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Chapter 1

Linear Algebra

theory L2_Norm
imports Complex_Main
begin

1.1 L2 Norm
definition L2_set :: ( ′a ⇒ real) ⇒ ′a set ⇒ real where
L2_set f A = sqrt (

∑
i∈A. (f i)2)

proposition L2_set_triangle_ineq:
L2_set (λi. f i + g i) A ≤ L2_set f A + L2_set g A

end

1.2 Inner Product Spaces and Gradient Derivative
theory Inner_Product
imports Complex_Main
begin

1.2.1 Real inner product spaces

class real_inner = real_vector + sgn_div_norm + dist_norm + uniformity_dist
+ open_uniformity +

fixes inner :: ′a ⇒ ′a ⇒ real
assumes inner_commute: inner x y = inner y x
and inner_add_left: inner (x + y) z = inner x z + inner y z
and inner_scaleR_left [simp]: inner (scaleR r x) y = r ∗ (inner x y)
and inner_ge_zero [simp]: 0 ≤ inner x x
and inner_eq_zero_iff [simp]: inner x x = 0 ←→ x = 0
and norm_eq_sqrt_inner : norm x = sqrt (inner x x)

begin
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1.2.2 Class instances
instantiation real :: real_inner
begin

instantiation complex :: real_inner
begin

1.2.3 Gradient derivative
definition

gderiv :: [ ′a::real_inner ⇒ real, ′a, ′a] ⇒ bool
(‹(‹notation=‹mixfix GDERIV ››GDERIV (_)/ (_)/ :> (_))› [1000 , 1000 , 60 ]

60 )
where

GDERIV f x :> D ←→ FDERIV f x :> (λh. inner h D)

end

1.3 Cartesian Products as Vector Spaces
theory Product_Vector

imports
Complex_Main
HOL−Library.Product_Plus

begin

1.3.1 Product is a Module

lemma scale_prod: scale x (a, b) = (s1 x a, s2 x b)

sublocale p: module scale

1.3.2 Product is a Real Vector Space
instantiation prod :: (real_vector , real_vector) real_vector
begin

proposition scaleR_Pair [simp]: scaleR r (a, b) = (scaleR r a, scaleR r b)

1.3.3 Product is a Metric Space
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class uniform_topological_monoid_add = topological_monoid_add + uniform_space
+

assumes uniformly_continuous_add ′:
filterlim (λ((a,b), (c,d)). (a + c, b + d)) uniformity (uniformity ×F uniformity)

class uniform_topological_group_add = topological_group_add + uniform_topological_monoid_add
+
assumes uniformly_continuous_uminus ′: filterlim (λ(a, b). (−a, −b)) uniformity

uniformity
begin

instantiation prod :: (metric_space, metric_space) metric_space
begin

proposition dist_Pair_Pair : dist (a, b) (c, d) = sqrt ((dist a c)2 + (dist b d)2)

1.3.4 Product is a Complete Metric Space
instance prod :: (complete_space, complete_space) complete_space

1.3.5 Product is a Normed Vector Space
instantiation prod :: (real_normed_vector , real_normed_vector) real_normed_vector
begin

proposition norm_Pair : norm (a, b) = sqrt ((norm a)2 + (norm b)2)

instance prod :: (banach, banach) banach

proposition has_derivative_Pair [derivative_intros]:
assumes f : (f has_derivative f ′) (at x within s)

and g: (g has_derivative g ′) (at x within s)
shows ((λx. (f x, g x)) has_derivative (λh. (f ′ h, g ′ h))) (at x within s)

1.3.6 Product is Finite Dimensional

proposition dim_Times:
assumes vs1 .subspace S vs2 .subspace T
shows p.dim(S × T ) = vs1 .dim S + vs2 .dim T

end

Euclidean{_}{\kern 0pt}Space.html
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1.4 Finite-Dimensional Inner Product Spaces
theory Euclidean_Space
imports

L2_Norm
Inner_Product
Product_Vector

begin

1.4.1 Type class of Euclidean spaces
class euclidean_space = real_inner +

fixes Basis :: ′a set
assumes nonempty_Basis [simp]: Basis 6= {}
assumes finite_Basis [simp]: finite Basis
assumes inner_Basis:
[[u ∈ Basis; v ∈ Basis]] =⇒ inner u v = (if u = v then 1 else 0 )

assumes euclidean_all_zero_iff :
(∀ u∈Basis. inner x u = 0 ) ←→ (x = 0 )

1.4.2 Class instances
instantiation real :: euclidean_space
begin
instantiation complex :: euclidean_space
begin
instantiation prod :: (real_inner , real_inner) real_inner
begin

instantiation prod :: (euclidean_space, euclidean_space) euclidean_space
begin

1.4.3 Locale instances

end

1.5 Elementary Linear Algebra on Euclidean Spaces
theory Linear_Algebra
imports

Euclidean_Space
HOL−Library.Infinite_Set

begin
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1.5.1 Substandard Basis
1.5.2 Orthogonality
definition (in real_inner) orthogonal x y ←→ x · y = 0

1.5.3 Orthogonality of a transformation
definition orthogonal_transformation f ←→ linear f ∧ (∀ v w. f v · f w = v · w)

1.5.4 Bilinear functions
definition
bilinear :: ( ′a::real_vector ⇒ ′b::real_vector ⇒ ′c::real_vector) ⇒ bool where
bilinear f ←→ (∀ x. linear (λy. f x y)) ∧ (∀ y. linear (λx. f x y))

1.5.5 Adjoints
definition adjoint :: (( ′a::real_inner) ⇒ ( ′b::real_inner)) ⇒ ′b ⇒ ′a where
adjoint f = (SOME f ′. ∀ x y. f x · y = x · f ′ y)

1.5.6 Infinity norm
definition infnorm (x:: ′a::euclidean_space) = Sup {|x · b| |b. b ∈ Basis}

1.5.7 Collinearity
definition collinear :: ′a::real_vector set ⇒ bool

where collinear S ←→ (∃ u. ∀ x ∈ S . ∀ y ∈ S . ∃ c. x − y = c ∗R u)

1.5.8 Properties of special hyperplanes

proposition dim_hyperplane:
fixes a :: ′a::euclidean_space
assumes a 6= 0

shows dim {x. a · x = 0} = DIM ( ′a) − 1

1.5.9 Orthogonal bases and Gram-Schmidt process

proposition Gram_Schmidt_step:
fixes S :: ′a::euclidean_space set
assumes S : pairwise orthogonal S and x: x ∈ span S
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shows orthogonal x (a − (
∑

b∈S . (b · a / (b · b)) ∗R b))

proposition orthogonal_extension:
fixes S :: ′a::euclidean_space set
assumes S : pairwise orthogonal S
obtains U where pairwise orthogonal (S ∪ U ) span (S ∪ U ) = span (S ∪ T )

1.5.10 Decomposing a vector into parts in orthogonal sub-
spaces

proposition orthonormal_basis_subspace:
fixes S :: ′a :: euclidean_space set
assumes subspace S
obtains B where B ⊆ S pairwise orthogonal B

and
∧

x. x ∈ B =⇒ norm x = 1
and independent B card B = dim S span B = S

proposition dim_orthogonal_sum:
fixes A :: ′a::euclidean_space set
assumes

∧
x y. [[x ∈ A; y ∈ B]] =⇒ x · y = 0

shows dim(A ∪ B) = dim A + dim B

1.5.11 Linear functions are (uniformly) continuous on any
set

end

1.6 Affine Sets
theory Affine
imports Linear_Algebra
begin

1.6.1 Affine set and affine hull
definition affine :: ′a::real_vector set ⇒ bool

where affine S ←→ (∀ x∈S . ∀ y∈S . ∀ u v. u + v = 1 −→ u ∗R x + v ∗R y ∈ S)
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1.6.2 Affine Dependence
definition affine_dependent :: ′a::real_vector set ⇒ bool

where affine_dependent S ←→ (∃ x∈S . x ∈ affine hull (S − {x}))

proposition affine_dependent_explicit:
affine_dependent p ←→
(∃S U . finite S ∧ S ⊆ p ∧ sum U S = 0 ∧ (∃ v∈S . U v 6= 0 ) ∧ sum (λv. U v

∗R v) S = 0 )

proposition extend_to_affine_basis:
fixes S V :: ′n::real_vector set
assumes ¬ affine_dependent S S ⊆ V
obtains T where ¬ affine_dependent T S ⊆ T T ⊆ V affine hull T = affine

hull V

1.6.3 Affine Dimension of a Set
definition aff_dim :: ( ′a::euclidean_space) set ⇒ int

where aff_dim V =
(SOME d :: int.
∃B. affine hull B = affine hull V ∧ ¬ affine_dependent B ∧ of_nat (card B)

= d + 1 )

end

1.7 Convex Sets and Functions
theory Convex
imports

Affine HOL−Library.Set_Algebras HOL−Library.FuncSet
begin

1.7.1 Convex Sets
definition convex :: ′a::real_vector set ⇒ bool

where convex s ←→ (∀ x∈s. ∀ y∈s. ∀ u≥0 . ∀ v≥0 . u + v = 1 −→ u ∗R x + v
∗R y ∈ s)

1.7.2 Convex Functions on a Set
definition convex_on :: ′a::real_vector set ⇒ ( ′a ⇒ real) ⇒ bool

where convex_on S f ←→ convex S ∧
(∀ x∈S . ∀ y∈S . ∀ u≥0 . ∀ v≥0 . u + v = 1 −→ f (u ∗R x + v ∗R y) ≤ u ∗ f x

+ v ∗ f y)
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definition concave_on :: ′a::real_vector set ⇒ ( ′a ⇒ real) ⇒ bool
where concave_on S f ≡ convex_on S (λx. − f x)

1.7.3 Convexity of the generalised binomial
1.7.4 Some inequalities: Applications of convexity
1.7.5 Misc related lemmas
1.7.6 Cones
definition cone :: ′a::real_vector set ⇒ bool

where cone s ←→ (∀ x∈s. ∀ c≥0 . c ∗R x ∈ s)

proposition cone_hull_expl: cone hull S = {c ∗R x | c x. c ≥ 0 ∧ x ∈ S}
(is ?lhs = ?rhs)

1.7.7 Convex hull
proposition convex_hull_indexed:

fixes S :: ′a::real_vector set
shows convex hull S =
{y. ∃ k u x. (∀ i∈{1 ::nat .. k}. 0 ≤ u i ∧ x i ∈ S) ∧

(sum u {1 ..k} = 1 ) ∧ (
∑

i = 1 ..k. u i ∗R x i) = y}
(is ?xyz = ?hull)

1.7.8 Caratheodory’s theorem

theorem caratheodory:
convex hull p =
{x:: ′a::euclidean_space. ∃S . finite S ∧ S ⊆ p ∧ card S ≤ DIM ( ′a) + 1 ∧ x ∈

convex hull S}

1.8 Conic sets and conic hull

1.9 Convex cones and corresponding hulls

1.9.1 Radon’s theorem

theorem Radon:
assumes affine_dependent c
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obtains M P where M ⊆ c P ⊆ c M ∩ P = {} (convex hull M ) ∩ (convex hull
P) 6= {}

1.9.2 Helly’s theorem

theorem Helly:
fixes F :: ′a::euclidean_space set set
assumes card F ≥ DIM ( ′a) + 1 ∀ s∈F . convex s

and
∧

t. [[t⊆F ; card t = DIM ( ′a) + 1 ]] =⇒
⋂

t 6= {}
shows

⋂
F 6= {}

1.9.3 Epigraphs of convex functions
definition epigraph S (f :: _ ⇒ real) = {xy. fst xy ∈ S ∧ f (fst xy) ≤ snd xy}

end

1.10 Definition of Finite Cartesian Product Type
theory Finite_Cartesian_Product
imports

Euclidean_Space
L2_Norm
HOL−Library.Numeral_Type
HOL−Library.Countable_Set
HOL−Library.FuncSet

begin

1.10.1 Cardinality of vectors

proposition CARD_vec [simp]:
CARD( ′a^ ′b) = CARD( ′a) ^ CARD( ′b)

instantiation vec :: (zero, finite) zero
begin

instantiation vec :: (plus, finite) plus
begin

instantiation vec :: (minus, finite) minus
begin

instantiation vec :: (uminus, finite) uminus
begin
instantiation vec :: (times, finite) times
begin
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instantiation vec :: (one, finite) one
begin

instantiation vec :: (ord, finite) ord
begin

1.10.2 Real vector space

definition scaleR ≡ (λ r x. (χ i. scaleR r (x$i)))

1.10.3 Topological space

definition [code del]:
open (S :: ( ′a ^ ′b) set) ←→
(∀ x∈S . ∃A. (∀ i. open (A i) ∧ x$i ∈ A i) ∧
(∀ y. (∀ i. y$i ∈ A i) −→ y ∈ S))

1.10.4 Metric space

definition
dist x y = L2_set (λi. dist (x$i) (y$i)) UNIV

definition [code del]:
(uniformity :: (( ′a^ ′b::_) × ( ′a^ ′b::_)) filter) =
(INF e∈{0 <..}. principal {(x, y). dist x y < e})

proposition dist_vec_nth_le: dist (x $ i) (y $ i) ≤ dist x y

1.10.5 Normed vector space

definition norm x = L2_set (λi. norm (x$i)) UNIV

definition sgn (x:: ′a^ ′b) = scaleR (inverse (norm x)) x

1.10.6 Inner product space

definition inner x y = sum (λi. inner (x$i) (y$i)) UNIV
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1.10.7 Euclidean space
definition axis k x = (χ i. if i = k then x else 0 )

definition Basis = (
⋃

i.
⋃

u∈Basis. {axis i u})

proposition DIM_cart [simp]: DIM ( ′a^ ′b) = CARD( ′b) ∗ DIM ( ′a)

1.10.8 Matrix operations
definition map_matrix::( ′a ⇒ ′b) ⇒ (( ′a, ′i::finite)vec, ′j::finite) vec ⇒ (( ′b,
′i)vec, ′j) vec where

map_matrix f x = (χ i j. f (x $ i $ j))

definition matrix_matrix_mult :: ( ′a::semiring_1 ) ^ ′n^ ′m ⇒ ′a ^ ′p^ ′n ⇒ ′a ^
′p ^ ′m

(infixl ‹∗∗› 70 )
where m ∗∗ m ′ == (χ i j. sum (λk. ((m$i)$k) ∗ ((m ′$k)$j)) (UNIV :: ′n set))

:: ′a ^ ′p ^ ′m

definition matrix_vector_mult :: ( ′a::semiring_1 ) ^ ′n^ ′m ⇒ ′a ^ ′n ⇒ ′a ^ ′m
(infixl ‹∗v› 70 )

where m ∗v x ≡ (χ i. sum (λj. ((m$i)$j) ∗ (x$j)) (UNIV :: ′n set)) :: ′a^ ′m

definition vector_matrix_mult :: ′a ^ ′m ⇒ ( ′a::semiring_1 ) ^ ′n^ ′m ⇒ ′a ^ ′n
(infixl ‹v∗› 70 )

where v v∗ m == (χ j. sum (λi. ((v$i) ∗ (m$i)$j)) (UNIV :: ′m set)) :: ′a^ ′n
definition matrix :: ( ′a::{plus,times, one, zero}^ ′m ⇒ ′a ^ ′n) ⇒ ′a^ ′m^ ′n

where matrix f = (χ i j. (f (axis j 1 ))$i)

1.10.9 Inverse matrices (not necessarily square)
definition

invertible(A:: ′a::semiring_1^ ′n^ ′m) ←→ (∃A ′:: ′a^ ′m^ ′n. A ∗∗ A ′ = mat 1 ∧ A ′

