Security Protocols

Giampaolo Bella, Frederic Blanqui, Lawrence C. Paulson et al.

January 18, 2026

Contents

1 Theory of Agents and Messages for Security Protocols 2
1.1 Inductive Definition of All Parts of a Message 3
1.2 Inverseof keys o 3
1.3 The keysFor operator 3
1.4 Inductive relation "parts" 4
1.4.1 Unions o e)
1.4.2 Idempotence and transitivity)
1.4.3 Rewrite rules for pulling out atomic messages 6
1.5 Inductive relation "analz" oL 7
1.5.1 General equational properties 8
1.5.2 Rewrite rules for pulling out atomic messages 8
1.5.3 Idempotence and transitivity 10
1.6 Inductive relation "synth" oo 11
1.6.1 Unions e 12
1.6.2 Idempotence and transitivity 12
1.6.3 Combinations of parts, analz and synth 12
1.6.4 For reasoning about the Fake rule in traces 13
1.7 HPair: a combination of Hash and MPair 14
1.7.1 Freeness 14

1.7.2 Specialized laws, proved in terms of those for Hash and
MPair o 15
1.8 The set of key-free messages 15
1.9 Tactics useful for many protocol proofs 16
2 Theory of Events for Security Protocols 18
2.1 Function knows L 19
2.2 Knowledge of Agents 20
2.3 AsymmetricKeys oo 23
2.4 Basic properties of pubEK and priEK 24
2.5 '"Image" equations that hold for injective functions 24
2.6 Symmetric Keys 25
2.7 Initial States of Agents oL oL 26
2.8 Function knows Spy 28
2.9 Fresh Nonces 29
2.10 Supply fresh nonces for possibility theorems 29
2.11 Specialized Rewriting for Theorems About analz and Image . . . 29
2.12 Specialized Methods for Possibility Theorems 31

CONTENTS

Needham-Schroeder Shared-Key Protocol 31

3.1 Inductive proofs about ns_shared 32

3.1.1 Forwarding lemmas, to aid simplification 32

3.1.2 Lemmas concerning the form of items passed in messages 33

3.1.3 Session keys are not used to encrypt other session keys . . 34

3.1.4 The session key K uniquely identifies the message 34
3.1.5 Crucial secrecy property: Spy doesn’t see the keys sent in

NS2 . . 35

3.2 Guarantees available at various stages of protocol 35

3.3 Lemmas for reasoning about predicate "Issues" 37
3.4 Guarantees of non-injective agreement on the session key, and of

The
4.1
4.2
4.3

4.4

4.5

The
5.1
5.2

5.3

5.4

The
6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8
6.9
6.10

key distribution. They also express forms of freshness of certain
messages, namely that agents were alive after something happened. 38

Kerberos Protocol, BAN Version 40
Lemmas for reasoning about predicate "Issues" 42
Lemmas concerning the form of items passed in messages 45
Non-temporal guarantees, explicitly relying on non-occurrence of
oops events - refined below by temporal guarantees 47
Temporal guarantees, relying on a temporal check that insures

that no oops event occurred. These are available in the sense of
goal availability o 51
Treatment of the key distribution goal using trace inspection.
All guarantees are in non-temporal form, hence non available,
though their temporal form is trivial to derive. These guaran-
tees also convey a stronger form of authentication - non-injective

agreement on the sessionkeyo 52
Kerberos Protocol, BAN Version, with Gets event 54
Lemmas concerning the form of items passed in messages 59
Non-temporal guarantees, explicitly relying on non-occurrence of

oops events - refined below by temporal guarantees 62

Temporal guarantees, relying on a temporal check that insures
that no oops event occurred. These are available in the sense of

goal availability L oo 65
Combined guarantees of key distribution and non-injective agree-

ment on the session keys L oo 67
Kerberos Protocol, Version IV 67
Lemmas about lists, for reasoning about Issues 72
Lemmas about authKeys 72
Forwarding Lemmas L. 73
Lemmas for reasoning about predicate "before" 75
Regularity Lemmas oL 76
Authenticity theorems: confirm origin of sensitive messages . . . 79
Reliability: friendly agents send something if something else hap-

pened 82
Unicity Theorems L. 85
Lemmas About the Predicate AKcryptSK 86

Secrecy Theorems 89

CONTENTS 3

6.11

6.12

7 The
7.1
7.2
7.3
7.4
7.5
7.6

7.7
7.8
7.9
7.10

8 The
8.1
8.2
8.3
8.4
8.5
8.6

8.7
8.8
8.9
8.10
8.11
8.12

9 The
9.1
9.2
9.3

10 The
10.1
10.2
10.3

11 The
11.1
11.2
11.3

Parties authentication: each party verifies "the identity of another
party who generated some data" (quoted from Neuman and Ts’o). 95
Key distribution guarantees An agent knows a session key if he
used it to issue a cipher. These guarantees also convey a stronger
form of authentication - non-injective agreement on the session key 97

Kerberos Protocol, Version IV 102
Lemmas about reception event 106
Lemmas about authKeys 106
Forwarding Lemmas 107
Regularity Lemmas 0oL 108
Authenticity theorems: confirm origin of sensitive messages . . . 111
Reliability: friendly agents send something if something else hap-

pened ... e 114
Unicity Theorems L. 117
Lemmas About the Predicate AKcryptSK 118
Secrecy Theorems o 121

2. Parties’ strong authentication: non-injective agreement on the
session key. The same guarantees also express key distribution,

hence their names Lo oL 127
Kerberos Protocol, Version V 130
Lemmas about lists, for reasoning about Issues 134
Lemmas about authKeys 135
Forwarding Lemmas 0L 136
Regularity Lemmas L oL o 137
Authenticity theorems: confirm origin of sensitive messages . . . 138
Reliability: friendly agents send something if something else hap-

pened ... e 141
Unicity Theorems 144
Lemmas About the Predicate AKcryptSK 144
Secrecy Theorems o 147
Authentication 152
Parties” knowledge of session keys oL 154
Novel guarantees, never studied before 157
Original Otway-Rees Protocol 159
Towards Secrecy: Proofs Involving analz 161
Authenticity properties relating to NA 162
Authenticity properties relatingto NB 165
Otway-Rees Protocol as Modified by Abadi and Needham167
Proofs involving analz L. 169
Authenticity properties relating to NA 170
Authenticity properties relating to NB 171
Otway-Rees Protocol: The Faulty BAN Version 172
For reasoning about the encrypted portion of messages 173
Proofs involving analz 174

Attempting to prove stronger properties 176

4 CONTENTS

12 Bella’s version of the Otway-Rees protocol
12.1 Proofs involving analz

13 The Woo-Lam Protocol
14 The Otway-Bull Recursive Authentication Protocol

15 The Yahalom Protocol
15.1 Regularity Lemmas for Yahalom
15.2 Secrecy Theorems

15.2.1 Security Guarantee for A upon receiving YM3
15.2.2 Security Guarantees for B upon receiving YM4
15.2.3 Towards proving secrecy of Nonce NB
15.2.4 The Nonce NB uniquely identifies B’s message.
15.2.5 A nonce value is never used both as NA and as NB. . . .
15.3 Authenticating Bto A
15.4 Authenticating A to B using the certificate Crypt K (Nonce NB)

16 The Yahalom Protocol, Variant 2
16.1 Inductive Proofs o
16.2 Crucial Secrecy Property: Spy Does Not See Key kAB
16.3 Security Guarantee for A upon receiving YM3
16.4 Security Guarantee for B upon receiving YM4
16.5 Authenticating Bto A oo L.
16.6 Authenticating AtoB L.

17 The Yahalom Protocol: A Flawed Version
17.1 Regularity Lemmas for Yahalom
17.2 For reasoning about the encrypted portion of messages
17.3 Secrecy Theorems
17.4 Session keys are not used to encrypt other session keys
17.5 Security Guarantee for A upon receiving YM3
17.6 Security Guarantees for B upon receiving YM4
17.7 The Flaw in the Model
17.8 Basic Lemmas L oo
17.9 About NRO: Validity for B
17.10About NRR: Validity for 4
17.11Proofs About sub_ Ko
17.12Proofs About con K
17.13Proving fairness L Lo

176
179

184

186

195
196
198
199
199
200
202
202
204

. 205

206
207
209
210
210
211
212

18 Conventional protocols: rely on conventional Message, Event

and Public — Shared-key protocols

19 The Needham-Schroeder Public-Key Protocol (Flawed)
19.1 Inductive proofs about ns_public
19.2 Authenticity properties obtained from term NS1
19.3 Authenticity properties obtained from term NS2

227

228

CONTENTS 5

20 The Needham-Schroeder Public-Key Protocol 232
20.1 Inductive proofs about ns_public 233
20.2 Authenticity properties obtained from term NS1 233
20.3 Authenticity properties obtained from term NS2 234
20.4 Overall guarantee forterm B 235

21 The TLS Protocol: Transport Layer Security 236
21.1 Protocol Proofs 240
21.2 Inductive proofs about tls 241

21.2.1 Properties of items found in Notes 242

21.2.2 Protocol goal: if B receives CertVerify, then A sent it . . 243

21.2.3 Unicity results for PMS, the pre-master-secret 244

21.3 Secrecy Theorems 244
21.3.1 Protocol goal: serverK(Na,Nb,M) and clientK(Na,Nb,M)

TEMAIN SECUTE . . . « .« o v v v v vt e e e 245

21.3.2 Weakening the Oops conditions for leakage of clientK . . 247
21.3.3 Weakening the Oops conditions for leakage of serverK . . 248
21.3.4 Protocol goals: if A receives ServerFinished, then B is
present and has used the quoted values PA, PB, etc. Note
that it is up to A to compare PA with what she originally

sent. ..o L 249
21.3.5 Protocol goal: if B receives any message encrypted with
clientK then A hassent it 250

21.3.6 Protocol goal: if B receives ClientFinished, and if B is
able to check a CertVerify from A, then A has used the
quoted values PA, PB, etc. Even this one requires A to

be uncompromised.o oL 251

22 The Certified Electronic Mail Protocol by Abadi et al. 251
22.1 Proving Confidentiality Results 256
22.2 The Guarantees for Sender and Recipient 259

23 Conventional protocols: rely on conventional Message, Event
and Public — Public-key protocols 261

24 Theory of Events for Security Protocols that use smartcards 261

24.1 Function knowso 263
24.2 Knowledge of Agents 265
25 Theory of smartcards 269
25.1 Basic properties of shrtK o000 270
25.2 Function "knows" 271
25.3 Freshnonces 273
25.4 Supply fresh nonces for possibility theorems. 273
25.5 Specialized Rewriting for Theorems About analz and Image . . . 274
25.6 Tactics for possibility theorems 275
26 Original Shoup-Rubin protocol 276

27 Bella’s modification of the Shoup-Rubin protocol 300

CONTENTS

28 Smartcard protocols: rely on conventional Message and on new

EventSC and Smartcard 325
29 Extensions to Standard Theories 325
29.1 Extensions to Theory Set 325
29.2 Extensions to Theory List 325
29.2.1 "remove | x" erase the first element of "l" equal to "x" . . . 325
29.3 Extensions to Theory Message 325
29.3.1 declarations for tactics 325
29.3.2 extract the agent number of an Agent message 326
29.3.3 messages that are pairso 326
29.3.4 well-foundedness of messages 326
29.3.5 lemmas on keysFor o oo 327
29.3.6 lemmas on parts 327
29.3.7 lemmasonsynth 328
29.3.8 lemmasonanalz 328
29.3.9 lemmas on parts, synth and analz 328
29.3.10 greatest nonce used in a message 329
29.3.11setsof keyso 329
29.3.12keys a priori necessary for decrypting the messages of G . 329
29.3.13 only the keys necessary for G are useful in analz 330
29.4 Extensions to Theory Event 330
29.4.1 general protocol properties 330
29.4.2 lemma onknows, 331
29.4.3 knows without initStateo L. 331
29.4.4 decomposition of knows into knows’ and initState 331
29.4.5 knows’ is finite oL oo 332
29.4.6 monotonicity of knows oo 332
29.4.7 maximum knowledge an agent can have includes messages
sent totheagent L. 332
29.4.8 basic facts about knows_max 333
29.4.9 used without initState 334
29.4.10 monotonicity of usedo 334
29.4.11lemmas on used and knows 335
29.4.12a nonce or key in a message cannot equal a fresh nonce or
key . . . 336
29.4.13message of anevent 336
30 Decomposition of Analz into two parts 336
30.1 messages that do not contribute toanalz 337
30.2 basic facts about ppartso 337
30.3 facts about pparts and parts 338
30.4 facts about pparts and analz 338
30.5 messages that contribute toanalz 338
30.6 basic facts about kparts 339
30.7 facts about kparts and parts 340
30.8 facts about kparts and analz 340
30.9 analz is pparts + analz of kparts 341

CONTENTS 7

31 Protocol-Independent Confidentiality Theorem on Nonces 341

31.1 basic facts about guard oL 342
31.2 guarded sets 343
31.3 basic facts about Guard 343
31.4 set obtained by decrypting a message 344
31.5 number of Crypt’sinamessage 345
31.6 basic facts about crypt_nb Lo 345
31.7 number of Crypt’s in a message list 345
31.8 basic facts about enbo 345
31.9 listof kparts oL 345
31.10list corresponding to "decrypt"o 346
31.11basic facts about decrypt’o 346
31.12if the analyse of a finite guarded set gives n then it must also
givesone of the keysof Ks 346
31.13if the analyse of a finite guarded set and a (possibly infinite) set
of keys gives n then it must also gives Ks 347
32 protocol-independent confidentiality theorem on keys 347
32.1 basic facts about guardko 348
322 guarded sets 348
32.3 basic facts about Guardk Lo 349
32.4 set obtained by decrypting a message 350
32.5 number of Crypt’sinamessage 350
32.6 basic facts about crypt_nbo Lo 350
32.7 number of Crypt’s in a message list 350
32.8 basic facts about ecnb oo 351
32.9 listof kparts 351
32.10list corresponding to "decrypt" L 351
32.11basic facts about decrypt’ 351
32.12Basic properties of shrKo 353
32.13Function "knows" 354
32.14Fresh nonces L o 354
32.15Supply fresh nonces for possibility theorems. 355
32.16Specialized Rewriting for Theorems About analz and Image . . . 355
32.17Tactics for possibility theorems 356

33 lemmas on guarded messages for protocols with symmetric keys357

33.1 Extensions to Theory Shared 357
33.1.1 a little abbreviation 357
33.1.2 agent associated toakey 357
33.1.3 basic facts about initState 358
33.1.4 sets of symmetrickeys oL 358
33.1.5 setsof gopod keyso 358

33.2 Proofs About Guarded Messages 359
33.2.1 smallhack 359
33.2.2 guardedness resultsonnonces 359
33.2.3 guardedness resultson keyso 359

33.2.4 regular protocolso 360

CONTENTS

34 Otway-Rees Protocol

34.1 messages used in the protocol
34.2 definition of the protocol
34.3 declarations for tacticso oL
34.4 general propertiesofor. Lo
345 orisregularo
34.6 guardedness of KAB oL
34.7 guardedness of NBo oo

35 Yahalom Protocol

35.1 messages used in the protocolo
35.2 definition of the protocolo
35.3 declarations for tactics L
35.4 general propertiesof ya L oL
35.5 guardedness of KAB
35.6 session keys are not symmetric keys o000 L.
35.7 ya2’ implies yal’ oL
35.8 uniqueness of NBo
35.9 yad’ implies ya2’ oL o
35.10yad’ implies yad oL
35.11guardedness of NB L o oo

36 Blanqui’s "guard" concept: protocol-independent secrecy

36.1 Extensions to Theory Public
36.1.1 signature Lo Lo
36.1.2 agent associated toakey
36.1.3 basic facts about initState
36.1.4 setsof private keyso oL
36.1.5 setsof good keys Lo
36.1.6 greatest nonce used in a trace, 0 if there is no nonce . . .
36.1.7 function giving anew nonce

36.2 Proofs About Guarded Messages
36.2.1 small hack necessary because priK is defined as the inverse

of pubK
36.2.2 guardedness resultso
36.2.3 regular protocols oL

37 Lists of Messages and Lists of Agents

37.1 Implementation of Lists by Messages
37.1.1 nil is represented by any message which is not a pair . . .
37.1.2 induction principle L L oo
3713 heado
3714 tail . . oL
3715 lengtho
37.1.6 membership Lo oL
37.1.7 delete an element
37.1.8 concatenation L oL
37.1.9 replacemento Lo oo
37.1.10ith element
37.1.11insertiono Lo

CONTENTS 9

37.1.12truncation oL Lo 374
37.2 Agent Lists 374
37.2.1 set of well-formed agent-list messages 374
37.2.2 basic facts about agent lists 374
38 Protocol P1 375
38.1 Protocol Definition o oL 375
38.1.1 offer chaining: B chains his offer for A with the head offer
of L for sendingittoC 375
38.1.2 agent whose key is used to sign an offer 375
38.1.3 nonce used inanoffer oo 376
3814 mnextshop 376
38.1.5 anchor of the offer list 376
38.1.6 request event Lo 376
38.1.7 propose evento 377
38.1.8 protocol 377
38.1.9 Composition of Traces 377
38.1.10 Valid Offer Lists 378
38.1.11 basic properties of valid 378
38.1.120ffers of an offer list 378
38.1.13 the originator can get the offers 378
38.1.14list of offers 378
38.1.15list of agents whose keys are used to sign a list of offers . 378
38.1.16 builds a trace from an itinerary 378
38.1.17there is a trace in which the originator receives a valid
ANSWET &« v v v v v e e e e e e e e e e 379
38.2 properties of protocol P1. oo oL 379
38.2.1 strong forward integrity: except the last one, no offer can
be modified L 379
38.2.2 insertion resilience: except at the beginning, no offer can
beinserted Lo 380
38.2.3 truncation resilience: only shop i can truncate at offer i . 380
38.2.4 declarations for tactics 380
38.2.5 get components of a message 381
38.2.6 general propertiesof p1 381
38.2.7 private keysaresafe 381
38.2.8 general guardedness properties 382
38.2.9 guardedness of messages 382
38.2.10 Nonce uniquenesso 383
38.2.11requests are guardedo oL 383
38.2.12propositions are guardedo 383
38.2.13 data confidentiality: no one other than the originator can
decrypt theoffers L. 384
38.2.14non repudiability: an offer signed by B has been sent by B 385
39 Protocol P2 386
39.1 Protocol Definition L. 387
39.1.1 offer chaining: B chains his offer for A with the head offer
of L for sendingittoC 387

39.1.2 agent whose key is used to sign an offer 387

10 CONTENTS

39.1.3 nonceused inanoffer
3914 nextshopo
39.1.5 anchor of the offer list
39.1.6 request event
39.1.7 proposeevent
39.1.8 protocol
39.1.9 valid offer lists
39.1.10basic properties of valid
39.1.11list of offers
39.2 Properties of Protocol P2 L.
39.3 strong forward integrity: except the last one, no offer can be
modified

389

39.4 insertion resilience: except at the beginning, no offer can be inserted 390

39.5 truncation resilience: only shop i can truncate at offeri
39.6 declarations for tacticso oL
39.7 get components of a message
39.8 general propertiesof p2 oL
39.9 private keysaresafe L.
39.10general guardedness properties
39.11guardedness of messages
39.12Nonce uniquenesso e e
39.13requests are guarded
39.14propositions are guardedo
39.15data confidentiality: no one other than the originator can decrypt
theoffers
39.16forward privacy: only the originator can know the identity of the
shops.
39.17non repudiability: an offer signed by B has been sent by B

40 Needham-Schroeder-Lowe Public-Key Protocol
40.1 messages used in the protocol L.
40.2 definition of the protocol oL
40.3 declarations for tactics oo L
40.4 general propertiesof nsp Lo L
40.5 nonce are used only once
40.6 guardedness of NA oL
40.7 guardedness of NB oL oo
40.8 Agents’ Authentication oo

41 Other Protocol-Independent Results
41.1 protocols L
41.2 substitutions oL
41.3 nonces generated by arule L0
41.4 traces generated by a protocolo L
41.5 general properties Lo oo
41.6 types o e
41.7 introduction of a fresh guarded nonce
418 safekeyso
41.9 guardedness preservationo L
41.10monotonic keyfun

390

397
397
398
398
398
398
399
399
400

CONTENTS 11

41.11guardedness theorem 405
41.12useful properties for guardedness 406
41.13unicityo 407
41.14Needham-Schroeder-Lowe 408
41.15general properties 409
41.16guardedness for NSLo oL 409
41.17unicity for NSLo 410

42 Blanqui’s "guard" concept: protocol-independent secrecy 412

121 THEORY OF AGENTS AND MESSAGES FOR SECURITY PROTOCOLS

1 Theory of Agents and Messages for Security

Protocols
theory Message

imports Main
begin

lemma [simp] : "A U (B U A) =B U A"
by blast

type__synonym

key = nat

consts
all_symmetric :: bool — true if all keys are symmetric
invKey :: "key=-key" — inverse of a symmetric key

specification (invKey)
invKey [simp]: "invKey (invKey K) = K"
invKey_symmetric: "all_symmetric — invKey = id"
by (rule exI [of _ id], auto)

The inverse of a symmetric key is itself; that of a public key is the private key
and vice versa

definition symKeys :: "key set" where

"symKeys == {K. invKey K = K}"

datatype — We allow any number of friendly agents
agent = Server | Friend nat | Spy

datatype

msg = Agent agent — Agent names
| Number nat — Ordinary integers, timestamps, ...
| Nonce nat — Unguessable nonces
| Key key — Crypto keys
| Hash msg — Hashing
| MPair msg msg — Compound messages
| Crypt key msg — Encryption, public- or shared-key

Concrete syntax: messages appear as {4,B,NA}, etc...

syntax
"_MTuple" :: "[’a, args] = ’a * ’b" (<(<indent=2 notation=<mixfix message
tuple>>{_,/ _})>)
syntax__consts
"_MTuple" = MPair
translations
"fx, 7, zbt = "{x, iy, z}}"
"{x, y}" = "CONST MPair x y"

definition HPair :: "[msg,msg] = msg" (<(4Hash([_] /_)> [0, 1000]) where
— Message Y paired with a MAC computed with the help of X

1.1 Inductive Definition of All Parts of a Message 13

"Hash[X] Y == {Hash{X,Y[, Y[}"
definition keysFor :: "msg set = key set" where

— Keys useful to decrypt elements of a message set
"keysFor H == invKey ¢ {K. 3X. Crypt K X € H}"

1.1 Inductive Definition of All Parts of a Message

inductive__set

parts :: "msg set = msg set"

for H :: "msg set"

where

Inj [intro]: "X € H = X € parts H"

| Fst: "{X,Y} € parts H = X € parts H"

| Snd: "{X,Y} € parts H = Y € parts H"

| Body: "Crypt K X € parts H —> X € parts H"
Monotonicity

lemma parts_mono_aux: "[G C H; X € parts G] = X € parts H"
by (erule parts.induct) (auto dest: parts.Fst parts.Snd parts.Body)

lemma parts_mono: "G C H = parts(G) C parts(H)"
using parts_mono_aux by blast

Equations hold because constructors are injective.

lemma Friend_image_eq [simp]: "(Friend x € Friend‘A) = (x €A)"
by auto

lemma Key_image_eq [simp]: "(Key x € Key‘A) = (x €A)"
by auto

lemma Nonce_Key_image_eq [simp]: "(Nonce x ¢ Key‘A)"
by auto

1.2 Inverse of keys
lemma invKey_eq [simp]: "(invKey K = invKey K’) = (K=K’)"
by (metis invKey)

1.3 The xeysror operator

lemma keysFor_empty [simp]: "keysFor {} = {}"
unfolding keysFor_def by blast

lemma keysFor_Un [simp]: "keysFor (H U H’) = keysFor H U keysFor H’"
unfolding keysFor_def by blast

lemma keysFor_UN [simp]: "keysFor (|Ji €A. H i) = ((Ji €A. keysFor (H i))"
unfolding keysFor_def by blast

Monotonicity

lemma keysFor_mono: "G C H =—> keysFor(G) C keysFor(H)"
unfolding keysFor_def by blast

141 THEORY OF AGENTS AND MESSAGES FOR SECURITY PROTOCOLS

lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H)
H”
unfolding keysFor_def by auto

keysFor

lemma keysFor_insert_Nonce [simp]: "keysFor (insert (Nonce N) H) = keysFor
HH
unfolding keysFor_def by auto

lemma keysFor_insert_Number [simp]: "keysFor (insert (Number N) H) = keysFor
H”
unfolding keysFor_def by auto

lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H"
unfolding keysFor_def by auto

lemma keysFor_insert_Hash [simp]: "keysFor (insert (Hash X) H) = keysFor
H”
unfolding keysFor_def by auto

lemma keysFor_insert_MPair [simp]: "keysFor (insert {X,Y} H) = keysFor H"
unfolding keysFor_def by auto

lemma keysFor_insert_Crypt [simp]:
"keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)"
unfolding keysFor_def by auto

lemma keysFor_image_Key [simp]: "keysFor (Key‘E) = {}"
unfolding keysFor_def by auto

lemma Crypt_imp_invKey_keysFor: "Crypt K X € H = invKey K € keysFor H"
unfolding keysFor_def by blast

1.4 Inductive relation "parts"

lemma MPair_parts:
"[{Xx,Y} € parts H;
[X € parts H; Y € parts H| = P] = P"
by (blast dest: parts.Fst parts.Snd)

declare MPair_parts [elim!] parts.Body [dest!]

NB These two rules are UNSAFE in the formal sense, as they discard the com-
pound message. They work well on THIS FILE. MPair_parts is left as SAFE
because it speeds up proofs. The Crypt rule is normally kept UNSAFE to avoid
breaking up certificates.

lemma parts_increasing: "H C parts(H)"
by blast

lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD]

lemma parts_empty_aux: "X € parts{} = False"
by (induction rule: parts.induct) (blast+)

4

1.4 Inductive relation "parts" 15

lemma parts_empty [simp]: "parts{} = {}"
using parts_empty_aux by blast

lemma parts_emptyE [elim!]: "X € parts{} =— P"
by simp

WARNING: loops if H =Y, therefore must not be repeated!

lemma parts_singleton: "X € parts H = 3Y €H. X € parts {Y}"
by (erule parts.induct, fast+)

1.4.1 Unions

lemma parts_Un [simp]: "parts(G U H) = parts(G) U parts(H)"
proof -
have "X € parts (G U H) = X € parts G U parts H" for X
by (induction rule: parts.induct) auto
then show ?thesis
by (simp add: order_antisym parts_mono subsetI)
qed

lemma parts_insert: '"parts (insert X H) = parts {X} U parts H"
by (metis insert_is_Un parts_Un)

TWO inserts to avoid looping. This rewrite is better than nothing. But its
behaviour can be strange.

lemma parts_insert2:
"parts (insert X (insert Y H)) = parts {X} U parts {Y} U parts H"
by (metis Un_commute Un_empty_right Un_insert_right insert_is_Un parts_Un)

lemma parts_image [simp]:
"parts (f ¢ A) = ((Ux €A. parts {f x})"
apply auto
apply (metis (mono_tags, opaque_lifting) image_iff parts_singleton)
apply (metis empty_subsetI image_eql insert_absorb insert_subset parts_mono)
done

Added to simplify arguments to parts, analz and synth.
This allows blast to simplify occurrences of parts (G U H) in the assumption.

lemmas in_parts_UnE = parts_Un [THEN equalityD1, THEN subsetD, THEN UnE]

declare in_parts_UnE [elim!]

lemma parts_insert_subset: "insert X (parts H) C parts(insert X H)"
by (blast intro: parts_mono [THEN [2] rev_subsetD])

1.4.2 Idempotence and transitivity

lemma parts_partsD [dest!]: "X € parts (parts H —> X € parts H"

by (erule parts.induct, blast+)

lemma parts_idem [simp]: "parts (parts H) = parts H"
by blast

161 THEORY OF AGENTS AND MESSAGES FOR SECURITY PROTOCOLS

lemma parts_subset_iff [simp]: "(parts G C parts H) = (G C parts H)"
by (metis parts_idem parts_increasing parts_mono subset_trans)

lemma parts_trans: "[X € parts G; G C parts H| = X € parts H"
by (metis parts_subset_iff subsetD)

Cut

lemma parts_cut:
"[Y € parts (insert X G); X € parts H| = Y € parts (G U H)"
by (blast intro: parts_trans)

lemma parts_cut_eq [simp]: "X € parts H —> parts (insert X H) = parts H"
by (metis insert_absorb parts_idem parts_insert)

1.4.3 Rewrite rules for pulling out atomic messages

lemmas parts_insert_eq_I = equalityl [OF subsetI parts_insert_subset]

lemma parts_insert_Agent [simp]:
"parts (insert (Agent agt) H) = insert (Agent agt) (parts H)"
apply (rule parts_insert_eq_I)
apply (erule parts.induct, auto)
done

lemma parts_insert_Nonce [simp]:
"parts (insert (Nonce N) H) = insert (Nonce N) (parts H)"
apply (rule parts_insert_eq_I)
apply (erule parts.induct, auto)
done

lemma parts_insert_Number [simp]:
"parts (insert (Number N) H) = insert (Number N) (parts H)"
apply (rule parts_insert_eq_I)
apply (erule parts.induct, auto)
done

lemma parts_insert_Key [simp]:
"parts (insert (Key K) H) = insert (Key K) (parts H)"
apply (rule parts_insert_eq_I)
apply (erule parts.induct, auto)
done

lemma parts_insert_Hash [simp]:
"parts (insert (Hash X) H) = insert (Hash X) (parts H)"
apply (rule parts_insert_eq_I)
apply (erule parts.induct, auto)
done

lemma parts_insert_Crypt [simp]:

"parts (insert (Crypt K X) H) = insert (Crypt K X) (parts (insert X H))"
proof -

have "Y € parts (insert (Crypt K X) H) = Y € insert (Crypt K X) (parts

1.5 Inductive relation "analz" 17

(insert X H))" for Y
by (induction rule: parts.induct) auto
then show ?thesis
by (smt (verit) insertIl insert_commute parts.simps parts_cut_eq parts_insert_eq_I)
qed

lemma parts_insert_MPair [simp]:
"parts (insert {X,Y[} H) = insert {X,Y|} (parts (insert X (imsert Y H)))"
proof -
have "Z € parts (insert {X, Y} H) — Z € insert {X, Y| (parts (insert
X (insert Y H)))" for Z
by (induction rule: parts.induct) auto
then show ?thesis
by (smt (verit) insertIl insert_commute parts.simps parts_cut_eq parts_insert_eq_I)
qed

lemma parts_image_Key [simp]: "parts (Key‘N) = Key‘N"
by auto

In any message, there is an upper bound N on its greatest nonce.

lemma msg_Nonce_supply: "3IN. Vn. N<n — Nonce n ¢ parts {msg}"
proof (induct msg)
case (Nonce n)
show ?case
by simp (metis Suc_n_not_le_n)

next
case (MPair X Y)
then show 7case — metis works out the necessary sum itself!
by (simp add: parts_insert2) (metis le_trans nat_le_linear)
qed auto

1.5 Inductive relation "analz"

Inductive definition of "analz" — what can be broken down from a set of messages,
including keys. A form of downward closure. Pairs can be taken apart; messages
decrypted with known keys.

inductive__set

analz :: "msg set = msg set'
for H :: "msg set"
where

Inj [intro,simp]: "X € H = X € analz H"
| Fst: "{X,Y} € analz H = X € analz H"
| Snd: "{X,Y} € analz H = Y € analz H"

| Decrypt [dest]:
"[Crypt K X € analz H; Key(invKey K) € analz H|] — X € analz H"

Monotonicity; Lemma 1 of Lowe’s paper

lemma analz_mono_aux: "[G C H; X € analz G] = X € analz H"
by (erule analz.induct) (auto dest: analz.Fst analz.Snd)

lemma analz_mono: "GCH = analz(G) C analz(H)"
using analz_mono_aux by blast

181 THEORY OF AGENTS AND MESSAGES FOR SECURITY PROTOCOLS

Making it safe speeds up proofs

lemma MPair_analz [elim!]:
"{X,Y} € analz H;
[X € analz H; Y € analz H] = P] = P"
by (blast dest: analz.Fst analz.Snd)

lemma analz_increasing: "H C analz(H)"
by blast

lemma analz_into_parts: "X € analz H = X € parts H"
by (erule analz.induct) auto

lemma analz_subset_parts: "analz H C parts H"
using analz_into_parts by blast

lemma analz_parts [simp]: "analz (parts H) = parts H"
using analz_subset_parts by blast

lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD]

lemma parts_analz [simp]: "parts (analz H) = parts H"
by (metis analz_increasing analz_subset_parts parts_idem parts_mono subset_antisym)

lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD]

1.5.1 General equational properties

lemma analz_empty [simp]: "analz{} = {}"
using analz_parts by fastforce

Converse fails: we can analz more from the union than from the separate parts,
as a key in one might decrypt a message in the other

lemma analz_Un: "analz(G) U analz(H) C analz(G U H)"
by (intro Un_least analz_mono Un_upperl Un_upper2)

lemma analz_insert: "insert X (analz H) C analz(insert X H)"
by (blast intro: analz _mono [THEN [2] rev_subsetD])

1.5.2 Rewrite rules for pulling out atomic messages

lemmas analz_insert_eq_I = equalityIl [OF subsetI analz_insert]

lemma analz_insert_Agent [simp]:
"analz (insert (Agent agt) H) = insert (Agent agt) (analz H)"
apply (rule analz_insert_eq_I)
apply (erule analz.induct, auto)
done

lemma analz_insert_Nonce [simp]:
"analz (insert (Nonce N) H) = insert (Nonce N) (analz H)"
apply (rule analz_insert_eq_I)
apply (erule analz.induct, auto)
done

1.5 Inductive relation "analz" 19

lemma analz_insert_Number [simp]:
"analz (insert (Number N) H) = insert (Number N) (analz H)"
apply (rule analz_insert_eq_I)
apply (erule analz.induct, auto)
done

lemma analz_insert_Hash [simp]:
"analz (insert (Hash X) H) = insert (Hash X) (analz H)"
apply (rule analz_insert_eq_I)
apply (erule analz.induct, auto)
done

Can only pull out Keys if they are not needed to decrypt the rest

lemma analz_insert_Key [simp]:
"K ¢ keysFor (analz H) —>
analz (insert (Key K) H) = insert (Key K) (analz H)"
unfolding keysFor_def
apply (rule analz_insert_eq_ I)
apply (erule analz.induct, auto)
done

lemma analz_insert_MPair [simp]:
"analz (insert {X,Y[} H) = insert {X,Y|} (analz (insert X (imsert Y H)))"
proof -
have "Z € analz (insert {X, Y} H) = Z € insert {X, Y| (analz (insert
X (insert Y H)))" for Z
by (induction rule: analz.induct) auto
moreover have "Z € analz (insert X (insert Y H)) —> Z € analz (insert
{x, Y} ©)" for Zz
by (induction rule: analz.induct) (use analz.Inj in blast)+
ultimately show 7thesis
by auto
qed

Can pull out encrypted message if the Key is not known

lemma analz_insert_Crypt:
"Key (invKey K) ¢ analz H
—> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)"
apply (rule analz_insert_eq_I)
apply (erule analz.induct, auto)
done

lemma analz_insert_Decrypt:

assumes "Key (invKey K) € analz H"

shows "analz (insert (Crypt K X) H) = insert (Crypt K X) (analz (insert
X H))”

proof -
have "Y € analz (insert (Crypt K X) H) = Y € insert (Crypt K X) (analz

(insert X H))" for Y
by (induction rule: analz.induct) auto

moreover
have "Y € analz (insert X H) = Y € analz (insert (Crypt K X) H)" for

Y

201 THEORY OF AGENTS AND MESSAGES FOR SECURITY PROTOCOLS

proof (induction rule: analz.induct)

case (Inj X)

then show ?case

by (metis analz.Decrypt analz.Inj analz_insertI assms insert_iff)

qed auto
ultimately show 7thesis

by auto

qed

Case analysis: either the message is secure, or it is not! Effective, but can cause
subgoals to blow up! Use with if_split; apparently split_tac does not cope
with patterns such as analz (insert (Crypt K X) H)

lemma analz_Crypt_if [simp]:
"analz (insert (Crypt K X) H) =
(if (Key (invKey K) € analz H)
then insert (Crypt K X) (analz (insert X H))
else insert (Crypt K X) (analz H))"
by (simp add: analz_insert_Crypt analz_insert_Decrypt)

This rule supposes "for the sake of argument" that we have the key.

lemma analz_insert_Crypt_subset:
"analz (insert (Crypt K X) H) C
insert (Crypt K X) (analz (insert X H))"
apply (rule subsetI)
apply (erule analz.induct, auto)
done

lemma analz_image_Key [simp]: "analz (Key‘N) = Key‘N"
apply auto
apply (erule analz.induct, auto)
done

1.5.3 Idempotence and transitivity
lemma analz_analzD [dest!]: "X € analz (analz H) —> X € analz H"

by (erule analz.induct, blast+)

lemma analz_idem [simp]: "analz (analz H) = analz H"
by blast

lemma analz_subset_iff [simp]: "(analz G C analz H) = (G C analz H)"
by (metis analz_idem analz_increasing analz_mono subset_trans)

lemma analz_trans: "[X € analz G; G C analz H| = X € analz H"
by (drule analz_mono, blast)

Cut; Lemma 2 of Lowe

lemma analz_cut: "[Y € analz (insert X H); X € analz H] = Y € analz
H”
by (erule analz_trans, blast)

This rewrite rule helps in the simplification of messages that involve the for-
warding of unknown components (X). Without it, removing occurrences of X

1.6 Inductive relation "synth"

can be very complicated.

21

lemma analz_insert_eq: "X € analz H —> analz (insert X H) = analz H"

by (metis analz_cut analz_insert_eq_ I insert_absorb)

A congruence rule for "analz"

lemma analz_subset_cong:
"lanalz G C analz G’; analz H C analz H’]
— analz (G U H) C analz (G’ U H’)"
by (metis Un_mono analz_Un analz_subset_iff subset_trans)

lemma analz_cong:
"[analz G = analz G’; analz H = analz H’]
—> analz (G U H) = analz (G’ U H’)"
by (intro equalityl analz_subset_cong, simp_all)

lemma analz_insert_cong:
"analz H = analz H’ — analz(insert X H) = analz(insert X H’)"
by (force simp only: insert_def intro!: analz_cong)

If there are no pairs or encryptions then analz does nothing

lemma analz_trivial:
"[VX Y. {X,Y} ¢ H; VXK. Crypt K X ¢ H] = analz H = H"
apply safe
apply (erule analz.induct, blast+)
done

1.6 Inductive relation "synth"

Inductive definition of "synth" — what can be built up from a set of messages.
A form of upward closure. Pairs can be built, messages encrypted with known
keys. Agent names are public domain. Numbers can be guessed, but Nonces

cannot be.

inductive__set

synth :: "msg set => msg set"

for H :: "msg set"

where

Inj [intro]: "X € H = X € synth H"

| Agent [intro]: "Agent agt € synth H"

| Number [intro]: "Number n € synth H"

| Hash [intro]: "X € synth H = Hash X € synth H"

| MPair [intro]: "[X € synth H; Y € synth H|] = {X,Y[} € synth H"

| Crypt [intro]: "[X € synth H; Key(K) € H| = Crypt K X € synth H"
Monotonicity

lemma synth_mono: "GCH = synth(G) C synth(H)"
by (auto, erule synth.induct, auto)

NO Agent_synth, as any Agent name can be synthesized. The same holds for

Number

inductive__simps synth_simps [iff]:
"Nonce n € synth H"

221 THEORY OF AGENTS AND MESSAGES FOR SECURITY PROTOCOLS

"Key K € synth H"
"Hash X € synth H"
"{X,Y} € synth H"
"Crypt K X € synth H"

lemma synth_increasing: "H C synth(H)"
by blast

1.6.1 Unions

Converse fails: we can synth more from the union than from the separate parts,
building a compound message using elements of each.

lemma synth_Un: "synth(G) U synth(H) C synth(G U H)"
by (intro Un_least synth_mono Un_upperl Un_upper2)

lemma synth_insert: "insert X (synth H) C synth(insert X H)"
by (blast intro: synth_mono [THEN [2] rev_subsetD])

1.6.2 Idempotence and transitivity

lemma synth_synthD [dest!]: "X € synth (synth H) —> X € synth H"
by (erule synth.induct, auto)

lemma synth_idem: "synth (synth H) = synth H"
by blast

lemma synth_subset_iff [simp]: "(synth G C synth H) = (G C synth H)"
by (metis subset_trans synth_idem synth_increasing synth_mono)

lemma synth_trans: "[X € synth G; G C synth H| = X € synth H"
by (drule synth_mono, blast)

Cut; Lemma 2 of Lowe

lemma synth_cut: "[Y € synth (insert X H); X € synth H] = Y € synth
H”
by (erule synth_trans, blast)

lemma Crypt_synth_eq [simp]:
"Key K ¢ H = (Crypt K X € synth H) = (Crypt K X € H)"
by blast

lemma keysFor_synth [simp]:
"keysFor (synth H) = keysFor H U invKey‘{K. Key K € H}"
unfolding keysFor_def by blast

1.6.3 Combinations of parts, analz and synth

lemma parts_synth [simp]: "parts (synth H) = parts H U synth H"
proof -
have "X € parts (synth H) — X € parts H U synth H" for X
by (induction X rule: parts.induct) (auto intro: parts.intros)
then show ?thesis
by (meson parts_increasing parts_mono subsetl antisym sup_least synth_increasing)

1.6 Inductive relation "synth" 23

qed

lemma analz_analz_Un [simp]: "analz (analz G U H) = analz (G U H)"
using analz_cong by blast

lemma analz_synth_Un [simp]: "analz (synth G U H) = analz (G U H) U synth
Gll
proof -
have "X € analz (synth G U H) = X € analz (G U H) U synth G" for X
by (induction X rule: analz.induct) (auto intro: analz.intros)
then show ?thesis
by (metis analz_subset_iff le_sup_iff subsetl subset_antisym synth_subset_iff)
qed

lemma analz_synth [simp]: "analz (synth H) = analz H U synth H"
by (metis Un_empty_right analz_synth_Un)

1.6.4 For reasoning about the Fake rule in traces

lemma parts_insert_subset_Un: "X € G —> parts(insert X H) C parts G U
parts H"
by (metis UnCI Un_upper2 insert_subset parts_Un parts_mono)

More specifically for Fake. See also Fake_parts_sing below

lemma Fake_parts_insert:
"X € synth (analz H) —
parts (insert X H) C synth (analz H) U parts H"
by (metis Un_commute analz_increasing insert_subset parts_analz parts_mono

parts_synth synth_mono synth_subset_iff)

lemma Fake_parts_insert_in_Un:
"[Z € parts (insert X H); X € synth (analz H)]
— Z € synth (analz H) U parts H"
by (metis Fake_parts_insert subsetD)

H is sometimes Key ¢ KK U spies evs, so can’t put G = H.

lemma Fake_analz_insert:
"X € synth (analz G) —
analz (insert X H) C synth (analz G) U analz (G U H)"
by (metis UnCI Un_commute Un_upperl analz_analz_Un analz_mono analz_synth_Un
insert_subset)

lemma analz_conj_parts [simp]:
"(X € analz H N X € parts H) = (X € analz H)"
by (blast intro: analz_subset_parts [THEN subsetD])

lemma analz_disj_parts [simp]:
"(X € analz H | X € parts H) = (X € parts H)"
by (blast intro: analz_subset_parts [THEN subsetD])

Without this equation, other rules for synth and analz would yield redundant
cases

lemma MPair_synth_analz [iff]:

241 THEORY OF AGENTS AND MESSAGES FOR SECURITY PROTOCOLS

"{X,Y} € synth (analz H) +— X € synth (analz H) A Y € synth (analz H)"
by blast

lemma Crypt_synth_analz:
"[Key K € analz H; Key (invKey K) € analz H]
—> (Crypt K X € synth (analz H)) = (X € synth (analz H))"
by blast

lemma Hash_synth_analz [simp]:
"X ¢ synth (analz H)
= (Hash{X,Y|} € synth (analz H)) = (Hash{X,Y|} € analz H)"
by blast

1.7 HPair: a combination of Hash and MPair
1.7.1 Freeness

lemma Agent_neq HPair: "Agent A # Hash[X] Y"
unfolding HPair_def by simp

lemma Nonce_neq_HPair: "Nonce N # Hash[X] Y"
unfolding HPair_def by simp

lemma Number_neq_HPair: "Number N # Hash[X] Y"
unfolding HPair_def by simp

lemma Key_neq_HPair: "Key K # Hash[X] Y"
unfolding HPair_def by simp

lemma Hash_neq_HPair: "Hash Z # Hash[X] Y"
unfolding HPair_def by simp

lemma Crypt_neq_HPair: "Crypt K X’ # Hash[X] Y"
unfolding HPair_def by simp

lemmas HPair_neqs = Agent_neq_HPair Nonce_neq_HPair Number_neq_HPair
Key_neq_HPair Hash_neq_HPair Crypt_neq_HPair

declare HPair_neqs [iff]
declare HPair _neqs [symmetric, iff]

lemma HPair_eq [iff]: "(Hash[X’] Y’ = Hash[X] Y) = (X’ =X N Y’=V)"
by (simp add: HPair_def)

lemma MPair_eq_HPair [iff]:
"({X’,Y’} = Hash[X] Y) = (X’
by (simp add: HPair_def)

Hash{X,Y} A Y’=Y)"

lemma HPair_eq_MPair [iff]:
"(Hash[X] Y = {X’,Y’}) = (X’
by (auto simp add: HPair_def)

Hash{X,Y} A Y’=7)"

1.8 The set of key-free messages 25

1.7.2 Specialized laws, proved in terms of those for Hash and MPair

lemma keysFor_insert_HPair [simp]: "keysFor (insert (Hash[X] Y) H) = keysFor
H”
by (simp add: HPair_def)

lemma parts_insert_HPair [simp]:
"parts (insert (Hash([X] Y) H) =
insert (Hash[X] Y) (insert (Hash{X,Y}) (parts (insert Y H)))"
by (simp add: HPair_def)

lemma analz_insert_HPair [simp]:
"analz (insert (Hash[X] Y) H) =
insert (Hash[X] Y) (insert (Hash{X,Y[}) (analz (insert Y H)))"
by (simp add: HPair_def)

lemma HPair_synth_analz [simp]:
"X ¢ synth (analz H)
—> (Hash[X] Y € synth (analz H)) =
(Hash {X, Y| € analz H A Y € synth (analz H))"
by (auto simp add: HPair_def)

We do NOT want Crypt... messages broken up in protocols!!

declare parts.Body [rule del]

Rewrites to push in Key and Crypt messages, so that other messages can be
pulled out using the analz_insert rules

lemmas pushKeys =
insert_commute [of "Key K" "Agent C"]
insert_commute [of "Key K" "Nonce N"]
insert_commute [of "Key K" "Number N"]
insert_commute [of "Key K" "Hash X"]
insert_commute [of "Key K" "MPair X Y"]
insert_commute [of "Key K" "Crypt X K’"]
for KCNXYK’

lemmas pushCrypts =

insert_commute [of "Crypt X K" "Agent C"]
insert_commute [of "Crypt X K" "Agent C"]
insert_commute [of "Crypt X K" "Nonce N"]
insert_commute [of "Crypt X K" "Number N"]
insert_commute [of "Crypt X K" "Hash X’"]
insert_commute [of "Crypt X K" "MPair X’ Y"]
for X KCN XY

Cannot be added with [simp] — messages should not always be re-ordered.

lemmas pushes = pushKeys pushCrypts

1.8 The set of key-free messages

inductive__set
keyfree :: "msg set"
where
Agent: '"Agent A € keyfree"

261 THEORY OF AGENTS AND MESSAGES FOR SECURITY PROTOCOLS

Number: "Number N € keyfree"

Nonce: '"Nonce N € keyfree"

Hash: "Hash X € keyfree"

MPair: "[X € keyfree; Y € keyfree] — {X,Y|} € keyfree"
Crypt: "[X € keyfree] — Crypt K X € keyfree"

—_—— — — —

declare keyfree.intros [intro]

inductive__cases keyfree_KeyE: "Key K € keyfree"
inductive__cases keyfree_MPairE: "{X,Y|} € keyfree"
inductive__cases keyfree_CryptE: "Crypt K X € keyfree"

lemma parts_keyfree: "parts (keyfree) C keyfree"
by (clarify, erule parts.induct, auto elim!: keyfree_KeyE keyfree_MPairE
keyfree_CryptE)

lemma analz_keyfree_into_Un: "[X € analz (G U H); G C keyfree] =— X €
parts G U analz H"
proof (induction rule: analz.induct)

case (Decrypt K X)

then show ?case

by (metis Un_iff analz.Decrypt in_mono keyfree_KeyE parts.Body parts_keyfree

parts_mono)
ged (auto dest: parts.Body)

1.9 Tactics useful for many protocol proofs
ML

<

(*Analysis of Fake cases. Also works for messages that forward unknown parts,
but this application is no longer necessary if analz_insert_eq is used.
DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *)

fun impOfSubs th = th RSN (2, @{thm rev_subsetD})

(*Apply rules to break down assumptions of the form
Y € parts(insert X H) and Y € analz(insert X H)
*)
fun Fake_insert_tac ctxt =
dresolve_tac ctxt [impOfSubs @{thm Fake_analz_insert},
impOfSubs @{thm Fake_parts_insert}] THEN’
eresolve_tac ctxt [asm_rl, @{thm synth.Inj}];

fun Fake_insert_simp_tac ctxt i =
REPEAT (Fake_insert_tac ctxt i) THEN asm_full_simp_tac ctxt i;

fun atomic_spy_analz_tac ctxt =
SELECT_GOAL
(Fake_insert_simp_tac ctxt 1 THEN
IF_UNSOLVED
(Blast.depth_tac
(ctxt addIs [@{thm analz_insertI}, impOfSubs @{thm analz_subset_parts}])

1.9 Tactics useful for many protocol proofs 27

4 1));

fun spy_analz_tac ctxt i =
DETERM
(SELECT_GOAL
(EVERY
[(*push in occurrences of X...*)
(REPEAT o CHANGED)
(Rule_Insts.res_inst_tac ctxt [((("x", 1), Position.nome), "X")] []
(6{thm insert_commute} RS ssubst) 1),
(*...allowing further simplifications*)
simp_tac ctxt 1,
REPEAT (FIRSTGOAL (resolve_tac ctxt [allIl,impI,notI,conjI,iffI])),
DEPTH_SOLVE (atomic_spy_analz_tac ctxt 1)]) i);
>

By default only o_apply is built-in. But in the presence of eta-expansion this
means that some terms displayed as f o g will be rewritten, and others will
not!

declare o_def [simp]

lemma Crypt_notin_image_Key [simp]: "Crypt K X ¢ Key ¢ A"
by auto

lemma Hash_notin_image_Key [simp] :"Hash X ¢ Key ¢ A"
by auto

lemma synth_analz_mono: "GCH — synth (analz(G)) C synth (analz(H))"
by (iprover intro: synth_mono analz_mono)

lemma Fake_analz_eq [simp]:
"X € synth(analz H) — synth (analz (insert X H)) = synth (analz H)"
by (metis Fake_analz_insert Un_absorb Un_absorbl Un_commute
subset_insertI synth_analz_mono synth_increasing synth_subset_iff)

Two generalizations of analz_insert_eq

lemma gen_analz_insert_eq [rule_format]:
"X € analz H =— VG. H C G — analz (insert X G) = analz G"
by (blast intro: analz cut analz_insertl analz_mono [THEN [2] rev_subsetD])

lemma synth_analz_insert_eq:

"[X € synth (analz H); H C G]

— (Key K € analz (insert X G)) <+— (Key K € analz G)"

proof (induction arbitrary: G rule: synth.induct)

case (Inj X)

then show ?case

using gen_analz_insert_eq by presburger

qed (simp_all add: subset_eq)

lemma Fake_parts_sing:
"X € synth (analz H) = parts{X} C synth (analz H) U parts H"
by (metis Fake_parts_insert empty_subsetI insert_mono parts_mono subset_trans)

28 2 THEORY OF EVENTS FOR SECURITY PROTOCOLS

lemmas Fake_parts_sing_imp_Un = Fake_parts_sing [THEN [2] rev_subsetD]

method__setup spy_analz = <
Scan.succeed (SIMPLE_METHOD’ o spy_analz_tac)>
"for proving the Fake case when analz is involved"

method__setup atomic_spy_analz = <
Scan.succeed (SIMPLE_METHOD’ o atomic_spy_analz_tac)>
"for debugging spy_analz"

method__setup Fake_insert_simp = <
Scan.succeed (SIMPLE_METHOD’ o Fake_insert_simp_tac)>
"for debugging spy_analz"

end

2 Theory of Events for Security Protocols
theory Event imports Message begin

consts — Initial states of agents — a parameter of the construction
initState :: "agent = msg set'

datatype

event = Says agent agent msg
| Gets agent msg
/

Notes agent msg

consts
bad :: "agent set" — compromised agents

Spy has access to his own key for spoof messages, but Server is secure

specification (bad)
Spy_in_bad [iff]: "Spy € bad"
Server_not_bad [iff]: "Server ¢ bad"
by (rule exI [of _ "{Spy}"], simp)

primrec knows :: "agent = event list = msg set"
where
knows_Nil: "knows A [] = initState A"

| knows_Cons:
"knows A (ev # evs) =
(if A = Spy then
(case ev of
Says A’ B X = insert X (knows Spy evs)
| Gets A’ X = knows Spy evs
| Notes A> X =
if A’ € bad then insert X (knows Spy evs) else knows Spy evs)
else
(case ev of
Says A’ B X =
if A’=A then insert X (knows A evs) else knows A evs
| Gets A’ X =

2.1 Function knows 29

if A’=A then insert X (knows A evs) else knows A evs
| Notes A’ X =
if A’=A then insert X (knows A evs) else knows A evs))"

The constant "spies" is retained for compatibility’s sake

abbreviation (input)
spies :: "event list = msg set" where
"spies = knows Spy"

Set of items that might be visible to somebody: complement of the set of fresh
items

primrec used :: "event list = msg set"
where
used_Nil: "used [] = (UN B. parts (initState B))"

| used_Cons: "used (ev # evs) =
(case ev of
Says A B X = parts {X} U used evs
| Gets A X = used evs
| Notes A X = parts {X} U used evs)"
— The case for Gets seems anomalous, but Gets always follows Says in real pro-
tocols. Seems difficult to change. See Gets_correct in theory Guard/Extensions. thy.

lemma Notes_imp_used: "Notes A X € set evs =—> X € used evs"
by (induct evs) (auto split: event.split)

lemma Says_imp_used: "Says A B X € set evs = X € used evs"
by (induct evs) (auto split: event.split)

2.1 Function xnows

lemmas parts_insert_knows_A = parts_insert [of _ "knows A evs"] for A evs

lemma knows_Spy_Says [simp]:
"knows Spy (Says A B X # evs) = insert X (knows Spy evs)"
by simp

Letting the Spy see "bad" agents’ notes avoids redundant case-splits on whether
A = Spy and whether A € bad

lemma knows_Spy_Notes [simp]:
"knows Spy (Notes A X # evs) =
(if A€bad then insert X (knows Spy evs) else knows Spy evs)"
by simp

lemma knows_Spy_Gets [simp]: "knows Spy (Gets A X # evs) = knows Spy evs"
by simp

lemma knows_Spy_subset_knows_Spy_Says:
"knows Spy evs C knows Spy (Says A B X # evs)"
by (simp add: subset_insertI)

lemma knows_Spy_subset_knows_Spy_Notes:
"knows Spy evs C knows Spy (Notes A X # evs)"
by force

30 2 THEORY OF EVENTS FOR SECURITY PROTOCOLS

lemma knows_Spy_subset_knows_Spy_Gets:
"knows Spy evs C knows Spy (Gets A X # evs)"
by (simp add: subset_insertI)

Spy sees what is sent on the traffic

lemma Says_imp_knows_Spy:
"Says A B X € set evs —> X € knows Spy evs"
by (induct evs) (auto split: event.split)

lemma Notes_imp_knows_Spy [rule_format]:
"Notes A X € set evs — A € bad — X € knows Spy evs"
by (induct evs) (auto split: event.split)

Elimination rules: derive contradictions from old Says events containing items
known to be fresh

lemmas Says_imp_parts_knows_Spy =
Says_imp_knows_Spy [THEN parts.Inj, elim_format]

lemmas knows_Spy_partsEs =
Says_imp_parts_knows_Spy parts.Body [elim_format]

lemmas Says_imp_analz_Spy = Says_imp_knows_Spy [THEN analz.Inj]

Compatibility for the old "spies" function

lemmas spies_partsEs = knows_Spy_partsEs
lemmas Says_imp_spies = Says_imp_knows_Spy
lemmas parts_insert_spies = parts_insert_knows_A [of _ Spyl]

2.2 Knowledge of Agents

lemma knows_subset_knows_Says: "knows A evs C knows A (Says A’ B X # evs)"
by (simp add: subset_insertI)

lemma knows_subset_knows_Notes: "knows A evs C knows A (Notes A’ X # evs)"
by (simp add: subset_insertI)

lemma knows_subset_knows_Gets: "knows A evs C knows A (Gets A’ X # evs)"
by (simp add: subset_insertI)

Agents know what they say

lemma Says_imp_knows [rule_format]: "Says A B X € set evs =—> X € knows
A evs"
by (induct evs) (force split: event.split)+

Agents know what they note

lemma Notes_imp_knows [rule_format]: "Notes A X € set evs —> X € knows
A evs"
by (induct evs) (force split: event.split)+

Agents know what they receive

lemma Gets_imp_knows_agents [rule_format]:

2.2 Knowledge of Agents 31

"A # Spy =—> Gets A X € set evs =—> X € knows A evs"
by (induct evs) (force split: event.split)+

What agents DIFFERENT FROM Spy know was either said, or noted, or got,
or known initially

lemma knows_imp_Says_Gets_Notes_initState:
"[X € knows A evs; A # Spy] =
JB. Says A B X € set evs V Gets A X € set evs V Notes A X € set evs
V X € initState A"
by (induct evs) (auto split: event.split_asm if_split_asm)

What the Spy knows — for the time being — was either said or noted, or known
initially
lemma knows_Spy_imp_Says_Notes_initState:

"X € knows Spy evs —

JA B. Says A B X € set evs V Notes A X € set evs V X € initState Spy"
by (induct evs) (auto split: event.split_asm if_split_asm)

lemma parts_knows_Spy_subset_used: "parts (knows Spy evs) C used evs"
by (induct evs) (auto simp: parts_insert_knows_A split: event.split_asm
if_split_asm)

lemmas usedI = parts_knows_Spy_subset_used [THEN subsetD, intro]

lemma initState_into_used: "X € parts (initState B) —> X € used evs"
by (induct evs) (auto simp: parts_insert_knows_A split: event.split)

New simprules to replace the primitive ones for used and knows

lemma used_Says [simp]: "used (Says A B X # evs) = parts{X} U used evs"
by simp

lemma used_Notes [simp]: "used (Notes A X # evs) = parts{X} U used evs"
by simp

lemma used_Gets [simp]: "used (Gets A X # evs) = used evs"
by simp

lemma used_nil_subset: "used [] C used evs"
using initState_into_used by auto

NOTE REMOVAL: the laws above are cleaner, as they don’t involve "case"

declare knows_Cons [simp del]
used_Nil [simp del] used_Cons [simp del]

For proving theorems of the form X ¢ analz (knows Spy evs) — P New events
added by induction to "evs' are discarded. Provided this information isn’t
needed, the proof will be much shorter, since it will omit complicated reasoning
about analz.

lemmas analz_mono_contra =
knows_Spy_subset_knows_Spy_Says [THEN analz_mono, THEN contra_subsetD]
knows_Spy_subset_knows_Spy_Notes [THEN analz_mono, THEN contra_subsetD]
knows_Spy_subset_knows_Spy_Gets [THEN analz_mono, THEN contra_subsetD]

32 2 THEORY OF EVENTS FOR SECURITY PROTOCOLS

lemma knows_subset_knows_Cons: "knows A evs C knows A (e # evs)"
by (cases e, auto simp: knows_Cons)

lemma initState_subset_knows: "initState A C knows A evs"
by (induct evs) (use knows_subset_knows_Cons in fastforce)+

For proving new_keys_not_used

lemma keysFor_parts_insert:
"[K € keysFor (parts (insert X G)); X € synth (analz H)]|
—> K € keysFor (parts (G U H)) | Key (invKey K) € parts H"
by (force
dest!: parts_insert_subset_Un [THEN keysFor_mono, THEN [2] rev_subsetD]
analz_subset_parts [THEN keysFor_mono, THEN [2] rev_subsetD]
intro: analz_subset_parts [THEN subsetD] parts_mono [THEN [2] rev_subsetD])

lemmas analz_impl = impI [where P = "Y ¢ analz (knows Spy evs)"] for Y evs

ML

<

fun analz_mono_contra_tac ctxt =
resolve_tac ctxt @{thms analz_impI} THEN’
REPEAT1 o (dresolve_tac ctxt @{thms analz_mono_contral})
THEN’ (mp_tac ctxt)

method__setup analz_mono_contra = <

Scan.succeed (fn ctxt => SIMPLE _METHOD (REPEAT FIRST (analz_mono_contra_tac
ctxt)))>

"for proving theorems of the form X ¢ analz (knows Spy evs) —» P"

Useful for case analysis on whether a hash is a spoof or not

lemmas syan_impI = impI [where P = "Y ¢ synth (analz (knows Spy evs))"]
for Y evs

ML
<
fun synth_analz_mono_contra_tac ctxt =
resolve_tac ctxt @{thms syan_impI} THEN’
REPEAT1 o
(dresolve_tac ctxt
[@e{thm knows_Spy_subset_knows_Spy_Says} RS @{thm synth_analz_mono} RS
@{thm contra_subsetD},
©@{thm knows_Spy_subset_knows_Spy_Notes} RS @{thm synth_analz_mono} RS
@{thm contra_subsetD},
@{thm knows_Spy_subset_knows_Spy_Gets} RS @{thm synth_analz_mono} RS
©@{thm contra_subsetD}])
THEN’
mp_tac ctxt
>

method__setup synth_analz_mono_contra = <

2.3 Asymmetric Keys 33

Scan.succeed (fn ctxt => SIMPLE_METHOD (REPEAT_FIRST (synth_analz_mono_contra_tac
ctxt)))>

"for proving theorems of the form X ¢ synth (analz (knows Spy evs)) —»
P”

end

theory Public
imports Event
begin

lemma invKey_K: "K € symKeys —> invKey K = K"
by (simp add: symKeys_def)

2.3 Asymmetric Keys

datatype keymode = Signature | Encryption

consts

publicKey :: "[keymode,agent] = key"
abbreviation

pubEK :: "agent = key" where

"pubEK == publicKey Encryption"

abbreviation
pubSK :: "agent = key" where
"pubSK == publicKey Signature'

abbreviation
privateKey :: "[keymode, agent] = key" where
"privateKey b A == invKey (publicKey b A)"

abbreviation

priEK :: "agent = key" where
"priEK A == privateKey Encryption A"

abbreviation
priSK :: "agent = key" where
"priSK A == privateKey Signature A"

These abbreviations give backward compatibility. They represent the simple
situation where the signature and encryption keys are the same.

abbreviation (input)
pubK :: "agent = key" where
"pubK A == pubEK A"

abbreviation (input)
priK :: "agent = key" where
"priK A == invKey (pubEK A)"

By freeness of agents, no two agents have the same key. Since True # False,

34 2 THEORY OF EVENTS FOR SECURITY PROTOCOLS

no agent has identical signing and encryption keys

specification (publicKey)
injective_publicKey:
"publicKey b A = publicKey ¢ A’ = b=c N A=A""
apply (rule exI [of _

"Ab A. 2 * case_agent 0 (An. n + 2) 1 A + case_keymode 0 1 b"])
apply (auto simp add: inj_on_def split: agent.split keymode.split)
apply presburger
apply presburger
done

axiomatization where
privateKey_neq_publicKey [iff]: "privateKey b A # publicKey c A’"

lemmas publicKey_neq_privateKey = privateKey_neq_publicKey [THEN not_sym]
declare publicKey_neq_privateKey [iff]

2.4 Basic properties of pubex and priex

lemma publicKey_inject [iff]: "(publicKey b A = publicKey c A’) = (b=c A
A=A’)”
by (blast dest!: injective_publicKey)

lemma not_symKeys_pubK [iff]: "publicKey b A ¢ symKeys"
by (simp add: symKeys_def)

lemma not_symKeys_priK [iff]: "privateKey b A ¢ symKeys"
by (simp add: symKeys_def)

lemma symKey_neq priEK: "K € symKeys = K # priEK A"
by auto

lemma symKeys_neq_imp_neq: "(K € symKeys) # (K’ € symKeys) = K # K’"
by blast

lemma symKeys_invKey_iff [iff]: "(invKey K € symKeys) = (K € symKeys)"
unfolding symKeys_def by auto

lemma analz_symKeys_Decrypt:
"[Crypt K X € analz H; K € symKeys; Key K € analz HJ
= X € analz H"

by (auto simp add: symKeys_def)

2.5 "Image" equations that hold for injective functions

lemma invKey_image_eq [simp]: "(invKey x € invKey‘A) = (x € A)"
by auto

lemma publicKey_image_eq [simp]:
"(publicKey b x € publicKey ¢ ‘ AA) = (b=c A x € AA)"
by auto

2.6 Symmetric Keys 35

lemma privateKey_notin_image_publicKey [simp]: "privateKey b x ¢ publicKey
c ¢ AAII
by auto

lemma privateKey_image_eq [simp]:
"(privateKey b A € invKey ‘ publicKey c ¢ AS) = (b=c N A€AS)"
by auto
lemma publicKey_notin_image_privateKey [simp]: "publicKey b A ¢ invKey ¢
publicKey c¢ ¢ AS"
by auto

2.6 Symmetric Keys

For some protocols, it is convenient to equip agents with symmetric as well as
asymmetric keys. The theory Shared assumes that all keys are symmetric.

consts
shrk :: "agent => key" — long-term shared keys

specification (shrk)
inj_shrK: "inj shrK"
— No two agents have the same long-term key
apply (rule exI [of _ "case_agent O (An. n + 2) 1"])
apply (simp add: inj_on_def split: agent.split)
done

axiomatization where
sym_shrK [iff]: "shrK X € symKeys" — All shared keys are symmetric

Injectiveness: Agents’ long-term keys are distinct.

lemmas shrK_injective = inj_shrK [THEN inj_eql]
declare shrK_injective [iff]

lemma invKey_shrK [simp]: "invKey (shrK A) = shrK A"
by (simp add: invKey_K)

lemma analz_shrK_Decrypt:
"[Crypt (shrK A) X € analz H; Key(shrK A) € analz H| — X € analz H"
by auto

lemma analz_Decrypt’:

"[Crypt K X € analz H; K € symKeys; Key K € analz H| = X € analz
Hll
by (auto simp add: invKey_K)

lemma priK_neq_shrK [iff]: "shrK A # privateKey b C"
by (simp add: symKeys_neq_imp_neq)

lemmas shrK_neq_priK = priK_neq_shrK [THEN not_sym]
declare shrK_neq_priK [simp]

lemma pubK_neq_shrK [iff]: "shrK A # publicKey b C"

36 2 THEORY OF EVENTS FOR SECURITY PROTOCOLS

by (simp add: symKeys_neq_imp_neq)

lemmas shrK_neq_pubK = pubK_neq_shrK [THEN not_sym]
declare shrK_neq_pubK [simp]

lemma priEK_noteq_shrK [simp]: "priEK A # shrK B"
by auto

lemma publicKey_notin_image_shrK [simp]: "publicKey b x ¢ shrK ¢ AA"
by auto

lemma privateKey_notin_image_shrK [simp]: "privateKey b x ¢ shrK ¢ AA"
by auto

lemma shrK_notin_image_publicKey [simp]: "shrK x ¢ publicKey b ¢ AA"
by auto

lemma shrK_notin_image_privateKey [simp]: "shrK x ¢ invKey ¢ publicKey b
¢ AAH
by auto

lemma shrK_image_eq [simp]: "(shrK x € shrK ¢ AA) = (x € AA)"
by auto

For some reason, moving this up can make some proofs loop!

declare invKey K [simp]

2.7 Initial States of Agents

Note: for all practical purposes, all that matters is the initial knowledge of the
Spy. All other agents are automata, merely following the protocol.

overloading
initState = initState
begin

primrec initState where

initState_Server:
"initState Server =
{Key (priEK Server), Key (priSK Server)} U
(Key ¢ range pubEK) U (Key ° range pubSK) U (Key

¢ range shrK)"

| initState_Friend:
"initState (Friend i) =
{Key (priEK(Friend i)), Key (priSK(Friend i)), Key (shrK(Friend i))}

¢

(Key ¢ range pubEK) U (Key ¢ range pubSK)"
| initState_Spy:
"initState Spy =
(Key ¢ invKey ¢ pubEK ¢ bad) U (Key ° invKey ¢ pubSK ¢ bad) U
(Key ¢ shrK ¢ bad) U
(Key ¢ range pubEK) U (Key

¢

range pubSK)"

2.7 Initial States of Agents 37

end

These lemmas allow reasoning about used evs rather than knows Spy evs, which
is useful when there are private Notes. Because they depend upon the definition
of initState, they cannot be moved up.

lemma used_parts_subset_parts [rule_format]:
"V X € used evs. parts {X} C used evs"
apply (induct evs)
prefer 2
apply (simp add: used_Cons split: event.split)
apply (metis Un_iff empty_subsetI insert_subset le_supIl le_supI2 parts_subset_iff)

Base case

apply (auto dest!: parts_cut simp add: used_Nil)
done

lemma MPair_used_D: "{X,Y} € used H =—> X € used H A Y € used H"
by (drule used_parts_subset_parts, simp, blast)

There was a similar theorem in Event.thy, so perhaps this one can be moved up
if proved directly by induction.

lemma MPair_used [elim!]:
"I{x,Y]} € used H;
[X € used H; Y € used H] = P]
= P"
by (blast dest: MPair_used_D)

Rewrites should not refer to initState (Friend i) because that expression is
not in normal form.

lemma keysFor_parts_initState [simp]: "keysFor (parts (initState C)) = {}"
unfolding keysFor_def

apply (induct_tac "C")

apply (auto intro: range_eqI)

done

lemma Crypt_notin_initState: "Crypt K X ¢ parts (initState B)"
by (induct B, auto)

lemma Crypt_notin_used_empty [simp]: "Crypt K X ¢ used []"
by (simp add: Crypt_notin_initState used_Nil)

lemma shrK_in_initState [iff]: "Key (shrK A) € initState A"
by (induct_tac "A", auto)

lemma shrK_in_knows [iff]: "Key (shrK A) € knows A evs"
by (simp add: initState_subset_knows [THEN subsetD])

lemma shrK_in_used [iff]: "Key (shrK A) € used evs"
by (rule initState_into_used, blast)

38 2 THEORY OF EVENTS FOR SECURITY PROTOCOLS

lemma Key_not_used [simp]: "Key K ¢ used evs =—> K ¢ range shrK"
by blast

lemma shrK_neq: "Key K ¢ used evs = shrK B # K"
by blast

lemmas neq_shrK = shrK_neq [THEN not_sym]
declare neq_shrK [simp]

2.8 Function knows Spy

lemma not_SignatureE [elim!]: "b # Signature =—> b = Encryption"
by (cases b, auto)

Agents see their own private keys!

lemma priK_in_initState [iff]: "Key (privateKey b A) € initState A"
by (cases A, auto)

Agents see all public keys!

lemma publicKey_in_initState [iff]: "Key (publicKey b A) € initState B"
by (cases B, auto)

All public keys are visible

lemma spies_pubK [iff]: "Key (publicKey b A) € spies evs"
apply (induct_tac "evs")

apply (auto simp add: imageI knows_Cons split: event.split)
done

lemmas analz_spies_pubK = spies_pubK [THEN analz.Inj]
declare analz_spies_pubK [iff]

Spy sees private keys of bad agents!

lemma Spy_spies_bad_privateKey [intro!]:
"A € bad =—> Key (privateKey b A) € spies evs"
apply (induct_tac "evs")
apply (auto simp add: imagel knows_Cons split: event.split)
done

Spy sees long-term shared keys of bad agents!

lemma Spy_spies_bad_shrK [intro!]:
"A € bad = Key (shrK A) € spies evs"
apply (induct_tac "evs")
apply (simp_all add: imageI knows_Cons split: event.split)
done

lemma publicKey_into_used [iff] :"Key (publicKey b A) € used evs"
apply (rule initState_into_used)
apply (rule publicKey_in_initState [THEN parts.Inj])

2.9 Fresh Nonces 39

done

lemma privateKey_into_used [iff]: "Key (privateKey b A) € used evs"
apply (rule initState_into_used)

apply (rule priK_in_initState [THEN parts.Inj])

done

lemma Crypt_Spy_analz_bad:
"[Crypt (shrK A) X € analz (knows Spy evs); A € bad]
—> X € analz (knows Spy evs)"

by force

2.9 Fresh Nonces

lemma Nonce_notin_initState [iff]: "Nonce N ¢ parts (initState B)"
by (induct_tac "B", auto)

lemma Nonce_notin_used_empty [simp]: "Nonce N ¢ used []"
by (simp add: used_Nil)

2.10 Supply fresh nonces for possibility theorems

In any trace, there is an upper bound N on the greatest nonce in use

lemma Nonce_supply_lemma: "3N. Vn. N<n — Nonce n ¢ used evs"
apply (induct_tac "evs")

apply (rule_tac x = 0 in exI)

apply (simp_all (no_asm_simp) add: used_Cons split: event.split)
apply safe

apply (rule msg_Nonce_supply [THEN exE], blast elim!: add_leE)+
done

lemma Nonce_supplyl: "JN. Nonce N ¢ used evs"
by (rule Nonce_supply_lemma [THEN exE], blast)

lemma Nonce_supply: "Nonce (SOME N. Nonce N ¢ used evs) ¢ used evs"
apply (rule Nonce_supply_lemma [THEN exE])

apply (rule somel, fast)

done

2.11 Specialized Rewriting for Theorems About anaiz and
Image

lemma insert_Key_singleton: "insert (Key K) H = Key ¢ {K} U H"
by blast

lemma insert_Key_image: "insert (Key K) (Key‘KK U C) = Key ¢ (insert K KK)
U CH
by blast

lemma Crypt_imp_keysFor :"[Crypt K X € H; K € symKeys] = K € keysFor
Hll

40 2 THEORY OF EVENTS FOR SECURITY PROTOCOLS

by (drule Crypt_imp_invKey_keysFor, simp)

Lemma for the trivial direction of the if-and-only-if of the Session Key Compro-
mise Theorem

lemma analz_image_freshK_lemma:
"(Key K € analz (Key‘nE U H)) — (K € nE | Key K € analz H) —
(Key K € analz (Key‘nE U H)) = (K € nE | Key K € analz H)"
by (blast intro: analz_mono [THEN [2] rev_subsetD])

lemmas analz_image_freshK_simps =
simp_thms mem_simps — these two allow its use with only:
disj_comms
image_insert [THEN sym] image_Un [THEN sym] empty_subsetI insert_subset
analz_insert_eq Un_upper2 [THEN analz_mono, THEN subsetD]
insert_Key_singleton
Key_not_used insert_Key_image Un_assoc [THEN sym]

ML <
structure Public =
struct

val analz_image_freshK_ss =
simpset_of
(context |> Simplifier.del_simps @{thms image_insert image_Un}
[> Simplifier.del_simps @{thms imp_disjL} (*¥reduces blow-up*)
|> Simplifier.add_simps @{thms analz_image_freshK_simps})

(¥Tactic for possibility theoremsx*)
fun possibility_tac ctxt =
REPEAT (*omit used_Says so that Nonces start from different traces!*)
(ALLGOALS (simp_tac (ctxt [> Simplifier.set_unsafe_solver safe_solver [>
Simplifier.del_simp @{thm used_Says}))
THEN
REPEAT_FIRST (eq_assume_tac ORELSE’
resolve_tac ctxt [refl, conjI, @{thm Nonce_supply}]))

(*#For harder protocols (such as Recur) where we have to set up some
nonces and keys initially*)
fun basic_possibility_tac ctxt =
REPEAT
(ALLGOALS (asm_simp_tac (ctxt |> Simplifier.set_unsafe_solver safe_solver))
THEN
REPEAT_FIRST (resolve_tac ctxt [refl, conjI]))

end

method__setup analz_freshK = <
Scan.succeed (fn ctxt =>
(SIMPLE_METHOD
(EVERY [REPEAT_FIRST (resolve_tac ctxt @{thms alll balll impI}),
REPEAT_FIRST (resolve_tac ctxt @{thms analz_image_freshK_lemmal}),
ALLGOALS (asm_simp_tac (put_simpset Public.analz_image_freshK_ss
ctxt))1)))>

2.12 Specialized Methods for Possibility Theorems 41

"for proving the Session Key Compromise theorem"

2.12 Specialized Methods for Possibility Theorems

method__setup possibility = <
Scan.succeed (SIMPLE_METHOD o Public.possibility_tac)>
"for proving possibility theorems"

method__setup basic_possibility = <
Scan.succeed (SIMPLE_METHOD o Public.basic_possibility_tac)>
"for proving possibility theorems"

end

3 Needham-Schroeder Shared-Key Protocol

theory NS_Shared imports Public begin

From page 247 of Burrows, Abadi and Needham (1989). A Logic of Authenti-
cation. Proc. Royal Soc. 426

definition

Issues :: "[agent, agent, msg, event list] = bool"
(<_ Issues _ with _ on _>) where
"A Issues B with X on evs =
(3Y. Says A BY € set evs A X € parts {Y} A
X ¢ parts (spies (takeWhile (A\z. z # Says A B Y) (rev evs))))"

inductive__set ns_shared :: "event list set"
where

Nil: "[] € ns_shared"

| Fake: "[evsf € ns_shared; X € synth (analz (spies evsf))]
— Says Spy B X # evsf € ns_shared"

| NS1: "[evsl € ns_shared; Nonce NA ¢ used evsi]
—> Says A Server {Agent A, Agent B, Nonce NA|} # evsl € ns_shared"

| NS2: "[evs2 € ns_shared; Key KAB ¢ used evs2; KAB € symKeys;
Says A’ Server {Agent A, Agent B, Nonce NA} € set evsZ2]
— Says Server A
(Crypt (shrK A)
{{Nonce NA, Agent B, Key KAB,
(Crypt (shrK B) {Key KAB, Agent A[)|})
evs2 € ns_shared"

| NS3: "[evs3 € ns_shared; A # Server;
Says S A (Crypt (shrK A) {Nonce NA, Agent B, Key K, X[}) € set evs3;

42 3 NEEDHAM-SCHROEDER SHARED-KEY PROTOCOL

Says A Server {Agent A, Agent B, Nonce NA} € set evs3]
— Says A B X # evs3 € ns_shared"

| NS4: "[evs4 € ns_shared; Nonce NB ¢ used evs4; K € symKeys;
Says A’ B (Crypt (shrK B) {Key K, Agent Al}) € set evs4]
— Says B A (Crypt K (Nonce NB)) # evs4 € ns_shared"

| NS5: "[evs5 € ns_shared; K € symKeys;
Says B’ A (Crypt K (Nonce NB)) € set evs5;
Says S A (Crypt (shrK A) {Nonce NA, Agent B, Key K, X[)
€ set evs5|
—> Says A B (Crypt K {Nonce NB, Nonce NB[}) # evs5 € ns_shared"

| Oops: "[evso € ns_shared; Says B A (Crypt K (Nonce NB)) € set evso;
Says Server A (Crypt (shrK A) {Nonce NA, Agent B, Key K, X[})

€ set evso]
— Notes Spy {Nonce NA, Nonce NB, Key K|} # evso € ns_shared"

declare Says_imp_knows_Spy [THEN parts.Inj, dest]
declare parts.Body [dest]

declare Fake_parts_insert_in_Un [dest]

declare analz_into_parts [dest]

A "possibility property": there are traces that reach the end

lemma "[A # Server; Key K ¢ used []; K € symKeys]
— JN. devs € ns_shared.
Says A B (Crypt K {Nonce N, Nonce N[}) € set evs"
apply (intro exI bexI)
apply (rule_tac [2] ns_shared.Nil
[THEN ns_shared.NS1, THEN ns_shared.NS2, THEN ns_shared.NS3,
THEN ns_shared.NS4, THEN ns_shared.NS5])
apply (possibility, simp add: used_Cons)
done

3.1 Inductive proofs about ns_shared

3.1.1 Forwarding lemmas, to aid simplification

For reasoning about the encrypted portion of message NS3

lemma NS3_msg_in_parts_spies:
"Says S A (Crypt KA {N, B, K, X}) € set evs =—> X € parts (spies evs)"
by blast

For reasoning about the Oops message

lemma Oops_parts_spies:
"Says Server A (Crypt (shrK A) {NA, B, K, X[}) € set evs
—> K € parts (spies evs)"
by blast

3.1 Inductive proofs about ns_shared 43

Theorems of the form X ¢ parts (knows Spy evs) imply that NOBODY sends
messages containing X

Spy never sees another agent’s shared key! (unless it’s bad at start)

lemma Spy_see_shrK [simp]:

"evs € ns_shared = (Key (shrK A) € parts (spies evs)) = (A € bad)"
apply (erule ns_shared.induct, force, drule_tac [4] NS3_msg_in_parts_spies,
simp_all, blast+)
done

lemma Spy_analz_shrK [simp]:
"evs € ns_shared = (Key (shrK A) € analz (spies evs)) = (A € bad)"
by auto

Nobody can have used non-existent keys!

lemma new_keys_not_used [simp]:
"[Key K ¢ used evs; K € symKeys; evs € ns_shared]
—> K ¢ keysFor (parts (spies evs))"
apply (erule rev_mp)
apply (erule ns_shared.induct, force, drule_tac [4] NS3_msg_in_parts_spies,
simp_all)

Fake, NS2, NS4, NS5

apply (force dest!: keysFor_parts_insert, blast+)
done

3.1.2 Lemmas concerning the form of items passed in messages

Describes the form of K, X and K’ when the Server sends this message.

lemma Says_Server_message_form:
"[Says Server A (Crypt K’ {N, Agent B, Key K, X[}) € set evs;
evs € ns_shared]
= K ¢ range shrk A
X = (Crypt (shrK B) {Key K, Agent A[) A
K’ = shrK A"
by (erule rev_mp, erule ns_shared.induct, auto)

If the encrypted message appears then it originated with the Server

lemma A_trusts_NS2:

"[Crypt (shrK A) {NA, Agent B, Key K, X[} € parts (spies evs);

A ¢ bad; evs € ns_shared]

—> Says Server A (Crypt (shrK A) {NA, Agent B, Key K, X[}) € set evs"
apply (erule rev_mp)
apply (erule ns_shared.induct, force, drule_tac [4] NS3_msg_in_parts_spies,
auto)
done

lemma cert_A_form:
"[Crypt (shrK A) {NA, Agent B, Key K, X[} € parts (spies evs);
A ¢ bad; evs € ns_shared]
—> K ¢ range shrK A X = (Crypt (shrK B) {Key K, Agent A[})"
by (blast dest!: A_trusts_NS2 Says_Server_message_form)

44 3 NEEDHAM-SCHROEDER SHARED-KEY PROTOCOL

EITHER describes the form of X when the following message is sent, OR reduces
it to the Fake case. Use Says_Server_message_form if applicable.

lemma Says_S_message_form:
"[Says S A (Crypt (shrK A) {Nonce NA, Agent B, Key K, X[}) € set evs;
evs € ns_shared]
— (K ¢ range shrK A X = (Crypt (shrK B) {Key K, Agent A[}))
V X € analz (spies evs)"
by (blast dest: Says_imp_knows_Spy analz_shrK_Decrypt cert_A_form analz.Inj)

NOT useful in this form, but it says that session keys are not used to encrypt
messages containing other keys, in the actual protocol. We require that agents
should behave like this subsequently also.

lemma "[evs € ns_shared; Kab ¢ range shrK| —

(Crypt KAB X) € parts (spies evs) A

Key K € parts {X} — Key K € parts (spies evs)"
apply (erule ns_shared.induct, force, drule_tac [4] NS3_msg_in_parts_spies,
simp_all)

Fake

apply (blast dest: parts_insert_subset_Un)

Base, NS4 and NS5

apply auto
done

3.1.3 Session keys are not used to encrypt other session keys

The equality makes the induction hypothesis easier to apply

lemma analz_image_freshK [rule_format]:
"evs € ns_shared —>
VK KK. KK C - (range shrK) —
(Key K € analz (Key‘KK U (spies evs))) =
(K € KK V Key K € analz (spies evs))"
apply (erule ns_shared.induct)
apply (drule_tac [8] Says_Server_message_form)
apply (erule_tac [5] Says_S_message_form [THEN disjE], analz_freshK, spy_analz)

NS2, NS3

apply blast+
done

lemma analz_insert_freshK:
"levs € ns_shared; KAB ¢ range shrK]| —
(Key K € analz (insert (Key KAB) (spies evs))) =
(K = KAB V Key K € analz (spies evs))"
by (simp only: analz_image_freshK analz_image_freshK_simps)

3.1.4 The session key K uniquely identifies the message

In messages of this form, the session key uniquely identifies the rest

3.2 Guarantees available at various stages of protocol 45

lemma unique_session_keys:
"[Says Server A (Crypt (shrK A) {NA, Agent B, Key K, X[|) € set evs;
Says Server A’ (Crypt (shrK A’) {NA’, Agent B’, Key K, X’[}) € set evs;
evs € ns_shared] —> A=A’ A NA=NA’ A B=B’ A X = X’"
by (erule rev_mp, erule rev_mp, erule ns_shared.induct, simp_all, blast+)

3.1.5 Crucial secrecy property: Spy doesn’t see the keys sent in NS2

Beware of [rule_format] and the universal quantifier!

lemma secrecy_lemma:
"[Says Server A (Crypt (shrkK A) {NA, Agent B, Key K,
Crypt (shrK B) {Key K, Agent AJ}[})
€ set evs;
A ¢ bad; B ¢ bad; evs € ns_shared]
—> (VNB. Notes Spy {NA, NB, Key K|} ¢ set evs) —
Key K ¢ analz (spies evs)"
apply (erule rev_mp)
apply (erule ns_shared.induct, force)
apply (frule_tac [7] Says_Server_message_form)
apply (frule_tac [4] Says_S_message_form)
apply (erule_tac [5] disjE)
apply (simp_all add: analz_insert_eq analz_insert_freshK pushes split_ifs,
spy_analz)

NS2

apply blast

NS3

apply (blast dest!: Crypt_Spy_analz_bad A_trusts_NS2
dest: Says_imp_knows_Spy analz.Inj unique_session_keys)

Oops

apply (blast dest: unique_session_keys)
done

Final version: Server’s message in the most abstract form

lemma Spy_not_see_encrypted_key:
"[Says Server A (Crypt K’ {NA, Agent B, Key K, X[}) € set evs;
VNB. Notes Spy {NA, NB, Key K|} ¢ set evs;
A ¢ bad; B ¢ bad; evs € ns_shared]
—> Key K ¢ analz (spies evs)"
by (blast dest: Says_Server_message_form secrecy_lemma)

3.2 Guarantees available at various stages of protocol

If the encrypted message appears then it originated with the Server

lemma B_trusts_NS3:
"[Crypt (shrK B) {Key K, Agent A} € parts (spies evs);
B ¢ bad; evs € ns_shared]
= JNA. Says Server A
(Crypt (shrK A) {NA, Agent B, Key K,
Crypt (shrK B) {Key K, Agent AJ}[})

46 3 NEEDHAM-SCHROEDER SHARED-KEY PROTOCOL

€ set evs"
apply (erule rev_mp)
apply (erule ns_shared.induct, force, drule_tac [4] NS3_msg_in_parts_spies,
auto)
done

lemma A_trusts_NS4_lemma [rule_format]:
"evs € ns_shared —>

Key K ¢ analz (spies evs) —»

Says Server A (Crypt (shrK A) {NA, Agent B, Key K, X[}) € set evs —»

Crypt K (Nonce NB) € parts (spies evs) —»

Says B A (Crypt K (Nonce NB)) € set evs"
apply (erule ns_shared.induct, force, drule_tac [4] NS3_msg_in_parts_spies)
apply (analz_mono_contra, simp_all, blast)

NS2: contradiction from the assumptions Key K ¢ used evs2 and Crypt K (Nonce
NB) € parts (knows Spy evs2)

apply (force dest!: Crypt_imp_keysFor)
NS4

apply (metis B_trusts_NS3 Crypt_Spy_analz_bad Says_imp_analz_Spy Says_imp_parts_knows_Spy
analz.Fst unique_session_keys)
done

This version no longer assumes that K is secure

lemma A_trusts_NS4:
"[Crypt K (Nonce NB) € parts (spies evs);
Crypt (shrK A) {NA, Agent B, Key K, X} € parts (spies evs);
VNB. Notes Spy {NA, NB, Key K} ¢ set evs;
A ¢ bad; B ¢ bad; evs € ns_shared]
—> Says B A (Crypt K (Nonce NB)) € set evs"
by (blast intro: A_trusts_NS4_lemma
dest: A_trusts_NS2 Spy_not_see_encrypted_key)

If the session key has been used in NS4 then somebody has forwarded component
X in some instance of NS4. Perhaps an interesting property, but not needed
(after all) for the proofs below.

theorem NS4_implies_NS3 [rule_format]:
"evs € ns_shared —

Key K ¢ analz (spies evs) —
Says Server A (Crypt (shrK A) {NA, Agent B, Key K, X}}) € set evs —»
Crypt K (Nonce NB) € parts (spies evs) —
(34°. Says A’ B X € set evs)"

apply (erule ns_shared.induct, force)

apply (drule_tac [4] NS3_msg_in_parts_spies)

apply analz_mono_contra

apply (simp_all add: ex_disj_distrib, blast)

NS2
apply (blast dest!: new_keys_not_used Crypt_imp_keysFor)

NS4

3.3 Lemmas for reasoning about predicate "Issues" 47

apply (metis B_trusts_NS3 Crypt_Spy_analz_bad Says_imp_analz_Spy Says_imp_parts_knows_Spy
analz.Fst unique_session_keys)
done

lemma B_trusts_NS5_lemma [rule_format]:
"[B ¢ bad; evs € ns_shared] —
Key K ¢ analz (spies evs) —
Says Server A
(Crypt (shrK A) {NA, Agent B, Key K,
Crypt (shrK B) {Key K, Agent Al}) € set evs —»
Crypt K {Nonce NB, Nonce NB} € parts (spies evs) —
Says A B (Crypt K {Nonce NB, Nonce NB[}) € set evs"
apply (erule ns_shared.induct, force)
apply (drule_tac [4] NS3_msg_in_parts_spies)
apply (analz_mono_contra, simp_all, blast)

NS2
apply (blast dest!: new_keys_not_used Crypt_imp_keysFor)
NS5

apply (blast dest!: A_trusts_NS2
dest: Says_imp_knows_Spy [THEN analz.Inj]
unique_session_keys Crypt_Spy_analz_bad)
done

Very strong Oops condition reveals protocol’s weakness

lemma B_trusts_NS5:
"[Crypt K {Nonce NB, Nonce NB|} € parts (spies evs);
Crypt (shrK B) {Key K, Agent A} € parts (spies evs);
VNA NB. Notes Spy {NA, NB, Key K} ¢ set evs;
A ¢ bad; B ¢ bad; evs € ns_shared]
= Says A B (Crypt K {Nonce NB, Nonce NB[}) € set evs"
by (blast intro: B_trusts_NS5_lemma
dest: B_trusts_NS3 Spy_not_see_encrypted_key)

Unaltered so far wrt original version

3.3 Lemmas for reasoning about predicate "Issues"

lemma spies_Says_rev: "spies (evs @ [Says A B X]) = insert X (spies evs)"
apply (induct_tac "evs")

apply (rename_tac [2] a b)

apply (induct_tac [2] "a", auto)

done

lemma spies_Gets_rev: "spies (evs @ [Gets A X]) = spies evs"
apply (induct_tac "evs")

apply (rename_tac [2] a b)

apply (induct_tac [2] "a", auto)

done

lemma spies_Notes_rev: "spies (evs @ [Notes A X])

48 3 NEEDHAM-SCHROEDER SHARED-KEY PROTOCOL

(if A€bad then insert X (spies evs) else spies evs)"
apply (induct_tac "evs")
apply (rename_tac [2] a b)
apply (induct_tac [2] "a", auto)
done

lemma spies_evs_rev: "spies evs = spies (rev evs)"

apply (induct_tac "evs")

apply (rename_tac [2] a b)

apply (induct_tac [2] "a")

apply (simp_all (no_asm_simp) add: spies_Says_rev spies_Gets_rev spies_Notes_rev)
done

lemmas parts_spies_evs_revD2 = spies_evs_rev [THEN equalityD2, THEN parts_mono]

lemma spies_takeWhile: "spies (takeWhile P evs) C spies evs"
apply (induct_tac "evs")

apply (rename_tac [2] a b)

apply (induct_tac [2] "a", auto)

Resembles used_subset_append in theory Event.

done

lemmas parts_spies_takeWhile_mono = spies_takeWhile [THEN parts_mono]

3.4 Guarantees of non-injective agreement on the session
key, and of key distribution. They also express forms
of freshness of certain messages, namely that agents
were alive after something happened.

lemma B_Issues_A:
"[Says B A (Crypt K (Nonce Nb)) € set evs;
Key K ¢ analz (spies evs);
A ¢ bad; B ¢ bad; evs € ns_shared |
—> B Issues A with (Crypt K (Nonce Nb)) on evs"
unfolding Issues_def
apply (rule exI)
apply (rule conjI, assumption)
apply (simp (no_asm))
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule ns_shared.induct, analz_mono_contra)
apply (simp_all)

fake

apply blast
apply (simp_all add: takeWhile_tail)

NS3 remains by pure coincidence!

apply (force dest!: A_trusts_NS2 Says_Server_message_form)

NS4 would be the non-trivial case can be solved by Nb being used
apply (blast dest: parts_spies_takeWhile_mono [THEN subsetD]

3.4 Guarantees of non-injective agreement on the session key, and of key distribution. They also express forms of fre

parts_spies_evs_revD2 [THEN subsetD])
done

Tells A that B was alive after she sent him the session key. The session key
must be assumed confidential for this deduction to be meaningful, but that
assumption can be relaxed by the appropriate argument.

Precisely, the theorem guarantees (to A) key distribution of the session key to
B. It also guarantees (to A) non-injective agreement of B with A on the session
key. Both goals are available to A in the sense of Goal Availability.

lemma A_authenticates_and_keydist_to_B:
"[Crypt K (Nonce NB) € parts (spies evs);
Crypt (shrK A) {NA, Agent B, Key K, X[} € parts (spies evs);
Key K ¢ analz(knows Spy evs);
A ¢ bad; B ¢ bad; evs € ns_shared]
—> B Issues A with (Crypt K (Nonce NB)) on evs"
by (blast intro: A_trusts_NS4_lemma B_Issues_A dest: A_trusts_NS2)

lemma A_trusts_NS5:
"[Crypt K {Nonce NB, Nonce NB} € parts(spies evs);

Crypt (shrK A) {Nonce NA, Agent B, Key K, X| € parts(spies evs);
Key K ¢ analz (spies evs);
A ¢ bad; B ¢ bad; evs € ns_shared |

—> Says A B (Crypt K {Nonce NB, Nonce NB[}) € set evs"

apply (erule rev_mp)

apply (erule rev_mp)

apply (erule rev_mp)

apply (erule ns_shared.induct, analz_mono_contra)

apply (simp_all)

Fake

apply blast

NS2

apply (force dest!: Crypt_imp_keysFor)

NS3

apply (metis NS3_msg_in_parts_spies parts_cut_eq)
NS5, the most important case, can be solved by unicity

apply (metis A_trusts_NS2 Crypt_Spy_analz_bad Says_imp_analz_Spy Says_imp_parts_knows_Spy
analz.Fst analz.Snd unique_session_keys)
done

lemma A_Issues_B:
"[Says A B (Crypt K {Nonce NB, Nonce NB[}) € set evs;
Key K ¢ analz (spies evs);
A ¢ bad; B ¢ bad; evs € ns_shared |
= A Issues B with (Crypt K {Nonce NB, Nonce NB[}) on evs"
unfolding Issues_def
apply (rule exI)
apply (rule conjI, assumption)
apply (simp (no_asm))

50 4 THE KERBEROS PROTOCOL, BAN VERSION

apply (erule rev_mp)

apply (erule rev_mp)

apply (erule ns_shared.induct, analz_mono_contra)
apply (simp_all)

fake

apply blast
apply (simp_all add: takeWhile_tail)

NS3 remains by pure coincidence!

apply (force dest!: A_trusts_NS2 Says_Server_message_form)

NS5 is the non-trivial case and cannot be solved as in B_Issues_A! because NB is not
fresh. We need A_trusts_NS5, proved for this very purpose

apply (blast dest: A_trusts_NS5 parts_spies_takeWhile_mono [THEN subsetD]
parts_spies_evs_revD2 [THEN subsetD])
done

Tells B that A was alive after B issued NB.

Precisely, the theorem guarantees (to B) key distribution of the session key to
A. Tt also guarantees (to B) non-injective agreement of A with B on the session
key. Both goals are available to B in the sense of Goal Availability.

lemma B_authenticates_and_keydist_to_A:
"[Crypt K {Nonce NB, Nonce NB|} € parts (spies evs);
Crypt (shrK B) {Key K, Agent A} € parts (spies evs);
Key K ¢ analz (spies evs);
A ¢ bad; B ¢ bad; evs € ns_shared]
= A Issues B with (Crypt K {Nonce NB, Nonce NB[}) on evs"
by (blast intro: A_Issues_B B_trusts_NS5_lemma dest: B_trusts_NS3)

end

4 The Kerberos Protocol, BAN Version

theory Kerberos_BAN imports Public begin

From page 251 of Burrows, Abadi and Needham (1989). A Logic of Authenti-
cation. Proc. Royal Soc. 426

Confidentiality (secrecy) and authentication properties are also given in a termpo-
ral version: strong guarantees in a little abstracted - but very realistic - model.

consts
sesKlife :: nat

authlife :: nat

The ticket should remain fresh for two journeys on the network at least

specification (sesKlife)
sesKlife LB [iff]: "2 < sesKlife"

51

by blast

The authenticator only for one journey

specification (authlife)

authlife LB [iff]: "authlife # 0"
by blast

abbreviation

CT :: "event list = nat" where

"CT == length "
abbreviation

expiredK :: "[nat, event list] = bool" where

"expiredK T evs == sesKlife + T < CT evs"
abbreviation

expiredA :: "[nat, event list] = bool" where

"expiredA T evs == authlife + T < CT evs"
definition

Issues :: "[agent, agent, msg, event list] = bool"

(<_ Issues _ with _ on _>) where
"A Issues B with X on evs =
(Y. Says A BY € set evs A X € parts {Y} A
X ¢ parts (spies (takeWhile (A\z. z # Says A B Y) (rev evs))))"

definition

before :: "[event, event list] = event list" (<before _ on _>)
where "before ev on evs = takeWhile (Az. z # ev) (rev evs)"

definition
Unique :: "[event, event list] = bool" (<Unique _ on _>)
where "Unique ev on evs = (ev ¢ set (tl (dropWhile (A\z. z # ev) evs)))"
inductive__set bankerberos :: "event list set"
where
Nil: "[] € bankerberos"
| Fake: "[evsf € bankerberos; X € synth (analz (spies evsf)) |

=—> Says Spy B X # evsf € bankerberos"

| BK1: "[evsl € bankerberos |
—> Says A Server {Agent A, Agent B[} # evsl
€ bankerberos"

| BK2: "[evs2 € bankerberos; Key K ¢ used evs2; K € symKeys;

52 4 THE KERBEROS PROTOCOL, BAN VERSION

Says A’ Server {Agent A, Agent B|} € set evs2 |
— Says Server A
(Crypt (shrK A)
{{Number (CT evs2), Agent B, Key K,
(Crypt (shrK B) {Number (CT evs2), Agent A, Key K[)})
evs2 € bankerberos"

| BK3: "] evs3 € bankerberos;
Says S A (Crypt (shrK A) {Number Tk, Agent B, Key K, Ticket|)
€ set evs3;
Says A Server {Agent A, Agent B|} € set evs3;
— expiredK Tk evs3 |
—> Says A B {Ticket, Crypt K {Agent A, Number (CT evs3)} |}
evs3 € bankerberos"

| BK4: "] evs4 € bankerberos;
Says A’ B {(Crypt (shrK B) {Number Tk, Agent A, Key K[}),
(Crypt K {Agent A, Number Tal) |} € set evs4;
- expiredK Tk evs4; — expiredA Ta evs4 |
—> Says B A (Crypt K (Number Ta)) # evs4
€ bankerberos"

| Oops: "[evso € bankerberos;
Says Server A (Crypt (shrK A) {Number Tk, Agent B, Key K, Ticket[)
€ set evso;
expiredK Tk evso |
= Notes Spy {Number Tk, Key K|} # evso € bankerberos"

declare Says_imp_knows_Spy [THEN parts.Inj, dest]
declare parts.Body [dest]

declare analz_into_parts [dest]

declare Fake_parts_insert_in_Un [dest]

A "possibility property": there are traces that reach the end.

lemma "[Key K ¢ used []; K € symKeys]
—> JTimestamp. Jevs € bankerberos.
Says B A (Crypt K (Number Timestamp))

€ set evs"”
apply (cut_tac sesKlife_LB)
apply (intro exI bexI)
apply (rule_tac [2]

bankerberos.Nil [THEN bankerberos.BK1, THEN bankerberos.BK2,
THEN bankerberos.BK3, THEN bankerberos.BK4])

apply (possibility, simp_all (no_asm_simp) add: used_Cons)
done

4.1 Lemmas for reasoning about predicate "Issues"

lemma spies_Says_rev: "spies (evs @ [Says A B X]) = insert X (spies evs)"
apply (induct_tac "evs")

4.1 Lemmas for reasoning about predicate "Issues" 53

apply (rename_tac [2] a b)
apply (induct_tac [2] "a", auto)
done

lemma spies_Gets_rev: "spies (evs @ [Gets A X]) = spies evs"
apply (induct_tac "evs")

apply (rename_tac [2] a b)

apply (induct_tac [2] "a", auto)

done

lemma spies_Notes_rev: "spies (evs @ [Notes A X]) =
(if A€bad then insert X (spies evs) else spies evs)"
apply (induct_tac "evs")
apply (rename_tac [2] a b)
apply (induct_tac [2] "a", auto)
done

lemma spies_evs_rev: "spies evs = spies (rev evs)"

apply (induct_tac "evs")

apply (rename_tac [2] a b)

apply (induct_tac [2] "a")

apply (simp_all (no_asm_simp) add: spies_Says_rev spies_Gets_rev spies_Notes_rev)
done

lemmas parts_spies_evs_revD2 = spies_evs_rev [THEN equalityD2, THEN parts_mono]

lemma spies_takeWhile: "spies (takeWhile P evs) C spies evs"
apply (induct_tac "evs")

apply (rename_tac [2] a b)

apply (induct_tac [2] "a", auto)

Resembles used_subset_append in theory Event.

done

lemmas parts_spies_takeWhile_mono = spies_takeWhile [THEN parts_mono]

Lemmas for reasoning about predicate "before"

lemma used_Says_rev: "used (evs @ [Says A B X]) = parts {X} U (used evs)"
apply (induct_tac "evs")

apply simp

apply (rename_tac a b)

apply (induct_tac "a")

apply auto

done

lemma used_Notes_rev: "used (evs @ [Notes A X]) = parts {X} U (used evs)"
apply (induct_tac "evs")

apply simp

apply (rename_tac a b)

apply (induct_tac "a")

apply auto

done

lemma used_Gets_rev: "used (evs @ [Gets B X]) = used evs"

54 4 THE KERBEROS PROTOCOL, BAN VERSION

apply (induct_tac "evs")
apply simp

apply (rename_tac a b)
apply (induct_tac "a")
apply auto

done

lemma used_evs_rev: "used evs = used (rev evs)'"
apply (induct_tac "evs")

apply simp

apply (rename_tac a b)

apply (induct_tac "a")

apply (simp add: used_Says_rev)

apply (simp add: used_Gets_rev)

apply (simp add: used_Notes_rev)

done

lemma used_takeWhile_used [rule_format]:
"x € used (takeWhile P X) — x € used X"
apply (induct_tac "X")
apply simp
apply (rename_tac a b)
apply (induct_tac "a")
apply (simp_all add: used_Nil)
apply (blast dest!: initState_into_used)+
done

lemma set_evs_rev: "set evs = set (rev evs)"
apply auto
done

lemma takeWhile_void [rule_format]:

"x ¢ set evs — takeWhile (\z. z # x) evs = evs"
apply auto
done

Forwarding Lemma for reasoning about the encrypted portion of message BK3

lemma BK3_msg_in_parts_spies:
"Says S A (Crypt KA {Timestamp, B, K, X[}) € set evs
= X € parts (spies evs)"

apply blast

done

lemma Oops_parts_spies:
"Says Server A (Crypt (shrK A) {Timestamp, B, K, X[}) € set evs
= K € parts (spies evs)"

apply blast

done

Spy never sees another agent’s shared key! (unless it’s bad at start)

lemma Spy_see_shrK [simp]:

"evs € bankerberos = (Key (shrK A) € parts (spies evs)) = (A € bad)"
apply (erule bankerberos.induct)
apply (frule_tac [7] Oops_parts_spies)

4.2 Lemmas concerning the form of items passed in messages 55

apply (frule_tac [5] BK3_msg_in_parts_spies, simp_all, blast+)
done

lemma Spy_analz_shrK [simp]:

"evs € bankerberos = (Key (shrK A) € analz (spies evs)) = (A € bad)"
apply auto
done

lemma Spy_see_shrK_D [dest!]:
"[Key (shrkK A) € parts (spies evs);
evs € bankerberos | =—> Acbad"
apply (blast dest: Spy_see_shrk)
done

lemmas Spy_analz_shrK_D = analz_subset_parts [THEN subsetD, THEN Spy_see_shrK_D,
dest!]

