb /∈ used evs7; legalUse(Card B); B 6= Server;
K = sesK(Nb,pairK(A,B));
Key K /∈ used evs7;
Inputs B (Card B) {|Agent A, Nonce Na |} ∈ set evs7]]

=⇒ Outpts (Card B) B {|Nonce Nb, Agent A, Key K,
Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
Crypt (pairK(A,B)) (Nonce Nb)|}
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# evs7 ∈ srb"

| SR_U7Fake: " [[ evs7F ∈ srb; Nonce Nb /∈ used evs7F;
illegalUse(Card B);
K = sesK(Nb,pairK(A,B));
Key K /∈ used evs7F;
Inputs Spy (Card B) {|Agent A, Nonce Na |} ∈ set evs7F ]]

=⇒ Outpts (Card B) Spy {|Nonce Nb, Agent A, Key K,
Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
Crypt (pairK(A,B)) (Nonce Nb)|}

# evs7F ∈ srb"

| SR_U8: " [[ evs8 ∈ srb;
Inputs B (Card B) {|Agent A, Nonce Na |} ∈ set evs8;
Outpts (Card B) B {|Nonce Nb, Agent A, Key K,

Cert1, Cert2|} ∈ set evs8 ]]
=⇒ Says B A {|Nonce Nb, Cert1|} # evs8 ∈ srb"

| SR_U9: " [[ evs9 ∈ srb; legalUse(Card A);
Gets A {|Nonce Pk, Cert1|} ∈ set evs9;
Outpts (Card A) A {|Nonce Na, Cert2|} ∈ set evs9;
Gets A {|Nonce Nb, Cert3|} ∈ set evs9;
∀ p q. Cert2 6= {|p, q |} ]]

=⇒ Inputs A (Card A)
{|Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Cert1, Cert3, Cert2|}

# evs9 ∈ srb"

| SR_U10: " [[ evs10 ∈ srb; legalUse(Card A); A 6= Server;
K = sesK(Nb,pairK(A,B));
Inputs A (Card A) {|Agent B, Nonce Na, Nonce Nb,

Nonce (Pairkey(A,B)),
Crypt (shrK A) {|Nonce (Pairkey(A,B)),

Agent B |},
Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},

Crypt (crdK (Card A)) (Nonce Na)|}
∈ set evs10 ]]

=⇒ Outpts (Card A) A {|Agent B, Nonce Nb,
Key K, Crypt (pairK(A,B)) (Nonce Nb)|}

# evs10 ∈ srb"
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| SR_U10Fake: " [[ evs10F ∈ srb;
illegalUse(Card A);
K = sesK(Nb,pairK(A,B));
Inputs Spy (Card A) {|Agent B, Nonce Na, Nonce Nb,

Nonce (Pairkey(A,B)),
Crypt (shrK A) {|Nonce (Pairkey(A,B)),

Agent B |},
Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},

Crypt (crdK (Card A)) (Nonce Na)|}
∈ set evs10F ]]

=⇒ Outpts (Card A) Spy {|Agent B, Nonce Nb,
Key K, Crypt (pairK(A,B)) (Nonce Nb)|}

# evs10F ∈ srb"

| SR_U11: " [[ evs11 ∈ srb;
Says A Server {|Agent A, Agent B |} ∈ set evs11;
Outpts (Card A) A {|Agent B, Nonce Nb, Key K, Certificate |}
∈ set evs11 ]]

=⇒ Says A B (Certificate)
# evs11 ∈ srb"

| Oops1:
" [[ evsO1 ∈ srb;

Outpts (Card B) B {|Nonce Nb, Agent A, Key K, Cert1, Cert2|}
∈ set evsO1 ]]

=⇒ Notes Spy {|Key K, Nonce Nb, Agent A, Agent B |} # evsO1 ∈ srb"

| Oops2:
" [[ evsO2 ∈ srb;

Outpts (Card A) A {|Agent B, Nonce Nb, Key K, Certificate |}
∈ set evsO2 ]]

=⇒ Notes Spy {|Key K, Nonce Nb, Agent A, Agent B |} # evsO2 ∈ srb"

declare Fake_parts_insert_in_Un [dest]
declare analz_into_parts [dest]
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lemma Gets_imp_Says:
" [[ Gets B X ∈ set evs; evs ∈ srb ]] =⇒ ∃ A. Says A B X ∈ set evs"

〈proof 〉

lemma Gets_imp_knows_Spy:
" [[ Gets B X ∈ set evs; evs ∈ srb ]] =⇒ X ∈ knows Spy evs"

〈proof 〉

lemma Gets_imp_knows_Spy_parts_Snd:
" [[ Gets B {|X, Y |} ∈ set evs; evs ∈ srb ]] =⇒ Y ∈ parts (knows Spy evs)"

〈proof 〉

lemma Gets_imp_knows_Spy_analz_Snd:
" [[ Gets B {|X, Y |} ∈ set evs; evs ∈ srb ]] =⇒ Y ∈ analz (knows Spy evs)"

〈proof 〉

lemma Inputs_imp_knows_Spy_secureM_srb:
" [[ Inputs Spy C X ∈ set evs; evs ∈ srb ]] =⇒ X ∈ knows Spy evs"

〈proof 〉

lemma knows_Spy_Inputs_secureM_srb_Spy:
"evs ∈srb =⇒ knows Spy (Inputs Spy C X # evs) = insert X (knows Spy

evs)"
〈proof 〉

lemma knows_Spy_Inputs_secureM_srb:
" [[ A 6= Spy; evs ∈srb ]] =⇒ knows Spy (Inputs A C X # evs) = knows Spy

evs"
〈proof 〉

lemma knows_Spy_Outpts_secureM_srb_Spy:
"evs ∈srb =⇒ knows Spy (Outpts C Spy X # evs) = insert X (knows Spy

evs)"
〈proof 〉

lemma knows_Spy_Outpts_secureM_srb:
" [[ A 6= Spy; evs ∈srb ]] =⇒ knows Spy (Outpts C A X # evs) = knows Spy

evs"
〈proof 〉
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lemma Inputs_A_Card_3:
" [[ Inputs A C (Agent A) ∈ set evs; A 6= Spy; evs ∈ srb ]]
=⇒ legalUse(C) ∧ C = (Card A) ∧
(∃ Pk Certificate. Gets A {|Pk, Certificate |} ∈ set evs)"

〈proof 〉

lemma Inputs_B_Card_6:
" [[ Inputs B C {|Agent A, Nonce Na |} ∈ set evs; B 6= Spy; evs ∈ srb ]]
=⇒ legalUse(C) ∧ C = (Card B) ∧ Gets B {|Agent A, Nonce Na |} ∈ set evs"

〈proof 〉

lemma Inputs_A_Card_9:
" [[ Inputs A C {|Agent B, Nonce Na, Nonce Nb, Nonce Pk,

Cert1, Cert2, Cert3|} ∈ set evs;

A 6= Spy; evs ∈ srb ]]
=⇒ legalUse(C) ∧ C = (Card A) ∧

Gets A {|Nonce Pk, Cert1|} ∈ set evs ∧
Outpts (Card A) A {|Nonce Na, Cert3|} ∈ set evs ∧
Gets A {|Nonce Nb, Cert2|} ∈ set evs"

〈proof 〉

lemma Outpts_A_Card_4:
" [[ Outpts C A {|Nonce Na, (Crypt (crdK (Card A)) (Nonce Na))|} ∈ set evs;

evs ∈ srb ]]
=⇒ legalUse(C) ∧ C = (Card A) ∧

Inputs A (Card A) (Agent A) ∈ set evs"
〈proof 〉

lemma Outpts_B_Card_7:
" [[ Outpts C B {|Nonce Nb, Agent A, Key K,

Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
Cert2|} ∈ set evs;

evs ∈ srb ]]
=⇒ legalUse(C) ∧ C = (Card B) ∧

Inputs B (Card B) {|Agent A, Nonce Na |} ∈ set evs"
〈proof 〉

lemma Outpts_A_Card_10:
" [[ Outpts C A {|Agent B, Nonce Nb,

Key K, (Crypt (pairK(A,B)) (Nonce Nb))|} ∈ set evs;
evs ∈ srb ]]

=⇒ legalUse(C) ∧ C = (Card A) ∧
(∃ Na Ver1 Ver2 Ver3.

Inputs A (Card A) {|Agent B, Nonce Na, Nonce Nb, Nonce (Pairkey(A,B)),

Ver1, Ver2, Ver3|} ∈ set evs)"
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〈proof 〉

lemma Outpts_A_Card_10_imp_Inputs:
" [[ Outpts (Card A) A {|Agent B, Nonce Nb, Key K, Certificate |}

∈ set evs; evs ∈ srb ]]
=⇒ (∃ Na Ver1 Ver2 Ver3.

Inputs A (Card A) {|Agent B, Nonce Na, Nonce Nb, Nonce (Pairkey(A,B)),

Ver1, Ver2, Ver3|} ∈ set evs)"
〈proof 〉

lemma Outpts_honest_A_Card_4:
" [[ Outpts C A {|Nonce Na, Crypt K X |} ∈set evs;

A 6= Spy; evs ∈ srb ]]
=⇒ legalUse(C) ∧ C = (Card A) ∧

Inputs A (Card A) (Agent A) ∈ set evs"
〈proof 〉

lemma Outpts_honest_B_Card_7:
" [[ Outpts C B {|Nonce Nb, Agent A, Key K, Cert1, Cert2|} ∈ set evs;

B 6= Spy; evs ∈ srb ]]
=⇒ legalUse(C) ∧ C = (Card B) ∧

(∃ Na. Inputs B (Card B) {|Agent A, Nonce Na |} ∈ set evs)"
〈proof 〉

lemma Outpts_honest_A_Card_10:
" [[ Outpts C A {|Agent B, Nonce Nb, Key K, Certificate |} ∈ set evs;

A 6= Spy; evs ∈ srb ]]
=⇒ legalUse (C) ∧ C = (Card A) ∧

(∃ Na Pk Ver1 Ver2 Ver3.
Inputs A (Card A) {|Agent B, Nonce Na, Nonce Nb, Pk,

Ver1, Ver2, Ver3|} ∈ set evs)"
〈proof 〉

lemma Outpts_which_Card_4:
" [[ Outpts (Card A) A {|Nonce Na, Crypt K X |} ∈ set evs; evs ∈ srb ]]
=⇒ Inputs A (Card A) (Agent A) ∈ set evs"

〈proof 〉

lemma Outpts_which_Card_7:
" [[ Outpts (Card B) B {|Nonce Nb, Agent A, Key K, Cert1, Cert2|}
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∈ set evs; evs ∈ srb ]]
=⇒ ∃ Na. Inputs B (Card B) {|Agent A, Nonce Na |} ∈ set evs"

〈proof 〉

lemma Outpts_which_Card_10:
" [[ Outpts (Card A) A {|Agent B, Nonce Nb, Key K, Certificate |} ∈ set evs;

evs ∈ srb ]]
=⇒ ∃ Na. Inputs A (Card A) {|Agent B, Nonce Na, Nonce Nb, Nonce (Pairkey(A,B)),

Crypt (shrK A) {|Nonce (Pairkey(A,B)), Agent B |},

Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
Crypt (crdK (Card A)) (Nonce Na) |} ∈ set evs"

〈proof 〉

lemma Outpts_A_Card_form_4:
" [[ Outpts (Card A) A {|Nonce Na, Certificate |} ∈ set evs;

∀ p q. Certificate 6= {|p, q |}; evs ∈ srb ]]
=⇒ Certificate = (Crypt (crdK (Card A)) (Nonce Na))"

〈proof 〉

lemma Outpts_B_Card_form_7:
" [[ Outpts (Card B) B {|Nonce Nb, Agent A, Key K, Cert1, Cert2|}

∈ set evs; evs ∈ srb ]]
=⇒ ∃ Na.

K = sesK(Nb,pairK(A,B)) ∧
Cert1 = (Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |}) ∧
Cert2 = (Crypt (pairK(A,B)) (Nonce Nb))"

〈proof 〉

lemma Outpts_A_Card_form_10:
" [[ Outpts (Card A) A {|Agent B, Nonce Nb, Key K, Certificate |}

∈ set evs; evs ∈ srb ]]
=⇒ K = sesK(Nb,pairK(A,B)) ∧

Certificate = (Crypt (pairK(A,B)) (Nonce Nb))"
〈proof 〉

lemma Outpts_A_Card_form_bis:
" [[ Outpts (Card A’) A’ {|Agent B’, Nonce Nb’, Key (sesK(Nb,pairK(A,B))),

Certificate |} ∈ set evs;
evs ∈ srb ]]

=⇒ A’ = A ∧ B’ = B ∧ Nb = Nb’ ∧
Certificate = (Crypt (pairK(A,B)) (Nonce Nb))"

〈proof 〉
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lemma Inputs_A_Card_form_9:

" [[ Inputs A (Card A) {|Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Cert1, Cert2, Cert3|} ∈ set evs;

evs ∈ srb ]]
=⇒ Cert3 = Crypt (crdK (Card A)) (Nonce Na)"

〈proof 〉

lemma Inputs_Card_legalUse:
" [[ Inputs A (Card A) X ∈ set evs; evs ∈ srb ]] =⇒ legalUse(Card A)"

〈proof 〉

lemma Outpts_Card_legalUse:
" [[ Outpts (Card A) A X ∈ set evs; evs ∈ srb ]] =⇒ legalUse(Card A)"

〈proof 〉

lemma Inputs_Card: " [[ Inputs A C X ∈ set evs; A 6= Spy; evs ∈ srb ]]
=⇒ C = (Card A) ∧ legalUse(C)"

〈proof 〉

lemma Outpts_Card: " [[ Outpts C A X ∈ set evs; A 6= Spy; evs ∈ srb ]]
=⇒ C = (Card A) ∧ legalUse(C)"

〈proof 〉

lemma Inputs_Outpts_Card:
" [[ Inputs A C X ∈ set evs ∨ Outpts C A Y ∈ set evs;

A 6= Spy; evs ∈ srb ]]
=⇒ C = (Card A) ∧ legalUse(Card A)"

〈proof 〉

lemma Inputs_Card_Spy:
" [[ Inputs Spy C X ∈ set evs ∨ Outpts C Spy X ∈ set evs; evs ∈ srb ]]

=⇒ C = (Card Spy) ∧ legalUse(Card Spy) ∨
(∃ A. C = (Card A) ∧ illegalUse(Card A))"

〈proof 〉
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lemma Outpts_A_Card_unique_nonce:
" [[ Outpts (Card A) A {|Nonce Na, Crypt (crdK (Card A)) (Nonce Na)|}

∈ set evs;
Outpts (Card A’) A’ {|Nonce Na, Crypt (crdK (Card A’)) (Nonce Na)|}

∈ set evs;
evs ∈ srb ]] =⇒ A=A’"

〈proof 〉

lemma Outpts_B_Card_unique_nonce:
" [[ Outpts (Card B) B {|Nonce Nb, Agent A, Key SK, Cert1, Cert2|} ∈ set

evs;
Outpts (Card B’) B’ {|Nonce Nb, Agent A’, Key SK’, Cert1’, Cert2’|} ∈

set evs;
evs ∈ srb ]] =⇒ B=B’ ∧ A=A’ ∧ SK=SK’ ∧ Cert1=Cert1’ ∧ Cert2=Cert2’"

〈proof 〉

lemma Outpts_B_Card_unique_key:
" [[ Outpts (Card B) B {|Nonce Nb, Agent A, Key SK, Cert1, Cert2|} ∈ set

evs;
Outpts (Card B’) B’ {|Nonce Nb’, Agent A’, Key SK, Cert1’, Cert2’|} ∈

set evs;
evs ∈ srb ]] =⇒ B=B’ ∧ A=A’ ∧ Nb=Nb’ ∧ Cert1=Cert1’ ∧ Cert2=Cert2’"

〈proof 〉

lemma Outpts_A_Card_unique_key:
" [[ Outpts (Card A) A {|Agent B, Nonce Nb, Key K, V |} ∈ set evs;

Outpts (Card A’) A’ {|Agent B’, Nonce Nb’, Key K, V’|} ∈ set evs;
evs ∈ srb ]] =⇒ A=A’ ∧ B=B’ ∧ Nb=Nb’ ∧ V=V’"

〈proof 〉

lemma Outpts_A_Card_Unique:
" [[ Outpts (Card A) A {|Nonce Na, rest |} ∈ set evs; evs ∈ srb ]]

=⇒ Unique (Outpts (Card A) A {|Nonce Na, rest |}) on evs"
〈proof 〉
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lemma Spy_knows_Na:
" [[ Says A B {|Agent A, Nonce Na |} ∈ set evs; evs ∈ srb ]]
=⇒ Nonce Na ∈ analz (knows Spy evs)"

〈proof 〉

lemma Spy_knows_Nb:
" [[ Says B A {|Nonce Nb, Certificate |} ∈ set evs; evs ∈ srb ]]
=⇒ Nonce Nb ∈ analz (knows Spy evs)"

〈proof 〉

lemma Pairkey_Gets_analz_knows_Spy:
" [[ Gets A {|Nonce (Pairkey(A,B)), Certificate |} ∈ set evs; evs ∈ srb

]]
=⇒ Nonce (Pairkey(A,B)) ∈ analz (knows Spy evs)"

〈proof 〉

lemma Pairkey_Inputs_imp_Gets:
" [[ Inputs A (Card A)

{|Agent B, Nonce Na, Nonce Nb, Nonce (Pairkey(A,B)),
Cert1, Cert3, Cert2|} ∈ set evs;

A 6= Spy; evs ∈ srb ]]
=⇒ Gets A {|Nonce (Pairkey(A,B)), Cert1|} ∈ set evs"

〈proof 〉

lemma Pairkey_Inputs_analz_knows_Spy:
" [[ Inputs A (Card A)

{|Agent B, Nonce Na, Nonce Nb, Nonce (Pairkey(A,B)),
Cert1, Cert3, Cert2|} ∈ set evs;

evs ∈ srb ]]
=⇒ Nonce (Pairkey(A,B)) ∈ analz (knows Spy evs)"

〈proof 〉

declare shrK_disj_sesK [THEN not_sym, iff]
declare pin_disj_sesK [THEN not_sym, iff]
declare crdK_disj_sesK [THEN not_sym, iff]
declare pairK_disj_sesK [THEN not_sym, iff]

〈ML〉
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lemma Spy_parts_keys [simp]: "evs ∈ srb =⇒
(Key (shrK P) ∈ parts (knows Spy evs)) = (Card P ∈ cloned) ∧
(Key (pin P) ∈ parts (knows Spy evs)) = (P ∈ bad ∨ Card P ∈ cloned) ∧

(Key (crdK C) ∈ parts (knows Spy evs)) = (C ∈ cloned) ∧
(Key (pairK(A,B)) ∈ parts (knows Spy evs)) = (Card B ∈ cloned)"

〈proof 〉

lemma Spy_analz_shrK[simp]: "evs ∈ srb =⇒
(Key (shrK P) ∈ analz (knows Spy evs)) = (Card P ∈ cloned)"

〈proof 〉

lemma Spy_analz_crdK[simp]: "evs ∈ srb =⇒
(Key (crdK C) ∈ analz (knows Spy evs)) = (C ∈ cloned)"

〈proof 〉

lemma Spy_analz_pairK[simp]: "evs ∈ srb =⇒
(Key (pairK(A,B)) ∈ analz (knows Spy evs)) = (Card B ∈ cloned)"

〈proof 〉

lemma analz_image_Key_Un_Nonce:
"analz (Key ‘ K ∪ Nonce ‘ N) = Key ‘ K ∪ Nonce ‘ N"
〈proof 〉

〈ML〉

lemma analz_image_freshK [rule_format]:
"evs ∈ srb =⇒ ∀ K KK.