∗∗ A = mat 1 )

definition
matrix_inv(A:: ′a::semiring_1^ ′n^ ′m) =
(SOME A ′:: ′a^ ′m^ ′n. A ∗∗ A ′ = mat 1 ∧ A ′ ∗∗ A = mat 1 )

end

1.11 Linear Algebra on Finite Cartesian Products
theory Cartesian_Space

imports
HOL−Combinatorics.Transposition
Finite_Cartesian_Product
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Linear_Algebra
begin

1.11.1 Some interesting theorems and interpretations

1.11.2 Rank of a matrix

definition rank :: ′a::field^ ′n^ ′m=>nat
where row_rank_def_gen: rank A ≡ vec.dim(rows A)

1.11.3 Orthogonality of a matrix
definition orthogonal_matrix (Q:: ′a::semiring_1^ ′n^ ′n) ←→

transpose Q ∗∗ Q = mat 1 ∧ Q ∗∗ transpose Q = mat 1

proposition orthogonal_matrix_mul:
fixes A :: real ^ ′n^ ′n
assumes orthogonal_matrix A orthogonal_matrix B
shows orthogonal_matrix(A ∗∗ B)

proposition orthogonal_transformation_matrix:
fixes f :: real^ ′n ⇒ real^ ′n
shows orthogonal_transformation f ←→ linear f ∧ orthogonal_matrix(matrix f )
(is ?lhs ←→ ?rhs)

1.11.4 Finding an Orthogonal Matrix

proposition orthogonal_matrix_exists_basis:
fixes a :: real^ ′n
assumes norm a = 1
obtains A where orthogonal_matrix A A ∗v (axis k 1 ) = a

proposition orthogonal_transformation_exists:
fixes a b :: real^ ′n
assumes norm a = norm b
obtains f where orthogonal_transformation f f a = b
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1.11.5 Scaling and isometry
proposition scaling_linear :

fixes f :: ′a::real_inner ⇒ ′a::real_inner
assumes f0 : f 0 = 0

and fd: ∀ x y. dist (f x) (f y) = c ∗ dist x y
shows linear f

proposition orthogonal_transformation_isometry:
orthogonal_transformation f ←→ f (0 :: ′a::real_inner) = (0 :: ′a) ∧ (∀ x y. dist(f

x) (f y) = dist x y)

1.11.6 Induction on matrix row operations

end

1.12 Traces and Determinants of Square Matrices
theory Determinants
imports

HOL−Combinatorics.Permutations
Cartesian_Space

begin

1.12.1 Trace
definition trace :: ′a::semiring_1^ ′n^ ′n ⇒ ′a

where trace A = sum (λi. ((A$i)$i)) (UNIV :: ′n set)

Definition of determinant
definition det:: ′a::comm_ring_1^ ′n^ ′n ⇒ ′a where

det A =
sum (λp. of_int (sign p) ∗ prod (λi. A$i$p i) (UNIV :: ′n set))
{p. p permutes (UNIV :: ′n set)}

proposition det_diagonal:
fixes A :: ′a::comm_ring_1^ ′n^ ′n
assumes ld:

∧
i j. i 6= j =⇒ A$i$j = 0

shows det A = prod (λi. A$i$i) (UNIV :: ′n set)

proposition det_matrix_scaleR [simp]: det (matrix (((∗R) r)) :: real^ ′n^ ′n) = r
^ CARD( ′n::finite)

proposition det_mul:
fixes A B :: ′a::comm_ring_1^ ′n^ ′n
shows det (A ∗∗ B) = det A ∗ det B
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1.12.2 Relation to invertibility
proposition invertible_det_nz:

fixes A:: ′a::{field}^ ′n^ ′n
shows invertible A ←→ det A 6= 0

Invertibility of matrices and corresponding linear functions

1.12.3 Cramer’s rule

proposition cramer_lemma:
fixes A :: ′a::{field}^ ′n^ ′n
shows det((χ i j. if j = k then (A ∗v x)$i else A$i$j):: ′a::{field}^ ′n^ ′n) = x$k
∗ det A

proposition cramer :
fixes A :: ′a::{field}^ ′n^ ′n
assumes d0 : det A 6= 0
shows A ∗v x = b ←→ x = (χ k. det(χ i j. if j=k then b$i else A$i$j) / det A)

proposition det_orthogonal_matrix:
fixes Q:: ′a::linordered_idom^ ′n^ ′n
assumes oQ: orthogonal_matrix Q
shows det Q = 1 ∨ det Q = − 1

proposition orthogonal_transformation_det [simp]:
fixes f :: real^ ′n ⇒ real^ ′n
shows orthogonal_transformation f =⇒ |det (matrix f )| = 1

1.12.4 Rotation, reflection, rotoinversion
definition rotation_matrix Q ←→ orthogonal_matrix Q ∧ det Q = 1
definition rotoinversion_matrix Q ←→ orthogonal_matrix Q ∧ det Q = − 1

end

1.13 Operators involving abstract topology
theory Abstract_Topology

imports
Complex_Main
HOL−Library.Set_Idioms
HOL−Library.FuncSet

begin
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1.13.1 General notion of a topology as a value
definition istopology :: ( ′a set ⇒ bool) ⇒ bool where

istopology L ≡ (∀S T . L S −→ L T −→ L (S ∩ T )) ∧ (∀K. (∀K∈K. L K ) −→
L (

⋃
K))

typedef ′a topology = {L::( ′a set) ⇒ bool. istopology L}
morphisms openin topology

proposition openin_clauses:
fixes U :: ′a topology
shows

openin U {}∧
S T . openin U S =⇒ openin U T =⇒ openin U (S∩T )∧
K . (∀S ∈ K . openin U S) =⇒ openin U (

⋃
K )

definition closedin :: ′a topology ⇒ ′a set ⇒ bool where
closedin U S ←→ S ⊆ topspace U ∧ openin U (topspace U − S)

1.13.2 The discrete topology
1.13.3 Subspace topology
definition subtopology :: ′a topology ⇒ ′a set ⇒ ′a topology

where subtopology U V = topology (λT . ∃S . T = S ∩ V ∧ openin U S)

1.13.4 The canonical topology from the underlying type class
abbreviation euclidean :: ′a::topological_space topology

where euclidean ≡ topology open

1.13.5 Basic "localization" results are handy for connected-
ness.

1.13.6 Derived set (set of limit points)
1.13.7 Closure with respect to a topological space
1.13.8 Frontier with respect to topological space
1.13.9 Locally finite collections

1.13.10 Continuous maps
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lemma continuous_map_alt:
continuous_map T1 T2 f
= ((∀U . openin T2 U −→ openin T1 (f −‘ U ∩ topspace T1 )) ∧ f ∈ topspace

T1 → topspace T2 )

1.13.11 Open and closed maps (not a priori assumed contin-
uous)

1.13.12 Quotient maps
1.13.13 Separated Sets
1.13.14 Homeomorphisms

1.13.15 Relation of homeomorphism between topological spaces
1.13.16 Connected topological spaces
1.13.17 Compact sets

proposition compact_space_fip:
compact_space X ←→
(∀U . (∀C∈U . closedin X C ) ∧ (∀F . finite F ∧ F ⊆ U −→

⋂
F 6= {}) −→⋂

U 6= {})
(is _ = ?rhs)

corollary compactin_fip:
compactin X S ←→

S ⊆ topspace X ∧
(∀U . (∀C∈U . closedin X C ) ∧ (∀F . finite F ∧ F ⊆ U −→ S ∩

⋂
F 6= {}) −→

S ∩
⋂
U 6= {})

corollary compact_space_imp_nest:
fixes C :: nat ⇒ ′a set
assumes compact_space X and clo:

∧
n. closedin X (C n)

and ne:
∧

n. C n 6= {} and dec: decseq C
shows (

⋂
n. C n) 6= {}
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1.13.18 Embedding maps
1.13.19 Retraction and section maps
1.13.20 Continuity
1.13.21 The topology generated by some (open) subsets
1.13.22 Topology bases and sub-bases

1.13.23 Continuity via bases/subbases, hence upper and lower
semicontinuity

1.13.24 Pullback topology
definition pullback_topology::( ′a set)⇒ ( ′a ⇒ ′b)⇒ ( ′b topology)⇒ ( ′a topology)

where pullback_topology A f T = topology (λS . ∃U . openin T U ∧ S = f−‘U
∩ A)

proposition continuous_map_pullback [intro]:
assumes continuous_map T1 T2 g
shows continuous_map (pullback_topology A f T1 ) T2 (g o f )

proposition continuous_map_pullback ′ [intro]:
assumes continuous_map T1 T2 (f o g) topspace T1 ⊆ g−‘A
shows continuous_map T1 (pullback_topology A f T2 ) g

1.13.25 Proper maps (not a priori assumed continuous)

1.13.26 Perfect maps (proper, continuous and surjective)

end

1.14 F -Sigma and G-Delta sets in a Topological
Space

theory FSigma
imports Abstract_Topology

begin

end
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1.15 Disjoint sum of arbitarily many spaces
theory Sum_Topology

imports Abstract_Topology
begin

end



Chapter 2

Topology

theory Elementary_Topology
imports

HOL−Library.Set_Idioms
HOL−Library.Disjoint_Sets
Product_Vector

begin

2.1 Elementary Topology
2.1.1 Topological Basis

definition topological_basis B ←→
(∀ b∈B. open b) ∧ (∀ x. open x −→ (∃B ′. B ′ ⊆ B ∧

⋃
B ′ = x))

2.1.2 Countable Basis
locale countable_basis = topological_space p for p:: ′a set ⇒ bool +

fixes B :: ′a set set
assumes is_basis: topological_basis B

and countable_basis: countable B
begin

class second_countable_topology = topological_space +
assumes ex_countable_subbasis:
∃B:: ′a set set. countable B ∧ open = generate_topology B

begin

proposition Lindelof :
fixes F :: ′a::second_countable_topology set set
assumes F :

∧
S . S ∈ F =⇒ open S

obtains F ′ where F ′ ⊆ F countable F ′ ⋃F ′ =
⋃
F
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2.1.3 Polish spaces
class polish_space = complete_space + second_countable_topology

2.1.4 Limit Points
definition (in topological_space) islimpt:: ′a ⇒ ′a set ⇒ bool (infixr ‹islimpt›
60 )

where x islimpt S ←→ (∀T . x∈T −→ open T −→ (∃ y∈S . y∈T ∧ y 6=x))

2.1.5 Interior of a Set
definition interior :: ( ′a::topological_space) set ⇒ ′a set where
interior S =

⋃
{T . open T ∧ T ⊆ S}

2.1.6 Closure of a Set
definition closure :: ( ′a::topological_space) set ⇒ ′a set where

closure S = S ∪ {x . x islimpt S}

2.1.7 Frontier (also known as boundary)
definition frontier :: ( ′a::topological_space) set ⇒ ′a set where

frontier S = closure S − interior S

2.1.8 Limits
2.1.9 Compactness
proposition Heine_Borel_imp_Bolzano_Weierstrass:

assumes compact S
and infinite T
and T ⊆ S

shows ∃ x ∈ S . x islimpt T

definition countably_compact :: ( ′a::topological_space) set ⇒ bool where
countably_compact U ←→
(∀A. countable A −→ (∀ a∈A. open a) −→ U ⊆

⋃
A

−→ (∃T⊆A. finite T ∧ U ⊆
⋃

T ))

proposition countably_compact_imp_compact_second_countable:
countably_compact U =⇒ compact (U :: ′a :: second_countable_topology set)
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definition seq_compact :: ′a::topological_space set ⇒ bool where
seq_compact S ←→
(∀ f . (∀n. f n ∈ S) −→ (∃ l∈S . ∃ r ::nat⇒nat. strict_mono r ∧ (f ◦ r) −−−−→

l))

proposition Bolzano_Weierstrass_imp_seq_compact:
fixes S :: ′a::{t1_space, first_countable_topology} set
shows (

∧
T . [[infinite T ; T ⊆ S ]] =⇒∃ x ∈ S . x islimpt T ) =⇒ seq_compact S

2.1.10 Continuity
2.1.11 Homeomorphisms
definition homeomorphism S T f g ←→
(∀ x∈S . (g(f x) = x)) ∧ (f ‘ S = T ) ∧ continuous_on S f ∧
(∀ y∈T . (f (g y) = y)) ∧ (g ‘ T = S) ∧ continuous_on T g

definition homeomorphic :: ′a::topological_space set ⇒ ′b::topological_space set
⇒ bool

(infixr ‹homeomorphic› 60 )
where s homeomorphic t ≡ (∃ f g. homeomorphism s t f g)

end
theory Abstract_Limits

imports
Abstract_Topology

begin

2.1.12 nhdsin and atin
2.1.13 Limits in a topological space

2.1.14 Pointwise continuity in topological spaces
2.1.15 Combining theorems for continuous functions into the

reals

end

2.2 Non-Denumerability of the Continuum
theory Continuum_Not_Denumerable
imports

Complex_Main
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HOL−Library.Countable_Set
begin

theorem real_non_denum: @ f :: nat ⇒ real. surj f

corollary complex_non_denum: @ f :: nat ⇒ complex. surj f

end

2.3 Abstract Topology 2
theory Abstract_Topology_2

imports
Elementary_Topology Abstract_Topology Continuum_Not_Denumerable
HOL−Library.Indicator_Function
HOL−Library.Equipollence

begin

2.3.1 Closure

corollary infinite_openin:
fixes S :: ′a :: t1_space set
shows [[openin (top_of_set U ) S ; x ∈ S ; x islimpt U ]] =⇒ infinite S

2.3.2 Frontier
2.3.3 Compactness
2.3.4 Continuity
2.3.5 Retractions
definition retraction :: ( ′a::topological_space) set ⇒ ′a set ⇒ ( ′a ⇒ ′a) ⇒ bool
where retraction S T r ←→

T ⊆ S ∧ continuous_on S r ∧ r ∈ S → T ∧ (∀ x∈T . r x = x)

definition retract_of (infixl ‹retract ′_of › 50 ) where
T retract_of S ←→ (∃ r . retraction S T r)

2.3.6 Retractions on a topological space
2.3.7 Paths and path-connectedness
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2.3.8 Connected components

2.3.9 Combining theorems for continuous functions into the
reals

2.3.10 A few cardinality results

end
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Chapter 3

Connected Components

theory Connected
imports

Abstract_Topology_2
begin

3.0.1 Connected components, considered as a connectedness
relation or a set

definition connected_component S x y ≡ ∃T . connected T ∧ T ⊆ S ∧ x ∈ T ∧
y ∈ T

3.0.2 The set of connected components of a set
definition components:: ′a::topological_space set ⇒ ′a set set

where components S ≡ connected_component_set S ‘ S

3.0.3 Lemmas about components

proposition component_diff_connected:
fixes S :: ′a::metric_space set
assumes connected S connected U S ⊆ U and C : C ∈ components (U − S)
shows connected(U − C )

end

theory Function_Topology
imports
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Elementary_Topology
Abstract_Limits
Connected

begin

3.1 Function Topology
3.1.1 The product topology
definition product_topology::( ′i ⇒ ( ′a topology))⇒ ( ′i set)⇒ (( ′i ⇒ ′a) topology)

where product_topology T I =
topology_generated_by {(ΠE i∈I . X i) |X . (∀ i. openin (T i) (X i)) ∧ finite {i.