Nobody can have used non-existent keys!

lemma new_keys_not_used [simp]:
"[Key K ¢ used evs; K € symKeys; evs € bankerberos]
= K ¢ keysFor (parts (spies evs))"

apply (erule rev_mp)

apply (erule bankerberos.induct)

apply (frule_tac [7] Oops_parts_spies)

apply (frule_tac [5] BK3_msg_in_parts_spies, simp_all)

Fake

apply (force dest!: keysFor_parts_insert)

BK2, BK3, BK4

apply (force dest!: analz_shrK_Decrypt)+
done

4.2 Lemmas concerning the form of items passed in mes-
sages

Describes the form of K, X and K’ when the Server sends this message.

lemma Says_Server_message_form:
"[Says Server A (Crypt K’ {Number Tk, Agent B, Key K, Ticketl[)
€ set evs; evs € bankerberos]
= K’ = shrK A N K ¢ range shrK A
Ticket = (Crypt (shrK B) {Number Tk, Agent A, Key K[}) A
Key K ¢ used(before
Says Server A (Crypt K’ {Number Tk, Agent B, Key K, Ticketl]})
on evs) A
Tk = CT(before
Says Server A (Crypt K’ {Number Tk, Agent B, Key K, Ticketl]})
on evs)"
unfolding before_def
apply (erule rev_mp)
apply (erule bankerberos.induct, simp_all add: takeWhile_tail)

56 4 THE KERBEROS PROTOCOL, BAN VERSION

apply auto
apply (metis length_rev set_rev takeWhile_void used_evs_rev)+
done

If the encrypted message appears then it originated with the Server PROVIDED
that A is NOT compromised! This allows A to verify freshness of the session
key.

lemma Kab_authentic:
"[Crypt (shrK A) {Number Tk, Agent B, Key K, X|}
€ parts (spies evs);
A ¢ bad; evs € bankerberos |
—> Says Server A (Crypt (shrK A) {Number Tk, Agent B, Key K, X[})
€ set evs"

apply (erule rev_mp)
apply (erule bankerberos.induct)
apply (frule_tac [7] Oops_parts_spies)
apply (frule_tac [5] BK3_msg_in_parts_spies, simp_all, blast)
done

If the TICKET appears then it originated with the Server
FRESHNESS OF THE SESSION KEY to B

lemma ticket_authentic:
"[Crypt (shrK B) {Number Tk, Agent A, Key K[|} € parts (spies evs);
B ¢ bad; evs € bankerberos |
— Says Server A
(Crypt (shrK A) {Number Tk, Agent B, Key K,
Crypt (shrK B) {Number Tk, Agent A, Key K[[})
€ set evs"
apply (erule rev_mp)
apply (erule bankerberos.induct)
apply (frule_tac [7] Oops_parts_spies)
apply (frule_tac [5] BK3_msg_in_parts_spies, simp_all, blast)
done

EITHER describes the form of X when the following message is sent, OR reduces
it to the Fake case. Use Says_Server_message_form if applicable.

lemma Says_S_message_form:
"[Says S A (Crypt (shrK A) {Number Tk, Agent B, Key K, X[|})
€ set evs;
evs € bankerberos |
— (K ¢ range shrK A X = (Crypt (shrK B) {Number Tk, Agent A, Key K[}))
| X € analz (spies evs)"
apply (case_tac "A € bad")
apply (force dest!: Says_imp_spies [THEN analz.Inj])
apply (frule Says_imp_spies [THEN parts.Inj])
apply (blast dest!: Kab_authentic Says_Server_message_form)
done

Session keys are not used to encrypt other session keys

lemma analz_image_freshK [rule_format (no_asm)]:
"evs € bankerberos —
VK KK. KK C - (range shrK) —

4.3 Non-temporal guarantees, explicitly relying on non-occurrence of oops events - refined below by temporal guara

(Key K € analz (Key‘KK U (spies evs))) =
(K € KK | Key K € analz (spies evs))"
apply (erule bankerberos.induct)
apply (drule_tac [7] Says_Server_message_form)
apply (erule_tac [5] Says_S_message_form [THEN disjE], analz_freshK, spy_analz,
auto)
done

lemma analz_insert_freshK:

"[evs € bankerberos; KAB ¢ range shrk | —

(Key K € analz (insert (Key KAB) (spies evs))) =

(K = KAB | Key K € analz (spies evs))"
apply (simp only: analz_image_freshK analz_image_freshK_simps)
done

The session key K uniquely identifies the message

lemma unique_session_keys:
"[Says Server A
(Crypt (shrK A) {Number Tk, Agent B, Key K, X[}) € set evs;
Says Server A’
(Crypt (shrK A’) {Number Tk’, Agent B’, Key K, X’[[) € set evs;
evs € bankerberos | =—> A=A’ A Tk=Tk’ A B=B’ A X = X’"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule bankerberos.induct)
apply (frule_tac [7] Oops_parts_spies)
apply (frule_tac [5] BK3_msg_in_parts_spies, simp_all)

BK2: it can’t be a new key

apply blast
done

lemma Server_Unique:
"[Says Server A
(Crypt (shrK A) {Number Tk, Agent B, Key K, Ticket]}) € set evs;
evs € bankerberos | =
Unique Says Server A (Crypt (shrK A) {Number Tk, Agent B, Key K, Ticket[)
on evs"
apply (erule rev_mp, erule bankerberos.induct, simp_all add: Unique_def)
apply blast
done

4.3 Non-temporal guarantees, explicitly relying on non-
occurrence of oops events - refined below by temporal
guarantees

Non temporal treatment of confidentiality

Lemma: the session key sent in msg BK2 would be lost by oops if the spy could
see it!

lemma lemma_conf [rule_format (no_asm)]:

58 4 THE KERBEROS PROTOCOL, BAN VERSION

" A ¢ bad; B ¢ bad; evs € bankerberos |
— Says Server A
(Crypt (shrK A) {Number Tk, Agent B, Key K,
Crypt (shrK B) {Number Tk, Agent A, Key K[})
€ set evs —
Key K € analz (spies evs) —> Notes Spy {Number Tk, Key K[} € set evs"
apply (erule bankerberos.induct)
apply (frule_tac [7] Says_Server_message_form)
apply (frule_tac [5] Says_S_message_form [THEN disjE])
apply (simp_all (no_asm_simp) add: analz_insert_eq analz_insert_freshK pushes)

Fake
apply spy_analz
BK2

apply (blast intro: parts_insertI)

BK3

apply (case_tac "Aa € bad")

prefer 2 apply (blast dest: Kab_authentic unique_session_keys)

apply (blast dest: Says_imp_spies [THEN analz.Inj] Crypt_Spy_analz_bad elim!:
MPair_analz)

Oops

apply (blast dest: unique_session_keys)
done

Confidentiality for the Server: Spy does not see the keys sent in msg BK2 as
long as they have not expired.

lemma Confidentiality_S:
"[Says Server A
(Crypt K’ {Number Tk, Agent B, Key K, Ticket|}) € set evs;
Notes Spy {Number Tk, Key K|} ¢ set evs;
A ¢ bad; B ¢ bad; evs € bankerberos
] = Key K ¢ analz (spies evs)"
apply (frule Says_Server_message_form, assumption)
apply (blast intro: lemma_conf)
done

Confidentiality for Alice

lemma Confidentiality_A:
"[Crypt (shrK A) {Number Tk, Agent B, Key K, X[€ parts (spies evs);
Notes Spy {Number Tk, Key K[} ¢ set evs;
A ¢ bad; B ¢ bad; evs € bankerberos
] = Key K ¢ analz (spies evs)"
apply (blast dest!: Kab_authentic Confidentiality_sS)
done

Confidentiality for Bob

lemma Confidentiality_ B:
"[Crypt (shrK B) {Number Tk, Agent A, Key K|}
€ parts (spies evs);

4.3 Non-temporal guarantees, explicitly relying on non-occurrence of oops events - refined below by temporal guara

Notes Spy {Number Tk, Key K| ¢ set evs;
A ¢ bad; B ¢ bad; evs € bankerberos
] = Key K ¢ analz (spies evs)"
apply (blast dest!: ticket_authentic Confidentiality_S)
done

Non temporal treatment of authentication

Lemmas Iemma_A and lemma_B in fact are common to both temporal and non-
temporal treatments

lemma lemma_A [rule_format]:
"[A ¢ bad; B ¢ bad; evs € bankerberos |
N
Key K ¢ analz (spies evs) —
Says Server A (Crypt (shrK A) {Number Tk, Agent B, Key K, X[})
€ set evs —»
Crypt K {Agent A, Number Ta| € parts (spies evs) —
Says A B {X, Crypt K {Agent A, Number Tal|
€ set evs"
apply (erule bankerberos.induct)
apply (frule_tac [7] Oops_parts_spies)
apply (frule_tac [5] Says_S_message_form)
apply (frule_tac [6] BK3_msg_in_parts_spies, analz_mono_contra)
apply (simp_all (no_asm_simp) add: all_conj_distrib)

Fake

apply blast

BK2

apply (force dest: Crypt_imp_invKey_keysFor)
BK3

apply (blast dest: Kab_authentic unique_session_keys)
done

lemma lemma B [rule_format]:
"l B ¢ bad; evs € bankerberos |
—> Key K ¢ analz (spies evs) —
Says Server A (Crypt (shrK A) {Number Tk, Agent B, Key K, X[})
€ set evs —»
Crypt K (Number Ta) € parts (spies evs) —
Says B A (Crypt K (Number Ta)) € set evs"
apply (erule bankerberos.induct)
apply (frule_tac [7] Oops_parts_spies)
apply (frule_tac [5] Says_S_message_form)
apply (drule_tac [6] BK3_msg_in_parts_spies, analz_mono_contra)
apply (simp_all (no_asm_simp) add: all_conj_distrib)

Fake
apply blast
BK2

apply (force dest: Crypt_imp_invKey_keysFor)

60 4 THE KERBEROS PROTOCOL, BAN VERSION

BK4

apply (blast dest: ticket_authentic unique_session_keys
Says_imp_spies [THEN analz.Inj] Crypt_Spy_analz_bad)
done

The "r" suffix indicates theorems where the confidentiality assumptions are re-
laxed by the corresponding arguments.

Authentication of A to B

lemma B_authenticates_A_r:
"[Crypt K {Agent A, Number Tal} € parts (spies evs);
Crypt (shrK B) {Number Tk, Agent A, Key K|} € parts (spies evs);
Notes Spy {Number Tk, Key K|} ¢ set evs;
A ¢ bad; B ¢ bad; evs € bankerberos |
= Says A B {Crypt (shrK B) {Number Tk, Agent A, Key K[},
Crypt K {Agent A, Number Tal} € set evs"
apply (blast dest!: ticket_authentic
intro!: lemma_A
elim!: Confidentiality_S [THEN [2] rev_notE])
done

Authentication of B to A

lemma A_authenticates_B_r:
"[Crypt K (Number Ta) € parts (spies evs);
Crypt (shrK A) {Number Tk, Agent B, Key K, X[} € parts (spies evs);
Notes Spy {Number Tk, Key K|} ¢ set evs;
A ¢ bad; B ¢ bad; evs € bankerberos |
= Says B A (Crypt K (Number Ta)) € set evs"
apply (blast dest!: Kab_authentic
intro!: lemma_B elim!: Confidentiality_ S [THEN [2] rev_notE])
done

lemma B_authenticates_A:
"[Crypt K {Agent A, Number Tal} € parts (spies evs);
Crypt (shrK B) {Number Tk, Agent A, Key K[} € parts (spies evs);
Key K ¢ analz (spies evs);
A ¢ bad; B ¢ bad; evs € bankerberos |
—> Says A B {Crypt (shrK B) {Number Tk, Agent A, Key K|},
Crypt K {Agent A, Number Tall}} € set evs"
apply (blast dest!: ticket_authentic intro!: lemma_A)
done

lemma A_authenticates_B:
"[Crypt K (Number Ta) € parts (spies evs);
Crypt (shrK A) {Number Tk, Agent B, Key K, X[} € parts (spies evs);
Key K ¢ analz (spies evs);
A ¢ bad; B ¢ bad; evs € bankerberos |
—> Says B A (Crypt K (Number Ta)) € set evs"
apply (blast dest!: Kab_authentic intro!: lemma_B)
done

4.4 Temporal guarantees, relying on a temporal check that insures that no oops event occurred

4.4 Temporal guarantees, relying on a temporal check that
insures that no oops event occurred. These are avail-
able in the sense of goal availability

Temporal treatment of confidentiality

Lemma: the session key sent in msg BK2 would be EXPIRED if the spy could
see it!

lemma lemma_conf_temporal [rule_format (no_asm)]:
"l A ¢ bad; B ¢ bad; evs € bankerberos |
—> Says Server A
(Crypt (shrK A) {Number Tk, Agent B, Key K,
Crypt (shrK B) {Number Tk, Agent A, Key K[}|})
€ set evs —
Key K € analz (spies evs) — expiredK Tk evs"
apply (erule bankerberos.induct)
apply (frule_tac [7] Says_Server_message_form)
apply (frule_tac [5] Says_S_message_form [THEN disjE])
apply (simp_all (no_asm_simp) add: less_Sucl analz_insert_eq analz_insert_freshK
pushes)

Fake
apply spy_analz
BK2

apply (blast intro: parts_insertI less_SucI)

BK3

apply (metis Crypt_Spy_analz_bad Kab_authentic Says_imp_analz_Spy
Says_imp_parts_knows_Spy analz.Snd less_Sucl unique_session_keys)

Oops: PROOF FAILS if unsafe intro below

apply (blast dest: unique_session_keys intro!: less_SucI)
done

Confidentiality for the Server: Spy does not see the keys sent in msg BK2 as
long as they have not expired.

lemma Confidentiality_S_temporal:
"[Says Server A
(Crypt K’ {Number T, Agent B, Key K, X|}) € set evs;
— expiredK T evs;
A ¢ bad; B ¢ bad; evs € bankerberos
] = Key K ¢ analz (spies evs)"
apply (frule Says_Server_message_form, assumption)
apply (blast intro: lemma_conf_temporal)
done

Confidentiality for Alice

lemma Confidentiality_A_temporal:
"[Crypt (shrK A) {Number T, Agent B, Key K, X[€ parts (spies evs);
— expiredK T evs;
A ¢ bad; B ¢ bad; evs € bankerberos

. These are available

62 4 THE KERBEROS PROTOCOL, BAN VERSION

] = Key K ¢ analz (spies evs)"
apply (blast dest!: Kab_authentic Confidentiality_S_temporal)
done

Confidentiality for Bob

lemma Confidentiality_ B_temporal:
"[Crypt (shrK B) {Number Tk, Agent A, Key K|}
€ parts (spies evs);
— expiredK Tk evs;
A ¢ bad; B ¢ bad; evs € bankerberos
] = Key K ¢ analz (spies evs)"
apply (blast dest!: ticket_authentic Confidentiality_S_temporal)
done

Temporal treatment of authentication

Authentication of A to B

lemma B_authenticates_A_temporal:
"[Crypt K {Agent A, Number Tal} € parts (spies evs);
Crypt (shrK B) {Number Tk, Agent A, Key K[}
€ parts (spies evs);
— expiredK Tk evs;
A ¢ bad; B ¢ bad; evs € bankerberos |
—> Says A B {Crypt (shrK B) {Number Tk, Agent A, Key K[},
Crypt K {Agent A, Number Tall|} € set evs"
apply (blast dest!: ticket_authentic
intro!: lemma_A
elim!: Confidentiality_S_temporal [THEN [2] rev_notE])
done

Authentication of B to A

lemma A_authenticates_B_temporal:
"[Crypt K (Number Ta) € parts (spies evs);
Crypt (shrK A) {Number Tk, Agent B, Key K, X|
€ parts (spies evs);
— expiredK Tk evs;
A ¢ bad; B ¢ bad; evs € bankerberos]
=—> Says B A (Crypt K (Number Ta)) € set evs"
apply (blast dest!: Kab_authentic
intro!: lemma_B elim!: Confidentiality_S_temporal [THEN [2] rev_notE])
done

4.5 Treatment of the key distribution goal using trace in-
spection. All guarantees are in non-temporal form,
hence non available, though their temporal form is
trivial to derive. These guarantees also convey a stronger
form of authentication - non-injective agreement on
the session key

lemma B_Issues_A:

"[Says B A (Crypt K (Number Ta)) € set evs;
Key K ¢ analz (spies evs);

4.5 Treatment of the key distribution goal using trace inspection. All guarantees are in non-temporal form, hence n

A ¢ bad; B ¢ bad; evs € bankerberos |

— B Issues A with (Crypt K (Number Ta)) on evs"
unfolding Issues_def
apply (rule exI)
apply (rule conjI, assumption)
apply (simp (no_asm))
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule bankerberos.induct, analz_mono_contra)
apply (simp_all (no_asm_simp))

fake

apply blast

K4 obviously is the non-trivial case

apply (simp add: takeWhile_tail)

apply (blast dest: ticket_authentic parts_spies_takeWhile_mono [THEN subsetD]
parts_spies_evs_revD2 [THEN subsetD] intro: A_authenticates_B_temporal)

done

lemma A_authenticates_and_keydist_to_B:
"[Crypt K (Number Ta) € parts (spies evs);
Crypt (shrK A) {Number Tk, Agent B, Key K, X[} € parts (spies evs);
Key K ¢ analz (spies evs);
A ¢ bad; B ¢ bad; evs € bankerberos |
—> B Issues A with (Crypt K (Number Ta)) on evs"
apply (blast dest!: A_authenticates_B B_Issues_A)
done

lemma A_Issues_B:
"[Says A B {Ticket, Crypt K {Agent A, Number Tal}
€ set evs;
Key K ¢ analz (spies evs);
A ¢ bad; B ¢ bad; evs € bankerberos |
—> A Issues B with (Crypt K {Agent A, Number Tal) on evs"

unfolding Issues_def
apply (rule exI)
apply (rule conjI, assumption)
apply (simp (no_asm))
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule bankerberos.induct, analz_mono_contra)
apply (simp_all (no_asm_simp))

fake
apply blast
K3 is the non trivial case

apply (simp add: takeWhile_tail)

apply auto

apply (blast dest: Kab_authentic Says_Server_message_form parts_spies_takeWhile_mono
[THEN subsetD] parts_spies_evs_revD2 [THEN subsetD]

645 THE KERBEROS PROTOCOL, BAN VERSION, WITH GETS EVENT

intro!: B_authenticates_A)
done

lemma B_authenticates_and_keydist_to_A:
"[Crypt K {Agent A, Number Tal} € parts (spies evs);
Crypt (shrK B) {Number Tk, Agent A, Key K|} € parts (spies evs);
Key K ¢ analz (spies evs);
A ¢ bad; B ¢ bad; evs € bankerberos |
= A Issues B with (Crypt K {Agent A, Number Tal}) on evs"
apply (blast dest: B_authenticates_A A_Issues_B)
done

end

5 The Kerberos Protocol, BAN Version, with
Gets event

theory Kerberos_BAN_Gets imports Public begin

From page 251 of Burrows, Abadi and Needham (1989). A Logic of Authenti-
cation. Proc. Royal Soc. 426

Confidentiality (secrecy) and authentication properties rely on temporal checks:
strong guarantees in a little abstracted - but very realistic - model.

consts
sesKlife :: nat

authlife :: nat
The ticket should remain fresh for two journeys on the network at least

The Gets event causes longer traces for the protocol to reach its end

specification (sesKlife)
sesKlife LB [iff]: "4 < sesKlife"
by blast

The authenticator only for one journey

The Gets event causes longer traces for the protocol to reach its end

specification (authlife)
authlife LB [iff]: "2 < authlife"
by blast

abbreviation
CT :: "event list = nat" where

65

"CT == length"
abbreviation
expiredK :: "[nat, event list] = bool" where
"expiredK T evs == sesKlife + T < CT evs"
abbreviation
expiredAd :: "[nat, event list] = bool" where
"expiredA T evs == authlife + T < CT evs"
definition
before :: "[event, event list] = event list" (<before _ on _>)

where "before ev on evs = takeWhile (Az. z # ev) (rev evs)"
definition

Unique :: "[event, event list] = bool" (<Unique _ on _>)
where "Unique ev on evs = (ev ¢ set (tl (dropWhile (Az. z # ev) evs)))"

inductive__set bankerb_gets :: "event list set"
where

Nil: "[] € bankerb_gets"

| Fake: "[evsf € bankerb_gets; X € synth (analz (knows Spy evsf)) |
=—> Says Spy B X # evsf € bankerb_gets"

| Reception: "[evsr€ bankerb_gets; Says A B X € set evsr |
— Gets B X # evsr € bankerb_gets"

| BK1: "[evsl € bankerb_gets |
= Says A Server {Agent A, Agent B} # evsi
€ bankerb_gets"

| BK2: "[evs2 € bankerb_gets; Key K ¢ used evs2; K € symKeys;
Gets Server {Agent A, Agent B} € set evs2 |
— Says Server A
(Crypt (shrK A)
{Number (CT evs2), Agent B, Key K,
(Crypt (shrK B) {Number (CT evs2), Agent A, Key K[})[})
evs2 € bankerb_gets"

| BK3: "[evs3 € bankerb_gets;
Gets A (Crypt (shrK A) {Number Tk, Agent B, Key K, Ticketl]})
€ set evs3;
Says A Server {Agent A, Agent B} € set evs3;
— expiredK Tk evs3 |
—> Says A B {Ticket, Crypt K {Agent A, Number (CT evs3)} |
evs3 € bankerb_gets"

665 THE KERBEROS PROTOCOL, BAN VERSION, WITH GETS EVENT

| BK4: "] evs4 € bankerb_gets;
Gets B {(Crypt (shrK B) {Number Tk, Agent A, Key K|}),
(Crypt K {Agent A, Number Tal}) [€ set evs4;
— expiredK Tk evs4; — expiredA Ta evs4 |
—> Says B A (Crypt K (Number Ta)) # evs4
€ bankerb_gets"

| Oops: "[evso € bankerb_gets;
Says Server A (Crypt (shrK A) {Number Tk, Agent B, Key K, Ticket[)
€ set evso;
expiredK Tk evso |
= Notes Spy {Number Tk, Key K|} # evso € bankerb_gets"

declare Says_imp_knows_Spy [THEN parts.Inj, dest]
declare parts.Body [dest]

declare analz_into_parts [dest]

declare Fake_parts_insert_in_Un [dest]

declare knows_Spy_partsEs [elim]

A "possibility property": there are traces that reach the end.

lemma "[Key K ¢ used []; K € symKeys]
—> dTimestamp. Jevs € bankerb_gets.
Says B A (Crypt K (Number Timestamp))
€ set evs"
apply (cut_tac sesKlife_LB)
apply (cut_tac authlife_ LB)
apply (intro exI bexI)
apply (rule_tac [2]
bankerb_gets.Nil [THEN bankerb_gets.BK1, THEN bankerb_gets.Reception,
THEN bankerb_gets.BK2, THEN bankerb_gets.Reception,
THEN bankerb_gets.BK3, THEN bankerb_gets.Reception,
THEN bankerb_gets.BK4])
apply (possibility, simp_all (no_asm_simp) add: used_Cons)
done

Lemmas about reception invariant: if a message is received it certainly was sent

lemma Gets_imp_Says :
"[Gets B X € set evs; evs € bankerb_gets | = JA. Says A B X € set
evs"
apply (erule rev_mp)
apply (erule bankerb_gets.induct)
apply auto
done

lemma Gets_imp_knows_Spy:

"[Gets B X € set evs; evs € bankerb_gets | = X € knows Spy evs"
apply (blast dest!: Gets_imp_Says Says_imp_knows_Spy)
done

lemma Gets_imp_knows_Spy_parts[dest]:

67

"[Gets B X € set evs; evs € bankerb_gets | =—> X € parts (knows Spy
evs)"
apply (blast dest: Gets_imp_knows_Spy [THEN parts.Inj])
done

lemma Gets_imp_knows:
"[Gets B X € set evs; evs € bankerb_gets | = X € knows B evs"
by (metis Gets_imp_knows_Spy Gets_imp_knows_agents)

lemma Gets_imp_knows_analz:

"[Gets B X € set evs; evs € bankerb_gets | —> X € analz (knows B evs)"
apply (blast dest: Gets_imp_knows [THEN analz.Inj])
done

Lemmas for reasoning about predicate "before"

lemma used_Says_rev: "used (evs @ [Says A B X]) = parts {X} U (used evs)"
apply (induct_tac "evs")

apply simp

apply (rename_tac a b)

apply (induct_tac "a'")

apply auto

done

lemma used_Notes_rev: "used (evs @ [Notes A X]) = parts {X} U (used evs)"
apply (induct_tac "evs")

apply simp

apply (rename_tac a b)

apply (induct_tac "a")

apply auto

done

lemma used_Gets_rev: "used (evs @ [Gets B X]) = used evs'
apply (induct_tac "evs")

apply simp

apply (rename_tac a b)

apply (induct_tac "a")

apply auto

done

lemma used_evs_rev: "used evs = used (rev evs)"
apply (induct_tac "evs")

apply simp

apply (rename_tac a b)

apply (induct_tac "a'")

apply (simp add: used_Says_rev)

apply (simp add: used_Gets_rev)

apply (simp add: used_Notes_rev)

done

lemma used_takeWhile_used [rule_format]:
"x € used (takeWhile P X) — x € used X"
apply (induct_tac "X")
apply simp
apply (rename_tac a b)

685 THE KERBEROS PROTOCOL, BAN VERSION, WITH GETS EVENT

apply (induct_tac "a")

apply (simp_all add: used_Nil)

apply (blast dest!: initState_into_used)+
done

lemma set_evs_rev: "set evs = set (rev evs)"
apply auto
done

lemma takeWhile_void [rule_format]:

"x ¢ set evs — takeWhile (\z. z # x) evs = evs"
apply auto
done

Forwarding Lemma for reasoning about the encrypted portion of message BK3

lemma BK3_msg_in_parts_knows_Spy:

"[Gets A (Crypt KA {Timestamp, B, K, X[}) € set evs; evs € bankerb_gets
I

— X € parts (knows Spy evs)"

apply blast
done

lemma Oops_parts_knows_Spy:
"Says Server A (Crypt (shrK A) {Timestamp, B, K, X[}) € set evs
— K € parts (knows Spy evs)"

apply blast

done

Spy never sees another agent’s shared key! (unless it’s bad at start)

lemma Spy_see_shrK [simp]:
"evs € bankerb_gets = (Key (shrK A) € parts (knows Spy evs)) = (A
€ bad)"
apply (erule bankerb_gets.induct)
apply (frule_tac [8] Oops_parts_knows_Spy)
apply (frule_tac [6] BK3_msg_in_parts_knows_Spy, simp_all, blast+)
done

lemma Spy_analz_shrK [simp]:

"evs € bankerb_gets = (Key (shrK A) € analz (knows Spy evs)) = (A
€ bad)"
by auto

lemma Spy_see_shrK_D [dest!]:
"[Key (shrK A) € parts (knows Spy evs);
evs € bankerb_gets | = A€bad"
by (blast dest: Spy_see_shrkK)

lemmas Spy_analz_shrK_D = analz_subset_parts [THEN subsetD, THEN Spy_see_shrK_D,

dest!]

Nobody can have used non-existent keys!

lemma new_keys_not_used [simp]:

5.1 Lemmas concerning the form of items passed in messages 69

"[Key K ¢ used evs; K € symKeys; evs € bankerb_gets]
= K ¢ keysFor (parts (knows Spy evs))"

apply (erule rev_mp)

apply (erule bankerb_gets.induct)

apply (frule_tac [8] Oops_parts_knows_Spy)

apply (frule_tac [6] BK3_msg_in_parts_knows_Spy, simp_all)

Fake

apply (force dest!: keysFor_parts_insert)

BK2, BK3, BK4

apply (force dest!: analz_shrK_Decrypt)+
done

5.1 Lemmas concerning the form of items passed in mes-
sages

Describes the form of K, X and K’ when the Server sends this message.

lemma Says_Server_message_form:
"[Says Server A (Crypt K’ {Number Tk, Agent B, Key K, Ticketl[})
€ set evs; evs € bankerb_gets |
= K’ = shrK A N K ¢ range shrK A
Ticket = (Crypt (shrK B) {Number Tk, Agent A, Key K[}) A
Key K ¢ used(before
Says Server A (Crypt K’ {Number Tk, Agent B, Key K, Ticket[)
on evs) A
Tk = CT(before
Says Server A (Crypt K’ {Number Tk, Agent B, Key K, Ticket[)
on evs)"
unfolding before_def
apply (erule rev_mp)
apply (erule bankerb_gets.induct, simp_all)

We need this simplification only for Message 2

apply (simp (no_asm) add: takeWhile_tail)
apply auto

Two subcases of Message 2. Subcase: used before

apply (blast dest: used_evs_rev [THEN equalityD2, THEN contra_subsetD]
used_takeWhile_used)

subcase: CT before

apply (fastforce dest!: set_evs_rev [THEN equalityD2, THEN contra_subsetD,
THEN takeWhile_void])
done

If the encrypted message appears then it originated with the Server PROVIDED
that A is NOT compromised! This allows A to verify freshness of the session
key.

lemma Kab_authentic:
"[Crypt (shrK A) {Number Tk, Agent B, Key K, X}

705 THE KERBEROS PROTOCOL, BAN VERSION, WITH GETS EVENT

€ parts (knows Spy evs);
A ¢ bad; evs € bankerb_gets |
= Says Server A (Crypt (shrK A) {Number Tk, Agent B, Key K, X}})
€ set evs"
apply (erule rev_mp)
apply (erule bankerb_gets.induct)
apply (frule_tac [8] Oops_parts_knows_Spy)
apply (frule_tac [6] BK3_msg_in_parts_knows_Spy, simp_all, blast)
done

If the TICKET appears then it originated with the Server

FRESHNESS OF THE SESSION KEY to B

lemma ticket_authentic:
"[Crypt (shrK B) {Number Tk, Agent A, Key K[|} € parts (knows Spy evs);
B ¢ bad; evs € bankerb_gets |
— Says Server A
(Crypt (shrK A) {Number Tk, Agent B, Key K,
Crypt (shrK B) {Number Tk, Agent A, Key K[}[})

€ set evs"
apply (erule rev_mp)
apply (erule bankerb_gets.induct)
apply (frule_tac [8] Oops_parts_knows_Spy)
apply (frule_tac [6] BK3_msg_in_parts_knows_Spy, simp_all, blast)
done

EITHER describes the form of X when the following message is sent, OR reduces
it to the Fake case. Use Says_Server_message_form if applicable.

lemma Gets_Server_message_form:
"[Gets A (Crypt (shrK A) {Number Tk, Agent B, Key K, X[|})
€ set evs;

evs € bankerb_gets |
—> (K ¢ range shrK A X = (Crypt (shrK B) {Number Tk, Agent A, Key K[}))

| X € analz (knows Spy evs)"
apply (case_tac "A € bad")
apply (force dest!: Gets_imp_knows_Spy [THEN analz.Inj])
apply (blast dest!: Kab_authentic Says_Server_message_form)
done

Reliability guarantees: honest agents act as we expect

lemma BK3_imp_Gets:
"[Says A B {Ticket, Crypt K {Agent A, Number Tal} € set evs;
A ¢ bad; evs € bankerb_gets |
= 3 Tk. Gets A (Crypt (shrK A) {Number Tk, Agent B, Key K, Ticket[)
€ set evs"
apply (erule rev_mp)
apply (erule bankerb_gets.induct)
apply auto
done

lemma BK4_imp_Gets:
"[Says B A (Crypt K (Number Ta)) € set evs;
B ¢ bad; evs € bankerb_gets |

5.1 Lemmas concerning the form of items passed in messages 71

= 3 Tk. Gets B {Crypt (shrK B) {Number Tk, Agent A, Key K|,
Crypt K {Agent A, Number Tall|} € set evs"
apply (erule rev_mp)
apply (erule bankerb_gets.induct)
apply auto
done

lemma Gets_A_knows_K:
"[Gets A (Crypt (shrK A) {Number Tk, Agent B, Key K, Ticketl}) € set evs;
evs € bankerb_gets |
—> Key K € analz (knows A evs)"
apply (force dest: Gets_imp_knows_analz)
done

lemma Gets_B_knows_K:
"[Gets B {Crypt (shrK B) {Number Tk, Agent A, Key K[,
Crypt K {Agent A, Number Tall} € set evs;
evs € bankerb_gets |
—> Key K € analz (knows B evs)"
apply (force dest: Gets_imp_knows_analz)
done

Session keys are not used to encrypt other session keys

lemma analz_image_freshK [rule_format (no_asm)]:
"evs € bankerb_gets —
VK KK. KK C - (range shrK) —

(Key K € analz (Key‘KK U (knows Spy evs))) =

(K € KK | Key K € analz (knows Spy evs))"
apply (erule bankerb_gets.induct)
apply (drule_tac [8] Says_Server_message_form)
apply (erule_tac [6] Gets_Server_message_form [THEN disjE], analz_freshK,
spy_analz, auto)
done

lemma analz_insert_freshK:
"[evs € bankerb_gets; KAB ¢ range shrK | —
(Key K € analz (insert (Key KAB) (knows Spy evs))) =
(K = KAB | Key K € analz (knows Spy evs))"

by (simp only: analz_image_freshK analz_image_freshK_simps)

The session key K uniquely identifies the message

lemma unique_session_keys:
"[Says Server A
(Crypt (shrK A) {Number Tk, Agent B, Key K, X[}) € set evs;
Says Server A’
(Crypt (shrK A’) {Number Tk’, Agent B’, Key K, X’}) € set evs;
evs € bankerb_gets | = A=A’ A Tk=Tk’ A B=B’ A X = X’"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule bankerb_gets.induct)
apply (frule_tac [8] Oops_parts_knows_Spy)
apply (frule_tac [6] BK3_msg_in_parts_knows_Spy, simp_all)

725 THE KERBEROS PROTOCOL, BAN VERSION, WITH GETS EVENT

BK2: it can’t be a new key

apply blast
done

lemma unique_session_keys_Gets:
" Gets 4
(Crypt (shrK A) {Number Tk, Agent B, Key K, X[}) € set evs;
Gets A
(Crypt (shrK A) {Number Tk’, Agent B’, Key K, X’[) € set evs;
A ¢ bad; evs € bankerb_gets | = Tk=Tk’ A B=B’ A X = X’"
apply (blast dest!: Kab_authentic unique_session_keys)
done

lemma Server_Unique:
"[Says Server A

(Crypt (shrK A) {Number Tk, Agent B, Key K, Ticket|}) € set evs;

evs € bankerb_gets | =

Unique Says Server A (Crypt (shrK A) {Number Tk, Agent B, Key K, Ticketl[)

on evs"
apply (erule rev_mp, erule bankerb_gets.induct, simp_all add: Unique_def)
apply blast
done

5.2 Non-temporal guarantees, explicitly relying on non-
occurrence of oops events - refined below by temporal
guarantees

Non temporal treatment of confidentiality

Lemma: the session key sent in msg BK2 would be lost by oops if the spy could
see it!

lemma lemma_conf [rule_format (no_asm)]:
" A ¢ bad; B ¢ bad; evs € bankerb_gets |
— Says Server A
(Crypt (shrK A) {Number Tk, Agent B, Key K,
Crypt (shrK B) {Number Tk, Agent A, Key K[})
€ set evs —

Key K € analz (knows Spy evs) — Notes Spy {Number Tk, Key K[} € set

evs"

apply (erule bankerb_gets.induct)

apply (frule_tac [8] Says_Server_message_form)

apply (frule_tac [6] Gets_Server_message_form [THEN disjE])

apply (simp_all (no_asm_simp) add: analz_insert_eq analz_insert_freshK pushes)

Fake
apply spy_analz
BK2

apply (blast intro: parts_insertI)

BK3

5.2 Non-temporal guarantees, explicitly relying on non-occurrence of oops events - refined below by temporal guara

apply (case_tac "Aa € bad")

prefer 2 apply (blast dest: Kab_authentic unique_session_keys)

apply (blast dest: Gets_imp_knows_Spy [THEN analz.Inj] Crypt_Spy_analz_bad
elim!: MPair_analz)

Oops

apply (blast dest: unique_session_keys)
done

Confidentiality for the Server: Spy does not see the keys sent in msg BK2 as
long as they have not expired.

lemma Confidentiality_S:
"[Says Server A
(Crypt K’ {Number Tk, Agent B, Key K, Ticket|}) € set evs;
Notes Spy {Number Tk, Key K| ¢ set evs;
A ¢ bad; B ¢ bad; evs € bankerb_gets
] = Key K ¢ analz (knows Spy evs)"
apply (frule Says_Server_message_form, assumption)
apply (blast intro: lemma_conf)
done

Confidentiality for Alice

lemma Confidentiality_ A:
"[Crypt (shrK A) {Number Tk, Agent B, Key K, X[} € parts (knows Spy evs);
Notes Spy {Number Tk, Key K| ¢ set evs;
A ¢ bad; B ¢ bad; evs € bankerb_gets
] = Key K ¢ analz (knows Spy evs)"
by (blast dest!: Kab_authentic Confidentiality_S)

Confidentiality for Bob

lemma Confidentiality_B:
"[Crypt (shrK B) {Number Tk, Agent A, Key K|}
€ parts (knows Spy evs);
Notes Spy {Number Tk, Key K| ¢ set evs;
A ¢ bad; B ¢ bad; evs € bankerb_gets
] = Key K ¢ analz (knows Spy evs)"
by (blast dest!: ticket_authentic Confidentiality_S)

Non temporal treatment of authentication

Lemmas lemma_A and lemma_B in fact are common to both temporal and non-
temporal treatments

lemma lemma_A [rule_format]:
"[A ¢ bad; B ¢ bad; evs € bankerb_gets |
BN
Key K ¢ analz (knows Spy evs) —>
Says Server A (Crypt (shrK A) {Number Tk, Agent B, Key K, X[)
€ set evs —»
Crypt K {Agent A, Number Tal} € parts (knows Spy evs) —
Says A B {X, Crypt K {Agent A, Number Talt|
€ set evs"
apply (erule bankerb_gets.induct)
apply (frule_tac [8] Oops_parts_knows_Spy)

745 THE KERBEROS PROTOCOL, BAN VERSION, WITH GETS EVENT

apply (frule_tac [6] Gets_Server_message_form)
apply (frule_tac [7] BK3_msg_in_parts_knows_Spy, analz_mono_contra)
apply (simp_all (no_asm_simp) add: all_conj_distrib)

Fake

apply blast
BK2

apply (force dest: Crypt_imp_invKey_keysFor)

BK3

apply (blast dest: Kab_authentic unique_session_keys)
done
lemma lemma_B [rule_format]:
"[B ¢ bad; evs € bankerb_gets |
—> Key K ¢ analz (knows Spy evs) —»
Says Server A (Crypt (shrK A) {Number Tk, Agent B, Key K, X[)
€ set evs —
Crypt K (Number Ta) € parts (knows Spy evs) —>
Says B A (Crypt K (Number Ta)) € set evs"
apply (erule bankerb_gets.induct)
apply (frule_tac [8] Oops_parts_knows_Spy)
apply (frule_tac [6] Gets_Server_message_form)
apply (drule_tac [7] BK3_msg_in_parts_knows_Spy, analz_mono_contra)
apply (simp_all (no_asm_simp) add: all_conj_distrib)

Fake

apply blast

BK2

apply (force dest: Crypt_imp_invKey_keysFor)
BK4

apply (blast dest: ticket_authentic unique_session_keys
Gets_imp_knows_Spy [THEN analz.Inj] Crypt_Spy_analz_bad)
done

The "r" suffix indicates theorems where the confidentiality assumptions are re-
laxed by the corresponding arguments.

Authentication of A to B

lemma B_authenticates_A_r:
"[Crypt K {Agent A, Number Tal € parts (knows Spy evs);
Crypt (shrK B) {Number Tk, Agent A, Key K|} € parts (knows Spy evs);
Notes Spy {Number Tk, Key K[|} ¢ set evs;
A ¢ bad; B ¢ bad; evs € bankerb_gets |
—> Says A B {Crypt (shrK B) {Number Tk, Agent A, Key K|},
Crypt K {Agent A, Number Tall}} € set evs"
by (blast dest!: ticket_authentic
intro!: lemma_A
elim!: Confidentiality_S [THEN [2] rev_notE])

Authentication of B to A

5.3 Temporal guarantees, relying on a temporal check that insures that no oops event occurred. These are available

lemma A_authenticates_B_r:
"[Crypt K (Number Ta) € parts (knows Spy evs);
Crypt (shrK A) {Number Tk, Agent B, Key K, X[} € parts (knows Spy evs);
Notes Spy {Number Tk, Key K| ¢ set evs;
A ¢ bad; B ¢ bad; evs € bankerb_gets |
= Says B A (Crypt K (Number Ta)) € set evs"
by (blast dest!: Kab_authentic
intro!: lemma_B elim!: Confidentiality_S [THEN [2] rev_notE])

lemma B_authenticates_A:
"[Crypt K {Agent A, Number Tal} € parts (spies evs);
Crypt (shrK B) {Number Tk, Agent A, Key K|} € parts (spies evs);
Key K ¢ analz (spies evs);
A ¢ bad; B ¢ bad; evs € bankerb_gets |
= Says A B {Crypt (shrK B) {Number Tk, Agent A, Key K[,
Crypt K {Agent A, Number Ta|l}} € set evs"
apply (blast dest!: ticket_authentic intro!: lemma_A)
done

lemma A_authenticates_B:
"[Crypt K (Number Ta) € parts (spies evs);
Crypt (shrK A) {Number Tk, Agent B, Key K, X[} € parts (spies evs);
Key K ¢ analz (spies evs);
A ¢ bad; B ¢ bad; evs € bankerb_gets |
— Says B A (Crypt K (Number Ta)) € set evs"
apply (blast dest!: Kab_authentic intro!: lemma_B)
done

5.3 Temporal guarantees, relying on a temporal check that
insures that no oops event occurred. These are avail-
able in the sense of goal availability

Temporal treatment of confidentiality

Lemma: the session key sent in msg BK2 would be EXPIRED if the spy could
see it!

lemma lemma_conf_temporal [rule_format (no_asm)]:
"[A ¢ bad; B ¢ bad; evs € bankerb_gets |
—> Says Server A
(Crypt (shrK A) {Number Tk, Agent B, Key K,
Crypt (shrK B) {Number Tk, Agent A, Key K[}[})
€ set evs —
Key K € analz (knows Spy evs) — expiredK Tk evs"
apply (erule bankerb_gets.induct)
apply (frule_tac [8] Says_Server_message_form)
apply (frule_tac [6] Gets_Server_message_form [THEN disjE])
apply (simp_all (no_asm_simp) add: less_Sucl analz_insert_eq analz_insert_freshK
pushes)

Fake
apply spy_analz

BK2

765 THE KERBEROS PROTOCOL, BAN VERSION, WITH GETS EVENT

apply (blast intro: parts_insertI less_SucIl)

BK3

apply (case_tac "Aa € bad")

prefer 2 apply (blast dest: Kab_authentic unique_session_keys)

apply (blast dest: Gets_imp_knows_Spy [THEN analz.Inj] Crypt_Spy_analz_bad
elim!: MPair_analz intro: less_SucI)

Oops: PROOF FAILS if unsafe intro below

apply (blast dest: unique_session_keys intro!: less_SucI)
done

Confidentiality for the Server: Spy does not see the keys sent in msg BK2 as
long as they have not expired.

lemma Confidentiality_S_temporal:
"[Says Server A
(Crypt K’ {Number T, Agent B, Key K, X[}) € set evs;
- expiredK T evs;
A ¢ bad; B ¢ bad; evs € bankerb_gets
] = Key K ¢ analz (knows Spy evs)"
apply (frule Says_Server_message_form, assumption)
apply (blast intro: lemma_conf_temporal)
done

Confidentiality for Alice

lemma Confidentiality_A_temporal:
"[Crypt (shrK A) {Number T, Agent B, Key K, X| € parts (knows Spy evs);
- expiredK T evs;
A ¢ bad; B ¢ bad; evs € bankerb_gets
] = Key K ¢ analz (knows Spy evs)"
by (blast dest!: Kab_authentic Confidentiality_S_temporal)

Confidentiality for Bob

lemma Confidentiality_ B_temporal:
"[Crypt (shrK B) {Number Tk, Agent A, Key K|}
€ parts (knows Spy evs);
- expiredK Tk evs;
A ¢ bad; B ¢ bad; evs € bankerb_gets
] = Key K ¢ analz (knows Spy evs)"
by (blast dest!: ticket_authentic Confidentiality_S_temporal)

Temporal treatment of authentication

Authentication of A to B

lemma B_authenticates_A_temporal:
"[Crypt K {Agent A, Number Tal} € parts (knows Spy evs);
Crypt (shrK B) {Number Tk, Agent A, Key K|}
€ parts (knows Spy evs);
- expiredK Tk evs;
A ¢ bad; B ¢ bad; evs € bankerb_gets |
—> Says A B {Crypt (shrK B) {Number Tk, Agent A, Key K|},
Crypt K {Agent A, Number Tall|} € set evs"
by (blast dest!: ticket_authentic

5.4 Combined guarantees of key distribution and non-injective agreement on the session keys77

intro!: lemma_A
elim!: Confidentiality_S_temporal [THEN [2] rev_notE])

Authentication of B to A

lemma A_authenticates_B_temporal:
"[Crypt K (Number Ta) € parts (knows Spy evs);
Crypt (shrK A) {Number Tk, Agent B, Key K, X|
€ parts (knows Spy evs);
— expiredK Tk evs;
A ¢ bad; B ¢ bad; evs € bankerb_gets |
— Says B A (Crypt K (Number Ta)) € set evs"
by (blast dest!: Kab_authentic
intro!: lemma_B elim!: Confidentiality_S_temporal [THEN [2] rev_notE])

5.4 Combined guarantees of key distribution and non-
injective agreement on the session keys

lemma B_authenticates_and_keydist_to_A:
"[Gets B {Crypt (shrK B) {Number Tk, Agent A, Key K[,
Crypt K {Agent A, Number Tall} € set evs;
Key K ¢ analz (spies evs);
A ¢ bad; B ¢ bad; evs € bankerb_gets |
—> Says A B {Crypt (shrK B) {Number Tk, Agent A, Key K|},
Crypt K {Agent A, Number Tall} € set evs
A Key K € analz (knows A evs)"
apply (blast dest: B_authenticates_A BK3_imp_Gets Gets_A_knows_K)
done

lemma A_authenticates_and_keydist_to_B:
"[Gets A (Crypt (shrK A) {Number Tk, Agent B, Key K, Ticket|) € set
evs;
Gets A (Crypt K (Number Ta)) € set evs;
Key K ¢ analz (spies evs);
A ¢ bad; B ¢ bad; evs € bankerb_gets |
—> Says B A (Crypt K (Number Ta)) € set evs
AN Key K € analz (knows B evs)"
apply (blast dest: A_authenticates_B BK4_imp_Gets Gets_B_knows_K)
done

end

6 The Kerberos Protocol, Version IV

theory KerberosIV imports Public begin

The "u" prefix indicates theorems referring to an updated version of the proto-
col. The "r" suffix indicates theorems where the confidentiality assumptions are
relaxed by the corresponding arguments.

abbreviation

78 6 THE KERBEROS PROTOCOL, VERSION IV

Kas :: agent where "Kas == Server"

abbreviation
Tgs :: agent where "Tgs == Friend 0"

axiomatization where
Tgs_not_bad [iff]: "Tgs ¢ bad"
— Tgs is secure — we already know that Kas is secure

definition

authKeys :: "event list = key set" where
"authKeys evs = {authK. 3A Peer Ta. Says Kas A
(Crypt (shrK A) {Key authK, Agent Peer, Number Ta,
(Crypt (shrK Peer) {Agent A, Agent Peer, Key authK, Number

Talt)
}) € set evs}"
definition
Issues :: "[agent, agent, msg, event list] = bool"

(<_ Issues _ with _ on _> [50, 0, 0, 50] 50) where
"(A Issues B with X on evs) =
(Y. Says A BY € set evs A X € parts {Y} A
X ¢ parts (spies (takeWhile (Az. z # Says A B Y) (rev evs))))"

definition

before :: "[event, event list] = event list" (<before _ on _> [0, 50] 50)
where "(before ev on evs) = takeWhile (A\z. z # ev) (rev evs)"

definition

Unique :: "[event, event list] = bool" (<Unique _ on _> [0, 50] 50)
where "(Unique ev on evs) = (ev ¢ set (tl (dropWhile (A\z. z # ev) evs)))"

consts
authKlife :: nat
servKlife :: nat
authlife :: nat
replylife :: nat

specification (authKlife)
authKlife_ LB [iff]: "2 < authKlife"
by blast

79

specification (servKlife)
servKlife LB [iff]: "2 + authKlife < servKlife"
by blast

specification (authlife)
authlife LB [iff]: "Suc 0 < authlife"
by blast

specification (replylife)
replylife_LB [iff]: "Suc 0 < replylife"
by blast

abbreviation

CT :: "event list = nat" where
"CT == length"

abbreviation
expiredAK :: "[nat, event list] = bool" where
"expiredAK Ta evs == authKlife + Ta < CT evs"

abbreviation
expiredSK :: "[nat, event list] = bool" where
"expiredSK Ts evs == servKlife + Ts < CT evs"
abbreviation
expiredA :: "[nat, event list] = bool" where
"expiredA T evs == authlife + T < CT evs"
abbreviation
valid :: "[nat, nat] = bool" (<valid _ wrt _> [0, 50] 50) where

"valid T1 wrt T2 == T1 < replylife + T2"

definition AKcryptSK :: "[key, key, event list] = bool" where
"AKcryptSK authK servK evs ==
dA B Ts.

Says Tgs A (Crypt authK
{]Key servK, Agent B, Number Ts,
Crypt (shrK B) {Agent A, Agent B, Key servK, Number

Ts| [})

€ set evs"

inductive__set kerbIV :: "event list set"
where

Nil: "[] € kerbIV"

| Fake: "[evsf € kerbIV; X € synth (analz (spies evsf)) |
— Says Spy B X # evsf € kerbIV"

80

6 THE KERBEROS PROTOCOL, VERSION IV

"[evsl € kerbIV]

—> Says A Kas {Agent A, Agent Tgs, Number (CT evs1)|} # evsi

€ kerbIV"

"[evs2 € kerbIV; Key authK ¢ used evs2; authK € symKeys;

Says A’ Kas {Agent A, Agent Tgs, Number T1]} € set evs2 |

— Says Kas A

(Crypt (shrK A) {Key authK, Agent Tgs, Number (CT evs2),
(Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK,

Number

"[evs3 € kerbIV;
Says A Kas {Agent A,

Says Kas’ A (Crypt (shrK A) {Key authK, Agent Tgs, Number

(CT evs2)P[) # evs2 € kerbIV"

Agent Tgs, Number T1]} € set evs3;

authTicket|}) € set evs3;

valid Ta wrt T1

I

—> Says A Tgs {authTicket,

(Crypt authK {Agent A, Number (CT evs3)]}),

Agent

B} # evs3 € kerbIV"

"[evs4 € kerbIV; Key servK ¢ used evs4; servK € symKeys;
B # Tgs; authK € symKeys;

Says A’ Tgs {

(Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authk,

(Crypt authK {Agent
€ set evs4;

- expiredAK Ta evs4;

- expiredA T2 evs4;

Number Tal}),
A, Number T2|}), Agent B|}

servKlife + (CT evs4) < authKlife + Ta

I

— Says Tgs A

(Crypt authK {Key servK, Agent B, Number (CT evs4),

Crypt (shrK B) {Agent A, Agent B, Key servK,

evs4 € kerbIV"

Number (CT evsd)|} |})

Ta,

81

| K5: "] evs5 € kerbIV; authK € symKeys; servk € symKeys;
Says A Tgs
{authTicket, Crypt authK {Agent A, Number T2[,
Agent B[
€ set evsb;
Says Tgs’ A
(Crypt authK {Key servK, Agent B, Number Ts, servTicket|)
€ set evs5;
valid Ts wrt T2 |
— Says A B {servTicket,
Crypt servK {Agent A, Number (CT evs5)|} |}
evsb € kerbIV"

| K6: "[evs6 € kerbIV;
Says A’ B {
(Crypt (shrK B) {Agent A, Agent B, Key servK, Number Tsl|}),
(Crypt servK {Agent A, Number T3[)|}
€ set evs6;
expiredSK Ts evs6;
- expiredA T3 evs6

il

— Says B A (Crypt servK (Number T3))
evs6 € kerbIV"

| Oopsi: "[evs01 € kerbIV; A # Spy;
Says Kas A
(Crypt (shrK A) {Key authK, Agent Tgs, Number Ta,
authTicket[}) € set evs01;
expiredAK Ta evs01 |
—> Says A Spy {Agent A, Agent Tgs, Number Ta, Key authK[
evsO1 € kerbIV"

| Oops2: "[evs02 € kerbIV; A # Spy;
Says Tgs A
(Crypt authK {Key servK, Agent B, Number Ts, servTicket|)
€ set evs02;
expiredSK Ts evs02 |
= Says A Spy {Agent A, Agent B, Number Ts, Key servK}]}
evs02 € kerbIV"

82 6 THE KERBEROS PROTOCOL, VERSION IV

declare Says_imp_knows_Spy [THEN parts.Inj, dest]
declare parts.Body [dest]

declare analz_into_parts [dest]

declare Fake_parts_insert_in_Un [dest]

6.1 Lemmas about lists, for reasoning about Issues

lemma spies_Says_rev: "spies (evs @ [Says A B X]) = insert X (spies evs)"
apply (induct_tac "evs")

apply (rename_tac [2] a b)

apply (induct_tac [2] a, auto)

done

lemma spies_Gets_rev: "spies (evs @ [Gets A X]) = spies evs"
apply (induct_tac "evs")

apply (rename_tac [2] a b)

apply (induct_tac [2] a, auto)

done

lemma spies_Notes_rev: "spies (evs @ [Notes A X]) =
(if Ac€bad then insert X (spies evs) else spies evs)"
apply (induct_tac "evs")
apply (rename_tac [2] a b)
apply (induct_tac [2] a, auto)
done

lemma spies_evs_rev: "spies evs = spies (rev evs)"

apply (induct_tac "evs")

apply (rename_tac [2] a b)

apply (induct_tac [2] a)

apply (simp_all (no_asm_simp) add: spies_Says_rev spies_Gets_rev spies_Notes_rev)
done

lemmas parts_spies_evs_revD2 = spies_evs_rev [THEN equalityD2, THEN parts_mono]

lemma spies_takeWhile: "spies (takeWhile P evs) C spies evs"
apply (induct_tac "evs")

apply (rename_tac [2] a b)

apply (induct_tac [2] "a", auto)

Resembles used_subset_append in theory Event.

done

lemmas parts_spies_takeWhile_mono = spies_takeWhile [THEN parts_mono]

6.2 Lemmas about authkeys

lemma authKeys_empty: "authKeys [] = {}"
unfolding authKeys_def

apply (simp (no_asm))

done

6.3 Forwarding Lemmas 83

lemma authKeys_not_insert:
"(VA Ta akey Peer.
ev # Says Kas A (Crypt (shrK A) {akey, Agent Peer, Ta,
(Crypt (shrK Peer) {Agent A, Agent Peer, akey, Tal)[}))
—> authKeys (ev # evs) = authKeys evs"
unfolding authKeys_def by auto

lemma authKeys_insert:
"authKeys
(Says Kas A (Crypt (shrK A) {Key K, Agent Peer, Number Ta,
(Crypt (shrK Peer) {Agent A, Agent Peer, Key K, Number Tal)}) # evs)
= insert K (authKeys evs)"
unfolding authKeys_def by auto

lemma authKeys_simp:
"K € authKeys
(Says Kas A (Crypt (shrK A) {Key K’, Agent Peer, Number Ta,
(Crypt (shrK Peer) {Agent A, Agent Peer, Key K’, Number Tal})]}) # evs)
= K = K’ | K € authKeys evs"
unfolding authKeys_def by auto

lemma authKeysI:
"Says Kas A (Crypt (shrK A) {Key K, Agent Tgs, Number Ta,
(Crypt (shrK Tgs) {Agent A, Agent Tgs, Key K, Number Tal})}}) € set evs
—> K € authKeys evs"
unfolding authKeys_def by auto

lemma authKeys_used: "K € authKeys evs =—> Key K € used evs"
by (simp add: authKeys_def, blast)

6.3 Forwarding Lemmas

—For reasoning about the encrypted portion of message K3—

lemma K3_msg_in_parts_spies:
"Says Kas’ A (Crypt KeyA {authK, Peer, Ta, authTicket|)
€ set evs —> authTicket € parts (spies evs)"
by blast

lemma Oops_range_spies1:
"[Says Kas A (Crypt KeyA {Key authK, Peer, Ta, authTicketl[})
€ set evs ;
evs € kerbIV | — authK ¢ range shrK A authK € symKeys"
apply (erule rev_mp)
apply (erule kerbIV.induct, auto)
done

—For reasoning about the encrypted portion of message K5—

lemma K5_msg_in_parts_spies:
"Says Tgs’ A (Crypt authK {servK, Agent B, Ts, servTicketl|})
€ set evs = servTlicket € parts (spies evs)"
by blast

84 6 THE KERBEROS PROTOCOL, VERSION IV

lemma Oops_range_spies2:
"[Says Tgs A (Crypt authK {Key servK, Agent B, Ts, servTicket[)
€ set evs ;
evs € kerbIV | = servKk ¢ range shrK A servK € symKeys"
apply (erule rev_mp)
apply (erule kerbIV.induct, auto)
done

lemma Says_ticket_parts:
"Says S A (Crypt K {SesKey, B, TimeStamp, Ticket]}) € set evs
= Ticket € parts (spies evs)"

by blast

lemma Spy_see_shrK [simp]:
"evs € kerbIV —> (Key (shrK A) € parts (spies evs)) = (A € bad)"
apply (erule kerbIV.induct)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all)
apply (blast+)
done

lemma Spy_analz_shrK [simp]:
"evs € kerbIV —> (Key (shrK A) € analz (spies evs)) = (A € bad)"
by auto

lemma Spy_see_shrK_D [dest!]:
"[Key (shrK A) € parts (spies evs); evs € kerbIV | —> A€bad"
by (blast dest: Spy_see_shrK)

lemmas Spy_analz_shrK_D = analz_subset_parts [THEN subsetD, THEN Spy_see_shrK_D,
dest!]

Nobody can have used non-existent keys!

lemma new_keys_not_used [simp]:
"[Key K ¢ used evs; K € symKeys; evs € kerbIV]
= K ¢ keysFor (parts (spies evs))"

apply (erule rev_mp)

apply (erule kerbIV.induct)

apply (frule_tac [7] K5_msg_in_parts_spies)

apply (frule_tac [5] K3_msg_in_parts_spies, simp_all)

Fake
apply (force dest!: keysFor_parts_insert)
Others

apply (force dest!: analz_shrK_Decrypt)+
done

lemma new_keys_not_analzd:
"[evs € kerbIV; K € symKeys; Key K ¢ used evs]
—> K ¢ keysFor (analz (spies evs))"
by (blast dest: new_keys_not_used intro: keysFor_mono [THEN subsetD])

6.4 Lemmas for reasoning about predicate "before" 85

6.4 Lemmas for reasoning about predicate "before"

lemma used_Says_rev: "used (evs @ [Says A B X]) = parts {X} U (used evs)"
apply (induct_tac "evs")

apply simp

apply (rename_tac a b)

apply (induct_tac "a")

apply auto

done

lemma used_Notes_rev: "used (evs @ [Notes A X]) = parts {X} U (used evs)"
apply (induct_tac "evs")

apply simp

apply (rename_tac a b)

apply (induct_tac "a")

apply auto

done

lemma used_Gets_rev: "used (evs @ [Gets B X]) = used evs"
apply (induct_tac "evs")

apply simp

apply (rename_tac a b)

apply (induct_tac "a")

apply auto

done

lemma used_evs_rev: "used evs = used (rev evs)'
apply (induct_tac "evs")

apply simp

apply (rename_tac a b)

apply (induct_tac "a")

apply (simp add: used_Says_rev)

apply (simp add: used_Gets_rev)

apply (simp add: used_Notes_rev)

done

lemma used_takeWhile_used [rule_format]:
"x € used (takeWhile P X) — x € used X"
apply (induct_tac "X")
apply simp
apply (rename_tac a b)
apply (induct_tac "a'")
apply (simp_all add: used_Nil)
apply (blast dest!: initState_into_used)+
done

lemma set_evs_rev: "set evs = set (rev evs)"
by auto

lemma takeWhile_void [rule_format]:
"x ¢ set evs — takeWhile (A\z. z # x) evs = evs"
by auto

86 6 THE KERBEROS PROTOCOL, VERSION IV

6.5 Regularity Lemmas
These concern the form of items passed in messages

Describes the form of all components sent by Kas

lemma Says_Kas_message_form:
"[Says Kas A (Crypt K {Key authK, Agent Peer, Number Ta, authTicketl]})
€ set evs;
evs € kerbIV | =
K = shrK A N Peer = Tgs A
authK ¢ range shrK A authK € authKeys evs A authK € symKeys A
authTicket = (Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal})
A
Key authK ¢ used(before
Says Kas A (Crypt K {Key authK, Agent Peer, Number Ta, authTicket|)
on evs) A
Ta = CT (before
Says Kas A (Crypt K {Key authK, Agent Peer, Number Ta, authTicket|)
on evs)"
unfolding before_def
apply (erule rev_mp)
apply (erule kerbIV.induct)
apply (simp_all (no_asm) add: authKeys_def authKeys_insert, blast, blast)

K2

apply (simp (no_asm) add: takeWhile_tail)

apply (rule conjI)

apply (metis Key_not_used authKeys_used length_rev set_rev takeWhile_void
used_evs_rev)

apply blast+

done

lemma SesKey_is_session_key:

"[Crypt (shrK Tgs_B) {Agent A, Agent Tgs_B, Key SesKey, Number T|}

€ parts (spies evs); Tgs_B ¢ bad;
evs € kerbIV |

—> SesKey ¢ range shrK"
apply (erule rev_mp)
apply (erule kerbIV.induct)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all, blast)
done

lemma authTicket_authentic:
"[Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal
€ parts (spies evs);
evs € kerbIV |
—> Says Kas A (Crypt (shrK A) {Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Talt])
€ set evs"
apply (erule rev_mp)

6.5 Regularity Lemmas 87

apply (erule kerbIV.induct)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all)

Fake, K4

apply (blast+)
done

lemma authTicket_crypt_authK:

"[Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal

€ parts (spies evs);
evs € kerbIV |

— authK € authKeys evs"
apply (frule authTicket_authentic, assumption)
apply (simp (no_asm) add: authKeys_def)
apply blast
done

Describes the form of servK, servTicket and authK sent by Tgs

lemma Says_Tgs_message_form:
"[Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, servTicket[)
€ set evs;
evs € kerbIV |
= B # Tgs A
authK ¢ range shrK A authK € authKeys evs A authK € symKeys A
servK ¢ range shrK A servK ¢ authKeys evs A servK € symKeys A
servTicket = (Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts[)

Key servK ¢ used (before
Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, servTicket|)
on evs) A
Ts = CT(before
Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, servTicket[)
on evs) "
unfolding before_def
apply (erule rev_mp)
apply (erule kerbIV.induct)
apply (simp_all add: authKeys_insert authKeys_not_insert authKeys_empty authKeys_simp,
blast)

We need this simplification only for Message 4

apply (simp (no_asm) add: takeWhile_tail)
apply auto

Five subcases of Message 4

apply (blast dest!: SesKey_is_session_key)
apply (blast dest: authTicket_crypt_authK)
apply (blast dest!: authKeys_used Says_Kas_message_form)

subcase: used before

apply (metis used_evs_rev used_takeWhile_used)

subcase: CT before

88 6 THE KERBEROS PROTOCOL, VERSION IV

apply (metis length_rev set_evs_rev takeWhile_void)
done

lemma authTicket_form:
"[Crypt (shrK A) {Key authK, Agent Tgs, Ta, authTicket|
€ parts (spies evs);
A ¢ bad;
evs € kerbIV |
—> authK ¢ range shrK A authK € symKeys A
authTicket = Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Tal"
apply (erule rev_mp)
apply (erule kerbIV.induct)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all)
apply (blast+)
done

This form holds also over an authTicket, but is not needed below.

lemma servTicket_form:
"[Crypt authK {Key servK, Agent B, Ts, servTicket|
€ parts (spies evs);
Key authK ¢ analz (spies evs);
evs € kerbIV]
— servK ¢ range shrK A servK € symKeys A
(3A. servTicket = Crypt (shrK B) {Agent A, Agent B, Key servK, Ts[)"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV.induct, analz_mono_contra)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all, blast)
done

Essentially the same as authTicket_form

lemma Says_kas_message_form:
"[Says Kas’ A (Crypt (shrK A)
{Key authK, Agent Tgs, Ta, authTicket]}) € set evs;
evs € kerbIV |
—> authK ¢ range shrK A authK € symKeys A
authTicket =
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Tal
| authTicket € analz (spies evs)"
by (blast dest: analz_shrK_Decrypt authTicket_form
Says_imp_spies [THEN analz.Inj])

lemma Says_tgs_message_form:
"[Says Tgs’ A (Crypt authK {Key servK, Agent B, Ts, servTicket|)
€ set evs; authK € symKeys;
evs € kerbIV |
—> servKk ¢ range shrK A
(3A. servTicket =
Crypt (shrK B) {Agent A, Agent B, Key servK, Ts|})
| servTicket € analz (spies evs)"
by (metis Says_imp_analz_Spy Says_imp_parts_knows_Spy analz.Decrypt analz.Snd
invKey_K servTicket_form)

6.6 Authenticity theorems: confirm origin of sensitive messages 89

6.6 Authenticity theorems: confirm origin of sensitive mes-
sages

lemma authK_authentic:
"[Crypt (shrK A) {Key authK, Peer, Ta, authTicketl[}
€ parts (spies evs);
A ¢ bad; evs € kerbIV |
— Says Kas A (Crypt (shrK A) {Key authK, Peer, Ta, authTicket|)
€ set evs"
apply (erule rev_mp)
apply (erule kerbIV.induct)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all)

Fake
apply blast
K4

apply (blast dest!: authTicket_authentic [THEN Says_Kas_message_form])
done

If a certain encrypted message appears then it originated with Tgs

lemma servK_authentic:
"[Crypt authK {Key servK, Agent B, Number Ts, servTicket]
€ parts (spies evs);

Key authK ¢ analz (spies evs);

authK ¢ range shrk;

evs € kerbIV |
= JA. Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, servTicket[)

€ set evs"

apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV.induct, analz_mono_contra)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all)

Fake

apply blast
K2

apply blast
K4

apply auto

done

lemma servK_authentic_bis:
"[Crypt authK {Key servK, Agent B, Number Ts, servTicket]
€ parts (spies evs);
Key authK ¢ analz (spies evs);
B # Tgs;
evs € kerbIV |
= JA. Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, servTicket[)

90 6 THE KERBEROS PROTOCOL, VERSION IV

€ set evs"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV.induct, analz_mono_contra)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all)

Fake

apply blast
K4

apply blast
done

Authenticity of servK for B

lemma servTicket_authentic_Tgs:
"[Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts|
€ parts (spies evs); B # Tgs; B ¢ bad;
evs € kerbIV |

— Jauthk.

Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts,

Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts[|[})

€ set evs"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV.induct)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all)
apply blast+
done

Anticipated here from next subsection

lemma K4_imp_K2:
"[Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, servTicket|)
€ set evs; evs € kerbIV]
—> JTa. Says Kas A
(Crypt (shrK A)
{Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Talt])
€ set evs"
apply (erule rev_mp)
apply (erule kerbIV.induct)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all, auto)
apply (blast dest!: Says_imp_spies [THEN parts.Inj, THEN parts.Fst, THEN authTicket_authentic]
done

Anticipated here from next subsection

lemma u_K4_imp_K2:
"[Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, servTicket|)
€ set evs; evs € kerbIV]
—> dTa. (Says Kas A (Crypt (shrK A) {Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Talt])

6.6 Authenticity theorems: confirm origin of sensitive messages 91

€ set evs

N servKlife + Ts < authKlife + Ta)"
apply (erule rev_mp)
apply (erule kerbIV.induct)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all, auto)
apply (blast dest!: Says_imp_spies [THEN parts.Inj, THEN parts.Fst, THEN authTicket_authentic])
done

lemma servTicket_authentic_Kas:
"[Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts}}
€ parts (spies evs); B # Tgs; B ¢ bad;
evs € kerbIV |
—> JauthK Ta.
Says Kas A
(Crypt (shrK A) {Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Talt])
€ set evs"
by (blast dest!: servTicket_authentic_Tgs K4_imp_K2)

lemma u_servTicket_authentic_Kas:
"[Crypt (shrK B) {Agent A, Agent B, Key servK, Number Tsl}
€ parts (spies evs); B # Tgs; B ¢ bad;
evs € kerbIV |
—> JauthK Ta. Says Kas A (Crypt(shrK A) {Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal|)
€ set evs
N servKlife + Ts < authKlife + Ta"
by (blast dest!: servTicket_authentic_Tgs u_K4_imp_K2)

lemma servTicket_authentic:
"[Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts}}
€ parts (spies evs); B # Tgs; B ¢ bad;
evs € kerbIV |
—> JTa authK.
Says Kas A (Crypt (shrK A) {Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number
Talt]})
€ set evs
A Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts,
Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts[|[})
€ set evs"
by (blast dest: servTicket_authentic_Tgs K4_imp_K2)

lemma u_servTicket_authentic:

"[Crypt (shrK B) {Agent A, Agent B, Key servK, Number Tsl}

€ parts (spies evs); B # Tgs; B ¢ bad;
evs € kerbIV |

—> JTa authK.

(Says Kas A (Crypt (shrK A) {Key authK, Agent Tgs, Number Ta,

Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number
Talt})
€ set evs
A Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts,

92 6 THE KERBEROS PROTOCOL, VERSION IV

Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts[]})
€ set evs
N servKlife + Ts < authKlife + Ta)"
by (blast dest: servTicket_authentic_Tgs u_K4_imp_K2)

lemma u_NotexpiredSK_NotexpiredAK:
"[— expiredSK Ts evs; servKlife + Ts < authKlife + Ta |
—> — expiredAK Ta evs"
by (metis le_less_trans)

6.7 Reliability: friendly agents send something if some-
thing else happened

lemma K3_imp_K2:
"[Says A Tgs
{authTicket, Crypt authK {Agent A, Number T2|}, Agent B|}
€ set evs;
A ¢ bad; evs € kerbIV |
— dTa. Says Kas A (Crypt (shrK A)
{Key authK, Agent Tgs, Number Ta, authTicketl[)
€ set evs"
apply (erule rev_mp)
apply (erule kerbIV.induct)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all, blast, blast)
apply (blast dest: Says_imp_spies [THEN parts.Inj, THEN authK_authentic])
done

Anticipated here from next subsection. An authK is encrypted by one and only
one Shared key. A servK is encrypted by one and only one authK.

lemma Key_unique_SesKey:
"[Crypt K {Key SesKey, Agent B, T, Ticketl|
€ parts (spies evs);
Crypt K’ {Key SesKey, Agent B’, T’, Ticket’|
€ parts (spies evs); Key SesKey ¢ analz (spies evs);
evs € kerbIV |
= K=K’ A B=B’ N T=T’ A Ticket=Ticket’"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV.induct, analz_mono_contra)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all)

Fake, K2, K4

apply (blast+)
done

lemma Tgs_authenticates_A:
"[Crypt authK {Agent A, Number T2} € parts (spies evs);
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal
€ parts (spies evs);
Key authK ¢ analz (spies evs); A ¢ bad; evs € kerbIV]

6.7 Reliability: friendly agents send something if something else happened 93

=—> 3 B. Says A Tgs {

apply
apply
apply
apply
apply
apply

Fake
apply
K2
apply
K3
apply
K5

apply

done

Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal},
Crypt authK {Agent A, Number T2[}, Agent B || € set evs"

(drule authTicket_authentic, assumption, rotate_tac 4)

(erule rev_mp, erule rev_mp, erule rev_mp)

(erule kerbIV.induct, analz_mono_contra)

(frule_tac [5] Says_ticket_parts)

(frule_tac [7] Says_ticket_parts)

(simp_all (no_asm_simp) add: all_conj_distrib)

blast

(force dest!: Crypt_imp_keysFor)

(blast dest: Key_unique_SesKey)

(metis K3_imp_K2 Key_unique_SesKey Spy_see_shrK parts.Body parts.Fst

Says_imp_knows_Spy [THEN parts.Injl)

lemma Says_K5:
"[Crypt servK {Agent A, Number T3]} € parts (spies evs);

Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts,
servTicket[}) € set evs;

Key servK ¢ analz (spies evs);

A ¢ bad; B ¢ bad; evs € kerbIV |

—> Says A B {servTicket, Crypt servK {Agent A, Number T3}} € set evs"

apply
apply
apply
apply
apply
apply
apply
apply

K3
apply
K4
apply
K5

apply
done

(erule rev_mp)

(erule rev_mp)

(erule rev_mp)

(erule kerbIV.induct, analz_mono_contra)
(frule_tac [5] Says_ticket_parts)

(frule_tac [7] Says_ticket_parts)

(simp_all (no_asm_simp) add: all_conj_distrib)
blast

(blast dest: authK_authentic Says_Kas_message_form Says_Tgs_message_form)

(force dest!: Crypt_imp_keysFor)

(blast dest: Key_unique_SesKey)

Anticipated here from next subsection

94 6 THE KERBEROS PROTOCOL, VERSION IV

lemma unique_CryptKey:
"[Crypt (shrK B) {Agent A, Agent B, Key SesKey, T|}
€ parts (spies evs);
Crypt (shrK B’) {Agent A’, Agent B’, Key SesKey, T’|}
€ parts (spies evs); Key SesKey ¢ analz (spies evs);
evs € kerbIV |
= A=A’ N B=B’ A T=T’"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV.induct, analz_mono_contra)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all)

Fake, K2, K4

apply (blast+)
done

lemma Says_K6:
"[Crypt servK (Number T3) € parts (spies evs);
Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts,
servTicket|}) € set evs;
Key servK ¢ analz (spies evs);
A ¢ bad; B ¢ bad; evs € kerbIV |
—> Says B A (Crypt servK (Number T3)) € set evs"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV.induct, analz_mono_contra)
apply (frule_tac [5] Says_ticket_parts)
apply (frule_tac [7] Says_ticket_parts)
apply (simp_all (no_asm_simp))
apply blast
apply (metis Crypt_imp_invKey_keysFor invKey_K new_keys_not_used)
apply (clarify)
apply (frule Says_Tgs_message_form, assumption)
apply (metis K3_msg_in_parts_spies parts.Fst Says_imp_knows_Spy [THEN parts.Inj]

unique_CryptKey)
done

Needs a unicity theorem, hence moved here

lemma servK_authentic_ter:
"[Says Kas A
(Crypt (shrK A) {Key authK, Agent Tgs, Number Ta, authTicketl}) € set evs;
Crypt authK {Key servK, Agent B, Number Ts, servTicketl|}
€ parts (spies evs);
Key authK ¢ analz (spies evs);
evs € kerbIV |
—> Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, servTicketl]})
€ set evs"
apply (frule Says_Kas_message_form, assumption)
apply (erule rev_mp)
apply (erule rev_mp)

6.8 Unicity Theorems 95

apply (erule rev_mp)

apply (erule kerbIV.induct, analz_mono_contra)

apply (frule_tac [7] K5_msg_in_parts_spies)

apply (frule_tac [5] K3_msg_in_parts_spies, simp_all, blast)

K2

apply (blast dest!: servK_authentic Says_Tgs_message_form authKeys_used)
K4 remain

apply (blast dest!: unique_CryptKey)

done

6.8 Unicity Theorems

The session key, if secure, uniquely identifies the Ticket whether authTicket or
servTicket. As a matter of fact, one can read also Tgs in the place of B.

lemma unique_authKeys:

"[Says Kas A
(Crypt Ka {Key authK, Agent Tgs, Ta, X[}) € set evs;
Says Kas A’

(Crypt Ka’ {Key authK, Agent Tgs, Ta’, X’[}) € set evs;
evs € kerbIV | = A=A’ A Ka=Ka’ A Ta=Ta’ A X=X’"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV.induct)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all)

K2

apply blast
done

servK uniquely identifies the message from Tgs

lemma unique_servKeys:

"[Says Tgs A
(Crypt K {Key servK, Agent B, Ts, X|}) € set evs;
Says Tgs A’

(Crypt K’ {Key servK, Agent B’, Ts’, X’[}) € set evs;
evs € kerbIV]] = A=A’ N B=B’ N K=K’ N Ts=Ts’ N X=X’"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV.induct)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all)

K4

apply blast
done

Revised unicity theorems

lemma Kas_Unique:
"[Says Kas A

96 6 THE KERBEROS PROTOCOL, VERSION IV

(Crypt Ka {Key authK, Agent Tgs, Ta, authTicket[}) € set evs;
evs € kerbIV | =
Unique (Says Kas A (Crypt Ka {Key authK, Agent Tgs, Ta, authTicketl]}))
on evs"
apply (erule rev_mp, erule kerbIV.induct, simp_all add: Unique_def)
apply blast
done

lemma Tgs_Unique:
"[Says Tgs A
(Crypt authK {Key servK, Agent B, Ts, servTicket|}) € set evs;
evs € kerbIV | =

Unique (Says Tgs A (Crypt authK {Key servK, Agent B, Ts, servTicketl[}))

on evs"
apply (erule rev_mp, erule kerbIV.induct, simp_all add: Unique_def)
apply blast
done

6.9 Lemmas About the Predicate akcryptsk

lemma not_AKcryptSK_Nil [iff]: "— AKcryptSK authK servK []"
by (simp add: AKcryptSK_def)

lemma AKcryptSKI:
"[Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, X) € set evs;
evs € kerbIV | = AKcryptSK authK servK evs"
unfolding AKcryptSK_def
apply (blast dest: Says_Tgs_message_form)
done

lemma AKcryptSK_Says [simp]:
"AKcryptSK authK servK (Says S A X # evs) =
(Tgs = S A
(3B Ts. X = Crypt authK
{Key servK, Agent B, Number Ts,
Crypt (shrK B) {Agent A, Agent B, Key servK, Number Tsl|

)
| AKcryptSK authK servK evs)"
by (auto simp add: AKcryptSK_def)

lemma Auth_fresh_not_AKcryptSK:
"[Key authK ¢ used evs; evs € kerbIV |
—> — AKcryptSK authK servK evs'
unfolding AKcryptSK_def
apply (erule rev_mp)
apply (erule kerbIV.induct)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all, blast)
done

lemma Serv_fresh_not_AKcryptSK:

6.9 Lemmas About the Predicate AKcryptSK 97

"Key servK ¢ used evs —> — AKcryptSK authK servK evs"
unfolding AKcryptSK_def by blast

lemma authK_not_AKcryptSK:
"[Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, tk|
€ parts (spies evs); evs € kerbIV]
— - AKcryptSK K authK evs"
apply (erule rev_mp)
apply (erule kerbIV.induct)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all)

Fake

apply blast

K2: by freshness

apply (simp add: AKcryptSK_def)
K4

apply (blast+)
done

A secure serverkey cannot have been used to encrypt others

lemma servK_not_AKcryptSK:
"[Crypt (shrK B) {Agent A, Agent B, Key SK, Number Ts| € parts (spies evs);
Key SK ¢ analz (spies evs); SK € symKeys;
B # Tgs; evs € kerbIV |
—> - AKcryptSK SK K evs"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV.induct, analz_mono_contra)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all, blast)

K4

apply (metis Auth_fresh_not_AKcryptSK Crypt_imp_keysFor new_keys_not_used
parts.Fst parts.Snd Says_imp_knows_Spy [THEN parts.Inj] unique_CryptKey)
done

Long term keys are not issued as servKeys

lemma shrK_not_AKcryptSK:

"evs € kerbIV = — AKcryptSK K (shrK A) evs"
unfolding AKcryptSK_def
apply (erule kerbIV.induct)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, auto)
done

The Tgs message associates servK with authK and therefore not with any other
key authK.

lemma Says_Tgs_AKcryptSK:
"[Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, X [)

98 6 THE KERBEROS PROTOCOL, VERSION IV

€ set evs;
authK’ # authK; evs € kerbIV |
— - AKcryptSK authK’ servK evs"
unfolding AKcryptSK_def
apply (blast dest: unique_servKeys)
done

Equivalently

lemma not_different_AKcryptSK:
"[AKcryptSK authK servK evs;
authK’ # authK; evs € kerbIV |
—> - AKcryptSK authK’ servK evs A servK € symKeys"
apply (simp add: AKcryptSK_def)
apply (blast dest: unique_servKeys Says_Tgs_message_form)
done

lemma AKcryptSK_not_AKcryptSK:
"[AKcryptSK authK servK evs; evs € kerbIV]
— - AKcryptSK servK K evs"
apply (erule rev_mp)
apply (erule kerbIV.induct)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all)
apply (metis Auth_fresh_not_AKcryptSK Says_imp_spies authK_not_AKcryptSK
authKeys_used authTicket_crypt_authK parts.Fst parts.Inj)
done

The only session keys that can be found with the help of session keys are those
sent by Tgs in step K4.

We take some pains to express the property as a logical equivalence so that the
simplifier can apply it.

lemma Key_analz_image_Key_lemma:
"P — (Key K € analz (Key‘KK U H)) — (K€KK | Key K € analz H)
—
P — (Key K € analz (Key‘KK U H)) = (KE€KK | Key K € analz H)"
by (blast intro: analz_mono [THEN subsetD])

lemma AKcryptSK_analz_insert:
"[AKcryptSK K K’ evs; K € symKeys; evs € kerbIV |
—> Key K’ € analz (insert (Key K) (spies evs))"
apply (simp add: AKcryptSK_def, clarify)
apply (drule Says_imp_spies [THEN analz.Inj, THEN analz_insertI], auto)
done

lemma authKeys_are_not_AKcryptSK:
"[K € authKeys evs U range shrK; evs € kerbIV |
= VSK. — AKcryptSK SK K evs A K € symKeys"
apply (simp add: authKeys_def AKcryptSK_def)
apply (blast dest: Says_Kas_message_form Says_Tgs_message_form)
done

lemma not_authKeys_not_AKcryptSK:

6.10 Secrecy Theorems 99

"[K ¢ authKeys evs;
K ¢ range shrK; evs € kerbIV |
= VSK. - AKcryptSK K SK evs"
apply (simp add: AKcryptSK_def)
apply (blast dest: Says_Tgs_message_form)
done

6.10 Secrecy Theorems

For the Oops2 case of the next theorem

lemma Oops2_not_AKcryptSK:
"[evs € kerbIV;
Says Tgs A (Crypt authK
{Key servK, Agent B, Number Ts, servTicketl|)
€ set evs |
— — AKcryptSK servK SK evs"
by (blast dest: AKcryptSKI AKcryptSK_not_AKcryptSK)

Big simplification law for keys SK that are not crypted by keys in KK It helps
prove three, otherwise hard, facts about keys. These facts are exploited as
simplification laws for analz, and also "limit the damage" in case of loss of a key
to the spy. See ESORICS98. [simplified by LCP]

lemma Key_analz_image_Key [rule_format (no_asm)]:
"evs € kerbIV —
(VSK KK. SK € symKeys N KK C -(range shrK) —
(VK € KK. — AKcryptSK K SK evs) —
(Key SK € analz (Key‘KK U (spies evs))) =
(SK € KK | Key SK € analz (spies evs)))"
apply (erule kerbIV.induct)
apply (frule_tac [10] Oops_range_spies2)
apply (frule_tac [9] Oops_range_spies1)
apply (frule_tac [7] Says_tgs_message_form)
apply (frule_tac [5] Says_kas_message_form)
apply (safe del: impI intro!: Key_analz_image_Key_lemma [THEN impI])

Case-splits for Oopsl and message 5: the negated case simplifies using the induction
hypothesis

apply (case_tac [11] "AKcryptSK authK SK evs01")
apply (case_tac [8] "AKcryptSK servK SK evs5")
apply (simp_all del: image_insert
add: analz_image_freshK_simps AKcryptSK_Says shrK_not_AKcryptSK
Oops2_not_AKcryptSK Auth_fresh_not_AKcryptSK
Serv_fresh_not_AKcryptSK Says_Tgs_AKcryptSK Spy_analz_shrK)

Fake

apply spy_analz
K2

apply blast

K3

apply blast

100 6 THE KERBEROS PROTOCOL, VERSION IV

K4

apply (blast dest!: authK_not_AKcryptSK)

K5

apply (case_tac "Key servK € analz (spies evs5) ")

If servK is compromised then the result follows directly...

apply (simp (no_asm_simp) add: analz_insert_eq Un_upper2 [THEN analz_mono,
THEN subsetD])

...therefore servK is uncompromised.

The AKcryptSK servK SK evsb case leads to a contradiction.

apply (blast elim!: servK_not_AKcryptSK [THEN [2] rev_notE] del: allE ballE)

Another K5 case

apply blast
Oopsl

apply simp
apply (blast dest!: AKcryptSK_analz_insert)
done

First simplification law for analz: no session keys encrypt authentication keys
or shared keys.

lemma analz_insert_freshK1:
"[evs € kerbIV; K € authKeys evs U range shrk;
SesKey ¢ range shrK |
—> (Key K € analz (insert (Key SesKey) (spies evs))) =
(K = SesKey | Key K € analz (spies evs))"
apply (frule authKeys_are_not_AKcryptSK, assumption)
apply (simp del: image_insert
add: analz_image_freshK_simps add: Key_analz_image_Key)
done

Second simplification law for analz: no service keys encrypt any other keys.

lemma analz_insert_freshK2:

"[evs € kerbIV; servK ¢ (authKeys evs); servK ¢ range shrK;

K € symKeys |
— (Key K € analz (insert (Key servK) (spies evs))) =
(K = servK | Key K € analz (spies evs))"
apply (frule not_authKeys_not_AKcryptSK, assumption, assumption)
apply (simp del: image_insert
add: analz_image_freshK_simps add: Key_analz_image_Key)

done

Third simplification law for analz: only one authentication key encrypts a certain
service key.

lemma analz_insert_freshK3:
"[AKcryptSK authK servK evs;
authK’ # authK; authK’ ¢ range shrK; evs € kerbIV |

6.10 Secrecy Theorems 101

—> (Key servK € analz (insert (Key authK’) (spies evs))) =
(servK = authK’ | Key servK € analz (spies evs))"
apply (drule_tac authK’ = authK’ in not_different_AKcryptSK, blast, assumption)
apply (simp del: image_insert
add: analz_image_freshK_simps add: Key_analz_image_Key)
done

lemma analz_insert_freshK3_bis:
"[Says Tgs A
(Crypt authK {Key servK, Agent B, Number Ts, servTicket|)
€ set evs;
authK # authK’; authK’ ¢ range shrK; evs € kerbIV |
—> (Key servK € analz (insert (Key authK’) (spies evs))) =
(servK = authK’ | Key servK € analz (spies evs))"

apply (frule AKcryptSKI, assumption)
apply (simp add: analz_insert_freshK3)
done

a weakness of the protocol

lemma authK_compromises_servK:
"[Says Tgs A
(Crypt authK {Key servK, Agent B, Number Ts, servTicketl]})
€ set evs; authK € symKeys;
Key authK € analz (spies evs); evs € kerbIV |
= Key servK € analz (spies evs)"
by (metis Says_imp_analz_Spy analz.Fst analz_Decrypt’)

lemma servK_notin_authKeysD:
"[Crypt authK {Key servK, Agent B, Ts,
Crypt (shrK B) {Agent A, Agent B, Key servK, Tsl|}
€ parts (spies evs);
Key servK ¢ analz (spies evs);
B # Tgs; evs € kerbIV |
= servKk ¢ authKeys evs"
apply (erule rev_mp)
apply (erule rev_mp)
apply (simp add: authKeys_def)
apply (erule kerbIV.induct, analz_mono_contra)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all)
apply (blast+)
done

If Spy sees the Authentication Key sent in msg K2, then the Key has expired.

lemma Confidentiality_Kas_lemma [rule_format]:
"[authK € symKeys; A ¢ bad; evs € kerbIV |
— Says Kas A
(Crypt (shrK A)
{Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal[})
€ set evs —
Key authK € analz (spies evs) —
expiredAK Ta evs"
apply (erule kerbIV.induct)

102

apply
apply
apply
apply
apply
apply

6 THE KERBEROS PROTOCOL, VERSION IV

(frule_tac [10] Oops_range_spies2)

(frule_tac [9] Oops_range_spies1)

(frule_tac [7] Says_tgs_message_form)

(frule_tac [5] Says_kas_message_form)

(safe del: impI conjI impCE)

(simp_all (no_asm_simp) add: Says_Kas_message_form less_SucI analz_insert_eq

not_parts_not_analz analz_insert_freshK1 pushes)

Fake

apply spy_analz

K2

apply blast

K4

apply blast

Level 8: K5

apply (blast dest: servK_notin_authKeysD Says_Kas_message_form intro: less_SucI)
Oopsl

apply (blast dest!: unique_authKeys intro: less_SucI)

Oops2

apply (blast dest: Says_Tgs_message_form Says_Kas_message_form)

done

lemma Confidentiality_Kas:
"[Says Kas A

(Crypt Ka {Key authK, Agent Tgs, Number Ta, authTicket|)
€ set evs;
— expiredAK Ta evs;
A ¢ bad; evs € kerbIV |

= Key authK ¢ analz (spies evs)"

by (blast dest: Says_Kas_message_form Confidentiality_Kas_lemma)

If Spy sees the Service Key sent in msg K4, then the Key has expired.

lemma Confidentiality_lemma [rule_format]:
"[Says Tgs A

apply
apply
apply
apply

(Crypt authK
{]Key servK, Agent B, Number Ts,
Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts]}[})
€ set evs;
Key authK ¢ analz (spies evs);
servK € symKeys;
A ¢ bad; B ¢ bad; evs € kerbIV |

—> Key servK € analz (spies evs) —

expiredSK Ts evs"
(erule rev_mp)
(erule rev_mp)
(erule kerbIV.induct)
(rule_tac [9] impI)+

6.10

Secrecy Theorems 103

— The Oopsl case is unusual: must simplify Authkey ¢ analz (knows Spy (ev
evs)), not letting analz_mono_contra weaken it to Authkey ¢ analz (knows Spy
evs), for we then conclude authK # authKa.

apply
apply
apply
apply
apply
apply
apply

analz_
analz_

Fake

analz_mono_contra

(frule_tac [10] Oops_range_spies2)

(frule_tac [9] Oops_range_spies1)

(frule_tac [7] Says_tgs_message_form)

(frule_tac [5] Says_kas_message_form)

(safe del: impI conjI impCE)

(simp_all add: less_SucI new_keys_not_analzd Says_Kas_message_form Says_Tgs_message_form
insert_eq not_parts_not_analz analz_insert_freshKl analz_insert_freshK2
insert_freshK3_bis pushes)

apply spy_analz

K2

apply (blast intro: parts_insertI less_SucIl)

K4

apply (blast dest: authTicket_authentic Confidentiality_Kas)

K5

apply (metis Says_imp_spies Says_ticket_parts Tgs_not_bad analz_insert_freshK2

Oopsl

less_SucI parts.Inj servK_notin_authKeysD unique_CryptKey)

apply (blast dest: Says_Kas_message_form Says_Tgs_message_form intro: less_SucI)

Oops2

apply

(blast dest: Says_imp_spies [THEN parts.Inj] Key_unique_SesKey intro:

less_SucI)

done

In the real world Tgs can’t check wheter authK is secure!

lemma Confidentiality_Tgs:

"

[Says Tgs A
(Crypt authK {Key servK, Agent B, Number Ts, servTicketl]})
€ set evs;
Key authK ¢ analz (spies evs);
— expiredSK Ts evs;
A ¢ bad; B ¢ bad; evs € kerbIV |
—> Key servK ¢ analz (spies evs)"

by (blast dest: Says_Tgs_message_form Confidentiality_lemma)

In the real world Tgs CAN check what Kas sends!

lemma Confidentiality_Tgs_bis:

"

[Says Kas A
(Crypt Ka {Key authK, Agent Tgs, Number Ta, authTicket[)
€ set evs;
Says Tgs A

104 6 THE KERBEROS PROTOCOL, VERSION IV

(Crypt authK {Key servK, Agent B, Number Ts, servTicket|)
€ set evs;
— expiredAK Ta evs; — expiredSK Ts evs;
A ¢ bad; B ¢ bad; evs € kerbIV |
—> Key servK ¢ analz (spies evs)"
by (blast dest!: Confidentiality_Kas Confidentiality_Tgs)

Most general form

lemmas Confidentiality_Tgs_ter = authTicket_authentic [THEN Confidentiality_Tgs_bis]

lemmas Confidentiality_Auth_A = authK_authentic [THEN Confidentiality_Kas]

Needs a confidentiality guarantee, hence moved here. Authenticity of servK for

A

lemma servK_authentic_bis_r:
"[Crypt (shrK A) {Key authK, Agent Tgs, Number Ta, authTicket|
€ parts (spies evs);
Crypt authK {Key servK, Agent B, Number Ts, servTicket]
€ parts (spies evs);
— expiredAK Ta evs; A ¢ bad; evs € kerbIV |
—>Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, servTicketl[)
€ set evs"
by (blast dest: authK_authentic Confidentiality_ Auth_A servK_authentic_ter)

lemma Confidentiality_Serv_A:
"[Crypt (shrK A) {Key authK, Agent Tgs, Number Ta, authTicket|
€ parts (spies evs);
Crypt authK {Key servK, Agent B, Number Ts, servTicket]
€ parts (spies evs);
- expiredAK Ta evs; — expiredSK Ts evs;
A ¢ bad; B ¢ bad; evs € kerbIV |
—> Key servK ¢ analz (spies evs)"
apply (drule authK_authentic, assumption, assumption)
apply (blast dest: Confidentiality_Kas Says_Kas_message_form servK_authentic_ter
Confidentiality_Tgs_bis)
done

lemma Confidentiality_B:
"[Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts|
€ parts (spies evs);
Crypt authK {Key servK, Agent B, Number Ts, servTicketl|}
€ parts (spies evs);
Crypt (shrK A) {Key authK, Agent Tgs, Number Ta, authTicketl}
€ parts (spies evs);
- expiredSK Ts evs; — expiredAK Ta evs;
A ¢ bad; B ¢ bad; B # Tgs; evs € kerbIV |
—> Key servK ¢ analz (spies evs)"
apply (frule authK_authentic)
apply (frule_tac [3] Confidentiality_Kas)
apply (frule_tac [6] servTicket_authentic, auto)
apply (blast dest!: Confidentiality_ Tgs_bis dest: Says_Kas_message_form servK_authentic
unique_servKeys unique_authKeys)
done

6.11 Parties authentication: each party verifies "the identity of another party who generated some data" (quoted frc

lemma u_Confidentiality_B:
"[Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts}}
€ parts (spies evs);
- expiredSK Ts evs;
A ¢ bad; B ¢ bad; B # Tgs; evs € kerbIV |
—> Key servK ¢ analz (spies evs)"
by (blast dest: u_servTicket_authentic u_NotexpiredSK_NotexpiredAK Confidentiality_Tgs_bis)

6.11 Parties authentication: each party verifies "the iden-
tity of another party who generated some data" (quoted
from Neuman and Ts’0).

These guarantees don’t assess whether two parties agree on the same session
key: sending a message containing a key doesn’t a priori state knowledge of the
key.

Tgs_authenticates_A can be found above

lemma A_authenticates_Tgs:
"[Says Kas A
(Crypt (shrK A) {Key authK, Agent Tgs, Number Ta, authTicket]}) € set evs;
Crypt authK {Key servK, Agent B, Number Ts, servTicketl|}
€ parts (spies evs);
Key authK ¢ analz (spies evs);
evs € kerbIV]
— Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, servTicketl]})
€ set evs"
apply (frule Says_Kas_message_form, assumption)
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV.induct, analz_mono_contra)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all, blast)

K2
apply (blast dest!: servK_authentic Says_Tgs_message_form authKeys_used)
K4

apply (blast dest!: unique_CryptKey)
done

lemma B_authenticates_A:
"[Crypt servK {Agent A, Number T3} € parts (spies evs);
Crypt (shrK B) {Agent A, Agent B, Key servK, Number Tsl|
€ parts (spies evs);

Key servK ¢ analz (spies evs);

A ¢ bad; B ¢ bad; B # Tgs; evs € kerbIV |
= Says A B {Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts|,

Crypt servKk {Agent A, Number T3[} € set evs"

by (blast dest: servTicket_authentic_Tgs intro: Says_K5)

106 6 THE KERBEROS PROTOCOL, VERSION IV

The second assumption tells B what kind of key servK is.

lemma B_authenticates_A_r:
"[Crypt servK {Agent A, Number T3|} € parts (spies evs);
Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts|
€ parts (spies evs);
Crypt authK {Key servK, Agent B, Number Ts, servTicket]
€ parts (spies evs);
Crypt (shrK A) {Key authK, Agent Tgs, Number Ta, authTicketl|
€ parts (spies evs);
- expiredSK Ts evs; — expiredAK Ta evs;
B # Tgs; A ¢ bad; B ¢ bad; evs € kerbIV |
—> Says A B {Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts|,
Crypt servK {Agent A, Number T3} [€ set evs"
by (blast intro: Says_K5 dest: Confidentiality_B servTicket_authentic_Tgs)

u_B_authenticates_A would be the same as B_authenticates_A because the servK
confidentiality assumption is yet unrelaxed

lemma u_B_authenticates_A_r:
"[Crypt servK {Agent A, Number T3} € parts (spies evs);
Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts|
€ parts (spies evs);
— expiredSK Ts evs;
B # Tgs; A ¢ bad; B ¢ bad; evs € kerbIV |
= Says A B {Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts|,
Crypt servK {Agent A, Number T3} [€ set evs"
by (blast intro: Says_K5 dest: u_Confidentiality_ B servTicket_authentic_Tgs)

lemma A_authenticates_B:
"[Crypt servK (Number T3) € parts (spies evs);
Crypt authK {Key servK, Agent B, Number Ts, servTicket]
€ parts (spies evs);
Crypt (shrK A) {Key authK, Agent Tgs, Number Ta, authTicket|}
€ parts (spies evs);
Key authK ¢ analz (spies evs); Key servK ¢ analz (spies evs);
A ¢ bad; B ¢ bad; evs € kerbIV |
—> Says B A (Crypt servK (Number T3)) € set evs"
by (blast dest: authK_authentic servK_authentic Says_Kas_message_form Key_unique_SesKey
K4_imp_K2 intro: Says_K6)

lemma A_authenticates_B_r:
"[Crypt servK (Number T3) € parts (spies evs);
Crypt authK {Key servK, Agent B, Number Ts, servTicket]
€ parts (spies evs);
Crypt (shrK A) {Key authK, Agent Tgs, Number Ta, authTicket|}
€ parts (spies evs);
— expiredAK Ta evs; — expiredSK Ts evs;
A ¢ bad; B ¢ bad; evs € kerbIV |
—> Says B A (Crypt servK (Number T3)) € set evs"
apply (frule authK_authentic)
apply (frule_tac [3] Says_Kas_message_form)
apply (frule_tac [4] Confidentiality_Kas)
apply (frule_tac [7] servK_authentic)
prefer 8 apply blast

6.12 Key distribution guarantees An agent knows a session key if he used it to issue a cipher

apply (erule_tac [9] exE)

apply (frule_tac [9] K4_imp_K2)

apply assumption+

apply (blast dest: Key_unique_SesKey intro!: Says_K6 dest: Confidentiality_Tgs
)

done

6.12 Key distribution guarantees An agent knows a ses-
sion key if he used it to issue a cipher. These guar-
antees also convey a stronger form of authentication
- non-injective agreement on the session key

lemma Kas_Issues_A:
"[Says Kas A (Crypt (shrK A) {Key authK, Peer, Ta, authTicket[}) € set
evs;
evs € kerbIV |
—> Kas Issues A with (Crypt (shrK A) {Key authK, Peer, Ta, authTicket|)

on evs"
unfolding Issues_def
apply (rule exI)
apply (rule conjI, assumption)
apply (simp (no_asm))
apply (erule rev_mp)
apply (erule kerbIV.induct)
apply (frule_tac [5] Says_ticket_parts)
apply (frule_tac [7] Says_ticket_parts)
apply (simp_all (no_asm_simp) add: all_conj_distrib)

K2

apply (simp add: takeWhile_tail)

apply (blast dest: authK_authentic parts_spies_takeWhile_mono [THEN subsetD]
parts_spies_evs_revD2 [THEN subsetD])

done

lemma A_authenticates_and_keydist_to_Kas:
"[Crypt (shrK A) {Key authK, Peer, Ta, authTicket|} € parts (spies evs);
A ¢ bad; evs € kerbIV |
—> Kas Issues A with (Crypt (shrK A) {Key authK, Peer, Ta, authTicketl)

on evs"
by (blast dest: authK_authentic Kas_Issues_A)

lemma honest_never_says_newer_timestamp_in_auth:
"[(CT evs) < T; A ¢ bad; Number T € parts {X}; evs € kerbIV]
= V BY. Says A B {Y, X} ¢ set evs"

apply (erule rev_mp)

apply (erule kerbIV.induct)

apply force+

done

lemma honest_never_says_current_timestamp_in_auth:
"[(CT evs) = T; Number T € parts {X}; evs € kerblIV |

. These guarantees also

108

6 THE KERBEROS PROTOCOL, VERSION IV

— V ABY. A ¢ bad — Says A B {Y, X} ¢ set evs"
by (metis eq_imp_le honest_never_says_newer_timestamp_in_auth)

lemma A_trusts_secure_authenticator:
"[Crypt K {Agent A, Number T|} € parts (spies evs);

= 3
\%

apply
apply
apply
apply
apply
apply
apply
done

Key K ¢ analz (spies evs); evs € kerbIV]
B X. Says A Tgs {X, Crypt K {Agent A, Number T[}, Agent B|} € set evs

Says A B {X, Crypt K {Agent A, Number T[}}} € set evs"
(erule rev_mp)
(erule rev_mp)
(erule kerbIV.induct, analz_mono_contra)
(frule_tac [5] Says_ticket_parts)
(frule_tac [7] Says_ticket_parts)
(simp_all add: all_conj_distrib)
blast+

lemma A_Issues_Tgs:
"[Says A Tgs {authTicket, Crypt authK {Agent A, Number T2]}, Agent B[

€ set evs;

Key authK ¢ analz (spies evs);

A ¢ bad; evs € kerbIV]
= A Issues Tgs with (Crypt authK {Agent A, Number T2}) on evs"
unfolding Issues_def

apply
apply
apply
apply
apply
apply
apply
apply
apply

fake
apply
K3

apply
apply
apply
apply
[THEN
apply
apply
done

(rule exI)

(rule conjI, assumption)

(simp (no_asm))

(erule rev_mp)

(erule rev_mp)

(erule kerbIV.induct, analz_mono_contra)
(frule_tac [5] Says_ticket_parts)

(frule_tac [7] Says_ticket_parts)

(simp_all (no_asm_simp) add: all_conj_distrib)

blast

(simp add: takeWhile_tail)

auto

(force dest!: authK_authentic Says_Kas_message_form)

(drule parts_spies_takeWhile_mono [THEN subsetD, THEN parts_spies_evs_revD2
subsetD]])

(drule A_trusts_secure_authenticator, assumption, assumption)

(simp add: honest_never_says_current_timestamp_in_auth)

lemma Tgs_authenticates_and_keydist_to_A:

[

Crypt authK {Agent A, Number T2| € parts (spies evs);
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal
€ parts (spies evs);

Key authK ¢ analz (spies evs);
A ¢ bad; evs € kerbIV |

6.12 Key distribution guarantees An agent knows a session key if he used it to issue a cipher. These guarantees also

= A Issues Tgs with (Crypt authK {Agent A, Number T2}) on evs"
by (blast dest: A_Issues_Tgs Tgs_authenticates_A)

lemma Tgs_Issues_A:
"[Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, servTicket

12

€ set evs;

Key authK ¢ analz (spies evs); evs € kerbIV |
— Tgs Issues A with

(Crypt authK {Key servK, Agent B, Number Ts, servTicket [}) on evs"
unfolding Issues_def
apply (rule exI)
apply (rule conjI, assumption)
apply (simp (no_asm))
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV.induct, analz_mono_contra)
apply (frule_tac [5] Says_ticket_parts)
apply (frule_tac [7] Says_ticket_parts)
apply (simp_all (no_asm_simp) add: all_conj_distrib)

K4

apply (simp add: takeWhile_tail)

apply (metis knows_Spy_partsEs(2) parts.Fst usedl used_evs_rev used_takeWhile_used)
done

lemma A_authenticates_and_keydist_to_Tgs:
"[Crypt authK {Key servK, Agent B, Number Ts, servTicket]} € parts (spies evs);
Key authK ¢ analz (spies evs); B # Tgs; evs € kerbIV |
—> JA. Tgs Issues A with
(Crypt authK {Key servK, Agent B, Number Ts, servTicket [}) on evs"
by (blast dest: Tgs_Issues_A servK_authentic_bis)

lemma B_Issues_A:
"[Says B A (Crypt servK (Number T3)) € set evs;
Key servK ¢ analz (spies evs);
A ¢ bad; B ¢ bad; B # Tgs; evs € kerbIV |
= B Issues A with (Crypt servK (Number T3)) on evs"
unfolding Issues_def
apply (rule exI)
apply (rule conjI, assumption)
apply (simp (no_asm))
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV.induct, analz_mono_contra)
apply (frule_tac [5] Says_ticket_parts)
apply (frule_tac [7] Says_ticket_parts)
apply (simp_all (no_asm_simp) add: all_conj_distrib)
apply blast

K6 requires numerous lemmas

110 6 THE KERBEROS PROTOCOL, VERSION IV

apply (simp add: takeWhile_tail)

apply (blast dest: servTicket_authentic parts_spies_takeWhile_mono [THEN subsetD]
parts_spies_evs_revD2 [THEN subsetD] intro: Says_K6)

done

lemma B_Issues_A_r:
"[Says B A (Crypt servK (Number T3)) € set evs;
Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts|
€ parts (spies evs);
Crypt authK {Key servK, Agent B, Number Ts, servTicket]
€ parts (spies evs);
Crypt (shrK A) {Key authK, Agent Tgs, Number Ta, authTicketl|
€ parts (spies evs);
- expiredSK Ts evs; — expiredAK Ta evs;
A ¢ bad; B ¢ bad; B # Tgs; evs € kerbIV |
— B Issues A with (Crypt servK (Number T3)) on evs"
by (blast dest!: Confidentiality B B_Issues_A)

lemma u_B_Issues_A_r:
"[Says B A (Crypt servK (Number T3)) € set evs;
Crypt (shrK B) {Agent A, Agent B, Key servK, Number Tsl|}
€ parts (spies evs);
- expiredSK Ts evs;
A ¢ bad; B ¢ bad; B # Tgs; evs € kerbIV |
— B Issues A with (Crypt servK (Number T3)) on evs"
by (blast dest!: u_Confidentiality_ B B_Issues_A)

lemma A_authenticates_and_keydist_to_B:
"[Crypt servK (Number T3) € parts (spies evs);
Crypt authK {Key servK, Agent B, Number Ts, servTicket|}
€ parts (spies evs);
Crypt (shrK A) {Key authK, Agent Tgs, Number Ta, authTicketl[}
€ parts (spies evs);
Key authK ¢ analz (spies evs); Key servK ¢ analz (spies evs);
A ¢ bad; B ¢ bad; B # Tgs; evs € kerbIV |
— B Issues A with (Crypt servK (Number T3)) on evs"
by (blast dest!: A_authenticates_B B_Issues_A)

lemma A_authenticates_and_keydist_to_B_r:
"[Crypt servK (Number T3) € parts (spies evs);
Crypt authK {Key servK, Agent B, Number Ts, servTicket]
€ parts (spies evs);
Crypt (shrK A) {Key authK, Agent Tgs, Number Ta, authTicket|}
€ parts (spies evs);
- expiredAK Ta evs; — expiredSK Ts evs;
A ¢ bad; B ¢ bad; B # Tgs; evs € kerbIV |
— B Issues A with (Crypt servK (Number T3)) on evs"
by (blast dest!: A_authenticates_B_r Confidentiality_Serv_A B_Issues_A)

lemma A_Issues_B:
"[Says A B {servTicket, Crypt servK {Agent A, Number T3|}
€ set evs;
Key servK ¢ analz (spies evs);

6.12 Key distribution guarantees An agent knows a session key if he used it to issue a cipher. These guarantees also

B # Tgs; A ¢ bad; B ¢ bad; evs € kerbIV |
—> A Issues B with (Crypt servK {Agent A, Number T3[}) on evs"
unfolding Issues_def
apply (rule exI)
apply (rule conjI, assumption)
apply (simp (no_asm))
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV.induct, analz_mono_contra)
apply (frule_tac [5] Says_ticket_parts)
apply (frule_tac [7] Says_ticket_parts)
apply (simp_all (no_asm_simp))
apply clarify

K5

apply auto
apply (simp add: takeWhile_tail)

Level 15: case analysis necessary because the assumption doesn’t state the form of
servTicket. The guarantee becomes stronger.

apply (blast dest: Says_imp_spies [THEN analz.Inj, THEN analz_Decrypt’]
K3_imp_K2 servK_authentic_ter
parts_spies_takeWhile_mono [THEN subsetD]
parts_spies_evs_revD2 [THEN subsetD]
intro: Says_K5)
apply (simp add: takeWhile_tail)
done

lemma A_Issues_B_r:
"[Says A B {servTicket, Crypt servK {Agent A, Number T3}}
€ set evs;
Crypt (shrK A) {Key authK, Agent Tgs, Number Ta, authTicket|}
€ parts (spies evs);
Crypt authK {Key servK, Agent B, Number Ts, servTicket]
€ parts (spies evs);
— expiredAK Ta evs; — expiredSK Ts evs;
B # Tgs; A ¢ bad; B ¢ bad; evs € kerbIV |
= A Issues B with (Crypt servK {Agent A, Number T3[}) on evs"
by (blast dest!: Confidentiality_Serv_A A_Issues_B)

lemma B_authenticates_and_keydist_to_A:
"[Crypt servK {Agent A, Number T3]} € parts (spies evs);
Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts}}
€ parts (spies evs);
Key servK ¢ analz (spies evs);
B # Tgs; A ¢ bad; B ¢ bad; evs € kerbIV |
= A Issues B with (Crypt servK {Agent A, Number T3[}) on evs"
by (blast dest: B_authenticates_A A_Issues_B)

lemma B_authenticates_and_keydist_to_A_r:
"[Crypt servK {Agent A, Number T3]} € parts (spies evs);
Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts}}
€ parts (spies evs);
Crypt authK {Key servK, Agent B, Number Ts, servTicket]

112 7 THE KERBEROS PROTOCOL, VERSION IV

€ parts (spies evs);
Crypt (shrK A) {Key authK, Agent Tgs, Number Ta, authTicketl}
€ parts (spies evs);
- expiredSK Ts evs; — expiredAK Ta evs;
B # Tgs; A ¢ bad; B ¢ bad; evs € kerbIV]
= A Issues B with (Crypt servK {Agent A, Number T3[}) on evs"
by (blast dest: B_authenticates_A Confidentiality_B A_Issues_B)

u_B_authenticates_and_keydist_to_A would be the same as B_authenticates_and_keydist_to_A
because the servK confidentiality assumption is yet unrelaxed

lemma u_B_authenticates_and_keydist_to_A_r:
"[Crypt servK {Agent A, Number T3[} € parts (spies evs);
Crypt (shrK B) {Agent A, Agent B, Key servK, Number Tsl|}
€ parts (spies evs);
- expiredSK Ts evs;
B # Tgs; A ¢ bad; B ¢ bad; evs € kerbIV |
— A Issues B with (Crypt servK {Agent A, Number T3[}) on evs"

by (blast dest: u_B_authenticates_A_r u_Confidentiality_ B A_Issues_B)

end

7 The Kerberos Protocol, Version IV

theory KerberosIV_Gets imports Public begin

The "u" prefix indicates theorems referring to an updated version of the proto-
col. The "r" suffix indicates theorems where the confidentiality assumptions are
relaxed by the corresponding arguments.

abbreviation
Kas :: agent where "Kas == Server"

abbreviation
Tgs :: agent where "Tgs == Friend 0"

axiomatization where
Tgs_not_bad [iff]: "Tgs ¢ bad"
— Tgs is secure — we already know that Kas is secure

definition

authKeys :: "event list = key set" where
"authKeys evs = {authK. JA Peer Ta. Says Kas A
(Crypt (shrK A) {Key authK, Agent Peer, Number Ta,
(Crypt (shrK Peer) {Agent A, Agent Peer, Key authK, Number

Tal)
}) € set evs}"
definition
Unique :: "[event, event list] = bool" (<Unique _ on _> [0, 50] 50)

where "(Unique ev on evs) = (ev ¢ set (tl (dropWhile (A\z. z # ev) evs)))"

113

consts
authKlife :: nat
servKlife :: nat
authlife :: nat
replylife :: nat

specification (authKlife)
authKlife LB [iff]: "2 < authKlife"
by blast

specification (servKlife)
servKlife LB [iff]: "2 + authKlife < servKlife"
by blast

specification (authlife)
authlife_LB [iff]: "Suc 0 < authlife"
by blast

specification (replylife)
replylife_LB [iff]: "Suc 0 < replylife"
by blast

abbreviation

CT :: "event list = nat" where
"CT == length"

abbreviation
expiredAK :: "[nat, event list] = bool" where
"expiredAK Ta evs == authKlife + Ta < CT evs"

abbreviation
expiredSK :: "[nat, event list] = bool" where
"expiredSK Ts evs == servKlife + Ts < CT evs"
abbreviation
expiredA :: "[nat, event list] = bool" where
"expiredA T evs == authlife + T < CT evs"
abbreviation
valid :: "[nat, nat] = bool" (<valid _ wrt _> [0, 50] 50) where

"valid T1 wrt T2 == T1 < replylife + T2"

114 7 THE KERBEROS PROTOCOL, VERSION IV

definition AKcryptSK :: "[key, key, event list] = bool" where
"AKcryptSK authK servK evs ==
3A B Ts.