(Key K ∈ analz (Key‘KK ∪ (knows Spy evs))) =
(K ∈ KK ∨ Key K ∈ analz (knows Spy evs))"

〈proof 〉

lemma analz_insert_freshK: "evs ∈ srb =⇒
Key K ∈ analz (insert (Key K’) (knows Spy evs)) =
(K = K’ ∨ Key K ∈ analz (knows Spy evs))"

〈proof 〉
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lemma Na_Nb_certificate_authentic:
" [[ Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |} ∈ parts (knows Spy evs);

¬illegalUse(Card B);
evs ∈ srb ]]

=⇒ Outpts (Card B) B {|Nonce Nb, Agent A, Key (sesK(Nb,pairK(A,B))),

Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evs"

〈proof 〉

lemma Nb_certificate_authentic:
" [[ Crypt (pairK(A,B)) (Nonce Nb) ∈ parts (knows Spy evs);

B 6= Spy; ¬illegalUse(Card A); ¬illegalUse(Card B);
evs ∈ srb ]]

=⇒ Outpts (Card A) A {|Agent B, Nonce Nb, Key (sesK(Nb,pairK(A,B))),

Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evs"
〈proof 〉

lemma Outpts_A_Card_imp_pairK_parts:
" [[ Outpts (Card A) A {|Agent B, Nonce Nb,

Key K, Certificate |} ∈ set evs;
evs ∈ srb ]]

=⇒ ∃ Na. Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |} ∈ parts (knows Spy
evs)"
〈proof 〉

lemma Nb_certificate_authentic_bis:
" [[ Crypt (pairK(A,B)) (Nonce Nb) ∈ parts (knows Spy evs);

B 6= Spy; ¬illegalUse(Card B);
evs ∈ srb ]]

=⇒ ∃ Na. Outpts (Card B) B {|Nonce Nb, Agent A, Key (sesK(Nb,pairK(A,B))),

Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evs"

〈proof 〉

lemma Pairkey_certificate_authentic:
" [[ Crypt (shrK A) {|Nonce Pk, Agent B |} ∈ parts (knows Spy evs);

Card A /∈ cloned; evs ∈ srb ]]
=⇒ Pk = Pairkey(A,B) ∧

Says Server A {|Nonce Pk,
Crypt (shrK A) {|Nonce Pk, Agent B |}|}

∈ set evs"
〈proof 〉
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lemma sesK_authentic:
" [[ Key (sesK(Nb,pairK(A,B))) ∈ parts (knows Spy evs);

A 6= Spy; B 6= Spy; ¬illegalUse(Card A); ¬illegalUse(Card B);
evs ∈ srb ]]

=⇒ Notes Spy {|Key (sesK(Nb,pairK(A,B))), Nonce Nb, Agent A, Agent B |}

∈ set evs"
〈proof 〉

lemma Confidentiality:
" [[ Notes Spy {|Key (sesK(Nb,pairK(A,B))), Nonce Nb, Agent A, Agent B |}

/∈ set evs;
A 6= Spy; B 6= Spy; ¬illegalUse(Card A); ¬illegalUse(Card B);
evs ∈ srb ]]

=⇒ Key (sesK(Nb,pairK(A,B))) /∈ analz (knows Spy evs)"
〈proof 〉

lemma Confidentiality_B:
" [[ Outpts (Card B) B {|Nonce Nb, Agent A, Key K, Cert1, Cert2|}

∈ set evs;
Notes Spy {|Key K, Nonce Nb, Agent A, Agent B |} /∈ set evs;
A 6= Spy; B 6= Spy; ¬illegalUse(Card A); Card B /∈ cloned;
evs ∈ srb ]]

=⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉

lemma A_authenticates_B:
" [[ Outpts (Card A) A {|Agent B, Nonce Nb, Key K, Certificate |} ∈ set evs;
¬illegalUse(Card B);
evs ∈ srb ]]

=⇒ ∃ Na. Outpts (Card B) B {|Nonce Nb, Agent A, Key K,
Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evs"

〈proof 〉

lemma A_authenticates_B_Gets:
" [[ Gets A {|Nonce Nb, Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |}|}

∈ set evs;
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¬illegalUse(Card B);
evs ∈ srb ]]

=⇒ Outpts (Card B) B {|Nonce Nb, Agent A, Key (sesK(Nb, pairK (A, B))),

Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evs"

〈proof 〉

lemma A_authenticates_B_bis:
" [[ Outpts (Card A) A {|Agent B, Nonce Nb, Key K, Cert2|} ∈ set evs;
¬illegalUse(Card B);
evs ∈ srb ]]

=⇒ ∃ Cert1. Outpts (Card B) B {|Nonce Nb, Agent A, Key K, Cert1, Cert2|}

∈ set evs"
〈proof 〉

lemma B_authenticates_A:
" [[ Gets B (Crypt (pairK(A,B)) (Nonce Nb)) ∈ set evs;

B 6= Spy; ¬illegalUse(Card A); ¬illegalUse(Card B);
evs ∈ srb ]]

=⇒ Outpts (Card A) A {|Agent B, Nonce Nb,
Key (sesK(Nb,pairK(A,B))), Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evs"

〈proof 〉

lemma B_authenticates_A_bis:
" [[ Outpts (Card B) B {|Nonce Nb, Agent A, Key K, Cert1, Cert2|} ∈ set evs;

Gets B (Cert2) ∈ set evs;
B 6= Spy; ¬illegalUse(Card A); ¬illegalUse(Card B);
evs ∈ srb ]]

=⇒ Outpts (Card A) A {|Agent B, Nonce Nb, Key K, Cert2|} ∈ set evs"
〈proof 〉

lemma Confidentiality_A:
" [[ Outpts (Card A) A {|Agent B, Nonce Nb,

Key K, Certificate |} ∈ set evs;
Notes Spy {|Key K, Nonce Nb, Agent A, Agent B |} /∈ set evs;
A 6= Spy; B 6= Spy; ¬illegalUse(Card A); ¬illegalUse(Card B);
evs ∈ srb ]]

=⇒ Key K /∈ analz (knows Spy evs)"
〈proof 〉
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lemma Outpts_imp_knows_agents_secureM_srb:
" [[ Outpts (Card A) A X ∈ set evs; evs ∈ srb ]] =⇒ X ∈ knows A evs"

〈proof 〉

lemma A_keydist_to_B:
" [[ Outpts (Card A) A {|Agent B, Nonce Nb, Key K, Certificate |} ∈ set evs;

¬illegalUse(Card B);
evs ∈ srb ]]

=⇒ Key K ∈ analz (knows B evs)"
〈proof 〉

lemma B_keydist_to_A:
" [[ Outpts (Card B) B {|Nonce Nb, Agent A, Key K, Cert1, Cert2|} ∈ set evs;

Gets B (Cert2) ∈ set evs;
B 6= Spy; ¬illegalUse(Card A); ¬illegalUse(Card B);
evs ∈ srb ]]

=⇒ Key K ∈ analz (knows A evs)"
〈proof 〉

lemma Nb_certificate_authentic_B:
" [[ Gets B (Crypt (pairK(A,B)) (Nonce Nb)) ∈ set evs;

B 6= Spy; ¬illegalUse(Card B);
evs ∈ srb ]]

=⇒ ∃ Na.
Outpts (Card B) B {|Nonce Nb, Agent A, Key (sesK(Nb,pairK(A,B))),

Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evs"

〈proof 〉

lemma Pairkey_certificate_authentic_A_Card:
" [[ Inputs A (Card A)

{|Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Crypt (shrK A) {|Nonce Pk, Agent B |},
Cert2, Cert3|} ∈ set evs;

A 6= Spy; Card A /∈ cloned; evs ∈ srb ]]
=⇒ Pk = Pairkey(A,B) ∧
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Says Server A {|Nonce (Pairkey(A,B)),
Crypt (shrK A) {|Nonce (Pairkey(A,B)), Agent B |}|}

∈ set evs "
〈proof 〉

lemma Na_Nb_certificate_authentic_A_Card:
" [[ Inputs A (Card A)

{|Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Cert1, Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |}, Cert3|} ∈ set evs;

A 6= Spy; ¬illegalUse(Card B); evs ∈ srb ]]
=⇒ Outpts (Card B) B {|Nonce Nb, Agent A, Key (sesK(Nb, pairK (A, B))),

Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
Crypt (pairK(A,B)) (Nonce Nb)|}

∈ set evs "
〈proof 〉

lemma Na_authentic_A_Card:
" [[ Inputs A (Card A)

{|Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Cert1, Cert2, Cert3|} ∈ set evs;

A 6= Spy; evs ∈ srb ]]
=⇒ Outpts (Card A) A {|Nonce Na, Cert3|}

∈ set evs"
〈proof 〉

lemma Inputs_A_Card_9_authentic:
" [[ Inputs A (Card A)

{|Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Crypt (shrK A) {|Nonce Pk, Agent B |},
Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |}, Cert3|} ∈ set evs;

A 6= Spy; Card A /∈ cloned; ¬illegalUse(Card B); evs ∈ srb ]]
=⇒ Says Server A {|Nonce Pk, Crypt (shrK A) {|Nonce Pk, Agent B |}|}

∈ set evs ∧
Outpts (Card B) B {|Nonce Nb, Agent A, Key (sesK(Nb, pairK (A, B))),

Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
Crypt (pairK(A,B)) (Nonce Nb)|}

∈ set evs ∧
Outpts (Card A) A {|Nonce Na, Cert3|}
∈ set evs"

〈proof 〉
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lemma SR_U4_imp:
" [[ Outpts (Card A) A {|Nonce Na, Crypt (crdK (Card A)) (Nonce Na)|}

∈ set evs;
A 6= Spy; evs ∈ srb ]]

=⇒ ∃ Pk V. Gets A {|Pk, V |} ∈ set evs"
〈proof 〉

lemma SR_U7_imp:
" [[ Outpts (Card B) B {|Nonce Nb, Agent A, Key K,

Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb |},
Cert2|} ∈ set evs;

B 6= Spy; evs ∈ srb ]]
=⇒ Gets B {|Agent A, Nonce Na |} ∈ set evs"

〈proof 〉

lemma SR_U10_imp:
" [[ Outpts (Card A) A {|Agent B, Nonce Nb,

Key K, Crypt (pairK(A,B)) (Nonce Nb)|}
∈ set evs;

A 6= Spy; evs ∈ srb ]]
=⇒ ∃ Cert1 Cert2.

Gets A {|Nonce (Pairkey (A, B)), Cert1|} ∈ set evs ∧
Gets A {|Nonce Nb, Cert2|} ∈ set evs"

〈proof 〉

lemma Outpts_Server_not_evs:
"evs ∈ srb =⇒ Outpts (Card Server) P X /∈ set evs"

〈proof 〉

step2_integrity also is a reliability theorem

lemma Says_Server_message_form:
" [[ Says Server A {|Pk, Certificate |} ∈ set evs;

evs ∈ srb ]]
=⇒ ∃ B. Pk = Nonce (Pairkey(A,B)) ∧

Certificate = Crypt (shrK A) {|Nonce (Pairkey(A,B)), Agent B |}"
〈proof 〉
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step4integrity is Outpts_A_Card_form_4

step7integrity is Outpts_B_Card_form_7

lemma step8_integrity:
" [[ Says B A {|Nonce Nb, Certificate |} ∈ set evs;

B 6= Server; B 6= Spy; evs ∈ srb ]]
=⇒ ∃ Cert2 K.

Outpts (Card B) B {|Nonce Nb, Agent A, Key K, Certificate, Cert2|} ∈ set
evs"
〈proof 〉

step9integrity is Inputs_A_Card_form_9 step10integrity is Outpts_A_Card_form_10.

lemma step11_integrity:
" [[ Says A B (Certificate) ∈ set evs;

∀ p q. Certificate 6= {|p, q |};
A 6= Spy; evs ∈ srb ]]

=⇒ ∃ K Nb.
Outpts (Card A) A {|Agent B, Nonce Nb, Key K, Certificate |} ∈ set evs"

〈proof 〉

end

28 Smartcard protocols: rely on conventional Mes-
sage and on new EventSC and Smartcard

theory Auth_Smartcard
imports

ShoupRubin
ShoupRubinBella

begin

end

29 Extensions to Standard Theories
theory Extensions
imports "../Event"
begin

29.1 Extensions to Theory Set

lemma eq: " [[
∧

x. x∈A =⇒ x∈B;
∧

x. x∈B =⇒ x∈A ]] =⇒ A=B"
〈proof 〉

lemma insert_Un: "P ({x} ∪ A) =⇒ P (insert x A)"
〈proof 〉

lemma in_sub: "x∈A =⇒ {x}⊆A"
〈proof 〉



29.2 Extensions to Theory List 253

29.2 Extensions to Theory List

29.2.1 "remove l x" erase the first element of "l" equal to "x"
primrec remove :: "’a list => ’a => ’a list" where
"remove [] y = []" |
"remove (x#xs) y = (if x=y then xs else x # remove xs y)"

lemma set_remove: "set (remove l x) <= set l"
〈proof 〉

29.3 Extensions to Theory Message

29.3.1 declarations for tactics
declare analz_subset_parts [THEN subsetD, dest]
declare parts_insert2 [simp]
declare analz_cut [dest]
declare if_split_asm [split]
declare analz_insertI [intro]
declare Un_Diff [simp]

29.3.2 extract the agent number of an Agent message
primrec agt_nb :: "msg => agent" where
"agt_nb (Agent A) = A"

29.3.3 messages that are pairs
definition is_MPair :: "msg => bool" where
"is_MPair X == ∃ Y Z. X = {|Y,Z |}"

declare is_MPair_def [simp]

lemma MPair_is_MPair [iff]: "is_MPair {|X,Y |}"
〈proof 〉

lemma Agent_isnt_MPair [iff]: "~ is_MPair (Agent A)"
〈proof 〉

lemma Number_isnt_MPair [iff]: "~ is_MPair (Number n)"
〈proof 〉

lemma Key_isnt_MPair [iff]: "~ is_MPair (Key K)"
〈proof 〉

lemma Nonce_isnt_MPair [iff]: "~ is_MPair (Nonce n)"
〈proof 〉

lemma Hash_isnt_MPair [iff]: "~ is_MPair (Hash X)"
〈proof 〉

lemma Crypt_isnt_MPair [iff]: "~ is_MPair (Crypt K X)"
〈proof 〉

abbreviation
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not_MPair :: "msg => bool" where
"not_MPair X == ~ is_MPair X"

lemma is_MPairE: " [[is_MPair X =⇒ P; not_MPair X =⇒ P ]] =⇒ P"
〈proof 〉

declare is_MPair_def [simp del]

definition has_no_pair :: "msg set => bool" where
"has_no_pair H == ∀ X Y. {|X,Y |} /∈ H"

declare has_no_pair_def [simp]

29.3.4 well-foundedness of messages
lemma wf_Crypt1 [iff]: "Crypt K X ~= X"
〈proof 〉

lemma wf_Crypt2 [iff]: "X ~= Crypt K X"
〈proof 〉

lemma parts_size: "X ∈ parts {Y} =⇒ X=Y ∨ size X < size Y"
〈proof 〉

lemma wf_Crypt_parts [iff]: "Crypt K X /∈ parts {X}"
〈proof 〉

29.3.5 lemmas on keysFor
definition usekeys :: "msg set => key set" where
"usekeys G ≡ {K. ∃ Y. Crypt K Y ∈ G}"

lemma finite_keysFor [intro]: "finite G =⇒ finite (keysFor G)"
〈proof 〉

29.3.6 lemmas on parts
lemma parts_sub: " [[X ∈ parts G; G ⊆ H ]] =⇒ X ∈ parts H"
〈proof 〉

lemma parts_Diff [dest]: "X ∈ parts (G - H) =⇒ X ∈ parts G"
〈proof 〉

lemma parts_Diff_notin: " [[Y /∈ H; Nonce n /∈ parts (H - {Y})]]
=⇒ Nonce n /∈ parts H"
〈proof 〉

lemmas parts_insert_substI = parts_insert [THEN ssubst]
lemmas parts_insert_substD = parts_insert [THEN sym, THEN ssubst]

lemma finite_parts_msg [iff]: "finite (parts {X})"
〈proof 〉

lemma finite_parts [intro]: "finite H =⇒ finite (parts H)"
〈proof 〉
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lemma parts_parts: " [[X ∈ parts {Y}; Y ∈ parts G ]] =⇒ X ∈ parts G"
〈proof 〉

lemma parts_parts_parts: " [[X ∈ parts {Y}; Y ∈ parts {Z}; Z ∈ parts G ]] =⇒
X ∈ parts G"
〈proof 〉

lemma parts_parts_Crypt: " [[Crypt K X ∈ parts G; Nonce n ∈ parts {X}]]
=⇒ Nonce n ∈ parts G"
〈proof 〉

29.3.7 lemmas on synth

lemma synth_sub: " [[X ∈ synth G; G ⊆ H ]] =⇒ X ∈ synth H"
〈proof 〉

lemma Crypt_synth [rule_format]: " [[X ∈ synth G; Key K /∈ G ]] =⇒
Crypt K Y ∈ parts {X} −→ Crypt K Y ∈ parts G"
〈proof 〉

29.3.8 lemmas on analz

lemma analz_UnI1 [intro]: "X ∈ analz G =⇒ X ∈ analz (G ∪ H)"
〈proof 〉

lemma analz_sub: " [[X ∈ analz G; G ⊆ H ]] =⇒ X ∈ analz H"
〈proof 〉

lemma analz_Diff [dest]: "X ∈ analz (G - H) =⇒ X ∈ analz G"
〈proof 〉

lemmas in_analz_subset_cong = analz_subset_cong [THEN subsetD]

lemma analz_eq: "A=A’ =⇒ analz A = analz A’"
〈proof 〉

lemmas insert_commute_substI = insert_commute [THEN ssubst]

lemma analz_insertD:
" [[Crypt K Y ∈ H; Key (invKey K) ∈ H ]] =⇒ analz (insert Y H) = analz H"

〈proof 〉

lemma must_decrypt [rule_format,dest]: " [[X ∈ analz H; has_no_pair H ]] =⇒
X /∈ H −→ (∃ K Y. Crypt K Y ∈ H ∧ Key (invKey K) ∈ H)"
〈proof 〉

lemma analz_needs_only_finite: "X ∈ analz H =⇒ ∃ G. G ⊆ H ∧ finite G"
〈proof 〉

lemma notin_analz_insert: "X /∈ analz (insert Y G) =⇒ X /∈ analz G"
〈proof 〉
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29.3.9 lemmas on parts, synth and analz
lemma parts_invKey [rule_format,dest]:"X ∈ parts {Y} =⇒
X ∈ analz (insert (Crypt K Y) H) −→ X /∈ analz H −→ Key (invKey K) ∈ analz
H"
〈proof 〉

lemma in_analz: "Y ∈ analz H =⇒ ∃ X. X ∈ H ∧ Y ∈ parts {X}"
〈proof 〉

lemmas in_analz_subset_parts = analz_subset_parts [THEN subsetD]

lemma Crypt_synth_insert: " [[Crypt K X ∈ parts (insert Y H);
Y ∈ synth (analz H); Key K /∈ analz H ]] =⇒ Crypt K X ∈ parts H"
〈proof 〉

29.3.10 greatest nonce used in a message
fun greatest_msg :: "msg => nat"
where

"greatest_msg (Nonce n) = n"
| "greatest_msg {|X,Y |} = max (greatest_msg X) (greatest_msg Y)"
| "greatest_msg (Crypt K X) = greatest_msg X"
| "greatest_msg other = 0"

lemma greatest_msg_is_greatest: "Nonce n ∈ parts {X} =⇒ n ≤ greatest_msg
X"
〈proof 〉

29.3.11 sets of keys
definition keyset :: "msg set => bool" where
"keyset G ≡ ∀ X. X ∈ G −→ (∃ K. X = Key K)"

lemma keyset_in [dest]: " [[keyset G; X ∈ G ]] =⇒ ∃ K. X = Key K"
〈proof 〉

lemma MPair_notin_keyset [simp]: "keyset G =⇒ {|X,Y |} /∈ G"
〈proof 〉

lemma Crypt_notin_keyset [simp]: "keyset G =⇒ Crypt K X /∈ G"
〈proof 〉

lemma Nonce_notin_keyset [simp]: "keyset G =⇒ Nonce n /∈ G"
〈proof 〉

lemma parts_keyset [simp]: "keyset G =⇒ parts G = G"
〈proof 〉

29.3.12 keys a priori necessary for decrypting the messages of G
definition keysfor :: "msg set => msg set" where
"keysfor G == Key ‘ keysFor (parts G)"

lemma keyset_keysfor [iff]: "keyset (keysfor G)"
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〈proof 〉

lemma keyset_Diff_keysfor [simp]: "keyset H =⇒ keyset (H - keysfor G)"
〈proof 〉

lemma keysfor_Crypt: "Crypt K X ∈ parts G =⇒ Key (invKey K) ∈ keysfor G"
〈proof 〉

lemma no_key_no_Crypt: "Key K /∈ keysfor G =⇒ Crypt (invKey K) X /∈ parts
G"
〈proof 〉

lemma finite_keysfor [intro]: "finite G =⇒ finite (keysfor G)"
〈proof 〉

29.3.13 only the keys necessary for G are useful in analz
lemma analz_keyset: "keyset H =⇒
analz (G Un H) = H - keysfor G Un (analz (G Un (H Int keysfor G)))"
〈proof 〉

lemmas analz_keyset_substD = analz_keyset [THEN sym, THEN ssubst]

29.4 Extensions to Theory Event

29.4.1 general protocol properties
definition is_Says :: "event => bool" where
"is_Says ev == (∃ A B X. ev = Says A B X)"

lemma is_Says_Says [iff]: "is_Says (Says A B X)"
〈proof 〉

definition Gets_correct :: "event list set => bool" where
"Gets_correct p == ∀ evs B X. evs ∈ p −→ Gets B X ∈ set evs
−→ (∃ A. Says A B X ∈ set evs)"

lemma Gets_correct_Says: " [[Gets_correct p; Gets B X # evs ∈ p ]]
=⇒ ∃ A. Says A B X ∈ set evs"
〈proof 〉

definition one_step :: "event list set => bool" where
"one_step p == ∀ evs ev. ev#evs ∈ p −→ evs ∈ p"

lemma one_step_Cons [dest]: " [[one_step p; ev#evs ∈ p ]] =⇒ evs ∈ p"
〈proof 〉

lemma one_step_app: " [[evs@evs’ ∈ p; one_step p; [] ∈ p ]] =⇒ evs’ ∈ p"
〈proof 〉

lemma trunc: " [[evs @ evs’ ∈ p; one_step p ]] =⇒ evs’ ∈ p"
〈proof 〉

definition has_only_Says :: "event list set => bool" where
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"has_only_Says p ≡ ∀ evs ev. evs ∈ p −→ ev ∈ set evs
−→ (∃ A B X. ev = Says A B X)"

lemma has_only_SaysD: " [[ev ∈ set evs; evs ∈ p; has_only_Says p ]]
=⇒ ∃ A B X. ev = Says A B X"
〈proof 〉

lemma in_has_only_Says [dest]: " [[has_only_Says p; evs ∈ p; ev ∈ set evs ]]
=⇒ ∃ A B X. ev = Says A B X"
〈proof 〉

lemma has_only_Says_imp_Gets_correct [simp]: "has_only_Says p
=⇒ Gets_correct p"
〈proof 〉

29.4.2 lemma on knows
lemma Says_imp_spies2: "Says A B {|X,Y |} ∈ set evs =⇒ Y ∈ parts (spies evs)"
〈proof 〉

lemma Says_not_parts: " [[Says A B X ∈ set evs; Y /∈ parts (spies evs)]]
=⇒ Y /∈ parts {X}"
〈proof 〉

29.4.3 knows without initState
primrec knows’ :: "agent => event list => msg set" where

knows’_Nil: "knows’ A [] = {}" |
knows’_Cons0:

"knows’ A (ev # evs) = (
if A = Spy then (

case ev of
Says A’ B X => insert X (knows’ A evs)

| Gets A’ X => knows’ A evs
| Notes A’ X => if A’ ∈ bad then insert X (knows’ A evs) else knows’

A evs
) else (

case ev of
Says A’ B X => if A=A’ then insert X (knows’ A evs) else knows’ A evs

| Gets A’ X => if A=A’ then insert X (knows’ A evs) else knows’ A evs
| Notes A’ X => if A=A’ then insert X (knows’ A evs) else knows’ A evs

))"

abbreviation
spies’ :: "event list => msg set" where
"spies’ == knows’ Spy"

