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Chapter 1

Linear Algebra

theory L2 Norm
imports Complex Main
begin

1.1 L2 Norm

definition L2 _set :: (‘a = real) = 'a set = real where
L2 setfA = sqrt (D icA. (fi)?)

proposition L2 set triangle ineq:
L2 set (\i. fi+gi) A< L2 setfA+ L2 setgA

end

1.2 Inner Product Spaces and Gradient Derivative

theory Inner_Product
imports Complex_Main
begin

1.2.1 Real inner product spaces

class real_inner = real_vector + sgn__div_norm + dist_norm + uniformity_ dist
+ open__uniformity +

fixes inner :: 'a = 'a = real

assumes inner__commaute: inner T Yy = inner y T

and inner_add_left: inner (z + y) z = inner x z + inner y z

and inner_scaleR_left [simp]: inner (scaleR v x) y = 1 * (inner x y)

and inner_ge_zero [simp]: 0 < inner x x

and inner_eq_zero_iff [simp]: inner x x = 0 +— =0

and norm__eq_sqrt_inner: norm x = sqrt (inner x x)
begin

23
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1.2.2 Class instances

instantiation real :: real inner
begin

instantiation complex :: real inner
begin

1.2.3 Gradient derivative

definition
gderiv :: ['a::real _inner = real, 'a, 'a] = bool
(«(«notation=<mizfit GDERIV»s GDERIV (_)/ (_)/ > (_))» [1000, 1000, 60]
60)
where

GDERIV fx :> D <— FDERIV fx :> (Ah. inner h D)

end

1.3 Cartesian Products as Vector Spaces

theory Product_Vector
imports
Complex__Main
HOL— Library.Product__Plus
begin

1.3.1 Product is a Module

lemma scale_prod: scale z (a, b) = (s1 = a, s2 x b)

sublocale p: module scale

1.3.2 Product is a Real Vector Space

instantiation prod :: (real_vector, real_vector) real_vector
begin

proposition scaleR__Pair [simp]: scaleR r (a, b) = (scaleR r a, scaleR r b)

1.3.3 Product is a Metric Space
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class uniform__topological _monoid__add = topological monoid_add + uniform__space
+

assumes uniformly continuous _add"”:

filterlim (A((a,b), (¢,d)). (a + ¢, b+ d)) uniformity (uniformity X p uniformity)

class uniform__topological__group add = topological _group add + uniform__topological _monoid__add
+
assumes uniformly_ continuous_uminus’: filterlim (A(a, b). (—a, —b)) uniformity
uniformity
begin

instantiation prod :: (metric_space, metric_space) metric__space
begin

proposition dist_Pair_Pair: dist (a, b) (¢, d) = sqrt ((dist a ¢)* + (dist b d)?)

1.3.4 Product is a Complete Metric Space

instance prod :: (complete_space, complete_space) complete__space

1.3.5 Product is a Normed Vector Space

instantiation prod :: (real _normed_vector, real _normed_vector) real _normed__vector
begin

proposition norm_ Pair: norm (a, b) = sqrt ((norm a)? + (norm b)?)
instance prod :: (banach, banach) banach
proposition has_derivative_Pair [derivative_intros]:

assumes f: (f has_derivative f') (at x within s)

and g¢: (g has_derivative g') (at x within s)
shows ((Az. (f z, g z)) has_derivative (Ah. (f' h, g’ h))) (at z within s)

1.3.6 Product is Finite Dimensional

proposition dim__ Times:
assumes vs1.subspace S vs2.subspace T
shows p.dim(S x T) = vsl.dim S + vs2.dim T

end
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1.4 Finite-Dimensional Inner Product Spaces

theory Fuclidean_Space
imports
L2 Norm
Inner Product
Product_Vector
begin

1.4.1 Type class of Euclidean spaces

class euclidean__space = real _inner +
fixes Basis :: 'a set
assumes nonempty_Basis [simp]: Basis # {}
assumes finite_Basis [simp]: finite Basis
assumes inner_Basis:
[u € Basis; v € Basis] = inner u v = (if u = v then 1 else 0)
assumes euclidean__all_zero_iff:
(V u€Basis. inner z u = 0) <— (z = 0)

1.4.2 Class instances

instantiation real :: euclidean__space

begin

instantiation complex :: euclidean__space

begin

instantiation prod :: (real inner, real inner) real inner
begin

instantiation prod :: (euclidean_space, euclidean space) euclidean__space
begin

1.4.3 Locale instances

end

1.5 Elementary Linear Algebra on Euclidean Spaces

theory Linear Algebra
imports

FEuclidean__Space

HOL—- Library.Infinite__Set
begin
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1.5.1 Substandard Basis
1.5.2 Orthogonality

definition (in real inner) orthogonal z y <— z - y = 0

1.5.3 Orthogonality of a transformation

definition orthogonal _transformation f +— linear f A Vo w. fv - fw= v+ w)

1.5.4 Bilinear functions

definition
bilinear :: ('a::real_vector = 'b:real _vector = 'c::real _wvector) = bool where
bilinear f <— (V. linear (Ay. fz y)) A (Vy. linear (Az. fz y))

1.5.5 Adjoints

definition adjoint :: (('a::real _inner) = ('b::real_inner)) = 'b = 'a where
adjoint f = (SOME f'"Vzy. fz-y=xz-f"y)

1.5.6 Infinity norm

definition infrnorm (z::’a::euclidean_space) = Sup {|z - b| |b. b € Basis}

1.5.7 Collinearity

definition collinear :: 'a::real wvector set = bool
where collinear S «+— (Ju.Vz € S.V y€ S. Jec.z — y = ¢ xg u)

1.5.8 Properties of special hyperplanes

proposition dim__hyperplane:
fixes a :: 'a::euclidean__space
assumes a #
shows dim {z. a - © = 0} = DIM('a) — 1

1.5.9 Orthogonal bases and Gram-Schmidt process

proposition Gram__Schmidt_step:
fixes S :: 'a::euclidean__space set
assumes S: pairwise orthogonal S and z: x € span S


Linear{_}{\kern 0pt}Algebra.html

28

shows orthogonal z (a — (D b€S. (b-a / (b- D)) *r b))

proposition orthogonal extension:
fixes S :: ‘a::euclidean_space set
assumes S: pairwise orthogonal S
obtains U where pairwise orthogonal (S U U) span (S U U) = span (S U T)

1.5.10 Decomposing a vector into parts in orthogonal sub-
spaces

proposition orthonormal basis_subspace:
fixes S :: ‘a :: euclidean_space set
assumes subspace S
obtains B where B C S pairwise orthogonal B
and A\z. z € B= normz = 1
and independent B card B = dim S span B = S

proposition dim__orthogonal sum:
fixes A :: 'a::euclidean__space set
assumes A\zy. [z € A;ye Bl = z-y=10
shows dim(A U B) = dim A + dim B

1.5.11 Linear functions are (uniformly) continuous on any
set

end

1.6 Affine Sets

theory Affine
imports Linear__Algebra
begin

1.6.1 Affine set and affine hull

definition affine :: ‘a::real _vector set = bool
where affine S +— (VzeS. VyeS. Vuv.u+v=1—uxgz+v*gyc€s)
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1.6.2 Affine Dependence

definition affine_dependent :: 'a::real_vector set = bool
where affine_dependent S «— (3z€S. © € affine hull (S — {z}))

proposition affine_ dependent__explicit:
affine__dependent p <—
(3SU. finite SANSCpAsumUS=0A(3veS. Uv#0)Asum (Av. Uv
*R U) S = 0)

proposition extend_to_ affine_basis:

fixes S V :: 'niireal wvector set

assumes - affine_dependent S S C V

obtains T where — affine _dependent T S C T T C V affine hull T = affine
hull V

1.6.3 Affine Dimension of a Set

definition aff dim :: (‘a::euclidean__space) set = int
where aoff _dim V =
(SOME d :: int.
3 B. affine hull B = affine hull V- A — affine__dependent B A of nat (card B)
=d+1)

end

1.7 Convex Sets and Functions

theory Convez
imports

Affine HOL— Library.Set_ Algebras HOL— Library. FuncSet
begin

1.7.1 Convex Sets

definition convez :: ‘a::real _vector set = bool
where conver s «— (Vz€s. Vyes. Vu>0.Vv>0. u +v=1— u*gz+ v
*R Y € 5)

1.7.2 Convex Functions on a Set

definition conver_on :: 'a::real_vector set = ('a = real) = bool
where convexr_on S f <— convex S A
(VzeS. VyeS. Vu>0.Yv>0. u+v=1— f(usprz+vxgy) <uxfz
+ v * fy)
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definition concave_on :: ‘a::real vector set = ('a = real) = bool
where concave_on S f = conver_on S (A\z. — f )

1.7.3 Convexity of the generalised binomial
1.7.4 Some inequalities: Applications of convexity
1.7.5 Misc related lemmas

1.7.6 Cones

definition cone :: ‘a::real vector set = bool
where cone s +— (Vz€s. Vc>0. ¢ xg © € 3)

proposition cone hull _expl: cone hull S = {c*g x| cx. ¢ > 0 Nz € S}
(is ?lhs = ?rhs)

1.7.7 Convex hull

proposition convex_hull_indexed:
fixes S :: 'a::real vector set
shows convex hull S =
{y. Jk vz (Vie{lunat .. k}. 0 <uiAziel) A
(sumu {1.k}=1)ANO i=1.k uix*gai) =y}
(is Pzyz = ?hull)

1.7.8 Caratheodory’s theorem

theorem caratheodory:
convex hull p =
{z::'a::euclidean__space. 3S. finite S NS C p A card S < DIM('a) + 1 ANz €
conver hull S}

1.8 Conic sets and conic hull

1.9 Convex cones and corresponding hulls

1.9.1 Radon’s theorem

theorem Radon:
assumes affine_dependent c
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obtains M P where M C ¢ P C ¢ M N P = {} (convex hull M) N (convex hull
P) # {}

1.9.2 Helly’s theorem

theorem Helly:
fixes F :: 'a::euclidean space set set
assumes card F > DIM('a) + 1 Vs€F. convex s
and At. [tCF; card t = DIM('a) + 1] = Nt # {}
shows N F # {}

1.9.3 Epigraphs of convex functions

definition epigraph S (f :: _ = real) = {zy. fst zy € S A [ (fst zy) < snd zy}

end

1.10 Definition of Finite Cartesian Product Type

theory Finite Cartesian_ Product
imports
Euclidean_Space
L2 Norm
HOL— Library. Numeral__ Type
HOL- Library. Countable__Set
HOL— Library. FuncSet
begin

1.10.1 Cardinality of vectors

proposition CARD_vec [simp]:

CARD('a™b) = CARD('a) ~ CARD('b)
instantiation vec :: (zero, finite) zero
begin

instantiation vec :: (plus, finite) plus
begin

instantiation vec :: (minus, finite) minus
begin

instantiation vec :: (uminus, finite) uminus
begin

instantiation vec :: (times, finite) times
begin
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instantiation vec :: (one, finite) one
begin

instantiation vec :: (ord, finite) ord
begin

1.10.2 Real vector space

definition scaleR = (A r z. (x i. scaleR r (2$7)))

1.10.3 Topological space

definition [code del]:
open (S :: ('a 7'b) set) «—
(VzeS. FA. (Vi. open (A i) N aSi € Ai) A
Vy. (Vi.y$i € Ai) — y€9))

1.10.4 Metric space

definition
dist vy = L2 set (\i. dist (z$1) (y$i)) UNIV

definition [code del]:
(uniformity = (('a™b::_) x (Ya™ b)) filter) =
(INF ec{0 <..}. principal {(z, y). dist z y < e})

proposition dist_vec_nth_le: dist (z $ i) (y $4) < distz y
1.10.5 Normed vector space

definition norm ¢ = L2_set (Ai. norm (2$7)) UNIV
definition sgn (2::'a™'b) = scaleR (inverse (norm z))
1.10.6 Inner product space

definition inner x y = sum (\i. inner (z$¢) (y$i)) UNIV
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1.10.7 Euclidean space
definition azis k © = (x 4. if i = k then z else 0)

definition Basis = (4. |J u€Basis. {azis i u})

proposition DIM__cart [simp]: DIM('a™b) = CARD('b) * DIM('a)

1.10.8 Matrix operations

definition map matriz::(‘'a = 'b) = (('a, "i::finite)vec, 'j::finite) vec = (('b,
'iYvec, 'j) vec where
map_matriz fz = (x ij. f (z $¢$ 7))

definition matriz_matric_mult :: ('a::semiring 1) “n"'m = 'a p7'n = ‘a T
/p A/m
(infix] x> 70)
where m «x m’ == (x i 7. sum (Ak. ((m$9)$k) = ((m'$k)3$5)) (UNIV :: 'n set))

2'a T 'p T'm

n="'a 'm

)

definition matriz_vector _mult :: (‘a::semiring_1) “'n"'m = 'a
(infix] <xvy 70)
where m xv z = (x 7. sum (Aj. (m$7)$7) = (285)) (UNIV ::'n set)) :: 'a”’'m
definition vector _matriz_mult :: 'a = 'm = (‘a::semiring_1) “'n"'m = 'a “'n
(infix] (vx) 70)
where v v« m == (x j. sum (Ai. ((v$7) * (m$9)$5)) (UNIV :: 'm set)) :: 'a”'n
definition matriz :: (‘a:{plus,times, one, zero} 'm = 'a " ’'n) = ‘a7'mn
where matriz f = (x i j. (f(azis j 1))$1)

1.10.9 Inverse matrices (not necessarily square)

definition
invertible(A::'a::semiring_17'n"'m) +— (FA"a7mn. A xx A’ = mat 1 N A’
xx A = mat 1)

definition
matriz_inv(A: 'a::semiring_17'n"'m) =

(SOME A":'a”'/m™n. A xx A’ = mat 1 N A" xx A = mat 1)

end

1.11 Linear Algebra on Finite Cartesian Products

theory Cartesian_ Space
imports
HOL— Combinatorics. Transposition
Finite Cartesian__ Product
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Linear__Algebra
begin

1.11.1 Some interesting theorems and interpretations

1.11.2 Rank of a matrix

definition rank :: 'a:field 'n"'m=>nat
where row_rank_def gen: rank A = vec.dim(rows A)

1.11.3 Orthogonality of a matrix

definition orthogonal_matriz (Q::'a::semiring_1"n"'n) +—
transpose @ *x Q = mat 1 N\ @Q *x transpose ) = mat 1

proposition orthogonal _matriz_mul:
fixes A :: real “'n"'n
assumes orthogonal _matriz A orthogonal _matrix B

shows orthogonal_matriz(A *x B)

proposition orthogonal transformation_matriz:
fixes f:: real™'n = real™'n
shows orthogonal__transformation f «— linear f A orthogonal_matriz(matriz f)
(is 2lhs <— ?rhs)

1.11.4 Finding an Orthogonal Matrix

proposition orthogonal matriz_exists basis:
fixes a :: real”™'n
assumes norm a = 1
obtains A where orthogonal _matric A A xv (azis k 1) = a

proposition orthogonal_transformation__exists:
fixes a b :: real'n
assumes norm a = norm b
obtains f where orthogonal_transformation f fa = b
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1.11.5 Scaling and isometry

proposition scaling linear:

fixes f :: 'a:real_inner = 'a::real_inner

assumes f0: f0 = 0

and fd: Vz y. dist (fz) (fy) =cx distzy

shows linear f
proposition orthogonal transformation_isometry:

orthogonal__transformation f <— f(0::'a:real_inner) = (0::'a) A (Vzx y. dist(f
z) (fy) = dist z y)

1.11.6 Induction on matrix row operations

end

1.12 Traces and Determinants of Square Matrices

theory Determinants

imports
HOL— Combinatorics. Permutations
Cartesian__Space

begin

1.12.1 Trace

definition trace :: ‘a::semiring 1"'n"'n = 'a
where trace A = sum (Ai. ((A$:)$7)) (UNIV::'n set)

Definition of determinant

definition det:: ‘a::comm_ring 17'n"'n = ’'a where
det A =
sum (Ap. of _int (sign p) x prod (Ni. A$iSp i) (UNIV :: 'n set))
{p. p permutes (UNIV :: 'n set)}
proposition det diagonal:
fixes A :: 'a::comm_ring_1"'n"'n
assumes Ild: \ij. i #j = A$i$j = 0
shows det A = prod (\i. A$i$i) (UNIV::'n set)

proposition det_matriz_scaleR [simp]: det (matriz (((xg) 7)) :: real 'n"'n) = r
~ CARD('n::finite)

proposition det mul:
fixes A B :: ‘a::comm_ring _1"7'n"'n
shows det (A xx B) = det A x det B
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1.12.2 Relation to invertibility

proposition invertible det nz:
fixes A::’a::{field} 'n"'n
shows invertible A «— det A # 0

Invertibility of matrices and corresponding linear functions

1.12.3 Cramer’s rule

proposition cramer_lemma:

fixes A :: 'a::{field} "n"'n

shows det((x 7 j. if j = k then (A v 2)$i else A$i87):: ‘a::{field} "'n""'n) = z8k
x det A

proposition cramer:
fixes A ::'a::{field} 'n"n
assumes d0: det A # 0
shows A xvz =b+— x = (x k. det(x i j. if j=Fk then b%i else A$i$j) / det A)

proposition det_orthogonal _matrix:
fixes Q:: 'a:linordered_idom™'n"'n
assumes o0(): orthogonal _matrix @
shows det Q = 1 V det Q = — 1

proposition orthogonal _transformation__det [simp]:
fixes [ :: real”'n = real'n
shows orthogonal__transformation f = |det (matriz f)| = 1

1.12.4 Rotation, reflection, rotoinversion

definition rotation_matriz Q <— orthogonal _matrix Q N det QQ = 1
definition rotoinversion_matriz Q <— orthogonal matriz Q@ N det Q = — 1

end

1.13 Operators involving abstract topology

theory Abstract_Topology
imports
Complex_Main
HOL— Library.Set_Idioms
HOL— Library. FuncSet
begin



Abstract__Topology.thy 37

1.13.1 General notion of a topology as a value

definition istopology :: ('a set = bool) = bool where
istopology L= WS T.LS — LT —L(SNT)ANVK VKeK. LK) —

L (UK))

typedef ’a topology = {L::('a set) = bool. istopology L}
morphisms openin topology
proposition openin__clauses:
fixes U :: 'a topology
shows
openin U {}
NS T. openin U S = openin U T = openin U (SNT)
NK. (VS € K. openin U S) = openin U (|JK)
definition closedin :: 'a topology = 'a set = bool where
closedin U S «— S C topspace U A openin U (topspace U — S)

1.13.2 The discrete topology
1.13.3 Subspace topology

definition subtopology :: 'a topology = 'a set = 'a topology
where subtopology U V = topology (AT.3S. T =S N V A openin U S)

1.13.4 The canonical topology from the underlying type class

abbreviation euclidean :: 'a::topological__space topology
where euclidean = topology open

1.13.5 Basic "localization" results are handy for connected-
ness.

1.13.6 Derived set (set of limit points)

1.13.7 Closure with respect to a topological space
1.13.8 Frontier with respect to topological space
1.13.9 Locally finite collections

1.13.10 Continuous maps
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lemma continuous map__ alt:

continuous_map T1 T2 f

= ((VU. openin T2 U — openin T1 (f —° U N topspace T1)) A f € topspace
T1 — topspace T2)

1.13.11 Open and closed maps (not a priori assumed contin-
uous)

1.13.12 Quotient maps
1.13.13 Separated Sets

1.13.14 Homeomorphisms

1.13.15 Relation of homeomorphism between topological spaces
1.13.16 Connected topological spaces
1.13.17 Compact sets

proposition compact__space_ fip:
compact__space X +—
(VU. (VCeU. closedin X C) N (VF. finite FANF CU — F #{}) —
Nu #{})

(is _ = ?rhs)

corollary compactin__ fip:
compactin X § <—
S C topspace X A
(VU. (VY CelU. closedin X C) N (VF. finite FANFCU — SNNOF #{}) —
Snnu#{})

corollary compact_space__imp_ nest:
fixes C :: nat = 'a set
assumes compact_space X and clo: A\n. closedin X (C n)
and ne: An. Cn # {} and dec: decseq C

shows ((n. Cn) # {}
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1.13.18 Embedding maps

1.13.19 Retraction and section maps

1.13.20 Continuity

1.13.21 The topology generated by some (open) subsets
1.13.22 Topology bases and sub-bases

1.13.23 Continuity via bases/subbases, hence upper and lower
semicontinuity

1.13.24 Pullback topology

definition pullback_topology::('a set) = (‘a = 'b) = ('b topology) = ('a topology)
where pullback_topology A f T = topology (AS. 3U. openin T U N S = f—U
nA)

proposition continuous_map__pullback [intro]:

assumes continuous_map T1 T2 g

shows continuous_map (pullback_topology A f T1) T2 (g o f)
proposition continuous_map__pullback’ [introl:

assumes continuous_map T1 T2 (f o g) topspace T1 C g—‘A
shows continuous_map T1 (pullback topology A f T2) g

1.13.25 Proper maps (not a priori assumed continuous)

1.13.26 Perfect maps (proper, continuous and surjective)

end

1.14 [F-Sigma and G-Delta sets in a Topological
Space
theory FSigma

imports Abstract_ Topology
begin

end
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1.15 Disjoint sum of arbitarily many spaces
theory Sum__ Topology

imports Abstract_Topology
begin

end



Chapter 2

Topology

theory Elementary Topology

imports
HOL- Library.Set__Idioms
HOL— Library.Disjoint__Sets
Product__Vector

begin

2.1 Elementary Topology

2.1.1 Topological Basis

definition topological basis B <—
(VbeB. open b) A (Vz. open x — (3B’. B'C BA|JB' = 1))

2.1.2 Countable Basis

locale countable basis = topological space p for p::'a set = bool +
fixes B :: 'a set set
assumes is_basis: topological basis B
and countable basis: countable B
begin

class second__countable topology = topological space +
assumes ex__countable _subbasis:
3 B::'a set set. countable B N\ open = generate__topology B
begin

proposition Lindelof:
fixes F :: 'a::second__countable_topology set set
assumes F: \S. S € F = open S
obtains ' where 7' C F countable F'|JF' = F

41
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2.1.3 Polish spaces

class polish__space = complete_space + second__countable topology

2.1.4 Limit Points

definition (in topological space) islimpt:: 'a = 'a set = bool (infixr <islimpt)
60)
where z islimpt S +— (VT. 2z€T — open T — (yeS. yeT A y#x))

2.1.5 Interior of a Set

definition interior :: (‘a::topological space) set = 'a set where
interior S = J{T. open T AN T C S}

2.1.6 Closure of a Set

definition closure :: (‘a::topological _space) set = 'a set where
closure S = S U {z . z islimpt S}

2.1.7 Frontier (also known as boundary)

definition frontier :: (‘a::topological _space) set = 'a set where
frontier S = closure S — interior S

2.1.8 Limits
2.1.9 Compactness

proposition Heine Borel _imp_Bolzano_ Weierstrass:
assumes compact S
and infinite T
and T C S
shows Jz € S. z islimpt T

definition countably compact :: ('a::topological _space) set = bool where
countably compact U +—
(VA. countable A — (Va€A. open a) — U C |JA
— (3TCA. finite TANU CUT))

proposition countably compact imp_compact_second__countable:
countably _compact U => compact (U :: 'a :: second__countable topology set)
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definition seq compact :: 'a::topological _space set = bool where
seq__compact S <—
(Vf. Vn. fnel) — (FleS. Trinat=nat. strict_mono r A (f o r) ——

)

proposition Bolzano Weierstrass imp_seq compact:
fixes S :: ‘a::{t1_space, first_countable_topology} set
shows (AT. [infinite T; T C S| =3z € S. zislimpt T) = seq_compact S

2.1.10 Continuity

2.1.11 Homeomorphisms

definition homeomorphism S T f g +—
(VzeS. (g(fz) =2) AN(f*S = T) A continuous_on S f A
MyeT. (f(gy) =y) A(g “T =S5) A continuous_on T ¢

definition homeomorphic :: 'a::topological _space set = 'b::topological_space set
= bool
(infixr <homeomorphicy 60)
where s homeomorphic t = (3 f g. homeomorphism s t f g)

end
theory Abstract Limits
imports
Abstract__Topology
begin
2.1.12 nhdsin and atin

2.1.13 Limits in a topological space

2.1.14 Pointwise continuity in topological spaces

2.1.15 Combining theorems for continuous functions into the
reals

end

2.2 Non-Denumerability of the Continuum

theory Continuum__Not_Denumerable
imports
Complex__Main
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HOL— Library. Countable__Set
begin

theorem real _non_denum: Af :: nat = real. surj f
corollary complex _non_denum: A f :: nat = complex. surj f

end

2.3 Abstract Topology 2

theory Abstract_Topology 2
imports
Elementary__Topology Abstract_Topology Continuum_ Not_Denumerable
HOL— Library.Indicator _Function
HOL— Library. Equipollence
begin

2.3.1 Closure

corollary infinite_openin:
fixes S :: ‘a :: t1_space set
shows [openin (top_of set U) S; x € S; z islimpt U] = infinite S

2.3.2 Frontier
2.3.3 Compactness
2.3.4 Continuity
2.3.5 Retractions

definition retraction :: (‘a::topological _space) set = 'a set = (‘a = 'a) = bool
where retraction S T r +—
T C S A continuous_on SrAr eSS — TANNzeT. rz= 1)

definition retract_of (infixl <retract’_of» 50) where
T retract_of S <— (3 r. retraction S T r)

2.3.6 Retractions on a topological space

2.3.7 Paths and path-connectedness
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2.3.8 Connected components

2.3.9 Combining theorems for continuous functions into the
reals

2.3.10 A few cardinality results

end
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Chapter 3

Connected Components

theory Connected
imports
Abstract_ Topology_ 2
begin

3.0.1 Connected components, considered as a connectedness

relation or a set

definition connected component S xy = 3 T. connected T N T C S ANz e T A
ye T

3.0.2 The set of connected components of a set

definition components:: ’a::topological _space set = 'a set set
where components S = connected__component_set S ¢S

3.0.3 Lemmas about components

proposition component_diff connected:
fixes S :: 'a::metric_space set
assumes connected S connected U S C U and C: C € components (U — §)
shows connected(U — C)

end

theory Function__Topology
imports
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Elementary__Topology
Abstract_Limits
Connected

begin

3.1 Function Topology

3.1.1 The product topology

definition product_topology::('i = ('a topology)) = ('i set) = (("i = 'a) topology)
where product_topology T I =
topology__generated_by {(Ug i€l. X i) |X. (Vi. openin (T i) (X 7)) A finite {i.
X i # topspace (T i)}}
proposition product_topology:
product__topology X I =
topology
(arbitrary union__of
((finite intersection__of
(AF.3iU.F={f. fie U NieIA openin (X i) U))
relative_to (Ilg i€1. topspace (X 7))))
(is __ = topology (__ union_of ((_ intersection_of ?V) relative_to ?TOP)))

proposition product_topology_open__contains__basis:

assumes openin (product_topology T I) Uz € U

shows 3X. ¢ € (Ilg i€l. X i) A (Vi. openin (T i) (X 7)) A finite {i. X i #
topspace (T i)} AN (Ilg i€l. X i) C U

corollary openin__product_topology__alt:
openin (product_topology X I) S +—
(Vz € S.3U. finite {i € I. Ui # topspace(X i)} A
(Vie I openin (X i) (Ui)) Nz € Pip IUAN Pig IU CS)

corollary closedin__product_topology:
closedin (product_topology X I) (PiE1S) +— PiEIS ={}V (Vi€ I. closedin
(X 4) (51))

corollary closedin__product__topology singleton:
[ € extensional I = closedin (product_topology X I) {f} +— (Vi € I. closedin

(X 0) {fd})

Powers of a single topological space as a topological space, using
type classes

instantiation fun :: (type, topological space) topological space

begin

definition open_ fun_ def:
open U = openin (product_topology (Ai. euclidean) UNIV) U
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proposition product_ topology_basis”:
fixes z::"i = ‘a and U::'i = ('b::topological _space) set
assumes finite I N\i. i € I = open (U i)
shows open {f. Viel. f (zi) € Ui}

Topological countability for product spaces

proposition product_topology_countable_basis:
shows 3 K::(('a::countable = 'b::second__countable__topology) set set).
topological _basis K N countable K A
(VkeK. 3X. (k= Pig UNIV X) A (Vi. open (X 7)) A finite {i. X i #
UNIV})

3.1.2 The Alexander subbase theorem

theorem Alexander subbase:
assumes X: topology (arbitrary union_of (finite intersection_of (Az. © € B)
relative_to |JB)) = X
and fin: AC. [C C B; |JC = topspace X]|] = 3C". finite C' N C' C C A
J C' = topspace X
shows compact_space X

corollary Alexander subbase alt:
assumes U C | B
and fin: NC. [C CB; UCUC] = 3C" finite C' NC'CCANUCYC’
and X: topology
(arbitrary union__ of
(finite intersection_of (Ax. x € B) relative_to U)) = X
shows compact_space X

proposition continuous map__componentwise:

continuous_map X (product_topology Y I) f +—

f ¢ (topspace X) C extensional I A (Vk € I. continuous _map X (Y k) (Az. fz
K)

(is ?lhs <— __ A ?rhs)

proposition open__map_product_projection:
assumes i € |
shows open__map (product_topology Y I) (Y i) (Af. f1)

3.1.3 Open Pi-sets in the product topology

proposition openin_ PiE_gen:
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openin (product_topology X I) (PiE I S) «—

PiEIS ={}V

finite {i € I. S i # topspace (X i)} A (Vi € I. openin (X i) (S 7))
(is ?lhs <— __ V 2rhs)

corollary openin_ PiFE:
finite I = openin (product_topology X I) (PiET1S) +— PiEIS ={}V (Vi
€ I. openin (X ©) (S 7))

proposition compact_space__product__topology:
compact__space(product__topology X I) +—
(product__topology X I) = trivial _topology vV (Vi € I. compact_space(X ©))
(is ?lhs = ?rhs)

corollary compactin_ PiF:
compactin (product_topology X I) (PiE I S) «—
PiETS ={}V (Vi€ I. compactin (X i) (S 1))

3.1.4 Relationship with connected spaces, paths, etc.

proposition connected__space_product__topology:
connected__space(product__topology X I) <—
(3i € I. X i = trivial_topology) V (Vi € I. connected_space(X 1))
(is ?lhs <— Zeq V 2rhs)

3.1.5 Projections from a function topology to a component

3.1.6 Limits

end

3.2 The binary product topology

theory Product_Topology

imports Function_ Topology
begin
3.3 Product Topology

3.3.1 Definition
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3.3.2 Continuity

proposition compact__space__prod__topology:
compact__space(prod__topology X Y) <— (prod__topology X Y') = trivial_topology
V compact__space X N\ compact space Y

3.3.3 Homeomorphic maps

proposition connected_space_prod__topology:

connected__space(prod__topology X V) +—

(prod__topology X Y') = trivial__topology V connected__space X N connected__space
Y (is ?lhs=?rhs)

end

3.4 T1 and Hausdorff spaces

theory T1_ Spaces
imports Product_Topology
begin

3.5 T1 spaces with equivalences to many naturally
"nice" properties.

proposition t1__space product__topology:
t1__space (product_topology X I)
+— (product__topology X I) = trivial_topology vV (Vi € I. t1_space (X 1))

3.5.1 Hausdorff Spaces

end
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3.6 Lindelof spaces
theory Lindelof Spaces

imports T1_Spaces
begin

end



Chapter 4

Functional Analysis

theory Metric_ Arith
imports HOL.Real Vector Spaces

begin

theorem metric_eq thm [THEN HOL.eq_reflection]:
rE€Es=y€s=xz=y<+— (Va€s. dist x a = dist y a)

end
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Chapter 5

Elementary Metric Spaces

theory Elementary Metric_ Spaces
imports
Abstract_ Topology_ 2
Metric_ Arith
begin

5.1 Open and closed balls

definition ball :: ‘a::metric_space = real = 'a set
where ball z ¢ = {y. dist z y < e}

definition cball :: 'a::metric_space = real = 'a set
where cball z ¢ = {y. distx y < €}

definition sphere :: ‘a::metric_space = real = 'a set
where sphere © ¢ = {y. dist x y = ¢}

5.2 Limit Points

5.3 Perfect Metric Spaces
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5.4 Finite and discrete
5.5 Interior

5.6 Frontier

5.7 Limits

proposition Lim: (f —— [) net <— trivial_limit net V (Ve>0. eventually (Az.

dist (fz) 1 < €) net)

proposition Lim_ within_le: (f —— [)(at a within S) «—
(Vex>0.36>0.VzeS. 0 < distza A distxa <6 — dist (fz) | <e)

proposition Lim_ within: (f —— 1) (at a within S) +—
(Ve >0.36>0.YVz € S.0 < distzaNdistza <J— dist (fz)l <e¢)

corollary Lim_ withinl [intro?):

assumes A\ec. e > 0 = 30>0.Vz € S. 0 < dist z a A dist z a < § — dist (f
z)l<e

shows (f —— ) (at a within S)

proposition Lim_at: (f —— 1) (at a) +—
(Ve >0.36>0. V. 0 < distxa ANdistza <06 — dist (fz)l <e)

5.8 Continuity

proposition continuous_within__eps_delta:
continuous (at x within s) f «— (Ve>0.36>0.Vz'e s. distx’ z < § ——> dist

(fz') (fz) <e)

corollary continuous at_eps delta:
continuwous (at x) f +— (Ve > 0.36 > 0. V' dist 2’z < 6 — dist (fz') (f
z) <€)

corollary continuous at_ball:
continuous (at z) f «— (Ve>0.36>0. f  (ball x §) C ball (f z) €)

5.9 Closure and Limit Characterization

5.10 Boundedness

definition (in metric_space) bounded :: 'a set = bool
where bounded S +— (x . VyeS. dist x y < ¢)
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5.11 Compactness

proposition seq compact_imp__totally bounded:

assumes seq__compact S

shows Ve>0. 3k. finite k Ak C S A S C ((Jzek. ball z ¢)
proposition seq compact_imp_Heine_Borel:

fixes S :: 'a :: metric_space set

assumes seq compact S

shows compact S

proposition compact_eq seq compact__metric:
compact (S :: 'a:metric_space set) +— seq_compact S

proposition compact def: — this is the definition of compactness in HOL Light
compact (S :: 'azmetric_space set) «—
~Vf. (Yn. fneS) — (3leS. Irunat=nat. strict_mono r A (f o r) ——
)
proposition compact_eq Bolzano__ Weierstrass:
fixes S :: 'a::metric_space set
shows compact S +— (VT. infinite TN T C S — (Fz € S. xislimpt T))

proposition Bolzano_ Weierstrass__itmp__bounded:
(AT. [infinite T; T C S| = (3z € S. z islimpt T)) = bounded S

5.12 Banach fixed point theorem

theorem Banach_fix:
assumes S: complete S S # {}
and c: 0 < cec< 1
and f: f‘SCS
and lipschitz: Nz y. [z€S; yeS] = dist (fz) (fy) < cx distz y
shows JlzeS. fz ==z

5.13 Edelstein fixed point theorem

theorem Fdelstein_ fiz:
fixes S :: 'a::metric_space set
assumes S: compact S S # {}
and gs: (g ©S) C S
and dist: Az y. [2€5; yeS]| = 2 # y —> dist (g z) (gy) < dist z y
shows JlzeS. gz ==z

5.14 The diameter of a set

definition diameter :: ‘a::metric_space set = real where
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diameter S = (if S = {} then 0 else SUP (x,y)€SXS. dist © y)

proposition Lebesgue number lemma:
assumes compact S C # {} S C |UC and ope: AB. B € C = open B
obtains § where 0 < § AT. [T C S; diameter T < 0] = 3IBe€C. T C B

5.15 Metric spaces with the Heine-Borel property

class heine__borel = metric__space +
assumes bounded__imp__convergent__subsequence:
bounded (range f) = 31 r. strict_mono (r:nat=nat) N\ ((f o ) —— 1)
sequentially

proposition bounded_closed_imp__seq compact:
fixes S::'a::heine_borel set
assumes bounded S

and closed S
shows seq compact S

instance real :: heine_borel

instance prod :: (heine_borel, heine_borel) heine__borel

5.16 Completeness

proposition (in metric_space) completel:
assumes A\f. Vn. fn € s = Cauchy f = Fles. f —— |
shows complete s

proposition (in metric_space) completeE:
assumes complete s and Vn. fn € s and Cauchy f
obtains [ where [ € sand f ——

proposition compact__eq totally bounded:
compact S +— complete S A (Ve>0. k. finite k A S C (Jz€k. ball z €))
(is _ «— 2rhs)
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5.17 Cauchy continuity
5.18 Properties of Balls and Spheres
5.19 Distance from a Set