Says Tgs A (Crypt authK
{Key servK, Agent B, Number Ts,
Crypt (shrK B) {Agent A, Agent B, Key servK, Number

Ts} [})
€ set evs"
inductive__set "kerbIV_gets" :: "event list set"
where

Nil: "[] € kerbIV_gets"

| Fake: "| evsf € kerbIV_gets; X € synth (analz (spies evsf))
g V! P
— Says Spy B X # evsf € kerbIV_gets"

| Reception: "[evsr € kerbIV_gets; Says A B X € set evsr |
— Gets B X # evsr € kerbIV_gets"

| K1: "] evsl € kerbIV_gets |
= Says A Kas {Agent A, Agent Tgs, Number (CT evsi)| # evsl
€ kerbIV_gets"

| K2: "[evs2 € kerbIV_gets; Key authK ¢ used evs2; authK € symKeys;
Gets Kas {Agent A, Agent Tgs, Number T1]} € set evs2 |
—> Says Kas A
(Crypt (shrK A) {Key authK, Agent Tgs, Number (CT evs2),
(Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authk,
Number (CT evs2)[})}) # evs2 € kerbIV_gets"

| K3: "[evs3 € kerbIV_gets;
Says A Kas {Agent A, Agent Tgs, Number T1} € set evs3;
Gets A (Crypt (shrK A) {Key authK, Agent Tgs, Number Ta,
authTicket[}) € set evs3;
valid Ta wrt T1
I
—> Says A Tgs {authTicket,
(Crypt authK {Agent A, Number (CT evs3)}),
Agent B} # evs3 € kerbIV_gets"

115

| K4: "] evs4 € kerbIV_gets; Key servK ¢ used evs4; servK € symKeys;
B # Tgs; authK € symKeys;
Gets Tgs {
(Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authk,
Number Tal),
(Crypt authK {Agent A, Number T2|}), Agent B[}
€ set evs4;
- expiredAK Ta evs4;
- expiredA T2 evs4;
servKlife + (CT evs4) < authKlife + Ta
]
— Says Tgs A
(Crypt authK {Key servK, Agent B, Number (CT evs4),
Crypt (shrK B) {Agent A, Agent B, Key servk,
Number (CT evsd)| [})
evs4 € kerbIV_gets"

| K5: "[evs5 € kerbIV_gets; authK € symKeys; servK € symKeys;
Says A Tgs
{authTicket, Crypt authK {Agent A, Number T2},
Agent B[}
€ set evs5;
Gets A
(Crypt authK {Key servK, Agent B, Number Ts, servTicket|)
€ set evs5;
valid Ts wrt T2 |
= Says A B {servTicket,
Crypt servKk {Agent A, Number (CT evs5)|} |}
evsb € kerbIV_gets"

| K6: "[evs6 € kerbIV_gets;
Gets B {
(Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts|),
(Crypt servK {Agent A, Number T3[})}
set evs6;
expiredSK Ts evs6;
expiredA T3 evs6

7 m

J

I
= Says B A (Crypt servK (Number T3))
evs6 € kerbIV_gets"

116 7 THE KERBEROS PROTOCOL, VERSION IV

| Oopsi: "[evs01 € kerbIV_gets; A # Spy;
Says Kas A
(Crypt (shrK A) {Key authK, Agent Tgs, Number Ta,
authTicket[}) € set evs01;
expiredAK Ta evs01 |
—> Says A Spy {Agent A, Agent Tgs, Number Ta, Key authK[}
evsO1 € kerbIV_gets"

| Oops2: "[evs02 € kerbIV_gets; A # Spy;
Says Tgs A
(Crypt authK {Key servK, Agent B, Number Ts, servTicketl)
€ set evs02;
expiredSK Ts evs02 |
—> Says A Spy {Agent A, Agent B, Number Ts, Key servK|}
evs02 € kerbIV_gets"

declare Says_imp_knows_Spy [THEN parts.Inj, dest]
declare parts.Body [dest]

declare analz_into_parts [dest]

declare Fake_parts_insert_in_Un [dest]

7.1 Lemmas about reception event

lemma Gets_imp_Says :
"[Gets B X € set evs; evs € kerbIV_gets | = JA. Says A B X € set
evs"
apply (erule rev_mp)
apply (erule kerbIV_gets.induct)
apply auto
done

lemma Gets_imp_knows_Spy:
"[Gets B X € set evs; evs € kerbIV_gets | = X € knows Spy evs"
by (blast dest!: Gets_imp_Says Says_imp_knows_Spy)

declare Gets_imp_knows_Spy [THEN parts.Inj, dest]

lemma Gets_imp_knows:
"[Gets B X € set evs; evs € kerbIV_gets | = X € knows B evs"
by (metis Gets_imp_knows_Spy Gets_imp_knows_agents)

7.2 Lemmas about authkeys

lemma authKeys_empty: "authKeys [] = {}"
by (simp add: authKeys_def)

7.3 Forwarding Lemmas 117

lemma authKeys_not_insert:
"(VA Ta akey Peer.
ev # Says Kas A (Crypt (shrK A) {akey, Agent Peer, Ta,
(Crypt (shrK Peer) {Agent A, Agent Peer, akey, Tal)|}))
— authKeys (ev # evs) = authKeys evs"
unfolding authKeys_def by auto

lemma authKeys_insert:
"authKeys
(Says Kas A (Crypt (shrK A) {Key K, Agent Peer, Number Ta,
(Crypt (shrK Peer) {Agent A, Agent Peer, Key K, Number Tal})}) # evs)
= insert K (authKeys evs)"
unfolding authKeys_def by auto

lemma authKeys_simp:
"K € authKeys
(Says Kas A (Crypt (shrK A) {Key K’, Agent Peer, Number Ta,
(Crypt (shrK Peer) {Agent A, Agent Peer, Key K’, Number Tal)[}) # evs)
— K = K’ | K € authKeys evs"
unfolding authKeys_def by auto

lemma authKeysI:
"Says Kas A (Crypt (shrK A) {Key K, Agent Tgs, Number Ta,
(Crypt (shrK Tgs) {Agent A, Agent Tgs, Key K, Number Tal})}) € set evs
— K € authKeys evs"
unfolding authKeys_def by auto

lemma authKeys_used: "K € authKeys evs — Key K € used evs"
by (simp add: authKeys_def, blast)

7.3 Forwarding Lemmas

lemma Says_ticket_parts:
"Says S A (Crypt K {SesKey, B, TimeStamp, Ticket[}) € set evs
= Ticket € parts (spies evs)"

by blast

lemma Gets_ticket_parts:

"[Gets A (Crypt K {SesKey, Peer, Ta, Ticketl|}) € set evs; evs € kerbIV_gets
I

— Ticket € parts (spies evs)"

by (blast dest: Gets_imp_knows_Spy [THEN parts.Inj])

lemma Oops_range_spiesi:
"[Says Kas A (Crypt KeyA {Key authK, Peer, Ta, authTicketl[})
€ set evs ;
evs € kerbIV_gets | = authK ¢ range shrK A authK € symKeys"
apply (erule rev_mp)
apply (erule kerbIV_gets.induct, auto)
done

lemma Oops_range_spies2:
"[Says Tgs A (Crypt authK {Key servK, Agent B, Ts, servTicketl|)
€ set evs ;

118 7 THE KERBEROS PROTOCOL, VERSION IV

evs € kerbIV_gets | = servK ¢ range shrK A servK € symKeys"
apply (erule rev_mp)
apply (erule kerbIV_gets.induct, auto)
done

lemma Spy_see_shrK [simp]:
"evs € kerbIV_gets =—> (Key (shrK A) € parts (spies evs))
apply (erule kerbIV_gets.induct)
apply (frule_tac [8] Gets_ticket_parts)
apply (frule_tac [6] Gets_ticket_parts, simp_all)
apply (blast+)
done

(A € bad)"

lemma Spy_analz_shrK [simp]:
"evs € kerbIV_gets —> (Key (shrK A) € analz (spies evs)) = (A € bad)"
by auto

lemma Spy_see_shrK_D [dest!]:
"[Key (shrK A) € parts (spies evs); evs € kerbIV_gets | = A€bad"
by (blast dest: Spy_see_shrK)
lemmas Spy_analz_shrK_D = analz_subset_parts [THEN subsetD, THEN Spy_see_shrK_D,
dest!]

Nobody can have used non-existent keys!

lemma new_keys_not_used [simp]:
"[Key K ¢ used evs; K € symKeys; evs € kerbIV_gets]
= K ¢ keysFor (parts (spies evs))"

apply (erule rev_mp)

apply (erule kerbIV_gets.induct)

apply (frule_tac [8] Gets_ticket_parts)

apply (frule_tac [6] Gets_ticket_parts, simp_all)

Fake
apply (force dest!: keysFor_parts_insert)
Others

apply (force dest!: analz_shrK_Decrypt)+
done

lemma new_keys_not_analzd:
"[evs € kerbIV_gets; K € symKeys; Key K ¢ used evs]
—> K ¢ keysFor (analz (spies evs))"
by (blast dest: new_keys_not_used intro: keysFor_mono [THEN subsetD])
7.4 Regularity Lemmas
These concern the form of items passed in messages
Describes the form of all components sent by Kas

lemma Says_Kas_message_form:

7.4 Regularity Lemmas 119

"[Says Kas A (Crypt K {Key authK, Agent Peer, Number Ta, authTicketl[})
€ set evs;
evs € kerbIV_gets | =
K = shrK A AN Peer = Tgs A
authK ¢ range shrK A authK € authKeys evs A authK € symKeys A
authTicket = (Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal})"
apply (erule rev_mp)
apply (erule kerbIV_gets.induct)
apply (simp_all (no_asm) add: authKeys_def authKeys_insert)
apply blast+
done

lemma SesKey_is_session_key:

"[Crypt (shrK Tgs_B) {Agent A, Agent Tgs_B, Key SesKey, Number T[}

€ parts (spies evs); Tgs_B ¢ bad;
evs € kerbIV_gets |

= SesKey ¢ range shrK"
apply (erule rev_mp)
apply (erule kerbIV_gets.induct)
apply (frule_tac [8] Gets_ticket_parts)
apply (frule_tac [6] Gets_ticket_parts, simp_all, blast)
done

lemma authTicket_authentic:
"[Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal
€ parts (spies evs);
evs € kerbIV_gets |
— Says Kas A (Crypt (shrK A) {Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal})
€ set evs"
apply (erule rev_mp)
apply (erule kerbIV_gets.induct)
apply (frule_tac [8] Gets_ticket_parts)
apply (frule_tac [6] Gets_ticket_parts, simp_all)

Fake, K4

apply (blast+)
done

lemma authTicket_crypt_authK:

"[Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal

€ parts (spies evs);
evs € kerbIV_gets |

— authK € authKeys evs"
apply (frule authTicket_authentic, assumption)
apply (simp (no_asm) add: authKeys_def)
apply blast
done

lemma Says_Tgs_message_form:
"[Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, servTicket[)
€ set evs;
evs € kerbIV_gets |

120 7 THE KERBEROS PROTOCOL, VERSION IV

= B # Tgs A
authK ¢ range shrk A authK € authKeys evs A authK € symKeys A
servK ¢ range shrK A servK ¢ authKeys evs A servK € symKeys A
servTicket = (Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts[)"
apply (erule rev_mp)
apply (erule kerbIV_gets.induct)
apply (simp_all add: authKeys_insert authKeys_not_insert authKeys_empty authKeys_simp,
blast, auto)

Three subcases of Message 4

apply (blast dest!: SesKey_is_session_key)

apply (blast dest: authTicket_crypt_authK)

apply (blast dest!: authKeys_used Says_Kas_message_form)
done

lemma authTicket_form:
"[Crypt (shrK A) {Key authK, Agent Tgs, Ta, authTicket|
€ parts (spies evs);
A ¢ bad;
evs € kerbIV_gets |
—> authK ¢ range shrK A authK € symKeys A
authTicket = Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Tal"
apply (erule rev_mp)
apply (erule kerbIV_gets.induct)
apply (frule_tac [8] Gets_ticket_parts)
apply (frule_tac [6] Gets_ticket_parts, simp_all)
apply blast+
done

This form holds also over an authTicket, but is not needed below.

lemma servTicket_form:
"[Crypt authK {Key servK, Agent B, Ts, servTicketl|
€ parts (spies evs);
Key authK ¢ analz (spies evs);
evs € kerbIV_gets]
—> servK ¢ range shrK A servK € symKeys A
(3A. servTicket = Crypt (shrK B) {Agent A, Agent B, Key servK, Ts})"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV_gets.induct, analz_mono_contra)
apply (frule_tac [8] Gets_ticket_parts)
apply (frule_tac [6] Gets_ticket_parts, simp_all, blast)
done

Essentially the same as authTicket_form

lemma Says_kas_message_form:
"[Gets A (Crypt (shrkK A)
{Key authK, Agent Tgs, Ta, authTicket[}) € set evs;
evs € kerbIV_gets |
—> authK ¢ range shrK A authK € symKeys A
authTicket =
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Tal

7.5 Authenticity theorems: confirm origin of sensitive messages 121

| authTicket € analz (spies evs)"
by (blast dest: analz_shrK_Decrypt authTicket_form
Gets_imp_knows_Spy [THEN analz.Inj])

lemma Says_tgs_message_form:
"[Gets A (Crypt authK {Key servK, Agent B, Ts, servTicketl[)
€ set evs; authK € symKeys;
evs € kerbIV_gets]
= servK ¢ range shrK A
(3A. servTicket =
Crypt (shrK B) {Agent A, Agent B, Key servK, Ts|})
| servTicket € analz (spies evs)"
apply (frule Gets_imp_knows_Spy [THEN analz.Inj], auto)
apply (force dest!: servTicket_form)
apply (frule analz_into_parts)
apply (frule servTicket_form, auto)
done

7.5 Authenticity theorems: confirm origin of sensitive mes-
sages

lemma authK_authentic:
"[Crypt (shrK A) {Key authK, Peer, Ta, authTicketl|
€ parts (spies evs);
A ¢ bad; evs € kerbIV_gets |
—> Says Kas A (Crypt (shrK A) {Key authK, Peer, Ta, authTicketl[})
€ set evs'
apply (erule rev_mp)
apply (erule kerbIV_gets.induct)
apply (frule_tac [8] Gets_ticket_parts)
apply (frule_tac [6] Gets_ticket_parts, simp_all)

Fake
apply blast
K4

apply (blast dest!: authTicket_authentic [THEN Says_Kas_message_form])
done

If a certain encrypted message appears then it originated with Tgs

lemma servK_authentic:
"[Crypt authK {Key servK, Agent B, Number Ts, servTicket]
€ parts (spies evs);

Key authK ¢ analz (spies evs);

authK ¢ range shrk;

evs € kerbIV_gets |
=—> JA. Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, servTicket[)

€ set evs"

apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV_gets.induct, analz_mono_contra)
apply (frule_tac [8] Gets_ticket_parts)
apply (frule_tac [6] Gets_ticket_parts, simp_all)

122 7 THE KERBEROS PROTOCOL, VERSION IV

Fake

apply blast
K2

apply blast
K4

apply auto
done

lemma servK_authentic_bis:
"[Crypt authK {Key servK, Agent B, Number Ts, servTicket]
€ parts (spies evs);

Key authK ¢ analz (spies evs);

B # Tgs;

evs € kerbIV_gets |
= JA. Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, servTicketl[)

€ set evs"

apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV_gets.induct, analz_mono_contra)
apply (frule_tac [8] Gets_ticket_parts)
apply (frule_tac [6] Gets_ticket_parts, simp_all)

Fake

apply blast

K4

apply blast
done

Authenticity of servK for B

lemma servTicket_authentic_Tgs:
"[Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts|
€ parts (spies evs); B # Tgs; B ¢ bad;
evs € kerbIV_gets |

—> JauthK.

Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts,

Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts[|]})

€ set evs'"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV_gets.induct)
apply (frule_tac [8] Gets_ticket_parts)
apply (frule_tac [6] Gets_ticket_parts, simp_all)
apply blast+
done

Anticipated here from next subsection

lemma K4_imp_K2:
"[Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, servTicket[)
€ set evs; evs € kerbIV_gets]

7.5 Authenticity theorems: confirm origin of sensitive messages 123

—> JTa. Says Kas A
(Crypt (shrK A)
{Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Talt|)
€ set evs'"
apply (erule rev_mp)
apply (erule kerbIV_gets.induct)
apply (frule_tac [8] Gets_ticket_parts)
apply (frule_tac [6] Gets_ticket_parts, simp_all, auto)
apply (blast dest!: Gets_imp_knows_Spy [THEN parts.Inj, THEN parts.Fst, THEN
authTicket_authentic])
done

Anticipated here from next subsection

lemma u_K4_imp_K2:
"[Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, servTicket[)
€ set evs; evs € kerbIV_gets]
—> JTa. (Says Kas A (Crypt (shrK A) {Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal|)
€ set evs
N servKlife + Ts < authKlife + Ta)"
apply (erule rev_mp)
apply (erule kerbIV_gets.induct)
apply (frule_tac [8] Gets_ticket_parts)
apply (frule_tac [6] Gets_ticket_parts, simp_all, auto)
apply (blast dest!: Gets_imp_knows_Spy [THEN parts.Inj, THEN parts.Fst, THEN
authTicket_authentic])
done

lemma servTicket_authentic_Kas:
"[Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts}}
€ parts (spies evs); B # Tgs; B ¢ bad;
evs € kerbIV_gets |
—> JauthK Ta.
Says Kas A
(Crypt (shrK A) {Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Talt])
€ set evs"
by (blast dest!: servTicket_authentic_Tgs K4_imp_K2)

lemma u_servTicket_authentic_Kas:
"[Crypt (shrK B) {Agent A, Agent B, Key servK, Number Tsl
€ parts (spies evs); B # Tgs; B ¢ bad;
evs € kerbIV_gets |
— JauthK Ta. Says Kas A (Crypt(shrK A) {Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Talt|)
€ set evs

N servKlife + Ts < authKlife + Ta"

by (blast dest!: servTicket_authentic_Tgs u_K4_imp_K2)

lemma servTicket_authentic:
"[Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts}}
€ parts (spies evs); B # Tgs; B ¢ bad;
evs € kerbIV_gets |

124 7 THE KERBEROS PROTOCOL, VERSION IV

— dTa authK.
Says Kas A (Crypt (shrK A) {Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number
Tal})
€ set evs
A Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts,
Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts[|]})
€ set evs"
by (blast dest: servTicket_authentic_Tgs K4_imp_K2)

lemma u_servTicket_authentic:
"[Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts|
€ parts (spies evs); B # Tgs; B ¢ bad;
evs € kerbIV_gets |
= dTa authK.
(Says Kas A (Crypt (shrK A) {Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number
Talt})
€ set evs
A Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts,
Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts]|})
€ set evs
N servKlife + Ts < authKlife + Ta)"
by (blast dest: servTicket_authentic_Tgs u_K4_imp_K2)

lemma u_NotexpiredSK_NotexpiredAK:
"[- expiredSK Ts evs; servKlife + Ts < authKlife + Ta |
—> — expiredAK Ta evs"

by (blast dest: leI le_trans dest: leD)

7.6 Reliability: friendly agents send something if some-
thing else happened

lemma K3_imp_K2:
"[Says A Tgs
{authTicket, Crypt authK {Agent A, Number T2|}, Agent B|}
€ set evs;
A ¢ bad; evs € kerbIV_gets |
—> dJTa. Says Kas A (Crypt (shrK A)
{Key authK, Agent Tgs, Number Ta, authTicket|)
€ set evs"
apply (erule rev_mp)
apply (erule kerbIV_gets.induct)
apply (frule_tac [8] Gets_ticket_parts)
apply (frule_tac [6] Gets_ticket_parts, simp_all, blast, blast)
apply (blast dest: Gets_imp_knows_Spy [THEN parts.Inj, THEN authK_authentic])
done

Anticipated here from next subsection. An authK is encrypted by one and only
one Shared key. A servK is encrypted by one and only one authK.

lemma Key_unique_SesKey:
"[Crypt K {Key SesKey, Agent B, T, Ticketl|}
€ parts (spies evs);
Crypt K’ {Key SesKey, Agent B’, T’, Ticket’|}

7.6 Reliability: friendly agents send something if something else happened125

€ parts (spies evs); Key SesKey ¢ analz (spies evs);
evs € kerbIV_gets |
= K=K’ N B=B’ N T=T’ A Ticket=Ticket’"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV_gets.induct, analz_mono_contra)
apply (frule_tac [8] Gets_ticket_parts)
apply (frule_tac [6] Gets_ticket_parts, simp_all)

Fake, K2, K4

apply (blast+)
done

lemma Tgs_authenticates_A:
"[Crypt authK {Agent A, Number T2} € parts (spies evs);
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal
€ parts (spies evs);
Key authK ¢ analz (spies evs); A ¢ bad; evs € kerbIV_gets |
= 3 B. Says A Tgs {
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal},
Crypt authK {Agent A, Number T2|}, Agent B || € set evs"
apply (drule authTicket_authentic, assumption, rotate_tac 4)
apply (erule rev_mp, erule rev_mp, erule rev_mp)
apply (erule kerbIV_gets.induct, analz_mono_contra)
apply (frule_tac [6] Gets_ticket_parts)
apply (frule_tac [9] Gets_ticket_parts)
apply (simp_all (no_asm_simp) add: all_conj_distrib)

Fake

apply blast

K2

apply (force dest!: Crypt_imp_keysFor)
K3

apply (blast dest: Key_unique_SesKey)
K5

If authKa were compromised, so would be authK

apply (case_tac "Key authKa € analz (spies evs5)")
apply (force dest!: Gets_imp_knows_Spy [THEN analz.Inj, THEN analz.Decrypt,
THEN analz.Fst])

Besides, since authKa originated with Kas anyway...

apply (clarify, drule K3_imp_K2, assumption, assumption)
apply (clarify, drule Says_Kas_message_form, assumption)

...it cannot be a shared key*. Therefore servK_authentic applies. Contradition: Tgs
used authK as a servkey, while Kas used it as an authkey

apply (blast dest: servK_authentic Says_Tgs_message_form)
done

126

7 THE KERBEROS PROTOCOL, VERSION IV

lemma Says_K5:

"[Crypt servK {Agent A, Number T3[} € parts (spies evs);

Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts,
servTicket[}) € set evs;

Key servK ¢ analz (spies evs);

A ¢ bad; B ¢ bad; evs € kerbIV_gets |

—> Says A B {servTicket, Crypt servK {Agent A, Number T3[}} € set evs"

apply
apply
apply
apply
apply
apply
apply
apply

K3
apply
K4
apply
K5

apply
done

(erule rev_mp)

(erule rev_mp)

(erule rev_mp)

(erule kerbIV_gets.induct, analz_mono_contra)
(frule_tac [6] Gets_ticket_parts)

(frule_tac [9] Gets_ticket_parts)

(simp_all (no_asm_simp) add: all_conj_distrib)
blast

(blast dest: authK_authentic Says_Kas_message_form Says_Tgs_message_form)

(force dest!: Crypt_imp_keysFor)

(blast dest: Key_unique_SesKey)

Anticipated here from next subsection

lemma unique_CryptKey:
"[Crypt (shrK B) {Agent A, Agent B, Key SesKey, T|

apply
apply
apply
apply
apply
apply

€ parts (spies evs);
Crypt (shrK B’) {Agent A’, Agent B’, Key SesKey, T’|}
€ parts (spies evs); Key SesKey ¢ analz (spies evs);
evs € kerbIV_gets |
= A=A’ A B=B’ A T=T’"
(erule rev_mp)
(erule rev_mp)
(erule rev_mp)
(erule kerbIV_gets.induct, analz_mono_contra)
(frule_tac [8] Gets_ticket_parts)
(frule_tac [6] Gets_ticket_parts, simp_all)

Fake, K2, K4

apply
done

(blast+)

lemma Says_K6:
"[Crypt servK (Number T3) € parts (spies evs);

Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts,
servTicket|) € set evs;
Key servK ¢ analz (spies evs);
A ¢ bad; B ¢ bad; evs € kerbIV_gets |
= Says B A (Crypt servK (Number T3)) € set evs"

7.7 Unicity Theorems 127

apply (erule rev_mp)

apply (erule rev_mp)

apply (erule rev_mp)

apply (erule kerbIV_gets.induct, analz_mono_contra)
apply (frule_tac [8] Gets_ticket_parts)

apply (frule_tac [6] Gets_ticket_parts)

apply (simp_all (no_asm_simp))

apply blast

apply (force dest!: Crypt_imp_keysFor, clarify)
apply (frule Says_Tgs_message_form, assumption, clarify)
apply (blast dest: unique_CryptKey)

done

Needs a unicity theorem, hence moved here

lemma servK_authentic_ter:
"[Says Kas A
(Crypt (shrK A) {Key authK, Agent Tgs, Number Ta, authTicket[}) € set evs;
Crypt authK {Key servK, Agent B, Number Ts, servTicketl[}
€ parts (spies evs);
Key authK ¢ analz (spies evs);
evs € kerbIV_gets]
—> Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, servTicketl|)
€ set evs"
apply (frule Says_Kas_message_form, assumption)
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV_gets.induct, analz_mono_contra)
apply (frule_tac [8] Gets_ticket_parts)
apply (frule_tac [6] Gets_ticket_parts, simp_all, blast)

K2 and K4 remain

prefer 2 apply (blast dest!: unique_CryptKey)
apply (blast dest!: servK_authentic Says_Tgs_message_form authKeys_used)
done

7.7 Unicity Theorems

The session key, if secure, uniquely identifies the Ticket whether authTicket or
servTicket. As a matter of fact, one can read also Tgs in the place of B.

lemma unique_authKeys:

"[Says Kas A
(Crypt Ka {Key authK, Agent Tgs, Ta, X[}) € set evs;
Says Kas A’

(Crypt Ka’ {Key authK, Agent Tgs, Ta’, X’}) € set evs;
evs € kerbIV_gets | = A=A’ A Ka=Ka’ A Ta=Ta’ A X=X’"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV_gets.induct)
apply (frule_tac [8] Gets_ticket_parts)
apply (frule_tac [6] Gets_ticket_parts, simp_all)

K2

128 7 THE KERBEROS PROTOCOL, VERSION IV

apply blast
done

servK uniquely identifies the message from Tgs

lemma unique_servKeys:

"[Says Tgs A
(Crypt K {Key servK, Agent B, Ts, X[}) € set evs;
Says Tgs A’

(Crypt K’ {Key servK, Agent B’, Ts’, X’[) € set evs;
evs € kerbIV_gets 1] = A=A’ N B=B’ N K=K’ A Ts=Ts’ N X=X’"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV_gets.induct)
apply (frule_tac [8] Gets_ticket_parts)
apply (frule_tac [6] Gets_ticket_parts, simp_all)

K4

apply blast
done

Revised unicity theorems

lemma Kas_Unique:
"[Says Kas A
(Crypt Ka {Key authK, Agent Tgs, Ta, authTicket]}) € set evs;
evs € kerbIV_gets | =

Unique (Says Kas A (Crypt Ka {Key authK, Agent Tgs, Ta, authTicketl]}))

on evs"
apply (erule rev_mp, erule kerbIV_gets.induct, simp_all add: Unique_def)
apply blast
done

lemma Tgs_Unique:
"[Says Tgs A
(Crypt authK {Key servK, Agent B, Ts, servTicket|}) € set evs;
evs € kerbIV_gets | =

Unique (Says Tgs A (Crypt authK {Key servK, Agent B, Ts, servTicketl]}))

on evs"
apply (erule rev_mp, erule kerbIV_gets.induct, simp_all add: Unique_def)
apply blast
done

7.8 Lemmas About the Predicate akcryptsk

lemma not_AKcryptSK_Nil [iff]: "— AKcryptSK authK servK []"
by (simp add: AKcryptSK_def)

lemma AKcryptSKI:
"[Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, X) € set evs;
evs € kerbIV_gets | = AKcryptSK authK servK evs"
unfolding AKcryptSK_def
apply (blast dest: Says_Tgs_message_form)
done

7.8 Lemmas About the Predicate AKcryptSK 129

lemma AKcryptSK_Says [simp]:
"AKcryptSK authK servK (Says S A X # evs) =
(Tgs = S A
(3B Ts. X = Crypt authkK
{Key servK, Agent B, Number Ts,
Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts|

)
| AKcryptSK authK servK evs)"
by (auto simp add: AKcryptSK_def)

lemma Auth_fresh_not_AKcryptSK:
"[Key authK ¢ used evs; evs € kerbIV_gets |
— — AKcryptSK authK servK evs"
unfolding AKcryptSK_def
apply (erule rev_mp)
apply (erule kerbIV_gets.induct)
apply (frule_tac [8] Gets_ticket_parts)
apply (frule_tac [6] Gets_ticket_parts, simp_all, blast)
done

lemma Serv_fresh_not_AKcryptSK:
"Key servK ¢ used evs —> — AKcryptSK authK servK evs"
unfolding AKcryptSK_def by blast

lemma authK_not_AKcryptSK:
"[Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, tk|
€ parts (spies evs); evs € kerbIV_gets |
— — AKcryptSK K authK evs"
apply (erule rev_mp)
apply (erule kerbIV_gets.induct)
apply (frule_tac [8] Gets_ticket_parts)
apply (frule_tac [6] Gets_ticket_parts, simp_all)

Fake

apply blast

Reception

apply (simp add: AKcryptSK_def)
K2: by freshness

apply (simp add: AKcryptSK_def)
K4

by (blast+)

A secure serverkey cannot have been used to encrypt others

lemma servK_not_AKcryptSK:
"[Crypt (shrK B) {Agent A, Agent B, Key SK, Number Ts| € parts (spies evs);
Key SK ¢ analz (spies evs); SK € symKeys;
B # Tgs; evs € kerbIV_gets |
—> — AKcryptSK SK K evs"

130 7 THE KERBEROS PROTOCOL, VERSION IV

apply (erule rev_mp)

apply (erule rev_mp)

apply (erule kerbIV_gets.induct, analz_mono_contra)
apply (frule_tac [8] Gets_ticket_parts)

apply (frule_tac [6] Gets_ticket_parts, simp_all, blast)

Reception

apply (simp add: AKcryptSK_def)

K4 splits into distinct subcases

apply auto

servK can’t have been enclosed in two certificates

prefer 2 apply (blast dest: unique_CryptKey)

servK is fresh and so could not have been used, by new_keys_not_used

by (force dest!: Crypt_imp_invKey_keysFor simp add: AKcryptSK_def)

Long term keys are not issued as servKeys

lemma shrK_not_AKcryptSK:
"evs € kerbIV_gets = — AKcryptSK K (shrK A) evs"
unfolding AKcryptSK_def
apply (erule kerbIV_gets.induct)
apply (frule_tac [8] Gets_ticket_parts)
by (frule_tac [6] Gets_ticket_parts, auto)

The Tgs message associates servK with authK and therefore not with any other
key authK.

lemma Says_Tgs_AKcryptSK:
"[Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, X [)
€ set evs;
authK’ # authK; evs € kerbIV_gets |
— — AKcryptSK authK’ servK evs"
unfolding AKcryptSK_def
by (blast dest: unique_servKeys)

Equivalently

lemma not_different_AKcryptSK:
"[AKcryptSK authK servK evs;
authK’ # authK; evs € kerbIV_gets |
—> — AKcryptSK authK’ servK evs A servK € symKeys"
apply (simp add: AKcryptSK_def)
by (blast dest: unique_servKeys Says_Tgs_message_form)

lemma AKcryptSK_not_AKcryptSK:
"[AKcryptSK authK servK evs; evs € kerbIV_gets |
—> — AKcryptSK servK K evs"

apply (erule rev_mp)

apply (erule kerbIV_gets.induct)

apply (frule_tac [8] Gets_ticket_parts)

apply (frule_tac [6] Gets_ticket_parts)

Reception

7.9 Secrecy Theorems 131

prefer 3 apply (simp add: AKcryptSK_def)
apply (simp_all, safe)

K4 splits into subcases

prefer 4 apply (blast dest!: authK_not_AKcryptSK)

servK is fresh and so could not have been used, by new_keys_not_used

prefer 2
apply (force dest!: Crypt_imp_invKey_keysFor simp add: AKcryptSK_def)

Others by freshness

by (blast+)

The only session keys that can be found with the help of session keys are those
sent by Tgs in step K4.

We take some pains to express the property as a logical equivalence so that the
simplifier can apply it.

lemma Key_analz_image_Key_lemma:
"P — (Key K € analz (Key‘KK U H)) — (K € KK | Key K € analz H)
—
P — (Key K € analz (Key'KK U H)) = (K € KK | Key K € analz H)"
by (blast intro: analz_mono [THEN subsetD])

lemma AKcryptSK_analz_insert:
"[AKcryptSK K K’ evs; K € symKeys; evs € kerbIV_gets |
= Key K’ € analz (insert (Key K) (spies evs))"
apply (simp add: AKcryptSK_def, clarify)
by (drule Says_imp_spies [THEN analz.Inj, THEN analz_insertI], auto)

lemma authKeys_are_not_AKcryptSK:
"[K € authKeys evs U range shrK; evs € kerbIV_gets |
—> VSK. — AKcryptSK SK K evs A K € symKeys"

apply (simp add: authKeys_def AKcryptSK_def)

by (blast dest: Says_Kas_message_form Says_Tgs_message_form)

lemma not_authKeys_not_AKcryptSK:
"[K ¢ authKeys evs;
K ¢ range shrK; evs € kerbIV_gets |
—> VSK. — AKcryptSK K SK evs"
apply (simp add: AKcryptSK_def)
by (blast dest: Says_Tgs_message_form)

7.9 Secrecy Theorems

For the Oops2 case of the next theorem

lemma Oops2_not_AKcryptSK:
"[evs € kerbIV_gets;
Says Tgs A (Crypt authK
{Key servK, Agent B, Number Ts, servTicketl]})
€ set evs |

132 7 THE KERBEROS PROTOCOL, VERSION IV

—> — AKcryptSK servK SK evs"
by (blast dest: AKcryptSKI AKcryptSK_not_AKcryptSK)

Big simplification law for keys SK that are not crypted by keys in KK It helps
prove three, otherwise hard, facts about keys. These facts are exploited as
simplification laws for analz, and also "limit the damage" in case of loss of a key
to the spy. See ESORICSO9S.

lemma Key_analz_image_Key [rule_format (no_asm)]:
"evs € kerbIV_gets —>
(VSK KK. SK € symKeys A KK C -(range shrK) —
(VK € KK. - AKcryptSK K SK evs) —»
(Key SK € analz (Key‘KK U (spies evs))) =
(SK € KK | Key SK € analz (spies evs)))"
apply (erule kerbIV_gets.induct)
apply (frule_tac [11] Oops_range_spies2)
apply (frule_tac [10] Oops_range_spiesl)
apply (frule_tac [8] Says_tgs_message_form)
apply (frule_tac [6] Says_kas_message_form)
apply (safe del: impI intro!: Key_analz_image_Key_lemma [THEN impI])

Case-splits for Oopsl and message 5: the negated case simplifies using the induction
hypothesis

apply (case_tac [12] "AKcryptSK authK SK evs01")
apply (case_tac [9] "AKcryptSK servK SK evs5")
apply (simp_all del: image_insert
add: analz_image_freshK_simps AKcryptSK_Says shrK_not_AKcryptSK
Oops2_not_AKcryptSK Auth_fresh_not_AKcryptSK
Serv_fresh_not_AKcryptSK Says_Tgs_AKcryptSK Spy_analz_shrK)
— 18 seconds on a 1.8GHz machine??

Fake

apply spy_analz

Reception

apply (simp add: AKcryptSK_def)

K2

apply blast

K3

apply blast

K4

apply (blast dest!: authK_not_AKcryptSK)

Kb

apply (case_tac "Key servK € analz (spies evs5) ")
If servK is compromised then the result follows directly...

apply (simp (no_asm_simp) add: analz_insert_eq Un_upper2 [THEN analz_mono,
THEN subsetD])

7.9 Secrecy Theorems 133

...therefore servK is uncompromised.

The AKcryptSK servK SK evs5 case leads to a contradiction.

apply (blast elim!: servK_not_AKcryptSK [THEN [2] rev_notE] del: allE ballE)

Another K5 case

apply blast
Oopsl

apply simp
by (blast dest!: AKcryptSK_analz_insert)

First simplification law for analz: no session keys encrypt authentication keys
or shared keys.

lemma analz_insert_freshK1:
"[evs € kerbIV_gets; K € authKeys evs U range shrk;
SesKey ¢ range shrK |
= (Key K € analz (insert (Key SesKey) (spies evs))) =
(K = SesKey | Key K € analz (spies evs))"
apply (frule authKeys_are_not_AKcryptSK, assumption)
apply (simp del: image_insert
add: analz_image_freshK_simps add: Key_analz_image_Key)
done

Second simplification law for analz: no service keys encrypt any other keys.

lemma analz_insert_freshK2:

"[evs € kerbIV_gets; servK ¢ (authKeys evs); servK ¢ range shrk;

K € symKeys |
—> (Key K € analz (insert (Key servK) (spies evs))) =
(K = servK | Key K € analz (spies evs))"
apply (frule not_authKeys_not_AKcryptSK, assumption, assumption)
apply (simp del: image_insert
add: analz_image_freshK_simps add: Key_analz_image_Key)

done

Third simplification law for analz: only one authentication key encrypts a certain
service key.

lemma analz_insert_freshK3:
"[AKcryptSK authK servK evs;
authK’ # authK; authK’ ¢ range shrK; evs € kerbIV_gets]
— (Key servK € analz (insert (Key authK’) (spies evs))) =
(servK = authK’ | Key servK € analz (spies evs))"
apply (drule_tac authK’ = authK’ in not_different_AKcryptSK, blast, assumption)
apply (simp del: image_insert
add: analz_image_freshK_simps add: Key_analz_image_Key)

done

lemma analz_insert_freshK3_bis:
"[Says Tgs A
(Crypt authK {Key servK, Agent B, Number Ts, servTicketl)
€ set evs;
authK # authK’; authK’ ¢ range shrK; evs € kerbIV_gets]

134 7 THE KERBEROS PROTOCOL, VERSION IV

—> (Key servK € analz (insert (Key authK’) (spies evs))) =
(servK = authK’ | Key servK € analz (spies evs))"
apply (frule AKcryptSKI, assumption)
by (simp add: analz_insert_freshK3)

a weakness of the protocol

lemma authK_compromises_servK:
"[Says Tgs A
(Crypt authK {Key servK, Agent B, Number Ts, servTicket|)
€ set evs; authK € symKeys;
Key authK € analz (spies evs); evs € kerbIV_gets |
—> Key servK € analz (spies evs)"
by (force dest: Says_imp_spies [THEN analz.Inj, THEN analz.Decrypt, THEN analz.Fst])

lemma servK_notin_authKeysD:
"[Crypt authK {Key servK, Agent B, Ts,
Crypt (shrK B) {Agent A, Agent B, Key servK, Ts|]}
€ parts (spies evs);
Key servK ¢ analz (spies evs);
B # Tgs; evs € kerbIV_gets |
= servK ¢ authKeys evs"
apply (erule rev_mp)
apply (erule rev_mp)
apply (simp add: authKeys_def)
apply (erule kerbIV_gets.induct, analz_mono_contra)
apply (frule_tac [8] Gets_ticket_parts)
apply (frule_tac [6] Gets_ticket_parts, simp_all)
by (blast+)

If Spy sees the Authentication Key sent in msg K2, then the Key has expired.

lemma Confidentiality_Kas_lemma [rule_format]:
"[authK € symKeys; A ¢ bad; evs € kerbIV_gets |
—> Says Kas A
(Crypt (shrK A)
{Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal|)
€ set evs —
Key authK € analz (spies evs) —
expiredAK Ta evs"
apply (erule kerbIV_gets.induct)
apply (frule_tac [11] Oops_range_spies2)
apply (frule_tac [10] Oops_range_spiesl)
apply (frule_tac [8] Says_tgs_message_form)
apply (frule_tac [6] Says_kas_message_form)
apply (safe del: impI conjI impCE)
apply (simp_all (no_asm_simp) add: Says_Kas_message_form less_Sucl analz_insert_eq
not_parts_not_analz analz_insert_freshK1 pushes)

Fake
apply spy_analz
K2

apply blast

7.9 Secrecy Theorems 135

K4

apply blast

Level 8: Kb

apply (blast dest: servK_notin_authKeysD Says_Kas_message_form intro: less_SucI)

Oopsl

apply (blast dest!: unique_authKeys intro: less_Sucl)

Oops2

by (blast dest: Says_Tgs_message_form Says_Kas_message_form)

lemma Confidentiality_Kas:
"[Says Kas A
(Crypt Ka {Key authK, Agent Tgs, Number Ta, authTicket|)
€ set evs;
— expiredAK Ta evs;
A ¢ bad; evs € kerbIV_gets |
—> Key authK ¢ analz (spies evs)"
by (blast dest: Says_Kas_message_form Confidentiality_Kas_lemma)

If Spy sees the Service Key sent in msg K4, then the Key has expired.

lemma Confidentiality_lemma [rule_format]:
"[Says Tgs A
(Crypt authK
ﬂKey servK, Agent B, Number Ts,
Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts|})
€ set evs;
Key authK ¢ analz (spies evs);
servK € symKeys;
A ¢ bad; B ¢ bad; evs € kerbIV_gets |
= Key servK € analz (spies evs) —
expiredSK Ts evs"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV_gets.induct)
apply (rule_tac [10] impI)+
— The Oopsl case is unusual: must simplify Authkey ¢ analz (knows Spy (ev
evs)), not letting analz_mono_contra weaken it to Authkey ¢ analz (knows Spy
evs), for we then conclude authK # authKa.
apply analz_mono_contra
apply (frule_tac [11] Oops_range_spies2)
apply (frule_tac [10] Oops_range_spies1)
apply (frule_tac [8] Says_tgs_message_form)
apply (frule_tac [6] Says_kas_message_form)
apply (safe del: impI conjI impCE)
apply (simp_all add: less_SucI new_keys_not_analzd Says_Kas_message_form Says_Tgs_message_form
analz_insert_eq not_parts_not_analz analz_insert_freshK1 analz_insert_freshK2
analz_insert_freshK3_bis pushes)

Fake

apply spy_analz

136 7 THE KERBEROS PROTOCOL, VERSION IV

K2

apply (blast intro: parts_insertI less_SucI)

K4

apply (blast dest: authTicket_authentic Confidentiality_Kas)
Oops2

prefer 3
apply (blast dest: Says_imp_spies [THEN parts.Inj] Key_unique_SesKey intro:
less_Sucl)

Oopsl

prefer 2
apply (blast dest: Says_Kas_message_form Says_Tgs_message_form intro: less_SucI)

K5. Not clear how this step could be integrated with the main simplification step.
Done in KerberosV.thy

apply clarify

apply (erule_tac V = "Says Aa Tgs X € set evs" for X evs in thin_rl)

apply (frule Gets_imp_knows_Spy [THEN parts.Inj, THEN servK_notin_authKeysD])
apply (assumption, assumption, blast, assumption)

apply (simp add: analz_insert_freshK2)

apply (blast dest: Key_unique_SesKey intro: less_SucI)

done

In the real world Tgs can’t check wheter authK is secure!

lemma Confidentiality_Tgs:
"[Says Tgs A
(Crypt authK {Key servK, Agent B, Number Ts, servTicket|)
€ set evs;
Key authK ¢ analz (spies evs);
- expiredSK Ts evs;
A ¢ bad; B ¢ bad; evs € kerbIV_gets |
—> Key servK ¢ analz (spies evs)"
by (blast dest: Says_Tgs_message_form Confidentiality_lemma)

In the real world Tgs CAN check what Kas sends!

lemma Confidentiality_Tgs_bis:
"[Says Kas A
(Crypt Ka {Key authK, Agent Tgs, Number Ta, authTicket|)
€ set evs;
Says Tgs A
(Crypt authK {Key servK, Agent B, Number Ts, servTicket|)
€ set evs;
— expiredAK Ta evs; — expiredSK Ts evs;
A ¢ bad; B ¢ bad; evs € kerbIV_gets |
—> Key servK ¢ analz (spies evs)"
by (blast dest!: Confidentiality_Kas Confidentiality_Tgs)

Most general form

lemmas Confidentiality_Tgs_ter = authTicket_authentic [THEN Confidentiality_Tgs_bis]

7.10 2. Parties’ strong authentication: non-injective agreement on the session key. The same guarantees also expre:

lemmas Confidentiality_Auth_A = authK_authentic [THEN Confidentiality_Kas]

Needs a confidentiality guarantee, hence moved here. Authenticity of servK for
A

lemma servK_authentic_bis_r:
"[Crypt (shrK A) {Key authK, Agent Tgs, Number Ta, authTicketl|
€ parts (spies evs);
Crypt authK {Key servK, Agent B, Number Ts, servTicket]
€ parts (spies evs);
— expiredAK Ta evs; A ¢ bad; evs € kerbIV_gets |
=—>Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, servTicket|)
€ set evs"
by (blast dest: authK_authentic Confidentiality_ Auth_A servK_authentic_ter)

lemma Confidentiality_Serv_A:
"[Crypt (shrK A) {Key authK, Agent Tgs, Number Ta, authTicket|
€ parts (spies evs);
Crypt authK {Key servK, Agent B, Number Ts, servTicket]
€ parts (spies evs);
— expiredAK Ta evs; — expiredSK Ts evs;
A ¢ bad; B ¢ bad; evs € kerbIV_gets |
—> Key servK ¢ analz (spies evs)"
by (metis Confidentiality_Auth_A Confidentiality_Tgs K4_imp_K2 authK_authentic
authTicket_form servK_authentic unique_authKeys)

lemma u_Confidentiality_B:
"[Crypt (shrK B) {Agent A, Agent B, Key servK, Number Tsl}
€ parts (spies evs);
— expiredSK Ts evs;
A ¢ bad; B ¢ bad; B # Tgs; evs € kerbIV_gets |
—> Key servK ¢ analz (spies evs)"
by (blast dest: u_servTicket_authentic u_NotexpiredSK_NotexpiredAK Confidentiality_Tgs_bis)

7.10 2. Parties’ strong authentication: non-injective agree-
ment on the session key. The same guarantees also
express key distribution, hence their names

Authentication here still is weak agreement - of B with A

lemma A_authenticates_B:
"[Crypt servK (Number T3) € parts (spies evs);
Crypt authK {Key servK, Agent B, Number Ts, servTicketl|}
€ parts (spies evs);
Crypt (shrK A) {Key authK, Agent Tgs, Number Ta, authTicketl|}
€ parts (spies evs);
Key authK ¢ analz (spies evs); Key servK ¢ analz (spies evs);
A ¢ bad; B ¢ bad; evs € kerbIV_gets |
— Says B A (Crypt servK (Number T3)) € set evs"
by (blast dest: authK_authentic servK_authentic Says_Kas_message_form Key_unique_SesKey
K4_imp_K2 intro: Says_K6)

138 7 THE KERBEROS PROTOCOL, VERSION IV

lemma shrK_in_initState_Server[iff]: "Key (shrK A) € initState Kas"
by (induct_tac "A", auto)

lemma shrK_in_knows_Server [iff]: "Key (shrK A) € knows Kas evs"
by (simp add: initState_subset_knows [THEN subsetD])

lemma A_authenticates_and_keydist_to_Kas:

"[Gets A (Crypt (shrK A) {Key authK, Peer, Ta, authTicket[}) € set evs;

A ¢ bad; evs € kerbIV_gets |

—> Says Kas A (Crypt (shrK A) {Key authK, Peer, Ta, authTicket[}) € set
evs

A Key authK € analz(knows Kas evs)"
by (force dest!: authK_authentic Says_imp_knows [THEN analz.Inj, THEN analz.Decrypt,
THEN analz.Fst])

lemma K3_imp_Gets_evs:
"[Says A Tgs {Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal},
Crypt authK {Agent A, Number T2}, Agent B]}
€ set evs; A ¢ bad; evs € kerbIV_gets |
—> Gets A (Crypt (shrK A) {Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal[})
€ set evs"
apply (erule rev_mp)
apply (erule kerbIV_gets.induct)
apply auto
apply (blast dest: authTicket_form)
done

lemma Tgs_authenticates_and_keydist_to_A:
"[Gets Tgs
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal},
Crypt authK {Agent A, Number T2}, Agent B | € set evs;
Key authK ¢ analz (spies evs); A ¢ bad; evs € kerbIV_gets |

= 3 B. Says A Tgs {

Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal},

Crypt authK {Agent A, Number T2|}, Agent B |} € set evs
A Key authK € analz (knows A evs)"
apply (frule Gets_imp_knows_Spy [THEN parts.Inj, THEN parts.Fst], assumption)
apply (drule Gets_imp_knows_Spy [THEN parts.Inj, THEN parts.Snd, THEN parts.Fst],
assumption)
apply (drule Tgs_authenticates_A, assumption+, simp)
apply (force dest!: K3_imp_Gets_evs Gets_imp_knows [THEN analz.Inj, THEN analz.Decrypt,
THEN analz.Fst])
done

lemma K4_imp_Gets:
"[Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, servTicketl[)
€ set evs; evs € kerbIV_gets |
= 3 Ta X.
Gets Tgs {Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal,

x}

7.10 2. Parties’ strong authentication: non-injective agreement on the session key. The same guarantees also expre:

€ set evs'"
apply (erule rev_mp)
apply (erule kerbIV_gets.induct)
apply auto
done

lemma A_authenticates_and_keydist_to_Tgs:
"[Gets A (Crypt (shrK A) {Key authK, Agent Tgs, Number Ta, authTicket|)
€ set evs;
Gets A (Crypt authK {Key servK, Agent B, Number Ts, servTicketl|})
€ set evs;
Key authK ¢ analz (spies evs); A ¢ bad;
evs € kerbIV_gets |
— Says Tgs A (Crypt authK {Key servK, Agent B, Number Ts, servTicketl]})
€ set evs
A Key authK € analz (knows Tgs evs)
A Key servK € analz (knows Tgs evs)"
apply (drule Gets_imp_knows_Spy [THEN parts.Inj], assumption)
apply (drule Gets_imp_knows_Spy [THEN parts.Inj], assumption)
apply (frule authK_authentic, assumption+)
apply (drule servK_authentic_ter, assumption+)
apply (frule K4_imp_Gets, assumption, erule exE, erule exE)
apply (drule Gets_imp_knows [THEN analz.Inj, THEN analz.Fst, THEN analz.Decrypt,
THEN analz.Snd, THEN analz.Snd, THEN analz.Fst], assumption, force)
apply (metis Says_imp_knows analz.Fst analz.Inj analz_symKeys_Decrypt authTicket_form)
done

lemma K5_imp_Gets:
"[Says A B {servTicket, Crypt servK {Agent A, Number T3[}} € set evs;
A ¢ bad; evs € kerbIV_gets |
= 3 authK Ts authTicket T2.
Gets A (Crypt authK {Key servK, Agent B, Number Ts, servTicket|}) € set
evs
A Says A Tgs {authTicket, Crypt authK {Agent A, Number T2[}, Agent B} €
set evs"
apply (erule rev_mp)
apply (erule kerbIV_gets.induct)
apply auto
done

lemma K3_imp_Gets:
"[Says A Tgs {authTicket, Crypt authK {Agent A, Number T2}, Agent B[
€ set evs;

A ¢ bad; evs € kerbIV_gets |
=—> 3 Ta. Gets A (Crypt (shrK A) {Key authK, Agent Tgs, Number Ta, authTicket[)
€ set evs"
apply (erule rev_mp)
apply (erule kerbIV_gets.induct)
apply auto
done

lemma B_authenticates_and_keydist_to_A:
"[Gets B {Crypt (shrK B) {Agent A, Agent B, Key servK, Number Tsl|},
Crypt servK {Agent A, Number T3}} € set evs;

140 8 THE KERBEROS PROTOCOL, VERSION V

Key servK ¢ analz (spies evs);
A ¢ bad; B ¢ bad; B # Tgs; evs € kerbIV_gets |
= Says A B {Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts|,
Crypt servK {Agent A, Number T3} € set evs
A Key servK € analz (knows A evs)"
apply (frule Gets_imp_knows_Spy [THEN parts.Inj, THEN parts.Fst, THEN servTicket_authentic_Tgs
assumption+)
apply (drule Gets_imp_knows_Spy [THEN parts.Inj, THEN parts.Snd], assumption)
apply (erule exE, drule Says_K5, assumption+)
apply (frule K5_imp_Gets, assumption+)
apply clarify
apply (drule K3_imp_Gets, assumption+)
apply (erule exE)
apply (frule Gets_imp_knows_Spy [THEN parts.Inj, THEN authK_authentic, THEN
Says_Kas_message_form], assumption+, clarify)
apply (force dest!: Gets_imp_knows [THEN analz.Inj, THEN analz.Decrypt, THEN
analz.Fst])
done

lemma K6_imp_Gets:
"[Says B A (Crypt servK (Number T3)) € set evs;
B ¢ bad; evs € kerbIV_gets |
= 3 Ts X. Gets B {Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts},X|
€ set evs"
apply (erule rev_mp)
apply (erule kerbIV_gets.induct)
apply auto
done

lemma A_authenticates_and_keydist_to_B:
"[Gets A {Crypt authK {Key servK, Agent B, Number Ts, servTicketl|,
Crypt servKk (Number T3)} € set evs;
Gets A (Crypt (shrK A) {Key authK, Agent Tgs, Number Ta, authTicketl[})
€ set evs;
Key authK ¢ analz (spies evs); Key servK ¢ analz (spies evs);
A ¢ bad; B ¢ bad; evs € kerbIV_gets |
—> Says B A (Crypt servK (Number T3)) € set evs
A Key servK € analz (knows B evs)"
apply (frule Gets_imp_knows_Spy [THEN parts.Inj, THEN parts.Fst], assumption)
apply (drule Gets_imp_knows_Spy [THEN parts.Inj, THEN parts.Snd], assumption)
apply (drule Gets_imp_knows_Spy [THEN parts.Inj], assumption)
apply (drule A_authenticates_B, assumption+)
apply (force dest!: K6_imp_Gets Gets_imp_knows [THEN analz.Inj, THEN analz.Fst,
THEN analz.Decrypt, THEN analz.Snd, THEN analz.Snd, THEN analz.Fst])
done

end

8 The Kerberos Protocol, Version V

theory KerberosV imports Public begin

141

The "u" prefix indicates theorems referring to an updated version of the proto-
col. The "r" suffix indicates theorems where the confidentiality assumptions are
relaxed by the corresponding arguments.

abbreviation
Kas :: agent where
"Kas == Server"

abbreviation
Tgs :: agent where
"Tgs == Friend 0"

axiomatization where
Tgs_not_bad [iff]: "Tgs ¢ bad"
— Tgs is secure — we already know that Kas is secure

definition

authKeys :: "event list = key set" where
"authKeys evs = {authK. JA Peer Ta.
Says Kas A {Crypt (shrK A) {Key authK, Agent Peer, Tal,
Crypt (shrK Peer) {Agent A, Agent Peer, Key authK, Tal
} € set evs}"

definition

Issues :: "[agent, agent, msg, event list] = bool"
(<_ Issues _ with _ on _>) where
"A Issues B with X on evs =
(Y. Says A BY € set evs A X € parts {Y} A
X ¢ parts (spies (takeWhile (A\z. z # Says A BY) (rev evs))))"

consts
authKlife :: nat
servKlife :: nat
authlife :: nat
replylife :: nat

specification (authKlife)
authKlife LB [iff]: "2 < authKlife"
by blast

specification (servKlife)
servKlife LB [iff]: "2 + authKlife < servKlife"
by blast

142 8 THE KERBEROS PROTOCOL, VERSION V

specification (authlife)
authlife LB [iff]: "Suc 0 < authlife"
by blast

specification (replylife)
replylife_LB [iff]: "Suc 0 < replylife"
by blast

abbreviation

CT :: "event list = nat" where
"CT == length"

abbreviation
expiredAK :: "[nat, event list] = bool" where
"expiredAK T evs == authKlife + T < CT evs"

abbreviation
expiredSK :: "[nat, event list] = bool" where
"expiredSK T evs == servKlife + T < CT evs"
abbreviation
expiredA :: "[nat, event list] = bool" where
"expiredA T evs == authlife + T < CT evs"
abbreviation
valid :: "[nat, nat] = bool" (<valid _ wrt _>) where

"valid T1 wrt T2 == T1 < replylife + T2"

definition AKcryptSK :: "[key, key, event list] = bool" where
"AKcryptSK authK servK evs ==
JA B tt.

Says Tgs A {Crypt authK {Key servK, Agent B, tt}]},
Crypt (shrK B) {Agent A, Agent B, Key servK, tt| [
€ set evs"

inductive__set kerbV :: "event list set"
where

Nil: "[] € kerbV"

| Fake: "[evsf € kerbV; X € synth (analz (spies evsf)) |
— Says Spy B X # evsf € kerbV"

| KVi1: "[evsl € kerbV |
— Says A Kas {Agent A, Agent Tgs, Number (CT evs1)]} # evsl
€ kerbV"

143

| Kv2: "[evs2 € kerbV; Key authK ¢ used evs2; authK € symKeys;
Says A’ Kas {Agent A, Agent Tgs, Number T1}} € set evs2 |
—> Says Kas A {
Crypt (shrK A) {Key authK, Agent Tgs, Number (CT evs2)|,
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number (CT evs2)[}

[} # evs2 € kerbV"

| KV3: "[evs3 € kerbV; A # Kas; A # Tgs;
Says A Kas {Agent A, Agent Tgs, Number T1|} € set evs3;
Says Kas’ A {Crypt (shrK A) {Key authK, Agent Tgs, Number Tal},
authTicket[€ set evs3;
valid Ta wrt T1
I
= Says A Tgs {authTicket,
(Crypt authK {Agent A, Number (CT evs3)|),
Agent B[} # evs3 € kerbV"

| Kv4: "] evs4 € kerbV; Key servK ¢ used evs4; servK € symKeys;
B # Tgs; authK € symKeys;
Says A’ Tgs {
(Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authk,
Number Tal),
(Crypt authK {Agent A, Number T2[}), Agent B[}
€ set evs4;
- expiredAK Ta evs4;
- expiredA T2 evs4;
servKlife + (CT evs4) < authKlife + Ta
]
—> Says Tgs A4 {
Crypt authK {Key servK, Agent B, Number (CT evs4)|},
Crypt (shrK B) {Agent A, Agent B, Key servK, Number (CT evs4)|
} # evs4 € kerbV"

| KV5: "[evsbs € kerbV; authK € symKeys; servk € symKeys;

A # Kas; A # Tgs;
Says A Tgs

{authTicket, Crypt authK {Agent A, Number T2[,

Agent B[
€ set evs5;
Says Tgs’ A {Crypt authK {Key servK, Agent B, Number Ts|,
servTicket |

€ set evs5;

valid Ts wrt T2 |
— Says A B {servTicket,
Crypt servK {Agent A, Number (CT evs5)|} |
evsb € kerbV"

| Kv6: "] evs6 € kerbV; B # Kas; B # Tgs;

144 8 THE KERBEROS PROTOCOL, VERSION V

Says A’ B {
(Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts|),
(Crypt servK {Agent A, Number T3[)}

€ set evs6;

- expiredSK Ts evs6;

— expiredA T3 evs6

—> Says B A (Crypt servK (Number Ta2))
evs6 € kerbV"

| Oopsi:"[evs01 € kerbV; A # Spy;
Says Kas A {Crypt (shrK A) {Key authK, Agent Tgs, Number Tal,
authTicket]|} € set evs01;
expiredAK Ta evsO1 |
= Notes Spy {Agent A, Agent Tgs, Number Ta, Key authK[
evsO01 € kerbV"

| Oops2: "[evs02 € kerbV; A # Spy;
Says Tgs A {Crypt authK {Key servK, Agent B, Number Ts|,
servTicket| € set evs02;
expiredSK Ts evs02 |
= Notes Spy {Agent A, Agent B, Number Ts, Key servK]
evs02 € kerbV"

declare Says_imp_knows_Spy [THEN parts.Inj, dest]
declare parts.Body [dest]

declare analz_into_parts [dest]

declare Fake_parts_insert_in_Un [dest]

8.1 Lemmas about lists, for reasoning about Issues

lemma spies_Says_rev: "spies (evs @ [Says A B X]) = insert X (spies evs)"
apply (induct_tac "evs")

apply (rename_tac [2] a b)

apply (induct_tac [2] "a", auto)

done

lemma spies_Gets_rev: "spies (evs @ [Gets A X]) = spies evs"
apply (induct_tac "evs")

apply (rename_tac [2] a b)

apply (induct_tac [2] "a", auto)

done

lemma spies_Notes_rev: "spies (evs @ [Notes A X]) =
(if Ac€bad then insert X (spies evs) else spies evs)"
apply (induct_tac "evs")
apply (rename_tac [2] a b)
apply (induct_tac [2] "a", auto)

8.2 Lemmas about authKeys 145

done

lemma spies_evs_rev: "spies evs = spies (rev evs)"

apply (induct_tac "evs")

apply (rename_tac [2] a b)

apply (induct_tac [2] "a")

apply (simp_all (no_asm_simp) add: spies_Says_rev spies_Gets_rev spies_Notes_rev)
done

lemmas parts_spies_evs_revD2 = spies_evs_rev [THEN equalityD2, THEN parts_mono]

lemma spies_takeWhile: "spies (takeWhile P evs) C spies evs"
apply (induct_tac "evs")

apply (rename_tac [2] a b)

apply (induct_tac [2] "a", auto)

Resembles used_subset_append in theory Event.

done

lemmas parts_spies_takeWhile_mono = spies_takeWhile [THEN parts_mono]

8.2 Lemmas about authkeys

lemma authKeys_empty: "authKeys [] = {}"
by (simp add: authKeys_def)

lemma authKeys_not_insert:
"(VA Ta akey Peer.
ev # Says Kas A {Crypt (shrK A) {akey, Agent Peer, Tal,
Crypt (shrK Peer) {Agent A, Agent Peer, akey, Tal [})
— authKeys (ev # evs) = authKeys evs"
by (auto simp add: authKeys_def)

lemma authKeys_insert:
"authKeys
(Says Kas A {Crypt (shrK A) {Key K, Agent Peer, Number Tal},
Crypt (shrK Peer) {Agent A, Agent Peer, Key K, Number Tal [# evs)
= insert K (authKeys evs)"
by (auto simp add: authKeys_def)

lemma authKeys_simp:
"K € authKeys
(Says Kas A {Crypt (shrK A) {Key K’, Agent Peer, Number Tal},
Crypt (shrK Peer) {Agent A, Agent Peer, Key K’, Number Tal| [# evs)
— K = K’ | K € authKeys evs"
by (auto simp add: authKeys_def)

lemma authKeysI:
"Says Kas A {Crypt (shrK A) {Key K, Agent Tgs, Number Tal,
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key K, Number Tal} [} € set evs
— K € authKeys evs"
by (auto simp add: authKeys_def)

lemma authKeys_used: "K € authKeys evs =— Key K € used evs"

146 8 THE KERBEROS PROTOCOL, VERSION V

by (auto simp add: authKeys_def)

8.3 Forwarding Lemmas

lemma Says_ticket_parts:
"Says S A {Crypt K {SesKey, B, TimeStampl}, Ticket|
€ set evs = Ticket € parts (spies evs)"
by blast

lemma Says_ticket_analz:
"Says S A {Crypt K {SesKey, B, TimeStampl, Ticket]
€ set evs = Ticket € analz (spies evs)"
by (blast dest: Says_imp_knows_Spy [THEN analz.Inj, THEN analz.Snd])

lemma Oops_range_spies1:
"[Says Kas A {Crypt KeyA {Key authK, Peer, Tal, authTicket]
€ set evs ;
evs € kerbV | = authK ¢ range shrK A authK € symKeys"
apply (erule rev_mp)
apply (erule kerbV.induct, auto)
done

lemma Oops_range_spies2:
"[Says Tgs A {Crypt authK {Key servK, Agent B, Ts|, servTicket|
€ set evs ;
evs € kerbV | = servK ¢ range shrK A servK € symKeys"
apply (erule rev_mp)
apply (erule kerbV.induct, auto)
done

lemma Spy_see_shrK [simp]:
"evs € kerbV —> (Key (shrK A) € parts (spies evs)) = (A € bad)"
apply (erule kerbV.induct)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts, simp_all)
apply (blast+)
done

lemma Spy_analz_shrK [simp]:
"evs € kerbV — (Key (shrK A) € analz (spies evs))
by auto

(A € bad)"

lemma Spy_see_shrK_D [dest!]:
"[Key (shrK A) € parts (spies evs); evs € kerbV | — A€bad"
by (blast dest: Spy_see_shrK)

lemmas Spy_analz_shrK_D = analz_subset_parts [THEN subsetD, THEN Spy_see_shrK_D,
dest!]

Nobody can have used non-existent keys!

lemma new_keys_not_used [simp]:
"[Key K ¢ used evs; K € symKeys; evs € kerbV]

8.4 Regularity Lemmas 147

—> K ¢ keysFor (parts (spies evs))"
apply (erule rev_mp)
apply (erule kerbV.induct)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts, simp_all)

Fake

apply (force dest!: keysFor_parts_insert)

Others

apply (force dest!: analz_shrK_Decrypt)+
done

lemma new_keys_not_analzd:
"[evs € kerbV; K € symKeys; Key K ¢ used evs]
= K ¢ keysFor (analz (spies evs))"
by (blast dest: new_keys_not_used intro: keysFor_mono [THEN subsetD])

8.4 Regularity Lemmas
These concern the form of items passed in messages

Describes the form of all components sent by Kas

lemma Says_Kas_message_form:
"[Says Kas A {Crypt K {Key authK, Agent Peer, Tal}, authTicketl|}
€ set evs;
evs € kerbV |
= authK ¢ range shrK A authK € authKeys evs A authK € symKeys A

authTicket = (Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Tal) A
K = shrK A N\ Peer = Tgs"
apply (erule rev_mp)
apply (erule kerbV.induct)
apply (simp_all (no_asm) add: authKeys_def authKeys_insert)
apply blast+
done

lemma SesKey_is_session_key:

"[Crypt (shrK Tgs_B) {Agent A, Agent Tgs_B, Key SesKey, Number T}

€ parts (spies evs); Tgs_B ¢ bad;
evs € kerbV |

—> SesKey ¢ range shrK"
apply (erule rev_mp)
apply (erule kerbV.induct)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts, simp_all, blast)
done

lemma authTicket_authentic:

148 8 THE KERBEROS PROTOCOL, VERSION V

"[Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Tal
€ parts (spies evs);
evs € kerbV |
= Says Kas A {Crypt (shrK A) {Key authK, Agent Tgs, Tal,
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Tal|
€ set evs"
apply (erule rev_mp)
apply (erule kerbV.induct)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts, simp_all)

Fake, K4

apply (blast+)
done

lemma authTicket_crypt_authK:
"[Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal
€ parts (spies evs);
evs € kerbV |
—> authK € authKeys evs"
by (metis authKeysI authTicket_authentic)

Describes the form of servK, servTicket and authK sent by Tgs

lemma Says_Tgs_message_form:
"[Says Tgs A {Crypt authK {Key servK, Agent B, Ts|, servTicket[
€ set evs;
evs € kerbV |
= B # Tgs A
servK ¢ range shrK A servK ¢ authKeys evs A servK € symKeys A
servTicket = (Crypt (shrK B) {Agent A, Agent B, Key servK, Ts[}) A
authK ¢ range shrK A authK € authKeys evs A authK € symKeys"
apply (erule rev_mp)
apply (erule kerbV.induct)
apply (simp_all add: authKeys_insert authKeys_not_insert authKeys_empty authKeys_simp,
blast, auto)

Three subcases of Message 4

apply (blast dest!: authKeys_used Says_Kas_message_form)
apply (blast dest!: SesKey_is_session_key)

apply (blast dest: authTicket_crypt_authK)

done

8.5 Authenticity theorems: confirm origin of sensitive mes-
sages

lemma authK_authentic:
"[Crypt (shrK A) {Key authK, Peer, Tal
€ parts (spies evs);
A ¢ bad; evs € kerbV |
= 3 AT. Says Kas A {Crypt (shrK A) {Key authK, Peer, Tal}, AT}
€ set evs"
apply (erule rev_mp)
apply (erule kerbV.induct)

8.5 Authenticity theorems: confirm origin of sensitive messages 149

apply (frule_tac [7] Says_ticket_parts)

apply (frule_tac [5] Says_ticket_parts, simp_all)
apply blast+

done

If a certain encrypted message appears then it originated with Tgs

lemma servK_authentic:
"[Crypt authK {Key servK, Agent B, Ts|
€ parts (spies evs);

Key authK ¢ analz (spies evs);

authK ¢ range shrk;

evs € kerbV |
= JA ST. Says Tgs A {Crypt authK {Key servK, Agent B, Ts|}, ST}

€ set evs"

apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbV.induct, analz_mono_contra)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts, simp_all)
apply blast+
done

lemma servK_authentic_bis:
"[Crypt authK {Key servK, Agent B, Ts|
€ parts (spies evs);
Key authK ¢ analz (spies evs);
B # Tgs;
evs € kerbV]
= JA ST. Says Tgs A {Crypt authK {Key servK, Agent B, Ts|}, ST}
€ set evs"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbV.induct, analz_mono_contra)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts, simp_all, blast+)
done

Authenticity of servK for B

lemma servTicket_authentic_Tgs:
"[Crypt (shrK B) {Agent A, Agent B, Key servK, Ts|}
€ parts (spies evs); B # Tgs; B ¢ bad;
evs € kerbV]

—> JauthK.

Says Tgs A {Crypt authK {Key servK, Agent B, Ts|,

Crypt (shrK B) {Agent A, Agent B, Key servK, Tsl|]}

€ set evs'"
apply (erule rev_mp)
apply (erule kerbV.induct)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts, simp_all, blast+)
done

Anticipated here from next subsection

lemma K4_imp_K2:

150 8 THE KERBEROS PROTOCOL, VERSION V

"[Says Tgs A {Crypt authK {Key servK, Agent B, Number Ts|, servTicket|
€ set evs; evs € kerbV]
= dTa. Says Kas A
{Crypt (shrK A) {Key authK, Agent Tgs, Number Tal},
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal [
€ set evs"
apply (erule rev_mp)
apply (erule kerbV.induct)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts, simp_all, auto)
apply (metis MPair_analz Says_imp_analz_Spy analz_conj_parts authTicket_authentic)
done

Anticipated here from next subsection

lemma u_K4_imp_K2:

"[Says Tgs A {Crypt authK {Key servK, Agent B, Number Ts|, servTicket| €

set evs; evs € kerbV]

= JTa. Says Kas A {Crypt (shrK A) {Key authK, Agent Tgs, Number Tal},
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal |
€ set evs
N servKlife + Ts < authKlife + Ta"

apply (erule rev_mp)

apply (erule kerbV.induct)

apply (frule_tac [7] Says_ticket_parts)

apply (frule_tac [5] Says_ticket_parts, simp_all, auto)

apply (blast dest!: Says_imp_spies [THEN parts.Inj, THEN parts.Fst, THEN authTicket_authentic]

done

lemma servTicket_authentic_Kas:
"[Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts|
€ parts (spies evs); B # Tgs; B ¢ bad;
evs € kerbV |
—> JauthK Ta.
Says Kas A
{Crypt (shrK A) {Key authK, Agent Tgs, Number Tal,
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal [
€ set evs"
by (metis K4_imp_K2 servTicket_authentic_Tgs)

lemma u_servTicket_authentic_Kas:
"[Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts|
€ parts (spies evs); B # Tgs; B ¢ bad;
evs € kerbV |
—> JauthK Ta.
Says Kas A
{Crypt (shrK A) {Key authK, Agent Tgs, Number Tal,
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal [
€ set evs A
servKlife + Ts < authKlife + Ta"
by (metis servTicket_authentic_Tgs u_K4_imp_K2)

lemma servTicket_authentic:
"[Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts|
€ parts (spies evs); B # Tgs; B ¢ bad;

8.6 Reliability: friendly agents send something if something else happenedl51

evs € kerbV]
—> JTa authk.
Says Kas A {Crypt (shrK A) {Key authK, Agent Tgs, Number Tal},
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number
Tal}f [€ set evs
A Says Tgs A {Crypt authK {Key servK, Agent B, Number Tsl|},
Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts|]}
€ set evs"
by (metis K4_imp_K2 servTicket_authentic_Tgs)

lemma u_servTicket_authentic:
"[Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts}}
€ parts (spies evs); B # Tgs; B ¢ bad;
evs € kerbV |
= JTa authK.
Says Kas A {Crypt (shrK A) {Key authK, Agent Tgs, Number Tal},
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number
Tal}} € set evs
A Says Tgs A {Crypt authK {Key servK, Agent B, Number Ts|,
Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts||
€ set evs
N servKlife + Ts < authKlife + Ta"
by (metis servTicket_authentic_Tgs u_K4_imp_K2)

lemma u_NotexpiredSK_NotexpiredAK:
"[- expiredSK Ts evs; servKlife + Ts < authKlife + Ta |
— — expiredAK Ta evs"

by (metis order_le_less_trans)

8.6 Reliability: friendly agents send something if some-
thing else happened

lemma K3_imp_K2:
"[Says A Tgs
{authTicket, Crypt authK {Agent A, Number T2}, Agent B[
€ set evs;
A ¢ bad; evs € kerbV]
= JTa AT. Says Kas A {Crypt (shrK A) {Key authK, Agent Tgs, Tal,

AT} € set evs"
apply (erule rev_mp)
apply (erule kerbV.induct)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts, simp_all, blast, blast)
apply (blast dest: Says_imp_spies [THEN parts.Inj, THEN parts.Fst, THEN authK_authentic])
done

Anticipated here from next subsection. An authK is encrypted by one and only
one Shared key. A servK is encrypted by one and only one authK.

lemma Key_unique_SesKey:
"[Crypt K {Key SesKey, Agent B, T|
€ parts (spies evs);
Crypt K’ {Key SesKey, Agent B’, T’}
€ parts (spies evs); Key SesKey ¢ analz (spies evs);

152 8 THE KERBEROS PROTOCOL, VERSION V

evs € kerbV |

—> K=K’ A B=B’ N\ T=T’"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbV.induct, analz_mono_contra)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts, simp_all)

Fake, K2, K4

apply (blast+)
done

This inevitably has an existential form in version V

lemma Says_K5:
"[Crypt servK {Agent A, Number T3[} € parts (spies evs);
Says Tgs A {Crypt authK {Key servK, Agent B, Number Ts|,
servTicket[|} € set evs;
Key servK ¢ analz (spies evs);
A ¢ bad; B ¢ bad; evs € kerbV |
= 3 ST. Says A B {ST, Crypt servK {Agent A, Number T3[}} € set evs"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbV.induct, analz_mono_contra)
apply (frule_tac [5] Says_ticket_parts)
apply (frule_tac [7] Says_ticket_parts)
apply (simp_all (no_asm_simp) add: all_conj_distrib)
apply blast

K3

apply (blast dest: authK_authentic Says_Kas_message_form Says_Tgs_message_form)

K4
apply (force dest!: Crypt_imp_keysFor)
Kb

apply (blast dest: Key_unique_SesKey)
done

Anticipated here from next subsection

lemma unique_CryptKey:
"[Crypt (shrK B) {Agent A, Agent B, Key SesKey, T|
€ parts (spies evs);
Crypt (shrK B’) {Agent A’, Agent B’, Key SesKey, T’}
€ parts (spies evs); Key SesKey ¢ analz (spies evs);
evs € kerbV |
= A=A’ A B=B’ A T=T’"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbV.induct, analz_mono_contra)
apply (frule_tac [7] Says_ticket_parts)

8.6 Reliability: friendly agents send something if something else happened153

apply (frule_tac [5] Says_ticket_parts, simp_all)
Fake, K2, K4

apply (blast+)
done

lemma Says_K6:
"[Crypt servK (Number T3) € parts (spies evs);
Says Tgs A {Crypt authK {Key servK, Agent B, Number Ts|,
servTicket|} € set evs;
Key servK ¢ analz (spies evs);
A ¢ bad; B ¢ bad; evs € kerbV |
— Says B A (Crypt servK (Number T3)) € set evs"
apply (frule Says_Tgs_message_form, assumption, clarify)
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbV.induct, analz_mono_contra)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts)
apply simp_all

fake

apply blast

K4

apply (force dest!: Crypt_imp_keysFor)
K6

apply (metis MPair_parts Says_imp_parts_knows_Spy unique_CryptKey)
done

Needs a unicity theorem, hence moved here

lemma servK_authentic_ter:
"[Says Kas A
{Crypt (shrK A) {Key authK, Agent Tgs, Tal|, authTicket| € set evs;
Crypt authK {Key servK, Agent B, Ts|
€ parts (spies evs);
Key authK ¢ analz (spies evs);
evs € kerbV |
—> Says Tgs A {Crypt authK {Key servK, Agent B, Tsl|,
Crypt (shrK B) {Agent A, Agent B, Key servK, Ts} |
€ set evs"
apply (frule Says_Kas_message_form, assumption)
apply clarify
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbV.induct, analz_mono_contra)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts, simp_all, blast)

K2 and K4 remain

154 8 THE KERBEROS PROTOCOL, VERSION V

apply (blast dest!: servK_authentic Says_Tgs_message_form authKeys_used)
apply (blast dest!: unique_CryptKey)
done

8.7 Unicity Theorems

The session key, if secure, uniquely identifies the Ticket whether authTicket or
servTicket. As a matter of fact, one can read also Tgs in the place of B.

lemma unique_authKeys:
"[Says Kas A
{Crypt Ka {Key authK, Agent Tgs, Tal}, X} € set evs;
Says Kas A’
{Crypt Ka’ {Key authK, Agent Tgs, Ta’}, X’} € set evs;
evs € kerbV | = A=A’ A Ka=Ka’ A Ta=Ta’ A X=X’"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbV.induct)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts, simp_all)
apply blast+
done

servK uniquely identifies the message from Tgs

lemma unique_servKeys:
"[Says Tgs A
{Crypt K {Key servK, Agent B, Ts}, X[} € set evs;
Says Tgs A’
{Crypt K’ {Key servK, Agent B’, Ts’}, X’ € set evs;
evs € kerbV]] = A=A’ N B=B’ A K=K’ A Ts=Ts’ N X=X’"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbV.induct)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts, simp_all)
apply blast+
done

8.8 Lemmas About the Predicate akcryptsk

lemma not_AKcryptSK_Nil [iff]: "— AKcryptSK authK servK []"
apply (simp add: AKcryptSK_def)
done

lemma AKcryptSKI:
"[Says Tgs A {Crypt authK {Key servK, Agent B, tt], X | € set evs;
evs € kerbV | = AKcryptSK authK servK evs"
by (metis AKcryptSK_def Says_Tgs_message_form)

lemma AKcryptSK_Says [simp]:
"AKcryptSK authK servK (Says S A X # evs) =
(8 = Tgs A
(3B tt. X = {Crypt authK {Key servK, Agent B, tt],
Crypt (shrK B) {Agent A, Agent B, Key servK, ttf [})

8.8 Lemmas About the Predicate AKcryptSK 155

| AKcryptSK authK servK evs)"
by (auto simp add: AKcryptSK_def)

lemma AKcryptSK_Notes [simp]:
"AKcryptSK authK servK (Notes A X # evs) =
AKcryptSK authK servK evs"
by (auto simp add: AKcryptSK_def)

lemma Auth_fresh_not_AKcryptSK:
"[Key authK ¢ used evs; evs € kerbV |
— — AKcryptSK authK servK evs"
unfolding AKcryptSK_def
apply (erule rev_mp)
apply (erule kerbV.induct)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts, simp_all, blast)
done

lemma Serv_fresh_not_AKcryptSK:
"Key servK ¢ used evs = — AKcryptSK authK servK evs"
by (auto simp add: AKcryptSK_def)

lemma authK_not_AKcryptSK:
"[Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, tk|
€ parts (spies evs); evs € kerbV |
— - AKcryptSK K authK evs"
apply (erule rev_mp)
apply (erule kerbV.induct)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts, simp_all)

Fake, K2,K4

apply (auto simp add: AKcryptSK_def)
done

A secure serverkey cannot have been used to encrypt others

lemma servK_not_AKcryptSK:
"[Crypt (shrK B) {Agent A, Agent B, Key SK, tt]} € parts (spies evs);
Key SK ¢ analz (spies evs); SK € symKeys;
B # Tgs; evs € kerbV |
— - AKcryptSK SK K evs"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbV.induct, analz_mono_contra)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts, simp_all, blast)

K4

apply (metis Auth_fresh_not_AKcryptSK MPair_parts Says_imp_parts_knows_Spy
authKeys_used authTicket_crypt_authK unique_CryptKey)
done

156 8 THE KERBEROS PROTOCOL, VERSION V

Long term keys are not issued as servKeys

lemma shrK_not_AKcryptSK:

"evs € kerbV =— — AKcryptSK K (shrK A) evs"
unfolding AKcryptSK_def
apply (erule kerbV.induct)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts, auto)
done

The Tgs message associates servK with authK and therefore not with any other
key authK.

lemma Says_Tgs_AKcryptSK:
"[Says Tgs A {Crypt authK {Key servK, Agent B, tt[, X |
€ set evs;
authK’ # authK; evs € kerbV |
— - AKcryptSK authK’ servK evs"
by (metis AKcryptSK_def unique_servKeys)

lemma AKcryptSK_not_AKcryptSK:
"[AKcryptSK authK servK evs; evs € kerbV |
—> - AKcryptSK servK K evs"

apply (erule rev_mp)

apply (erule kerbV.induct)

apply (frule_tac [7] Says_ticket_parts)

apply (frule_tac [5] Says_ticket_parts)

apply (simp_all, safe)

K4 splits into subcases

prefer 4 apply (blast dest!: authK_not_AKcryptSK)

servK is fresh and so could not have been used, by new_keys_not_used

prefer 2
apply (force dest!: Crypt_imp_invKey_keysFor simp add: AKcryptSK_def)

Others by freshness

apply (blast+)
done

lemma not_different_AKcryptSK:
"[AKcryptSK authK servK evs;
authK’ # authK; evs € kerbV |
= — AKcryptSK authK’ servK evs /A servK € symKeys'
apply (simp add: AKcryptSK_def)
apply (blast dest: unique_servKeys Says_Tgs_message_form)
done

The only session keys that can be found with the help of session keys are those
sent by Tgs in step K4.

We take some pains to express the property as a logical equivalence so that the
simplifier can apply it.

lemma Key_analz_image_Key_lemma:

8.9 Secrecy Theorems 157

"P — (Key K € analz (Key‘KK U H)) — (KEKK V Key K € analz H)

—

P — (Key K € analz (Key‘KK U H)) = (KEKK V Key K € analz H)"
by (blast intro: analz_mono [THEN subsetD])

lemma AKcryptSK_analz_insert:
"[AKcryptSK K K’ evs; K € symKeys; evs € kerbV |
= Key K’ € analz (insert (Key K) (spies evs))"
apply (simp add: AKcryptSK_def, clarify)
apply (drule Says_imp_spies [THEN analz.Inj, THEN analz_insertI], auto)
done

lemma authKeys_are_not_AKcryptSK:
"[K € authKeys evs U range shrK; evs € kerbV]
—> VSK. — AKcryptSK SK K evs N K € symKeys"
apply (simp add: authKeys_def AKcryptSK_def)
apply (blast dest: Says_Kas_message_form Says_Tgs_message_form)
done

lemma not_authKeys_not_AKcryptSK:
"[K ¢ authKeys evs;
K ¢ range shrK; evs € kerbV |
— VSK. — AKcryptSK K SK evs"
apply (simp add: AKcryptSK_def)
apply (blast dest: Says_Tgs_message_form)
done

8.9 Secrecy Theorems

For the Oops2 case of the next theorem

lemma Oops2_not_AKcryptSK:
"[evs € kerbV;
Says Tgs A {Crypt authk
{Key servK, Agent B, Number Ts|}, servTicket]
€ set evs |
= — AKcryptSK servK SK evs"
by (blast dest: AKcryptSKI AKcryptSK_not_AKcryptSK)

Big simplification law for keys SK that are not crypted by keys in KK It helps
prove three, otherwise hard, facts about keys. These facts are exploited as
simplification laws for analz, and also "limit the damage" in case of loss of a key
to the spy. See ESORICS98.

lemma Key_analz_image_Key [rule_format (no_asm)]:
"evs € kerbV —
(VSK KK. SK € symKeys A KK C -(range shrK) —
(VK € KK. — AKcryptSK K SK evs) —
(Key SK € analz (Key ‘KK U (spies evs))) =
(SK € KK | Key SK € analz (spies evs)))"
apply (erule kerbV.induct)
apply (frule_tac [10] Oops_range_spies2)
apply (frule_tac [9] Oops_range_spies1)

158 8 THE KERBEROS PROTOCOL, VERSION V

apply (drule_tac [7] Says_ticket_analz)

apply (drule_tac [5] Says_ticket_analz)
apply (safe del: impI intro!: Key_analz_image_Key_lemma [THEN impI])

Case-splits for Oopsl and message 5: the negated case simplifies using the induction
hypothesis

apply (case_tac [9] "AKcryptSK authK SK evs01")
apply (case_tac [7] "AKcryptSK servK SK evs5")
apply (simp_all del: image_insert
add: analz_image_freshK_simps AKcryptSK_Says shrK_not_AKcryptSK
Oops2_not_AKcryptSK Auth_fresh_not_AKcryptSK
Serv_fresh_not_AKcryptSK Says_Tgs_AKcryptSK Spy_analz_shrk)

Fake
apply spy_analz
K2

apply blast

Cases K3 and K5 solved by the simplifier thanks to the ticket being in analz - this
strategy is new wrt version IV

K4

apply (blast dest!: authK_not_AKcryptSK)

Oopsl

apply (metis AKcryptSK_analz_insert insert_Key_singleton)
done

First simplification law for analz: no session keys encrypt authentication keys
or shared keys.

lemma analz_insert_freshK1:

"[evs € kerbV; K € authKeys evs U range shrk;

SesKey ¢ range shrK |
= (Key K € analz (insert (Key SesKey) (spies evs))) =
(K = SesKey | Key K € analz (spies evs))"
apply (frule authKeys_are_not_AKcryptSK, assumption)
apply (simp del: image_insert
add: analz_image_freshK_simps add: Key_analz_image_Key)

done

Second simplification law for analz: no service keys encrypt any other keys.

lemma analz_insert_freshK2:

"[evs € kerbV; servK ¢ (authKeys evs); servK ¢ range shrk;

K € symKeys |
—> (Key K € analz (insert (Key servK) (spies evs))) =
(K = servK | Key K € analz (spies evs))"
apply (frule not_authKeys_not_AKcryptSK, assumption, assumption)
apply (simp del: image_insert
add: analz_image_freshK_simps add: Key_analz_image_Key)

done

8.9 Secrecy Theorems 159

Third simplification law for analz: only one authentication key encrypts a certain
service key.

lemma analz_insert_freshK3:
"[AKcryptSK authK servK evs;
authK’ # authK; authK’ ¢ range shrK; evs € kerbV |

apply
apply

done

— (Key servK € analz (insert (Key authK’) (spies evs))) =
(servK = authK’ | Key servK € analz (spies evs))"
(drule_tac authK’ = authK’ in not_different_AKcryptSK, blast, assumption)
(simp del: image_insert
add: analz_image_freshK_simps add: Key_analz_image_Key)

lemma analz_insert_freshK3_bis:
"[Says Tgs A {Crypt authK {Key servK, Agent B, Number Ts|, servTicket|

€ set evs;

authK # authK’; authK’ ¢ range shrK; evs € kerbV |

apply
apply
done

—> (Key servK € analz (insert (Key authK’) (spies evs))) =
(servK = authK’ | Key servK € analz (spies evs))"

(frule AKcryptSKI, assumption)

(simp add: analz_insert_freshK3)

a weakness of the protocol

lemma authK_compromises_servK:
"[Says Tgs A {Crypt authK {Key servK, Agent B, Number Ts|}, servTicketl]

€ set evs; authK € symKeys;
Key authK € analz (spies evs); evs € kerbV |

—> Key servK € analz (spies evs)"

by (metis Says_imp_analz_Spy analz.Fst analz_Decrypt’)

lemma servK_notin_authKeysD not needed in version V

If Spy sees the Authentication Key sent in msg K2, then the Key has expired.

lemma Confidentiality_Kas_lemma [rule_format]:
"[authK € symKeys; A ¢ bad; evs € kerbV |

apply
apply
apply
apply
apply
apply
apply

—> Says Kas A

{Crypt (shrK A) {Key authK, Agent Tgs, Number Tal,
Crypt (shrK Tgs) {Agent A, Agent Tgs, Key authK, Number Tal}
€ set evs —>
Key authK € analz (spies evs) —
expiredAK Ta evs"
(erule kerbV.induct)
(frule_tac [10] Oops_range_spies2)
(frule_tac [9] Oops_range_spies1)
(frule_tac [7] Says_ticket_analz)
(frule_tac [5] Says_ticket_analz)
(safe del: impI conjI impCE)
(simp_all (no_asm_simp) add: Says_Kas_message_form less_Sucl analz_insert_eq

not_parts_not_analz analz_insert_freshK1 pushes)

Fake

apply spy_analz

K2

160

apply
K4

apply
Oopsl
apply
Oops2

apply
done

8 THE KERBEROS PROTOCOL, VERSION V

blast

blast

(blast dest!: unique_authKeys intro: less_SucI)

(blast dest: Says_Tgs_message_form Says_Kas_message_form)

lemma Confidentiality_Kas:
"[Says Kas A

apply
done

If Spy

{Crypt Ka {Key authK, Agent Tgs, Number Tal, authTicket]}
€ set evs;
— expiredAK Ta evs;
A ¢ bad; evs € kerbV]
—> Key authK ¢ analz (spies evs)"
(blast dest: Says_Kas_message_form Confidentiality_Kas_lemma)

sees the Service Key sent in msg K4, then the Key has expired.

lemma Confidentiality_lemma [rule_format]:
"[Says Tgs A

apply
apply
apply
apply

{Crypt authK {Key servK, Agent B, Number Tsl,
Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts|]
€ set evs;
Key authK ¢ analz (spies evs);
servK € symKeys;
A ¢ bad; B ¢ bad; evs € kerbV |
—> Key servK € analz (spies evs) —
expiredSK Ts evs"
(erule rev_mp)
(erule rev_mp)
(erule kerbV.induct)
(rule_tac [9] impI)+

— The Oopsl case is unusual: must simplify Authkey ¢ analz (knows Spy (ev
evs)), not letting analz_mono_contra weaken it to Authkey ¢ analz (knows Spy
evs), for we then conclude authK # authKa.

apply
apply
apply
apply
apply
apply
apply

analz_
analz_

Fake

analz_mono_contra

(frule_tac [10] Oops_range_spies2)

(frule_tac [9] Oops_range_spies1)

(frule_tac [7] Says_ticket_analz)

(frule_tac [5] Says_ticket_analz)

(safe del: impI conjI impCE)

(simp_all add: less_SucI new_keys_not_analzd Says_Kas_message_form Says_Tgs_message_form
insert_eq not_parts_not_analz analz_insert_freshK1l analz_insert_freshK2
insert_freshK3_bis pushes)

apply spy_analz

K2

8.9 Secrecy Theorems 161

apply (blast intro: parts_insertI less_SucI)

K4

apply (blast dest: authTicket_authentic Confidentiality_Kas)

Oopsl

apply (blast dest: Says_Kas_message_form Says_Tgs_message_form intro: less_SucI)

Oops2

apply (metis Suc_le_eq linorder_linear linorder_not_le msg.simps(2) unique_servKeys)
done

In the real world Tgs can’t check wheter authK is secure!

lemma Confidentiality_Tgs:
"[Says Tgs A
{Crypt authK {Key servK, Agent B, Number Ts|}, servTicket|
€ set evs;
Key authK ¢ analz (spies evs);
— expiredSK Ts evs;
A ¢ bad; B ¢ bad; evs € kerbV |
= Key servK ¢ analz (spies evs)"
by (blast dest: Says_Tgs_message_form Confidentiality_lemma)

In the real world Tgs CAN check what Kas sends!

lemma Confidentiality_Tgs_bis:
"[Says Kas A
{Crypt Ka {Key authK, Agent Tgs, Number Tal, authTicket|
€ set evs;
Says Tgs A
{Crypt authK {Key servK, Agent B, Number Ts|, servTicket]}
€ set evs;
— expiredAK Ta evs; — expiredSK Ts evs;
A ¢ bad; B ¢ bad; evs € kerbV |
—> Key servK ¢ analz (spies evs)"
by (blast dest!: Confidentiality_Kas Confidentiality_Tgs)

Most general form

lemmas Confidentiality_Tgs_ter = authTicket_authentic [THEN Confidentiality_Tgs_bis]

lemmas Confidentiality_Auth_A = authK_authentic [THEN exE, THEN Confidentiality_Kas]

Needs a confidentiality guarantee, hence moved here. Authenticity of servK for

A

lemma servK_authentic_bis_r:
"[Crypt (shrK A) {Key authK, Agent Tgs, Number Tal
€ parts (spies evs);
Crypt authK {Key servK, Agent B, Number Ts|
€ parts (spies evs);
— expiredAK Ta evs; A ¢ bad; evs € kerbV |
—> Says Tgs A {Crypt authK {Key servK, Agent B, Number Ts|,
Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts|} |
€ set evs"

162 8 THE KERBEROS PROTOCOL, VERSION V

by (metis Confidentiality_Kas authK_authentic servK_authentic_ter)

lemma Confidentiality_Serv_A:
"[Crypt (shrK A) {Key authK, Agent Tgs, Number Talt
€ parts (spies evs);
Crypt authK {Key servK, Agent B, Number Ts|
€ parts (spies evs);
- expiredAK Ta evs; — expiredSK Ts evs;
A ¢ bad; B ¢ bad; B # Tgs; evs € kerbV |
—> Key servK ¢ analz (spies evs)"
apply (drule authK_authentic, assumption, assumption)
apply (blast dest: Confidentiality_Kas Says_Kas_message_form servK_authentic_ter
Confidentiality_Tgs_bis)
done

lemma Confidentiality_B:
"[Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts|
€ parts (spies evs);
Crypt authK {Key servK, Agent B, Number Ts|
€ parts (spies evs);
Crypt (shrK A) {Key authK, Agent Tgs, Number Tal
€ parts (spies evs);
- expiredSK Ts evs; — expiredAK Ta evs;
A ¢ bad; B ¢ bad; B # Tgs; evs € kerbV |
—> Key servK ¢ analz (spies evs)"
apply (frule authK_authentic)
apply (erule_tac [3] exE)
apply (frule_tac [3] Confidentiality_Kas)
apply (frule_tac [6] servTicket_authentic, auto)
apply (blast dest!: Confidentiality Tgs_bis dest: Says_Kas_message_form servK_authentic
unique_servKeys unique_authKeys)
done

lemma u_Confidentiality_B:
"[Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts|}
€ parts (spies evs);
- expiredSK Ts evs;
A ¢ bad; B ¢ bad; B # Tgs; evs € kerbV |
—> Key servK ¢ analz (spies evs)"
by (blast dest: u_servTicket_authentic u_NotexpiredSK_NotexpiredAK Confidentiality_Tgs_bis)

8.10 Authentication

Each party verifies "the identity of another party who generated some data'
(quoted from Neuman and Ts’0).

These guarantees don’t assess whether two parties agree on the same session
key: sending a message containing a key doesn’t a priori state knowledge of the
key.

These didn’t have existential form in version IV

lemma B_authenticates_A:
"[Crypt servK {Agent A, Number T3} € parts (spies evs);
Crypt (shrK B) {Agent A, Agent B, Key servK, Number Tsl}

8.10 Authentication 163

€ parts (spies evs);
Key servK ¢ analz (spies evs);
A ¢ bad; B ¢ bad; B # Tgs; evs € kerbV |
= 3 ST. Says A B {ST, Crypt servK {Agent A, Number T3} |} € set evs"
by (blast dest: servTicket_authentic_Tgs intro: Says_K5)

The second assumption tells B what kind of key servK is.

lemma B_authenticates_A_r:
"[Crypt servK {Agent A, Number T3]} € parts (spies evs);
Crypt (shrK B) {Agent A, Agent B, Key servK, Number Tsl|}
€ parts (spies evs);
Crypt authK {Key servK, Agent B, Number Ts|
€ parts (spies evs);
Crypt (shrK A) {Key authK, Agent Tgs, Number Tal
€ parts (spies evs);
— expiredSK Ts evs; — expiredAK Ta evs;
B # Tgs; A ¢ bad; B ¢ bad; evs € kerbV |
= 3 ST. Says A B {ST, Crypt servK {Agent A, Number T3} |} € set evs"
by (blast intro: Says_K5 dest: Confidentiality_B servTicket_authentic_Tgs)

u_B_authenticates_A would be the same as B_authenticates_A because the servK
confidentiality assumption is yet unrelaxed

lemma u_B_authenticates_A_r:
"[Crypt servK {Agent A, Number T3]} € parts (spies evs);
Crypt (shrK B) {Agent A, Agent B, Key servK, Number Tsl}
€ parts (spies evs);
— expiredSK Ts evs;
B # Tgs; A ¢ bad; B ¢ bad; evs € kerbV |
= 3 ST. Says A B {ST, Crypt servK {Agent A, Number T3} | € set evs"

by (blast intro: Says_K5 dest: u_Confidentiality_B servTicket_authentic_Tgs)

lemma A_authenticates_B:
"[Crypt servK (Number T3) € parts (spies evs);
Crypt authK {Key servK, Agent B, Number Ts|
€ parts (spies evs);
Crypt (shrK A) {Key authK, Agent Tgs, Number Tal
€ parts (spies evs);
Key authK ¢ analz (spies evs); Key servK ¢ analz (spies evs);
A ¢ bad; B ¢ bad; evs € kerbV |
—> Says B A (Crypt servK (Number T3)) € set evs"
by (metis authK_authentic Oops_range_spiesl Says_K6 servK_authentic u_K4_imp_K2
unique_authKeys)

lemma A_authenticates_B_r:
"[Crypt servK (Number T3) € parts (spies evs);
Crypt authK {Key servK, Agent B, Number Ts|
€ parts (spies evs);
Crypt (shrK A) {Key authK, Agent Tgs, Number Tal
€ parts (spies evs);
— expiredAK Ta evs; — expiredSK Ts evs;
A ¢ bad; B ¢ bad; evs € kerbV |
—> Says B A (Crypt servK (Number T3)) € set evs"
apply (frule authK_authentic)
apply (erule_tac [3] exE)

164 8 THE KERBEROS PROTOCOL, VERSION V

apply (frule_tac [3] Says_Kas_message_form)

apply (frule_tac [4] Confidentiality_Kas)

apply (frule_tac [7] servK_authentic)

apply auto

apply (metis Confidentiality_Tgs K4_imp_K2 Says_K6 unique_authKeys)
done

8.11 Parties’ knowledge of session keys

An agent knows a session key if he used it to issue a cipher. These guarantees can
be interpreted both in terms of key distribution and of non-injective agreement
on the session key.

lemma Kas_Issues_A:

"[Says Kas A {Crypt (shrK A) {Key authK, Peer, Tal, authTicket| € set
evs;

evs € kerbV |
—> Kas Issues A with (Crypt (shrK A) {Key authK, Peer, Tal)
on evs"

unfolding Issues_def
apply (rule exI)
apply (rule conjI, assumption)
apply (simp (no_asm))
apply (erule rev_mp)
apply (erule kerbV.induct)
apply (frule_tac [5] Says_ticket_parts)
apply (frule_tac [7] Says_ticket_parts)
apply (simp_all (no_asm_simp) add: all_conj_distrib)

K2

apply (simp add: takeWhile_tail)

apply (metis MPair parts parts.Body parts_idem parts_spies_takeWhile_mono
parts_trans spies_evs_rev usedI)

done

lemma A_authenticates_and_keydist_to_Kas:
"[Crypt (shrK A) {Key authK, Peer, Ta| € parts (spies evs);
A ¢ bad; evs € kerbV |
—> Kas Issues A with (Crypt (shrK A) {Key authK, Peer, Tal})
on evs"
by (blast dest!: authK_authentic Kas_Issues_A)

lemma Tgs_Issues_A:
"[Says Tgs A {Crypt authK {Key servK, Agent B, Number Ts|}, servTicket|
€ set evs;
Key authK ¢ analz (spies evs); evs € kerbV |
— Tgs Issues A with
(Crypt authK {Key servK, Agent B, Number Ts|) on evs"
unfolding Issues_def
apply (rule exI)
apply (rule conjI, assumption)
apply (simp (no_asm))
apply (erule rev_mp)
apply (erule rev_mp)

8.11 Parties’ knowledge of session keys 165

apply (erule kerbV.induct, analz_mono_contra)

apply (frule_tac [5] Says_ticket_parts)

apply (frule_tac [7] Says_ticket_parts)

apply (simp_all (no_asm_simp) add: all_conj_distrib)
apply (simp add: takeWhile_tail)

apply (blast dest: servK_authentic parts_spies_takeWhile_mono [THEN subsetD]
parts_spies_evs_revD2 [THEN subsetD] authTicket_authentic
Says_Kas_message_form)

done

lemma A_authenticates_and_keydist_to_Tgs:
"[Crypt authK {Key servK, Agent B, Number Ts|
€ parts (spies evs);
Key authK ¢ analz (spies evs); B # Tgs; evs € kerbV |
— dA. Tgs Issues A with
(Crypt authK {Key servK, Agent B, Number Ts[|) on evs"
by (blast dest: Tgs_Issues_A servK_authentic_bis)

lemma B_Issues_A:
"[Says B A (Crypt servK (Number T3)) € set evs;
Key servK ¢ analz (spies evs);
A ¢ bad; B ¢ bad; B # Tgs; evs € kerbV |
— B Issues A with (Crypt servK (Number T3)) on evs"
unfolding Issues_def
apply (rule exI)
apply (rule conjI, assumption)
apply (simp (no_asm))
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbV.induct, analz_mono_contra)
apply (simp_all (no_asm_simp) add: all_conj_distrib)
apply blast

K6 requires numerous lemmas

apply (simp add: takeWhile_tail)

apply (blast intro: Says_K6 dest: servTicket_authentic
parts_spies_takeWhile_mono [THEN subsetD]
parts_spies_evs_revD2 [THEN subsetD])

done

lemma A_authenticates_and_keydist_to_B:
"[Crypt servK (Number T3) € parts (spies evs);
Crypt authK {Key servK, Agent B, Number Ts|
€ parts (spies evs);
Crypt (shrK A) {Key authK, Agent Tgs, Number Tal
€ parts (spies evs);
Key authK ¢ analz (spies evs); Key servK ¢ analz (spies evs);
A ¢ bad; B ¢ bad; B # Tgs; evs € kerbV |
—> B Issues A with (Crypt servK (Number T3)) on evs"
by (blast dest!: A_authenticates_B B_Issues_A4)

But can prove a less general fact conerning only authenticators!

lemma honest_never_says_newer_timestamp_in_auth:

166 8 THE KERBEROS PROTOCOL, VERSION V

"[(CT evs) < T; Number T € parts {X}; A ¢ bad; evs € kerbV |
= Says A B {Y, X} ¢ set evs"

apply (erule rev_mp)

apply (erule kerbV.induct)

apply auto

done

lemma honest_never_says_current_timestamp_in_auth:
"[(CT evs) = T; Number T € parts {X}; A ¢ bad; evs € kerbV |
= Says A B {Y, X} ¢ set evs"

by (metis honest_never_says_newer_timestamp_in_auth le_refl)

lemma A_Issues_B:
"[Says A B {ST, Crypt servK {Agent A, Number T3[}}} € set evs;
Key servK ¢ analz (spies evs);
B # Tgs; A ¢ bad; B ¢ bad; evs € kerbV |
= A Issues B with (Crypt servK {Agent A, Number T3[}) on evs"
unfolding Issues_def
apply (rule exI)
apply (rule conjI, assumption)
apply (simp (no_asm))
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbV.induct, analz_mono_contra)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts)
apply (simp_all (no_asm_simp))

K5

apply auto
apply (simp add: takeWhile_tail)

Level 15: case study necessary because the assumption doesn’t state the form of
servTicket. The guarantee becomes stronger.

prefer 2 apply (simp add: takeWhile_tail)

apply (frule K3_imp_K2, assumption, assumption, erule exE, erule exE)
apply (case_tac "Key authK € analz (spies evs5)")

apply (metis Says_imp_analz_Spy analz.Fst analz_Decrypt’)

apply (frule K3_imp_K2, assumption, assumption, erule exE, erule exE)
apply (drule Says_imp_knows_Spy [THEN parts.Inj, THEN parts.Fst])
apply (frule servK_authentic_ter, blast, assumption+)

apply (drule parts_spies_takeWhile_mono [THEN subsetD])

apply (drule parts_spies_evs_revD2 [THEN subsetD])

Says_K5 closes the proof in version IV because it is clear which servTicket an authen-
ticator appears with in msg 5. In version V an authenticator can appear with any
item that the spy could replace the servTicket with

apply (frule Says_K5, blast)

We need to state that an honest agent wouldn’t send the wrong timestamp within an
authenticator, wathever it is paired with

apply (auto simp add: honest_never_says_current_timestamp_in_auth)

8.12 Novel guarantees, never studied before 167

done

lemma B_authenticates_and_keydist_to_A:
"[Crypt servK {Agent A, Number T3]} € parts (spies evs);
Crypt (shrK B) {Agent A, Agent B, Key servK, Number Ts}}
€ parts (spies evs);
Key servK ¢ analz (spies evs);
B # Tgs; A ¢ bad; B ¢ bad; evs € kerbV |
= A Issues B with (Crypt servK {Agent A, Number T3[}) on evs"
by (blast dest: B_authenticates_A A_Issues_B)

8.12 Novel guarantees, never studied before

Because honest agents always say the right timestamp in authenticators, we
can prove unicity guarantees based exactly on timestamps. Classical unicity
guarantees are based on nonces. Of course assuming the agent to be different
from the Spy, rather than not in bad, would suffice below. Similar guarantees
must also hold of Kerberos IV.

Notice that an honest agent can send the same timestamp on two different traces
of the same length, but not on the same trace!

lemma unique_timestamp_authenticatorl:
"[Says A Kas {Agent A, Agent Tgs, Number T1}} € set evs;
Says A Kas’ {Agent A, Agent Tgs’, Number T1}} € set evs;
A ¢bad; evs € kerbV]
—> Kas=Kas’ N\ Tgs=Tgs’"

apply (erule rev_mp, erule rev_mp)

apply (erule kerbV.induct)

apply (auto simp add: honest_never_says_current_timestamp_in_auth)

done

lemma unique_timestamp_authenticator2:
"[Says A Tgs {AT, Crypt AK {Agent A, Number T2|}, Agent B} € set evs;
Says A Tgs’ {AT’, Crypt AK’ {Agent A, Number T2[}, Agent B’} € set evs;

A ¢bad; evs € kerbV |
—> Tgs=Tgs’ A AT=AT’ N AK=AK’ N B=B’"

apply (erule rev_mp, erule rev_mp)

apply (erule kerbV.induct)

apply (auto simp add: honest_never_says_current_timestamp_in_auth)

done

lemma unique_timestamp_authenticator3:
"[Says A B {ST, Crypt SK {Agent A, Number T[}} € set evs;
Says A B’ {ST’, Crypt SK’ {Agent A, Number T[|}} € set evs;
A ¢bad; evs € kerbV |
= B=B’ A ST=ST’ A SK=SK’"

apply (erule rev_mp, erule rev_mp)

apply (erule kerbV.induct)

apply (auto simp add: honest_never_says_current_timestamp_in_auth)

done

The second part of the message is treated as an authenticator by the last sim-
plification step, even if it is not an authenticator!