29.4.4 decomposition of knows into knows’ and initState
lemma knows_decomp: "knows A evs = knows’ A evs Un (initState A)"
〈proof 〉

lemmas knows_decomp_substI = knows_decomp [THEN ssubst]
lemmas knows_decomp_substD = knows_decomp [THEN sym, THEN ssubst]
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lemma knows’_sub_knows: "knows’ A evs <= knows A evs"
〈proof 〉

lemma knows’_Cons: "knows’ A (ev#evs) = knows’ A [ev] Un knows’ A evs"
〈proof 〉

lemmas knows’_Cons_substI = knows’_Cons [THEN ssubst]
lemmas knows’_Cons_substD = knows’_Cons [THEN sym, THEN ssubst]

lemma knows_Cons: "knows A (ev#evs) = initState A Un knows’ A [ev]
Un knows A evs"
〈proof 〉

lemmas knows_Cons_substI = knows_Cons [THEN ssubst]
lemmas knows_Cons_substD = knows_Cons [THEN sym, THEN ssubst]

lemma knows’_sub_spies’: " [[evs ∈ p; has_only_Says p; one_step p ]]
=⇒ knows’ A evs ⊆ spies’ evs"
〈proof 〉

29.4.5 knows’ is finite
lemma finite_knows’ [iff]: "finite (knows’ A evs)"
〈proof 〉

29.4.6 monotonicity of knows
lemma knows_sub_Cons: "knows A evs <= knows A (ev#evs)"
〈proof 〉

lemma knows_ConsI: "X ∈ knows A evs =⇒ X ∈ knows A (ev#evs)"
〈proof 〉

lemma knows_sub_app: "knows A evs <= knows A (evs @ evs’)"
〈proof 〉

29.4.7 maximum knowledge an agent can have includes messages
sent to the agent

primrec knows_max’ :: "agent => event list => msg set" where
knows_max’_def_Nil: "knows_max’ A [] = {}" |
knows_max’_def_Cons: "knows_max’ A (ev # evs) = (

if A=Spy then (
case ev of

Says A’ B X => insert X (knows_max’ A evs)
| Gets A’ X => knows_max’ A evs
| Notes A’ X =>

if A’ ∈ bad then insert X (knows_max’ A evs) else knows_max’ A evs
) else (

case ev of
Says A’ B X =>
if A=A’ | A=B then insert X (knows_max’ A evs) else knows_max’ A evs

| Gets A’ X =>
if A=A’ then insert X (knows_max’ A evs) else knows_max’ A evs
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| Notes A’ X =>
if A=A’ then insert X (knows_max’ A evs) else knows_max’ A evs

))"

definition knows_max :: "agent => event list => msg set" where
"knows_max A evs == knows_max’ A evs Un initState A"

abbreviation
spies_max :: "event list => msg set" where
"spies_max evs == knows_max Spy evs"

29.4.8 basic facts about knows_max

lemma spies_max_spies [iff]: "spies_max evs = spies evs"
〈proof 〉

lemma knows_max’_Cons: "knows_max’ A (ev#evs)
= knows_max’ A [ev] Un knows_max’ A evs"
〈proof 〉

lemmas knows_max’_Cons_substI = knows_max’_Cons [THEN ssubst]
lemmas knows_max’_Cons_substD = knows_max’_Cons [THEN sym, THEN ssubst]

lemma knows_max_Cons: "knows_max A (ev#evs)
= knows_max’ A [ev] Un knows_max A evs"
〈proof 〉

lemmas knows_max_Cons_substI = knows_max_Cons [THEN ssubst]
lemmas knows_max_Cons_substD = knows_max_Cons [THEN sym, THEN ssubst]

lemma finite_knows_max’ [iff]: "finite (knows_max’ A evs)"
〈proof 〉

lemma knows_max’_sub_spies’: " [[evs ∈ p; has_only_Says p; one_step p ]]
=⇒ knows_max’ A evs ⊆ spies’ evs"
〈proof 〉

lemma knows_max’_in_spies’ [dest]: " [[evs ∈ p; X ∈ knows_max’ A evs;
has_only_Says p; one_step p ]] =⇒ X ∈ spies’ evs"
〈proof 〉

lemma knows_max’_app: "knows_max’ A (evs @ evs’)
= knows_max’ A evs Un knows_max’ A evs’"
〈proof 〉

lemma Says_to_knows_max’: "Says A B X ∈ set evs =⇒ X ∈ knows_max’ B evs"
〈proof 〉

lemma Says_from_knows_max’: "Says A B X ∈ set evs =⇒ X ∈ knows_max’ A evs"
〈proof 〉

29.4.9 used without initState
primrec used’ :: "event list => msg set" where
"used’ [] = {}" |
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"used’ (ev # evs) = (
case ev of

Says A B X => parts {X} Un used’ evs
| Gets A X => used’ evs
| Notes A X => parts {X} Un used’ evs

)"

definition init :: "msg set" where
"init == used []"

lemma used_decomp: "used evs = init Un used’ evs"
〈proof 〉

lemma used’_sub_app: "used’ evs ⊆ used’ (evs@evs’)"
〈proof 〉

lemma used’_parts [rule_format]: "X ∈ used’ evs =⇒ Y ∈ parts {X} −→ Y
∈ used’ evs"
〈proof 〉

29.4.10 monotonicity of used

lemma used_sub_Cons: "used evs <= used (ev#evs)"
〈proof 〉

lemma used_ConsI: "X ∈ used evs =⇒ X ∈ used (ev#evs)"
〈proof 〉

lemma notin_used_ConsD: "X /∈ used (ev#evs) =⇒ X /∈ used evs"
〈proof 〉

lemma used_appD [dest]: "X ∈ used (evs @ evs’) =⇒ X ∈ used evs ∨ X ∈ used
evs’"
〈proof 〉

lemma used_ConsD: "X ∈ used (ev#evs) =⇒ X ∈ used [ev] ∨ X ∈ used evs"
〈proof 〉

lemma used_sub_app: "used evs <= used (evs@evs’)"
〈proof 〉

lemma used_appIL: "X ∈ used evs =⇒ X ∈ used (evs’ @ evs)"
〈proof 〉

lemma used_appIR: "X ∈ used evs =⇒ X ∈ used (evs @ evs’)"
〈proof 〉

lemma used_parts: " [[X ∈ parts {Y}; Y ∈ used evs ]] =⇒ X ∈ used evs"
〈proof 〉

lemma parts_Says_used: " [[Says A B X ∈ set evs; Y ∈ parts {X}]] =⇒ Y ∈ used
evs"
〈proof 〉
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lemma parts_used_app: "X ∈ parts {Y} =⇒ X ∈ used (evs @ Says A B Y # evs’)"
〈proof 〉

29.4.11 lemmas on used and knows
lemma initState_used: "X ∈ parts (initState A) =⇒ X ∈ used evs"
〈proof 〉

lemma Says_imp_used: "Says A B X ∈ set evs =⇒ parts {X} ⊆ used evs"
〈proof 〉

lemma not_used_not_spied: "X /∈ used evs =⇒ X /∈ parts (spies evs)"
〈proof 〉

lemma not_used_not_parts: " [[Y /∈ used evs; Says A B X ∈ set evs ]]
=⇒ Y /∈ parts {X}"
〈proof 〉

lemma not_used_parts_false: " [[X /∈ used evs; Y ∈ parts (spies evs)]]
=⇒ X /∈ parts {Y}"
〈proof 〉

lemma known_used [rule_format]: " [[evs ∈ p; Gets_correct p; one_step p ]]
=⇒ X ∈ parts (knows A evs) −→ X ∈ used evs"
〈proof 〉

lemma known_max_used [rule_format]: " [[evs ∈ p; Gets_correct p; one_step
p ]]
=⇒ X ∈ parts (knows_max A evs) −→ X ∈ used evs"
〈proof 〉

lemma not_used_not_known: " [[evs ∈ p; X /∈ used evs;
Gets_correct p; one_step p ]] =⇒ X /∈ parts (knows A evs)"
〈proof 〉

lemma not_used_not_known_max: " [[evs ∈ p; X /∈ used evs;
Gets_correct p; one_step p ]] =⇒ X /∈ parts (knows_max A evs)"
〈proof 〉

29.4.12 a nonce or key in a message cannot equal a fresh nonce or
key

lemma Nonce_neq [dest]: " [[Nonce n’ /∈ used evs;
Says A B X ∈ set evs; Nonce n ∈ parts {X}]] =⇒ n 6= n’"
〈proof 〉

lemma Key_neq [dest]: " [[Key n’ /∈ used evs;
Says A B X ∈ set evs; Key n ∈ parts {X}]] =⇒ n ~= n’"
〈proof 〉

29.4.13 message of an event
primrec msg :: "event => msg"
where

"msg (Says A B X) = X"
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| "msg (Gets A X) = X"
| "msg (Notes A X) = X"

lemma used_sub_parts_used: "X ∈ used (ev # evs) =⇒ X ∈ parts {msg ev} ∪
used evs"
〈proof 〉

end

30 Decomposition of Analz into two parts
theory Analz imports Extensions begin

decomposition of analz into two parts: pparts (for pairs) and analz of kparts

30.1 messages that do not contribute to analz
inductive_set

pparts :: "msg set => msg set"
for H :: "msg set"

where
Inj [intro]: " [[X ∈ H; is_MPair X ]] =⇒ X ∈ pparts H"

| Fst [dest]: " [[{|X,Y |} ∈ pparts H; is_MPair X ]] =⇒ X ∈ pparts H"
| Snd [dest]: " [[{|X,Y |} ∈ pparts H; is_MPair Y ]] =⇒ Y ∈ pparts H"

30.2 basic facts about pparts

lemma pparts_is_MPair [dest]: "X ∈ pparts H =⇒ is_MPair X"
〈proof 〉

lemma Crypt_notin_pparts [iff]: "Crypt K X /∈ pparts H"
〈proof 〉

lemma Key_notin_pparts [iff]: "Key K /∈ pparts H"
〈proof 〉

lemma Nonce_notin_pparts [iff]: "Nonce n /∈ pparts H"
〈proof 〉

lemma Number_notin_pparts [iff]: "Number n /∈ pparts H"
〈proof 〉

lemma Agent_notin_pparts [iff]: "Agent A /∈ pparts H"
〈proof 〉

lemma pparts_empty [iff]: "pparts {} = {}"
〈proof 〉

lemma pparts_insertI [intro]: "X ∈ pparts H =⇒ X ∈ pparts (insert Y H)"
〈proof 〉

lemma pparts_sub: " [[X ∈ pparts G; G ⊆ H ]] =⇒ X ∈ pparts H"
〈proof 〉
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lemma pparts_insert2 [iff]: "pparts (insert X (insert Y H))
= pparts {X} Un pparts {Y} Un pparts H"
〈proof 〉

lemma pparts_insert_MPair [iff]: "pparts (insert {|X,Y |} H)
= insert {|X,Y |} (pparts ({X,Y} ∪ H))"
〈proof 〉

lemma pparts_insert_Nonce [iff]: "pparts (insert (Nonce n) H) = pparts H"
〈proof 〉

lemma pparts_insert_Crypt [iff]: "pparts (insert (Crypt K X) H) = pparts
H"
〈proof 〉

lemma pparts_insert_Key [iff]: "pparts (insert (Key K) H) = pparts H"
〈proof 〉

lemma pparts_insert_Agent [iff]: "pparts (insert (Agent A) H) = pparts H"
〈proof 〉

lemma pparts_insert_Number [iff]: "pparts (insert (Number n) H) = pparts
H"
〈proof 〉

lemma pparts_insert_Hash [iff]: "pparts (insert (Hash X) H) = pparts H"
〈proof 〉

lemma pparts_insert: "X ∈ pparts (insert Y H) =⇒ X ∈ pparts {Y} ∪ pparts
H"
〈proof 〉

lemma insert_pparts: "X ∈ pparts {Y} ∪ pparts H =⇒ X ∈ pparts (insert
Y H)"
〈proof 〉

lemma pparts_Un [iff]: "pparts (G ∪ H) = pparts G ∪ pparts H"
〈proof 〉

lemma pparts_pparts [iff]: "pparts (pparts H) = pparts H"
〈proof 〉

lemma pparts_insert_eq: "pparts (insert X H) = pparts {X} Un pparts H"
〈proof 〉

lemmas pparts_insert_substI = pparts_insert_eq [THEN ssubst]

lemma in_pparts: "Y ∈ pparts H =⇒ ∃ X. X ∈ H ∧ Y ∈ pparts {X}"
〈proof 〉

30.3 facts about pparts and parts

lemma pparts_no_Nonce [dest]: " [[X ∈ pparts {Y}; Nonce n /∈ parts {Y}]]



30.4 facts about pparts and analz 265

=⇒ Nonce n /∈ parts {X}"
〈proof 〉

30.4 facts about pparts and analz

lemma pparts_analz: "X ∈ pparts H =⇒ X ∈ analz H"
〈proof 〉

lemma pparts_analz_sub: " [[X ∈ pparts G; G ⊆ H ]] =⇒ X ∈ analz H"
〈proof 〉

30.5 messages that contribute to analz
inductive_set

kparts :: "msg set => msg set"
for H :: "msg set"

where
Inj [intro]: " [[X ∈ H; not_MPair X ]] =⇒ X ∈ kparts H"

| Fst [intro]: " [[{|X,Y |} ∈ pparts H; not_MPair X ]] =⇒ X ∈ kparts H"
| Snd [intro]: " [[{|X,Y |} ∈ pparts H; not_MPair Y ]] =⇒ Y ∈ kparts H"

30.6 basic facts about kparts

lemma kparts_not_MPair [dest]: "X ∈ kparts H =⇒ not_MPair X"
〈proof 〉

lemma kparts_empty [iff]: "kparts {} = {}"
〈proof 〉

lemma kparts_insertI [intro]: "X ∈ kparts H =⇒ X ∈ kparts (insert Y H)"
〈proof 〉

lemma kparts_insert2 [iff]: "kparts (insert X (insert Y H))
= kparts {X} ∪ kparts {Y} ∪ kparts H"
〈proof 〉

lemma kparts_insert_MPair [iff]: "kparts (insert {|X,Y |} H)
= kparts ({X,Y} ∪ H)"
〈proof 〉

lemma kparts_insert_Nonce [iff]: "kparts (insert (Nonce n) H)
= insert (Nonce n) (kparts H)"
〈proof 〉

lemma kparts_insert_Crypt [iff]: "kparts (insert (Crypt K X) H)
= insert (Crypt K X) (kparts H)"
〈proof 〉

lemma kparts_insert_Key [iff]: "kparts (insert (Key K) H)
= insert (Key K) (kparts H)"
〈proof 〉

lemma kparts_insert_Agent [iff]: "kparts (insert (Agent A) H)
= insert (Agent A) (kparts H)"



266 30 DECOMPOSITION OF ANALZ INTO TWO PARTS

〈proof 〉

lemma kparts_insert_Number [iff]: "kparts (insert (Number n) H)
= insert (Number n) (kparts H)"
〈proof 〉

lemma kparts_insert_Hash [iff]: "kparts (insert (Hash X) H)
= insert (Hash X) (kparts H)"
〈proof 〉

lemma kparts_insert: "X ∈ kparts (insert X H) =⇒ X ∈ kparts {X} ∪ kparts
H"
〈proof 〉

lemma kparts_insert_fst [rule_format,dest]: "X ∈ kparts (insert Z H) =⇒
X /∈ kparts H −→ X ∈ kparts {Z}"
〈proof 〉

lemma kparts_sub: " [[X ∈ kparts G; G ⊆ H ]] =⇒ X ∈ kparts H"
〈proof 〉

lemma kparts_Un [iff]: "kparts (G ∪ H) = kparts G ∪ kparts H"
〈proof 〉

lemma pparts_kparts [iff]: "pparts (kparts H) = {}"
〈proof 〉

lemma kparts_kparts [iff]: "kparts (kparts H) = kparts H"
〈proof 〉

lemma kparts_insert_eq: "kparts (insert X H) = kparts {X} ∪ kparts H"
〈proof 〉

lemmas kparts_insert_substI = kparts_insert_eq [THEN ssubst]

lemma in_kparts: "Y ∈ kparts H =⇒ ∃ X. X ∈ H ∧ Y ∈ kparts {X}"
〈proof 〉

lemma kparts_has_no_pair [iff]: "has_no_pair (kparts H)"
〈proof 〉

30.7 facts about kparts and parts

lemma kparts_no_Nonce [dest]: " [[X ∈ kparts {Y}; Nonce n /∈ parts {Y}]]
=⇒ Nonce n /∈ parts {X}"
〈proof 〉

lemma kparts_parts: "X ∈ kparts H =⇒ X ∈ parts H"
〈proof 〉

lemma parts_kparts: "X ∈ parts (kparts H) =⇒ X ∈ parts H"
〈proof 〉

lemma Crypt_kparts_Nonce_parts [dest]: " [[Crypt K Y ∈ kparts {Z};
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Nonce n ∈ parts {Y}]] =⇒ Nonce n ∈ parts {Z}"
〈proof 〉

30.8 facts about kparts and analz

lemma kparts_analz: "X ∈ kparts H =⇒ X ∈ analz H"
〈proof 〉

lemma kparts_analz_sub: " [[X ∈ kparts G; G ⊆ H ]] =⇒ X ∈ analz H"
〈proof 〉

lemma analz_kparts [rule_format,dest]: "X ∈ analz H =⇒
Y ∈ kparts {X} −→ Y ∈ analz H"
〈proof 〉

lemma analz_kparts_analz: "X ∈ analz (kparts H) =⇒ X ∈ analz H"
〈proof 〉

lemma analz_kparts_insert: "X ∈ analz (kparts (insert Z H)) =⇒ X ∈ analz
(kparts {Z} ∪ kparts H)"
〈proof 〉

lemma Nonce_kparts_synth [rule_format]: "Y ∈ synth (analz G)
=⇒ Nonce n ∈ kparts {Y} −→ Nonce n ∈ analz G"
〈proof 〉

lemma kparts_insert_synth: " [[Y ∈ parts (insert X G); X ∈ synth (analz G);
Nonce n ∈ kparts {Y}; Nonce n /∈ analz G ]] =⇒ Y ∈ parts G"
〈proof 〉

lemma Crypt_insert_synth:
" [[Crypt K Y ∈ parts (insert X G); X ∈ synth (analz G); Nonce n ∈ kparts

{Y}; Nonce n /∈ analz G ]]
=⇒ Crypt K Y ∈ parts G"

〈proof 〉

30.9 analz is pparts + analz of kparts

lemma analz_pparts_kparts: "X ∈ analz H =⇒ X ∈ pparts H ∨ X ∈ analz (kparts
H)"
〈proof 〉

lemma analz_pparts_kparts_eq: "analz H = pparts H Un analz (kparts H)"
〈proof 〉

lemmas analz_pparts_kparts_substI = analz_pparts_kparts_eq [THEN ssubst]
lemmas analz_pparts_kparts_substD = analz_pparts_kparts_eq [THEN sym, THEN
ssubst]

end
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31 Protocol-Independent Confidentiality Theo-
rem on Nonces

theory Guard imports Analz Extensions begin

inductive_set
guard :: "nat ⇒ key set ⇒ msg set"
for n :: nat and Ks :: "key set"

where
No_Nonce [intro]: "Nonce n /∈ parts {X} =⇒ X ∈ guard n Ks"

| Guard_Nonce [intro]: "invKey K ∈ Ks =⇒ Crypt K X ∈ guard n Ks"
| Crypt [intro]: "X ∈ guard n Ks =⇒ Crypt K X ∈ guard n Ks"
| Pair [intro]: " [[X ∈ guard n Ks; Y ∈ guard n Ks ]] =⇒ {|X,Y |} ∈ guard n Ks"

31.1 basic facts about guard

lemma Key_is_guard [iff]: "Key K ∈ guard n Ks"
〈proof 〉

lemma Agent_is_guard [iff]: "Agent A ∈ guard n Ks"
〈proof 〉

lemma Number_is_guard [iff]: "Number r ∈ guard n Ks"
〈proof 〉

lemma Nonce_notin_guard: "X ∈ guard n Ks =⇒ X 6= Nonce n"
〈proof 〉

lemma Nonce_notin_guard_iff [iff]: "Nonce n /∈ guard n Ks"
〈proof 〉

lemma guard_has_Crypt [rule_format]: "X ∈ guard n Ks =⇒ Nonce n ∈ parts
{X}
−→ (∃ K Y. Crypt K Y ∈ kparts {X} ∧ Nonce n ∈ parts {Y})"
〈proof 〉

lemma Nonce_notin_kparts_msg: "X ∈ guard n Ks =⇒ Nonce n /∈ kparts {X}"
〈proof 〉

lemma Nonce_in_kparts_imp_no_guard: "Nonce n ∈ kparts H
=⇒ ∃ X. X ∈ H ∧ X /∈ guard n Ks"
〈proof 〉

lemma guard_kparts [rule_format]: "X ∈ guard n Ks =⇒
Y ∈ kparts {X} −→ Y ∈ guard n Ks"
〈proof 〉

lemma guard_Crypt: " [[Crypt K Y ∈ guard n Ks; K /∈ invKey‘Ks ]] =⇒ Y ∈ guard
n Ks"
〈proof 〉

lemma guard_MPair [iff]: "({|X,Y |} ∈ guard n Ks) = (X ∈ guard n Ks ∧ Y ∈
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guard n Ks)"
〈proof 〉

lemma guard_not_guard [rule_format]: "X ∈ guard n Ks =⇒
Crypt K Y ∈ kparts {X} −→ Nonce n ∈ kparts {Y} −→ Y /∈ guard n Ks"
〈proof 〉

lemma guard_extand: " [[X ∈ guard n Ks; Ks ⊆ Ks’]] =⇒ X ∈ guard n Ks’"
〈proof 〉

31.2 guarded sets
definition Guard :: "nat ⇒ key set ⇒ msg set ⇒ bool" where
"Guard n Ks H ≡ ∀ X. X ∈ H −→ X ∈ guard n Ks"