5.20 Infimum Distance

definition infdist © A = (if A = {} then 0 else INF a€A. dist x a)

5.21 Separation between Points and Sets

proposition separate point_closed:
fixes S :: 'a::heine__borel set
assumes closed S and a ¢ S
shows 36>0. VzeS. § < dist a x

proposition separate__compact closed:
fixes S T :: 'a::heine__borel set
assumes compact S
and T: closed TSN T ={}
shows 36>0. VzeS. VyeT. § < dist x y

proposition separate_closed _compact:
fixes S T :: 'a::heine__borel set
assumes S: closed S
and T: compact T
and dis: SN T = {}
shows 36>0.VzeS. VyeT. § < dist x y

proposition compact_in__open__separated:
fixes A::’a::heine_borel set
assumes A: A # {} compact A
assumes open B
assumes A C B
obtains ¢ where ¢ > 0 {z. infdist t A < e} C B

5.22 Uniform Continuity

5.23 Continuity on a Compact Domain Implies
Uniform Continuity

corollary compact _uniformly_continuous:
fixes [ :: 'a :: metric_space = 'b :: metric_space
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assumes f: continuous_on S f and S: compact S
shows uniformly_continuous _on S f

5.24 With Abstract Topology (TODO: move and
remove dependency?)

5.25 Closed Nest
5.26 Consequences for Real Numbers

5.27 The infimum of the distance between two sets

definition setdist :: 'a::metric_space set = 'a set = real where
setdist S T =
(if S={} v T=A{}then 0
else Inf {distzyl xy. 2 € SNy e T}

proposition setdist _attains _inf:
assumes compact B B # {}
obtains y where y € B setdist A B = infdist y A

5.28 Diameter Lemma
end

5.29 Elementary Normed Vector Spaces

theory Elementary Normed_ Spaces
imports
HOL- Library. FuncSet
Elementary_Metric_Spaces Cartesian__Space
Connected

begin

5.29.1 Orthogonal Transformation of Balls
5.29.2 Support
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5.29.3 Intervals
5.29.4 Limit Points
5.29.5 Balls and Spheres in Normed Spaces

corollary compact_sphere [simp):
fixes a :: ‘a::{real_normed_vector,perfect_space,heine__borel}
shows compact (sphere a 1)

corollary bounded__sphere [simp]:
fixes a :: ‘a::{real _normed_vector,perfect _space,heine_borel}
shows bounded (sphere a )

corollary closed_sphere [simp]:
fixes a :: ‘a::{real_normed_vector,perfect_space,heine_borel}
shows closed (sphere a r)

5.29.6 Filters
5.29.7 Trivial Limits
5.29.8 Limits

proposition Lim__at_infinity: (f —— 1) at_infinity <— (Ve>0. 3b. V. norm
z>b— dist (fz)l<e)

corollary Lim__at_infinityl [intro?):
assumes Ae. e > 0 = IB.Vz. normz > B — dist (fz) I < e
shows (f —— 1) at_infinity

5.29.9 Boundedness

corollary cobounded__imp__unbounded:
fixes S :: ‘a::{real_normed_vector, perfect_space} set
shows bounded (— S) = — bounded S

5.29.10 Normed spaces with the Heine-Borel property

5.29.11 Intersecting chains of compact sets and the Baire
property

proposition bounded_closed__chain:
fixes F :: 'a::heine__borel set set
assumes B € F bounded B and F: A\S. S € F = closed S and {} ¢ F
and chain: NST.Se FATe F=SCTVTCS
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shows (F # {}

corollary compact__chain:

fixes F :: 'a::heine_borel set set

assumes \S. S € F = compact S {} ¢ F

NST.SeFANTeF=SCTVTCS
shows (| F # {}

theorem Baire:

fixes S::'a::{real _normed_vector heine_borel} set

assumes closed S countable G

and ope: AT. T € G = openin (top_of set S) T N S C closure T

shows S C closure([\G)

5.29.12 Continuity

proposition homeomorphic__ball_UNIV:
fixes a ::'a::real _normed_wvector
assumes 0 < r shows ball a r homeomorphic (UNIV:: 'a set)

5.29.13 Connected Normed Spaces

end

5.30 Linear Decision Procedure for Normed Spaces

theory Norm__ Arith
imports HOL— Library.Sum__of _Squares
begin

method_ setup norm = «
Secan.succeed (SIMPLE_METHOD' o NormArith.norm__arith__tac)
y prove simple linear statements about vector norms

proposition dist triangle add:
fixes z y 2z’ y' :: 'a::real_normed_ vector

shows dist (z 4+ y) (' + y') < dist z z' + dist y y’

end



Chapter 6

Vector Analysis

theory Topology Fuclidean_Space
imports
Elementary_Normed__Spaces
Linear__Algebra
Norm__Arith
begin

6.1 Elementary Topology in Euclidean Space

6.1.1 Boxes

abbreviation One :: ‘a::euclidean_space where
One = > Basis

definition (in euclidean_space) eucl less (infix (<e» 50) where
eucl_less a b +— (Vi€Basis. a + i < b+ i)

definition box_eucl less: box a b = {z. a <e z A z <e b}
definition cboz a b = {x. Vi€Basis. a - i < x-iANz-i<b- i}

corollary open_ countable_Union__open__box:

fixes S :: 'a :: euclidean_space set

assumes open S

obtains D where countable D D C Pow S AX. X € D= Jab. X =boxabd
Uop==s

corollary open_ countable_ Union__open__cbox:

fixes S :: 'a :: euclidean__space set

assumes open S

obtains D where countable D D C Pow S AX. X € D = Ja b. X = cbox a
bUp==5
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6.1.2 General Intervals

definition is_interval (s::('a::euclidean__space) set) +—
(Vags. Vbes. Va. (VieBasis. ((a+i < zi A - < bei) V (bi < zei A -0 < a7)))
— T € 5)

6.1.3 Limit Component Bounds

6.1.4 Class Instances

instance euclidean_ space C heine__borel

instance euclidean__space C banach

6.1.5 Compact Boxes

proposition s _interval _compact:
is_interval S A compact S «— (Fa b. S = cbox a b) (is ?lhs = ?rhs)

proposition tendsto _componentwise iff:
fixes f :: _ = 'beuclidean_space
shows (f —— ) F «— (Vi € Basis. (Az. (fz 1) —— (I - 1)) F)
(is 2lhs = ?rhs)

corollary continuous componentwise:
continuous F f <— (Vi € Basis. continuous F (Az. (f z - 7)))

corollary continuous on_componentwise:
fixes S :: ‘a :: t2_space set
shows continuous_on S f <— (Vi € Basis. continuous_on S (Az. (fz - 7)))

6.1.6 Separability

proposition separable:
fixes S :: ‘a::{metric_space, second__countable_topology} set
obtains T where countable T T C S S C closure T
proposition open__surjective__linear__image:
fixes f :: 'a::real _mormed_wvector = 'b::euclidean_space
assumes open A linear f surj f
shows open(f < A)
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corollary open_ bijective linear image_ eq:
fixes f :: 'a::euclidean__space = 'b::euclidean__space
assumes linear f bij f
shows open(f ¢ A) «— open A

corollary interior_bijective_linear image:
fixes [ :: 'a::euclidean_space = 'b::euclidean__space
assumes linear f bij f
shows interior (f < S) = f ‘ interior S

proposition injective__imp__isometric:
fixes [ :: 'a:euclidean_space = 'b::euclidean_ space
assumes s: closed s subspace s

and f: bounded_linear f Vzes. fr =0 — z =0

shows Je>0. Vzes. norm (f z) > e *x norm x

proposition closed_injective__image__subspace:
fixes f :: 'a::euclidean_space = 'b::euclidean__space
assumes subspace s bounded_linear f Vzes. fo = 0 — x = 0 closed s
shows closed(f * )

6.1.7 Set Distance

corollary setdist _gt 0 _compact__closed:
assumes S: compact S and T: closed T
shows setdist ST > 0 +— (SZ{IANT##{3ANSNT=H{})

end

6.2 Line Segment

theory Line Segment
imports

Convezx

Topology _FEuclidean__Space
begin

corollary component__complement__connected:
fixes S :: 'a::real _normed_vector set
assumes connected S C' € components (—5)
shows connected(—C)

proposition clopen:
fixes S :: 'a :: real _normed_vector set

shows closed S A open S «— S ={} Vv § = UNIV

corollary compact_open:
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fixes S :: ‘a :: euclidean_space set
shows compact S A open S +— S = {}

corollary finite_imp_not_open:
fixes S :: ‘a::{real _normed_vector, perfect_space} set
shows [finite S; open S] = S={}

corollary empty interior_finite:
fixes S :: ‘a::{real _normed_vector, perfect_ space} set
shows finite S = interior S = {}

6.2.1 Midpoint

definition midpoint :: 'a::real _vector = 'a = ’a
where midpoint a b = (inverse (2::real)) *r (a + b)

6.2.2 Open and closed segments

definition closed segment :: 'a::real _vector = 'a = 'a set
where closed_segment a b= {(1 — u) *g a + u*xg b | unreal. 0 <uAhu<1}

definition open_ segment :: 'a::real_vector = 'a = 'a set where
open__segment a b = closed__segment a b — {a,b}

proposition dist decreases_open__segment:
fixes a :: 'a :: euclidean space
assumes z € open__segment a b

shows dist c x < dist ca V dist c x < dist ¢ b

corollary open__segment_ furthest_le:
fixes a bz y :: 'a::euclidean__space
assumes z € open__segment a b
shows norm (y — z) < norm (y — a) V. norm (y — z) < norm (y — b)

corollary dist_decreases_closed__segment:
fixes a :: 'a :: euclidean space
assumes z € closed_segment a b

shows dist ¢ x < dist c a V dist c x < dist ¢ b

corollary segment_furthest_le:
fixes a b z y :: 'a::euclidean__space
assumes z € closed_segment a b
shows norm (y — z) < norm (y — a) V. norm (y — z) < norm (y — b)
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6.2.3 Betweenness

definition between = (A(a,b) z. x € closed__segment a b)

end

6.3 Convex Sets and Functions on (Normed) Eu-
clidean Spaces

theory Convex Fuclidean_ Space
imports
Convez Topology__Fuclidean__Space Line Segment
begin
corollary empty_interior__lowdim:
fixes S :: 'n:euclidean_space set
shows dim S < DIM ('n) = interior S = {}

corollary aff dim_ nonempty interior:
fixes S :: 'a::euclidean__space set
shows interior S # {} = aff dim S = DIM('a)

6.3.1 Relative interior of a set

definition rel interior S =
{z. 3 T. openin (top_of_set (affine hull S)) TNz € T ANT C S}
definition rel _open S <— rel_interior S = S

6.3.2 Closest point of a convex set is unique, with a contin-
uous projection

definition closest_point :: 'a::{real_inner heine_borel} set = 'a = 'a
where closest_point S a = (SOME xz. x € S N (Vy€S. dist a x < dist a y))

proposition closest_point_in__rel_interior:
assumes closed S S # {} and x: z € affine hull S

shows closest_point S x© € rel_interior S <— = € rel_interior S

end
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Chapter 7

Unsorted

theory Starlike
imports
Convex__Fuclidean__Space
Line__Segment
begin

7.0.1 The relative frontier of a set

definition rel_frontier S = closure S — rel_interior S

proposition ray_to rel frontier:
fixes a :: 'a::real inner
assumes bounded S
and a: a € rel_interior S
and aff: (a + 1) € affine hull S
and [ # 0
obtains d where 0 < d (a + d *g 1) € rel_frontier S
Ne. [0 < e e< d] = (a+ exgl) € rel_interior S

corollary ray to_frontier:
fixes a :: ‘a::euclidean__space
assumes bounded S
and a: a € interior S
and | # 0
obtains d where 0 < d (a + d *gr l) € frontier S
Ne. [0 < e e< d] = (a+ exgl) € interior S

proposition rel_frontier_not__sing:
fixes a :: 'a::euclidean__space
assumes bounded S
shows rel_frontier S # {a}
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7.0.2 Coplanarity, and collinearity in terms of affine hull

definition coplanar where
coplanar S = Ju v w. S C affine hull {u,v,w}

7.0.3 Connectedness of the intersection of a chain

proposition connected_ chain:
fixes F :: 'a :: euclidean_space set set
assumes cc: \S. S € F = compact S A connected S
and linear: NST. S€e FATeF=SCTvVvTCS
shows connected(()F)

7.0.4 Proper maps, including projections out of compact sets

proposition proper _map:
fixes f :: 'a::heine_borel = 'b::heine_borel
assumes closedin (top_of set §) K
and com: A\U. [U C T; compact U] = compact (SN f —°U)
and f*SC T
shows closedin (top_of set T) (f ‘ K)

7.0.5 Closure of conic hulls

proposition closedin__conic__hull:
fixes S :: ‘a::euclidean__space set
assumes compact T0 ¢ T T C S
shows closedin (top__of_set (conic hull S)) (conic hull T)

corollary affine_hull_convex__Int_open:
fixes S :: 'a::real _normed_vector set
assumes convex S open T SN T # {}
shows affine hull (S N T) = affine hull S

corollary affine_hull_affine_Int_nonempty interior:
fixes S :: 'a::real _normed_vector set
assumes affine S S N interior T # {}
shows affine hull (S N T) = affine hull S

corollary affine_hull_affine_Int_open:
fixes S :: 'a::real _normed_vector set
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assumes affine S open T S N T # {}
shows affine hull (S N T) = affine hull S

corollary affine_hull _convex__Int_openin:
fixes S :: 'a::real _normed_wvector set
assumes convezx S openin (top_of _set (affine hull S)) TSN T # {}
shows affine hull (S N T) = affine hull S

corollary affine_hull_openin:
fixes S :: 'a::real _normed_vector set
assumes openin (top_of _set (affine hull T)) S S # {}
shows affine hull S = affine hull T

corollary affine__hull_open:
fixes S :: 'ai:real _normed wvector set
assumes open S S # {}
shows affine hull S = UNIV

proposition aff dim__eq hyperplane:

fixes S :: a::euclidean_ space set

shows aff dim S = DIM('a) — 1 <— (3ab. a # 0 A affine hull S = {z. a - z
= b})

(is ?lhs = ?rhs)

corollary aff dim__hyperplane [simp]:
fixes a :: 'a::euclidean__space
shows a # 0 = aff _dim {z. a - x = r} = DIM('a) — 1

proposition aff dim_sums_Int:
assumes affine S
and affine T
and SN T # {}
shows aff dim {x + y|zy. z € SNy e T} = (aff _dim S + aff _dim T) —
aff _dim(S N T)

7.0.6 Lower-dimensional affine subsets are nowhere dense

proposition dense_complement__subspace:
fixes S :: 'a :: euclidean__space set
assumes dim_less: dim T < dim S and subspace S shows closure(S — T) = S
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7.0.7 Paracompactness

proposition paracompact:
fixes S :: ‘a :: {metric_space,second__countable__topology} set
assumes S C |JC and opC: AT. T € C = open T
obtains C’ where S C |J C’
and N\U. U el = open UNBT.TeCAUCT)
and A\z.z € S
=3I V.open VANxz € VA finite {U. UecC' AN(UNV £{}}

corollary paracompact_closedin:
fixes S :: ‘a :: {metric_space,second__countable__topology} set
assumes cin: closedin (top_of set U) S
and oin: AT. T € C = openin (top_of _set U) T
and S C YC
obtains C’ where S C |J C’
and A\V. V € C' = openin (top_of set U) VANET. TeCAV
c7)
and Az. 2 € U
= 3 V. openin (top_of set U) VANz € V A
finite {X. X e C'AN (X NV #{}}

7.0.8 Covering an open set by a countable chain of compact
sets

proposition open_ Union__compact__subsets:
fixes S :: ‘a::euclidean_space set
assumes open S
obtains C where An. compact(C n) An. Cn C S
An. Cn C interior(C(Suc n))
U (range C) = S
AK. [eompact K; K C S] = 3IN.Vn>N. K C (Cn)

7.0.9 Orthogonal complement
definition orthogonal comp («(<open_ block notation=<postfiz Ly 1) [80] 80)
where orthogonal_comp W = {z. Vy € W. orthogonal y z}

proposition subspace_orthogonal__comp: subspace (W)

proposition subspace sum__orthogonal__comp:
fixes U :: 'a :: euclidean_ space set
assumes subspace U
shows U + Ut = UNIV

end
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7.1 Path-Connectedness

theory Path_Connected
imports

Starlike

T1_Spaces
begin

7.1.1 Paths and Arcs

definition path :: (real = 'a::topological__space) = bool
where path g = continuous_on {0..1} g

definition pathstart :: (real = 'a::topological__space) = 'a
where pathstart ¢ = g 0

definition pathfinish :: (real = ’a::topological space) = 'a
where pathfinish g = g 1

definition path_image :: (real = 'a::topological _space) = 'a set
where path_image g = ¢ ‘{0 .. 1}

definition reversepath :: (real = 'a::topological space) = real = 'a
where reversepath g = (Az. g(1 — x))

definition joinpaths :: (real = 'a::topological _space) = (real = 'a) = real = 'a
(infixr <+++> 75)
where g1 +++ g2 = (Az. if x < 1/2 then g1 (2 * z) else g2 (2 x x — 1))

definition loop_ free :: (real = 'a::topological _space) = bool
where loop_free g =Vze{0..1}. Vye{0..1}. gz =gy —z=yVae=0Ay
=1Vz=1Ny=0

definition simple_path :: (real = 'a::topological__space) = bool
where simple_path g = path g N loop_ free g

definition arc :: (real = ’a :: topological__space) = bool
where arc g = path g A inj_on g {0..1}

7.1.2 Subpath

definition subpath :: real = real = (real = 'a) = real = 'a::real_normed_vector
where subpath a b g = Az. g((b — a) * = + a)

7.1.3 Shift Path to Start at Some Given Point

definition shiftpath :: real = (real = 'a::topological__space) = real = 'a
where shiftpath a f = (A\z. if (a + z) < 1 then f (a + x) else f (a + z — 1))
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7.1.4 Straight-Line Paths

definition linepath :: 'a::real _mormed wvector = 'a = real = 'a
where linepath a b = (Az. (1 — x) *g a + = * b)
proposition injective_eq 1d_open_map_ UNIV:
fixes f :: real = real
assumes contf: continuous _on S f and S: is_interval S
shows inj_on fS «— (VT. open TANT C S — open(f ‘T))
(is ?lhs = ?rhs)

7.1.5 Path component
definition path component S x y =

(3 g. path g A path_image g C S A pathstart g = x A pathfinish g = y)

abbreviation
path__component_set S x = Collect (path__component S x)

7.1.6 Path connectedness of a space

definition path__connected S <—
(VzeS. VyeS. Ig. path g A path_image g C S A pathstart g = x A pathfinish g
=)

7.1.7 Path components

7.1.8 Paths and path-connectedness
7.1.9 Path components

7.1.10 Sphere is path-connected

corollary connected punctured_universe:
2 < DIM('N::euclidean__space) = connected(— {a::'N})

proposition path_connected_sphere:
fixes a :: 'a :: euclidean__space
assumes 2 < DIM('a)

shows path__connected(sphere a 1)

corollary path__connected__complement__bounded__convex:
fixes S :: 'a :: euclidean space set
assumes bounded S conver S and 2: 2 < DIM('a)
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shows path__connected (— S)

proposition connected_open__delete:
assumes open S connected S and 2: 2 < DIM('N::euclidean__space)
shows connected(S — {a::'N})

corollary path_ connected open__delete:
assumes open S connected S and 2: 2 < DIM('N::euclidean__space)
shows path__connected(S — {a::'N})

corollary path_ connected_punctured__ball:
2 < DIM('N::euclidean_space) = path_connected(ball a v — {a::'N})

corollary connected_punctured__ball:
2 < DIM('N::euclidean_space) = connected(ball a v — {a::'N})

corollary connected_open__delete_ finite:
fixes S T::'a::euclidean_space set
assumes S: open S connected S and 2: 2 < DIM('a) and finite T
shows connected(S — T)

7.1.11 Every annulus is a connected set

proposition path__connected__annulus:
fixes a :: 'N::euclidean space
assumes 2 < DIM(’'N)
shows path_connected {z. 11 < norm(z — a) A norm(z — a) < r2}
path__connected {z. r1 < norm(z — a) A norm(z — a) < r2}
path_connected {z. r1 < norm(z — a) A norm(x — a) < r2}
path__connected {x. r1 < norm(z — a) A norm(z — a) < r2}

proposition connected__annulus:
fixes a :: 'N::euclidean space
assumes 2 < DIM('N::euclidean__space)
shows connected {z. r1 < norm(z — a) A norm(z — a) < r2}
connected {x. r1 < norm(z — a) A norm(z — a) < r2}
connected {z. r1 < norm(z — a) A norm(z — a) < 2}
connected {x. r1 < norm(z — a) A norm(z — a) < r2}

corollary open__components:
fixes S :: 'a::real_normed__vector set
shows [open u; S € components u] = open S

proposition components_open__unique:
fixes S :: 'a::real _mnormed_vector set
assumes pairwise disjint A (JA = S
ANX. X € A = open X A connected X N X # {}
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shows components S = A

7.1.12 The inside and outside of a Set

The inside comprises the points in a bounded connected component of the
set’s complement. The outside comprises the points in unbounded connected
component of the complement.

definition inside where
inside S = {z. (x ¢ S) A bounded(connected__component_set ( — S) z)}

definition outside where
outside S = —S N {z. = bounded(connected__component_set (— S) )}

7.1.13 Condition for an open map’s image to contain a ball

proposition ball_subset__open__map__image:
fixes f :: 'a::heine_borel = 'b :: {real_normed_vector,heine__borel}
assumes contf: continuous_on (closure S) f
and oint: open (f ¢ interior S)
and le_no: Nz. z € frontier S = r < norm(f z — f a)
and bounded Sa € S0 <r
shows ball (fa) r C f*S

proposition embedding map__into__euclideanreal:
assumes path__connected__space X
shows embedding_map X euclideanreal f <—
continuous_map X euclideanreal f N inj_on f (topspace X)

end

7.2 Neighbourhood bases and Locally path-connected
spaces

theory Locally
imports
Path__Connected Function__Topology Sum__Topology
begin
7.2.1 Neighbourhood Bases
7.2.2 Locally path-connected spaces

7.2.3 Locally connected spaces



Uncountable__Sets.thy 77

7.2.4 Dimension of a topological space

end

7.3 Some Uncountable Sets

theory Uncountable Sets
imports Path _Connected Continuum_ Not__Denumerable
begin

end

7.4 Homotopy of Maps

theory Homotopy
imports Path_ Connected Product_Topology Uncountable Sets
begin

definition homotopic_with
where
homotopic_with P X Y fg =
(3 h. continuous_map (prod_topology (top__of set {0..1::real}) X) Y h A
(Vz. (0, ) = fz) A
(Vz. h(1,z) = gz) A
(V¢ € {0..1}. P(Az. h(t,2))))

proposition homotopic_with:
assumes A\h k. (Az. z € topspace X = hz =kaz) = (Ph+— Pk)
shows homotopic_with P X Y p q +—
(3 h. continuous_map (prod_topology (subtopology euclideanreal {0..1})
X) YhA
(Vz € topspace X. h(0,x) = p z) A
(Vz € topspace X. h(1,xz) = qz) A
(V¢ €{0..1}. P(Az. h(t, 2))))

7.4.1 Homotopy with P is an equivalence relation

proposition homotopic_with_trans:
assumes homotopic_with P X Y f g homotopic_with P X Y g h
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shows homotopic_with P X Y fh

7.4.2 Continuity lemmas

corollary homotopic__compose:

assumes homotopic_with (A\x. True) X Y f f' homotopic_with (Ax. True) Y Z
99

shows homotopic_with (Az. True) X Z (g o f) (¢’ o f)

proposition homotopic_with__compose__continuous_right:
[homotopic_with__canon (Af. p (f o b)) X Y f g; continuous_on W h; h € W
— X]
= homotopic_with_canonp W'Y (f o h) (g o h)

proposition homotopic_with _compose _continuous_left:
[homotopic_with_canon (Af. p (h o f)) X Y f g; continuous_on Y h; h € Y
— 7]
= homotopic_with_canon p X Z (h o f) (h o g)

proposition homotopic_with__eq:
assumes h: homotopic_with P X Y f g
and f: Az. z € topspace X = f'z = fu
and ¢" Az. z € topspace X = g’z =gz
and P: (Ah k. (Az. z € topspace X = hx =kz) = Ph<+— Pk)
shows homotopic_with P X Y f' ¢’

7.4.3 Homotopy of paths, maintaining the same endpoints

definition homotopic_paths :: ['a set, real = 'a, real = 'a::topological__space] =
bool
where
homotopic_paths S p q =
homotopic_with__canon (Ar. pathstart r = pathstart p A pathfinish r =
pathfinish p) {0..1} Sp q

proposition homotopic_paths imp_ pathstart:
homotopic__paths S p ¢ = pathstart p = pathstart q

proposition homotopic_paths_imp_ pathfinish:
homotopic_paths S p ¢ = pathfinish p = pathfinish q

proposition homotopic_paths_refl [simp]: homotopic_paths S p p +— path p A
path__image p C S

proposition homotopic_paths sym: homotopic_paths S p ¢ => homotopic__paths
Sqp
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proposition homotopic__paths_sym__eq: homotopic__paths S p q <— homotopic_ paths
Sqp

proposition homotopic_paths_trans [trans]:
assumes homotopic_paths S p q homotopic_paths S q r
shows homotopic_paths S p r

proposition homotopic_paths eq:
[path p; path_image p C S; At. t € {0..1} = p t = q t] = homotopic_paths
Spq

proposition homotopic_paths reparametrize:
assumes path p
and pips: path_image p C S
and contf: continuous_on {0..1} f
and f01 :f € {0..1} — {0..1}
and [simp]: f(0) = 0 f(1) = 1
and ¢: At. t € {0..1} = q(t) = p(f ?)
shows homotopic_paths S p q

proposition homotopic_paths reversepath:
homotopic__paths S (reversepath p) (reversepath q) <— homotopic_paths S p

proposition homotopic_paths_join:
[homotopic_paths S p p’; homotopic_paths S q q'; pathfinish p = pathstart ]
= homotopic_paths S (p +++ q) (p’ +++ ¢')

proposition homotopic_paths continuous image:
[homotopic__paths S f g; continuous_on S h; h € S — t] = homotopic__paths

t (holf)(hoy)

7.4.4 Group properties for homotopy of paths

So taking equivalence classes under homotopy would give the fundamental
group
proposition homotopic_paths_rid:

assumes path p path_image p C S

shows homotopic_paths S (p +++ linepath (pathfinish p) (pathfinish p)) p

proposition homotopic_paths_lid:
[path p; path_image p C S] = homotopic_paths S (linepath (pathstart p)
(pathstart p) +++ p) p

proposition homotopic_paths _assoc:
[path p; path__image p C S; path q; path_image ¢ C S; path r; path_image r C
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S; pathfinish p = pathstart g;
pathfinish ¢ = pathstart ]
= homotopic_paths S (p +++ (¢ +++ 7)) ((p +++ q) +++ 1)

proposition homotopic_paths rinv:
assumes path p path_image p C S
shows homotopic_paths S (p +++ reversepath p) (linepath (pathstart p)
(pathstart p))

proposition homotopic_paths linv:
assumes path p path_image p C S
shows homotopic_paths S (reversepath p +++ p) (linepath (pathfinish p)
(pathfinish p))

7.4.5 Homotopy of loops without requiring preservation of
endpoints

definition homotopic_loops :: 'a::topological__space set = (real = 'a) = (real =
'a) = bool where
homotopic_loops S p q =

homotopic_with__canon (Ar. pathfinish r = pathstart r) {0..1} Sp q

proposition homotopic_loops imp_ loop:
homotopic_loops S p ¢ = pathfinish p = pathstart p A\ pathfinish ¢ = pathstart
q

proposition homotopic_loops imp_ path:
homotopic_loops S p ¢ = path p A path g

proposition homotopic_loops imp_ subset:
homotopic_loops S p ¢ = path_image p C S A path_image ¢ C S

proposition homotopic_loops refi:
homotopic_loops S p p <—
path p A path__image p C S A pathfinish p = pathstart p

proposition homotopic_loops _sym: homotopic_loops S p ¢ = homotopic__loops
Sqp

proposition homotopic_loops__sym__eq: homotopic_loops S p q <— homotopic_loops
Saqp

proposition homotopic_loops trans:
[homotopic_loops S p q; homotopic_loops S q r]| = homotopic_loops S p r

proposition homotopic_loops subset:
[homotopic_loops S p ¢; S C t] = homotopic_loops t p q
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proposition homotopic_loops eq:
[path p; path_image p C S; pathfinish p = pathstart p; \t. t € {0..1} = p(t)
= q(?)]

= homotopic_loops S p q

proposition homotopic_loops continuous image:
[homotopic_loops S f g; continuous_on S h; h € S — t] = homotopic_loops
t (hof)(hog)

7.4.6 Relations between the two variants of homotopy

proposition homotopic_paths imp__homotopic_loops:
[homotopic_paths S p q; pathfinish p = pathstart p; pathfinish ¢ = pathstart p]
=—> homotopic_loops S p q

proposition homotopic_loops imp__homotopic_paths null:
assumes homotopic_loops S p (linepath a a)
shows homotopic_paths S p (linepath (pathstart p) (pathstart p))

proposition homotopic__loops__conjugate:
fixes S :: 'a::real _normed_vector set
assumes path p path ¢ and pip: path_image p C S and piq: path_image ¢ C S
and pq: pathfinish p = pathstart ¢ and qloop: pathfinish q = pathstart q
shows homotopic_loops S (p +++ q +++ reversepath p) q

7.4.7 Homotopy and subpaths

proposition homotopic_join__subpaths:
[path g; path_image g C S; w € {0..1}; v € {0..1}; w € {0..1}]
= homotopic_paths S (subpath u v g +++ subpath v w g) (subpath u w g)

7.4.8 Simply connected sets

defined as "all loops are homotopic (as loops)

definition simply connected where
simply__connected S =
Vp q. path p A pathfinish p = pathstart p A path_image p C S A
path g N pathfinish ¢ = pathstart ¢ A\ path__image ¢ C S
— homotopic_loops S p q

proposition simply connected_ Times:
fixes S :: 'a::real _normed_vector set and T :: 'b::real mormed wvector set
assumes S: simply_connected S and T': simply_connected T
shows simply connected(S x T)
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7.4.9 Contractible sets

definition contractible where
contractible S = 3 a. homotopic_with__canon (Az. True) S S id (A\z. a)

proposition contractible_imp__simply connected:
fixes S :: __::real _mormed_vector set
assumes contractible S shows simply_connected S

corollary contractible_imp__connected:
fixes S :: :real mormed wvector set
shows contractible S = connected S

7.4.10 Starlike sets

definition starlike S «— (Fa€S. Vz€S. closed_segment a x C 5)

7.4.11 The slotted complex plane

7.4.12 Contractible sets

7.4.13 Local versions of topological properties in general

definition locally :: ('a::topological _space set = bool) = 'a set = bool
where
locally P S =
Yw z. openin (top_of _set S) w A x € w
— (AU V. openin (top_of set ) UANPV ANze UNUC VAV

C w)

proposition homeomorphism__locally imp:
fixes S :: ‘a::metric_space set and T :: 'b::t2 space set
assumes S: locally P S and hom: homeomorphism S T f g
and Q: A\S S’. [P S; homeomorphism S S’ fg] = Q S’
shows locally Q T

7.4.14 An induction principle for connected sets

proposition connected__induction:
assumes connected S
and opD: AT a. [openin (top_of set S) T; a € T] = 3z.2€ T APz
and opl: Na. a € S
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= 3T. openin (top_of set S) T ANae T A
NVzeT.Vye T.PzAPyANQzx— Q)
and etc:a € Sbe SPaPbQa
shows @ b

7.4.15 Basic properties of local compactness

proposition locally compact:
fixes S :: 'a :: metric_space set
shows
locally compact S +—
VzeS JuvrzeuhnuCovAvCSA
openin (top_of _set S) u A compact v)
(is ?lhs = %rhs)

7.4.16 Sura-Bura’s results about compact components of sets

proposition Sura_ Bura__compact:
fixes S :: a::euclidean_ space set
assumes compact S and C: C € components S
shows C = ({T. C C T A openin (top_of _set S) T A
closedin (top_of _set S) T}
(isC=N?T)

corollary Sura_ Bura__clopen__subset:
fixes S :: 'a::euclidean_space set
assumes S: locally compact S and C: C' € components S and compact C
and U: open UC C U
obtains K where openin (top_of set S) K compact K C C K K C U

corollary Sura_ Bura__clopen__subset__alt:
fixes S :: 'a::euclidean__space set
assumes S: locally compact S and C: C € components S and compact C
and opeSU: openin (top_of set S) U and C C U
obtains K where openin (top_of set S) K compact K C C KK C U

corollary Sura_ Bura:
fixes S :: 'a::euclidean__space set
assumes locally compact S C' € components S compact C
shows C = {K. C C K A compact K A openin (top_of set S) K}
(is C = ?rhs)
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7.4.17 Special cases of local connectedness and path connect-
edness

proposition locally path_connected:
locally path__connected S +—
(V V z. openin (top_of set S) VANz eV
— (3 U. openin (top_of_set S) U A path__connected U ANz € UN U C
V)

proposition locally path__connected__open__path__component:
locally path__connected S +—
(Vt z. openin (top_of set S) t Nz €t
— openin (top_of set S) (path__component_set t x))

proposition locally connected_im__kleinen:
locally connected S +—
(Vv z. openin (top_of set S) v Az € v
— (Ju. openin (top_of _set S) u A
reuNuCoA
(Vy.y € u — (Jc. connected c N c Cv Az €cAyE c))))
(is ?lhs = ?rhs)

proposition locally path_connected_im__kleinen:
locally path__connected S +—
(Vv z. openin (top_of set S) v Az €wv
— (Ju. openin (top_of set S) u A
reuNuCovA
(Vy. y € u — (Ip. path p A path_image p C v A
pathstart p = x A pathfinish p = y))))
(is ?lhs = ?rhs)

7.4.18 Relations between components and path components

proposition locally connected__quotient image:
assumes [cS: locally connected S
and oo: N\T. T C f*S
= openin (top_of set S) (SNf—T) +—
openin (top_of set (f < S)) T
shows locally connected (f ¢ S)
proposition locally_path_connected__quotient _image:
assumes [cS: locally path__connected S
and oo: NT. T C f*S
= openin (top_of set S) (SN f —“T) «<— openin (top_of set (f
‘S T
shows locally path__connected (f *S)
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7.4.19 Existence of isometry between subspaces of same di-
mension

proposition isometries_subspaces:
fixes S :: ‘a::euclidean_ space set
and T :: 'b:euclidean__space set
assumes S: subspace S
and T: subspace T
and d: dim S = dim T

obtains f g where linear f linear gf S =Tg ‘T =15
Nz.
Az
Nz
Nz.

z € S = norm(f z) = norm x
z € T = norm(g x) = norm x
zeS=g(fz)==z
zeT = flgz) ==z

corollary isometry_subspaces:
fixes S :: 'a::euclidean__space set
and T :: 'b::euclidean_ space set
assumes S: subspace S
and T: subspace T
and d: dim S = dim T

obtains f where linear ff ‘S = T Nz. x € S = norm(f z) = norm x

corollary isomorphisms UNIV_UNIV:
assumes DIM('M) = DIM('N)

obtains f::’M::euclidean__space ='N::euclidean__ space and g

where linear f linear g

Nz. norm(f z) = norm z Ny. norm(g y) = norm y

Nz

g(fr)=x Ny flgy) =y

7.4.20 Retracts, in a general sense, preserve (co)homotopic
triviality)

locale Retracts =
fixes Shtk

assumes conth: continuous _on S h
and imh: h ‘S =t
and contk: continuous_on t k
and imk: ket — S
and idhk: N\y. ye t = h(ky) =y

begin
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7.4.21 Homotopy equivalence

7.4.22 Homotopy equivalence of topological spaces.

definition homotopy equivalent__space
(infix <homotopy’_equivalent’ _spacer 50)
where X homotopy equivalent__space Y =
(3f g. continuous_map X Y f A
continuous_map Y X g A\
homotopic_with (Ax. True) X X (g o f) id A
homotopic_with (Ax. True) Y'Y (f o g) id)

7.4.23 Contractible spaces

corollary contractible__space__euclideanreal: contractible__space euclideanreal

abbreviation homotopy_equ :: 'a::topological__space set = 'b::topological_space
set = bool