168 8 THE KERBEROS PROTOCOL, VERSION V

lemma unique_timestamp_authticket:
"[Says Kas A {X, Crypt (shrK Tgs) {Agent A, Agent Tgs, Key AK, T}} €
set evs;
Says Kas A’ {X’, Crypt (shrK Tgs’) {Agent A’, Agent Tgs’, Key AK’,
T}} € set evs;
evs € kerbV |
— A=A’ N X=X’ N Tgs=Tgs’ N AK=AK’"
apply (erule rev_mp, erule rev_mp)
apply (erule kerbV.induct)
apply (auto simp add: honest_never_says_current_timestamp_in_auth)
done

The second part of the message is treated as an authenticator by the last sim-
plification step, even if it is not an authenticator!

lemma unique_timestamp_servticket:
"[Says Tgs A {X, Crypt (shrK B) {Agent A, Agent B, Key SK, T|}} € set
evs;
Says Tgs A’ {X’, Crypt (shrK B’) {Agent A’, Agent B’, Key SK’, T[}
€ set evs;
evs € kerbV |

— A=A’ N X=X’ N B=B’ N SK=SK’"
apply (erule rev_mp, erule rev_mp)
apply (erule kerbV.induct)
apply (auto simp add: honest_never_says_current_timestamp_in_auth)
done

lemma Kas_never_says_newer_timestamp:
"[(CT evs) < T; Number T € parts {X}; evs € kerbV]|
= V A. Says Kas A X ¢ set evs"

apply (erule rev_mp)

apply (erule kerbV.induct, auto)

done

lemma Kas_never_says_current_timestamp:
"[(CT evs) = T; Number T € parts {X}; evs € kerbV |
—> V A. Says Kas A X ¢ set evs"

by (metis Kas_never_says_newer_timestamp eq_imp_le)

lemma unique_timestamp_msg2:
"[Says Kas A {Crypt (shrK A) {Key AK, Agent Tgs, T|, AT} € set evs;
Says Kas A’ {Crypt (shrK A’) {Key AK’, Agent Tgs’, T|}, AT’} € set evs;

evs € kerbV |
—> A=A’ N AK=AK’ N Tgs=Tgs’ N AT=AT’"

apply (erule rev_mp, erule rev_mp)

apply (erule kerbV.induct)

apply (auto simp add: Kas_never_says_current_timestamp)

done

lemma Tgs_never_says_newer_timestamp:
"[(CT evs) < T; Number T € parts {X}; evs € kerbV |
= V A. Says Tgs A X ¢ set evs"

apply (erule rev_mp)

169

apply (erule kerbV.induct, auto)
done

lemma Tgs_never_says_current_timestamp:
"[(CT evs) = T; Number T € parts {X}; evs € kerbV |
= V A. Says Tgs A X ¢ set evs"

by (metis Tgs_never_says_newer_timestamp eq_imp_le)

lemma unique_timestamp_msg4:
"[Says Tgs A {Crypt (shrK A) {Key SK, Agent B, T|}, ST|} € set evs;
Says Tgs A’ {Crypt (shrK A’) {Key SK’, Agent B’, T[}, ST’} € set evs;
evs € kerbV |
— A=A’ AN SK=SK’ AN B=B’ A ST=ST’"
apply (erule rev_mp, erule rev_mp)
apply (erule kerbV.induct)
apply (auto simp add: Tgs_never_says_current_timestamp)
done

end

9 The Original Otway-Rees Protocol

theory OtwayRees imports Public begin

From page 244 of Burrows, Abadi and Needham (1989). A Logic of Authenti-
cation. Proc. Royal Soc. 426

This is the original version, which encrypts Nonce NB.

inductive__set otway :: "event list set"
where
Nil: "[] € otway"
— Initial trace is empty
| Fake: "[evsf € otway; X € synth (analz (knows Spy evsf)) |
— Says Spy B X # evsf € otway"
— The spy can say almost anything.
| Reception: "[evsr € otway; Says A B X Eset evsr] —> Gets B X # evsr
€ otway"
— A message that has been sent can be received by the intended recipient.
| OR1: "[evsl € otway; Nonce NA ¢ used evsi]
— Says A B {Nonce NA, Agent A, Agent B,
Crypt (shrK A) {Nonce NA, Agent A, Agent B[} |}
evsl € otway"
— Alice initiates a protocol run
| OR2: "[evs2 € otway; Nonce NB ¢ used evs2;
Gets B {Nonce NA, Agent A, Agent B, X} € set evsZ2]
— Says B Server
{Nonce NA, Agent A, Agent B, X,
Crypt (shrK B)
{Nonce NA, Nonce NB, Agent A, Agent B[}
evs2 € otway"
— Bob’s response to Alice’s message. Note that NB is encrypted.
| OR3: "[evs3 € otway; Key KAB ¢ used evs3;
Gets Server
{{Nonce NA, Agent A, Agent B,

170 9 THE ORIGINAL OTWAY-REES PROTOCOL

Crypt (shrK A) {Nonce NA, Agent A, Agent B[},
Crypt (shrK B) {Nonce NA, Nonce NB, Agent A, Agent B[}
€ set evs3]
— Says Server B

{]Nonce N4,
Crypt (shrK A) {Nonce NA, Key KAB[,
Crypt (shrK B) {Nonce NB, Key KAB[|}

evs3 € otway"

— The Server receives Bob’s message and checks that the three NAs match. Then

he sends a new session key to Bob with a packet for forwarding to Alice
| OR4: "[evs4 € otway; B # Server;
Says B Server {Nonce NA, Agent A, Agent B, X’,
Crypt (shrK B)
{Nonce NA, Nonce NB, Agent A, Agent B[}[}

€ set evs4;

Gets B {Nonce NA, X, Crypt (shrK B) {Nonce NB, Key K|}|}
€ set evs4]

—> Says B A {Nonce NA, X[} # evs4 € otway"

— Bob receives the Server’s (?) message and compares the Nonces with those in the
message he previously sent the Server. Need B # Server because we allow messages
to self.

| Oops: "[evso € otway;
Says Server B {Nonce NA, X, Crypt (shrK B) {Nonce NB, Key K[}|}
€ set evso]
—> Notes Spy {Nonce NA, Nonce NB, Key K| # evso € otway"

— This message models possible leaks of session keys. The nonces identify the

protocol run

declare Says_imp_analz_Spy [dest]
declare parts.Body [dest]

declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]

A "possibility property": there are traces that reach the end

lemma "[B # Server; Key K ¢ used []]
— devs € otway.
Says B A {Nonce NA, Crypt (shrK A) {Nonce NA, Key K[|
€ set evs"

apply (intro exI bexI)
apply (rule_tac [2] otway.Nil

[THEN otway.OR1, THEN otway.Reception,

THEN otway.OR2, THEN otway.Reception,

THEN otway.OR3, THEN otway.Reception, THEN otway.OR4])

apply (possibility, simp add: used_Cons)
done

lemma Gets_imp_Says [dest!]:
"[Gets B X € set evs; evs € otway] —> JA. Says A B X € set evs"
apply (erule rev_mp)
apply (erule otway.induct, auto)
done

9.1 Towards Secrecy: Proofs Involving analz 171

lemma OR2_analz_knows_Spy:
"[Gets B {N, Agent A, Agent B, X| € set evs; evs € otway]
= X € analz (knows Spy evs)"
by blast

lemma OR4_analz_knows_Spy:
"[Gets B {N, X, Crypt (shrK B) X’[} € set evs; evs € otway]
—> X € analz (knows Spy evs)"
by blast

lemmas OR2_parts_knows_Spy =
OR2_analz_knows_Spy [THEN analz_into_parts]

Theorems of the form X ¢ parts (knows Spy evs) imply that NOBODY sends
messages containing X!

Spy never sees a good agent’s shared key!

lemma Spy_see_shrK [simp]:

"evs € otway —> (Key (shrK A) € parts (knows Spy evs)) = (A € bad)"
by (erule otway.induct, force,

drule_tac [4] OR2_parts_knows_Spy, simp_all, blast+)
lemma Spy_analz_shrK [simp]:

"evs € otway —> (Key (shrK A) € analz (knows Spy evs)) = (A € bad)"

by auto

lemma Spy_see_shrK_D [dest!]:
"[Key (shrK A) € parts (knows Spy evs); evs € otway|] =—> A € bad"
by (blast dest: Spy_see_shrK)

9.1 Towards Secrecy: Proofs Involving anaiz

Describes the form of K and NA when the Server sends this message. Also for
Oops case.

lemma Says_Server_message_form:
"[Says Server B {NA, X, Crypt (shrK B) {NB, Key K[} € set evs;
evs € otway]
—> K ¢ range shrK A (3i. NA = Nonce i) A (3j. NB = Nonce j)"
by (erule rev_mp, erule otway.induct, simp_all)

Session keys are not used to encrypt other session keys

The equality makes the induction hypothesis easier to apply

lemma analz_image_freshK [rule_format]:
"evs € otway —>
VK KK. KK C -(range shrK) —
(Key K € analz (Key‘KK U (knows Spy evs))) =
(K € KK | Key K € analz (knows Spy evs))"
apply (erule otway.induct)

172 9 THE ORIGINAL OTWAY-REES PROTOCOL

apply (frule_tac [8] Says_Server_message_form)

apply (drule_tac [7] OR4_analz_knows_Spy)

apply (drule_tac [5] OR2_analz_knows_Spy, analz_freshK, spy_analz, auto)
done

lemma analz_insert_freshK:
"levs € otway; KAB ¢ range shrK]| —
(Key K € analz (insert (Key KAB) (knows Spy evs))) =
(K = KAB | Key K € analz (knows Spy evs))"
by (simp only: analz_image_freshK analz_image_freshK_simps)

The Key K uniquely identifies the Server’s message.

lemma unique_session_keys:
"[Says Server B {NA, X, Crypt (shrK B) {NB, K[}} € set evs;

Says Server B’ {NA’,X’,Crypt (shrK B’) {NB’,K[|}} € set evs;
evs € otway] = X=X’ A B=B’ A NA=NA’ A NB=NB’"

apply (erule rev_mp)

apply (erule rev_mp)

apply (erule otway.induct, simp_all)

apply blast+ — OR3 and OR4

done

9.2 Authenticity properties relating to NA

Only ORI can have caused such a part of a message to appear.

lemma Crypt_imp_OR1 [rule_format]:
"[A ¢ bad; evs € otway]
= Crypt (shrK A) {NA, Agent A, Agent B[} € parts (knows Spy evs) —
Says A B {NA, Agent A, Agent B,
Crypt (shrK A) {NA, Agent A, Agent B[}
€ set evs"

by (erule otway.induct, force,

drule_tac [4] OR2_parts_knows_Spy, simp_all, blast+)

lemma Crypt_imp_OR1_Gets:
"[Gets B {NA, Agent A, Agent B,
Crypt (shrK A) {NA, Agent A, Agent B[} € set evs;
A ¢ bad; evs € otway]
—> Says A B {NA, Agent A, Agent B,
Crypt (shrK A) {NA, Agent A, Agent B[}
€ set evs"

by (blast dest: Crypt_imp_OR1)

The Nonce NA uniquely identifies A’s message

lemma unique_NA:
"[Crypt (shrK A) {NA, Agent A, Agent B} € parts (knows Spy evs);
Crypt (shrK A) {NA, Agent A, Agent C| € parts (knows Spy evs);
evs € otway; A ¢ bad]
= B = (C"
apply (erule rev_mp, erule rev_mp)
apply (erule otway.induct, force,

drule_tac [4] OR2_parts_knows_Spy, simp_all, blast+)
done

9.2 Authenticity properties relating to NA 173

It is impossible to re-use a nonce in both OR1 and OR2. This holds because OR2
encrypts Nonce NB. It prevents the attack that can occur in the over-simplified
version of this protocol: see OtwayRees_Bad.

lemma no_nonce_OR1_OR2:
"[Crypt (shrK A) {NA, Agent A, Agent B[} € parts (knows Spy evs);
A ¢ bad; evs € otway]
= Crypt (shrK A) {NA’, NA, Agent A’, Agent A} ¢ parts (knows Spy evs)"
apply (erule rev_mp)
apply (erule otway.induct, force,
drule_tac [4] OR2_parts_knows_Spy, simp_all, blast+)
done

Crucial property: If the encrypted message appears, and A has used NA to start
a run, then it originated with the Server!

lemma NA_Crypt_imp_Server_msg [rule_format]:
"[A ¢ bad; evs € otway]
—> Says A B {NA, Agent A, Agent B,
Crypt (shrK A) {NA, Agent A, Agent B[} € set evs —
Crypt (shrK A) {NA, Key K|} € parts (knows Spy evs)
— (dNB. Says Server B
{nva,
Crypt (shrK A) {NA, Key K[,
Crypt (shrK B) {NB, Key K[} € set evs)"
apply (erule otway.induct, force,
drule_tac [4] OR2_parts_knows_Spy, simp_all, blast)
subgoal — ORI1: by freshness
by blast
subgoal — OR3
by (blast dest!: no_nonce_OR1_OR2 intro: unique_NA)
subgoal — OR4
by (blast intro!: Crypt_imp_OR1)
done

Corollary: if A receives B’s OR4 message and the nonce NA agrees then the key
really did come from the Server! CANNOT prove this of the bad form of this
protocol, even though we can prove Spy_not_see_encrypted_key

lemma A_trusts_OR4:
"[Says A B {NA, Agent A, Agent B,
Crypt (shrK A) {NA, Agent A, Agent B[}} € set evs;
Says B> A {NA, Crypt (shrK A) {NA, Key K[}[} € set evs;
A ¢ bad; evs € otway]
= JNB. Says Server B
{na,
Crypt (shrK A) {NA, Key K[},
Crypt (shrK B) {NB, Key K|}
€ set evs"
by (blast intro!: NA_Crypt_imp_Server_msg)

Crucial secrecy property: Spy does not see the keys sent in msg OR3 Does not
in itself guarantee security: an attack could violate the premises, e.g. by having
A = Spy

lemma secrecy_lemma:

174 9 THE ORIGINAL OTWAY-REES PROTOCOL

"[A ¢ bad; B ¢ bad; evs € otway]
— Says Server B
{NA, Crypt (shrK A) {NA, Key K|},
Crypt (shrK B) {NB, Key K[} € set evs —
Notes Spy {NA, NB, Key K} ¢ set evs —
Key K ¢ analz (knows Spy evs)"
apply (erule otway.induct, force, simp_all)
subgoal — Fake
by spy_analz
subgoal — OR2
by (drule OR2_analz_knows_Spy) (auto simp: analz_insert_eq)
subgoal — OR3
by (auto simp add: analz_insert_freshK pushes)
subgoal — OR4
by (drule OR4_analz_knows_Spy) (auto simp: analz_insert_eq)
subgoal — Oops
by (auto simp add: Says_Server_message_form analz_insert_freshK unique_session_keys)
done

theorem Spy_not_see_encrypted_key:
"[Says Server B
{NA, Crypt (shrK A) {NA, Key K|},
Crypt (shrK B) {NB, Key K[|}} € set evs;
Notes Spy {NA, NB, Key K|} ¢ set evs;
A ¢ bad; B ¢ bad; evs € otway]
—> Key K ¢ analz (knows Spy evs)"
by (blast dest: Says_Server_message_form secrecy_lemma)

This form is an immediate consequence of the previous result. It is similar to
the assertions established by other methods. It is equivalent to the previous
result in that the Spy already has analz and synth at his disposal. However,
the conclusion Key K ¢ knows Spy evs appears not to be inductive: all the cases
other than Fake are trivial, while Fake requires Key K ¢ analz (knows Spy evs).

lemma Spy_not_know_encrypted_key:
"[Says Server B
{NA, Crypt (shrK A) {NA, Key K[},
Crypt (shrK B) {NB, Key K[} € set evs;
Notes Spy {NA, NB, Key K} ¢ set evs;
A ¢ bad; B ¢ bad; evs € otway]
—> Key K ¢ knows Spy evs"
by (blast dest: Spy_not_see_encrypted_key)

A’s guarantee. The Oops premise quantifies over NB because A cannot know
what it is.

lemma A_gets_good_key:
"[Says A B {NA, Agent A, Agent B,
Crypt (shrK A) {NA, Agent A, Agent B[} € set evs;
Says B’ A {NA, Crypt (shrK A) {NA, Key K[|}} € set evs;
VNB. Notes Spy {NA, NB, Key K|} ¢ set evs;
A ¢ bad; B ¢ bad; evs € otway]
—> Key K ¢ analz (knows Spy evs)"
by (blast dest!: A_trusts_OR4 Spy_not_see_encrypted_key)

9.3 Authenticity properties relating to NB 175

9.3 Authenticity properties relating to NB

Only OR2 can have caused such a part of a message to appear. We do not know
anything about X: it does NOT have to have the right form.

lemma Crypt_imp_OR2:
"[Crypt (shrK B) {NA, NB, Agent A, Agent B} € parts (knows Spy evs);
B ¢ bad; evs € otway]
—> 3X. Says B Server
{NA, Agent A, Agent B, X,
Crypt (shrK B) {NA, NB, Agent A, Agent B[}
€ set evs"
apply (erule rev_mp)
apply (erule otway.induct, force,
drule_tac [4] OR2_parts_knows_Spy, simp_all, blast+)
done

The Nonce NB uniquely identifies B’s message

lemma unique_NB:
"[Crypt (shrK B) {NA, NB, Agent A, Agent B[} € parts(knows Spy evs);
Crypt (shrK B) {NC, NB, Agent C, Agent B[} € parts(knows Spy evs);
evs € otway; B ¢ bad]

= NC =NA AN C = A"
apply (erule rev_mp, erule rev_mp)
apply (erule otway.induct, force,

drule_tac [4] OR2_parts_knows_Spy, simp_all)

apply blast+ — Fake, OR2
done

If the encrypted message appears, and B has used Nonce NB, then it originated
with the Server! Quite messy proof.

lemma NB_Crypt_imp_Server_msg [rule_format]:
"[B ¢ bad; evs € otway]
= Crypt (shrK B) {NB, Key K|} € parts (knows Spy evs)
— (VX’. Says B Server
{NA, Agent A, Agent B, X’,
Crypt (shrK B) {NA, NB, Agent A, Agent B]}|
€ set evs
— Says Server B
{NA, Crypt (shrK A) {NA, Key K[},
Crypt (shrK B) {NB, Key K|}
€ set evs)"
apply simp
apply (erule otway.induct, force, simp_all)
subgoal — Fake
by blast
subgoal — OR2
by (force dest!: OR2_parts_knows_Spy)
subgoal — OR3
by (blast dest: unique_NB dest!: no_nonce_OR1_OR2) — OR3
subgoal — OR4
by (blast dest!: Crypt_imp_OR2)
done

176 9 THE ORIGINAL OTWAY-REES PROTOCOL

Guarantee for B: if it gets a message with matching NB then the Server has
sent the correct message.

theorem B_trusts_OR3:
"[Says B Server {NA, Agent A, Agent B, X’,
Crypt (shrK B) {NA, NB, Agent A, Agent Bl}|
€ set evs;
Gets B {NA, X, Crypt (shrK B) {NB, Key K[} € set evs;
B ¢ bad; evs € otway]
— Says Server B
{na,
Crypt (shrK A) {NA, Key K[,
Crypt (shrK B) {NB, Key K[}
€ set evs"
by (blast intro!: NB_Crypt_imp_Server_msg)

The obvious combination of B_trusts_0R3 with Spy_not_see_encrypted_key

lemma B_gets_good_key:
"[Says B Server {NA, Agent A, Agent B, X’,
Crypt (shrK B) {NA, NB, Agent A, Agent Bl}|
€ set evs;
Gets B {NA, X, Crypt (shrK B) {NB, Key K[}} € set evs;
Notes Spy {NA, NB, Key K} ¢ set evs;
A ¢ bad; B ¢ bad; evs € otway]
—> Key K ¢ analz (knows Spy evs)"
by (blast dest!: B_trusts_OR3 Spy_not_see_encrypted_key)

lemma OR3_imp_OR2:
"[Says Server B
{NA, Crypt (shrK A) {NA, Key K|},
Crypt (shrK B) {NB, Key K[|} € set evs;
B ¢ bad; evs € otway]
= 3X. Says B Server {NA, Agent A, Agent B, X,
Crypt (shrK B) {NA, NB, Agent A, Agent Bl}|

€ set evs'"

apply (erule rev_mp)

apply (erule otway.induct, simp_all)

apply (blast dest!: Crypt_imp_OR2)+

done

After getting and checking OR4, agent A can trust that B has been active. We
could probably prove that X has the expected form, but that is not strictly
necessary for authentication.

theorem A_auths_B:
"[Says B> A {NA, Crypt (shrK A) {NA, Key K[} € set evs;
Says A B {NA, Agent A, Agent B,
Crypt (shrK A) {NA, Agent A, Agent B[} € set evs;
A ¢ bad; B ¢ bad; evs € otway]
—> dNB X. Says B Server {]NA, Agent A, Agent B, X,
Crypt (shrK B) {NA, NB, Agent A, Agent B[}
€ set evs"

by (blast dest!: A_trusts_0OR4 OR3_imp_OR2)

177

end

10 The Otway-Rees Protocol as Modified by Abadi
and Needham

theory OtwayRees_AN imports Public begin

This simplified version has minimal encryption and explicit messages.

Note that the formalization does not even assume that nonces are fresh. This
is because the protocol does not rely on uniqueness of nonces for security, only
for freshness, and the proof script does not prove freshness properties.

From page 11 of Abadi and Needham (1996). Prudent Engineering Practice for
Cryptographic Protocols. IEEE Trans. SE 22 (1)

inductive__set otway :: "event list set"
where
Nil: — The empty trace
"[] € otway"
| Fake: — The Spy may say anything he can say. The sender field is correct, but

agents don’t use that information.
"[evsf € otway; X € synth (analz (knows Spy evsf))]
— Says Spy B X # evsf € otway"

| Reception: — A message that has been sent can be received by the intended
recipient.
"[evsr € otway; Says A B X E€set evsr]|
— Gets B X # evsr € otway"

| OR1: — Alice initiates a protocol run
"evsl € otway
—> Says A B {Agent A, Agent B, Nonce NA[} # evsl € otway"

| OR2: — Bob’s response to Alice’s message.
"[evs2 € otway;
Gets B {Agent A, Agent B, Nonce NA| Eset evs2]
— Says B Server {Agent A, Agent B, Nonce NA, Nonce NB|}
evs2 € otway"

| OR3: — The Server receives Bob’s message. Then he sends a new session key to
Bob with a packet for forwarding to Alice.
"[evs3 € otway; Key KAB ¢ used evs3;
Gets Server {Agent A, Agent B, Nonce NA, Nonce NB[

€set evs3]
—> Says Server B

{Crypt (shrK A) {Nonce NA, Agent A, Agent B, Key KAB}]},

Crypt (shrK B) {Nonce NB, Agent A, Agent B, Key KAB[|}
evs3 € otway"

| OR4: — Bob receives the Server’s (?) message and compares the Nonces with
those in the message he previously sent the Server. Need B # Server because we
allow messages to self.

17810 THE OTWAY-REES PROTOCOL AS MODIFIED BY ABADI AND NEEDHAM

"[evs4 € otway; B # Server;
Says B Server {Agent A, Agent B, Nonce NA, Nonce NB|} E€set evs4;
Gets B {X, Crypt(shrK B){Nonce NB,Agent A,Agent B,Key K[}
Eset evsd]
— Says B A X # evs4 € otway"

| Oops: — This message models possible leaks of session keys. The nonces identify
the protocol run.
"levso € otway;
Says Server B
{Crypt (shrK A) {Nonce NA, Agent A, Agent B, Key K[,
Crypt (shrK B) {Nonce NB, Agent A, Agent B, Key K[}
Eset evso]
—> Notes Spy {Nonce NA, Nonce NB, Key K[# evso € otway"

declare Says_imp_knows_Spy [THEN analz.Inj, dest]
declare parts.Body [dest]

declare analz_into_parts [dest]

declare Fake_parts_insert_in_Un [dest]

A "possibility property": there are traces that reach the end

lemma "[B # Server; Key K ¢ used []]
—> Jevs € otway.
Says B A (Crypt (shrK A) {Nonce NA, Agent A, Agent B, Key K[)
€ set evs"
apply (intro exI bexI)
apply (rule_tac [2] otway.Nil
[THEN otway.OR1, THEN otway.Reception,
THEN otway.OR2, THEN otway.Reception,
THEN otway.OR3, THEN otway.Reception, THEN otway.OR4])
apply (possibility, simp add: used_Cons)
done

lemma Gets_imp_Says [dest!]:
"[Gets B X € set evs; evs € otway] —> JA. Says A B X € set evs"
by (erule rev_mp, erule otway.induct, auto)

For reasoning about the encrypted portion of messages

lemma OR4_analz_knows_Spy:
"[Gets B {X, Crypt(shrK B) X’ € set evs; evs € otway]
— X € analz (knows Spy evs)"

by blast

Theorems of the form X ¢ parts (knows Spy evs) imply that NOBODY sends
messages containing X!

Spy never sees a good agent’s shared key!

lemma Spy_see_shrK [simp]:
"evs € otway = (Key (shrK A) € parts (knows Spy evs)) = (A € bad)"
by (erule otway.induct, simp_all, blast+)

lemma Spy_analz_shrK [simp]:

10.1 Proofs involving analz 179

"evs € otway — (Key (shrK A) € analz (knows Spy evs)) = (A € bad)"
by auto

lemma Spy_see_shrK_D [dest!]:
"[Key (shrK A) € parts (knows Spy evs); evs € otway|] = A € bad"
by (blast dest: Spy_see_shrK)

10.1 Proofs involving analz

Describes the form of K and NA when the Server sends this message.

lemma Says_Server_message_form:
"[Says Server B
{Crypt (shrK A) {NA, Agent A, Agent B, Key K|},
Crypt (shrK B) {NB, Agent A, Agent B, Key K[}
€ set evs;
evs € otway]
—> K ¢ range shrK A (3i. NA = Nonce i) A (3j. NB = Nonce j)"
apply (erule rev_mp)
apply (erule otway.induct, auto)
done

Session keys are not used to encrypt other session keys

The equality makes the induction hypothesis easier to apply

lemma analz_image_freshK [rule_format]:
"evs € otway —
VK KK. KK C -(range shrK) —
(Key K € analz (Key‘KK U (knows Spy evs))) =
(K € KK | Key K € analz (knows Spy evs))"
apply (erule otway.induct)
apply (frule_tac [8] Says_Server_message_form)
apply (drule_tac [7] OR4_analz_knows_Spy, analz_freshK, spy_analz, auto)
done

lemma analz_insert_freshK:
"[evs € otway; KAB ¢ range shrK| —
(Key K € analz (insert (Key KAB) (knows Spy evs))) =
(K = KAB | Key K € analz (knows Spy evs))"
by (simp only: analz_image_freshK analz_image_freshK_simps)

The Key K uniquely identifies the Server’s message.

lemma unique_session_keys:
"[Says Server B
{Crypt (shrK A) {NA, Agent A, Agent B, K[,
Crypt (shrK B) {NB, Agent A, Agent B, K[}
€ set evs;
Says Server B’
{Crypt (shrK A’) {NA’, Agent A’, Agent B’, K},
Crypt (shrK B’) {NB’, Agent A’, Agent B’, K[|}
€ set evs;
evs € otway]
—> A=A’ N B=B’ A NA=NA’ A NB=NB’"
apply (erule rev_mp, erule rev_mp, erule otway.induct, simp_all)

18010 THE OTWAY-REES PROTOCOL AS MODIFIED BY ABADI AND NEEDHAM

apply blast+ — OR3 and OR4
done

10.2 Authenticity properties relating to NA

If the encrypted message appears then it originated with the Server!

lemma NA_Crypt_imp_Server_msg [rule_format]:
"[A ¢ bad; A # B; evs € otway]
= Crypt (shrK A) {NA, Agent A, Agent B, Key K|} € parts (knows Spy evs)
— (3NB. Says Server B
{Crypt (shrK A) {NA, Agent A, Agent B, Key K|},
Crypt (shrK B) {NB, Agent A, Agent B, Key K[}|}
€ set evs)"
apply (erule otway.induct, force)
apply (simp_all add: ex_disj_distrib)
apply blast+ — Fake, OR3
done

Corollary: if A receives B’s OR4 message then it originated with the Server.
Freshness may be inferred from nonce NA.

lemma A_trusts_0OR4:
"[Says B’ A (Crypt (shrK A) {NA, Agent A, Agent B, Key K|}) € set evs;
A ¢ bad; A # B; evs € otway]
— JNB. Says Server B
{Crypt (shrK A) {NA, Agent A, Agent B, Key K|},
Crypt (shrK B) {NB, Agent A, Agent B, Key K[|}
€ set evs"
by (blast intro!: NA_Crypt_imp_Server_msg)

Crucial secrecy property: Spy does not see the keys sent in msg OR3 Does not
in itself guarantee security: an attack could violate the premises, e.g. by having

A = Spy

lemma secrecy_lemma:
"[A ¢ bad; B ¢ bad; evs € otway]
—> Says Server B
{Crypt (shrK A) {NA, Agent A, Agent B, Key K|},
Crypt (shrK B) {NB, Agent A, Agent B, Key K[}
€ set evs —
Notes Spy {NA, NB, Key K} ¢ set evs —»
Key K ¢ analz (knows Spy evs)"
apply (erule otway.induct, force)
apply (frule_tac [7] Says_Server_message_form)
apply (drule_tac [6] OR4_analz_knows_Spy)
apply (simp_all add: analz_insert_eq analz_insert_freshK pushes)
apply spy_analz — Fake
apply (blast dest: unique_session_keys)+ — OR3, OR4, Oops
done

lemma Spy_not_see_encrypted_key:
"[Says Server B
{Crypt (shrK A) {NA, Agent A, Agent B, Key K|},
Crypt (shrK B) {NB, Agent A, Agent B, Key K[|}

10.3 Authenticity properties relating to NB 181

€ set evs;
Notes Spy {NA, NB, Key K} ¢ set evs;
A ¢ bad; B ¢ bad; evs € otway]
—> Key K ¢ analz (knows Spy evs)"
by (metis secrecy_lemma)

A’s guarantee. The Oops premise quantifies over NB because A cannot know
what it is.

lemma A_gets_good_key:
"[Says B> A (Crypt (shrK A) {NA, Agent A, Agent B, Key K[}) € set evs;
VNB. Notes Spy {NA, NB, Key K} ¢ set evs;
A ¢ bad; B ¢ bad; A # B; evs € otway]
—> Key K ¢ analz (knows Spy evs)"
by (metis A_trusts_OR4 secrecy_lemma)

10.3 Authenticity properties relating to NB

If the encrypted message appears then it originated with the Server!

lemma NB_Crypt_imp_Server_msg [rule_format]:
"[B ¢ bad; A # B; evs € otway]
= Crypt (shrK B) {NB, Agent A, Agent B, Key K|} € parts (knows Spy evs)
— (INA. Says Server B
{Crypt (shrK A) {NA, Agent A, Agent B, Key K|},
Crypt (shrK B) {NB, Agent A, Agent B, Key K[|}
€ set evs)"
apply (erule otway.induct, force, simp_all add: ex_disj_distrib)
apply blast+ — Fake, OR3
done

Guarantee for B: if it gets a well-formed certificate then the Server has sent the
correct message in round 3.

lemma B_trusts_0OR3:
"[Says S B {X, Crypt (shrK B) {NB, Agent A, Agent B, Key K[}
€ set evs;
B ¢ bad; A # B; evs € otway]
—> JNA. Says Server B
{Crypt (shrK A) {NA, Agent A, Agent B, Key K|},
Crypt (shrK B) {NB, Agent A, Agent B, Key K[|}
€ set evs"
by (blast intro!: NB_Crypt_imp_Server_msg)

The obvious combination of B_trusts_0R3 with Spy_not_see_encrypted_key

lemma B_gets_good_key:
"[Gets B {X, Crypt (shrK B) {NB, Agent A, Agent B, Key K[}
€ set evs;
VNA. Notes Spy {NA, NB, Key K|} ¢ set evs;
A ¢ bad; B ¢ bad; A # B; evs € otway]
—> Key K ¢ analz (knows Spy evs)"
by (blast dest: B_trusts_OR3 Spy_not_see_encrypted_key)

end

182 11 THE OTWAY-REES PROTOCOL: THE FAULTY BAN VERSION

11 The Otway-Rees Protocol: The Faulty BAN
Version
theory OtwayRees_Bad imports Public begin

The FAULTY version omitting encryption of Nonce NB, as suggested on page
247 of Burrows, Abadi and Needham (1988). A Logic of Authentication. Proc.
Royal Soc. 426

This file illustrates the consequences of such errors. We can still prove impressive-
looking properties such as Spy_not_see_encrypted_key, yet the protocol is open
to a middleperson attack. Attempting to prove some key lemmas indicates the
possibility of this attack.

inductive__set otway :: "event list set"
where
Nil: — The empty trace
"[] € otway"

| Fake: — The Spy may say anything he can say. The sender field is correct, but
agents don’t use that information.
"[evsf € otway; X € synth (analz (knows Spy evsf))]
— Says Spy B X # evsf € otway"

| Reception: — A message that has been sent can be received by the intended
recipient.
"[evsr € otway; Says A B X Eset evsr]
— Gets B X # evsr € otway"

| OR1: — Alice initiates a protocol run
"[evsl € otway; Nonce NA ¢ used evsl]
= Says A B {Nonce NA, Agent A, Agent B,
Crypt (shrK A) {Nonce NA, Agent A, Agent B[}
evsl € otway"

| OR2: — Bob’s response to Alice’s message. This variant of the protocol does
NOT encrypt NB.
"[evs2 € otway; Nonce NB ¢ used evs2;
Gets B {Nonce NA, Agent A, Agent B, X[} € set evsZ2]
— Says B Server
{Nonce NA, Agent A, Agent B, X, Nonce NB,
Crypt (shrK B) {Nonce NA, Agent A, Agent B|}
evs2 € otway"

| OR3: — The Server receives Bob’s message and checks that the three NAs match.
Then he sends a new session key to Bob with a packet for forwarding to Alice.
"[evs3 € otway; Key KAB ¢ used evs3;
Gets Server
{Nonce NA, Agent A, Agent B,
Crypt (shrK A) {Nonce NA, Agent A, Agent B,
Nonce NB,
Crypt (shrK B) {Nonce NA, Agent A, Agent B[}
€ set evs3]
—> Says Server B

11.1 For reasoning about the encrypted portion of messages 183

{Nonce NA,
Crypt (shrK A) {Nonce NA, Key KAB]},
Crypt (shrK B) {Nonce NB, Key KAB[|
evs3 € otway"

| OR4: — Bob receives the Server’s (?) message and compares the Nonces with
those in the message he previously sent the Server. Need B # Server because we
allow messages to self.
"[evs4 € otway; B # Server;
Says B Server {]Nonce NA, Agent A, Agent B, X’, Nonce NB,
Crypt (shrK B) {Nonce NA, Agent A, Agent Bl}|
€ set evs4;
Gets B {Nonce NA, X, Crypt (shrK B) {Nonce NB, Key K[}|}
€ set evs4]
=—> Says B A {Nonce NA, X[} # evs4 € otway"

| Oops: — This message models possible leaks of session keys. The nonces identify
the protocol run.
"levso € otway;
Says Server B {Nonce NA, X, Crypt (shrK B) {Nonce NB, Key K[}|}
€ set evso]
= Notes Spy {Nonce NA, Nonce NB, Key K[} # evso € otway"

declare Says_imp_knows_Spy [THEN analz.Inj, dest]
declare parts.Body [dest]

declare analz_into_parts [dest]

declare Fake_parts_insert_in_Un [dest]

A "possibility property": there are traces that reach the end

lemma "[B # Server; Key K ¢ used []]
= JNA. Jevs € otway.
Says B A {Nonce NA, Crypt (shrK A) {Nonce NA, Key K|}|}
€ set evs"

apply (intro exI bexI)
apply (rule_tac [2] otway.Nil

[THEN otway.OR1, THEN otway.Reception,

THEN otway.OR2, THEN otway.Reception,

THEN otway.OR3, THEN otway.Reception, THEN otway.OR4])
apply (possibility, simp add: used_Cons)
done

lemma Gets_imp_Says [dest!]:
"[Gets B X € set evs; evs € otway|] = JA. Says A B X € set evs"
apply (erule rev_mp)
apply (erule otway.induct, auto)
done

11.1 For reasoning about the encrypted portion of mes-
sages
lemma OR2_analz_knows_Spy:

"[Gets B {N, Agent A, Agent B, X[} € set evs; evs € otway]
= X € analz (knows Spy evs)"

184 11 THE OTWAY-REES PROTOCOL: THE FAULTY BAN VERSION

by blast

lemma OR4_analz_knows_Spy:
"[Gets B {N, X, Crypt (shrK B) X’} € set evs; evs € otway]
= X € analz (knows Spy evs)"

by blast

lemma Oops_parts_knows_Spy:
"Says Server B {NA, X, Crypt K’ {NB,K[}} € set evs
— K € parts (knows Spy evs)"

by blast

Forwarding lemma: see comments in OtwayRees.thy

lemmas OR2_parts_knows_Spy =
OR2_analz_knows_Spy [THEN analz_into_parts]

Theorems of the form X ¢ parts (knows Spy evs) imply that NOBODY sends
messages containing X!

Spy never sees a good agent’s shared key!

lemma Spy_see_shrK [simp]:

"evs € otway = (Key (shrK A) € parts (knows Spy evs)) = (A € bad)"
by (erule otway.induct, force,

drule_tac [4] OR2_parts_knows_Spy, simp_all, blast+)

lemma Spy_analz_shrK [simp]:
"evs € otway = (Key (shrK A) € analz (knows Spy evs))
by auto

(A € bad)"

lemma Spy_see_shrK_D [dest!]:
"[Key (shrK A) € parts (knows Spy evs); evs € otway]|] = A € bad"
by (blast dest: Spy_see_shrK)

11.2 Proofs involving analz

Describes the form of K and NA when the Server sends this message. Also for
Oops case.

lemma Says_Server_message_form:
"[Says Server B {NA, X, Crypt (shrK B) {NB, Key K[}|} € set evs;
evs € otway]
—> K ¢ range shrK A (3i. NA = Nonce i) A (3j. NB = Nonce j)"
apply (erule rev_mp)
apply (erule otway.induct, simp_all)
done

Session keys are not used to encrypt other session keys

The equality makes the induction hypothesis easier to apply

lemma analz_image_freshK [rule_format]:
"evs € otway —
VK KK. KK C -(range shrK) —
(Key K € analz (Key‘KK U (knows Spy evs))) =

11.2 Proofs involving analz 185

(K € KK | Key K € analz (knows Spy evs))"
apply (erule otway.induct)
apply (frule_tac [8] Says_Server_message_form)
apply (drule_tac [7] OR4_analz_knows_Spy)
apply (drule_tac [5] OR2_analz_knows_Spy, analz_freshK, spy_analz, auto)
done

lemma analz_insert_freshK:
"[evs € otway; KAB ¢ range shrkK| —
(Key K € analz (insert (Key KAB) (knows Spy evs))) =
(K = KAB | Key K € analz (knows Spy evs))"
by (simp only: analz_image_freshK analz_image_freshK_simps)

The Key K uniquely identifies the Server’s message.

lemma unique_session_keys:
"[Says Server B {NA, X, Crypt (shrK B) {NB, K}}} € set evs;

Says Server B’ {NA’,X’,Crypt (shrK B’) {NB’,K[}} € set evs;
evs € otway]] —> X=X’ A B=B’ A NA=NA’ A NB=NB’"

apply (erule rev_mp)

apply (erule rev_mp)

apply (erule otway.induct, simp_all)

apply blast+ — OR3 and OR4

done

Crucial secrecy property: Spy does not see the keys sent in msg OR3 Does not
in itself guarantee security: an attack could violate the premises, e.g. by having

A = Spy

lemma secrecy_lemma:
"[A ¢ bad; B ¢ bad; evs € otway]
— Says Server B
{NA, Crypt (shrK A) {NA, Key K|},
Crypt (shrK B) {NB, Key K[}} € set evs —

Notes Spy {NA, NB, Key K|} ¢ set evs —

Key K ¢ analz (knows Spy evs)"
apply (erule otway.induct, force)
apply (frule_tac [7] Says_Server_message_form)
apply (drule_tac [6] OR4_analz_knows_Spy)
apply (drule_tac [4] OR2_analz_knows_Spy)
apply (simp_all add: analz_insert_eq analz_insert_freshK pushes)
apply spy_analz — Fake
apply (blast dest: unique_session_keys)+ — OR3, OR4, Oops
done

lemma Spy_not_see_encrypted_key:
"[Says Server B
{NA, Crypt (shrK A) {NA, Key K[},
Crypt (shrK B) {NB, Key K[|}} € set evs;
Notes Spy {NA, NB, Key K} ¢ set evs;
A ¢ bad; B ¢ bad; evs € otway]
—> Key K ¢ analz (knows Spy evs)"
by (blast dest: Says_Server_message_form secrecy_lemma)

186 12 BELLA’S VERSION OF THE OTWAY-REES PROTOCOL

11.3 Attempting to prove stronger properties

Only OR1 can have caused such a part of a message to appear. The premise 4
B prevents OR2’s similar-looking cryptogram from being picked up. Original
Otway-Rees doesn’t need it.

lemma Crypt_imp_OR1 [rule_format]:
"[A ¢ bad; A # B; evs € otway]
= Crypt (shrK A) {NA, Agent A, Agent B[} € parts (knows Spy evs) —
Says A B {NA, Agent A, Agent B,
Crypt (shrK A) {NA, Agent A, Agent B[}} € set evs"
by (erule otway.induct, force,
drule_tac [4] OR2_parts_knows_Spy, simp_all, blast+)

Crucial property: If the encrypted message appears, and A has used NA to
start a run, then it originated with the Server! The premise 4 # B allows use
of Crypt_imp_OR1

Only it is FALSE. Somebody could make a fake message to Server substituting
some other nonce NA’ for NB.

lemma "[A ¢ bad; A # B; evs € otway]
= Crypt (shrK A) {NA, Key K|} € parts (knows Spy evs) —
Says A B {NA, Agent A, Agent B,
Crypt (shrK A) {NA, Agent A, Agent B[}
€ set evs —
(3B NB. Says Server B
{na,
Crypt (shrK A) {NA, Key K[,
Crypt (shrK B) {NB, Key K[} € set evs)"
apply (erule otway.induct, force,
drule_tac [4] OR2_parts_knows_Spy, simp_all)
apply blast — Fake
apply blast — ORI: it cannot be a new Nonce, contradiction.

OR3 and OR4

apply (simp_all add: ex_disj_distrib)
prefer 2 apply (blast intro!: Crypt_imp_OR1) — ORA4

OR3
apply clarify

oops

end

12 Bella’s version of the Otway-Rees protocol

theory OtwayReesBella imports Public begin

Bella’s modifications to a version of the Otway-Rees protocol taken from the
BAN paper only concern message 7. The updated protocol makes the goal of key

187

distribution of the session key available to A. Investigating the principle of Goal
Availability undermines the BAN claim about the original protocol, that "this
protocol does not make use of Kab as an encryption key, so neither principal
can know whether the key is known to the other". The updated protocol makes
no use of the session key to encrypt but informs A that B knows it.

inductive__set orb :: "event list set"
where
Nil: "[]€ orb"
| Fake: "[evsa€ orb; X€ synth (analz (knows Spy evsa))]

— Says Spy B X # evsa € orb"

| Reception: "[evsr€ orb; Says A B X € set evsr]

| OR1:

| OR2:

| OR3:

Bl

| OR4:

Bl

| Oops:

—> Gets B X # evsr € orb"

"levsi€ orb; Nonce NA ¢ used evsi]
—> Says A B {Nonce M, Agent A, Agent B,
Crypt (shrK A) {Nonce NA, Nonce M, Agent A, Agent B[}
evsl € orb"

"[evs2€ orb; Nonce NB ¢ used evs2;
Gets B {Nonce M, Agent A, Agent B, X[} € set evsZ2]
— Says B Server
{Nonce M, Agent A, Agent B, X,
Crypt (shrK B) {Nonce NB, Nonce M, Nonce M, Agent A, Agent Bl}|}
evs2 € orb"

"levs3€ orb; Key KAB ¢ used evs3;
Gets Server
{Nonce M, Agent A, Agent B,
Crypt (shrK A) {Nonce NA, Nonce M, Agent A, Agent B},
Crypt (shrK B) {Nonce NB, Nonce M, Nonce M, Agent A, Agent

€ set evs3]
= Says Server B {Nonce M,
Crypt (shrK B) {Crypt (shrK A) {Nonce NA, Key KAB|},
Nonce NB, Key KAB[[}
evs3 € orb"

"[evs4€ orb; B # Server; ¥V p q. X # {p, q};
Says B Server {]Nonce M, Agent A, Agent B, X’,
Crypt (shrK B) {Nonce NB, Nonce M, Nonce M, Agent A, Agent

€ set evs4;
Gets B {Nonce M, Crypt (shrK B) {X, Nonce NB, Key KAB[}|
€ set evs4]
—> Says B A {Nonce M, X[} # evs4 € orb"

"levso€ orb;

188 12 BELLA’S VERSION OF THE OTWAY-REES PROTOCOL

Says Server B {Nonce M,
Crypt (shrK B) {Crypt (shrK A) {Nonce NA, Key KAB},
Nonce NB, Key KAB[|}
€ set evso]
= Notes Spy {Agent A, Agent B, Nonce NA, Nonce NB, Key KAB| # evso
€ orb"

declare knows_Spy_partsEs [elim]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]

Fragile proof, with backtracking in the possibility call.

lemma possibility_thm: "[A # Server; B # Server; Key K ¢ used[]]
— d evs € orb.
Says B A {Nonce M, Crypt (shrK A) {Nonce Na, Key K[}} € set evs"
apply (intro exI bexI)
apply (rule_tac [2] orb.Nil
[THEN orb.OR1, THEN orb.Reception,
THEN orb.0OR2, THEN orb.Reception,
THEN orb.OR3, THEN orb.Reception, THEN orb.0OR4])
apply (possibility, simp add: used_Cons)
done

lemma Gets_imp_Says :
"[Gets B X € set evs; evs € orb] = JA. Says A B X € set evs"
apply (erule rev_mp)
apply (erule orb.induct)
apply auto
done

lemma Gets_imp_knows_Spy:
"[Gets B X € set evs; evs € orb] = X € knows Spy evs"
by (blast dest!: Gets_imp_Says Says_imp_knows_Spy)

declare Gets_imp_knows_Spy [THEN parts.Inj, dest]

lemma Gets_imp_knows:
"[Gets B X € set evs; evs € orb] = X € knows B evs"
by (metis Gets_imp_knows_Spy Gets_imp_knows_agents)

lemma OR2_analz_knows_Spy:
"[Gets B {Nonce M, Agent A, Agent B, X} € set evs; evs € orb]
—> X € analz (knows Spy evs)"

by (blast dest!: Gets_imp_knows_Spy [THEN analz.Inj])

lemma OR4_parts_knows_Spy:
"[Gets B {Nonce M, Crypt (shrK B) {X, Nonce Nb, Key Kabl|[} € set evs;
evs € orb] = X € parts (knows Spy evs)"
by blast

lemma Oops_parts_knows_Spy:

12.1 Proofs involving analz 189

"Says Server B {Nonce M, Crypt K’ {X, Nonce Nb, K[|}} € set evs
=—> K € parts (knows Spy evs)"
by blast

lemmas OR2_parts_knows_Spy =
OR2_analz_knows_Spy [THEN analz_into_parts]

ML

<

fun parts_explicit_tac ctxt i =
forward_tac ctxt [@{thm Oops_parts_knows_Spy}] (i+7) THEN
forward_tac ctxt [@{thm OR4_parts_knows_Spy}] (i+6) THEN
forward_tac ctxt [@{thm OR2_parts_knows_Spy}] (i+4)

method__setup parts_explicit = <
Scan.succeed (SIMPLE_METHOD’ o parts_explicit_tac)>
"to explicitly state that some message components belong to parts knows Spy"

lemma Spy_see_shrK [simp]:
"evs € orb = (Key (shrK A) € parts (knows Spy evs)) = (A € bad)"
by (erule orb.induct, parts_explicit, simp_all, blast+)

lemma Spy_analz_shrK [simp]:
"evs € orb = (Key (shrK A) € analz (knows Spy evs)) = (A € bad)"
by auto

lemma Spy_see_shrK_D [dest!]:
"[Key (shrK A) € parts (knows Spy evs); evs € orb] = A € bad"
by (blast dest: Spy_see_shrK)

lemma new_keys_not_used [simp]:
"[Key K ¢ used evs; K € symKeys; evs € orb] =—> K ¢ keysFor (parts (knows
Spy evs))"
apply (erule rev_mp)
apply (erule orb.induct, parts_explicit, simp_all)
apply (force dest!: keysFor_parts_insert)
apply (blast+)
done

12.1 Proofs involving analz

Describes the form of K and NA when the Server sends this message. Also for
Oops case.

lemma Says_Server_message_form:
"[Says Server B {Nonce M, Crypt (shrK B) {X, Nonce Nb, Key K[} € set evs;

evs € orb]
—> K ¢ range shrK A (3 A Na. X=(Crypt (shrK A) {Nonce Na, Key K[}))"

by (erule rev_mp, erule orb.induct, simp_all)

lemma Says_Server_imp_Gets:

190 12 BELLA’S VERSION OF THE OTWAY-REES PROTOCOL

"[Says Server B {Nonce M, Crypt (shrK B) {Crypt (shrK A) {Nonce Na, Key K[,
Nonce Nb, Key K[} € set evs;
evs € orb]
—> Gets Server {]Nonce M, Agent A, Agent B,
Crypt (shrK A) {Nonce Na, Nonce M, Agent A, Agent Bf},
Crypt (shrK B) {Nonce Nb, Nonce M, Nonce M, Agent A, Agent
B}
€ set evs"
by (erule rev_mp, erule orb.induct, simp_all)

lemma A_trusts_OR1:
"[Crypt (shrK A) {Nonce Na, Nonce M, Agent A, Agent B[} € parts (knows Spy
evs);
A ¢ bad; evs € orb]
= Says A B {Nonce M, Agent A, Agent B, Crypt (shrK A) {Nonce Na, Nonce
M, Agent A, Agent BJ}} € set evs"
apply (erule rev_mp, erule orb.induct, parts_explicit, simp_all)
apply blast
done

lemma B_trusts_0R2:
"[Crypt (shrK B) {Nonce Nb, Nonce M, Nonce M, Agent A, Agent B[
€ parts (knows Spy evs); B ¢ bad; evs € orb]
=—> (3 X. Says B Server {Nonce M, Agent A, Agent B, X,
Crypt (shrK B) {Nonce Nb, Nonce M, Nonce M, Agent A, Agent Bl}}

€ set evs)"
apply (erule rev_mp, erule orb.induct, parts_explicit, simp_all)
apply (blast+)
done

lemma B_trusts_OR3:
"[Crypt (shrK B) {X, Nonce Nb, Key K|} € parts (knows Spy evs);
B ¢ bad; evs € orb]

= 3 M. Says Server B {Nonce M, Crypt (shrK B) {X, Nonce Nb, Key K[}
€ set evs"

apply (erule rev_mp, erule orb.induct, parts_explicit, simp_all)

apply (blast+)

done

lemma Gets_Server_message_form:
"[Gets B {Nonce M, Crypt (shrK B) {X, Nonce Nb, Key K[}} € set evs;
evs € orb]
— (K ¢ range shrK A (3 A Na. X = (Crypt (shrK A) {Nonce Na, Key K[})))

| X € analz (knows Spy evs)"
by (metis B_trusts_OR3 Crypt_Spy_analz_bad Gets_imp_Says MPair_analz MPair_parts
Says_Server_message_form Says_imp_analz_Spy Says_imp_parts_knows_Spy)

lemma unique_Na: "[Says A B {Nonce M, Agent A, Agent B, Crypt (shrK A) {Nonce
Na, Nonce M, Agent A, Agent B[}} € set evs;

12.1 Proofs involving analz 191

Says A B’ {Nonce M’, Agent A, Agent B’, Crypt (shrK A) {Nonce Na,
Nonce M’, Agent A, Agent B’[}}} € set evs;
A ¢ bad; evs € orb] = B=B’ A M=M’"
by (erule rev_mp, erule rev_mp, erule orb.induct, simp_all, blast+)

lemma unique_Nb: "[Says B Server {Nonce M, Agent A, Agent B, X, Crypt (shrkK
B) {Nonce Nb, Nonce M, Nonce M, Agent A, Agent B|}} € set evs;
Says B Server {Nonce M’, Agent A’, Agent B, X’, Crypt (shrK B) {Nonce
Nb,Nonce M’, Nonce M’, Agent A’, Agent BJ}} € set evs;
B ¢ bad; evs € orb] = M=M’ A A=A’ A X=X’"
by (erule rev_mp, erule rev_mp, erule orb.induct, simp_all, blast+)

lemma analz_image_freshCryptK_lemma:

"(Crypt K X € analz (Key‘nE U H)) — (Crypt K X € analz H) —
(Crypt K X € analz (Key‘nE U H)) = (Crypt K X € analz H)"

by (blast intro: analz_mono [THEN [2] rev_subsetD])

ML

<

structure OtwayReesBella =
struct

val analz_image_freshK_ss =
simpset_of
(context [|> Simplifier.del_simps @{thms image_insert image_Un}
|> Simplifier.del_simps @{thms imp_disjL} (*reduces blow-up*)
|> Simplifier.add_simps @{thms analz_image_freshK_simps})

end

method__setup analz_freshCryptK = <
Scan.succeed (fn ctxt =>

(SIMPLE_METHOD

(EVERY [REPEAT_FIRST (resolve_tac ctxt @{thms alll balll impI}),
REPEAT_FIRST (resolve_tac ctxt @{thms analz_image_freshCryptK_lemma}),
ALLGOALS (asm_simp_tac

(put_simpset OtwayReesBella.analz_image_freshK_ss ctxt))]1)))>
"for proving useful rewrite rule"

method__setup disentangle = <
Scan.succeed
(fn ctxt => SIMPLE_METHOD
(REPEAT_FIRST (eresolve_tac ctxt [asm_rl, conjE, disjE]
ORELSE’ hyp_subst_tac ctxt)))>
"for eliminating conjunctions, disjunctions and the like"

lemma analz_image_freshCryptK [rule_format]:
"evs € orb —>
Key K ¢ analz (knows Spy evs) —»
(V KK. KK C - (range shrK) —

192 12 BELLA’S VERSION OF THE OTWAY-REES PROTOCOL

(Crypt K X € analz (Key‘KK U (knows Spy evs))) =
(Crypt K X € analz (knows Spy evs)))"

apply (erule orb.induct)

apply (analz_mono_contra)

apply (frule_tac [7] Gets_Server_message_form)

apply (frule_tac [9] Says_Server_message_form)

apply disentangle

apply (drule_tac [5] Gets_imp_knows_Spy [THEN analz.Inj, THEN analz.Snd, THEN

analz.Snd, THEN analz.Snd])

prefer 8 apply clarify

apply (analz_freshCryptK, spy_analz, fastforce)

done

lemma analz_insert_freshCryptK:

"[evs € orb; Key K ¢ analz (knows Spy evs);
Seskey ¢ range shrK| —
(Crypt K X € analz (insert (Key Seskey) (knows Spy evs))) =
(Crypt K X € analz (knows Spy evs))"

by (simp only: analz_image_freshCryptK analz_image_freshK_simps)

lemma analz_hard:
"[Says A B {Nonce M, Agent A, Agent B,
Crypt (shrK A) {Nonce Na, Nonce M, Agent A, Agent B[}} Eset evs;

Crypt (shrK A) {Nonce Na, Key K|} € analz (knows Spy evs);
A ¢ bad; B ¢ bad; evs € orb]
= Says B A {Nonce M, Crypt (shrK A) {Nonce Na, Key K[| € set evs"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule orb.induct)
apply (frule_tac [7] Gets_Server_message_form)
apply (frule_tac [9] Says_Server_message_form)
apply disentangle

letting the simplifier solve OR2

apply (drule_tac [5] Gets_imp_knows_Spy [THEN analz.Inj, THEN analz.Snd, THEN
analz.Snd, THEN analz.Snd])

apply (simp_all (no_asm_simp) add: analz_insert_eq pushes split_ifs)

apply (spy_analz)

OR1

apply blast

Oops

prefer 4 apply (blast dest: analz_insert_freshCryptK)
OR4 - ii

prefer 3 apply blast

OR3

12.1 Proofs involving analz 193

apply (blast dest:
A_trusts_OR1 unique_Na Key_not_used analz_insert_freshCryptK)

OR4 - i

apply clarify
apply (simp add: pushes split_ifs)
apply (case_tac "Aaa€bad")
apply (blast dest: analz_insert_freshCryptK)
apply clarify
apply simp
apply (case_tac "Ba€bad")
apply (frule Gets_imp_knows_Spy [THEN analz.Inj, THEN analz.Snd, THEN analz.Decrypt,
THEN analz.Fst] , assumption)
apply (simp (no_asm_simp))
apply clarify
apply (frule Gets_imp_knows_Spy

[THEN parts.Inj, THEN parts.Snd, THEN B_trusts_OR3],

assumption, assumption, assumption, erule exE)

apply (frule Says_Server_imp_Gets

[THEN Gets_imp_knows_Spy, THEN parts.Inj, THEN parts.Snd,

THEN parts.Snd, THEN parts.Snd, THEN parts.Fst, THEN A_trusts_OR1],

assumption, assumption, assumption, assumption)

apply (blast dest: Says_Server_imp_Gets B_trusts_OR2 unique_Na unique_Nb)
done

lemma Gets_Server_message_form’:
"[Gets B {Nonce M, Crypt (shrK B) {X, Nonce Nb, Key K[}} € set evs;

B ¢ bad; evs € orb]

—> K ¢ range shrK A (3 A Na. X = (Crypt (shrK A) {Nonce Na, Key K[}))"
by (blast dest!: B_trusts_OR3 Says_Server_message_form)

lemma OR4_imp_Gets:
"[Says B A {Nonce M, Crypt (shrK A) {Nonce Na, Key K[} € set evs;
B ¢ bad; evs € orb]
= (3 Nb. Gets B {Nonce M, Crypt (shrK B) {Crypt (shrK A) {Nonce Na, Key
K[},
Nonce Nb, Key K[}[} € set evs)"
apply (erule rev_mp, erule orb.induct, parts_explicit, simp_all)
prefer 3 apply (blast dest: Gets_Server_message_form’)
apply blast+
done

lemma A_keydist_to_B:
"[Says A B {Nonce M, Agent A, Agent B,
Crypt (shrK A) {Nonce Na, Nonce M, Agent A, Agent B|}} Eset evs;

Gets A {Nonce M, Crypt (shrK A) {Nonce Na, Key K[}} € set evs;

A ¢ bad; B ¢ bad; evs € orb]

—> Key K € analz (knows B evs)"
apply (drule Gets_imp_knows_Spy [THEN analz.Inj, THEN analz.Snd], assumption)
apply (drule analz_hard, assumption, assumption, assumption, assumption)

194 13 THE WOO-LAM PROTOCOL

apply (drule OR4_imp_Gets, assumption, assumption)
apply (fastforce dest!: Gets_imp_knows [THEN analz.Inj] analz.Decrypt)
done

Other properties as for the original protocol

end

13 The Woo-Lam Protocol

theory WooLam imports Public begin

Simplified version from page 11 of Abadi and Needham (1996). Prudent Engi-
neering Practice for Cryptographic Protocols. IEEE Trans. S.E. 22(1), pages
6-15.

Note: this differs from the Woo-Lam protocol discussed by Lowe (1996): Some
New Attacks upon Security Protocols. Computer Security Foundations Work-
shop

inductive__set woolam :: "event list set"
where

Nil: "[] € woolam"

| Fake: "[evsf € woolam; X € synth (analz (spies evsf))]
—> Says Spy B X # evsf € woolam"

| WL1: "evsl € woolam =—> Says A B (Agent A) # evsl € woolam"

| WL2: "[evs2 € woolam; Says A’ B (Agent A) € set evs2]
—> Says B A (Nonce NB) # evs2 € woolam"

| WL3: "[evs3 € woolam;
Says A B (Agent A) € set evs3;
Says B’ A (Nonce NB) € set evs3]
—> Says A B (Crypt (shrK A) (Nonce NB)) # evs3 € woolam"

| WL4: "[evs4 € woolam;
Says A’ B X € set evs4;
Says A’’ B (Agent A) € set evs4]
—> Says B Server {Agent A, Agent B, X[} # evs4 € woolam"

| WL5: "[evs5 € woolam;
Says B’ Server {Agent A, Agent B, Crypt (shrK A) (Nonce NB)|
€ set evs5]
—> Says Server B (Crypt (shrK B) {Agent A, Nonce NB[|)

195

evs5 € woolam"

declare Says_imp_knows_Spy [THEN analz.Inj, dest]
declare parts.Body [dest]

declare analz_into_parts [dest]

declare Fake_parts_insert_in_Un [dest]

lemma "JNB. Jevs € woolam.
Says Server B (Crypt (shrK B) {Agent A, Nonce NBJ}) € set evs"
apply (intro exI bexI)
apply (rule_tac [2] woolam.Nil
[THEN woolam.WL1, THEN woolam.WL2, THEN woolam.WL3,
THEN woolam.WL4, THEN woolam.WL5], possibility)
done

lemma Spy_see_shrK [simp]:
"evs € woolam =—> (Key (shrK A) € parts (spies evs)) = (A € bad)"
by (erule woolam.induct, force, simp_all, blast+)

lemma Spy_analz_shrK [simp]:
"evs € woolam =—> (Key (shrK A) € analz (spies evs)) = (A € bad)"
by auto

lemma Spy_see_shrK_D [dest!]:
"[Key (shrK A) € parts (knows Spy evs); evs € woolam]|] =—> A € bad"
by (blast dest: Spy_see_shrK)

lemma NB_Crypt_imp_Alice_msg:
"[Crypt (shrK A) (Nonce NB) € parts (spies evs);
A ¢ bad; evs € woolam]
= 3B. Says A B (Crypt (shrK A) (Nonce NB)) € set evs"
by (erule rev_mp, erule woolam.induct, force, simp_all, blast+)

lemma Server_trusts_WL4 [dest]:
"[Says B’ Server {Agent A, Agent B, Crypt (shrK A) (Nonce NB)|}
€ set evs;
A ¢ bad; evs € woolam]

19614 THE OTWAY-BULL RECURSIVE AUTHENTICATION PROTOCOL

—> JB. Says A B (Crypt (shrK A) (Nonce NB)) € set evs"
by (blast intro!: NB_Crypt_imp_Alice_msg)

lemma Server_sent_WL5 [dest]:
"[Says Server B (Crypt (shrK B) {Agent A, NB}}) € set evs;
evs € woolam]
—> 3B’. Says B’ Server {Agent A, Agent B, Crypt (shrK A) NB}
€ set evs"
by (erule rev_mp, erule woolam.induct, force, simp_all, blast+)

lemma NB_Crypt_imp_Server_msg [rule_format]:
"[Crypt (shrK B) {Agent A, NB| € parts (spies evs);
B ¢ bad; evs € woolanm|
= Says Server B (Crypt (shrK B) {Agent A, NB]}) € set evs"
by (erule rev_mp, erule woolam.induct, force, simp_all, blast+)

lemma B_trusts_WL5:
"[Says S B (Crypt (shrK B) {Agent A, Nonce NB[}) € set evs;
A ¢ bad; B ¢ bad; evs € woolam|
=—> dB. Says A B (Crypt (shrK A) (Nonce NB)) € set evs"
by (blast dest!: NB_Crypt_imp_Server_msg)

lemma B_said_WL2:
"[Says B A (Nonce NB) € set evs; B # Spy; evs € woolam|
— dJA’. Says A’ B (Agent A) € set evs"

by (erule rev_mp, erule woolam.induct, force, simp_all, blast+)

lemma "[A ¢ bad; B # Spy; evs € woolam]
—> Crypt (shrK A) (Nonce NB) € parts (spies evs) A
Says B A (Nonce NB) € set evs
— Says A B (Crypt (shrK A) (Nonce NB)) € set evs"
apply (erule rev_mp, erule woolam.induct, force, simp_all, blast, auto)
oops

end

14 The Otway-Bull Recursive Authentication Pro-
tocol

theory Recur imports Public begin

End marker for message bundles

abbreviation

197

END :: "msg" where
"END == Number 0"

inductive__set

respond :: "event list = (msg*msgtkey)set"
for evs :: "event list"
where

One: "Key KAB ¢ used evs
—> (Hash[Key(shrK A)] {Agent A, Agent B, Nonce NA, END[,
{Crypt (shrK A) {Key KAB, Agent B, Nonce NA[, END[,
KAB) € respond evs"

| Cons: "[(PA, RA, KAB) € respond evs;
Key KBC ¢ used evs; Key KBC ¢ parts {RA};
PA = Hash[Key(shrK A)] {Agent A, Agent B, Nonce NA, P[]
= (Hash[Key(shrK B)] {Agent B, Agent C, Nonce NB, PA[,
{Crypt (shrK B) {Key KBC, Agent C, Nonce NB},
Crypt (shrK B) {Key KAB, Agent A, Nonce NB|},
RA},
KBC)
€ respond evs"

inductive__set

responses :: "event list => msg set"
for evs :: "event list"
where

Nil: "END € responses evs'
| Cons: "[RA € responses evs; Key KAB ¢ used evs]

— {Crypt (shrK B) {Key KAB, Agent A, Nonce NB[},
RA}} € responses evs"

inductive__set recur :: "event list set"
where
Nil: "[] € recur"

| Fake: "[evsf € recur; X € synth (analz (knows Spy evsf))]
— Says Spy B X # evsf € recur"

| RA1: "[evsl € recur; Nonce NA ¢ used evsi]
— Says A B (Hash[Key(shrK A)] {Agent A, Agent B, Nonce NA, END|})
evsl € recur"

| RA2: "[evs2 € recur; Nonce NB ¢ used evs2;

19814 THE OTWAY-BULL RECURSIVE AUTHENTICATION PROTOCOL

Says A’ B PA € set evsZ2]
—> Says B C (Hash[Key(shrK B)] {Agent B, Agent C, Nonce NB, PA})
evs2 € recur"”

| RA3: ”[[evs3 € recur; Says B’ Server PB € set evs3;
(PB,RB,K) € respond evs3d]
— Says Server B RB # evs3 € recur"

| RA4: "[evs4 € recur;
Says B C {XH, Agent B, Agent C, Nonce NB,
XA, Agent A, Agent B, Nonce NA, P|} € set evs4;
Says C’ B {Crypt (shrK B) {Key KBC, Agent C, Nonce NB|},
Crypt (shrK B) {Key KAB, Agent A, Nonce NB|,
RA} € set evs4]
— Says B A RA # evs4 € recur"

declare Says_imp_knows_Spy [THEN analz.Inj, dest]
declare parts.Body [dest]

declare analz_into_parts [dest]

declare Fake_parts_insert_in_Un [dest]

Simplest case: Alice goes directly to the server

lemma "Key K ¢ used []
—> dNA. Jevs € recur.
Says Server A {Crypt (shrK A) {Key K, Agent Server, Nonce NA},
END[} € set evs"
apply (intro exI bexI)
apply (rule_tac [2] recur.Nil [THEN recur.RA1,
THEN recur.RA3 [OF _ _ respond.Onel])
apply (possibility, simp add: used_Cons)
done

Case two: Alice, Bob and the server

lemma "[Key K ¢ used []; Key K’ ¢ used []; K # K’;
Nonce NA ¢ used []; Nonce NB ¢ used []; NA < NB]
—> dNA. Jevs € recur.
Says B A {Crypt (shrK A) {Key K, Agent B, Nonce NAJ},
END[} € set evs"
apply (intro exI bexI)
apply (rule_tac [2]
recur.Nil
[THEN recur.RA1 [of _ NAJ,
THEN recur.RA2 [of _ NBJ,
THEN recur.RA3 [OF _ _ respond.One
[THEN respond.Cons [of _ _ K _ K’]1],
THEN recur.RA4], possibility)
apply (auto simp add: used_Cons)
done

199

lemma "[Key K ¢ used []; Key K’ ¢ used [];
Key K’’ ¢ used [1; K # K’; K> # K’?; K # K’’;
Nonce NA ¢ used []; Nonce NB ¢ used []; Nonce NC ¢ used [];
NA < NB; NB < NC]
—> JdK. dNA. devs € recur.
Says B A {Crypt (shrK A) {Key K, Agent B, Nonce NA[},
END} € set evs"
apply (intro exI bexI)
apply (rule_tac [2]
recur.Nil [THEN recur.RA1,
THEN recur.RA2, THEN recur.RA2,
THEN recur.RA3
[0OF _ _ respond.One
[THEN respond.Cons, THEN respond.Consl],
THEN recur.RA4, THEN recur.RA4])
apply basic_possibility
apply (tactic "DEPTH_SOLVE (swap_res_tac context [refl, conjI, disjCI] 1)")
done

lemma respond_imp_not_used: "(PA,RB,KAB) € respond evs — Key KAB ¢ used
evs"
by (erule respond.induct, simp_all)

lemma Key_in_parts_respond [rule_format]:
"[Key K € parts {RB}; (PB,RB,K’) € respond evs] —> Key K ¢ used evs"
apply (erule rev_mp, erule respond.induct)
apply (auto dest: Key_not_used respond_imp_not_used)
done

Simple inductive reasoning about responses

lemma respond_imp_responses:

"(PA,RB,KAB) € respond evs —> RB € responses evs"
apply (erule respond.induct)
apply (blast intro!: respond_imp_not_used responses.intros)+
done

lemmas RA2_analz_spies = Says_imp_spies [THEN analz.Inj]

lemma RA4_analz_spies:
"Says C’ B {Crypt K X, X’, RA} € set evs =—> RA € analz (spies evs)"
by blast

lemmas RA2_parts_spies = RA2_analz_spies [THEN analz_into_parts]
lemmas RA4_parts_spies = RA4_analz_spies [THEN analz_into_parts]

20014 THE OTWAY-BULL RECURSIVE AUTHENTICATION PROTOCOL

lemma Spy_see_shrK [simp]:
"evs € recur —> (Key (shrK A) € parts (spies evs)) = (A € bad)"
apply (erule recur.induct, auto)

RA3. It’s ugly to call auto twice, but it seems necessary.

apply (auto dest: Key_in_parts_respond simp add: parts_insert_spies)
done

lemma Spy_analz_shrK [simp]:
"evs € recur —> (Key (shrK A) € analz (spies evs)) = (A € bad)"
by auto

lemma Spy_see_shrK_D [dest!]:
"[Key (shrK A) € parts (knows Spy evs); evs € recur]| =—> A € bad"
by (blast dest: Spy_see_shrk)

lemma resp_analz_image_freshK_lemma:
"[RB € responses evs;
VK KK. KK C - (range shrK) —
(Key K € analz (Key‘KK U H)) =
(K € KK | Key K € analz H)]
— VK KK. KK C - (range shrK) —
(Key K € analz (insert RB (Key‘KK U H))) =
(K € KK | Key K € analz (insert RB H))"
apply (erule responses.induct)
apply (simp_all del: image_insert
add: analz_image_freshK_simps, auto)
done

Version for the protocol. Proof is easy, thanks to the lemma.

lemma raw_analz_image_freshK:
"evs € recur —
VK KK. KK C - (range shrK) —
(Key K € analz (Key‘KK U (spies evs))) =
(K € KK | Key K € analz (spies evs))"
apply (erule recur.induct)
apply (drule_tac [4] RA2_analz_spies,
drule_tac [5] respond_imp_responses,
drule_tac [6] RA4_analz_spies, analz_freshK, spy_analz)

RA3

apply (simp_all add: resp_analz_image_freshK_lemma)
done

201

lemmas resp_analz_image_freshK =
resp_analz_image_freshK_lemma [OF _ raw_analz_image_freshK]

lemma analz_insert_freshK:
"levs € recur; KAB ¢ range shrK|
—> (Key K € analz (insert (Key KAB) (spies evs))) =
(K = KAB | Key K € analz (spies evs))"
by (simp del: image_insert
add: analz_image_freshK_simps raw_analz_image_freshK)

Everything that’s hashed is already in past traffic.

lemma Hash_imp_body:
"[Hash {Key(shrK A), X} € parts (spies evs);
evs € recur; A ¢ bad] = X € parts (spies evs)"

apply (erule rev_mp)
apply (erule recur.induct,

drule_tac [6] RA4_parts_spies,

drule_tac [5] respond_imp_responses,

drule_tac [4] RA2_parts_spies)

RA3 requires a further induction

apply (erule_tac [5] responses.induct, simp_all)

Fake

apply (blast intro: parts_insertI)
done

lemma unique_NA:

"[Hash {Key(shrK A), Agent A, B, NA, P} € parts (spies evs);
Hash {Key(shrK A), Agent A, B’,NA, P’} € parts (spies evs);
evs € recur; A ¢ bad]

— B=B’ A P=pP’"
apply (erule rev_mp, erule rev_mp)
apply (erule recur.induct,
drule_tac [5] respond_imp_responses)
apply (force, simp_all)

Fake

apply blast
apply (erule_tac [3] responses.induct)

RA1,2: creation of new Nonce

apply simp_all
apply (blast dest!: Hash_imp_body)+
done

20214 THE OTWAY-BULL RECURSIVE AUTHENTICATION PROTOCOL

lemma shrK_in_analz_respond [simp]:
"[RB € responses evs; evs € recur]
—> (Key (shrK B) € analz (insert RB (spies evs))) = (B&bad)"
apply (erule responses.induct)
apply (simp_all del: image_insert
add: analz_image_freshK_simps resp_analz_image_freshK, auto)

done

lemma resp_analz_insert_lemma:
"[Key K € analz (insert RB H);
VK KK. KK C - (range shrK) —
(Key K € analz (Key‘KK U H)) =
(K € KK | Key K € analz H);
RB € responses evs]
— (Key K € parts{RB} | Key K € analz H)"
apply (erule rev_mp, erule responses.induct)
apply (simp_all del: image_insert parts_image
add: analz_image_freshK_simps resp_analz_image_freshK_lemma)

Simplification using two distinct treatments of "image"

apply (simp add: parts_insert2, blast)
done

lemmas resp_analz_insert =
resp_analz_insert_lemma [OF _ raw_analz_image_freshK]

The last key returned by respond indeed appears in a certificate

lemma respond_certificate:
"(Hash[Key (shrK A)] {Agent A, B, NA, P}, RA, K) € respond evs
= Crypt (shrK A) {Key K, B, NA|} € parts {RA}"
apply (ind_cases "(Hash[Key (shrK A)] {Agent A, B, NA, P}, RA, K) € respond
evs")
apply simp_all
done

lemma unique_lemma [rule_format]:
"(PB,RB,KXY) € respond evs —>
VA B N. Crypt (shrK A) {Key K, Agent B, N} € parts {RB} —
(VA’ B’ N’. Crypt (shrK A’) {Key K, Agent B’, N’} € parts {RB} —
(A’=A N B’=B) | (A’=B A B’=A))"
apply (erule respond.induct)
apply (simp_all add: all_conj_distrib)
apply (blast dest: respond_certificate)
done

lemma unique_session_keys:

"[Crypt (shrK A) {Key K, Agent B, N|} € parts {RB};
Crypt (shrK A’) {Key K, Agent B’, N’ € parts {RB};
(PB,RB,KXY) € respond evs]

= (A’=A AN B’=B) | (A’=B N B’=A)"

203

by (rule unique_lemma, auto)

lemma respond_Spy_not_see_session_key [rule_format]:
"[(PB,RB,KAB) € respond evs; evs € recur]
= VA A’ N. A ¢ bad N\ A’ ¢ bad —
Crypt (shrK A) {Key K, Agent A’, N} € parts{RB} —
Key K ¢ analz (insert RB (spies evs))"
apply (erule respond.induct)
apply (frule_tac [2] respond_imp_responses)
apply (frule_tac [2] respond_imp_not_used)
apply (simp_all del: image_insert parts_image
add: analz_image_freshK_simps split_ifs shrK_in_analz_respond
resp_analz_image_freshK parts_insert2)

Base case of respond

apply blast

Inductive step of respond

apply (intro allIl conjI impI, simp_all)

by unicity, either B = 4a or B = A’, a contradiction if B € bad

apply (blast dest: unique_session_keys respond_certificate)
apply (blast dest!: respond_certificate)

apply (blast dest!: resp_analz_insert)

done

lemma Spy_not_see_session_key:
"[Crypt (shrK A) {Key K, Agent A’, N|} € parts (spies evs);
A ¢ bad; A’ ¢ bad; evs € recur]
—> Key K ¢ analz (spies evs)"
apply (erule rev_mp)
apply (erule recur.induct)
apply (drule_tac [4] RA2_analz_spies,
frule_tac [5] respond_imp_responses,
drule_tac [6] RA4_analz_spies,
simp_all add: split_ifs analz_insert_eq analz_insert_freshK)

Fake

apply spy_analz
RA2

apply blast
RA3

apply (simp add: parts_insert_spies)
apply (metis Key_in_parts_respond parts.Body parts.Fst resp_analz_insert
respond_Spy_not_see_session_key usedI)

RA4

20414 THE OTWAY-BULL RECURSIVE AUTHENTICATION PROTOCOL

apply blast
done

The response never contains Hashes

lemma Hash_in_parts_respond:
"[Hash {Key (shrK B), M|} € parts (insert RB H);
(PB,RB,K) € respond evs]
= Hash {Key (shrK B), M| € parts H"
apply (erule rev_mp)
apply (erule respond_imp_responses [THEN responses.induct], auto)
done

Only RA1 or RA2 can have caused such a part of a message to appear. This
result is of no use to B, who cannot verify the Hash. Moreover, it can say
nothing about how recent A’s message is. It might later be used to prove B’s
presence to A at the run’s conclusion.

lemma Hash_auth_sender [rule_format]:
"[Hash {Key(shrK A), Agent A, Agent B, NA, P} € parts(spies evs);
A ¢ bad; evs € recur]
—> Says A B (Hash[Key(shrK A)] {Agent A, Agent B, NA, P}}) € set evs"
unfolding HPair_def
apply (erule rev_mp)
apply (erule recur.induct,
drule_tac [6] RA4_parts_spies,
drule_tac [4] RA2_parts_spies,
simp_all)

Fake, RA3

apply (blast dest: Hash_in_parts_respond)+
done

Certificates can only originate with the Server.

lemma Cert_imp_Server_msg:
"[Crypt (shrK A) Y € parts (spies evs);
A ¢ bad; evs € recur]
= 3C RC. Says Server C RC € set evs A
Crypt (shrK A) Y € parts {RC}"
apply (erule rev_mp, erule recur.induct, simp_all)

Fake

apply blast

RA1

apply blast

RAZ2: it cannot be a new Nonce, contradiction.
apply blast

RA3. Pity that the proof is so brittle: this step requires the rewriting, which however
would break all other steps.

apply (simp add: parts_insert_spies, blast)

205

RA4

apply blast
done

end

15 The Yahalom Protocol

theory Yahalom imports Public begin

From page 257 of Burrows, Abadi and Needham (1989). A Logic of Authenti-
cation. Proc. Royal Soc. 426

This theory has the prototypical example of a secrecy relation, KeyCryptNonce.

inductive__set yahalom :: "event list set"
where

Nil: "[] € yahalom"

| Fake: "[evsf € yahalom; X € synth (analz (knows Spy evsf))]
—> Says Spy B X # evsf € yahalom"

| Reception: "[evsr € yahalom; Says A B X € set evsr]
— Gets B X # evsr € yahalom"

| YM1: "[evsl € yahalom; Nonce NA ¢ used evsl]
—> Says A B {Agent A, Nonce NA[|} # evsl € yahalom"

| YM2: "[evs2 € yahalom; Nonce NB ¢ used evs2;
Gets B {Agent A, Nonce NA|} € set evsZ2]
—> Says B Server
{Agent B, Crypt (shrK B) {Agent A, Nonce NA, Nonce NBJ}|
evs2 € yahalom"

| YM3: "[evs3 € yahalom; Key KAB ¢ used evs3; KAB € symKeys;
Gets Server
{Agent B, Crypt (shrK B) {Agent A, Nonce NA, Nonce NBJ}|
€ set evs3]
—> Says Server A
{Crypt (shrK A) {Agent B, Key KAB, Nonce NA, Nonce NB},
Crypt (shrK B) {Agent A, Key KAB[}|
evs3 € yahalom"

| YM4:

— Alice receives the Server’s (7) message, checks her Nonce, and uses the
new session key to send Bob his Nonce. The premise A # Server is needed for
Says_Server_not_range. Alice can check that K is symmetric by its length.

"[evs4 € yahalom; A # Server; K € symKeys;

206 15 THE YAHALOM PROTOCOL

Gets A {Crypt(shrK A) {Agent B, Key K, Nonce NA, Nonce NB[}, X|
€ set evs4;
Says A B {Agent A, Nonce NA|} € set evs4]
—> Says A B {X, Crypt K (Nonce NB)|} # evs4 € yahalom"

| Oops: "[evso € yahalom;
Says Server A {Crypt (shrK A)
{Agent B, Key K, Nonce NA, Nonce NB},
X} € set evso]
—> Notes Spy {Nonce NA, Nonce NB, Key K|} # evso € yahalom"

definition KeyWithNonce :: "[key, nat, event list] = bool" where
"KeyWithNonce K NB evs ==
34 B na X.
Says Server A {Crypt (shrK A) {Agent B, Key K, na, Nonce NB[}, X[}
€ set evs"

declare Says_imp_analz_Spy [dest]
declare parts.Body [dest]

declare Fake_parts_insert_in_Un [dest]
declare analz_into_parts [dest]

A "possibility property": there are traces that reach the end

lemma "[A # Server; K € symKeys; Key K ¢ used []]
—> dX NB. Jevs € yahalom.
Says A B {X, Crypt K (Nonce NB)|} € set evs"

apply (intro exI bexI)

apply (rule_tac [2] yahalom.Nil
[THEN yahalom.YM1, THEN yahalom.Reception,
THEN yahalom.YM2, THEN yahalom.Reception,
THEN yahalom.YM3, THEN yahalom.Reception,
THEN yahalom.YM4])

apply (possibility, simp add: used_Cons)

done

15.1 Regularity Lemmas for Yahalom

lemma Gets_imp_Says:
"[Gets B X € set evs; evs € yahalom] = JA. Says A B X € set evs"
by (erule rev_mp, erule yahalom.induct, auto)

Must be proved separately for each protocol

lemma Gets_imp_knows_Spy:
"[Gets B X € set evs; evs € yahalom|] =—> X € knows Spy evs"
by (blast dest!: Gets_imp_Says Says_imp_knows_Spy)

lemmas Gets_imp_analz_Spy = Gets_imp_knows_Spy [THEN analz.Inj]
declare Gets_imp_analz_Spy [dest]

Lets us treat YM4 using a similar argument as for the Fake case.

lemma YM4_analz_knows_Spy:

15.1 Regularity Lemmas for Yahalom 207

"[Gets A {Crypt (shrK A) Y, X[} € set evs; evs € yahalom|
—> X € analz (knows Spy evs)"
by blast

lemmas YM4_parts_knows_Spy =
YM4_analz_knows_Spy [THEN analz_into_parts]

For Oops

lemma YM4_Key_parts_knows_Spy:
"Says Server A {Crypt (shrK A) {B,K,NA,NB[}, X[} € set evs
— K € parts (knows Spy evs)"
by (metis parts.Body parts.Fst parts.Snd Says_imp_knows_Spy parts.Inj)

Theorems of the form X ¢ parts (knows Spy evs) imply that NOBODY sends
messages containing X!

Spy never sees a good agent’s shared key!

lemma Spy_see_shrK [simp]:

"evs € yahalom — (Key (shrK A) € parts (knows Spy evs)) = (A € bad)"
by (erule yahalom.induct, force,

drule_tac [6] YM4_parts_knows_Spy, simp_all, blast+)
lemma Spy_analz_shrK [simp]:

"evs € yahalom = (Key (shrK A) € analz (knows Spy evs)) = (A € bad)"

by auto

lemma Spy_see_shrK_D [dest!]:
"[Key (shrK A) € parts (knows Spy evs); evs € yahalom] —> A € bad"
by (blast dest: Spy_see_shrk)

Nobody can have used non-existent keys! Needed to apply analz_insert_Key

lemma new_keys_not_used [simp]:
"[Key K ¢ used evs; K € symKeys; evs € yahalom|
=—> K ¢ keysFor (parts (spies evs))"
apply (erule rev_mp)
apply (erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy, simp_all)

Fake

apply (force dest!: keysFor_parts_insert, auto)
done

Earlier, all protocol proofs declared this theorem. But only a few proofs need
it, e.g. Yahalom and Kerberos IV.

lemma new_keys_not_analzd:
"[K € symKeys; evs € yahalom; Key K ¢ used evs]
—> K ¢ keysFor (analz (knows Spy evs))"
by (blast dest: new_keys_not_used intro: keysFor_mono [THEN subsetD])

Describes the form of K when the Server sends this message. Useful for Oops
as well as main secrecy property.

lemma Says_Server_not_range [simp]:

208 15 THE YAHALOM PROTOCOL

"[Says Server A {Crypt (shrK A) {Agent B, Key K, na, nbl}, X|}
€ set evs; evs € yahalom|
= K ¢ range shrK"
by (erule rev_mp, erule yahalom.induct, simp_all)

15.2 Secrecy Theorems

Session keys are not used to encrypt other session keys

lemma analz_image_freshK [rule_format]:
"evs € yahalom —
VK KK. KK C - (range shrK) —

(Key K € analz (Key‘KK U (knows Spy evs))) =

(K € KK | Key K € analz (knows Spy evs))"
apply (erule yahalom.induct,

drule_tac [7] YM4_analz_knows_Spy, analz_freshK, spy_analz, blast)

apply (simp only: Says_Server_not_range analz_image_freshK_simps)
apply safe
done

lemma analz_insert_freshK:
"levs € yahalom; KAB ¢ range shrkK] —
(Key K € analz (insert (Key KAB) (knows Spy evs))) =
(K = KAB | Key K € analz (knows Spy evs))"

by (simp only: analz_image_freshK analz_image_freshK_simps)

The Key K uniquely identifies the Server’s message.

lemma unique_session_keys:
"[Says Server A
{Crypt (shrK A) {Agent B, Key K, na, nbl}}, X[} € set evs;
Says Server A’
{Crypt (shrK A’) {Agent B’, Key K, na’, nb’}, X’[€ set evs;
evs € yahalom]
— A=A’ N\ B=B’ A na=na’ A nb=nb’"
apply (erule rev_mp, erule rev_mp)
apply (erule yahalom.induct, simp_all)

YM3, by freshness, and YM4

apply blast+
done

Crucial secrecy property: Spy does not see the keys sent in msg YM3

lemma secrecy_lemma:
"[A ¢ bad; B ¢ bad; evs € yahalom]
—> Says Server A
{Crypt (shrK A) {Agent B, Key K, na, nbl,
Crypt (shrK B) {Agent A, Key K[|}
€ set evs —
Notes Spy {na, nb, Key K} ¢ set evs —»
Key K ¢ analz (knows Spy evs)"
apply (erule yahalom.induct, force,
drule_tac [6] YM4_analz_knows_Spy)
apply (simp_all add: pushes analz_insert_eq analz_insert_freshK)
subgoal — Fake by spy_analz

15.2 Secrecy Theorems 209

subgoal — YM3 by blast
subgoal — Oops by (blast dest: unique_session_keys)
done

Final version

lemma Spy_not_see_encrypted_key:
"[Says Server A
{Crypt (shrK A) {Agent B, Key K, na, nbl|},
Crypt (shrK B) {Agent A, Key K[}|
€ set evs;
Notes Spy {na, nb, Key K} ¢ set evs;
A ¢ bad; B ¢ bad; evs € yahalonm]
—> Key K ¢ analz (knows Spy evs)"
by (blast dest: secrecy_lemma)

15.2.1 Security Guarantee for A upon receiving YM3

If the encrypted message appears then it originated with the Server

lemma A_trusts_YM3:
"[Crypt (shrK A) {Agent B, Key K, na, nbl} € parts (knows Spy evs);
A ¢ bad; evs € yahalom]
—> Says Server A
{Crypt (shrK A) {Agent B, Key K, na, nbl,
Crypt (shrK B) {Agent A, Key K[|}
€ set evs"
apply (erule rev_mp)
apply (erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy, simp_all)

Fake, YM3

apply blast+
done

The obvious combination of A_trusts_YM3 with Spy_not_see_encrypted_key

lemma A_gets_good_key:
"[Crypt (shrK A) {Agent B, Key K, na, nbl} € parts (knows Spy evs);
Notes Spy {na, nb, Key K|} ¢ set evs;
A ¢ bad; B ¢ bad; evs € yahalom]
—> Key K ¢ analz (knows Spy evs)"
by (metis A_trusts_YM3 secrecy_lemma)

15.2.2 Security Guarantees for B upon receiving YM4

B knows, by the first part of A’s message, that the Server distributed the key
for A and B. But this part says nothing about nonces.

lemma B_trusts_YM4_shrK:
"[Crypt (shrK B) {Agent A, Key K} € parts (knows Spy evs);
B ¢ bad; evs € yahalom]
—> dNA NB. Says Server A
{Crypt (shrK A) {Agent B, Key K,
Nonce NA, Nonce NBJ,
Crypt (shrK B) {Agent A, Key K[}|}

210 15 THE YAHALOM PROTOCOL

€ set evs"
apply (erule rev_mp)
apply (erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy, simp_all)

Fake, YM3

apply blast+
done

B knows, by the second part of A’s message, that the Server distributed the key
quoting nonce NB. This part says nothing about agent names. Secrecy of NB
is crucial. Note that Nonce NB ¢ analz (knows Spy evs) must be the FIRST
antecedent of the induction formula.

lemma B_trusts_YM4 _newK [rule_format]:
"[Crypt K (Nonce NB) € parts (knows Spy evs);
Nonce NB ¢ analz (knows Spy evs); evs € yahalom]
—> JA B NA. Says Server A
{Crypt (shrK A) {Agent B, Key K, Nonce NA, Nonce NB},
Crypt (shrK B) {Agent A, Key K[}
€ set evs"
apply (erule rev_mp, erule rev_mp)
apply (erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy)
apply (analz_mono_contra, simp_all)
subgoal — Fake by blast
subgoal — YM3 by blast

YM4. A is uncompromised because NB is secure A’s certificate guarantees the exis-
tence of the Server message

apply (blast dest!: Gets_imp_Says Crypt_Spy_analz_bad
dest: Says_imp_spies
parts.Inj [THEN parts.Fst, THEN A_trusts_YM3])
done

15.2.3 Towards proving secrecy of Nonce NB

Lemmas about the predicate KeyWithNonce

lemma KeyWithNonceI:
"Says Server A
{Crypt (shrK A) {Agent B, Key K, na, Nonce NB}, X|
€ set evs — KeyWithNonce K NB evs"
unfolding KeyWithNonce_def by blast

lemma KeyWithNonce_Says [simp]:
"KeyWithNonce K NB (Says S A X # evs) =
(Server = 5 A
(3B n X’. X = {Crypt (shrK A) {Agent B, Key K, n, Nonce NB}, X’})
| KeyWithNonce K NB evs)"
by (simp add: KeyWithNonce_def, blast)

lemma KeyWithNonce_Notes [simp]:
"KeyWithNonce K NB (Notes A X # evs) = KeyWithNonce K NB evs"

15.2 Secrecy Theorems 211

by (simp add: KeyWithNonce_def)

lemma KeyWithNonce_Gets [simp]:
"KeyWithNonce K NB (Gets A X # evs) = KeyWithNonce K NB evs"
by (simp add: KeyWithNonce_def)

A fresh key cannot be associated with any nonce (with respect to a given trace).

lemma fresh_not_KeyWithNonce:
"Key K ¢ used evs = — KeyWithNonce K NB evs"
unfolding KeyWithNonce_def by blast

The Server message associates K with NB’ and therefore not with any other
nonce NB.

lemma Says_Server_KeyWithNonce:
"[Says Server A {Crypt (shrK A) {Agent B, Key K, na, Nonce NB’[}, X|
€ set evs;
NB # NB’; evs € yahalom]
—> — KeyWithNonce K NB evs"
unfolding KeyWithNonce_def by (blast dest: unique_session_keys)

The only nonces that can be found with the help of session keys are those dis-
tributed as nonce NB by the Server. The form of the theorem recalls analz_image_freshK,
but it is much more complicated.

As with analz_image_freshK, we take some pains to express the property as a
logical equivalence so that the simplifier can apply it.

lemma Nonce_secrecy_lemma:
"P— (X € analz (G U H)) — (X € analz H) —
P — (X € analz (G U H)) = (X € analz H)"

by (blast intro: analz_mono [THEN subsetD])

lemma Nonce_secrecy:
"evs € yahalom —
(VKK. KK C - (range shrK) —
(VK € KK. K € symKeys — — KeyWithNonce K NB evs) —
(Nonce NB € analz (Key ‘KK U (knows Spy evs))) =
(Nonce NB € analz (knows Spy evs)))"
apply (erule yahalom.induct,
frule_tac [7] YM4_analz_knows_Spy)
apply (safe del: alll impI intro!: Nonce_secrecy_lemma [THEN impI, THEN allI])
apply (simp_all del: image_insert image_Un
add: analz_image_freshK_simps split_ifs
all_conj_distrib ball_conj_distrib
analz_image_freshK fresh_not_KeyWithNonce
imp_disj_notl
Says_Server_KeyWithNonce)

For Oops, simplification proves NBa # NB. By Says_Server_KeyWithNonce, we get —
KeyWithNonce K NB evs; then simplification can apply the induction hypothesis with
KK = {K}.

subgoal — Fake by spy_analz
subgoal — YM2 by blast
subgoal — YM3 by blast

212 15 THE YAHALOM PROTOCOL

subgoal — YM4: If A € bad then NBa is known, therefore NBa # NB.
by (metis A_trusts_YM3 Gets_imp_analz_Spy Gets_imp_knows_Spy KeyWithNonce_def
Spy_analz_shrK analz.Fst analz.Snd analz_shrK_Decrypt parts.Fst parts.Inj)
done

Version required below: if NB can be decrypted using a session key then it was
distributed with that key. The more general form above is required for the
induction to carry through.

lemma single_Nonce_secrecy:
"[Says Server A
{Crypt (shrK A) {Agent B, Key KAB, na, Nonce NB’[}, X|}
€ set evs;
NB # NB’; KAB ¢ range shrK; evs € yahalom]
— (Nonce NB € analz (insert (Key KAB) (knows Spy evs))) =
(Nonce NB € analz (knows Spy evs))"
by (simp_all del: image_insert image_Un imp_disjL
add: analz_image_freshK_simps split_ifs
Nonce_secrecy Says_Server_KeyWithNonce)

15.2.4 The Nonce NB uniquely identifies B’s message.

lemma unique_NB:
"[Crypt (shrK B) {Agent A, Nonce NA, nb|} € parts (knows Spy evs);
Crypt (shrK B’) {Agent A’, Nonce NA’, nbl} € parts (knows Spy evs);
evs € yahalom; B ¢ bad; B’ ¢ bad]
—> NA’ = NA N A’ =A NB’ =B"
apply (erule rev_mp, erule rev_mp)
apply (erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy, simp_all)

Fake, and YM2 by freshness

apply blast+
done

Variant useful for proving secrecy of NB. Because nb is assumed to be secret,
we no longer must assume B, B’ not bad.

lemma Says_unique_NB:
"[Says ¢ S {X, Crypt (shrK B) {Agent A, Nonce NA, nbl}
€ set evs;
Gets S’ {X’, Crypt (shrK B’) {Agent A’, Nonce NA’, nbl}
€ set evs;
nb ¢ analz (knows Spy evs); evs € yahalom|
=—> NA’ = NA N A =A N B’ =B"
by (blast dest!: Gets_imp_Says Crypt_Spy_analz_bad
dest: Says_imp_spies unique_NB parts.Inj analz.Inj)

15.2.5 A nonce value is never used both as NA and as NB

lemma no_nonce_YM1_YM2:
"[Crypt (shrK B’) {Agent A’, Nonce NB, nb’|} € parts(knows Spy evs);
Nonce NB ¢ analz (knows Spy evs); evs € yahalom]
—> Crypt (shrK B) {Agent A, na, Nonce NB|} ¢ parts(knows Spy evs)"
apply (erule rev_mp, erule rev_mp)
apply (erule yahalom.induct, force,

15.2 Secrecy Theorems 213

frule_tac [6] YM4_parts_knows_Spy)
apply (analz_mono_contra, simp_all)

Fake, YM2

apply blast+
done

The Server sends YM3 only in response to YM2.

lemma Says_Server_imp_YM2:
"[Says Server A {Crypt (shrK A) {Agent B, k, na, nb|, X|} € set evs;
evs € yahalom]
= Gets Server {Agent B, Crypt (shrK B) {Agent A, na, nbl}
€ set evs"”
by (erule rev_mp, erule yahalom.induct, auto)

A vital theorem for B, that nonce NB remains secure from the Spy.

theorem Spy_not_see_NB :
"[Says B Server
{Agent B, Crypt (shrK B) {Agent A, Nonce NA, Nonce NB}}
€ set evs;
(Vk. Notes Spy {Nonce NA, Nonce NB, k|} ¢ set evs);
A ¢ bad; B ¢ bad; evs € yahalom]
= Nonce NB ¢ analz (knows Spy evs)"
apply (erule rev_mp, erule rev_mp)
apply (erule yahalom.induct, force,
frule_tac [6] YM4_analz_knows_Spy)
apply (simp_all add: split_ifs pushes new_keys_not_analzd analz_insert_eq
analz_insert_freshK)
subgoal — Fake by spy_analz
subgoal — YMI1: NB=NA is impossible anyway, but NA is secret because it is
fresh! by blast
subgoal — YM2 by blast
subgoal — YM3: because no NB can also be an NA
by (blast dest!: no_nonce_YM1_YM2 dest: Gets_imp_Says Says_unique_NB)
subgoal — YM4: key K is visible to Spy, contradicting session key secrecy theorem
— Case analysis on whether Aa is bad; use Says_unique_NB to identify message
components: Aa = A, Ba = B
apply clarify
apply (blast dest!: Says_unique_NB analz_shrK_Decrypt
parts.Inj [THEN parts.Fst, THEN A_trusts_YM3]
dest: Gets_imp_Says Says_imp_spies Says_Server_imp_YM2
Spy_not_see_encrypted_key)
done
subgoal — Oops case: if the nonce is betrayed now, show that the Oops event is
covered by the quantified Oops assumption.
apply clarsimp
apply (metis Says_Server_imp_YM2 Gets_imp_Says Says_Server_not_range Says_unique_NB
no_nonce_YM1_YM2 parts.Snd single_Nonce_secrecy spies_partsEs(1))
done
done

B’s session key guarantee from YM4. The two certificates contribute to a single
conclusion about the Server’s message. Note that the "Notes Spy" assumption

214 15 THE YAHALOM PROTOCOL

must quantify over Vv POSSIBLE keys instead of our particular K. If this run
is broken and the spy substitutes a certificate containing an old key, B has no
means of telling.

lemma B_trusts_YM4:
"[Gets B {Crypt (shrK B) {Agent A, Key K[},
Crypt K (Nonce NB)|} € set evs;
Says B Server
{Agent B, Crypt (shrK B) {Agent A, Nonce NA, Nonce NB}}
€ set evs;
Vk. Notes Spy {Nonce NA, Nonce NB, k|} ¢ set evs;
A ¢ bad; B ¢ bad; evs € yahalonm|
— Says Server A
{Crypt (shrK A) {Agent B, Key K,
Nonce NA, Nonce NB[,
Crypt (shrK B) {Agent A, Key K[}|
€ set evs"
by (blast dest: Spy_not_see_NB Says_unique_NB
Says_Server_imp_YM2 B_trusts_YM4_newK)

The obvious combination of B_trusts_YM4 with Spy_not_see_encrypted_key

lemma B_gets_good_key:
"[Gets B {Crypt (shrK B) {Agent A, Key K|},
Crypt K (Nonce NB)|} € set evs;
Says B Server
{Agent B, Crypt (shrK B) {Agent A, Nonce NA, Nonce NB[}
€ set evs;
Vk. Notes Spy {Nonce NA, Nonce NB, k| ¢ set evs;
A ¢ bad; B ¢ bad; evs € yahalonm|
—> Key K ¢ analz (knows Spy evs)"
by (metis B_trusts_YM4 Spy_not_see_encrypted_key)

15.3 Authenticating B to A

The encryption in message YM2 tells us it cannot be faked.

lemma B_Said_YM2 [rule_format]:
"[Crypt (shrK B) {Agent A, Nonce NA, nb|} € parts (knows Spy evs);
evs € yahalom]
— B ¢ bad —»
Says B Server {Agent B, Crypt (shrK B) {Agent A, Nonce NA, nbl}
€ set evs'"
apply (erule rev_mp, erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy, simp_all)

Fake

apply blast
done

If the server sends YM3 then B sent YM2

lemma YM3_auth_B_to_A_lemma:
"[Says Server A {Crypt (shrK A) {Agent B, Key K, Nonce NA, nb|}, X|
€ set evs; evs € yahalom|
— B ¢ bad —

15.4 Authenticating A to B using the certificate Crypt K (Nonce NB) 215

Says B Server {Agent B, Crypt (shrK B) {Agent A, Nonce NA, nbl}
€ set evs'"
apply (erule rev_mp, erule yahalom.induct, simp_all)

YM3, YM4

apply (blast dest!: B_Said_YM2)+
done

If A receives YM3 then B has used nonce NA (and therefore is alive)

theorem YM3_auth_B_to_A:
"[Gets A {Crypt (shrK A) {Agent B, Key K, Nonce NA, nbl}, X|
€ set evs;

A ¢ bad; B ¢ bad; evs € yahalom]

= Says B Server {Agent B, Crypt (shrK B) {Agent A, Nonce NA, nbl}

€ set evs'"
by (metis A_trusts_YM3 Gets_imp_analz_Spy YM3_auth_B_to_A_lemma analz.Fst

not_parts_not_analz)

15.4 Authenticating A to B using the certificate crypt «
(Nonce NB)

Assuming the session key is secure, if both certificates are present then A has
said NB. We can’t be sure about the rest of A’s message, but only NB matters
for freshness.

theorem A_Said_YM3_lemma [rule_format]:
"evs € yahalom
= Key K ¢ analz (knows Spy evs) —
Crypt K (Nonce NB) € parts (knows Spy evs) —
Crypt (shrK B) {Agent A, Key K|} € parts (knows Spy evs) —
B ¢ bad —
(3X. Says A B {X, Crypt K (Nonce NB)|} € set evs)"
apply (erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy)
apply (analz_mono_contra, simp_all)
subgoal — Fake by blast
subgoal — YM3 because the message Crypt K (Nonce NB) could not exist
by (force dest!: Crypt_imp_keysFor)
subgoal — YM4: was Crypt K (Nonce NB) the very last message? If not, use the
induction hypothesis, otherwise by unicity of session keys
by (blast dest!: Gets_imp_Says A_trusts_YM3 B_trusts_YM4_shrK Crypt_Spy_analz_bad
dest: Says_imp_knows_Spy [THEN parts.Inj] unique_session_keys)
done

If B receives YM4 then A has used nonce NB (and therefore is alive). Moreover,
A associates K with NB (thus is talking about the same run). Other premises
guarantee secrecy of K.

theorem YM4_imp_A_Said_YM3 [rule_format]:
"[Gets B {Crypt (shrK B) {Agent A, Key K[},
Crypt K (Nonce NB)|} € set evs;
Says B Server
{Agent B, Crypt (shrK B) {Agent A, Nonce NA, Nonce NB[}|
€ set evs;

216 16 THE YAHALOM PROTOCOL, VARIANT 2

(VNA k. Notes Spy {Nonce NA, Nonce NB, k|} ¢ set evs);
A ¢ bad; B ¢ bad; evs € yahalom|
= 3X. Says A B {X, Crypt K (Nonce NB)|} € set evs"
by (metis A_Said_YM3_lemma B_gets_good_key Gets_imp_analz_Spy YM4_parts_knows_Spy
analz.Fst not_parts_not_analz)

end

16 The Yahalom Protocol, Variant 2

theory Yahalom2 imports Public begin

This version trades encryption of NB for additional explicitness in YM3. Also
in YM3, care is taken to make the two certificates distinct.