X i 6= topspace (T i)}}
proposition product_topology:

product_topology X I =
topology
(arbitrary union_of

((finite intersection_of
(λF . ∃ i U . F = {f . f i ∈ U} ∧ i ∈ I ∧ openin (X i) U ))
relative_to (ΠE i∈I . topspace (X i))))

(is _ = topology (_ union_of ((_ intersection_of ?Ψ) relative_to ?TOP)))

proposition product_topology_open_contains_basis:
assumes openin (product_topology T I ) U x ∈ U
shows ∃X . x ∈ (ΠE i∈I . X i) ∧ (∀ i. openin (T i) (X i)) ∧ finite {i. X i 6=

topspace (T i)} ∧ (ΠE i∈I . X i) ⊆ U

corollary openin_product_topology_alt:
openin (product_topology X I ) S ←→
(∀ x ∈ S . ∃U . finite {i ∈ I . U i 6= topspace(X i)} ∧

(∀ i ∈ I . openin (X i) (U i)) ∧ x ∈ PiE I U ∧ PiE I U ⊆ S)

corollary closedin_product_topology:
closedin (product_topology X I ) (PiE I S) ←→ PiE I S = {} ∨ (∀ i ∈ I . closedin

(X i) (S i))

corollary closedin_product_topology_singleton:
f ∈ extensional I =⇒ closedin (product_topology X I ) {f } ←→ (∀ i ∈ I . closedin

(X i) {f i})

Powers of a single topological space as a topological space, using
type classes
instantiation fun :: (type, topological_space) topological_space
begin

definition open_fun_def :
open U = openin (product_topology (λi. euclidean) UNIV ) U
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proposition product_topology_basis ′:
fixes x:: ′i ⇒ ′a and U :: ′i ⇒ ( ′b::topological_space) set
assumes finite I

∧
i. i ∈ I =⇒ open (U i)

shows open {f . ∀ i∈I . f (x i) ∈ U i}

Topological countability for product spaces

proposition product_topology_countable_basis:
shows ∃K ::(( ′a::countable ⇒ ′b::second_countable_topology) set set).

topological_basis K ∧ countable K ∧
(∀ k∈K . ∃X . (k = PiE UNIV X) ∧ (∀ i. open (X i)) ∧ finite {i. X i 6=

UNIV })

3.1.2 The Alexander subbase theorem
theorem Alexander_subbase:

assumes X : topology (arbitrary union_of (finite intersection_of (λx. x ∈ B)
relative_to

⋃
B)) = X

and fin:
∧

C . [[C ⊆ B;
⋃

C = topspace X ]] =⇒ ∃C ′. finite C ′ ∧ C ′ ⊆ C ∧⋃
C ′ = topspace X

shows compact_space X

corollary Alexander_subbase_alt:
assumes U ⊆

⋃
B

and fin:
∧

C . [[C ⊆ B; U ⊆
⋃

C ]] =⇒ ∃C ′. finite C ′ ∧ C ′ ⊆ C ∧ U ⊆
⋃

C ′

and X : topology
(arbitrary union_of

(finite intersection_of (λx. x ∈ B) relative_to U )) = X
shows compact_space X

proposition continuous_map_componentwise:
continuous_map X (product_topology Y I ) f ←→
f ‘ (topspace X) ⊆ extensional I ∧ (∀ k ∈ I . continuous_map X (Y k) (λx. f x

k))
(is ?lhs ←→ _ ∧ ?rhs)

proposition open_map_product_projection:
assumes i ∈ I
shows open_map (product_topology Y I ) (Y i) (λf . f i)

3.1.3 Open Pi-sets in the product topology
proposition openin_PiE_gen:
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openin (product_topology X I ) (PiE I S) ←→
PiE I S = {} ∨
finite {i ∈ I . S i 6= topspace (X i)} ∧ (∀ i ∈ I . openin (X i) (S i))

(is ?lhs ←→ _ ∨ ?rhs)

corollary openin_PiE :
finite I =⇒ openin (product_topology X I ) (PiE I S) ←→ PiE I S = {} ∨ (∀ i

∈ I . openin (X i) (S i))

proposition compact_space_product_topology:
compact_space(product_topology X I ) ←→
(product_topology X I ) = trivial_topology ∨ (∀ i ∈ I . compact_space(X i))
(is ?lhs = ?rhs)

corollary compactin_PiE :
compactin (product_topology X I ) (PiE I S) ←→

PiE I S = {} ∨ (∀ i ∈ I . compactin (X i) (S i))

3.1.4 Relationship with connected spaces, paths, etc.
proposition connected_space_product_topology:

connected_space(product_topology X I ) ←→
(∃ i ∈ I . X i = trivial_topology) ∨ (∀ i ∈ I . connected_space(X i))

(is ?lhs ←→ ?eq ∨ ?rhs)

3.1.5 Projections from a function topology to a component
3.1.6 Limits

end

3.2 The binary product topology
theory Product_Topology

imports Function_Topology
begin

3.3 Product Topology
3.3.1 Definition
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3.3.2 Continuity

proposition compact_space_prod_topology:
compact_space(prod_topology X Y )←→ (prod_topology X Y ) = trivial_topology
∨ compact_space X ∧ compact_space Y

3.3.3 Homeomorphic maps

proposition connected_space_prod_topology:
connected_space(prod_topology X Y ) ←→
(prod_topology X Y ) = trivial_topology ∨ connected_space X ∧ connected_space

Y (is ?lhs=?rhs)

end

3.4 T1 and Hausdorff spaces
theory T1_Spaces
imports Product_Topology
begin

3.5 T1 spaces with equivalences to many naturally
"nice" properties.

proposition t1_space_product_topology:
t1_space (product_topology X I )

←→ (product_topology X I ) = trivial_topology ∨ (∀ i ∈ I . t1_space (X i))

3.5.1 Hausdorff Spaces

end
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3.6 Lindelöf spaces
theory Lindelof_Spaces
imports T1_Spaces
begin

end



Chapter 4

Functional Analysis

theory Metric_Arith
imports HOL.Real_Vector_Spaces

begin
theorem metric_eq_thm [THEN HOL.eq_reflection]:

x ∈ s =⇒ y ∈ s =⇒ x = y ←→ (∀ a∈s. dist x a = dist y a)

end

53



54



Chapter 5

Elementary Metric Spaces

theory Elementary_Metric_Spaces
imports

Abstract_Topology_2
Metric_Arith

begin

5.1 Open and closed balls
definition ball :: ′a::metric_space ⇒ real ⇒ ′a set

where ball x ε = {y. dist x y < ε}

definition cball :: ′a::metric_space ⇒ real ⇒ ′a set
where cball x ε = {y. dist x y ≤ ε}

definition sphere :: ′a::metric_space ⇒ real ⇒ ′a set
where sphere x ε = {y. dist x y = ε}

5.2 Limit Points

5.3 Perfect Metric Spaces
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5.4 Finite and discrete

5.5 Interior

5.6 Frontier

5.7 Limits
proposition Lim: (f −−−→ l) net ←→ trivial_limit net ∨ (∀ ε>0 . eventually (λx.
dist (f x) l < ε) net)
proposition Lim_within_le: (f −−−→ l)(at a within S) ←→

(∀ ε>0 . ∃ δ>0 . ∀ x∈S . 0 < dist x a ∧ dist x a ≤ δ −→ dist (f x) l < ε)

proposition Lim_within: (f −−−→ l) (at a within S) ←→
(∀ ε >0 . ∃ δ>0 . ∀ x ∈ S . 0 < dist x a ∧ dist x a < δ −→ dist (f x) l < ε)

corollary Lim_withinI [intro?]:
assumes

∧
ε. ε > 0 =⇒ ∃ δ>0 . ∀ x ∈ S . 0 < dist x a ∧ dist x a < δ −→ dist (f

x) l ≤ ε
shows (f −−−→ l) (at a within S)

proposition Lim_at: (f −−−→ l) (at a) ←→
(∀ ε >0 . ∃ δ>0 . ∀ x. 0 < dist x a ∧ dist x a < δ −→ dist (f x) l < ε)

5.8 Continuity
proposition continuous_within_eps_delta:

continuous (at x within s) f ←→ (∀ ε>0 . ∃ δ>0 . ∀ x ′∈ s. dist x ′ x < δ −−> dist
(f x ′) (f x) < ε)

corollary continuous_at_eps_delta:
continuous (at x) f ←→ (∀ ε > 0 . ∃ δ > 0 . ∀ x ′. dist x ′ x < δ −→ dist (f x ′) (f

x) < ε)

corollary continuous_at_ball:
continuous (at x) f ←→ (∀ ε>0 . ∃ δ>0 . f ‘ (ball x δ) ⊆ ball (f x) ε)

5.9 Closure and Limit Characterization

5.10 Boundedness
definition (in metric_space) bounded :: ′a set ⇒ bool

where bounded S ←→ (∃ x ε. ∀ y∈S . dist x y ≤ ε)
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5.11 Compactness
proposition seq_compact_imp_totally_bounded:

assumes seq_compact S
shows ∀ ε>0 . ∃ k. finite k ∧ k ⊆ S ∧ S ⊆ (

⋃
x∈k. ball x ε)

proposition seq_compact_imp_Heine_Borel:
fixes S :: ′a :: metric_space set
assumes seq_compact S
shows compact S

proposition compact_eq_seq_compact_metric:
compact (S :: ′a::metric_space set) ←→ seq_compact S

proposition compact_def : — this is the definition of compactness in HOL Light
compact (S :: ′a::metric_space set) ←→
(∀ f . (∀n. f n ∈ S) −→ (∃ l∈S . ∃ r ::nat⇒nat. strict_mono r ∧ (f ◦ r) −−−−→

l))
proposition compact_eq_Bolzano_Weierstrass:

fixes S :: ′a::metric_space set
shows compact S ←→ (∀T . infinite T ∧ T ⊆ S −→ (∃ x ∈ S . x islimpt T ))

proposition Bolzano_Weierstrass_imp_bounded:
(
∧

T . [[infinite T ; T ⊆ S ]] =⇒ (∃ x ∈ S . x islimpt T )) =⇒ bounded S

5.12 Banach fixed point theorem
theorem Banach_fix:

assumes S : complete S S 6= {}
and c: 0 ≤ c c < 1
and f : f ‘ S ⊆ S
and lipschitz:

∧
x y. [[x∈S ; y∈S ]] =⇒ dist (f x) (f y) ≤ c ∗ dist x y

shows ∃ !x∈S . f x = x

5.13 Edelstein fixed point theorem
theorem Edelstein_fix:

fixes S :: ′a::metric_space set
assumes S : compact S S 6= {}

and gs: (g ‘ S) ⊆ S
and dist:

∧
x y. [[x∈S ; y∈S ]] =⇒ x 6= y −→ dist (g x) (g y) < dist x y

shows ∃ !x∈S . g x = x

5.14 The diameter of a set
definition diameter :: ′a::metric_space set ⇒ real where

Elementary{_}{\kern 0pt}Metric{_}{\kern 0pt}Spaces.html


58

diameter S = (if S = {} then 0 else SUP (x,y)∈S×S . dist x y)

proposition Lebesgue_number_lemma:
assumes compact S C 6= {} S ⊆

⋃
C and ope:

∧
B. B ∈ C =⇒ open B

obtains δ where 0 < δ
∧

T . [[T ⊆ S ; diameter T < δ]] =⇒ ∃B ∈ C. T ⊆ B

5.15 Metric spaces with the Heine-Borel property
class heine_borel = metric_space +

assumes bounded_imp_convergent_subsequence:
bounded (range f ) =⇒ ∃ l r . strict_mono (r ::nat⇒nat) ∧ ((f ◦ r) −−−→ l)

sequentially

proposition bounded_closed_imp_seq_compact:
fixes S :: ′a::heine_borel set
assumes bounded S

and closed S
shows seq_compact S

instance real :: heine_borel

instance prod :: (heine_borel, heine_borel) heine_borel

5.16 Completeness
proposition (in metric_space) completeI :

assumes
∧

f . ∀n. f n ∈ s =⇒ Cauchy f =⇒ ∃ l∈s. f −−−−→ l
shows complete s

proposition (in metric_space) completeE :
assumes complete s and ∀n. f n ∈ s and Cauchy f
obtains l where l ∈ s and f −−−−→ l

proposition compact_eq_totally_bounded:
compact S ←→ complete S ∧ (∀ ε>0 . ∃ k. finite k ∧ S ⊆ (

⋃
x∈k. ball x ε))

(is _ ←→ ?rhs)
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5.17 Cauchy continuity

5.18 Properties of Balls and Spheres

5.19 Distance from a Set

5.20 Infimum Distance
definition infdist x A = (if A = {} then 0 else INF a∈A. dist x a)

5.21 Separation between Points and Sets
proposition separate_point_closed:

fixes S :: ′a::heine_borel set
assumes closed S and a /∈ S
shows ∃ δ>0 . ∀ x∈S . δ ≤ dist a x

proposition separate_compact_closed:
fixes S T :: ′a::heine_borel set
assumes compact S

and T : closed T S ∩ T = {}
shows ∃ δ>0 . ∀ x∈S . ∀ y∈T . δ ≤ dist x y

proposition separate_closed_compact:
fixes S T :: ′a::heine_borel set
assumes S : closed S

and T : compact T
and dis: S ∩ T = {}

shows ∃ δ>0 . ∀ x∈S . ∀ y∈T . δ ≤ dist x y

proposition compact_in_open_separated:
fixes A:: ′a::heine_borel set
assumes A: A 6= {} compact A
assumes open B
assumes A ⊆ B
obtains ε where ε > 0 {x. infdist x A ≤ ε} ⊆ B

5.22 Uniform Continuity

5.23 Continuity on a Compact Domain Implies
Uniform Continuity

corollary compact_uniformly_continuous:
fixes f :: ′a :: metric_space ⇒ ′b :: metric_space
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assumes f : continuous_on S f and S : compact S
shows uniformly_continuous_on S f

5.24 With Abstract Topology (TODO: move and
remove dependency?)

5.25 Closed Nest

5.26 Consequences for Real Numbers

5.27 The infimum of the distance between two sets
definition setdist :: ′a::metric_space set ⇒ ′a set ⇒ real where

setdist S T ≡
(if S = {} ∨ T = {} then 0
else Inf {dist x y| x y. x ∈ S ∧ y ∈ T})

proposition setdist_attains_inf :
assumes compact B B 6= {}
obtains y where y ∈ B setdist A B = infdist y A

5.28 Diameter Lemma

end

5.29 Elementary Normed Vector Spaces
theory Elementary_Normed_Spaces

imports
HOL−Library.FuncSet
Elementary_Metric_Spaces Cartesian_Space
Connected

begin

5.29.1 Orthogonal Transformation of Balls
5.29.2 Support
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5.29.3 Intervals
5.29.4 Limit Points
5.29.5 Balls and Spheres in Normed Spaces

corollary compact_sphere [simp]:
fixes a :: ′a::{real_normed_vector ,perfect_space,heine_borel}
shows compact (sphere a r)

corollary bounded_sphere [simp]:
fixes a :: ′a::{real_normed_vector ,perfect_space,heine_borel}
shows bounded (sphere a r)

corollary closed_sphere [simp]:
fixes a :: ′a::{real_normed_vector ,perfect_space,heine_borel}
shows closed (sphere a r)

5.29.6 Filters
5.29.7 Trivial Limits
5.29.8 Limits
proposition Lim_at_infinity: (f −−−→ l) at_infinity ←→ (∀ e>0 . ∃ b. ∀ x. norm
x ≥ b −→ dist (f x) l < e)

corollary Lim_at_infinityI [intro?]:
assumes

∧
e. e > 0 =⇒ ∃B. ∀ x. norm x ≥ B −→ dist (f x) l ≤ e

shows (f −−−→ l) at_infinity

5.29.9 Boundedness

corollary cobounded_imp_unbounded:
fixes S :: ′a::{real_normed_vector , perfect_space} set
shows bounded (− S) =⇒ ¬ bounded S

5.29.10 Normed spaces with the Heine-Borel property
5.29.11 Intersecting chains of compact sets and the Baire

property
proposition bounded_closed_chain:

fixes F :: ′a::heine_borel set set
assumes B ∈ F bounded B and F :

∧
S . S ∈ F =⇒ closed S and {} /∈ F

and chain:
∧

S T . S ∈ F ∧ T ∈ F =⇒ S ⊆ T ∨ T ⊆ S
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shows
⋂
F 6= {}

corollary compact_chain:
fixes F :: ′a::heine_borel set set
assumes

∧
S . S ∈ F =⇒ compact S {} /∈ F∧

S T . S ∈ F ∧ T ∈ F =⇒ S ⊆ T ∨ T ⊆ S
shows

⋂
F 6= {}

theorem Baire:
fixes S :: ′a::{real_normed_vector ,heine_borel} set
assumes closed S countable G

and ope:
∧

T . T ∈ G =⇒ openin (top_of_set S) T ∧ S ⊆ closure T
shows S ⊆ closure(

⋂
G)