(infix <homotopy’_equy 50)
where S homotopy _equ T = top_of set S homotopy__equivalent__space top_of _set
T

corollary bounded__path__connected__ Compl_real:
fixes S :: real set
assumes bounded S path__connected(— S) shows S = {}
proposition path_connected convex_diff countable:
fixes U :: 'a::euclidean_ space set
assumes convex U — collinear U countable S
shows path__connected(U — S)

corollary connected__convex__diff _countable:
fixes U :: 'a::euclidean_space set
assumes convex U — collinear U countable S
shows connected(U — S)

proposition path_connected _openin__diff _countable:
fixes S :: ‘a::euclidean__space set
assumes connected S and ope: openin (top_of set (affine hull S)) S
and — collinear S countable T
shows path__connected(S — T)



Abstract__Euclidean__Space.thy 87

corollary connected__openin__diff countable:
fixes S :: 'a::euclidean__space set
assumes connected S and ope: openin (top_of set (affine hull S)) S
and — collinear S countable T
shows connected(S — T)

corollary path_connected open__ diff _countable:
fixes S :: 'a::euclidean__space set
assumes 2 < DIM('a) open S connected S countable T
shows path_connected(S — T)

corollary connected__open__ diff _countable:
fixes S :: 'a::euclidean_space set
assumes 2 < DIM('a) open S connected S countable T
shows connected(S — T)

7.4.24 Nullhomotopic mappings

proposition nullhomotopic_from__sphere__extension:
fixes [ :: 'M::euclidean__space = 'a::real_normed_vector
shows (3 c. homotopic_with_canon (Ax. True) (sphere a v) S f (Az. ¢)) «—
(3 g. continuous_on (cball ar) g A g “ (cball ar) C S A
(Vz € sphere ar. gz = f1x))
(is ?lhs = ?rhs)

end

7.5 Euclidean space and n-spheres, as subtopolo-
gies of n-dimensional space

theory Abstract Fuclidean_ Space

imports Homotopy Locally

begin

7.5.1 Euclidean spaces as abstract topologies

7.5.2 n-dimensional spheres

proposition contractible_space__upper _hemisphere:
assumes k < n
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shows contractible__space(subtopology (nsphere n) {z. © k > 0})

corollary contractible_space__lower _hemisphere:
assumes k < n
shows contractible__space(subtopology (nsphere n) {z. z k < 0})

proposition nullhomotopic_nonsurjective__sphere__map:
assumes f: continuous_map (nsphere p) (nsphere p) f
and fim: f ¢ (topspace(nsphere p)) # topspace(nsphere p)
obtains a where homotopic_with (A\x. True) (nsphere p) (nsphere p) f (Az. a)

end

7.6 Various Forms of Topological Spaces

theory Abstract_Topological _Spaces
imports Lindelof Spaces Locally Abstract Fuclidean__Space Sum,__Topology FSigma
begin

7.6.1 Connected topological spaces

7.6.2 The notion of "separated between" (complement of "con-
nected between)"

7.6.3 Connected components

7.6.4 Monotone maps (in the general topological sense)

proposition connected__space__monotone__quotient _map__preimage:
assumes f: monotone_map X Y f quotient_map X Y f and connected _space Y
shows connected_space X
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7.6.5 Other countability properties

7.6.6 Neigbourhood bases EXTRAS

7.6.7 T spaces and the Kolmogorov quotient

proposition t0 _space_product_topology:

t0_space (product_topology X I) <— product_topology X I = trivial_topology
v (Vi e I. t0_space (X 7))

(is ?lhs="?rhs)

7.6.8 Kolmogorov quotients

7.6.9 Closed diagonals and graphs

7.6.10 KC spaces, those where all compact sets are closed.

proposition kc_space_prod__topology left:
assumes X: kc¢_space X and Y: Hausdorff _space Y
shows kc_ space (prod__topology X Y)

7.6.11 Technical results about proper maps, perfect maps,
etc

7.6.12 Regular spaces

proposition regular__space__continuous__proper_map__image:
assumes reqular_space X and contf: continuous _map X Y f and pmapf:
proper_map X Y f
and fim: f ¢ (topspace X) = topspace Y
shows regqular_space Y

proposition reqular__space_perfect__map__image_eq:
assumes Hausdorff _space X and perf: perfect _map X Y f
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shows reqular_space X <— regular_space Y (is ?lhs=?rhs)

7.6.13

Locally compact spaces

proposition quotient _map prod_ right:
assumes loc: locally compact_space Z
and reg: Hausdorff_space Z \V regqular _space Z
and f: quotient_map X Y f
shows quotient_map (prod_topology Z X) (prod_topology Z'Y) (A(z,y). (z.f y))

7.6.14

7.6.15

7.6.16
7.6.17
7.6.18

7.6.19

7.6.20

end

Special characterizations of classes of functions into
and out of R

Normal spaces

Hereditary topological properties
Limits in a topological space

Quasi-components

Additional quasicomponent and continuum proper-
ties like Boundary Bumping

Compactly generated spaces (k-spaces)
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7.7 Abstract Metric Spaces

theory Abstract _Metric_Spaces
imports Elementary_ Metric_Spaces Abstract__Limits Abstract_ Topological__Spaces
begin

7.7.1 Metric topology
7.7.2 Bounded sets

7.7.3 Subspace of a metric space
7.7.4 Abstract type of metric spaces
7.7.5 The discrete metric

7.7.6 Metrizable spaces

7.7.7 Limits at a point in a topological space
7.7.8 Normal spaces and metric spaces
7.7.9 Topological limitin in metric spaces

7.7.10 Cauchy sequences and complete metric spaces
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7.7.11

7.7.12

7.7.13

7.7.14

7.7.15

7.7.16

7.7.17

Totally bounded subsets of metric spaces

Compactness in metric spaces

Continuous functions on metric spaces

Completely metrizable spaces

Product metric

More sequential characterizations in a metric space

Three strong notions of continuity for metric spaces



Infinite_Sum.thy 93

7.7.18 Isometries

7.7.19 "Capped" equivalent bounded metrics and general prod-
uct metrics

proposition metrizable _space__product_topology:
metrizable _space (product_topology X I) +—
(product__topology X I) = trivial _topology V
countable {i € I. = (Fa. topspace(X i) C {a})} A
(Vi € I. metrizable _space (X 7))

proposition completely metrizable _space__product__topology:
completely _metrizable__space (product_topology X I) +—
(product__topology X I) = trivial _topology V
countable {i € I. = (Fa. topspace(X i) C {a})} A
(Vi € I. completely _metrizable_space (X 1))

end

7.8 Infinite sums

theory Infinite_Sum
imports
Elementary__ Topology
HOL- Library. Extended__Nonnegative Real
HOL- Library.Complex__ Order
HOL— Computational__Algebra. Formal__Power__Series
begin

7.8.1 Definition and syntax
7.8.2 General properties

7.8.3 Absolute convergence
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7.8.4 Extended reals and nats
7.8.5 Real numbers

7.8.6 Complex numbers

class complete uniform__space = uniform__ space +
assumes cauchy_filter_convergent’: cauchy_filter (F :: 'a filter) = F # bot
= convergent__filter F

theorem (in uniform__space) controlled__sequences__convergent_ _imp__complete:
fixes U :: nat = ('a x 'a) set
assumes gen: countably generated_filter (uniformity :: ('a x 'a) filter)
assumes U: An. eventually (\z. z € U n) uniformity
assumes conv: A\(u :: nat = ‘a). (ANmn. N <m= N<n= (um, un)
€ UN) = convergent u
shows class.complete__uniform__space open uniformity

theorem (in uniform__space) controlled_seq imp Cauchy_ seq:
fixes U :: nat = ('a x 'a) set
assumes U: \P. eventually P uniformity = (In. VzeU n. P x)
assumes controlled: ANmn. N <m=— N<n= (fm,fn) € UN
shows Cauchy f

theorem (in uniform__space) Cauchy_seq convergent imp__complete:
fixes U :: nat = ('a x 'a) set
assumes gen: countably generated_filter (uniformity :: ('a x 'a) filter)
assumes conv: \(u :: nat = 'a). Cauchy v = convergent u
shows class.complete__uniform__space open uniformity
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7.8.7 Infinite sums of formal power series

end

7.9 Ordered Euclidean Space

theory Ordered_ Fuclidean__Space

imports
Convex__FEuclidean__Space Abstract Limits
HOL— Library. Product__Order

beginclass ordered__euclidean__space = ord + inf + sup + abs + Inf + Sup +

euclidean__space +
assumes eucl_le: © < y +— (Vi€Basis. x + i < y - 1)
assumes cucl_less le not le:x < y+—zx<yAN-y<z
assumes eucl_inf: inf z y = (D i€Basis. inf (z - ©) (y - 1) *g 1)
assumes eucl_sup: sup z y = (> i€Basis. sup (z - i) (y - i) *g ©)
assumes eucl_Inf: Inf X = (> i€Basis. (INF z€X. © - i) *g 1)
assumes eucl_Sup: Sup X = (> i€Basis. (SUP z€X. x + i) xR 1)
assumes eucl_abs: |z| = (D  i€Basis. |z « i| g 7)

begin

proposition compact_attains _Inf componentwise:
fixes b::’a::ordered__euclidean_space
assumes b € Basis assumes X # {} compact X
obtains z wherez € Xz - b=InfX - b Ay ye X =z -0<y-b

proposition
compact__attains_Sup__componentwise:
fixes b::'a::ordered__euclidean_ space
assumes b € Basis assumes X # {} compact X
obtains z wherez € Xz - b=Suyp X - b Ay ye X =y-b<z-b
proposition
fixes a :: 'a::ordered__euclidean space
shows cboz_interval: cbox a b = {a..b}
and interval_cbox: {a..b} = cbox a b
and eucl_le_atMost: {z. Vi€Basis. v + i <= a - i} = {..a}
and eucl le atLeast: {z. Vi€Basis. a - i <=z - i} = {a..}

instantiation vec :: (ordered__euclidean__space, finite) ordered__euclidean__space
begin

definition infzy = (x i. inf (z $1) (v $ 1))
definition sup z y = (x i. sup (z $ 1) (v $ 1))
definition Inf X = (x i. (INF z€X. z $ 7))
definition Sup X = (x i. (SUP zeX. z $ 7))
definition |z| = (x i. |z $ i|)
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end

7.10 Arcwise-Connected Sets

theory Arcwise Connected
imports Path_ Connected Ordered_ Fuclidean_ Space HOL— Computational _Algebra. Primes
begin

7.10.1 The Brouwer reduction theorem

theorem Brouwer reduction__theorem__gen:
fixes S :: ‘a::euclidean_space set
assumes closed S ¢ S
and ¢: AF. [An. closed(F n); An. o(F n); An. F(Suc n) C F n] =
©( (range F))
obtains T where T C Sclosed T ¢ T NU. [U C S; closed U; p U] = — (U
cT

corollary Brouwer _reduction__theorem:
fixes S :: ‘a::euclidean__space set
assumes compact S ¢ S S # {}
and p: AF. [An. compact(F n); An. Fn # {}; An. o(F n); An. F(Suc n)
C F'n] = (N (range F))
obtains T where T' C S compact T T # {} ¢ T
AU.[UC S;closed U; U #{}; o Ul = -~ (UCT)

7.10.2 Density of points with dyadic rational coordinates

proposition closure dyadic_rationals:
closure (Jk. Jf € Basis — Z.
{ >4 : 'a:: euclidean_space € Basis. (fi /| 27k) *g i }) = UNIV

corollary closure_rational__coordinates:
closure (|Jf € Basis — Q. { >4 :: 'a :: euclidean_space € Basis. fi *g i }) =
UNIV

theorem homeomorphic_monotone image_interval:
fixes f :: real = 'a::{real_normed_vector,complete_ space}
assumes cont_f: continuous_on {0..1} f
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and conn: Ay. connected ({0..1} N f —{y})
and f_Inot0: f1 # f0
shows (f  {0..1}) homeomorphic {0..1::real}

theorem path__contains _arc:
fixes p :: real = 'a::{complete__space,real_normed__vector}
assumes path p and a: pathstart p = a and b: pathfinish p = b and a # b
obtains ¢ where arc q path_image q C path__image p pathstart ¢ = a pathfinish
qg=>»

corollary path__connected__arcwise:
fixes S :: ‘a::{complete_space,real_normed_vector} set
shows path__connected S +—
Ve e S VyeS. x#y— (3g. arc g A path_image g C S A pathstart g
= x A pathfinish g = y))
(is ?lhs = ?rhs)

corollary arc_connected_ trans:
fixes g :: real = 'a::{complete__space,real _normed_vector}
assumes arc g arc h pathfinish g = pathstart h pathstart g # pathfinish h
obtains ¢ where arc i path_image i C path__image g U path__image h
pathstart © = pathstart g pathfinish i = pathfinish h

7.10.3 Accessibility of frontier points

end

7.11 The Urysohn lemma, its consequences and
other advanced material about metric spaces

theory Urysohn

imports Abstract_ Topological Spaces Abstract_Metric_Spaces Infinite_ Sum Ar-
cwise__ Connected

begin

7.11.1 Urysohn lemma and Tietze’s theorem

proposition Urysohn_lemma:
fixes a b :: real
assumes normal_space X closedin X S closedin X T disjnt S T a < b
obtains f where continuous_map X (top_of _set {a..b}) ff*S C{a} fT C

{6}
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theorem Tietze extension closed_real interval:
assumes normal_space X and closedin X S
and contf: continuous_map (subtopology X S) euclideanreal f
and fim: f S C {a..b} and a < b
obtains g
where continuous_map X euclideanreal g
Ne.z €S = ga=fxg  topspace X C {a..b}

theorem Tietze extension realinterval:
assumes XS: normal_space X closedin X S and T: is_interval T T # {}
and contf: continuous_map (subtopology X S) euclideanreal f
and f‘SCT
obtains g where continuous_map X euclideanreal g g ¢ topspace X C T Aux.
reES=gzx=fz

7.11.2 Random metric space stuff

7.11.3 Hereditarily normal spaces

7.11.4 Completely regular spaces

proposition locally compact_reqular_imp__completely regular _space:
assumes locally compact_space X Hausdorff _space X V regular_space X
shows completely regular_space X

proposition completely reqular _space_product_topology:
completely_regular_space (product_topology X I) +—
(Fiel. X i = trivial_topology) V (Vi € I. completely regular_space (X i))
(is ?lhs <— ?rhs)

7.11.5 More generally, the k-ification functor

7.11.6 One-point compactifications and the Alexandroff ex-
tension construction

proposition kc_space_one__point__compactification__gen:
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assumes compact_space X
shows kc_space X +—
openin X (topspace X — {a}) A (VK. compactin X K N a¢ K — closedin
X K) A
k_space (subtopology X (topspace X — {a})) A kc_space (subtopology X
(topspace X — {a}))
(is ?lhs <— ?rhs)

proposition istopology Alexandroff open: istopology (Alexandroff open X)

proposition regular _space__one__point__compactification:
assumes compact_space X and ope: openin X (topspace X — {a})
and § AK. [compactin (subtopology X (topspace X — {a})) K; closedin
(subtopology X (topspace X — {a})) K] = closedin X K
shows regular_space X <—
regular_space (subtopology X (topspace X — {a})) A locally__compact__space
(subtopology X (topspace X — {a}))
(is ?lhs «— ?rhs)

proposition Hausdorff space_one_point__compactification__asymmetric_prod:
assumes compact_space X
shows Hausdorff _space X +—
kc__space (prod_topology X (subtopology X (topspace X — {a}))) A
k_space (prod__topology X (subtopology X (topspace X — {a}))) (is ?lhs
> ?2rhs)

7.11.7 Extending continuous maps "pointwise" in a regular
space

7.11.8 Extending Cauchy continuous functions to the closure
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7.11.9 Metric space of bounded functions

7.11.10

7.11.11

7.11.12
7.11.13

7.11.14

7.11.15

7.11.16

Metric space of continuous bounded functions

Existence of completion for any metric space M as
a subspace of M=>R

Contractions

The Baire Category Theorem

Sierpinski-Hausdorff type results about countable closed
unions

The Tychonoff embedding

Urysohn and Tietze analogs for completely regular
spaces
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7.11.17 Size bounds on connected or path-connected spaces

7.11.18 Lavrentiev extension etc

7.11.19 Embedding in products and hence more about com-
pletely metrizable spaces

7.11.20 Theorems from Kuratowski

7.11.21 A perfect set in common cases must have at least
the cardinality of the continuum

proposition Kuratowski component_number _invariance__aux:
assumes compact__space X and HsX: Hausdorff space X
and [cX: locally connected_space X and hnX: hereditarily normal__space X
and hom: (subtopology X S) homeomorphic__space (subtopology X T)
and leXS: {..<n:nat} < connected _components_of (subtopology X (topspace
X -09)
assumes §: A\S T.
[closedin X S; closedin X T; (subtopology X S) homeomorphic__space
(subtopology X T);
{..<nunat} < connected__components_of (subtopology X (topspace X
-9l
= {..<n:unat} < connected__components_of (subtopology X (topspace
X-1)
shows {..<n:nat} < connected components_of (subtopology X (topspace X —

T))
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theorem Kuratowski component_number _invariance:
assumes compact_space X Hausdorff space X locally connected__space X hered-
itarily normal__space X
shows ((VS T n.
closedin X S A closedin X T A
(subtopology X S) homeomorphic_space (subtopology X T)
— (connected__components_of
(subtopology X (topspace X — S)) = {..<nunat} «—
connected__components__of
(subtopology X (topspace X — T)) =~ {..<n:nat})) «—
(VS T n.
(subtopology X S) homeomorphic__space (subtopology X T)
— (connected__components_of
(subtopology X (topspace X — §)) = {..<nunat} +—
connected__components__of
(subtopology X (topspace X — T)) =~ {..<n:nat})))
(is ?lhs = ?rhs)

end
theory Sparse In

imports Homotopy

begin

7.11.22 A set of points sparse in another set

7.11.23 Co-sparseness filter

end
theory Isolated
imports Elementary_Metric_Spaces Sparse_In

begin

7.11.24 Isolate and discrete

end
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7.12 Operator Norm

theory Operator_Norm
imports Complexr_Main
begin

definition
onorm :: ('a:real_normed__vector = 'b::real _normed_vector) = real where
onorm f = (SUP z. norm (f x) / norm x)

proposition onorm__bound:
assumes 0 < b and Az. norm (fz) < b * norm x
shows onorm f < b

end

7.13 Limits on the Extended Real Number Line

theory Ezxtended_Real Limits
imports
Topology__ Euclidean__ Space
HOL— Library. Extended__Real
HOL— Library. Extended_Nonnegative_Real
HOL- Library.Indicator__Function
begin

7.13.1 Extended-Real.thy
Continuity of addition
Continuity of multiplication

Continuity of division

7.13.2 Extended-Nonnegative-Real.thy

7.13.3 monoset

7.13.4 Relate extended reals and the indicator function

end
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7.14 Radius of Convergence and Summation Tests

theory Summation__ Tests
imports
Complexr Main
HOL- Library. Discrete_ Functions
HOL— Library. Extended__Real
HOL- Library.Liminf_Limsup
FExtended Real Limits
begin

7.14.1 Convergence tests for infinite sums

theorem root_test convergence !,
fixes f :: nat = ’a :: banach
defines [ = limsup (An. ereal (root n (norm (f n))))
assumes [: [ < 1
shows summable f

theorem root_test_divergence:
fixes f :: nat = ’a :: banach
defines [ = limsup (An. ereal (root n (norm (f n))))
assumes [: [ > 1
shows —summable f

theorem condensation_test:
assumes mono: Am. 0 < m = f (Sucm) < fm
assumes nonneg: An. fn > 0
shows summable f <— summable (An. 27n = f (27n))

theorem summable complex_powr iff:
assumes Re s < —1
shows summable (An. exp (of _real (In (of _nat n)) * s))
theorem kummers test_convergence:
fixes fp :: nat = real
assumes pos_f: eventually (An. fn > 0) sequentially
assumes nonneg_p: eventually (An. p n > 0) sequentially
defines | = liminf (An. ereal (p nx fn / f (Sucn) — p (Suc n)))
assumes [: [ > 0
shows summable f

theorem kummers_test divergence:
fixes fp :: nat = real
assumes pos_f: eventually (An. fn > 0) sequentially
assumes pos_p: eventually (An. p n > 0) sequentially
assumes divergent_p: —summable (An. inverse (p n))
defines [ = limsup (An. ereal (p n x fn / f (Sucn) — p (Suc n)))
assumes [: [ < 0
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shows —summable f

theorem ratio_test_convergence:
fixes f :: nat = real
assumes pos_f: eventually (An. fn > 0) sequentially
defines [ = liminf (An. ereal (fn / f (Suc n)))
assumes [: | > 1
shows summable f

theorem ratio test divergence:
fixes f :: nat = real
assumes pos_f: eventually (An. fn > 0) sequentially
defines [ = limsup (An. ereal (f n / f (Suc n)))
assumes [: [ < 1
shows —summable f

theorem raabes test_convergence:

fixes f :: nat = real
assumes pos: eventually (An. fn > 0) sequentially
defines | = liminf (An. ereal (of natn * (fn / f (Sucn) — 1)))
assumes [: [ > 1
shows summable f

theorem raabes test_divergence:
fixes f :: nat = real
assumes pos: eventually (An. fn > 0) sequentially
defines [ = limsup (An. ereal (of _natn x (fn / f (Sucn) — 1)))
assumes [: [ < 1
shows —summable f

7.14.2 Radius of convergence

definition conv_radius :: (nat = 'a :: banach) = ereal where
conv_radius f = inverse (limsup (An. ereal (root n (norm (f n)))))

theorem abs summable in__conv_radius:
fixes f :: nat = 'a :: {banach, real_normed__div_algebra}
assumes ereal (norm z) < conv_radius f
shows summable (An. norm (fn x z ~ n))

theorem not summable_outside conv_radius:
fixes f :: nat = 'a :: {banach, real_normed__div_algebra}
assumes ereal (norm z) > conv_radius f
shows —summable (An. fn x z " n)

end
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7.15 Uniform Limit and Uniform Convergence

theory Uniform__ Limit
imports Connected Summation__ Tests Infinite_ Sum
begin

7.15.1 Definition

definition uniformly_on :: 'a set = (‘a = ’bumetric_space) = ('a = 'b) filter
where uniformly _on S 1 = (INF e€{0 <..}. principal {f. Vz€S. dist (fz) (I z)
< e})

abbreviation
uniform__limit S f 1 = filterlim f (uniformly_on S 1)

proposition uniform_ limit_iff:
uniform_limit S fIF <— (Ve>0.Vp nin F.VzeS. dist (fnz) (Iz) < e)

7.15.2 Exchange limits

proposition swap uniform__ limit":
assumes [:Vpnin F. (fn —— gn) G
assumes ¢: (g —— ) F
assumes uc: uniform_limit S fh F
assumes ev: Vpzin G.z € S
assumes —trivial limit F
shows (h —— ) G

corollary swap__uniform__limit:
assumes Vg nin F. (fn —— g n) (at z within S)
assumes (9 —— 1) F uniform_limit S f h F —trivial_limit F
shows (h —— 1) (at x within S)

7.15.3 Uniform limit theorem

theorem uniform__limit_theorem:
assumes c: Vg nin F. continuous_on A (f n)
assumes ul: uniform_limit A fl F
assumes — trivial limit F
shows continuous _on Al

7.15.4 Comparison Test
7.15.5 Weierstrass M-Test

proposition Weierstrass m_ test_ewv:
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fixes f:: = __ = _ : banach

assumes eventually (An. Vz€A. norm (fn x) < M n) sequentially

assumes summable M

shows uniform_limit A (An z. > i<n. fiz) (Az. suminf (Ai. fiz)) sequentially

7.15.6 Power series and uniform convergence

proposition powser__uniformly__convergent:
fixes a :: nat = 'a::{real _normed_ div_algebra,banach}
assumes r < conv_radius a
shows uniformly_convergent_on (cball € 7) (An z. Y i<n. a i x (x — &) 1)

7.15.7 Tannery’s Theorem

end

7.16 Bounded Linear Function

theory Bounded Linear Function
imports
Topology _FEuclidean__Space
Operator_Norm
Uniform__Limit
Function__ Topology

begin

7.16.1 Type of bounded linear functions

typedef (overloaded) (‘a, 'b) blinfun (:(<notation=¢infix =r»_ = /_) [22,
21] 21) =
{f:'a::real _normed_vector=-"b::real_normed_vector. bounded_linear f}
morphisms blinfun__apply Blinfun

7.16.2 Type class instantiations

instantiation blinfun :: (real _normed_vector, real_normed__vector) real _normed_vector
begin

lift_ definition norm_ blinfun :: 'a =1 'b = real is onorm
lift_ definition zero_blinfun :: 'a =, 'bis Az. 0

lift_ definition plus blinfun :: 'a =1 'b = 'a = b= 'a =1 b
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isA\Ngzxz. fx+gx

lift_ definition scaleR_blinfun::real = 'a =, 'b = 'a = ‘bis A\r fz. r xg fx

7.16.3 The strong operator topology on continuous linear
operators

definition strong_operator__topology::('a::real_normed_vector = 'b::real_normed__vector)

topology
where strong_operator__topology = pullback__topology UNIV blinfun__apply euclidean

end

7.17 Derivative

theory Derivative
imports
Bounded__Linear Function
Line__Segment
Convex__Fuclidean__Space
begin

7.17.1 Derivatives

proposition has derivative within”:
(f has__derivative f')(at x within s) <—
bounded__linear ' A
(Ve>0.3d>0.Vz'es. 0 < norm (z' — z) A norm (z' — 2) < d —
norm (fo' — fz — f'(z' — z)) / norm (z' — z) < e)

7.17.2 Differentiability

definition
differentiable _on :: (‘a::real _normed_vector = 'b::real_normed_vector) = 'a set
= bool
(infix «differentiable’_ony 50)
where f differentiable _on s <— (Vz€s. f differentiable (at x within s))
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7.17.3 Frechet derivative and Jacobian matrix

proposition frechet derivative__works:
f differentiable net «<— (f has__derivative (frechet_derivative f net)) net

7.17.4 Differentiability implies continuity

proposition differentiable _imp__ continuous_within:
f differentiable (at x within s) = continuous (at x within s) f

7.17.5 The chain rule

proposition diff _chain_within|derivative_intros]:
assumes (f has_derivative f') (at z within s)
and (g has_derivative g') (at (f ) within (f ¢ s))
shows ((g o f) has_derivative (g’ o f'))(at z within s)

7.17.6 Uniqueness of derivative

The general result is a bit messy because we need approachability of the
limit point from any direction. But OK for nontrivial intervals etc.

proposition frechet derivative _unique within:
fixes [ :: 'a::euclidean_space = 'b::real _normed_vector
assumes I: (f has_derivative ') (at z within S)
and 2: (f has_derivative ') (at z within S)
and S: A7 e. [i€Basis; e>0] = 3d. 0 < |d| AN |d| < eA(x+d=*xgri) €S
shows ' = f"

proposition frechet derivative _unique within_ closed_interval:
fixes f::’a::euclidean_space = 'b::real _normed_vector
assumes ab: \i. i€Basis = a-{ < b-i
and z: z € cbox a b
and (f has_derivative f') (at x within cboz a b)
and (f has_derivative f'') (at x within cboz a b)
shows f/ = f"

7.17.7 Derivatives of local minima and maxima are zero
7.17.8 One-dimensional mean value theorem

7.17.9 More general bound theorems

proposition differentiable _bound__general:
fixes f :: real = ’a::real _normed_ vector
assumes a < b
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and f_cont: continuous_on {a..b} f
and phi_cont: continuous_on {a..b} ¢
and f": Az. a < 2 = x < b = (f has_vector_derivative f' z) (at x)
and phi’: N\z. a < z = x < b = (p has_vector_derivative p' ) (at )
and nd: N\z.a <z =2 < b= norm (f'z) < ¢’z

shows norm (fb — fa) <o b— v a

7.17.10 Differentiability of inverse function (most basic form)

proposition has derivative inverse:
fixes f :: 'a::real _mormed_vector = 'b::real_normed_vector
assumes compact S
and z € S
and fr: fx € interior (f S)
and continuous_on S f
and gf: A\y.y€ S =g (fy) =y
and B: (f has_derivative ) (at x) bounded_linear g’ g’ o f' = id
shows (g has_derivative ¢') (at (f z))
proposition has_derivative_locally injective:
fixes f :: 'n::euclidean_space = 'm::euclidean__space
assumes a € S
and open S
and bling: bounded_linear g’
and g o f'a = id
and derf: Az. x € S = (f has_derivative f' x) (at x)
and Ae. e > 0 = 3d>0.Vz. distaz < d — onorm (Av. f'zv — f'av)
<e
obtains r where r > 0 ball a r C S inj_on f (ball a r)

7.17.11 Uniformly convergent sequence of derivatives

proposition has_derivative__sequence:
fixes [ :: nat = 'a::real_normed_vector = 'b::banach
assumes convex S
and derf: Anz. z € S = ((f n) has_derivative (f' n z)) (at x within S)
and nle: Ne. e > 0 = Vg n in sequentially. Va€S.Vh. norm (f'nzh — g’
zh) < exnormh
and z0 € §
and lim: (An. fn 20) —— 1) sequentially
shows 3¢g. VzeS. (An. fnx) —— gz A (g has_derivative g'(x)) (at x within
S)

7.17.12 Differentiation of a series

proposition has_derivative__series:
fixes f :: nat = 'a::real_normed_vector = 'b::banach
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assumes convex S
and Anz. z € S = ((f n) has_derivative (f' n z)) (at z within S)
and Ae. e>0 = YV n in sequentially. Vz€S. Y h. norm (sum (Xi. f' iz h)
{..<n} — g’z h) < ex*xnormh
and z € S
and (An. fn z) sums |
shows dg. VzeS. (An. fn ) sums (g ) A (g has_derivative g’ ) (at x within
5)

7.17.13 Derivative as a vector

proposition vector__derivative__works:

f differentiable net <— (f has_vector_derivative (vector_derivative f net)) net
(is 7l = ?r)

7.17.14 Field differentiability

definition field_differentiable :: ['a = 'a::real _normed_field, 'a filter] = bool
(infixr <(field’_differentiable)> 50)
where [ field_differentiable F = 3 f'. (f has_field_derivative f') F

7.17.15 Field derivative

definition deriv :: (‘a = 'a::real_normed_field) = 'a = 'a where
deriv fx = SOME D. DERIV fz :> D

proposition field_ differentiable_derivl:
f field__differentiable (at ) = (f has__field__derivative deriv f z) (at x)

7.17.16 Relation between convexity and derivative

proposition convexr__on__imp__above tangent:
assumes convex: convex_on A f and connected: connected A
assumes c: ¢ € interior Aand z: x € A
assumes deriv: (f has_field _derivative f') (at ¢ within A)
shows fz —fc>f'*(x— ¢

7.17.17 Partial derivatives

proposition has _derivative__partialsl:
fixes f::’a::real_normed_vector = 'b::real _normed_vector = ’c::real_normed__vector
assumes fr: ((Az. fz y) has_derivative fx) (at x within X)
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assumes fiy: A\zy. 2 € X = y € Y = ((\y. fzy) has_derivative blinfun__apply
(fy x v)) (at y within Y)

assumes fy_cont[unfolded continuous within]: continuous (at (z, y) within X X
Y) (Mz, y). fy z y)

assumes y € Y convexr Y

shows ((A(z, ). f = y) has_derivative (A(tz, ty). fr tx + fy x y ty)) (at (z, y)
within X x Y)

7.17.18 The Inverse Function Theorem

theorem inverse function_ theorem:
fixes f::'a::euclidean_ space = 'a
and f":'a = (a = 'a)
assumes open U
and derf: N\z. z € U = (f has__derivative (blinfun__apply (f' x))) (at z)
and contf: continuous_on U f’
and 20 € U
and invf: invf op, f' 20 = id_blinfun
obtains U’ V g ¢’ where open U’ U’ C U x0 € U’ open V f z0 € V homeo-
morphism U' V f g
Ny. y € V.= (g has_derivative (¢’ y)) (at y)
Ay.y € V.= g"y = inv (blinfun_apply (f'(g v)))
Ny. y € V = bij (blinfun_apply (f'(g v)))

7.17.19 The concept of continuously differentiable

definition C1_ differentiable on :: (real = 'a::real_normed_vector) = real set =
bool
(infix «C1'_differentiable’ _ony 50)
where
f C1__differentiable_on S +—
(3D. Yz € S. (f has_vector_derivative (D z)) (at x)) A continuous_on S D)

definition piecewise C1_differentiable _on
(infixr <piecewise’ _C1'_differentiable’ _on> 50)
where f piecewise C1__differentiable _on i =
continuous_on i f A
(38S. finite S A (f C1_differentiable_on (i — S)))

end

7.18 Finite Cartesian Products of Euclidean Spaces

theory Cartesian_ Fuclidean_ Space
imports Derivative
begin
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7.18.1 Closures and interiors of halfspaces

7.18.2 Bounds on components etc. relative to operator norm

7.18.3 Convex Euclidean Space

7.18.4 Arbitrarily good rational approximations

proposition matriz__rational__approrimation:
fixes A :: real 'n"'m
assumes e > ()
obtains B where Aij. B$i$j € Q onorm(Az. (A — B) xvz) < e

7.18.5 Derivative

definition jacobian f net = matriz(frechet_derivative f net)

proposition jacobian__works:
(f::(real™a) = (real™b)) differentiable net +—
(f has__derivative (Ah. (jacobian f net) xv h)) net (is ?lhs = ?rhs)
proposition differential _zero maxmin__cart:
fixes f::real’a = real™b
assumes 0 < e (Vy € ball z e. (fy)$k < (f)$k) vV (Vycball z e. (f )8k < (f
y)8k))
f differentiable (at x)
shows jacobian f (at z) $ k=0

end

7.19 Complex Analysis Basics

theory Complex Analysis_Basics
imports Derivative HOL— Library. Nonpos__Ints Uncountable__Sets
begin

7.19.1 Holomorphic functions

definition holomorphic_on :: [complex = complex, complex set] = bool
(infixl «(holomorphic’_on)» 50)
where f holomorphic_on s = V z€s. f field_differentiable (at x within s)
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named__theorems holomorphic_intros structural introduction rules for holomor-
phic_on

7.19.2 Analyticity on a set

definition analytic _on (infixl «(analytic’_on)> 50)
where [ analytic_on S =Vz € S. Je. 0 < e A f holomorphic_on (ball z €)

named__theorems analytic_intros introduction rules for proving analyticity

end

7.20 Complex Transcendental Functions

theory Complex Transcendental
imports

Complex__Analysis_Basics Summation_ Tests HOL— Library. Periodic_ Fun
begin

7.20.1 Mobius transformations

definition moebius a b ¢ d = (M\z. (a*x2+b) / (cxz+d 2 'a :: field))

theorem moebius inverse:
assumes a x d Fbxcc*xz+d# 0
shows moebius d (—b) (—c) a (moebius a b cdz) =z

7.20.2 Euler and de Moivre formulas

theorem exp_ Fuler: exp(i x z) = cos(z) + 1 * sin(z)

theorem Euler: exp(z) = of real(exp(Re 2)) *
(of _real(cos(Im z)) + i * of _real(sin(Im z)))

7.20.3 The argument of a complex number (HOL Light ver-
sion)
definition is_Arg :: [complex,real] = bool

where is Arg zr = z = of real(norm z) % exp(i * of real 1)

definition Arg2pi :: complexr = real
where Arg2pi z = if z = 0 then 0 else THE t. 0 < t At < 2xpi N is_Arg z t



Complex_Transcendental.thy 115

7.20.4 The principal branch of the Complex logarithm

instantiation complex :: In
begin

definition In_complex :: complex = complex

where In_compler = Az. THE w. exp w = z & —pi < Im(w) & Im(w) < pi
theorem Ln_series:

fixes z :: complex

assumes norm z < 1

shows (An. (—1)7Suc n / of _nat n * z"n) sums In (1 + z) (is (An. 2f n x*
z7n) sums _)

corollary norm__Ln_ prod_le:
fixes f :: 'a = complex
assumes \z. z € A = fz # 0
shows cmod (Ln (prod f A)) < >_xz € A. emod (Ln (f x)))

7.20.5 The Argument of a Complex Number

lemma Arg def:
shows Arg z = (if z = 0 then 0 else Im (Ln z2))

7.20.6 The Unwinding Number and the Ln product Formula

definition unwinding :: complex = int where
unwinding z = THE k. of int k = (z — Ln(exp 2)) / (of real(2xpi) * i)