31.3 basic facts about Guard

lemma Guard_empty [iff]: "Guard n Ks {}"
〈proof 〉

lemma notin_parts_Guard [intro]: "Nonce n /∈ parts G =⇒ Guard n Ks G"
〈proof 〉

lemma Nonce_notin_kparts [simplified]: "Guard n Ks H =⇒ Nonce n /∈ kparts
H"
〈proof 〉

lemma Guard_must_decrypt: " [[Guard n Ks H; Nonce n ∈ analz H ]] =⇒
∃ K Y. Crypt K Y ∈ kparts H ∧ Key (invKey K) ∈ kparts H"
〈proof 〉

lemma Guard_kparts [intro]: "Guard n Ks H =⇒ Guard n Ks (kparts H)"
〈proof 〉

lemma Guard_mono: " [[Guard n Ks H; G <= H ]] =⇒ Guard n Ks G"
〈proof 〉

lemma Guard_insert [iff]: "Guard n Ks (insert X H)
= (Guard n Ks H ∧ X ∈ guard n Ks)"
〈proof 〉

lemma Guard_Un [iff]: "Guard n Ks (G Un H) = (Guard n Ks G & Guard n Ks H)"
〈proof 〉

lemma Guard_synth [intro]: "Guard n Ks G =⇒ Guard n Ks (synth G)"
〈proof 〉

lemma Guard_analz [intro]: " [[Guard n Ks G; ∀ K. K ∈ Ks −→ Key K /∈ analz
G ]]
=⇒ Guard n Ks (analz G)"
〈proof 〉

lemma in_Guard [dest]: " [[X ∈ G; Guard n Ks G ]] =⇒ X ∈ guard n Ks"
〈proof 〉
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lemma in_synth_Guard: " [[X ∈ synth G; Guard n Ks G ]] =⇒ X ∈ guard n Ks"
〈proof 〉

lemma in_analz_Guard: " [[X ∈ analz G; Guard n Ks G;
∀ K. K ∈ Ks −→ Key K /∈ analz G ]] =⇒ X ∈ guard n Ks"
〈proof 〉

lemma Guard_keyset [simp]: "keyset G =⇒ Guard n Ks G"
〈proof 〉

lemma Guard_Un_keyset: " [[Guard n Ks G; keyset H ]] =⇒ Guard n Ks (G ∪ H)"
〈proof 〉

lemma in_Guard_kparts: " [[X ∈ G; Guard n Ks G; Y ∈ kparts {X}]] =⇒ Y ∈ guard
n Ks"
〈proof 〉

lemma in_Guard_kparts_neq: " [[X ∈ G; Guard n Ks G; Nonce n’ ∈ kparts {X}]]
=⇒ n 6= n’"
〈proof 〉

lemma in_Guard_kparts_Crypt: " [[X ∈ G; Guard n Ks G; is_MPair X;
Crypt K Y ∈ kparts {X}; Nonce n ∈ kparts {Y}]] =⇒ invKey K ∈ Ks"
〈proof 〉

lemma Guard_extand: " [[Guard n Ks G; Ks ⊆ Ks’]] =⇒ Guard n Ks’ G"
〈proof 〉

lemma guard_invKey [rule_format]: " [[X ∈ guard n Ks; Nonce n ∈ kparts {Y}]]
=⇒
Crypt K Y ∈ kparts {X} −→ invKey K ∈ Ks"
〈proof 〉

lemma Crypt_guard_invKey [rule_format]: " [[Crypt K Y ∈ guard n Ks;
Nonce n ∈ kparts {Y}]] =⇒ invKey K ∈ Ks"
〈proof 〉

31.4 set obtained by decrypting a message

abbreviation (input)
decrypt :: "msg set => key => msg => msg set" where
"decrypt H K Y == insert Y (H - {Crypt K Y})"

lemma analz_decrypt: " [[Crypt K Y ∈ H; Key (invKey K) ∈ H; Nonce n ∈ analz
H ]]
=⇒ Nonce n ∈ analz (decrypt H K Y)"
〈proof 〉

lemma parts_decrypt: " [[Crypt K Y ∈ H; X ∈ parts (decrypt H K Y)]] =⇒ X ∈
parts H"
〈proof 〉
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31.5 number of Crypt’s in a message
fun crypt_nb :: "msg => nat"
where

"crypt_nb (Crypt K X) = Suc (crypt_nb X)"
| "crypt_nb {|X,Y |} = crypt_nb X + crypt_nb Y"
| "crypt_nb X = 0"

31.6 basic facts about crypt_nb

lemma non_empty_crypt_msg: "Crypt K Y ∈ parts {X} =⇒ crypt_nb X 6= 0"
〈proof 〉

31.7 number of Crypt’s in a message list
primrec cnb :: "msg list => nat"
where

"cnb [] = 0"
| "cnb (X#l) = crypt_nb X + cnb l"

31.8 basic facts about cnb

lemma cnb_app [simp]: "cnb (l @ l’) = cnb l + cnb l’"
〈proof 〉

lemma mem_cnb_minus: "x ∈ set l =⇒ cnb l = crypt_nb x + (cnb l - crypt_nb
x)"
〈proof 〉

lemmas mem_cnb_minus_substI = mem_cnb_minus [THEN ssubst]

lemma cnb_minus [simp]: "x ∈ set l =⇒ cnb (remove l x) = cnb l - crypt_nb
x"
〈proof 〉

lemma parts_cnb: "Z ∈ parts (set l) =⇒
cnb l = (cnb l - crypt_nb Z) + crypt_nb Z"
〈proof 〉

lemma non_empty_crypt: "Crypt K Y ∈ parts (set l) =⇒ cnb l 6= 0"
〈proof 〉

31.9 list of kparts
lemma kparts_msg_set: "∃ l. kparts {X} = set l ∧ cnb l = crypt_nb X"
〈proof 〉

lemma kparts_set: "∃ l’. kparts (set l) = set l’ ∧ cnb l’ = cnb l"
〈proof 〉

31.10 list corresponding to "decrypt"
definition decrypt’ :: "msg list => key => msg => msg list" where
"decrypt’ l K Y == Y # remove l (Crypt K Y)"
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declare decrypt’_def [simp]

31.11 basic facts about decrypt’

lemma decrypt_minus: "decrypt (set l) K Y <= set (decrypt’ l K Y)"
〈proof 〉

31.12 if the analyse of a finite guarded set gives n then it
must also gives one of the keys of Ks

lemma Guard_invKey_by_list [rule_format]: "∀ l. cnb l = p
−→ Guard n Ks (set l) −→ Nonce n ∈ analz (set l)
−→ (∃ K. K ∈ Ks ∧ Key K ∈ analz (set l))"
〈proof 〉

lemma Guard_invKey_finite: " [[Nonce n ∈ analz G; Guard n Ks G; finite G ]]
=⇒ ∃ K. K ∈ Ks ∧ Key K ∈ analz G"
〈proof 〉

lemma Guard_invKey: " [[Nonce n ∈ analz G; Guard n Ks G ]]
=⇒ ∃ K. K ∈ Ks ∧ Key K ∈ analz G"
〈proof 〉

31.13 if the analyse of a finite guarded set and a (possibly
infinite) set of keys gives n then it must also gives
Ks

lemma Guard_invKey_keyset: " [[Nonce n ∈ analz (G ∪ H); Guard n Ks G; finite
G;
keyset H ]] =⇒ ∃ K. K ∈ Ks ∧ Key K ∈ analz (G ∪ H)"
〈proof 〉

end

32 protocol-independent confidentiality theorem
on keys

theory GuardK
imports Analz Extensions
begin

inductive_set
guardK :: "nat => key set => msg set"
for n :: nat and Ks :: "key set"

where
No_Key [intro]: "Key n /∈ parts {X} =⇒ X ∈ guardK n Ks"

| Guard_Key [intro]: "invKey K ∈ Ks =⇒ Crypt K X ∈ guardK n Ks"
| Crypt [intro]: "X ∈ guardK n Ks =⇒ Crypt K X ∈ guardK n Ks"
| Pair [intro]: " [[X ∈ guardK n Ks; Y ∈ guardK n Ks ]] =⇒ {|X,Y |} ∈ guardK n
Ks"
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32.1 basic facts about guardK

lemma Nonce_is_guardK [iff]: "Nonce p ∈ guardK n Ks"
〈proof 〉

lemma Agent_is_guardK [iff]: "Agent A ∈ guardK n Ks"
〈proof 〉

lemma Number_is_guardK [iff]: "Number r ∈ guardK n Ks"
〈proof 〉

lemma Key_notin_guardK: "X ∈ guardK n Ks =⇒ X 6= Key n"
〈proof 〉

lemma Key_notin_guardK_iff [iff]: "Key n /∈ guardK n Ks"
〈proof 〉

lemma guardK_has_Crypt [rule_format]: "X ∈ guardK n Ks =⇒ Key n ∈ parts
{X}
−→ (∃ K Y. Crypt K Y ∈ kparts {X} ∧ Key n ∈ parts {Y})"
〈proof 〉

lemma Key_notin_kparts_msg: "X ∈ guardK n Ks =⇒ Key n /∈ kparts {X}"
〈proof 〉

lemma Key_in_kparts_imp_no_guardK: "Key n ∈ kparts H
=⇒ ∃ X. X ∈ H ∧ X /∈ guardK n Ks"
〈proof 〉

lemma guardK_kparts [rule_format]: "X ∈ guardK n Ks =⇒
Y ∈ kparts {X} −→ Y ∈ guardK n Ks"
〈proof 〉

lemma guardK_Crypt: " [[Crypt K Y ∈ guardK n Ks; K /∈ invKey‘Ks ]] =⇒ Y ∈ guardK
n Ks"
〈proof 〉

lemma guardK_MPair [iff]: "({|X,Y |} ∈ guardK n Ks)
= (X ∈ guardK n Ks ∧ Y ∈ guardK n Ks)"
〈proof 〉

lemma guardK_not_guardK [rule_format]: "X ∈guardK n Ks =⇒
Crypt K Y ∈ kparts {X} −→ Key n ∈ kparts {Y} −→ Y /∈ guardK n Ks"
〈proof 〉

lemma guardK_extand: " [[X ∈ guardK n Ks; Ks ⊆ Ks’;
[[K ∈ Ks’; K /∈ Ks ]] =⇒ Key K /∈ parts {X}]] =⇒ X ∈ guardK n Ks’"
〈proof 〉

32.2 guarded sets
definition GuardK :: "nat ⇒ key set ⇒ msg set ⇒ bool" where
"GuardK n Ks H ≡ ∀ X. X ∈ H −→ X ∈ guardK n Ks"



27432 PROTOCOL-INDEPENDENT CONFIDENTIALITY THEOREM ON KEYS

32.3 basic facts about GuardK

lemma GuardK_empty [iff]: "GuardK n Ks {}"
〈proof 〉

lemma Key_notin_kparts [simplified]: "GuardK n Ks H =⇒ Key n /∈ kparts H"
〈proof 〉

lemma GuardK_must_decrypt: " [[GuardK n Ks H; Key n ∈ analz H ]] =⇒
∃ K Y. Crypt K Y ∈ kparts H ∧ Key (invKey K) ∈ kparts H"
〈proof 〉

lemma GuardK_kparts [intro]: "GuardK n Ks H =⇒ GuardK n Ks (kparts H)"
〈proof 〉

lemma GuardK_mono: " [[GuardK n Ks H; G ⊆ H ]] =⇒ GuardK n Ks G"
〈proof 〉

lemma GuardK_insert [iff]: "GuardK n Ks (insert X H)
= (GuardK n Ks H ∧ X ∈ guardK n Ks)"
〈proof 〉

lemma GuardK_Un [iff]: "GuardK n Ks (G Un H) = (GuardK n Ks G & GuardK n
Ks H)"
〈proof 〉

lemma GuardK_synth [intro]: "GuardK n Ks G =⇒ GuardK n Ks (synth G)"
〈proof 〉

lemma GuardK_analz [intro]: " [[GuardK n Ks G; ∀ K. K ∈ Ks −→ Key K /∈ analz
G ]]
=⇒ GuardK n Ks (analz G)"
〈proof 〉

lemma in_GuardK [dest]: " [[X ∈ G; GuardK n Ks G ]] =⇒ X ∈ guardK n Ks"
〈proof 〉

lemma in_synth_GuardK: " [[X ∈ synth G; GuardK n Ks G ]] =⇒ X ∈ guardK n Ks"
〈proof 〉

lemma in_analz_GuardK: " [[X ∈ analz G; GuardK n Ks G;
∀ K. K ∈ Ks −→ Key K /∈ analz G ]] =⇒ X ∈ guardK n Ks"
〈proof 〉

lemma GuardK_keyset [simp]: " [[keyset G; Key n /∈ G ]] =⇒ GuardK n Ks G"
〈proof 〉

lemma GuardK_Un_keyset: " [[GuardK n Ks G; keyset H; Key n /∈ H ]]
=⇒ GuardK n Ks (G Un H)"
〈proof 〉

lemma in_GuardK_kparts: " [[X ∈ G; GuardK n Ks G; Y ∈ kparts {X}]] =⇒ Y ∈
guardK n Ks"
〈proof 〉
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lemma in_GuardK_kparts_neq: " [[X ∈ G; GuardK n Ks G; Key n’ ∈ kparts {X}]]
=⇒ n 6= n’"
〈proof 〉

lemma in_GuardK_kparts_Crypt: " [[X ∈ G; GuardK n Ks G; is_MPair X;
Crypt K Y ∈ kparts {X}; Key n ∈ kparts {Y}]] =⇒ invKey K ∈ Ks"
〈proof 〉

lemma GuardK_extand: " [[GuardK n Ks G; Ks ⊆ Ks’;
[[K ∈ Ks’; K /∈ Ks ]] =⇒ Key K /∈ parts G ]] =⇒ GuardK n Ks’ G"
〈proof 〉

32.4 set obtained by decrypting a message
abbreviation (input)

decrypt :: "msg set ⇒ key ⇒ msg ⇒ msg set" where
"decrypt H K Y ≡ insert Y (H - {Crypt K Y})"

lemma analz_decrypt: " [[Crypt K Y ∈ H; Key (invKey K) ∈ H; Key n ∈ analz
H ]]
=⇒ Key n ∈ analz (decrypt H K Y)"
〈proof 〉

lemma parts_decrypt: " [[Crypt K Y ∈ H; X ∈ parts (decrypt H K Y)]] =⇒ X ∈
parts H"
〈proof 〉

32.5 number of Crypt’s in a message
fun crypt_nb :: "msg => nat" where
"crypt_nb (Crypt K X) = Suc (crypt_nb X)" |
"crypt_nb {|X,Y |} = crypt_nb X + crypt_nb Y" |
"crypt_nb X = 0"

32.6 basic facts about crypt_nb

lemma non_empty_crypt_msg: "Crypt K Y ∈ parts {X} =⇒ crypt_nb X 6= 0"
〈proof 〉

32.7 number of Crypt’s in a message list
primrec cnb :: "msg list => nat" where
"cnb [] = 0" |
"cnb (X#l) = crypt_nb X + cnb l"

32.8 basic facts about cnb

lemma cnb_app [simp]: "cnb (l @ l’) = cnb l + cnb l’"
〈proof 〉

lemma mem_cnb_minus: "x ∈ set l =⇒ cnb l = crypt_nb x + (cnb l - crypt_nb
x)"
〈proof 〉
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lemmas mem_cnb_minus_substI = mem_cnb_minus [THEN ssubst]

lemma cnb_minus [simp]: "x ∈ set l =⇒ cnb (remove l x) = cnb l - crypt_nb
x"
〈proof 〉

lemma parts_cnb: "Z ∈ parts (set l) =⇒
cnb l = (cnb l - crypt_nb Z) + crypt_nb Z"
〈proof 〉

lemma non_empty_crypt: "Crypt K Y ∈ parts (set l) =⇒ cnb l 6= 0"
〈proof 〉

32.9 list of kparts
lemma kparts_msg_set: "∃ l. kparts {X} = set l ∧ cnb l = crypt_nb X"
〈proof 〉

lemma kparts_set: "∃ l’. kparts (set l) = set l’ & cnb l’ = cnb l"
〈proof 〉

32.10 list corresponding to "decrypt"
definition decrypt’ :: "msg list => key => msg => msg list" where
"decrypt’ l K Y == Y # remove l (Crypt K Y)"

declare decrypt’_def [simp]

32.11 basic facts about decrypt’

lemma decrypt_minus: "decrypt (set l) K Y <= set (decrypt’ l K Y)"
〈proof 〉

if the analysis of a finite guarded set gives n then it must also give one of the
keys of Ks
lemma GuardK_invKey_by_list [rule_format]: "∀ l. cnb l = p
−→ GuardK n Ks (set l) −→ Key n ∈ analz (set l)
−→ (∃ K. K ∈ Ks ∧ Key K ∈ analz (set l))"
〈proof 〉

lemma GuardK_invKey_finite: " [[Key n ∈ analz G; GuardK n Ks G; finite G ]]
=⇒ ∃ K. K ∈ Ks ∧ Key K ∈ analz G"
〈proof 〉

lemma GuardK_invKey: " [[Key n ∈ analz G; GuardK n Ks G ]]
=⇒ ∃ K. K ∈ Ks ∧ Key K ∈ analz G"
〈proof 〉

if the analyse of a finite guarded set and a (possibly infinite) set of keys gives n
then it must also gives Ks
lemma GuardK_invKey_keyset: " [[Key n ∈ analz (G ∪ H); GuardK n Ks G; finite
G;
keyset H; Key n /∈ H ]] =⇒ ∃ K. K ∈ Ks ∧ Key K ∈ analz (G ∪ H)"
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〈proof 〉

end

theory Shared
imports Event All_Symmetric
begin

consts
shrK :: "agent ⇒ key"

specification (shrK)
inj_shrK: "inj shrK"
— No two agents have the same long-term key
〈proof 〉

Server knows all long-term keys; other agents know only their own

overloading
initState ≡ initState

begin

primrec initState where
initState_Server: "initState Server = Key ‘ range shrK"

| initState_Friend: "initState (Friend i) = {Key (shrK (Friend i))}"
| initState_Spy: "initState Spy = Key‘shrK‘bad"

end

32.12 Basic properties of shrK
lemmas shrK_injective = inj_shrK [THEN inj_eq]
declare shrK_injective [iff]

lemma invKey_K [simp]: "invKey K = K"
〈proof 〉

lemma analz_Decrypt’ [dest]:
" [[Crypt K X ∈ analz H; Key K ∈ analz H ]] =⇒ X ∈ analz H"

〈proof 〉

Now cancel the dest attribute given to analz.Decrypt in its declaration.

declare analz.Decrypt [rule del]

Rewrites should not refer to initState (Friend i) because that expression is
not in normal form.

lemma keysFor_parts_initState [simp]: "keysFor (parts (initState C)) = {}"
〈proof 〉

lemma keysFor_parts_insert:
" [[K ∈ keysFor (parts (insert X G)); X ∈ synth (analz H)]]
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=⇒ K ∈ keysFor (parts (G ∪ H)) | Key K ∈ parts H"
〈proof 〉

lemma Crypt_imp_keysFor: "Crypt K X ∈ H =⇒ K ∈ keysFor H"
〈proof 〉

32.13 Function "knows"
lemma Spy_knows_Spy_bad [intro!]: "A ∈ bad =⇒ Key (shrK A) ∈ knows Spy
evs"
〈proof 〉

lemma Crypt_Spy_analz_bad: " [[Crypt (shrK A) X ∈ analz (knows Spy evs); A
∈ bad ]]

=⇒ X ∈ analz (knows Spy evs)"
〈proof 〉

lemma shrK_in_initState [iff]: "Key (shrK A) ∈ initState A"
〈proof 〉

lemma shrK_in_used [iff]: "Key (shrK A) ∈ used evs"
〈proof 〉

lemma Key_not_used [simp]: "Key K /∈ used evs =⇒ K /∈ range shrK"
〈proof 〉

lemma shrK_neq [simp]: "Key K /∈ used evs =⇒ shrK B 6= K"
〈proof 〉

lemmas shrK_sym_neq = shrK_neq [THEN not_sym]
declare shrK_sym_neq [simp]

32.14 Fresh nonces
lemma Nonce_notin_initState [iff]: "Nonce N /∈ parts (initState B)"
〈proof 〉

lemma Nonce_notin_used_empty [simp]: "Nonce N /∈ used []"
〈proof 〉

32.15 Supply fresh nonces for possibility theorems.
lemma Nonce_supply_lemma: "∃ N. ∀ n. N ≤ n −→ Nonce n /∈ used evs"
〈proof 〉

lemma Nonce_supply1: "∃ N. Nonce N /∈ used evs"
〈proof 〉
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lemma Nonce_supply2: "∃ N N’. Nonce N /∈ used evs ∧ Nonce N’ /∈ used evs’
∧ N 6= N’"
〈proof 〉

lemma Nonce_supply3: "∃ N N’ N’’. Nonce N /∈ used evs ∧ Nonce N’ /∈ used evs’
∧

Nonce N’’ /∈ used evs’’ ∧ N 6= N’ ∧ N’ 6= N’’ ∧ N 6= N’’"
〈proof 〉

lemma Nonce_supply: "Nonce (SOME N. Nonce N /∈ used evs) /∈ used evs"
〈proof 〉

Unlike the corresponding property of nonces, we cannot prove finite KK =⇒
∃ K. K /∈ KK ∧ Key K /∈ used evs. We have infinitely many agents and there is
nothing to stop their long-term keys from exhausting all the natural numbers.
Instead, possibility theorems must assume the existence of a few keys.