5.29.12 Continuity

proposition homeomorphic_ball_UNIV :
fixes a :: ′a::real_normed_vector
assumes 0 < r shows ball a r homeomorphic (UNIV :: ′a set)

5.29.13 Connected Normed Spaces

end

5.30 Linear Decision Procedure for Normed Spaces
theory Norm_Arith
imports HOL−Library.Sum_of_Squares
begin

method_setup norm = ‹
Scan.succeed (SIMPLE_METHOD ′ o NormArith.norm_arith_tac)

› prove simple linear statements about vector norms

proposition dist_triangle_add:
fixes x y x ′ y ′ :: ′a::real_normed_vector
shows dist (x + y) (x ′ + y ′) ≤ dist x x ′ + dist y y ′

end



Chapter 6

Vector Analysis

theory Topology_Euclidean_Space
imports

Elementary_Normed_Spaces
Linear_Algebra
Norm_Arith

begin

6.1 Elementary Topology in Euclidean Space

6.1.1 Boxes
abbreviation One :: ′a::euclidean_space where
One ≡

∑
Basis

definition (in euclidean_space) eucl_less (infix ‹<e› 50 ) where
eucl_less a b ←→ (∀ i∈Basis. a · i < b · i)

definition box_eucl_less: box a b = {x. a <e x ∧ x <e b}
definition cbox a b = {x. ∀ i∈Basis. a · i ≤ x · i ∧ x · i ≤ b · i}

corollary open_countable_Union_open_box:
fixes S :: ′a :: euclidean_space set
assumes open S
obtains D where countable D D ⊆ Pow S

∧
X . X ∈ D =⇒ ∃ a b. X = box a b⋃

D = S

corollary open_countable_Union_open_cbox:
fixes S :: ′a :: euclidean_space set
assumes open S
obtains D where countable D D ⊆ Pow S

∧
X . X ∈ D =⇒ ∃ a b. X = cbox a

b
⋃
D = S
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6.1.2 General Intervals
definition is_interval (s::( ′a::euclidean_space) set) ←→
(∀ a∈s. ∀ b∈s. ∀ x. (∀ i∈Basis. ((a·i ≤ x·i ∧ x·i ≤ b·i) ∨ (b·i ≤ x·i ∧ x·i ≤ a·i)))
−→ x ∈ s)

6.1.3 Limit Component Bounds
6.1.4 Class Instances

instance euclidean_space ⊆ heine_borel

instance euclidean_space ⊆ banach

6.1.5 Compact Boxes

proposition is_interval_compact:
is_interval S ∧ compact S ←→ (∃ a b. S = cbox a b) (is ?lhs = ?rhs)

proposition tendsto_componentwise_iff :
fixes f :: _ ⇒ ′b::euclidean_space
shows (f −−−→ l) F ←→ (∀ i ∈ Basis. ((λx. (f x · i)) −−−→ (l · i)) F)

(is ?lhs = ?rhs)

corollary continuous_componentwise:
continuous F f ←→ (∀ i ∈ Basis. continuous F (λx. (f x · i)))

corollary continuous_on_componentwise:
fixes S :: ′a :: t2_space set
shows continuous_on S f ←→ (∀ i ∈ Basis. continuous_on S (λx. (f x · i)))

6.1.6 Separability

proposition separable:
fixes S :: ′a::{metric_space, second_countable_topology} set
obtains T where countable T T ⊆ S S ⊆ closure T

proposition open_surjective_linear_image:
fixes f :: ′a::real_normed_vector ⇒ ′b::euclidean_space
assumes open A linear f surj f

shows open(f ‘ A)
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corollary open_bijective_linear_image_eq:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes linear f bij f

shows open(f ‘ A) ←→ open A

corollary interior_bijective_linear_image:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes linear f bij f
shows interior (f ‘ S) = f ‘ interior S

proposition injective_imp_isometric:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes s: closed s subspace s

and f : bounded_linear f ∀ x∈s. f x = 0 −→ x = 0
shows ∃ e>0 . ∀ x∈s. norm (f x) ≥ e ∗ norm x

proposition closed_injective_image_subspace:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes subspace s bounded_linear f ∀ x∈s. f x = 0 −→ x = 0 closed s
shows closed(f ‘ s)

6.1.7 Set Distance

corollary setdist_gt_0_compact_closed:
assumes S : compact S and T : closed T

shows setdist S T > 0 ←→ (S 6= {} ∧ T 6= {} ∧ S ∩ T = {})

end

6.2 Line Segment
theory Line_Segment
imports

Convex
Topology_Euclidean_Space

begin

corollary component_complement_connected:
fixes S :: ′a::real_normed_vector set
assumes connected S C ∈ components (−S)
shows connected(−C )

proposition clopen:
fixes S :: ′a :: real_normed_vector set
shows closed S ∧ open S ←→ S = {} ∨ S = UNIV

corollary compact_open:
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fixes S :: ′a :: euclidean_space set
shows compact S ∧ open S ←→ S = {}

corollary finite_imp_not_open:
fixes S :: ′a::{real_normed_vector , perfect_space} set
shows [[finite S ; open S ]] =⇒ S={}

corollary empty_interior_finite:
fixes S :: ′a::{real_normed_vector , perfect_space} set
shows finite S =⇒ interior S = {}

6.2.1 Midpoint
definition midpoint :: ′a::real_vector ⇒ ′a ⇒ ′a

where midpoint a b = (inverse (2 ::real)) ∗R (a + b)

6.2.2 Open and closed segments
definition closed_segment :: ′a::real_vector ⇒ ′a ⇒ ′a set

where closed_segment a b = {(1 − u) ∗R a + u ∗R b | u::real. 0 ≤ u ∧ u ≤ 1}

definition open_segment :: ′a::real_vector ⇒ ′a ⇒ ′a set where
open_segment a b ≡ closed_segment a b − {a,b}

proposition dist_decreases_open_segment:
fixes a :: ′a :: euclidean_space
assumes x ∈ open_segment a b

shows dist c x < dist c a ∨ dist c x < dist c b

corollary open_segment_furthest_le:
fixes a b x y :: ′a::euclidean_space
assumes x ∈ open_segment a b
shows norm (y − x) < norm (y − a) ∨ norm (y − x) < norm (y − b)

corollary dist_decreases_closed_segment:
fixes a :: ′a :: euclidean_space
assumes x ∈ closed_segment a b

shows dist c x ≤ dist c a ∨ dist c x ≤ dist c b

corollary segment_furthest_le:
fixes a b x y :: ′a::euclidean_space
assumes x ∈ closed_segment a b
shows norm (y − x) ≤ norm (y − a) ∨ norm (y − x) ≤ norm (y − b)
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6.2.3 Betweenness
definition between = (λ(a,b) x. x ∈ closed_segment a b)

end

6.3 Convex Sets and Functions on (Normed) Eu-
clidean Spaces

theory Convex_Euclidean_Space
imports

Convex Topology_Euclidean_Space Line_Segment
begin
corollary empty_interior_lowdim:

fixes S :: ′n::euclidean_space set
shows dim S < DIM ( ′n) =⇒ interior S = {}

corollary aff_dim_nonempty_interior :
fixes S :: ′a::euclidean_space set
shows interior S 6= {} =⇒ aff_dim S = DIM ( ′a)

6.3.1 Relative interior of a set
definition rel_interior S =
{x. ∃T . openin (top_of_set (affine hull S)) T ∧ x ∈ T ∧ T ⊆ S}

definition rel_open S ←→ rel_interior S = S

6.3.2 Closest point of a convex set is unique, with a contin-
uous projection

definition closest_point :: ′a::{real_inner ,heine_borel} set ⇒ ′a ⇒ ′a
where closest_point S a = (SOME x. x ∈ S ∧ (∀ y∈S . dist a x ≤ dist a y))

proposition closest_point_in_rel_interior :
assumes closed S S 6= {} and x: x ∈ affine hull S

shows closest_point S x ∈ rel_interior S ←→ x ∈ rel_interior S

end
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Chapter 7

Unsorted

theory Starlike
imports

Convex_Euclidean_Space
Line_Segment

begin

7.0.1 The relative frontier of a set
definition rel_frontier S = closure S − rel_interior S

proposition ray_to_rel_frontier :
fixes a :: ′a::real_inner
assumes bounded S

and a: a ∈ rel_interior S
and aff : (a + l) ∈ affine hull S
and l 6= 0

obtains d where 0 < d (a + d ∗R l) ∈ rel_frontier S∧
e. [[0 ≤ e; e < d]] =⇒ (a + e ∗R l) ∈ rel_interior S

corollary ray_to_frontier :
fixes a :: ′a::euclidean_space
assumes bounded S

and a: a ∈ interior S
and l 6= 0

obtains d where 0 < d (a + d ∗R l) ∈ frontier S∧
e. [[0 ≤ e; e < d]] =⇒ (a + e ∗R l) ∈ interior S

proposition rel_frontier_not_sing:
fixes a :: ′a::euclidean_space
assumes bounded S

shows rel_frontier S 6= {a}
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7.0.2 Coplanarity, and collinearity in terms of affine hull
definition coplanar where

coplanar S ≡ ∃ u v w. S ⊆ affine hull {u,v,w}

7.0.3 Connectedness of the intersection of a chain
proposition connected_chain:

fixes F :: ′a :: euclidean_space set set
assumes cc:

∧
S . S ∈ F =⇒ compact S ∧ connected S

and linear :
∧

S T . S ∈ F ∧ T ∈ F =⇒ S ⊆ T ∨ T ⊆ S
shows connected(

⋂
F)

7.0.4 Proper maps, including projections out of compact sets

proposition proper_map:
fixes f :: ′a::heine_borel ⇒ ′b::heine_borel
assumes closedin (top_of_set S) K

and com:
∧

U . [[U ⊆ T ; compact U ]] =⇒ compact (S ∩ f −‘ U )
and f ‘ S ⊆ T

shows closedin (top_of_set T ) (f ‘ K )

7.0.5 Closure of conic hulls
proposition closedin_conic_hull:

fixes S :: ′a::euclidean_space set
assumes compact T 0 /∈ T T ⊆ S
shows closedin (top_of_set (conic hull S)) (conic hull T )

corollary affine_hull_convex_Int_open:
fixes S :: ′a::real_normed_vector set
assumes convex S open T S ∩ T 6= {}
shows affine hull (S ∩ T ) = affine hull S

corollary affine_hull_affine_Int_nonempty_interior :
fixes S :: ′a::real_normed_vector set
assumes affine S S ∩ interior T 6= {}
shows affine hull (S ∩ T ) = affine hull S

corollary affine_hull_affine_Int_open:
fixes S :: ′a::real_normed_vector set
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assumes affine S open T S ∩ T 6= {}
shows affine hull (S ∩ T ) = affine hull S

corollary affine_hull_convex_Int_openin:
fixes S :: ′a::real_normed_vector set
assumes convex S openin (top_of_set (affine hull S)) T S ∩ T 6= {}
shows affine hull (S ∩ T ) = affine hull S

corollary affine_hull_openin:
fixes S :: ′a::real_normed_vector set
assumes openin (top_of_set (affine hull T )) S S 6= {}
shows affine hull S = affine hull T

corollary affine_hull_open:
fixes S :: ′a::real_normed_vector set
assumes open S S 6= {}
shows affine hull S = UNIV

proposition aff_dim_eq_hyperplane:
fixes S :: ′a::euclidean_space set
shows aff_dim S = DIM ( ′a) − 1 ←→ (∃ a b. a 6= 0 ∧ affine hull S = {x. a · x

= b})
(is ?lhs = ?rhs)

corollary aff_dim_hyperplane [simp]:
fixes a :: ′a::euclidean_space
shows a 6= 0 =⇒ aff_dim {x. a · x = r} = DIM ( ′a) − 1

proposition aff_dim_sums_Int:
assumes affine S

and affine T
and S ∩ T 6= {}

shows aff_dim {x + y| x y. x ∈ S ∧ y ∈ T} = (aff_dim S + aff_dim T ) −
aff_dim(S ∩ T )

7.0.6 Lower-dimensional affine subsets are nowhere dense
proposition dense_complement_subspace:

fixes S :: ′a :: euclidean_space set
assumes dim_less: dim T < dim S and subspace S shows closure(S − T ) = S
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7.0.7 Paracompactness
proposition paracompact:

fixes S :: ′a :: {metric_space,second_countable_topology} set
assumes S ⊆

⋃
C and opC :

∧
T . T ∈ C =⇒ open T

obtains C ′ where S ⊆
⋃
C ′

and
∧

U . U ∈ C ′ =⇒ open U ∧ (∃T . T ∈ C ∧ U ⊆ T )
and

∧
x. x ∈ S

=⇒ ∃V . open V ∧ x ∈ V ∧ finite {U . U ∈ C ′ ∧ (U ∩ V 6= {})}

corollary paracompact_closedin:
fixes S :: ′a :: {metric_space,second_countable_topology} set
assumes cin: closedin (top_of_set U ) S

and oin:
∧

T . T ∈ C =⇒ openin (top_of_set U ) T
and S ⊆

⋃
C

obtains C ′ where S ⊆
⋃
C ′

and
∧

V . V ∈ C ′ =⇒ openin (top_of_set U ) V ∧ (∃T . T ∈ C ∧ V
⊆ T )

and
∧

x. x ∈ U
=⇒ ∃V . openin (top_of_set U ) V ∧ x ∈ V ∧

finite {X . X ∈ C ′ ∧ (X ∩ V 6= {})}

7.0.8 Covering an open set by a countable chain of compact
sets

proposition open_Union_compact_subsets:
fixes S :: ′a::euclidean_space set
assumes open S
obtains C where

∧
n. compact(C n)

∧
n. C n ⊆ S∧

n. C n ⊆ interior(C (Suc n))⋃
(range C ) = S∧
K . [[compact K ; K ⊆ S ]] =⇒ ∃N . ∀n≥N . K ⊆ (C n)

7.0.9 Orthogonal complement
definition orthogonal_comp (‹(‹open_block notation=‹postfix ⊥››_⊥)› [80 ] 80 )

where orthogonal_comp W ≡ {x. ∀ y ∈ W . orthogonal y x}

proposition subspace_orthogonal_comp: subspace (W⊥)

proposition subspace_sum_orthogonal_comp:
fixes U :: ′a :: euclidean_space set
assumes subspace U
shows U + U⊥ = UNIV

end
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7.1 Path-Connectedness
theory Path_Connected
imports

Starlike
T1_Spaces

begin

7.1.1 Paths and Arcs
definition path :: (real ⇒ ′a::topological_space) ⇒ bool

where path g ≡ continuous_on {0 ..1} g

definition pathstart :: (real ⇒ ′a::topological_space) ⇒ ′a
where pathstart g ≡ g 0

definition pathfinish :: (real ⇒ ′a::topological_space) ⇒ ′a
where pathfinish g ≡ g 1

definition path_image :: (real ⇒ ′a::topological_space) ⇒ ′a set
where path_image g ≡ g ‘ {0 .. 1}

definition reversepath :: (real ⇒ ′a::topological_space) ⇒ real ⇒ ′a
where reversepath g ≡ (λx. g(1 − x))

definition joinpaths :: (real ⇒ ′a::topological_space) ⇒ (real ⇒ ′a) ⇒ real ⇒ ′a
(infixr ‹+++› 75 )

where g1 +++ g2 ≡ (λx. if x ≤ 1/2 then g1 (2 ∗ x) else g2 (2 ∗ x − 1 ))

definition loop_free :: (real ⇒ ′a::topological_space) ⇒ bool
where loop_free g ≡ ∀ x∈{0 ..1}. ∀ y∈{0 ..1}. g x = g y −→ x = y ∨ x = 0 ∧ y