7.20.7 Characterisation of Im (Ln z) (Wenda Li)
7.20.8 Complex arctangent

definition Arctan :: complex = complex where
Arctan = Az, (i/2) x Ln((1 — ixz) / (1 + ix2))

theorem Arctan_series:
assumes z: norm (z :: complex) < 1
defines g = An. if odd n then —ixi"n / n else 0
defines h = Az n. (—1)"n / of _nat (2xn+1) * (z::complex) (2xn+1)
shows (An. g n * z27n) sums Arctan z
and h z sums Arctan z
theorem In_ series quadratic:
assumes z: z > (0::real)
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shows (An. (2x((z — 1) / (x + 1)) " (2xn+1) / of _nat (2%n+1))) sums In

7.20.9 Inverse Sine

definition Arcsin :: compler = complex where
Arcsin = Az, —i x Ln(i * z + csqrt(1 — 22))

7.20.10 Inverse Cosine

definition Arccos :: complex = complex where
Arccos = Az, —i x Ln(z + 1 * csqrt(1 — 22))

7.20.11 Roots of unity

theorem complex_root_unity:
fixes j::nat
assumes n #
shows exp(2 * of real pi * 1 x of _nat j / of_natn)™n = 1

corollary bij betw roots unity:

bij_betw (Aj. exp(2 * of real pi x 1% of natj / of nat n))
{..<n} {exp(2 * of real pi x i x of _natj / of _natn)|j. j<n}

7.20.12 Normalisation of angles
7.20.13 Convexity of circular sectors in the complex plane

7.20.14 Complex cones

end



Chapter 8

Measure and Integration
Theory

theory Sigma__ Algebra
imports
Complex__Main
HOL— Library. Countable__Set
HOL— Library. FuncSet
HOL- Library.Indicator__Function
HOL— Library. Extended_Nonnegative_Real
HOL- Library.Disjoint__Sets
begin

8.1 Sigma Algebra

8.1.1 Families of sets

locale subset class =

fixes Q) :: 'a set and M :: 'a set set

assumes space__closed: M C Pow §2
locale semiring of sets = subset_class +

assumes empty_ sets[iff]: {} € M

assumes Int[introl: Aab.a e M = be M = anbe M

assumes Diff cover:

Nab.aeM— be M— ICCM. finite C A disjoint C Na—b=JC

locale ring of sets = semiring of sets +

assumes Un [intro]: Nab.ae M = be M = aUbe M
locale algebra = ring_of sets +

assumes top [iff]: Q € M

proposition algebra_iff Un:
algebra Q@ M +—
M C Pow Q A
{} e M A
Vae M. Q—ae M)A

117
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VMaeM.VbeM aUbe M) (is_ «— ?Un)

proposition algebra_iff Int:
algebra Q@ M +—
MCPuwQ&{leM&
NVaeM.Q—-—ae M &
NVaeM.VbeM anbe M) (is_ +— ?Int)
locale sigma__algebra = algebra +
assumes countable_nat_UN [intro]: ANA. range A C M = (|Ji:nat. Ai) e M

Sigma algebras can naturally be created as the closure of any set of M with
regard to the properties just postulated.

inductive__set sigma_ sets :: 'a set = 'a set set = 'a set set
for sp :: 'a set and A :: 'a set set
where
Basiclintro, simpl: a« € A = a € sigma__sets sp A
| Empty: {} € sigma__sets sp A
| Compl: a € sigma__sets sp A = sp — a € sigma__sets sp A
| Union: (N\iz:nat. a i € sigma_sets sp A) = (1. a i) € sigma__sets sp A
definition closed_cdi :: 'a set = 'a set set = bool where
closed _cdi Q M +—
M C Pow Q &
(VseM.Q—seM)
(VA. (range A C M) &
(Ui. Ai) e M) &
(VA. (range A C M) & disjoint_family A — ((Ji:nat. A i) € M)

&
(A0={}) & (Vn AnC A (Sucn)) —

locale Dynkin__ system = subset_class +
assumes space: 1 € M
and compl[introl]: NA. Ae M = Q- Ae M
and UN[introl]: \A. disjoint_family A = range A C M
= (Jiznat. Ad) e M
definition Int stable :: 'a set set = bool where
Int stable M «— Y a e M.V be M. anbe M)
definition Dynkin :: 'a set = 'a set set = 'a set set where
Dynkin Q@ M = (N {D. Dynkin_system Q@ D N M C D})

The reason to introduce Dynkin-systems is the following induction rules for
o-algebras generated by a generator closed under intersection.

proposition sz'gmafsetsfinductidz'sjoint[consumes 3, case_names basic empty
compl union):
assumes Int_stable G
and closed: G C Pow €2
and A: A € sigma__sets Q G
assumes basic: NA. A€ G= P A
and empty: P {}
and compl: NA. A € sigma_sets Q G = P A = P (2 — A)
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and union: NA. disjoint_family A = range A C sigma__sets @ G = (\!.
P (A1) = P (Ui:nat. A1)
shows P A

8.1.2 Measure type

definition positive :: 'a set set = (‘a set = ennreal) = bool where
positive M p +— pu {} = 0

definition countably additive :: 'a set set = ('a set = ennreal) = bool where
countably _additive M f <—
(VA. range A C M — disjoint_family A — (Ui. A i) € M —
Qi f(An)=[f Ui Ad)

definition measure_space :: 'a set = ‘a set set = ('a set = ennreal) = bool
where
measure__space A p —

sigma,__algebra Q A N positive A u A countably _additive A u

typedef ‘a measure =
{(Q:a set, A, p). (Vae—A. p a = 0) N measure_space Q A p }

definition space :: ‘a measure = 'a set where
space M = fst (Rep_measure M)

definition sets :: ‘a measure = ’a set set where
sets M = fst (snd (Rep_measure M))

definition emeasure :: 'a measure = 'a set = ennreal where
emeasure M = snd (snd (Rep_measure M))

definition measure :: 'a measure = 'a set = real where
measure M A = enn2real (emeasure M A)

definition measure_of :: ‘a set = 'a set set = ('a set = ennreal) = 'a measure

where

measure_of Q Ay =
Abs_measure (2, if A C Pow Q) then sigma__sets Q A else {{}, Q},
Aa. if a € sigma__sets Q A N\ measure__space S (sigma__sets ) A) p then p

a else 0)
proposition emeasure _measure_of:

assumes M: M = measure_of Q A

assumes ms: A C Pow Q positive (sets M) u countably additive (sets M) p

assumes X: X € sets M

shows emeasure M X =y X
definition measurable :: 'a measure = 'b measure = ('a = 'b) set

(infixr <—)s> 60) where
measurable A B = {f € space A — space B.Vy € sets B. f —‘y N space A € sets
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A}

definition count space :: 'a set = 'a measure where

count__space Q) = measure_of Q (Pow Q) (AA. if finite A then of nat (card A)
else c0)

8.1.3 The smallest o-algebra regarding a function

definition vimage algebra :: 'a set = (‘a = 'b) = 'b measure = 'a measure
where
vimage__algebra X f M = sigma X {f —“ AN X | A. A € sets M}

end

8.2 Measurability Prover

theory Measurable
imports
Sigma__Algebra
HOL— Library.Order__Continuity
begin

method__setup measurable = < Scan.lift (Scan.succeed (METHOD o Measur-
able.measurable_tac)) »
measurability prover

simproc__setup measurable (A € sets M | f € measurable M N) =
<K Measurable.procy

end

8.3 Measure Spaces

theory Measure__Space
imports

Measurable HOL— Library. Exztended_ Nonnegative_Real
begin

8.3.1 p-null sets

definition null sets :: 'a measure = 'a set set where
null_sets M = {Ne&sets M. emeasure M N = 0}

8.3.2 The almost everywhere filter (i.e. quantifier)

definition ae_filter :: 'a measure = 'a filter where
ae_filter M = (INF Nenull_sets M. principal (space M — N))
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8.3.3 o-finite Measures

locale sigma__finite__measure =
fixes M :: 'a measure
assumes sigma__finite__countable:
JA:'a set set. countable A N A C sets M N (|JA) = space M A (VacA.
emeasure M a # o0)

8.3.4 Measure space induced by distribution of (—,;)-functions

definition distr :: 'a measure = 'b measure = ('a = 'b) = 'b measure where
distr M N f =
measure_of (space N) (sets N) (AA. emeasure M (f —¢ A N space M))

proposition distr_distr:
g € measurable N L = f € measurable M N = distr (distr M N f) L g = distr
ML (gof)

8.3.5 Set of measurable sets with finite measure

definition fmeasurable :: 'a measure = 'a set set where
fmeasurable M = {A€sets M. emeasure M A < oo}

8.3.6 Measure spaces with emeasure M (space M) < oo

locale finite__measure = sigma__finite_ measure M for M +
assumes finite__emeasure_space: emeasure M (space M) # top

8.3.7 Scaling a measure

definition scale _measure :: ennreal = 'a measure = 'a measure where
scale_measure v M = measure_of (space M) (sets M) (AA. r x emeasure M A)

8.3.8 Complete lattice structure on measures

proposition unsigned_Hahn__decomposition:
assumes [simp]: sets N = sets M and [measurable]: A € sets M
and [simp]: emeasure M A # top emeasure N A # top
shows dYesets M. Y CAN(VXesets M. X CY — NX < MX) A (VXeEsets
M.XCA—XNY={ — MX<NX)
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Define a lexicographical order on measure, in the order space, sets and mea-
sure. The parts of the lexicographical order are point-wise ordered.

instantiation measure :: (type) order_bot
begin

definition less measure :: 'a measure = 'a measure = bool where

less_measure M N «— (M < N A= N < M)

definition bot measure :: 'a measure where
bot_measure = sigma {} {}

proposition le_measure: sets M = sets N = M < N <— (¥ A€sets M. emea-
sure M A < emeasure N A)

definition sup measure’ :: 'a measure = 'a measure = 'a measure where
sup_measure’ A B =
measure__of (space A) (sets A)
(AX. SUP Yesets A. emeasure A (X N'Y) + emeasure B (X N — Y))

definition sup_lezord :: 'a = 'a = ('a = 'b::order) = 'a = 'a = 'a where
sup_lexord A Bk sc =

(if k A =k B then c else

if " kA< EkBA-kB<EkAthen s else

if k B <k A then A else B)

instantiation measure :: (type) semilattice _sup
begin

definition sup_measure :: 'a measure = 'a measure = 'a measure where
sup_measure A B =
sup_lexord A B space (sigma (space A U space B) {})
(sup_lexord A B sets (sigma (space A) (sets A U sets B)) (sup_measure’ A
B))

definition

Sup__lexord :: ('a = 'b::complete_lattice) = ('a set = 'a) = ('a set = 'a) = 'a
set = 'a
where

Sup_lexord k ¢ s A =

(let U = (SUP a€A. k a)

inif 3acA. ka= Uthen c {a€A. ka = U} else s A)

instantiation measure :: (type) complete_lattice
begin

definition Sup_measure’ :: 'a measure set = 'a measure where
Sup _measure’ M =
measure_of (|Ja€eM. space a) (|Ja€EM. sets a)
(AX. (SUP Pe{P. finite PN P C M }. sup_measure.F id P X))
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definition Sup measure :: 'a measure set = 'a measure where
Sup__measure =
Sup__lexord space
(Sup__lexzord sets Sup__measure’
(AU. sigma (|JueU. space u) (|JueU. sets u)))
(AU. sigma ((JueU. space u) {})

definition Inf measure :: 'a measure set = 'a measure where
Inf_measure A = Sup {z. VacA. z < a}

definition inf measure :: 'a measure = 'a measure = 'a measure where
inf _measure a b = Inf {a, b}

definition top_measure :: 'a measure where
top__measure = Inf {}

end

8.4 Borel Space

theory Borel Space
imports

Measurable Derivative Ordered_FEuclidean_Space Extended Real Limits
begin

proposition open_ prod__generated: open = generate__topology {A x B | A B. open
A A open B}

proposition mono__on_imp_ deriv_nonneg:
assumes mono: mono_on A f and deriv: (f has_real _derivative D) (at x)
assumes z € interior A
shows D > 0

proposition mono_on_ ctble__discont:
fixes f :: real = real
fixes A :: real set
assumes mono_on A f
shows countable {a€A. = continuous (at a within A) f}

8.4.1 Generic Borel spaces

definition (in topological _space) borel :: 'a measure where
borel = sigma UNIV {S. open S}
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theorem second_countable _borel measurable:
fixes X :: ‘a::second__countable_topology set set
assumes eq: open = generate__topology X
shows borel = sigma UNIV X

proposition borel eq countable_basis:
fixes B::'a::topological _space set set
assumes countable B
assumes topological basis B
shows borel = sigma UNIV B

8.4.2 Borel spaces on order topologies
8.4.3 Borel spaces on topological monoids
8.4.4 Borel spaces on Euclidean spaces

8.4.5 Borel measurable operators

lemma borel _measurable__complex_iff:
f € borel_measurable M +—
(Az. Re (f z)) € borel_measurable M N (Ax. Im (f z)) € borel_measurable M
(is ?lhs «— ?rhs)

8.4.6 Borel space on the extended reals

theorem borel _measurable ereal iff real:
fixes [ :: 'a = ereal
shows f € borel _measurable M +—
((Az. real_of _ereal (f x)) € borel _measurable M A f —*{oo} N space M € sets
M A f—{—00} N space M € sets M)

8.4.7 Borel space on the extended non-negative reals

definition [simp]: is_borel f M «— f € borel _measurable M

8.4.8 LIMSEQ is borel measurable

proposition measurable_limit [measurable]:
fixes f::nat = 'a = 'b::first_countable__topology
assumes [measurable]: An:nat. fn € borel_measurable M
shows Measurable.pred M (Az. (An. fn ) —— ¢)
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end

8.5 Lebesgue Integration for Nonnegative Func-
tions

theory Nonnegative Lebesgue Integration
imports Measure Space Borel _Space
begin

8.5.1 Simple function

definition simple_function M g +—
finite (g ¢ space M) A
(Vz € g “space M. g — {x} N space M € sets M)

lemma borel _measurable_implies _simple function__sequence:

fixes u :: 'a = ennreal

assumes u[measurable]: u € borel_measurable M

shows 3f. incseq f N (Vi. (V. fix < top) A simple_function M (fi)) A u =
(SUP i. fi)

lemma simple_function__induct
[consumes 1, case_names cong set mult add, induct set: simple_ function]:

fixes u :: 'a = ennreal

assumes u: simple_function M u

assumes cong: \f g. simple_function M f = simple_ function M ¢ — (AE z
inM.fr=gz)=— Pf= Py

assumes set: ANA. A € sets M = P (indicator A)

assumes mult: Auc. Pu = P (A\z. ¢ * u x)

assumes add: A\uv. Pu=—= Pv=—= P (Az. vz + u x)

shows P u

lemma borel measurable induct
[consumes 1, case_names cong set mult add seq, induct set: borel_measurable]:

fixes u :: 'a = ennreal

assumes u: u € borel _measurable M

assumes cong: \f g. f € borel _measurable M —> g € borel _measurable M —>
(Az. z € space M = fr=gz) = Pg=— Pf

assumes set: NA. A € sets M = P (indicator A)

assumes mult” Au c. ¢ < top => u € borel _measurable M = (\z. © € space
M= ux <top) = Pu=— P (Az. ¢ x u 1)

assumes add: Au v. u € borel_measurable M= (\z. z € space M = u z <
top) = P v = v € borel_measurable M = (A\z. © € space M = v z < top)
= (Az.z € space M = vz =0Vvr=0)— Pv=— P (Az. vz + ux)

assumes seq: AU. (Ai. Ui € borel _measurable M) = (\i z. z € space M =
Uiz < top) = (N\i. P (U1i)) = incseq U = u = (SUP i. Ui) = P (SUP
i. Ui
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shows P u

8.5.2 Simple integral

definition simple integral :: 'a measure = ('a = ennreal) = ennreal (<integral®»)

where
integral® M f = (Y. x € f “ space M. z * emeasure M (f —‘{z} N space M))

8.5.3 Integral on nonnegative functions

definition nn_integral :: 'a measure = ('a = ennreal) = ennreal (tintegral™»)

where
integral™ M f = (SUP g € {g. simple_function M g A g < f}. integral® M g)

theorem nn__integral_monotone__convergence SUP_AE:
assumes f: Ni. AEzin M. fix < f (Suci) z \i. fi € borel _measurable M
shows ([* z. (SUPi. fiz) OM) = (SUP i. integral™ M (f 7))

theorem nn__integral _suminf:
assumes f: A\i. fi € borel _measurable M
shows ([T z. (3. fiz) OM) = (Y i. integral™ M (f i)

theorem nn_ integral Markov_inequality:
assumes u: (Az. u z * indicator A ) € borel _measurable M and A € sets M
shows (emeasure M) ({z€A. 1 < c¢cxuz}) < cx* ([T 2. uz * indicator A x
oM)
(is (emeasure M) ?A < _ x ?PI)

theorem nn__integral _monotone convergence INF _AFE:
fixes f :: nat = 'a = ennreal
assumes f: N\i. AEzin M. f (Suci) z < fix
and [measurable]: N\i. fi € borel _measurable M
and fin: ([T z. fiz OM) < o0
shows ([* z. (INF i. fiz) OM) = (INF i. integral¥ M (f 7))

theorem nn_ integral liminf:
fixes u :: nat = 'a = ennreal
assumes u: \i. u ¢ € borel _measurable M
shows ([ * z. liminf (An. u n ) OM) < liminf (An. integral™ M (u n))

theorem nn__integral limsup:
fixes u :: nat = 'a = ennreal
assumes [measurable]: N\i. u i € borel _measurable M w € borel_measurable M
assumes bounds: \i. AEzin M. viz < wzand w: ([ Tz. wz IM) < oo
shows limsup (An. integral™ M (un)) < ([+ z. limsup (An. un z) OM)

theorem nn_integral _dominated_ convergence:
assumes [measurable]:
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Ni. ui € borel_measurable M u’ € borel_measurable M w € borel_measurable
M
and bound: \j. AExzin M. ujz < wzx
and w: ([ Tz. wz OM) < 00
and v AEzin M. (M. viz) —— u'x
shows (\i. ([tz. wiz OM)) —— ([ Tz. v’z OM)

theorem nn_integral Ifp:

assumes sets[simpl|: \s. sets (M s) = sets N

assumes f: sup__continuous f

assumes g: sup__continuous g

assumes meas: \F. F € borel_measurable N = f F € borel_measurable N

assumes step: A\F s. F € borel_measurable N = integral™ (M s) (f F) = g
(Xs. integral™ (M s) F) s

shows ([Tw. lIfpfwdMs)=1fpgs

theorem nn__integral gfp:
assumes sets[simp]: \s. sets (M s) = sets N
assumes f: inf continuous f and g¢: inf continuous g
assumes meas: \F. F € borel _measurable N = f F' € borel _measurable N
assumes bound: \F s. F € borel_measurable N = ([ Va. fF z OM s) < o
assumes non_ zero: \s. emeasure (M s) (space (M s)) # 0
assumes step: A\F s. F € borel_measurable N = integral™ (M s) (f F) = g
(As. integral™ (M s) F) s
shows ([ Tw. gfp fw OMs) = gfp gs

8.5.4 Integral under concrete measures

definition density :: ‘a measure = ('a = ennreal) = 'a measure where
density M f = measure_of (space M) (sets M) (AA. [T z. fz x indicator A =
M)

lemma nn__integral_density:
assumes f: f € borel_measurable M
assumes ¢: g € borel _measurable M
shows integral™ (density M f) g = ([* z. fz x gz OM)
definition point_measure :: 'a set = (‘a = ennreal) = 'a measure where
point_measure A f = density (count_space A) f
definition uniform__measure M A = density M (\x. indicator A x | emeasure M
4)
definition uniform__count measure A = point_measure A (A\x. 1 / card A)

end

8.6 Binary Product Measure

theory Binary Product_Measure
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imports Nonnegative_Lebesgue_ Integration
begin

8.6.1 Binary products

definition pair _measure (infixr <@ rs> 80) where
A @ B = measure_of (space A x space B)
{a xb|ab acsets ANDbEe sets B}
(AX. [tz ([ Ty. indicator X (z,y) OB) 0A)

proposition (in sigma_ finite _measure) emeasure_pair_measure_Times:
assumes A: A € sets N and B: B € sets M
shows emeasure (N @ pr M) (A x B) = emeasure N A x emeasure M B

8.6.2 Binary products of o-finite emeasure spaces

proposition (in pair_sigma_ finite) sigma__finite__up__in__pair_measure__generator:
defines F = {A x B| A B. A € sets M1 N\ B € sets M2}
shows 3 F::nat = (‘a x 'b) set. range F C E A incseq F N (4. F i) = space
M1 x space M2 N
(Vi. emeasure (M1 @y M2) (F i) # o0)

8.6.3 Fubinis theorem

proposition (in pair_sigma_ finite) nn__integral _snd:
assumes f[measurable]: f € borel _measurable (M1 @ pr M2)
shows ([T y. ([T o f (z, y) OM1) OM2) = integral™ (M1 @ v M2) f

theorem (in pair_sigma__ finite) Fubini:

assumes [: f € borel_measurable (M1 @ p M2)

shows ([* y. ([* @ f (z, y) OM1) OM2) = ([* = ([ * y. [ (z, y) OM2)
OM1)

theorem (in pair_sigma__ finite) Fubini’:
assumes f: case_prod [ € borel_measurable (M1 Q) py M2)
shows ([T y. ([T 2. fayoM1)OM2) = ([T z. ([t y. fzydM2)OMI)

8.6.4 Products on counting spaces, densities and distribu-
tions

proposition sigma__prod:
assumes X_ cover: 3ECA. countable E AN X = |JF and A: A C Pow X
assumes Y _cover: 3 ECB. countable EANY =|JE and B: BC Pow Y
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shows sigma X A @ ar sigma Y B = sigma (X x Y){a xb|ab. a€ AND
€ B}
(is 7P = 25)

proposition sets pair_eq:
assumes Fa: Fa C Pow (space A) sets A = sigma__sets (space A) Ea
and Ca: countable Ca Ca C Fa |J Ca = space A
and Eb: Eb C Pow (space B) sets B = sigma__sets (space B) Eb
and Cb: countable Cb Cb C Eb |J Cb = space B
shows sets (A @ ar B) = sets (sigma (space A x space B) { a X b| ab. a €
FBanbe EbY)
(is _ = sets (sigma 2Q ?E))

proposition borel prod:

(borel @ nr borel) = (borel :: ('a::second__countable__topology x 'b::second__countable_topology)
measure)

(is ?P = ?B)

proposition pair _measure__count__space:

assumes A: finite A and B: finite B

shows count_space A Q) pr count_space B = count_space (A x B) (is 7P =
?C)

theorem pair _measure density:
assumes f: f € borel _measurable M1
assumes g: g € borel_measurable M2
assumes sigma__finite _measure M2 sigma__finite_measure (density M2 g)
shows density M1 f @ ar density M2 g = density (M1 @ rpr M2) (A (z,y). [z *
gy) (is 2L = ?R)

proposition nn__integral fst_count_space:

(J Tz [Ty f(z, y) Ocount_space UNIV dcount_space UNIV) = integral™
(count__space UNIV) f

(is ?lhs = ?rhs)

proposition nn__integral snd__count_space:

(J* y. [Tz f(z, y) Ocount_space UNIV dcount_space UNIV) = integral™
(count__space UNIV) f

(is ?lhs = ?rhs)

8.6.5 Product of Borel spaces

theorem borel  Times:
fixes A :: ‘a::topological__space set and B :: 'b::topological _space set
assumes A: A € sets borel and B: B € sets borel
shows A x B € sets borel
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end

8.7 Finite Product Measure

theory Finite Product_Measure
imports Binary Product_Measure Function__ Topology
begin

8.7.1 Finite product spaces

definition prod_emb where
prod_emb I M K X = (A\x. restrict x K) —* X N (Ilg i€l. space (M 1))

definition PiM :: i set = (i = 'a measure) = ('i = 'a) measure where
PiM I M = extend_measure (Ilg i€1. space (M 1))
{(J, X). (JA{VI={}) A finite ] NJCIANXe(Iljed. sets (Mj))}
(AJ, X). prod_emb I M J (Ilg jeJ. X j))
(A(J, X). [[jeJd U {iel. emeasure (M i) (space (M i)) # 1}. if j € J then
emeasure (M j) (X j) else emeasure (M j) (space (M j)))

definition prod_algebra :: i set = (i = 'a measure) = ('i = 'a) set set where
prod__algebra I M = (A(J, X). prod_emb I M J (Ilg jeJ. X j)) ¢
{(J, X). (J#{VI={}) A finite ] NJ CIANXe((IIjed. sets (Mj))}

proposition prod__algebra__mono:
assumes space: \i. i € I = space (E i) = space (F i)
assumes sets: \i. i € I = sets (E i) C sets (F i)
shows prod__algebra I E C prod__algebra I F

proposition prod__algebra__cong:
assumes [ = J and (Ai. i € I = sets (M i) = sets (N 7))
shows prod__algebra I M = prod__algebra J N

proposition sets PiM__single: sets (PiM I M) =

sigma__sets (g i€l. space (M 7)) {{f€llg i€l. space (M 7). fi€ A} | i A. i
€I NAEsets (Mi)}

(is __ = sigma__sets %) ?R)

proposition sets PiM_sigma:
assumes Q_cover: N\i. i € I = FSCE i. countable SN Q i=S
assumes E: \i. i € [ = E i C Pow (9 1)
assumes J: A\j. j € J = finitej |JJ =1
defines P = {{fe(llg i€l. Qi).Viej. fie Ai} |Ajje JANA€ PijE}
shows sets (Ilp; i€l. sigma (Q i) (E ©)) = sets (sigma (Ilg i€l. Q i) P)

proposition measurable PiM:
assumes space: f € space N — (Ilg i€l. space (M 1))
assumes sets: A X J. J#{}VI={} = finite ] = JC I = (Ni.i e J
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= X i € sets (M 1)) =
f —“prod_embIMJ (Pig J X) N space N € sets N
shows f € measurable N (PiM I M)

proposition measurable_fun__upd:
assumes [: [ = J U {i}
assumes f[measurable]: f € measurable N (PiM J M)
assumes h[measurable]: h € measurable N (M 1)
shows (Az. (fz) (i := h z)) € measurable N (PiM I M)

proposition measure__eql PiM_finite:

assumes [simp]: finite I sets P = PiM I M sets Q = PiM I M

assumes eq: NA. (Ni. i€ I = A i€ sets (M i)) = P (Pig [ A) = Q (Pig
I'A)

assumes A: range A C prod_algebra I M (|Ji. A i) = space (PiM I M) Ni::nat.
P (Ai)#

shows P = ()

proposition measure__eql _PiM__infinite:
assumes [simp]: sets P = PiM I M sets Q@ = PiM I M
assumes eq: NA J. finite ] = J C I = (N\i.i € J = A i€ sets (M 1))
_—
P (prod_emb IM J (Pig J A)) = Q (prod_emb I M J (Pig J A))
assumes A: finite_measure P
shows P = @)

proposition (in finite_product_sigma__finite) sigma__finite_pairs:
IF: = nat = 'a set.
(Vi€l. range (F i) C sets (M i)) A
(Vk.Viel. emeasure (M ©) (F i k) # o00) A incseq (Ak. llg i€l. F i k) A
(Uk.lIg iel. Fik) = space (PiM I M)

lemma (in product_sigma__finite) distr_merge:

assumes LJ[simp]: I N J = {} and fin: finite I finite J

shows distr (Pipgy I M @ a Ping J M) (Pipg (I U J) M) (merge I J) = Piy
(IUJ)M

(is 7D = ?P)

proposition (in product_sigma_ finite) product_nn__integral_ fold:
assumes IJ: I N J = {} finite I finite J
and f[measurable]: f € borel _measurable (Pips (I U J) M)
shows integral™ (Pipg (11U J) M) f= ([T z. (/T y. f (merge I J (z, y)) O(Pin
JM)) O(Pip I M))
(is 2lhs = ?rhs)

proposition (in product sigma_ finite) product nn__integral_insert:
assumes [[simp|: finite [ i ¢ |
and f: f € borel _measurable (Pip (insert i I) M)
shows integral™ (Piy (insert i 1) M) f= ([T . ([* y. f (2(i :== y)) O(M 7))


Finite{_}{\kern 0pt}Product{_}{\kern 0pt}Measure.html

132

d(Piy I M))

proposition (in product sigma__finite) product_nn__integral _pair:
assumes [measurable]: case_prod f € borel _measurable (M z @ p M y)
assumes zy: T #* y
shows ([to. f (0 z) (¢ y) OPiM {z, y} M) = ([ Tz f (fst 2) (snd z) O(M =
Q@ m My))

8.7.2 Measurability

proposition sets PiM__equal borel:
sets (Pipg UNIV (Xi::(Ya::countable). borel::(’b::second__countable__topology mea-
sure))) = sets borel

end

8.8 Caratheodory Extension Theorem

theory Caratheodory
imports Measure Space
begin

8.8.1 Characterizations of Measures

definition outer measure_space where
outer_measure__space M f «— positive M f N increasing M f A countably__subadditive
My

Lambda Systems

definition lambda__system :: 'a set = 'a set set = ('a set = ennreal) = 'a set set
where
lambda_system Q M f={le M.Yze M. f(lnz)+f(Q=-0)Nnz)=fa}

proposition (in sigma__algebra) lambda__system__caratheodory:
assumes oms: outer_measure__space M f
and A: range A C lambda__system Q M f
and disj: disjoint__family A
shows (|Ji. A i) € lambda_system Q M f AN (O i f (A i) =f (Ui Ad)

proposition (in sigma__algebra) caratheodory_lemma:
assumes oms: outer_measure_space M f
defines L = lambda__system Q2 M f
shows measure space Q L f
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definition outer measure :: ‘a set set = (‘a set = ennreal) = 'a set = ennreal
where
outer_measure M f X =
(INF Ae{A. range A C M A disjoint_family AN X C (Ji. A i)} > 0. f (A
)

8.8.2 Caratheodory’s theorem

theorem (in ring of sets) caratheodory’:

assumes posf: positive M f and ca: countably__additive M f

shows Jpu :: ‘a set = ennreal. (Vs € M. p s = f s) AN measure_space )
(sigma__sets Q M)

8.8.3 Volumes

definition volume :: 'a set set = (‘a set = ennreal) = bool where
volume M f +—
F{3=0)ANNaeM. 0 < fa)A
(VY CCM. disjoint C — finite C — |JC e M — f (UC) = O_cel. fc))

proposition volume_finite _additive:

assumes volume M f

assumes A: N\i. i € I = A i € M disjoint_family _on A I finite I |J(A ‘1) €
M

shows f (J(4 ‘1)) = Oiel. f (A1)

proposition (in semiring _of _sets) extend__volume:
assumes volume M p
shows 3 . volume generated_ring p' A (Va€M. u' a = p a)

Caratheodory on semirings

theorem (in semiring of sets) caratheodory:

assumes pos: positive M p and ca: countably additive M p

shows 3pu’ 2 'a set = ennreal. (Vs € M. u' s = p s) N measure_space §)
(sigma__sets Q@ M) u'

proposition extend_measure__caratheodory pair:

fixes G :: i = 'j = 'a set

assumes M: M = extend_measure Q {(a, b). P a b} (A(a, b). G a b) (A(a, b).
pabd)

assumes P 7 j

assumes semiring: semiring_of sets Q {G a b | ab. Pa b}

assumes empty: N\ij. Pij— Gij={} = pnij=20

assumes inj: \ijkl. Pij— Pkl= Gij=Gkl=pij=pkl

assumes nonneg: N\ij. Pij—=— 0 < pij

assumes add: A\A:nat = 'i. AB:nat = 5. \j k.