32.16 Specialized Rewriting for Theorems About analz and
Image

lemma subset_Compl_range: "A ⊆ - (range shrK) =⇒ shrK x /∈ A"
〈proof 〉

lemma insert_Key_singleton: "insert (Key K) H = Key ‘ {K} ∪ H"
〈proof 〉

lemma insert_Key_image: "insert (Key K) (Key‘KK ∪ C) = Key‘(insert K KK)
∪ C"
〈proof 〉

lemmas analz_image_freshK_simps =
simp_thms mem_simps — these two allow its use with only:
disj_comms
image_insert [THEN sym] image_Un [THEN sym] empty_subsetI insert_subset
analz_insert_eq Un_upper2 [THEN analz_mono, THEN [2] rev_subsetD]
insert_Key_singleton subset_Compl_range
Key_not_used insert_Key_image Un_assoc [THEN sym]

lemma analz_image_freshK_lemma:
"(Key K ∈ analz (Key‘nE ∪ H)) −→ (K ∈ nE | Key K ∈ analz H) =⇒

(Key K ∈ analz (Key‘nE ∪ H)) = (K ∈ nE | Key K ∈ analz H)"
〈proof 〉

32.17 Tactics for possibility theorems
〈ML〉
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lemma invKey_shrK_iff [iff]:
"(Key (invKey K) ∈ X) = (Key K ∈ X)"

〈proof 〉

〈ML〉

lemma knows_subset_knows_Cons: "knows A evs ⊆ knows A (e # evs)"
〈proof 〉

end

33 lemmas on guarded messages for protocols
with symmetric keys

theory Guard_Shared imports Guard GuardK "../Shared" begin

33.1 Extensions to Theory Shared

declare initState.simps [simp del]

33.1.1 a little abbreviation
abbreviation

Ciph :: "agent => msg => msg" where
"Ciph A X == Crypt (shrK A) X"

33.1.2 agent associated to a key
definition agt :: "key => agent" where
"agt K == SOME A. K = shrK A"

lemma agt_shrK [simp]: "agt (shrK A) = A"
〈proof 〉

33.1.3 basic facts about initState

lemma no_Crypt_in_parts_init [simp]: "Crypt K X /∈ parts (initState A)"
〈proof 〉

lemma no_Crypt_in_analz_init [simp]: "Crypt K X /∈ analz (initState A)"
〈proof 〉

lemma no_shrK_in_analz_init [simp]: "A /∈ bad
=⇒ Key (shrK A) /∈ analz (initState Spy)"
〈proof 〉

lemma shrK_notin_initState_Friend [simp]: "A 6= Friend C
=⇒ Key (shrK A) /∈ parts (initState (Friend C))"
〈proof 〉

lemma keyset_init [iff]: "keyset (initState A)"
〈proof 〉



33.2 Proofs About Guarded Messages 281

33.1.4 sets of symmetric keys
definition shrK_set :: "key set => bool" where
"shrK_set Ks ≡ ∀ K. K ∈ Ks −→ (∃ A. K = shrK A)"

lemma in_shrK_set: " [[shrK_set Ks; K ∈ Ks ]] =⇒ ∃ A. K = shrK A"
〈proof 〉

lemma shrK_set1 [iff]: "shrK_set {shrK A}"
〈proof 〉

lemma shrK_set2 [iff]: "shrK_set {shrK A, shrK B}"
〈proof 〉

33.1.5 sets of good keys
definition good :: "key set ⇒ bool" where
"good Ks ≡ ∀ K. K ∈ Ks −→ agt K /∈ bad"

lemma in_good: " [[good Ks; K ∈ Ks ]] =⇒ agt K /∈ bad"
〈proof 〉

lemma good1 [simp]: "A /∈ bad =⇒ good {shrK A}"
〈proof 〉

lemma good2 [simp]: " [[A /∈ bad; B /∈ bad ]] =⇒ good {shrK A, shrK B}"
〈proof 〉

33.2 Proofs About Guarded Messages
33.2.1 small hack
lemma shrK_is_invKey_shrK: "shrK A = invKey (shrK A)"
〈proof 〉

lemmas shrK_is_invKey_shrK_substI = shrK_is_invKey_shrK [THEN ssubst]

lemmas invKey_invKey_substI = invKey [THEN ssubst]

lemma "Nonce n ∈ parts {X} =⇒ Crypt (shrK A) X ∈ guard n {shrK A}"
〈proof 〉

33.2.2 guardedness results on nonces
lemma guard_ciph [simp]: "shrK A ∈ Ks =⇒ Ciph A X ∈ guard n Ks"
〈proof 〉

lemma guardK_ciph [simp]: "shrK A ∈ Ks =⇒ Ciph A X ∈ guardK n Ks"
〈proof 〉

lemma Guard_init [iff]: "Guard n Ks (initState B)"
〈proof 〉

lemma Guard_knows_max’: "Guard n Ks (knows_max’ C evs)
=⇒ Guard n Ks (knows_max C evs)"
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〈proof 〉

lemma Nonce_not_used_Guard_spies [dest]: "Nonce n /∈ used evs
=⇒ Guard n Ks (spies evs)"
〈proof 〉

lemma Nonce_not_used_Guard [dest]: " [[evs ∈ p; Nonce n /∈ used evs;
Gets_correct p; one_step p ]] =⇒ Guard n Ks (knows (Friend C) evs)"
〈proof 〉

lemma Nonce_not_used_Guard_max [dest]: " [[evs ∈ p; Nonce n /∈ used evs;
Gets_correct p; one_step p ]] =⇒ Guard n Ks (knows_max (Friend C) evs)"
〈proof 〉

lemma Nonce_not_used_Guard_max’ [dest]: " [[evs ∈ p; Nonce n /∈ used evs;
Gets_correct p; one_step p ]] =⇒ Guard n Ks (knows_max’ (Friend C) evs)"
〈proof 〉

33.2.3 guardedness results on keys
lemma GuardK_init [simp]: "n /∈ range shrK =⇒ GuardK n Ks (initState B)"
〈proof 〉

lemma GuardK_knows_max’: " [[GuardK n A (knows_max’ C evs); n /∈ range shrK ]]
=⇒ GuardK n A (knows_max C evs)"
〈proof 〉

lemma Key_not_used_GuardK_spies [dest]: "Key n /∈ used evs
=⇒ GuardK n A (spies evs)"
〈proof 〉

lemma Key_not_used_GuardK [dest]: " [[evs ∈ p; Key n /∈ used evs;
Gets_correct p; one_step p ]] =⇒ GuardK n A (knows (Friend C) evs)"
〈proof 〉

lemma Key_not_used_GuardK_max [dest]: " [[evs ∈ p; Key n /∈ used evs;
Gets_correct p; one_step p ]] =⇒ GuardK n A (knows_max (Friend C) evs)"
〈proof 〉

lemma Key_not_used_GuardK_max’ [dest]: " [[evs ∈ p; Key n /∈ used evs;
Gets_correct p; one_step p ]] =⇒ GuardK n A (knows_max’ (Friend C) evs)"
〈proof 〉

33.2.4 regular protocols
definition regular :: "event list set => bool" where
"regular p ≡ ∀ evs A. evs ∈ p −→ (Key (shrK A) ∈ parts (spies evs)) = (A
∈ bad)"

lemma shrK_parts_iff_bad [simp]: " [[evs ∈ p; regular p ]] =⇒
(Key (shrK A) ∈ parts (spies evs)) = (A ∈ bad)"
〈proof 〉

lemma shrK_analz_iff_bad [simp]: " [[evs ∈ p; regular p ]] =⇒
(Key (shrK A) ∈ analz (spies evs)) = (A ∈ bad)"
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〈proof 〉

lemma Guard_Nonce_analz: " [[Guard n Ks (spies evs); evs ∈ p;
shrK_set Ks; good Ks; regular p ]] =⇒ Nonce n /∈ analz (spies evs)"
〈proof 〉

lemma GuardK_Key_analz:
assumes "GuardK n Ks (spies evs)" "evs ∈ p" "shrK_set Ks"

"good Ks" "regular p" "n /∈ range shrK"
shows "Key n /∈ analz (spies evs)"

〈proof 〉

end

34 Otway-Rees Protocol
theory Guard_OtwayRees imports Guard_Shared begin

34.1 messages used in the protocol
abbreviation

nil :: "msg" where
"nil == Number 0"

abbreviation
or1 :: "agent => agent => nat => event" where
"or1 A B NA ==

Says A B {|Nonce NA, Agent A, Agent B, Ciph A {|Nonce NA, Agent A, Agent
B |}|}"

abbreviation
or1’ :: "agent => agent => agent => nat => msg => event" where
"or1’ A’ A B NA X == Says A’ B {|Nonce NA, Agent A, Agent B, X |}"

abbreviation
or2 :: "agent => agent => nat => nat => msg => event" where
"or2 A B NA NB X ==

Says B Server {|Nonce NA, Agent A, Agent B, X,
Ciph B {|Nonce NA, Nonce NB, Agent A, Agent B |}|}"

abbreviation
or2’ :: "agent => agent => agent => nat => nat => event" where
"or2’ B’ A B NA NB ==

Says B’ Server {|Nonce NA, Agent A, Agent B,
Ciph A {|Nonce NA, Agent A, Agent B |},
Ciph B {|Nonce NA, Nonce NB, Agent A, Agent B |}|}"

abbreviation
or3 :: "agent => agent => nat => nat => key => event" where
"or3 A B NA NB K ==

Says Server B {|Nonce NA, Ciph A {|Nonce NA, Key K |},
Ciph B {|Nonce NB, Key K |}|}"
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abbreviation
or3’:: "agent => msg => agent => agent => nat => nat => key => event" where
"or3’ S Y A B NA NB K ==

Says S B {|Nonce NA, Y, Ciph B {|Nonce NB, Key K |}|}"

abbreviation
or4 :: "agent => agent => nat => msg => event" where
"or4 A B NA X == Says B A {|Nonce NA, X, nil |}"

abbreviation
or4’ :: "agent => agent => nat => key => event" where
"or4’ B’ A NA K == Says B’ A {|Nonce NA, Ciph A {|Nonce NA, Key K |}, nil |}"

34.2 definition of the protocol
inductive_set or :: "event list set"
where

Nil: "[] ∈ or"

| Fake: " [[evs ∈ or; X ∈ synth (analz (spies evs))]] =⇒ Says Spy B X # evs
∈ or"

| OR1: " [[evs1 ∈ or; Nonce NA /∈ used evs1]] =⇒ or1 A B NA # evs1 ∈ or"

| OR2: " [[evs2 ∈ or; or1’ A’ A B NA X ∈ set evs2; Nonce NB /∈ used evs2]]
=⇒ or2 A B NA NB X # evs2 ∈ or"

| OR3: " [[evs3 ∈ or; or2’ B’ A B NA NB ∈ set evs3; Key K /∈ used evs3]]
=⇒ or3 A B NA NB K # evs3 ∈ or"

| OR4: " [[evs4 ∈ or; or2 A B NA NB X ∈ set evs4; or3’ S Y A B NA NB K ∈ set
evs4]]

=⇒ or4 A B NA X # evs4 ∈ or"

34.3 declarations for tactics
declare knows_Spy_partsEs [elim]
declare Fake_parts_insert [THEN subsetD, dest]
declare initState.simps [simp del]

34.4 general properties of or
lemma or_has_no_Gets: "evs ∈ or =⇒ ∀ A X. Gets A X /∈ set evs"
〈proof 〉

lemma or_is_Gets_correct [iff]: "Gets_correct or"
〈proof 〉

lemma or_is_one_step [iff]: "one_step or"
〈proof 〉

lemma or_has_only_Says’ [rule_format]: "evs ∈ or =⇒
ev ∈ set evs −→ (∃ A B X. ev=Says A B X)"
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〈proof 〉

lemma or_has_only_Says [iff]: "has_only_Says or"
〈proof 〉

34.5 or is regular
lemma or1’_parts_spies [dest]: "or1’ A’ A B NA X ∈ set evs
=⇒ X ∈ parts (spies evs)"
〈proof 〉

lemma or2_parts_spies [dest]: "or2 A B NA NB X ∈ set evs
=⇒ X ∈ parts (spies evs)"
〈proof 〉

lemma or3_parts_spies [dest]: "Says S B {|NA, Y, Ciph B {|NB, K |}|} ∈ set evs
=⇒ K ∈ parts (spies evs)"
〈proof 〉

lemma or_is_regular [iff]: "regular or"
〈proof 〉

34.6 guardedness of KAB
lemma Guard_KAB [rule_format]: " [[evs ∈ or; A /∈ bad; B /∈ bad ]] =⇒
or3 A B NA NB K ∈ set evs −→ GuardK K {shrK A,shrK B} (spies evs)"
〈proof 〉

34.7 guardedness of NB
lemma Guard_NB [rule_format]: " [[evs ∈ or; B /∈ bad ]] =⇒
or2 A B NA NB X ∈ set evs −→ Guard NB {shrK B} (spies evs)"
〈proof 〉

end

35 Yahalom Protocol
theory Guard_Yahalom imports "../Shared" Guard_Shared begin

35.1 messages used in the protocol
abbreviation (input)

ya1 :: "agent => agent => nat => event" where
"ya1 A B NA == Says A B {|Agent A, Nonce NA |}"

abbreviation (input)
ya1’ :: "agent => agent => agent => nat => event" where
"ya1’ A’ A B NA == Says A’ B {|Agent A, Nonce NA |}"

abbreviation (input)
ya2 :: "agent => agent => nat => nat => event" where
"ya2 A B NA NB == Says B Server {|Agent B, Ciph B {|Agent A, Nonce NA, Nonce

NB |}|}"
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abbreviation (input)
ya2’ :: "agent => agent => agent => nat => nat => event" where
"ya2’ B’ A B NA NB == Says B’ Server {|Agent B, Ciph B {|Agent A, Nonce NA,

Nonce NB |}|}"

abbreviation (input)
ya3 :: "agent => agent => nat => nat => key => event" where
"ya3 A B NA NB K ==

Says Server A {|Ciph A {|Agent B, Key K, Nonce NA, Nonce NB |},
Ciph B {|Agent A, Key K |}|}"

abbreviation (input)
ya3’:: "agent => msg => agent => agent => nat => nat => key => event" where
"ya3’ S Y A B NA NB K ==

Says S A {|Ciph A {|Agent B, Key K, Nonce NA, Nonce NB |}, Y |}"

abbreviation (input)
ya4 :: "agent => agent => nat => nat => msg => event" where
"ya4 A B K NB Y == Says A B {|Y, Crypt K (Nonce NB)|}"

abbreviation (input)
ya4’ :: "agent => agent => nat => nat => msg => event" where
"ya4’ A’ B K NB Y == Says A’ B {|Y, Crypt K (Nonce NB)|}"

35.2 definition of the protocol
inductive_set ya :: "event list set"
where

Nil: "[] ∈ ya"

| Fake: " [[evs ∈ ya; X ∈ synth (analz (spies evs))]] =⇒ Says Spy B X # evs
∈ ya"

| YA1: " [[evs1 ∈ ya; Nonce NA /∈ used evs1]] =⇒ ya1 A B NA # evs1 ∈ ya"

| YA2: " [[evs2 ∈ ya; ya1’ A’ A B NA ∈ set evs2; Nonce NB /∈ used evs2]]
=⇒ ya2 A B NA NB # evs2 ∈ ya"

| YA3: " [[evs3 ∈ ya; ya2’ B’ A B NA NB ∈ set evs3; Key K /∈ used evs3]]
=⇒ ya3 A B NA NB K # evs3 ∈ ya"

| YA4: " [[evs4 ∈ ya; ya1 A B NA ∈ set evs4; ya3’ S Y A B NA NB K ∈ set evs4]]
=⇒ ya4 A B K NB Y # evs4 ∈ ya"

35.3 declarations for tactics
declare knows_Spy_partsEs [elim]
declare Fake_parts_insert [THEN subsetD, dest]
declare initState.simps [simp del]
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35.4 general properties of ya
lemma ya_has_no_Gets: "evs ∈ ya =⇒ ∀ A X. Gets A X /∈ set evs"
〈proof 〉

lemma ya_is_Gets_correct [iff]: "Gets_correct ya"
〈proof 〉

lemma ya_is_one_step [iff]: "one_step ya"
〈proof 〉

lemma ya_has_only_Says’ [rule_format]: "evs ∈ ya =⇒
ev ∈ set evs −→ (∃ A B X. ev=Says A B X)"
〈proof 〉

lemma ya_has_only_Says [iff]: "has_only_Says ya"
〈proof 〉

lemma ya_is_regular [iff]: "regular ya"
〈proof 〉

35.5 guardedness of KAB
lemma Guard_KAB [rule_format]: " [[evs ∈ ya; A /∈ bad; B /∈ bad ]] =⇒
ya3 A B NA NB K ∈ set evs −→ GuardK K {shrK A,shrK B} (spies evs)"
〈proof 〉

35.6 session keys are not symmetric keys
lemma KAB_isnt_shrK [rule_format]: "evs ∈ ya =⇒
ya3 A B NA NB K ∈ set evs −→ K /∈ range shrK"
〈proof 〉

lemma ya3_shrK: "evs ∈ ya =⇒ ya3 A B NA NB (shrK C) /∈ set evs"
〈proof 〉

35.7 ya2’ implies ya1’
lemma ya2’_parts_imp_ya1’_parts [rule_format]:

" [[evs ∈ ya; B /∈ bad ]] =⇒
Ciph B {|Agent A, Nonce NA, Nonce NB |} ∈ parts (spies evs) −→
{|Agent A, Nonce NA |} ∈ spies evs"

〈proof 〉

lemma ya2’_imp_ya1’_parts: " [[ya2’ B’ A B NA NB ∈ set evs; evs ∈ ya; B /∈
bad ]]
=⇒ {|Agent A, Nonce NA |} ∈ spies evs"
〈proof 〉

35.8 uniqueness of NB
lemma NB_is_uniq_in_ya2’_parts [rule_format]: " [[evs ∈ ya; B /∈ bad; B’ /∈
bad ]] =⇒
Ciph B {|Agent A, Nonce NA, Nonce NB |} ∈ parts (spies evs) −→
Ciph B’ {|Agent A’, Nonce NA’, Nonce NB |} ∈ parts (spies evs) −→
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A=A’ ∧ B=B’ ∧ NA=NA’"
〈proof 〉

lemma NB_is_uniq_in_ya2’: " [[ya2’ C A B NA NB ∈ set evs;
ya2’ C’ A’ B’ NA’ NB ∈ set evs; evs ∈ ya; B /∈ bad; B’ /∈ bad ]]
=⇒ A=A’ ∧ B=B’ ∧ NA=NA’"
〈proof 〉

35.9 ya3’ implies ya2’
lemma ya3’_parts_imp_ya2’_parts [rule_format]: " [[evs ∈ ya; A /∈ bad ]] =⇒
Ciph A {|Agent B, Key K, Nonce NA, Nonce NB |} ∈ parts (spies evs)
−→ Ciph B {|Agent A, Nonce NA, Nonce NB |} ∈ parts (spies evs)"
〈proof 〉

lemma ya3’_parts_imp_ya2’ [rule_format]: " [[evs ∈ ya; A /∈ bad ]] =⇒
Ciph A {|Agent B, Key K, Nonce NA, Nonce NB |} ∈ parts (spies evs)
−→ (∃ B’. ya2’ B’ A B NA NB ∈ set evs)"
〈proof 〉

lemma ya3’_imp_ya2’: " [[ya3’ S Y A B NA NB K ∈ set evs; evs ∈ ya; A /∈ bad ]]
=⇒ (∃ B’. ya2’ B’ A B NA NB ∈ set evs)"
〈proof 〉

35.10 ya3’ implies ya3
lemma ya3’_parts_imp_ya3 [rule_format]: " [[evs ∈ ya; A /∈ bad ]] =⇒
Ciph A {|Agent B, Key K, Nonce NA, Nonce NB |} ∈ parts(spies evs)
−→ ya3 A B NA NB K ∈ set evs"
〈proof 〉

lemma ya3’_imp_ya3: " [[ya3’ S Y A B NA NB K ∈ set evs; evs ∈ ya; A /∈ bad ]]
=⇒ ya3 A B NA NB K ∈ set evs"
〈proof 〉

35.11 guardedness of NB
definition ya_keys :: "agent ⇒ agent ⇒ nat ⇒ nat ⇒ event list ⇒ key set"
where
"ya_keys A B NA NB evs ≡ {shrK A,shrK B} ∪ {K. ya3 A B NA NB K ∈ set evs}"

lemma Guard_NB [rule_format]: " [[evs ∈ ya; A /∈ bad; B /∈ bad ]] =⇒
ya2 A B NA NB ∈ set evs −→ Guard NB (ya_keys A B NA NB evs) (spies evs)"
〈proof 〉

end

36 Blanqui’s "guard" concept: protocol-independent
secrecy

theory Auth_Guard_Shared
imports

Guard_OtwayRees
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Guard_Yahalom
begin

end

theory Guard_Public imports Guard "../Public" Extensions begin

36.1 Extensions to Theory Public

declare initState.simps [simp del]

36.1.1 signature
definition sign :: "agent => msg => msg" where
"sign A X == {|Agent A, X, Crypt (priK A) (Hash X)|}"

lemma sign_inj [iff]: "(sign A X = sign A’ X’) = (A=A’ & X=X’)"
〈proof 〉

36.1.2 agent associated to a key
definition agt :: "key => agent" where
"agt K == SOME A. K = priK A | K = pubK A"

lemma agt_priK [simp]: "agt (priK A) = A"
〈proof 〉

lemma agt_pubK [simp]: "agt (pubK A) = A"
〈proof 〉

36.1.3 basic facts about initState

lemma no_Crypt_in_parts_init [simp]: "Crypt K X /∈ parts (initState A)"
〈proof 〉

lemma no_Crypt_in_analz_init [simp]: "Crypt K X /∈ analz (initState A)"
〈proof 〉

lemma no_priK_in_analz_init [simp]: "A /∈ bad
=⇒ Key (priK A) /∈ analz (initState Spy)"
〈proof 〉

lemma priK_notin_initState_Friend [simp]: "A 6= Friend C
=⇒ Key (priK A) /∈ parts (initState (Friend C))"
〈proof 〉

lemma keyset_init [iff]: "keyset (initState A)"
〈proof 〉

36.1.4 sets of private keys
definition priK_set :: "key set => bool" where
"priK_set Ks ≡ ∀ K. K ∈ Ks −→ (∃ A. K = priK A)"
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lemma in_priK_set: " [[priK_set Ks; K ∈ Ks ]] =⇒ ∃ A. K = priK A"
〈proof 〉

lemma priK_set1 [iff]: "priK_set {priK A}"
〈proof 〉

lemma priK_set2 [iff]: "priK_set {priK A, priK B}"
〈proof 〉

36.1.5 sets of good keys
definition good :: "key set => bool" where
"good Ks == ∀ K. K ∈ Ks −→ agt K /∈ bad"

lemma in_good: " [[good Ks; K ∈ Ks ]] =⇒ agt K /∈ bad"
〈proof 〉

lemma good1 [simp]: "A /∈ bad =⇒ good {priK A}"
〈proof 〉

lemma good2 [simp]: " [[A /∈ bad; B /∈ bad ]] =⇒ good {priK A, priK B}"
〈proof 〉

36.1.6 greatest nonce used in a trace, 0 if there is no nonce
primrec greatest :: "event list => nat"
where