= 1 ∨ x = 1 ∧ y = 0

definition simple_path :: (real ⇒ ′a::topological_space) ⇒ bool
where simple_path g ≡ path g ∧ loop_free g

definition arc :: (real ⇒ ′a :: topological_space) ⇒ bool
where arc g ≡ path g ∧ inj_on g {0 ..1}

7.1.2 Subpath
definition subpath :: real ⇒ real ⇒ (real ⇒ ′a) ⇒ real ⇒ ′a::real_normed_vector

where subpath a b g ≡ λx. g((b − a) ∗ x + a)

7.1.3 Shift Path to Start at Some Given Point
definition shiftpath :: real ⇒ (real ⇒ ′a::topological_space) ⇒ real ⇒ ′a

where shiftpath a f = (λx. if (a + x) ≤ 1 then f (a + x) else f (a + x − 1 ))
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7.1.4 Straight-Line Paths
definition linepath :: ′a::real_normed_vector ⇒ ′a ⇒ real ⇒ ′a

where linepath a b = (λx. (1 − x) ∗R a + x ∗R b)
proposition injective_eq_1d_open_map_UNIV :

fixes f :: real ⇒ real
assumes contf : continuous_on S f and S : is_interval S

shows inj_on f S ←→ (∀T . open T ∧ T ⊆ S −→ open(f ‘ T ))
(is ?lhs = ?rhs)

7.1.5 Path component
definition path_component S x y ≡
(∃ g. path g ∧ path_image g ⊆ S ∧ pathstart g = x ∧ pathfinish g = y)

abbreviation
path_component_set S x ≡ Collect (path_component S x)

7.1.6 Path connectedness of a space
definition path_connected S ←→
(∀ x∈S . ∀ y∈S . ∃ g. path g ∧ path_image g ⊆ S ∧ pathstart g = x ∧ pathfinish g

= y)

7.1.7 Path components
7.1.8 Paths and path-connectedness
7.1.9 Path components
7.1.10 Sphere is path-connected

corollary connected_punctured_universe:
2 ≤ DIM ( ′N ::euclidean_space) =⇒ connected(− {a:: ′N})

proposition path_connected_sphere:
fixes a :: ′a :: euclidean_space
assumes 2 ≤ DIM ( ′a)
shows path_connected(sphere a r)

corollary path_connected_complement_bounded_convex:
fixes S :: ′a :: euclidean_space set
assumes bounded S convex S and 2 : 2 ≤ DIM ( ′a)
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shows path_connected (− S)

proposition connected_open_delete:
assumes open S connected S and 2 : 2 ≤ DIM ( ′N ::euclidean_space)

shows connected(S − {a:: ′N})

corollary path_connected_open_delete:
assumes open S connected S and 2 : 2 ≤ DIM ( ′N ::euclidean_space)
shows path_connected(S − {a:: ′N})

corollary path_connected_punctured_ball:
2 ≤ DIM ( ′N ::euclidean_space) =⇒ path_connected(ball a r − {a:: ′N})

corollary connected_punctured_ball:
2 ≤ DIM ( ′N ::euclidean_space) =⇒ connected(ball a r − {a:: ′N})

corollary connected_open_delete_finite:
fixes S T :: ′a::euclidean_space set
assumes S : open S connected S and 2 : 2 ≤ DIM ( ′a) and finite T
shows connected(S − T )

7.1.11 Every annulus is a connected set

proposition path_connected_annulus:
fixes a :: ′N ::euclidean_space
assumes 2 ≤ DIM ( ′N )
shows path_connected {x. r1 < norm(x − a) ∧ norm(x − a) < r2}

path_connected {x. r1 < norm(x − a) ∧ norm(x − a) ≤ r2}
path_connected {x. r1 ≤ norm(x − a) ∧ norm(x − a) < r2}
path_connected {x. r1 ≤ norm(x − a) ∧ norm(x − a) ≤ r2}

proposition connected_annulus:
fixes a :: ′N ::euclidean_space
assumes 2 ≤ DIM ( ′N ::euclidean_space)
shows connected {x. r1 < norm(x − a) ∧ norm(x − a) < r2}

connected {x. r1 < norm(x − a) ∧ norm(x − a) ≤ r2}
connected {x. r1 ≤ norm(x − a) ∧ norm(x − a) < r2}
connected {x. r1 ≤ norm(x − a) ∧ norm(x − a) ≤ r2}

corollary open_components:
fixes S :: ′a::real_normed_vector set
shows [[open u; S ∈ components u]] =⇒ open S

proposition components_open_unique:
fixes S :: ′a::real_normed_vector set
assumes pairwise disjnt A

⋃
A = S∧

X . X ∈ A =⇒ open X ∧ connected X ∧ X 6= {}
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shows components S = A

7.1.12 The inside and outside of a Set

The inside comprises the points in a bounded connected component of the
set’s complement. The outside comprises the points in unbounded connected
component of the complement.
definition inside where

inside S ≡ {x. (x /∈ S) ∧ bounded(connected_component_set ( − S) x)}

definition outside where
outside S ≡ −S ∩ {x. ¬ bounded(connected_component_set (− S) x)}

7.1.13 Condition for an open map’s image to contain a ball
proposition ball_subset_open_map_image:

fixes f :: ′a::heine_borel ⇒ ′b :: {real_normed_vector ,heine_borel}
assumes contf : continuous_on (closure S) f

and oint: open (f ‘ interior S)
and le_no:

∧
z. z ∈ frontier S =⇒ r ≤ norm(f z − f a)

and bounded S a ∈ S 0 < r
shows ball (f a) r ⊆ f ‘ S

proposition embedding_map_into_euclideanreal:
assumes path_connected_space X
shows embedding_map X euclideanreal f ←→

continuous_map X euclideanreal f ∧ inj_on f (topspace X)

end

7.2 Neighbourhood bases and Locally path-connected
spaces

theory Locally
imports

Path_Connected Function_Topology Sum_Topology
begin

7.2.1 Neighbourhood Bases
7.2.2 Locally path-connected spaces
7.2.3 Locally connected spaces
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7.2.4 Dimension of a topological space

end

7.3 Some Uncountable Sets
theory Uncountable_Sets

imports Path_Connected Continuum_Not_Denumerable
begin

end

7.4 Homotopy of Maps
theory Homotopy

imports Path_Connected Product_Topology Uncountable_Sets
begin

definition homotopic_with
where
homotopic_with P X Y f g ≡
(∃ h. continuous_map (prod_topology (top_of_set {0 ..1 ::real}) X) Y h ∧

(∀ x. h(0 , x) = f x) ∧
(∀ x. h(1 , x) = g x) ∧
(∀ t ∈ {0 ..1}. P(λx. h(t,x))))

proposition homotopic_with:
assumes

∧
h k. (

∧
x. x ∈ topspace X =⇒ h x = k x) =⇒ (P h ←→ P k)

shows homotopic_with P X Y p q ←→
(∃ h. continuous_map (prod_topology (subtopology euclideanreal {0 ..1})

X) Y h ∧
(∀ x ∈ topspace X . h(0 ,x) = p x) ∧
(∀ x ∈ topspace X . h(1 ,x) = q x) ∧
(∀ t ∈ {0 ..1}. P(λx. h(t, x))))

7.4.1 Homotopy with P is an equivalence relation

proposition homotopic_with_trans:
assumes homotopic_with P X Y f g homotopic_with P X Y g h
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shows homotopic_with P X Y f h

7.4.2 Continuity lemmas

corollary homotopic_compose:
assumes homotopic_with (λx. True) X Y f f ′ homotopic_with (λx. True) Y Z

g g ′

shows homotopic_with (λx. True) X Z (g ◦ f ) (g ′ ◦ f ′)

proposition homotopic_with_compose_continuous_right:
[[homotopic_with_canon (λf . p (f ◦ h)) X Y f g; continuous_on W h; h ∈ W

→ X ]]
=⇒ homotopic_with_canon p W Y (f ◦ h) (g ◦ h)

proposition homotopic_with_compose_continuous_left:
[[homotopic_with_canon (λf . p (h ◦ f )) X Y f g; continuous_on Y h; h ∈ Y

→ Z ]]
=⇒ homotopic_with_canon p X Z (h ◦ f ) (h ◦ g)

proposition homotopic_with_eq:
assumes h: homotopic_with P X Y f g

and f ′:
∧

x. x ∈ topspace X =⇒ f ′ x = f x
and g ′:

∧
x. x ∈ topspace X =⇒ g ′ x = g x

and P: (
∧

h k. (
∧

x. x ∈ topspace X =⇒ h x = k x) =⇒ P h ←→ P k)
shows homotopic_with P X Y f ′ g ′

7.4.3 Homotopy of paths, maintaining the same endpoints
definition homotopic_paths :: [ ′a set, real ⇒ ′a, real ⇒ ′a::topological_space] ⇒
bool

where
homotopic_paths S p q ≡

homotopic_with_canon (λr . pathstart r = pathstart p ∧ pathfinish r =
pathfinish p) {0 ..1} S p q

proposition homotopic_paths_imp_pathstart:
homotopic_paths S p q =⇒ pathstart p = pathstart q

proposition homotopic_paths_imp_pathfinish:
homotopic_paths S p q =⇒ pathfinish p = pathfinish q

proposition homotopic_paths_refl [simp]: homotopic_paths S p p ←→ path p ∧
path_image p ⊆ S

proposition homotopic_paths_sym: homotopic_paths S p q =⇒ homotopic_paths
S q p
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proposition homotopic_paths_sym_eq: homotopic_paths S p q ←→ homotopic_paths
S q p

proposition homotopic_paths_trans [trans]:
assumes homotopic_paths S p q homotopic_paths S q r
shows homotopic_paths S p r

proposition homotopic_paths_eq:
[[path p; path_image p ⊆ S ;

∧
t. t ∈ {0 ..1} =⇒ p t = q t]] =⇒ homotopic_paths

S p q

proposition homotopic_paths_reparametrize:
assumes path p

and pips: path_image p ⊆ S
and contf : continuous_on {0 ..1} f
and f01 :f ∈ {0 ..1} → {0 ..1}
and [simp]: f (0 ) = 0 f (1 ) = 1
and q:

∧
t. t ∈ {0 ..1} =⇒ q(t) = p(f t)

shows homotopic_paths S p q

proposition homotopic_paths_reversepath:
homotopic_paths S (reversepath p) (reversepath q) ←→ homotopic_paths S p

q

proposition homotopic_paths_join:
[[homotopic_paths S p p ′; homotopic_paths S q q ′; pathfinish p = pathstart q]]

=⇒ homotopic_paths S (p +++ q) (p ′ +++ q ′)

proposition homotopic_paths_continuous_image:
[[homotopic_paths S f g; continuous_on S h; h ∈ S → t]] =⇒ homotopic_paths

t (h ◦ f ) (h ◦ g)

7.4.4 Group properties for homotopy of paths

So taking equivalence classes under homotopy would give the fundamental
group
proposition homotopic_paths_rid:

assumes path p path_image p ⊆ S
shows homotopic_paths S (p +++ linepath (pathfinish p) (pathfinish p)) p

proposition homotopic_paths_lid:
[[path p; path_image p ⊆ S ]] =⇒ homotopic_paths S (linepath (pathstart p)

(pathstart p) +++ p) p

proposition homotopic_paths_assoc:
[[path p; path_image p ⊆ S ; path q; path_image q ⊆ S ; path r ; path_image r ⊆
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S ; pathfinish p = pathstart q;
pathfinish q = pathstart r ]]
=⇒ homotopic_paths S (p +++ (q +++ r)) ((p +++ q) +++ r)

proposition homotopic_paths_rinv:
assumes path p path_image p ⊆ S

shows homotopic_paths S (p +++ reversepath p) (linepath (pathstart p)
(pathstart p))

proposition homotopic_paths_linv:
assumes path p path_image p ⊆ S

shows homotopic_paths S (reversepath p +++ p) (linepath (pathfinish p)
(pathfinish p))

7.4.5 Homotopy of loops without requiring preservation of
endpoints

definition homotopic_loops :: ′a::topological_space set ⇒ (real ⇒ ′a) ⇒ (real ⇒
′a) ⇒ bool where
homotopic_loops S p q ≡

homotopic_with_canon (λr . pathfinish r = pathstart r) {0 ..1} S p q

proposition homotopic_loops_imp_loop:
homotopic_loops S p q =⇒ pathfinish p = pathstart p ∧ pathfinish q = pathstart

q

proposition homotopic_loops_imp_path:
homotopic_loops S p q =⇒ path p ∧ path q

proposition homotopic_loops_imp_subset:
homotopic_loops S p q =⇒ path_image p ⊆ S ∧ path_image q ⊆ S

proposition homotopic_loops_refl:
homotopic_loops S p p ←→
path p ∧ path_image p ⊆ S ∧ pathfinish p = pathstart p

proposition homotopic_loops_sym: homotopic_loops S p q =⇒ homotopic_loops
S q p

proposition homotopic_loops_sym_eq: homotopic_loops S p q ←→ homotopic_loops
S q p

proposition homotopic_loops_trans:
[[homotopic_loops S p q; homotopic_loops S q r ]] =⇒ homotopic_loops S p r

proposition homotopic_loops_subset:
[[homotopic_loops S p q; S ⊆ t]] =⇒ homotopic_loops t p q
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proposition homotopic_loops_eq:
[[path p; path_image p ⊆ S ; pathfinish p = pathstart p;

∧
t. t ∈ {0 ..1} =⇒ p(t)

= q(t)]]
=⇒ homotopic_loops S p q

proposition homotopic_loops_continuous_image:
[[homotopic_loops S f g; continuous_on S h; h ∈ S → t]] =⇒ homotopic_loops

t (h ◦ f ) (h ◦ g)

7.4.6 Relations between the two variants of homotopy
proposition homotopic_paths_imp_homotopic_loops:

[[homotopic_paths S p q; pathfinish p = pathstart p; pathfinish q = pathstart p]]
=⇒ homotopic_loops S p q

proposition homotopic_loops_imp_homotopic_paths_null:
assumes homotopic_loops S p (linepath a a)

shows homotopic_paths S p (linepath (pathstart p) (pathstart p))

proposition homotopic_loops_conjugate:
fixes S :: ′a::real_normed_vector set
assumes path p path q and pip: path_image p ⊆ S and piq: path_image q ⊆ S

and pq: pathfinish p = pathstart q and qloop: pathfinish q = pathstart q
shows homotopic_loops S (p +++ q +++ reversepath p) q

7.4.7 Homotopy and subpaths

proposition homotopic_join_subpaths:
[[path g; path_image g ⊆ S ; u ∈ {0 ..1}; v ∈ {0 ..1}; w ∈ {0 ..1}]]
=⇒ homotopic_paths S (subpath u v g +++ subpath v w g) (subpath u w g)

7.4.8 Simply connected sets

defined as "all loops are homotopic (as loops)
definition simply_connected where

simply_connected S ≡
∀ p q. path p ∧ pathfinish p = pathstart p ∧ path_image p ⊆ S ∧

path q ∧ pathfinish q = pathstart q ∧ path_image q ⊆ S
−→ homotopic_loops S p q

proposition simply_connected_Times:
fixes S :: ′a::real_normed_vector set and T :: ′b::real_normed_vector set
assumes S : simply_connected S and T : simply_connected T

shows simply_connected(S × T )
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7.4.9 Contractible sets
definition contractible where
contractible S ≡ ∃ a. homotopic_with_canon (λx. True) S S id (λx. a)

proposition contractible_imp_simply_connected:
fixes S :: _::real_normed_vector set
assumes contractible S shows simply_connected S

corollary contractible_imp_connected:
fixes S :: _::real_normed_vector set
shows contractible S =⇒ connected S