Caratheodory.html

134

(An. P (A n) (Bn)) = Pjk= disjoint_family (An. G (A n) (Bn)) =
Ui G (A4d) (Bi)) = Gjk= Q_n p(An)(Bn)) =mnjk

shows emeasure M (G ij) = pij

end

8.9 Bochner Integration for Vector-Valued Func-
tions

theory Bochner__Integration

imports Finite Product Measure
beginproposition borel measurable _implies _sequence__metric:

fixes [ :: 'a = b :: {metric_space, second__countable__topology}

assumes [measurable]: f € borel _measurable M

shows 3 F. (Vi. simple_function M (F i)) A (Yaz€space M. (Xi. Fiz) —— f
z) A

(Vi.Vazespace M. dist (Fiz) z < 2 x dist (f ) 2)

definition simple_bochner_integral :: 'a measure = ('a = 'b::real_vector) = b
where
simple__bochner _integral M f = (3> yef‘space M. measure M {xE€space M. fx =

Y} *r Y)

proposition simple bochner _integral__partition:
assumes [: simple_bochner _integrable M f and g: simple_function M g
assumes sub: Az y. € space M = y € space M = gax =gy = fz = fy
assumes v: A\z. ¢ € space M = fz = v (g )
shows simple_bochner_integral M f = (D" y€g ‘ space M. measure M {z€space
M. gz =y} *r vy)
(is_ = %r)

proposition has_bochner_integral implies finite__norm:
has_bochner_integral M fx = ([ Tx. norm (f z) OM) < oo

proposition has_bochner _integral _norm__bound:
assumes i: has_bochner integral M f x
shows norm z < ([ *z. norm (f z) M)

definition lebesgue integral (<integral®)) where
integral” M f = (if 3x. has_bochner integral M f x then THE z. has_bochner _integral
M fz else 0)

proposition nn__integral _dominated__convergence_norm:
fixes u’ :: _ = __::{real_normed_vector, second__countable_topology}
assumes [measurable]:
Ai. ui € borel_measurable M u' € borel _measurable M w € borel_measurable
M

and bound: N\j. AE zin M. norm (vjz) < wzx
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and w: ([ Tz. wz OM) < 00
and v AEzin M. (Ni. uiz) —— u'x
shows (Xi. ([ *z. norm (v'z — wiz) IM)) —— 0

proposition integrablel bounded:

fixes f :: 'a = 'b::{banach, second__countable_topology}

assumes f[measurable]: f € borel _measurable M and fin: ([ *z. norm (fz) OM)
< 0

shows integrable M f

proposition nn__integral _eq integral:
assumes f: integrable M f
assumes nonneg: AE zin M. 0 < fz
shows ([t z. fz OM) = integral’ M f

proposition integral _norm__bound [simp]:
fixes f :: _ = 'a :: {banach, second__countable_topology}
shows norm (integral® M f) < ([ z. norm (f ) OM)

proposition integral _abs_bound [simp]:
fixes f :: ‘a = real shows abs ([z. fz OM) < ([ z. |fz| OM)

proposition integrable induct[consumes 1, case_names base add lim, induct pred:
integrable]:

fixes f :: 'a = 'b::{banach, second__countable_topology}

assumes integrable M f

assumes base: NA c. A € sets M = emeasure M A < oo = P (Az. indicator
A *xg c)

assumes add: \f g. integrable M f = P f = integrable M ¢ — P ¢ =— P
Az fz 4+ gua)

assumes lim: A\f s. (\i. integrable M (s i)) = (\i. P (s 1)) =

(Az. © € space M = (Ni. six) —— fz) =

(Niz. z € space M = norm (s i x) < 2 x norm (f z)) = integrable M f —
Pf

shows P f

theorem integral _Markov_inequality:
assumes [measurable]: integrable M v and AE z in M. 0 < ux 0 < (c:real)
shows (emeasure M) {z€space M. wx > ¢} < (1/c) * ([ z. uz OM)

theorem integral _Markov_inequality measure:

assumes [measurable]: integrable M v and A € sets M and AE zin M. 0 < u
z 0 < (c:real)

shows measure M {zespace M. vz > ¢} < ([z. uz dM) / ¢

theorem (in finite_measure) second_moment_method:
assumes [measurable]: f € M —p borel
assumes integrable M (\z. fz ~ 2)
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defines i = lebesgue_integral M f
assumes a > 0
shows measure M {zcspace M. |f z| > a} < lebesgque_integral M (A\z. fz — 2)
/ @
proof —
have integrable: integrable M f
using assms by (blast dest: square _integrable_imp__integrable)
have {z€space M. |f z| > a} = {x€space M. fz ~ 2 > a*}
using <a > 0» by (simp flip: abs_le square_iff)
hence measure M {x€space M. |f x| > a} = measure M {z€space M. fz ~2 >
a?}
by simp
also have ... < lebesque_integral M (\x. fz ~2) / a®
using assms by (intro integral _Markov_inequality measure) auto
finally show ?thesis .
qed

proposition tendsto L1 int:
fixes u :: _ = _ = 'b::{banach, second__countable_topology}
assumes [measurable]: A\n. integrable M (u n) integrable M f
and ((An. ([ tz. norm(unz — fz) OM)) —— 0) F
shows ((An. ([z. unz OM)) — ([=z. fz OM)) F
proposition tendsto_L1_AE_subseq:
fixes u :: nat = ‘a = 'b::{banach, second__countable_topology}
assumes [measurable]: A\n. integrable M (u n)
and (An. ([ z. norm(u n z) OM)) —— 0
shows 3 ri:nat=nat. strict_mono r A (AE zin M. (An. u (rn) ) —— 0)

8.9.1 Restricted measure spaces

8.9.2 Measure spaces with an associated density
8.9.3 Distributions

8.9.4 Lebesgue integration on count_space

8.9.5 Point measure

proposition integrable point_measure_ finite:
fixes g :: ‘a = 'b::{banach, second__countable_topology} and f :: 'a = real
assumes finite A
shows integrable (point_measure A f) g

8.9.6 Lebesgue integration on null_measure

8.9.7 Legacy lemmas for the real-valued Lebesgue integral

theorem real lebesque integral def:
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assumes f[measurable]: integrable M f
shows integral’” M f = enn2real ([ Tz. f2 OM) — enn2real ([ Tx. ennreal (— f
z) OM)

theorem real integrable def:
integrable M f <— f € borel _measurable M A
(J* z. ennreal (fz) OM) # oo A ([ T z. ennreal (— fz) OM) # o

8.9.8 Product measure

proposition (in sigma__ finite__measure) borel_measurable lebesgue_integral[measurable
(raw)]:

fixes f :: _ = _ = __:{banach, second_countable_topology}

assumes f[measurable]: case_prod f € borel _measurable (N @Q p M)

shows (A\z. [y. fzy OM) € borel _measurable N

theorem (in pair_sigma__ finite) Fubini_integrable:
fixes f :: _ = __::{banach, second__countable_topology}
assumes f[measurable]: f € borel _measurable (M1 @ n M2)
and integl: integrable M1 (A\z. [ y. norm (f (z, y)) OM2)
and integ2: AE x in M1. integrable M2 (M\y. [ (z, y))
shows integrable (M1 @ p M2) f

proposition (in pair_sigma_ finite) integral_fst”:
fixes f :: _ = _ ::{banach, second__countable_topology}
assumes f: integrable (M1 @ v M2) f
shows ([z. ([y. f (z, y) OM2) OM1) = integral® (M1 @ v M2) f

proposition (in pair_sigma_ finite) Fubini_integral:
fixes f :: _ = _ = __ :: {banach, second__countable__topology}
assumes f: integrable (M1 @ pr M2) (case_prod f)
shows ([y. ([z. foy OM1) OM2) = ([=. ([y. fzy OM2) OMI)

end

8.10 Complete Measures

theory Complete Measure
imports Bochner__Integration
begin

locale complete__measure =
fixes M :: 'a measure
assumes complete: N\A B. BC A = A € null_sets M\ = B € sets M

definition
split_completion M A p = (if A € sets M then p = (A, {}) else
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AN A=fstpUsndp A fstpNsndp =4} Afstp € sets M AN sndp C N' A
N’ € null_sets M)

definition
main_part M A = fst (Eps (split_completion M A))

definition
null_part M A = snd (Eps (split__completion M A))

definition completion :: 'a measure = 'a measure where
completion M = measure_of (space M) { SU N |[SN N’ S € sets M A N' €
null_sets M NN C N’}
(emeasure M o main__part M)

lemma sets completion:
sets (completion M) = { SU N |[SN N’ S € sets M AN N’ € null_sets M AN N
c N’}

lemma measurable _completion: f € M —p N = f € completion M —p; N

lemma split__completion:
assumes A € sets (completion M)
shows split__completion M A (main_part M A, null_part M A)

lemma emeasure__completion|simp:
assumes S: S € sets (completion M)
shows emeasure (completion M) S = emeasure M (main_part M S)

lemma completion__ex_borel measurable:
fixes ¢ :: 'a = ennreal
assumes ¢: g € borel _measurable (completion M)
shows 3 g’cborel _measurable M. (AE zin M. g x = g’ )

locale semifinite_measure =
fixes M :: 'a measure
assumes semifinite:
NA. A € sets M = emeasure M A = co = F B€sets M. B C A N emeasure
M B < o0

locale locally determined_measure = semifinite_measure +
assumes locally determined:
NA. A C space M = (A\B. B € sets M = emeasure M B < co = AN B
€ sets M) = A € sets M

locale cld _measure =
complete__measure M + locally determined__measure M for M :: 'a measure

definition outer _measure_of :: 'a measure = 'a set = ennreal
where outer_measure_of M A = (INF B € {Besets M. A C B}. emeasure M
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B)

definition measurable_envelope :: 'a measure = 'a set = 'a set = bool

where measurable _envelope M A E +—

(ACEANE € sets M A (VY Fesets M. emeasure M (F N E) = outer_measure_of
M (F n A)))

lemma measurable envelope eq2:

assumes A C E F € sets M emeasure M E < oo

shows measurable__envelope M A E <— (emeasure M E = outer_measure_ of
M A)

proposition (in complete_measure) fmeasurable_inner_outer:
S € fmeasurable M <—
(Ve>0. 3 Tefmeasurable M. 3 Ucfmeasurable M. T C S NS C U A |measure
M T — measure M U| < e)
(is _ +— Zapprozx)

end

8.11 Regularity of Measures

theory Regularity
imports Measure Space Borel _Space
begin

theorem
fixes M::’a::{second__countable_topology, complete__space} measure
assumes sb: sets M = sets borel
assumes emeasure M (space M) # oo
assumes B € sets borel
shows inner_reqular: emeasure M B =
(SUP K € {K. K C B A compact K}. emeasure M K) (is %inner B)
and outer_reqular: emeasure M B =
(INFU € {U. BC U A open U}. emeasure M U) (is Pouter B)

end

8.12 Lebesgue Measure

theory Lebesgue Measure

imports
Finite_ Product _Measure
Caratheodory
Complete_Measure
Summation__ Tests
Regularity

begin
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8.12.1 Measures defined by monotonous functions

definition interval _measure :: (real = real) = real measure where
interval _measure F =
extend_measure UNIV {(a, b). a < b} (A(a, b). {a<..b}) (A(a, b). ennreal (F
b— Fa))

lemma emeasure__interval _measure_loc:
assumes a < b
assumes mono_ F: N\zy. 2 <y=— Faz < Fy
assumes right_cont_F : \a. continuous (at_right a) F
shows emeasure (interval_measure F) {a<..b} = Fb — Fa

lemma sets_interval _measure [simp, measurable__cong):
sets (interval_measure F) = sets borel

lemma sigma__ finite_interval _measure:
assumes mono_F: Nz y. c <y=— Fz < Fy
assumes right_cont_F : N\a. continuous (at_right a) F
shows sigma__finite_measure (interval_measure F)

8.12.2 Lebesgue-Borel measure

definition lborel :: (‘a :: euclidean__space) measure where
lborel = distr (I1py beBasis. interval_measure (Az. x)) borel (Af. Y b€Basis. f
b *R b)

abbreviation lebesque :: 'a::euclidean_space measure
where lebesque = completion lborel

abbreviation lebesque_on :: 'a set = 'a::euclidean_space measure
where lebesgue _on Q = restrict__space (completion lborel) Q

8.12.3 Borel measurability

lemma emeasure_lborel _cbox[simp):
assumes [simp|: Ab. b € Basis = 1-b<u-b
shows emeasure lborel (cbox | u) = (][ b€Basis. (v — 1) - b)

8.12.4 Affine transformation on the Lebesgue-Borel

lemma lborel_eql:
fixes M :: 'a::euclidean__space measure
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assumes emeasure__eq: Nl u. (Ab. b € Basis =1 - b < u - b) = emeasure M
(boz 1 u) = (]] beBasis. (u — 1) - b)
assumes sets_eq: sets M = sets borel

shows lborel = M

lemma lborel affine euclidean:
fixes ¢ :: 'a::euclidean space = real and t
defines Tz =t + (D> jeBasis. (cjx (z + J)) *r j)
assumes c¢: \j. j € Basis = cj # 0
shows lborel = density (distr lborel borel T) (A_. ([[j€Basis. |c j|)) (is

— D)

lemma lborel integral real _affine:
fixes f :: real = 'a :: {banach, second__countable_topology} and c :: real
assumes c: ¢ # 0 shows ([z. fz 0 lborel) = |c| xg ([z. [ (¢ + ¢ * z) Dlborel)

corollary lebesque real_affine:
¢ # 0 = lebesque = density (distr lebesque lebesque (Az. t + ¢ * z)) (A_.
ennreal (abs c))

lemma lborel _prod:
borel Q) pr lborel = (lborel :: ('a::euclidean_space X 'b::euclidean__space) mea-
sure)

8.12.5 Lebesgue measurable sets

abbreviation Imeasurable :: 'a::euclidean__space set set
where
Imeasurable = fmeasurable lebesgue

lemma Imeasurable_iff integrable:
S € lmeasurable «<— integrable lebesque (indicator S :: 'a::euclidean_space =
real)

8.12.6 A nice lemma for negligibility proofs

proposition starlike_negligible _bounded__gmeasurable:
fixes S :: 'a :: euclidean space set
assumes S: S € sets lebesque and bounded S
and eql: Ncz. [(cxgz) € S;0< c;z€S] = c=1
shows S € null_sets lebesque

corollary starlike__negligible__compact:
compact S = (N\cz. [(cxgpz)€S;0<c;zelS]|=c=1)= 5 € null_sets

lebesgue

proposition outer reqular_lborel le:
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assumes B[measurable]: B € sets borel and 0 < (e::real)
obtains U where open U B C U and emeasure lborel (U — B) < e

lemma outer _reqular__lborel:
assumes B: B € sets borel and 0 < (e::real)
obtains U where open U B C U emeasure lborel (U — B) < e

8.12.7 F sigma and G _delta sets.

inductive fsigma :: 'a::topological _space set = bool where
(An:nat. closed (F n)) = fsigma (|J (F ¢ UNIV))

inductive gdelta :: ’a::topological _space set = bool where
(An:nat. open (F n)) = gdelta ((\(F ¢ UNIV))

end

8.13 Tagged Divisions for Henstock-Kurzweil In-
tegration

theory Tagged Division
imports Topology Fuclidean__Space
begin

8.13.1 Some useful lemmas about intervals

8.13.2 Bounds on intervals where they exist

definition interval upperbound :: ('a::euclidean_space) set = 'a
where interval_upperbound s = (> i€ Basis. (SUP z€s. 1) *p 1)

definition interval_lowerbound :: ('a::euclidean__space) set = 'a
where interval_lowerbound s = (> i€ Basis. (INF z€s. x+i) *g i)

8.13.3 The notion of a gauge — simply an open set contain-
ing the point

definition gauge v «— (Vz. z € v = A open (v z))

8.13.4 Attempt a systematic general set of "offset" results
for components

8.13.5 Divisions

definition division_of (infixl «division’_of> 40)
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where
s division__of i +—
finite s A
(VKes. KCiNK#{}AN(Bab. K= choxab)) A
(VK1es. VK2e€s. K1 # K2 — interior(K1) N interior(K2) = {}) A

Us = 1)

proposition partial _division__extend__interval:
assumes p division_of (Up) (Up) C cboz a b
obtains ¢ where p C ¢ g division_of cbox a (b::'a::euclidean__space)

proposition division__union__intervals__exists:
assumes chor a b # {}
obtains p where (insert (cbox a b) p) division_of (cbox a b U cbox c d)

8.13.6 Tagged (partial) divisions

definition tagged partial division_ of (infixr (tagged’ partial’ _division’ _ofs 40)
where s tagged_partial _division__of i +—
finite s A
Ve K. (¢, K) e s— 2z € KANKCiA(Bab K= cboxab))A
(Vz1 K122 K2. (z1, K1) € s A (22, K2) € s A (21, K1) # (22, K2) —
interior K1 N interior K2 = {})

definition tagged_ division_of (infixr <tagged’ _division’_of» 40)
where s tagged_division__of i +— s tagged__partial__division_of i A (J{K. .
(z,K) € s} =1)

8.13.7 Functions closed on boxes: morphisms from boxes to
monoids

Using additivity of lifted function to encode definedness. defini-
tion lift _option :: ('a = 'b = '¢) = 'a option = 'b option = 'c option
where

lift_option f a’ b’ = Option.bind a’ (Aa. Option.bind b’ (Ab. Some (f a b)))

lemma comm_monoid_lift option:
assumes comm,_ monoid f z
shows comm_ monoid (lift_option f) (Some z)

Misc

Division points definition division_points (k::('a::euclidean__space) set) d =
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{(4,x). j € Basis N\ (interval_lowerbound k)-j < z A x < (interval upperbound
k)-j A
(Fied. (interval_lowerbound )-j = x V (interval _upperbound i)-j = z)}

Operative

proposition tagged division:
assumes d tagged__division__of (cbox a b)
shows F (A(_, 1). g 1) d = g (cboz a b)

8.13.8 Special case of additivity we need for the FTC

8.13.9 Fine-ness of a partition w.r.t. a gauge

definition fine (infixr (fine» 46)
where d fine s +— (V(z,k) € s. kK C d z)

8.13.10 Some basic combining lemmas

8.13.11 General bisection principle for intervals; might be
useful elsewhere

8.13.12 Cousin’s lemma
8.13.13 A technical lemma about "refinement" of division

Covering lemma

proposition covering lemma:

assumes S C chox a b box a b # {} gauge ¢

obtains D where
countable D |JD C cbozx a b
AK. K € D = interior K # {} A (3¢ d. K = cbox ¢ d)
pairwise (AA B. interior A N interior B = {}) D
NK.KeD=3Jze SNK.KCygz
Nuv. cboruveD = In.VicBasis.v-i—u-i=((b-i—a-i)/2n
SCcyUo

8.13.14 Division filter

definition division_filter :: 'a::euclidean__space set = (‘a x 'a set) set filter
where division_filter s = (INF g&{g. gauge g}. principal {p. p tagged__division__of
s A g fine p})

proposition eventually division__filter:
(V F p in division_filter s. P p) +—
(3 g. gauge g A (Y p. p tagged_division_of s A g fine p — P p))
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end

8.14 Henstock-Kurzweil Gauge Integration in Many
Dimensions

theory Henstock Kurzweil Integration
imports
Lebesgue_Measure Tagged_Division HOL— Real _Asymp.Real _Asymp

begin

8.14.1 Content (length, area, volume, etc.) of an interval
8.14.2 Gauge integral

8.14.3 Basic theorems about integrals

corollary integral _mult_left [simp]:
fixes c:: ‘a::{real_normed_algebra,division_ring}
shows integral S (Az. fx % ¢) = integral S f * ¢

corollary integral _mult_right [simp]:
fixes c:: ‘a::{real_normed_ field}
shows integral S (Az. ¢ * fx) = ¢ * integral S f

corollary integral _divide [simp]:
fixes z :: 'a::real_normed_field
shows integral S (A\z. fz / z) = integral S (A\z. fz) / 2

8.14.4 Cauchy-type criterion for integrability

proposition integrable_ Cauchy:

fixes f :: 'n:euclidean__space = 'a::{real _normed_vector,complete_space}

shows f integrable _on cbox a b +—

(Ve>0. 3v. gauge v A
(VD1 D2. D1 tagged_division__of (cbox a b) A v fine DI A
D2 tagged_division__of (cbox a b) A v fine D2 —
norm ((3 (z,K)€D1. content K xg fz) — (O (z,K)€D2. content K

fx)) <))

(is 2l = (Ve>0.3v. ?P e 7))

8.14.5 Additivity of integral on abutting intervals

proposition has_integral split:
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fixes f :: 'a::euclidean__space = 'b::real _normed_vector
assumes fi: (f has_integral i) (cbox a b N {z. z-k < c})
and fj: (f has_integral j) (cboz a b N {z. z-k > c})
and k: k € Basis
shows (f has_integral (i + 7)) (cbozx a b)

8.14.6 A sort of converse, integrability on subintervals

8.14.7 Bounds on the norm of Riemann sums and the inte-
gral itself

corollary integrable bound:
fixes [ :: 'a::euclidean__space = 'b::real__normed__vector
assumes (0 < B
and f integrable_on (cboz a b)
and Az. z€cbox a b = norm (f z) <
shows norm (integral (cbox a b) f) < B

~

B
* content (cbox a b)

8.14.8 Similar theorems about relationship among compo-
nents

8.14.9 Uniform limit of integrable functions is integrable

8.14.10 Negligible sets

proposition negligible _standard__hyperplane[intro]:
fixes k :: ‘a::euclidean_space
assumes k: k € Basis
shows negligible {z. z-k = ¢}

corollary negligible _standard__hyperplane__cart:
fixes k :: 'a::finite
shows negligible {z. z3k = (0::real)}

proposition has_integral_negligible:
fixes f :: 'b::euclidean__space = 'a::real _normed__vector
assumes negs: negligible S
and Az. 2 € (T - S) = fxz=10
shows (f has_integral 0) T
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8.14.11 Some other trivialities about negligible sets

8.14.12 Finite case of the spike theorem is quite commonly
needed

corollary has_integral bound__real:
fixes f :: real = 'b::real_normed_vector
assumes 0 < B finite S
and (f has_integral i) {a..b}
and Az. z € {a..b} — S = norm (fz) < B
shows norm ¢ < B x content {a..b}

8.14.13 In particular, the boundary of an interval is negligi-
ble

8.14.14 Integrability of continuous functions
8.14.15 Specialization of additivity to one dimension

8.14.16 A useful lemma allowing us to factor out the content
size

8.14.17 Fundamental theorem of calculus

theorem fundamental theorem__of calculus:
fixes f :: real = 'a::banach
assumes a < b
and vecd: Az. z € {a..b} = (f has_vector_derivative f' z) (at x within

{a..b})
shows (f' has_integral (f b — f a)) {a..b}

8.14.18 Taylor series expansion

8.14.19 Only need trivial subintervals if the interval itself is
trivial

proposition division_of nontrivial:
fixes D :: 'a::euclidean_space set set
assumes sdiv: D division__of (cboz a b)
and cont0: content (cbox a b) # 0
shows {k. k € D A content k # 0} division__of (cbox a b)
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8.14.20 Integrability on subintervals
8.14.21 Combining adjacent intervals in 1 dimension
8.14.22 Reduce integrability to "local" integrability

8.14.23 Second FTC or existence of antiderivative

8.14.24 Combined fundamental theorem of calculus

8.14.25 General "twiddling" for interval-to-interval function
image

8.14.26 Special case of a basic affine transformation
8.14.27 Special case of stretching coordinate axes separately
8.14.28 even more special cases

8.14.29 Stronger form of FCT; quite a tedious proof

theorem fundamental theorem__of calculus interior:
fixes f :: real = ’a::real _normed_vector
assumes a < b
and contf: continuous_on {a..b} f
and derf: Az. z € {a <..< b} = (f has_vector_derivative ' x) (at )
shows (f' has_integral (f b — f a)) {a..b}

8.14.30 Stronger form with finite number of exceptional points

corollary fundamental_theorem__of calculus strong:
fixes [ :: real = 'a::banach
assumes finite S
and a < b
and vec: A\z. z € {a..b} — S = (f has_vector__derivative f'(z)) (at )
and continuous_on {a..b} f
shows (f’ has_integral (f b — f a)) {a..b}

proposition indefinite_integral _continuous left:
fixes f:: real = 'a::banach
assumes intf: f integrable_on {a..b} and a < cc < be> 0
obtains d where d > 0
and Vi. ¢ — d < t At < ¢ — norm (integral {a..c} f — integral {a..t} f) <
e

theorem integral _has_vector__derivative’:
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fixes f :: real = 'b::banach
assumes continuous_on {a..b} f
and z € {a..b}
shows ((Au. integral {u..b} f) has_vector_ _derivative — f x) (at x within {a..b})

8.14.31 This doesn’t directly involve integration, but that
gives an easy proof

8.14.32 Generalize a bit to any convex set

8.14.33 Integrating characteristic function of an interval

corollary has_integral restrict UNIV:

fixes [ :: 'n::euclidean_space = 'a::banach

shows ((Az. if x € s then f x else 0) has_integral i) UNIV <— (f has_integral
i) s

8.14.34 Integrals on set differences

corollary integral spike set:
fixes [ :: 'n::euclidean_space = 'a::banach
assumes negligible {x € S — T. fx # 0} negligible {z € T — S. fz # 0}
shows integral S f = integral T f

8.14.35 More lemmas that are useful later

8.14.36 Continuity of the integral (for a 1-dimensional inter-
val)

8.14.37 A straddling criterion for integrability
8.14.38 Adding integrals over several sets
8.14.39 Also tagged divisions

8.14.40 Henstock’s lemma

8.14.41 Monotone convergence (bounded interval first)
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8.14.42 differentiation under the integral sign
8.14.43 Exchange uniform limit and integral
8.14.44 Integration by parts

8.14.45 Integration by substitution

8.14.46 Compute a double integral using iterated integrals
and switching the order of integration

theorem integral swap__continuous:
fixes f :: ['a::euclidean__space, 'b::euclidean__space] = 'c::banach
assumes continuous_on (cboz (a,c) (b,d)) (A(z,y). fz y)
shows integral (cbozr a b) (Az. mtegml (cbox c d) ( )) =
integral (cbox ¢ d) (Ay. integral (cbozx a b) (Az. fz y))

!/

8.14.47 Definite integrals for exponential and power function

8.14.48 Adaption to ordered Euclidean spaces and the Carte-
sian Euclidean space

end



Chapter 9

Kronecker’s Theorem with
Applications

theory Kronecker Approximation__ Theorem

imports Complex_ Transcendental Henstock Kurzweil Integration
HOL— Real__Asymp.Real__Asymp

begin

9.1 Dirichlet’s Approximation Theorem

theorem Dirichlet approx_simult:

fixes ¥ :: nat = real and N n :: nat

assumes N > (

obtains ¢ p where 0<q ¢ < int (N'n)

and Ai. i<n = |of _int ¢ x 9 i — of int(p i)| < 1/N

corollary Dirichlet_approx:

fixes ¥:: real and N:: nat

assumes N > (

obtains h k where 0 < kk < int N |of _int k x 9 — of _int h| < 1/N
corollary Dirichlet _approx_coprime:

fixes 9:: real and N:: nat

assumes N > (

obtains h k where coprime h k 0 < kk < int N |of _int k * 9 — of _int h| <
1/N
theorem infinite approx_ set:

assumes infinite (approx_set 1)

shows 3h k. (hk) € approz_set 9 N k > K
theorem rational iff finite _approx_set:

shows ¥ € Q «— finite (approz_set )

151



152

9.2 Kronecker’s Approximation Theorem: the One-
dimensional Case

theorem Kronecker _approx_1 explicit:

fixes ¥ :: real

assumes Y ¢ Qand o: 0 <aa<ande > 0

obtains k& where k>0 |frac(real k * ¥9) — a| < e
corollary Kronecker _approx_1:

fixes ¥ :: real

assumes U ¢ Q

shows closure (range (An. frac (real n x 9))) = {0..1} (is ?C = _)
corollary sequence of fractional parts_is dense:

fixes ¥ :: real

assumes ¥ ¢ Q € > 0

obtains h k where k > 0 |of intk x 9 — of inth — a| < e

9.3 Extension of Kronecker’s Theorem to Simul-
taneous Approximation

9.3.1 Towards Lemma 1
9.3.2 Towards Lemma 2

9.3.3 Towards lemma 3

9.3.4 And finally Kroncker’s theorem itself

theorem Kronecker thm_1:
fixes a ¥:: nat = real and n:: nat
assumes indp: module.independent (Ar. (x) (real_of _int r)) (¢ ‘{..<n})
and injd: inj _on ¥ {.<n} and e > 0
obtains t h where \i. i <n = |t x ¥ i — of int (hi) —ai] <e
corollary Kronecker thm_ 2:
fixes a ¥ :: nat = real and n :: nat
assumes indp: module.independent (Ar x. of _int r x z) (9 ‘ {..n})
and injd: inj_on ¥ {.n} and [simp]: 9 n =1 and ¢ > 0
obtains £k m where A\i. i <n = |of intk*x¥i— of int (mi) —ai<e

end
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9.4 Bernstein-Weierstrass and Stone-Weierstrass

theory Weierstrass_Theorems
imports Uniform__ Limit Path_ Connected Derivative
begin

9.4.1 Bernstein polynomials

definition Bernstein :: [nat,nat,real] = real where
Bernstein n k © = of _nat (n choose k) *x "k x (1 — z) (n — k)

9.4.2 Explicit Bernstein version of the 1D Weierstrass ap-
proximation theorem

theorem Bernstein _ Weierstrass:
fixes f :: real = real
assumes contf: continuous_on {0..1} f and e: 0 < e
shows IN.Vnaz. N <nAze{0.1}
— |fz — O_k<n. f(k/n) = Bernstein n k z)| < e

9.4.3 General Stone-Weierstrass theorem

definition normf :: (‘a::t2_space = real) = real
where normf f = SUP z€S. |f z|
proposition (in function_ring _on) Stone_ Weierstrass__basic:
assumes f: continuous _on S f and e: e > 0
shows dg € R.VzeS. |[fz — gzl <e

theorem (in function_ring on) Stone_Weierstrass:
assumes f: continuous _on S f
shows 3 Fe UNIV — R. LIM n sequentially. F' n :> uniformly_on S f
corollary Stone_ Weierstrass HOL:
fixes R :: ('a::t2_space = real) set and S :: 'a set
assumes compact S Nc. P(Az. c:real)
Nf. P f = continuous_on S f
Afg. P(f) A P(g) = P(A\z. fz + gz) Afg. P(f) A P(9) = P(\z. f
T xgx)
NeyzeSANyeSANe#£y=3f. P(f)Nfa#fy
continuous_on S f
0<e
shows 3g. P(g) A Vz € S. [fz —guz| <e)

9.4.4 Polynomial functions
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definition polynomial function :: ('a::real_normed_vector = 'b::real _normed_ vector)
= bool

where

polynomial__function p = (¥ f. bounded_linear f — real_polynomial_function

(f o p))

9.4.5 Stone-Weierstrass theorem for polynomial functions

theorem Stone_ Weierstrass__polynomial__function:
fixes f :: ‘a::euclidean__space = 'b::euclidean_ space
assumes S: compact S
and f: continuous _on S f
and e: 0 < e
shows 3 g. polynomial _function g A Vz € S. norm(fz — g z) < e€)

proposition Stone_ Weierstrass__uniform__limit:
fixes f :: 'a::euclidean__space = 'b::euclidean__space
assumes S: compact S
and f: continuous_on S f
obtains g where uniform_limit S g f sequentially A\n. polynomial_function (g
n)

9.4.6 Polynomial functions as paths

proposition connected__open__polynomial__connected:
fixes S :: ‘a::euclidean_ space set
assumes S: open S connected S
andz € Sye s
shows dg. polynomial function g A path_image g C S A pathstart g = x A
pathfinish g = y

theorem Stone_ Weierstrass__polynomial _function__subspace:

fixes f :: 'a::euclidean__space = 'b::euclidean__space
assumes compact S

and contf: continuous_on S f

and 0 < e

and subspace T f S C T

obtains g where polynomial_function g g ‘S C T
Ne.z €S = norm(fz —gz) <e

end
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9.5 Radon-Nikodym Derivative

theory Radon_ Nikodym
imports Bochner_Integration
begin

definition diff measure :: 'a measure = 'a measure = ’a measure
where
diff _measure M N = measure_of (space M) (sets M) (AA. emeasure M A —
emeasure N A)
proposition (in sigma_ finite _measure) obtain__positive__integrable_function:
obtains f::'a = real where
f € borel_measurable M
Nz fz>0
Ne. fz<1
integrable M f

9.5.1 Absolutely continuous

definition absolutely continuous :: 'a measure = 'a measure = bool where
absolutely _continuous M N +— null_sets M C null_sets N

9.5.2 Existence of the Radon-Nikodym derivative

proposition

(in finite_measure) Radon_ Nikodym__finite _measure:

assumes finite_measure N and sets_eq[simp]: sets N = sets M
assumes absolutely continuous M N
shows 3 f € borel _measurable M. density M f = N

proposition (in finite _measure) Radon_ Nikodym__ finite_measure__infinite:
assumes absolutely continuous M N and sets _eq: sets N = sets M
shows d feborel_measurable M. density M f = N

theorem (in sigma_ finite_measure) Radon_Nikodym:
assumes ac: absolutely continuous M N assumes sets eq: sets N = sets M
shows df € borel _measurable M. density M f = N

9.5.3 Uniqueness of densities

proposition (in sigma_ finite _measure) density_unique:
assumes f: f € borel _measurable M
assumes [ f’ € borel _measurable M
assumes density_eq: density M f = density M f'
shows AEzin M. fz =[x
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9.5.4 Radon-Nikodym derivative

definition RN deriv :: 'a measure = 'a measure = 'a = ennreal where
RN deriv M N =
(if 3f. f € borel_measurable M N\ density M f = N
then SOME f. f € borel _measurable M A density M f = N
else (\_. 0))

proposition (in sigma_ finite _measure) real RN __deriv:
assumes finite__measure N
assumes ac: absolutely_continuous M N sets N = sets M
obtains D where D € borel _measurable M
and AE z in M. RN_deriv M N z = ennreal (D )
and AEzin N. 0 < Dz
and Az. 0 < Dz

end



Chapter 10

Integrals over a Set

theory Set_ Integral
imports Radon_ Nikodym
begin

10.1 Notation

definition set_borel _measurable M A f = (Az. indicator A x xg fx) € borel _measurable
M

definition set_integrable M A f = integrable M (Az. indicator A x xg f x)

definition set lebesque_integral M A f = lebesque_integral M (Az. indicator A
T xp fx)

10.2 Basic properties

proposition set_borel _measurable subset:
fixes f :: _ = _ :: {banach, second_countable_topology}
assumes [measurable]: set_borel _measurable M A f B € sets M and B C A
shows set_borel _measurable M B f

10.3 Complex integrals

157
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10.4 NN Set Integrals

proposition nn__integral__disjoint__family:
assumes [measurable]: f € borel _measurable M N\(n:nat). B n € sets M
and disjoint_family B
shows ([*z € (Un. Bn). fz OM) = (X n. ([ Tz € Bn. fz dM))

10.5 Scheffé’s lemma

proposition Scheffe_lemmal:
assumes An. integrable M (F n) integrable M f
AEzin M. (An. Fnz) —— fux
limsup (An. [ z. norm(F n z) OM) < ([T z. norm(f z) M)
shows (An. [T z. norm(Fnz — fz) OM) —— 0

proposition Scheffe_ lemma2:
fixes F:nat = 'a = 'b:{banach, second__countable__topology}
assumes /\ n:nat. F'n € borel _measurable M integrable M f
AEzin M. (An. Fnz) —— fz
An. (f T z. norm(F nz) OM) < ([T z. norm(f z) OM)
shows (An. [T z. norm(Fnz — fz) OM) —— 0

10.6 Convergence of integrals over an interval

proposition tendsto_set lebesgue__integral__at_top:
fixes [ :: real = 'a::{banach, second__countable topology}
assumes sets: Nb. b > a = {a..b} € sets M
and int: set_integrable M {a..} f
shows ((\b. set_lebesque_integral M {a..b} f) —— set_lebesgue_integral M

{a..} f) at_top

proposition tendsto_set lebesgue integral at_ bot:
fixes f :: real = 'a::{banach, second__countable topology}
assumes sets: Na. a < b = {a..b} € sets M
and int: set_integrable M {..b} f
shows ((Aa. set_lebesque_integral M {a..b} f) —— set_lebesque_integral M

{..b} f) at_bot

theorem integral _Markov_inequality:
fixes u :: 'a = real
assumes [measurable]: set_integrable M A uw and A € sets M
assumes AEzin M.z € A — uwaz > 0 and 0 < (c:real)
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shows emeasure M {z€A. wz > ¢} < (1/cureal) x ([ x€A. wz OM)

theorem integral Markov inequality’ _measure:
assumes [measurable]: set_integrable M A w and A € sets M
and AEzin M.z € A— 0 <wuz0 < (c:real)
shows measure M {z€A. uz > ¢} < ([z€A. uz M) / ¢

theorem (in finite_measure) Chernoff ineq ge:
assumes s: s > (
assumes integrable: set_integrable M A (Ax. exp (s x fz)) and A € sets M
shows measure M {z€A. fz > a} < exp (—s % a) * ([ 2€A. exp (s * fz) OM)
proof —
have {z€A. fz > a} = {z€A. exp (s x fx) > exp (s * a)}
using s by auto
also have measure M ... < set_lebesque_integral M A (Az. exp (s * fz)) / exp
(s * a)
by (intro integral_Markov_inequality’ _measure assms) auto
finally show ?thesis
by (simp add: exp__minus field_simps)
qed

theorem (in finite_measure) Chernoff _ineq le:
assumes s: s > 0
assumes integrable: set_integrable M A (Ax. exp (—s * fz)) and A € sets M
shows measure M {z€A. fz < a} < exp (s * a) * ([ z€A. exp (—s x fz) OM)
proof —
have {z€A. fz < a} = {z€A. exp (—s * fz) > exp (—s x a)}
using s by auto
also have measure M ... < set_lebesque_integral M A (Az. exp (—s * fx)) /
exp (—s *x a)
by (intro integral_Markov_inequality’ _measure assms) auto
finally show ?thesis
by (simp add: exp_minus field _simps)
qed

10.7 Integrable Simple Functions

lemma integrable__simple_function__induct[consumes 2, case_names cong indica-
tor add, induct set: simple_ function]:
fixes f :: 'a = 'b :: {second__countable_topology, banach}
assumes f: simple_function M f emeasure M {y € space M. fy # 0} # oo
assumes cong: \f g. simple_function M f = emeasure M {y € space M. [y

£ 0} # o0
0} #

= simple__function M g = emeasure M {y € space M. g y #

= (A\z.z € space M = for =gz) =— Pf=— Py
assumes indicator: NA y. A € sets M = emeasure M A < co = P ().
indicator A z *g y)
assumes add: \f g. simple_function M f = emeasure M {y € space M. fy #
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0} #£ 00 =
simple__function M g = emeasure M {y € space M. gy # 0}
#+ 00 =
(Az. z € space M = norm (f z + g z) = norm (f z) + norm
(92) =
Pf=Pg= P (A\e. fz+ gux)
shows P f

lemma integrable_simple_function_induct_nn[consumes 3, case__names cong in-
dicator add, induct set: simple_function):
fixes f :: 'a = 'b :: {second__countable_topology, banach, linorder_topology, or-
dered__real_vector}
assumes f: simple_function M f emeasure M {y € space M. fy # 0} # oo Az.
x € space M — fx >0
assumes cong: \f g. simple_function M f = emeasure M {y € space M. fy
# 0} # 00 = (A\z. ¢ € space M = fz > 0) = simple_function M ¢ —
emeasure M {y € space M. gy # 0} # o0 = (\z. z € space M = gz > 0)
= (N\z. z € space M = fr=g2) = Pf=— Py
assumes indicator: NA y. y > 0 = A € sets M = emeasure M A < co =
P (Az. indicator A © g y)
assumes add: \f g. (\z. © € space M = fx > 0) = simple_ function M f
= emeasure M {y € space M. fy # 0} # co =
(Az. z € space M = gz > 0) = simple_ function M ¢ =
emeasure M {y € space M. gy # 0} # 00 =
(Az. z € space M = norm (f z + g z) = norm (f z) + norm
(92) —
Pf— Pg=— P (A\z. fz + gx)
shows P f

10.7.1 Totally Ordered Banach Spaces

10.7.2 Auxiliary Lemmas for Set Integrals

10.7.3 Integrability and Measurability of the Diameter
10.7.4 Averaging Theorem

corollary integral _nonneq_eq 0 _iff AE_banach:
fixes f :: 'a = 'b :: {second__countable_topology, banach, linorder_topology, or-
dered__real__vector}
assumes f[measurable]: integrable M f and nonneg: AE zin M. 0 < fz
shows integral® M f = 0 <— (AEzin M. fz = 0)

corollary integral _eq mono_AE eq AE:

fixes f g = 'a = 'b 2 {second_countable_topology, banach, linorder_topology,
ordered__real__vector}

assumes integrable M f integrable M g integral™® M f = integral® M g AE x in
M. fx<gux

shows AExin M. fr =gz
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end

10.8 Homeomorphism Theorems

theory Homeomorphism
imports Homotopy
begin

10.8.1 Homeomorphism of all convex compact sets with nonempty
interior

proposition
fixes S :: 'a::euclidean__space set
assumes compact S and 0: 0 € rel_interior S
and star: Az. © € S = open_segment 0 x C rel_interior S
shows starlike__compact_projectivel 0:
S — rel_interior S homeomorphic sphere 0 1 N affine hull S
(is 2SMINUS homeomorphic ?SPHER)
and starlike__compact_projective2_0:
S homeomorphic cball 0 1 N affine hull S
(is S homeomorphic ?CBALL)

corollary
fixes S :: 'a::euclidean__space set
assumes compact S and a: a € rel_interior S
and star: Az. © € S = open__segment a x C rel_interior S
shows starlike _compact projectivel :
S — rel_interior S homeomorphic sphere a 1 N affine hull S
and starlike__compact__projective2:
S homeomorphic cball a 1 N affine hull S

corollary starlike__compact__projective__special:
assumes compact S
and c¢b01: cball (0::'a::euclidean__space) 1 C S
and scale: Az u. [z € S; 0 < u; u < 1] = ux*g z € S — frontier S
shows S homeomorphic (cball (0::'a::euclidean__space) 1)