"greatest [] = 0"
| "greatest (ev # evs) = max (greatest_msg (msg ev)) (greatest evs)"

lemma greatest_is_greatest: "Nonce n ∈ used evs =⇒ n ≤ greatest evs"
〈proof 〉

36.1.7 function giving a new nonce
definition new :: "event list ⇒ nat" where
"new evs ≡ Suc (greatest evs)"

lemma new_isnt_used [iff]: "Nonce (new evs) /∈ used evs"
〈proof 〉

36.2 Proofs About Guarded Messages
36.2.1 small hack necessary because priK is defined as the inverse

of pubK
lemma pubK_is_invKey_priK: "pubK A = invKey (priK A)"
〈proof 〉

lemmas pubK_is_invKey_priK_substI = pubK_is_invKey_priK [THEN ssubst]

lemmas invKey_invKey_substI = invKey [THEN ssubst]

lemma "Nonce n ∈ parts {X} =⇒ Crypt (pubK A) X ∈ guard n {priK A}"
〈proof 〉
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36.2.2 guardedness results

lemma sign_guard [intro]: "X ∈ guard n Ks =⇒ sign A X ∈ guard n Ks"
〈proof 〉

lemma Guard_init [iff]: "Guard n Ks (initState B)"
〈proof 〉

lemma Guard_knows_max’: "Guard n Ks (knows_max’ C evs)
=⇒ Guard n Ks (knows_max C evs)"
〈proof 〉

lemma Nonce_not_used_Guard_spies [dest]: "Nonce n /∈ used evs
=⇒ Guard n Ks (spies evs)"
〈proof 〉

lemma Nonce_not_used_Guard [dest]: " [[evs ∈ p; Nonce n /∈ used evs;
Gets_correct p; one_step p ]] =⇒ Guard n Ks (knows (Friend C) evs)"
〈proof 〉

lemma Nonce_not_used_Guard_max [dest]: " [[evs ∈ p; Nonce n /∈ used evs;
Gets_correct p; one_step p ]] =⇒ Guard n Ks (knows_max (Friend C) evs)"
〈proof 〉

lemma Nonce_not_used_Guard_max’ [dest]: " [[evs ∈ p; Nonce n /∈ used evs;
Gets_correct p; one_step p ]] =⇒ Guard n Ks (knows_max’ (Friend C) evs)"
〈proof 〉

36.2.3 regular protocols

definition regular :: "event list set ⇒ bool" where
"regular p ≡ ∀ evs A. evs ∈ p −→ (Key (priK A) ∈ parts (spies evs)) = (A
∈ bad)"

lemma priK_parts_iff_bad [simp]: " [[evs ∈ p; regular p ]] =⇒
(Key (priK A) ∈ parts (spies evs)) = (A ∈ bad)"
〈proof 〉

lemma priK_analz_iff_bad [simp]: " [[evs ∈ p; regular p ]] =⇒
(Key (priK A) ∈ analz (spies evs)) = (A ∈ bad)"
〈proof 〉

lemma Guard_Nonce_analz: " [[Guard n Ks (spies evs); evs ∈ p;
priK_set Ks; good Ks; regular p ]] =⇒ Nonce n /∈ analz (spies evs)"
〈proof 〉

end

37 Lists of Messages and Lists of Agents
theory List_Msg imports Extensions begin
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37.1 Implementation of Lists by Messages
37.1.1 nil is represented by any message which is not a pair
abbreviation (input)

cons :: "msg => msg => msg" where
"cons x l == {|x,l |}"

37.1.2 induction principle
lemma lmsg_induct: " [[!!x. not_MPair x =⇒ P x; !!x l. P l =⇒ P (cons x
l)]]
=⇒ P l"
〈proof 〉

37.1.3 head
primrec head :: "msg => msg" where
"head (cons x l) = x"

37.1.4 tail
primrec tail :: "msg => msg" where
"tail (cons x l) = l"

37.1.5 length
fun len :: "msg => nat" where
"len (cons x l) = Suc (len l)" |
"len other = 0"

lemma len_not_empty: "n < len l =⇒ ∃ x l’. l = cons x l’"
〈proof 〉

37.1.6 membership
fun isin :: "msg * msg => bool" where
"isin (x, cons y l) = (x=y | isin (x,l))" |
"isin (x, other) = False"

37.1.7 delete an element
fun del :: "msg * msg => msg" where
"del (x, cons y l) = (if x=y then l else cons y (del (x,l)))" |
"del (x, other) = other"

lemma notin_del [simp]: "~ isin (x,l) =⇒ del (x,l) = l"
〈proof 〉

lemma isin_del [rule_format]: "isin (y, del (x,l)) --> isin (y,l)"
〈proof 〉

37.1.8 concatenation
fun app :: "msg * msg => msg" where
"app (cons x l, l’) = cons x (app (l,l’))" |
"app (other, l’) = l’"
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lemma isin_app [iff]: "isin (x, app(l,l’)) = (isin (x,l) | isin (x,l’))"
〈proof 〉

37.1.9 replacement
fun repl :: "msg * nat * msg => msg" where
"repl (cons x l, Suc i, x’) = cons x (repl (l,i,x’))" |
"repl (cons x l, 0, x’) = cons x’ l" |
"repl (other, i, M’) = other"

37.1.10 ith element
fun ith :: "msg * nat => msg" where
"ith (cons x l, Suc i) = ith (l,i)" |
"ith (cons x l, 0) = x" |
"ith (other, i) = other"

lemma ith_head: "0 < len l =⇒ ith (l,0) = head l"
〈proof 〉

37.1.11 insertion
fun ins :: "msg * nat * msg => msg" where
"ins (cons x l, Suc i, y) = cons x (ins (l,i,y))" |
"ins (l, 0, y) = cons y l"

lemma ins_head [simp]: "ins (l,0,y) = cons y l"
〈proof 〉

37.1.12 truncation
fun trunc :: "msg * nat => msg" where
"trunc (l,0) = l" |
"trunc (cons x l, Suc i) = trunc (l,i)"

lemma trunc_zero [simp]: "trunc (l,0) = l"
〈proof 〉

37.2 Agent Lists
37.2.1 set of well-formed agent-list messages
abbreviation

nil :: msg where
"nil == Number 0"

inductive_set agl :: "msg set"
where

Nil[intro]: "nil ∈ agl"
| Cons[intro]: " [[A ∈ agent; I ∈ agl ]] =⇒ cons (Agent A) I ∈ agl"

37.2.2 basic facts about agent lists
lemma del_in_agl [intro]: "I ∈ agl =⇒ del (a,I) ∈ agl"
〈proof 〉
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lemma app_in_agl [intro]: " [[I ∈ agl; J ∈ agl ]] =⇒ app (I,J) ∈ agl"
〈proof 〉

lemma no_Key_in_agl: "I ∈ agl =⇒ Key K /∈ parts {I}"
〈proof 〉

lemma no_Nonce_in_agl: "I ∈ agl =⇒ Nonce n /∈ parts {I}"
〈proof 〉

lemma no_Key_in_appdel: " [[I ∈ agl; J ∈ agl ]] =⇒
Key K /∈ parts {app (J, del (Agent B, I))}"
〈proof 〉

lemma no_Nonce_in_appdel: " [[I ∈ agl; J ∈ agl ]] =⇒
Nonce n /∈ parts {app (J, del (Agent B, I))}"
〈proof 〉

lemma no_Crypt_in_agl: "I ∈ agl =⇒ Crypt K X /∈ parts {I}"
〈proof 〉

lemma no_Crypt_in_appdel: " [[I ∈ agl; J ∈ agl ]] =⇒
Crypt K X /∈ parts {app (J, del (Agent B,I))}"
〈proof 〉

end

38 Protocol P1
theory P1 imports "../Public" Guard_Public List_Msg begin

38.1 Protocol Definition
38.1.1 offer chaining: B chains his offer for A with the head offer of

L for sending it to C
definition chain :: "agent => nat => agent => msg => agent => msg" where
"chain B ofr A L C ==
let m1= Crypt (pubK A) (Nonce ofr) in
let m2= Hash {|head L, Agent C |} in
sign B {|m1,m2|}"

declare Let_def [simp]

lemma chain_inj [iff]: "(chain B ofr A L C = chain B’ ofr’ A’ L’ C’)
= (B=B’ & ofr=ofr’ & A=A’ & head L = head L’ & C=C’)"
〈proof 〉

lemma Nonce_in_chain [iff]: "Nonce ofr ∈ parts {chain B ofr A L C}"
〈proof 〉

38.1.2 agent whose key is used to sign an offer
fun shop :: "msg => msg" where
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"shop {|B,X,Crypt K H |} = Agent (agt K)"

lemma shop_chain [simp]: "shop (chain B ofr A L C) = Agent B"
〈proof 〉

38.1.3 nonce used in an offer
fun nonce :: "msg => msg" where
"nonce {|B,{|Crypt K ofr,m2|},CryptH |} = ofr"

lemma nonce_chain [simp]: "nonce (chain B ofr A L C) = Nonce ofr"
〈proof 〉

38.1.4 next shop
fun next_shop :: "msg => agent" where
"next_shop {|B,{|m1,Hash{|headL,Agent C |}|},CryptH |} = C"

lemma next_shop_chain [iff]: "next_shop (chain B ofr A L C) = C"
〈proof 〉

38.1.5 anchor of the offer list
definition anchor :: "agent => nat => agent => msg" where
"anchor A n B == chain A n A (cons nil nil) B"

lemma anchor_inj [iff]: "(anchor A n B = anchor A’ n’ B’)
= (A=A’ & n=n’ & B=B’)"
〈proof 〉

lemma Nonce_in_anchor [iff]: "Nonce n ∈ parts {anchor A n B}"
〈proof 〉

lemma shop_anchor [simp]: "shop (anchor A n B) = Agent A"
〈proof 〉

lemma nonce_anchor [simp]: "nonce (anchor A n B) = Nonce n"
〈proof 〉

lemma next_shop_anchor [iff]: "next_shop (anchor A n B) = B"
〈proof 〉

38.1.6 request event
definition reqm :: "agent => nat => nat => msg => agent => msg" where
"reqm A r n I B == {|Agent A, Number r, cons (Agent A) (cons (Agent B) I),
cons (anchor A n B) nil |}"

lemma reqm_inj [iff]: "(reqm A r n I B = reqm A’ r’ n’ I’ B’)
= (A=A’ & r=r’ & n=n’ & I=I’ & B=B’)"
〈proof 〉

lemma Nonce_in_reqm [iff]: "Nonce n ∈ parts {reqm A r n I B}"
〈proof 〉
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definition req :: "agent => nat => nat => msg => agent => event" where
"req A r n I B == Says A B (reqm A r n I B)"

lemma req_inj [iff]: "(req A r n I B = req A’ r’ n’ I’ B’)
= (A=A’ & r=r’ & n=n’ & I=I’ & B=B’)"
〈proof 〉

38.1.7 propose event

definition prom :: "agent => nat => agent => nat => msg => msg =>
msg => agent => msg" where
"prom B ofr A r I L J C == {|Agent A, Number r,
app (J, del (Agent B, I)), cons (chain B ofr A L C) L |}"

lemma prom_inj [dest]: "prom B ofr A r I L J C
= prom B’ ofr’ A’ r’ I’ L’ J’ C’
=⇒ B=B’ & ofr=ofr’ & A=A’ & r=r’ & L=L’ & C=C’"
〈proof 〉

lemma Nonce_in_prom [iff]: "Nonce ofr ∈ parts {prom B ofr A r I L J C}"
〈proof 〉

definition pro :: "agent => nat => agent => nat => msg => msg =>
msg => agent => event" where
"pro B ofr A r I L J C == Says B C (prom B ofr A r I L J C)"

lemma pro_inj [dest]: "pro B ofr A r I L J C = pro B’ ofr’ A’ r’ I’ L’ J’
C’
=⇒ B=B’ & ofr=ofr’ & A=A’ & r=r’ & L=L’ & C=C’"
〈proof 〉

38.1.8 protocol

inductive_set p1 :: "event list set"
where

Nil: "[] ∈ p1"

| Fake: " [[evsf ∈ p1; X ∈ synth (analz (spies evsf))]] =⇒ Says Spy B X # evsf
∈ p1"

| Request: " [[evsr ∈ p1; Nonce n /∈ used evsr; I ∈ agl ]] =⇒ req A r n I B #
evsr ∈ p1"

| Propose: " [[evsp ∈ p1; Says A’ B {|Agent A,Number r,I,cons M L |} ∈ set evsp;
I ∈ agl; J ∈ agl; isin (Agent C, app (J, del (Agent B, I)));
Nonce ofr /∈ used evsp ]] =⇒ pro B ofr A r I (cons M L) J C # evsp ∈ p1"

38.1.9 Composition of Traces

lemma "evs’ ∈ p1 =⇒
evs ∈ p1 ∧ (∀ n. Nonce n ∈ used evs’ −→ Nonce n /∈ used evs) −→
evs’ @ evs ∈ p1"

〈proof 〉



38.1 Protocol Definition 297

38.1.10 Valid Offer Lists
inductive_set

valid :: "agent ⇒ nat ⇒ agent ⇒ msg set"
for A :: agent and n :: nat and B :: agent

where
Request [intro]: "cons (anchor A n B) nil ∈ valid A n B"

| Propose [intro]: "L ∈ valid A n B
=⇒ cons (chain (next_shop (head L)) ofr A L C) L ∈ valid A n B"

38.1.11 basic properties of valid
lemma valid_not_empty: "L ∈ valid A n B =⇒ ∃ M L’. L = cons M L’"
〈proof 〉

lemma valid_pos_len: "L ∈ valid A n B =⇒ 0 < len L"
〈proof 〉

38.1.12 offers of an offer list
definition offer_nonces :: "msg ⇒ msg set" where
"offer_nonces L ≡ {X. X ∈ parts {L} ∧ (∃ n. X = Nonce n)}"

38.1.13 the originator can get the offers
lemma "L ∈ valid A n B =⇒ offer_nonces L ⊆ analz (insert L (initState
A))"
〈proof 〉

38.1.14 list of offers
fun offers :: "msg => msg" where
"offers (cons M L) = cons {|shop M, nonce M |} (offers L)" |
"offers other = nil"

38.1.15 list of agents whose keys are used to sign a list of offers
fun shops :: "msg => msg" where
"shops (cons M L) = cons (shop M) (shops L)" |
"shops other = other"

lemma shops_in_agl: "L ∈ valid A n B =⇒ shops L ∈ agl"
〈proof 〉

38.1.16 builds a trace from an itinerary
fun offer_list :: "agent × nat × agent × msg × nat ⇒ msg" where
"offer_list (A,n,B,nil,ofr) = cons (anchor A n B) nil" |
"offer_list (A,n,B,cons (Agent C) I,ofr) = (
let L = offer_list (A,n,B,I,Suc ofr) in
cons (chain (next_shop (head L)) ofr A L C) L)"

lemma "I ∈ agl =⇒ ∀ ofr. offer_list (A,n,B,I,ofr) ∈ valid A n B"
〈proof 〉
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fun trace :: "agent × nat × agent × nat × msg × msg × msg
⇒ event list" where
"trace (B,ofr,A,r,I,L,nil) = []" |
"trace (B,ofr,A,r,I,L,cons (Agent D) K) = (
let C = (if K=nil then B else agt_nb (head K)) in
let I’ = (if K=nil then cons (Agent A) (cons (Agent B) I)

else cons (Agent A) (app (I, cons (head K) nil))) in
let I’’ = app (I, cons (head K) nil) in
pro C (Suc ofr) A r I’ L nil D
# trace (B,Suc ofr,A,r,I’’,tail L,K))"

definition trace’ :: "agent ⇒ nat ⇒ nat ⇒ msg ⇒ agent ⇒ nat ⇒ event
list" where
"trace’ A r n I B ofr ≡ (
let AI = cons (Agent A) I in
let L = offer_list (A,n,B,AI,ofr) in
trace (B,ofr,A,r,nil,L,AI))"

declare trace’_def [simp]

38.1.17 there is a trace in which the originator receives a valid an-
swer

lemma p1_not_empty: "evs ∈ p1 =⇒ req A r n I B ∈ set evs −→
(∃ evs’. evs’ @ evs ∈ p1 ∧ pro B’ ofr A r I’ L J A ∈ set evs’ ∧ L ∈ valid
A n B)"
〈proof 〉

38.2 properties of protocol P1
publicly verifiable forward integrity: anyone can verify the validity of an offer
list

38.2.1 strong forward integrity: except the last one, no offer can be
modified

lemma strong_forward_integrity: "∀ L. Suc i < len L
−→ L ∈ valid A n B ∧ repl (L,Suc i,M) ∈ valid A n B −→ M = ith (L,Suc i)"
〈proof 〉

38.2.2 insertion resilience: except at the beginning, no offer can be
inserted

lemma chain_isnt_head [simp]: "L ∈ valid A n B =⇒
head L 6= chain (next_shop (head L)) ofr A L C"
〈proof 〉

lemma insertion_resilience: "∀ L. L ∈ valid A n B −→ Suc i < len L
−→ ins (L,Suc i,M) /∈ valid A n B"
〈proof 〉

38.2.3 truncation resilience: only shop i can truncate at offer i
lemma truncation_resilience: "∀ L. L ∈ valid A n B −→ Suc i < len L
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−→ cons M (trunc (L,Suc i)) ∈ valid A n B −→ shop M = shop (ith (L,i))"
〈proof 〉

38.2.4 declarations for tactics
declare knows_Spy_partsEs [elim]
declare Fake_parts_insert [THEN subsetD, dest]
declare initState.simps [simp del]

38.2.5 get components of a message
lemma get_ML [dest]: "Says A’ B {|A,r,I,M,L |} ∈ set evs =⇒
M ∈ parts (spies evs) ∧ L ∈ parts (spies evs)"
〈proof 〉

38.2.6 general properties of p1
lemma reqm_neq_prom [iff]:
"reqm A r n I B 6= prom B’ ofr A’ r’ I’ (cons M L) J C"
〈proof 〉

lemma prom_neq_reqm [iff]:
"prom B’ ofr A’ r’ I’ (cons M L) J C 6= reqm A r n I B"
〈proof 〉

lemma req_neq_pro [iff]: "req A r n I B 6= pro B’ ofr A’ r’ I’ (cons M L)
J C"
〈proof 〉

lemma pro_neq_req [iff]: "pro B’ ofr A’ r’ I’ (cons M L) J C 6= req A r n
I B"
〈proof 〉

lemma p1_has_no_Gets: "evs ∈ p1 =⇒ ∀ A X. Gets A X /∈ set evs"
〈proof 〉

lemma p1_is_Gets_correct [iff]: "Gets_correct p1"
〈proof 〉

lemma p1_is_one_step [iff]: "one_step p1"
〈proof 〉

lemma p1_has_only_Says’ [rule_format]: "evs ∈ p1 =⇒
ev ∈ set evs −→ (∃ A B X. ev=Says A B X)"
〈proof 〉

lemma p1_has_only_Says [iff]: "has_only_Says p1"
〈proof 〉

lemma p1_is_regular [iff]: "regular p1"
〈proof 〉

38.2.7 private keys are safe
lemma priK_parts_Friend_imp_bad [rule_format,dest]:
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" [[evs ∈ p1; Friend B 6= A ]]
=⇒ (Key (priK A) ∈ parts (knows (Friend B) evs)) −→ (A ∈ bad)"

〈proof 〉

lemma priK_analz_Friend_imp_bad [rule_format,dest]:
" [[evs ∈ p1; Friend B 6= A ]]

=⇒ (Key (priK A) ∈ analz (knows (Friend B) evs)) −→ (A ∈ bad)"
〈proof 〉

lemma priK_notin_knows_max_Friend: " [[evs ∈ p1; A /∈ bad; A 6= Friend C ]]
=⇒ Key (priK A) /∈ analz (knows_max (Friend C) evs)"
〈proof 〉

38.2.8 general guardedness properties
lemma agl_guard [intro]: "I ∈ agl =⇒ I ∈ guard n Ks"
〈proof 〉

lemma Says_to_knows_max’_guard: " [[Says A’ C {|A’’,r,I,L |} ∈ set evs;
Guard n Ks (knows_max’ C evs)]] =⇒ L ∈ guard n Ks"
〈proof 〉

lemma Says_from_knows_max’_guard: " [[Says C A’ {|A’’,r,I,L |} ∈ set evs;
Guard n Ks (knows_max’ C evs)]] =⇒ L ∈ guard n Ks"
〈proof 〉

lemma Says_Nonce_not_used_guard: " [[Says A’ B {|A’’,r,I,L |} ∈ set evs;
Nonce n /∈ used evs ]] =⇒ L ∈ guard n Ks"
〈proof 〉

38.2.9 guardedness of messages
lemma chain_guard [iff]: "chain B ofr A L C ∈ guard n {priK A}"
〈proof 〉

lemma chain_guard_Nonce_neq [intro]: "n 6= ofr
=⇒ chain B ofr A’ L C ∈ guard n {priK A}"
〈proof 〉

lemma anchor_guard [iff]: "anchor A n’ B ∈ guard n {priK A}"
〈proof 〉

lemma anchor_guard_Nonce_neq [intro]: "n 6= n’
=⇒ anchor A’ n’ B ∈ guard n {priK A}"
〈proof 〉

lemma reqm_guard [intro]: "I ∈ agl =⇒ reqm A r n’ I B ∈ guard n {priK A}"
〈proof 〉

lemma reqm_guard_Nonce_neq [intro]: " [[n 6= n’; I ∈ agl ]]
=⇒ reqm A’ r n’ I B ∈ guard n {priK A}"
〈proof 〉

lemma prom_guard [intro]: " [[I ∈ agl; J ∈ agl; L ∈ guard n {priK A}]]
=⇒ prom B ofr A r I L J C ∈ guard n {priK A}"
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〈proof 〉

lemma prom_guard_Nonce_neq [intro]: " [[n 6= ofr; I ∈ agl; J ∈ agl;
L ∈ guard n {priK A}]] =⇒ prom B ofr A’ r I L J C ∈ guard n {priK A}"
〈proof 〉

38.2.10 Nonce uniqueness
lemma uniq_Nonce_in_chain [dest]: "Nonce k ∈ parts {chain B ofr A L C} =⇒
k=ofr"
〈proof 〉

lemma uniq_Nonce_in_anchor [dest]: "Nonce k ∈ parts {anchor A n B} =⇒ k=n"
〈proof 〉

lemma uniq_Nonce_in_reqm [dest]: " [[Nonce k ∈ parts {reqm A r n I B};
I ∈ agl ]] =⇒ k=n"
〈proof 〉

lemma uniq_Nonce_in_prom [dest]: " [[Nonce k ∈ parts {prom B ofr A r I L J
C};
I ∈ agl; J ∈ agl; Nonce k /∈ parts {L}]] =⇒ k=ofr"
〈proof 〉