7.4.10 Starlike sets
definition starlike S ←→ (∃ a∈S . ∀ x∈S . closed_segment a x ⊆ S)

7.4.11 The slotted complex plane

7.4.12 Contractible sets
7.4.13 Local versions of topological properties in general
definition locally :: ( ′a::topological_space set ⇒ bool) ⇒ ′a set ⇒ bool
where
locally P S ≡

∀w x . openin (top_of_set S) w ∧ x ∈ w
−→ (∃U V . openin (top_of_set S) U ∧ P V ∧ x ∈ U ∧ U ⊆ V ∧ V

⊆ w)

proposition homeomorphism_locally_imp:
fixes S :: ′a::metric_space set and T :: ′b::t2_space set
assumes S : locally P S and hom: homeomorphism S T f g

and Q:
∧

S S ′. [[P S ; homeomorphism S S ′ f g]] =⇒ Q S ′

shows locally Q T

7.4.14 An induction principle for connected sets
proposition connected_induction:

assumes connected S
and opD:

∧
T a. [[openin (top_of_set S) T ; a ∈ T ]] =⇒ ∃ z. z ∈ T ∧ P z

and opI :
∧

a. a ∈ S
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=⇒ ∃T . openin (top_of_set S) T ∧ a ∈ T ∧
(∀ x ∈ T . ∀ y ∈ T . P x ∧ P y ∧ Q x −→ Q y)

and etc: a ∈ S b ∈ S P a P b Q a
shows Q b

7.4.15 Basic properties of local compactness
proposition locally_compact:

fixes S :: ′a :: metric_space set
shows

locally compact S ←→
(∀ x ∈ S . ∃ u v. x ∈ u ∧ u ⊆ v ∧ v ⊆ S ∧

openin (top_of_set S) u ∧ compact v)
(is ?lhs = ?rhs)

7.4.16 Sura-Bura’s results about compact components of sets
proposition Sura_Bura_compact:

fixes S :: ′a::euclidean_space set
assumes compact S and C : C ∈ components S
shows C =

⋂
{T . C ⊆ T ∧ openin (top_of_set S) T ∧

closedin (top_of_set S) T}
(is C =

⋂
?T )

corollary Sura_Bura_clopen_subset:
fixes S :: ′a::euclidean_space set
assumes S : locally compact S and C : C ∈ components S and compact C

and U : open U C ⊆ U
obtains K where openin (top_of_set S) K compact K C ⊆ K K ⊆ U

corollary Sura_Bura_clopen_subset_alt:
fixes S :: ′a::euclidean_space set
assumes S : locally compact S and C : C ∈ components S and compact C

and opeSU : openin (top_of_set S) U and C ⊆ U
obtains K where openin (top_of_set S) K compact K C ⊆ K K ⊆ U

corollary Sura_Bura:
fixes S :: ′a::euclidean_space set
assumes locally compact S C ∈ components S compact C
shows C =

⋂
{K . C ⊆ K ∧ compact K ∧ openin (top_of_set S) K}

(is C = ?rhs)
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7.4.17 Special cases of local connectedness and path connect-
edness

proposition locally_path_connected:
locally path_connected S ←→
(∀V x . openin (top_of_set S) V ∧ x ∈ V

−→ (∃U . openin (top_of_set S) U ∧ path_connected U ∧ x ∈ U ∧ U ⊆
V ))

proposition locally_path_connected_open_path_component:
locally path_connected S ←→
(∀ t x. openin (top_of_set S) t ∧ x ∈ t

−→ openin (top_of_set S) (path_component_set t x))

proposition locally_connected_im_kleinen:
locally connected S ←→
(∀ v x. openin (top_of_set S) v ∧ x ∈ v
−→ (∃ u. openin (top_of_set S) u ∧

x ∈ u ∧ u ⊆ v ∧
(∀ y. y ∈ u −→ (∃ c. connected c ∧ c ⊆ v ∧ x ∈ c ∧ y ∈ c))))

(is ?lhs = ?rhs)

proposition locally_path_connected_im_kleinen:
locally path_connected S ←→
(∀ v x. openin (top_of_set S) v ∧ x ∈ v
−→ (∃ u. openin (top_of_set S) u ∧

x ∈ u ∧ u ⊆ v ∧
(∀ y. y ∈ u −→ (∃ p. path p ∧ path_image p ⊆ v ∧

pathstart p = x ∧ pathfinish p = y))))
(is ?lhs = ?rhs)

7.4.18 Relations between components and path components

proposition locally_connected_quotient_image:
assumes lcS : locally connected S

and oo:
∧

T . T ⊆ f ‘ S
=⇒ openin (top_of_set S) (S ∩ f −‘ T ) ←→

openin (top_of_set (f ‘ S)) T
shows locally connected (f ‘ S)

proposition locally_path_connected_quotient_image:
assumes lcS : locally path_connected S

and oo:
∧

T . T ⊆ f ‘ S
=⇒ openin (top_of_set S) (S ∩ f −‘ T ) ←→ openin (top_of_set (f

‘ S)) T
shows locally path_connected (f ‘ S)
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7.4.19 Existence of isometry between subspaces of same di-
mension

proposition isometries_subspaces:
fixes S :: ′a::euclidean_space set

and T :: ′b::euclidean_space set
assumes S : subspace S

and T : subspace T
and d: dim S = dim T

obtains f g where linear f linear g f ‘ S = T g ‘ T = S∧
x. x ∈ S =⇒ norm(f x) = norm x∧
x. x ∈ T =⇒ norm(g x) = norm x∧
x. x ∈ S =⇒ g(f x) = x∧
x. x ∈ T =⇒ f (g x) = x

corollary isometry_subspaces:
fixes S :: ′a::euclidean_space set

and T :: ′b::euclidean_space set
assumes S : subspace S

and T : subspace T
and d: dim S = dim T

obtains f where linear f f ‘ S = T
∧

x. x ∈ S =⇒ norm(f x) = norm x

corollary isomorphisms_UNIV_UNIV :
assumes DIM ( ′M ) = DIM ( ′N )
obtains f :: ′M ::euclidean_space ⇒ ′N ::euclidean_space and g
where linear f linear g∧

x. norm(f x) = norm x
∧

y. norm(g y) = norm y∧
x. g (f x) = x

∧
y. f (g y) = y

7.4.20 Retracts, in a general sense, preserve (co)homotopic
triviality)

locale Retracts =
fixes S h t k
assumes conth: continuous_on S h

and imh: h ‘ S = t
and contk: continuous_on t k
and imk: k ∈ t → S
and idhk:

∧
y. y ∈ t =⇒ h(k y) = y

begin
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7.4.21 Homotopy equivalence
7.4.22 Homotopy equivalence of topological spaces.
definition homotopy_equivalent_space

(infix ‹homotopy ′_equivalent ′_space› 50 )
where X homotopy_equivalent_space Y ≡

(∃ f g. continuous_map X Y f ∧
continuous_map Y X g ∧
homotopic_with (λx. True) X X (g ◦ f ) id ∧
homotopic_with (λx. True) Y Y (f ◦ g) id)

7.4.23 Contractible spaces

corollary contractible_space_euclideanreal: contractible_space euclideanreal

abbreviation homotopy_eqv :: ′a::topological_space set ⇒ ′b::topological_space
set ⇒ bool

(infix ‹homotopy ′_eqv› 50 )
where S homotopy_eqv T ≡ top_of_set S homotopy_equivalent_space top_of_set

T

corollary bounded_path_connected_Compl_real:
fixes S :: real set
assumes bounded S path_connected(− S) shows S = {}

proposition path_connected_convex_diff_countable:
fixes U :: ′a::euclidean_space set
assumes convex U ¬ collinear U countable S

shows path_connected(U − S)

corollary connected_convex_diff_countable:
fixes U :: ′a::euclidean_space set
assumes convex U ¬ collinear U countable S
shows connected(U − S)

proposition path_connected_openin_diff_countable:
fixes S :: ′a::euclidean_space set
assumes connected S and ope: openin (top_of_set (affine hull S)) S

and ¬ collinear S countable T
shows path_connected(S − T )



Abstract_Euclidean_Space.thy 87

corollary connected_openin_diff_countable:
fixes S :: ′a::euclidean_space set
assumes connected S and ope: openin (top_of_set (affine hull S)) S

and ¬ collinear S countable T
shows connected(S − T )

corollary path_connected_open_diff_countable:
fixes S :: ′a::euclidean_space set
assumes 2 ≤ DIM ( ′a) open S connected S countable T
shows path_connected(S − T )

corollary connected_open_diff_countable:
fixes S :: ′a::euclidean_space set
assumes 2 ≤ DIM ( ′a) open S connected S countable T
shows connected(S − T )

7.4.24 Nullhomotopic mappings

proposition nullhomotopic_from_sphere_extension:
fixes f :: ′M ::euclidean_space ⇒ ′a::real_normed_vector
shows (∃ c. homotopic_with_canon (λx. True) (sphere a r) S f (λx. c)) ←→

(∃ g. continuous_on (cball a r) g ∧ g ‘ (cball a r) ⊆ S ∧
(∀ x ∈ sphere a r . g x = f x))

(is ?lhs = ?rhs)

end

7.5 Euclidean space and n-spheres, as subtopolo-
gies of n-dimensional space

theory Abstract_Euclidean_Space
imports Homotopy Locally
begin

7.5.1 Euclidean spaces as abstract topologies
7.5.2 n-dimensional spheres

proposition contractible_space_upper_hemisphere:
assumes k ≤ n
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shows contractible_space(subtopology (nsphere n) {x. x k ≥ 0})

corollary contractible_space_lower_hemisphere:
assumes k ≤ n
shows contractible_space(subtopology (nsphere n) {x. x k ≤ 0})

proposition nullhomotopic_nonsurjective_sphere_map:
assumes f : continuous_map (nsphere p) (nsphere p) f

and fim: f ‘ (topspace(nsphere p)) 6= topspace(nsphere p)
obtains a where homotopic_with (λx. True) (nsphere p) (nsphere p) f (λx. a)

end

7.6 Various Forms of Topological Spaces
theory Abstract_Topological_Spaces
imports Lindelof_Spaces Locally Abstract_Euclidean_Space Sum_Topology FSigma

begin

7.6.1 Connected topological spaces

7.6.2 The notion of "separated between" (complement of "con-
nected between)"

7.6.3 Connected components

7.6.4 Monotone maps (in the general topological sense)

proposition connected_space_monotone_quotient_map_preimage:
assumes f : monotone_map X Y f quotient_map X Y f and connected_space Y
shows connected_space X
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7.6.5 Other countability properties

7.6.6 Neigbourhood bases EXTRAS
7.6.7 T0 spaces and the Kolmogorov quotient

proposition t0_space_product_topology:
t0_space (product_topology X I ) ←→ product_topology X I = trivial_topology

∨ (∀ i ∈ I . t0_space (X i))
(is ?lhs=?rhs)

7.6.8 Kolmogorov quotients

7.6.9 Closed diagonals and graphs
7.6.10 KC spaces, those where all compact sets are closed.

proposition kc_space_prod_topology_left:
assumes X : kc_space X and Y : Hausdorff_space Y
shows kc_space (prod_topology X Y )

7.6.11 Technical results about proper maps, perfect maps,
etc

7.6.12 Regular spaces

proposition regular_space_continuous_proper_map_image:
assumes regular_space X and contf : continuous_map X Y f and pmapf :

proper_map X Y f
and fim: f ‘ (topspace X) = topspace Y

shows regular_space Y

proposition regular_space_perfect_map_image_eq:
assumes Hausdorff_space X and perf : perfect_map X Y f
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shows regular_space X ←→ regular_space Y (is ?lhs=?rhs)

7.6.13 Locally compact spaces

proposition quotient_map_prod_right:
assumes loc: locally_compact_space Z

and reg: Hausdorff_space Z ∨ regular_space Z
and f : quotient_map X Y f

shows quotient_map (prod_topology Z X) (prod_topology Z Y ) (λ(x,y). (x,f y))

7.6.14 Special characterizations of classes of functions into
and out of R

7.6.15 Normal spaces

7.6.16 Hereditary topological properties
7.6.17 Limits in a topological space
7.6.18 Quasi-components

7.6.19 Additional quasicomponent and continuum proper-
ties like Boundary Bumping

7.6.20 Compactly generated spaces (k-spaces)

end
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7.7 Abstract Metric Spaces
theory Abstract_Metric_Spaces
imports Elementary_Metric_Spaces Abstract_Limits Abstract_Topological_Spaces

begin

7.7.1 Metric topology
7.7.2 Bounded sets

7.7.3 Subspace of a metric space
7.7.4 Abstract type of metric spaces
7.7.5 The discrete metric

7.7.6 Metrizable spaces

7.7.7 Limits at a point in a topological space
7.7.8 Normal spaces and metric spaces
7.7.9 Topological limitin in metric spaces
7.7.10 Cauchy sequences and complete metric spaces
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7.7.11 Totally bounded subsets of metric spaces

7.7.12 Compactness in metric spaces

7.7.13 Continuous functions on metric spaces

7.7.14 Completely metrizable spaces

7.7.15 Product metric

7.7.16 More sequential characterizations in a metric space

7.7.17 Three strong notions of continuity for metric spaces
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7.7.18 Isometries
7.7.19 "Capped" equivalent bounded metrics and general prod-

uct metrics

proposition metrizable_space_product_topology:
metrizable_space (product_topology X I ) ←→

(product_topology X I ) = trivial_topology ∨
countable {i ∈ I . ¬ (∃ a. topspace(X i) ⊆ {a})} ∧
(∀ i ∈ I . metrizable_space (X i))

proposition completely_metrizable_space_product_topology:
completely_metrizable_space (product_topology X I ) ←→

(product_topology X I ) = trivial_topology ∨
countable {i ∈ I . ¬ (∃ a. topspace(X i) ⊆ {a})} ∧
(∀ i ∈ I . completely_metrizable_space (X i))

end

7.8 Infinite sums
theory Infinite_Sum

imports
Elementary_Topology
HOL−Library.Extended_Nonnegative_Real
HOL−Library.Complex_Order
HOL−Computational_Algebra.Formal_Power_Series

begin

7.8.1 Definition and syntax
7.8.2 General properties

7.8.3 Absolute convergence
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7.8.4 Extended reals and nats
7.8.5 Real numbers

7.8.6 Complex numbers

class complete_uniform_space = uniform_space +
assumes cauchy_filter_convergent ′: cauchy_filter (F :: ′a filter) =⇒ F 6= bot

=⇒ convergent_filter F

theorem (in uniform_space) controlled_sequences_convergent_imp_complete:
fixes U :: nat ⇒ ( ′a × ′a) set
assumes gen: countably_generated_filter (uniformity :: ( ′a × ′a) filter)
assumes U :

∧
n. eventually (λz. z ∈ U n) uniformity

assumes conv:
∧
(u :: nat ⇒ ′a). (

∧
N m n. N ≤ m =⇒ N ≤ n =⇒ (u m, u n)

∈ U N ) =⇒ convergent u
shows class.complete_uniform_space open uniformity

theorem (in uniform_space) controlled_seq_imp_Cauchy_seq:
fixes U :: nat ⇒ ( ′a × ′a) set
assumes U :

∧
P. eventually P uniformity =⇒ (∃n. ∀ x∈U n. P x)

assumes controlled:
∧

N m n. N ≤ m =⇒ N ≤ n =⇒ (f m, f n) ∈ U N
shows Cauchy f

theorem (in uniform_space) Cauchy_seq_convergent_imp_complete:
fixes U :: nat ⇒ ( ′a × ′a) set
assumes gen: countably_generated_filter (uniformity :: ( ′a × ′a) filter)
assumes conv:

∧
(u :: nat ⇒ ′a). Cauchy u =⇒ convergent u

shows class.complete_uniform_space open uniformity
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7.8.7 Infinite sums of formal power series

end

7.9 Ordered Euclidean Space
theory Ordered_Euclidean_Space
imports

Convex_Euclidean_Space Abstract_Limits
HOL−Library.Product_Order

beginclass ordered_euclidean_space = ord + inf + sup + abs + Inf + Sup +
euclidean_space +

assumes eucl_le: x ≤ y ←→ (∀ i∈Basis. x · i ≤ y · i)
assumes eucl_less_le_not_le: x < y ←→ x ≤ y ∧ ¬ y ≤ x
assumes eucl_inf : inf x y = (

∑
i∈Basis. inf (x · i) (y · i) ∗R i)

assumes eucl_sup: sup x y = (
∑

i∈Basis. sup (x · i) (y · i) ∗R i)
assumes eucl_Inf : Inf X = (

∑
i∈Basis. (INF x∈X . x · i) ∗R i)

assumes eucl_Sup: Sup X = (
∑

i∈Basis. (SUP x∈X . x · i) ∗R i)
assumes eucl_abs: |x| = (

∑
i∈Basis. |x · i| ∗R i)

begin

proposition compact_attains_Inf_componentwise:
fixes b:: ′a::ordered_euclidean_space
assumes b ∈ Basis assumes X 6= {} compact X
obtains x where x ∈ X x · b = Inf X · b

∧
y. y ∈ X =⇒ x · b ≤ y · b

proposition
compact_attains_Sup_componentwise:
fixes b:: ′a::ordered_euclidean_space
assumes b ∈ Basis assumes X 6= {} compact X
obtains x where x ∈ X x · b = Sup X · b

∧
y. y ∈ X =⇒ y · b ≤ x · b

proposition
fixes a :: ′a::ordered_euclidean_space
shows cbox_interval: cbox a b = {a..b}

and interval_cbox: {a..b} = cbox a b
and eucl_le_atMost: {x. ∀ i∈Basis. x · i <= a · i} = {..a}
and eucl_le_atLeast: {x. ∀ i∈Basis. a · i <= x · i} = {a..}

instantiation vec :: (ordered_euclidean_space, finite) ordered_euclidean_space
begin

definition inf x y = (χ i. inf (x $ i) (y $ i))
definition sup x y = (χ i. sup (x $ i) (y $ i))
definition Inf X = (χ i. (INF x∈X . x $ i))
definition Sup X = (χ i. (SUP x∈X . x $ i))
definition |x| = (χ i. |x $ i|)
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end

7.10 Arcwise-Connected Sets
theory Arcwise_Connected
imports Path_Connected Ordered_Euclidean_Space HOL−Computational_Algebra.Primes
begin

7.10.1 The Brouwer reduction theorem
theorem Brouwer_reduction_theorem_gen:

fixes S :: ′a::euclidean_space set
assumes closed S ϕ S

and ϕ:
∧

F . [[
∧

n. closed(F n);
∧

n. ϕ(F n);
∧

n. F(Suc n) ⊆ F n]] =⇒
ϕ(

⋂
(range F))

obtains T where T ⊆ S closed T ϕ T
∧

U . [[U ⊆ S ; closed U ; ϕ U ]] =⇒ ¬ (U
⊂ T )

corollary Brouwer_reduction_theorem:
fixes S :: ′a::euclidean_space set
assumes compact S ϕ S S 6= {}

and ϕ:
∧

F . [[
∧

n. compact(F n);
∧

n. F n 6= {};
∧

n. ϕ(F n);
∧

n. F(Suc n)
⊆ F n]] =⇒ ϕ(

⋂
(range F))

obtains T where T ⊆ S compact T T 6= {} ϕ T∧
U . [[U ⊆ S ; closed U ; U 6= {}; ϕ U ]] =⇒ ¬ (U ⊂ T )

7.10.2 Density of points with dyadic rational coordinates
proposition closure_dyadic_rationals:

closure (
⋃

k.
⋃

f ∈ Basis → �.
{
∑

i :: ′a :: euclidean_space ∈ Basis. (f i / 2^k) ∗R i }) = UNIV

corollary closure_rational_coordinates:
closure (

⋃
f ∈ Basis → �. {

∑
i :: ′a :: euclidean_space ∈ Basis. f i ∗R i }) =

UNIV

theorem homeomorphic_monotone_image_interval:
fixes f :: real ⇒ ′a::{real_normed_vector ,complete_space}
assumes cont_f : continuous_on {0 ..1} f
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and conn:
∧

y. connected ({0 ..1} ∩ f −‘ {y})
and f_1not0 : f 1 6= f 0

shows (f ‘ {0 ..1}) homeomorphic {0 ..1 ::real}

theorem path_contains_arc:
fixes p :: real ⇒ ′a::{complete_space,real_normed_vector}
assumes path p and a: pathstart p = a and b: pathfinish p = b and a 6= b
obtains q where arc q path_image q ⊆ path_image p pathstart q = a pathfinish

q = b

corollary path_connected_arcwise:
fixes S :: ′a::{complete_space,real_normed_vector} set
shows path_connected S ←→

(∀ x ∈ S . ∀ y ∈ S . x 6= y −→ (∃ g. arc g ∧ path_image g ⊆ S ∧ pathstart g
= x ∧ pathfinish g = y))

(is ?lhs = ?rhs)

corollary arc_connected_trans:
fixes g :: real ⇒ ′a::{complete_space,real_normed_vector}
assumes arc g arc h pathfinish g = pathstart h pathstart g 6= pathfinish h
obtains i where arc i path_image i ⊆ path_image g ∪ path_image h

pathstart i = pathstart g pathfinish i = pathfinish h

7.10.3 Accessibility of frontier points

end

7.11 The Urysohn lemma, its consequences and
other advanced material about metric spaces

theory Urysohn
imports Abstract_Topological_Spaces Abstract_Metric_Spaces Infinite_Sum Ar-
cwise_Connected
begin

7.11.1 Urysohn lemma and Tietze’s theorem
proposition Urysohn_lemma:

fixes a b :: real
assumes normal_space X closedin X S closedin X T disjnt S T a ≤ b
obtains f where continuous_map X (top_of_set {a..b}) f f ‘ S ⊆ {a} f ‘ T ⊆
{b}
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theorem Tietze_extension_closed_real_interval:
assumes normal_space X and closedin X S

and contf : continuous_map (subtopology X S) euclideanreal f
and fim: f ‘ S ⊆ {a..b} and a ≤ b

obtains g
where continuous_map X euclideanreal g∧

x. x ∈ S =⇒ g x = f x g ‘ topspace X ⊆ {a..b}

theorem Tietze_extension_realinterval:
assumes XS : normal_space X closedin X S and T : is_interval T T 6= {}

and contf : continuous_map (subtopology X S) euclideanreal f
and f ‘ S ⊆ T

obtains g where continuous_map X euclideanreal g g ‘ topspace X ⊆ T
∧

x.
x ∈ S =⇒ g x = f x

7.11.2 Random metric space stuff
7.11.3 Hereditarily normal spaces

7.11.4 Completely regular spaces

proposition locally_compact_regular_imp_completely_regular_space:
assumes locally_compact_space X Hausdorff_space X ∨ regular_space X
shows completely_regular_space X

proposition completely_regular_space_product_topology:
completely_regular_space (product_topology X I ) ←→
(∃ i∈I . X i = trivial_topology) ∨ (∀ i ∈ I . completely_regular_space (X i))
(is ?lhs ←→ ?rhs)

7.11.5 More generally, the k-ification functor

7.11.6 One-point compactifications and the Alexandroff ex-
tension construction

proposition kc_space_one_point_compactification_gen:
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assumes compact_space X
shows kc_space X ←→

openin X (topspace X − {a}) ∧ (∀K . compactin X K ∧ a /∈K −→ closedin
X K ) ∧

k_space (subtopology X (topspace X − {a})) ∧ kc_space (subtopology X
(topspace X − {a}))
(is ?lhs ←→ ?rhs)

proposition istopology_Alexandroff_open: istopology (Alexandroff_open X)

proposition regular_space_one_point_compactification:
assumes compact_space X and ope: openin X (topspace X − {a})

and §:
∧

K . [[compactin (subtopology X (topspace X − {a})) K ; closedin
(subtopology X (topspace X − {a})) K ]] =⇒ closedin X K

shows regular_space X ←→
regular_space (subtopology X (topspace X − {a})) ∧ locally_compact_space

(subtopology X (topspace X − {a}))
(is ?lhs ←→ ?rhs)

proposition Hausdorff_space_one_point_compactification_asymmetric_prod:
assumes compact_space X
shows Hausdorff_space X ←→

kc_space (prod_topology X (subtopology X (topspace X − {a}))) ∧
k_space (prod_topology X (subtopology X (topspace X − {a}))) (is ?lhs

←→ ?rhs)

7.11.7 Extending continuous maps "pointwise" in a regular
space

7.11.8 Extending Cauchy continuous functions to the closure
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7.11.9 Metric space of bounded functions

7.11.10 Metric space of continuous bounded functions

7.11.11 Existence of completion for any metric space M as
a subspace of M=>R

7.11.12 Contractions
7.11.13 The Baire Category Theorem

7.11.14 Sierpinski-Hausdorff type results about countable closed
unions

7.11.15 The Tychonoff embedding

7.11.16 Urysohn and Tietze analogs for completely regular
spaces
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7.11.17 Size bounds on connected or path-connected spaces

7.11.18 Lavrentiev extension etc

7.11.19 Embedding in products and hence more about com-
pletely metrizable spaces

7.11.20 Theorems from Kuratowski

7.11.21 A perfect set in common cases must have at least
the cardinality of the continuum

proposition Kuratowski_component_number_invariance_aux:
assumes compact_space X and HsX : Hausdorff_space X

and lcX : locally_connected_space X and hnX : hereditarily normal_space X
and hom: (subtopology X S) homeomorphic_space (subtopology X T )
and leXS : {..<n::nat} . connected_components_of (subtopology X (topspace

X − S))
assumes §:

∧
S T .

[[closedin X S ; closedin X T ; (subtopology X S) homeomorphic_space
(subtopology X T );

{..<n::nat} . connected_components_of (subtopology X (topspace X
− S))]]

=⇒ {..<n::nat} . connected_components_of (subtopology X (topspace
X − T ))

shows {..<n::nat} . connected_components_of (subtopology X (topspace X −
T ))
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theorem Kuratowski_component_number_invariance:
assumes compact_space X Hausdorff_space X locally_connected_space X hered-

itarily normal_space X
shows ((∀S T n.

closedin X S ∧ closedin X T ∧
(subtopology X S) homeomorphic_space (subtopology X T )
−→ (connected_components_of

(subtopology X (topspace X − S)) ≈ {..<n::nat} ←→
connected_components_of
(subtopology X (topspace X − T )) ≈ {..<n::nat})) ←→

(∀S T n.
(subtopology X S) homeomorphic_space (subtopology X T )
−→ (connected_components_of

(subtopology X (topspace X − S)) ≈ {..<n::nat} ←→
connected_components_of
(subtopology X (topspace X − T )) ≈ {..<n::nat})))

(is ?lhs = ?rhs)

end
theory Sparse_In

imports Homotopy

begin

7.11.22 A set of points sparse in another set

7.11.23 Co-sparseness filter

end
theory Isolated

imports Elementary_Metric_Spaces Sparse_In

begin

7.11.24 Isolate and discrete

end
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7.12 Operator Norm
theory Operator_Norm
imports Complex_Main
begin

definition
onorm :: ( ′a::real_normed_vector ⇒ ′b::real_normed_vector) ⇒ real where
onorm f = (SUP x . norm (f x) / norm x)

proposition onorm_bound:
assumes 0 ≤ b and

∧
x. norm (f x) ≤ b ∗ norm x

shows onorm f ≤ b

end

7.13 Limits on the Extended Real Number Line
theory Extended_Real_Limits
imports

Topology_Euclidean_Space
HOL−Library.Extended_Real
HOL−Library.Extended_Nonnegative_Real
HOL−Library.Indicator_Function

begin

7.13.1 Extended-Real.thy
Continuity of addition

Continuity of multiplication

Continuity of division

7.13.2 Extended-Nonnegative-Real.thy
7.13.3 monoset

7.13.4 Relate extended reals and the indicator function

end
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7.14 Radius of Convergence and Summation Tests
theory Summation_Tests
imports

Complex_Main
HOL−Library.Discrete_Functions
HOL−Library.Extended_Real
HOL−Library.Liminf_Limsup
Extended_Real_Limits

begin

7.14.1 Convergence tests for infinite sums

theorem root_test_convergence ′:
fixes f :: nat ⇒ ′a :: banach
defines l ≡ limsup (λn. ereal (root n (norm (f n))))
assumes l: l < 1
shows summable f

theorem root_test_divergence:
fixes f :: nat ⇒ ′a :: banach
defines l ≡ limsup (λn. ereal (root n (norm (f n))))
assumes l: l > 1
shows ¬summable f

theorem condensation_test:
assumes mono:

∧
m. 0 < m =⇒ f (Suc m) ≤ f m

assumes nonneg:
∧

n. f n ≥ 0
shows summable f ←→ summable (λn. 2^n ∗ f (2^n))

theorem summable_complex_powr_iff :
assumes Re s < −1
shows summable (λn. exp (of_real (ln (of_nat n)) ∗ s))

theorem kummers_test_convergence:
fixes f p :: nat ⇒ real
assumes pos_f : eventually (λn. f n > 0 ) sequentially
assumes nonneg_p: eventually (λn. p n ≥ 0 ) sequentially
defines l ≡ liminf (λn. ereal (p n ∗ f n / f (Suc n) − p (Suc n)))
assumes l: l > 0
shows summable f

theorem kummers_test_divergence:
fixes f p :: nat ⇒ real
assumes pos_f : eventually (λn. f n > 0 ) sequentially
assumes pos_p: eventually (λn. p n > 0 ) sequentially
assumes divergent_p: ¬summable (λn. inverse (p n))
defines l ≡ limsup (λn. ereal (p n ∗ f n / f (Suc n) − p (Suc n)))
assumes l: l < 0
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shows ¬summable f
theorem ratio_test_convergence:

fixes f :: nat ⇒ real
assumes pos_f : eventually (λn. f n > 0 ) sequentially
defines l ≡ liminf (λn. ereal (f n / f (Suc n)))
assumes l: l > 1
shows summable f

theorem ratio_test_divergence:
fixes f :: nat ⇒ real
assumes pos_f : eventually (λn. f n > 0 ) sequentially
defines l ≡ limsup (λn. ereal (f n / f (Suc n)))
assumes l: l < 1
shows ¬summable f

theorem raabes_test_convergence:
fixes f :: nat ⇒ real

assumes pos: eventually (λn. f n > 0 ) sequentially
defines l ≡ liminf (λn. ereal (of_nat n ∗ (f n / f (Suc n) − 1 )))
assumes l: l > 1
shows summable f

theorem raabes_test_divergence:
fixes f :: nat ⇒ real

assumes pos: eventually (λn. f n > 0 ) sequentially
defines l ≡ limsup (λn. ereal (of_nat n ∗ (f n / f (Suc n) − 1 )))
assumes l: l < 1
shows ¬summable f

7.14.2 Radius of convergence
definition conv_radius :: (nat ⇒ ′a :: banach) ⇒ ereal where

conv_radius f = inverse (limsup (λn. ereal (root n (norm (f n)))))

theorem abs_summable_in_conv_radius:
fixes f :: nat ⇒ ′a :: {banach, real_normed_div_algebra}
assumes ereal (norm z) < conv_radius f
shows summable (λn. norm (f n ∗ z ^ n))

theorem not_summable_outside_conv_radius:
fixes f :: nat ⇒ ′a :: {banach, real_normed_div_algebra}
assumes ereal (norm z) > conv_radius f
shows ¬summable (λn. f n ∗ z ^ n)

end
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7.15 Uniform Limit and Uniform Convergence
theory Uniform_Limit
imports Connected Summation_Tests Infinite_Sum
begin

7.15.1 Definition
definition uniformly_on :: ′a set ⇒ ( ′a ⇒ ′b::metric_space) ⇒ ( ′a ⇒ ′b) filter

where uniformly_on S l = (INF e∈{0 <..}. principal {f . ∀ x∈S . dist (f x) (l x)
< e})

abbreviation
uniform_limit S f l ≡ filterlim f (uniformly_on S l)

proposition uniform_limit_iff :
uniform_limit S f l F ←→ (∀ e>0 . ∀ F n in F . ∀ x∈S . dist (f n x) (l x) < e)

7.15.2 Exchange limits
proposition swap_uniform_limit ′:

assumes f : ∀ F n in F . (f n −−−→ g n) G
assumes g: (g −−−→ l) F
assumes uc: uniform_limit S f h F
assumes ev: ∀ F x in G. x ∈ S
assumes ¬trivial_limit F
shows (h −−−→ l) G

corollary swap_uniform_limit:
assumes ∀ F n in F . (f n −−−→ g n) (at x within S)
assumes (g −−−→ l) F uniform_limit S f h F ¬trivial_limit F
shows (h −−−→ l) (at x within S)

7.15.3 Uniform limit theorem

theorem uniform_limit_theorem:
assumes c: ∀ F n in F . continuous_on A (f n)
assumes ul: uniform_limit A f l F
assumes ¬ trivial_limit F
shows continuous_on A l

7.15.4 Comparison Test
7.15.5 Weierstrass M-Test
proposition Weierstrass_m_test_ev:
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fixes f :: _ ⇒ _ ⇒ _ :: banach
assumes eventually (λn. ∀ x∈A. norm (f n x) ≤ M n) sequentially
assumes summable M
shows uniform_limit A (λn x.