10.8.2 Homeomorphisms between punctured spheres and affine
sets

theorem homeomorphic_punctured__affine sphere__affine:
fixes a :: ‘a :: euclidean_space
assumes 0 < r b € sphere a r affine Ta € Tb € T affine p
and aff: aff _dim T = aff dim p + 1

shows (sphere a r N T) — {b} homeomorphic p
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corollary homeomorphic__punctured__sphere__affine:
fixes a :: 'a :: euclidean space
assumes (0 < r and b: b € sphere a r
and affine T and offS: aoff dim T + 1 = DIM('a)

shows (sphere a r — {b}) homeomorphic T

corollary homeomorphic__punctured__sphere__hyperplane:
fixes a :: 'a :: euclidean_space
assumes (0 < r and b: b € sphere a r
and ¢ # 0

shows (sphere a r — {b}) homeomorphic {z::'a. ¢ - x = d}

proposition homeomorphic__punctured__sphere__affine_gen:
fixes a :: 'a :: euclidean__space
assumes convexr S bounded S and a: a € rel_frontier S
and affine T and affS: aff _dim S = aff dim T + 1
shows rel_frontier S — {a} homeomorphic T
proposition homeomorphic__closedin__convex:
fixes S :: 'm::euclidean_space set
assumes aff dim S < DIM('n)
obtains U and T :: 'n:euclidean space set
where conver U U # {} closedin (top_of set U) T
S homeomorphic T

10.8.3 Locally compact sets in an open set

proposition locally _compact__homeomorphic__closed:
fixes S :: ‘a::euclidean__space set
assumes locally compact S and dimit: DIM ('a) < DIM('b)
obtains T :: 'b:euclidean_space set where closed T S homeomorphic T

proposition homeomorphic__convex__compact _cball:
fixes e :: real
and S :: 'a:euclidean__space set
assumes S: convex S compact S interior S # {} and e > 0
shows S homeomorphic (cball (b::'a) e)

corollary homeomorphic__convex__compact:
fixes S :: ‘a::euclidean_ space set
and T :: 'a set
assumes convex S compact S interior S # {}
and convex T compact T interior T # {}
shows S homeomorphic T
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10.8.4 Covering spaces and lifting results for them

definition covering space
2 'az:topological _space set = ('a = 'b) = 'b::topological__space set = bool
where
covering_space ¢ p S =
continuous_oncp Ap ‘c=S8A
(Vz e S.3T. z € T A openin (top_of _set S) T A
Fv.Uv=cnp—"TA
(Vu € v. openin (top_of set c¢) u) A
pairwise disjnt v A
(Vu € v. 3q. homeomorphism u T p q)))

proposition covering space__open__map:
fixes S :: 'a :: metric_space set and T :: 'b :: metric_space set
assumes p: covering_space ¢ p S and T openin (top_of set ¢) T
shows openin (top_of _set S) (p *T)

proposition covering space_lift _unique:

fixes f :: 'a::topological__space = 'b::topological__space

fixes g1 :: 'a = 'c:ireal_normed__vector

assumes covering__space ¢ p S
gl a=g2a
continuous_on T f fe T — §
continuous_on T g1 g1 € T — ¢ Nz.z € T = fz = p(gl x)
continuous_on T g2 g2 € T — ¢ Nz.z € T = fz = p(g2 x)
connected T a € T z€ T

shows g1 z = g2 x

proposition covering space_locally eq:
fixes p :: 'a::real_normed_vector = 'b::real_normed_ vector
assumes cov: covering_space C'p S
and pim: NT. [T C C; o T] = ¢(p ‘ T)
and gim: A\q U. [U C S; continuous_on U q; ¢ U] = ¢(q ‘ U)
shows locally ¥ S +— locally o C
(is ?lhs = ?rhs)

proposition covering space_lift _homotopy:
fixes p :: ‘a::real_normed_vector = 'b::real_normed_ vector
and h :: real x ‘c::real _normed wvector = 'b
assumes cov: covering_space C'p S
and conth: continuous_on ({0..1} x U) h
and him: h € ({0..1} x U) = S
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and heg: \y. y € U = h (0,y) = p(f y)
and contf: continuous_on U f and fim: f € U — C
obtains k& where continuous_on ({0..1} x U) k
ke ({0..1} x U) —» C
Ny-y € U= Kk(0,y)=fy
Nz. 2€{0..1} x U= hz=plkz)

corollary covering space_lift _homotopy_alt:
fixes p :: ‘a::real_normed_vector = 'b::real _mormed_ vector
and A :: ‘c::real _normed_wvector x real = 'b
assumes cov: covering space C'p S
and conth: continuous_on (U x {0..1}) h
and him: h € (U x {0..1}) — S
and heg: \y. y € U = h (y,0) = p(fy)
and conif: continuous_on U f and fim: f €¢ U — C
obtains k where continuous_on (U x {0..1}) k
ke (Ux{0..1}) > C
Ny-ye U= k(y, 0)=Tfy
Ne. z€ U x{0..1} = hz=pk2)

corollary covering space_lift _homotopic_function:
fixes p :: ‘a::real_normed_vector = 'b::real _normed_vector and g:: 'c::real _nmormed_vector
= 'a
assumes cov: covering_space C'p S
and contg: continuous_on U g
and gim: g€ U - C
and pgeg: N\y. y € U= p(gy) =fy
and hom: homotopic_with__canon (Az. True) U S f f'
obtains ¢’ where continuous_on U g’ image ¢’ U C C N\y. y € U = p(g’
y) =1y

corollary covering space_lift _inessential_function:

fixes p :: ‘a::real _normed_vector = 'b::real _mormed_wvector and U :: ‘c::real _normed_vector
set

assumes cov: covering_space C'p S
and hom: homotopic_with_canon (Az. True) U S f (Az. a)
obtains g where continuous on Ugg ‘U C C Ay.ye U= plgy) =fy

10.8.5 Lifting of general functions to covering space

proposition covering space_lift__path__strong:
fixes p :: ‘a::real_normed_vector = 'b::real__normed_vector
and f :: ‘ci:real _normed_wvector = b
assumes cov: covering_space C'p S and a € C
and path g and pag: path_image ¢ C S and pas: pathstart g = p a
obtains h where path h path_image h C C pathstart h = a
and \t. t € {0..1} = p(ht) =gt
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corollary covering space_lift _path:
fixes p :: ‘a::real_normed__vector = 'b::real _normed__vector

assumes cov: covering_space C'p S and path g and pig: path_image g C S
obtains h where path h path_image h C C At. t € {0..1} = p(ht) =gt

proposition covering space__lift_homotopic__paths:
fixes p :: 'a::real_normed_vector = 'b::real _normed__vector
assumes cov: covering_space C p S
and path g1 and pigl: path_image g1 C
and path g2 and pig2: path__image g2 C
and hom: homotopic_paths S g1 g2
and path h1 and pihl: path_image h1 C

S
S

C C and phl: \t. t € {0..1} =
p(hl1t) =gl1t
and path h2 and pih2: path _image h2 C C and ph2: \t. t € {0..1} =
p(h2t) = g2t

and h1h2: pathstart h1 = pathstart h2
shows homotopic_paths C h1 h2

corollary covering space__monodromy:
fixes p :: 'a::real _normed_vector = 'b::real _normed_vector
assumes cov: covering_space C'p S
and path g1 and pigl: path_image g1 C S
and path g2 and pig2: path image g2 C S
and hom: homotopic_paths S g1 g2
and path hi and pihl: path_image h1 C

C C and phl: \t. t € {0..1} =
p(hlt) =glt
and path h2 and pih2: path_image h2 C C and ph2: \t. t € {0..1} =
p(h2t) = g2t

and h1h2: pathstart h1 = pathstart h2
shows pathfinish h1 = pathfinish h2

corollary covering space_lift _homotopic_path:

fixes p :: 'a::real _normed_vector = 'b::real_normed_ vector
assumes cov: covering_space C p S

and hom: homotopic_paths S f f'

and path g and pig: path_image g C C

and a: pathstart g = a and b: pathfinish g = b

and pgeq: \t. t € {0..1} = p(gt) = [t
obtains ¢’ where path g’ path_image g’ C C

pathstart g’ = a pathfinish ¢’ = b \t. t € {0..1} = p(g' t) = f'¢

proposition covering space_lift _general:

fixes p :: ‘a::real _normed_vector = 'b::real_normed_ vector
and f :: 'ciireal_normed_vector = 'b

assumes cov: covering _space C'p Sand a € Cz € U
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and U: path__connected U locally path__connected U
and contf: continuous_on U f and fim: f € U — §
and feq: fz=pa
and hom: A\r. [path r; path_image r C U; pathstart r = z; pathfinish r = 2]
= dgq. path q¢ N path_image ¢ C C A
pathstart ¢ = a N pathfinish ¢ = a A
homotopic_paths S (f o 1) (p o q)
obtains g where continuous_on Ugge U — Cgz=a A\y. y € U = p(g
y) =TIy

corollary covering space_lift _stronger:
fixes p :: 'a::real_normed_vector = 'b::real _normed_vector
and [ :: 'ciireal_normed_vector = 'b
assumes cov: covering space Cp Sa € Cze U
and U: path__connected U locally path__connected U
and contf: continuous_on U f and fim: f € U — §
and feq: fz=pa
and hom: A\r. [path r; path_image r C U; pathstart r = z; pathfinish r = 2]
= 3b. homotopic_paths S (f o r) (linepath b b)
obtains g where continuous on Ugge U — Cgz=a A\y. y € U = p(g

y) =1ry

corollary covering space_lift _strong:
fixes p :: ‘a::real_normed_vector = 'b::real _normed__vector
and f :: 'ciireal_normed_vector = 'b
assumes cov: covering_space Cp Sa € Cz € U
and scU: simply__connected U and IpcU: locally path__connected U
and contf: continuous_on U f and fim: f € U — §
and feq: fz=pa
obtains g where continuous_on Ugge U — Cgz=a A\y. y € U = p(g
y) =TIy

corollary covering space_lift:
fixes p :: ‘a::real_normed_vector = 'b::real _normed_vector
and f :: ‘ci:real _normed_wvector = 'b
assumes cov: covering_space C p S
and U: simply_connected U locally path__connected U
and contf: continuous_on U f and fim: f € U — §
obtains g where continuous_on Ugge U — C ANy.y€ U= p(gy) =fy

end

theory Fquivalence Lebesgue Henstock_Integration
imports
Lebesgue__Measure
Henstock__Kurzweil__Integration
Complete_Measure
Set__Integral
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Homeomorphism
Cartesian__FEuclidean__Space
begin

10.8.6 Equivalence Lebesgue integral on [borel and HK-integral

10.8.7 Absolute integrability (this is the same as Lebesgue
integrability)

corollary absolutely integrable spike set:

fixes [ :: 'a::euclidean_space = 'b::euclidean__space

assumes f: f absolutely integrable _on S and neg: negligible {z € S — T. fz #
0} negligible {r € T — S. fz # 0}

shows f absolutely integrable_on T

10.8.8 Applications to Negligibility

corollary eventually ae_ filter negligible:
eventually P (ae_filter lebesgue) <— (I N. negligible N A {z. = Pz} C N)

proposition negligible _convex_frontier:
fixes S :: 'N :: euclidean_space set
assumes convexr S
shows negligible(frontier S)

corollary negligible _sphere: negligible (sphere a e)

proposition open_ not_mnegligible:
assumes open S S # {}
shows — negligible S

10.8.9 Negligibility of image under non-injective linear map

10.8.10 Negligibility of a Lipschitz image of a negligible set

proposition negligible locally Lipschitz_image:
fixes [ :: 'M::euclidean_space = 'N::euclidean__space
assumes MleN: DIM('M) < DIM('N) negligible S
and lips: Nz. z € S
= dT B.open TNz e TA
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Vye SN T. norm(fy— fz) < Bx*norm(y — ))
shows negligible (f < 9)

corollary negligible differentiable _image_negligible:
fixes [ :: 'M::euclidean_space = 'N::euclidean__space
assumes MleN: DIM('M) < DIM('N) negligible S
and diff _f: f differentiable_on S
shows negligible (f *S)

corollary negligible _differentiable_image_lowdim:
fixes [ :: 'M::euclidean_space = 'N::euclidean space
assumes MlessN: DIM('M) < DIM('N) and diff _f: f differentiable_on S
shows negligible (f ¢ 9)

10.8.11 Measurability of countable unions and intersections
of various kinds.

10.8.12 Negligibility is a local property
10.8.13 Integral bounds

proposition bounded_wvariation__absolutely integrable_interval:
fixes f :: 'n::euclidean_space = 'm::euclidean__space
assumes f: f integrable_on cbozr a b
and x: \d. d division_of (cbox a b) = sum (AK. norm(integral K f)) d < B
shows f absolutely integrable _on cbox a b

10.8.14 Outer and inner approximation of measurable sets
by well-behaved sets.

proposition measurable outer intervals bounded:

assumes S € lmeasurable S C cbox a b e > 0

obtains D

where countable D
NK. K€D= K CchboxabANK#{} N(Fecd K= cboxcd)
pairwise (AA B. interior A N interior B = {}) D
Nuwv. cboxuveD = In. Vi€ Basis,v-i—u-i=(0b-i—a-1)/2n
NK. [K € D; box a b # {}] = interior K # {}
S C UD UD € Imeasurable measure lebesgue (D) < measure lebesque S

10.8.15 Transformation of measure by linear maps

proposition measure_linear_sufficient:
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fixes f :: 'm:euclidean_space = 'n
assumes linear f and S: S € Imeasurable
and im: Aa b. measure lebesque (f ¢ (cbox a b)) = m x measure lebesgue (cbox
a b)
shows f ‘S € Ilmeasurable A m * measure lebesque S = measure lebesque (f ©.S)

10.8.16 Lemmas about absolute integrability

corollary absolutely integrable_on__const [simp]:
fixes c :: 'a::euclidean_space
assumes S € [Imeasurable
shows (A\z. ¢) absolutely integrable_on S

10.8.17 Componentwise

proposition absolutely integrable_componentwise_iff:
shows [ absolutely_integrable _on A +— (V b€ Basis. (\z. fx - b) absolutely integrable_on
A)

corollary absolutely integrable _max_1:
fixes f :: 'n::euclidean_ space = real
assumes f absolutely integrable _on S g absolutely integrable_on S
shows (Az. maz (f x) (g x)) absolutely_integrable_on S

corollary absolutely integrable _min_1:
fixes [ :: 'n::euclidean_ space = real
assumes f absolutely integrable _on S g absolutely integrable_on S
shows (Az. min (f z) (g z)) absolutely_integrable_on S

10.8.18 Dominated convergence

proposition integral countable UN':
fixes f :: real™'m = real"'n
assumes f: f absolutely__integrable_on (| (range s))
and s: A\m. s m € sets lebesgue
shows An. f absolutely integrable _on (|Jm<n. s m)
and (An. integral (Jm<n. s m) f) —— integral ((J(s ¢ UNIV)) f (is 2F
— 9]
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10.8.19 Fundamental Theorem of Calculus for the Lebesgue
integral

10.8.20 Integration by parts

10.8.21 A non-negative continuous function whose integral
is zero must be zero

corollary integral cbox eq 0 iff:
fixes [ :: ‘a::euclidean_ space = real
assumes continuous_on (cboz a b) f and box a b # {}
and A\z. z € cbox a b= fz > 0
shows integral (cbox a b) f = 0 +— (Vx € cbor a b. fx = 0) (is ?lhs = ?rhs)

10.8.22 Various common equivalent forms of function mea-
surability

10.8.23 Lebesgue sets and continuous images

proposition lebesgue regular _inner:
assumes S € sets lebesgue
obtains K C where negligible K An:nat. compact(Cn) S = (Un. Cn) UK

10.8.24 Affine lemmas

lemma lebesgue_integral_real _affine:

fixes f :: real = 'a :: euclidean__space and c :: real

assumes c¢: ¢ # 0 shows ([z. fz O lebesqgue) = |c| *xr ([z. f(t + ¢ * z)
Olebesgue)

10.8.25 More results on integrability

proposition measurable bounded__by_ integrable imp_ integrable:
fixes f :: 'a::euclidean__space = 'b::euclidean_space
assumes f: f € borel_measurable (lebesgue _on S) and g: g integrable_on S
and normf: N\z. z € S = norm(fz) < gz and S: S € sets lebesque
shows f integrable_on S

corollary measurable _bounded_ by _integrable imp_ lebesgue_integrable:

fixes f :: 'a::euclidean__space = 'b::euclidean__space

assumes [: f € borel _measurable (lebesgue _on S) and g: integrable (lebesque__on
S) g
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and normf: Nz. z € S = norm(fz) < gz and S: S € sets lebesgue
shows integrable (lebesgue _on S) f

corollary measurable _bounded_ by integrable imp__integrable_ real:

fixes [ :: 'a::euclidean__space = real

assumes f € borel_measurable (lebesque_on S) g integrable_on S Nz. x € S
= abs(fx) < gx S € sets lebesgue

shows f integrable_on S

10.8.26 Relation between Borel measurability and integra-
bility.

proposition negligible_differentiable_vimage:
fixes [ :: 'a = 'a::euclidean__space
assumes negligible T
and f: Az. z € § = inj(f' z)
and derf: Az. © € S = (f has_derivative f’ z) (at x within S)
shows negligible {z € S. fz € T}
proposition has_derivative__inverse__within:
fixes f :: 'a::real_normed_vector = 'b::euclidean__space
assumes der_f: (f has__derivative f') (at a within S)
and cont_g: continuous (at (f a) within f ©S) g
and a € S linear ¢’ and id: ¢’ o f' = id
and gf: Az.z € S = g(fz) =z
shows (g has_derivative g') (at (f a) within f * S)

end

10.9 Harmonic Numbers

theory Harmonic_Numbers
imports
Complex_ Transcendental
Summation_ Tests
begin

10.9.1 The Harmonic numbers

definition harm :: nat = 'a :: real _normed_field where
harm n = (3 k=1..n. inverse (of _nat k))

theorem not__convergent__harm: —convergent (harm :: nat = 'a :: real _normed__field)

10.9.2 The Euler-Mascheroni constant
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lemma euler _mascheroni_LIMSEQ:
(An. harm n — In (of _nat n) :: real) —— euler_mascheroni

theorem alternating _harmonic_series_sums: (Ak. (—1)"k / real_of nat (Suc
k)) sums In 2

end

10.10 The Gamma Function

theory Gamma_ Function
imports
Equivalence Lebesgue_Henstock Integration
Summation__ Tests
Harmonic _Numbers
HOL— Library.Nonpos__Ints
HOL- Library.Periodic_ Fun
begin

10.10.1 The Euler form and the logarithmic Gamma func-
tion

definition Gamma__series :: ('a :: {banach,real_normed_field}) = nat = 'a where
Gamma__series z n = fact n % exp (z * of _real (In (of _nat n))) / pochhammer
z (n+1)
definition In_Gamma__series :: (‘a :: {banach,real _normed_field,In}) = nat =
'a where
In_Gamma_series zn = z * In (of_natn) — In z — (O_k=1..n.In (z / of _nat
k+ 1))

theorem In_ Gamma_ complex LIMSEQ): (z :: complex) ¢ Z<o = In_ Gamma__series
z — In_Gamma 2

10.10.2 The Polygamma functions

definition Polygamma :: nat = (‘a :: {real_normed_field,banach}) = 'a where
Polygamma n z = (if n = 0 then
(O~ k. inverse (of _nat (Suc k)) — inverse (z + of _nat k)) — euler_mascheroni
else
(—1)7Suc n * fact n x (O k. inverse ((z + of _nat k) "Suc n)))

abbreviation Digamma :: (‘a :: {real_normed_field,banach}) = 'a where
Digamma = Polygamma 0
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theorem Digamma_LIMSEQ:

fixes z :: ‘a :: {banach,real_normed_field}

assumes z: z # 0

shows (Am. of real (In (real m)) — (O n<m. inverse (z + of _nat n))) ——
Digamma z

theorem Polygamma_LIMSEQ:

fixes z :: ‘a :: {banach,real _normed_field}

assumes z # (0 and n > 0

shows (\k. inverse ((z + of _nat k) “Suc n)) sums ((—1) ~ Suc n * Polygamma
n z / fact n)

theorem has_field derivative_In_ Gamma__complex [derivative_intros):
fixes z :: complex
assumes z: z ¢ R<g
shows (In_Gamma has_field derivative Digamma z) (at z)

theorem Polygamma_ plusi:
assumes z # 0
shows Polygamma n (z + 1) = Polygamma n z + (—1) n * fact n / (z = Suc

n)

theorem Digamma_ of nat:
Digamma (of _nat (Suc n) :: 'a :: {real_normed_field,banach}) = harm n —
euler _mascherons

theorem has_field_derivative_Polygamma [derivative_intros]:

fixes z :: 'a :: {real_normed_ field,euclidean__space}

assumes z: z ¢ Z<g

shows (Polygamma n has_field derivative Polygamma (Suc n) z) (at z within
A)

10.10.3 Basic properties

theorem Gamma_ series LIMSEQ [tendsto__intros]:
Gamma__series z ——— Gamma 2
theorem Gamma_plusl: z ¢ Z<o = Gamma (z + 1) = z * Gamma z

theorem pochhammer _Gamma: z ¢ Z<o = pochhammer z n = Gamma (z +
of _nat n) / Gamma z

theorem Gamma_ fact: Gamma (1 4+ of nat n) = fact n
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10.10.4 Differentiability

theorem has_field derivative_Gamma [derivative _intros|:
2 & Z<oy => (Gamma has_field _derivative Gamma z * Digamma z) (at z within
A4)

theorem log_convexr_ Gamma_real: convex_on {0<..} (In o Gamma :: real =
real)

10.10.5 The uniqueness of the real Gamma function

theorem Gamma_ pos_real unique:
assumes z: ¢ > 0
shows G z = Gamma z

10.10.6 The Beta function

theorem Beta plusl_plusi:
assumes z ¢ Z<o y ¢ Z<o
shows Beta (z + 1)y + Betaz (y+ 1) = Betaz y

theorem Beta plusl_left:
assumes z ¢ Z<
shows (z + y) = Beta (x + 1) y =1z % Betaz y

theorem Beta_ plusi_right:
assumes y ¢ Z<
shows (z + y) * Betaz (y+ 1) =y * Betazy

10.10.7 Legendre duplication theorem

theorem Gamma_ legendre duplication:
fixes z :: complex
assumes 2 ¢ Z<g 2+ 1/2 ¢ Z<
shows Gamma z x Gamma (z + 1/2) =
exp ((1 — 2x2) * of real (In 2)) * of real (sqrt pi) * Gamma (2x2)
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10.10.8 Alternative definitions

theorem Gamma series euler”:
assumes z: (z :: 'a : Gamma) ¢ Z<y
shows (An. Gamma__series_euler’ z n) —— Gamma z

theorem Gamma_ Weierstrass__complex: Gamma__series  Weierstrass z ——
Gamma (z :: complex)

theorem gbinomial Gamma:
assumes z + 1 ¢ Z<g
shows (2 gchoose n) = Gamma (z + 1) / (fact n * Gamma (2 — of _nat n +

1))

theorem Gamma_ integral__complex:
assumes z: Re z > 0
shows ((At. of real t powr (z — 1) / of _real (exp t)) has_integral Gamma 2)

(0.}

theorem has_integral Beta_ real:
assumes a: ¢ > 0 and b: b > (0 :: real)
shows ((At. ¢t powr (a — 1) % (I — t) powr (b — 1)) has_integral Beta a b)

(0.1}

10.10.9 The Weierstrafl product formula for the sine

theorem sin_ product_formula__complex:

fixes z :: complex

shows (An. of _real pi * z x ([[k=1..n. 1 — 272 / of _nat k™2)) —— sin
(of _real pi * 2)

theorem wallis: (An. [[k=1..n. (4*xreal k72) | (4*real k2 — 1)) —— pi / 2

10.10.10 The Solution to the Basel problem

theorem inverse_squares_sums: (An. 1 / (n + 1)?) sums (pi® / 6)
end
theory Interval Integral

imports Fquivalence Lebesgue Henstock__Integration
begin
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10.10.11 Approximating a (possibly infinite) interval

proposition einterval_Icc__approximation:
fixes a b :: ereal
assumes a < b
obtains u [ :: nat = real where
einterval a b = (J4. {l ¢ .. ui})
incseq u decseq I Ni. li < wi Ni.a<liNi.ui<bd
l au b

definition interval lebesgue integral :: real measure = ereal = ereal = (real =
‘a) = 'a::{banach, second__countable topology} where
interval_lebesque__integral M a b f =
(if a < b then (LINT z:einterval a b|M. f z) else — (LINT z:einterval b a|M. f

z))

definition interval lebesgue_integrable :: real measure = ereal = ereal = (real
= 'a::{banach, second__countable_topology}) = bool where
interval_lebesgue__integrable M a b f =
(if a < b then set_integrable M (einterval a b) f else set_integrable M (einterval

ba)f)

10.10.12 Basic properties of integration over an interval

proposition interval integrable_to_infinity eq: (interval lebesgue_integrable M

aocof)=
(set_integrable M {a<..} f)

10.10.13 Basic properties of integration over an interval wrt
lebesgue measure

10.10.14 General limit approximation arguments

proposition interval integral Icc _approx__nonneg:

fixes a b :: ereal

assumes a < b

fixes u [ :: nat = real

assumes approz: einterval a b= (Ji. {{ 7 .. ui})
incseq u decseq I Ni. 1i < wi ANi.a<liNi.ui<b
l au b

fixes f :: real = real
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assumes f_integrable: N\i. set_integrable lborel {1 i..u i} f
assumes f_nonneg: AE x in lborel. a < ereal x — ereal z < b — 0 < fzx
assumes [ measurable: set_borel _measurable lborel (einterval a b) f
assumes lbint_lim: (Ai. LBINT z=li.. v i. fz) —— C
shows

set_integrable lborel (einterval a b) f

(LBINT z=a..b. fz) = C

proposition interval integral Icc approx_integrable:

fixes u l :: nat = real and a b :: ereal

fixes f :: real = ‘a::{banach, second_countable_topology}

assumes a < b

assumes approz: einterval a b = (|Ji. {17 .. ui})
incseq u decseq I Ni. li < ui Ni.a<liNi.ui<bd
l au b

assumes f_integrable: set_integrable lborel (einterval a b) f

shows (\i. LBINT z=li.. v i. fx) —— (LBINT z=a..b. f z)

10.10.15 A slightly stronger Fundamental Theorem of Cal-
culus

theorem interval_integral_FTC integrable:

fixes f F :: real = 'a::euclidean_space and a b :: ereal

assumes a < b

assumes F: Az. a < ereal © = ereal © < b = (F has_vector_derivative f x)
(at )

assumes f: Az. a < ereal z = ereal z < b = isConl fz

assumes f_integrable: set_integrable lborel (einterval a b) f

assumes A: ((F o real_of ereal) —— A) (at_right a)

assumes B: ((F o real_of ereal) —— B) (at_left b)

shows (LBINT z=a..b. fx) = B — A

theorem interval integral FTC2:
fixes a b ¢ :: real and [ :: real = 'a::euclidean__space
assumes a < cc < b
and contf: continuous_on {a..b} f
fixes z :: real
assumes ¢ < zand z < b
shows ((Au. LBINT y=c..u. fy) has_vector_derivative (f z)) (at x within {a..b})

proposition einterval__antiderivative:
fixes a b :: ereal and [ :: real = 'a::euclidean_ space
assumes a < b and contf: Az :: real. o < 2 = z < b = isCont f z
shows 3F. Vz :: real. « < x — © < b — (F has_vector_derivative f z) (at z)
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10.10.16 The substitution theorem

theorem interval integral substitution__ finite:

fixes a b :: real and f :: real = 'a::euclidean__space

assumes a < b

and derivg: N\z. a < z = z < b = (g has_real_derivative (¢’ z)) (at x within
{a..b})

and contf : continuous_on (g ‘ {a..b}) f

and contg”: continuous_on {a..b} g’

shows (LBINT z=a..b. ¢’ z g f (9 x)) = (LBINT y=g a..g b. f y)

theorem interval integral_substitution__integrable:
fixes [ :: real = 'a::euclidean_space and a b u v :: ereal
assumes a < b
and deriv_g: N\z. a < ereal t = ereal z < b = DERIV gz :> g’ x
and contf: \z. a < ereal 1 = ereal © < b = isCont f (g x)
and contg”s A\z. a < ereal x = ereal x < b = isCont ¢’ =
and g’ nonneg: A\z. a < ereal z = ereal x < b= 0 < g’ x
and A: ((ereal o g o real_of ereal) —— A) (at_right a)
and B: ((ereal o g o real_of ereal) —— B) (at_left b)
and integrable: set_integrable lborel (einterval a b) (Az. ¢’ z *r f (g z))
and integrable2: set_integrable lborel (einterval A B) (Az. f )
shows (LBINT z=A..B. fz) = (LBINT z=a..b. ¢’  *g [ (g z))

theorem interval_integral substitution_mnonneg:
fixes f g g": real = real and a b u v :: ereal
assumes a < b
and deriv_g: \z. a < ereal z = ereal 1 < b = DERIV gz :> g’ x
and contf: Nz. a < ereal x = ereal x < b = isCont f (g x)
and contg”s A\z. a < ereal 1 = ereal © < b = isCont g’ x
and f_nonneg: N\z. a < ereal v = ereal v < b = 0 < f (g z)
and g’ nonneg: Az. a < ereal z = ereal x < b= 0 < ¢’ x
and A: ((ereal o g o real _of ereal) —— A) (at_right a)
and B: ((ereal o g o real_of ereal) —— B) (at_left b)
and integrable_fg: set_integrable lborel (einterval a b) (Az. f (g z) * ¢’ )
shows
set__integrable lborel (einterval A B) f
(LBINT z=A..B. fx) = (LBINT z=a..b. (f (g z) * g’ x))

proposition interval integral morm:
fixes f :: real = 'a :: {banach, second_countable__topology}
shows interval lebesque__integrable lborel a b f —> a < b =
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norm (LBINT t=a..b. ft) < LBINT t=a..b. norm (f t)

proposition interval integral _norm2:
interval__lebesque__integrable lborel a b f —
norm (LBINT t=a..b. ft) < |LBINT t=a..b. norm (f t)|

end

10.11 Integration by Substition for the Lebesgue
Integral

theory Lebesgue Integral Substitution
imports Interval Integral
begin

theorem nn_ integral substitution:
fixes f :: real = real
assumes Mf[measurable]: set_borel _measurable borel {g a..g b} f
assumes derivg: \z. x € {a..b} = (g has_real_derivative g’ x) (at )
assumes contg”: continuous_on {a..b} g’
assumes derivg_nonneg: \z. z € {a..b} = g’z > 0
assumes a < b
shows ([ Tz. fz * indicator {g a..g b} z Olborel) =
([*z. f (g2) * g’ x * indicator {a..b} z Dlborel)

theorem integral substitution:

assumes integrable: set_integrable lborel {g a..g b} f

assumes derivg: Az. x € {a..b} = (g has_real derivative g’ z) (at )

assumes contg’: continuous_on {a..b} g’

assumes derivg_nonneg: Nz. x € {a..b} = ¢ 'z > 0

assumes a < b

shows set_integrable lborel {a..b} (Az. f (g z) * ¢’ )

and (LBINT z. f x x indicator {g a..g b} z) = (LBINT z. f (g z) * g’ x %

indicator {a..b} z)

theorem interval_integral_substitution:
assumes integrable: set_integrable lborel {g a..qg b} f
assumes derivg: \z. © € {a..b} = (g has_real_derivative ¢’ x) (at )
assumes contg’: continuous_on {a..b} g’
assumes derivg_nonneg: Az. € {a.b} = ¢ 2> 0
assumes a < b
shows set_integrable lborel {a..b} (Az. f (g z) * ¢’ )
and (LBINT z=g a..g b. fz) = (LBINT z=a..b. f (g z) * g’ x)

end
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10.12 The Volume of an n-Dimensional Ball

theory Ball_Volume
imports Gamma_ Function Lebesque__Integral Substitution
begindefinition unit_ball_vol :: real = real where
unit_ball_vol n = pi powr (n / 2) / Gamma (n | 2 + 1)

corollary content_ ball:
content (ball ¢ r) = unit_ball_vol (DIM('a)) * r = DIM('a)

end

10.13 Integral Test for Summability

theory Integral Test
imports Henstock Kurzweil Integration
beginlocale antimono__fun__sum,__integral _diff =
fixes f :: real = real
assumes dec: Nz y. 2> 0=z <y= fz > fy
assumes nonneg: N\z. z > 0 = fz > 0
assumes cont: continuous_on {0..} f
begin

theorem integral test:
summable (An. f (of _nat n)) +— convergent (An. integral {0..0of nat n} f)

end

10.14 Continuity of the indefinite integral; improper
integral theorem

theory Improper_Integral
imports Fquivalence Lebesgue Henstock__Integration
begin

10.14.1 Equiintegrability

definition equiintegrable on (infixr <equiintegrable’ _ony 46)
where F equiintegrable_on I =
(Vf € F. fintegrable_on I) A
(Ve > 0.3~. gauge v A
(Vf D. f e F A D tagged division_of I A ~y fine D
— norm ((3 (z,K) € D. content K xr fx) — integral I f)
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corollary equiintegrable__sum__real:
fixes F :: (real = 'b::euclidean__space) set
assumes I equiintegrable _on {a..b}
shows (|JI € Collect finite. Jc € {c. (Vi€ Il.ci>0)ANsumcl=1}.
Ufel—= F.{(\z. sum (Mi. cix*g fiz)I)})
equiintegrable__on {a..b}
theorem equiintegrable limit:
fixes ¢ :: 'a :: euclidean__space = 'b :: banach
assumes feq: range f equiintegrable_on cbox a b
and to_g: N\z. z € cboxa b= (An. fnz) —— gz
shows g integrable_on cbox a b A (An. integral (cboz a b) (f n)) —— integral
(cboz a b) g

10.14.2 Subinterval restrictions for equiintegrable families

proposition sum__content__area__over _thin__ division:
assumes div: D division_of S and S: S C cbox a b and i: ¢ € Basis
anda-i<cc<b-1
and nonmt: AK. K e D= KnN{z.z-i=c} #{}
shows (b - i — a - i) x (O, K€D. content K | (interval_upperbound K - i —
interval__lowerbound K - 7))
< 2 x content(cbox a b)

proposition bounded__equiintegral _over thin__tagged_ partial division:
fixes [ :: 'a::euclidean__space = 'b::euclidean__space
assumes F: F equiintegrable _on cbox a band f: f € Fand 0 < ¢
and norm_f: Nh z. [h € F; z € cbox a b] = norm(h z) < norm(f z)
obtains v where gauge ~
Ac i S h.[c € cbox a b; i € Basis; S tagged__partial _division__of cbox a
b;

# {}]

vfineS;he F;N\e K. (¢, K) e S= (KN{z.z-i=c-1i}

= (> (2,K) € S. norm (integral K b)) < ¢

proposition equiintegrable _halfspace restrictions le:
fixes [ :: 'a:euclidean_space = 'b::euclidean__space
assumes F: F equiintegrable _on cbox a b and f: f € F
and norm_f: ANhz. [h € F; z € cboz a b] = norm(h z) < norm(f z)
shows (U7 € Basis. Je. Uh € F. {(A\z. if z - i < c then h x else 0)})

equiintegrable__on cboz a b


Improper{_}{\kern 0pt}Integral.html

182

corollary equiintegrable _halfspace_restrictions ge:
fixes [ :: 'a::euclidean__space = 'b::euclidean__space
assumes F: F equiintegrable_on cbox a b and f: f € F
and norm_f: Ah z. [h € F; z € cboz a b] = norm(h z) < norm(f z)
shows (|J¢ € Basis. Je. Uh € F. {(Az. if x - i > c then h z else 0)})

equiintegrable _on cbox a b

corollary equiintegrable__halfspace _restrictions lt:
fixes f :: 'a::euclidean_space = 'b::euclidean__space
assumes F: F equiintegrable _on cbox a b and f: f € F
and norm_f: Ahz. [h € F; z € cboz a b] = norm(h z) < norm(f z)
shows (|J¢ € Basis. |Jc. Uh € F. {(Az. if z - i < ¢ then h z else 0)}) equiin-
tegrable__on cbox a b
(is ?G equiintegrable_on cboz a b)

corollary equiintegrable halfspace__restrictions gt:
fixes [ :: 'a::euclidean__space = 'b::euclidean__space
assumes F: F equiintegrable _on cbox a b and f: f € F
and norm_f: Nh z. [h € F; z € cboz a b] = norm(h z) < norm(f z)
shows (|J¢ € Basis. |Jc. Uh € F. {(Az. if x - i > ¢ then h z else 0)}) equiin-
tegrable__on cbox a b
(is ?G equiintegrable_on cboz a b)

proposition equiintegrable closed_interval restrictions:
fixes f :: 'a::euclidean_space = 'b::euclidean__space
assumes f: fintegrable_on cbox a b
shows (|Jc d. {(Az. if z € cbox ¢ d then f z else 0)}) equiintegrable_on cbozx a b