38.2.11 requests are guarded
lemma req_imp_Guard [rule_format]: " [[evs ∈ p1; A /∈ bad ]] =⇒
req A r n I B ∈ set evs −→ Guard n {priK A} (spies evs)"
〈proof 〉

lemma req_imp_Guard_Friend: " [[evs ∈ p1; A /∈ bad; req A r n I B ∈ set evs ]]
=⇒ Guard n {priK A} (knows_max (Friend C) evs)"
〈proof 〉

38.2.12 propositions are guarded
lemma pro_imp_Guard [rule_format]: " [[evs ∈ p1; B /∈ bad; A /∈ bad ]] =⇒
pro B ofr A r I (cons M L) J C ∈ set evs −→ Guard ofr {priK A} (spies evs)"
〈proof 〉

lemma pro_imp_Guard_Friend: " [[evs ∈ p1; B /∈ bad; A /∈ bad;
pro B ofr A r I (cons M L) J C ∈ set evs ]]
=⇒ Guard ofr {priK A} (knows_max (Friend D) evs)"
〈proof 〉

38.2.13 data confidentiality: no one other than the originator can
decrypt the offers

lemma Nonce_req_notin_spies: " [[evs ∈ p1; req A r n I B ∈ set evs; A /∈ bad ]]
=⇒ Nonce n /∈ analz (spies evs)"
〈proof 〉

lemma Nonce_req_notin_knows_max_Friend: " [[evs ∈ p1; req A r n I B ∈ set
evs;
A /∈ bad; A 6= Friend C ]] =⇒ Nonce n /∈ analz (knows_max (Friend C) evs)"
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〈proof 〉

lemma Nonce_pro_notin_spies: " [[evs ∈ p1; B /∈ bad; A /∈ bad;
pro B ofr A r I (cons M L) J C ∈ set evs ]] =⇒ Nonce ofr /∈ analz (spies evs)"
〈proof 〉

lemma Nonce_pro_notin_knows_max_Friend: " [[evs ∈ p1; B /∈ bad; A /∈ bad;
A 6= Friend D; pro B ofr A r I (cons M L) J C ∈ set evs ]]
=⇒ Nonce ofr /∈ analz (knows_max (Friend D) evs)"
〈proof 〉

38.2.14 non repudiability: an offer signed by B has been sent by B
lemma Crypt_reqm: " [[Crypt (priK A) X ∈ parts {reqm A’ r n I B}; I ∈ agl ]]
=⇒ A=A’"
〈proof 〉

lemma Crypt_prom: " [[Crypt (priK A) X ∈ parts {prom B ofr A’ r I L J C};
I ∈ agl; J ∈ agl ]] =⇒ A=B ∨ Crypt (priK A) X ∈ parts {L}"
〈proof 〉

lemma Crypt_safeness: " [[evs ∈ p1; A /∈ bad ]] =⇒ Crypt (priK A) X ∈ parts
(spies evs)
−→ (∃ B Y. Says A B Y ∈ set evs ∧ Crypt (priK A) X ∈ parts {Y})"
〈proof 〉

lemma Crypt_Hash_imp_sign: " [[evs ∈ p1; A /∈ bad ]] =⇒
Crypt (priK A) (Hash X) ∈ parts (spies evs)
−→ (∃ B Y. Says A B Y ∈ set evs ∧ sign A X ∈ parts {Y})"
〈proof 〉

lemma sign_safeness: " [[evs ∈ p1; A /∈ bad ]] =⇒ sign A X ∈ parts (spies evs)
−→ (∃ B Y. Says A B Y ∈ set evs ∧ sign A X ∈ parts {Y})"
〈proof 〉

end

39 Protocol P2
theory P2 imports Guard_Public List_Msg begin

39.1 Protocol Definition
Like P1 except the definitions of chain, shop, next_shop and nonce

39.1.1 offer chaining: B chains his offer for A with the head offer of
L for sending it to C

definition chain :: "agent => nat => agent => msg => agent => msg" where
"chain B ofr A L C ==
let m1= sign B (Nonce ofr) in
let m2= Hash {|head L, Agent C |} in
{|Crypt (pubK A) m1, m2|}"
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declare Let_def [simp]

lemma chain_inj [iff]: "(chain B ofr A L C = chain B’ ofr’ A’ L’ C’)
= (B=B’ & ofr=ofr’ & A=A’ & head L = head L’ & C=C’)"
〈proof 〉

lemma Nonce_in_chain [iff]: "Nonce ofr ∈ parts {chain B ofr A L C}"
〈proof 〉

39.1.2 agent whose key is used to sign an offer
fun shop :: "msg => msg" where
"shop {|Crypt K {|B,ofr,Crypt K’ H |},m2|} = Agent (agt K’)"

lemma shop_chain [simp]: "shop (chain B ofr A L C) = Agent B"
〈proof 〉

39.1.3 nonce used in an offer
fun nonce :: "msg => msg" where
"nonce {|Crypt K {|B,ofr,CryptH |},m2|} = ofr"

lemma nonce_chain [simp]: "nonce (chain B ofr A L C) = Nonce ofr"
〈proof 〉

39.1.4 next shop
fun next_shop :: "msg => agent" where
"next_shop {|m1,Hash {|headL,Agent C |}|} = C"

lemma "next_shop (chain B ofr A L C) = C"
〈proof 〉

39.1.5 anchor of the offer list
definition anchor :: "agent => nat => agent => msg" where
"anchor A n B == chain A n A (cons nil nil) B"

lemma anchor_inj [iff]:
"(anchor A n B = anchor A’ n’ B’) = (A=A’ ∧ n=n’ ∧ B=B’)"

〈proof 〉

lemma Nonce_in_anchor [iff]: "Nonce n ∈ parts {anchor A n B}"
〈proof 〉

lemma shop_anchor [simp]: "shop (anchor A n B) = Agent A"
〈proof 〉

39.1.6 request event
definition reqm :: "agent => nat => nat => msg => agent => msg" where
"reqm A r n I B == {|Agent A, Number r, cons (Agent A) (cons (Agent B) I),
cons (anchor A n B) nil |}"
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lemma reqm_inj [iff]: "(reqm A r n I B = reqm A’ r’ n’ I’ B’)
= (A=A’ & r=r’ & n=n’ & I=I’ & B=B’)"
〈proof 〉

lemma Nonce_in_reqm [iff]: "Nonce n ∈ parts {reqm A r n I B}"
〈proof 〉

definition req :: "agent => nat => nat => msg => agent => event" where
"req A r n I B == Says A B (reqm A r n I B)"

lemma req_inj [iff]: "(req A r n I B = req A’ r’ n’ I’ B’)
= (A=A’ & r=r’ & n=n’ & I=I’ & B=B’)"
〈proof 〉

39.1.7 propose event

definition prom :: "agent => nat => agent => nat => msg => msg =>
msg => agent => msg" where
"prom B ofr A r I L J C == {|Agent A, Number r,
app (J, del (Agent B, I)), cons (chain B ofr A L C) L |}"

lemma prom_inj [dest]: "prom B ofr A r I L J C = prom B’ ofr’ A’ r’ I’ L’
J’ C’
=⇒ B=B’ & ofr=ofr’ & A=A’ & r=r’ & L=L’ & C=C’"
〈proof 〉

lemma Nonce_in_prom [iff]: "Nonce ofr ∈ parts {prom B ofr A r I L J C}"
〈proof 〉

definition pro :: "agent => nat => agent => nat => msg => msg =>
msg => agent => event" where

"pro B ofr A r I L J C == Says B C (prom B ofr A r I L J C)"

lemma pro_inj [dest]: "pro B ofr A r I L J C = pro B’ ofr’ A’ r’ I’ L’ J’
C’
=⇒ B=B’ & ofr=ofr’ & A=A’ & r=r’ & L=L’ & C=C’"
〈proof 〉

39.1.8 protocol

inductive_set p2 :: "event list set"
where

Nil: "[] ∈ p2"

| Fake: " [[evsf ∈ p2; X ∈ synth (analz (spies evsf))]] =⇒ Says Spy B X # evsf
∈ p2"

| Request: " [[evsr ∈ p2; Nonce n /∈ used evsr; I ∈ agl ]] =⇒ req A r n I B #
evsr ∈ p2"

| Propose: " [[evsp ∈ p2; Says A’ B {|Agent A,Number r,I,cons M L |} ∈ set evsp;
I ∈ agl; J ∈ agl; isin (Agent C, app (J, del (Agent B, I)));
Nonce ofr /∈ used evsp ]] =⇒ pro B ofr A r I (cons M L) J C # evsp ∈ p2"
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39.1.9 valid offer lists
inductive_set

valid :: "agent ⇒ nat ⇒ agent ⇒ msg set"
for A :: agent and n :: nat and B :: agent

where
Request [intro]: "cons (anchor A n B) nil ∈ valid A n B"

| Propose [intro]: "L ∈ valid A n B
=⇒ cons (chain (next_shop (head L)) ofr A L C) L ∈ valid A n B"

39.1.10 basic properties of valid
lemma valid_not_empty: "L ∈ valid A n B =⇒ ∃ M L’. L = cons M L’"
〈proof 〉

lemma valid_pos_len: "L ∈ valid A n B =⇒ 0 < len L"
〈proof 〉

39.1.11 list of offers
fun offers :: "msg ⇒ msg"
where

"offers (cons M L) = cons {|shop M, nonce M |} (offers L)"
| "offers other = nil"

39.2 Properties of Protocol P2
same as P1_Prop except that publicly verifiable forward integrity is replaced by
forward privacy

39.3 strong forward integrity: except the last one, no offer
can be modified

lemma strong_forward_integrity: "∀ L. Suc i < len L
−→ L ∈ valid A n B −→ repl (L,Suc i,M) ∈ valid A n B −→ M = ith (L,Suc
i)"
〈proof 〉

39.4 insertion resilience: except at the beginning, no offer
can be inserted

lemma chain_isnt_head [simp]: "L ∈ valid A n B =⇒
head L 6= chain (next_shop (head L)) ofr A L C"
〈proof 〉

lemma insertion_resilience: "∀ L. L ∈ valid A n B −→ Suc i < len L
−→ ins (L,Suc i,M) /∈ valid A n B"
〈proof 〉

39.5 truncation resilience: only shop i can truncate at offer
i

lemma truncation_resilience: "∀ L. L ∈ valid A n B −→ Suc i < len L
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−→ cons M (trunc (L,Suc i)) ∈ valid A n B −→ shop M = shop (ith (L,i))"
〈proof 〉

39.6 declarations for tactics
declare knows_Spy_partsEs [elim]
declare Fake_parts_insert [THEN subsetD, dest]
declare initState.simps [simp del]

39.7 get components of a message
lemma get_ML [dest]: "Says A’ B {|A,R,I,M,L |} ∈ set evs =⇒
M ∈ parts (spies evs) ∧ L ∈ parts (spies evs)"
〈proof 〉

39.8 general properties of p2
lemma reqm_neq_prom [iff]:
"reqm A r n I B 6= prom B’ ofr A’ r’ I’ (cons M L) J C"
〈proof 〉

lemma prom_neq_reqm [iff]:
"prom B’ ofr A’ r’ I’ (cons M L) J C 6= reqm A r n I B"
〈proof 〉

lemma req_neq_pro [iff]: "req A r n I B 6= pro B’ ofr A’ r’ I’ (cons M L)
J C"
〈proof 〉

lemma pro_neq_req [iff]: "pro B’ ofr A’ r’ I’ (cons M L) J C 6= req A r n
I B"
〈proof 〉

lemma p2_has_no_Gets: "evs ∈ p2 =⇒ ∀ A X. Gets A X /∈ set evs"
〈proof 〉

lemma p2_is_Gets_correct [iff]: "Gets_correct p2"
〈proof 〉

lemma p2_is_one_step [iff]: "one_step p2"
〈proof 〉

lemma p2_has_only_Says’ [rule_format]: "evs ∈ p2 =⇒
ev ∈ set evs −→ (∃ A B X. ev=Says A B X)"
〈proof 〉

lemma p2_has_only_Says [iff]: "has_only_Says p2"
〈proof 〉

lemma p2_is_regular [iff]: "regular p2"
〈proof 〉
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39.9 private keys are safe
lemma priK_parts_Friend_imp_bad [rule_format,dest]:

" [[evs ∈ p2; Friend B 6= A ]]
=⇒ (Key (priK A) ∈ parts (knows (Friend B) evs)) −→ (A ∈ bad)"

〈proof 〉

lemma priK_analz_Friend_imp_bad [rule_format,dest]:
" [[evs ∈ p2; Friend B 6= A ]]

=⇒ (Key (priK A) ∈ analz (knows (Friend B) evs)) −→ (A ∈ bad)"
〈proof 〉

lemma priK_notin_knows_max_Friend:
" [[evs ∈ p2; A /∈ bad; A 6= Friend C ]]
=⇒ Key (priK A) /∈ analz (knows_max (Friend C) evs)"

〈proof 〉

39.10 general guardedness properties
lemma agl_guard [intro]: "I ∈ agl =⇒ I ∈ guard n Ks"
〈proof 〉

lemma Says_to_knows_max’_guard: " [[Says A’ C {|A’’,r,I,L |} ∈ set evs;
Guard n Ks (knows_max’ C evs)]] =⇒ L ∈ guard n Ks"
〈proof 〉

lemma Says_from_knows_max’_guard: " [[Says C A’ {|A’’,r,I,L |} ∈ set evs;
Guard n Ks (knows_max’ C evs)]] =⇒ L ∈ guard n Ks"
〈proof 〉

lemma Says_Nonce_not_used_guard: " [[Says A’ B {|A’’,r,I,L |} ∈ set evs;
Nonce n /∈ used evs ]] =⇒ L ∈ guard n Ks"
〈proof 〉

39.11 guardedness of messages
lemma chain_guard [iff]: "chain B ofr A L C ∈ guard n {priK A}"
〈proof 〉

lemma chain_guard_Nonce_neq [intro]: "n 6= ofr
=⇒ chain B ofr A’ L C ∈ guard n {priK A}"
〈proof 〉

lemma anchor_guard [iff]: "anchor A n’ B ∈ guard n {priK A}"
〈proof 〉

lemma anchor_guard_Nonce_neq [intro]: "n 6= n’
=⇒ anchor A’ n’ B ∈ guard n {priK A}"
〈proof 〉

lemma reqm_guard [intro]: "I ∈ agl =⇒ reqm A r n’ I B ∈ guard n {priK A}"
〈proof 〉

lemma reqm_guard_Nonce_neq [intro]: " [[n 6= n’; I ∈ agl ]]
=⇒ reqm A’ r n’ I B ∈ guard n {priK A}"
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〈proof 〉

lemma prom_guard [intro]: " [[I ∈ agl; J ∈ agl; L ∈ guard n {priK A}]]
=⇒ prom B ofr A r I L J C ∈ guard n {priK A}"
〈proof 〉

lemma prom_guard_Nonce_neq [intro]: " [[n 6= ofr; I ∈ agl; J ∈ agl;
L ∈ guard n {priK A}]] =⇒ prom B ofr A’ r I L J C ∈ guard n {priK A}"
〈proof 〉

39.12 Nonce uniqueness
lemma uniq_Nonce_in_chain [dest]: "Nonce k ∈ parts {chain B ofr A L C} =⇒
k=ofr"
〈proof 〉

lemma uniq_Nonce_in_anchor [dest]: "Nonce k ∈ parts {anchor A n B} =⇒ k=n"
〈proof 〉

lemma uniq_Nonce_in_reqm [dest]: " [[Nonce k ∈ parts {reqm A r n I B};
I ∈ agl ]] =⇒ k=n"
〈proof 〉

lemma uniq_Nonce_in_prom [dest]: " [[Nonce k ∈ parts {prom B ofr A r I L J
C};
I ∈ agl; J ∈ agl; Nonce k /∈ parts {L}]] =⇒ k=ofr"
〈proof 〉

39.13 requests are guarded
lemma req_imp_Guard [rule_format]: " [[evs ∈ p2; A /∈ bad ]] =⇒
req A r n I B ∈ set evs −→ Guard n {priK A} (spies evs)"
〈proof 〉

lemma req_imp_Guard_Friend: " [[evs ∈ p2; A /∈ bad; req A r n I B ∈ set evs ]]
=⇒ Guard n {priK A} (knows_max (Friend C) evs)"
〈proof 〉

39.14 propositions are guarded
lemma pro_imp_Guard [rule_format]: " [[evs ∈ p2; B /∈ bad; A /∈ bad ]] =⇒
pro B ofr A r I (cons M L) J C ∈ set evs −→ Guard ofr {priK A} (spies evs)"
〈proof 〉

lemma pro_imp_Guard_Friend: " [[evs ∈ p2; B /∈ bad; A /∈ bad;
pro B ofr A r I (cons M L) J C ∈ set evs ]]
=⇒ Guard ofr {priK A} (knows_max (Friend D) evs)"
〈proof 〉

39.15 data confidentiality: no one other than the origina-
tor can decrypt the offers

lemma Nonce_req_notin_spies: " [[evs ∈ p2; req A r n I B ∈ set evs; A /∈ bad ]]
=⇒ Nonce n /∈ analz (spies evs)"
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〈proof 〉

lemma Nonce_req_notin_knows_max_Friend: " [[evs ∈ p2; req A r n I B ∈ set
evs;
A /∈ bad; A 6= Friend C ]] =⇒ Nonce n /∈ analz (knows_max (Friend C) evs)"
〈proof 〉

lemma Nonce_pro_notin_spies: " [[evs ∈ p2; B /∈ bad; A /∈ bad;
pro B ofr A r I (cons M L) J C ∈ set evs ]] =⇒ Nonce ofr /∈ analz (spies evs)"
〈proof 〉

lemma Nonce_pro_notin_knows_max_Friend: " [[evs ∈ p2; B /∈ bad; A /∈ bad;
A 6= Friend D; pro B ofr A r I (cons M L) J C ∈ set evs ]]
=⇒ Nonce ofr /∈ analz (knows_max (Friend D) evs)"
〈proof 〉

39.16 forward privacy: only the originator can know the
identity of the shops

lemma forward_privacy_Spy: " [[evs ∈ p2; B /∈ bad; A /∈ bad;
pro B ofr A r I (cons M L) J C ∈ set evs ]]
=⇒ sign B (Nonce ofr) /∈ analz (spies evs)"
〈proof 〉

lemma forward_privacy_Friend: " [[evs ∈ p2; B /∈ bad; A /∈ bad; A 6= Friend
D;
pro B ofr A r I (cons M L) J C ∈ set evs ]]
=⇒ sign B (Nonce ofr) /∈ analz (knows_max (Friend D) evs)"
〈proof 〉

39.17 non repudiability: an offer signed by B has been
sent by B

lemma Crypt_reqm: " [[Crypt (priK A) X ∈ parts {reqm A’ r n I B}; I ∈ agl ]]
=⇒ A=A’"
〈proof 〉

lemma Crypt_prom: " [[Crypt (priK A) X ∈ parts {prom B ofr A’ r I L J C};
I ∈ agl; J ∈ agl ]] =⇒ A=B | Crypt (priK A) X ∈ parts {L}"
〈proof 〉

lemma Crypt_safeness: " [[evs ∈ p2; A /∈ bad ]] =⇒ Crypt (priK A) X ∈ parts
(spies evs)
−→ (∃ B Y. Says A B Y ∈ set evs & Crypt (priK A) X ∈ parts {Y})"
〈proof 〉

lemma Crypt_Hash_imp_sign: " [[evs ∈ p2; A /∈ bad ]] =⇒
Crypt (priK A) (Hash X) ∈ parts (spies evs)
−→ (∃ B Y. Says A B Y ∈ set evs ∧ sign A X ∈ parts {Y})"
〈proof 〉

lemma sign_safeness: " [[evs ∈ p2; A /∈ bad ]] =⇒ sign A X ∈ parts (spies evs)
−→ (∃ B Y. Says A B Y ∈ set evs ∧ sign A X ∈ parts {Y})"
〈proof 〉
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end

40 Needham-Schroeder-Lowe Public-Key Proto-
col

theory Guard_NS_Public imports Guard_Public begin

40.1 messages used in the protocol
abbreviation (input)

ns1 :: "agent => agent => nat => event" where
"ns1 A B NA == Says A B (Crypt (pubK B) {|Nonce NA, Agent A |})"

abbreviation (input)
ns1’ :: "agent => agent => agent => nat => event" where
"ns1’ A’ A B NA == Says A’ B (Crypt (pubK B) {|Nonce NA, Agent A |})"

abbreviation (input)
ns2 :: "agent => agent => nat => nat => event" where
"ns2 B A NA NB == Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B |})"

abbreviation (input)
ns2’ :: "agent => agent => agent => nat => nat => event" where
"ns2’ B’ B A NA NB == Says B’ A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent

B |})"

abbreviation (input)
ns3 :: "agent => agent => nat => event" where
"ns3 A B NB == Says A B (Crypt (pubK B) (Nonce NB))"

40.2 definition of the protocol
inductive_set nsp :: "event list set"
where

Nil: "[] ∈ nsp"

| Fake: " [[evs ∈ nsp; X ∈ synth (analz (spies evs))]] =⇒ Says Spy B X # evs
∈ nsp"

| NS1: " [[evs1 ∈ nsp; Nonce NA /∈ used evs1]] =⇒ ns1 A B NA # evs1 ∈ nsp"

| NS2: " [[evs2 ∈ nsp; Nonce NB /∈ used evs2; ns1’ A’ A B NA ∈ set evs2]] =⇒
ns2 B A NA NB # evs2 ∈ nsp"

| NS3: "
∧

A B B’ NA NB evs3. [[evs3 ∈ nsp; ns1 A B NA ∈ set evs3; ns2’ B’ B
A NA NB ∈ set evs3]] =⇒

ns3 A B NB # evs3 ∈ nsp"

40.3 declarations for tactics
declare knows_Spy_partsEs [elim]
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declare Fake_parts_insert [THEN subsetD, dest]
declare initState.simps [simp del]