From page 259 of Burrows, Abadi and Needham (1989). A Logic of Authenti-
cation. Proc. Royal Soc. 426

This theory has the prototypical example of a secrecy relation, KeyCryptNonce.

inductive__set yahalom :: "event list set"
where

Nil: "[] € yahalom"

| Fake: "[evsf € yahalom; X € synth (analz (knows Spy evsf))]
— Says Spy B X # evsf € yahalom"

| Reception: "[evsr € yahalom; Says A B X € set evsr]
—> Gets B X # evsr € yahalom"

| YM1: "[evsl € yahalom; Nonce NA ¢ used evsl]
—> Says A B {Agent A, Nonce NA} # evsl € yahalom"

| YM2: "[evs2 € yahalom; Nonce NB ¢ used evs2;
Gets B {Agent A, Nonce NA} € set evsZ2]
— Says B Server
{Agent B, Nonce NB, Crypt (shrK B) {Agent A, Nonce NA[}}
evs2 € yahalom"

| YM3: "[evs3 € yahalom; Key KAB ¢ used evs3;
Gets Server {]Agent B, Nonce NB,
Crypt (shrK B) {Agent A, Nonce NA[}|
€ set evs3]
— Says Server A

{Nonce NB,
Crypt (shrK A) {Agent B, Key KAB, Nonce NA[,
Crypt (shrK B) {Agent A, Agent B, Key KAB, Nonce NB|}|
evs3 € yahalom"

16.1 Inductive Proofs 217

| YM4: "[evs4 € yahalom;
Gets A {Nonce NB, Crypt (shrK A) {Agent B, Key K, Nonce NA[,
X} € set evs4;
Says A B {Agent A, Nonce NA[} € set evs4]
= Says A B {X, Crypt K (Nonce NB)| # evs4 € yahalom"

| Oops: "[evso € yahalom;
Says Server A {Nonce NB,
Crypt (shrK A) {Agent B, Key K, Nonce NA[,
X} € set evso]
= Notes Spy {Nonce NA, Nonce NB, Key K|} # evso € yahalom"

declare Says_imp_knows_Spy [THEN analz.Inj, dest]
declare parts.Body [dest]

declare Fake_parts_insert_in_Un [dest]

declare analz_into_parts [dest]

A "possibility property": there are traces that reach the end

lemma "Key K ¢ used []
—> JdX NB. Jevs € yahalom.
Says A B {X, Crypt K (Nonce NB)|} € set evs"

apply (intro exI bexI)

apply (rule_tac [2] yahalom.Nil
[THEN yahalom.YM1, THEN yahalom.Reception,
THEN yahalom.YM2, THEN yahalom.Reception,
THEN yahalom.YM3, THEN yahalom.Reception,
THEN yahalom.YM4])

apply (possibility, simp add: used_Cons)

done

lemma Gets_imp_Says:
"[Gets B X € set evs; evs € yahalom] —> JA. Says A B X € set evs"
by (erule rev_mp, erule yahalom.induct, auto)

Must be proved separately for each protocol

lemma Gets_imp_knows_Spy:
"[Gets B X € set evs; evs € yahalom] = X € knows Spy evs"
by (blast dest!: Gets_imp_Says Says_imp_knows_Spy)

declare Gets_imp_knows_Spy [THEN analz.Inj, dest]

16.1 Inductive Proofs

Result for reasoning about the encrypted portion of messages. Lets us treat
YM4 using a similar argument as for the Fake case.

lemma YM4_analz_knows_Spy:
"[Gets A {NB, Crypt (shrK A) Y, X[} € set evs; evs € yahalom]
= X € analz (knows Spy evs)"

by blast

218 16 THE YAHALOM PROTOCOL, VARIANT 2

lemmas YM4_parts_knows_Spy =
YM4_analz_knows_Spy [THEN analz_into_parts]

Spy never sees a good agent’s shared key!

lemma Spy_see_shrK [simp]:

"evs € yahalom —> (Key (shrK A) € parts (knows Spy evs)) = (A € bad)"
by (erule yahalom.induct, force,

drule_tac [6] YM4_parts_knows_Spy, simp_all, blast+)
lemma Spy_analz_shrK [simp]:

"evs € yahalom = (Key (shrK A) € analz (knows Spy evs)) = (A € bad)"

by auto

lemma Spy_see_shrK_D [dest!]:

"[Key (shrK A) € parts (knows Spy evs); evs € yahalom] =—> A € bad"

by (blast dest: Spy_see_shrK)

Nobody can have used non-existent keys! Needed to apply analz_insert

lemma new_keys_not_used [simp]:

"[Key K ¢ used evs; K € symKeys; evs € yahalom]

= K ¢ keysFor (parts (spies evs))"
apply (erule rev_mp)
apply (erule yahalom.induct, force,

frule_tac [6] YM4_parts_knows_Spy, simp_all)

subgoal — Fake by (force dest!: keysFor_parts_insert)
subgoal — YM3by blast

_Key

subgoal — YM4 by (fastforce dest!: Gets_imp_knows_Spy [THEN parts.Inj])

done

Describes the form of K when the Server sends this message. Useful fo
as well as main secrecy property.

lemma Says_Server_message_form:
"[Says Server A {nb’, Crypt (shrK A) {Agent B, Key K, nal}, X}
€ set evs; evs € yahalom|
= K ¢ range shrK"
by (erule rev_mp, erule yahalom.induct, simp_all)

lemma analz_image_freshK [rule_format]:
"evs € yahalom —>
VK KK. KK C - (range shrK) —
(Key K € analz (Key‘KK U (knows Spy evs))) =
(K € KK | Key K € analz (knows Spy evs))"
apply (erule yahalom.induct)
apply (frule_tac [8] Says_Server_message_form)
apply (drule_tac [7] YM4_analz_knows_Spy, analz_freshK, spy_analz,
done

lemma analz_insert_freshK:

r Oops

blast)

16.2 Crucial Secrecy Property: Spy Does Not See Key KAB 219

"levs € yahalom; KAB ¢ range shrK] —
(Key K € analz (insert (Key KAB) (knows Spy evs))) =
(K = KAB | Key K € analz (knows Spy evs))"

by (simp only: analz_image_freshK analz_image_freshK_simps)

The Key K uniquely identifies the Server’s message

lemma unique_session_keys:
"[Says Server A
{nb, Crypt (shrK A) {Agent B, Key K, nal, X} € set evs;
Says Server A’
{nb’, Crypt (shrK A’) {Agent B’, Key K, na’l}, X’| € set evs;
evs € yahalom]
— A=A’ N B=B’ A na=na’ A nb=nb’"
apply (erule rev_mp, erule rev_mp)
apply (erule yahalom.induct, simp_all)

YM3, by freshness

apply blast
done

16.2 Crucial Secrecy Property: Spy Does Not See Key k4B

lemma secrecy_lemma:
"[A ¢ bad; B ¢ bad; evs € yahalom]
— Says Server A
{nb, Crypt (shrk A) {Agent B, Key K, nal,
Crypt (shrK B) {Agent A, Agent B, Key K, nbl]
€ set evs —»
Notes Spy {na, nb, Key K} ¢ set evs —»
Key K ¢ analz (knows Spy evs)"
apply (erule yahalom.induct, force, frule_tac [7] Says_Server_message_form,
drule_tac [6] YM4_analz_knows_Spy)
apply (simp_all add: pushes analz_insert_eq analz_insert_freshK, spy_analz)
apply (blast dest: unique_session_keys)+
done

Final version

lemma Spy_not_see_encrypted_key:
"[Says Server A
{nb, Crypt (shrK A) {Agent B, Key K, nal,
Crypt (shrK B) {Agent A, Agent B, Key K, nbl}
€ set evs;
Notes Spy {na, nb, Key K} ¢ set evs;
A ¢ bad; B ¢ bad; evs € yahalom]
—> Key K ¢ analz (knows Spy evs)"
by (blast dest: secrecy_lemma Says_Server_message_form)

This form is an immediate consequence of the previous result. It is similar to
the assertions established by other methods. It is equivalent to the previous
result in that the Spy already has analz and synth at his disposal. However,
the conclusion Key K ¢ knows Spy evs appears not to be inductive: all the cases
other than Fake are trivial, while Fake requires Key K ¢ analz (knows Spy evs).

lemma Spy_not_know_encrypted_key:

220 16 THE YAHALOM PROTOCOL, VARIANT 2

"[Says Server A
{nb, Crypt (shrk A) {Agent B, Key K, nal,
Crypt (shrK B) {Agent A, Agent B, Key K, nbl}
€ set evs;
Notes Spy {na, nb, Key K[} ¢ set evs;
A ¢ bad; B ¢ bad; evs € yahalonm|
—> Key K ¢ knows Spy evs"
by (blast dest: Spy_not_see_encrypted_key)

16.3 Security Guarantee for A upon receiving YM3

If the encrypted message appears then it originated with the Server. May now
apply Spy_not_see_encrypted_key, subject to its conditions.

lemma A_trusts_YM3:
"[Crypt (shrK A) {Agent B, Key K, nal} € parts (knows Spy evs);
A ¢ bad; evs € yahalonm]
— dnb. Says Server A
{nb, Crypt (shrK A) {Agent B, Key K, nal,
Crypt (shrK B) {Agent A, Agent B, Key K, nbl}
€ set evs"
apply (erule rev_mp)
apply (erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy, simp_all)

Fake, YM3

apply blast+
done

The obvious combination of A_trusts_YM3 with Spy_not_see_encrypted_key

theorem A_gets_good_key:
"[Crypt (shrK A) {Agent B, Key K, nal} € parts (knows Spy evs);
Vnb. Notes Spy {na, nb, Key K|} ¢ set evs;
A ¢ bad; B ¢ bad; evs € yahalonm|
—> Key K ¢ analz (knows Spy evs)"
by (blast dest!: A_trusts_YM3 Spy_not_see_encrypted_key)

16.4 Security Guarantee for B upon receiving YM4

B knows, by the first part of A’s message, that the Server distributed the key
for A and B, and has associated it with NB.

lemma B_trusts_YM4_shrK:
"[Crypt (shrK B) {Agent A, Agent B, Key K, Nonce NB|}
€ parts (knows Spy evs);
B ¢ bad; evs € yahalonm]
—> JNA. Says Server A
{Nonce NB,
Crypt (shrK A) {Agent B, Key K, Nonce NA[,
Crypt (shrK B) {Agent A, Agent B, Key K, Nonce NB}|}
€ set evs"
apply (erule rev_mp)
apply (erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy, simp_all)

16.5 Authenticating B to A 221

Fake, YM3

apply blast+
done

With this protocol variant, we don’t need the 2nd part of YM4 at all: Nonce
NB is available in the first part.

What can B deduce from receipt of YM47? Stronger and simpler than Yahalom
because we do not have to show that NB is secret.

lemma B_trusts_YM4:
"[Gets B {Crypt (shrK B) {Agent A, Agent B, Key K, Nonce NB[}, X[
€ set evs;
A ¢ bad; B ¢ bad; evs € yahalom]
—> JNA. Says Server A
{Nonce NB,
Crypt (shrK A) {Agent B, Key K, Nonce NAJ},
Crypt (shrK B) {Agent A, Agent B, Key K, Nonce NB[}|
€ set evs"
by (blast dest!: B_trusts_YM4_shrk)

The obvious combination of B_trusts_YM4 with Spy_not_see_encrypted_key

theorem B_gets_good_key:
"[Gets B {Crypt (shrK B) {Agent A, Agent B, Key K, Nonce NB[, X[
€ set evs;
Vna. Notes Spy {na, Nonce NB, Key K|} ¢ set evs;
A ¢ bad; B ¢ bad; evs € yahalonm]
—> Key K ¢ analz (knows Spy evs)"
by (blast dest!: B_trusts_YM4 Spy_not_see_encrypted_key)

16.5 Authenticating B to A

The encryption in message YM2 tells us it cannot be faked.

lemma B_Said_YM2:

"[Crypt (shrK B) {Agent A, Nonce NA[} € parts (knows Spy evs);

B ¢ bad; evs € yahalom]
= JNB. Says B Server {Agent B, Nonce NB,
Crypt (shrK B) {Agent A, Nonce NA[}
€ set evs"
apply (erule rev_mp)
apply (erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy, simp_all)

Fake, YM2

apply blast+
done

If the server sends YM3 then B sent YM2, perhaps with a different NB

lemma YM3_auth_B_to_A_lemma:
"[Says Server A {nb, Crypt (shrK A) {Agent B, Key K, Nonce NA[}, X[
€ set evs;
B ¢ bad; evs € yahalom]
= Jnb’. Says B Server {Agent B, nb’,

222 16 THE YAHALOM PROTOCOL, VARIANT 2

Crypt (shrK B) {Agent A, Nonce NA[}|
€ set evs"
apply (erule rev_mp)
apply (erule yahalom.induct, simp_all)

Fake, YM2, YM3

apply (blast dest!: B_Said_YM2)+
done

If A receives YM3 then B has used nonce NA (and therefore is alive)

theorem YM3_auth_ B to_A:
"[Gets A {nb, Crypt (shrK A) {Agent B, Key K, Nonce NA[|}, X[
€ set evs;
A ¢ bad; B ¢ bad; evs € yahalom|
— dnb’. Says B Server
{Agent B, nb’, Crypt (shrK B) {Agent A, Nonce NA[}

€ set evs'"

by (blast dest!: A_trusts_YM3 YM3_auth_B_to_A_lemma)

16.6 Authenticating A to B
using the certificate Crypt K (Nonce NB)

Assuming the session key is secure, if both certificates are present then A has
said NB. We can’t be sure about the rest of A’s message, but only NB matters
for freshness. Note that Key kK ¢ analz (knows Spy evs) must be the FIRST
antecedent of the induction formula.

This lemma allows a use of unique_session_keys in the next proof, which oth-
erwise is extremely slow.

lemma secure_unique_session_keys:
"[Crypt (shrK A) {Agent B, Key K, nal} € analz (spies evs);
Crypt (shrK A’) {Agent B’, Key K, na’} € analz (spies evs);
Key K ¢ analz (knows Spy evs); evs € yahalom|
= A=A’ AN B=B’"
by (blast dest!: A_trusts_YM3 dest: unique_session_keys Crypt_Spy_analz_bad)

lemma Auth_A_to_B_lemma [rule_format]:
"evs € yahalom
—> Key K ¢ analz (knows Spy evs) —
K € symKeys —
Crypt K (Nonce NB) € parts (knows Spy evs) —>
Crypt (shrK B) {Agent A, Agent B, Key K, Nonce NB|}
€ parts (knows Spy evs) —
B ¢ bad —»
(3X. Says A B {X, Crypt K (Nonce NB)| € set evs)"
apply (erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy)
apply (analz_mono_contra, simp_all)
subgoal — Fake by blast
subgoal — YM3 because the message Crypt K (Nonce NB) could not exist
by (force dest!: Crypt_imp_keysFor)

223

subgoal — YM4: was Crypt K (Nonce NB) the very last message? If not, use the
induction hypothesis, otherwise by unicity of session keys
by (blast dest!: B_trusts_YM4_shrK dest: secure_unique_session_keys)
done

If B receives YM4 then A has used nonce NB (and therefore is alive). Moreover,
A associates K with NB (thus is talking about the same run). Other premises
guarantee secrecy of K.

theorem YM4_imp_A_Said_YM3 [rule_format]:
"[Gets B {Crypt (shrK B) {Agent A, Agent B, Key K, Nonce NB[,
Crypt K (Nonce NB)|} € set evs;
(VNA. Notes Spy {Nonce NA, Nonce NB, Key K|} ¢ set evs);
K € symKeys; A ¢ bad; B ¢ bad; evs € yahalom]
=—> 3X. Says A B {X, Crypt K (Nonce NB)|} € set evs"
by (blast intro: Auth_A_to_B_lemma
dest: Spy_not_see_encrypted_key B_trusts_YM4_shrK)

end

17 The Yahalom Protocol: A Flawed Version

theory Yahalom_Bad imports Public begin

Demonstrates of why Oops is necessary. This protocol can be attacked because
it doesn’t keep NB secret, but without Oops it can be "verified" anyway. The
issues are discussed in lep’s LICS 2000 invited lecture.

inductive__set yahalom :: "event list set"
where

Nil: "[] € yahalom"

| Fake: "[evsf € yahalom; X € synth (analz (knows Spy evsf))]
= Says Spy B X # evsf & yahalom"

| Reception: "[evsr € yahalom; Says A B X € set evsr]
— Gets B X # evsr € yahalom"

| YM1: "[evsl € yahalom; Nonce NA ¢ used evsl]
— Says A B {Agent A, Nonce NA[|} # evsl € yahalom"

| YM2: "[evs2 € yahalom; Nonce NB ¢ used evs2;
Gets B {Agent A, Nonce NA|} € set evsZ2]
—> Says B Server
{Agent B, Nonce NB, Crypt (shrK B) {Agent A, Nonce NAJ}[|}
evs2 € yahalom"

| YM3: "[evs3 € yahalom; Key KAB ¢ used evs3; KAB € symKeys;
Gets Server

224 17 THE YAHALOM PROTOCOL: A FLAWED VERSION

{Agent B, Nonce NB, Crypt (shrK B) {Agent A, Nonce NA}}
€ set evs3]
— Says Server A
{Crypt (shrK A) {Agent B, Key KAB, Nonce NA, Nonce NB},
Crypt (shrK B) {Agent A, Key KAB[}|}
evs3 € yahalom"

| YM4: "[evs4d € yahalom; A # Server; K € symKeys;
Gets A {Crypt(shrK A) {Agent B, Key K, Nonce NA, Nonce NB[}, X|
€ set evs4;
Says A B {Agent A, Nonce NA|} € set evs4]
—> Says A B {X, Crypt K (Nonce NB)|} # evs4 € yahalom"

declare Says_imp_knows_Spy [THEN analz.Inj, dest]
declare parts.Body [dest]

declare Fake_parts_insert_in_Un [dest]

declare analz_into_parts [dest]

A "possibility property": there are traces that reach the end

lemma "[A # Server; Key K ¢ used []; K € symKeys]
—> JX NB. Jevs € yahalom.
Says A B {X, Crypt K (Nonce NB)|} € set evs"

apply (intro exI bexI)

apply (rule_tac [2] yahalom.Nil
[THEN yahalom.YM1, THEN yahalom.Reception,
THEN yahalom.YM2, THEN yahalom.Reception,
THEN yahalom.YM3, THEN yahalom.Reception,
THEN yahalom.YM4])

apply (possibility, simp add: used_Cons)

done

17.1 Regularity Lemmas for Yahalom

lemma Gets_imp_Says:
"[Gets B X € set evs; evs € yahalom] =—> JA. Says A B X € set evs"
by (erule rev_mp, erule yahalom.induct, auto)

lemma Gets_imp_knows_Spy:
"[Gets B X € set evs; evs € yahalom|] =—> X € knows Spy evs"
by (blast dest!: Gets_imp_Says Says_imp_knows_Spy)

declare Gets_imp_knows_Spy [THEN analz.Inj, dest]

17.2 For reasoning about the encrypted portion of mes-
sages

Lets us treat YM4 using a similar argument as for the Fake case.

lemma YM4_analz_knows_Spy:
"[Gets A {Crypt (shrK A) Y, X} € set evs; evs € yahalom]
= X € analz (knows Spy evs)"

17.3 Secrecy Theorems 225

by blast

lemmas YM4_parts_knows_Spy =
YM4_analz_knows_Spy [THEN analz_into_parts]

Theorems of the form X ¢ parts (knows Spy evs) imply that NOBODY sends
messages containing X!

Spy never sees a good agent’s shared key!

lemma Spy_see_shrK [simp]:

"evs € yahalom —> (Key (shrK A) € parts (knows Spy evs)) = (A € bad)"
apply (erule yahalom.induct, force,
drule_tac [6] YM4_parts_knows_Spy, simp_all, blast+)
done
lemma Spy_analz_shrK [simp]:
"evs € yahalom — (Key (shrK A) € analz (knows Spy evs)) = (A € bad)"

by auto

lemma Spy_see_shrK_D [dest!]:
"[Key (shrK A) € parts (knows Spy evs); evs € yahalom] —> A € bad"
by (blast dest: Spy_see_shrK)

Nobody can have used non-existent keys! Needed to apply analz_insert_Key

lemma new_keys_not_used [simp]:
"[Key K ¢ used evs; K € symKeys; evs € yahalom]
=—> K ¢ keysFor (parts (spies evs))"
apply (erule rev_mp)
apply (erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy, simp_all)

Fake

apply (force dest!: keysFor_parts_insert, auto)
done

17.3 Secrecy Theorems

17.4 Session keys are not used to encrypt other session
keys

lemma analz_image_freshK [rule_format]:
"evs € yahalom —>
VK KK. KK C - (range shrK) —
(Key K € analz (Key ‘KK U (knows Spy evs))) =
(K € KK | Key K € analz (knows Spy evs))"
by (erule yahalom.induct,
drule_tac [7] YM4_analz_knows_Spy, analz_freshK, spy_analz, blast)

lemma analz_insert_freshK:
"levs € yahalom; KAB ¢ range shrK] —
(Key K € analz (insert (Key KAB) (knows Spy evs))) =
(K = KAB | Key K € analz (knows Spy evs))"

by (simp only: analz_image_freshK analz_image_freshK_simps)

226 17 THE YAHALOM PROTOCOL: A FLAWED VERSION

The Key K uniquely identifies the Server’s message.

lemma unique_session_keys:
"[Says Server A
{Crypt (shrK A) {Agent B, Key K, na, nbl}, X[} € set evs;
Says Server A’
{Crypt (shrK A’) {Agent B’, Key K, na’, nb’}, X’} € set evs;
evs € yahalom]
— A=A’ N B=B’ A na=na’ A nb=nb’"
apply (erule rev_mp, erule rev_mp)
apply (erule yahalom.induct, simp_all)

YM3, by freshness, and YM4

apply blast+
done

Crucial secrecy property: Spy does not see the keys sent in msg YM3

lemma secrecy_lemma:
"[A ¢ bad; B ¢ bad; evs € yahalom]
—> Says Server A
{Crypt (shrK A) {Agent B, Key K, na, nbl,
Crypt (shrK B) {Agent A, Key K[|
€ set evs —»
Key K ¢ analz (knows Spy evs)"
apply (erule yahalom.induct, force, drule_tac [6] YM4_analz_knows_Spy)
apply (simp_all add: pushes analz_insert_eq analz_insert_freshK, spy_analz)

apply (blast dest: unique_session_keys)
done

Final version

lemma Spy_not_see_encrypted_key:
"[Says Server A
{Crypt (shrK A) {Agent B, Key K, na, nbl,
Crypt (shrK B) {Agent A, Key K[|}
€ set evs;
A ¢ bad; B ¢ bad; evs € yahalom|
—> Key K ¢ analz (knows Spy evs)"
by (blast dest: secrecy_lemma)

17.5 Security Guarantee for A upon receiving YM3

If the encrypted message appears then it originated with the Server

lemma A_trusts_YM3:
"[Crypt (shrK A) {Agent B, Key K, na, nb|} € parts (knows Spy evs);
A ¢ bad; evs € yahalonm]
— Says Server A
{Crypt (shrK A) {Agent B, Key K, na, nbl,
Crypt (shrK B) {Agent A, Key K[|}
€ set evs"
apply (erule rev_mp)
apply (erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy, simp_all)

17.6 Security Guarantees for B upon receiving YM4 227

Fake, YM3

apply blast+
done

The obvious combination of A_trusts_YM3 with Spy_not_see_encrypted_key

lemma A_gets_good_key:
"[Crypt (shrK A) {Agent B, Key K, na, nb]} € parts (knows Spy evs);
A ¢ bad; B ¢ bad; evs € yahalom]
—> Key K ¢ analz (knows Spy evs)"
by (blast dest!: A_trusts_YM3 Spy_not_see_encrypted_key)

17.6 Security Guarantees for B upon receiving YM4

B knows, by the first part of A’s message, that the Server distributed the key
for A and B. But this part says nothing about nonces.

lemma B_trusts_YM4_shrK:
"[Crypt (shrK B) {Agent A, Key K} € parts (knows Spy evs);
B ¢ bad; evs € yahalom]
—> dNA NB. Says Server A
{Crypt (shrK A) {Agent B, Key K, Nonce NA, Nonce NB[,
Crypt (shrK B) {Agent A, Key K[}
€ set evs"
apply (erule rev_mp)
apply (erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy, simp_all)

Fake, YM3

apply blast+
done

17.7 The Flaw in the Model

Up to now, the reasoning is similar to standard Yahalom. Now the doubtful
reasoning occurs. We should not be assuming that an unknown key is secure,
but the model allows us to: there is no Oops rule to let session keys become
compromised.

B knows, by the second part of A’s message, that the Server distributed the key
quoting nonce NB. This part says nothing about agent names. Secrecy of K is
assumed; the valid Yahalom proof uses (and later proves) the secrecy of NB.

lemma B_trusts_YM4_newK [rule_format]:
"[Key K ¢ analz (knows Spy evs); evs € yahalom]
= Crypt K (Nonce NB) € parts (knows Spy evs) —
(d4A B NA. Says Server A
{Crypt (shrK A) {Agent B, Key K,
Nonce NA, Nonce NB[,
Crypt (shrK B) {Agent A, Key K[}
€ set evs)"
apply (erule rev_mp)
apply (erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy)

228 17 THE YAHALOM PROTOCOL: A FLAWED VERSION

apply (analz_mono_contra, simp_all)

Fake

apply blast

YM3
apply blast

A is uncompromised because NB is secure A’s certificate guarantees the existence of
the Server message

apply (blast dest!: Gets_imp_Says Crypt_Spy_analz_bad
dest: Says_imp_spies
parts.Inj [THEN parts.Fst, THEN A_trusts_YM3])
done

B’s session key guarantee from YM4. The two certificates contribute to a single
conclusion about the Server’s message.

lemma B_trusts_YM4:
"[Gets B {Crypt (shrK B) {Agent A, Key K[},
Crypt K (Nonce NB)|} € set evs;
Says B Server
{Agent B, Nonce NB, Crypt (shrK B) {Agent A, Nonce NA}[}
€ set evs;
A ¢ bad; B ¢ bad; evs € yahalom|
= dna nb. Says Server A
{Crypt (shrK A) {Agent B, Key K, na, nbl,
Crypt (shrK B) {Agent A, Key K[|}
€ set evs"
by (blast dest: B_trusts_YM4_newK B_trusts_YM4_shrK Spy_not_see_encrypted_key
unique_session_keys)

The obvious combination of B_trusts_YM4 with Spy_not_see_encrypted_key

lemma B_gets_good_key:
"[Gets B {Crypt (shrK B) {Agent A, Key K|},
Crypt K (Nonce NB)|} € set evs;
Says B Server
{Agent B, Nonce NB, Crypt (shrK B) {Agent A, Nonce NA[}}
€ set evs;
A ¢ bad; B ¢ bad; evs € yahalom]
—> Key K ¢ analz (knows Spy evs)"
by (blast dest!: B_trusts_YM4 Spy_not_see_encrypted_key)

Assuming the session key is secure, if both certificates are present then A has
said NB. We can’t be sure about the rest of A’s message, but only NB matters
for freshness.

lemma A_Said_YM3_lemma [rule_format]:
"evs € yahalom
—> Key K ¢ analz (knows Spy evs) —
Crypt K (Nonce NB) € parts (knows Spy evs) —
Crypt (shrK B) {Agent A, Key K|} € parts (knows Spy evs) —
B ¢ bad —»
(3X. Says A B {X, Crypt K (Nonce NB)| € set evs)"

17.7 The Flaw in the Model 229

apply (erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy)
apply (analz_mono_contra, simp_all)

Fake

apply blast

YM3: by new_keys_not_used, the message Crypt K (Nonce NB) could not exist
apply (force dest!: Crypt_imp_keysFor)

YM4: was Crypt K (Nonce NB) the very last message? If not, use the induction hy-
pothesis

apply (simp add: ex_disj_distrib)
yes: apply unicity of session keys

apply (blast dest!: Gets_imp_Says A_trusts_YM3 B_trusts_YM4_shrK
Crypt_Spy_analz_bad
dest: Says_imp_knows_Spy [THEN parts.Inj] unique_session_keys)
done

If B receives YM4 then A has used nonce NB (and therefore is alive). Moreover,
A associates K with NB (thus is talking about the same run). Other premises
guarantee secrecy of K.

lemma YM4_imp_A_Said_YM3 [rule_format]:
"[Gets B {Crypt (shrK B) {Agent A, Key K[},
Crypt K (Nonce NB)|} € set evs;
Says B Server
{Agent B, Nonce NB, Crypt (shrK B) {Agent A, Nonce NA[}}
€ set evs;
A ¢ bad; B ¢ bad; evs € yahalonm]
=—> 3X. Says A B {X, Crypt K (Nonce NB)|} € set evs"
by (blast intro!: A_Said_YM3_lemma
dest: Spy_not_see_encrypted_key B_trusts_YM4 Gets_imp_Says)

end

theory ZhouGollmann imports Public begin

abbreviation
TTP :: agent where "TTP == Server'

abbreviation f_sub :: nat where "f_sub == 5"
abbreviation f_nro :: nat where "f_nro == 2"
abbreviation f_nrr :: nat where "f_nrr == 3"
abbreviation f_con :: nat where "f_con == 4"
definition broken :: "agent set" where

— the compromised honest agents; TTP is included as it’s not allowed to use the
protocol
"broken == bad - {Spy}"

230

17 THE YAHALOM PROTOCOL: A FLAWED VERSION

declare broken_def [simp]

inductive_set zg :: "event list set"
where
Nil: "[] € zg"
| Fake: "[evsf € zg; X € synth (analz (spies evsf))]

—

| ZG1:

| ZG2:

| ZG3:

| ZG4:

declare
declare
declare

declare
declare

—> Says Spy B X # evsf € zg"

Reception: "[evsr € zg; Says A B X € set evsr] —> Gets B X # evsr € zg"

"levsl € zg; Nonce L ¢ used evsl; C = Crypt K (Number m);
K € symKeys;
NRO = Crypt (priK A) {Number f_nro, Agent B, Nomnce L, C[}]
—> Says A B {Number f_nro, Agent B, Nonce L, C, NRO} # evsl € zg"

"levs2 € zg;
Gets B ﬂNumber f_nro, Agent B, Nonce L, C, NROH € set evs2;
NRO = Crypt (priK A) {Number f_nro, Agent B, Nonce L, C|};
NRR = Crypt (priK B) {Number f_nrr, Agent A, Nonce L, C[}]

—> Says B A {Number f_nrr, Agent A, Nonce L, NRR[} # evs2 € zg"

"[evs3 € zg; C = Crypt K M; K € symKeys;
Says A B {]Number f_nro, Agent B, Nonce L, C, NRDI} € set evs3;
Gets A {]Number f_nrr, Agent A, Nonce L, NRR[} € set evs3;
NRR = Crypt (priK B) {Number f_nrr, Agent A, Nonce L, C|};
sub_K = Crypt (priK A) {Number f_sub, Agent B, Nonce L, Key K[|
—> Says A TTP {Number f_sub, Agent B, Nonce L, Key K, sub_K|
evs3 € zg"

"levs4 € zg; K € symKeys;
Gets TTP {Number f_sub, Agent B, Nonce L, Key K, sub_K}|}
€ set evs4;
sub_K = Crypt (priK A) {Number f_sub, Agent B, Nonce L, Key K|;
con_K = Crypt (priK TTP) {Number f_con, Agent A, Agent B,
Nonce L, Key K[}]
— Says TTP Spy con_K

#
Notes TTP {Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|
evs4d € zg"

Says_imp_knows_Spy [THEN analz.Inj, dest]
Fake_parts_insert_in_Un [dest]
analz_into_parts [dest]

symKey_neq_priEK [simp]
symKey_neq_priEK [THEN not_sym, simp]

17.8 Basic Lemmas 231

A "possibility property": there are traces that reach the end

lemma "[A # B; TTP # A; TTP # B; K € symKeys| —
JL. Jevs € zg.
Notes TTP {Number f_con, Agent A, Agent B, Nonce L, Key K,
Crypt (priK TTP) {Number f_con, Agent A, Agent B, Nonce L,
Key K[}
€ set evs"
apply (intro exI bexI)
apply (rule_tac [2] zg.Nil
[THEN zg.ZG1, THEN zg.Reception [of _ A B],
THEN zg.ZG2, THEN zg.Reception [of _ B A],
THEN zg.ZG3, THEN zg.Reception [of _ A TTP],
THEN zg.ZG4])
apply (basic_possibility, auto)
done

17.8 Basic Lemmas

lemma Gets_imp_Says:
"[Gets B X € set evs; evs € zg] —> JA. Says A B X € set evs"
apply (erule rev_mp)
apply (erule zg.induct, auto)
done

lemma Gets_imp_knows_Spy:
"[Gets B X € set evs; evs € zg] =—> X € spies evs"
by (blast dest!: Gets_imp_Says Says_imp_knows_Spy)

Lets us replace proofs about used evs by simpler proofs about parts (knows
Spy evs).

lemma Crypt_used_imp_spies:
"[Crypt K X € used evs; evs € zg]
—> Crypt K X € parts (spies evs)"
apply (erule rev_mp)
apply (erule zg.induct)
apply (simp_all add: parts_insert_knows_A)
done

lemma Notes_TTP_imp_Gets:
"[Notes TTP {Number f_con, Agent A, Agent B, Nonce L, Key K, con_K[}
€ set evs;
sub_K = Crypt (priK A) {Number f_sub, Agent B, Nonce L, Key K|;
evs € zg]
—> Gets TTP ﬂNumber f_sub, Agent B, Nonce L, Key K, sub_K]} € set evs"
apply (erule rev_mp)
apply (erule zg.induct, auto)
done

For reasoning about C, which is encrypted in message ZG2

lemma ZG2_msg_in_parts_spies:
"[Gets B {F, B’, L, C, X} € set evs; evs € zg]
= C € parts (spies evs)"

by (blast dest: Gets_imp_Says)

232 17 THE YAHALOM PROTOCOL: A FLAWED VERSION

lemma Spy_see_priK [simp]:
"evs € zg =—> (Key (priK A) € parts (spies evs)) = (A € bad)"
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)
done

So that blast can use it too

declare Spy_see_priK [THEN [2] rev_iffD1, dest!]

lemma Spy_analz_priK [simp]:
"evs € zg =—> (Key (priK A) € analz (spies evs)) = (A € bad)"
by auto

17.9 About NRO: Validity for B

Below we prove that if NRO exists then 4 definitely sent it, provided 4 is not
broken.

Strong conclusion for a good agent

lemma NRO_validity_good:
"[NRO = Crypt (priK A) {Number f_nro, Agent B, Nonce L, C|;
NRO € parts (spies evs);
A ¢ bad; evs € zg]
—> Says A B {|Number f_nro, Agent B, Nonce L, C, NRUI} € set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)
done

lemma NRO_sender:
"[Says A’ B {n, b, 1, C, Crypt (priK A) X[} € set evs; evs € zg]
= A’ € {A,Spy}"

apply (erule rev_mp)

apply (erule zg.induct, simp_all)

done

Holds also for 4 = Spy!

theorem NRO_validity:
"[Gets B {Number f_nro, Agent B, Nonce L, C, NRO} € set evs;
NRO = Crypt (priK A) {Number f_nro, Agent B, Nonce L, C};
A ¢ broken; evs € zg]
—> Says A B {Number f_nro, Agent B, Nonce L, C, NRO} € set evs"
apply (drule Gets_imp_Says, assumption)
apply clarify
apply (frule NRO_sender, auto)

We are left with the case where the sender is Spy and not equal to 4, because A ¢
bad. Thus theorem NRO_validity_good applies.

apply (blast dest: NRO_validity_good [OF refl])
done

17.10 About NRR: Validity for A 233

17.10 About NRR: Validity for s

Below we prove that if NRR exists then B definitely sent it, provided B is not
broken.

Strong conclusion for a good agent

lemma NRR_validity_good:
"[NRR = Crypt (priK B) {Number f_nrr, Agent A, Nonce L, C|};
NRR € parts (spies evs);
B ¢ bad; evs € zg]
— Says B A {]Number f_nrr, Agent A, Nonce L, NRR[} € set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)
done

lemma NRR_sender:
"[Says B> A {n, a, 1, Crypt (priK B) X[} € set evs; evs € zg]
—> B’ € {B,Spy}"

apply (erule rev_mp)

apply (erule zg.induct, simp_all)

done

Holds also for B = Spy!

theorem NRR_validity:
"[Says B’ A {Number f_nrr, Agent A, Nonce L, NRR|} € set evs;
NRR = Crypt (priK B) {Number f_nrr, Agent A, Nonce L, C|};
B ¢ broken; evs € zg]
—> Says B A ﬂNumber f_nrr, Agent A, Nonce L, NRRH € set evs"
apply clarify
apply (frule NRR_sender, auto)

We are left with the case where B> = Spy and B’ # B, i.e. B ¢ bad, when we can
apply NRR_validity_good.

apply (blast dest: NRR_validity_good [OF refl])
done

17.11 Proofs About sub_k

Below we prove that if sub_K exists then A definitely sent it, provided 4 is not
broken.

Strong conclusion for a good agent

lemma sub_K_validity_good:
"[sub_K = Crypt (priK A) {Number f_sub, Agent B, Nonce L, Key K[|;
sub_K € parts (spies evs);
A ¢ bad; evs € zg]
—> Says A TTP {]Number f_sub, Agent B, Nonce L, Key K, sub_K|} € set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)

234 17 THE YAHALOM PROTOCOL: A FLAWED VERSION

Fake

apply (blast dest!: Fake_parts_sing imp_Un)
done

lemma sub_K_sender:
"[Says A’ TTP {n, b, 1, k, Crypt (priK A) X|} € set evs; evs € zg]
—> A’ € {A,Spy}"

apply (erule rev_mp)

apply (erule zg.induct, simp_all)

done

Holds also for 4 = Spy!

theorem sub_K_validity:
"[Gets TTP {Number f_sub, Agent B, Nonce L, Key K, sub_K[} € set evs;
sub_K = Crypt (priK A) {Number f_sub, Agent B, Nonce L, Key K|};
A ¢ broken; evs € zg]
— Says A TTP {]Number f_sub, Agent B, Nonce L, Key K, sub_KI} € set evs"
apply (drule Gets_imp_Says, assumption)
apply clarify
apply (frule sub_K_sender, auto)

We are left with the case where the sender is Spy and not equal to 4, because A ¢
bad. Thus theorem sub_K_validity_good applies.

apply (blast dest: sub_K_validity_good [OF refl])
done

17.12 Proofs About con_k

Below we prove that if con_K exists, then TTP has it, and therefore 4 and B) can
get it too. Moreover, we know that A sent sub_K

lemma con_K_validity:
"[con_K € used evs;
con_K = Crypt (priK TTP)
{Number f_con, Agent A, Agent B, Nonce L, Key K[;
evs € zg]
= Notes TTP {Number f_con, Agent A, Agent B, Nonce L, Key K, con_K[
€ set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)

Fake
apply (blast dest!: Fake_parts_sing imp_Un)
7G2

apply (blast dest: parts_cut)
done

If TTP holds con_k then A sent sub_K. We assume that A is not broken. Impor-
tantly, nothing needs to be assumed about the form of con_k!

lemma Notes_TTP_imp_Says_A:

17.13 Proving fairness 235

"[Notes TTP {Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}
€ set evs;
sub_K = Crypt (priK A) {Number f_sub, Agent B, Nonce L, Key K[;
A ¢ broken; evs € zg]
—> Says A TTP {Number f_sub, Agent B, Nonce L, Key K, sub_K[€ set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)

7G4

apply clarify
apply (rule sub_K_validity, auto)
done

If con_K exists, then 4 sent sub_K. We again assume that 4 is not broken.

theorem B_sub_K_validity:
"[con_K € used evs;
con_K = Crypt (priK TTP) {Number f_con, Agent A, Agent B,
Nonce L, Key K|};
sub_K = Crypt (priK A) {Number f_sub, Agent B, Nonce L, Key K[|;
A ¢ broken; evs € zg]
—> Says A TTP {Number f_sub, Agent B, Nonce L, Key K, sub_K[} € set evs"
by (blast dest: con_K_validity Notes_TTP_imp_Says_A)

17.13 Proving fairness

Cannot prove that, if B has NRO, then 4 has her NRR. It would appear that B
has a small advantage, though it is useless to win disputes: B needs to present
con_K as well.

Strange: unicity of the label protects A7

lemma A_unicity:
"[NRO = Crypt (priK A) {Number f_nro, Agent B, Nonce L, Crypt K M|};
NRO € parts (spies evs);
Says A B {Number f_nro, Agent B, Nonce L, Crypt K M’, NRO’|

€ set evs;
A ¢ bad; evs € zg]
= M’=M"

apply clarify

apply (erule rev_mp)

apply (erule rev_mp)

apply (erule zg.induct)

apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)

7.G1: freshness

apply (blast dest: parts.Body)
done

Fairness lemma: if sub_K exists, then 4 holds NRR. Relies on unicity of labels.

lemma sub_K_implies_NRR:
"[NRO = Crypt (priK A) {Number f_nro, Agent B, Nonce L, Crypt K M|};

236 17 THE YAHALOM PROTOCOL: A FLAWED VERSION

NRR = Crypt (priK B) {Number f_nrr, Agent A, Nonce L, Crypt K M|};
sub_K € parts (spies evs);
NRO € parts (spies evs);
sub_K = Crypt (priK A) {Number f_sub, Agent B, Nonce L, Key K|};
A ¢ bad; evs € zg]
—> Gets A {]Number f_nrr, Agent A, Nonce L, NRR|} € set evs"
apply clarify
apply hypsubst_thin
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)

Fake
apply blast

7ZG1: freshness

apply (blast dest: parts.Body)
7G3

apply (blast dest: A_unicity [OF refl])
done

lemma Crypt_used_imp_L_used:
"[Crypt (priK TTP) {F, A, B, L, K} € used evs; evs € zg]
— L € used evs"

apply (erule rev_mp)

apply (erule zg.induct, auto)

Fake

apply (blast dest!: Fake_parts_sing_imp_Un)

7.G2: freshness

apply (blast dest: parts.Body)
done

Fairness for 4: if con_k and NRO exist, then 4 holds NRR. 4 must be uncompro-
mised, but there is no assumption about B.

theorem A_fairness_NRO:
"[con_K € used evs;
NRO € parts (spies evs);
con_K = Crypt (priK TTP)
{Number f_con, Agent A, Agent B, Nonce L, Key K|};
NRO = Crypt (priK A) {Number f_nro, Agent B, Nonce L, Crypt K M};
NRR = Crypt (priK B) {Number f_nrr, Agent A, Nonce L, Crypt K M[};
A ¢ bad; evs € zg]
—> Gets A {]Number f_nrr, Agent A, Nonce L, NRR[} € set evs"
apply clarify
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)

237

Fake

apply (simp add: parts_insert_knows_A)
apply (blast dest: Fake_parts_sing_imp_Un)

7G1

apply (blast dest: Crypt_used_imp_L_used)

7G2

apply (blast dest: parts_cut)

7G4

apply (blast intro: sub_K_implies_NRR [OF refl]
dest: Gets_imp_knows_Spy [THEN parts.Injl)
done

Fairness for B: NRR exists at all, then B holds NRO. B must be uncompromised,
but there is no assumption about 4.

theorem B_fairness_NRR:
"[NRR € used evs;
NRR = Crypt (priK B) {Number f_nrr, Agent A, Nonce L, C|;
NRO = Crypt (priK A) {Number f_nro, Agent B, Nonce L, C[;
B ¢ bad; evs € zg]
—> Gets B {]Number f_nro, Agent B, Nonce L, C, NRU[} € set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)

Fake
apply (blast dest!: Fake_parts_sing_ imp_Un)
7G2

apply (blast dest: parts_cut)
done

If con_K exists at all, then B can get it, by con_K_validity. Cannot conclude
that also NRO is available to B, because if 4 were unfair, 4 could build message
3 without building message 1, which contains NRO.

end

18 Conventional protocols: rely on conventional
Message, Event and Public — Shared-key pro-
tocols

theory Auth_Shared
imports
NS_Shared
Kerberos_BAN
Kerberos_BAN_Gets

23819 THE NEEDHAM-SCHROEDER PUBLIC-KEY PROTOCOL (FLAWED)

KerberosIV
KerberosIV_Gets
KerberosV
OtwayRees
OtwayRees_AN
OtwayRees_Bad
OtwayReesBella
WooLam
Recur
Yahalom
Yahalom2
Yahalom_Bad
ZhouGollmann
begin

end

19 The Needham-Schroeder Public-Key Proto-
col (Flawed)

Flawed version, vulnerable to Lowe’s attack. From Burrows, Abadi and Need-
ham. A Logic of Authentication. Proc. Royal Soc. 426 (1989), p. 260

theory NS_Public_Bad imports Public begin

inductive__set ns_public :: "event list set"
where
Nil: "[] € ns_public"
— Initial trace is empty
| Fake: "[evsf € ns_public; X € synth (analz (spies evsf))]
—> Says Spy B X # evsf € ns_public"
— The spy can say almost anything.
| NS1: "[evsl € ns_public; Nonce NA ¢ used evsi]
—> Says A B (Crypt (pubEK B) {Nonce NA, Agent A[})
evsl € ns_public”
— Alice initiates a protocol run, sending a nonce to Bob
| NS2: "[evs2 € ns_public; Nonce NB ¢ used evs2;
Says A’ B (Crypt (pubEK B) {Nonce NA, Agent A}) € set evs2]
—> Says B A (Crypt (pubEK A) {Nonce NA, Nonce NBJ})
evs2 € ns_public"
— Bob responds to Alice’s message with a further nonce
| NS3: "[evs3 € ns_public;
Says A B (Crypt (pubEK B) {Nonce NA, Agent A[}) € set evs3;
Says B’ A (Crypt (pubEK A) {Nonce NA, Nonce NB[}) € set evs3]
—> Says A B (Crypt (pubEK B) (Nonce NB)) # evs3 € ns_public"
— Alice proves her existence by sending NB back to Bob.

declare knows_Spy_partsEs [elim]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]

A "possibility property": there are traces that reach the end

lemma "JNB. devs € ns_public. Says A B (Crypt (pubEK B) (Nonce NB)) € set

19.1 Inductive proofs about ns_public 239

evs"

apply (intro exI bexI)

apply (rule_tac [2] ns_public.Nil [THEN ns_public.NS1, THEN ns_public.NS2,
THEN ns_public.NS3])

by possibility

19.1 Inductive proofs about ns_public

Spy never sees another agent’s private key! (unless it’s bad at start)

lemma Spy_see_priEK [simp]:
"evs € ns_public = (Key (priEK A) € parts (spies evs)) = (A € bad)"
by (erule ns_public.induct, auto)

lemma Spy_analz_priEK [simp]:
"evs € ns_public =—> (Key (priEK A) € analz (spies evs)) = (A € bad)"
by auto

19.2 Authenticity properties obtained from term NS1

It is impossible to re-use a nonce in both term NS1 and term NS2, provided the
nonce is secret. (Honest users generate fresh nonces.)

lemma no_nonce_NS1_NS2:
"[evs € ns_public;
Crypt (pubEK C) {NA’, Nonce NA|} € parts (spies evs);
Crypt (pubEK B) {Nonce NA, Agent A} € parts (spies evs)]
= Nonce NA € analz (spies evs)"
by (induct rule: ns_public.induct) (auto intro: analz_insertI)

Unicity for term NS1: nonce term NA identifies agents term A and term B

lemma unique_NA:
assumes NA: "Crypt(pubEK B) {Nonce NA, Agent A |} € parts(spies evs)"
"Crypt (pubEK B’) {Nonce NA, Agent A’[€ parts(spies evs)"
"Nonce NA ¢ analz (spies evs)"
and evs: "evs € ns_public"
shows "A=A’ N B=B’"
using evs NA
by (induction rule: ns_public.induct) (auto intro!: analz_insertI split:
if_split_asm)

Secrecy: Spy does not see the nonce sent in msg term NS1 if term A and term
B are secure The major premise "Says A B ..." makes it a dest-rule, hence the
given assumption order.

theorem Spy_not_see_NA:
assumes NA: "Says A B (Crypt(pubEK B) {Nonce NA, Agent A[}) € set evs"
"A ¢ bad" "B ¢ bad"
and evs: "evs € ns_public"
shows "Nonce NA ¢ analz (spies evs)"
using evs NA
proof (induction rule: ns_public.induct)
case (Fake evsf X B)
then show ?case
by spy_analz

24019 THE NEEDHAM-SCHROEDER PUBLIC-KEY PROTOCOL (FLAWED)

next
case (NS2 evs2 NB A’ B NA A)
then show ?case
by simp (metis Says_imp_analz_Spy analz_into_parts parts.simps unique_NA
usedI)
next
case (NS3 evs3 A B NA B’ NB)
then show ?case
by simp (meson Says_imp_analz_Spy analz_into_parts no_nonce_NS1_NS2)
qed auto

Authentication for term A: if she receives message 2 and has used term NA to
start a run, then term B has sent message 2.

lemma A_trusts_NS2_lemma:
"levs € ns_public;
Crypt (pubEK A) {Nonce NA, Nonce NB| € parts (spies evs);
Says A B (Crypt(pubEK B) {Nonce NA, Agent Al}) € set evs;
A ¢ bad; B ¢ bad]
—> Says B A (Crypt(pubEK A) {Nonce NA, Nonce NB[}) € set evs"
by (induct rule: ns_public.induct) (auto dest: Spy_not_see_NA unique_NA)

theorem A_trusts_NS2:
"[Says A B (Crypt(pubEK B) {Nonce NA, Agent Al}) € set evs;
Says B’ A (Crypt(pubEK A) {Nonce NA, Nonce NB[}) € set evs;
A ¢ bad; B ¢ bad; evs € ns_public]
—> Says B A (Crypt(pubEK A) {Nonce NA, Nonce NB[}) € set evs"
by (blast intro: A_trusts_NS2_lemma)

If the encrypted message appears then it originated with Alice in term NS1

lemma B_trusts_NS1:
"[evs € ns_public;
Crypt (pubEK B) {Nonce NA, Agent A[€ parts (spies evs);
Nonce NA ¢ analz (spies evs)]
—> Says A B (Crypt (pubEK B) {Nonce NA, Agent A[}) € set evs"
by (induct evs rule: ns_public.induct) (use analz_insertI in <auto split:
if_split_asm>)

19.3 Authenticity properties obtained from term NS2

Unicity for term NS2: nonce term NB identifies nonce term NA and agent term
A [proof closely follows that for unique_NA]

lemma unique_NB [dest]:
assumes NB: "Crypt(pubEK A) {Nonce NA, Nonce NB|} € parts(spies evs)"
"Crypt (pubEK A’) {Nonce NA’, Nonce NB|} € parts(spies evs)"
"Nonce NB ¢ analz (spies evs)"
and evs: "evs € ns_public"
shows "A=A’ N NA=NA’"
using evs NB
by (induction rule: ns_public.induct) (auto intro!: analz_insertI split:
if_split_asm)

term NB remains secret provided Alice never responds with round 3

theorem Spy_not_see_NB [dest]:

19.3 Authenticity properties obtained from term NS2 241

assumes NB: "Says B A (Crypt (pubEK A) {Nonce NA, Nonce NB[}) € set evs"
"V C. Says A C (Crypt (pubEK C) (Nonce NB)) ¢ set evs"
"A ¢ bad" "B ¢ bad"
and evs: "evs € ns_public"
shows "Nonce NB ¢ analz (spies evs)"
using evs NB evs
proof (induction rule: ns_public.induct)
case Fake
then show ?case by spy_analz
next
case NS2
then show ?case
by (auto intro!: no_nonce_NS1_NS2)
qed auto

Authentication for term B: if he receives message 3 and has used term NB in
message 2, then term A has sent message 3 (to somebody)

lemma B_trusts_NS3_lemma:
"levs € mns_public;
Crypt (pubEK B) (Nonce NB) € parts (spies evs);
Says B A (Crypt (pubEK A) {Nonce NA, Nonce NBJ}}) € set evs;
A ¢ bad; B ¢ bad]
= JC. Says A C (Crypt (pubEK C) (Nonce NB)) € set evs"
proof (induction rule: ns_public.induct)
case (NS3 evs3 A B NA B’ NB)
then show ?case
by simp (blast intro: no_nonce_NS1_NS2)
qged auto

theorem B_trusts_NS3:
"[Says B A (Crypt (pubEK A) {Nonce NA, Nonce NB[}) € set evs;
Says A’ B (Crypt (pubEK B) (Nonce NB)) € set evs;
A ¢ bad; B ¢ bad; evs € ns_public]
— JC. Says A C (Crypt (pubEK C) (Nonce NB)) € set evs"
by (blast intro: B_trusts_NS3_lemma)

Can we strengthen the secrecy theorem Spy_not_see_NB? NO

lemma "[evs € ns_public;
Says B A (Crypt (pubEK A) {Nonce NA, Nonce NB[}) € set evs;
A ¢ bad; B ¢ bad]
—> Nonce NB ¢ analz (spies evs)"

apply (induction rule: ns_public.induct, simp_all, spy_analz)

apply blast
apply (blast intro: no_nonce_NS1_NS2)
apply clarify
apply (frule_tac A’ = A in
Says_imp_knows_Spy [THEN parts.Inj, THEN unique_NB], auto)

apply (rename_tac evs3 B’ C)

This is the attack!

242 20 THE NEEDHAM-SCHROEDER PUBLIC-KEY PROTOCOL

1. Aevs3 B’ C.
[evs3 € ns_public; Nonce NB ¢ analz (knows Spy evs3);
Says A B’ (Crypt (pubEK B’) {Nonce NA, Agent A}})
€ set evs3;
Says C A (Crypt (pubEK A) {Nonce NA, Nonce NB]})
€ set evs3;
Says B A (Crypt (pubEK A) {Nonce NA, Nonce NB|})
€ set evs3;
A ¢ bad; B ¢ bad; B’ € bad]
— False

oops

end

20 The Needham-Schroeder Public-Key Proto-
col

Flawed version, vulnerable to Lowe’s attack. From Burrows, Abadi and Need-
ham. A Logic of Authentication. Proc. Royal Soc. 426 (1989), p. 260

theory NS_Public imports Public begin

inductive__set ns_public :: "event list set"
where
Nil: "[] € ns_public"
— Initial trace is empty
| Fake: "[evsf € ns_public; X € synth (analz (spies evsf))]
— Says Spy B X # evsf € ns_public"
— The spy can say almost anything.
| NS1: "[evsl € ns_public; Nonce NA ¢ used evsl]
—> Says A B (Crypt (pubEK B) {Nonce NA, Agent A}})
evsl € ons_public"
— Alice initiates a protocol run, sending a nonce to Bob
| NS2: "[evs2 € ns_public; Nonce NB ¢ used evs2;
Says A’ B (Crypt (pubEK B) {Nonce NA, Agent A}) € set evs2]
—> Says B A (Crypt (pubEK A) {Nonce NA, Nonce NB, Agent B[)
evs2 € ns_public"
— Bob responds to Alice’s message with a further nonce
| NS3: "[evs3 € ns_public;
Says A B (Crypt (pubEK B) {Nonce NA, Agent A}) € set evs3;
Says B’ A (Crypt (pubEK A) {Nonce NA, Nonce NB, Agent B[}) € set
evs3]
—> Says A B (Crypt (pubEK B) (Nonce NB)) # evs3 € ns_public"
— Alice proves her existence by sending NB back to Bob.

declare knows_Spy_partsEs [elim]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]

A "possibility property": there are traces that reach the end

20.1 Inductive proofs about ns_public 243

lemma "3INB. Jevs € ns_public. Says A B (Crypt (pubEK B) (Nonce NB)) € set
evs"

apply (intro exI bexI)

apply (rule_tac [2] ns_public.Nil [THEN ns_public.NS1, THEN ns_public.NS2,
THEN ns_public.NS3])

by possibility

20.1 Inductive proofs about ns_public

Spy never sees another agent’s private key! (unless it’s bad at start)

lemma Spy_see_priEK [simp]:
"evs € ns_public = (Key (priEK A) € parts (spies evs)) = (A € bad)"
by (erule ns_public.induct, auto)

lemma Spy_analz_priEK [simp]:
"evs € ns_public = (Key (priEK A) € analz (spies evs)) = (A € bad)"
by auto

20.2 Authenticity properties obtained from term NS1

It is impossible to re-use a nonce in both term NS1 and term NS2, provided the
nonce is secret. (Honest users generate fresh nonces.)

lemma no_nonce_NS1_NS2:
"levs € ns_public;
Crypt (pubEK C) {NA’, Nonce NA, Agent D|} € parts (spies evs);
Crypt (pubEK B) {Nonce NA, Agent A[€ parts (spies evs)]
— Nonce NA € analz (spies evs)"
by (induct rule: ns_public.induct) (auto intro: analz_insertI)

Unicity for term NS1: nonce term NA identifies agents term A and term B

lemma unique_NA:
assumes NA: "Crypt(pubEK B) {Nonce NA, Agent A | € parts(spies evs)"
"Crypt (pubEK B’) {Nonce NA, Agent A’[€ parts(spies evs)"
"Nonce NA ¢ analz (spies evs)"
and evs: "evs € ns_public"
shows "A=A> A B=B’"
using evs NA
by (induction rule: ns_public.induct) (auto intro!: analz_insertI split:
if_split_asm)

Secrecy: Spy does not see the nonce sent in msg term NS1 if term A and term
B are secure The major premise "Says A B ..." makes it a dest-rule, hence the
given assumption order.

theorem Spy_not_see_NA:
assumes NA: "Says A B (Crypt(pubEK B) {Nonce NA, Agent A}}) € set evs"
"A ¢ bad" "B ¢ bad"
and evs: "evs € ns_public"
shows "Nonce NA ¢ analz (spies evs)"
using evs NA
proof (induction rule: ns_public.induct)
case (Fake evsf X B)
then show ?case

244 20 THE NEEDHAM-SCHROEDER PUBLIC-KEY PROTOCOL

by spy_analz
next
case (NS2 evs2 NB A’ B NA A)
then show ?case
by simp (metis Says_imp_analz_Spy analz_into_parts parts.simps unique_NA
usedI)
next
case (NS3 evs3 A B NA B’ NB)
then show ?case
by simp (meson Says_imp_analz_Spy analz_into_parts no_nonce_NS1_NS2)
qged auto

Authentication for term A: if she receives message 2 and has used term NA to
start a run, then term B has sent message 2.

lemma A_trusts_NS2_lemma:
"levs € ns_public;
Crypt (pubEK A) {Nonce NA, Nonce NB, Agent B[} € parts (spies evs);
Says A B (Crypt(pubEK B) {Nonce NA, Agent Al}) € set evs;
A ¢ bad; B ¢ bad]
—> Says B A (Crypt(pubEK A) {Nonce NA, Nonce NB, Agent B[}) € set evs"
by (induct rule: ns_public.induct) (auto dest: Spy_not_see_NA unique_NA)

theorem A_trusts_NS2:
"[Says A B (Crypt(pubEK B) {Nonce NA, Agent Al}) € set evs;
Says B’ A (Crypt(pubEK A) {Nonce NA, Nonce NB, Agent B[}) € set evs;
A ¢ bad; B ¢ bad; evs € ns_public]
—> Says B A (Crypt(pubEK A) {Nonce NA, Nonce NB, Agent B[}) € set evs"
by (blast intro: A_trusts_NS2_lemma)

If the encrypted message appears then it originated with Alice in term NS1

lemma B_trusts_NS1:
"[evs € ns_public;
Crypt (pubEK B) {Nonce NA, Agent A|} € parts (spies evs);
Nonce NA ¢ analz (spies evs)]
= Says A B (Crypt (pubEK B) {Nonce NA, Agent A[}) € set evs"
by (induct evs rule: ns_public.induct) (use analz_insertI in <auto split:
if_split_asm>)

20.3 Authenticity properties obtained from term NS2

Unicity for term NS2: nonce term NB identifies nonce term NA and agent term
A [proof closely follows that for unique_NA]

lemma unique_NB [dest]:
assumes NB: "Crypt(pubEK A) {Nonce NA, Nonce NB, Agent B[} € parts(spies
evs)"
"Crypt (pubEK A’) {Nonce NA’, Nonce NB, Agent B’} € parts(spies
evs)"
"Nonce NB ¢ analz (spies evs)"
and evs: "evs € ns_public"
shows "A=A’ A NA=NA’ A B=B’"
using evs NB
by (induction rule: ns_public.induct) (auto intro!: analz_insertI split:
if_split_asm)

20.4 Overall guarantee for term B 245

term NB remains secret

theorem Spy_not_see_NB [dest]:
assumes NB: "Says B A (Crypt (pubEK A) {Nonce NA, Nonce NB, Agent B[) €
set evs"
"A ¢ bad" "B ¢ bad"
and evs: "evs € ns_public"
shows "Nonce NB ¢ analz (spies evs)"
using evs NB evs
proof (induction rule: ns_public.induct)
case Fake
then show ?7case by spy_analz
next
case NS2
then show ?case
by (auto intro!: no_nonce_NS1_NS2)
qged auto

Authentication for term B: if he receives message 3 and has used term NB in
message 2, then term A has sent message 3.

lemma B_trusts_NS3_lemma:
"levs € mns_public;
Crypt (pubEK B) (Nonce NB) € parts (spies evs);
Says B A (Crypt (pubEK A) {Nonce NA, Nonce NB, Agent B[}) € set evs;
A ¢ bad; B ¢ bad]
—> Says A B (Crypt (pubEK B) (Nonce NB)) € set evs"
proof (induction rule: ns_public.induct)
case (NS3 evs3 A B NA B’ NB)
then show ?case
by simp (blast intro: no_nonce_NS1_NS2)
qed auto

theorem B_trusts_NS3:
"[Says B A (Crypt (pubEK A) {Nonce NA, Nonce NB, Agent BJ}) € set evs;
Says A’ B (Crypt (pubEK B) (Nonce NB)) € set evs;
A ¢ bad; B ¢ bad; evs € ns_public]
—> Says A B (Crypt (pubEK B) (Nonce NB)) € set evs"
by (blast intro: B_trusts_NS3_lemma)

20.4 Overall guarantee for term B

If NS3 has been sent and the nonce NB agrees with the nonce B joined with
NA, then A initiated the run using NA.

theorem B_trusts_protocol:

"[A ¢ bad; B ¢ bad; evs € ns_public] =

Crypt (pubEK B) (Nonce NB) € parts (spies evs) —

Says B A (Crypt (pubEK A) {Nonce NA, Nonce NB, Agent B[}) € set evs
N

Says A B (Crypt (pubEK B) {Nonce NA, Agent A}}) € set evs"
by (erule ns_public.induct, auto)

end

246 21 THE TLS PROTOCOL: TRANSPORT LAYER SECURITY

21 The TLS Protocol: Transport Layer Security

theory TLS imports Public "HOL-Library.Nat_Bijection" begin

definition certificate :: "[agent,key] = msg" where
"certificate A KA == Crypt (priSK Server) {Agent A, Key KA[}"

TLS apparently does not require separate keypairs for encryption and signature.
Therefore, we formalize signature as encryption using the private encryption key.

datatype role = ClientRole | ServerRole

consts

PRF :: "nat*nat*nat = nat"

sessionK :: "(nat*nat*nat) * role = key"
abbreviation

clientK :: "nat*nat*nat = key" where

"clientK X == sessionK(X, ClientRole)"

abbreviation
serverK :: "nat*nat*nat = key" where
"serverK X == sessionK(X, ServerRole)"

specification (PRF)
inj_PRF: "inj PRF"
— the pseudo-random function is collision-free
apply (rule exI [of _ "A(x,y,z). prod_encode(x, prod_encode(y,z))"])
apply (simp add: inj_on_def prod_encode_eq)
done

specification (sessionk)

inj_sessionK: "inj sessionK"

— sessionK is collision-free; also, no clientK clashes with any serverK.

apply (rule exI [of _

"N((x,y,z), r). prod_encode(case_role 0 1 r,

prod_encode (x, prod_encode(y,z)))"])

apply (simp add: inj_on_def prod_encode_eq split: role.split)

done

axiomatization where
— sessionK makes symmetric keys
isSym_sessionK: "sessionK nonces € symKeys" and

— sessionK never clashes with a long-term symmetric key (they don’t exist in TLS
anyway)
sessionK_neq shrK [iff]: "sessionK nonces 7 shrK A"

inductive__set tls :: "event list set"
where

247

Nil: — The initial, empty trace
n [J c tlS”
| Fake: — The Spy may say anything he can say. The sender field is correct, but

agents don’t use that information.
"levsf € tls; X € synth (analz (spies evsf))]
— Says Spy B X # evsf € tls"

| SpyKeys: — The spy may apply PRF and sessionK to available nonces
"levsSK € tls;
{Nonce NA, Nonce NB, Nonce M} C analz (spies evsSK)]
=—> Notes Spy { Nonce (PRF(M,NA,NB)),
Key (sessionK((NA,NB,M),role))} # evsSK € tls"

| ClientHello:
— (7.4.1.2) PA represents CLIENT_VERSION, CIPHER_SUITES and COMPRESSION_METHODS.
It is uninterpreted but will be confirmed in the FINISHED messages. NA is CLIENT
RANDOM, while SID is SESSION_ID. UNIX TIME is omitted because the protocol
doesn’t use it. May assume NA ¢ range PRF because CLIENT RANDOM is 28 bytes
while MASTER SECRET is 48 bytes
"[evsCH € tls; Nonce NA ¢ used evsCH; NA ¢ range PRF]
— Says A B {Agent A, Nonce NA, Number SID, Number PAl}
evsCH € tls"

| ServerHello:
— 7.4.1.3 of the TLS Internet-Draft PB represents CLIENT_VERSION, CIPHER_SUITE
and COMPRESSION_METHOD. SERVER CERTIFICATE (7.4.2) is always present. CERTIFICATE_REQUEST
(7.4.4) is implied.
"[evsSH € tls; Nonce NB ¢ used evsSH; NB ¢ range PRF;
Says A’ B {Agent A, Nonce NA, Number SID, Number PA[
€ set evsSH]|
—> Says B A {Nonce NB, Number SID, Number PB|} # evsSH € tls"

| Certificate:
— SERVER (7.4.2) or CLIENT (7.4.6) CERTIFICATE.
"evsC € tls = Says B A (certificate B (pubK B)) # evsC €& tls"

| ClientKeyExch:

— CLIENT KEY EXCHANGE (7.4.7). The client, A, chooses PMS, the
PREMASTER SECRET. She encrypts PMS using the supplied KB, which ought to be
pubK B. We assume PMS ¢ range PRF because a clash betweem the PMS and another
MASTER SECRET is highly unlikely (even though both items have the same length,
48 bytes). The Note event records in the trace that she knows PMS (see REMARK
at top).

"[evsCX € tls; Nonce PMS ¢ used evsCX; PMS ¢ range PRF;

Says B’ A (certificate B KB) € set evsCX]
—> Says A B (Crypt KB (Nonce PMS))

Notes A {Agent B, Nonce PMS|}

evsCX € tls"

| CertVerify:
— The optional Certificate Verify (7.4.8) message contains the specific com-
ponents listed in the security analysis, F.1.1.2. It adds the pre-master-secret, which is
also essential! Checking the signature, which is the only use of A’s certificate, assures

248 21 THE TLS PROTOCOL: TRANSPORT LAYER SECURITY

B of A’s presence
"levsCV € tls;
Says B’ A ﬂNonce NB, Number SID, Number PBI} € set evsCV;
Notes A {Agent B, Nonce PMS|} € set evsCV]
= Says A B (Crypt (priK A) (Hash{Nonce NB, Agent B, Nonce PMS]}))
evsCV € tls"

— Finally come the FINISHED messages (7.4.8), confirming PA and PB
among other things. The master-secret is PRF(PMS,NA,NB). Either party may send
its message first.

| ClientFinished:

— The occurrence of Notes A {Agent B, Nonce PMS|} stops the rule’s ap-
plying when the Spy has satisfied the Says A B by repaying messages sent by the true
client; in that case, the Spy does not know PMS and could not send ClientFinished.
One could simply put A # Spy into the rule, but one should not expect the spy to be
well-behaved.

"[evsCF € tls;
Says A B {Agent A, Nonce NA, Number SID, Number PA[
€ set evsCF;
Says B’ A ﬂNonce NB, Number SID, Number PBH € set evsCF;
Notes A {Agent B, Nonce PMS|} € set evsCF;
M = PRF(PMS,NA,NB)]
—> Says A B (Crypt (clientK(NA,NB,M))
(Hash{Number SID, Nonce M,
Nonce NA, Number PA, Agent A,
Nonce NB, Number PB, Agent B[}))
evsCF € tls"

| ServerFinished:
— Keeping A’ and A” distinct means B cannot even check that the two
messages originate from the same source.
"[evsSF € tls;
Says A’ B {Agent A, Nonce NA, Number SID, Number PAl}
€ set evsSF;
Says B A {|Nonce NB, Number SID, Number PB|} € set evsSF;
Says A’’ B (Crypt (pubK B) (Nonce PMS)) € set evsSF;
M = PRF(PMS,NA,NB)]
—> Says B A (Crypt (serverK(NA,NB,M))
(Hash{Number SID, Nonce M,
Nonce NA, Number PA, Agent A,
Nonce NB, Number PB, Agent B[}))
evsSF ¢ tls"

| ClientAccepts:

— Having transmitted ClientFinished and received an identical message en-
crypted with serverK, the client stores the parameters needed to resume this session.
The "Notes A ..." premise is used to prove Notes_master_imp_Crypt_PMS.

"levsCA € tls;
Notes A {]Agent B, Nonce PMS[} € set evsCA;
M = PRF(PMS,NA,NB);
X = Hash{Number SID, Nonce M,
Nonce NA, Number PA, Agent A,
Nonce NB, Number PB, Agent B[};

249

Says A B (Crypt (clientK(NA,NB,M)) X) € set evsCA;
Says B’ A (Crypt (serverK(NA,NB,M)) X) € set evsCA]
—_—
Notes A {Number SID, Agent A, Agent B, Nonce M|} # evsCA € tls"

| ServerAccepts:

— Having transmitted ServerFinished and received an identical message en-
crypted with clientK, the server stores the parameters needed to resume this session.
The "Says A” B ..." premise is used to prove Notes_master_imp_Crypt_PMS.

"levsSA € tls;
A # B;
Says A’’ B (Crypt (pubK B) (Nonce PMS)) € set evsSA;
M = PRF(PMS,NA,NB) ;
X = Hash{Number SID, Nonce M,
Nonce NA, Number PA, Agent A,
Nonce NB, Number PB, Agent B]};
Says B A (Crypt (serverK(NA,NB,M)) X) € set evsSA;
Says A’ B (Crypt (clientK(NA,NB,M)) X) € set evsSA]
—
Notes B {Number SID, Agent A, Agent B, Nonce M|} # evsSA € tls"

| ClientResume:
— If A recalls the SESSION_ID, then she sends a FINISHED message using
the new nonces and stored MASTER SECRET.
"[evsCR € tls;
Says A B {]Agent A, Nonce NA, Number SID, Number PAﬂ» € set evsCR;
Says B’ A {|Nonce NB, Number SID, Number PB|} € set evsCR;
Notes A {Number SID, Agent A, Agent B, Nonce M} € set evsCR]
—> Says A B (Crypt (clientK(NA,NB,M))
(Hash{Number SID, Nonce M,
Nonce NA, Number PA, Agent A,
Nonce NB, Number PB, Agent B[}))
evsCR € tls"

| ServerResume:
— Resumption (7.3): If B finds the SESSION_ID then he can send a FIN-
ISHED message using the recovered MASTER SECRET
"[evsSR € tls;
Says A’ B {|Agent A, Nonce NA, Number SID, Number PA[} € set evsSR;
Says B A {Nonce NB, Number SID, Number PB|} € set evsSR;
Notes B {]Number SID, Agent A, Agent B, Nonce M[} € set evsSR]]
— Says B A (Crypt (serverK(NA,NB,M))
(Hash{Number SID, Nonce M,
Nonce NA, Number PA, Agent A,
Nonce NB, Number PB, Agent B[})) # evsSR
€ tls"

| Oops:

— The most plausible compromise is of an old session key. Losing the
MASTER SECRET or PREMASTER SECRET is more serious but rather unlikely.
The assumption A # Spy is essential: otherwise the Spy could learn session keys
merely by replaying messages!

"[evso € tls; A # Spy;

Says A B (Crypt (sessionK((NA,NB,M),role)) X) € set evso|

250 21 THE TLS PROTOCOL: TRANSPORT LAYER SECURITY

—> Says A Spy (Key (sessionK((NA,NB,M),role))) # evso € tls"

declare Says_imp_knows_Spy [THEN analz.Inj, dest]
declare parts.Body [dest]

declare analz_into_parts [dest]

declare Fake_parts_insert_in_Un [dest]

Automatically unfold the definition of "certificate"

declare certificate_def [simp]

Injectiveness of key-generating functions

declare inj_PRF [THEN inj_eq, iff]
declare inj_sessionK [THEN inj_eq, iff]
declare isSym_sessionK [simp]

lemma pubK_neq_sessionK [iff]: "publicKey b A # sessionK arg"
by (simp add: symKeys_neq_imp_neq)

declare pubK_neq_sessionK [THEN not_sym, iff]

lemma priK_neq_sessionK [iff]: "invKey (publicKey b A) # sessionK arg"
by (simp add: symKeys_neq_imp_neq)

declare priK_neq_sessionK [THEN not_sym, iff]

lemmas keys_distinct = pubK_neq_sessionK priK_neq_sessionk

21.1 Protocol Proofs

Possibility properties state that some traces run the protocol to the end. Four
paths and 12 rules are considered.

Possibility property ending with Client Accepts.

lemma "[Vevs. (SOME N. Nonce N ¢ used evs) ¢ range PRF; A # B]
— JSID M. devs € tls.
Notes A {Number SID, Agent A, Agent B, Nonce M} € set evs"
apply (intro exI bexI)
apply (rule_tac [2] tls.Nil
[THEN tls.ClientHello, THEN tls.ServerHello,
THEN tls.Certificate, THEN tls.ClientKeyExch,
THEN tls.ClientFinished, THEN tls.ServerFinished,
THEN tls.ClientAccepts], possibility, blast+)
done

And one for ServerAccepts. Either FINISHED message may come first.

lemma "[Vevs. (SOME N. Nonce N ¢ used evs) ¢ range PRF; A # B]
— JSID NA PA NB PB M. devs € tls.
Notes B {Number SID, Agent A, Agent B, Nonce M|} € set evs"

21.2 Inductive proofs about tls 251

apply (intro exI bexI)
apply (rule_tac [2] tls.Nil
[THEN tls.ClientHello, THEN tls.ServerHello,
THEN tls.Certificate, THEN tls.ClientKeyExch,
THEN tls.ServerFinished, THEN tls.ClientFinished,
THEN tls.ServerAccepts], possibility, blast+)
done

Another one, for CertVerify (which is optional)

lemma "[Vevs. (SOME N. Nonce N ¢ used evs) ¢ range PRF; A # B]
=—> JNB PMS. Jdevs € tls.
Says A B (Crypt (priK A) (Hash{Nonce NB, Agent B, Nonce PMS|}))

€ set evs"
apply (intro exI bexI)
apply (rule_tac [2] tls.Nil
[THEN tls.ClientHello, THEN tls.ServerHello,
THEN tls.Certificate, THEN tls.ClientKeyExch,
THEN tls.CertVerify], possibility, blast+)
done

Another one, for session resumption (both ServerResume and ClientResume).
NO tls.Nil here: we refer to a previous session, not the empty trace.

lemma "[evsO € tls;
Notes A {Number SID, Agent A, Agent B, Nonce M|} € set evsO;
Notes B ﬂNumber SID, Agent A, Agent B, Nonce Mﬂ € set evs0;
Vevs. (SOME N. Nonce N ¢ used evs) ¢ range PRF;
A # B]
—> JNA PA NB PB X. devs € tls.
X = Hash{Number SID, Nonce M,
Nonce NA, Number PA, Agent A,
Nonce NB, Number PB, Agent B} A
Says A B (Crypt (clientK(NA,NB,M)) X) € set evs A
Says B A (Crypt (serverK(NA,NB,M)) X) € set evs"
apply (intro exI bexI)
apply (rule_tac [2] tls.ClientHello
[THEN tls.ServerHello,
THEN tls.ServerResume, THEN tls.ClientResume], possibility,
blast+)
done

21.2 Inductive proofs about tls

Spy never sees a good agent’s private key!

lemma Spy_see_priK [simp]:
"evs € tls = (Key (privateKey b A) € parts (spies evs)) = (A € bad)"
by (erule tls.induct, force, simp_all, blast)

lemma Spy_analz_priK [simp]:
"evs € tls = (Key (privateKey b A) € analz (spies evs)) = (A € bad)"
by auto

lemma Spy_see_priK_D [dest!]:

252 21 THE TLS PROTOCOL: TRANSPORT LAYER SECURITY

"[Key (privateKey b A) € parts (knows Spy evs); evs € tls] = A € bad"
by (blast dest: Spy_see_prik)

This lemma says that no false certificates exist. One might extend the model
to include bogus certificates for the agents, but there seems little point in doing
so: the loss of their private keys is a worse breach of security.

lemma certificate_valid:
"[certificate B KB € parts (spies evs); evs € tls|] =—> KB = pubK B"
apply (erule rev_mp)
apply (erule tls.induct, force, simp_all, blast)
done

lemmas CX_KB_is_pubKB = Says_imp_spies [THEN parts.Inj, THEN certificate_valid]

21.2.1 Properties of items found in Notes

lemma Notes_Crypt_parts_spies:

"[Notes A {Agent B, X[} € set evs; evs € tls]

—> Crypt (pubK B) X € parts (spies evs)"
apply (erule rev_mp)
apply (erule tls.induct,

frule_tac [7] CX_KB_is_pubKB, force, simp_all)
apply (blast intro: parts_insertI)
done

C may be either A or B

lemma Notes_master_imp_Crypt_PMS:
"[Notes C {s, Agent A, Agent B, Nonce(PRF(PMS,NA,NB))[} € set evs;
evs € tls]
= Crypt (pubK B) (Nonce PMS) € parts (spies evs)"
apply (erule rev_mp)
apply (erule tls.induct, force, simp_all)

Fake

apply (blast intro: parts_insertI)

Client, Server Accept

apply (blast dest!: Notes_Crypt_parts_spies)+
done

Compared with the theorem above, both premise and conclusion are stronger

lemma Notes_master_imp_Notes_PMS:
"[Notes A {s, Agent A, Agent B, Nonce(PRF(PMS,NA,NB))|} € set evs;
evs € tls]
—> Notes A {Agent B, Nonce PMS|} € set evs"
apply (erule rev_mp)
apply (erule tls.induct, force, simp_all)

ServerAccepts

apply blast
done

21.2 Inductive proofs about tls 253

21.2.2 Protocol goal: if B receives CertVerify, then A sent it

B can check A’s signature if he has received A’s certificate.

lemma TrustCertVerify_lemma:
"[X € parts (spies evs);
X = Crypt (priK A) (Hash{nb, Agent B, pmsl|);
evs € tls; A ¢ bad]
—> Says A B X € set evs"
apply (erule rev_mp, erule ssubst)
apply (erule tls.induct, force, simp_all, blast)
done

Final version: B checks X using the distributed KA instead of priK A

lemma TrustCertVerify:
"[X € parts (spies evs);
X = Crypt (invKey KA) (Hash{nb, Agent B, pmsl|});
certificate A KA € parts (spies evs);
evs € tls; A ¢ bad]
— Says A B X € set evs"
by (blast dest!: certificate_valid intro!: TrustCertVerify_lemma)

If CertVerify is present then A has chosen PMS.

lemma UseCertVerify_lemma:
"[Crypt (priK A) (Hash{nb, Agent B, Nonce PMS|}) € parts (spies evs);
evs € tls; A ¢ bad]
= Notes A {Agent B, Nonce PMS|} € set evs"
apply (erule rev_mp)
apply (erule tls.induct, force, simp_all, blast)
done

Final version using the distributed KA instead of priK A

lemma UseCertVerify:
"[Crypt (invKey KA) (Hash{nb, Agent B, Nonce PMS[|)
€ parts (spies evs);
certificate A KA € parts (spies evs);
evs € tls; A ¢ bad]
—> Notes A {Agent B, Nonce PMS|} € set evs"
by (blast dest!: certificate_valid intro!: UseCertVerify_lemma)

lemma no_Notes_A_PRF [simp]:
"evs € tls —> Notes A {Agent B, Nonce (PRF x)|} ¢ set evs"
apply (erule tls.induct, force, simp_all)

ClientKeyExch: PMS is assumed to differ from any PRF.

apply blast
done

lemma MS_imp_PMS [dest!]:
"[Nonce (PRF (PMS,NA,NB)) € parts (spies evs); evs € tls]
— Nonce PMS € parts (spies evs)"

apply (erule rev_mp)

254 21 THE TLS PROTOCOL: TRANSPORT LAYER SECURITY

apply (erule tls.induct, force, simp_all)

Fake

apply (blast intro: parts_insertlI)

Easy, e.g. by freshness

apply (blast dest: Notes_Crypt_parts_spies)+
done

21.2.3 Unicity results for PMS, the pre-master-secret
PMS determines B.

lemma Crypt_unique_PMS:
"[Crypt (pubK B) (Nonce PMS) € parts (spies evs);
Crypt (pubK B’) (Nonce PMS) € parts (spies evs);
Nonce PMS ¢ analz (spies evs);
evs € tls]
= B=B’"
apply (erule rev_mp, erule rev_mp, erule rev_mp)
apply (erule tls.induct, analz_mono_contra, force, simp_all (no_asm_simp))

Fake, ClientKeyExch

apply blast+
done

In A’s internal Note, PMS determines A and B.

lemma Notes_unique_PMS:

"[Notes A {Agent B, Nonce PMS|} € set evs;
Notes A’ {Agent B’, Nonce PMS|} € set evs;
evs € tls]

= A=A’ AN B=B’"

apply (erule rev_mp, erule rev_mp)
apply (erule tls.induct, force, simp_all)

ClientKeyExch

apply (blast dest!: Notes_Crypt_parts_spies)
done

21.3 Secrecy Theorems

Key compromise lemma needed to prove analz_image_keys. No collection of
keys can help the spy get new private keys.

lemma analz_image_priK [rule_format]:
"evs € tls
—> VKK. (Key(priK B) € analz (Key ‘KK U (spies evs))) =
(priK B € KK | B € bad)"
apply (erule tls.induct)
apply (simp_all (no_asm_simp)
del: image_insert
add: image_Un [THEN sym]
insert_Key_image Un_assoc [THEN sym])

21.3 Secrecy Theorems 255

Fake

apply spy_analz
done

slightly speeds up the big simplification below

lemma range_sessionkeys_not_prikK:
"KK C range sessionK —> priK B ¢ KK"
by blast

Lemma for the trivial direction of the if-and-only-if

lemma analz_image_keys_lemma:
"(X € analz (G U H)) — (X € analz H —
(X € analz (G U H)) = (X € analz H)"

by (blast intro: analz _mono [THEN subsetD])

lemma analz_image_keys [rule_format]:
"evs € tls —
VKK. KK C range sessionk —
(Nonce N € analz (Key‘KK U (spies evs))) =
(Nonce N € analz (spies evs))"
apply (erule tls.induct, frule_tac [7] CX_KB_is_pubKB)
apply (safe del: iffI)
apply (safe del: impI iffI intro!: analz_image_keys_lemma)
apply (simp_all (no_asm_simp)
del: image_insert imp_disjL
add: image_Un [THEN sym] Un_assoc [THEN sym]
insert_Key_singleton
range_sessionkeys_not_priK analz_image_prikK)
apply (simp_all add: insert_absorb)

Fake

apply spy_analz
done

Knowing some session keys is no help in getting new nonces

lemma analz_insert_key [simp]:
"evs € tls —
(Nonce N € analz (insert (Key (sessionK z)) (spies evs)))
(Nonce N € analz (spies evs))"
by (simp del: image_insert
add: insert_Key_singleton analz_image_keys)

21.3.1 Protocol goal: serverK(Na,Nb,M) and clientK(Na,Nb,M) re-

main secure

Lemma: session keys are never used if PMS is fresh. Nonces don’t have to agree,
allowing session resumption. Converse doesn’t hold; revealing PMS doesn’t force
the keys to be sent. THEY ARE NOT SUITABLE AS SAFE ELIM RULES.

lemma PMS_lemma:
"[Nonce PMS ¢ parts (spies evs);

256 21 THE TLS PROTOCOL: TRANSPORT LAYER SECURITY

K = sessionK((Na, Nb, PRF(PMS,NA,NB)), role);
evs € tls]
—> Key K ¢ parts (spies evs) A (VY. Crypt K Y ¢ parts (spies evs))"
apply (erule rev_mp, erule ssubst)
apply (erule tls.induct, frule_tac [7] CX_KB_is_pubKB)
apply (force, simp_all (no_asm_simp))

Fake

apply (blast intro: parts_insertlI)
SpyKeys

apply blast

Many others

apply (force dest!: Notes_Crypt_parts_spies Notes_master_imp_Crypt_PMS)+
done

lemma PMS_sessionK_not_spied:
"[Key (sessionK((Na, Nb, PRF(PMS,NA,NB)), role)) € parts (spies evs);
evs € tls]
— Nonce PMS € parts (spies evs)"
by (blast dest: PMS_lemma)

lemma PMS_Crypt_sessionK_not_spied:
"[Crypt (sessionK((Na, Nb, PRF(PMS,NA,NB)), role)) Y
€ parts (spies evs); evs € tls]
— Nonce PMS € parts (spies evs)"
by (blast dest: PMS_lemma)

Write keys are never sent if M (MASTER SECRET) is secure. Converse fails;
betraying M doesn’t force the keys to be sent! The strong Oops condition can
be weakened later by unicity reasoning, with some effort. NO LONGER USED:
see clientK_not_spied and serverK_not_spied

lemma sessionK_not_spied:
"[VA. Says A Spy (Key (sessionK((NA,NB,M),role))) ¢ set evs;
Nonce M ¢ analz (spies evs); evs € tls]
—> Key (sessionK((NA,NB,M),role)) ¢ parts (spies evs)"
apply (erule rev_mp, erule rev_mp)
apply (erule tls.induct, analz_mono_contra)
apply (force, simp_all (no_asm_simp))

Fake, SpyKeys

apply blast+
done

If A sends ClientKeyExch to an honest B, then the PMS will stay secret.

lemma Spy_not_see_PMS:
"[Notes A {Agent B, Nonce PMS|} € set evs;
evs € tls; A ¢ bad; B ¢ bad]
= Nonce PMS ¢ analz (spies evs)"
apply (erule rev_mp, erule tls.induct, frule_tac [7] CX_KB_is_pubKB)
apply (force, simp_all (no_asm_simp))

21.3 Secrecy Theorems 257

Fake
apply spy_analz
SpyKeys

apply force
apply (simp_all add: insert_absorb)

ClientHello, ServerHello, ClientKeyExch: mostly freshness reasoning

apply (blast dest: Notes_Crypt_parts_spies)
apply (blast dest: Notes_Crypt_parts_spies)
apply (blast dest: Notes_Crypt_parts_spies)

ClientAccepts and ServerAccepts: because PMS ¢ range PRF

apply force+
done

If A sends ClientKeyExch to an honest B, then the MASTER SECRET will
stay secret.

lemma Spy_not_see_MS:
"[Notes A {Agent B, Nonce PMS|} € set evs;
evs € tls; A ¢ bad; B ¢ bad]
—> Nonce (PRF(PMS,NA,NB)) ¢ analz (spies evs)"
apply (erule rev_mp, erule tls.induct, frule_tac [7] CX_KB_is_pubKB)
apply (force, simp_all (no_asm_simp))

Fake
apply spy_analz
SpyKeys: by secrecy of the PMS, Spy cannot make the MS

apply (blast dest!: Spy_not_see_PMS)
apply (simp_all add: insert_absorb)

ClientAccepts and ServerAccepts: because PMS was already visible; others, freshness
etc.

apply (blast dest: Notes_Crypt_parts_spies Spy_not_see_PMS
Notes_imp_knows_Spy [THEN analz.Inj])+
done

21.3.2 Weakening the Oops conditions for leakage of clientK

If A created PMS then nobody else (except the Spy in replays) would send a
message using a clientK generated from that PMS.

lemma Says_clientK_unique:
”[[Says A’ B’ (Crypt (clientK(Na,Nb,PRF(PMS,NA,NB))) Y) € set evs;
Notes A {Agent B, Nonce PMS|} € set evs;
evs € tls; A’ # Spy]
= A =4"
apply (erule rev_mp, erule rev_mp)
apply (erule tls.induct, frule_tac [7] CX_KB_is_pubKB)
apply (force, simp_all)

ClientKeyExch

258 21 THE TLS PROTOCOL: TRANSPORT LAYER SECURITY

apply (blast dest!: PMS_Crypt_sessionK_not_spied)

ClientFinished, ClientResume: by unicity of PMS

apply (blast dest!: Notes_master_imp_Notes_PMS
intro: Notes_unique_PMS [THEN conjunctl])+
done

If A created PMS and has not leaked her clientK to the Spy, then it is completely
secure: not even in parts!

lemma clientK_not_spied:
"[Notes A {Agent B, Nonce PMS|} € set evs;
Says A Spy (Key (clientK(Na,Nb,PRF(PMS,NA,NB)))) ¢ set evs;
A ¢ bad; B ¢ bad;
evs € tls]
= Key (clientK(Na,Nb,PRF(PMS,NA,NB))) ¢ parts (spies evs)"
apply (erule rev_mp, erule rev_mp)
apply (erule tls.induct, frule_tac [7] CX_KB_is_pubKB)
apply (force, simp_all (no_asm_simp))

ClientKeyExch

apply blast

SpyKeys

apply (blast dest!: Spy_not_see_MS)
ClientKeyExch

apply (blast dest!: PMS_sessionK_not_spied)
Oops

apply (blast intro: Says_clientK_unique)

done

21.3.3 Weakening the Oops conditions for leakage of serverK

If A created PMS for B, then nobody other than B or the Spy would send a
message using a serverK generated from that PMS.

lemma Says_serverK_unique:
"[Says B’ A’ (Crypt (serverK(Na,Nb,PRF(PMS,NA,NB))) Y) € set evs;
Notes A {Agent B, Nonce PMS|} € set evs;
evs € tls; A ¢ bad; B ¢ bad; B’ # Spy]
= B = B’"
apply (erule rev_mp, erule rev_mp)
apply (erule tls.induct, frule_tac [7] CX_KB_is_pubKB)
apply (force, simp_all)

ClientKeyExch
apply (blast dest!: PMS_Crypt_sessionK_not_spied)
ServerResume, ServerFinished: by unicity of PMS

apply (blast dest!: Notes_master_imp_Crypt_PMS
dest: Spy_not_see_PMS Notes_Crypt_parts_spies Crypt_unique_PMS)+

21.3 Secrecy Theorems 259

done

If A created PMS for B, and B has not leaked his serverK to the Spy, then it is
completely secure: not even in parts!

lemma serverK_not_spied:
"[Notes A {Agent B, Nonce PMS| € set evs;
Says B Spy (Key(serverK(Na,Nb,PRF(PMS,NA,NB)))) ¢ set evs;
A ¢ bad; B ¢ bad; evs € tls]
—> Key (serverK(Na,Nb,PRF(PMS,NA,NB))) ¢ parts (spies evs)"
apply (erule rev_mp, erule rev_mp)
apply (erule tls.induct, frule_tac [7] CX_KB_is_pubKB)
apply (force, simp_all (no_asm_simp))

Fake

apply blast

SpyKeys

apply (blast dest!: Spy_not_see_MS)
ClientKeyExch

apply (blast dest!: PMS_sessionK_not_spied)
Oops

apply (blast intro: Says_serverK_unique)
done

21.3.4 Protocol goals: if A receives ServerFinished, then B is present
and has used the quoted values PA, PB, etc. Note that it is
up to A to compare PA with what she originally sent.

The mention of her name (A) in X assures A that B knows who she is.

lemma TrustServerFinished [rule_format]:
"[X = Crypt (serverK(Na,Nb,M))
(Hash{Number SID, Nonce M,
Nonce Na, Number PA, Agent A,
Nonce Nb, Number PB, Agent B});
M = PRF(PMS,NA,NB);
evs € tls; A ¢ bad; B ¢ bad]
—> Says B Spy (Key(serverK(Na,Nb,M))) ¢ set evs —>
Notes A {Agent B, Nonce PMS|} € set evs —»
X € parts (spies evs) — Says B A X € set evs"
apply (erule ssubst)+
apply (erule tls.induct, frule_tac [7] CX_KB_is_pubKB)
apply (force, simp_all (no_asm_simp))

Fake: the Spy doesn’t have the critical session key!
apply (blast dest: serverK_not_spied)
ClientKeyExch

apply (blast dest!: PMS_Crypt_sessionK_not_spied)
done

260 21 THE TLS PROTOCOL: TRANSPORT LAYER SECURITY

This version refers not to ServerFinished but to any message from B. We don’t
assume B has received CertVerify, and an intruder could have changed A’s
identity in all other messages, so we can’t be sure that B sends his message
to A. If CLIENT KEY EXCHANGE were augmented to bind A’s identity with
PMS, then we could replace A’ by A below.

lemma TrustServerMsg [rule_format]:
"[M = PRF(PMS,NA,NB); evs € tls; A ¢ bad; B ¢ bad]
—> Says B Spy (Key(serverK(Na,Nb,M))) ¢ set evs —»
Notes A {Agent B, Nonce PMS|} € set evs —»
Crypt (serverK(Na,Nb,M)) Y € parts (spies evs) —>
(34°. Says B A’ (Crypt (serverK(Na,Nb,M)) Y) € set evs)"
apply (erule ssubst)
apply (erule tls.induct, frule_tac [7] CX_KB_is_pubKB)
apply (force, simp_all (no_asm_simp) add: ex_disj_distrib)

Fake: the Spy doesn’t have the critical session key!

apply (blast dest: serverK_not_spied)

ClientKeyExch

apply (clarify, blast dest!: PMS_Crypt_sessionK_not_spied)

ServerResume, ServerFinished: by unicity of PMS

apply (blast dest!: Notes_master_imp_Crypt_PMS
dest: Spy_not_see_PMS Notes_Crypt_parts_spies Crypt_unique_PMS)+
done

21.3.5 Protocol goal: if B receives any message encrypted with clientK
then A has sent it

ASSUMING that A chose PMS. Authentication is assumed here; B cannot verify
it. But if the message is ClientFinished, then B can then check the quoted values
PA, PB, etc.

lemma TrustClientMsg [rule_format]:
"[M = PRF(PMS,NA,NB); evs € tls; A ¢ bad; B ¢ bad]
—> Says A Spy (Key(clientK(Na,Nb,M))) ¢ set evs —»
Notes A {Agent B, Nonce PMS|} € set evs —»
Crypt (clientK(Na,Nb,M)) Y € parts (spies evs) —>
Says A B (Crypt (clientK(Na,Nb,M)) Y) € set evs"
apply (erule ssubst)
apply (erule tls.induct, frule_tac [7] CX_KB_is_pubKB)
apply (force, simp_all (no_asm_simp))

Fake: the Spy doesn’t have the critical session key!
apply (blast dest: clientK_not_spied)
ClientKeyExch

apply (blast dest!: PMS_Crypt_sessionK_not_spied)
ClientFinished, ClientResume: by unicity of PMS

apply (blast dest!: Notes_master_imp_Notes_PMS dest: Notes_unique_PMS)+
done

261

21.3.6 Protocol goal: if B receives ClientFinished, and if B is able to
check a CertVerify from A, then A has used the quoted values
PA, PB, etc. Even this one requires A to be uncompromised.

lemma AuthClientFinished:
"[M = PRF(PMS,NA,NB);
Says A Spy (Key(clientK(Na,Nb,M))) ¢ set evs;
Says A’ B (Crypt (clientK(Na,Nb,M)) Y) € set evs;
certificate A KA € parts (spies evs);
Says A’’ B (Crypt (invKey KA) (Hash{nb, Agent B, Nonce PMS[|))
€ set evs;
evs € tls; A ¢ bad; B ¢ bad]
= Says A B (Crypt (clientK(Na,Nb,M)) Y) € set evs"
by (blast intro!: TrustClientMsg UseCertVerify)

end

22 The Certified Electronic Mail Protocol by
Abadi et al.

theory CertifiedEmail imports Public begin

abbreviation
TTP :: agent where
"TTP == Server"

abbreviation
RPwd :: "agent = key" where
"RPwd == shrK"

consts
NoAuth :: nat
TTPAuth :: nat
SAuth :: nat

BothAuth :: nat

We formalize a fixed way of computing responses. Could be better.

26222 THE CERTIFIED ELECTRONIC MAIL PROTOCOL BY ABADIET AL.

definition "response" :: "agent = agent =- nat = msg" where
"response S R q == Hash {Agent S, Key (shrK R), Nonce q[}"

inductive__set certified _mail :: "event list set"
where
Nil: — The empty trace

"[] € certified_mail"

| Fake: — The Spy may say anything he can say. The sender field is correct, but
agents don’t use that information.

"levsf € certified_mail; X € synth(analz(spies evsf))]

— Says Spy B X # evsf € certified_mail"

| FakeSSL: — The Spy may open SSL sessions with TTP, who is the only agent
equipped with the necessary credentials to serve as an SSL server.

"[evsfssl € certified_mail; X € synth(analz(spies evsfssl))]

—> Notes TTP {Agent Spy, Agent TTP, X|} # evsfssl € certified_mail"

| CM1: — The sender approaches the recipient. The message is a number.
"levsl € certified_mail;
Key K ¢ used evsi;
K € symKeys;
Nonce q ¢ used evsi;
hs = Hash{Number cleartext, Nonce q, response S R g, Crypt K (Number m)|;
S2TTP = Crypt(pubEK TTP) {Agent S, Number BothAuth, Key K, Agent R, hsl}]
—> Says S R {Agent S, Agent TTP, Crypt K (Number m), Number BothAuth,
Number cleartext, Nonce q, S2TTP|} # evsl
€ certified_mail"

| CM2: — The recipient records S2TTP while transmitting it and her password to TTP
over an SSL channel.
"levs2 € certified_mail;
Gets R {]Agent S, Agent TTP, em, Number BothAuth, Number cleartext,
Nonce q, S2TTP} € set evs2;
TTP + R;
hr = Hash {Number cleartext, Nonce q, response S R q, eml]]
BN
Notes TTP {Agent R, Agent TTP, S2TTP, Key(RPwd R), hr|} # evs2
€ certified_mail"

| CM3: — TTP simultaneously reveals the key to the recipient and gives a receipt to
the sender. The SSL channel does not authenticate the client (R), but TTP accepts the
message only if the given password is that of the claimed sender, R. He replies over the
established SSL channel.
"[evs3 € certified_mail;
Notes TTP {Agent R, Agent TTP, S2TTP, Key(RPwd R), hr|} € set evs3;
S2TTP = Crypt (pubEK TTP)
{Agent S, Number BothAuth, Key k, Agent R, hs|;
TTP # R; hs = hr; k € symKeys]
BN
Notes R {Agent TTP, Agent R, Key k, hr| #
Gets S (Crypt (priSK TTP) S2TTP) #

263

Says TTP S (Crypt (priSK TTP) S2TTP) # evs3 € certified_mail"

| Reception:
"[evsr € certified_mail; Says A B X € set evsr]
—> Gets B X#evsr € certified_mail"

declare Says_imp_knows_Spy [THEN analz.Inj, dest]
declare analz_into_parts [dest]

lemma "[Key K ¢ used []; K € symKeys] =
3S2TTP. Jevs € certified_mail.
Says TTP S (Crypt (priSK TTP) S2TTP) € set evs"
apply (intro exI bexI)
apply (rule_tac [2] certified_mail.Nil
[THEN certified_mail.CM1, THEN certified_mail.Reception,
THEN certified_mail.CM2,
THEN certified_mail.CM3])
apply (possibility, auto)
done

lemma Gets_imp_Says:
"[Gets B X € set evs; evs € certified_mail] = JA. Says A B X € set evs"
apply (erule rev_mp)
apply (erule certified_mail.induct, auto)
done

lemma Gets_imp_parts_knows_Spy:
"[Gets A X € set evs; evs € certified_mail] =—> X € parts(spies evs)"
apply (drule Gets_imp_Says, simp)
apply (blast dest: Says_imp_knows_Spy parts.Inj)
done

lemma CM2_S2TTP_analz_knows_Spy:

"[Gets R {Agent A, Agent B, em, Number AO, Number cleartext,

Nonce q, S2TTP} € set evs;
evs € certified_mail]

= S2TTP € analz(spies evs)"
apply (drule Gets_imp_Says, simp)
apply (blast dest: Says_imp_knows_Spy analz.Inj)
done

lemmas CM2_S2TTP_parts_knows_Spy =
CM2_S2TTP_analz_knows_Spy [THEN analz_subset_parts [THEN subsetD]]

lemma hr_form_lemma [rule_format]:
"evs € certified_mail
—> hr ¢ synth (analz (spies evs)) —
(VS2TTP. Notes TTP {Agent R, Agent TTP, S2TTP, pwd, hr|
€ set evs —
(Fclt q S em. hr = Hash {Number clt, Nonce q, response S R q, em[))"

26422 THE CERTIFIED ELECTRONIC MAIL PROTOCOL BY ABADIET AL.

apply (erule certified_mail.induct)
apply (synth_analz_mono_contra, simp_all, blast+)
done

Cannot strengthen the first disjunct to R # Spy because the fakessl rule allows
Spy to spoof the sender’s name. Maybe can strengthen the second disjunct with

R # Spy.

lemma hr_form:
"[Notes TTP {Agent R, Agent TTP, S2TTP, pwd, hr|} € set evs;
evs € certified_mail]
—> hr € synth (analz (spies evs)) |
(3clt q S em. hr = Hash {Number clt, Nonce q, response S R q, em]})"
by (blast intro: hr_form_lemma)

lemma Spy_dont_know_private_keys [dest!]:
"[Key (privateKey b A) € parts (spies evs); evs € certified_mail]
— A € bad"

apply (erule rev_mp)

apply (erule certified_mail.induct, simp_all)

Fake

apply (blast dest: Fake_parts_insert_in_Un)

Message 1
apply blast

Message 3

apply (frule_tac hr_form, assumption)

apply (elim disjE exE)

apply (simp_all add: parts_insert2)

apply (force dest!: parts_insert_subset_Un [THEN [2] rev_subsetD]
analz_subset_parts [THEN subsetD], blast)

done

lemma Spy_know_private_keys_iff [simp]:

"evs € certified_mail

—> (Key (privateKey b A) € parts (spies evs)) = (A € bad)"
by blast

lemma Spy_dont_know_TTPKey_parts [simp]:
"evs € certified_mail —> Key (privateKey b TTP) ¢ parts(spies evs)"

by simp

lemma Spy_dont_know_TTPKey_analz [simp]:
"evs € certified_mail = Key (privateKey b TTP) ¢ analz(spies evs)"
by auto

Thus, prove any goal that assumes that Spy knows a private key belonging to
TTP

declare Spy_dont_know_TTPKey_parts [THEN [2] rev_notE, elim!]

265

lemma CM3_k_parts_knows_Spy:
"[evs € certified_mail;
Notes TTP {Agent A, Agent TTP,
Crypt (pubEK TTP) {Agent S, Number AO, Key K,
Agent R, hs|, Key (RPwd R), hs|} € set evs]
= Key K € parts(spies evs)"
apply (rotate_tac 1)
apply (erule rev_mp)
apply (erule certified_mail.induct, simp_all)
apply (blast intro:parts_insertI)

Fake SSL

apply (blast dest: parts.Body)

Message 2

apply (blast dest!: Gets_imp_Says elim!: knows_Spy_partsEs)

Message 3

apply (metis parts_insertI)
done

lemma Spy_dont_know_RPwd [rule_format]:
"evs € certified_mail = Key (RPwd A) € parts(spies evs) — A € bad"
apply (erule certified_mail.induct, simp_all)

Fake

apply (blast dest: Fake_parts_insert_in_Un)

Message 1

apply blast

Message 3

apply (frule CM3_k_parts_knows_Spy, assumption)

apply (frule_tac hr_form, assumption)

apply (elim disjE exE)

apply (simp_all add: parts_insert2)

apply (force dest!: parts_insert_subset_Un [THEN [2] rev_subsetD]
analz_subset_parts [THEN subsetD])

done

lemma Spy_know_RPwd_iff [simp]:
"evs € certified_mail = (Key (RPwd A) € parts(spies evs))
by (auto simp add: Spy_dont_know_RPwd)

(Acbad)"

lemma Spy_analz_ RPwd_iff [simp]:
"evs € certified_mail = (Key (RPwd A) € analz(spies evs)) = (A€bad)"
by (metis Spy_know_RPwd_iff Spy_spies_bad_shrK analz.Inj analz_into_parts)

Unused, but a guarantee of sorts

theorem CertAutenticity:
"[Crypt (priSK TTP) X € parts (spies evs); evs € certified_mail]

26622 THE CERTIFIED ELECTRONIC MAIL PROTOCOL BY ABADIET AL.

— dA. Says TTP A (Crypt (priSK TTP) X) € set evs"
apply (erule rev_mp)
apply (erule certified_mail.induct, simp_all)

Fake
apply (blast dest: Spy_dont_know_private_keys Fake_parts_insert_in_Un)

Message 1

apply blast

Message 3

apply (frule_tac hr_form, assumption)

apply (elim disjE exE)

apply (simp_all add: parts_insert2 parts_insert_knows_A)
apply (blast dest!: Fake_parts_sing_imp_Un, blast)
done

22.1 Proving Confidentiality Results

lemma analz_image_freshK [rule_format]:
"evs € certified_mail —
VK KK. invKey (pubEK TTP) ¢ KK —
(Key K € analz (Key‘KK U (spies evs))) =
(K € KK | Key K € analz (spies evs))"
apply (erule certified_mail.induct)
apply (drule_tac [6] A=TTP in symKey_neq_priEK)
apply (erule_tac [6] disjE [OF hr_form])
apply (drule_tac [5] CM2_S2TTP_analz_knows_Spy)
prefer 9
apply (elim exE)
apply (simp_all add: synth_analz_insert_eq
subset_trans [0OF _ subset_insertI]
subset_trans [OF _ Un_upper2]
del: image_insert image_Un add: analz_image_freshK_simps)
done

lemma analz_insert_freshK:
"levs € certified_mail; KAB # invKey (pubEK TTP)] —
(Key K € analz (insert (Key KAB) (spies evs))) =
(K = KAB | Key K € analz (spies evs))"
by (simp only: analz_image_freshK analz_image_freshK_simps)

S2TTP must have originated from a valid sender provided K is secure. Proof is
surprisingly hard.

lemma Notes_SSL_imp_used:
"[Notes B {Agent A, Agent B, X[€ set evs] = X € used evs"
by (blast dest!: Notes_imp_used)

lemma S2TTP_sender_lemma [rule_format]:
"evs € certified_mail —

22.1 Proving Confidentiality Results 267

Key K ¢ analz (spies evs) —
(VAO. Crypt (pubEK TTP)
{]Agent S, Number AO, Key K, Agent R, hs[} € used evs —>
(dm ctxt q.
hs = Hash{Number ctxt, Nonce q, response S R q, Crypt K (Number m)}

Says S R
{Agent S, Agent TTP, Crypt K (Number m), Number AO,

Number ctxt, Nonce q,

Crypt (pubEK TTP)

{Agent S, Number AO, Key K, Agent R, hs [} € set evs))"
apply (erule certified_mail.induct, analz_mono_contra)
apply (drule_tac [5] CM2_S2TTP_parts_knows_Spy, simp)
apply (simp add: used_Nil Crypt_notin_initState, simp_all)

Fake

apply (blast dest: Fake_parts_sing [THEN subsetD]
dest!: analz_subset_parts [THEN subsetD])

Fake SSL

apply (blast dest: Fake_parts_sing [THEN subsetD]
dest: analz_subset_parts [THEN subsetD])

Message 1
apply (clarsimp, blast)

Message 2

apply (simp add: parts_insert2, clarify)
apply (metis parts_cut Un_empty_left usedI)

Message 3

apply (blast dest: Notes_SSL_imp_used used_parts_subset_parts)
done

lemma S2TTP_sender:
"[Crypt (pubEK TTP) {Agent S, Number AO, Key K, Agent R, hs|} € used evs;
Key K ¢ analz (spies evs);
evs € certified_mail]
= dm ctxt q.
hs = Hash{Number ctxt, Nonce q, response S R q, Crypt K (Number m)}

Says S R
{Agent S, Agent TTP, Crypt K (Number m), Number AO,
Number ctxt, Nonce q,
Crypt (pubEK TTP)
{Agent S, Number AO, Key K, Agent R, hs[}} € set evs"
by (blast intro: S2TTP_sender_lemma)

Nobody can have used non-existent keys!

lemma new_keys_not_used [simp]:
"[Key K ¢ used evs; K € symKeys; evs € certified_mail]
= K ¢ keysFor (parts (spies evs))"

apply (erule rev_mp)

26822 THE CERTIFIED ELECTRONIC MAIL PROTOCOL BY ABADIET AL.

apply (erule certified_mail.induct, simp_all)

Fake

apply (force dest!: keysFor_parts_insert)

Message 1
apply blast

Message 3

apply (frule CM3_k_parts_knows_Spy, assumption)
apply (frule_tac hr_form, assumption)

apply (force dest!: keysFor_parts_insert)

done

Less easy to prove m’ = m. Maybe needs a separate unicity theorem for cipher-
texts of the form Crypt K (Number m), where K is secure.

lemma Key_unique_lemma [rule_format]:
"evs € certified_mail —
Key K ¢ analz (spies evs) —
(Vm cleartext q hs.
Says S R
{Agent S, Agent TTP, Crypt K (Number m), Number AO,
Number cleartext, Nonce q,
Crypt (pubEK TTP) {Agent S, Number AO, Key K, Agent R, hsl||}
€ set evs —
(Vm’ cleartext’ q’ hs’.
Says S’ R’
{Agent S’, Agent TTP, Crypt K (Number m’), Number AO’,
Number cleartext’, Nonce q’,
Crypt (pubEK TTP) {Agent S’, Number AO’, Key K, Agent R’, hs’[}
€ set evs — R> =R AN S’ =S A A0’ = AO N hs’ = hs))"
apply (erule certified_mail.induct, analz_mono_contra, simp_all)
prefer 2

Message 1

apply (blast dest!: Says_imp_knows_Spy [THEN parts.Inj] new_keys_not_used
Crypt_imp_keysFor)

Fake

apply (auto dest!: usedI S2TTP_sender analz_subset_parts [THEN subsetD])
done

The key determines the sender, recipient and protocol options.

lemma Key_unique:
"[Says S R
{Agent S, Agent TTP, Crypt K (Number m), Number AO,
Number cleartext, Nonce q,
Crypt (pubEK TTP) {Agent S, Number AO, Key K, Agent R, hsl|]}
€ set evs;
Says S’ R’
{Agent S’, Agent TTP, Crypt K (Number m’), Number AQ’,
Number cleartext’, Nonce q’,

22.2 The Guarantees for Sender and Recipient 269

Crypt (pubEK TTP) {Agent S’, Number AO’, Key K, Agent R’, hs’|}
€ set evs;
Key K ¢ analz (spies evs);
evs € certified_mail]
— R’ =R NS’ =8 AN A0’ = A0 N hs’ = hs"
by (rule Key_unique_lemma, assumption+)

22.2 The Guarantees for Sender and Recipient

A Sender’s guarantee: If Spy gets the key then R is bad and S moreover gets his
return receipt (and therefore has no grounds for complaint).

theorem S_fairness_bad_R:
"[Says S R {Agent S, Agent TTP, Crypt K (Number m), Number AO,
Number cleartext, Nonce q, SQTTP[} € set evs;
S2TTP = Crypt (pubEK TTP) {Agent S, Number AO, Key K, Agent R, hsl;
Key K € analz (spies evs);
evs € certified_mail;
S#Spy]
= R € bad A Gets S (Crypt (priSK TTP) S2TTP) € set evs"
apply (erule rev_mp)
apply (erule ssubst)
apply (erule rev_mp)
apply (erule certified_mail.induct, simp_all)

Fake

apply spy_analz
Fake SSL

apply spy_analz
Message 3

apply (frule_tac hr_form, assumption)
apply (elim disjE exE)
apply (simp_all add: synth_analz_insert_eq

subset_trans [0OF _ subset_insertI]

subset_trans [0OF _ Un_upper2]

del: image_insert image_Un add: analz_image_freshK_simps)

apply (simp_all add: symKey_neq_priEK analz_insert_freshK)
apply (blast dest: Notes_SSL_imp_used S2TTP_sender Key_unique)+
done

Confidentially for the symmetric key

theorem Spy_not_see_encrypted_key:
"[Says S R {Agent S, Agent TTP, Crypt K (Number m), Number AO,
Number cleartext, Nonce q, SQTTP[} € set evs;
S2TTP = Crypt (pubEK TTP) {Agent S, Number AO, Key K, Agent R, hsl;
evs € certified_mail;
S#Spy; R ¢ bad]
—> Key K ¢ analz(spies evs)"
by (blast dest: S_fairness_bad_R)

Agent R, who may be the Spy, doesn’t receive the key until S has access to the
return receipt.