10.14.3 Continuity of the indefinite integral

proposition indefinite__integral continuous:

fixes f :: 'a :: euclidean_space = 'b :: euclidean__space

assumes nt_f: fintegrable_on cbox a b

and c: c € chox a band d: d € choxa b 0 < ¢
obtains § where 0 < §
Ne’ d'. [e' € cbox a b; d' € cbox a b; norm(c’ — ¢) < §; norm(d’ — d)
< ]
= norm(integral(cbox ¢’ d’) f — integral(cboz ¢ d) f) < e

corollary indefinite_integral _uniformly_continuous:
fixes [ :: 'a :: euclidean__space = 'b :: euclidean__space
assumes [ integrable_on cbozx a b
shows uniformly__continuous_on (cbox (Pair a a) (Pair b b)) (Ay. integral (cbox

(fst y) (snd y)) f)
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corollary bounded_integrals _over_ _subintervals:
fixes [ :: 'a :: euclidean__space = 'b :: euclidean__space
assumes f integrable_on cbox a b
shows bounded {integral (cbox ¢ d) f |c d. cbox ¢ d C cbox a b}
theorem absolutely integrable__improper:
fixes [ :: 'M::euclidean_space = 'N::euclidean__space
assumes int_f: Ac d. cbox ¢ d C box a b = f integrable_on cbox c d
and bo: bounded {integral (cbox ¢ d) f |c d. cbox ¢ d C box a b}
and absi: \i. i € Basis
= dg. g absolutely_integrable__on cbox a b A
(Ve ecbozabdb. fo-i<gz)V (Vo €cboxab fz-i>gzx))
shows f absolutely integrable _on cbox a b

10.14.4 Second mean value theorem and corollaries

theorem second_mean_value__theorem__ full:
fixes f :: real = real
assumes f: [ integrable _on {a..b} and a < b
and g: \zy. [a<zz<yy<d=gz<gy
obtains ¢ where ¢ € {a..b}
and ((A\z. g z % f ) has_integral (g a * integral {a..c} f + g b * integral {c..b}
1) {a.b}

corollary second__mean__value _theorem:
fixes f :: real = real
assumes f: [ integrable_on {a..b} and a < b
and g: \zy. [a<zz<yy<d=gr<gy
obtains ¢ where ¢ € {a..b}
integral {a..b} (A\z. gz x fz) = g a * integral {a..c} f + g b * integral
{c..b} f

end

10.15 Continuous Extensions of Functions

theory Continuous FExtension
imports Starlike
begin

10.15.1 Partitions of unity subordinate to locally finite open
coverings

proposition subordinate_partition__of unity:
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fixes S :: 'a::metric_space set
assumes S C |JC and opC: AT. T € C = open T
and fin: Az. 2 € S = I V.open VANz € VA finite{U € C. UNV # {}}
obtains F : ['a set, 'a] = real
where AU. U € C = continuous_on S (FU) AN (Vz € S. 0 < FUuz)
and Az U. [UeCize S52¢ Ul=FUz=20
and Az. z € S = supp_sum A\W. F Wz)C =1
and Az.z € S= 3 V.open V ANz € V A finite {U €C.3Jz€V. FUzx #

0}

10.15.2 Urysohn’s Lemma for Euclidean Spaces

proposition Urysohn__local _strong:
assumes US: closedin (top_of set U) S
and UT": closedin (top_of set U) T
and SN T={}a#bd
obtains [ :: ‘a::euclidean_space = 'b::euclidean__space
where continuous_on U f
Nz. z € U= fz € closed_segment a b
Ne.z2e U= (fr=a¢+—2€))
Ne.z2e U= (fe=bs+—ze€T)

proposition Urysohn:
assumes US: closed S
and UT: closed T
and SN T ={}
obtains f :: ‘a::euclidean space = 'b::euclidean__space
where continuous_on UNIV f
Nz. fz € closed_segment a b
Ne.zeS=fz=ua
Ne.zeT = fz=0

10.15.3 Dugundji’s Extension Theorem and Tietze Variants

theorem Dugundji:
fixes [ :: 'a::{metric_space,second__countable_topology} = 'b::real inner
assumes conver C C # {}
and cloin: closedin (top_of set U) S
and contf: continuous_on S fand f ‘S C C
obtains g where continuous _on Ugg ‘U C C
Ne.zeS=gz=fz

corollary Tietze:
fixes f :: 'a::{metric_space,second__countable__topology} = 'b::real_inner
assumes continuous_on S f
and closedin (top_of set U) S
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and 0 < B
and Az. z € S = norm(fz) < B

obtains g where continuous_on Ug Az. 2 € S = gz = fx
Nz. z € U= norm(gz) < B

end

10.16 Equivalence Between Classical Borel Mea-
surability and HOL Light’s

theory Equivalence_Measurable On__Borel

imports Fquivalence Lebesgue Henstock Integration Improper Integral Con-
tinuous_Fxtension
begin

10.16.1 Austin’s Lemma

10.16.2 A differentiability-like property of the indefinite in-
tegral.

proposition integrable__ccontinuous__explicit:
fixes [ :: 'a::euclidean_space = 'b::euclidean__space
assumes Aa b::'a. f integrable_on cbox a b
obtains N where
negligible N
Nze [z ¢ N;0<e] =
3d>0.Vh. 0 <hANh<d—
norm(integral (cboz z (z + h *g One)) f /r h ~ DIM('a) — f
T) < e

10.16.3 HOL Light measurability

proposition integrable subintervals imp measurable:
fixes [ :: 'a::euclidean__space = 'b::euclidean__space
assumes Aa b. fintegrable _on cbozx a b
shows f measurable_on UNIV

10.16.4 Composing continuous and measurable functions; a
few variants

proposition indicator _measurable _on:
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assumes S € sets lebesgue
shows indicat_real S measurable _on UNIV

lemma simple_function__induct_real
[consumes 1, case_names cong set mult add, induct set: simple_function]:

fixes u :: 'a = real

assumes u: simple_function M u

assumes cong: \f g. simple_function M f = simple_ function M ¢ — (AE z
inM.fr=gz)— Pf=— Py

assumes set: ANA. A € sets M = P (indicator A)

assumes mult: Auc. Pu= P (A\z. ¢ * u x)

assumes add: Auv. Pu— Pv=—= P (Az. uz + v x)

and nn: Az. uz > 0

shows P u

proposition simple function__measurable_on_ UNIV:
fixes f :: 'a::euclidean__space = real
assumes f: simple_function lebesque f and nn: N\z. fz > 0
shows f measurable _on UNIV

corollary simple_function__measurable__on:

fixes [ :: 'a::euclidean__space = real

assumes f: simple_function lebesgue f and nn: Az. fz > 0 and S: S € sets
lebesgue

shows f measurable_on S

proposition measurable _on__componentwise_ UNIV:
fmeasurable_on UNIV +— (Vi€ Basis. (Az. (fx + i) *g i) measurable_on UNIV)
(is ?lhs = ?rhs)

corollary measurable _on__componentwise:
f measurable_on S +— (Vi€Basis. (A\z. (f z - ©) *r ©) measurable_on S)

lemma borel_measurable_implies _simple function__sequence real:
fixes u :: 'a = real
assumes u[measurable]: w € borel _measurable M and nn: Az. vz > 0
shows 3f. incseq f N (Vi. simple_function M (f ©)) A (V. bdd_above (range
(M. fix))) A
(Viz. 0 < fiz)Nu= (SUPi. f1)

proposition homeomorphic_box  UNIV:
fixes a b:: 'a::euclidean__space
assumes boz a b # {}
shows box a b homeomorphic (UNIV::'a set)
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proposition measurable _on__imp_ borel _measurable_lebesgue  UNIV:
fixes [ :: 'a:euclidean_space = 'b::euclidean__space
assumes [ measurable _on UNIV
shows f € borel _measurable lebesgue

corollary measurable _on__imp_ borel _measurable_lebesgue:
fixes [ :: 'a:euclidean_space = 'b::euclidean_ space
assumes f measurable_on S and S: S € sets lebesque
shows f € borel _measurable (lebesgue__on S)

proposition measurable _on__limit:
fixes [ :: nat = 'a::euclidean_space = 'b::euclidean__space
assumes f: An. f n measurable_on S and N: negligible N
and lim: Az. 2 € S — N = (An. fnz) —— gx
shows g measurable__on S

proposition lebesgue__measurable _imp__measurable on:
fixes [ :: 'a:euclidean__space = 'b::euclidean__space
assumes f: f € borel_measurable lebesque and S: S € sets lebesque
shows f measurable_on S

proposition measurable__on__iff borel measurable:

fixes [ :: 'a::euclidean__space = 'b::euclidean__space

assumes S € sets lebesgue

shows f measurable_on S «— f € borel _measurable (lebesque_on S) (is ?lhs =
?rhs)

10.16.5 Monotonic functions are Lebesgue integrable

10.16.6 Measurability on generalisations of the binary prod-
uct

end

10.17 Embedding Measure Spaces with a Function

theory Embed_Measure
imports Binary Product Measure
begindefinition embed_measure :: 'a measure = (‘a = 'b) = 'b measure where
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embed_measure M f = measure_of (f ¢ space M) {f ‘* A |A. A € sets M}
(AA. emeasure M (f —¢ A N space M))

end

10.18 Brouwer’s Fixed Point Theorem

theory Brouwer Fizpoint
imports Homeomorphism Derivative
begin

10.18.1 Retractions

10.18.2 Kuhn Simplices
10.18.3 Brouwer’s fixed point theorem

theorem brouwer:
fixes [ :: ‘a::euclidean__space = 'a
assumes S: compact S conver S S # {}
and contf: continuous_on S f
and fim: fe S - S
obtains z where z € Sand fz ==z

10.18.4 Applications

corollary no_ retraction__cball:
fixes a :: 'a::euclidean_ space
assumes ¢ > ()
shows — (frontier (cball a e) retract_of (cball a e))

corollary contractible__sphere:
fixes a :: 'a::euclidean_ space
shows contractible(sphere a r) «— r < 0

corollary connected__sphere__eq:
fixes a :: 'a :: euclidean__space
shows connected(sphere a r) +— 2 < DIM('a) V r < 0

(is ?lhs = ?rhs)

corollary path__connected__sphere__eq:
fixes a :: 'a :: euclidean__space
shows path__connected(sphere a r) «— 2 < DIM('a) V r < 0

(is 2lhs = ?rhs)
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proposition frontier subset_retraction:
fixes S :: 'a::euclidean__space set
assumes bounded S and fros: frontier S C T
and contf: continuous_on (closure S) f
and fim: fe S — T
and fid: N\z.2 € T = fz ==z
shows S C T

corollary rel frontier retract_of punctured affine__hull:
fixes S :: 'a::euclidean__space set
assumes bounded S convexr S a € rel_interior S
shows rel_frontier S retract_of (affine hull S — {a})

corollary rel boundary retract_of punctured__affine_hull:
fixes S :: 'a::euclidean__space set
assumes compact S convexr S a € rel_interior S
shows (S — rel_interior S) retract_of (affine hull S — {a})
theorem has derivative inverse__on:
fixes [ :: 'n::euclidean_space = 'n
assumes open S
and Az. x € S = (f has__derivative f'(z)) (at )
and A\z.z € S =g (fz)=1
and 'z o g x =1id
and z € §
shows (g has__derivative ¢'(z)) (at (f z))

end

10.19 Fashoda Meet Theorem

theory Fashoda__ Theorem
imports Brouwer Fixzpoint Path__Connected Cartesian__Fuclidean__Space
begin

10.19.1 Bijections between intervals

definition interval _bij :: 'a X 'a = 'a X 'a = 'a = 'a::euclidean__space
where interval _bij =
(Ma, b) (u, v) z. (3 i€Basis. (ui + (zi — a-i) / (bi — a-i) * (v-i — 7))
)

10.19.2 Fashoda meet theorem

proposition fashoda__unit:
fixes f g :: real = real”™2
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assumes f ‘{—1 .. 1} C cbox (—1) 1
and g ‘{—1 .. 1} C cboz (—1) 1
and continuous_on {—1 .. 1} f
and continuous_on {—1 .. 1} g
and f (— 1)$1 = — 1
and f1$1 =1¢g(—1)$%$2=—1
and g 1 $2 =1
shows Jse{—1 .. 1}. Jte{—-1 .. 1}. fs=gt

proposition fashoda__unit_path:
fixes f g :: real = real™2
assumes path f
and path g
and path_image f C cbox (—1) 1
and path_image g C cbozx (—1) 1
and (pathstart f)$1 = —1
and (pathfinish f)$1 = 1
and (pathstart g)$2 = —1
and (pathfinish ¢)$2 = 1
obtains z where z € path_image f and z € path__image g

theorem fashoda:

fixes b :: real”2

assumes path f
and path g
and path__image [ C cbox a b
and path__image g C cbox a b
and (pathstart f)$1 = a$1
and (pathfinish f)$1 = b$1
and (pathstart g)$2 = a$2
and (pathfinish g)$2 = b$2

obtains z where z € path__image f and z € path__image g

10.19.3 Useful Fashoda corollary pointed out to me by Tom
Hales

corollary fashoda__interlace:

fixes a :: real”2

assumes path f
and path g
and paf: path_image f C cbox a b
and pag: path_image g C cbox a b
and (pathstart f)$2 = a$2
and (pathfinish f)$2 = a$2
and (pathstart g)$2 = a$2
and (pathfinish ¢)$2 = a$2
and (pathstart f)$1 < (pathstart g)$1
and (pathstart g)$1 < (pathfinish f)$1
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and (pathfinish f)$1 < (pathfinish ¢)$1
obtains z where z € path_image f and z € path__image g

end

10.20 Vector Cross Products in 3 Dimensions

theory Cross3
imports Determinants Cartesian_ Fuclidean_ Space
begin
definition cross3 :: [real™3, real”3] = real”3 (infixr <x» 80)
where a x b =
vector [a$2 x b33 — a$3 = b$2,

a$3 x b$1 — a$1 * b33,
a$1 x b$2 — a$2  b$1]

10.20.1 Basic lemmas

proposition Jacobi: x X (y X z) + y X (z X z) + z X (x x y) = 0 for z::real”3
proposition Lagrange: x x (y x z) = (x - 2) xg y — (z - y) *g 2

proposition cross_triple: (x X y) -z = (y X 2) +

proposition dot_cross: (w X z) « (y X z2) =(w+y) * (z+2) — (w-2) * (z+y)

proposition norm__cross: (norm (z x y))? = (norm z)? x (norm y)? — (z - y)?

10.20.2 Preservation by rotation, or other orthogonal trans-
formation up to sign

10.20.3 Continuity

end

10.21 Bounded Continuous Functions

theory Bounded_ Continuous_Function
imports
Topology__ Fuclidean__ Space
Uniform__Limit
begin
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10.21.1 Definition
definition becontfun = {f. continuous on UNIV f A bounded (range f)}

instantiation bcontfun :: (topological _space, metric__space) metric_space
begin

lift_ definition dist_bcontfun :: 'a =¢ 'b = 'a =¢ 'b = real
is Afg. (SUP x. dist (fz) (g9 x))

10.21.2 Complete Space

instance bcontfun :: (metric_space, complete_space) complete__space

end

10.22 Infinite Products

theory Infinite_ Products
imports Topology Fuclidean__Space Complex_Transcendental
begin

10.22.1 Definitions and basic properties

definition raw_has_prod :: [nat = 'a:{t2_space, comm__semiring_1}, nat, 'd]
= bool

where raw_has_prod f M p = (An. [[i<n. f (i+M)) —— p A p # 0

definition

has_prod :: (nat = 'a::{t2_space, comm__semiring_1}) = 'a = bool (infixr
<has’_prody 80)

where f has _prod p = raw_has_prod f 0 p vV 3iq p =0 AN fi=0A
raw_has_prod f (Suc i) q)

definition convergent_prod :: (nat = 'a :: {t2_space,comm__semiring_1}) = bool
where
convergent_prod f =AM p. raw_has_prod f M p
definition prodinf :: (nat = 'a::{t2_space, comm__semiring 1}) = 'a
(binder <J]» 10)
where prodinf f = (THE p. f has_prod p)

10.22.2 Absolutely convergent products

definition abs_convergent_prod :: (nat = _) = bool where
abs__convergent_prod f <— convergent_prod (Ai. 1 + norm (fi — 1))

lemma convergent _prod_iff convergent:
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fixes f :: nat = 'a :: {topological__semigroup_mult,t2_space,idom}
assumes Ai. fi # 0
shows convergent_prod f <— convergent (An. [[i<n. fi) A lim (An. []i<n. f

i) £ 0

theorem abs_convergent_prod__conv__summable:
fixes [ :: nat = 'a :: real_normed__div_algebra
shows abs__convergent _prod f «— summable (\i. norm (fi — 1))

10.22.3 More elementary properties

theorem abs convergent prod__imp_convergent prod:
fixes f :: nat = 'a :: {real_normed_div_algebra,complete_space,comm__ring 1}
assumes abs_convergent_prod f
shows convergent_prod f

corollary convergent prod_ offset_0:
fixes f :: nat = ‘a :: {idom,topological__semigroup_ mult,t2 space}
assumes convergent_prod f Ni. fi # 0
shows dp. raw_has_prod f 0 p

theorem has prod_iff: f has_prod © <— convergent_prod f N prodinf f = x

10.22.4 Exponentials and logarithms

theorem convergent_prod_iff summable real:
fixes a :: nat = real
assumes An. an > 0
shows convergent_prod (Ak. 1 + a k) «— summable a (is ?lhs = %rhs)

theorem Ln_ prodinf complex:

fixes z :: nat = complex

assumes 2: \j. zj # 0 and & € # 0

shows ((An. [[j<n. zj) —— &) +— (Fk. (An. O_j<n. Ln (2j§))) —— Ln
&+ of int k = (of _real(2+pi) x 1)) (is ?lhs = ?rhs)
proposition convergent_prod_iff summable__complex:

fixes z :: nat = complex

assumes A\k. z k # 0

shows convergent_prod (Ak. z k) «— summable (Ak. Ln (z k)) (is ?lhs = ?rhs)
proposition summable_imp__convergent_prod__complex:

fixes z :: nat = complex

assumes z: summable (Ak. norm (z k)) and non0: Nk. z k # —1

shows convergent_prod (M\k. 1 + z k)
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corollary summable_imp__convergent_prod_ real:
fixes z :: nat = real
assumes z: summable (Ak. |z k|) and non0: Ak. z k # —1
shows convergent_prod (M\k. 1 + z k)

10.22.5 Convergence criteria: especially uniform convergence
of infinite products

end

10.23 Sums over Infinite Sets

theory Infinite Set_Sum
imports Set_ Integral Infinite_ Sum
begin

definition abs summable on ::
("a = 'b :: {banach, second__countable_topology}) = 'a set = bool
(infix <abs’_summable’ _on) 50)

where
f abs_summable _on A <— integrable (count_space A) f

definition infsetsum ::

("a = 'b :: {banach, second__countable _topology}) = 'a set = b
where

infsetsum f A = lebesgue__integral (count_space A) f

theorem infsetsum_ reindex:
assumes inj _on g A
shows infsetsum f (g ‘ A) = infsetsum (Az. f (g z)) A

theorem infsetsum__Sigma:

fixes A :: 'a set and B :: ‘a = 'b set

assumes [simp|: countable A and Ai. countable (B i)

assumes summable: f abs_summable_on (Sigma A B)

shows infsetsum f (Sigma A B) = infsetsum (Az. infsetsum (\y. [ (z, y)) (B
z)) A

theorem abs summable_on__ Sigma__iff:
assumes [simp]: countable A and Az. v € A = countable (B 1)
shows [ abs_summable_on Sigma A B +—
(VzeA. (Ay. f (z, y)) abs_summable_on B x) A
((\z. infsetsum (Ay. norm (f (z, y))) (B z)) abs_summable _on A)
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theorem infsetsum_ prod_PiE:
fixes f :: 'a = 'b = 'c:: {real _normed_ field,banach,second__countable_ topology}
assumes finite: finite A and countable: A\z. © € A = countable (B x)
assumes summable: N\z. © € A = [z abs_summable_on B x
shows infsetsum (Ag. [[z€A. fz (g x)) (PiE A B) = ([[z€A. infsetsum (f )
(B 2))

end

10.24 Faces, Extreme Points, Polytopes, Polyhe-
dra etc

theory Polytope
imports Cartesian__ FEuclidean_ Space Path__Connected
begin

10.24.1 Faces of a (usually convex) set

definition face_of :: ['a::real_vector set, 'a set] = bool (infixr «(face’_of)> 50)
where
T face _of S +—
T C S A convex T N
Vae S. Vbe S.Vz € T. x € open_segment ab — a € T ANbe T)

proposition face_of imp eq affine_Int:
fixes S :: 'a::euclidean_ space set
assumes S: convex S and T: T face of S
shows T = (affine hull T) N S

proposition face_of conic:
assumes conic S f face_of S

shows conic f

proposition face_of convex__hulls:
assumes S: finite S T C S and disj: affine hull T N convex hull (S — T) =
{}

shows (convexr hull T) face of (convex hull S)
proposition face of convex__hull insert:
assumes finite S a ¢ affine hull S and T: T face_of conver hull S

shows T face of convexr hull insert a S

proposition face of affine_trivial:
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assumes affine S T face_of S
shows T={}v T=3S5

proposition Inter faces finite_altbound:
fixes T :: 'a::euclidean_ space set set
assumes cfal: Nc. c € T = ¢ face_of S
shows 3 F". finite F' AN F'C T A card F' < DIM('a) + 2 A\F'=NT

proposition face of Times:
assumes F face_of S and F' face_of S’
shows (F x F') face_of (S x S)

corollary face of Times decomp:

fixes S :: 'a::euclidean__space set and S’ :: 'b::euclidean__space set
shows C face_of (S x S') «— (3F F'. F face_of S N F' face_of S’ N C =
F x F)

(is ?lhs = %rhs)

10.24.2 Exposed faces

definition ezposed_face of :: ['a::euclidean__space set, 'a set] = bool
(infixr <(exposed’_face’ of)» 50)
where T exposed_face of S +—
T face_of SA(Fab. SC{z.a-c<b}ANT=8SnN{z a-z=0})

proposition exposed face of Int:
assumes 1 exposed_face_of S
and U exposed_ face of S
shows (T N U) exposed_face of S

proposition exposed face of Inter:
fixes P :: 'a::euclidean__space set set
assumes P # {}
and AT. T € P = T exposed_face_of S
shows (| P exposed_ face_of S

proposition exposed face of sums:
assumes convez S and convexr T
and F exposed_face_of {x + y|zy.z € SAye T}
(is F exposed_ face_of 25T)
obtains k[
where k ezposed_face of S 1 exposed_face _of T
F={z+4+ylezyzecknyel}

proposition exposed face_of parallel:
T exposed_face_of S +—
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T face_of S N
(Fab. SC{z.a-2<b}ANT=8nNn{z.a-z=">0}A
(T#{} —>T#S—a#0)A
(T #8S — (Vw € affine hull S. (w + a) € affine hull S)))
(is ?lhs = ?rhs)

10.24.3 Extreme points of a set: its singleton faces

definition extreme_point_of :: ['a::real_vector, 'a set] = bool
(infixr <(extreme’_point’_of)» 50)
where z extreme_point_of S +—
zeSANNMae S Vbe S z ¢ open_segment a b)

proposition extreme_points_of convex_hull:
{z. z extreme__point_of (convex hull S)} C S

10.24.4 Facets

definition facet_of :: ['a::euclidean_space set, 'a set] = bool
(infixr <(facet’_of)> 50)
where F facet_of S +— F face_of S AN F # {} A aff _dim F = aoff _dim S — 1

10.24.5 Edges: faces of affine dimension 1

definition edge_of :: ['a::euclidean__space set, 'a set] = bool (infixr <(edge’ _of)»
50)
where e edge_of S <— e face_of S A aff _dim e = 1

10.24.6 Existence of extreme points

proposition different_norm__ 8 _collinear__points:
fixes a :: 'a::euclidean_ space
assumes z € open_segment a b norm(a) = norm(b) norm(x) = norm(b)
shows Fulse

proposition extreme point exists convex:
fixes S :: 'a::euclidean_space set
assumes compact S convex S S # {}
obtains =z where z extreme_point_of S

10.24.7 Krein-Milman, the weaker form

proposition Krein_ Milman:
fixes S :: 'a::euclidean_space set
assumes compact S convex S
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shows S = closure(conver hull {z. x extreme_point_of S})

theorem Krein  Milman_Minkowsk::
fixes S :: ‘a::euclidean__space set
assumes compact S conver S
shows S = convex hull {z. x extreme_point_of S}

10.24.8 Applying it to convex hulls of explicitly indicated
finite sets

corollary Krein_ Milman__polytope:
fixes S :: ‘a::euclidean_ space set
shows
finite S
= convex hull § =
convez hull {z. x extreme__point_of (conver hull S)}

proposition face of convex hull insert eq:
fixes a :: 'a :: euclidean space
assumes finite S and a: a ¢ affine hull S
shows (F face_of (convex hull (insert a S)) +—
F face_of (convex hull S) v
(FF'. F' face_of (convex hull S) N F = convex hull (insert a F')))

(is F face_of ?CAS +— )

proposition face of convex hull affine_independent:
fixes S :: ‘a::euclidean__space set
assumes - affine_dependent S
shows (T face_of (convex hull S) «+— (3¢c. ¢ C S A T = convex hull ¢))
(is ?lhs = ?rhs)

proposition Krein_ Milman__frontier:
fixes S :: ‘a::euclidean_space set
assumes convex S compact S
shows S = convex hull (frontier S)
(is ?lhs = ?rhs)

10.24.9 Polytopes

definition polytope where
polytope S = Jv. finite v A S = convezr hull v

proposition face of polytope insert2:
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fixes a :: 'a :: euclidean space

assumes polytope S a ¢ affine hull S F face_of S
shows convez hull (insert a F) face_of convex hull (insert a S)

10.24.10 Polyhedra

definition polyhedron where
polyhedron S =
3 F. finite F A
S=NFA
(Vhe F.3ab.a#0ANh={z a-z<0b})

10.24.11 Canonical polyhedron representation making facial
structure explicit

proposition polyhedron__ Int_affine:
fixes S :: 'a :: euclidean_space set
shows polyhedron S <—
(3F. finite F N S = (affine hull S) N (N F A
(Vhe F.3ab. a#0ANh={z a-z<b}))

proposition rel interior_polyhedron__explicit:
assumes finite F
and seq: S = affine hull S N F
and faceq: Ah.he F=ah#0ANh={z.ah- -z <0bh}
and psub: A\F'. F' C F = S C affine hull S N (" F’
shows rel_interior S = {r € S.Vhe F.ah -z < bh}

proposition polyhedron__Int_affine_parallel _minimal:
fixes S :: 'a :: euclidean space set
shows polyhedron S <—
(3F. finite FF A
S = (affine hull S) N (NF) A
(VheF.3ab.a#0ANh={z.a-z<Db}A
(Vz € affine hull S. (x + a) € affine hull S)) A
(VF'. F'C F — S C (affine hull S) N (N F)))
(is ?lhs = %rhs)

proposition facet of polyhedron__explicit:
assumes finite F
and seq: S = affine hull SN F
and faceq: NAh.h€e F= ah#0ANh={z.ah-z<bh}
and psub: A\F'. F' C F = S C affine hull SN F’
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shows C facet_of S +— (3h. he FAC =8N {z. ah-x=>bh})

proposition face_of polyhedron__explicit:
fixes S :: ‘a :: euclidean__space set
assumes finite F
and seq: S = affine hull SN F
and faceg: Ah.h € F = ah#0ANh={x.ah-z<0bh}
and psub: AF'. F'C F = S C affine hull SN F’
and C: C face_of Sand C # {} C # S
shows C=N{SN{z.ah-z2=0bh}|hhe FANCCSN{z.ah-2=10

h}}

10.24.12 More general corollaries from the explicit represen-
tation

corollary facet of polyhedron:
assumes polyhedron S and C facet_of S
obtains a b where a # 0 S C{z. a-2<b} C=5N{z. a-2 =0}

corollary face of polyhedron:
assumes polyhedron S and C face_of S and C # {} and C # S
shows C = ({F. F facet_of S N C C F}

proposition rel interior _of polyhedron:
fixes S :: ‘a :: euclidean_space set
assumes polyhedron S
shows rel_interior S = S — |J{F. F facet_of S}
proposition polyhedron__eq finite_exposed__ faces:
fixes S :: ‘a :: euclidean space set
shows polyhedron S «— closed S N conver S A finite {F. F exposed__face_of S}
(is ?lhs = ?rhs)

corollary polyhedron__eq finite_faces:
fixes S :: ‘a :: euclidean_space set
shows polyhedron S «— closed S A\ convex S A finite {F. F face_of S}
(is ?lhs = ?rhs)

10.24.13 Relation between polytopes and polyhedra

proposition polytope eq bounded__polyhedron:
fixes S :: ‘a :: euclidean_space set
shows polytope S <— polyhedron S N bounded S
(is ?lhs = ?rhs)
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10.24.14 Relative and absolute frontier of a polytope

proposition frontier of convex__hull:
fixes S :: 'a::euclidean__space set
assumes card S = Suc (DIM('a))
shows frontier(convex hull S) = |J {convex hull (S — {a}) | a. a € S}

10.24.15 Special case of a triangle

proposition frontier of triangle:
fixes a :: ‘a::euclidean__space
assumes DIM('a) = 2
shows frontier(convex hull {a,b,c}) = closed_segment a b U closed__segment b
¢ U closed__segment ¢ a
(is ?lhs = %rhs)

corollary inside of triangle:

fixes a :: 'a::euclidean_ space

assumes DIM('a) = 2

shows inside (closed segment a b U closed__segment b ¢ U closed__segment ¢
a) = interior(conver hull {a,b,c})

corollary interior_of triangle:
fixes a :: 'a::euclidean_ space
assumes DIM('a) = 2
shows interior(convex hull {a,b,c}) =
conver hull {a,b,c} — (closed _segment a b U closed_segment b ¢ U
closed__segment ¢ a)

10.24.16 Subdividing a cell complex

proposition cell complex_subdivision__exists:
fixes F :: 'a::euclidean_space set set
assumes 0 < e finite F
and poly: AX. X € F = polytope X
and off: AN X. X € F = qaff dim X < d
and face: NX Y. [X e F; Y € F] = XN Y face_of X
obtains F' where finite F' | JF' = JF NX. X € F' = diameter X < e
AX. X € F/ = polytope X AX. X € F' = qff dim X < d
ANXY. [XeF;YeF]= XNYface of X
NC.CeF'=3ID.De FACCD
NCz. Ce FANzeC=3ID.DeF'ANze DANDCC
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10.24.17 Simplexes

definition simplex :: int = 'a::euclidean__space set = bool (infix <simplex) 50)
where n simplex S = 3 C. — affine_dependent C' A int(card C) =n+ 1 AN S =
convex hull C

10.24.18 Simplicial complexes and triangulations

definition simplicial complex where

simplicial _complex C =
finite C N
(VS € C. In. n simplex S) N
(VFS.SeCAFface of S— FeC)A
(VSS8.8eCnS eC— (SNS) face_of )

definition triangulation where
triangulation T =
finite T A
(VT € T.3n. nsimplex T) A
VTT. . TeTANT €T — (TNT) face of T)

10.24.19 Refining a cell complex to a simplicial complex

proposition convex_hull _insert_Int eq:
fixes z :: 'a :: euclidean__space
assumes z: z € rel_interior S
and T: T C rel_frontier S
and U: U C rel_frontier S
and convex S convexr T convex U
shows convez hull (insert z T) N conver hull (insert z U) = convex hull (insert
z (T N U))
(is ?lhs = ?rhs)

proposition simplicial _subdivision__of cell complex:
assumes finite M
and poly: AC. C € M = polytope C
and face: NC1 C2. [C1 € M; C2 € M] = C1 N C2 face_of C1
obtains 7 where simplicial _complex T
UT =UM
NC.C e M= 3F. finte FNFCTANC=UF
ANK.KeT=3C.CeMANKCC

corollary fine simplicial _subdivision__of cell _complex:
assumes 0 < e finite M
and poly: AC. C € M = polytope C
and face: NC1 C2. [C1 € M; C2 € M] = C1 N C2 face_of C1
obtains 7 where simplicial _complex T
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ANK. K € T = diameter K < e

U7 =UM

NC.C e M= 3F. finite FNFCTANC=UF
N KeT=3C.CeMANKCC

10.24.20 Some results on cell division with full-dimensional
cells only

proposition fine_triangular _subdivision__of cell complex:
assumes 0 < e finite M
and poly: ANC. C € M = polytope C
and aff: N\C. C e M = aff dim C =d
and face: NC1 C2. [C1 € M; C2 € M] = C1 N C2 face_of C1
obtains 7 where triangulation T Nk. k € T = diameter k < e
Nk keT = aff dmk=dJT =UM
NC. Ce M= 3f. finite f NfFCTANC=UFf
Nk.keT=3C.Ce MANECC

10.25 Finitely generated cone is polyhedral, and
hence closed

proposition polyhedron__convex__cone__hull:
fixes S :: 'a::euclidean_space set
assumes finite S
shows polyhedron(convez__cone hull S)

end

10.26 Absolute Retracts, Absolute Neighbourhood
Retracts and Euclidean Neighbourhood Re-
tracts

theory Retracts
imports
Brouwer__Fizpoint
Continuous _Extension
begindefinition AR :: 'a::topological_space set = bool where
AR S =V U.VS":('a x real) set.
S homeomorphic S’ A closedin (top__of set U) S’ — S’ retract_of U

definition ANR :: ‘a::topological _space set = bool where
ANR S =V U.VS":('a x real) set.
S homeomorphic S’ A closedin (top_of set U) S’
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— (A T. openin (top_of set U) T A S’ retract_of T)

definition ENR :: 'a::topological_space set = bool where
ENR S =3U. open U A S retract_of U

corollary ANR_imp__absolute__neighbourhood_ retract:
fixes S :: ‘a::euclidean__space set and S’ :: 'b::euclidean__space set
assumes ANR S S homeomorphic S’
and clo: closedin (top_of set U) S’
obtains V where openin (top_of set U) V S’ retract_of V

corollary ANR_ imp__absolute_neighbourhood__retract_ UNIV:
fixes S :: ‘a::euclidean_space set and S’ :: 'b::euclidean_space set
assumes ANR S and hom: S homeomorphic S’ and clo: closed S’
obtains V where open V S’ retract_of V

corollary neighbourhood__extension__into_ ANR:
fixes f :: 'a::euclidean__space = 'b::euclidean_ space
assumes contf: continuous _on S f and fim: f € S — T and ANR T closed S
obtains V g where S C V open V continuous_on V g
geEV T NANe.zeS=ga=fzx

10.26.1 Analogous properties of ENRs

corollary ENR_ imp_ absolute_neighbourhood__retract  UNIV:
fixes S :: ‘a::euclidean_space set and S’ :: 'b::euclidean_space set
assumes ENR S S homeomorphic S’
obtains T’ where open T' S’ retract_of T’

corollary AR_ closed Un:
fixes S :: ‘a::euclidean_space set
shows [closed S; closed T; AR S; AR T; AR (SN T)] = AR (SU T)

corollary ANR_ closed Un:
fixes S :: ‘a::euclidean_space set
shows [closed S; closed T; ANR S; ANR T; ANR (SN T)] = ANR (SU T)

10.26.2 More advanced properties of ANRs and ENRs
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10.26.3 Original ANR material, now for ENRs

10.26.4 Finally, spheres are ANRs and ENRs
10.26.5 Spheres are connected, etc

10.26.6 Borsuk homotopy extension theorem

theorem Borsuk__homotopy_extension__homotopic:
fixes [ :: 'a::euclidean__space = 'b::euclidean__space
assumes cloTS: closedin (top_of set T) S
and anr: (ANR S AN ANR T)V ANR U
and contf: continuous_on T f
and fe T - U
and homotopic_with__canon (Az. True) S U f g
obtains ¢’ where homotopic_with__canon (Az. True) T U f ¢’
continuous_on T g' image ¢’ T C U
Ne.zeS=g'z=9gzx