40.4 general properties of nsp
lemma nsp_has_no_Gets: "evs ∈ nsp =⇒ ∀ A X. Gets A X /∈ set evs"
〈proof 〉

lemma nsp_is_Gets_correct [iff]: "Gets_correct nsp"
〈proof 〉

lemma nsp_is_one_step [iff]: "one_step nsp"
〈proof 〉

lemma nsp_has_only_Says’ [rule_format]: "evs ∈ nsp =⇒
ev ∈ set evs −→ (∃ A B X. ev=Says A B X)"
〈proof 〉

lemma nsp_has_only_Says [iff]: "has_only_Says nsp"
〈proof 〉

lemma nsp_is_regular [iff]: "regular nsp"
〈proof 〉

40.5 nonce are used only once
lemma NA_is_uniq [rule_format]: "evs ∈ nsp =⇒
Crypt (pubK B) {|Nonce NA, Agent A |} ∈ parts (spies evs)
−→ Crypt (pubK B’) {|Nonce NA, Agent A’|} ∈ parts (spies evs)
−→ Nonce NA /∈ analz (spies evs) −→ A=A’ ∧ B=B’"
〈proof 〉

lemma no_Nonce_NS1_NS2 [rule_format]: "evs ∈ nsp =⇒
Crypt (pubK B’) {|Nonce NA’, Nonce NA, Agent A’|} ∈ parts (spies evs)
−→ Crypt (pubK B) {|Nonce NA, Agent A |} ∈ parts (spies evs)
−→ Nonce NA ∈ analz (spies evs)"
〈proof 〉

lemma no_Nonce_NS1_NS2’ [rule_format]:
" [[Crypt (pubK B’) {|Nonce NA’, Nonce NA, Agent A’|} ∈ parts (spies evs);
Crypt (pubK B) {|Nonce NA, Agent A |} ∈ parts (spies evs); evs ∈ nsp ]]
=⇒ Nonce NA ∈ analz (spies evs)"
〈proof 〉

lemma NB_is_uniq [rule_format]: "evs ∈ nsp =⇒
Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B |} ∈ parts (spies evs)
−→ Crypt (pubK A’) {|Nonce NA’, Nonce NB, Agent B’|} ∈ parts (spies evs)
−→ Nonce NB /∈ analz (spies evs) −→ A=A’ ∧ B=B’ ∧ NA=NA’"
〈proof 〉

40.6 guardedness of NA
lemma ns1_imp_Guard [rule_format]: " [[evs ∈ nsp; A /∈ bad; B /∈ bad ]] =⇒
ns1 A B NA ∈ set evs −→ Guard NA {priK A,priK B} (spies evs)"
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〈proof 〉

40.7 guardedness of NB
lemma ns2_imp_Guard [rule_format]: " [[evs ∈ nsp; A /∈ bad; B /∈ bad ]] =⇒
ns2 B A NA NB ∈ set evs −→ Guard NB {priK A,priK B} (spies evs)"
〈proof 〉

40.8 Agents’ Authentication
lemma B_trusts_NS1: " [[evs ∈ nsp; A /∈ bad; B /∈ bad ]] =⇒
Crypt (pubK B) {|Nonce NA, Agent A |} ∈ parts (spies evs)
−→ Nonce NA /∈ analz (spies evs) −→ ns1 A B NA ∈ set evs"
〈proof 〉

lemma A_trusts_NS2: " [[evs ∈ nsp; A /∈ bad; B /∈ bad ]] =⇒ ns1 A B NA ∈ set
evs
−→ Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B |} ∈ parts (spies evs)
−→ ns2 B A NA NB ∈ set evs"
〈proof 〉

lemma B_trusts_NS3: " [[evs ∈ nsp; A /∈ bad; B /∈ bad ]] =⇒ ns2 B A NA NB ∈
set evs
−→ Crypt (pubK B) (Nonce NB) ∈ parts (spies evs) −→ ns3 A B NB ∈ set evs"
〈proof 〉

end

41 Other Protocol-Independent Results
theory Proto imports Guard_Public begin

41.1 protocols
type_synonym rule = "event set * event"

abbreviation
msg’ :: "rule => msg" where
"msg’ R == msg (snd R)"

type_synonym proto = "rule set"

definition wdef :: "proto => bool" where
"wdef p ≡ ∀ R k. R ∈ p −→ Number k ∈ parts {msg’ R}
−→ Number k ∈ parts (msg‘(fst R))"

41.2 substitutions
record subs =

agent :: "agent => agent"
nonce :: "nat => nat"
nb :: "nat => msg"
key :: "key => key"
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primrec apm :: "subs => msg => msg" where
"apm s (Agent A) = Agent (agent s A)"

| "apm s (Nonce n) = Nonce (nonce s n)"
| "apm s (Number n) = nb s n"
| "apm s (Key K) = Key (key s K)"
| "apm s (Hash X) = Hash (apm s X)"
| "apm s (Crypt K X) = (
if (∃ A. K = pubK A) then Crypt (pubK (agent s (agt K))) (apm s X)
else if (∃ A. K = priK A) then Crypt (priK (agent s (agt K))) (apm s X)
else Crypt (key s K) (apm s X))"
| "apm s {|X,Y |} = {|apm s X, apm s Y |}"

lemma apm_parts: "X ∈ parts {Y} =⇒ apm s X ∈ parts {apm s Y}"
〈proof 〉

lemma Nonce_apm [rule_format]: "Nonce n ∈ parts {apm s X} =⇒
(∀ k. Number k ∈ parts {X} −→ Nonce n /∈ parts {nb s k}) −→
(∃ k. Nonce k ∈ parts {X} ∧ nonce s k = n)"
〈proof 〉

lemma wdef_Nonce: " [[Nonce n ∈ parts {apm s X}; R ∈ p; msg’ R = X; wdef p;
Nonce n /∈ parts (apm s ‘(msg ‘(fst R)))]] =⇒
(∃ k. Nonce k ∈ parts {X} ∧ nonce s k = n)"
〈proof 〉

primrec ap :: "subs ⇒ event ⇒ event" where
"ap s (Says A B X) = Says (agent s A) (agent s B) (apm s X)"

| "ap s (Gets A X) = Gets (agent s A) (apm s X)"
| "ap s (Notes A X) = Notes (agent s A) (apm s X)"

abbreviation
ap’ :: "subs ⇒ rule ⇒ event" where
"ap’ s R ≡ ap s (snd R)"

abbreviation
apm’ :: "subs ⇒ rule ⇒ msg" where
"apm’ s R ≡ apm s (msg’ R)"

abbreviation
priK’ :: "subs ⇒ agent ⇒ key" where
"priK’ s A ≡ priK (agent s A)"

abbreviation
pubK’ :: "subs ⇒ agent ⇒ key" where
"pubK’ s A ≡ pubK (agent s A)"

41.3 nonces generated by a rule
definition newn :: "rule ⇒ nat set" where
"newn R ≡ {n. Nonce n ∈ parts {msg (snd R)} ∧ Nonce n /∈ parts (msg‘(fst
R))}"

lemma newn_parts: "n ∈ newn R =⇒ Nonce (nonce s n) ∈ parts {apm’ s R}"
〈proof 〉
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41.4 traces generated by a protocol
definition ok :: "event list ⇒ rule ⇒ subs ⇒ bool" where
"ok evs R s ≡ ((∀ x. x ∈ fst R −→ ap s x ∈ set evs)
∧ (∀ n. n ∈ newn R −→ Nonce (nonce s n) /∈ used evs))"

inductive_set
tr :: "proto => event list set"
for p :: proto

where

Nil [intro]: "[] ∈ tr p"

| Fake [intro]: " [[evsf ∈ tr p; X ∈ synth (analz (spies evsf))]]
=⇒ Says Spy B X # evsf ∈ tr p"

| Proto [intro]: " [[evs ∈ tr p; R ∈ p; ok evs R s ]] =⇒ ap’ s R # evs ∈ tr
p"

41.5 general properties
lemma one_step_tr [iff]: "one_step (tr p)"
〈proof 〉

definition has_only_Says’ :: "proto => bool" where
"has_only_Says’ p ≡ ∀ R. R ∈ p −→ is_Says (snd R)"

lemma has_only_Says’D: " [[R ∈ p; has_only_Says’ p ]]
=⇒ (∃ A B X. snd R = Says A B X)"
〈proof 〉

lemma has_only_Says_tr [simp]: "has_only_Says’ p =⇒ has_only_Says (tr p)"
〈proof 〉

lemma has_only_Says’_in_trD: " [[has_only_Says’ p; list @ ev # evs1 ∈ tr p ]]
=⇒ (∃ A B X. ev = Says A B X)"
〈proof 〉

lemma ok_not_used: " [[Nonce n /∈ used evs; ok evs R s;
∀ x. x ∈ fst R −→ is_Says x ]] =⇒ Nonce n /∈ parts (apm s ‘(msg ‘(fst R)))"
〈proof 〉

lemma ok_is_Says: " [[evs’ @ ev # evs ∈ tr p; ok evs R s; has_only_Says’ p;
R ∈ p; x ∈ fst R ]] =⇒ is_Says x"
〈proof 〉

41.6 types
type_synonym keyfun = "rule ⇒ subs ⇒ nat ⇒ event list ⇒ key set"

type_synonym secfun = "rule ⇒ nat ⇒ subs ⇒ key set ⇒ msg"

41.7 introduction of a fresh guarded nonce
definition fresh :: "proto ⇒ rule ⇒ subs ⇒ nat ⇒ key set ⇒ event list
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⇒ bool" where
"fresh p R s n Ks evs ≡ (∃ evs1 evs2. evs = evs2 @ ap’ s R # evs1
∧ Nonce n /∈ used evs1 ∧ R ∈ p ∧ ok evs1 R s ∧ Nonce n ∈ parts {apm’ s R}
∧ apm’ s R ∈ guard n Ks)"

lemma freshD: "fresh p R s n Ks evs =⇒ (∃ evs1 evs2.
evs = evs2 @ ap’ s R # evs1 ∧ Nonce n /∈ used evs1 ∧ R ∈ p ∧ ok evs1 R s
∧ Nonce n ∈ parts {apm’ s R} ∧ apm’ s R ∈ guard n Ks)"
〈proof 〉

lemma freshI [intro]: " [[Nonce n /∈ used evs1; R ∈ p; Nonce n ∈ parts {apm’
s R};
ok evs1 R s; apm’ s R ∈ guard n Ks ]]
=⇒ fresh p R s n Ks (list @ ap’ s R # evs1)"
〈proof 〉

lemma freshI’: " [[Nonce n /∈ used evs1; (l,r) ∈ p;
Nonce n ∈ parts {apm s (msg r)}; ok evs1 (l,r) s; apm s (msg r) ∈ guard n
Ks ]]
=⇒ fresh p (l,r) s n Ks (evs2 @ ap s r # evs1)"
〈proof 〉

lemma fresh_used: " [[fresh p R’ s’ n Ks evs; has_only_Says’ p ]]
=⇒ Nonce n ∈ used evs"
〈proof 〉

lemma fresh_newn: " [[evs’ @ ap’ s R # evs ∈ tr p; wdef p; has_only_Says’
p;
Nonce n /∈ used evs; R ∈ p; ok evs R s; Nonce n ∈ parts {apm’ s R}]]
=⇒ ∃ k. k ∈ newn R ∧ nonce s k = n"
〈proof 〉

lemma fresh_rule: " [[evs’ @ ev # evs ∈ tr p; wdef p; Nonce n /∈ used evs;
Nonce n ∈ parts {msg ev}]] =⇒ ∃ R s. R ∈ p ∧ ap’ s R = ev"
〈proof 〉

lemma fresh_ruleD: " [[fresh p R’ s’ n Ks evs; keys R’ s’ n evs ⊆ Ks; wdef
p;
has_only_Says’ p; evs ∈ tr p; ∀ R k s. nonce s k = n −→ Nonce n ∈ used evs
−→
R ∈ p −→ k ∈ newn R −→ Nonce n ∈ parts {apm’ s R} −→ apm’ s R ∈ guard
n Ks −→
apm’ s R ∈ parts (spies evs) −→ keys R s n evs ⊆ Ks −→ P ]] =⇒ P"
〈proof 〉

41.8 safe keys
definition safe :: "key set ⇒ msg set ⇒ bool" where
"safe Ks G ≡ ∀ K. K ∈ Ks −→ Key K /∈ analz G"

lemma safeD [dest]: " [[safe Ks G; K ∈ Ks ]] =⇒ Key K /∈ analz G"
〈proof 〉

lemma safe_insert: "safe Ks (insert X G) =⇒ safe Ks G"
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〈proof 〉

lemma Guard_safe: " [[Guard n Ks G; safe Ks G ]] =⇒ Nonce n /∈ analz G"
〈proof 〉

41.9 guardedness preservation
definition preserv :: "proto ⇒ keyfun ⇒ nat ⇒ key set ⇒ bool" where
"preserv p keys n Ks ≡ (∀ evs R’ s’ R s. evs ∈ tr p −→
Guard n Ks (spies evs) −→ safe Ks (spies evs) −→ fresh p R’ s’ n Ks evs
−→
keys R’ s’ n evs ⊆ Ks −→ R ∈ p −→ ok evs R s −→ apm’ s R ∈ guard n Ks)"

lemma preservD: " [[preserv p keys n Ks; evs ∈ tr p; Guard n Ks (spies evs);
safe Ks (spies evs); fresh p R’ s’ n Ks evs; R ∈ p; ok evs R s;
keys R’ s’ n evs ⊆ Ks ]] =⇒ apm’ s R ∈ guard n Ks"
〈proof 〉

lemma preservD’: " [[preserv p keys n Ks; evs ∈ tr p; Guard n Ks (spies evs);
safe Ks (spies evs); fresh p R’ s’ n Ks evs; (l,Says A B X) ∈ p;
ok evs (l,Says A B X) s; keys R’ s’ n evs ⊆ Ks ]] =⇒ apm s X ∈ guard n Ks"
〈proof 〉

41.10 monotonic keyfun
definition monoton :: "proto => keyfun => bool" where
"monoton p keys ≡ ∀ R’ s’ n ev evs. ev # evs ∈ tr p −→
keys R’ s’ n evs ⊆ keys R’ s’ n (ev # evs)"

lemma monotonD [dest]: " [[keys R’ s’ n (ev # evs) ⊆ Ks; monoton p keys;
ev # evs ∈ tr p ]] =⇒ keys R’ s’ n evs ⊆ Ks"
〈proof 〉

41.11 guardedness theorem
lemma Guard_tr [rule_format]: " [[evs ∈ tr p; has_only_Says’ p;
preserv p keys n Ks; monoton p keys; Guard n Ks (initState Spy)]] =⇒
safe Ks (spies evs) −→ fresh p R’ s’ n Ks evs −→ keys R’ s’ n evs ⊆ Ks
−→
Guard n Ks (spies evs)"
〈proof 〉

41.12 useful properties for guardedness
lemma newn_neq_used: " [[Nonce n ∈ used evs; ok evs R s; k ∈ newn R ]]
=⇒ n 6= nonce s k"
〈proof 〉

lemma ok_Guard: " [[ok evs R s; Guard n Ks (spies evs); x ∈ fst R; is_Says
x ]]
=⇒ apm s (msg x) ∈ parts (spies evs) ∧ apm s (msg x) ∈ guard n Ks"
〈proof 〉
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lemma ok_parts_not_new: " [[Y ∈ parts (spies evs); Nonce (nonce s n) ∈ parts
{Y};
ok evs R s ]] =⇒ n /∈ newn R"
〈proof 〉

41.13 unicity
definition uniq :: "proto ⇒ secfun ⇒ bool" where
"uniq p secret ≡ ∀ evs R R’ n n’ Ks s s’. R ∈ p −→ R’ ∈ p −→
n ∈ newn R −→ n’ ∈ newn R’ −→ nonce s n = nonce s’ n’ −→
Nonce (nonce s n) ∈ parts {apm’ s R} −→ Nonce (nonce s n) ∈ parts {apm’ s’
R’} −→
apm’ s R ∈ guard (nonce s n) Ks −→ apm’ s’ R’ ∈ guard (nonce s n) Ks −→
evs ∈ tr p −→ Nonce (nonce s n) /∈ analz (spies evs) −→
secret R n s Ks ∈ parts (spies evs) −→ secret R’ n’ s’ Ks ∈ parts (spies
evs) −→
secret R n s Ks = secret R’ n’ s’ Ks"

lemma uniqD: " [[uniq p secret; evs ∈ tr p; R ∈ p; R’ ∈ p; n ∈ newn R; n’
∈ newn R’;
nonce s n = nonce s’ n’; Nonce (nonce s n) /∈ analz (spies evs);
Nonce (nonce s n) ∈ parts {apm’ s R}; Nonce (nonce s n) ∈ parts {apm’ s’ R’};
secret R n s Ks ∈ parts (spies evs); secret R’ n’ s’ Ks ∈ parts (spies evs);
apm’ s R ∈ guard (nonce s n) Ks; apm’ s’ R’ ∈ guard (nonce s n) Ks ]] =⇒
secret R n s Ks = secret R’ n’ s’ Ks"
〈proof 〉

definition ord :: "proto ⇒ (rule ⇒ rule ⇒ bool) ⇒ bool" where
"ord p inff ≡ ∀ R R’. R ∈ p −→ R’ ∈ p −→ ¬ inff R R’ −→ inff R’ R"

lemma ordD: " [[ord p inff; ¬ inff R R’; R ∈ p; R’ ∈ p ]] =⇒ inff R’ R"
〈proof 〉

definition uniq’ :: "proto ⇒ (rule ⇒ rule ⇒ bool) ⇒ secfun ⇒ bool" where
"uniq’ p inff secret ≡ ∀ evs R R’ n n’ Ks s s’. R ∈ p −→ R’ ∈ p −→
inff R R’ −→ n ∈ newn R −→ n’ ∈ newn R’ −→ nonce s n = nonce s’ n’ −→
Nonce (nonce s n) ∈ parts {apm’ s R} −→ Nonce (nonce s n) ∈ parts {apm’ s’
R’} −→
apm’ s R ∈ guard (nonce s n) Ks −→ apm’ s’ R’ ∈ guard (nonce s n) Ks −→
evs ∈ tr p −→ Nonce (nonce s n) /∈ analz (spies evs) −→
secret R n s Ks ∈ parts (spies evs) −→ secret R’ n’ s’ Ks ∈ parts (spies
evs) −→
secret R n s Ks = secret R’ n’ s’ Ks"

lemma uniq’D: " [[uniq’ p inff secret; evs ∈ tr p; inff R R’; R ∈ p; R’ ∈
p; n ∈ newn R;
n’ ∈ newn R’; nonce s n = nonce s’ n’; Nonce (nonce s n) /∈ analz (spies evs);
Nonce (nonce s n) ∈ parts {apm’ s R}; Nonce (nonce s n) ∈ parts {apm’ s’ R’};
secret R n s Ks ∈ parts (spies evs); secret R’ n’ s’ Ks ∈ parts (spies evs);
apm’ s R ∈ guard (nonce s n) Ks; apm’ s’ R’ ∈ guard (nonce s n) Ks ]] =⇒
secret R n s Ks = secret R’ n’ s’ Ks"
〈proof 〉

lemma uniq’_imp_uniq: " [[uniq’ p inff secret; ord p inff ]] =⇒ uniq p secret"
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〈proof 〉

41.14 Needham-Schroeder-Lowe
definition a :: agent where "a == Friend 0"
definition b :: agent where "b == Friend 1"
definition a’ :: agent where "a’ == Friend 2"
definition b’ :: agent where "b’ == Friend 3"
definition Na :: nat where "Na == 0"
definition Nb :: nat where "Nb == 1"

abbreviation
ns1 :: rule where
"ns1 == ({}, Says a b (Crypt (pubK b) {|Nonce Na, Agent a |}))"

abbreviation
ns2 :: rule where
"ns2 == ({Says a’ b (Crypt (pubK b) {|Nonce Na, Agent a |})},

Says b a (Crypt (pubK a) {|Nonce Na, Nonce Nb, Agent b |}))"

abbreviation
ns3 :: rule where
"ns3 == ({Says a b (Crypt (pubK b) {|Nonce Na, Agent a |}),

Says b’ a (Crypt (pubK a) {|Nonce Na, Nonce Nb, Agent b |})},
Says a b (Crypt (pubK b) (Nonce Nb)))"

inductive_set ns :: proto where
[iff]: "ns1 ∈ ns"

| [iff]: "ns2 ∈ ns"
| [iff]: "ns3 ∈ ns"

abbreviation (input)
ns3a :: event where
"ns3a == Says a b (Crypt (pubK b) {|Nonce Na, Agent a |})"

abbreviation (input)
ns3b :: event where
"ns3b == Says b’ a (Crypt (pubK a) {|Nonce Na, Nonce Nb, Agent b |})"

definition keys :: "keyfun" where
"keys R’ s’ n evs == {priK’ s’ a, priK’ s’ b}"

lemma "monoton ns keys"
〈proof 〉

definition secret :: "secfun" where
"secret R n s Ks ==
(if R=ns1 then apm s (Crypt (pubK b) {|Nonce Na, Agent a |})
else if R=ns2 then apm s (Crypt (pubK a) {|Nonce Na, Nonce Nb, Agent b |})
else Number 0)"

definition inf :: "rule => rule => bool" where
"inf R R’ == (R=ns1 | (R=ns2 & R’~=ns1) | (R=ns3 & R’=ns3))"
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lemma inf_is_ord [iff]: "ord ns inf"
〈proof 〉

41.15 general properties
lemma ns_has_only_Says’ [iff]: "has_only_Says’ ns"
〈proof 〉

lemma newn_ns1 [iff]: "newn ns1 = {Na}"
〈proof 〉

lemma newn_ns2 [iff]: "newn ns2 = {Nb}"
〈proof 〉

lemma newn_ns3 [iff]: "newn ns3 = {}"
〈proof 〉

lemma ns_wdef [iff]: "wdef ns"
〈proof 〉

41.16 guardedness for NSL
lemma "uniq ns secret =⇒ preserv ns keys n Ks"
〈proof 〉

41.17 unicity for NSL
lemma "uniq’ ns inf secret"
〈proof 〉

end

42 Blanqui’s "guard" concept: protocol-independent
secrecy

theory Auth_Guard_Public
imports

P1
P2
Guard_NS_Public
Proto

begin

end
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