27022 THE CERTIFIED ELECTRONIC MAIL PROTOCOL BY ABADIET AL.

theorem S_guarantee:

"[Says S

S2TTP
Notes

R {Agent S, Agent TTP, Crypt K (Number m), Number AO,

Number cleartext, Nonce q, SQTTP[} € set evs;
= Crypt (pubEK TTP) {Agent S, Number AO, Key K, Agent R, hs|;
R {Agent TTP, Agent R, Key K, hs|} € set evs;

S+#Spy; evs € certified_mail]

— Gets
apply (erule
apply (erule
apply (erule
apply (erule

Message 1
apply (blast
Message 3

apply (blast

done

S (Crypt (priSK TTP) S2TTP) € set evs"
rev_mp)

ssubst)

rev_mp)

certified_mail.induct, simp_all)

dest: Notes_imp_used)

dest: Notes_SSL_imp_used S2TTP_sender Key_unique S_fairness_bad_R)

If R sends message 2, and a delivery certificate exists, then R receives the nec-
essary key. This result is also important to S, as it confirms the validity of the

return receipt.

theorem RR_validity:
"[Crypt (priSK TTP) S2TTP € used evs;
S2TTP = Crypt (pubEK TTP)

{Agent S, Number AO, Key K, Agent R,
Hash {Number cleartext, Nonce q, r, eml|]};

hr = Hash {]Number cleartext, Nonce q, r, em[};

R#Spy;
—> Notes R
apply (erule
apply (erule
apply (erule
apply (erule

Fake

apply (blast

evs € certified_mail]

{Agent TTP, Agent R, Key K, hr]} € set evs"
rev_mp)

ssubst)

ssubst)

certified_mail.induct, simp_all)

dest: Fake_parts_sing [THEN subsetD]

dest!: analz_subset_parts [THEN subsetD])

Fake SSL

apply (blast

dest: Fake_parts_sing [THEN subsetD]

dest!: analz_subset_parts [THEN subsetD])

Message 2

apply (drule
apply (force

Message 3

apply (frule_

CM2_S2TTP_parts_knows_Spy, assumption)
dest: parts_cut)

tac hr_form, assumption)

apply (elim disjE exE, simp_all)

apply (blast

dest: Fake_parts_sing [THEN subsetD]

271

dest!: analz_subset_parts [THEN subsetD])
done

end

23 Conventional protocols: rely on conventional
Message, Event and Public — Public-key pro-
tocols

theory Auth_Public
imports
NS_Public_Bad
NS_Public
TLS
CertifiedEmail
begin

end

24 Theory of Events for Security Protocols that
use smartcards

theory EventSC
imports
"../Message"
"HOL-Library.Simps_Case_Conv"
begin

consts
initState :: "agent => msg set"

datatype card = Card agent

Four new events express the traffic between an agent and his card

datatype
event = Says agent agent msg

| Notes agent msg
| Gets agent msg
| Inputs agent card msg
| C_Gets card msg
| Outpts card agent msg
| A_Gets agent msg

consts

bad :: "agent set"

stolen :: "card set"

cloned :: "card set"

secureM :: "bool"

abbreviation

insecureM :: bool where

27224 THEORY OF EVENTS FOR SECURITY PROTOCOLS THAT USE SMARTCARDS

"insecureM == —secureM"

Spy has access to his own key for spoof messages, but Server is secure

specification (bad)
Spy_in_bad [iff]: "Spy € bad"
Server_not_bad [iff]: "Server ¢ bad"
apply (rule exI [of _ "{Spy}"], simp) done

specification (stolen)
Card_Server_not_stolen [iff]: "Card Server ¢ stolen"
Card_Spy_not_stolen [iff]: "Card Spy ¢ stolen"
apply blast done

specification (cloned)
Card_Server_not_cloned [iff]: "Card Server ¢ cloned"

Card_Spy_not_cloned [iff]: "Card Spy ¢ cloned"
apply blast done

primrec
knows :: "agent => event list => msg set" where
knows_Nil: "knows A [] = initState A" |
knows_Cons: ‘"knows A (ev # evs) =
(case ev of
Says A’ B X =>
if (A=A’ | A=Spy) then insert X (knows A evs) else knows A
evs
| Notes A’ X =>
if (A=A’ | (A=Spy & A’c€bad)) then insert X (knows A evs)
else knows A evs
| Gets A X =>
if (A=A’ & A # Spy) then insert X (knows A evs)
else knows A evs
| Inputs A’ C X =>
if secureM then
if A=A’ then insert X (knows A evs) else knows A evs
else
if (A=A’ | A=Spy) then insert X (knows A evs) else knows A
evs

| C_Gets C X => knows A evs
| Outpts C A’ X =>
if secureM then
if A=A’ then insert X (knows A evs) else knows A evs
else
if A=Spy then insert X (knows A evs) else knows A evs
| A_Gets A> X =>
if (A=A’ & A # Spy) then insert X (knows A evs)
else knows A evs)"

primrec

24.1 Function knows 273

used :: "event list => msg set" where
used_Nil: "used [] (UN B. parts (initState B))" |
used_Cons: '"used (ev # evs)
(case ev of
Says A B X => parts {X} U (used evs)
Notes A X => parts {X} U (used evs)
Gets A X => used evs
Inputs A C X => parts{X} U (used evs)
C_Gets C X => used evs
Outpts C A X => parts{X} U (used evs)
| A_Gets A X => used evs)"

— Gets always follows Says in real protocols. Likewise, C_Gets will always have

to follow Inputs and A_Gets will always have to follow Outpts

—_——— — —

lemma Notes_imp_used [rule_format]: "Notes A X € set evs —> X € used evs"
apply (induct_tac evs)

apply (auto split: event.split)

done

lemma Says_imp_used [rule_format]: "Says A B X € set evs — X € used evs"
apply (induct_tac evs)

apply (auto split: event.split)

done

lemma MPair_used [rule_format]:
"MPair X Y € used evs — X € used evs & Y € used evs"
apply (induct_tac evs)
apply (auto split: event.split)
done

24.1 Function xnows

lemmas parts_insert_knows_A = parts_insert [of _ "knows A evs"] for A evs

lemma knows_Spy_Says [simp]:
"knows Spy (Says A B X # evs) = insert X (knows Spy evs)"
by simp

Letting the Spy see "bad" agents’ notes avoids redundant case-splits on whether
A = Spy and whether A € bad

lemma knows_Spy_Notes [simp]:
"knows Spy (Notes A X # evs) =
(if A€bad then insert X (knows Spy evs) else knows Spy evs)"
by simp

lemma knows_Spy_Gets [simp]: "knows Spy (Gets A X # evs) = knows Spy evs"
by simp

lemma knows_Spy_Inputs_secureM [simp]:
"secureM = knows Spy (Inputs A C X # evs) =
(if A=Spy then insert X (knows Spy evs) else knows Spy evs)"
by simp

lemma knows_Spy_Inputs_insecureM [simp]:

27424 THEORY OF EVENTS FOR SECURITY PROTOCOLS THAT USE SMARTCARDS

"insecureM = knows Spy (Inputs A C X # evs) = insert X (knows Spy evs)"
by simp

lemma knows_Spy_C_Gets [simp]: "knows Spy (C_Gets C X # evs) = knows Spy
evs"
by simp

lemma knows_Spy_Outpts_secureM [simp]:
"secureM = knows Spy (Outpts C A X # evs) =
(if A=Spy then insert X (knows Spy evs) else knows Spy evs)"
by simp

lemma knows_Spy_Outpts_insecureM [simp]:

"insecureM = knows Spy (Outpts C A X # evs) = insert X (knows Spy
evs)"
by simp

lemma knows_Spy_A_Gets [simp]: "knows Spy (A_Gets A X # evs) = knows Spy
evs"
by simp

lemma knows_Spy_subset_knows_Spy_Says:
"knows Spy evs C knows Spy (Says A B X # evs)"
by (simp add: subset_insertI)

lemma knows_Spy_subset_knows_Spy_Notes:
"knows Spy evs C knows Spy (Notes A X # evs)"
by force

lemma knows_Spy_subset_knows_Spy_Gets:
"knows Spy evs C knows Spy (Gets A X # evs)"
by (simp add: subset_insertI)

lemma knows_Spy_subset_knows_Spy_Inputs:
"knows Spy evs C knows Spy (Inputs A C X # evs)"
by auto

lemma knows_Spy_equals_knows_Spy_Gets:
"knows Spy evs = knows Spy (C_Gets C X # evs)"
by (simp add: subset_insertI)

lemma knows_Spy_subset_knows_Spy_Outpts: "knows Spy evs C knows Spy (Outpts
CAX# evs)"
by auto

lemma knows_Spy_subset_knows_Spy_A_Gets: "knows Spy evs C knows Spy (A_Gets
A X # evs)"
by (simp add: subset_insertI)

Spy sees what is sent on the traffic

lemma Says_imp_knows_Spy [rule_format]:

24.2 Knowledge of Agents 275

"Says A B X € set evs —> X € knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split: event.split)
done

lemma Notes_imp_knows_Spy [rule_format]:
"Notes A X € set evs —> A€ bad — X € knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split: event.split)
done

lemma Inputs_imp_knows_Spy_secureM [rule_format (no_asm)]:
"Inputs Spy C X € set evs — secureM — X € knows Spy evs"

apply (induct_tac "evs")

apply (simp_all (no_asm_simp) split: event.split)

done

lemma Inputs_imp_knows_Spy_insecureM [rule_format (no_asm)]:
"Inputs A C X € set evs — insecureM — X € knows Spy evs"

apply (induct_tac "evs")

apply (simp_all (no_asm_simp) split: event.split)

done

lemma Outpts_imp_knows_Spy_secureM [rule_format (no_asm)]:
"Outpts C Spy X € set evs — secureM — X € knows Spy evs"

apply (induct_tac "evs")

apply (simp_all (no_asm_simp) split: event.split)

done

lemma Outpts_imp_knows_Spy_insecureM [rule_format (no_asm)]:
"Outpts C A X € set evs — insecureM — X € knows Spy evs"

apply (induct_tac "evs")

apply (simp_all (no_asm_simp) split: event.split)

done

Elimination rules: derive contradictions from old Says events containing items
known to be fresh

lemmas knows_Spy_partsEs =
Says_imp_knows_Spy [THEN parts.Inj, elim_format]
parts.Body [elim_format]

24.2 Knowledge of Agents

lemma knows_Inputs: "knows A (Inputs A C X # evs) = insert X (knows A evs)"
by simp

lemma knows_C_Gets: "knows A (C_Gets C X # evs) = knows A evs"
by simp

lemma knows_Outpts_secureM:

27624 THEORY OF EVENTS FOR SECURITY PROTOCOLS THAT USE SMARTCARDS

"secureM — knows A (Outpts C A X # evs) = insert X (knows A evs)"
by simp

lemma knows_Outpts_insecureM:

"insecureM — knows Spy (Outpts C A X # evs) = insert X (knows Spy
evs)"
by simp

lemma knows_subset_knows_Says: "knows A evs C knows A (Says A’ B X # evs)"
by (simp add: subset_insertI)

lemma knows_subset_knows_Notes: "knows A evs C knows A (Notes A’ X # evs)"
by (simp add: subset_insertI)

lemma knows_subset_knows_Gets: "knows A evs C knows A (Gets A’ X # evs)"
by (simp add: subset_insertI)

N

lemma knows_subset_knows_Inputs: "knows A evs
evs)"
by (simp add: subset_insertI)

knows A (Inputs A’ C X #

N

lemma knows_subset_knows_C_Gets: "knows A evs knows A (C_Gets C X # evs)"

by (simp add: subset_insertI)

N

lemma knows_subset_knows_QOutpts: "knows A evs
evs)"
by (simp add: subset_insertI)

knows A (Outpts C A’ X #

lemma knows_subset_knows_A_Gets: "knows A evs knows A (A_Gets A’ X # evs)"

by (simp add: subset_insertI)

N

Agents know what they say

lemma Says_imp_knows [rule_format]: "Says A B X € set evs — X € knows
A evs"

apply (induct_tac "evs")

apply (simp_all (no_asm_simp) split: event.split)

apply blast

done

Agents know what they note

lemma Notes_imp_knows [rule_format]: "Notes A X € set evs — X € knows
A evs"

apply (induct_tac "evs")

apply (simp_all (no_asm_simp) split: event.split)

apply blast

done

Agents know what they receive

lemma Gets_imp_knows_agents [rule_format]:

24.2 Knowledge of Agents 277

"A # Spy — Gets A X € set evs —> X € knows A evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split: event.split)
done

lemma Inputs_imp_knows_agents [rule_format (no_asm)]:
"Inputs A (Card A) X € set evs — X € knows A evs"

apply (induct_tac "evs")

apply (simp_all (no_asm_simp) split: event.split)

apply blast

done

lemma Outpts_imp_knows_agents_secureM [rule_format (no_asm)]:
"secureM — Outpts (Card A) A X € set evs —> X € knows A evs"

apply (induct_tac "evs")

apply (simp_all (no_asm_simp) split: event.split)

done

lemma Outpts_imp_knows_agents_insecureM [rule_format (no_asm)]:
"insecureM — Outpts (Card A) A X € set evs —> X € knows Spy evs"

apply (induct_tac "evs")

apply (simp_all (no_asm_simp) split: event.split)

done

lemma parts_knows_Spy_subset_used: "parts (knows Spy evs) C used evs"
apply (induct_tac "evs", force)

apply (simp add: parts_insert_knows_A add: event.split, blast)

done

lemmas usedI = parts_knows_Spy_subset_used [THEN subsetD, intro]

lemma initState_into_used: "X € parts (initState B) = X € used evs"
apply (induct_tac "evs")

apply (simp_all add: parts_insert_knows_A split: event.split, blast)
done

simps__of _case used_Cons_simps[simp]: used_Cons

lemma used_nil_subset: "used [] C used evs"
apply simp

apply (blast intro: initState_into_used)
done

27824 THEORY OF EVENTS FOR SECURITY PROTOCOLS THAT USE SMARTCARDS

lemma Says_parts_used [rule_format (no_asm)]:
"Says A B X € set evs — (parts {X}) C used evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split: event.split)
apply blast
done

lemma Notes_parts_used [rule_format (no_asm)]:

"Notes A X € set evs —» (parts {X}) C used evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split: event.split)
apply blast
done

lemma Outpts_parts_used [rule_format (no_asm)]:
"Outpts C A X € set evs — (parts {X}) C used evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split: event.split)
apply blast
done

lemma Inputs_parts_used [rule_format (no_asm)]:
"Inputs A C X € set evs — (parts {X}) C used evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split: event.split)
apply blast
done

NOTE REMOVAL-laws above are cleaner, as they don’t involve "case"

declare knows_Cons [simp dell]
used_Nil [simp del] used_Cons [simp del]

lemma knows_subset_knows_Cons: "knows A evs C knows A (e # evs)"
by (cases e, auto simp: knows_Cons)

lemma initState_subset_knows: "initState A C knows A evs"
apply (induct_tac evs, simp)

apply (blast intro: knows_subset_knows_Cons [THEN subsetD])
done

For proving new_keys_not_used

lemma keysFor_parts_insert:
"[K € keysFor (parts (insert X G)); X € synth (analz H)]
= K € keysFor (parts (G U H)) V Key (invKey K) € parts H"
by (force
dest!: parts_insert_subset_Un [THEN keysFor_mono, THEN [2] rev_subsetD]
analz_subset_parts [THEN keysFor_mono, THEN [2] rev_subsetD]
intro: analz_subset_parts [THEN subsetD] parts_mono [THEN [2] rev_subsetD])

end
theory All_Symmetric
imports Message

279

begin

All keys are symmetric

overloading all_symmetric = all_symmetric
begin

definition "all_symmetric = True"
end

lemma isSym_keys: "K € symKeys"
by (simp add: symKeys_def all_symmetric_def invKey_symmetric)

end

25 Theory of smartcards

theory Smartcard
imports EventSC "../All_Symmetric"
begin

As smartcards handle long-term (symmetric) keys, this theoy extends and su-
persedes theory Private.thy

An agent is bad if she reveals her PIN to the spy, not the shared key that
is embedded in her card. An agent’s being bad implies nothing about her
smartcard, which independently may be stolen or cloned.

axiomatization
shrK :: "agent => key" and
crdK :: "card => key" and
pin :: "agent => key" and
Pairkey :: "agent * agent => nat" and
pairK :: "agent * agent => key"
where
inj_shrK: "inj shrK" and — No two smartcards store the same key
inj_crdK: "inj crdK" and — Nor do two cards
inj_pin : "inj pin" and — Nor do two agents have the same pin

inj_pairK [iff]: "(pairK(A,B) = pairK(A’,B’)) = (A=A’ & B =B’)" and
comm_Pairkey [iff]: "Pairkey(A,B) = Pairkey(B,A)" and

pairK_disj_crdK [iff]: "pairK(A,B) # crdK C" and
pairK_disj_shrK [iff]: "pairK(A,B) # shrK P" and
pairK_disj_pin [iff]: ‘"pairK(A,B) # pin P" and
shrK_disj_crdK [iff]: "shrK P # crdK C" and
shrK_disj_pin [iff]: "shrK P # pin Q" and
crdk_disj_pin [iff]: ‘"crdK C # pin P"

definition legalUse :: "card => bool" (<legalUse (_)>) where
"legalUse C == C ¢ stolen"

280 25 THEORY OF SMARTCARDS

primrec illegalUse :: '"card => bool" where
illegalUse_def: "illegalUse (Card A) = ((Card A € stolen A A € bad) V
Card A € cloned)"

initState must be defined with care

overloading
initState = initState
begin

primrec initState where

initState_Server: "initState Server =
(Key ‘ (range shrK U range crdK U range pin U range pairK)) U
(Nonce ‘ (range Pairkey))" |

initState_Friend: "initState (Friend i) = {Key (pin (Friemnd i))}" |

initState_Spy: "initState Spy =
(Key “((pin‘bad) U (pin ‘{A. Card A € cloned}) U
(shrK‘{A. Card A € cloned}) U
(crdK ‘cloned) U
(pairK‘{(X,A). Card A € cloned})))
U (Nonce‘ (Pairkey ‘{(A,B). Card A € cloned & Card B € cloned}))"

end

Still relying on axioms

axiomatization where
Key_supply_ax: "finite KK = 3 K. K ¢ KK & Key K ¢ used evs" and

Nonce_supply_ax: "finite NN = 3 N. N ¢ NN & Nonce N ¢ used evs"

25.1 Basic properties of shrK

declare inj_shrK [THEN inj_eq, iff]
declare inj_crdK [THEN inj_eq, iff]
declare inj_pin [THEN inj_eq, iff]

lemma invKey K [simp]: "invKey K = K"
apply (insert isSym_keys)

apply (simp add: symKeys_def)

done

lemma analz_Decrypt’ [dest]:
"[Crypt K X € analz H; Key K € analz H] = X € analz H"
by auto

Now cancel the dest attribute given to analz.Decrypt in its declaration.

declare analz.Decrypt [rule dell]

25.2 Function "knows" 281

Rewrites should not refer to initState (Friend i) because that expression is
not in normal form.

Added to extend initstate with set of nonces

lemma parts_image_Nonce [simp]: "parts (Nonce‘N) = Nonce‘N"
by auto

lemma keysFor_parts_initState [simp]: "keysFor (parts (initState C)) = {}"
unfolding keysFor_def

apply (induct_tac "C", auto)

done

lemma keysFor_parts_insert:
"[K € keysFor (parts (insert X G)); X € synth (analz H) |
— K € keysFor (parts (G U H)) | Key K € parts H"

by (force dest: EventSC.keysFor_parts_insert)

lemma Crypt_imp_keysFor: "Crypt K X € H = K € keysFor H"
by (drule Crypt_imp_invKey_keysFor, simp)

25.2 Function "knows"

lemma Spy_knows_bad [intro!]: "A € bad = Key (pin A) € knows Spy evs"
apply (induct_tac "evs")

apply (simp_all (no_asm_simp) add: imagel knows_Cons split: event.split)
done

lemma Spy_knows_cloned [intro!]:
"Card A € cloned —> Key (crdK (Card A)) € knows Spy evs &
Key (shrK A) € knows Spy evs &
Key (pin A) € knows Spy evs &
(Y B. Key (pairK(B,A)) € knows Spy evs)"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) add: imagel knows_Cons split: event.split)
done

lemma Spy_knows_clonedl [intro!]: "C € cloned —> Key (crdK C) € knows Spy
evs"

apply (induct_tac "evs")

apply (simp_all (no_asm_simp) add: imagel knows_Cons split: event.split)
done

lemma Spy_knows_cloned2 [intro!]: "[Card A € cloned; Card B € cloned |

= Nonce (Pairkey(A,B))€ knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) add: imageI knows_Cons split: event.split)
done

lemma Spy_knows_Spy_bad [intro!]: "A€ bad = Key (pin A) € knows Spy evs"
apply (induct_tac "evs")

282 25 THEORY OF SMARTCARDS

apply (simp_all (no_asm_simp) add: imagel knows_Cons split: event.split)
done

lemma Crypt_Spy_analz_bad:
"[Crypt (pin A) X € analz (knows Spy evs); A€bad |
—> X € analz (knows Spy evs)"
apply (force dest!: analz.Decrypt)
done

lemma shrK_in_initState [iff]: "Key (shrK A) € initState Server"
apply (induct_tac "A")

apply auto

done

lemma shrK_in_used [iff]: "Key (shrK A) € used evs"
apply (rule initState_into_used)

apply blast

done

lemma crdK_in_initState [iff]: "Key (crdK A) € initState Server"
apply (induct_tac "A")

apply auto

done

lemma crdK_in_used [iff]: "Key (crdK A) € used evs"
apply (rule initState_into_used)

apply blast

done

lemma pin_in_initState [iff]: "Key (pin A) € initState A"
apply (induct_tac "A")

apply auto

done

lemma pin_in_used [iff]: "Key (pin A) € used evs"
apply (rule initState_into_used)

apply blast

done

lemma pairK_in_initState [iff]: "Key (pairK X) € initState Server"
apply (induct_tac "X")

apply auto

done

lemma pairK_in_used [iff]: "Key (pairK X) € used evs"
apply (rule initState_into_used)

apply blast

done

25.3 Fresh nonces 283

lemma Key_not_used [simp]: "Key K ¢ used evs =—> K ¢ range shrK"
by blast

lemma shrK_neq [simp]: "Key K ¢ used evs —> shrK B # K"
by blast

lemma crdK_not_used [simp]: "Key K ¢ used evs =—> K ¢ range crdK"
apply clarify
done

lemma crdK_neq [simp]: "Key K ¢ used evs —> crdK C # K"
apply clarify
done

lemma pin_not_used [simp]: "Key K ¢ used evs —> K ¢ range pin"
apply clarify
done

lemma pin_neq [simp]: "Key K ¢ used evs —> pin A # K"
apply clarify
done

lemma pairK_not_used [simp]: "Key K ¢ used evs —> K ¢ range pairK"
apply clarify
done

lemma pairK_neq [simp]: "Key K ¢ used evs —> pairK(4,B) # K"
apply clarify
done

declare shrK_neq [THEN not_sym, simp]
declare crdK_neq [THEN not_sym, simp]
declare pin_neq [THEN not_sym, simp]

declare pairK_neq [THEN not_sym, simp]

25.3 Fresh nonces

lemma Nonce_notin_initState [iff]: "Nonce N ¢ parts (initState (Friend i))"
by auto

25.4 Supply fresh nonces for possibility theorems.

lemma Nonce_supplyl: "JN. Nonce N ¢ used evs"
apply (rule finite.emptyl [THEN Nonce_supply_ax, THEN exE], blast)
done

lemma Nonce_supply2:
"IN N’. Nonce N ¢ used evs & Nonce N’ ¢ used evs’ & N # N’"
apply (cut_tac evs = evs in finite.emptyI [THEN Nonce_supply_ax])
apply (erule exE)
apply (cut_tac evs = evs’ in finite.emptyl [THEN finite.insertI, THEN Nonce_supply_ax])

284 25 THEORY OF SMARTCARDS

apply auto
done

lemma Nonce_supply3: "JN N’ N’’. Nonce N ¢ used evs & Nonce N’ ¢ used evs’
&

Nonce N’’ ¢ used evs’’ & N # N’ & N’ # N’ & N # N’’"
apply (cut_tac evs = evs in finite.emptyI [THEN Nonce_supply_ax])
apply (erule exE)
apply (cut_tac evs = evs’ and al = N in finite.emptyI [THEN finite.insertI,
THEN Nonce_supply_ax])
apply (erule exE)
apply (cut_tac evs = evs’’ and al = Na and a2 = N in finite.emptyI [THEN
finite.insertI, THEN finite.insertI, THEN Nonce_supply_ax])
apply blast
done

lemma Nonce_supply: "Nonce (SOME N. Nonce N ¢ used evs) ¢ used evs"
apply (rule finite.emptyI [THEN Nonce_supply_ax, THEN exE])

apply (rule someI, blast)

done

Unlike the corresponding property of nonces, we cannot prove finite KK —
JK. K ¢ KK A Key K ¢ used evs. We have infinitely many agents and there is
nothing to stop their long-term keys from exhausting all the natural numbers.
Instead, possibility theorems must assume the existence of a few keys.

25.5 Specialized Rewriting for Theorems About anaiz and
Image

lemma subset_Compl_range_shrK: "A C - (range shrK) —> shrK x ¢ A"
by blast

lemma subset_Compl_range_crdK: "A C - (range crdk) = crdK x ¢ A"
apply blast
done

lemma subset_Compl_range_pin: "A C - (range pin) = pin x ¢ A"
apply blast
done

lemma subset_Compl_range_pairK: "A C - (range pairK) —> pairK x ¢ A"
apply blast

done

lemma insert_Key_ singleton: "insert (Key K) H = Key ‘ {K} U H"

by blast

lemma insert_Key_ image: "insert (Key K) (Key ‘KK U C) = Key‘(insert K KK)
U C”
by blast

25.6 Tactics for possibility theorems 285

lemmas analz_image_freshK_simps =
simp_thms mem_simps — these two allow its use with only:
disj_comms
image_insert [THEN sym] image_Un [THEN sym] empty_subsetI insert_subset
analz_insert_eq Un_upper2 [THEN analz_mono, THEN [2] rev_subsetD]
insert_Key_singleton subset_Compl_range_shrK subset_Compl_range_crdK
subset_Compl_range_pin subset_Compl_range_pairK
Key_not_used insert_Key_image Un_assoc [THEN sym]

lemma analz_image_freshK_lemma:
"(Key K € analz (Key‘nE U H)) — (K € nE | Key K € analz H —
(Key K € analz (Key‘nE U H)) = (K € nE | Key K € analz H)"
by (blast intro: analz _mono [THEN [2] rev_subsetD])

25.6 Tactics for possibility theorems
ML

<
structure Smartcard =
struct

(*Omitting used_Says makes the tactic much faster: it leaves expressions
such as Nonce ?N ¢ used evs that match Nonce_supply*)
fun possibility_tac ctxt =
(REPEAT
(ALLGOALS (simp_tac (ctxt
delsimps @{thms used_Cons_simps}
[> Simplifier.set_unsafe_solver safe_solver))
THEN
REPEAT_FIRST (eq_assume_tac ORELSE’
resolve_tac ctxt [refl, conjI, @{thm Nonce_supply}])))

(*For harder protocols (such as Recur) where we have to set up some
nonces and keys initially*)
fun basic_possibility_tac ctxt =
REPEAT
(ALLGOALS (asm_simp_tac (ctxt [> Simplifier.set_unsafe_solver safe_solver))
THEN
REPEAT_FIRST (resolve_tac ctxt [refl, conjI]))

val analz_image_freshK_ss =
simpset_of
(context |> Simplifier.del_simps @{thms image_insert image_Un}
[> Simplifier.del_simps @{thms imp_disjL} (*reduces blow-up*)
|> Simplifier.add_simps @{thms analz_image_freshK_simps})
end

lemma invKey_shrK_iff [iff]:
"(Key (invKey K) € X) = (Key K € X)"
by auto

286 26 ORIGINAL SHOUP-RUBIN PROTOCOL

method__setup analz_freshK = <
Scan.succeed (fn ctxt =>
(SIMPLE_METHOD
(EVERY [REPEAT_FIRST (resolve_tac ctxt @{thms alll balll impI}),
REPEAT_FIRST (resolve_tac ctxt @{thms analz_image_freshK_lemmal}l),
ALLGOALS (asm_simp_tac (put_simpset Smartcard.analz_image_freshK_ss
ctxt))])))>

"for proving the Session Key Compromise theorem"

method__setup possibility = <
Scan.succeed (fn ctxt =>
SIMPLE_METHOD (Smartcard.possibility_tac ctxt))>
"for proving possibility theorems"

method__setup basic_possibility = <
Scan.succeed (fn ctxt =>
SIMPLE_METHOD (Smartcard.basic_possibility_tac ctxt))>
"for proving possibility theorems"

lemma knows_subset_knows_Cons: "knows A evs C knows A (e # evs)"

by (induct e) (auto simp: knows_Cons)

declare shrK_disj_crdK[THEN not_sym, iff]
declare shrK_disj_pin[THEN not_sym, iff]
declare pairK_disj_shrK[THEN not_sym, iff]
declare pairK_disj_crdK[THEN not_sym, iff]
declare pairK_disj_pin[THEN not_sym, iff]
declare crdK_disj_pin[THEN not_sym, iff]

declare legalUse_def [iff] illegalUse_def [iff]

end

26 Original Shoup-Rubin protocol
theory ShoupRubin imports Smartcard begin

axiomatization sesK :: "nat*key => key"
where

inj_sesK [iff]: "(sesK(m,k) = sesK(m’,k’)) = (m = m’ A k = k’)" and
shrK_disj_sesK [iff]: "shrK A # sesK(m,pk)" and

crdK_disj_sesK [iff]: "crdK C # sesK(m,pk)" and

pin_disj_sesK [iff]: "pin P # sesK(m,pk)" and
pairK_disj_sesK[iff]:"pairK(A,B) # sesK(m,pk)" and

Atomic_distrib [iff]: "Atomic‘(KEY‘K U NONCE‘N) =

287

Atomic‘(KEY‘K) U Atomic‘(NONCE‘N)" and

shouprubin_assumes_securemeans [iff]: "evs € sr —> securelM"

definition Unique :: "[event, event list] => bool" (<Unique _ on _>) where
"Unique ev on evs ==
ev ¢ set (tl (dropWhile (% z. z # ev) evs))"

inductive__set sr :: "event list set"
where

Nil: "[]€ sr"

| Fake: "[evsFE sr; X€ synth (analz (knows Spy evsF));
illegalUse(Card B) |
— Says Spy A X #
Inputs Spy (Card B) X # evsF € sr"

| Forge:
"[evsFo € sr; Nonce Nb € analz (knows Spy evsFo);
Key (pairK(A,B)) € knows Spy evsFo |
— Notes Spy (Key (sesK(Nb,pairK(A,B)))) # evsFo € sr"

| Reception: "[evsRE sr; Says A B X € set evsR |
—> Gets B X # evsR € sr"

| SR1: "[evsl€ sr; A # Server]
— Says A Server {Agent A, Agent B[
evsl € sr"

| SR2: "] evs2€ sr;
Gets Server {Agent A, Agent B[} € set evs2 |
= Says Server A {Nonce (Pairkey(A,B)),
Crypt (shrK A) {Nonce (Pairkey(A,B)), Agent B[
h

evs2 € sr"

| SR3: "[evs3€ sr; legalUse(Card 4);
Says A Server {Agent A, Agent B} € set evs3;

288 26 ORIGINAL SHOUP-RUBIN PROTOCOL

Gets A {Nonce Pk, Certificatel} € set evs3 |
—> Inputs A (Card A) (Agent A)
evs3 € sr"

| SR4: "[evs4€ sr; A # Server;
Nonce Na ¢ used evs4; legalUse(Card A);
Inputs A (Card A) (Agent A) € set evsd |
= Outpts (Card A) A {Nonce Na, Crypt (crdK (Card A)) (Nonce Na)|
evs4 € sr"

| SR4Fake: "[evs4F€ sr; Nonce Na ¢ used evs4F;
illegalUse(Card A);
Inputs Spy (Card A) (Agent A) € set evs4F |
= Outpts (Card A) Spy {Nonce Na, Crypt (crdK (Card A)) (Nonce Na)[
evs4F € sr"

| SR5: "[evs5€ sr;
Outpts (Card A) A {Nonce Na, Certificate[} € set evs5;

V p q. Certificate # {p, qf}]
—> Says A B {Agent A, Nonce Nal} # evs5 € sr"

| SR6: ”[[evs6€ sr; legalUse(Card B);
Gets B {Agent A, Nonce Na| € set evs6 |
= Inputs B (Card B) {Agent A, Nonce Nal
evs6 € sr"

| SR7: "[evs7€ sr;

Nonce Nb ¢ used evs7; legalUse(Card B); B # Server;

K = sesK(Nb,pairK(A,B));

Key K ¢ used evs7;

Inputs B (Card B) {Agent A, Nonce Nal} € set evs7]

—> Outpts (Card B) B {Nonce Nb, Key K,
Crypt (pairK(A,B)) {Nonce Na, Nonce Nb},
Crypt (pairK(A,B)) (Nonce Nb)[
evs7 € sr'"

| SR7Fake: "[evs7F€ sr; Nonce Nb ¢ used evs7F;
illegalUse(Card B);
K = sesK(Nb,pairK(A,B));

| SR8:

| SR9:

| SR10:

Key K ¢ used evsTF;

289

Inputs Spy (Card B) {Agent A, Nonce Nal} € set evs7F |

= Outpts (Card B) Spy {Nonce Nb, Key K,

Crypt (pairK(A,B)) {Nonce Na, Nonce Nb[,

Crypt (pairK(A,B)) (Nonce Nb)|}
evs7F € sr"

"[evs8€ sr;

Inputs B (Card B) {Agent A, Nonce Na| € set evs8;

Outpts (Card B) B {Nonce Nb, Key K,
Certl, Cert2]} € set evs8 |
— Says B A {Nonce Nb, Certi| # evs8 € sr"

"[evs9€ sr; legalUse(Card A);
Gets A {Nonce Pk, Certl]} € set evs9;
Outpts (Card A) A {Nonce Na, Cert2} € set evs9;
Gets A {Nonce Nb, Cert3} € set evs9;
V pq. Cert2 # {p, q} |
—> Inputs A (Card A)
{Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Cert1, Cert3, Cert2]
evs9 € sr"

"[evs10€ sr; legalUse(Card A); A # Server;
K = sesK(Nb,pairK(A,B));
Inputs A (Card A) {Agent B, Nonce Na, Nonce Nb,
Nonce (Pairkey(4,B)),

Crypt (shrK A) {Nonce (Pairkey(4,B)),

Agent B},

Crypt (pairK(4,B)) {Nonce Na, Nonce Nb|,

Crypt (crdK (Card A)) (Nonce Na)l}

€ set evsi10 |

—> Outpts (Card A) A {Key K, Crypt (pairK(A,B)) (Nonce Nb)]}

evsl0 € sr"

| SR10Fake: "[evs1OFE€ sr;

illegalUse(Card A);
K = sesK(Nb,pairK(A,B));

Inputs Spy (Card A) {Agent B, Nonce Na, Nonce Nb,

Nonce (Pairkey(A,B)),

290 26 ORIGINAL SHOUP-RUBIN PROTOCOL

Crypt (shrK A) {Nonce (Pairkey(A,B)),

Agent B[},
Crypt (pairK(A,B)) {Nonce Na, Nonce
Nb]},
Crypt (crdK (Card A)) (Nonce Na)l
€ set evs10F |
—> Outpts (Card A) Spy {Key K, Crypt (pairK(A,B)) (Nonce Nb)|
evslOF € sr"

| SR11: "] evsll€ sr;
Says A Server {Agent A, Agent B[€ set evsili;
Outpts (Card A) A {Key K, Certificatel} € set evsil |
—> Says A B (Certificate)
evsll € sr"

| Oops1:
"[evs01 € sr;
Outpts (Card B) B {Nonce Nb, Key K, Certificate,
Crypt (pairK(4,B)) (Nonce Nb)|} € set evsO01 |
—> Notes Spy {Key K, Nonce Nb, Agent A, Agent B[} # evs01 € sr"

| Oops2:
"[evs02 € sr;
Outpts (Card A) A {Key K, Crypt (pairK(4,B)) (Nonce Nb)[}
€ set evs02 |
= Notes Spy {Key K, Nonce Nb, Agent A, Agent B[} # evs02 € sr"

declare Fake_parts_insert_in_Un [dest]
declare analz_into_parts [dest]

lemma Gets_imp_Says:
"[Gets B X € set evs; evs € sr | => 3 A. Says A B X € set evs"
apply (erule rev_mp, erule sr.induct)
apply auto
done

291

lemma Gets_imp_knows_Spy:

"[Gets B X € set evs; evs € sr | = X € knows Spy evs"
apply (blast dest!: Gets_imp_Says Says_imp_knows_Spy)
done

lemma Gets_imp_knows_Spy_parts_Snd:

"[Gets B {X, Y|} € set evs; evs € sr | = Y € parts (knows Spy evs)"
apply (blast dest!: Gets_imp_Says Says_imp_knows_Spy parts.Inj parts.Snd)
done

lemma Gets_imp_knows_Spy_analz_Snd:

"[Gets B {X, Y} € set evs; evs € sr | = Y € analz (knows Spy evs)"
apply (blast dest!: Gets_imp_Says Says_imp_knows_Spy analz.Inj analz.Snd)
done

lemma Inputs_imp_knows_Spy_secureM_sr:

"[Inputs Spy C X € set evs; evs € sr | = X € knows Spy evs"
apply (simp (no_asm_simp) add: Inputs_imp_knows_Spy_secureM)
done

lemma knows_Spy_Inputs_secureM_sr_Spy:
"evs €sr == knows Spy (Inputs Spy C X # evs) = insert X (knows Spy
evs)"
apply (simp (no_asm_simp))
done

lemma knows_Spy_Inputs_securelM_sr:
"[A # Spy; evs €sr | = knows Spy (Inputs A C X # evs) = knows Spy
evs"
apply (simp (no_asm_simp))
done

lemma knows_Spy_Outpts_secureM_sr_Spy:
"evs €sr == knows Spy (Outpts C Spy X # evs) = insert X (knows Spy
evs)"
apply (simp (no_asm_simp))
done

lemma knows_Spy_Outpts_securelM_sr:
"[A # Spy; evs €sr | = knows Spy (Outpts C A X # evs) = knows Spy
evs"
apply (simp (no_asm_simp))
done

292 26 ORIGINAL SHOUP-RUBIN PROTOCOL

lemma Inputs_A_Card_3:
"[Inputs A C (Agent A) € set evs; A # Spy; evs € sr |
—> legalUse(C) N C = (Card A) A
(3 Pk Certificate. Gets A {Pk, Certificatel} € set evs)"
apply (erule rev_mp, erule sr.induct)
apply auto
done

lemma Inputs_B_Card_6:
"[Inputs B C {Agent A, Nonce Nal} € set evs; B # Spy; evs € sr |
= legalUse(C) A C = (Card B) A Gets B {Agent A, Nonce Na} € set evs"
apply (erule rev_mp, erule sr.induct)
apply auto
done

lemma Inputs_A_Card_9:
"[Inputs A C {Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Certl, Cert2, Cert3|} € set evs;

A # Spy; evs € sr |
—> legalUse(C) N C = (Card A) A

Gets A {Nonce Pk, Certl]} € set evs A
Outpts (Card A) A {Nonce Na, Cert3]} € set evs A
Gets A {Nonce Nb, Cert2]} € set evs"

apply (erule rev_mp, erule sr.induct)

apply auto

done

lemma Outpts_A_Card_4:
"[Outpts C A {Nonce Na, (Crypt (crdK (Card A)) (Nonce Na))}} € set evs;

evs € sr |
= legalUse(C) N C = (Card A) A
Inputs A (Card A) (Agent A) € set evs"
apply (erule rev_mp, erule sr.induct)
apply auto
done

lemma Outpts_B_Card_7:
"[Outpts C B {Nonce Nb, Key K,
Crypt (pairK(A,B)) {Nonce Na, Nonce Nbl},
Cert2} € set evs;
evs € sr |
—> legalUse(C) N C = (Card B) A

293

Inputs B (Card B) {Agent A, Nonce Na| € set evs"
apply (erule rev_mp, erule sr.induct)
apply auto
done

lemma Outpts_A_Card_10:
"[Outpts C A {Key K, (Crypt (pairK(A,B)) (Nomce Nb))|} € set evs;
evs € sr |
— legalUse(C) A C = (Card A) A
(3 Na Verl Ver2 Ver3.
Inputs A (Card A) {Agent B, Nonce Na, Nonce Nb, Nonce (Pairkey(A,B)),

Verl, Ver2, Ver3|} € set evs)"
apply (erule rev_mp, erule sr.induct)
apply auto
done

lemma Outpts_A_Card_10_imp_Inputs:
"[Outpts (Card A) A {Key K, Certificate|} € set evs; evs € sr |
— (3 B Na Nb Verl Ver2 Ver3.
Inputs A (Card A) {Agent B, Nonce Na, Nonce Nb, Nonce (Pairkey(A,B)),

Verl, Ver2, Ver3| € set evs)"
apply (erule rev_mp, erule sr.induct)
apply simp_all
apply blast+
done

lemma Outpts_honest_A_Card_4:
"] Outpts C A {Nonce Na, Crypt K X[€set evs;
A # Spy; evs € sr |
—> legalUse(C) N C = (Card A) A
Inputs A (Card A) (Agent A) € set evs"
apply (erule rev_mp, erule sr.induct)
apply auto
done

lemma Outpts_honest_B_Card_7:
"[Outpts C B {Nonce Nb, Key K, Certl, Cert2} € set evs;
B # Spy; evs € sr |
—> legalUse(C) N C = (Card B) A
(3 A Na. Inputs B (Card B) {Agent A, Nonce Na|} € set evs)"
apply (erule rev_mp, erule sr.induct)
apply auto

294 26 ORIGINAL SHOUP-RUBIN PROTOCOL

done

lemma Outpts_honest_A_Card_10:
"[Outpts C A {Key K, Certificate|} € set evs;
A # Spy; evs € sr |
—> legalUse (C) A C = (Card A) A
(3 B Na Nb Pk Verl Ver2 Ver3.
Inputs A (Card A) {Agent B, Nonce Na, Nonce Nb, Pk,
Verl, Ver2, Ver3|} € set evs)"
apply (erule rev_mp, erule sr.induct)
apply simp_all
apply blast+
done

lemma Outpts_which_Card_4:
"[Outpts (Card A) A {Nonce Na, Crypt K X[} € set evs; evs € sr |
—> Inputs A (Card A) (Agent A) € set evs"

apply (erule rev_mp, erule sr.induct)

apply (simp_all (no_asm_simp))

apply clarify

done

lemma Outpts_which_Card_7:
"[Outpts (Card B) B {Nonce Nb, Key K, Certl, Cert2]} € set evs;
evs € sr |
= 3 A Na. Inputs B (Card B) {Agent A, Nonce Nal} € set evs"
apply (erule rev_mp, erule sr.induct)
apply auto
done

lemma Outpts_which_Card_10:
"[Outpts (Card A) A {Key (sesK(Nb,pairK(4,B))),
Crypt (pairK(A,B)) (Nonce Nb) |} € set evs;
evs € sr |
= 3 Na. Inputs A (Card A) {Agent B, Nonce Na, Nonce Nb, Nonce (Pairkey(A,B)),

Crypt (shrK A) {Nonce (Pairkey(A,B)), Agent B[,

Crypt (pairK(A,B)) {Nonce Na, Nonce Nb[,
Crypt (crdK (Card A)) (Nonce Na) |} € set evs"
apply (erule rev_mp, erule sr.induct)
apply auto
done

lemma Outpts_A_Card_form_4:
"[Outpts (Card A) A {Nonce Na, Certificatel} € set evs;

295

V p q. Certificate # {p, ql}; evs € sr |
— Certificate = (Crypt (crdK (Card A)) (Nonce Na))"
apply (erule rev_mp, erule sr.induct)
apply (simp_all (no_asm_simp))
done

lemma Outpts_B_Card_form_7:
"[Outpts (Card B) B {Nonce Nb, Key K, Certl, Cert2]} € set evs;
evs € sr |
—> 3 A Na.

K = sesK(Nb,pairK(A,B)) A
Certl = (Crypt (pairK(A,B)) {Nonce Na, Nonce Nb[}) A
Cert2 = (Crypt (pairK(A,B)) (Nonce Nb))"

apply (erule rev_mp, erule sr.induct)

apply auto

done

lemma Outpts_A_Card_form_10:
"[Outpts (Card A) A {Key K, Certificatel} € set evs; evs € sr |
=—> 3 B Nb.
K = sesK(Nb,pairK(A,B)) A
Certificate = (Crypt (pairK(A,B)) (Nonce Nb))"
apply (erule rev_mp, erule sr.induct)
apply (simp_all (no_asm_simp))
done

lemma Outpts_A_Card_form_bis:
"[Outpts (Card A’) A’ {Key (sesK(Nb,pairK(A,B))), Certificate| € set evs;

evs € sr |
= A’ = A A
Certificate = (Crypt (pairK(A,B)) (Nonce Nb))"
apply (erule rev_mp, erule sr.induct)
apply (simp_all (no_asm_simp))
done

lemma Inputs_A_Card_form_9:
"[Inputs A (Card A) {Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Certl, Cert2, Cert3|} € set evs;
evs € sr |
== Cert3 = Crypt (crdK (Card A)) (Nonce Na)"

apply (erule rev_mp)
apply (erule sr.induct)
apply (simp_all (no_asm_simp))

apply force

apply (blast dest!: Outpts_A_Card_form_4)
done

296 26 ORIGINAL SHOUP-RUBIN PROTOCOL

lemma Inputs_Card_legalUse:
"] Inputs A (Card A) X € set evs; evs € sr | = legalUse(Card A)"
apply (erule rev_mp, erule sr.induct)
apply auto
done

lemma Outpts_Card_legalUse:
"[Outpts (Card A) A X € set evs; evs € sr | = legalUse(Card A)"
apply (erule rev_mp, erule sr.induct)
apply auto
done

lemma Inputs_Card: "[Inputs A C X € set evs; A # Spy; evs € sr |
=—> C = (Card A) A legalUse(C)"

apply (erule rev_mp, erule sr.induct)

apply auto

done

lemma Outpts_Card: "[Outpts C A X € set evs; A # Spy; evs € sr |
= C = (Card A) N legalUse(C)"

apply (erule rev_mp, erule sr.induct)

apply auto

done

lemma Inputs_Outpts_Card:
"[Inputs A C X € set evs V Outpts C A Y € set evs;
A # Spy; evs € sr |
= C = (Card A) A legalUse(Card A)"
apply (blast dest: Inputs_Card Outpts_Card)
done

lemma Inputs_Card_Spy:
"[Inputs Spy C X € set evs V Outpts C Spy X € set evs; evs € sr |
=> C = (Card Spy) A legalUse(Card Spy) V
(3 A. C = (Card A) N illegalUse(Card A))"
apply (erule rev_mp, erule sr.induct)
apply auto
done

297

lemma Outpts_A_Card_unique_nonce:
"[Outpts (Card A) A {Nonce Na, Crypt (crdK (Card A)) (Nonce Na)}
€ set evs;
Outpts (Card A’) A’ {Nonce Na, Crypt (crdK (Card A’)) (Nonce Na)l

€ set evs;
evs € sr | = A=A""
apply (erule rev_mp, erule rev_mp, erule sr.induct, simp_all)
apply (fastforce dest: Outpts_parts_used)
apply blast
done

lemma Outpts_B_Card_unique_nonce:
"[Outpts (Card B) B {Nonce Nb, Key SK, Certl, Cert2} € set evs;
Outpts (Card B’) B’ {Nonce Nb, Key SK’, Certl’, Cert2’| € set evs;

evs € sr | = B=B’ A SK=SK’ N\ Certl=Certl’ A Cert2=Cert2’"
apply (erule rev_mp, erule rev_mp, erule sr.induct, simp_all)
apply (fastforce dest: Outpts_parts_used)
apply blast
done

lemma Outpts_B_Card_unique_key:
"[Outpts (Card B) B {Nonce Nb, Key SK, Certl, Cert2} € set evs;
Outpts (Card B’) B’ {Nonce Nb’, Key SK, Certl’, Cert2’} € set evs;

evs € sr | = B=B’ A Nb=Nb’ A Certi=Certl’ A Cert2=Cert2’"
apply (erule rev_mp, erule rev_mp, erule sr.induct, simp_all)
apply (fastforce dest: Outpts_parts_used)
apply blast
done

lemma Outpts_A_Card_unique_key: "[Outpts (Card A) A {Key K, V}} € set evs;

Outpts (Card A’) A’ {Key K, V’|} € set evs;
evs € sr | = A=A’ A V=V’"
apply (erule rev_mp, erule rev_mp, erule sr.induct, simp_all)
apply (blast dest: Outpts_A_Card_form_bis)
apply blast
done

lemma Outpts_A_Card_Unique:
"[Outpts (Card A) A {Nonce Na, rest|} € set evs; evs € sr |

298 26 ORIGINAL SHOUP-RUBIN PROTOCOL

— Unique (Outpts (Card A) A {Nonce Na, rest}) on evs"
apply (erule rev_mp, erule sr.induct, simp_all add: Unique_def)
apply (fastforce dest: Outpts_parts_used)
apply blast
apply (fastforce dest: Outpts_parts_used)
apply blast
done

lemma Spy_knows_Na:

"[Says A B {Agent A, Nonce Nal} € set evs; evs € sr |

— Nonce Na € analz (knows Spy evs)"
apply (blast dest!: Says_imp_knows_Spy [THEN analz.Inj, THEN analz.Snd])
done

lemma Spy_knows_Nb:

"[Says B A {Nonce Nb, Certificate|} € set evs; evs € sr |

= Nonce Nb € analz (knows Spy evs)"
apply (blast dest!: Says_imp_knows_Spy [THEN analz.Inj, THEN analz.Fst])
done

lemma Pairkey_Gets_analz_knows_Spy:
"[Gets A {Nonce (Pairkey(A,B)), Certificate| € set evs; evs € sr |

= Nonce (Pairkey(A,B)) € analz (knows Spy evs)"
apply (blast dest!: Gets_imp_knows_Spy [THEN analz.Inj])
done

lemma Pairkey_Inputs_imp_Gets:

"[Inputs A (Card A)

{Agent B, Nonce Na, Nonce Nb, Nonce (Pairkey(A,B)),
Certl, Cert3, Cert2ﬂ € set evs;
A # Spy; evs € sr |

= Gets A {Nonce (Pairkey(A,B)), Certl| € set evs"
apply (erule rev_mp, erule sr.induct)
apply (simp_all (no_asm_simp))
apply force
done

lemma Pairkey_Inputs_analz_knows_Spy:
"[Inputs A (Card A)
{Agent B, Nonce Na, Nonce Nb, Nonce (Pairkey(A,B)),

299

Certl, Cert3, Cert2]} € set evs;
evs € sr |
= Nonce (Pairkey(A,B)) € analz (knows Spy evs)"
apply (case_tac "A = Spy")
apply (fastforce dest!: Inputs_imp_knows_Spy_secureM [THEN analz.Inj])
apply (blast dest!: Pairkey_Inputs_imp_Gets [THEN Pairkey_Gets_analz_knows_Spyl])
done

declare shrK_disj_sesK [THEN not_sym, iff]
declare pin_disj_sesK [THEN not_sym, iff]

declare crdK_disj_sesK [THEN not_sym, iff]
declare pairK_disj_sesK [THEN not_sym, iff]

ML
<

structure ShoupRubin
struct

fun prepare_tac ctxt
(*SR8*) forward_tac ctxt [@{thm Outpts_B_Card_form_7}] 14 THEN
eresolve_tac ctxt [exE] 15 THEN eresolve_tac ctxt [exE] 15 THEN

(*SR9*) forward_tac ctxt [@{thm Outpts_A_Card_form_4}] 16 THEN
(*SR11*) forward_tac ctxt [@{thm Outpts_A_Card_form_10}] 21 THEN
eresolve_tac ctxt [exE] 22 THEN eresolve_tac ctxt [exE] 22

fun parts_prepare_tac ctxt =
prepare_tac ctxt THEN
(*SR9*) dresolve_tac ctxt [@{thm Gets_imp_knows_Spy_parts_Snd}] 18 THEN

(*SR9*) dresolve_tac ctxt [@{thm Gets_imp_knows_Spy_parts_Snd}] 19 THEN

(*0ops1%*) dresolve_tac ctxt [@{thm Outpts_B_Card_form_7}] 25 THEN
(*0ops2+*) dresolve_tac ctxt [@{thm Outpts_A_Card_form_10}] 27 THEN
(*Base*) (force_tac ctxt) 1

fun analz_prepare_tac ctxt =
prepare_tac ctxt THEN
dresolve_tac ctxt @{thms Gets_imp_knows_Spy_analz_Snd} 18 THEN
(*SR9%*) dresolve_tac ctxt @{thms Gets_imp_knows_Spy_analz_Snd} 19 THEN
REPEAT_FIRST (eresolve_tac ctxt [asm_rl, conjE] ORELSE’ hyp_subst_tac
ctxt)

end
>

300 26 ORIGINAL SHOUP-RUBIN PROTOCOL

method__setup prepare = <
Scan.succeed (SIMPLE_METHOD o ShoupRubin.prepare_tac)>
"to launch a few simple facts that will help the simplifier"

method__setup parts_prepare = <
Scan.succeed (fn ctxt => SIMPLE_METHOD (ShoupRubin.parts_prepare_tac ctxt))>
"additional facts to reason about parts"

method__setup analz_prepare = <
Scan.succeed (fn ctxt => SIMPLE_METHOD (ShoupRubin.analz_prepare_tac ctxt))>
"additional facts to reason about analz"

lemma Spy_parts_keys [simp]: "evs € sr —
(Key (shrK P) € parts (knows Spy evs)) = (Card P € cloned) A
(Key (pin P) € parts (knows Spy evs)) = (P € bad V Card P € cloned) A

(Key (crdK C) € parts (knows Spy evs)) = (C € cloned) A
(Key (pairK(A,B)) € parts (knows Spy evs)) = (Card B € cloned)"
apply (erule sr.induct)
apply parts_prepare
apply simp_all
apply (blast intro: parts_insertI)
done

lemma Spy_analz_shrK[simp]: "evs € sr —

(Key (shrK P) € analz (knows Spy evs)) = (Card P € cloned)"
apply (auto dest!: Spy_knows_cloned)
done

lemma Spy_analz_crdK[simp]: "evs € sr —

(Key (crdK C) € analz (knows Spy evs)) = (C € cloned)"
apply (auto dest!: Spy_knows_cloned)
done

lemma Spy_analz_pairK[simp]: "evs € sr —

(Key (pairK(A,B)) € analz (knows Spy evs)) = (Card B € cloned)"
apply (auto dest!: Spy_knows_cloned)
done

lemma analz_image_Key_Un_Nonce:
"analz (Key ¢ K U Nonce ‘¢ N) = Key ‘ K U Nonce ¢ N"
by (auto simp del: parts_image)

301

method__setup sc_analz_freshK = <
Scan.succeed (fn ctxt =>
(SIMPLE_METHOD
(EVERY [REPEAT FIRST
(resolve_tac ctxt @{thms alll balll impI}),
REPEAT _FIRST (resolve_tac ctxt @{thms analz_image_freshK_lemmal}),
ALLGOALS (asm_simp_tac (put_simpset Smartcard.analz_image_freshK_ss
ctxt
|> Simplifier.add_simps [@{thm knows_Spy_Inputs_secureM_sr_Spyl},
@{thm knows_Spy_Outpts_secureM_sr_Spy},
@{thm shouprubin_assumes_securemeans},
@{thm analz_image_Key_Un_Nonce}]1))1)))>
"for proving the Session Key Compromise theorem for smartcard protocols"

lemma analz_image_freshK [rule_format]:
"evs € sr — V K KK.
(Key K € analz (Key‘KK U (knows Spy evs))) =
(K € KK V Key K € analz (knows Spy evs))"
apply (erule sr.induct)
apply analz_prepare
apply sc_analz_freshK

apply spy_analz
done

lemma analz_insert_freshK: "evs € sr —

Key K € analz (insert (Key K’) (knows Spy evs)) =

(K = K’ V Key K € analz (knows Spy evs))"
apply (simp only: analz_image_freshK_simps analz_image_freshK)
done

lemma Na_Nb_certificate_authentic:
"[Crypt (pairK(A,B)) {Nonce Na, Nonce Nb|} € parts (knows Spy evs);
—illegalUse(Card B);
evs € sr |
—> Outpts (Card B) B {Nonce Nb, Key (sesK(Nb,pairK(4,B))),
Crypt (pairK(A,B)) {Nonce Na, Nonce Nb},
Crypt (pairK(A,B)) (Nonce Nb)|} € set evs"
apply (erule rev_mp, erule sr.induct)
apply parts_prepare
apply simp_all

apply spy_analz

302 26 ORIGINAL SHOUP-RUBIN PROTOCOL

apply clarify
done

lemma Nb_certificate_authentic:
"[Crypt (pairK(A4,B)) (Nonce Nb) € parts (knows Spy evs);
B # Spy; —illegalUse(Card A); —illegalUse(Card B);
evs € sr |
= Outpts (Card A) A {Key (sesK(Nb,pairK(4,B))),
Crypt (pairK(4,B)) (Nonce Nb)|} € set evs"

apply (erule rev_mp, erule sr.induct)
apply parts_prepare
apply (case_tac [17] "Aa = Spy")
apply simp_all

apply spy_analz

apply clarify+
done

lemma Outpts_A_Card_imp_pairK_parts:
"[Outpts (Card A) A
{Key K, Crypt (pairK(A,B)) (Nonce Nb)|} € set evs;
evs € sr |
= 3 Na. Crypt (pairK(4,B)) {Nonce Na, Nonce Nb[} € parts (knows Spy
evs)"
apply (erule rev_mp, erule sr.induct)
apply parts_prepare
apply simp_all

apply (blast dest: parts_insertI)
apply force
apply force
apply blast

apply (blast dest: Inputs_imp_knows_Spy_secureM_sr parts.Inj Inputs_A_Card_9
Gets_imp_knows_Spy elim: knows_Spy_partsEs)

apply (blast dest: Inputs_imp_knows_Spy_secureM_sr [THEN parts.Inj]
Inputs_A_Card_9 Gets_imp_knows_Spy
elim: knows_Spy_partsEs)
done

lemma Nb_certificate_authentic_bis:
"[Crypt (pairK(A,B)) (Nonce Nb) € parts (knows Spy evs);

303

B # Spy; —illegalUse(Card B);
evs € sr |
= 3 Na. Outpts (Card B) B {Nonce Nb, Key (sesK(Nb,pairK(4,B))),
Crypt (pairK(A,B)) {Nonce Na, Nonce Nbl,
Crypt (pairK(A,B)) (Nonce Nb)|} € set evs"
apply (erule rev_mp, erule sr.induct)
apply parts_prepare
apply (simp_all (no_asm_simp))

apply spy_analz
apply blast
apply blast

apply (blast dest: Na_Nb_certificate_authentic Inputs_imp_knows_Spy_secureM_sr
[THEN parts.Inj] elim: knows_Spy_partsEs)

apply (blast dest: Na_Nb_certificate_authentic Inputs_imp_knows_Spy_secureM_sr
[THEN parts.Inj] elim: knows_Spy_partsEs)

apply (blast dest: Na_Nb_certificate_authentic Outpts_A_Card_imp_pairK_parts)
done

lemma Pairkey_certificate_authentic:
"[Crypt (shrK A) {Nonce Pk, Agent B[} € parts (knows Spy evs);
Card A ¢ cloned; evs € sr |
—> Pk = Pairkey(A,B) A
Says Server A {Nonce Pk,
Crypt (shrK A) {Nonce Pk, Agent B[}
€ set evs"
apply (erule rev_mp, erule sr.induct)
apply parts_prepare
apply (simp_all (no_asm_simp))

apply spy_analz
done

lemma sesK_authentic:
"[Key (sesK(Nb,pairK(A,B))) € parts (knows Spy evs);
A # Spy; B # Spy; —illegalUse(Card A); —illegalUse(Card B);
evs € sr |
= Notes Spy {Key (sesK(Nb,pairK(A,B))), Nonce Nb, Agent A, Agent B[

€ set evs"”
apply (erule rev_mp, erule sr.induct)
apply parts_prepare
apply (simp_all (no_asm_simp))

apply spy_analz

304

apply

apply

apply

26 ORIGINAL SHOUP-RUBIN PROTOCOL

(fastforce dest: analz.Inj)

clarify

clarify

apply simp_all

done

lemma Confidentiality:
"[Notes Spy {Key (sesK(Nb,pairK(A,B))), Nonce Nb, Agent A, Agent B[

apply
done

¢ set evs;
A # Spy; B # Spy; —illegalUse(Card A); —illegalUse(Card B);
evs € sr |

= Key (sesK(Nb,pairK(A,B))) ¢ analz (knows Spy evs)"

(blast intro: sesK_authentic)

lemma Confidentiality_B:
"[Outpts (Card B) B {Nonce Nb, Key K, Certificate,

apply
apply
apply

apply
apply
apply
apply
apply
apply

apply
apply

apply

Crypt (pairK(4,B)) (Nonce Nb)| € set evs;
Notes Spy {Key K, Nonce Nb, Agent A, Agent B} ¢ set evs;
A # Spy; B # Spy; —illegalUse(Card A); Card B ¢ cloned;
evs € sr |

—> Key K ¢ analz (knows Spy evs)"

(erule rev_mp, erule rev_mp, erule sr.induct)
analz_prepare
(simp_all add: analz_insert_eq analz_insert_freshK pushes split_ifs)

spy_analz

(rotate_tac 7)

(drule parts.Inj)

(fastforce dest: Outpts_B_Card_form_7)
(blast dest!: Outpts_B_Card_form_7)
clarify

(drule Outpts_parts_used)
simp

(fastforce dest: Outpts_B_Card_form_7)

305

apply clarify
apply (drule Outpts_B_Card_form_7, assumption)
apply simp

apply (blast dest!: Outpts_B_Card_form_7)

apply (blast dest!: Outpts_B_Card_form_7 Outpts_A_Card_form_10)
done

lemma A_authenticates_B:
"[Outpts (Card A) A {Key K, Crypt (pairK(A,B)) (Nonce Nb)| € set evs;

—illegalUse(Card B);
evs € sr |
— 3 Na.
Outpts (Card B) B {Nonce Nb, Key K,
Crypt (pairK(A,B)) {Nonce Na, Nonce Nb|,
Crypt (pairK(4,B)) (Nonce Nb)|} € set evs"
apply (blast dest: Na_Nb_certificate_authentic Outpts_A_Card_form_10 Outpts_A_Card_imp_pairK_parts)
done

lemma A_authenticates_B_Gets:
"[Gets A {Nonce Nb, Crypt (pairK(A,B)) {Nonce Na, Nonce Nbl}
€ set evs;
—illegalUse(Card B);
evs € sr |
—> Outpts (Card B) B {Nonce Nb, Key (sesK(Nb, pairK (4, B))),
Crypt (pairK(A,B)) {Nonce Na, Nonce Nbl,
Crypt (pairK(A,B)) (Nonce Nb)|} € set evs"
apply (blast dest: Gets_imp_knows_Spy [THEN parts.Inj, THEN parts.Snd, THEN
Na_Nb_certificate_authentic])
done

lemma B_authenticates_A:
"[Gets B (Crypt (pairK(A,B)) (Nonce Nb)) € set evs;
B # Spy; —illegalUse(Card A); —illegalUse(Card B);
evs € sr |
—> Outpts (Card A) A
{Key (sesK(Nb,pairK(A,B))), Crypt (pairK(A,B)) (Nonce Nb)|} € set evs"
apply (erule rev_mp)
apply (erule sr.induct)

306 26 ORIGINAL SHOUP-RUBIN PROTOCOL

apply (simp_all (no_asm_simp))
apply (blast dest: Says_imp_knows_Spy [THEN parts.Inj] Nb_certificate_authentic)
done

lemma Confidentiality A: "[Outpts (Card A) A
{Key K, Crypt (pairK(A,B)) (Nonce Nb)|} € set evs;
Notes Spy {Key K, Nonce Nb, Agent A, Agent B[} ¢ set evs;
A # Spy; B # Spy; —illegalUse(Card A); —illegalUse(Card B);
evs € sr |
—> Key K ¢ analz (knows Spy evs)"

apply (drule A_authenticates_B)

prefer 3

apply (erule exE)

apply (drule Confidentiality_B)

apply auto

done

lemma Outpts_imp_knows_agents_secureM_sr:

"[Outpts (Card A) A X € set evs; evs € sr | = X € knows A evs"
apply (simp (no_asm_simp) add: Outpts_imp_knows_agents_secureM)
done

lemma A_keydist_to_B:
"[Outpts (Card A) A
{Key K, Crypt (pairK(4,B)) (Nonce Nb)|} € set evs;
—illegalUse(Card B);
evs € sr |
— Key K € analz (knows B evs)"
apply (drule A_authenticates_B)
prefer 3
apply (erule exE)
apply (rule Outpts_imp_knows_agents_secureM_sr [THEN analz.Inj, THEN analz.Snd,
THEN analz.Fst])
apply assumption+
done

lemma B_keydist_to_A:
"[Outpts (Card B) B {Nonce Nb, Key K, Certificate,
(Crypt (pairK(A,B)) (Nonce Nb))|} € set evs;
Gets B (Crypt (pairK(A,B)) (Nonce Nb)) € set evs;
B # Spy; —illegalUse(Card A); —illegalUse(Card B);
evs € sr |
— Key K € analz (knows A evs)"
apply (frule B_authenticates_A)

307

apply (drule_tac [5] Outpts_B_Card_form_7)

apply (rule_tac [6] Outpts_imp_knows_agents_secureM_sr [THEN analz.Inj, THEN
analz.Fst])

prefer 6 apply force
apply assumption+
done

lemma Nb_certificate_authentic_B:
"[Gets B (Crypt (pairK(4,B)) (Nonce Nb)) € set evs;
B # Spy; —illegalUse(Card B);
evs € sr |
= 3 Na.
Outpts (Card B) B {Nonce Nb, Key (sesK(Nb,pairK(A,B))),
Crypt (pairK(A,B)) {Nonce Na, Nonce Nb},
Crypt (pairK(A,B)) (Nonce Nb)|} € set evs"

apply (blast dest: Gets_imp_knows_Spy [THEN parts.Inj, THEN Nb_certificate_authentic_bis])
done

lemma Pairkey_certificate_authentic_A_Card:
"[Inputs A (Card A)
{]Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Crypt (shrK A) {Nonce Pk, Agent B},
Cert2, Cert3[} € set evs;
A # Spy; Card A ¢ cloned; evs € sr |
— Pk = Pairkey(4,B) A
Says Server A {Nonce (Pairkey(A,B)),
Crypt (shrK A) {Nonce (Pairkey(A,B)), Agent B[]
€ set evs "
apply (blast dest: Inputs_A_Card_9 Gets_imp_knows_Spy [THEN parts.Inj, THEN
parts.Snd] Pairkey_certificate_authentic)
done

lemma Na_Nb_certificate_authentic_A_Card:
"[Inputs A (Card A)
{[Agent B, Nonce Na, Nonce Nb, Nonce Pk,

308 26 ORIGINAL SHOUP-RUBIN PROTOCOL

Certl,
Crypt (pairK(A,B)) {Nonce Na, Nonce Nbl}, Cert3} € set evs;

A # Spy; —illegalUse(Card B); evs € sr |
—> Outpts (Card B) B {Nonce Nb, Key (sesK(Nb, pairK (4, B))),
Crypt (pairK(A,B)) {Nonce Na, Nonce Nbl|,
Crypt (pairK(4,B)) (Nonce Nb)|
€ set evs "
apply (blast dest: Inputs_A_Card_9 Gets_imp_knows_Spy [THEN parts.Inj, THEN
parts.Snd, THEN Na_Nb_certificate_authentic])
done

lemma Na_authentic_A_Card:

"[Inputs A (Card A)

{Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Certl, Cert2, Cert3]} € set evs;
A # Spy; evs € sr |
= Outpts (Card A) A {Nonce Na, Cert3|
€ set evs"

apply (blast dest: Inputs_A_Card_9)
done

lemma Inputs_A_Card_9_authentic:
"[Inputs A (Card A)
ﬂAgent B, Nonce Na, Nonce Nb, Nonce Pk,
Crypt (shrK A) {Nonce Pk, Agent B[,
Crypt (pairK(A,B)) {Nonce Na, Nonce Nbl}, Cert3} € set evs;

A # Spy; Card A ¢ cloned;—illegalUse(Card B); evs € sr |
= Says Server A {Nonce Pk, Crypt (shrK A) {Nonce Pk, Agent B[}
€ set evs A
Outpts (Card B) B {Nonce Nb, Key (sesK(Nb, pairK (A, B))),
Crypt (pairK(A,B)) {Nonce Na, Nonce Nb|,
Crypt (pairK(4,B)) (Nonce Nb)|
€ set evs A
Outpts (Card A) A {Nonce Na, Cert3}
€ set evs"
apply (blast dest: Inputs_A_Card_9 Na_Nb_certificate_authentic Gets_imp_knows_Spy
[THEN parts.Inj, THEN parts.Snd] Pairkey_certificate_authentic)
done

309

lemma SR4_imp:
"[Outpts (Card A) A {Nonce Na, Crypt (crdK (Card A)) (Nonce Na)|
€ set evs;
A # Spy; evs € sr |
= 3 Pk V. Gets A {Pk, V|} € set evs"
apply (blast dest: Outpts_A_Card_4 Inputs_A_Card_3)
done

lemma SR7_imp:
"[Outpts (Card B) B {Nonce Nb, Key K,
Crypt (pairK(4,B)) {Nonce Na, Nonce Nb|,
Cert2]} € set evs;
B # Spy; evs € sr |
—> Gets B {Agent A, Nonce Nal} € set evs"
apply (blast dest: Outpts_B_Card_7 Inputs_B_Card_6)
done

lemma SR10_imp:
"[Outpts (Card A) A {Key K, Crypt (pairK(A,B)) (Nonce Nb)[}
€ set evs;
A # Spy; evs € sr |
—> 3 Certl Cert2.
Gets A {Nonce (Pairkey (A, B)), Certl] € set evs A
Gets A {Nonce Nb, Cert2]} € set evs"
apply (blast dest: Outpts_A_Card_10 Inputs_A_Card_9)
done

lemma Outpts_Server_not_evs: "evs € sr —> Outpts (Card Server) P X ¢ set
evs"

apply (erule sr.induct)

apply auto

done

step2_integrity also is a reliability theorem

lemma Says_Server_message_form:
"[Says Server A {Pk, Certificatel} € set evs;
evs € sr |
=—> 3 B. Pk = Nonce (Pairkey(4,B)) A
Certificate = Crypt (shrK A) {Nonce (Pairkey(A,B)), Agent B[}"
apply (erule rev_mp)
apply (erule sr.induct)

310 27 BELLA’S MODIFICATION OF THE SHOUP-RUBIN PROTOCOL

apply auto
apply (blast dest!: Outpts_Server_not_evs)+
done

step4dintegrity is Outpts_A_Card_form_4
step7integrity is Outpts_B_Card_form_7

lemma step8_integrity:
"[Says B A {Nonce Nb, Certificate[} € set evs;
B # Server; B # Spy; evs € sr |
—> d Cert2 K.
Outpts (Card B) B {Nonce Nb, Key K, Certificate, Cert2]} € set evs"
apply (erule rev_mp)
apply (erule sr.induct)
prefer 18 apply (fastforce dest: Outpts_A_Card_form_10)
apply auto
done

step9integrity is Inputs_A_Card_form_9
steplOintegrity is Outpts_A_Card_form_10.

lemma stepll_integrity:
"[Says A B (Certificate) € set evs;
V p q. Certificate # {p, ql};
A # Spy; evs € sr |
= 3 K.
Outpts (Card A) A {Key K, Certificate| € set evs"
apply (erule rev_mp)
apply (erule sr.induct)
apply auto
done

end

27 Bella’s modification of the Shoup-Rubin pro-
tocol

theory ShoupRubinBella imports Smartcard begin

The modifications are that message 7 now mentions A, while message 10 now
mentions Nb and B. The lack of explicitness of the original version was dis-
covered by investigating adherence to the principle of Goal Availability. Only
the updated version makes the goals of confidentiality, authentication and key
distribution available to both peers.

axiomatization sesK :: "nat*key => key"
where

inj_sesK [iff]: "(sesK(m,k) = sesK(m’,k’)) = (m =m’ A k = k’)" and
shrK_disj_sesK [iff]: "shrK A # sesK(m,pk)" and

crdK_disj_sesK [iff]: "crdK C # sesK(m,pk)" and
pin_disj_sesK [iff]: "pin P # sesK(m,pk)" and

311

pairK_disj_sesK[iff]: "pairK(A,B) # sesK(m,pk)" and

Atomic_distrib [iff]: "Atomic‘(KEY‘K U NONCE‘N) =
Atomic‘(KEY‘K) U Atomic‘(NONCE‘N)" and

shouprubin_assumes_securemeans [iff]: "evs € srb —> secureM"

definition Unique :: "[event, event list] => bool" (<Unique _ on _>) where

"Unique ev on evs ==
ev ¢ set (tl1 (dropWhile (} z. z # ev) evs))"

inductive__set srb :: "event list set"
where

Nil: "[]J€ srb"

| Fake: "[evsF € srb; X € synth (analz (knows Spy evsF));
illegalUse(Card B) |
—> Says Spy A X #
Inputs Spy (Card B) X # evsF € srb"

| Forge:
"[evsFo € srb; Nonce Nb € analz (knows Spy evsFo);
Key (pairK(A,B)) € knows Spy evsFo |
—> Notes Spy (Key (sesK(Nb,pairK(A,B)))) # evsFo € srb"

| Reception: "[evsrb€ srb; Says A B X € set evsrb |
— Gets B X # evsrb € srb"

| SR_U1: "] evsl € srb; A # Server |
—> Says A Server {Agent A, Agent B}
evsl € srb"

| SR_U2: "[evs2 € srb;
Gets Server {Agent A, Agent B} € set evs2 |
= Says Server A {Nonce (Pairkey(4,B)),
Crypt (shrK A) {Nonce (Pairkey(A,B)), Agent B}
h

evs2 € srb"

312 27 BELLA’S MODIFICATION OF THE SHOUP-RUBIN PROTOCOL

| SR_U3: "[evs3 € srb; legalUse(Card 4);
Says A Server {Agent A, Agent B|} € set evs3;
Gets A {Nonce Pk, Certificatel} € set evs3 |
— Inputs A (Card A) (Agent A)
evs3 € srb"

| SR_U4: "[evs4d € srb;
Nonce Na ¢ used evs4; legalUse(Card A); A # Server;
Inputs A (Card A) (Agent A) € set evs4d |
=—> Outpts (Card A) A {Nonce Na, Crypt (crdK (Card A)) (Nonce Na)|}
evs4d € srb"

| SR_U4Fake: "| evs4F € srb; Nonce Na ¢ used evs4F;
illegalUse(Card A);
Inputs Spy (Card A) (Agent A) € set evs4F |
= Outpts (Card A) Spy {Nonce Na, Crypt (crdK (Card A)) (Nonce Na)l}
evs4F € srb"

| SR_U5: "[evs5 € srb;
Outpts (Card A) A {]Nonce Na, Certificateﬂ» € set evs5;

V p q. Certificate # {p, q| |
—> Says A B {Agent A, Nonce Nal|} # evs5 € srb"

| SR_U6: "[evs6 € srb; legalUse(Card B);
Gets B {Agent A, Nonce Na| € set evs6 |
= Inputs B (Card B) {Agent A, Nonce Nal
evs6 € srb"

| SR_U7: "[evs7 € srb;

Nonce Nb ¢ used evs7; legalUse(Card B); B # Server;

K = sesK(Nb,pairK(A,B));

Key K ¢ used evs7;

Inputs B (Card B) {Agent A, Nonce Nal} € set evs7]

= Outpts (Card B) B {Nonce Nb, Agent A, Key K,
Crypt (pairK(A,B)) {Nonce Na, Nonce Nb},
Crypt (pairK(A,B)) (Nonce Nb)[
evs7 € srb"

| SR_U7Fake: "[evs7F € srb; Nonce Nb ¢ used evsT7F;

313

illegalUse(Card B);

K = sesK(Nb,pairK(A,B));

Key K ¢ used evsT7F;

Inputs Spy (Card B) {Agent A, Nonce Nal} € set evs7F |

— Outpts (Card B) Spy {Nonce Nb, Agent A, Key K,
Crypt (pairK(4,B)) {Nonce Na, Nonce Nbl,
Crypt (pairK(A,B)) (Nonce Nb)|
evs7F € srb"

| SR_U8: "[evs8 € srb;
Inputs B (Card B) {Agent A, Nonce Na| € set evs§8;
Outpts (Card B) B {Nonce Nb, Agent A, Key K,
Cert1, Cert2} € set evs8 |
— Says B A {Nonce Nb, Certi| # evs8 € srb"

| SR_U9: "[evs9 € srb; legalUse(Card A);

Gets A {Nonce Pk, Certl]} € set evs9;

Outpts (Card A) A {Nonce Na, Cert2|} € set evs9;
Gets A {]Nonce Nb, Cert3[} € set evs9;

V pq. Cert2 # {p, q}]

— Inputs A (Card A)
{]Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Certl, Cert3, Cert2]}
evs9 € srb"

| SR_U10: "[evslO € srb; legalUse(Card A); A # Server;
K = sesK(Nb,pairK(A,B));
Inputs A (Card A) {Agent B, Nonce Na, Nonce Nb,
Nonce (Pairkey(A,B)),
Crypt (shrK A) {Nonce (Pairkey(4,B)),
Agent B[},
Crypt (pairK(A,B)) {Nonce Na, Nonce Nbl|,

Crypt (crdK (Card A)) (Nonce Na)l}
€ set evs10 |
= Outpts (Card A) A {Agent B, Nonce Nb,
Key K, Crypt (pairK(A,B)) (Nonce Nb)|
evsl0 € srb"

| SR_U1OFake: "[evs1OF € srb;
illegalUse(Card A);
K = sesK(Nb,pairK(A,B));
Inputs Spy (Card A) {Agent B, Nonce Na, Nonce Nb,

314 27 BELLA’S MODIFICATION OF THE SHOUP-RUBIN PROTOCOL

Nonce (Pairkey(A,B)),

Crypt (shrK A) {Nonce (Pairkey(4,B)),
Agent B[,

Crypt (pairK(A,B)) {Nonce Na, Nonce Nbl,

Crypt (crdK (Card A)) (Nonce Na)}
€ set evs1OF |
—> Outpts (Card A) Spy {Agent B, Nonce Nb,
Key K, Crypt (pairK(A,B)) (Nonce Nb)|}
evs10F € srb"

| SR_U11: "[evsll € srb;
Says A Server {Agent A, Agent B|} € set evsli;
Outpts (Card A) A {Agent B, Nonce Nb, Key K, Certificatel
€ set evsil |
— Says A B (Certificate)
evsll € srb"

| Oops1:
"[evs01 € srb;
Outpts (Card B) B {Nonce Nb, Agent A, Key K, Certl, Cert2|
€ set evs01 |
—> Notes Spy {Key K, Nonce Nb, Agent A, Agent B[} # evs0l € srb"

| Oops2:
"[evs02 € srb;
Outpts (Card A) A {Agent B, Nonce Nb, Key K, Certificatel
€ set evs02 |
— Notes Spy {Key K, Nonce Nb, Agent A, Agent B[} # evs02 € srb"

declare Fake_parts_insert_in_Un [dest]
declare analz_into_parts [dest]

lemma Gets_imp_Says:

”[[Gets B X € set evs; evs € srb] —> 3 A. Says A B X € set evs"
apply (erule rev_mp, erule srb.induct)

315

apply auto
done

lemma Gets_imp_knows_Spy:

"[Gets B X € set evs; evs € srb | = X € knows Spy evs"
apply (blast dest!: Gets_imp_Says Says_imp_knows_Spy)
done

lemma Gets_imp_knows_Spy_parts_Snd:

"[Gets B {X, Y|} € set evs; evs € srb | = Y € parts (knows Spy evs)"
apply (blast dest!: Gets_imp_Says Says_imp_knows_Spy parts.Inj parts.Snd)
done

lemma Gets_imp_knows_Spy_analz_Snd:

"[Gets B {X, Y} € set evs; evs € srb | = Y € analz (knows Spy evs)"
apply (blast dest!: Gets_imp_Says Says_imp_knows_Spy analz.Inj analz.Snd)
done

lemma Inputs_imp_knows_Spy_secureM_srb:

"[Inputs Spy C X € set evs; evs € srb | = X € knows Spy evs"
apply (simp (no_asm_simp) add: Inputs_imp_knows_Spy_secureM)
done

lemma knows_Spy_Inputs_secureM_srb_Spy:
"evs €srb = knows Spy (Inputs Spy C X # evs) = insert X (knows Spy
evs)"
apply (simp (no_asm_simp))
done

lemma knows_Spy_Inputs_secureM_srb:
"[A # Spy; evs €srb | = knows Spy (Inputs A C X # evs) = knows Spy
evs"
apply (simp (no_asm_simp))
done

lemma knows_Spy_Outpts_secureM_srb_Spy:
"evs €srb =—> knows Spy (Outpts C Spy X # evs) = insert X (knows Spy
evs)"
apply (simp (no_asm_simp))
done

lemma knows_Spy_Outpts_secureM_srb:
"[A # Spy; evs €srb | = knows Spy (Outpts C A X # evs) = knows Spy
evs"
apply (simp (no_asm_simp))
done

316 27 BELLA’S MODIFICATION OF THE SHOUP-RUBIN PROTOCOL

lemma Inputs_A_Card_3:
"[Inputs A C (Agent A) € set evs; A # Spy; evs € srb |
—> legalUse(C) N C = (Card A) A
(3 Pk Certificate. Gets A {Pk, Certificatel} € set evs)"
apply (erule rev_mp, erule srb.induct)
apply auto
done

lemma Inputs_B_Card_6:
"[Inputs B C {Agent A, Nonce Na} € set evs; B # Spy; evs € srb |
— legalUse(C) A C = (Card B) A Gets B {Agent A, Nonce Nal}} € set evs"
apply (erule rev_mp, erule srb.induct)
apply auto
done

lemma Inputs_A_Card_9:
"[Inputs A C {Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Certl, Cert2, CertS[} € set evs;

A # Spy; evs € srb |
= legalUse(C) N C = (Card A) A

Gets A {Nonce Pk, Certl]} € set evs A
Outpts (Card A) A {Nonce Na, Cert3|} € set evs A
Gets A {]Nonce Nb, Cert2[} € set evs"

apply (erule rev_mp, erule srb.induct)

apply auto

done

lemma Outpts_A_Card_4:
"] Outpts C A {Nonce Na, (Crypt (crdK (Card A)) (Nonce Na))| € set evs;

evs € srb |
—> legalUse(C) N C = (Card A) A
Inputs A (Card A) (Agent A) € set evs"
apply (erule rev_mp, erule srb.induct)
apply auto
done

lemma Outpts_B_Card_7:
"[Outpts C B {Nonce Nb, Agent A, Key K,
Crypt (pairK(4,B)) {Nonce Na, Nonce Nbl,
Cert2]} € set evs;

317

evs € srb |
—> legalUse(C) N C = (Card B) A
Inputs B (Card B) {Agent A, Nonce Nal € set evs"
apply (erule rev_mp, erule srb.induct)
apply auto
done

lemma Outpts_A_Card_10:
"[Outpts C A {Agent B, Nonce Nb,
Key K, (Crypt (pairK(A4,B)) (Nonce Nb))} € set evs;
evs € srb |
— legalUse(C) A C = (Card A) A
(3 Na Verl Ver2 Ver3.
Inputs A (Card A) {Agent B, Nonce Na, Nonce Nb, Nonce (Pairkey(A,B)),

Verl, Ver2, Ver3|} € set evs)"
apply (erule rev_mp, erule srb.induct)
apply auto
done

lemma Outpts_A_Card_10_imp_Inputs:
"[Outpts (Card A) A {Agent B, Nonce Nb, Key K, Certificatel}
€ set evs; evs € srb |
— (4 Na Verl Ver2 Ver3.
Inputs A (Card A) {Agent B, Nonce Na, Nonce Nb, Nonce (Pairkey(A,B)),

Verl, Ver2, Ver3]} € set evs)"
apply (erule rev_mp, erule srb.induct)
apply simp_all
apply blast+
done

lemma Outpts_honest_A_Card_4:
"[Outpts C A {Nonce Na, Crypt K X[} €set evs;
A # Spy; evs € srb |
=—> legalUse(C) N C = (Card A) A
Inputs A (Card A) (Agent A) € set evs"
apply (erule rev_mp, erule srb.induct)
apply auto
done

lemma Outpts_honest_B_Card_7:
"[Outpts C B {Nonce Nb, Agent A, Key K, Certl, Cert2]} € set evs;
B # Spy; evs € srb |

318 27 BELLA’S MODIFICATION OF THE SHOUP-RUBIN PROTOCOL

—> legalUse(C) N C = (Card B) A
(3 Na. Inputs B (Card B) {Agent A, Nonce Na| € set evs)"
apply (erule rev_mp, erule srb.induct)
apply auto
done

lemma Outpts_honest_A_Card_10:
"[Outpts C A {Agent B, Nonce Nb, Key K, Certificate[} € set evs;
A # Spy; evs € srb |
—> legalUse (C) A C = (Card A) A
(3 Na Pk Verl Ver2 Ver3.
Inputs A (Card A) {Agent B, Nonce Na, Nonce Nb, Pk,
Verl, Ver2, Ver3|} € set evs)"
apply (erule rev_mp, erule srb.induct)
apply simp_all
apply blast+
done

lemma Outpts_which_Card_4:
"[Outpts (Card A) A {Nonce Na, Crypt K X[} € set evs; evs € srb |
—> Inputs A (Card A) (Agent A) € set evs"

apply (erule rev_mp, erule srb.induct)

apply (simp_all (no_asm_simp))

apply clarify

done

lemma Outpts_which_Card_7:
"[Outpts (Card B) B {Nonce Nb, Agent A, Key K, Certl, Cert2]}
€ set evs; evs € srb |
= 3 Na. Inputs B (Card B) {Agent A, Nonce Nal} € set evs"
apply (erule rev_mp, erule srb.induct)
apply auto
done

lemma Outpts_which_Card_10:
"[Outpts (Card A) A {Agent B, Nonce Nb, Key K, Certificate [} € set evs;
evs € srb |
=—> 3 Na. Inputs A (Card A) {Agent B, Nonce Na, Nonce Nb, Nonce (Pairkey(4,B)),

Crypt (shrK A) {Nonce (Pairkey(A,B)), Agent B[,

Crypt (pairK(A,B)) {Nonce Na, Nonce Nb},
Crypt (crdK (Card A)) (Nonce Na) |} € set evs"
apply (erule rev_mp, erule srb.induct)
apply auto
done

319

lemma Outpts_A_Card_form_4:
"[Outpts (Card A) A {Nonce Na, Certificate|} € set evs;
V p q. Certificate # {p, qf}; evs € srb |
— Certificate = (Crypt (crdK (Card A)) (Nonce Na))"
apply (erule rev_mp, erule srb.induct)
apply (simp_all (no_asm_simp))
done

lemma Outpts_B_Card_form_7:
"[Outpts (Card B) B {Nonce Nb, Agent A, Key K, Certl, Cert2|
€ set evs; evs € srb |
= d Na.
K = sesK(Nb,pairK(A,B)) A
Certl = (Crypt (pairK(A,B)) {Nonce Na, Nonce Nb[}) A
Cert2 = (Crypt (pairK(A,B)) (Nonce Nb))"
apply (erule rev_mp, erule srb.induct)
apply auto
done

lemma Outpts_A_Card_form_10:
"[Outpts (Card A) A {Agent B, Nonce Nb, Key K, Certificatel
€ set evs; evs € srb |
—> K = sesK(Nb,pairK(4,B)) A
Certificate = (Crypt (pairK(A,B)) (Nonce Nb))"

apply (erule rev_mp, erule srb.induct)
apply (simp_all (no_asm_simp))
done

lemma Outpts_A_Card_form_bis:
"l Outpts (Card A’) A’ {Agent B’, Nonce Nb’, Key (sesK(Nb,pairK(A,B))),
1Y g Y p

Certificate[} € set evs;
evs € srb |
= A’ = A NB’” =B A Nb =Nb’ A
Certificate = (Crypt (pairK(A,B)) (Nonce Nb))"
apply (erule rev_mp, erule srb.induct)
apply (simp_all (no_asm_simp))
done

lemma Inputs_A_Card_form_9:

"[Inputs A (Card A) {Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Certl, Cert2, Cert3|} € set evs;
evs € srb |
= Cert3 = Crypt (crdK (Card A)) (Nonce Na)"
apply (erule rev_mp)
apply (erule srb.induct)
apply (simp_all (no_asm_simp))

apply force

320 27 BELLA’S MODIFICATION OF THE SHOUP-RUBIN PROTOCOL

apply (blast dest!: Outpts_A_Card_form_4)
done

lemma Inputs_Card_legalUse:
"[Inputs A (Card A) X € set evs; evs € srb | = legalUse(Card A)"
apply (erule rev_mp, erule srb.induct)
apply auto
done

lemma Outpts_Card_legalUse:
"[Outpts (Card A) A X € set evs; evs € srb | = legalUse(Card A)"
apply (erule rev_mp, erule srb.induct)
apply auto
done

lemma Inputs_Card: "[Inputs A C X € set evs; A # Spy; evs € srb |
= C = (Card A) A legalUse(C)"

apply (erule rev_mp, erule srb.induct)

apply auto

done

lemma Outpts_Card: "[Outpts C A X € set evs; A # Spy; evs € srb |
= C = (Card A) A legalUse(C)"

apply (erule rev_mp, erule srb.induct)

apply auto

done

lemma Inputs_Outpts_Card:
"[Inputs A C X € set evs V Outpts C A Y € set evs;
A # Spy; evs € srb |
= C = (Card A) A legalUse(Card A)"
apply (blast dest: Inputs_Card Outpts_Card)
done

lemma Inputs_Card_Spy:
"[Inputs Spy C X € set evs V Outpts C Spy X € set evs; evs € srb |
= C = (Card Spy) A legalUse(Card Spy) V
(3 A. C = (Card A) A illegalUse(Card A))"
apply (erule rev_mp, erule srb.induct)

321

apply auto
done

lemma Outpts_A_Card_unique_nonce:
"[Outpts (Card A) A {Nonce Na, Crypt (crdK (Card A)) (Nonce Na)|
€ set evs;
Outpts (Card A’) A’ {Nonce Na, Crypt (crdK (Card A’)) (Nonce Na)l

€ set evs;
evs € srb | = A=A’"
apply (erule rev_mp, erule rev_mp, erule srb.induct, simp_all)
apply (fastforce dest: Outpts_parts_used)
apply blast
done

lemma Outpts_B_Card_unique_nonce:

"[Outpts (Card B) B {Nonce Nb, Agent A, Key SK, Certl, Cert2]} € set
evs;

Outpts (Card B’) B’ {Nonce Nb, Agent A’, Key SK’, Cert1l’, Cert2’|} €
set evs;

evs € srb | = B=B’ A A=A’ A SK=SK’ A Certl=Cert1l’ A Cert2=Cert2’"

apply (erule rev_mp, erule rev_mp, erule srb.induct, simp_all)
apply (fastforce dest: Outpts_parts_used)
apply blast
done

lemma Outpts_B_Card_unique_key:

"[Outpts (Card B) B {Nonce Nb, Agent A, Key SK, Certl, Cert2} € set
evs;

Outpts (Card B’) B’ {Nonce Nb’, Agent A’, Key SK, Cert1l’, Cert2’|} €
set evs;

evs € srb | = B=B’ A A=A’ N Nb=Nb’ A Certl=Certl’ A Cert2=Cert2’"

apply (erule rev_mp, erule rev_mp, erule srb.induct, simp_all)
apply (fastforce dest: Outpts_parts_used)
apply blast
done

lemma Outpts_A_Card_unique_key:
"[Outpts (Card A) A {Agent B, Nonce Nb, Key K, V} € set evs;
Outpts (Card A’) A’ {Agent B’, Nonce Nb’, Key K, V’[} € set evs;

322 27 BELLA’S MODIFICATION OF THE SHOUP-RUBIN PROTOCOL

evs € srb]] = A=A’ A B=B’ A Nb=Nb’ A V=V’"
apply (erule rev_mp, erule rev_mp, erule srb.induct, simp_all)
apply (blast dest: Outpts_A_Card_form_bis)
apply blast
done

lemma Outpts_A_Card_Unique:

"[Outpts (Card A) A {Nonce Na, rest|} € set evs; evs € srb |
= Unique (Outpts (Card A) A {Nonce Na, rest}) on evs"
apply (erule rev_mp, erule srb.induct, simp_all add: Unique_def)
apply (fastforce dest: Outpts_parts_used)

apply blast

apply (fastforce dest: Outpts_parts_used)
apply blast

done

lemma Spy_knows_Na:

"[Says A B {Agent A, Nonce Nal} € set evs; evs € srb |

= Nonce Na € analz (knows Spy evs)"
apply (blast dest!: Says_imp_knows_Spy [THEN analz.Inj, THEN analz.Snd])
done

lemma Spy_knows_Nb:

"[Says B A {Nonce Nb, Certificate[€ set evs; evs € srb |

= Nonce Nb € analz (knows Spy evs)"
apply (blast dest!: Says_imp_knows_Spy [THEN analz.Inj, THEN analz.Fst])
done

lemma Pairkey_Gets_analz_knows_Spy:
"[Gets A {Nonce (Pairkey(A,B)), Certificatel € set evs; evs € srb
]
= Nonce (Pairkey(A,B)) € analz (knows Spy evs)"
apply (blast dest!: Gets_imp_knows_Spy [THEN analz.Inj])
done

lemma Pairkey_Inputs_imp_Gets:
"[Inputs A (Card A)
{Agent B, Nonce Na, Nonce Nb, Nonce (Pairkey(A,B)),
Certl, Cert3, Cert2} € set evs;

323

A # Spy; evs € srb |
—> Gets A {Nonce (Pairkey(A,B)), Certl]} € set evs"
apply (erule rev_mp, erule srb.induct)
apply (simp_all (no_asm_simp))
apply force
done

lemma Pairkey_Inputs_analz_knows_Spy:

"[Inputs A (Card A)

{Agent B, Nonce Na, Nonce Nb, Nonce (Pairkey(A,B)),
Cert1, Cert3, Cert2} € set evs;
evs € srb |

= Nonce (Pairkey(A,B)) € analz (knows Spy evs)"
apply (case_tac "A = Spy")
apply (fastforce dest!: Inputs_imp_knows_Spy_secureM [THEN analz.Inj])
apply (blast dest!: Pairkey_Inputs_imp_Gets [THEN Pairkey_Gets_analz_knows_Spyl)
done

declare shrK_disj_sesK [THEN not_sym, iff]
declare pin_disj_sesK [THEN not_sym, iff]

declare crdK_disj_sesK [THEN not_sym, iff]
declare pairK_disj_sesK [THEN not_sym, iff]

ML

<

structure ShoupRubinBella =
struct

fun prepare_tac ctxt =
(*SR_U8*) forward_tac ctxt [@{thm Outpts_B_Card_form_7}] 14 THEN
(*SR_U8*) clarify_tac ctxt 15 THEN
(*SR_U9*) forward_tac ctxt [@{thm Outpts_A_Card_form_4}] 16 THEN
(*SR_U11*) forward_tac ctxt [@{thm Outpts_A_Card_form_10}] 21

fun parts_prepare_tac ctxt =
prepare_tac ctxt THEN
(*SR_U9%) dresolve_tac ctxt [@{thm Gets_imp_knows_Spy_parts_Snd}] 18 THEN
(*SR_U9*) dresolve_tac ctxt [@{thm Gets_imp_knows_Spy_parts_Snd}] 19 THEN
(*0ops1%*) dresolve_tac ctxt [@{thm Outpts_B_Card_form_7}] 25 THEN
(*0ops2%*) dresolve_tac ctxt [@{thm Outpts_A_Card_form_10}] 27 THEN

(*Base*) (force_tac ctxt) 1

fun analz_prepare_tac ctxt =

324 27 BELLA’S MODIFICATION OF THE SHOUP-RUBIN PROTOCOL

prepare_tac ctxt THEN

dresolve_tac ctxt @{thms Gets_imp_knows_Spy_analz_Snd} 18 THEN
(*SR_U9%*) dresolve_tac ctxt @{thms Gets_imp_knows_Spy_analz_Snd} 19 THEN

REPEAT_FIRST (eresolve_tac ctxt [asm_rl, conjE] ORELSE’ hyp_subst_tac
ctxt)

end
>

method__setup prepare = <
Scan.succeed (fn ctxt => SIMPLE_METHOD (ShoupRubinBella.prepare_tac ctxt))>
"to launch a few simple facts that will help the simplifier"

method__setup parts_prepare = <
Scan.succeed (fn ctxt => SIMPLE_METHOD (ShoupRubinBella.parts_prepare_tac
ctxt))>
"additional facts to reason about parts"

method__setup analz_prepare = <
Scan.succeed (fn ctxt => SIMPLE_METHOD (ShoupRubinBella.analz_prepare_tac
ctxt))>
"additional facts to reason about analz"

lemma Spy_parts_keys [simp]: "evs € srb —
(Key (shrK P) € parts (knows Spy evs)) = (Card P € cloned) A
(Key (pin P) € parts (knows Spy evs)) = (P € bad V Card P € cloned) A

(Key (crdK C) € parts (knows Spy evs)) = (C € cloned) A
(Key (pairK(A,B)) € parts (knows Spy evs)) = (Card B € cloned)"
apply (erule srb.induct)
apply parts_prepare
apply simp_all
apply (blast intro: parts_insertlI)
done

lemma Spy_analz_shrK[simp]: "evs € srb —

(Key (shrK P) € analz (knows Spy evs)) = (Card P € cloned)"
apply (auto dest!: Spy_knows_cloned)
done

lemma Spy_analz_crdK[simp]: "evs € srb —

(Key (crdK C) € analz (knows Spy evs)) = (C € cloned)"
apply (auto dest!: Spy_knows_cloned)
done

lemma Spy_analz_pairK[simp]: "evs € srb —
(Key (pairK(A,B)) € analz (knows Spy evs)) = (Card B € cloned)"

325

apply (auto dest!: Spy_knows_cloned)
done

lemma analz_image_Key_Un_Nonce:
"analz (Key ¢ K U Nonce ‘ N) = Key ‘ K U Nonce ‘ N"
by (auto simp del: parts_image)

method__setup sc_analz_freshK = <
Scan.succeed (fn ctxt =>
(SIMPLE_METHOD
(EVERY [REPEAT FIRST (resolve_tac ctxt @{thms alll balll impI}),
REPEAT_FIRST (resolve_tac ctxt @{thms analz_image_freshK_lemma}),
ALLGOALS (asm_simp_tac (put_simpset Smartcard.analz_image_freshK_ss
ctxt
[> Simplifier.add_simps [@{thm knows_Spy_Inputs_securelM_srb_Spy},
©@{thm knows_Spy_Outpts_secureM_srb_Spy},
©@{thm shouprubin_assumes_securemeans},
©@{thm analz_image_Key_Un_Noncel}]))]1)))>
"for proving the Session Key Compromise theorem for smartcard protocols"

lemma analz_image_freshK [rule_format]:
"evs € srb = V K KK.
(Key K € analz (Key ‘KK U (knows Spy evs))) =
(K € KK V Key K € analz (knows Spy evs))"
apply (erule srb.induct)
apply analz_prepare
apply sc_analz_freshK

apply spy_analz
done

lemma analz_insert_freshK: "evs € srb —

Key K € analz (insert (Key K’) (knows Spy evs)) =

(K = K’ V Key K € analz (knows Spy evs))"
apply (simp only: analz_image_freshK_simps analz_image_freshK)
done

lemma Na_Nb_certificate_authentic:
"[Crypt (pairK(A,B)) {Nonce Na, Nonce Nb|} € parts (knows Spy evs);
—illegalUse(Card B);
evs € srb |
= QOutpts (Card B) B {Nonce Nb, Agent A, Key (sesK(Nb,pairK(A,B))),

326 27 BELLA’S MODIFICATION OF THE SHOUP-RUBIN PROTOCOL

apply
apply
apply
apply
apply

apply
done

Crypt (pairK(A,B)) {Nonce Na, Nonce Nb|,
Crypt (pairK(A,B)) (Nonce Nb)|} € set evs"
(erule rev_mp, erule srb.induct)
parts_prepare
simp_all

spy_analz
clarify

clarify

lemma Nb_certificate_authentic:

"[Crypt (pairK(A4,B)) (Nonce Nb) € parts (knows Spy evs);
B # Spy; —illegalUse(Card A); —illegalUse(Card B);
evs € srb |

—> Outpts (Card A) A {Agent B, Nonce Nb, Key (sesK(Nb,pairK(4,B))),

apply
apply
apply
apply

apply

apply
done

Crypt (pairK(A,B)) (Nonce Nb)|} € set evs"
(erule rev_mp, erule srb.induct)
parts_prepare
(case_tac [17] "Aa = Spy")
simp_all

spy_analz

clarify+

lemma Outpts_A_Card_imp_pairK_parts:
"[Outpts (Card A) A {Agent B, Nonce Nb,

Key K, Certificateﬂ € set evs;
evs € srb |

=—> 3 Na. Crypt (pairK(4,B)) {Nonce Na, Nonce Nb|} € parts (knows Spy

evs)"
apply
apply
apply
apply
apply
apply

apply

apply

(erule rev_mp, erule srb.induct)
parts_prepare

simp_all

(blast dest: parts_insertI)
force

force

blast

(blast dest: Inputs_imp_knows_Spy_secureM_srb parts.Inj Inputs_A_Card_9

Gets_imp_knows_Spy elim: knows_Spy_partsEs)

327

apply (blast dest: Inputs_imp_knows_Spy_secureM_srb [THEN parts.Inj]
Inputs_A_Card_9 Gets_imp_knows_Spy
elim: knows_Spy_partsEs)
done

lemma Nb_certificate_authentic_bis:
"[Crypt (pairK(A4,B)) (Nonce Nb) € parts (knows Spy evs);
B # Spy; —illegalUse(Card B);
evs € srb |
=—> 3 Na. Outpts (Card B) B {Nonce Nb, Agent A, Key (sesK(Nb,pairK(4,B))),

Crypt (pairK(A,B)) {Nonce Na, Nonce Nbl,
Crypt (pairK(A,B)) (Nonce Nb)|} € set evs"
apply (erule rev_mp, erule srb.induct)
apply parts_prepare
apply (simp_all (no_asm_simp))

apply spy_analz
apply blast
apply blast
apply force

apply (blast dest: Na_Nb_certificate_authentic Inputs_imp_knows_Spy_secureM_srb
[THEN parts.Inj] elim: knows_Spy_partsEs)

apply (blast dest: Na_Nb_certificate_authentic Inputs_imp_knows_Spy_secureM_srb
[THEN parts.Inj] elim: knows_Spy_partsEs)

apply (blast dest: Na_Nb_certificate_authentic Outpts_A_Card_imp_pairK_parts)
done

lemma Pairkey_certificate_authentic:
"[Crypt (shrK A) {Nonce Pk, Agent B[} € parts (knows Spy evs);
Card A ¢ cloned; evs € srb |
—> Pk = Pairkey(4,B) A
Says Server A {Nonce Pk,
Crypt (shrK A) {Nonce Pk, Agent B[}
€ set evs"
apply (erule rev_mp, erule srb.induct)
apply parts_prepare
apply (simp_all (no_asm_simp))

apply spy_analz

apply force
done

328 27 BELLA’S MODIFICATION OF THE SHOUP-RUBIN PROTOCOL

lemma sesK_authentic:
"[Key (sesK(Nb,pairK(A,B))) € parts (knows Spy evs);
A # Spy; B # Spy; —illegalUse(Card A); —illegalUse(Card B);
evs € srb |
— Notes Spy {Key (sesK(Nb,pairK(A,B))), Nonce Nb, Agent A, Agent Bl

€ set evs"
apply (erule rev_mp, erule srb.induct)
apply parts_prepare
apply (simp_all)

apply spy_analz

apply (fastforce dest: analz.Inj)

apply clarify

apply clarify
done

lemma Confidentiality:
"[Notes Spy {Key (sesK(Nb,pairK(A,B))), Nonce Nb, Agent A, Agent B[

¢ set evs;
A # Spy; B # Spy; —illegalUse(Card A); —illegalUse(Card B);
evs € srb |
—> Key (sesK(Nb,pairK(A,B))) ¢ analz (knows Spy evs)"
apply (blast intro: sesK_authentic)
done

lemma Confidentiality_B:
"[Outpts (Card B) B {Nonce Nb, Agent A, Key K, Certl, Cert2]}
€ set evs;
Notes Spy {Key K, Nonce Nb, Agent A, Agent B[} ¢ set evs;
A # Spy; B # Spy; —illegalUse(Card A); Card B ¢ cloned;
evs € srb |
—> Key K ¢ analz (knows Spy evs)"
apply (erule rev_mp, erule rev_mp, erule srb.induct)
apply analz_prepare
apply (simp_all add: analz_insert_eq analz_insert_freshK pushes split_ifs)

apply spy_analz

apply (rotate_tac 7)
apply (drule parts.Inj)

329

apply (fastforce dest: Outpts_B_Card_form_7)
apply (blast dest!: Outpts_B_Card_form_7)

apply clarify
apply (drule Outpts_parts_used)
apply simp

apply (fastforce dest: Outpts_B_Card_form_7)

apply clarify
apply (drule Outpts_B_Card_form_7, assumption)
apply simp

apply (blast dest!: Outpts_B_Card_form_7)

apply (blast dest!: Outpts_B_Card_form_7 Outpts_A_Card_form_10)
done

lemma A_authenticates_B:
"[Outpts (Card A) A {Agent B, Nonce Nb, Key K, Certificatel} € set evs;
—illegalUse(Card B);
evs € srb |
=—> 3 Na. Outpts (Card B) B {Nonce Nb, Agent A, Key K,
Crypt (pairK(A,B)) {Nonce Na, Nonce Nb},
Crypt (pairK(A,B)) (Nonce Nb)|} € set evs"
apply (blast dest: Na_Nb_certificate_authentic Outpts_A_Card_form_10 Outpts_A_Card_imp_pairK_parts)
done

lemma A_authenticates_B_Gets:
"[Gets A {Nonce Nb, Crypt (pairK(A,B)) {Nonce Na, Nonce Nbl}
€ set evs;
—illegalUse(Card B);
evs € srb |
= Outpts (Card B) B {Nonce Nb, Agent A, Key (sesK(Nb, pairK (A, B))),

Crypt (pairK(A,B)) {Nonce Na, Nonce Nb},

Crypt (pairK(A,B)) (Nonce Nb)|} € set evs"
apply (blast dest: Gets_imp_knows_Spy [THEN parts.Inj, THEN parts.Snd, THEN
Na_Nb_certificate_authentic])
done

lemma A_authenticates_B_bis:
"[Outpts (Card A) A {Agent B, Nonce Nb, Key K, Cert2} € set evs;
—illegalUse(Card B);
evs € srb |

330 27 BELLA’S MODIFICATION OF THE SHOUP-RUBIN PROTOCOL

= 3 Certl. Outpts (Card B) B {Nonce Nb, Agent A, Key K, Certl, Cert2|

€ set evs"
apply (blast dest: Na_Nb_certificate_authentic Outpts_A_Card_form_10 Outpts_A_Card_imp_pairK_p
done

lemma B_authenticates_A:
"[Gets B (Crypt (pairK(4,B)) (Nonce Nb)) € set evs;
B # Spy; —illegalUse(Card A); —illegalUse(Card B);
evs € srb |
= Outpts (Card A) A {Agent B, Nonce Nb,
Key (sesK(Nb,pairK(A,B))), Crypt (pairK(A,B)) (Nonce Nb)} € set evs"
apply (erule rev_mp)
apply (erule srb.induct)
apply (simp_all (no_asm_simp))
apply (blast dest: Says_imp_knows_Spy [THEN parts.Inj] Nb_certificate_authentic)
done

lemma B_authenticates_A_bis:
"[Outpts (Card B) B {Nonce Nb, Agent A, Key K, Certl, Cert2} € set evs;
Gets B (Cert2) € set evs;
B # Spy; —illegalUse(Card A); —illegalUse(Card B);
evs € srb |
= Outpts (Card A) A {Agent B, Nonce Nb, Key K, Cert2} € set evs"
apply (blast dest: Outpts_B_Card_form_7 B_authenticates_A)
done

lemma Confidentiality_ A:
"[Outpts (Card A) A {Agent B, Nonce Nb,
Key K, Certificate[} € set evs;
Notes Spy {Key K, Nonce Nb, Agent A, Agent B[} ¢ set evs;
A # Spy; B # Spy; —illegalUse(Card A); —illegalUse(Card B);
evs € srb |
—> Key K ¢ analz (knows Spy evs)"
apply (drule A_authenticates_B)
prefer 3
apply (erule exE)
apply (drule Confidentiality_B)
apply auto
done

lemma Outpts_imp_knows_agents_secureM_srb:
"[Outpts (Card A) A X € set evs; evs € srb | = X € knows A evs"

331

apply (simp (no_asm_simp) add: Outpts_imp_knows_agents_secureM)
done

lemma A_keydist_to_B:
"[Outpts (Card A) A {Agent B, Nonce Nb, Key K, Certificatel} € set evs;

—illegalUse(Card B);
evs € srb |
—> Key K € analz (knows B evs)"

apply (drule A_authenticates_B)
prefer 3
apply (erule exE)
apply (rule Outpts_imp_knows_agents_secureM_srb [THEN analz.Inj, THEN analz.Snd,
THEN analz.Snd, THEN analz.Fst])
apply assumption+
done

lemma B_keydist_to_A:
"[Outpts (Card B) B {Nonce Nb, Agent A, Key K, Certl, Cert2} € set evs;
Gets B (Cert2) € set evs;
B # Spy; —illegalUse(Card A); —illegalUse(Card B);
evs € srb |
—> Key K € analz (knows A evs)"
apply (frule Outpts_B_Card_form_7)
apply assumption apply simp
apply (frule B_authenticates_A)
apply (rule_tac [5] Outpts_imp_knows_agents_secureM_srb [THEN analz.Inj, THEN
analz.Snd, THEN analz.Snd, THEN analz.Fst])
apply simp+
done

lemma Nb_certificate_authentic_B:
"[Gets B (Crypt (pairK(4,B)) (Nonce Nb)) € set evs;
B # Spy; —illegalUse(Card B);
evs € srb |
— 3 Na.
Outpts (Card B) B {Nonce Nb, Agent A, Key (sesK(Nb,pairK(A,B))),

Crypt (pairK(A,B)) {Nonce Na, Nonce Nb},

Crypt (pairK(A,B)) (Nonce Nb)|} € set evs"
apply (blast dest: Gets_imp_knows_Spy [THEN parts.Inj, THEN Nb_certificate_authentic_bis])
done

332 27 BELLA’S MODIFICATION OF THE SHOUP-RUBIN PROTOCOL

lemma Pairkey_certificate_authentic_A_Card:
"[Inputs A (Card A)
{Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Crypt (shrK A) {Nonce Pk, Agent B[,
Cert2, Cert3|} € set evs;
A # Spy; Card A ¢ cloned; evs € srb |
— Pk = Pairkey(4,B) A
Says Server A {Nonce (Pairkey(A,B)),
Crypt (shrK A) {Nonce (Pairkey(A,B)), Agent B}}
€ set evs "
apply (blast dest: Inputs_A_Card_9 Gets_imp_knows_Spy [THEN parts.Inj, THEN
parts.Snd] Pairkey_certificate_authentic)
done

lemma Na_Nb_certificate_authentic_A_Card:
"[Inputs A (Card A)
{]Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Certl, Crypt (pairK(A,B)) {Nonce Na, Nonce Nbl}, Cert3]} € set evs;

A # Spy; —illegalUse(Card B); evs € srb |
= Outpts (Card B) B {Nonce Nb, Agent A, Key (sesK(Nb, pairK (A, B))),

Crypt (pairK(A,B)) {Nonce Na, Nonce Nbl,
Crypt (pairK(A,B)) (Nonce Nb)|}
€ set evs "
apply (frule Inputs_A_Card_9)
apply assumption+
apply (blast dest: Inputs_A_Card_9 Gets_imp_knows_Spy [THEN parts.Inj, THEN
parts.Snd, THEN Na_Nb_certificate_authentic])
done

lemma Na_authentic_A_Card:

"[Inputs A (Card A)

{]Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Certl, Cert2, CertS[} € set evs;
A # Spy; evs € srb |
= Outpts (Card A) A {Nonce Na, Cert3|}
€ set evs"

apply (blast dest: Inputs_A_Card_9)
done

lemma Inputs_A_Card_9_authentic:
"[Inputs A (Card A)
{]Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Crypt (shrK A) {Nonce Pk, Agent B[,

333

Crypt (pairK(A,B)) {Nonce Na, Nonce Nb|}, Cert3} € set evs;

A # Spy; Card A ¢ cloned; —illegalUse(Card B); evs € srb |
—> Says Server A {Nonce Pk, Crypt (shrK A) {Nonce Pk, Agent B[}|
€ set evs A
Outpts (Card B) B {Nonce Nb, Agent A, Key (sesK(Nb, pairK (A, B))),

Crypt (pairK(A,B)) {Nonce Na, Nonce Nbl,
Crypt (pairK(A,B)) (Nomce Nb)}
€ set evs A
Outpts (Card A) A {Nonce Na, Cert3}
€ set evs"
apply (blast dest: Inputs_A_Card_9 Na_Nb_certificate_authentic Gets_imp_knows_Spy
[THEN parts.Inj, THEN parts.Snd] Pairkey_certificate_authentic)
done

lemma SR_U4_imp:
"[Outpts (Card A) A {Nonce Na, Crypt (crdK (Card A)) (Nonce Na)l
€ set evs;
A # Spy; evs € srb |
= 3 Pk V. Gets A {Pk, V|} € set evs"
apply (blast dest: Outpts_A_Card_4 Inputs_A_Card_3)
done

lemma SR_U7_imp:
"[Outpts (Card B) B {Nonce Nb, Agent A, Key K,
Crypt (pairK(A,B)) {Nonce Na, Nonce Nbl|,
Cert2]} € set evs;
B # Spy; evs € srb |
—> Gets B {Agent A, Nonce Na| € set evs"
apply (blast dest: Outpts_B_Card_7 Inputs_B_Card_6)
done

lemma SR_U10_imp:
"[Outpts (Card A) A {Agent B, Nonce Nb,
Key K, Crypt (pairK(A,B)) (Nonce Nb)|
€ set evs;
A # Spy; evs € srb |

334 27 BELLA’S MODIFICATION OF THE SHOUP-RUBIN PROTOCOL

= J Certl Cert2.
Gets A {Nonce (Pairkey (A, B)), Certl]} € set evs A
Gets A {Nonce Nb, Cert2]} € set evs"
apply (blast dest: Outpts_A_Card_10 Inputs_A_Card_9)
done

lemma Outpts_Server_not_evs:
"evs € srb = Outpts (Card Server) P X ¢ set evs"
apply (erule srb.induct)
apply auto
done

step2_integrity also is a reliability theorem

lemma Says_Server_message_form:
"[Says Server A {Pk, Certificate|} € set evs;
evs € srb |
= 3 B. Pk = Nonce (Pairkey(4,B)) A
Certificate = Crypt (shrK A) {Nonce (Pairkey(A,B)), Agent B[}"
apply (erule rev_mp)
apply (erule srb.induct)
apply auto
apply (blast dest!: Outpts_Server_not_evs)+
done

step4dintegrity is Outpts_A_Card_form_4
step7integrity is Outpts_B_Card_form_7

lemma step8_integrity:

"[Says B A {Nonce Nb, Certificatel} € set evs;

B # Server; B # Spy; evs € srb |

= 3 Cert2 K.