10.26.7 More extension theorems

10.26.8 The complement of a set and path-connectedness

theorem connected complement _homeomorphic__convexr _compact:
fixes S :: ‘a::euclidean_space set and T :: 'b::euclidean__space set
assumes hom: S homeomorphic T and T: convex T compact T and 2: 2 <
DIM('a)
shows connected(— S)

corollary path__connected__complement__homeomorphic__convex__compact:
fixes S :: 'a:euclidean__space set and T :: 'b::euclidean_space set
assumes hom: S homeomorphic T conver T compact T 2 < DIM('a)
shows path__connected(— S)

end
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10.27 Extending Continous Maps, Invariance of
Domain, etc

theory Further _Topology

imports Weierstrass_Theorems Polytope Complex_ Transcendental Equivalence_Lebesque Henstock I
Retracts
begin

10.27.1 A map from a sphere to a higher dimensional sphere
is nullhomotopic

proposition inessential _spheremap__lowdim__gen:
fixes f :: 'M::euclidean__space = 'a::euclidean__space
assumes convez S bounded S convexr T bounded T
and affST: aff _dim S < aff _dim T
and contf: continuous_on (rel_frontier S) f
and fim: f € (rel_frontier S) — rel_frontier T
obtains ¢ where homotopic_with__canon (Az. True) (rel_frontier S) (rel_frontier

T) f (\z. ¢

10.27.2 Some technical lemmas about extending maps from
cell complexes

theorem extend_map_ cell _complex_to_ sphere:
assumes finite F and S: S C |JF closed S and T: conver T bounded T
and poly: AX. X € F = polytope X
and aff: NX. X € F = qaff dim X < aff dim T
and face: NAXY. [X e F; Y e Fl = (X NY) face of X
and contf: continuous_on S f and fim: f € S — rel_frontier T
obtains g where continuous_on (JF) g
g€ (UF) — rel_frontier T No. x € S = gax=fx

theorem extend map cell _complex to sphere_cofinite:
assumes finite F and S: S C |JF closed S and T: conver T bounded T
and poly: AX. X € F = polytope X
and off: NX. X € F = qff _dim X < aff _dim T
and face: NAXY. [X e F; Y €e Fl = (X NY) face of X
and contf: continuous_on S f and fim: f € § — rel_frontier T
obtains C g where finite C disjnt C' S continuous_on (JF — C) ¢
ge (UF — C) — rel_frontier T N\z. x € S = gz =fz
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10.27.3 Special cases and corollaries involving spheres

proposition extend__map affine _to_sphere_cofinite__simple:
fixes [ :: 'a:euclidean__space = 'b::euclidean__space
assumes compact S convex U bounded U
and aff: aff _dim T < aff _dim U
and S C T and contf: continuous_on S f
and fim: f € § — rel_frontier U
obtains K g where finite K K C T disjnt K S continuous_on (T — K) g
g€ (T — K) — rel_frontier U
Ne.zeS=ga=fx

10.27.4 Extending maps to spheres

proposition extend _map_affine_to_sphere_cofinite__gen:
fixes f :: 'a::euclidean_space = 'b::euclidean__space
assumes SUT: compact S convex U bounded U affine TS C T
and aff: aff dim T < aff dim U
and contf: continuous_on S f
and fim: f € § — rel_frontier U
and dis: AC. [C € components(T — S); bounded C] = C N L # {}

obtains K g where finite K K C L K C T disjnt K S continuous_on (T —

9
g € (T — K) — rel_frontier U
Ne.zeS=gz=fz

corollary extend_map_ affine_to_sphere_ cofinite:
fixes [ :: 'a::euclidean__space = 'b::euclidean__space
assumes SUT: compact S affine TS C T
and aff: off dim T < DIM('b) and 0 < r
and contf: continuous_on S f
and fim: f € § — sphere a r
and dis: AC. [C € components(T — S); bounded C] = C N L # {}

obtains K g where finite K K C L K C T disjnt K S continuous_on (T —

Y
g€ (T —K) — spherear N\e.z€S=gz=fz

corollary extend_map_ UNIV__to_sphere_ cofinite:
fixes [ :: 'a::euclidean__space = 'b::euclidean__space
assumes DIM('a) < DIM(’b) and 0 < r
and compact S
and continuous _on S f
and f € § — sphere ar
and AC. [C € components(— S); bounded C] = C N L # {}
obtains K g where finite K K C L disjnt K S continuous_on (— K) g

207
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g€ (— K) = spherear Ne.z € S= gz =fz

corollary extend_map UNIV __to_sphere no__bounded__component:
fixes [ :: 'a::euclidean__space = 'b::euclidean__space
assumes aff: DIM('a) < DIM(’b) and 0 < r
and SUT: compact S
and contf: continuous_on S f
and fim: f € S — sphere a r
and dis: NC. C € components(— S) = — bounded C
obtains g where continuous_on UNIV g g € UNIV — sphere ar A\z. z € S
= gz=fzx

theorem Borsuk_separation_ theorem__gen:
fixes S :: 'a::euclidean_space set
assumes compact S
shows (V¢ € components(— S). —bounded ¢) «—
(Vf. continuous_on S f AN f € S — sphere (0::'a) 1
— (3 ¢. homotopic_with_canon (A\x. True) S (sphere 0 1) f (\x.

c)))

(is ?lhs = ?rhs)

corollary Borsuk__separation__theorem:
fixes S :: 'a::euclidean__space set
assumes compact S and 2: 2 < DIM('a)
shows connected(— S) +—
(Vf. continuous_on S f AN f € S — sphere (0::'a) 1
— (Fe. homotopic_with__canon (Az. True) S (sphere 0 1) f (Ax.

c)))

(is ?lhs = %rhs)

proposition Jordan_Brouwer _separation:
fixes S :: 'a::euclidean__space set and a::'a
assumes hom: S homeomorphic sphere a r and 0 < r
shows — connected(— S)

proposition Jordan_ Brouwer _frontier:
fixes S :: 'a::euclidean__space set and a::'a
assumes S: S homeomorphic sphere a v and T: T € components(— S) and 2:
2 < DIM('a)
shows frontier T = S

proposition Jordan_ Brouwer nonseparation:
fixes S :: 'a::euclidean_ space set and a::'a
assumes S: S homeomorphic sphere a r and T C S and 2: 2 < DIM('a)
shows connected(— T)



Further Topology.thy 209

10.27.5 Invariance of domain and corollaries

theorem invariance_of domain:
fixes [ :: 'a = ’'a::euclidean__space
assumes continuous _on S f open S inj _on f S
shows open(f < S)

corollary invariance of domain__subspaces:
fixes [ :: 'a::euclidean__space = 'b::euclidean__space
assumes ope: openin (top_of set U) S
and subspace U subspace V and VU: dim V < dim U
and contf: continuous_on S f and fim: f € S — V
and injf: inj_on f S
shows openin (top_of _set V) (f ©5)

corollary invariance of dimension__subspaces:
fixes f :: 'a::euclidean_space = 'b::euclidean__space
assumes ope: openin (top_of set U) S
and subspace U subspace V
and contf: continuous_on S f and fim: f € S — V
and injf: inj_on f S and S # {}
shows dim U < dim V

corollary invariance of domain_affine_sets:
fixes [ :: 'a::euclidean__space = 'b::euclidean__space
assumes ope: openin (top_of set U) S
and aff: affine U affine V off _dim V < aff _dim U
and contf: continuous_on S f and fim: f € S — V
and injf: inj_on f S
shows openin (top_of _set V) (f ©5)

corollary invariance of dimension__affine_ sets:
fixes f :: 'a::euclidean_space = 'b::euclidean__space
assumes ope: openin (top_of set U) S
and aff: affine U affine V
and contf: continuous_on S f and fim: f € S — V
and injf: inj_on f S and S # {}
shows aff dim U < aff _dim V

corollary invariance_of dimension:
fixes [ :: 'a::euclidean__space = 'b::euclidean__space
assumes contf: continuous _on S f and open S
and injf: inj_on f S and S # {}
shows DIM ('a) < DIM('b)
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corollary continuous__injective _image__subspace__dim,__le:
fixes f :: 'a::euclidean__space = 'b::euclidean_ space
assumes subspace S subspace T
and conitf: continuous_on S f and fim: f € S — T
and njf: inj_on f S
shows dim S < dim T

corollary invariance__of domain__homeomorphic:
fixes [ :: ‘a::euclidean_space = 'b::euclidean_ space
assumes open S continuous_on S f DIM('b) < DIM('a) inj_on f S
shows S homeomorphic (f ¢ S)

proposition homeomorphic__interiors:
fixes S :: ‘a::euclidean_space set and T :: 'b::euclidean_space set
assumes S homeomorphic T interior S = {} +— interior T = {}
shows (interior S) homeomorphic (interior T)

proposition uniformly_continuous__homeomorphism__UNIV_trivial:

fixes f :: 'a::euclidean__space = 'a

assumes contf: uniformly_continuous_on S f and hom: homeomorphism S
UNIV f g

shows S = UNIV

10.27.6 Formulation of loop homotopy in terms of maps out
of type complex

proposition simply_connected__eq homotopic__circlemaps:
fixes S :: 'a::real _normed_vector set
shows simply__connected S +—
(Vf g::complex = 'a.

continuous_on (sphere 0 1) f N f € (sphere 0 1) — S A
continuous_on (sphere 0 1) g \ g € (sphere 0 1) — S
— homotopic_with__canon (Ah. True) (sphere 0 1) S f g)

proposition simply_connected__eq contractible_circlemap:
fixes S :: 'a::real _normed_vector set
shows simply connected S +—
path__connected S N
(V f::complex = 'a.
continuous_on (sphere 0 1) f N f (sphere 0 1) C S
— (F a. homotopic_with__canon (Ah. True) (sphere 0 1) S f (Az. a)))
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corollary homotopy equ_simple connectedness:
fixes S :: 'a::real_normed_vector set and T :: 'b::real _normed__vector set
shows S homotopy_equ T = simply_connected S <— simply_connected T

10.27.7 Homeomorphism of simple closed curves to circles

proposition homeomorphic__simple_path__image_ circle:
fixes a :: complex and 7 :: real = 'a::t2_space
assumes simple__path v and loop: pathfinish v = pathstart v and 0 < r
shows (path_image ) homeomorphic sphere a r

10.27.8 Dimension-based conditions for various homeomor-
phisms

10.27.9 more invariance of domain

proposition invariance of domain__sphere__affine_set_gen:
fixes [ :: 'a:euclidean_space = 'b::euclidean_ space
assumes contf: continuous_on S f and injf: inj_on fS and fim: f€ S — T
and U: bounded U convex U
and affine T and aoff TU: aff dim T < aff dim U
and ope: openin (top_of _set (rel_frontier U)) S
shows openin (top_of set T) (f < S)

proposition simply_connected_punctured__convex:
fixes a :: ‘a::euclidean__space
assumes convexr S and 3: 8 < aff dim S
shows simply__connected(S — {a})

corollary simply connected_punctured__universe:
fixes a :: 'a::euclidean__space
assumes 3 < DIM(’a)
shows simply__connected(— {a})

10.27.10 The power, squaring and exponential functions as
covering maps
proposition covering space__power _punctured__plane:

assumes (0 < n
shows covering _space (— {0}) (Az::complex. z7n) (— {0})

corollary covering space_square_punctured plane:
covering_space (— {0}) (Az::complex. 272) (— {0})
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proposition covering space__exp punctured_plane:
covering__space UNIV (Az::complex. exp z) (— {0})

10.27.11 Hence the Borsukian results about mappings into
circles

corollary inessential _imp__ continuous_logarithm__circle:
fixes f :: ‘a::real _mormed_vector = complex
assumes homotopic_with__canon (Ah. True) S (sphere 0 1) f (At. a)
obtains g where continuous_on S gand Az. 2 € S = fx = exp(g x)

proposition homotopic_with__sphere_times:
fixes f :: ‘a::real _mormed_vector = complex
assumes hom: homotopic_with__canon (Az. True) S (sphere 0 1) f g and conth:
continuous_on S h
and hin: Az. © € S = h x € sphere 0 1
shows homotopic_with__canon (Az. True) S (sphere 0 1) (Az. fz * h z) (Az.
gT*h)

proposition homotopic_circlemaps divide:
fixes [ :: 'a::real _normed_vector = complex
shows homotopic_with__canon (Az. True) S (sphere 0 1) f g +—
continuous_on S f N f € S — sphere 01 A
continuous_on S g A g € S — sphere 0 1 N
(3 ¢. homotopic_with_canon (Azx. True) S (sphere 0 1) (Az. fz / g x)
(A\z. ¢))

10.27.12 Upper and lower hemicontinuous functions

proposition upper _lower _hemicontinuous _explicit:
fixes T :: ("b::{real_normed_vector,heine_borel}) set
assumes fST: A\v. 2 € S = f2C T
and ope: AU. openin (top_of set T) U
= openin (top_of set S) {z € S. fz C U}
and clo: \U. closedin (top_of _set T) U
= closedin (top_of _set S) {z € S. fz C U}
and z € S 0 < e and bofr: bounded(f ) and fr_ne: fz # {}
obtains d where 0 < d
Nz’ [z € S; dist x 2’ < d]
= (Vyefz Iy .y efa’' Ndistyy <e) A
Vy' e fa'. Jy.y e fz N disty' y < e)
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10.27.13 Complex logs exist on various "well-behaved" sets

10.27.14 Another simple case where sphere maps are null-
homotopic

10.27.15 Holomorphic logarithms and square roots

10.27.16 The "Borsukian" property of sets

definition Borsukian where
Borsukian S =
YV f. continuous_on S f N f €S — (— {0:complex})
— (F a. homotopic_with__canon (Ah. True) S (— {0}) f (A\z. a))

proposition Borsukian__sphere:
fixes a :: 'a::euclidean_ space
shows 3 < DIM('a) = Borsukian (sphere a r)

proposition Borsukian_open_ Un:
fixes S :: 'a::real _normed_vector set
assumes opeS: openin (top_of _set (S U T)) S
and opeT: openin (top_of _set (SU T)) T
and BS: Borsukian S and BT: Borsukian T and ST: connected(S N T)
shows Borsukian(S U T)

proposition closed irreducible__separator:
fixes a :: 'a::real _normed_vector
assumes closed S and ab: = connected__component (— S) a b
obtains T where T C S closed T T # {} — connected__component (— T) a b
NU. U C T = connected_component (— U) a b

10.27.17 Unicoherence (closed)

definition unicoherent where
unicoherent U =
VS T. connected S N\ connected T NS U T = U A
closedin (top_of set U) S A closedin (top_of set U) T
— connected (S N T)

proposition homeomorphic__unicoherent:
assumes ST: S homeomorphic T and S: unicoherent S
shows unicoherent T
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corollary contractible_imp _unicoherent:
fixes U :: 'a::euclidean__space set
assumes contractible U shows unicoherent U

corollary convex_imp_ unicoherent:
fixes U :: 'a::euclidean space set
assumes conver U shows unicoherent U
corollary unicoherent UNIV: unicoherent (UNIV :: 'a :: euclidean_ space set)

10.27.18 Several common variants of unicoherence

10.27.19 Some separation results

proposition separation_ by _component_open:
fixes S :: ‘a :: euclidean space set
assumes open S and non: - connected(— S)
obtains C where C € components S — connected(— C)

proposition inessential _eq extensible:
fixes f :: 'a::euclidean__space = complex
assumes closed S
shows (3 a. homotopic_with_canon (Ah. True) S (={0}) f (At. a)) «—
(3 g. continuous_on UNIVgA Vz e S. gz =fz)ANNVz. gz # 0))
(is ?lhs = %rhs)

proposition Janiszewski dual:

fixes S :: complex set

assumes compact S compact T connected S connected T connected(— (S U T))
shows connected(S N T

end

10.28 The Jordan Curve Theorem and Applica-
tions
theory Jordan__ Curve

imports Arcwise_ Connected Further__Topology
begin

10.28.1 Janiszewski’s theorem
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theorem Janiszewsksi:
fixes a b :: complex
assumes compact S closed T and conST: connected (S N T)
and ccS: connected _component (— S) a b and ccT: connected__component
(= T)abd
shows connected__component (— (S U T)) a b

10.28.2 The Jordan Curve theorem

corollary Jordan__inside_ outside:
fixes c :: real = complex
assumes simple_path c pathfinish ¢ = pathstart c
shows inside(path_image ¢) # {} A
open(inside(path__image ¢)) A
connected(inside(path__image ¢)) A
outside(path_image c) # {} A
open(outside(path__image c¢)) A
connected(outside(path__image c)) A
bounded(inside(path__image c)) A
= bounded(outside(path__image c)) A
inside(path__image ¢) N outside(path_image ¢) = {} A
inside(path__image c¢) U outside(path__image ¢) =
— path__image ¢ N\
frontier(inside(path_image c¢)) = path__image ¢ A
frontier(outside(path_image c)) = path__image c
theorem split _inside_simple_closed__curve:
fixes c :: real = complex
assumes simple_path c1 and c1: pathstart c1 = a pathfinish c1 = b
and simple_path c¢2 and c2: pathstart c2 = a pathfinish ¢2 = b
and simple_path ¢ and c: pathstart ¢ = a pathfinish ¢ = b
and a # b
and cic2: path_image c1 N path_image c2 = {a,b}
and cle: path_image c¢1 N path_image ¢ = {a,b}
and c2c: path_image c2 N path_image ¢ = {a,b}
and ne_ 12: path_image ¢ N inside(path_image c1 U path_image c2) # {}
obtains inside(path_image cl U path_image c) N inside(path_image ¢2 U
path_image ¢) = {}
inside(path__image c1 U path_image c¢) U inside(path_image ¢2 U
path__image ¢) U
(path_image ¢ — {a,b}) = inside(path_image c1 U path_image c2)

end
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10.29 Polynomial Functions: Extremal Behaviour
and Root Counts

theory Poly Roots
imports Complex_Main
begin

10.29.1 Basics about polynomial functions: extremal behaviour
and root counts

proposition polyfun__extremal_lemma:
fixes ¢ :: nat = ’a::real_normed__div__algebra
assumes ¢ > ()
shows I M. Vz. M < norm z — norm(>_i<n. ¢ i * 27%) < e * norm(z) ~
Suc n

proposition polyfun__extremal:
fixes ¢ :: nat = ’a::real_normed_div__algebra
assumes Jk. k# 0 ANkE<nAck#0
shows eventually (Az. norm(} i<n. ¢ i x 27%) > B) at_infinity

proposition polyfun_ rootbound:
fixes ¢ :: nat = 'a::{comm__ring,real _normed_ div_algebra}
assumes Jk. k< nAck#0
shows finite {z. (3 i<n. cix 27%) = 0} A card {z. (O i<n. ci* 27%) = 0}
<n

corollary
fixes ¢ :: nat = 'a::{comm__ring,real _normed_ div_algebra}
assumes 3k. k< nAck#0
shows polyfun__rootbound_ finite: finite {z. (3. i<n. c i x 27%) = 0}
and polyfun__rootbound_card: card {z. (3 i<n. cix 2z7%) =0} <n

proposition polyfun__finite_roots:
fixes ¢ :: nat = 'a::{comm__ring,real _normed_ div_algebra}
shows finite {z. (3 i<n. cix27%) =0} +— Bk k<nAck#0)
theorem polyfun_eq const:
fixes ¢ :: nat = 'a::{comm__ring,real_normed__div_algebra}
shows (Vz. O i<n.cix2z%)=k)«—c0=kANNMEk E£O0NE<n—
ck=0)

end

10.30 Generalised Binomial Theorem

theory Generalised Binomial Theorem
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imports
Complex__Main
Complex_Transcendental
Summation__ Tests

begin

theorem gen_ binomial _complex:
fixes z :: complex
assumes norm z < 1
shows (An. (a gchoose n) * z™n) sums (1 + z) powr a

end

10.31 Vitali Covering Theorem and an Applica-
tion to Negligibility

theory Vitali Covering Theorem
imports
HOL— Combinatorics. Permutations
Equivalence__Lebesgue_ Henstock__Integration
begin

10.31.1 Vitali covering theorem

theorem Vitali covering theorem__cballs:
fixes a :: 'a = 'n::euclidean_space
assumes 7 \i. i € K = 0 <711
and S: Az d. [z € S; 0 < d]
= Ji.i€ KNz €cbal (ai)(ri)yAnri<d
obtains C where countable C C C K
pairwise (Ai j. disjnt (cball (a i) (r i) (cball (a j) (7)) C
negligible(S — (Ui € C. cball (a 7) (r1)))

theorem Vitali covering theorem__balls:
fixes a :: ‘a = 'b::euclidean__space
assumes S: Az d. [zr € S;0 < d] = Fi.i€e KAz € bl (ai)(ri)Ari<d
obtains C' where countable C C C K
pagrwise (Ai j. disjnt (ball (a 7) (%)) (ball (a j) (7)) C
negligible(S — (U7 € C. ball (a i) (r17)))

proposition negligible _eq zero density:
negligible S <—
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(VzeS. Vr>0.Vex>0.3d. 0 <dANd<rA
3BU.SNballzd C UA U € lmeasurable A\ measure lebesque U
< e x measure lebesgue (ball z d)))

end

10.32 Change of Variables Theorems

theory Change_Of Vars
imports Vitali Covering Theorem Determinants

begin

10.32.1 Measurable Shear and Stretch

proposition

fixes a :: real'n

assumes m # n and ab_ne: cbox a b # {} and an: 0 < a$n

shows measurable__shear_interval: (Az. x 4. if i = m then z8m + z8n else 2$7)
“(cbox a b) € Imeasurable

(is 79/ _€e_)

and measure__shear_interval: measure lebesque ((A\x. x 4. if i = m then z8m +

z$n else £37) * cbox a b)
= measure lebesgue (cbox a b) (is 7Q)

proposition
fixes S :: (real™'n) set
assumes S € Imeasurable
shows measurable_stretch: ((Az. x k. m k x z8k) © S) € lmeasurable (is ?f < S
€_)
and measure__stretch: measure lebesgue (A\z. x k. m k x z8k) © S) = |prod m
UNIV| x measure lebesgue S
(is ?MEQ)

proposition
fixes [ :: real 'n::{finite,wellorder} = real 'n::_
assumes linear f S € Imeasurable
shows measurable_linear _image: (f * S) € Imeasurable
and measure_linear_image: measure lebesque (f < S) = |det (matriz f)| *
measure lebesque S (is 2Q f 5)

proposition measure__semicontinuous__with__hausdist__explicit:
assumes bounded S and neg: negligible(frontier S) and e > 0
obtains d where d > 0
AT. [T € lmeasurable; N\y. y € T = Fz. z € S A dist z y < d]
=—> measure lebesque T < measure lebesgue S + e
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proposition
fixes f :: real 'n::{finite,wellorder} = real 'n::__
assumes S: S € Imeasurable
and deriv: A\z. x € S = (f has_derivative f' z) (at z within S)
and int: (Az. |det (matriz (f' z))|) integrable_on S
and bounded: \z. © € S = |det (matriz (f' z))] < B
shows measurable__bounded__differentiable_image:
f S € lmeasurable
and measure__bounded__differentiable_image:
measure lebesgue (f ¢S) < B x measure lebesque S (is ?M)

theorem
fixes [ :: real 'n:{finite,wellorder} = realn::_
assumes S: S € sets lebesgue
and deriv: A\z. z € S = (f has_derivative f' z) (at x within S)
and int: (Az. |det (matriz (f' x))|) integrable_on S
shows measurable__differentiable_image: f < S € Imeasurable
and measure__differentiable_image:
measure lebesque (f ©S) < integral S (Az. |det (matriz (f' z))|) (is 2M)

10.32.2 Borel measurable Jacobian determinant

proposition borel _measurable__partial__derivatives:
fixes f :: real”'m::{finite,wellorder} = real™'n
assumes S: S € sets lebesgue
and f: Az. z € S = (f has__derivative f’ x) (at z within S)
shows (Az. (matriz(f’ )$m$n)) € borel measurable (lebesgue on S)

theorem borel measurable det Jacobian:

fixes f :: real'n::{finite,wellorder} = real "n::_

assumes S: S € sets lebesgue and f: A\z. ¢ € S = (f has__derivative f' z) (at
x within S)

shows (Az. det(matriz(f’ z))) € borel _measurable (lebesgue on S)
theorem borel _measurable_lebesgue on__preimage_ borel:

fixes [ :: 'a::euclidean_space = 'b::euclidean__space

assumes S € sets lebesgue

shows f € borel _measurable (lebesque_on S) +—

(VT. T € sets borel — {x € S. fz € T} € sets lebesgue)
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10.32.3 Simplest case of Sard’s theorem (we don’t need con-
tinuity of derivative)

theorem baby_Sard:
fixes f :: real™'m:{finite,wellorder} = real”'n::{ finite,wellorder}
assumes mlen: CARD('m) < CARD('n)
and der: N\z. z € § = (f has_derivative f' z) (at x within S)
and rank: \z. x € S = rank(matriz(f’ z)) < CARD('n)
shows negligible(f < S)

10.32.4 A one-way version of change-of-variables not assum-
ing injectivity.

proposition absolutely integrable__on__image:
fixes f :: real”'m::{finite,wellorder} = real™'n and g :: real”'m::__ = real'm::_
assumes der_g: \z. x € S = (g has_derivative g’ z) (at z within S)
and intS: (\z. |det (matriz (¢’ z))| *r f(g x)) absolutely integrable on S
shows [ absolutely_integrable _on (g © S)

proposition integral _on__image ubound:
fixes f :: real”'n::{finite,wellorder} = real and g :: real 'n::_ = real n::_
assumes/\z. z € S = 0 < f(g z)
and Az. x € S = (g has_derivative g’ x) (at z within S)
and (\z. |det (matriz (¢’ z))| = f(g x)) integrable_on S
shows integral (g ©S) f < integral S (A\z. |det (matriz (¢’ z))| * f(g z))

10.32.5 Change-of-variables theorem

theorem has absolute integral change of variables invertible:
fixes [ :: real”'m::{finite,wellorder} = real'n and g :: real 'm::__ = real 'm::_
assumes der_g: \z. z € § = (g has_derivative g’ z) (at z within S)
and hg: Az. 2 € S = h(gz) ==z
and conth: continuous_on (g *S) h
shows (Az. |det (matriz (¢’ x))| *r f(g z)) absolutely_integrable _on S A integral
S (Az. |det (matriz (¢’ z))| *r f(g x)) = b +—
f absolutely _integrable_on (g *S) A integral (¢ *S) f =1
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(is ?lhs = %rhs)

theorem has absolute integral__change of wvariables _compact:
fixes f :: real”'m::{finite,wellorder} = real™'n and g :: real”'m::_ = real'm::_
assumes compact S
and der_g: Az. © € S = (g has_deriative ¢’ z) (at x within S)
and inj: inj_on g S
shows ((Az. |det (matriz (g’ x))| *r f(g z)) absolutely_integrable_on S N
integral S (Az. |det (matriz (¢’ z))| *r f(gx)) = b
«— f absolutely__integrable_on (g *S) A integral (g *S) f = b)

theorem has absolute_integral _change of variables:
fixes f :: real”'m::{finite,wellorder} = real™'n and g :: real”'m::__ = real'm::_
assumes S: S € sets lebesgue
and der_g: A\z. © € S = (g has_derivative ¢’ z) (at x within S)
and inj: inj_on g S
shows (Az. |det (matriz (¢’ x))| *r f(g z)) absolutely integrable_on S A
integral S (Az. |det (matriz (¢’ x))| *r f(gx)) = b
+— [ absolutely_integrable_on (g * S) A integral (g *S) f=b

corollary absolutely integrable change of wvariables:
fixes f :: real”'m::{finite,wellorder} = real™'n and g :: real™'m::_ = real'm::_
assumes S € sets lebesgue
and Az. x € S = (g has_derivative ¢’ z) (at z within S)
and inj _ong S
shows [ absolutely_integrable _on (g ‘ S)
+— (Az. |det (matriz (g’ z))| *r f(g z)) absolutely_integrable _on S

corollary integral change of wvariables:

fixes [ :: real”'m::{ finite,wellorder} = real'n and g :: real 'm::__ = real 'm::_
assumes S: S € sets lebesque

and der_g: A\z. x € S = (g has_derivative ¢' z) (at z within S)

and inj: inj_on g S

and disj: (f absolutely_integrable_on (g *S) V

(Az. |det (matriz (g’ x))| *r f(g z)) absolutely_integrable__on S)

shows integral (g S) f = integral S (Az. |det (matriz (¢’ x))| *r f(g ©))

corollary absolutely integrable change of wvariables 1:
fixes f :: real = real'n::{finite,wellorder} and g :: real = real
assumes S: S € sets lebesgue
and der_g: A\z. © € S = (g has_vector_derivative g’ x) (at z within S)
and inj: inj_on g S
shows (f absolutely_integrable _on g * S «—
(Az. |g" z| *r f(g x)) absolutely_integrable_on S)
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10.32.6 Change of variables for integrals: special case of lin-
ear function

10.32.7 Change of variable for measure

end

10.33 Lipschitz Continuity

theory Lipschitz
imports
Derivative Abstract Metric_Spaces
begin

definition lipschitz _on

where lipschitz_on CUf +— (0 < C AN Nz e U.VyeU. dist (fz) (fy) < C
* dist T y))
notation

lipschitz_on («(<open_block notation=<postfix lipschitz_ony>__—lipschitz’ _on)»
[1000))
proposition lipschitz _on__uniformly continuous:

assumes L—lipschitz _on X f

shows uniformly__continuous _on X f

proposition lipschitz _on__continuous on:
continuous_on X f if L—lipschitz_on X f
proposition bounded__derivative__imp_lipschitz:
assumes A\z. z € X = (f has_derivative ' z) (at z within X)
assumes convez: conver X
assumes A\z. 2 € X = onorm (f'z) < C0 < C
shows C—lipschitz_on X f

10.33.1 Local Lipschitz continuity

proposition lipschitz _on_ closed_ Union:
assumes \i. ¢ € [ = lipschitz_on M (U i) f
Ni. i € I = closed (U i)
finite I
M>0
{u..(vzreal)} C (Ui€l. U4)
shows lipschitz_on M {u..v} f
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10.33.2 Local Lipschitz continuity (uniform for a family of
functions)

definition local lipschitz::
'a::metric__space set = 'b::metric_space set = ('a = 'b = 'ci:metric__space) =
bool
where
local_lipschitz T X f =Vz e X.Vte T.
Fu>0. L.Vt € cball t unN T. L—lipschitz_on (cball x w N X) (f )

proposition ci1_implies local_lipschitz:

fixes T::real set and X::'a::{banach,heine_borel} set

and f:real = 'a = 'a

assumes [ Atz. t € T = x € X = (f t has_derivative blinfun__apply (f’
(t, 2))) (at 1)

assumes cont_f": continuous_on (T x X) f’

assumes open T

assumes open X

shows local_lipschitz T X f

end
theory
Multivariate Analysis
imports
Ordered__FEuclidean__Space
Determinants
Cross3
Lipschitz
Starlike
beginend

10.34 Volume of a Simplex

theory Simplex_Content
imports Change Of Vars
begin

theorem content std_simplex:
measure lhorel (convex hull (insert 0 Basis :: 'a :: euclidean__space set)) =
1/ fact DIM('a)

proposition measure lebesque_linear _transformation:
fixes A :: (real = 'n :: {finite, wellorder}) set

fixes f :: _ = real " 'n :: {finite, wellorder}
assumes bounded A A € sets lebesque linear f
shows measure lebesque (f ¢ A) = |det (matriz f)| * measure lebesque A

theorem content simplex:
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fixes X :: (real ~'n :: {finite, wellorder}) set and f :: 'n i _ = real ~('n )

assumes finite X card X = Suc CARD('n) and z0: z0 € X and bij: bij betw f
UNIV (X — {20})

defines M = (x i. x j. fj 81— 20 $ 1)

shows content (convez hull X) = |det M| / fact (CARD('n))

theorem content triangle:
fixes A B C :: real ~ 2
shows content (convexr hull {A, B, C}) =
(C$1—-—A$1)«(B$2—-A4%2) —(B$1—-A$1)*x(C$2—-4A
$2)/2

theorem heron:
fixes A B C :: real ~ 2
defines a = dist B C and b = dist A C and ¢ = dist A B
defines s=(a+b+¢)/ 2
shows content (convex hull {A, B, C}) = sqrt (s x (s — a) * (s — b) * (s —

c))

end

10.35 Convergence of Formal Power Series

theory F'PS_Convergence

imports
GeneralisedBinomial Theorem
HOL—- Computational__Algebra.Formal__Power__Series
HOL—- Computational__Algebra. Polynomial FPS

begin

10.35.1 Basic properties of convergent power series

definition fps conv_radius :: 'a :: {banach, real _normed_div_algebra} fps =
ereal where
fos_conv_radius f = conv_radius (fps_nth f)

definition eval fps :: ‘a :: {banach, real normed_div_algebra} fps = 'a = 'a
where

eval_fpsfz= (. n. fps_nth fnx*z " n)

theorem sums_eval_fps:
fixes [ :: 'a :: {banach, real _normed_div_algebra} fps
assumes norm z < fps_conv_radius f
shows (An. fps_nth fn x z ~ n) sums eval _fps f z
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10.35.2 Evaluating power series

theorem eval fps deriv:
assumes norm z < fps_conv_radius f
shows eval_fps (fps_deriv f) z = deriv (eval _fps f) z

theorem fps nth__conv_ deriv:
fixes f :: complex fps
assumes fps_conv_radius f > 0
shows fps_nth fn = (deriv =" n) (eval_fps f) 0 / fact n

theorem eval fps eqD:
fixes f g :: complex fps
assumes fps_conv_radius f > 0 fps_conv_radius g > 0
assumes eventually (Az. eval _fps f z = eval fps g z) (nhds 0)
shows f=g

10.35.3 FPS of a polynomial

10.35.4 Power series expansions of analytic functions

definition
has_fps__expansion :: ('a :: {banach,real _normed_div_algebra} = ‘a) = 'a fps
= bool
(infix] <has’_fps'_expansions 60)
where (f has_fps_expansion F) «—
fos_conv_radius F > 0 N eventually (Mz. eval _fps F z = [ z) (nhds 0)

end
theory Smooth__ Paths
imports Retracts
begin
10.35.5 Piecewise differentiability of paths

10.35.6 Valid paths, and their start and finish

definition valid_path :: (real = 'a :: real _normed_vector) = bool
where valid_path f = f piecewise_C1__differentiable_on {0..1::real}

end

10.36 Metrics on product spaces

theory Function_ Metric
imports
Function__Topology
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Elementary Metric_ Spaces
begininstantiation fun :: (countable, metric_space) metric_space
begin

definition dist_fun_ def:
distzy= (> n. (1/2)"n x min (dist (z (from_nat n)) (y (from_nat n))) 1)

definition uniformity_fun_ def:
(uniformity::(('a = 'b) x ('a = 'b)) filter) = (INF ec{0<..}. principal {(z, y).
dist (z:("a=")) y < e})
end
theory Analysis
imports

Convex
Determinants

FSigma

Sum__Topology
Abstract__Topological _Spaces
Abstract__Metric_Spaces
Urysohn

Connected

Abstract__Limits

Isolated

Sparse__In

Elementary_Normed__Spaces
Norm__Arith

Convex__Fuclidean__Space
Operator_Norm

Line__Segment

Derivative

Cartesian__ Euclidean__Space
Kronecker__Approxzimation__ Theorem
Weierstrass _Theorems

Ball_Volume

Integral _Test

Improper__Integral
Equivalence_Measurable _On__Borel
Lebesgue__Integral _Substitution
Embed _Measure

Complete_Measure
Radon__Nikodym

Fashoda__ Theorem

Cross8
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Homeomorphism
Bounded__Continuous__Function
Abstract__Topology
Product__Topology
Lindelof _Spaces
Infinite_ Products
Infinite_ Sum
Infinite _Set_ Sum
Polytope
Jordan_ Curve
Poly__Roots
Generalised__Binomial _Theorem
Gamma__Function
Change__Of _Vars
Multivariate Analysis
Simplex__ Content
FPS Convergence
Smooth__Paths
Abstract__Fuclidean__Space
Function Metric

begin

end

10.37 Poly Mappings as a Real Normed Vector

theory Finite Function_ Topology
imports Function_ Topology HOL— Library.Poly _Mapping

begin

instantiation poly_mapping :: (type, real _vector) real wvector
begin

instantiation poly mapping :: (type, real _normed_vector) metric__space
begin

instantiation poly__mapping :: (type, real _normed_vector) real_normed_vector
begin

end
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