Outpts (Card B) B {Nonce Nb, Agent A, Key K, Certificate, Cert2]} € set
evs"
apply (erule rev_mp)
apply (erule srb.induct)
prefer 18 apply (fastforce dest: Outpts_A_Card_form_10)
apply auto
done

step9integrity is Inputs_A_Card_form_9 steplOintegrity is Outpts_A_Card_form_10.

lemma stepll_integrity:
"[Says A B (Certificate) € set evs;
V p q. Certificate # {p, ql};
A # Spy; evs € srb |
= 3 K Nb.
Outpts (Card A) A {Agent B, Nonce Nb, Key K, Certificate[} € set evs"
apply (erule rev_mp)
apply (erule srb.induct)

335

apply auto
done

end

28 Smartcard protocols: rely on conventional Mes-
sage and on new EventSC and Smartcard

theory Auth_Smartcard
imports
ShoupRubin
ShoupRubinBella
begin

end

29 Extensions to Standard Theories

theory Extensions
imports "../Event"
begin

29.1 Extensions to Theory set
lemma eq: "[Ax. x€A = x€B; Ax. x€B = x€A] = A=B"
by auto

lemma insert_Un: "P ({x} U A) = P (insert x A)"
by simp

lemma in_sub: "x€A —> {x}CA"
by auto

29.2 Extensions to Theory List
29.2.1 "remove 1 X" erase the first element of "I" equal to "x"

primrec remove :: "’a list => ’a => ’a list" where
"remove [] y = [1" |
"remove (x#xs) y = (if x=y then xs else x # remove xs y)"

lemma set_remove: "set (remove 1 x) <= set 1"
by (induct 1, auto)

29.3 Extensions to Theory Message
29.3.1 declarations for tactics

declare analz_subset_parts [THEN subsetD, dest]
declare parts_insert2 [simp]

declare analz cut [dest]

declare if_split_asm [split]

declare analz_insertI [intro]

336 29 EXTENSIONS TO STANDARD THEORIES

declare Un_Diff [simp]

29.3.2 extract the agent number of an Agent message

primrec agt_nb :: "msg => agent" where
"agt_nb (Agent A) = A"

29.3.3 messages that are pairs

definition is_MPair :: "msg => bool" where
"is_MPair X == 3Y Z. X = {Y,Z}"

declare is_MPair_def [simp]

lemma MPair_is_MPair [iff]: "is_MPair {X,Y[}"

by simp
lemma Agent_isnt_MPair [iff]: "~ is_MPair (Agent A)"
by simp
lemma Number_isnt_MPair [iff]: "~ is_MPair (Number n)"
by simp
lemma Key_isnt_MPair [iff]: "~ is_MPair (Key K)"
by simp
lemma Nonce_isnt_MPair [iff]: "~ is_MPair (Nonce n)"
by simp
lemma Hash_isnt_MPair [iff]: "~ is_MPair (Hash X)"
by simp
lemma Crypt_isnt_MPair [iff]: "~ is_MPair (Crypt K X)"
by simp
abbreviation
not_MPair :: "msg => bool" where
"not_MPair X == ~ is_MPair X"

lemma is_MPairE: "[is_MPair X —> P; not_MPair X —> P] — P"
by auto

declare is_MPair_def [simp del]

definition has_no_pair :: "msg set => bool" where
"has_no_pair H == VX Y. {X,Y} ¢ H"

declare has_no_pair_def [simp]

29.3.4 well-foundedness of messages

lemma wf_Crypt1l [iff]: "Crypt K X ~= X"
by (induct X, auto)

lemma wf_Crypt2 [iff]: "X ~= Crypt K X"

29.3 Extensions to Theory Message 337

by (induct X, auto)

lemma parts_size: "X € parts {Y} = X=Y V size X < size Y"
by (erule parts.induct, auto)

lemma wf_Crypt_parts [iff]: "Crypt K X ¢ parts {X}"
by (auto dest: parts_size)

29.3.5 lemmas on keysFor

definition usekeys :: "msg set => key set" where
"usekeys G = {K. 3Y. Crypt K'Y € G}"

lemma finite_keysFor [intro]: "finite G — finite (keysFor G)"
apply (simp add: keysFor_def)

apply (rule finite_imagel)

apply (induct G rule: finite_induct)

apply auto

apply (case_tac "3JK X. x = Crypt K X", clarsimp)

apply (subgoal_tac "{Ka. 3Xa. (Ka=K A Xa=X) V Crypt Ka Xa € F}

= insert K (usekeys F)", auto simp: usekeys_def)

by (subgoal_tac "{K. 3X. Crypt K X = x V Crypt K X € F} = usekeys F",
auto simp: usekeys_def)

29.3.6 lemmas on parts

lemma parts_sub: "[X € parts G; G C H|] = X € parts H"
by (auto dest: parts_mono)

lemma parts_Diff [dest]: "X € parts (G - H) =— X € parts G"
by (erule parts_sub, auto)

lemma parts_Diff notin: "[Y ¢ H; Nonce n ¢ parts (H - {Y})]
= Nonce n ¢ parts H"
by simp

lemmas parts_insert_substI = parts_insert [THEN ssubst]
lemmas parts_insert_substD = parts_insert [THEN sym, THEN ssubst]

lemma finite_parts_msg [iff]: "finite (parts {X})"
by (induct X, auto)

lemma finite_parts [intro]: "finite H — finite (parts H)"
apply (erule finite_induct, simp)
by (rule parts_insert_substI, simp)

lemma parts_parts: "[X € parts {Y}; Y € parts G] = X € parts G"

by (frule parts_cut, auto)

lemma parts_parts_parts: "[X € parts {Y}; Y € parts {Z}; Z € parts G] =
X € parts G"
by (auto dest: parts_parts)

lemma parts_parts_Crypt: "[Crypt K X € parts G; Nonce n € parts {X}]

338 29 EXTENSIONS TO STANDARD THEORIES

— Nonce n € parts G"
by (blast intro: parts.Body dest: parts_parts)

29.3.7 lemmas on synth
lemma synth_sub: "[X € synth G; G C H| = X € synth H"
by (auto dest: synth_mono)

lemma Crypt_synth [rule_format]: "[X € synth G; Key K ¢ G] —
Crypt K Y € parts {X} — Crypt K Y € parts G"
by (erule synth.induct, auto dest: parts_sub)

29.3.8 lemmas on analz
lemma analz_UnI1 [intro]: "X € analz G — X € analz (G U H)"
by (subgoal_tac "G <= G Un H") (blast dest: analz_mono)+

lemma analz_sub: "[X € analz G; G C H] = X € analz H"
by (auto dest: analz_mono)

lemma analz_Diff [dest]: "X € analz (G - H) =—> X € analz G"
by (erule analz.induct, auto)

lemmas in_analz_subset_cong = analz_subset_cong [THEN subsetD]

lemma analz_eq: "A=A’ — analz A = analz A’"
by auto

lemmas insert_commute_substI = insert_commute [THEN ssubst]

lemma analz_insertD:
"[Crypt K Y € H; Key (invKey K) € H| — analz (insert Y H) = analz H"
by (blast intro: analz.Decrypt analz_insert_eq)

lemma must_decrypt [rule_format,dest]: "[X € analz H; has_no_pair H] =
X¢H— (3KY. Crypt KY € H A Key (invKey K) € H)"
by (erule analz.induct, auto)

lemma analz_needs_only_finite: "X € analz H —> 3G. G C H A finite G"
by (erule analz.induct, auto)

lemma notin_analz_insert: "X ¢ analz (insert Y G) —> X ¢ analz G"
by auto

29.3.9 lemmas on parts, synth and analz

lemma parts_invKey [rule_format,dest]:"X € parts {Y} —

X € analz (insert (Crypt K Y) H) — X ¢ analz H — Key (invKey K) € analz
Hl’

by (erule parts.induct, auto dest: parts.Fst parts.Snd parts.Body)

lemma in_analz: "Y € analz H = JX. X € H A Y € parts {X}"
by (erule analz.induct, auto intro: parts.Fst parts.Snd parts.Body)

lemmas in_analz_subset_parts = analz_subset_parts [THEN subsetD]

29.3 Extensions to Theory Message 339

lemma Crypt_synth_insert: "[Crypt K X € parts (imsert Y H);

Y € synth (analz H); Key K ¢ analz H| = Crypt K X € parts H"
apply (drule parts_insert_substD, clarify)

apply (frule in_sub)

apply (frule parts_mono)

apply auto

done

29.3.10 greatest nonce used in a message

fun greatest_msg :: "msg => nat"
where
"greatest_msg (Nonce n) = n"
| "greatest_msg {X,Y|} = max (greatest_msg X) (greatest_msg Y)"
| "greatest_msg (Crypt K X) = greatest_msg X"
| "greatest_msg other = 0"

lemma greatest_msg_is_greatest: "Nonce n € parts {X} =—> n < greatest_msg
XII

by (induct X, auto)

29.3.11 sets of keys

definition keyset :: "msg set => bool" where

"keyset G = VX. X € G — (K. X = Key K)"

lemma keyset_in [dest]: "[keyset G; X € G] = JK. X = Key K"
by (auto simp: keyset_def)

lemma MPair_notin_keyset [simp]: "keyset G —> {X,Y[¢ G"
by auto

lemma Crypt_notin_keyset [simp]: "keyset G —> Crypt K X ¢ G"
by auto

lemma Nonce_notin_keyset [simp]: "keyset G —> Nonce n ¢ G"
by auto

lemma parts_keyset [simp]: "keyset G —> parts G = G"
by (auto, erule parts.induct, auto)

29.3.12 keys a priori necessary for decrypting the messages of G
definition keysfor :: "msg set => msg set" where

"keysfor G == Key ‘ keysFor (parts G)"

lemma keyset_keysfor [iff]: "keyset (keysfor G)"
by (simp add: keyset_def keysfor_def, blast)

lemma keyset_Diff_keysfor [simp]: "keyset H —> keyset (H - keysfor G)"
by (auto simp: keyset_def)

lemma keysfor_Crypt: "Crypt K X € parts G = Key (invKey K) € keysfor G"
by (auto simp: keysfor_def Crypt_imp_invKey_keysFor)

340 29 EXTENSIONS TO STANDARD THEORIES

lemma no_key_no_Crypt: "Key K ¢ keysfor G —> Crypt (invKey K) X ¢ parts
G”
by (auto dest: keysfor_Crypt)

lemma finite_keysfor [intro]: "finite G = finite (keysfor G)"
by (auto simp: keysfor_def intro: finite_UN_I)

29.3.13 only the keys necessary for G are useful in analz

lemma analz_keyset: "keyset H —

analz (G Un H) = H - keysfor G Un (analz (G Un (H Int keysfor G)))"
apply (rule eq)

apply (erule analz.induct, blast)

apply (simp, blast)

apply (simp, blast)

apply (case_tac "Key (invKey K) € H - keysfor G", clarsimp)

apply (drule_tac X=X in no_key_no_Crypt)

by (auto intro: analz_sub)

lemmas analz_keyset_substD = analz_keyset [THEN sym, THEN ssubst]

29.4 Extensions to Theory Event
29.4.1 general protocol properties

definition is_Says :: "event => bool" where
"is_Says ev == (JA B X. ev = Says A B X)"

lemma is_Says_Says [iff]: "is_Says (Says A B X)"
by (simp add: is_Says_def)

definition Gets_correct :: "event list set => bool" where
"Gets_correct p == Vevs B X. evs € p —> Gets B X € set evs
— (JA. Says A B X € set evs)"

lemma Gets_correct_Says: "[Gets_correct p; Gets B X # evs € p]
—> dA. Says A B X € set evs"

apply (simp add: Gets_correct_def)

by (drule_tac x="Gets B X # evs" in spec, auto)

definition one_step :: "event list set => bool" where
"one_step p == Vevs ev. evitevs € p —> evs € p"

lemma one_step_Cons [dest]: "[one_step p; ev#evs € p] = evs € p"
unfolding one_step_def by blast

lemma one_step_app: "[evs@evs’ € p; one_step p; [] € p] = evs’ € p"
by (induct evs, auto)

lemma trunc: "[evs @ evs’ € p; one_step p] = evs’ € p"
by (induct evs, auto)

definition has_only_Says :: "event list set => bool" where

29.4 Extensions to Theory Event 341

"has_only_Says p = Vevs ev. evs € p —> ev € set evs
— (A B X. ev = Says A B X)"

lemma has_only_SaysD: "[ev € set evs; evs € p; has_only_Says p]
— JA B X. ev = Says A B X"
unfolding has_only_Says_def by blast

lemma in_has_only_Says [dest]: "[has_only_Says p; evs € p; ev € set evs]
—> JA B X. ev = Says A B X"
by (auto simp: has_only_Says_def)

lemma has_only_Says_imp_Gets_correct [simp]: "has_only_Says p
— Gets_correct p"
by (auto simp: has_only_Says_def Gets_correct_def)

29.4.2 lemma on knows

lemma Says_imp_spies2: "Says A B {X,Y} € set evs =—> Y € parts (spies evs)"
by (drule Says_imp_spies, drule parts.Inj, drule parts.Snd, simp)

lemma Says_not_parts: "[Says A B X € set evs; Y ¢ parts (spies evs)]
= Y ¢ parts {X}"
by (auto dest: Says_imp_spies parts_parts)

29.4.3 knows without initState

primrec knows’ :: "agent => event list => msg set" where
knows’_Nil: "knows’ A [] = {}" |
knows’_ConsO:
"knows’ A (ev # evs) = (
if A = Spy then (
case ev of
Says A’ B X => insert X (knows’ A evs)
| Gets A’ X => knows’ A evs
| Notes A’ X => if A’ € bad then insert X (knows’ A evs) else knows’
A evs
) else (
case ev of
Says A’ B X => if A=A’ then insert X (knows’ A evs) else knows’ A evs
| Gets A’ X => if A=A’ then insert X (knows’ A evs) else knows’ A evs
| Notes A’ X => if A=A’ then insert X (knows’ A evs) else knows’ A evs

))u

abbreviation
spies’ :: "event list => msg set" where
"spies’ == knows’ Spy"

29.4.4 decomposition of knows into knows’ and initState

lemma knows_decomp: "knows A evs = knows’ A evs Un (initState A)"
by (induct evs, auto split: event.split simp: knows.simps)

lemmas knows_decomp_substI = knows_decomp [THEN ssubst]
lemmas knows_decomp_substD = knows_decomp [THEN sym, THEN ssubst]

342 29 EXTENSIONS TO STANDARD THEORIES

lemma knows’_sub_knows: "knows’ A evs <= knows A evs"
by (auto simp: knows_decomp)

lemma knows’_Cons: "knows’ A (ev#evs) = knows’ A [ev] Un knows’ A evs"
by (induct ev, auto)

lemmas knows’_Cons_substI = knows’_Cons [THEN ssubst]
lemmas knows’_Cons_substD = knows’_Cons [THEN sym, THEN ssubst]

lemma knows_Cons: "knows A (ev#evs) = initState A Un knows’ A [ev]

Un knows A evs"

apply (simp only: knows_decomp)

apply (rule_tac s="(knows’ A [ev] Un knows’ A evs) Un initState A" in trans)
apply (simp only: knows’_Cons [of A ev evs] Un_ac)

apply blast

done

lemmas knows_Cons_substI = knows_Cons [THEN ssubst]
lemmas knows_Cons_substD = knows_Cons [THEN sym, THEN ssubst]

lemma knows’_sub_spies’: "[evs € p; has_only_Says p; one_step p]
—> knows’ A evs C spies’ evs'
by (induct evs, auto split: event.splits)

29.4.5 knows’ is finite

lemma finite_knows’ [iff]: "finite (knows’ A evs)"
by (induct evs, auto split: event.split simp: knows.simps)

29.4.6 monotonicity of knows

lemma knows_sub_Cons: "knows A evs <= knows A (ev#evs)"
by (cases A, induct evs, auto simp: knows.simps split:event.split)

lemma knows_ConsI: "X € knows A evs —> X € knows A (ev#evs)"
by (auto dest: knows_sub_Cons [THEN subsetD])

lemma knows_sub_app: "knows A evs <= knows A (evs Q@ evs’)"
apply (induct evs, auto)

apply (simp add: knows_decomp)

apply (rename_tac a b c)

by (case_tac a, auto simp: knows.simps)

29.4.7 maximum knowledge an agent can have includes messages
sent to the agent

primrec knows_max’ :: "agent => event list => msg set" where
knows_max’_def_Nil: "knows_max’ A [] = {}" |
knows_max’_def_Cons: "knows_max’ A (ev # evs) = (

if A=Spy then (
case ev of
Says A’ B X => insert X (knows_max’ A evs)
| Gets A’ X => knows_max’ A evs
| Notes A’ X =>

29.4 Extensions to Theory Event 343

if A’ € bad then insert X (knows_max’ A evs) else knows_max’ A evs
) else (

case ev of

Says A’ B X =>

if A=A’ | A=B then insert X (knows_max’ A evs) else knows_max’ A evs
| Gets A’ X =>

if A=A’ then insert X (knows_max’ A evs) else knows_max’ A evs
| Notes A’ X =>

if A=A’ then insert X (knows_max’ A evs) else knows_max’ A evs

))II
definition knows_max :: "agent => event list => msg set" where
"knows_max A evs == knows_max’ A evs Un initState A"
abbreviation

spies_max :: "event list => msg set" where

"spies_max evs == knows_max Spy evs'

29.4.8 Dbasic facts about knows_max

lemma spies_max_spies [iff]: "spies_max evs = spies evs"
by (induct evs, auto simp: knows_max_def split: event.splits)

lemma knows_max’_Cons: "knows_max’ A (ev#evs)
= knows_max’ A [ev] Un knows_max’ A evs"
by (auto split: event.splits)

lemmas knows_max’_Cons_substI = knows_max’_Cons [THEN ssubst]
lemmas knows_max’_Cons_substD = knows_max’_Cons [THEN sym, THEN ssubst]

lemma knows_max_Cons: "knows_max A (ev#evs)

= knows_max’ A [ev] Un knows_max A evs"

apply (simp add: knows_max_def del: knows_max’_def_Cons)
apply (rule_tac evs=evs in knows_max’_Cons_substI)

by blast

lemmas knows_max_Cons_substI = knows_max_Cons [THEN ssubst]
lemmas knows_max_Cons_substD = knows_max_Cons [THEN sym, THEN ssubst]

lemma finite_knows_max’ [iff]: "finite (knows_max’ A evs)"
by (induct evs, auto split: event.split)

lemma knows_max’_sub_spies’: "[evs € p; has_only_Says p; one_step p]
— knows_max’ A evs C spies’ evs"
by (induct evs, auto split: event.splits)

lemma knows_max’_in_spies’ [dest]: "[evs € p; X € knows_max’ A evs;
has_only_Says p; one_step p] = X € spies’ evs"
by (rule knows_max’_sub_spies’ [THEN subsetD], auto)

lemma knows_max’_app: "knows_max’ A (evs @ evs’)
= knows_max’ A evs Un knows_max’ A evs’"
by (induct evs, auto split: event.splits)

344 29 EXTENSIONS TO STANDARD THEORIES

lemma Says_to_knows_max’: "Says A B X € set evs —> X € knows_max’ B evs"
by (simp add: in_set_conv_decomp, clarify, simp add: knows_max’_app)

lemma Says_from_knows_max’: "Says A B X € set evs —> X € knows_max’ A evs"
by (simp add: in_set_conv_decomp, clarify, simp add: knows_max’_app)

29.4.9 used without initState

primrec used’ :: "event list => msg set" where
"used’ [] = {}" |
"used’ (ev # evs) = (
case ev of
Says A B X => parts {X} Un used’ evs
| Gets A X => used’ evs
| Notes A X => parts {X} Un used’ evs
)u

definition init :: "msg set" where
"init == used []"

lemma used_decomp: "used evs = init Un used’ evs"
by (induct evs, auto simp: init_def split: event.split)

lemma used’_sub_app: "used’ evs C used’ (evsQ@evs’)"
by (induct evs, auto split: event.split)

lemma used’_parts [rule_format]: "X € used’ evs —> Y € parts {X} — Y
€ used’ evs"

apply (induct evs, simp)

apply (rename_tac a b)

apply (case_tac a, simp_all)

apply (blast dest: parts_trans)+

done

29.4.10 monotonicity of used
lemma used_sub_Cons: "used evs <= used (ev#evs)"

by (induct evs, (induct ev, auto)+)

lemma used_ConsI: "X € used evs —> X € used (ev#evs)"
by (auto dest: used_sub_Cons [THEN subsetD])

lemma notin_used_ConsD: "X ¢ used (ev#evs) =—> X ¢ used evs"
by (auto dest: used_sub_Cons [THEN subsetD])

lemma used_appD [dest]: "X € used (evs @ evs’) —> X € used evs V X € used
evs)”
by (induct evs, auto, rename_tac a b, case_tac a, auto)

lemma used_ConsD: "X € used (ev#tevs) —> X € used [ev] V X € used evs"
by (case_tac ev, auto)

lemma used_sub_app: "used evs <= used (evs@evs’)"
by (auto simp: used_decomp dest: used’_sub_app [THEN subsetD])

29.4 Extensions to Theory Event 345

lemma used_appIL: "X € used evs = X € used (evs’ @ evs)"
by (induct evs’, auto intro: used_ConsI)

lemma used_appIR: "X € used evs = X € used (evs Q@ evs’)"
by (erule used_sub_app [THEN subsetD])

lemma used_parts: "[X € parts {Y}; Y € used evs] = X € used evs"
apply (auto simp: used_decomp dest: used’_parts)
by (auto simp: init_def used_Nil dest: parts_trans)

lemma parts_Says_used: "[Says A B X € set evs; Y € parts {X}|] = Y € used
evs"
by (induct evs, simp_all, safe, auto intro: used_ConsI)

lemma parts_used_app: "X € parts {Y} = X € used (evs @ Says A BY # evs’)"
apply (drule_tac evs="[Says A B Y]" in used_parts, simp, blast)

apply (drule_tac evs’=evs’ in used_appIR)

apply (drule_tac evs’=evs in used_appIL)

by simp

29.4.11 lemmas on used and knows

lemma initState_used: "X € parts (initState A) =—> X € used evs"
by (induct evs, auto simp: used.simps split: event.split)

lemma Says_imp_used: "Says A B X € set evs = parts {X} C used evs"
by (induct evs, auto intro: used_ConsI)

lemma not_used_not_spied: "X ¢ used evs =—> X ¢ parts (spies evs)"
by (induct evs, auto simp: used_Nil)

lemma not_used_not_parts: "[Y ¢ used evs; Says A B X € set evs]
= Y ¢ parts {X}"
by (induct evs, auto intro: used_ConsI)

lemma not_used_parts_false: "[X ¢ used evs; Y € parts (spies evs)]
= X ¢ parts {Y}"
by (auto dest: parts_parts)

lemma known_used [rule_format]: "[evs € p; Gets_correct p; one_step p]
—> X € parts (knows A evs) — X € used evs"

apply (case_tac "A=Spy", blast)

apply (induct evs)

apply (simp add: used.simps, blast)

apply (rename_tac a evs)

apply (frule_tac ev=a and evs=evs in one_step_Cons, simp, clarify)
apply (drule_tac P="AG. X € parts G" in knows_Cons_substD, safe)
apply (erule initState_used)

apply (case_tac a, auto)

apply (rename_tac msg)

apply (drule_tac B=A and X=msg and evs=evs in Gets_correct_Says)
by (auto dest: Says_imp_used intro: used_ConsI)

lemma known_max_used [rule_format]: "[[evs € p; Gets_correct p; one_step

346 30 DECOMPOSITION OF ANALZ INTO TWO PARTS

Pl
—> X € parts (knows_max A evs) — X € used evs"

apply (case_tac "A=Spy")

apply force

apply (induct evs)

apply (simp add: knows_max_def used.simps, blast)

apply (rename_tac a evs)

apply (frule_tac ev=a and evs=evs in one_step_Cons, simp, clarify)
apply (drule_tac P="AG. X € parts G" in knows_max_Cons_substD, safe)
apply (case_tac a, auto)

apply (rename_tac msg)

apply (drule_tac B=A and X=msg and evs=evs in Gets_correct_Says)
by (auto simp: knows_max’_Cons dest: Says_imp_used intro: used_ConsI)

lemma not_used_not_known: "[evs € p; X ¢ used evs;
Gets_correct p; one_step p] = X ¢ parts (knows A evs)"
by (case_tac "A=Spy", auto dest: not_used_not_spied known_used)

lemma not_used_not_known_max: ”[[evs € p; X ¢ used evs;
Gets_correct p; one_step p] = X ¢ parts (knows_max A evs)"
by (case_tac "A=Spy", auto dest: not_used_not_spied known_max_used)

29.4.12 a nonce or key in a message cannot equal a fresh nonce or
key

lemma Nonce_neq [dest]: "[Nonce n’ ¢ used evs;
Says A B X € set evs; Nonce n € parts {X}] = n # n’"
by (drule not_used_not_spied, auto dest: Says_imp_knows_Spy parts_sub)

lemma Key_neq [dest]: "[Key n’ ¢ used evs;
Says A B X € set evs; Key n € parts {X}] = n ~=n’"
by (drule not_used_not_spied, auto dest: Says_imp_knows_Spy parts_sub)

29.4.13 message of an event

primrec msg :: "event => msg"
where
"msg (Says A B X) = X"
| "msg (Gets A X) = X"
| "msg (Notes A X) = X"

lemma used_sub_parts_used: "X € used (ev # evs) =—> X € parts {msg ev} U
used evs"

by (induct ev, auto)

end

30 Decomposition of Analz into two parts

theory Analz imports Extensions begin

decomposition of analz into two parts: pparts (for pairs) and analz of kparts

30.1 messages that do not contribute to analz 347

30.1 messages that do not contribute to analz

inductive__set

pparts :: "msg set => msg set"
for H :: "msg set"
where

Inj [intro]: "[X € H; is_MPair X] — X € pparts H"
| Fst [dest]: "[{X,Y| € pparts H; is_MPair X] = X € pparts H"
| Snd [dest]: "[{X,Y| € pparts H; is_MPair Y] — Y € pparts H"

30.2 Dbasic facts about pparts

lemma pparts_is_MPair [dest]: "X € pparts H —> is_MPair X"
by (erule pparts.induct, auto)

lemma Crypt_notin_pparts [iff]: "Crypt K X ¢ pparts H"
by auto

lemma Key_notin_pparts [iff]: "Key K ¢ pparts H"
by auto

lemma Nonce_notin_pparts [iff]: "Nonce n ¢ pparts H"
by auto

lemma Number_notin_pparts [iff]: "Number n ¢ pparts H"
by auto

lemma Agent_notin_pparts [iff]: "Agent A ¢ pparts H"
by auto

lemma pparts_empty [iff]: "pparts {} = {}"
by (auto, erule pparts.induct, auto)

lemma pparts_insertI [intro]: "X € pparts H = X € pparts (insert Y H)"
by (erule pparts.induct, auto)

lemma pparts_sub: "[X € pparts G; G C H| = X € pparts H"
by (erule pparts.induct, auto)

lemma pparts_insert2 [iff]: "pparts (insert X (insert Y H))
= pparts {X} Un pparts {Y} Un pparts H"
by (rule eq, (erule pparts.induct, auto)+)

lemma pparts_insert_MPair [iff]: "pparts (insert {X,Y[} H)
= insert {X,Y} (pparts ({X,Y} U H))"

apply (rule eq, (erule pparts.induct, auto)+)

apply (rule_tac Y=Y in pparts.Fst, auto)

apply (erule pparts.induct, auto)

by (rule_tac X=X in pparts.Snd, auto)

lemma pparts_insert_Nonce [iff]: "pparts (insert (Nonce n) H) = pparts H"
by (rule eq, erule pparts.induct, auto)

lemma pparts_insert_Crypt [iff]: "pparts (insert (Crypt K X) H) = pparts
Hll

348 30 DECOMPOSITION OF ANALZ INTO TWO PARTS

by (rule eq, erule pparts.induct, auto)

lemma pparts_insert_Key [iff]: "pparts (insert (Key K) H) = pparts H"
by (rule eq, erule pparts.induct, auto)

lemma pparts_insert_Agent [iff]: "pparts (insert (Agent A) H) = pparts H"
by (rule eq, erule pparts.induct, auto)

lemma pparts_insert_Number [iff]: "pparts (insert (Number n) H) = pparts
HH
by (rule eq, erule pparts.induct, auto)

lemma pparts_insert_Hash [iff]: "pparts (insert (Hash X) H) = pparts H"
by (rule eq, erule pparts.induct, auto)

lemma pparts_insert: "X € pparts (insert Y H) — X € pparts {Y} U pparts
H”
by (erule pparts.induct, blast+)

lemma insert_pparts: "X € pparts {Y} U pparts H = X € pparts (insert
Y H) "
by (safe, erule pparts.induct, auto)

lemma pparts_Un [iff]: "pparts (G U H) = pparts G U pparts H"
by (rule eq, erule pparts.induct, auto dest: pparts_sub)

lemma pparts_pparts [iff]: "pparts (pparts H) = pparts H"
by (rule eq, erule pparts.induct, auto)

lemma pparts_insert_eq: "pparts (insert X H) = pparts {X} Un pparts H"
by (rule_tac A=H in insert_Un, rule pparts_Un)

lemmas pparts_insert_substI = pparts_insert_eq [THEN ssubst]

lemma in_pparts: "Y € pparts H = 3X. X € H AN Y € pparts {X}"
by (erule pparts.induct, auto)

30.3 facts about pparts and parts

lemma pparts_no_Nonce [dest]: "[X € pparts {Y}; Nonce n ¢ parts {Y}]
—> Nonce n ¢ parts {X}"
by (erule pparts.induct, simp_all)

30.4 facts about pparts and anaiz

lemma pparts_analz: "X € pparts H = X € analz H"
by (erule pparts.induct, auto)

lemma pparts_analz_sub: "[X € pparts G; G C H] =— X € analz H"
by (auto dest: pparts_sub pparts_analz)

30.5 messages that contribute to analz

inductive__set

30.6 basic facts about kparts 349

kparts :: "msg set => msg set"
for H :: "msg set"
where

Inj [intro]: "[X € H; not_MPair X] —> X € kparts H"
| Fst [intro]: "[{X,Y|} € pparts H; not_MPair X] — X € kparts H"
| Snd [intro]: "[{X,Y|} € pparts H; not_MPair Y] = Y € kparts H"

30.6 Dbasic facts about kparts

lemma kparts_not_MPair [dest]: "X € kparts H — not_MPair X"
by (erule kparts.induct, auto)

lemma kparts_empty [iff]: "kparts {} = {}"
by (rule eq, erule kparts.induct, auto)

lemma kparts_insertI [intro]: "X € kparts H =—> X € kparts (insert Y H)"
by (erule kparts.induct, auto dest: pparts_insertI)

lemma kparts_insert2 [iff]: "kparts (insert X (insert Y H))
= kparts {X} U kparts {Y} U kparts H"
by (rule eq, (erule kparts.induct, auto)+)

lemma kparts_insert_MPair [iff]: "kparts (insert {X,Y[} H)
= kparts ({X,Y} U H)"
by (rule eq, (erule kparts.induct, auto)+)

lemma kparts_insert_Nonce [iff]: "kparts (insert (Nonce n) H)
= insert (Nonce n) (kparts H)"
by (rule eq, erule kparts.induct, auto)

lemma kparts_insert_Crypt [iff]: "kparts (insert (Crypt K X) H)
= insert (Crypt K X) (kparts H)"
by (rule eq, erule kparts.induct, auto)

lemma kparts_insert_Key [iff]: "kparts (insert (Key K) H)
= insert (Key K) (kparts H)"
by (rule eq, erule kparts.induct, auto)

lemma kparts_insert_Agent [iff]: "kparts (insert (Agent A) H)
= insert (Agent A) (kparts H)"
by (rule eq, erule kparts.induct, auto)

lemma kparts_insert_Number [iff]: "kparts (insert (Number n) H)
= insert (Number n) (kparts H)"
by (rule eq, erule kparts.induct, auto)

lemma kparts_insert_Hash [iff]: "kparts (insert (Hash X) H)
= insert (Hash X) (kparts H)"
by (rule eq, erule kparts.induct, auto)

lemma kparts_insert: "X € kparts (insert X H) = X € kparts {X} U kparts
Hll
by (erule kparts.induct, (blast dest: pparts_insert)+)

350 30 DECOMPOSITION OF ANALZ INTO TWO PARTS

lemma kparts_insert_fst [rule_format,dest]: "X € kparts (insert Z H) —>
X ¢ kparts H — X € kparts {Z}"
by (erule kparts.induct, (blast dest: pparts_insert)+)

lemma kparts_sub: "[X € kparts G; G C H] = X € kparts H"
by (erule kparts.induct, auto dest: pparts_sub)

lemma kparts_Un [iff]: "kparts (G U H) = kparts G U kparts H"
by (rule eq, erule kparts.induct, auto dest: kparts_sub)

lemma pparts_kparts [iff]: "pparts (kparts H) = {}"
by (rule eq, erule pparts.induct, auto)

lemma kparts_kparts [iff]: "kparts (kparts H) = kparts H"
by (rule eq, erule kparts.induct, auto)

lemma kparts_insert_eq: "kparts (insert X H) = kparts {X} U kparts H"
by (rule_tac A=H in insert_Un, rule kparts_Un)

lemmas kparts_insert_substIl = kparts_insert_eq [THEN ssubst]

lemma in_kparts: "Y € kparts H = 3X. X € H A Y € kparts {X}"
by (erule kparts.induct, auto dest: in_pparts)

lemma kparts_has_no_pair [iff]: "has_no_pair (kparts H)"
by auto

30.7 facts about kparts and parts

lemma kparts_no_Nonce [dest]: "[X € kparts {Y}; Nonce n ¢ parts {Y}]
= Nonce n ¢ parts {X}"
by (erule kparts.induct, auto)

lemma kparts_parts: "X € kparts H = X € parts H"
by (erule kparts.induct, auto dest: pparts_analz)

lemma parts_kparts: "X € parts (kparts H) =— X € parts H"
by (erule parts.induct, auto dest: kparts_parts
intro: parts.Fst parts.Snd parts.Body)

lemma Crypt_kparts_Nonce_parts [dest]: "[Crypt K Y € kparts {Z};
Nonce n € parts {Y}] = Nonce n € parts {Z}"
by auto

30.8 facts about kparts and anaiz

lemma kparts_analz: "X € kparts H = X € analz H"
by (erule kparts.induct, auto dest: pparts_analz)

lemma kparts_analz_sub: "[X € kparts G; G C H|] = X € analz H"
by (erule kparts.induct, auto dest: pparts_analz_sub)

lemma analz_kparts [rule_format,dest]: "X € analz H —>
Y € kparts {X} — Y € analz H"

30.9 analz is pparts + analz of kparts 351

by (erule analz.induct, auto dest: kparts_analz_sub)

lemma analz_kparts_analz: "X € analz (kparts H) =— X € analz H"
by (erule analz.induct, auto dest: kparts_analz)

lemma analz_kparts_insert: "X € analz (kparts (insert Z H)) =— X € analz
(kparts {Z} U kparts H)"
by (rule analz_sub, auto)

lemma Nonce_kparts_synth [rule_format]: "Y € synth (analz G)
— Nonce n € kparts {Y} — Nonce n € analz G"
by (erule synth.induct, auto)

lemma kparts_insert_synth: "[Y € parts (insert X G); X € synth (analz G);
Nonce n € kparts {Y}; Nonce n ¢ analz G] = Y € parts G"

apply (drule parts_insert_substD, clarify)

apply (drule in_sub, drule_tac X=Y in parts_sub, simp)

apply (auto dest: Nonce_kparts_synth)

done

lemma Crypt_insert_synth:

"[Crypt K Y € parts (insert X G); X € synth (analz G); Nonce n € kparts
{Y}; Nonce n ¢ analz G]

— Crypt K Y € parts G"
by (metis Fake_parts_insert_in_Un Nonce_kparts_synth UnE analz_conj_parts
synth_simps(5))

30.9 analz is pparts + analz of kparts

lemma analz_pparts_kparts: "X € analz H = X € pparts H V X € analz (kparts
H)]
by (erule analz.induct, auto)

lemma analz_pparts_kparts_eq: "analz H = pparts H Un analz (kparts H)"
by (rule eq, auto dest: analz_pparts_kparts pparts_analz analz_kparts_analz)

lemmas analz_pparts_kparts_substl = analz_pparts_kparts_eq [THEN ssubst]
lemmas analz_pparts_kparts_substD = analz_pparts_kparts_eq [THEN sym, THEN
ssubst]

end

31 Protocol-Independent Confidentiality Theo-
rem on Nonces

theory Guard imports Analz Extensions begin

inductive__set
guard :: "nat = key set = msg set"
for n :: nat and Ks :: "key set"
where

35231 PROTOCOL-INDEPENDENT CONFIDENTIALITY THEOREM ON NONCES

No_Nonce [intro]: "Nonce n ¢ parts {X} —> X € guard n Ks"
| Guard_Nonce [intro]: "invKey K € Ks —> Crypt K X € guard n Ks"
| Crypt [intro]: "X € guard n Ks = Crypt K X € guard n Ks"
| Pair [intro]: "[X € guard n Ks; Y € guard n Ks] = {X,Y|} € guard n Ks"

31.1 Dbasic facts about guard

lemma Key_is_guard [iff]: "Key K € guard n Ks"
by auto

lemma Agent_is_guard [iff]: "Agent A € guard n Ks"
by auto

lemma Number_is_guard [iff]: "Number r € guard n Ks"
by auto

lemma Nonce_notin_guard: "X € guard n Ks = X # Nonce n"
by (erule guard.induct, auto)

lemma Nonce_notin_guard_iff [iff]: "Nonce n ¢ guard n Ks"
by (auto dest: Nonce_notin_guard)

lemma guard_has_Crypt [rule_format]: "X € guard n Ks = Nonce n € parts
{X}

— (3K Y. Crypt K Y € kparts {X} A Nonce n € parts {Y})"

by (erule guard.induct, auto)

lemma Nonce_notin_kparts_msg: "X € guard n Ks —> Nonce n ¢ kparts {X}"
by (erule guard.induct, auto)

lemma Nonce_in_kparts_imp_no_guard: "Nonce n € kparts H
— 3X. X € H A X ¢ guard n Ks"

apply (drule in_kparts, clarify)

apply (rule_tac x=X in exI, clarify)

by (auto dest: Nonce_notin_kparts_msg)

lemma guard_kparts [rule_format]: "X € guard n Ks —
Y € kparts {X} — Y € guard n Ks"
by (erule guard.induct, auto)

lemma guard_Crypt: "[Crypt K Y € guard n Ks; K ¢ invKey‘Ks] = Y € guard
n Ks"
by (ind_cases "Crypt K Y € guard n Ks") (auto intro!: image_eqI)

lemma guard_MPair [iff]: "({X,Y}} € guard n Ks) = (X € guard n Ks A Y €
guard n Ks)"
by (auto, (ind_cases "{X,Y} € guard n Ks", auto)+)

lemma guard_not_guard [rule_format]: "X € guard n Ks —>
Crypt K Y € kparts {X} — Nonce n € kparts {Y} — Y ¢ guard n Ks"
by (erule guard.induct, auto dest: guard_kparts)

lemma guard_extand: "[X € guard n Ks; Ks C Ks’] = X € guard n Ks’"
by (erule guard.induct, auto)

31.2 guarded sets 353

31.2 guarded sets

definition Guard :: "nat = key set = msg set = bool" where
"Guard n Ks H = VX. X € H — X € guard n Ks"

31.3 basic facts about cuard

lemma Guard_empty [iff]: "Guard n Ks {}"
by (simp add: Guard_def)

lemma notin_parts_Guard [intro]: "Nonce n ¢ parts G —> Guard n Ks G"
apply (unfold Guard_def, clarify)

apply (subgoal_tac "Nonce n ¢ parts {X}")

by (auto dest: parts_sub)

lemma Nonce_notin_kparts [simplified]: "Guard n Ks H —> Nonce n ¢ kparts
Hll
by (auto simp: Guard_def dest: in_kparts Nonce_notin_kparts_msg)

lemma Guard_must_decrypt: "[Guard n Ks H; Nonce n € analz H] —

JK Y. Crypt K Y € kparts H A Key (invKey K) € kparts H"

apply (drule_tac P="AG. Nonce n € G" in analz_pparts_kparts_substD, simp)
by (drule must_decrypt, auto dest: Nonce_notin_kparts)

lemma Guard_kparts [intro]: "Guard n Ks H = Guard n Ks (kparts H)"
by (auto simp: Guard_def dest: in_kparts guard_kparts)

lemma Guard_mono: "[Guard n Ks H; G <= H| = Guard n Ks G"
by (auto simp: Guard_def)

lemma Guard_insert [iff]: "Guard n Ks (insert X H)
= (Guard n Ks H N X € guard n Ks)"
by (auto simp: Guard_def)

lemma Guard_Un [iff]: "Guard n Ks (G Un H) = (Guard n Ks G & Guard n Ks H)"
by (auto simp: Guard_def)

lemma Guard_synth [intro]: "Guard n Ks G = Guard n Ks (synth G)"
by (auto simp: Guard_def, erule synth.induct, auto)

lemma Guard_analz [intro]: "[Guard n Ks G; VK. K € Ks — Key K ¢ analz
]

—> Guard n Ks (analz G)"

apply (auto simp: Guard_def)

apply (erule analz.induct, auto)

by (ind_cases "Crypt K Xa € guard n Ks" for K Xa, auto)

lemma in_Guard [dest]: "[X € G; Guard n Ks G] = X € guard n Ks"
by (auto simp: Guard_def)

lemma in_synth_Guard: "[X € synth G; Guard n Ks G] = X € guard n Ks"
by (drule Guard_synth, auto)

lemma in_analz_Guard: "[X € analz G; Guard n Ks G;
VK. K € Ks — Key K ¢ analz G] = X € guard n Ks"

35431 PROTOCOL-INDEPENDENT CONFIDENTIALITY THEOREM ON NONCES

by (drule Guard_analz, auto)

lemma Guard_keyset [simp]: "keyset G = Guard n Ks G"
by (auto simp: Guard_def)

lemma Guard_Un_keyset: "[Guard n Ks G; keyset H] = Guard n Ks (G U H)"
by auto

lemma in_Guard_kparts: "[X € G; Guard n Ks G; Y € kparts {X}| = Y € guard
n Ks"
by blast

lemma in_Guard_kparts_neq: "[X € G; Guard n Ks G; Nonce n’ € kparts {X}]
— n 75 H“'
by (blast dest: in_Guard_kparts)

lemma in_Guard_kparts_Crypt: " [[X € G; Guard n Ks G; is_MPair X;
Crypt K Y € kparts {X}; Nonce n € kparts {Y}] = invKey K € Ks"
apply (drule in_Guard, simp)

apply (frule guard_not_guard, simp+)

apply (drule guard_kparts, simp)

by (ind_cases "Crypt K Y € guard n Ks", auto)

lemma Guard_extand: "[Guard n Ks G; Ks C Ks’] = Guard n Ks’ G"
by (auto simp: Guard_def dest: guard_extand)

lemma guard_invKey [rule_format]: "[X € guard n Ks; Nonce n € kparts {Y}]
BN

Crypt K Y € kparts {X} — invKey K € Ks"

by (erule guard.induct, auto)

lemma Crypt_guard_invKey [rule_format]: "[Crypt K Y € guard n Ks;
Nonce n € kparts {Y}] = invKey K € Ks"
by (auto dest: guard_invKey)

31.4 set obtained by decrypting a message

abbreviation (input)
decrypt :: "msg set => key => msg => msg set" where
"decrypt H K Y == insert Y (H - {Crypt K Y})"

lemma analz_decrypt: "[Crypt K Y € H; Key (invKey K) € H; Nonce n € analz
H]

= Nonce n € analz (decrypt H K Y)"

apply (drule_tac P="AH. Nonce n € analz H" in ssubst [OF insert_Diff])
apply assumption

apply (simp only: analz_Crypt_if, simp)

done

lemma parts_decrypt: "[Crypt K Y € H; X € parts (decrypt HK Y)] = X €
parts H"
by (erule parts.induct, auto intro: parts.Fst parts.Snd parts.Body)

31.5 number of Crypt’s in a message 355

31.5 number of Crypt’s in a message

fun crypt_nb :: "msg => nat"
where
"crypt_nb (Crypt K X) = Suc (crypt_nb X)"
| "crypt_nb {X,Y} = crypt_nb X + crypt_nb Y"
| "crypt_nb X = 0"

31.6 Dbasic facts about crypt_nb

lemma non_empty_crypt_msg: "Crypt K Y € parts {X} = crypt_nb X # 0"
by (induct X, simp_all, safe, simp_all)

31.7 number of Crypt’s in a message list

primrec cnb :: "msg list => nat"
where

"enb [] = 0"
| "cnb (X#1) = crypt_nb X + cnb 1"

31.8 Dbasic facts about cob

lemma cnb_app [simp]: "cnb (1 @ 1°) = cnb 1 + cnb 17"
by (induct 1, auto)

lemma mem_cnb_minus: "x € set 1 = cnb 1 = crypt_nb x + (cnb 1 - crypt_nb
X) "
by (induct 1) auto

lemmas mem_cnb_minus_substI = mem_cnb_minus [THEN ssubst]

lemma cnb_minus [simp]: "x € set 1 == cnb (remove 1 x) = cnb 1 - crypt_nb
X"

apply (induct 1, auto)

apply (erule_tac 1=1 and x=x in mem_cnb_minus_substI)

apply simp

done

lemma parts_cnb: "Z € parts (set 1) —
cnb 1 = (cnb 1 - crypt_nb Z) + crypt_nb Z"
by (erule parts.induct, auto simp: in_set_conv_decomp)

lemma non_empty_crypt: "Crypt K Y € parts (set 1) = cnb 1 # 0"
by (induct 1, auto dest: non_empty_crypt_msg parts_insert_substD)

31.9 list of kparts

lemma kparts_msg_set: "31. kparts {X} = set 1 A cnb 1 = crypt_nb X"
apply (induct X, simp_all)

apply (rename_tac agent, rule_tac x="[Agent agent]" in exI, simp)
apply (rename_tac nat, rule_tac x="[Number nat]" in exI, simp)

apply (rename_tac nat, rule_tac x="[Nonce nat]" in exI, simp)

apply (rename_tac nat, rule_tac x="[Key nat]" in exI, simp)

apply (rename_tac X, rule_tac x="[Hash X]" in exI, simp)

apply (clarify, rule_tac x="1@la" in exI, simp)

35631 PROTOCOL-INDEPENDENT CONFIDENTIALITY THEOREM ON NONCES

by (clarify, rename_tac nat X y, rule_tac x="[Crypt nat X]" in exI, simp)

lemma kparts_set: "d1’. kparts (set 1) = set 1> A cnb 1’ = cnb 1"
apply (induct 1)

apply (rule_tac x="[]" in exI, simp, clarsimp)

apply (rename_tac a b 1°’)

apply (subgoal_tac "J1’’. kparts {a} = set 1°’ A cnb 1’’ = crypt_nb a",
clarify)

apply (rule_tac x="1’’@1’" in exI, simp)

apply (rule kparts_insert_substI, simp)

by (rule kparts_msg_set)

31.10 list corresponding to "decrypt"

definition decrypt’ :: "msg list => key => msg => msg list" where
"decrypt’ 1 K'Y ==Y # remove 1 (Crypt K Y)"

declare decrypt’_def [simp]

31.11 basic facts about decrypt’

lemma decrypt_minus: "decrypt (set 1) K Y <= set (decrypt’ 1 K Y)"
by (induct 1, auto)

31.12 if the analyse of a finite guarded set gives n then it
must also gives one of the keys of Ks

lemma Guard_invKey_by_list [rule_format]: "V1. cnb 1 = p
— Guard n Ks (set 1) — Nonce n € analz (set 1)

— (3dK. K € Ks AN Key K € analz (set 1))"

apply (induct p)

apply (clarify, drule Guard_must_decrypt, simp, clarify)
apply (drule kparts_parts, drule non_empty_crypt, simp)

apply (clarify, frule Guard_must_decrypt, simp, clarify)

apply (drule_tac P="AG. Nonce n € G" in analz_pparts_kparts_substD, simp)
apply (frule analz_decrypt, simp_all)

apply (subgoal_tac "J1’. kparts (set 1) = set 1’ A cnb 1’ = cnb 1", clarsimp)
apply (drule_tac G="insert Y (set 1’ - {Crypt K Y}H)"

and H="set (decrypt’ 1’ K Y)" in analz_sub, rule decrypt_minus)

apply (rule_tac analz_pparts_kparts_substI, simp)

apply (case_tac "K € invKey‘Ks")

apply (clarsimp, blast)

apply (subgoal_tac "Guard n Ks (set (decrypt’ 1’ K Y))")

apply (drule_tac x="decrypt’ 1’ K Y" in spec, simp)

apply (subgoal_tac "Crypt K Y € parts (set 1)")

apply (drule parts_cnb, rotate_tac -1, simp)

apply (clarify, drule_tac X="Key Ka" and H="insert Y (set 1’)" in analz_sub)
apply (rule insert_mono, rule set_remove)

apply (simp add: analz_insertD, blast)

31.13 if the analyse of a finite guarded set and a (possibly infinite) set of keys gives n then it must also gives Ks357

apply (blast dest: kparts_parts)

apply (rule_tac H="insert Y (set 1’)" in Guard_mono)

apply (subgoal_tac "Guard n Ks (set 1’)", simp)

apply (rule_tac K=K in guard_Crypt, simp add: Guard_def, simp)
apply (drule_tac t="set 1’" in sym, simp)

apply (rule Guard_kparts, simp, simp)

apply (rule_tac B="set 1’" in subset_trans, rule set_remove, blast)
by (rule kparts_set)

lemma Guard_invKey_finite: "[Nonce n € analz G; Guard n Ks G; finite G]
—> JK. K € Ks N Key K € analz G"

apply (drule finite_list, clarify)

by (rule Guard_invKey_by_list, auto)

lemma Guard_invKey: "[Nonce n € analz G; Guard n Ks GJ
—> JK. K € Ks N Key K € analz G"
by (auto dest: analz_needs_only_finite Guard_invKey_finite)

31.13 if the analyse of a finite guarded set and a (possibly
infinite) set of keys gives n then it must also gives
Ks

lemma Guard_invKey_keyset: "[Nonce n € analz (G U H); Guard n Ks G; finite

G;

keyset H] = JK. K € Ks A Key K € analz (G U H)"

apply (frule_tac P="AG. Nonce n € G" and G=G in analz_keyset_substD, simp_all)
apply (drule_tac G="G Un (H Int keysfor G)" in Guard_invKey_finite)

by (auto simp: Guard_def intro: analz_sub)

end

32 protocol-independent confidentiality theorem
on keys
theory GuardK

imports Analz Extensions
begin

inductive__set

guardK :: "nat => key set => msg set"
for n :: nat and Ks :: "key set"
where

No_Key [intro]: "Key n ¢ parts {X} —> X € guardK n Ks"
| Guard_Key [intro]: "invKey K € Ks =—> Crypt K X € guardK n Ks"
| Crypt [intro]: "X € guardK n Ks = Crypt K X € guardK n Ks"
| Pair [intro]: "[X € guardK n Ks; Y € guardK n Ks] = {X,Y}} € guardK n
Ks"

35832 PROTOCOL-INDEPENDENT CONFIDENTIALITY THEOREM ON KEYS

32.1 Dbasic facts about guardk

lemma Nonce_is_guardK [iff]: "Nonce p € guardK n Ks"
by auto

lemma Agent_is_guardK [iff]: "Agent A € guardK n Ks"
by auto

lemma Number_is_guardK [iff]: "Number r € guardK n Ks"
by auto

lemma Key_notin_guardK: "X € guardK n Ks =—> X # Key n"
by (erule guardK.induct, auto)

lemma Key_notin_guardK_iff [iff]: "Key n ¢ guardK n Ks"
by (auto dest: Key_notin_guardK)

lemma guardK_has_Crypt [rule_format]: "X € guardK n Ks = Key n € parts
{X+

— (3K Y. Crypt K Y € kparts {X} A Key n € parts {Y})"

by (erule guardK.induct, auto)

lemma Key_notin_kparts_msg: "X € guardK n Ks —> Key n ¢ kparts {X}"
by (erule guardK.induct, auto dest: kparts_parts)

lemma Key_in_kparts_imp_no_guardK: "Key n € kparts H
= 3JX. X € HA X ¢ guardK n Ks"

apply (drule in_kparts, clarify)

apply (rule_tac x=X in exI, clarify)

by (auto dest: Key notin_kparts_msg)

lemma guardK_kparts [rule_format]: "X € guardK n Ks —
Y € kparts {X} — Y € guardK n Ks"
by (erule guardK.induct, auto dest: kparts_parts parts_sub)

lemma guardK_Crypt: "[Crypt K Y € guardK n Ks; K ¢ invKey‘Ks] — Y € guardK
n Ks"
by (ind_cases "Crypt K Y € guardK n Ks") (auto intro!: image_eql)

lemma guardK_MPair [iff]: "({X,Y} € guardK n Ks)
= (X € guardK n Ks A Y € guardK n Ks)"
by (auto, (ind_cases "{X,Y[} € guardK n Ks", auto)+)

lemma guardK_not_guardK [rule_format]: "X €guardK n Ks —
Crypt K Y € kparts {X} — Key n € kparts {Y} — Y ¢ guardK n Ks"
by (erule guardK.induct, auto dest: guardK_kparts)

lemma guardK_extand: "[X € guardK n Ks; Ks C Ks’;
[K € Ks’; K ¢ Ks] = Key K ¢ parts {X}] = X € guardK n Ks’"
by (erule guardK.induct, auto)

32.2 guarded sets

definition GuardK :: "nat = key set = msg set = bool" where
"GuardKk n Ks H = VX. X € H — X € guardK n Ks"

32.3 basic facts about GuardK 359

32.3 basic facts about cuardx

lemma GuardK_empty [iff]: "GuardK n Ks {}"
by (simp add: GuardK_def)

lemma Key_notin_kparts [simplified]: "GuardK n Ks H —> Key n ¢ kparts H"
by (auto simp: GuardK_def dest: in_kparts Key_notin_kparts_msg)

lemma GuardK_must_decrypt: "[GuardK n Ks H; Key n € analz H|] =

JK Y. Crypt K Y € kparts H N Key (invKey K) € kparts H"

apply (drule_tac P="AG. Key n € G" in analz_pparts_kparts_substD, simp)
by (drule must_decrypt, auto dest: Key_notin_kparts)

lemma GuardK_kparts [intro]: "GuardK n Ks H =—> GuardK n Ks (kparts H)"
by (auto simp: GuardK_def dest: in_kparts guardK_kparts)

lemma GuardK_mono: "[GuardK n Ks H; G C H] = GuardK n Ks G"
by (auto simp: GuardK_def)

lemma GuardK_insert [iff]: "GuardK n Ks (insert X H)
= (GuardK n Ks H A X € guardK n Ks)"
by (auto simp: GuardK_def)

lemma GuardK_Un [iff]: "GuardK n Ks (G Un H) = (GuardK n Ks G & GuardK n
Ks H)"
by (auto simp: GuardK_def)

lemma GuardK_synth [intro]: "GuardK n Ks G = GuardK n Ks (synth G)"
by (auto simp: GuardK_def, erule synth.induct, auto)

lemma GuardK_analz [intro]: "[GuardK n Ks G; VK. K € Ks — Key K ¢ analz
]

—> GuardK n Ks (analz G)"

apply (auto simp: GuardK_def)

apply (erule analz.induct, auto)

by (ind_cases "Crypt K Xa € guardK n Ks" for K Xa, auto)

lemma in_GuardK [dest]: "[X € G; GuardK n Ks G] = X € guardK n Ks"
by (auto simp: GuardK_def)

lemma in_synth_GuardK: "[X € synth G; GuardK n Ks G] = X € guardK n Ks"
by (drule GuardK_synth, auto)

lemma in_analz_GuardK: "[X € analz G; GuardK n Ks G;
VK. K € Ks — Key K ¢ analz G] = X € guardK n Ks"
by (drule GuardK_analz, auto)

lemma GuardK_keyset [simp]: "[keyset G; Key n ¢ G] = GuardK n Ks G"
by (simp only: GuardK_def, clarify, drule keyset_in, auto)

lemma GuardK_Un_keyset: "[GuardK n Ks G; keyset H; Key n ¢ H]
—> GuardK n Ks (G Un H)"
by auto

36032 PROTOCOL-INDEPENDENT CONFIDENTIALITY THEOREM ON KEYS

lemma in_GuardK_kparts: "[X € G; GuardK n Ks G; Y € kparts {X}] = Y €
guardK n Ks"
by blast

lemma in_GuardK_kparts_neq: "[X € G; GuardK n Ks G; Key n’ € kparts {X}]
— n 75 n’"
by (blast dest: in_GuardK_kparts)

lemma in_GuardK_kparts_Crypt: "[X € G; GuardK n Ks G; is_MPair X;
Crypt K Y € kparts {X}; Key n € kparts {Y}] = invKey K € Ks"
apply (drule in_GuardK, simp)

apply (frule guardK_not_guardK, simp+)

apply (drule guardK_kparts, simp)

by (ind_cases "Crypt K Y € guardK n Ks", auto)

lemma GuardK_extand: " [[GuardK n Ks G; Ks C Ks’;
[K € Ks’; K ¢ Ks] => Key K ¢ parts G] = GuardK n Ks’ G"
by (auto simp: GuardK_def dest: guardK_extand parts_sub)

32.4 set obtained by decrypting a message

abbreviation (input)
decrypt :: "msg set = key = msg = msg set" where
"decrypt H K Y = insert Y (H - {Crypt K Y}H)"

lemma analz_decrypt: "[Crypt K Y € H; Key (invKey K) € H; Key n € analz
H]

— Key n € analz (decrypt H K Y)"

apply (drule_tac P="AH. Key n € analz H" in ssubst [OF insert_Diff])
apply assumption

apply (simp only: analz_Crypt_if, simp)

done

lemma parts_decrypt: "[Crypt K Y € H; X € parts (decrypt HK Y)] = X €
parts H"
by (erule parts.induct, auto intro: parts.Fst parts.Snd parts.Body)

32.5 number of Crypt’s in a message

fun crypt_nb :: "msg => nat" where
"crypt_nb (Crypt K X) = Suc (crypt_nb X)" |
"crypt_nb {X,Y} = crypt_nb X + crypt_nb Y" |
"crypt_nb X = 0"

32.6 Dbasic facts about crypt_nb

lemma non_empty_crypt_msg: "Crypt K Y € parts {X} = crypt_nb X # 0"
by (induct X, simp_all, safe, simp_all)

32.7 number of Crypt’s in a message list

primrec cnb :: "msg list => nat" where
"CIlb [J = ou /
"cnb (X#1) = crypt_nb X + cnb 1"

32.8 basic facts about cnb 361

32.8 basic facts about cnp

lemma cnb_app [simp]: "cnb (1 @ 1°) = cnb 1 + cnb 1°"
by (induct 1, auto)

lemma mem_cnb_minus: "x € set 1 = cnb 1 = crypt_nb x + (cnb 1 - crypt_nb
X) "
by (induct 1, auto)

lemmas mem_cnb_minus_substI = mem_cnb_minus [THEN ssubst]

lemma cnb_minus [simp]: "x € set 1 = cnb (remove 1 x) = cnb 1 - crypt_nb
X"

apply (induct 1, auto)

by (erule_tac 1=1 and x=x in mem_cnb_minus_substI, simp)

lemma parts_cnb: "Z € parts (set 1) —
cnb 1 = (cnb 1 - crypt_nb Z) + crypt_nb Z"
by (erule parts.induct, auto simp: in_set_conv_decomp)

lemma non_empty_crypt: "Crypt K Y € parts (set 1) = cnb 1 # 0"
by (induct 1, auto dest: non_empty_crypt_msg parts_insert_substD)

32.9 list of kparts

lemma kparts_msg_set: "31. kparts {X} = set 1 A cnb 1 = crypt_nb X"
apply (induct X, simp_all)

apply (rename_tac agent, rule_tac x="[Agent agent]" in exI, simp)

apply (rename_tac nat, rule_tac x="[Number nat]" in exI, simp)

apply (rename_tac nat, rule_tac x="[Nonce nat]" in exI, simp)

apply (rename_tac nat, rule_tac x="[Key nat]" in exI, simp)

apply (rule_tac x="[Hash X]" in exI, simp)

apply (clarify, rule_tac x="1l@la" in exI, simp)

by (clarify, rename_tac nat X y, rule_tac x="[Crypt nat X]" in exI, simp)

lemma kparts_set: "31’. kparts (set 1) = set 1’ & cnb 1’ = cnb 1"
apply (induct 1)

apply (rule_tac x="[]" in exI, simp, clarsimp)

apply (rename_tac a b 1°)

apply (subgoal_tac "d1’’. kparts {a} = set 1°’ & cnb 1°’ = crypt_nb a",
clarify)

apply (rule_tac x="1’’@1’" in exI, simp)

apply (rule kparts_insert_substI, simp)

by (rule kparts_msg_set)

32.10 list corresponding to "decrypt"

definition decrypt’ :: "msg list => key => msg => msg list" where
"decrypt’ 1 K Y == Y # remove 1 (Crypt K Y)"

declare decrypt’_def [simp]

32.11 basic facts about decrypt’

lemma decrypt_minus: "decrypt (set 1) K Y <= set (decrypt’ 1 K Y)"

36232 PROTOCOL-INDEPENDENT CONFIDENTIALITY THEOREM ON KEYS

by (induct 1, auto)

if the analysis of a finite guarded set gives n then it must also give one of the
keys of Ks

lemma GuardK_invKey_by_list [rule_format]: "V1. cnb 1 = p
— GuardK n Ks (set 1) — Key n € analz (set 1)

— (K. K € Ks N Key K € analz (set 1))"

apply (induct p)

apply (clarify, drule GuardK_must_decrypt, simp, clarify)
apply (drule kparts_parts, drule non_empty_crypt, simp)

apply (clarify, frule GuardK_must_decrypt, simp, clarify)

apply (drule_tac P="AG. Key n € G" in analz_pparts_kparts_substD, simp)
apply (frule analz_decrypt, simp_all)

apply (subgoal_tac "31’. kparts (set 1) = set 1° A cnb 1’ = cnb 1", clarsimp)
apply (drule_tac G="insert Y (set 1’ - {Crypt K Y})"

and H="set (decrypt’ 1’ K Y)" in analz_sub, rule decrypt_minus)

apply (rule_tac analz_pparts_kparts_substI, simp)

apply (case_tac "K € invKey‘Ks")

apply (clarsimp, blast)

apply (subgoal_tac "GuardK n Ks (set (decrypt’ 1’ K Y))")

apply (drule_tac x="decrypt’ 1’ K Y" in spec, simp)

apply (subgoal_tac "Crypt K Y € parts (set 1)")

apply (drule parts_cnb, rotate_tac -1, simp)

apply (clarify, drule_tac X="Key Ka" and H="insert Y (set 1’)" in analz_sub)
apply (rule insert_mono, rule set_remove)

apply (simp add: analz_insertD, blast)

apply (blast dest: kparts_parts)

apply (rule_tac H="insert Y (set 1’)" in GuardK_mono)

apply (subgoal_tac "GuardK n Ks (set 1°)", simp)

apply (rule_tac K=K in guardK_Crypt, simp add: GuardK_def, simp)
apply (drule_tac t="set 1’" in sym, simp)

apply (rule GuardK_kparts, simp, simp)

apply (rule_tac B="set 1’" in subset_trans, rule set_remove, blast)
by (rule kparts_set)

lemma GuardK_invKey_finite: "[Key n € analz G; GuardK n Ks G; finite G]
— JK. K € Ks N Key K € analz G"

apply (drule finite_list, clarify)

by (rule GuardK_invKey_by_list, auto)

lemma GuardK_invKey: "[Key n € analz G; GuardK n Ks G]
— JK. K € Ks N\ Key K € analz G"
by (auto dest: analz_needs_only_finite GuardK_invKey_ finite)

if the analyse of a finite guarded set and a (possibly infinite) set of keys gives n
then it must also gives Ks

lemma GuardK_invKey_keyset: "[Key n € analz (G U H); GuardK n Ks G; finite
G;

32.12 Basic properties of shrK 363

keyset H; Key n ¢ H] = JK. K € Ks A Key K € analz (G U H)"

apply (frule_tac P="AG. Key n € G" and G=G in analz_keyset_substD, simp_all)
apply (drule_tac G="G Un (H Int keysfor G)" in GuardK_invKey_finite)

apply (auto simp: GuardK_def intro: analz_sub)

by (drule keyset_in, auto)

end

theory Shared
imports Event All_Symmetric
begin

consts
shrK :: "agent = key"

specification (shrk)
inj_shrK: "inj shrK"
— No two agents have the same long-term key
apply (rule exI [of _ "case_agent 0 (An. n + 2) 1"])
apply (simp add: inj_on_def split: agent.split)
done

Server knows all long-term keys; other agents know only their own

overloading
initState = initState
begin

primrec initState where

initState_Server: '"initState Server = Key ¢ range shrk"
| initState_Friend: "initState (Friend i) = {Key (shrK (Friend i))}"
| initState_Spy: "initState Spy = Key ‘shrK‘bad"
end

32.12 Basic properties of shrK
lemmas shrK_injective = inj_shrK [THEN inj_eq]

declare shrK_injective [iff]

lemma invKey K [simp]: "invKey K = K"
apply (insert isSym_keys)

apply (simp add: symKeys_def)

done

lemma analz_Decrypt’ [dest]:
"[Crypt K X € analz H; Key K € analz H| = X € analz H"
by auto

Now cancel the dest attribute given to analz.Decrypt in its declaration.

declare analz.Decrypt [rule del]

Rewrites should not refer to initState (Friend i) because that expression is

36432 PROTOCOL-INDEPENDENT CONFIDENTIALITY THEOREM ON KEYS

not in normal form.

lemma keysFor_parts_initState [simp]: "keysFor (parts (initState C)) = {}"
unfolding keysFor_def

apply (induct_tac "C", auto)

done

lemma keysFor_parts_insert:
"[K € keysFor (parts (insert X G)); X € synth (analz H)]
— K € keysFor (parts (G U H)) | Key K € parts H"

by (metis invKey_K keysFor_parts_insert)

lemma Crypt_imp_keysFor: "Crypt K X € H = K € keysFor H"
by (metis Crypt_imp_invKey_keysFor invKey_K)

32.13 Function "knows"

lemma Spy_knows_Spy_bad [intro!]: "A € bad = Key (shrK A) € knows Spy
evs"

apply (induct_tac "evs")

apply (simp_all (no_asm_simp) add: imagel knows_Cons split: event.split)
done

lemma Crypt_Spy_analz_bad: "[Crypt (shrK A) X € analz (knows Spy evs); A
€ bad]

— X € analz (knows Spy evs)"
by (metis Spy_knows_Spy_bad analz.Inj analz_Decrypt’)

lemma shrK_in_initState [iff]: "Key (shrK A) € initState A"
by (induct_tac "A", auto)

lemma shrK_in_used [iff]: "Key (shrK A) € used evs"
by (rule initState_into_used, blast)

lemma Key_not_used [simp]: "Key K ¢ used evs —> K ¢ range shrK"
by blast

lemma shrK_neq [simp]: "Key K ¢ used evs —> shrK B # K"
by blast

lemmas shrK_sym_neq = shrK_neq [THEN not_sym]
declare shrK_sym_neq [simp]

32.14 Fresh nonces

lemma Nonce_notin_initState [iff]: "Nonce N ¢ parts (initState B)"
by (induct_tac "B", auto)

32.15 Supply fresh nonces for possibility theorems. 365

lemma Nonce_notin_used_empty [simp]: "Nonce N ¢ used []"
by (simp add: used_Nil)

32.15 Supply fresh nonces for possibility theorems.

lemma Nonce_supply_lemma: "IN. Vn. N < n —> Nonce n ¢ used evs"
apply (induct_tac "evs")

apply (rule_tac x = 0 in exI)

apply (simp_all (no_asm_simp) add: used_Cons split: event.split)
apply (metis le_sup_iff msg_Nonce_supply)

done

lemma Nonce_supplyl: "JN. Nonce N ¢ used evs"
by (metis Nonce_supply_lemma order_eq_iff)

lemma Nonce_supply2: "3N N’. Nonce N ¢ used evs A Nonce N’ ¢ used evs’
AN 75 Nom
apply (cut_tac evs = evs in Nonce_supply_lemma)

apply (cut_tac evs = "evs’" in Nonce_supply_lemma, clarify)
apply (metis Suc_n_not_le_n nat_le_linear)
done

lemma Nonce_supply3: "3N N’ N’’. Nonce N ¢ used evs A Nonce N’ ¢ used evs’
A
Nonce N’’ ¢ used evs’’ AN # N’ AN N> # N’? AN #£ N’°"
apply (cut_tac evs = evs in Nonce_supply_lemma)
apply (cut_tac evs = "evs’" in Nonce_supply_lemma)
apply (cut_tac evs = "evs’’" in Nonce_supply_lemma, clarify)
apply (rule_tac x = N in exI)
apply (rule_tac x = "Suc (N+Na)" in exI)
apply (rule_tac x = "Suc (Suc (N+Na+Nb))" in exI)
apply (simp (no_asm_simp) add: less_not_refl3 le_addl le_add2 less_Suc_eq_le)
done

lemma Nonce_supply: "Nonce (SOME N. Nonce N ¢ used evs) ¢ used evs"
apply (rule Nonce_supply_lemma [THEN exE])

apply (rule someI, blast)

done

Unlike the corresponding property of nonces, we cannot prove finite KK —
JK. K ¢ KK A Key K ¢ used evs. We have infinitely many agents and there is
nothing to stop their long-term keys from exhausting all the natural numbers.
Instead, possibility theorems must assume the existence of a few keys.

32.16 Specialized Rewriting for Theorems About anaiz and
Image

lemma subset_Compl_range: "A C - (range shrK) —> shrK x ¢ A"
by blast

lemma insert_Key singleton: "insert (Key K) H = Key ¢ {K} U H"
by blast

36632 PROTOCOL-INDEPENDENT CONFIDENTIALITY THEOREM ON KEYS

lemma insert_Key_image: "insert (Key K) (Key‘KK U C) = Key‘(insert K KK)
U Cll
by blast

lemmas analz_image_freshK_simps =
simp_thms mem_simps — these two allow its use with only:
disj_comms
image_insert [THEN sym] image_Un [THEN sym] empty_subsetI insert_subset
analz_insert_eq Un_upper2 [THEN analz_mono, THEN [2] rev_subsetD]
insert_Key_singleton subset_Compl_range
Key_not_used insert_Key_image Un_assoc [THEN sym]

lemma analz_image_freshK_lemma:
"(Key K € analz (Key‘nE U H)) — (K € nE | Key K € analz H) —
(Key K € analz (Key‘nE U H)) = (K € nE | Key K € analz H)"
by (blast intro: analz_mono [THEN [2] rev_subsetD])

32.17 Tactics for possibility theorems
ML

<
structure Shared =
struct

(*Omitting used_Says makes the tactic much faster: it leaves expressions
such as Nonce ?N ¢ used evs that match Nonce_supply*)
fun possibility_tac ctxt =
(REPEAT
(ALLGOALS (simp_tac (ctxt
delsimps [@{thm used_Says}, @{thm used_Notes}, @{thm used_Getsl}]

[> Simplifier.set_unsafe_solver safe_solver))
THEN
REPEAT_FIRST (eq_assume_tac ORELSE’
resolve_tac ctxt [refl, conjI, @{thm Nonce_supply}])))

(*For harder protocols (such as Recur) where we have to set up some
nonces and keys initially*)
fun basic_possibility_tac ctxt =
REPEAT
(ALLGOALS (asm_simp_tac (ctxt |> Simplifier.set_unsafe_solver safe_solver))
THEN
REPEAT_FIRST (resolve_tac ctxt [refl, conjI]))

val analz_image_freshK_ss =
simpset_of
(context |> Simplifier.del_simps @{thms image_insert image_Un}
|> Simplifier.del_simps @{thms imp_disjL} (*reduces blow-up*)
|> Simplifier.add_simps @{thms analz_image_freshK_simps})

367

end

lemma invKey_shrK_iff [iff]:
"(Key (invKey K) € X) = (Key K € X)"
by auto

method__setup analz_freshK = <
Scan.succeed (fn ctxt =>
(SIMPLE_METHOD
(EVERY [REPEAT_FIRST (resolve_tac ctxt @{thms alll balll impI}),
REPEAT_FIRST (resolve_tac ctxt @{thms analz_image_freshK_lemmal}),
ALLGOALS (asm_simp_tac (put_simpset Shared.analz_image_freshK_ss
ctxt))1)))>

"for proving the Session Key Compromise theorem"

method__setup possibility = <
Scan.succeed (fn ctxt => SIMPLE_METHOD (Shared.possibility_tac ctxt))>
"for proving possibility theorems"

method__setup basic_possibility = <
Scan.succeed (fn ctxt => SIMPLE_METHOD (Shared.basic_possibility_tac ctxt))>
"for proving possibility theorems"

lemma knows_subset_knows_Cons: "knows A evs C knows A (e # evs)"
by (cases e) (auto simp: knows_Cons)

end

33 lemmas on guarded messages for protocols
with symmetric keys

theory Guard_Shared imports Guard GuardK "../Shared" begin

33.1 Extensions to Theory shared

declare initState.simps [simp del]

33.1.1 a little abbreviation

abbreviation
Ciph :: "agent => msg => msg" where
"Ciph A X == Crypt (shrK A) X"

33.1.2 agent associated to a key

definition agt :: "key => agent" where
"agt K == SOME A. K = shrK A"

36833 LEMMAS ON GUARDED MESSAGES FOR PROTOCOLS WITH SYMMETRIC KEYS

lemma agt_shrK [simp]: "agt (shrK A) = A"
by (simp add: agt_def)

33.1.3 basic facts about initState

lemma no_Crypt_in_parts_init [simp]: "Crypt K X ¢ parts (initState A)"
by (cases A, auto simp: initState.simps)

lemma no_Crypt_in_analz_init [simp]: "Crypt K X ¢ analz (initState A)"
by auto

lemma no_shrK_in_analz_init [simp]: "A ¢ bad
—> Key (shrK A) ¢ analz (initState Spy)"
by (auto simp: initState.simps)

lemma shrK_notin_initState_Friend [simp]: "A # Friend C
—> Key (shrK A) ¢ parts (initState (Friend C))"
by (auto simp: initState.simps)

lemma keyset_init [iff]: "keyset (initState A)"
by (cases A, auto simp: keyset_def initState.simps)

33.1.4 sets of symmetric keys

definition shrK_set :: "key set => bool" where
"shrK_set Ks = VK. K € Ks — (dA. K = shrK A)"

lemma in_shrK_set: "[shrK_set Ks; K € Ks] = 3A. K = shrK A"
by (simp add: shrK_set_def)

lemma shrK_setl [iff]: "shrK_set {shrK A}"
by (simp add: shrK_set_def)

lemma shrK_set2 [iff]: "shrK_set {shrK A, shrK B}"
by (simp add: shrK_set_def)

33.1.5 sets of good keys

definition good :: "key set = bool" where
"good Ks = VK. K € Ks — agt K ¢ bad"

lemma in_good: "[good Ks; K € Ks] = agt K ¢ bad"
by (simp add: good_def)

lemma goodl [simp]: "A ¢ bad —> good {shrK A}"
by (simp add: good_def)

lemma good2 [simp]: "[A ¢ bad; B ¢ bad] = good {shrK A, shrK B}"
by (simp add: good_def)

33.2 Proofs About Guarded Messages 369

33.2 Proofs About Guarded Messages
33.2.1 small hack

lemma shrK_is_invKey_shrK: "shrK A = invKey (shrK A)"
by simp

lemmas shrK_is_invKey_shrK_substI = shrK_is_invKey_shrK [THEN ssubst]
lemmas invKey_invKey_substI = invKey [THEN ssubst]

lemma "Nonce n € parts {X} = Crypt (shrK A) X € guard n {shrK A}"
apply (rule shrK_is_invKey_shrK_substI, rule invKey_invKey_substI)
by (rule Guard_Nonce, simp+)

33.2.2 guardedness results on nonces

lemma guard_ciph [simp]: "shrK A € Ks =—> Ciph A X € guard n Ks"
by (rule Guard_Nonce, simp)

lemma guardK_ciph [simp]: "shrK A € Ks = Ciph A X € guardK n Ks"
by (rule Guard_Key, simp)

lemma Guard_init [iff]: "Guard n Ks (initState B)"
by (induct B, auto simp: Guard_def initState.simps)

lemma Guard_knows_max’: "Guard n Ks (knows_max’ C evs)
— Guard n Ks (knows_max C evs)"
by (simp add: knows_max_der)

lemma Nonce_not_used_Guard_spies [dest]: "Nonce n ¢ used evs
—> Guard n Ks (spies evs)"
by (auto simp: Guard_def dest: not_used_not_known parts_sub)

lemma Nonce_not_used_Guard [dest]: "[evs € p; Nonce n ¢ used evs;
Gets_correct p; one_step p] = Guard n Ks (knows (Friend C) evs)"
by (auto simp: Guard_def dest: known_used parts_trans)

lemma Nonce_not_used_Guard_max [dest]: " [[evs € p; Nonce n ¢ used evs;
Gets_correct p; one_step p] = Guard n Ks (knows_max (Friend C) evs)"
by (auto simp: Guard_def dest: known_max_used parts_trans)

lemma Nonce_not_used_Guard_max’ [dest]: "[evs € p; Nonce n ¢ used evs;
Gets_correct p; one_step p] = Guard n Ks (knows_max’ (Friend C) evs)"
apply (rule_tac H="knows_max (Friend C) evs" in Guard_mono)

by (auto simp: knows_max_def)

33.2.3 guardedness results on keys

lemma GuardK_init [simp]: "n ¢ range shrK —> GuardK n Ks (initState B)"
by (induct B, auto simp: GuardK_def initState.simps)

lemma GuardK_knows_max’: "[GuardK n A (knows_max’ C evs); n ¢ range shrK]
— GuardK n A (knows_max C evs)"
by (simp add: knows_max_def)

37033 LEMMAS ON GUARDED MESSAGES FOR PROTOCOLS WITH SYMMETRIC KEYS

lemma Key_not_used_GuardK_spies [dest]: "Key n ¢ used evs
= GuardK n A (spies evs)"
by (auto simp: GuardK_def dest: not_used_not_known parts_sub)

lemma Key_not_used_GuardK [dest]: "[evs € p; Key n ¢ used evs;
Gets_correct p; one_step p]| = GuardK n A (knows (Friend C) evs)"
by (auto simp: GuardK_def dest: known_used parts_trans)

lemma Key_not_used_GuardK_max [dest]: "[evs € p; Key n ¢ used evs;
Gets_correct p; one_step p] = GuardK n A (knows_max (Friend C) evs)"
by (auto simp: GuardK_def dest: known_max_used parts_trans)

lemma Key_not_used_GuardK_max’ [dest]: "[evs € p; Key n ¢ used evs;
Gets_correct p; one_step p]| = GuardK n A (knows_max’ (Friend C) evs)"
apply (rule_tac H="knows_max (Friend C) evs" in GuardK_mono)

by (auto simp: knows_max_def)

33.2.4 regular protocols

definition regular :: "event list set => bool" where
"regular p = Vevs A. evs € p — (Key (shrK A) € parts (spies evs)) = (A
€ bad)"

lemma shrK_parts_iff_bad [simp]: "[evs € p; regular p] —
(Key (shrK A) € parts (spies evs)) = (A € bad)"
by (auto simp: regular_def)

lemma shrK_analz_iff_bad [simp]: "[evs € p; regular p] =
(Key (shrK A) € analz (spies evs)) = (A € bad)"
by auto

lemma Guard_Nonce_analz: "[Guard n Ks (spies evs); evs € p;
shrK_set Ks; good Ks; regular p] —> Nonce n ¢ analz (spies evs)"
apply (clarify, simp only: knows_decomp)

apply (drule Guard_invKey_keyset, simp+, safe)

apply (drule in_good, simp)

apply (drule in_shrK_set, simp+, clarify)

apply (frule_tac A=A in shrK_analz_iff_bad)

by (simp add: knows_decomp)+

lemma GuardK_Key_analz:
assumes "GuardK n Ks (spies evs)" "evs € p" "shrK_set Ks"
"good Ks" "regular p" "n ¢ range shrK"
shows "Key n ¢ analz (spies evs)"
proof (rule ccontr)
assume " Key n ¢ analz (knows Spy evs)"
then have *: "Key n € analz (spies’ evs U initState Spy)"
by (simp add: knows_decomp)
from <GuardK n Ks (spies evs)>
have "GuardK n Ks (spies’ evs U initState Spy)"
by (simp add: knows_decomp)
then have "GuardK n Ks (spies’ evs)"
and "finite (spies’ evs)" '"keyset (initState Spy)"

371

by simp_all
moreover have "Key n ¢ initState Spy"
using <n ¢ range shrK> by (simp add: image_iff initState_Spy)
ultimately obtain K
where "K € Ks" and #*: "Key K € analz (spies’ evs U initState Spy)"
using * by (auto dest: GuardK_invKey_keyset)
from <K € Ks> and <good Ks> have "agt K ¢ bad"
by (auto dest: in_good)
from <K € Ks> <shrK_set Ks> obtain A
where "K = shrK A"
by (auto dest: in_shrK_set)
then have "agt K € bad"
using #** <evs € p> <regular p> shrK_analz_iff_bad [of evs p "agt K"]
by (simp add: knows_decomp)
with <agt K ¢ bad> show False by simp
qed

end

34 Otway-Rees Protocol

theory Guard_OtwayRees imports Guard_Shared begin

34.1 messages used in the protocol

abbreviation
nil :: "msg" where
"nil == Number 0"
abbreviation
orl :: "agent => agent => nat => event" where
"orl1 A B NA ==

Says A B {Nonce NA, Agent A, Agent B, Ciph A {Nonce NA, Agent A, Agent

Bl

abbreviation
orl’ :: "agent => agent => agent => nat => msg => event" where
"or1’ A’ A B NA X == Says A’ B {Nonce NA, Agent A, Agent B, X["

abbreviation
or2 :: "agent => agent => nat => nat => msg => event" where
"or2 A B NA NB X ==
Says B Server {Nonce NA, Agent A, Agent B, X,
Ciph B {Nonce NA, Nonce NB, Agent A, Agent B[}"

abbreviation
or2’ :: "agent => agent => agent => nat => nat => event" where
"or2’ B> A B NA NB ==
Says B’ Server {Nonce NA, Agent A, Agent B,
Ciph A {Nonce NA, Agent A, Agent B[,
Ciph B {Nonce NA, Nonce NB, Agent A, Agent B}[}"

abbreviation

372 34 OTWAY-REES PROTOCOL

or3 :: "agent => agent => nat => nat => key => event" where
"or3 A B NA NB K ==
Says Server B {Nonce NA, Ciph A {Nonce NA, Key K},
Ciph B {Nonce NB, Key K[}"

abbreviation
or3’:: "agent => msg => agent => agent => nat => nat => key => event" where
"or3” S Y A B NA NBK ==
Says S B {Nonce NA, Y, Ciph B {Nonce NB, Key K[}[}"

abbreviation
or4 :: "agent => agent => nat => msg => event" where
"or4 A B NA X == Says B A {Nonce NA, X, nill"

abbreviation
or4’ :: "agent => agent => nat => key => event" where
"or4’ B’ A NA K == Says B’ A {Nonce NA, Ciph A {Nonce NA, Key K[}, nill"

34.2 definition of the protocol

inductive__set or :: "event list set"
where

Nil: "[] € or"

| Fake: "[evs € or; X € synth (analz (spies evs))] = Says Spy B X # evs
€ or"

| OR1: "[evsl € or; Nonce NA ¢ used evsl] = orl A B NA # evsl € or"

| OR2: "[evs2 € or; orl’ A’ A B NA X € set evs2; Nonce NB ¢ used evs2]
= or2 A B NA NB X # evs2 € or"

| OR3: "[evs3 € or; or2’ B> A B NA NB € set evs3; Key K ¢ used evs3]
— or3 A B NA NB K # evs3 € or"

| OR4: "[[evs4 € or; or2 A BNANB X € set evs4d; or3’ S Y A B NA NB K € set
evs4]
—> or4 A B NA X # evs4d € or"

34.3 declarations for tactics

declare knows_Spy_partsEs [elim]
declare Fake_parts_insert [THEN subsetD, dest]
declare initState.simps [simp dell]

34.4 general properties of or

lemma or_has_no_Gets: "evs € or —> VA X. Gets A X ¢ set evs"
by (erule or.induct, auto)

lemma or_is_Gets_correct [iff]: "Gets_correct or"
by (auto simp: Gets_correct_def dest: or_has_no_Gets)

34.5 or is regular 373

lemma or_is_one_step [iff]: "one_step or"
unfolding one_step_def by (clarify, ind_cases "ev#evs € or" for ev evs,
auto)

lemma or_has_only_Says’ [rule_format]: "evs € or —>
ev € set evs — (JA B X. ev=Says A B X)"
by (erule or.induct, auto)

lemma or_has_only_Says [iff]: "has_only_Says or"
by (auto simp: has_only_Says_def dest: or_has_only_Says’)

34.5 or is regular

lemma ori1’_parts_spies [dest]: "orl’ A’ A B NA X € set evs
—> X € parts (spies evs)"
by blast

lemma or2_parts_spies [dest]: "or2 A B NA NB X € set evs
—> X € parts (spies evs)"
by blast

lemma or3_parts_spies [dest]: "Says S B {NA, Y, Ciph B {NB, K[|}} € set evs
= K € parts (spies evs)"
by blast

lemma or_is_regular [iff]: "regular or"
apply (simp only: regular_def, clarify)

apply (erule or.induct, simp_all add: initState.simps knows.simps)
by (auto dest: parts_sub)

34.6 guardedness of KAB

lemma Guard_KAB [rule_format]: "[evs € or; A ¢ bad; B ¢ bad] —
or3 A B NA NB K € set evs —> GuardK K {shrK A,shrK B} (spies evs)"
apply (erule or.induct)

apply simp_all

apply (clarify, erule in_synth_GuardK, erule GuardK_analz, simp)

apply blast

apply safe
apply (blast dest: Says_imp_spies, blast)

apply blast

apply (drule_tac A=Server in Key_neq, simp+, rule No_Key, simp)
apply (drule_tac A=Server in Key_neq, simp+, rule No_Key, simp)
by (blast dest: Says_imp_spies in_GuardK_kparts)

34.7 guardedness of NB

lemma Guard_NB [rule_format]: "[evs € or; B ¢ bad] —

374 35 YAHALOM PROTOCOL

or2 A B NA NB X € set evs — Guard NB {shrK B} (spies evs)"
apply (erule or.induct)

apply simp_all

apply safe
apply (erule in_synth_Guard, erule Guard_analz, simp)

apply (drule_tac n=NB in Nonce_neq, simp+, rule No_Nonce, simp)
apply (drule_tac n=NB in Nonce_neq, simp+, rule No_Nonce, simp)

apply blast

apply (drule_tac n=NA in Nonce_neq, simp+, rule No_Nonce, simp)
apply (blast intro!: No_Nonce dest: used_parts)

apply (drule_tac n=NA in Nonce_neq, simp+, rule No_Nonce, simp)
apply (blast intro!: No_Nonce dest: used_parts)

apply (blast dest: Says_imp_spies)

apply (blast dest: Says_imp_spies)

apply (case_tac "Ba=B", clarsimp)

apply (drule_tac n=NB and A=B in Nonce_neq, simp+)

apply (drule Says_imp_spies)

apply (drule_tac n’=NAa in in_Guard_kparts_neq, simp+, rule No_Nonce, simp)

apply (drule Says_imp_spies)
apply (frule_tac n’=NAa in in_Guard_kparts_neq, simp+, rule No_Nonce, simp)
apply (case_tac "Aa=B", clarsimp)
apply (case_tac "NAa=NB", clarsimp)
apply (drule Says_imp_spies)
apply (drule_tac Y="{Nonce NB, Agent Aa, Agent Bal"
and K="shrK Aa" in in_Guard_kparts_Crypt, simp+)
apply (simp add: No_Nonce)
apply (case_tac "Ba=B", clarsimp)
apply (case_tac "NBa=NB", clarify)
apply (drule Says_imp_spies)
apply (drule_tac Y="{Nonce NAa, Nonce NB, Agent Aa, Agent Bal}"
and K="shrK Ba" in in_Guard_kparts_Crypt, simp+)
apply (simp add: No_Nonce)

by (blast dest: Says_imp_spies)+

end

35 Yahalom Protocol

theory Guard_Yahalom imports "../Shared" Guard_Shared begin

35.1 messages used in the protocol

abbreviation (input)
yal :: "agent => agent => nat => event" where
"yal A B NA == Says A B {Agent A, Nonce NA[}"

abbreviation (input)

35.2 definition of the protocol 375

yal’ :: "agent => agent => agent => nat => event" where
"yal’ A’ A B NA == Says A’ B {Agent A, Nonce NAJ}"

abbreviation (input)
ya2 :: "agent => agent => nat => nat => event" where
"ya2 A B NA NB == Says B Server {Agent B, Ciph B {Agent A, Nonce NA, Nonce

NB[}"

abbreviation (input)

ya2’ :: "agent => agent => agent => nat => nat => event" where

"ya2’ B’ A B NA NB == Says B’ Server {Agent B, Ciph B {Agent A, Nonce NA,
Nonce NB[}"

abbreviation (input)
ya3 :: "agent => agent => nat => nat => key => event" where
"va3 A B NA NB K ==
Says Server A {Ciph A {Agent B, Key K, Nonce NA, Nonce NB},
Ciph B {Agent A, Key K[|"

abbreviation (input)
ya3’:: "agent => msg => agent => agent => nat => nat => key => event" where
"ya3’ S Y A B NA NB K ==
Says S A {Ciph A {Agent B, Key K, Nonce NA, Nonce NB}, Y[}"

abbreviation (input)
ya4 :: "agent => agent => nat => nat => msg => event" where
"yva4 A B K NB Y == Says A B {Y, Crypt K (Nonce NB)[}"
abbreviation (input)

ya4’ :: "agent => agent => nat => nat => msg => event" where
"ya4’ A’ B K NB Y == Says A’ B {Y, Crypt K (Nonce NB)["

35.2 definition of the protocol

inductive_set ya :: "event list set"
where

Nil: "[] € ya"

—_

Fake: "[evs € ya; X € synth (analz (spies evs))] = Says Spy B X # evs
e yall

| YA1: "[evsl € ya; Nonce NA ¢ used evsl] —> yal A B NA # evsl € ya"

| YA2: "[evs2 € ya; yal’ A’ A B NA € set evs2; Nonce NB ¢ used evs2]
—> ya2 A B NA NB # evs2 € ya"

| YA3: "[evs3 € ya; ya2’ B’ A B NA NB € set evs3; Key K ¢ used evs3]
—> ya3 A B NA NB K # evs3 € ya"

| YA4: "[evs4 € ya; yal A B NA € set evs4d; ya3’ S Y A B NA NB K € set evs4]
—> ya4 ABKNBY # evs4d € ya"

376 35 YAHALOM PROTOCOL

35.3 declarations for tactics

declare knows_Spy_partsEs [elim]
declare Fake_parts_insert [THEN subsetD, dest]
declare initState.simps [simp del]

35.4 general properties of ya

lemma ya_has_no_Gets: "evs € ya =—> VA X. Gets A X ¢ set evs"
by (erule ya.induct, auto)

lemma ya_is_Gets_correct [iff]: "Gets_correct ya"
by (auto simp: Gets_correct_def dest: ya_has_no_Gets)

lemma ya_is_one_step [iff]: "one_step ya"
unfolding one_step_def by (clarify, ind_cases "ev#evs € ya" for ev evs,
auto)

lemma ya_has_only_Says’ [rule_format]: "evs € ya —
ev € set evs —> (JA B X. ev=Says A B X)"
by (erule ya.induct, auto)

lemma ya_has_only_Says [iff]: "has_only_Says ya"
by (auto simp: has_only_Says_def dest: ya_has_only_Says’)

lemma ya_is_regular [iff]: "regular ya"

apply (simp only: regular_def, clarify)

apply (erule ya.induct, simp_all add: initState.simps knows.simps)
by (auto dest: parts_sub)

35.5 guardedness of KAB

lemma Guard_KAB [rule_format]: "[evs € ya; A ¢ bad; B ¢ bad] —
ya3 A B NA NB K € set evs — GuardK K {shrK A,shrK B} (spies evs)"
apply (erule ya.induct)

apply simp_all

apply (clarify, erule in_synth_GuardK, erule GuardK_analz, simp)
apply safe

apply (blast dest: Says_imp_spies)

apply blast

apply (drule_tac A=Server in Key_neq, simp+, rule No_Key, simp)

apply (drule_tac A=Server in Key_neq, simp+, rule No_Key, simp)

apply (blast dest: Says_imp_spies in_GuardK_kparts)
by blast

35.6 session keys are not symmetric keys

lemma KAB_isnt_shrK [rule_format]: "evs € ya —
ya3 A B NA NB K € set evs —» K ¢ range shrK"

35.7 ya2’ implies yal’ 377

by (erule ya.induct, auto)

lemma ya3_shrK: "evs € ya =—> ya3 A B NA NB (shrK C) ¢ set evs"
by (blast dest: KAB_isnt_shrk)

35.7 ya2’ implies yal’

lemma ya2’_parts_imp_yal’_parts [rule_format]:
"levs € ya; B ¢ bad] =
Ciph B {Agent A, Nonce NA, Nonce NB|} € parts (spies evs) —
{Agent A, Nonce NA|} € spies evs"

by (erule ya.induct, auto dest: Says_imp_spies intro: parts_parts)

lemma ya2’_imp_yal’_parts: "[ya2’ B’ A B NA NB € set evs; evs € ya; B ¢
bad]

— {Agent A, Nonce NA|} € spies evs"

by (blast dest: Says_imp_spies ya2’_parts_imp_yal’_parts)

35.8 uniqueness of NB

lemma NB_is_uniq_in_ya2’_parts [rule_format]: "[evs € ya; B ¢ bad; B’ ¢
bad] =

Ciph B {Agent A, Nonce NA, Nonce NB|} € parts (spies evs) —

Ciph B’ {Agent A’, Nonce NA’, Nonce NB|} € parts (spies evs) —

A=A’ N B=B’ A NA=NA’"

apply (erule ya.induct, simp_all, clarify)

apply (drule Crypt_synth_insert, simp+)

apply (drule Crypt_synth_insert, simp+, safe)

apply (drule not_used_parts_false, simp+)+

by (drule Says_not_parts, simp+)+

lemma NB_is_uniq_in_ya2’: " [[yaQ’ C A B NA NB € set evs;

ya2’ C’ A’ B’ NA’ NB € set evs; evs € ya; B ¢ bad; B’ ¢ bad]
—> A=A’ N B=B’ N\ NA=NA’"

by (drule NB_is_uniq_in_ya2’_parts, auto dest: Says_imp_spies)

35.9 ya3’ implies ya2’

lemma ya3’_parts_imp_ya2’_parts [rule_format]: "[evs € ya; A ¢ bad] =
Ciph A {Agent B, Key K, Nonce NA, Nonce NB|} € parts (spies evs)

— Ciph B {Agent A, Nonce NA, Nonce NB|} € parts (spies evs)"

apply (erule ya.induct, simp_all)

apply (clarify, drule Crypt_synth_insert, simp+)

apply (blast intro: parts_sub, blast)

by (auto dest: Says_imp_spies parts_parts)

lemma ya3’_parts_imp_ya2’ [rule_format]: "[evs € ya; A ¢ bad] =
Ciph A {Agent B, Key K, Nonce NA, Nonce NB|} € parts (spies evs)
— (3B’. ya2’ B’ A B NA NB € set evs)"

apply (erule ya.induct, simp_all, safe)

apply (drule Crypt_synth_insert, simp+)

apply (drule Crypt_synth_insert, simp+, blast)

apply blast

apply blast

378 35 YAHALOM PROTOCOL

by (auto dest: Says_imp_spies2 parts_parts)

lemma ya3’_imp_ya2’: "[ya3’ S Y A B NA NB K € set evs; evs € ya; A ¢ bad]
—> (dB’. ya2’ B’ A B NA NB € set evs)"
by (drule ya3’_parts_imp_ya2’, auto dest: Says_imp_spies)

35.10 ya3’ implies ya3

lemma ya3’_parts_imp_ya3 [rule_format]: "[evs € ya; A ¢ bad] —
Ciph A {Agent B, Key K, Nonce NA, Nonce NB|} € parts(spies evs)
— ya3 A B NA NB K € set evs"

apply (erule ya.induct, simp_all, safe)

apply (drule Crypt_synth_insert, simp+)

by (blast dest: Says_imp_spies2 parts_parts)

lemma ya3’_imp_ya3: "[ya3’ S Y A B NA NB K € set evs; evs € ya; A ¢ bad]
—> ya3 A B NA NB K € set evs"
by (blast dest: Says_imp_spies ya3’_parts_imp_ya3)

35.11 guardedness of NB

definition ya_keys :: "agent = agent = nat = nat = event list = key set"
where
"ya_keys A B NA NB evs = {shrK A,shrK B} U {K. ya3 A B NA NB K € set evs}"

lemma Guard_NB [rule_format]: "[evs € ya; A ¢ bad; B ¢ bad] =
ya2 A B NA NB € set evs — Guard NB (ya_keys A B NA NB evs) (spies evs)"
apply (erule ya.induct)

apply (simp_all add: ya_keys_def)

apply safe

apply (erule in_synth_Guard, erule Guard_analz, simp, clarify)
apply (frule_tac B=B in Guard_KAB, simp+)

apply (drule_tac p=ya in GuardK_Key_analz, simp+)

apply (blast dest: KAB_isnt_shrK, simp)

apply (drule_tac n=NB in Nonce_neq, simp+, rule No_Nonce, simp)

apply blast

apply (drule Says_imp_spies)

apply (drule_tac n=NB in Nonce_neq, simp+)

apply (drule_tac n’=NAa in in_Guard_kparts_neq, simp+)
apply (rule No_Nonce, simp)

apply (rule Guard_extand, simp, blast)

apply (case_tac "NAa=NB", clarify)

apply (frule Says_imp_spies)

apply (frule in_Guard_kparts_Crypt, simp+)

apply (frule_tac A=A and B=B and NA=NA and NB=NB and C=Ba in ya3_shrK,
simp)

apply (drule ya2’_imp_yal’_parts, simp, blast, blast)

apply (case_tac "NBa=NB", clarify)

apply (frule Says_imp_spies)

379

apply (frule in_Guard_kparts_Crypt, simp+)

apply (frule_tac A=A and B=B and NA=NA and NB=NB and C=Ba in ya3_shrKk,
simp)

apply (drule NB_is_uniq_in_ya2’, simp+, blast, simp+)

apply (simp add: No_Nonce, blast)

apply (blast dest: Says_imp_spies)

apply (case_tac "NBa=NB", clarify)

apply (frule_tac A=S in Says_imp_spies)

apply (frule in_Guard_kparts_Crypt, simp+)

apply (blast dest: Says_imp_spies)

apply (case_tac "NBa=NB", clarify)

apply (frule_tac A=S in Says_imp_spies)

apply (frule in_Guard_kparts_Crypt, simp+, blast, simp+)

apply (frule_tac A=A and B=B and NA=NA and NB=NB and C=Aa in ya3_shrK,
simp)

apply (frule ya3’_imp_ya2’, simp+, blast, clarify)

apply (frule_tac A=B’ in Says_imp_spies)

apply (rotate_tac -1, frule in_Guard_kparts_Crypt, simp+)

apply (frule_tac A=A and B=B and NA=NA and NB=NB and C=Ba in ya3_shrKk,
simp)

apply (drule NB_is_uniq_in_ya2’, simp+, blast, clarify)

apply (drule ya3’_imp_ya3, simp+)

apply (simp add: Guard_Nonce)

apply (simp add: No_Nonce)

done

end

36 Blanqui’s "guard" concept: protocol-independent

secrecy
theory Auth_Guard_Shared
imports
Guard_OtwayRees

Guard_Yahalom
begin

end

theory Guard_Public imports Guard "../Public" Extensions begin

36.1 Extensions to Theory public

declare initState.simps [simp del]

36.1.1 signature

definition sign :: "agent => msg => msg" where
"sign A X == {Agent A, X, Crypt (priK A) (Hash X)[}"

lemma sign_inj [iff]: "(sign A X = sign A’ X’) = (A=A’ & X=X’)"

38036 BLANQUI'S "GUARD'" CONCEPT: PROTOCOL-INDEPENDENT SECRECY

by (auto simp: sign_def)

36.1.2 agent associated to a key

definition agt :: "key => agent" where
"agt K == SOME A. K = priK A | K = pubK A"

lemma agt_priK [simp]: "agt (priK A) = A"
by (simp add: agt_def)
lemma agt_pubK [simp]: "agt (pubK A) = A"

by (simp add: agt_def)

36.1.3 basic facts about initState
lemma no_Crypt_in_parts_init [simp]: "Crypt K X ¢ parts (initState A)"

by (cases A, auto simp: initState.simps)

lemma no_Crypt_in_analz_init [simp]: "Crypt K X ¢ analz (initState A)"
by auto

lemma no_priK_in_analz_init [simp]: "A ¢ bad
—> Key (priK A) ¢ analz (initState Spy)"
by (auto simp: initState.simps)

lemma priK_notin_initState_Friend [simp]: "A # Friend C
—> Key (priK A) ¢ parts (initState (Friend C))"
by (auto simp: initState.simps)

lemma keyset_init [iff]: "keyset (initState A)"
by (cases A, auto simp: keyset_def initState.simps)
36.1.4 sets of private keys

definition priK_set :: "key set => bool" where
"priK_set Ks = VK. K € Ks — (4. K = priK A)"

lemma in_priK_set: "[priK_set Ks; K € Ks] = JA. K = priK A"
by (simp add: priK_set_def)

lemma priK_setl [iff]: "priK_set {priK A}"
by (simp add: priK_set_def)

lemma priK_set2 [iff]: "priK_set {priK A, priK B}"
by (simp add: priK_set_def)

36.1.5 sets of good keys

definition good :: "key set => bool" where
"good Ks == VK. K € Ks — agt K ¢ bad"

lemma in_good: "[good Ks; K € Ks] = agt K ¢ bad"
by (simp add: good_def)

lemma good1 [simp]: "A ¢ bad = good {priK A}"

36.2 Proofs About Guarded Messages 381

by (simp add: good_def)

lemma good2 [simp]: "[A ¢ bad; B ¢ bad] = good {priK A, priK B}"
by (simp add: good_def)

36.1.6 greatest nonce used in a trace, 0 if there is no nonce

primrec greatest :: "event list => nat"
where
"greatest [] = 0"
| "greatest (ev # evs) = max (greatest_msg (msg ev)) (greatest evs)"

lemma greatest_is_greatest: "Nonce n € used evs —> n < greatest evs"
apply (induct evs, auto simp: initState.simps)

apply (drule used_sub_parts_used, safe)

apply (drule greatest_msg_is_greatest, arith)

by simp

36.1.7 function giving a new nonce

definition new :: "event list = nat" where

"new evs = Suc (greatest evs)"

lemma new_isnt_used [iff]: "Nonce (new evs) ¢ used evs"
by (clarify, drule greatest_is_greatest, auto simp: new_def)

36.2 Proofs About Guarded Messages

36.2.1 small hack necessary because priK is defined as the inverse
of pubK

lemma pubK_is_invKey_priK: "pubK A = invKey (priK A)"
by simp

lemmas pubK_is_invKey_priK_substI = pubK_is_invKey_priK [THEN ssubst]
lemmas invKey_invKey_substI = invKey [THEN ssubst]
lemma "Nonce n € parts {X} = Crypt (pubK A) X € guard n {priK A}"

apply (rule pubK_is_invKey_priK_substI, rule invKey_invKey_substI)
by (rule Guard_Nonce, simp+)

36.2.2 guardedness results
lemma sign_guard [intro]: "X € guard n Ks —> sign A X € guard n Ks"
by (auto simp: sign_def)

lemma Guard_init [iff]: "Guard n Ks (initState B)"
by (induct B, auto simp: Guard_def initState.simps)

lemma Guard_knows_max’: "Guard n Ks (knows_max’ C evs)
— Guard n Ks (knows_max C evs)"

by (simp add: knows_max_def)

lemma Nonce_not_used_Guard_spies [dest]: "Nonce n ¢ used evs

382 37 LISTS OF MESSAGES AND LISTS OF AGENTS

—> Guard n Ks (spies evs)"
by (auto simp: Guard_def dest: not_used_not_known parts_sub)

lemma Nonce_not_used_Guard [dest]: "[evs € p; Nonce n ¢ used evs;
Gets_correct p; one_step p] = Guard n Ks (knows (Friend C) evs)"
by (auto simp: Guard_def dest: known_used parts_trans)

lemma Nonce_not_used_Guard_max [dest]: ”[[evs € p; Nonce n ¢ used evs;
Gets_correct p; one_step p]| = Guard n Ks (knows_max (Friend C) evs)"
by (auto simp: Guard_def dest: known_max_used parts_trans)

lemma Nonce_not_used_Guard_max’ [dest]: "[evs € p; Nonce n ¢ used evs;
Gets_correct p; one_step p]| = Guard n Ks (knows_max’ (Friend C) evs)"
apply (rule_tac H="knows_max (Friend C) evs" in Guard_mono)

by (auto simp: knows_max_def)

36.2.3 regular protocols

definition regular :: "event list set = bool" where
"regular p = Vevs A. evs € p — (Key (priK A) € parts (spies evs)) = (4
€ bad)"

lemma priK_parts_iff_bad [simp]: "[evs € p; regular p] =
(Key (priK A) € parts (spies evs)) = (A € bad)"
by (auto simp: regular_def)

lemma priK_analz_iff_bad [simp]: "[evs € p; regular p] —
(Key (priK A) € analz (spies evs)) = (A € bad)"
by auto

lemma Guard_Nonce_analz: "[Guard n Ks (spies evs); evs € p;
priK_set Ks; good Ks; regular p] =—> Nonce n ¢ analz (spies evs)"
apply (clarify, simp only: knows_decomp)

apply (drule Guard_invKey_keyset, simp+, safe)

apply (drule in_good, simp)

apply (drule in_priK_set, simp+, clarify)

apply (frule_tac A=A in priK_analz_iff_bad)

by (simp add: knows_decomp)+

end

37 Lists of Messages and Lists of Agents

theory List_Msg imports Extensions begin

37.1 Implementation of Lists by Messages
37.1.1 nil is represented by any message which is not a pair

abbreviation (input)
cons :: "msg => msg => msg" where
"cons x 1 == {x,1}"

37.1 Implementation of Lists by Messages 383

37.1.2 induction principle

lemma Imsg_induct: "[!!x. not_MPair x —> P x; !!x 1. P 1 = P (cons x
1]

= P 1"

by (induct 1) auto

37.1.3 head

primrec head :: "msg => msg" where
"head (comns x 1) = x"

37.1.4 tail

primrec tail :: "msg => msg" where
"tail (cons x 1) = 1"

37.1.5 length

fun len :: "msg => nat" where
"len (cons x 1) = Suc (lemn 1)" |
"len other = 0"

lemma Ien_not_empty: "n < len 1 —> dx 1’. 1 = cons x 1°"
by (cases 1) auto

37.1.6 membership

fun isin :: "msg * msg => bool" where
"isin (x, cons y 1) = (x=y | isin (x,1))" |
"isin (x, other) = False"

37.1.7 delete an element

fun del :: "msg * msg => msg" where
"del (x, cons y 1) = (if x=y then 1 else cons y (del (x,1)))" |
"del (x, other) = other"

lemma notin_del [simp]: "~ isin (x,1) =—> del (x,1) = 1"
by (induct 1) auto

lemma isin_del [rule_format]: "isin (y, del (x,1)) --> isin (y,1)"
by (induct 1) auto
37.1.8 concatenation

fun app :: "msg * msg => msg" where
"app (cons x 1, 1°) = cons x (app (1,1°))" |
"app (other, 1’) = 1°"

lemma isin_app [iff]: "isin (x, app(1,1’)) = (isin (x,1) | isin (x,1°))"
by (induct 1) auto

37.1.9 replacement

fun repl :: "msg * nat * msg => msg" where

384 37 LISTS OF MESSAGES AND LISTS OF AGENTS

"repl (cons x 1, Suc i, x’) = cons x (repl (1,i,x’))" |
"repl (cons x 1, 0, x’) = cons x’ 1" |
"repl (other, i, M’) = other"

37.1.10 ith element

fun ith :: "msg * nat => msg" where
"ith (cons x 1, Suc i) = ith (1,i)" |
"ith (cons x 1, 0) = x" |
"ith (other, i) = other"

lemma ith_head: "0 < len 1 —> ith (1,0) = head 1"
by (cases 1) auto

37.1.11 insertion

fun ins :: "msg * nat * msg => msg" where
"ins (cons x 1, Suc i, y) = cons x (ins (1,i,y))" |
"ins (1, 0, y) = cons y 1"

lemma ins_head [simp]: "ins (1,0,y) = cons y 1"
by (cases 1) auto

37.1.12 truncation

fun trunc :: "msg * nat => msg" where
"trunc (1,0) = 1" |
"trunc (cons x 1, Suc i) = trunc (1,i)"

lemma trunc_zero [simp]: "trunc (1,0) = 1"
by (cases 1) auto

37.2 Agent Lists
37.2.1 set of well-formed agent-list messages

abbreviation
nil :: msg where
"nil == Number 0"

inductive__set agl :: "msg set"
where
Nil[intro]: "nil € agl"
| Cons[intro]: "[A € agent; I € agl] = cons (Agent A) I € agl"

37.2.2 Dbasic facts about agent lists
lemma del_in_agl [intro]: "I € agl = del (a,I) € agl"
by (erule agl.induct, auto)

lemma app_in_agl [intro]: "[I € agl; J € agl] = app (I,J) € agl"
by (erule agl.induct, auto)

lemma no_Key_in_agl: "I € agl —> Key K ¢ parts {I}"
by (erule agl.induct, auto)

385

lemma no_Nonce_in_agl: "I € agl —> Nonce n ¢ parts {I}"
by (erule agl.induct, auto)

lemma no_Key_in_appdel: "[I € agl; J € agl] =
Key K ¢ parts {app (J, del (Agent B, I))}"
by (rule no_Key_in_agl, auto)

lemma no_Nonce_in_appdel: "[I € agl; J € agl] =
Nonce n ¢ parts {app (J, del (Agent B, I))}"
by (rule no_Nonce_in_agl, auto)

lemma no_Crypt_in_agl: "I € agl —> Crypt K X ¢ parts {I}"
by (erule agl.induct, auto)

lemma no_Crypt_in_appdel: "[I € agl; J € agl] =
Crypt K X ¢ parts {app (J, del (Agent B,I))}"
by (rule no_Crypt_in_agl, auto)

end

38 Protocol P1

theory P1 imports "../Public" Guard_Public List_Msg begin

38.1 Protocol Definition

38.1.1 offer chaining: B chains his offer for A with the head offer of
L for sending it to C

definition chain :: "agent => nat => agent => msg => agent => msg" where
"chain B ofr AL C ==

let mil= Crypt (pubK A) (Nonce ofr) in

let m2= Hash {head L, Agent C|} in

sign B {m1,m2}"

declare Let_def [simp]

lemma chain_inj [iff]: "(chain B ofr A L C = chain B’ ofr’ A’ L’ C’)
= (B=B’ & ofr=ofr’ & A=A’ & head L = head L’ & C=C’)"
by (auto simp: chain_def Let_def)

lemma Nonce_in_chain [iff]: "Nonce ofr € parts {chain B ofr A L C}"

by (auto simp: chain_def sign_def)

38.1.2 agent whose key is used to sign an offer

fun shop :: "msg => msg" where
"shop {B,X,Crypt K H} = Agent (agt K)"

lemma shop_chain [simp]: "shop (chain B ofr A L C) = Agent B"
by (simp add: chain_def sign_def)

386 38 PROTOCOL P1

38.1.3 nonce used in an offer
fun nonce :: "msg => msg" where

"nonce {B,{Crypt K ofr,m2},CryptH[} = ofr"

lemma nonce_chain [simp]: "nonce (chain B ofr A L C) = Nonce ofr"
by (simp add: chain_def sign_def)

38.1.4 next shop

fun next_shop :: "msg => agent" where
"next_shop {B,{m1,Hash{headL,Agent C}},CryptH} = C"

lemma next_shop_chain [iff]: "next_shop (chain B ofr AL C) = C"
by (simp add: chain_def sign_def)

38.1.5 anchor of the offer list

definition anchor :: "agent => nat => agent => msg" where
"anchor A n B == chain A n A (cons nil nil) B"

lemma anchor_inj [iff]: "(anchor A n B = anchor A’ n’ B’)
= (A=A’ & n=n’ & B=B’)"
by (auto simp: anchor_def)

lemma Nonce_in_anchor [iff]: "Nonce n € parts {anchor A n B}"
by (auto simp: anchor_def)

lemma shop_anchor [simp]: "shop (anchor A n B) = Agent A"
by (simp add: anchor_def)

lemma nonce_anchor [simp]: "nonce (anchor A n B) = Nonce n"
by (simp add: anchor_def)

lemma next_shop_anchor [iff]: "next_shop (anchor A n B) = B"
by (simp add: anchor_def)

38.1.6 request event

definition reqm :: "agent => nat => nat => msg => agent => msg" where
"regqn A r n I B == {Agent A, Number r, cons (Agent A) (cons (Agent B) I),
cons (anchor A n B) nill"

lemma reqm_inj [iff]: "(reqm A r n I B = reqm A’ r’ n’ I’ B’)
= (A=A’ & r=r’ & n=n’ & I=I’ & B=B’)"
by (auto simp: reqm_def)

lemma Nonce_in_reqm [iff]: "Nonce n € parts {reqm A r n I B}"
by (auto simp: reqm_def)

definition req :: "agent => nat => nat => msg => agent => event" where
"req ArnIB==2Says AB (reqm Arn I B)"

lemma req_inj [iff]: "(req Ar n I B =req A’ r’ n’ I’ B’)
= (A=A’ & r=r’ & n=n’ & I=I’ & B=B’)"

38.1 Protocol Definition 387

by (auto simp: req_def)

38.1.7 propose event

definition prom :: "agent => nat => agent => nat => msg => msg =>
msg => agent => msg" where

"prom B ofr Ar I L JC == {]Agent A, Number r,

app (J, del (Agent B, I)), cons (chain B ofr A L C) L}"

lemma prom_inj [dest]: "prom B ofr Ar I L JC
= prom B’ ofr’ A’ r’ I’ L’ J’ C’

— B=B’ & ofr=ofr’ & A=A’ & r=r’ & L=L’ & C=C’"
by (auto simp: prom_def)

lemma Nonce_in_prom [iff]: "Nonce ofr € parts {prom B ofr A r I L J C}"
by (auto simp: prom_def)

definition pro :: "agent => nat => agent => nat => msg => msg =>
msg => agent => event" where
"pro B ofr Ar ILJC == Says BC (prom Bofr Ar I L JC)"

lemma pro_inj [dest]: "pro B ofr Ar I L J C = pro B’ ofr’ A> r’ I’ L’ J’
CJ

— B=B’ & ofr=ofr’ & A=A’ & r=r’ & L=L’ & C=C’"

by (auto simp: pro_def dest: prom_inj)

38.1.8 protocol

inductive__set p1 :: "event list set"
where

Nil: "[] € p1"

| Fake: "[evsf € p1l; X € synth (analz (spies evsf))] = Says Spy B X # evsf
€ p1"

| Request: "[evsr € pl; Nonce n ¢ used evsr; I € agl] = req Arn I B #
evsr € pl1"

| Propose: "[evsp € pl; Says A’ B {Agent A,Number r,I,cons M L} € set evsp;
I € agl; J € agl; isin (Agent C, app (J, del (Agent B, I)));
Nonce ofr ¢ used evsp] = pro B ofr A r I (cons ML) J C # evsp € p1"

38.1.9 Composition of Traces

lemma "evs’ € pl —
evs € p1 A (Vn. Nonce n € used evs’ —» Nonce n ¢ used evs) —
evs’ @ evs € pl1"

apply (erule p1l.induct, safe)

apply (simp_all add: used_ConsI)

apply (erule pl.Fake, erule synth_sub, rule analz_mono, rule knows_sub_app)

apply (erule pl.Request, safe, simp_all add: req_def, force)

apply (erule_tac A’=A’ in pl1.Propose, simp_all)

apply (drule_tac x=ofr in spec, simp add: pro_def, blast)

apply (erule_tac A’=A’ in pl.Propose, auto simp: pro_def)

388 38 PROTOCOL P1

done

38.1.10 Valid Offer Lists

inductive__set

valid :: "agent = nat = agent = msg set'
for A :: agent and n :: nat and B :: agent
where

Request [intro]: "cons (anchor A n B) nil € valid A n B"

| Propose [intro]: "L € valid A n B
= cons (chain (next_shop (head L)) ofr AL C) L € valid A n B"

38.1.11 basic properties of valid

lemma valid_not_empty: "L € valid An B = JML’. L = cons M L’"
by (erule valid.cases, auto)

lemma valid_pos_len: "L € valid An B —> 0 < len L"
by (erule valid.induct, auto)

38.1.12 offers of an offer list

definition offer_nonces :: "msg = msg set" where
"offer_nonces L = {X. X € parts {L} A (3n. X = Nonce n)}"

38.1.13 the originator can get the offers

lemma "L € valid A n B = offer_nonces L C analz (insert L (initState
)"

by (erule valid.induct, auto simp: anchor_def chain_def sign_def
offer_nonces_def initState.simps)

38.1.14 list of offers

fun offers :: "msg => msg" where
"offers (cons M L) = cons {shop M, nonce M|} (offers L)" |
"offers other = nil"

38.1.15 list of agents whose keys are used to sign a list of offers

fun shops :: "msg => msg" where
"shops (cons M L) = cons (shop M) (shops L)" |
"shops other = other"

lemma shops_in_agl: "L € valid A n B = shops L € agl"
by (erule valid.induct, auto simp: anchor_def chain_def sign_def)

38.1.16 builds a trace from an itinerary

fun offer_list :: "agent X nat X agent X msg X nat = msg" where
"offer_list (A,n,B,nil,ofr) = cons (anchor A n B) nil" |

"offer_list (A,n,B,cons (Agent C) I,ofr) = (

let L = offer_list (A,n,B,I,Suc ofr) in

cons (chain (next_shop (head L)) ofr AL C) L)"

38.2 properties of protocol P1 389

lemma "I € agl —> Vofr. offer_list (A,n,B,I,ofr) € valid A n B"
by (erule agl.induct, auto)

fun trace :: "agent X nat X agent X nat X msg X msg X msg
= event list" where
"trace (B,ofr,A,r,I,L,nil) = []" |
"trace (B,ofr,A,r,I,L,cons (Agent D) K) = (
let C = (if K=nil then B else agt_nb (head K)) in
let I’ = (if K=nil then cons (Agent A) (cons (Agent B) I)
else cons (Agent A) (app (I, cons (head K) nil))) in
let I’’ = app (I, cons (head K) nil) in
pro C (Suc ofr) A r I’ L nil D
trace (B,Suc ofr,A,r,I’’,tail L,K))"

definition trace’ :: "agent = nat = nat = msg = agent = nat = event
list" where
"trace’ Ar n I B ofr = (

let AI = cons (Agent A) I in
let L = offer_list (A,n,B,AI,ofr) in
trace (B,ofr,A,r,nil,L,AI))"

declare trace’_def [simp]

38.1.17 there is a trace in which the originator receives a valid an-
swer

lemma pl_not_empty: "evs € pl = req Ar n I B € set evs —>

(Jevs’. evs’ @ evs € pl A pro B’ ofr Ar I’ L J A € set evs’ A L € valid
AnB"

oops

38.2 properties of protocol P1

publicly verifiable forward integrity: anyone can verify the validity of an offer
list

38.2.1 strong forward integrity: except the last one, no offer can be
modified

lemma strong forward_integrity: "VL. Suc i < len L
— L € valid A n B A repl (L,Suc i,M) € valid An B — M = ith (L,Suc i)"
apply (induct i)

apply clarify

apply (frule len_not_empty, clarsimp)

apply (frule len_not_empty, clarsimp)

apply (ind_cases "{x,xa,1’al} € valid A n B" for x xa 1’a)
apply (ind_cases "{x,M,1’al} € valid A n B" for x 1’a)
apply (simp add: chain_def)

apply clarify

apply (frule len_not_empty, clarsimp)

apply (ind_cases "{x,repl(1’,Suc na,M)} € valid A n B" for x 1’ na)
apply (frule len_not_empty, clarsimp)

390 38 PROTOCOL P1

apply (ind_cases "{x,1’} € valid A n B" for x 1’)
by (drule_tac x=1’ in spec, simp, blast)

38.2.2 insertion resilience: except at the beginning, no offer can be
inserted

lemma chain_isnt_head [simp]: "L € valid A n B —
head L # chain (next_shop (head L)) ofr A L C"
by (erule valid.induct, auto simp: chain_def sign_def anchor_def)

lemma insertion_resilience: "VL. L € valid An B — Suc i < len L
— ins (L,Suc i,M) ¢ valid A n B"

supply [[simproc del: defined_all]]

apply (induct i)

apply clarify

apply (frule len_not_empty, clarsimp)

apply (ind_cases "{x,1’} € valid A n B" for x 1’, simp)

apply (ind_cases "{x,M,1’} € valid A n B" for x 1’, clarsimp)
apply (ind_cases "{head 1’,1’} € valid 4 n B" for 1’, simp, simp)

apply clarify

apply (frule len_not_empty, clarsimp)

apply (ind_cases "{x,1’} € valid A n B" for x 1’)

apply (frule len_not_empty, clarsimp)

apply (ind_cases "{x,ins(1’,Suc na,M)} € valid A n B" for x 1’ na)
apply (frule len_not_empty, clarsimp)

by (drule_tac x=1’ in spec, clarsimp)

38.2.3 truncation resilience: only shop i can truncate at offer i

lemma truncation_resilience: "VL. L € valid An B — Suc i < len L
— cons M (trunc (L,Suc i)) € valid A n B — shop M = shop (ith (L,i))"
apply (induct i)

apply clarify

apply (frule len_not_empty, clarsimp)

apply (ind_cases "{x,1’} € valid A n B" for x 1’)
apply (frule len_not_empty, clarsimp)

apply (ind_cases "{M,1’[} € valid A n B" for 1°)
apply (frule len_not_empty, clarsimp, simp)

apply clarify

apply (frule len_not_empty, clarsimp)

apply (ind_cases "{x,1’} € valid A n B" for x 1’)
apply (frule len_not_empty, clarsimp)

by (drule_tac x=1’ in spec, clarsimp)

38.2.4 declarations for tactics

declare knows_Spy_partsEs [elim]
declare Fake_parts_insert [THEN subsetD, dest]
declare initState.simps [simp dell]

38.2 properties of protocol P1 391

38.2.5 get components of a message

lemma get_ML [dest]: "Says A’ B {A,r,I,M,L} € set evs —
M € parts (spies evs) A L € parts (spies evs)"
by blast

38.2.6 general properties of pl

lemma reqm_neq_prom [iff]:
"regm A r n I B # prom B’ ofr A’ r’ I’ (cons ML) JC"
by (auto simp: reqm_def prom_def)

lemma prom_neq_regm [iff]:
"prom B’ ofr A’ r’ I’ (cons ML) JC # requ Ar n I B"
by (auto simp: reqm_def prom_def)

lemma req neq pro [iff]: "req Ar n I B # pro B’ ofr A’ r’ I’ (cons M L)
J CH
by (auto simp: req_def pro_def)

lemma pro_neq req [iff]: "pro B’ ofr A’ r’ I’ (cons ML) JC # req Arn
I B”
by (auto simp: req_def pro_def)

lemma pl_has_no_Gets: "evs € pl =—> VA X. Gets A X ¢ set evs"
by (erule pl1.induct, auto simp: req_def pro_def)

lemma p1_is_Gets_correct [iff]: "Gets_correct pl"
by (auto simp: Gets_correct_def dest: pl_has_no_Gets)

lemma pl1_is_one_step [iff]: "one_step pl"
unfolding one_step_def by (clarify, ind_cases "ev#evs € pl" for ev evs,
auto)

lemma pl1_has_only_Says’ [rule_format]: "evs € pl —
ev € set evs — (A B X. ev=Says A B X)"
by (erule pl1.induct, auto simp: req_def pro_def)

lemma pi_has_only_Says [iff]: "has_only_Says p1"
by (auto simp: has_only_Says_def dest: pl_has_only_Says’)

lemma pl1_is_regular [iff]: "regular p1"

apply (simp only: regular_def, clarify)

apply (erule_tac pl.induct)

apply (simp_all add: initState.simps knows.simps pro_def prom_def
req_def reqm_def anchor_def chain_def sign_def)

by (auto dest: no_Key_in_agl no_Key_in_appdel parts_trans)

38.2.7 private keys are safe

lemma priK_parts_Friend_imp_bad [rule_format,dest]:

"levs € p1; Friend B # A]

— (Key (priK A) € parts (knows (Friend B) evs)) — (A € bad)"
apply (erule pl.induct)
apply (simp_all add: initState.simps knows.simps pro_def prom_def

392 38 PROTOCOL P1

req_def reqm_def anchor_def chain_def sign_def)
apply (blast dest: no_Key_in_agl)
apply (auto del: parts_invKey disjE dest: parts_trans
simp add: no_Key_in_appdel)
done

lemma priK_analz_Friend_imp_bad [rule_format,dest]:

"levs € p1; Friend B # A]
= (Key (priK A) € analz (knows (Friend B) evs)) — (A € bad)"
by auto

lemma priK_notin_knows_max_Friend: "[evs € pl; A ¢ bad; A # Friend C]
—> Key (priK A) ¢ analz (knows_max (Friend C) evs)"

apply (rule not_parts_not_analz, simp add: knows_max_def, safe)

apply (drule_tac H="spies’ evs" in parts_sub)

apply (rule_tac p=pl in knows_max’_sub_spies’, simp+)

apply (drule_tac H="spies evs" in parts_sub)

by (auto dest: knows’_sub_knows [THEN subsetD] priK_notin_initState_Friend)

38.2.8 general guardedness properties

lemma agl_guard [intro]: "I € agl = I € guard n Ks"
by (erule agl.induct, auto)

lemma Says_to_knows_max’_guard: "[[Says A’ C {]A”,r,I,L[} € set evs;
Guard n Ks (knows_max’ C evs)] => L € guard n Ks"
by (auto dest: Says_to_knows_max’)

lemma Says_from_knows_max’_guard: "[Says C A’ {A’’,r,I,L} € set evs;
Guard n Ks (knows_max’ C evs)] = L € guard n Ks"
by (auto dest: Says_from_knows_max’)

lemma Says_Nonce_not_used_guard: ”[[Says A’ B {]A“,r,I,L[} € set evs;
Nonce n ¢ used evs] = L € guard n Ks"
by (drule not_used_not_parts, auto)

38.2.9 guardedness of messages

lemma chain_guard [iff]: "chain B ofr A L C € guard n {priK A}"
by (case_tac "ofr=n", auto simp: chain_def sign_def)

lemma chain_guard_Nonce_neq [intro]: "n # ofr
— chain B ofr A’ L C € guard n {prikK A}"
by (auto simp: chain_def sign_def)

lemma anchor_guard [iff]: "anchor A n’ B € guard n {priK A}"
by (case_tac "n’=n", auto simp: anchor_def)

lemma anchor_guard_Nonce_neq [intro]: "n # n’
= anchor A’ n’ B € guard n {priK A}"
by (auto simp: anchor_def)

lemma reqm_guard [intro]: "I € agl = reqm A r n’ I B € guard n {priK A}"
by (case_tac "n’=n", auto simp: reqm_def)

38.2 properties of protocol P1 393

lemma reqm_guard_Nonce_neq [intro]: "[n # n’; I € agl]
— reqm A’ r n’ I B € guard n {priK A}"
by (auto simp: reqm_def)

lemma prom_guard [intro]: "[I € agl; J € agl; L € guard n {priK A}]
— prom B ofr Ar I L JC € guard n {priK A}"
by (auto simp: prom_def)

lemma prom_guard_Nonce_neq [intro]l: "[n # ofr; I € agl; J € agl;
L € guard n {priK A} = prom B ofr A’ r I L J C € guard n {prikK A}"
by (auto simp: prom_def)

38.2.10 Nonce uniqueness

lemma uniq_Nonce_in_chain [dest]: "Nonce k € parts {chain B ofr A L C} —
k=ofr"
by (auto simp: chain_def sign_def)

lemma uniq_Nonce_in_anchor [dest]: "Nonce k € parts {anchor A n B} — k=n"
by (auto simp: anchor_def chain_def sign_def)

lemma uniq_Nonce_in_reqm [dest]: "[Nonce k € parts {reqm A r n I B};
I € agl] = k=n"
by (auto simp: reqm_def dest: no_Nonce_in_agl)

lemma uniq_Nonce_in_prom [dest]: "[Nonce k € parts {prom B ofr Ar I L J
C};

I € agl; J € agl; Nonce k ¢ parts {L}] = k=ofr"

by (auto simp: prom_def dest: no_Nonce_in_agl no_Nonce_in_appdel)

38.2.11 requests are guarded

lemma req_imp_Guard [rule_format]: "[evs € pl; A ¢ bad] =
req Arn I B € set evs — Guard n {priK A} (spies evs)"
apply (erule p1.induct, simp)

apply (simp add: req_def knows.simps, safe)

apply (erule in_synth_Guard, erule Guard_analz, simp)

by (auto simp: req_def pro_def dest: Says_imp_knows_Spy)

lemma req_imp_Guard_Friend: "[evs € pl; A ¢ bad; req A r n I B € set evs]
—> Guard n {priK A} (knows_max (Friend C) evs)"

apply (rule Guard_knows_max’)

apply (rule_tac H="spies evs" in Guard_mono)

apply (rule req_imp_Guard, simp+)

apply (rule_tac B="spies’ evs" in subset_trans)

apply (rule_tac p=pl in knows_max’_sub_spies’, simp+)

by (rule knows’_sub_knows)

38.2.12 propositions are guarded

lemma pro_imp_Guard [rule_format]: "[evs € pl; B ¢ bad; A ¢ bad] =

pro B ofr Ar I (cons ML) JC € set evs — Guard ofr {priK A} (spies evs)"
supply [[simproc del: defined_all]]

apply (erule pl.induct)

394 38 PROTOCOL P1

apply simp
apply (simp add: pro_def, safe)

apply (erule in_synth_Guard, drule Guard_analz, simp, simp)

apply simp
apply (simp, simp add: req_def pro_def, blast)

apply (simp add: pro_def)
apply (blast dest: prom_inj Says_Nonce_not_used_guard Nonce_not_used_Guard)

apply simp

apply safe

apply (simp add: pro_def)

apply (blast dest: prom_inj Says_Nonce_not_used_guard)

apply (simp add: pro_def)
apply (blast dest: Says_imp_knows_Spy)

apply (simp add: pro_def)
apply (blast dest: prom_inj Says_Nonce_not_used_guard Nonce_not_used_Guard)

apply simp
apply safe

apply (simp add: pro_def)
apply (blast dest: prom_inj Says_Nonce_not_used_guard)

apply (simp add: pro_def)
by (blast dest: Says_imp_knows_Spy)

lemma pro_imp_Guard_Friend: "[evs € p1; B ¢ bad; A ¢ bad;
pro B ofr Ar I (cons ML) JC € set evs]

— Guard ofr {priK A} (knows_max (Friend D) evs)"

apply (rule Guard_knows_max’)

apply (rule_tac H="spies evs" in Guard_mono)

apply (rule pro_imp_Guard, simp+)

apply (rule_tac B="spies’ evs" in subset_trans)

apply (rule_tac p=pl in knows_max’_sub_spies’, simp+)

by (rule knows’_sub_knows)

38.2.13 data confidentiality: no one other than the originator can
decrypt the offers

lemma Nonce_req_notin_spies: "[evs € pl; req Ar n I B € set evs; A ¢ bad]
= Nonce n ¢ analz (spies evs)"
by (frule req_imp_Guard, simp+, erule Guard_Nonce_analz, simp+)

lemma Nonce_req_notin_knows_max_Friend: " [[evs € pl; req ArnIB € set
evs;

A ¢ bad; A # Friend C] = Nonce n ¢ analz (knows_max (Friend C) evs)"
apply (clarify, frule_tac C=C in req_imp_Guard_Friend, simp+)

38.2 properties of protocol P1 395

apply (simp add: knows_max_def, drule Guard_invKey_keyset, simp+)
by (drule priK_notin_knows_max_Friend, auto simp: knows_max_def)

lemma Nonce_pro_notin_spies: "[evs € p1l; B ¢ bad; A ¢ bad;
pro Bofr Ar I (cons ML) J C € set evs] = Nonce ofr ¢ analz (spies evs)"
by (frule pro_imp_Guard, simp+, erule Guard_Nonce_analz, simp+)

lemma Nonce_pro_notin_knows_max_Friend: "[evs € pl; B ¢ bad; A ¢ bad;
A # Friend D; pro B ofr A r I (cons ML) J C € set evs]

= Nonce ofr ¢ analz (knows_max (Friend D) evs)"

apply (clarify, frule_tac A=A in pro_imp_Guard_Friend, simp+)

apply (simp add: knows_max_def, drule Guard_invKey_keyset, simp+)

by (drule priK_notin_knows_max_Friend, auto simp: knows_max_def)

38.2.14 non repudiability: an offer signed by B has been sent by B

lemma Crypt_reqm: "[Crypt (priK A) X € parts {reqm A’ r n I B}; I € agl]
= A=A""
by (auto simp: reqm_def anchor_def chain_def sign_def dest: no_Crypt_in_agl)

lemma Crypt_prom: "[Crypt (priK A) X € parts {prom B ofr A’ r I L J C};
I € agl; J € agl] = A=B V Crypt (priK A) X € parts {L}"

apply (simp add: prom_def anchor_def chain_def sign_def)

by (blast dest: no_Crypt_in_agl no_Crypt_in_appdel)

lemma Crypt_safeness: "[evs € pl; A ¢ bad] = Crypt (priK A) X € parts
(spies evs)

— (3B Y. Says A BY € set evs A Crypt (priK A) X € parts {Y})"

apply (erule pl.induct)

apply simp

apply clarsimp

apply (drule_tac P="AG. Crypt (priK A) X € G" in parts_insert_substD, simp)
apply (erule disjE)

apply (drule_tac K="priK A" in Crypt_synth, simp+, blast, blast)

apply (simp add: req_def, clarify)

apply (drule_tac P="AG. Crypt (priK A) X € G" in parts_insert_substD, simp)
apply (erule disjE)

apply (frule Crypt_reqm, simp, clarify)

apply (rule_tac x=B in exI, rule_tac x="reqm A r n I B" in exI, simp, blast)

apply (simp add: pro_def, clarify)

apply (drule_tac P="AG. Crypt (priK A) X € G" in parts_insert_substD, simp)
apply (rotate_tac -1, erule disjE)

apply (frule Crypt_prom, simp, simp)

apply (rotate_tac -1, erule disjE)

apply (rule_tac x=C in exI)

apply (rule_tac x="prom B ofr Aa r I (cons M L) J C" in exI, blast)

apply (subgoal_tac "cons M L € parts (spies evsp)")

apply (drule_tac G="{cons M L}" and H="spies evsp" in parts_trans, blast,
blast)

apply (drule Says_imp_spies, rotate_tac -1, drule parts.Inj)

396 39 PROTOCOL P2

apply (drule parts.Snd, drule parts.Snd, drule parts.Snd)
by auto

lemma Crypt_Hash_imp_sign: "[evs € pl; A ¢ bad] =
Crypt (priK A) (Hash X) € parts (spies evs)

— (dB Y. Says A BY € set evs A sign A X € parts {Y})"
apply (erule p1.induct)

apply simp

apply clarsimp

apply (drule_tac P="AG. Crypt (priK A) (Hash X) € G" in parts_insert_substD)
apply simp

apply (erule disjE)

apply (drule_tac K="priK A" in Crypt_synth, simp+, blast, blast)

apply (simp add: req_def, clarify)

apply (drule_tac P="AG. Crypt (priK A) (Hash X) € G" in parts_insert_substD)
apply simp

apply (erule disjE)

apply (frule Crypt_reqm, simp+)

apply (rule_tac x=B in exI, rule_tac x="reqm Aa r n I B" in exI)

apply (simp add: reqm_def sign_def anchor_def no_Crypt_in_agl)

apply (simp add: chain_def sign_def, blast)

apply (simp add: pro_def, clarify)

apply (drule_tac P="AG. Crypt (priK A) (Hash X) € G" in parts_insert_substD)
apply simp

apply (rotate_tac -1, erule disjE)

apply (simp add: prom_def sign_def no_Crypt_in_agl no_Crypt_in_appdel)
apply (simp add: chain_def sign_def)

apply (rotate_tac -1, erule disjE)

apply (rule_tac x=C in exI)

apply (rule_tac x="prom B ofr Aa r I (cons M L) J C" in exI)

apply (simp add: prom_def chain_def sign_def)

apply (erule impE)

apply (blast dest: get_ML parts_sub)

apply (blast del: MPair_parts)+

done

lemma sign_safeness: "[evs € pl; A ¢ bad] = sign A X € parts (spies evs)
— (IB Y. Says A BY € set evs A sign A X € parts {Y})"

apply (clarify, simp add: sign_def, frule parts.Snd)

apply (blast dest: Crypt_Hash_imp_sign [unfolded sign_def])

done

end

39 Protocol P2

theory P2 imports Guard_Public List_Msg begin

39.1 Protocol Definition 397

39.1 Protocol Definition

Like P1 except the definitions of chain, shop, next_shop and nonce

39.1.1 offer chaining: B chains his offer for A with the head offer of
L for sending it to C

definition chain :: "agent => nat => agent => msg => agent => msg" where
"chain B ofr AL C ==

let ml= sign B (Nonce ofr) in

let m2= Hash {head L, Agent C|} in

{Crypt (pubK A) m1, m2}"

declare Let_def [simp]

lemma chain_inj [iff]: "(chain B ofr A L C = chain B’ ofr’ A’ L’ C’)
= (B=B’ & ofr=ofr’ & A=A’ & head L = head L’ & C=C’)"
by (auto simp: chain_def Let_def)

lemma Nonce_in_chain [iff]: "Nonce ofr € parts {chain B ofr A L C}"
by (auto simp: chain_def sign_def)

39.1.2 agent whose key is used to sign an offer

fun shop :: "msg => msg" where

"shop {Crypt K {B,ofr,Crypt K’ H[,m2} = Agent (agt K’)"

lemma shop_chain [simp]: "shop (chain B ofr A L C) = Agent B"
by (simp add: chain_def sign_def)
39.1.3 nonce used in an offer
fun nonce :: "msg => msg" where

"nonce {Crypt K {B,ofr,CryptH[},m2} = ofr"

lemma nonce_chain [simp]: "nonce (chain B ofr A L C) = Nonce ofr"
by (simp add: chain_def sign_def)

39.1.4 next shop

fun next_shop :: "msg => agent" where

"next_shop {m1,Hash {headL,Agent C}}} = C"

lemma "next_shop (chain B ofr A L C) = C"
by (simp add: chain_def sign_def)

39.1.5 anchor of the offer list

definition anchor :: "agent => nat => agent => msg" where
"anchor A n B == chain A n A (cons nil nil) B"

lemma anchor_inj [iff]:
"(anchor A n B = anchor A’ n’ B’) = (A=A’ A n=n’ A B=B’)"
by (auto simp: anchor_def)

398 39 PROTOCOL P2

lemma Nonce_in_anchor [iff]: "Nonce n € parts {anchor A n B}"
by (auto simp: anchor_def)

lemma shop_anchor [simp]: "shop (anchor A n B) = Agent A"
by (simp add: anchor_def)

39.1.6 request event

definition reqm :: "agent => nat => nat => msg => agent => msg" where
"regqn A r n I B == {Agent A, Number r, cons (Agent A) (cons (Agent B) I),
cons (anchor A n B) nill|t"

lemma reqm_inj [iff]: "(reqm A r n I B = reqm A’ r’ n’ I’ B’)
= (A=A’ & r=r’ & n=n’ & I=I’ & B=B’)"
by (auto simp: reqm_def)

lemma Nonce_in_reqm [iff]: "Nonce n € parts {reqm A r n I B}"
by (auto simp: reqm_def)

definition req :: "agent => nat => nat => msg => agent => event" where
"req ArnIB==2Says AB (reqm Arn I B)"

lemma req_inj [iff]: "(req Ar n I B =req A’ r’ n’ I’ B’)
= (A=A’ & r=r’ & n=n’ & I=I’ & B=B’)"
by (auto simp: req_def)

39.1.7 propose event

definition prom :: "agent => nat => agent => nat => msg => msg =>
msg => agent => msg" where

"prom B ofr A r I L J C == {Agent A, Number r,

app (J, del (Agent B, I)), cons (chain B ofr A L C) L}"

lemma prom_inj [dest]: "prom B ofr Ar I L J C = prom B’ ofr’ A’ r’> I’ L’
J’ C’

— B=B’ & ofr=ofr’ & A=A’ & r=r’ & L=L’ & C=C’"

by (auto simp: prom_def)

lemma Nonce_in_prom [iff]: "Nonce ofr € parts {prom B ofr Ar I L J C}"
by (auto simp: prom_def)

definition pro :: "agent => nat => agent => nat => msg => msg =>
msg => agent => event" where
"pro B ofr Ar I L JC == Says BC (prom Bofr Ar ILJC"

lemma pro_inj [dest]: "pro B ofr Ar I L J C = pro B’ ofr’ A’ r> I’ L’ J’
C)

— B=B’ & ofr=ofr’ & A=A’ & r=r’ & L=L’ & C=C’"

by (auto simp: pro_def dest: prom_inj)

39.1.8 protocol

inductive__set p2 :: "event list set"
where

39.2 Properties of Protocol P2 399

Nil: "[] € p2"

| Fake: "[evsf € p2; X € synth (analz (spies evsf))] = Says Spy B X # evsf
€ p2"

| Request: "[evsr € p2; Nonce n ¢ used evsr; I € agl] = req Arn IB #
evsr € p2"

| Propose: "[evsp € p2; Says A’ B {Agent A,Number r,I,cons M L} € set evsp;

I € agl; J € agl; isin (Agent C, app (J, del (Agent B, I)));
Nonce ofr ¢ used evsp] =—> pro B ofr A r I (cons ML) J C # evsp € p2"

39.1.9 valid offer lists

inductive__set

valid :: "agent = nat = agent = msg set'
for A :: agent and n :: nat and B :: agent
where

Request [intro]: "cons (anchor A n B) nil € valid A n B"

| Propose [intro]: "L € valid A n B
—> cons (chain (next_shop (head L)) ofr AL C) L € valid A n B"

39.1.10 Dbasic properties of valid

lemma valid_not_empty: "L € valid An B = 3IM L’. L = cons M L’"
by (erule valid.cases, auto)

lemma valid_pos_len: "L € valid An B —> 0 < len L"
by (erule valid.induct, auto)

39.1.11 list of offers

fun offers :: "msg = msg"
where

"offers (cons M L) = cons {shop M, nonce M} (offers L)"
| "offers other = nil"

39.2 Properties of Protocol P2

same as P1_Prop except that publicly verifiable forward integrity is replaced by
forward privacy

39.3 strong forward integrity: except the last one, no offer
can be modified

lemma strong_forward_integrity: "VL. Suc i < len L

— L € valid A n B — repl (L,Suc i,M) € valid An B — M = ith (L,Suc
i)”

apply (induct i)

apply clarify
apply (frule len_not_empty, clarsimp)
apply (frule len_not_empty, clarsimp)

400 39 PROTOCOL P2

apply (ind_cases "{x,xa,1’al} € valid A n B" for x xa 1’a)
apply (ind_cases "{x,M,1’al} € valid A n B" for x 1’a)
apply (simp add: chain_def)

apply clarify

apply (frule len_not_empty, clarsimp)

apply (ind_cases "{x,repl(1’,Suc na,M)|} € valid A n B" for x 1’ na)
apply (frule len_not_empty, clarsimp)

apply (ind_cases "{x,1’} € valid A n B" for x 1’)

by (drule_tac x=1’ in spec, simp, blast)

39.4 insertion resilience: except at the beginning, no offer
can be inserted

lemma chain_isnt_head [simp]: "L € valid A n B —
head L # chain (next_shop (head L)) ofr A L C"
by (erule valid.induct, auto simp: chain_def sign_def anchor_def)

lemma insertion_resilience: "VL. L € valid An B — Suc i < len L
— ins (L,Suc i,M) ¢ valid A n B"

supply [[simproc del: defined_all]]

apply (induct i)

apply clarify

apply (frule len_not_empty, clarsimp)

apply (ind_cases "{x,1’} € valid A n B" for x 1’, simp)

apply (ind_cases "{x,M,1’}} € valid A n B" for x 1’, clarsimp)
apply (ind_cases "{head 1’,1’} € valid A n B" for 1’, simp, simp)

apply clarify

apply (frule len_not_empty, clarsimp)

apply (ind_cases "{x,1’} € valid A n B" for x 1’)

apply (frule len_not_empty, clarsimp)

apply (ind_cases "{x,ins(1’,Suc na,M)} € valid A n B" for x 1’ na)
apply (frule len_not_empty, clarsimp)

by (drule_tac x=1’ in spec, clarsimp)

39.5 truncation resilience: only shop i can truncate at offer
i
lemma truncation_resilience: "VL. L € valid An B — Suc i < len L

— cons M (trunc (L,Suc i)) € valid A n B — shop M = shop (ith (L,i))"
apply (induct i)

apply clarify

apply (frule len_not_empty, clarsimp)

apply (ind_cases "{x,1’} € valid A n B" for x 1’)
apply (frule len_not_empty, clarsimp)

apply (ind_cases "{M,1’} € valid A n B" for 1°)
apply (frule len_not_empty, clarsimp, simp)

apply clarify
apply (frule len_not_empty, clarsimp)
apply (ind_cases "{x,1’} € valid A n B" for x 1’)

39.6 declarations for tactics 401

apply (frule len_not_empty, clarsimp)
by (drule_tac x=1’ in spec, clarsimp)

39.6 declarations for tactics

declare knows_Spy_partsEs [elim]
declare Fake_parts_insert [THEN subsetD, dest]
declare initState.simps [simp del]

39.7 get components of a message

lemma get_ML [dest]: "Says A’ B {4,R,I,M,L} € set evs —
M € parts (spies evs) A L € parts (spies evs)"
by blast

39.8 general properties of p2

lemma reqm_neq_prom [iff]:
"reqm A r n I B # prom B’ ofr A’ r’ I’ (cons ML) JC"
by (auto simp: reqm_def prom_def)

lemma prom_neq_reqm [iff]:
"prom B’ ofr A’ r’ I’ (cons ML) JC # requ Ar n I B"
by (auto simp: reqm_def prom_def)

lemma req neq pro [iff]: "req A r n I B # pro B’ ofr A’ r’ I’ (cons M L)
J C’I
by (auto simp: req_def pro_def)

lemma pro_neq _req [iff]: "pro B’ ofr A’ r’> I’ (cons ML) JC # req Ar n
I BH
by (auto simp: req_def pro_def)

lemma p2_has_no_Gets: "evs € p2 —> VA X. Gets A X ¢ set evs"
by (erule p2.induct, auto simp: req_def pro_def)

lemma p2_is_Gets_correct [iff]: "Gets_correct p2"
by (auto simp: Gets_correct_def dest: p2_has_no_Gets)

lemma p2_is_one_step [iff]: "one_step p2"
unfolding one_step_def by (clarify, ind_cases "ev#evs € p2" for ev evs,
auto)

lemma p2_has_only_Says’ [rule_format]: "evs € p2 —
ev € set evs — (dA B X. ev=Says A B X)"
by (erule p2.induct, auto simp: req_def pro_def)

lemma p2_has_only_Says [iff]: "has_only_Says p2"
by (auto simp: has_only_Says_def dest: p2_ has_only_Says’)

lemma p2_is_regular [iff]: "regular p2"

apply (simp only: regular_def, clarify)

apply (erule_tac p2.induct)

apply (simp_all add: initState.simps knows.simps pro_def prom_def

402 39 PROTOCOL P2

req_def reqm_def anchor_def chain_def sign_def)
by (auto dest: no_Key_in_agl no_Key_in_appdel parts_trans)

39.9 private keys are safe

lemma priK_parts_Friend_imp_bad [rule_format,dest]:

"levs € p2; Friend B # A]

—> (Key (priK A) € parts (knows (Friend B) evs)) — (A € bad)"
apply (erule p2.induct)
apply (simp_all add: initState.simps knows.simps pro_def prom_def

req_def reqm_def anchor_def chain_def sign_def)
apply (blast dest: no_Key_in_agl)
apply (auto del: parts_invKey disjE dest: parts_trans
simp add: no_Key_in_appdel)

done

lemma priK_analz_Friend_imp_bad [rule_format,dest]:

"levs € p2; Friend B # A]
=—> (Key (priK A) € analz (knows (Friend B) evs)) — (A € bad)"
by auto

lemma priK_notin_knows_max_Friend:
"levs € p2; A ¢ bad; A # Friend C]
—> Key (priK A) ¢ analz (knows_max (Friend C) evs)"
apply (rule not_parts_not_analz, simp add: knows_max_def, safe)
apply (drule_tac H="spies’ evs" in parts_sub)
apply (rule_tac p=p2 in knows_max’_sub_spies’, simp+)
apply (drule_tac H="spies evs" in parts_sub)
by (auto dest: knows’_sub_knows [THEN subsetD] priK_notin_initState_Friend)

39.10 general guardedness properties

lemma agl_guard [intro]: "I € agl = I € guard n Ks"
by (erule agl.induct, auto)

lemma Says_to_knows_max’_guard: “ﬂSays A’ C {IA”,r,I,L]} € set evs;
Guard n Ks (knows_max’ C evs)] = L € guard n Ks"
by (auto dest: Says_to_knows_max’)

lemma Says_from_knows_max’_guard: "[Says C A’ {A’’,r,I,L} € set evs;
Guard n Ks (knows_max’ C evs)] = L € guard n Ks"
by (auto dest: Says_from_knows_max’)

lemma Says_Nonce_not_used_guard: "[Says A’ B {A’’,r,I,L} € set evs;
Nonce n ¢ used evs] = L € guard n Ks"
by (drule not_used_not_parts, auto)

39.11 guardedness of messages

lemma chain_guard [iff]: "chain B ofr A L C € guard n {priK A}"
by (case_tac "ofr=n", auto simp: chain_def sign_def)

lemma chain_guard_Nonce_neq [intro]: "n # ofr
= chain B ofr A’ L C € guard n {prikK A}"

39.12 Nonce uniqueness 403

by (auto simp: chain_def sign_def)

lemma anchor_guard [iff]: "anchor A n’ B € guard n {priK A}"
by (case_tac "n’=n", auto simp: anchor_def)

lemma anchor_guard_Nonce_neq [intro]: "m # n’
— anchor A’ n’ B € guard n {priK A}"
by (auto simp: anchor_def)

lemma reqm_guard [intro]: "I € agl = reqm A r n’ I B € guard n {priK A}"
by (case_tac "n’=n", auto simp: reqm_def)

lemma reqm_guard_Nonce_neq [intro]: "[n # n’; I € agl]
= reqm A’ r n’ I B € guard n {priK A}"
by (auto simp: reqm_def)

lemma prom_guard [intro]: "[I € agl; J € agl; L € guard n {priK A}]
— prom B ofr Ar I L JC € guard n {priK A}"
by (auto simp: prom_def)

lemma prom_guard_Nonce_neq [intro]: "[n # ofr; I € agl; J € agl;
L € guard n {priK A} = prom B ofr A’ r I L J C € guard n {prikK A}"
by (auto simp: prom_def)

39.12 Nonce uniqueness

lemma uniq_Nonce_in_chain [dest]: "Nonce k € parts {chain B ofr A L C} —
k=ofr"
by (auto simp: chain_def sign_def)

lemma uniq Nonce_in_anchor [dest]: "Nonce k € parts {anchor A n B} —> k=n"
by (auto simp: anchor_def chain_def sign_def)

lemma uniq_Nonce_in_reqm [dest]: "[Nonce k € parts {reqm A r n I B};
I € agl] = k=n"
by (auto simp: reqm_def dest: no_Nonce_in_agl)

lemma uniq_Nonce_in_prom [dest]: "[Nonce k € parts {prom B ofr Ar I L J
C}H;

I € agl; J € agl; Nonce k ¢ parts {L}] = k=ofr"

by (auto simp: prom_def dest: no_Nonce_in_agl no_Nonce_in_appdel)

39.13 requests are guarded

lemma req_imp_Guard [rule_format]: "[evs € p2; A ¢ bad] —
req ArnIB € set evs — Guard n {priK A} (spies evs)"
apply (erule p2.induct, simp)

apply (simp add: req_def knows.simps, safe)

apply (erule in_synth_Guard, erule Guard_analz, simp)

by (auto simp: req_def pro_def dest: Says_imp_knows_Spy)

lemma req_imp_Guard_Friend: "[evs € p2; A ¢ bad; req Ar n I B € set evs]
—> Guard n {priK A} (knows_max (Friend C) evs)"
apply (rule Guard_knows_max’)

404 39 PROTOCOL P2

apply (rule_tac H="spies evs" in Guard_mono)

apply (rule req_imp_Guard, simp+)

apply (rule_tac B="spies’ evs" in subset_trans)
apply (rule_tac p=p2 in knows_max’_sub_spies’, simp+)
by (rule knows’_sub_knows)

39.14 propositions are guarded

lemma pro_imp_Guard [rule_format]: "[evs € p2; B ¢ bad; A ¢ bad] =

pro B ofr Ar I (cons ML) JC € set evs —> Guard ofr {priK A} (spies evs)"
supply [[simproc del: defined_all]]

apply (erule p2.induct)

apply simp

apply (simp add: pro_def, safe)

apply (erule in_synth_Guard, drule Guard_analz, simp, simp)
apply simp

apply (simp, simp add: req_def pro_def, blast)

apply (simp add: pro_def)
apply (blast dest: prom_inj Says_Nonce_not_used_guard Nonce_not_used_Guard)

apply simp

apply safe

apply (simp add: pro_def)

apply (blast dest: prom_inj Says_Nonce_not_used_guard)

apply (simp add: pro_def)
apply (blast dest: Says_imp_knows_Spy)

apply (simp add: pro_def)
apply (blast dest: prom_inj Says_Nonce_not_used_guard Nonce_not_used_Guard)

apply simp
apply safe

apply (simp add: pro_def)
apply (blast dest: prom_inj Says_Nonce_not_used_guard)

apply (simp add: pro_def)
by (blast dest: Says_imp_knows_Spy)

lemma pro_imp_Guard_Friend: "[evs € p2; B ¢ bad; A ¢ bad;
pro Bofr Ar I (cons ML) JC € set evs]

= Guard ofr {priK A} (knows_max (Friend D) evs)"

apply (rule Guard_knows_max’)

apply (rule_tac H="spies evs" in Guard_mono)

apply (rule pro_imp_Guard, simp+)

apply (rule_tac B="spies’ evs" in subset_trans)

apply (rule_tac p=p2 in knows_max’_sub_spies’, simp+)

39.15 data confidentiality: no one other than the originator can decrypt the offers405

by (rule knows’_sub_knows)

39.15 data confidentiality: no one other than the origina-
tor can decrypt the offers

lemma Nonce_req_notin_spies: "[evs € p2; req Ar n I B € set evs; A ¢ bad]
= Nonce n ¢ analz (spies evs)"
by (frule req_imp_Guard, simp+, erule Guard_Nonce_analz, simp+)

lemma Nonce_req_notin_knows_max_Friend: " [[evs € p2; req ArnlIB € set
evs;

A ¢ bad; A # Friend C] = Nonce n ¢ analz (knows_max (Friend C) evs)"
apply (clarify, frule_tac C=C in req_imp_Guard_Friend, simp+)

apply (simp add: knows_max_def, drule Guard_invKey_keyset, simp+)

by (drule priK_notin_knows_max_Friend, auto simp: knows_max_def)

lemma Nonce_pro_notin_spies: "[evs € p2; B ¢ bad; A ¢ bad;
pro B ofr Ar I (cons ML) J C € set evs] => Nonce ofr ¢ analz (spies evs)"
by (frule pro_imp_Guard, simp+, erule Guard_Nonce_analz, simp+)

lemma Nonce_pro_notin_knows_max_Friend: "[evs € p2; B ¢ bad; A ¢ bad;
A # Friend D; pro B ofr A r I (cons ML) J C € set evs]

—> Nonce ofr ¢ analz (knows_max (Friend D) evs)"

apply (clarify, frule_tac A=A in pro_imp_Guard_Friend, simp+)

apply (simp add: knows_max_def, drule Guard_invKey_keyset, simp+)

by (drule priK_notin_knows_max_Friend, auto simp: knows_max_def)

39.16 forward privacy: only the originator can know the
identity of the shops

lemma forward_privacy_Spy: "[evs € p2; B ¢ bad; A ¢ bad;
pro B ofr Ar I (cons ML) JC € set evs]

—> sign B (Nonce ofr) ¢ analz (spies evs)"

by (auto simp:sign_def dest: Nonce_pro_notin_spies)

lemma forward_privacy_Friend: "[evs € p2; B ¢ bad; A ¢ bad; A # Friend
D;

pro B ofr Ar I (cons ML) JC € set evs]

—> sign B (Nonce ofr) ¢ analz (knows_max (Friend D) evs)"

by (auto simp:sign_def dest:Nonce_pro_notin_knows_max_Friend)

39.17 non repudiability: an offer signed by B has been
sent by B

lemma Crypt_reqm: "[Crypt (priK A) X € parts {reqm A’ r n I B}; I € agl]
= A=A""
by (auto simp: reqm_def anchor_def chain_def sign_def dest: no_Crypt_in_agl)

lemma Crypt_prom: "[Crypt (priK A) X € parts {prom B ofr A’ r I L J C};
I € agl; J € agl] = A=B | Crypt (priK A) X € parts {L}"

apply (simp add: prom_def anchor_def chain_def sign_def)

by (blast dest: no_Crypt_in_agl no_Crypt_in_appdel)

406 39 PROTOCOL P2

lemma Crypt_safeness: "[evs € p2; A ¢ bad] = Crypt (priK A) X € parts
(spies evs)

— (dB Y. Says A BY € set evs & Crypt (priK A) X € parts {Y})"

apply (erule p2.induct)

apply simp

apply clarsimp

apply (drule_tac P="AG. Crypt (priK A) X € G" in parts_insert_substD, simp)
apply (erule disjE)

apply (drule_tac K="priK A" in Crypt_synth, simp+, blast, blast)

apply (simp add: req_def, clarify)

apply (drule_tac P="AG. Crypt (priK A) X € G" in parts_insert_substD, simp)
apply (erule disjE)

apply (frule Crypt_reqm, simp, clarify)

apply (rule_tac x=B in exI, rule_tac x="reqm A r n I B" in exI, simp, blast)

apply (simp add: pro_def, clarify)

apply (drule_tac P="AG. Crypt (priK A) X € G" in parts_insert_substD, simp)
apply (rotate_tac -1, erule disjE)

apply (frule Crypt_prom, simp, simp)

apply (rotate_tac -1, erule disjE)

apply (rule_tac x=C in exI)

apply (rule_tac x="prom B ofr Aa r I (cons M L) J C" in exI, blast)

apply (subgoal_tac "cons M L € parts (spies evsp)")

apply (drule_tac G="{cons M L}" and H="spies evsp" in parts_trans, blast,
blast)

apply (drule Says_imp_spies, rotate_tac -1, drule parts.Inj)

apply (drule parts.Snd, drule parts.Snd, drule parts.Snd)

by auto

lemma Crypt_Hash_imp_sign: "[evs € p2; A ¢ bad] —
Crypt (priK A) (Hash X) € parts (spies evs)

— (B Y. Says A BY € set evs A sign A X € parts {Y})"
apply (erule p2.induct)

apply simp

apply clarsimp

apply (drule_tac P="AG. Crypt (priK A) (Hash X) € G" in parts_insert_substD)
apply simp

apply (erule disjE)

apply (drule_tac K="priK A" in Crypt_synth, simp+, blast, blast)

apply (simp add: req_def, clarify)

apply (drule_tac P="AG. Crypt (priK A) (Hash X) € G" in parts_insert_substD)
apply simp

apply (erule disjE)

apply (frule Crypt_reqm, simp+)

apply (rule_tac x=B in exI, rule_tac x="reqm Aa r n I B" in exI)

apply (simp add: reqm_def sign_def anchor_def no_Crypt_in_agl)

apply (simp add: chain_def sign_def, blast)

407

apply (simp add: pro_def, clarify)

apply (drule_tac P="AG. Crypt (priK A) (Hash X) € G" in parts_insert_substD)
apply simp

apply (rotate_tac -1, erule disjE)

apply (simp add: prom_def sign_def no_Crypt_in_agl no_Crypt_in_appdel)
apply (simp add: chain_def sign_def)

apply (rotate_tac -1, erule disjE)

apply (rule_tac x=C in exI)

apply (rule_tac x="prom B ofr Aa r I (cons M L) J C" in exI)

apply (simp add: prom_def chain_def sign_def)

apply (erule impE)

apply (blast dest: get_ML parts_sub)

apply (blast del: MPair_parts)+

done

lemma sign_safeness: "[evs € p2; A ¢ bad] —> sign A X € parts (spies evs)
— (3B Y. Says A BY € set evs A sign A X € parts {YP)"

apply (clarify, simp add: sign_def, frule parts.Snd)

apply (blast dest: Crypt_Hash_imp_sign [unfolded sign_def])

done

end

40 Needham-Schroeder-Lowe Public-Key Proto-
col

theory Guard_NS_Public imports Guard_Public begin

40.1 messages used in the protocol

abbreviation (input)
nsl :: "agent => agent => nat => event" where
"nsl A B NA == Says A B (Crypt (pubK B) {Nonce NA, Agent A[})"

abbreviation (input)
ns1’ :: "agent => agent => agent => nat => event" where
'"ms1’ A’ A B NA == Says A’ B (Crypt (pubK B) {Nonce NA, Agent A[})"

abbreviation (input)
ns2 :: "agent => agent => nat => nat => event" where
"ns2 B A NA NB == Says B A (Crypt (pubK A) {Nonce NA, Nonce NB, Agent B[)"

abbreviation (input)

ns2’ :: "agent => agent => agent => nat => nat => event" where

"ns2’ B’ B A NA NB == Says B’ A (Crypt (pubK A) {Nonce NA, Nonce NB, Agent
B]})H

abbreviation (input)
ns3 :: "agent => agent => nat => event" where
"ns3 A B NB == Says A B (Crypt (pubK B) (Nonce NB))"

408 40 NEEDHAM-SCHROEDER-LOWE PUBLIC-KEY PROTOCOL

40.2 definition of the protocol

inductive__set nsp :: "event list set"
where

Nil: "[] € nsp"”

—

Fake: "[evs € nsp; X € synth (analz (spies evs))] = Says Spy B X # evs
€ nsp"

| NS1: "[evsl € nsp; Nonce NA ¢ used evsl] = ns1 A B NA # evsl € nsp"

| NS2: "[evs2 € nsp; Nonce NB ¢ used evs2; nsl’ A’ A B NA € set evs2] —
ns2 B A NA NB # evs2 € nsp"

| NS3: "AA B B’ NA NB evs3. [evs3 € nsp; nsl A B NA € set evs3; ns2’ B’ B
A NA NB € set evs3] =
ns3 A B NB # evs3 € nsp"

40.3 declarations for tactics

declare knows_Spy_partsEs [elim]
declare Fake_parts_insert [THEN subsetD, dest]
declare initState.simps [simp del]

40.4 general properties of nsp

lemma nsp_has_no_Gets: "evs € nsp =—> VA X. Gets A X ¢ set evs"
by (erule nsp.induct, auto)

lemma nsp_is_Gets_correct [iff]: "Gets_correct nsp"
by (auto simp: Gets_correct_def dest: nsp_has_no_Gets)

lemma nsp_is_one_step [iff]: "one_step nsp"
unfolding one_step_def by (clarify, ind_cases "ev#evs € nsp" for ev evs,
auto)

lemma nsp_has_only_Says’ [rule_format]: "evs € nsp —>
ev € set evs — (A B X. ev=Says A B X)"
by (erule nsp.induct, auto)

lemma nsp_has_only_Says [iff]: "has_only_Says nsp"
by (auto simp: has_only_Says_def dest: nsp_has_only_Says’)

lemma nsp_is_regular [iff]: "regular nsp"
apply (simp only: regular_def, clarify)
by (erule nsp.induct, auto simp: initState.simps knows.simps)

40.5 nonce are used only once

lemma NA_is_uniq [rule_format]: "evs € nsp —

Crypt (pubK B) {Nonce NA, Agent A} € parts (spies evs)

— Crypt (pubK B’) {Nonce NA, Agent A’} € parts (spies evs)
— Nonce NA ¢ analz (spies evs) — A=A’ A B=B’"

apply (erule nsp.induct, simp_all)

40.6 guardedness of NA 409

by (blast intro: analz_insertI)+

lemma no_Nonce_NS1_NS2 [rule_format]: "evs € nsp —>

Crypt (pubK B’) {Nonce NA’, Nonce NA, Agent A’} € parts (spies evs)
—> Crypt (pubK B) {Nonce NA, Agent A} € parts (spies evs)

— Nonce NA € analz (spies evs)"

apply (erule nsp.induct, simp_all)

by (blast intro: analz_insertI)+

lemma no_Nonce_NS1_NS2’ [rule_format]:

"[Crypt (pubK B’) {Nonce NA’, Nonce NA, Agent A’} € parts (spies evs);
Crypt (pubK B) {Nonce NA, Agent A} € parts (spies evs); evs € nsp]
—> Nonce NA € analz (spies evs)"

by (rule no_Nonce_NS1_NS2, auto)

lemma NB_is_uniq [rule_format]: "evs € nsp —

Crypt (pubK A) {Nonce NA, Nonce NB, Agent B[} € parts (spies evs)

— Crypt (pubK A’) {Nonce NA’, Nonce NB, Agent B’} € parts (spies evs)
— Nonce NB ¢ analz (spies evs) — A=A’ A\ B=B’ A NA=NA’"

apply (erule nsp.induct, simp_all)

by (blast intro: analz_insertI)+

40.6 guardedness of NA

lemma nsi_imp_Guard [rule_format]: "[evs € nsp; A ¢ bad; B ¢ bad] =
nsl A B NA € set evs — Guard NA {priK A,priK B} (spies evs)"
apply (erule nsp.induct)

apply simp_all

apply safe
apply (erule in_synth_Guard, erule Guard_analz, simp)

apply blast
apply blast
apply blast
apply (drule Nonce_neq, simp+, rule No_Nonce, simp)

apply (frule_tac A=A in Nonce_neq, simp+)

apply (case_tac "NAa=NA")

apply (drule Guard_Nonce_analz, simp+)

apply (drule Says_imp_knows_Spy)+

apply (drule_tac B=B and A’=Aa in NA_is_uniq, auto)

apply (case_tac "NB=NA", clarify)
apply (drule Guard_Nonce_analz, simp+)
apply (drule Says_imp_knows_Spy)+
by (drule no_Nonce_NS1_NS2, auto)

40.7 guardedness of NB

lemma ns2_imp_Guard [rule_format]: "[evs € nsp; A ¢ bad; B ¢ bad] =
ns2 B A NA NB € set evs — Guard NB {priK A,priK B} (spies evs)"
apply (erule nsp.induct)

410 40 NEEDHAM-SCHROEDER-LOWE PUBLIC-KEY PROTOCOL

apply simp_all

apply safe
apply (erule in_synth_Guard, erule Guard_analz, simp)

apply (frule Nonce_neq, simp+, blast, rule No_Nonce, simp)

apply blast

apply blast

apply blast

apply (frule_tac A=B and n=NB in Nonce_neq, simp+)
apply (case_tac "NAa=NB")

apply (drule Guard_Nonce_analz, simp+)

apply (drule Says_imp_knows_Spy)+

apply (drule no_Nonce_NS1_NS2, auto)

apply (case_tac "NBa=NB", clarify)

apply (drule Guard_Nonce_analz, simp+)

apply (drule Says_imp_knows_Spy)+

apply (drule_tac A=Aa and A’=A in NB_is_uniq)
apply auto[1]

apply (auto simp add: guard.No_Nonce)

done

40.8 Agents’ Authentication

lemma B_trusts_NS1: "[evs € nsp; A ¢ bad; B ¢ bad] —
Crypt (pubK B) {Nonce NA, Agent A} € parts (spies evs)

— Nonce NA ¢ analz (spies evs) —»> nsl A B NA € set evs"
apply (erule nsp.induct, simp_all)

by (blast intro: analz_insertI)+

lemma A_trusts_NS2: "[evs € nsp; A ¢ bad; B ¢ bad] =—> ns1 A B NA € set
evs

— Crypt (pubK A) {Nonce NA, Nonce NB, Agent B} € parts (spies evs)
— ns2 B A NA NB € set evs"

apply (erule nsp.induct, simp_all, safe)

apply (frule_tac B=B in nsl_imp_Guard, simp+)

apply (drule Guard_Nonce_analz, simp+, blast)

apply (frule_tac B=B in nsl_imp_Guard, simp+)

apply (drule Guard_Nonce_analz, simp+, blast)

apply (frule_tac B=B in nsl_imp_Guard, simp+)

by (drule Guard_Nonce_analz, simp+, blast+)

lemma B_trusts_NS3: "[evs € nsp; A ¢ bad; B ¢ bad] =—> ns2 B A NA NB €
set evs

— Crypt (pubK B) (Nonce NB) € parts (spies evs) — ns3 A B NB € set evs"
apply (erule nsp.induct, simp_all, safe)

apply (frule_tac B=B in ns2_imp_Guard, simp+)

apply (drule Guard_Nonce_analz, simp+, blast)

apply (frule_tac B=B in ns2_imp_Guard, simp+)

apply (drule Guard_Nonce_analz, simp+, blast)

apply (frule_tac B=B in ns2_imp_Guard, simp+)

411

apply (drule Guard_Nonce_analz, simp+, blast, blast)
apply (frule_tac B=B in ns2_imp_Guard, simp+)
by (drule Guard_Nonce_analz, auto dest: Says_imp_knows_Spy NB_is_uniq)

end

41 Other Protocol-Independent Results

theory Proto imports Guard_Public begin

41.1 protocols

type__synonym rule = "event set * event"
abbreviation
msg’ :: "rule => msg" where

"msg’ R == msg (snd R)"
type__synonym proto = "rule set"
definition wdef :: "proto => bool" where

"wdef p = VR k. R € p — Number k € parts {msg’ R}
— Number k € parts (msg‘(fst R))"

41.2 substitutions

record subs =

agent :: "agent => agent"
nonce :: "nat => nat"
nb :: "nat => msg"
key :: "key => key"
primrec apm :: "subs => msg => msg" where
"apm s (Agent A) = Agent (agent s A)"
| "apm s (Nonce n) = Nonce (nonce s n)"
| "apm s (Number n) = nb s n"
| "apm s (Key K) = Key (key s K)"
| "apm s (Hash X) = Hash (apm s X)"
| "apm s (Crypt K X) = (

if (3A. K = pubK A) then Crypt (pubK (agent s (agt K))) (apm s X)
else if (3A. K = priK A) then Crypt (priK (agent s (agt K))) (apm s X)
else Crypt (key s K) (apm s X))"

| "apm s {X,Y} = {apm s X, apm s Y}}"

lemma apm_parts: "X € parts {Y} — apm s X € parts {apm s Y}"
apply (erule parts.induct, simp_all, blast)

apply (erule parts.Fst)

apply (erule parts.Snd)

by (erule parts.Body)+

lemma Nonce_apm [rule_format]: "Nonce n € parts {apm s X} =
(Vk. Number k € parts {X} — Nonce n ¢ parts {nb s k}) —
(3k. Nonce k € parts {X} A nonce s k = n)"

by (induct X, simp_all, blast)

412 41 OTHER PROTOCOL-INDEPENDENT RESULTS

lemma wdef_Nonce: "[Nonce n € parts {apm s X}; R € p; msg’ R = X; wdef p;
Nonce n ¢ parts (apm s ‘(msg ‘(fst R)))] =

(3k. Nonce k € parts {X} A nonce s k = n)"

apply (erule Nonce_apm, unfold wdef_def)

apply (drule_tac x=R in spec, drule_tac x=k in spec, clarsimp)

apply (drule_tac x=x in bspec, simp)

apply (drule_tac Y="msg x" and s=s in apm_parts, simp)

by (blast dest: parts_parts)

primrec ap :: "subs = event = event" where

"ap s (Says A B X) = Says (agent s A) (agent s B) (apm s X)"
| "ap s (Gets A X) = Gets (agent s A) (apm s X)"
| "ap s (Notes A X) = Notes (agent s A) (apm s X)"

abbreviation
ap’ :: "subs = rule = event" where
"ap’ s R = ap s (snd R)"

abbreviation
apm’ :: "subs = rule = msg" where
"apm’ s R = apm s (msg’ R)"

abbreviation
priK’ :: "subs = agent = key" where
"priK’ s A = priK (agent s A)"

abbreviation
pubK’ :: "subs = agent = key" where
"pubK’ s A = pubK (agent s A)"

41.3 nonces generated by a rule

definition newn :: "rule = nat set" where
"newn R = {n. Nonce n € parts {msg (snd R)} A Nonce n ¢ parts (msg‘(fst
R}

lemma newn_parts: "n € newn R = Nonce (nonce s n) € parts {apm’ s R}"
by (auto simp: newn_def dest: apm_parts)

41.4 traces generated by a protocol

definition ok :: "event list = rule = subs = bool" where
"ok evs R s = ((Vx. x € fst R — ap s x € set evs)
A (Vn. n € newn R — Nonce (nonce s n) ¢ used evs))"

inductive__set

tr :: "proto => event list set"
for p :: proto
where

Nil [intro]: "[] € tr p"

| Fake [intro]: "[evsf € tr p; X € synth (analz (spies evsf))]

41.5 general properties 413

— Says Spy B X # evsf € tr p"

| Proto [intro]: "[evs € tr p; R € p; ok evs R s] => ap’ s R # evs € tr
p'l

41.5 general properties

lemma one_step_tr [iff]: "one_step (tr p)"
apply (unfold one_step_def, clarify)
by (ind_cases "ev # evs € tr p" for ev evs, auto)

definition has_only_Says’ :: "proto => bool" where
"has_only_Says’ p = VR. R € p —+ is_Says (snd R)"

lemma has_only_Says’D: "[R € p; has_only_Says’ p]
—> (JA B X. snd R = Says A B X)"
by (unfold has_only_Says’_def is_Says_def, blast)

lemma has_only_Says_tr [simp]: "has_only_Says’ p == has_only_Says (tr p)"
unfolding has_only_Says_def

apply (rule alll, rule alll, rule impI)

apply (erule tr.induct)

apply (auto simp: has_only_Says’_def ok_def)

by (drule_tac x=a in spec, auto simp: is_Says_def)

lemma has_only_Says’_in_trD: " [[has_only_Says’ p; list @ ev # evsl € tr p]]
— (JA B X. ev = Says A B X)"
by (drule has_only_Says_tr, auto)

lemma ok_not_used: "[Nonce n ¢ used evs; ok evs R s;

Vx. x € fst R — is_Says x] =—> Nonce n ¢ parts (apm s ‘(msg ‘(fst R)))"
apply (unfold ok_def, clarsimp)

apply (drule_tac x=x in spec, drule_tac x=x in spec)

by (auto simp: is_Says_def dest: Says_imp_spies not_used_not_spied parts_parts)

lemma ok_is_Says: "[evs’ @ ev # evs € tr p; ok evs R s; has_only_Says’ p;
R € p; x € fst R] = is_Says x"

apply (unfold ok_def is_Says_def, clarify)

apply (drule_tac x=x in spec, simp)

apply (subgoal_tac "one_step (tr p)")

apply (drule trunc, simp, drule one_step_Cons, simp)

apply (drule has_only_SaysD, simp+)

by (clarify, case_tac x, auto)

41.6 types
type__synonym keyfun = "rule = subs = nat = event list = key set"

type_synonym secfun = "rule = nat = subs = key set = msg"

41.7 introduction of a fresh guarded nonce

definition fresh :: "proto = rule = subs = nat = key set = event list
= bool" where

414 41 OTHER PROTOCOL-INDEPENDENT RESULTS

"fresh p R s n Ks evs = (devsl evs2. evs = evs2 @ ap’ s R # evsl
A Nonce n ¢ used evs! A R € p A ok evsl R s A Nonce n € parts {apm’ s R}
A apm’ s R € guard n Ks)"

lemma freshD: "fresh p R s n Ks evs = (Jevsl evs2.
evs = evs2 @ ap’ s R # evsl A Nonce n ¢ used evs] AR € p A ok evsl R s
A Nonce n € parts {apm’ s R} N apm’ s R € guard n Ks)"

unfolding fresh_def by blast

lemma freshI [intro]: "[Nonce n ¢ used evsl; R € p; Nonce n € parts {apm’
s R};
ok evsl R s; apm’ s R € guard n Ks]
—> fresh p R s n Ks (list @ ap’ s R # evs1)"
unfolding fresh_def by blast

lemma freshI’: "[Nonce n ¢ used evsl; (1,r) € p;

Nonce n € parts {apm s (msg r)}; ok evsl (1,r) s; apm s (msg r) € guard n
Ks]

— fresh p (1,r) s n Ks (evs2 @ ap s r # evsl)"

by (drule freshI, simp+)

lemma fresh_used: "[fresh p R’ s’ n Ks evs; has_only_Says’ p]
— Nonce n € used evs"

apply (unfold fresh_def, clarify)

apply (drule has_only_Says’D)

by (auto intro: parts_used_app)

lemma fresh_newn: "[evs’ @ ap’ s R # evs € tr p; wdef p; has_only_Says’
ps

Nonce n ¢ used evs; R € p; ok evs R s; Nonce n € parts {apm’ s R}
—> Jk. k € newn R A nonce s k = n"

apply (drule wdef_Nonce, simp+)

apply (frule ok_not_used, simp+)

apply (clarify, erule ok_is_Says, simp+)

apply (clarify, rule_tac x=k in exI, simp add: newn_def)

apply (clarify, drule_tac Y="msg x" and s=s in apm_parts)

apply (drule ok_not_used, simp+)

by (clarify, erule ok_is_Says, simp_all)

lemma fresh_rule: “[[evs’ @ ev # evs € tr p; wdef p; Nonce n §é used evs;
Nonce n € parts {msg ev}] = IR s. R € p A ap’ s R = ev"

apply (drule trunc, simp, ind_cases "ev # evs € tr p", simp)

by (drule_tac x=X in in_sub, drule parts_sub, simp, simp, blast+)

lemma fresh_ruleD: "[fresh p R’ s’ n Ks evs; keys R’ s’ n evs C Ks; wdef

p;

has_only_Says’ p; evs € tr p; VR k s. nonce s k = n — Nonce n € used evs
4)

R €p — k € newn R — Nonce n € parts {apm’ s R} — apm’ s R € guard
n Ks —

apm’ s R € parts (spies evs) —> keys R s n evs C Ks — P] = P"

apply (frule fresh_used, simp)

apply (unfold fresh_def, clarify)

apply (drule_tac x=R’ in spec)

41.8 safe keys 415

apply (drule fresh_newn, simp+, clarify)

apply (drule_tac x=k in spec)

apply (drule_tac x=s’ in spec)

apply (subgoal_tac "apm’ s’ R’ € parts (spies (evs2 @ ap’ s’ R’ # evs1))")
apply (case_tac R’, drule has_only_Says’D, simp, clarsimp)

apply (case_tac R’, drule has_only_Says’D, simp, clarsimp)

apply (rule_tac Y="apm s’ X" in parts_parts, blast)

by (rule parts.Inj, rule Says_imp_spies, simp, blast)

41.8 safe keys

definition safe :: "key set = msg set = bool" where
"safe Ks G = VK. K € Ks —> Key K ¢ analz G"

lemma safeD [dest]: "[safe Ks G; K € Ks|] = Key K ¢ analz G"
unfolding safe_def by blast

lemma safe_insert: "safe Ks (insert X G) — safe Ks G"
unfolding safe_def by blast

lemma Guard_safe: "[Guard n Ks G; safe Ks G] = Nonce n ¢ analz G"
by (blast dest: Guard_invKey)

41.9 guardedness preservation

definition preserv :: "proto = keyfun = nat = key set = bool" where
"preserv p keys n Ks = (Vevs R’ s’ R s. evs € tr p —

Guard n Ks (spies evs) —> safe Ks (spies evs) — fresh p R’ s’ n Ks evs
—

keys R’ s’ nevs C Ks — R € p — ok evs R s — apm’ s R € guard n Ks)"

lemma preservD: "[preserv p keys n Ks; evs € tr p; Guard n Ks (spies evs);
safe Ks (spies evs); fresh p R’ s’ n Ks evs; R € p; ok evs R s;
keys R’ s’ n evs C Ks| = apm’ s R € guard n Ks"

unfolding preserv_def by blast

lemma preservD’: "[preserv p keys n Ks; evs € tr p; Guard n Ks (spies evs);
safe Ks (spies evs); fresh p R’ s’ n Ks evs; (1,Says A B X) € p;

ok evs (1,Says A B X) s; keys R’ s’ n evs C Ks] = apm s X € guard n Ks"
by (drule preservD, simp+)

41.10 monotonic keyfun

definition monoton :: "proto => keyfun => bool" where
"monoton p keys = VR’ s’ n ev evs. ev # evs € tr p —
keys R’ s’ n evs C keys R’ s’ n (ev # evs)"

lemma monotonD [dest]: "[keys R’ s’ n (ev # evs) C Ks; monoton p keys;
ev # evs € tr p] = keys R’ s’ n evs C Ks"
unfolding monoton_def by blast

41.11 guardedness theorem

lemma Guard_tr [rule_format]: "[evs € tr p; has_only_Says’ p;

416 41 OTHER PROTOCOL-INDEPENDENT RESULTS

preserv p keys n Ks; monoton p keys; Guard n Ks (initState Spy)] —

safe Ks (spies evs) —> fresh p R’ s’ n Ks evs — keys R’ s’ n evs C Ks
H

Guard n Ks (spies evs)"

apply (erule tr.induct)

apply simp

apply (clarify, drule freshD, clarsimp)
apply (case_tac evs2)

apply (frule has_only_Says’D, simp)
apply (clarsimp, blast)

apply (clarsimp, rule conjI)
apply (blast dest: safe_insert)

apply (rule in_synth_Guard, simp, rule Guard_analz)
apply (blast dest: safe_insert)
apply (drule safe_insert, simp add: safe_def)

apply (clarify, drule freshD, clarify)
apply (case_tac evs2)

apply (frule has_only_Says’D, simp)
apply (frule_tac R=R’ in has_only_Says’D, simp)
apply (case_tac R’, clarsimp, blast)

apply (frule has_only_Says’D, simp)
apply (clarsimp, rule conjI)
apply (drule Proto, simp+, blast dest: safe_insert)

apply (frule Proto, simp+)
apply (erule preservD’, simp+)
apply (blast dest: safe_insert)
apply (blast dest: safe_insert)
by (blast, simp, simp, blast)

41.12 useful properties for guardedness

lemma newn_neq_used: "[Nonce n € used evs; ok evs R s; k € newn R]
=— n # nonce s k"
by (auto simp: ok_def)

lemma ok_Guard: "[ok evs R s; Guard n Ks (spies evs); x € fst R; is_Says
]

—> apm s (msg x) € parts (spies evs) A apm s (msg x) € guard n Ks"
apply (unfold ok_def is_Says_def, clarify)

apply (drule_tac x="Says A B X" in spec, simp)

by (drule Says_imp_spies, auto intro: parts_parts)

lemma ok_parts_not_new: "[Y € parts (spies evs); Nonce (nonce s n) € parts
{Y};
ok evs R s] = n ¢ newn R"

41.13 unicity 417

by (auto simp: ok_def dest: not_used_not_spied parts_parts)

41.13 unicity

definition uniq :: "proto = secfun = bool" where

"uniq p secret = Vevs RR’ nn’ Ks ss’. R € p — R’ €p —

n € newn R — n’ € newn R’ — nonce s n = nonce s’ n’ —

Nonce (nonce s n) € parts {apm’ s R} — Nonce (nonce s n) € parts {apm’ s’
R’} —

apm’ s R € guard (nonce s n) Ks —> apm’ s’ R’ € guard (nonce s n) Ks —»

evs € tr p — Nonce (nonce s n) ¢ analz (spies evs) —

secret R n s Ks € parts (spies evs) — secret R’ n’ s’ Ks € parts (spies

evs) —

secret R n s Ks = secret R’ n’ s’ Ks"

lemma unigD: "[uniq p secret; evs € tr p; R € p; R’ € p; n € newn R; n’
€ newn R’;
nonce s n = nonce s’ n’; Nonce (nonce s n) ¢ analz (spies evs);
Nonce (nonce s n) € parts {apm’ s R}; Nonce (nonce s n) € parts {apm’ s’ R’};
secret R n s Ks € parts (spies evs); secret R’ n’ s’ Ks € parts (spies evs);
apm’ s R € guard (nonce s n) Ks; apm’ s’ R’ € guard (nonce s n) Ks| =
secret R n s Ks = secret R’ n’ s’ Ks"

unfolding uniq def by blast

definition ord :: "proto = (rule = rule = bool) = bool" where
"ord p inff = VRR’. R € p — R’ € p — — inff R R’ — inff R’ R"

lemma ordD: "[[ord p inff; - inff R R’; R € p; R’ € pﬂ — inff R’ R"
unfolding ord_def by blast

definition uniq’ :: "proto = (rule = rule = bool) = secfun = bool" where
"uniq’ p inff secret = Vevs RR’> nn’ Ks s s’. R€p — R’ € p —

inff RR’ — n € newn R — n’ € newn R’ — nonce s n = nonce s’ n’ —>
Nonce (nonce s n) € parts {apm’ s R} — Nonce (nonce s n) € parts {apm’ s’
R’} —

apm’ s R € guard (nonce s n) Ks — apm’ s’ R’ € guard (nonce s n) Ks —
evs € tr p — Nonce (nonce s n) ¢ analz (spies evs) —

secret R n s Ks € parts (spies evs) — secret R’ n’ s’ Ks € parts (spies
evs) —

secret R n s Ks = secret R’ n’ s’ Ks"

lemma uniq’D: "[uniq’ p inff secret; evs € tr p; inff RR’; R € p; R’ €

p; n € newn R;

n’ € newn R’; nonce s n = nonce s’ n’; Nonce (nonce s n) ¢ analz (spies evs);
Nonce (nonce s n) € parts {apm’ s R}; Nonce (nonce s n) € parts {apm’ s’ R’};
secret R n s Ks € parts (spies evs); secret R’ n’ s’ Ks € parts (spies evs);
apm’ s R € guard (nonce s n) Ks; apm’ s’ R’ € guard (nonce s n) Ks|] =
secret R n s Ks = secret R’ n’ s’ Ks"

by (unfold uniq’_def, blast)

lemma uniq’_imp_uniq: "[uniq’ p inff secret; ord p inff] = uniq p secret"
unfolding uniq_def

apply (rule alll)+

apply (case_tac "inff R R’")

418 41 OTHER PROTOCOL-INDEPENDENT RESULTS

apply (blast dest: uniq’D)
by (auto dest: ordD uniq’D intro: sym)

41.14 Needham-Schroeder-Lowe

definition a :: agent where "a == Friend 0"
definition b :: agent where "b == Friend 1"
definition a’ :: agent where "a’ == Friend 2"
definition b’ :: agent where "b’ == Friend 3"
definition Na :: nat where "Na == 0"

definition Nb :: nat where "Nb == 1"

abbreviation
nsl :: rule where
"nsl == ({}, Says a b (Crypt (pubK b) {Nonce Na, Agent al))"

abbreviation
ns2 :: rule where
"ns2 == ({Says a’ b (Crypt (pubK b) {Nonce Na, Agent al)},
Says b a (Crypt (pubK a) {Nonce Na, Nonce Nb, Agent b[}))"

abbreviation
ns3 :: rule where
"ns3 == ({Says a b (Crypt (pubK b) {Nonce Na, Agent al}),
Says b’ a (Crypt (pubK a) {Nonce Na, Nonce Nb, Agent b[})},
Says a b (Crypt (pubK b) (Nonce Nb)))"

inductive__set ns :: proto where
[iff]: "nsl € ns"

| [iff]: "ns2 € ns"

| [iff]: "ns3 € ns"

abbreviation (input)
ns3a :: event where
"ns3a == Says a b (Crypt (pubK b) {Nonce Na, Agent al)"

abbreviation (input)
ns3b :: event where
"ns3b == Says b’ a (Crypt (pubK a) {Nonce Na, Nonce Nb, Agent b[)"

definition keys :: "keyfun" where
"keys R’ s’ n evs == {priK’ s’ a, priK’ s’ b}"

lemma "monoton ns keys"
by (simp add: keys_def monoton_def)

definition secret :: "secfun" where

"secret R n s Ks ==

(if R=ns1 then apm s (Crypt (pubK b) {Nonce Na, Agent al})

else if R=ns2 then apm s (Crypt (pubK a) {Nonce Na, Nonce Nb, Agent b[)
else Number 0)"

definition inf :: "rule => rule => bool" where
"inf R R’ == (R=ns1 | (R=ns2 & R’~=ns1) | (R=ns3 & R’=ns3))"

41.15 general properties 419

lemma inf_is_ord [iff]: "ord ns inf"
apply (unfold ord_def inf_def)

apply (rule alll)+

apply (rule impI)

apply (simp add: split_paired_all)

by (rule impI, erule ns.cases, simp_all)+

41.15 general properties

lemma ns_has_only_Says’ [iff]: "has_only_Says’ ns"
apply (unfold has_only_Says’_def)

apply (rule alll, rule impI)

apply (simp add: split_paired_all)

by (erule ns.cases, auto)

lemma newn_ns! [iff]: "newn nsl = {Na}"
by (simp add: newn_def)

lemma newn_ns2 [iff]: "newn ns2 = {Nb}"
by (auto simp: newn_def Na_def Nb_def)

lemma newn_ns3 [iff]: "newn ns3 = {}"
by (auto simp: newn_def)

lemma ns_wdef [iff]: "wdef ns"
by (auto simp: wdef_def elim: ns.cases)

41.16 guardedness for NSL

lemma "uniq ns secret = preserv ns keys n Ks"

unfolding preserv_def

apply (rule alll)+

apply (rule impI, rule impI, rule impI, rule impI, rule impI)
apply (erule fresh_ruleD, simp, simp, simp, simp)

apply (rule allI)+

apply (rule impI, rule impI, rule impI)

apply (simp add: split_paired_all)

apply (erule ns.cases)

apply (rule impI, rule impI, rule impI, rule impI, rule impI, rule impI)
apply (erule ns.cases)

apply clarsimp
apply (frule newn_neq_used, simp, simp)
apply (rule No_Nonce, simp)

apply clarsimp

apply (frule newn_neq_used, simp, simp)

apply (case_tac "nonce sa Na = nonce s Na")

apply (frule Guard_safe, simp)

apply (frule Crypt_guard_invKey, simp)

apply (frule ok_Guard, simp, simp, simp, clarsimp)

apply (frule_tac K="pubK’ s Proto.b" in Crypt_guard_invKey, simp)

420 41 OTHER PROTOCOL-INDEPENDENT RESULTS

apply (frule_tac R=nsl and R’=nsl and Ks=Ks and s=sa and s’=s in unigD,
simp+)

apply (simp add: secret_def, simp add: secret_def, force, force)

apply (simp add: secret_def keys_def, blast)

apply (rule No_Nonce, simp)

apply clarsimp

apply (case_tac "nonce sa Na = nonce s Nb")

apply (frule Guard_safe, simp)

apply (frule Crypt_guard_invKey, simp)

apply (frule_tac x=ns3b in ok_Guard, simp, simp, simp, clarsimp)

apply (frule_tac K="pubK’ s Proto.a" in Crypt_guard_invKey, simp)

apply (frule_tac R=nsl and R’=ns2 and Ks=Ks and s=sa and s’=s in unigD,
simp+)

apply (simp add: secret_def, simp add: secret_def, force, force)

apply (simp add: secret_def, rule No_Nonce, simp)

apply (rule impI, rule impI, rule impI, rule impI, rule impI, rule impI)
apply (erule ns.cases)

apply clarsimp
apply (frule newn_neq_used, simp, simp)
apply (rule No_Nonce, simp)

apply clarsimp

apply (frule newn_neq_used, simp, simp)

apply (case_tac "nonce sa Nb = nonce s Na")

apply (frule Guard_safe, simp)

apply (frule Crypt_guard_invKey, simp)

apply (frule ok_Guard, simp, simp, simp, clarsimp)

apply (frule_tac K="pubK’ s Proto.b" in Crypt_guard_invKey, simp)
apply (frule_tac R=ns2 and R’=nsl and Ks=Ks and s=sa and s’=s in unigD,
simp+)

apply (simp add: secret_def, simp add: secret_def, force, force)
apply (simp add: secret_def, rule No_Nonce, simp)

apply clarsimp

apply (case_tac "nonce sa Nb = nonce s Nb")

apply (frule Guard_safe, simp)

apply (frule Crypt_guard_invKey, simp)

apply (frule_tac x=ns3b in ok_Guard, simp, simp, simp, clarsimp)
apply (frule_tac K="pubK’ s Proto.a" in Crypt_guard_invKey, simp)
apply (frule_tac R=ns2 and R’=ns2 and Ks=Ks and s=sa and s’=s in unigD,
simp+)

apply (simp add: secret_def, simp add: secret_def, force, force)
apply (simp add: secret_def keys_def, blast)

apply (rule No_Nonce, simp)

by simp

41.17 unicity for NSL

lemma "uniq’ ns inf secret"
apply (unfold uniq’_def)

41.17

apply
apply
apply

apply

apply
apply
apply

apply

apply
apply
apply
apply

apply
apply
apply

apply
apply
apply
apply

apply
apply

apply
apply
apply

apply

apply
apply
apply
apply
simp)

apply
apply
apply

apply
apply

apply
apply

apply

unicity for NSL 421

(rule alll)+
(simp add: split_paired_all)
(rule impI, erule ns.cases)

(rule impI, erule ns.cases)

(rule impI, rule impI, rule impI, rule impI)
(rule impI, rule impI, rule impI, rule impI)
(rule impI, erule tr.induct)

(simp add: secret_def)

(clarify, simp add: secret_def)

(drule notin_analz_insert)

(drule Crypt_insert_synth, simp, simp, simp)
(drule Crypt_insert_synth, simp, simp, simp, simp)

(erule_tac P="ok evsa R sa" in rev_mp)
(simp add: split_paired_all)
(erule ns.cases)

(clarify, simp add: secret_def)

(erule disjE, erule disjE, clarsimp)

(drule ok_parts_not_new, simp, simp, simp)
(clarify, drule ok_parts_not_new, simp, simp, simp)

(simp add: secret_def)

(simp add: secret_def)

(rule impI, rule impI, rule impI, rule impI)
(rule impI, rule impI, rule impI, rule impI)
(rule impI, erule tr.induct)

(simp add: secret_def)

(clarify, simp add: secret_def)

(drule notin_analz_insert)

(drule Crypt_insert_synth, simp, simp, simp)
(drule_tac n="nonce s’ Nb" in Crypt_insert_synth, simp, simp, simp,

(erule_tac P="ok evsa R sa" in rev_mp)
(simp add: split_paired_all)
(erule ns.cases)

(clarify, simp add: secret_def)
(drule_tac s=sa and n=Na in ok_parts_not_new, simp, simp, simp)

(clarify, simp add: secret_def)
(drule_tac s=sa and n=Nb in ok_parts_not_new, simp, simp, simp)

(simp add: secret_def)

42242

apply
apply
apply

apply
apply
apply

apply

apply
apply
apply
apply
simp)

apply
apply
apply

apply

apply
apply
apply
apply
apply

BLANQUI’S "GUARD'" CONCEPT: PROTOCOL-INDEPENDENT SECRECY

simp
(rule impI, erule ns.cases)
(simp only: inf_def, blast)

(rule impI, rule impI, rule impI, rule impI)
(rule impI, rule impI, rule impI, rule impI)
(rule impI, erule tr.induct)

(simp add: secret_def)

(clarify, simp add: secret_def)

(drule notin_analz_insert)

(drule_tac n="nonce s’ Nb" in Crypt_insert_synth, simp, simp, simp)
(drule_tac n="nonce s’ Nb" in Crypt_insert_synth, simp, simp, simp,

(erule_tac P="ok evsa R sa" in rev_mp)
(simp add: split_paired_all)
(erule ns.cases)

(simp add: secret_def)

(clarify, simp add: secret_def)

(erule disjE, erule disjE, clarsimp, clarsimp)

(drule_tac s=sa and n=Nb in ok_parts_not_new, simp, simp, simp)
(erule disjE, clarsimp)

(drule_tac s=sa and n=Nb in ok_parts_not_new, simp, simp, simp)

by (simp_all add: secret_def)

end

42

Blanqui’s "guard" concept: protocol-independent
secrecy

theory Auth_Guard_Public
imports

P1
P2

Guard_NS_Public
Proto

begin

end

	Theory of Agents and Messages for Security Protocols
	Inductive Definition of All Parts of a Message
	Inverse of keys
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 keysFor operator
	Inductive relation "parts"
	Unions
	Idempotence and transitivity
	Rewrite rules for pulling out atomic messages

	Inductive relation "analz"
	General equational properties
	Rewrite rules for pulling out atomic messages
	Idempotence and transitivity

	Inductive relation "synth"
	Unions
	Idempotence and transitivity
	Combinations of parts, analz and synth
	For reasoning about the Fake rule in traces

	HPair: a combination of Hash and MPair
	Freeness
	Specialized laws, proved in terms of those for Hash and MPair

	The set of key-free messages
	Tactics useful for many protocol proofs

	Theory of Events for Security Protocols
	Function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 knows
	Knowledge of Agents
	Asymmetric Keys
	Basic properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 pubEK and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 priEK
	"Image" equations that hold for injective functions
	Symmetric Keys
	Initial States of Agents
	Function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 knows Spy
	Fresh Nonces
	Supply fresh nonces for possibility theorems
	Specialized Rewriting for Theorems About 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 analz and Image
	Specialized Methods for Possibility Theorems

	Needham-Schroeder Shared-Key Protocol
	Inductive proofs about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nsshared
	Forwarding lemmas, to aid simplification
	Lemmas concerning the form of items passed in messages
	Session keys are not used to encrypt other session keys
	The session key K uniquely identifies the message
	Crucial secrecy property: Spy doesn't see the keys sent in NS2

	Guarantees available at various stages of protocol
	Lemmas for reasoning about predicate "Issues"
	Guarantees of non-injective agreement on the session key, and of key distribution. They also express forms of freshness of certain messages, namely that agents were alive after something happened.

	The Kerberos Protocol, BAN Version
	Lemmas for reasoning about predicate "Issues"
	Lemmas concerning the form of items passed in messages
	Non-temporal guarantees, explicitly relying on non-occurrence of oops events - refined below by temporal guarantees
	Temporal guarantees, relying on a temporal check that insures that no oops event occurred. These are available in the sense of goal availability
	Treatment of the key distribution goal using trace inspection. All guarantees are in non-temporal form, hence non available, though their temporal form is trivial to derive. These guarantees also convey a stronger form of authentication - non-injective agreement on the session key

	The Kerberos Protocol, BAN Version, with Gets event
	Lemmas concerning the form of items passed in messages
	Non-temporal guarantees, explicitly relying on non-occurrence of oops events - refined below by temporal guarantees
	Temporal guarantees, relying on a temporal check that insures that no oops event occurred. These are available in the sense of goal availability
	Combined guarantees of key distribution and non-injective agreement on the session keys

	The Kerberos Protocol, Version IV
	Lemmas about lists, for reasoning about Issues
	Lemmas about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 authKeys
	Forwarding Lemmas
	Lemmas for reasoning about predicate "before"
	Regularity Lemmas
	Authenticity theorems: confirm origin of sensitive messages
	Reliability: friendly agents send something if something else happened
	Unicity Theorems
	Lemmas About the Predicate 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 AKcryptSK
	Secrecy Theorems
	Parties authentication: each party verifies "the identity of another party who generated some data" (quoted from Neuman and Ts'o).
	Key distribution guarantees An agent knows a session key if he used it to issue a cipher. These guarantees also convey a stronger form of authentication - non-injective agreement on the session key

	The Kerberos Protocol, Version IV
	Lemmas about reception event
	Lemmas about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 authKeys
	Forwarding Lemmas
	Regularity Lemmas
	Authenticity theorems: confirm origin of sensitive messages
	Reliability: friendly agents send something if something else happened
	Unicity Theorems
	Lemmas About the Predicate 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 AKcryptSK
	Secrecy Theorems
	2. Parties' strong authentication: non-injective agreement on the session key. The same guarantees also express key distribution, hence their names

	The Kerberos Protocol, Version V
	Lemmas about lists, for reasoning about Issues
	Lemmas about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 authKeys
	Forwarding Lemmas
	Regularity Lemmas
	Authenticity theorems: confirm origin of sensitive messages
	Reliability: friendly agents send something if something else happened
	Unicity Theorems
	Lemmas About the Predicate 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 AKcryptSK
	Secrecy Theorems
	Authentication
	Parties' knowledge of session keys
	Novel guarantees, never studied before

	The Original Otway-Rees Protocol
	Towards Secrecy: Proofs Involving 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 analz
	Authenticity properties relating to NA
	Authenticity properties relating to NB

	The Otway-Rees Protocol as Modified by Abadi and Needham
	Proofs involving analz
	Authenticity properties relating to NA
	Authenticity properties relating to NB

	The Otway-Rees Protocol: The Faulty BAN Version
	For reasoning about the encrypted portion of messages
	Proofs involving analz
	Attempting to prove stronger properties

	Bella's version of the Otway-Rees protocol
	Proofs involving analz

	The Woo-Lam Protocol
	The Otway-Bull Recursive Authentication Protocol
	The Yahalom Protocol
	Regularity Lemmas for Yahalom
	Secrecy Theorems
	Security Guarantee for A upon receiving YM3
	Security Guarantees for B upon receiving YM4
	Towards proving secrecy of Nonce NB
	The Nonce NB uniquely identifies B's message.
	A nonce value is never used both as NA and as NB

	Authenticating B to A
	Authenticating A to B using the certificate 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Crypt K Nonce NB

	The Yahalom Protocol, Variant 2
	Inductive Proofs
	Crucial Secrecy Property: Spy Does Not See Key 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 KAB
	Security Guarantee for A upon receiving YM3
	Security Guarantee for B upon receiving YM4
	Authenticating B to A
	Authenticating A to B

	The Yahalom Protocol: A Flawed Version
	Regularity Lemmas for Yahalom
	For reasoning about the encrypted portion of messages
	Secrecy Theorems
	Session keys are not used to encrypt other session keys
	Security Guarantee for A upon receiving YM3
	Security Guarantees for B upon receiving YM4
	The Flaw in the Model
	Basic Lemmas
	About NRO: Validity for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 B
	About NRR: Validity for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 A
	Proofs About 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 subK
	Proofs About 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 conK
	Proving fairness

	Conventional protocols: rely on conventional Message, Event and Public – Shared-key protocols
	The Needham-Schroeder Public-Key Protocol (Flawed)
	Inductive proofs about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nspublic
	Authenticity properties obtained from term NS1
	Authenticity properties obtained from term NS2

	The Needham-Schroeder Public-Key Protocol
	Inductive proofs about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nspublic
	Authenticity properties obtained from term NS1
	Authenticity properties obtained from term NS2
	Overall guarantee for term B

	The TLS Protocol: Transport Layer Security
	Protocol Proofs
	Inductive proofs about tls
	Properties of items found in Notes
	Protocol goal: if B receives CertVerify, then A sent it
	Unicity results for PMS, the pre-master-secret

	Secrecy Theorems
	Protocol goal: serverK(Na,Nb,M) and clientK(Na,Nb,M) remain secure
	Weakening the Oops conditions for leakage of clientK
	Weakening the Oops conditions for leakage of serverK
	Protocol goals: if A receives ServerFinished, then B is present and has used the quoted values PA, PB, etc. Note that it is up to A to compare PA with what she originally sent.
	Protocol goal: if B receives any message encrypted with clientK then A has sent it
	Protocol goal: if B receives ClientFinished, and if B is able to check a CertVerify from A, then A has used the quoted values PA, PB, etc. Even this one requires A to be uncompromised.

	The Certified Electronic Mail Protocol by Abadi et al.
	Proving Confidentiality Results
	The Guarantees for Sender and Recipient

	Conventional protocols: rely on conventional Message, Event and Public – Public-key protocols
	Theory of Events for Security Protocols that use smartcards
	Function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 knows
	Knowledge of Agents

	Theory of smartcards
	Basic properties of shrK
	Function "knows"
	Fresh nonces
	Supply fresh nonces for possibility theorems.
	Specialized Rewriting for Theorems About 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 analz and Image
	Tactics for possibility theorems

	Original Shoup-Rubin protocol
	Bella's modification of the Shoup-Rubin protocol
	Smartcard protocols: rely on conventional Message and on new EventSC and Smartcard
	Extensions to Standard Theories
	Extensions to Theory 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Set
	Extensions to Theory 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 List
	"remove l x" erase the first element of "l" equal to "x"

	Extensions to Theory 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Message
	declarations for tactics
	extract the agent number of an Agent message
	messages that are pairs
	well-foundedness of messages
	lemmas on keysFor
	lemmas on parts
	lemmas on synth
	lemmas on analz
	lemmas on parts, synth and analz
	greatest nonce used in a message
	sets of keys
	keys a priori necessary for decrypting the messages of G
	only the keys necessary for G are useful in analz

	Extensions to Theory 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Event
	general protocol properties
	lemma on knows
	knows without initState
	decomposition of knows into knows' and initState
	knows' is finite
	monotonicity of knows
	maximum knowledge an agent can have includes messages sent to the agent
	basic facts about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 knowsmax
	used without initState
	monotonicity of used
	lemmas on used and knows
	a nonce or key in a message cannot equal a fresh nonce or key
	message of an event

	Decomposition of Analz into two parts
	messages that do not contribute to analz
	basic facts about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 pparts
	facts about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 pparts and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 parts
	facts about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 pparts and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 analz
	messages that contribute to analz
	basic facts about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 kparts
	facts about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 kparts and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 parts
	facts about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 kparts and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 analz
	analz is pparts + analz of kparts

	Protocol-Independent Confidentiality Theorem on Nonces
	basic facts about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 guard
	guarded sets
	basic facts about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Guard
	set obtained by decrypting a message
	number of Crypt's in a message
	basic facts about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 cryptnb
	number of Crypt's in a message list
	basic facts about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 cnb
	list of kparts
	list corresponding to "decrypt"
	basic facts about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 decrypt
	if the analyse of a finite guarded set gives n then it must also gives one of the keys of Ks
	if the analyse of a finite guarded set and a (possibly infinite) set of keys gives n then it must also gives Ks

	protocol-independent confidentiality theorem on keys
	basic facts about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 guardK
	guarded sets
	basic facts about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 GuardK
	set obtained by decrypting a message
	number of Crypt's in a message
	basic facts about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 cryptnb
	number of Crypt's in a message list
	basic facts about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 cnb
	list of kparts
	list corresponding to "decrypt"
	basic facts about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 decrypt
	Basic properties of shrK
	Function "knows"
	Fresh nonces
	Supply fresh nonces for possibility theorems.
	Specialized Rewriting for Theorems About 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 analz and Image
	Tactics for possibility theorems

	lemmas on guarded messages for protocols with symmetric keys
	Extensions to Theory 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Shared
	a little abbreviation
	agent associated to a key
	basic facts about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 initState
	sets of symmetric keys
	sets of good keys

	Proofs About Guarded Messages
	small hack
	guardedness results on nonces
	guardedness results on keys
	regular protocols

	Otway-Rees Protocol
	messages used in the protocol
	definition of the protocol
	declarations for tactics
	general properties of or
	or is regular
	guardedness of KAB
	guardedness of NB

	Yahalom Protocol
	messages used in the protocol
	definition of the protocol
	declarations for tactics
	general properties of ya
	guardedness of KAB
	session keys are not symmetric keys
	ya2' implies ya1'
	uniqueness of NB
	ya3' implies ya2'
	ya3' implies ya3
	guardedness of NB

	Blanqui's "guard" concept: protocol-independent secrecy
	Extensions to Theory 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Public
	signature
	agent associated to a key
	basic facts about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 initState
	sets of private keys
	sets of good keys
	greatest nonce used in a trace, 0 if there is no nonce
	function giving a new nonce

	Proofs About Guarded Messages
	small hack necessary because priK is defined as the inverse of pubK
	guardedness results
	regular protocols

	Lists of Messages and Lists of Agents
	Implementation of Lists by Messages
	nil is represented by any message which is not a pair
	induction principle
	head
	tail
	length
	membership
	delete an element
	concatenation
	replacement
	ith element
	insertion
	truncation

	Agent Lists
	set of well-formed agent-list messages
	basic facts about agent lists

	Protocol P1
	Protocol Definition
	offer chaining: B chains his offer for A with the head offer of L for sending it to C
	agent whose key is used to sign an offer
	nonce used in an offer
	next shop
	anchor of the offer list
	request event
	propose event
	protocol
	Composition of Traces
	Valid Offer Lists
	basic properties of valid
	offers of an offer list
	the originator can get the offers
	list of offers
	list of agents whose keys are used to sign a list of offers
	builds a trace from an itinerary
	there is a trace in which the originator receives a valid answer

	properties of protocol P1
	strong forward integrity: except the last one, no offer can be modified
	insertion resilience: except at the beginning, no offer can be inserted
	truncation resilience: only shop i can truncate at offer i
	declarations for tactics
	get components of a message
	general properties of p1
	private keys are safe
	general guardedness properties
	guardedness of messages
	Nonce uniqueness
	requests are guarded
	propositions are guarded
	data confidentiality: no one other than the originator can decrypt the offers
	non repudiability: an offer signed by B has been sent by B

	Protocol P2
	Protocol Definition
	offer chaining: B chains his offer for A with the head offer of L for sending it to C
	agent whose key is used to sign an offer
	nonce used in an offer
	next shop
	anchor of the offer list
	request event
	propose event
	protocol
	valid offer lists
	basic properties of valid
	list of offers

	Properties of Protocol P2
	strong forward integrity: except the last one, no offer can be modified
	insertion resilience: except at the beginning, no offer can be inserted
	truncation resilience: only shop i can truncate at offer i
	declarations for tactics
	get components of a message
	general properties of p2
	private keys are safe
	general guardedness properties
	guardedness of messages
	Nonce uniqueness
	requests are guarded
	propositions are guarded
	data confidentiality: no one other than the originator can decrypt the offers
	forward privacy: only the originator can know the identity of the shops
	non repudiability: an offer signed by B has been sent by B

	Needham-Schroeder-Lowe Public-Key Protocol
	messages used in the protocol
	definition of the protocol
	declarations for tactics
	general properties of nsp
	nonce are used only once
	guardedness of NA
	guardedness of NB
	Agents' Authentication

	Other Protocol-Independent Results
	protocols
	substitutions
	nonces generated by a rule
	traces generated by a protocol
	general properties
	types
	introduction of a fresh guarded nonce
	safe keys
	guardedness preservation
	monotonic keyfun
	guardedness theorem
	useful properties for guardedness
	unicity
	Needham-Schroeder-Lowe
	general properties
	guardedness for NSL
	unicity for NSL

	Blanqui's "guard" concept: protocol-independent secrecy