∑
i<n. f i x) (λx. suminf (λi. f i x)) sequentially

7.15.6 Power series and uniform convergence
proposition powser_uniformly_convergent:

fixes a :: nat ⇒ ′a::{real_normed_div_algebra,banach}
assumes r < conv_radius a
shows uniformly_convergent_on (cball ξ r) (λn x.

∑
i<n. a i ∗ (x − ξ) ^ i)

7.15.7 Tannery’s Theorem

end

7.16 Bounded Linear Function
theory Bounded_Linear_Function
imports

Topology_Euclidean_Space
Operator_Norm
Uniform_Limit
Function_Topology

begin

7.16.1 Type of bounded linear functions
typedef (overloaded) ( ′a, ′b) blinfun (‹(‹notation=‹infix ⇒L››_ ⇒L /_)› [22 ,
21 ] 21 ) =
{f :: ′a::real_normed_vector⇒ ′b::real_normed_vector . bounded_linear f }
morphisms blinfun_apply Blinfun

7.16.2 Type class instantiations
instantiation blinfun :: (real_normed_vector , real_normed_vector) real_normed_vector
begin

lift_definition norm_blinfun :: ′a ⇒L
′b ⇒ real is onorm

lift_definition zero_blinfun :: ′a ⇒L
′b is λx. 0

lift_definition plus_blinfun :: ′a ⇒L
′b ⇒ ′a ⇒L

′b ⇒ ′a ⇒L
′b
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is λf g x. f x + g x

lift_definition scaleR_blinfun::real ⇒ ′a ⇒L
′b ⇒ ′a ⇒L

′b is λr f x. r ∗R f x

7.16.3 The strong operator topology on continuous linear
operators

definition strong_operator_topology::( ′a::real_normed_vector ⇒L
′b::real_normed_vector)

topology
where strong_operator_topology = pullback_topology UNIV blinfun_apply euclidean

end

7.17 Derivative
theory Derivative

imports
Bounded_Linear_Function
Line_Segment
Convex_Euclidean_Space

begin

7.17.1 Derivatives
proposition has_derivative_within ′:
(f has_derivative f ′)(at x within s) ←→

bounded_linear f ′ ∧
(∀ e>0 . ∃ d>0 . ∀ x ′∈s. 0 < norm (x ′ − x) ∧ norm (x ′ − x) < d −→

norm (f x ′ − f x − f ′(x ′ − x)) / norm (x ′ − x) < e)

7.17.2 Differentiability
definition

differentiable_on :: ( ′a::real_normed_vector ⇒ ′b::real_normed_vector)⇒ ′a set
⇒ bool

(infix ‹differentiable ′_on› 50 )
where f differentiable_on s ←→ (∀ x∈s. f differentiable (at x within s))
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7.17.3 Frechet derivative and Jacobian matrix

proposition frechet_derivative_works:
f differentiable net ←→ (f has_derivative (frechet_derivative f net)) net

7.17.4 Differentiability implies continuity
proposition differentiable_imp_continuous_within:

f differentiable (at x within s) =⇒ continuous (at x within s) f

7.17.5 The chain rule
proposition diff_chain_within[derivative_intros]:

assumes (f has_derivative f ′) (at x within s)
and (g has_derivative g ′) (at (f x) within (f ‘ s))

shows ((g ◦ f ) has_derivative (g ′ ◦ f ′))(at x within s)

7.17.6 Uniqueness of derivative

The general result is a bit messy because we need approachability of the
limit point from any direction. But OK for nontrivial intervals etc.
proposition frechet_derivative_unique_within:

fixes f :: ′a::euclidean_space ⇒ ′b::real_normed_vector
assumes 1 : (f has_derivative f ′) (at x within S)

and 2 : (f has_derivative f ′′) (at x within S)
and S :

∧
i e. [[i∈Basis; e>0 ]] =⇒ ∃ d. 0 < |d| ∧ |d| < e ∧ (x + d ∗R i) ∈ S

shows f ′ = f ′′

proposition frechet_derivative_unique_within_closed_interval:
fixes f :: ′a::euclidean_space ⇒ ′b::real_normed_vector
assumes ab:

∧
i. i∈Basis =⇒ a·i < b·i

and x: x ∈ cbox a b
and (f has_derivative f ′ ) (at x within cbox a b)
and (f has_derivative f ′′) (at x within cbox a b)

shows f ′ = f ′′

7.17.7 Derivatives of local minima and maxima are zero
7.17.8 One-dimensional mean value theorem
7.17.9 More general bound theorems
proposition differentiable_bound_general:

fixes f :: real ⇒ ′a::real_normed_vector
assumes a < b
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and f_cont: continuous_on {a..b} f
and phi_cont: continuous_on {a..b} ϕ
and f ′:

∧
x. a < x =⇒ x < b =⇒ (f has_vector_derivative f ′ x) (at x)

and phi ′:
∧

x. a < x =⇒ x < b =⇒ (ϕ has_vector_derivative ϕ ′ x) (at x)
and bnd:

∧
x. a < x =⇒ x < b =⇒ norm (f ′ x) ≤ ϕ ′ x

shows norm (f b − f a) ≤ ϕ b − ϕ a

7.17.10 Differentiability of inverse function (most basic form)
proposition has_derivative_inverse:

fixes f :: ′a::real_normed_vector ⇒ ′b::real_normed_vector
assumes compact S

and x ∈ S
and fx: f x ∈ interior (f ‘ S)
and continuous_on S f
and gf :

∧
y. y ∈ S =⇒ g (f y) = y

and B: (f has_derivative f ′) (at x) bounded_linear g ′ g ′ ◦ f ′ = id
shows (g has_derivative g ′) (at (f x))

proposition has_derivative_locally_injective:
fixes f :: ′n::euclidean_space ⇒ ′m::euclidean_space
assumes a ∈ S

and open S
and bling: bounded_linear g ′

and g ′ ◦ f ′ a = id
and derf :

∧
x. x ∈ S =⇒ (f has_derivative f ′ x) (at x)

and
∧

e. e > 0 =⇒ ∃ d>0 . ∀ x. dist a x < d −→ onorm (λv. f ′ x v − f ′ a v)
< e

obtains r where r > 0 ball a r ⊆ S inj_on f (ball a r)

7.17.11 Uniformly convergent sequence of derivatives

proposition has_derivative_sequence:
fixes f :: nat ⇒ ′a::real_normed_vector ⇒ ′b::banach
assumes convex S

and derf :
∧

n x. x ∈ S =⇒ ((f n) has_derivative (f ′ n x)) (at x within S)
and nle:

∧
e. e > 0 =⇒ ∀ F n in sequentially. ∀ x∈S . ∀ h. norm (f ′ n x h − g ′

x h) ≤ e ∗ norm h
and x0 ∈ S
and lim: ((λn. f n x0 ) −−−→ l) sequentially

shows ∃ g. ∀ x∈S . (λn. f n x) −−−−→ g x ∧ (g has_derivative g ′(x)) (at x within
S)

7.17.12 Differentiation of a series
proposition has_derivative_series:

fixes f :: nat ⇒ ′a::real_normed_vector ⇒ ′b::banach
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assumes convex S
and

∧
n x. x ∈ S =⇒ ((f n) has_derivative (f ′ n x)) (at x within S)

and
∧

e. e>0 =⇒ ∀ F n in sequentially. ∀ x∈S . ∀ h. norm (sum (λi. f ′ i x h)
{..<n} − g ′ x h) ≤ e ∗ norm h

and x ∈ S
and (λn. f n x) sums l

shows ∃ g. ∀ x∈S . (λn. f n x) sums (g x) ∧ (g has_derivative g ′ x) (at x within
S)

7.17.13 Derivative as a vector

proposition vector_derivative_works:
f differentiable net ←→ (f has_vector_derivative (vector_derivative f net)) net
(is ?l = ?r)

7.17.14 Field differentiability
definition field_differentiable :: [ ′a ⇒ ′a::real_normed_field, ′a filter ] ⇒ bool

(infixr ‹(field ′_differentiable)› 50 )
where f field_differentiable F ≡ ∃ f ′. (f has_field_derivative f ′) F

7.17.15 Field derivative
definition deriv :: ( ′a ⇒ ′a::real_normed_field) ⇒ ′a ⇒ ′a where

deriv f x ≡ SOME D. DERIV f x :> D

proposition field_differentiable_derivI :
f field_differentiable (at x) =⇒ (f has_field_derivative deriv f x) (at x)

7.17.16 Relation between convexity and derivative
proposition convex_on_imp_above_tangent:

assumes convex: convex_on A f and connected: connected A
assumes c: c ∈ interior A and x : x ∈ A
assumes deriv: (f has_field_derivative f ′) (at c within A)
shows f x − f c ≥ f ′ ∗ (x − c)

7.17.17 Partial derivatives

proposition has_derivative_partialsI :
fixes f :: ′a::real_normed_vector ⇒ ′b::real_normed_vector ⇒ ′c::real_normed_vector
assumes fx: ((λx. f x y) has_derivative fx) (at x within X)
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assumes fy:
∧

x y. x ∈ X =⇒ y ∈ Y =⇒ ((λy. f x y) has_derivative blinfun_apply
(fy x y)) (at y within Y )

assumes fy_cont[unfolded continuous_within]: continuous (at (x, y) within X ×
Y ) (λ(x, y). fy x y)

assumes y ∈ Y convex Y
shows ((λ(x, y). f x y) has_derivative (λ(tx, ty). fx tx + fy x y ty)) (at (x, y)

within X × Y )

7.17.18 The Inverse Function Theorem
theorem inverse_function_theorem:

fixes f :: ′a::euclidean_space ⇒ ′a
and f ′:: ′a ⇒ ( ′a ⇒L

′a)
assumes open U

and derf :
∧

x. x ∈ U =⇒ (f has_derivative (blinfun_apply (f ′ x))) (at x)
and contf : continuous_on U f ′

and x0 ∈ U
and invf : invf oL f ′ x0 = id_blinfun

obtains U ′ V g g ′ where open U ′ U ′ ⊆ U x0 ∈ U ′ open V f x0 ∈ V homeo-
morphism U ′ V f g∧

y. y ∈ V =⇒ (g has_derivative (g ′ y)) (at y)∧
y. y ∈ V =⇒ g ′ y = inv (blinfun_apply (f ′(g y)))∧
y. y ∈ V =⇒ bij (blinfun_apply (f ′(g y)))

7.17.19 The concept of continuously differentiable
definition C1_differentiable_on :: (real ⇒ ′a::real_normed_vector)⇒ real set ⇒
bool

(infix ‹C1 ′_differentiable ′_on› 50 )
where
f C1_differentiable_on S ←→
(∃D. (∀ x ∈ S . (f has_vector_derivative (D x)) (at x)) ∧ continuous_on S D)

definition piecewise_C1_differentiable_on
(infixr ‹piecewise ′_C1 ′_differentiable ′_on› 50 )

where f piecewise_C1_differentiable_on i ≡
continuous_on i f ∧
(∃S . finite S ∧ (f C1_differentiable_on (i − S)))

end

7.18 Finite Cartesian Products of Euclidean Spaces
theory Cartesian_Euclidean_Space
imports Derivative
begin
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7.18.1 Closures and interiors of halfspaces
7.18.2 Bounds on components etc. relative to operator norm

7.18.3 Convex Euclidean Space
7.18.4 Arbitrarily good rational approximations

proposition matrix_rational_approximation:
fixes A :: real^ ′n^ ′m
assumes e > 0
obtains B where

∧
i j. B$i$j ∈ � onorm(λx. (A − B) ∗v x) < e

7.18.5 Derivative
definition jacobian f net = matrix(frechet_derivative f net)

proposition jacobian_works:
(f ::(real^ ′a) ⇒ (real^ ′b)) differentiable net ←→
(f has_derivative (λh. (jacobian f net) ∗v h)) net (is ?lhs = ?rhs)

proposition differential_zero_maxmin_cart:
fixes f ::real^ ′a ⇒ real^ ′b
assumes 0 < e ((∀ y ∈ ball x e. (f y)$k ≤ (f x)$k) ∨ (∀ y∈ball x e. (f x)$k ≤ (f

y)$k))
f differentiable (at x)

shows jacobian f (at x) $ k = 0

end

7.19 Complex Analysis Basics
theory Complex_Analysis_Basics

imports Derivative HOL−Library.Nonpos_Ints Uncountable_Sets
begin

7.19.1 Holomorphic functions
definition holomorphic_on :: [complex ⇒ complex, complex set] ⇒ bool

(infixl ‹(holomorphic ′_on)› 50 )
where f holomorphic_on s ≡ ∀ x∈s. f field_differentiable (at x within s)
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named_theorems holomorphic_intros structural introduction rules for holomor-
phic_on

7.19.2 Analyticity on a set
definition analytic_on (infixl ‹(analytic ′_on)› 50 )

where f analytic_on S ≡ ∀ x ∈ S . ∃ ε. 0 < ε ∧ f holomorphic_on (ball x ε)

named_theorems analytic_intros introduction rules for proving analyticity

end

7.20 Complex Transcendental Functions
theory Complex_Transcendental
imports

Complex_Analysis_Basics Summation_Tests HOL−Library.Periodic_Fun
begin

7.20.1 Möbius transformations
definition moebius a b c d ≡ (λz. (a∗z+b) / (c∗z+d :: ′a :: field))

theorem moebius_inverse:
assumes a ∗ d 6= b ∗ c c ∗ z + d 6= 0
shows moebius d (−b) (−c) a (moebius a b c d z) = z

7.20.2 Euler and de Moivre formulas

theorem exp_Euler : exp(i ∗ z) = cos(z) + i ∗ sin(z)

theorem Euler : exp(z) = of_real(exp(Re z)) ∗
(of_real(cos(Im z)) + i ∗ of_real(sin(Im z)))

7.20.3 The argument of a complex number (HOL Light ver-
sion)

definition is_Arg :: [complex,real] ⇒ bool
where is_Arg z r ≡ z = of_real(norm z) ∗ exp(i ∗ of_real r)

definition Arg2pi :: complex ⇒ real
where Arg2pi z ≡ if z = 0 then 0 else THE t. 0 ≤ t ∧ t < 2∗pi ∧ is_Arg z t
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7.20.4 The principal branch of the Complex logarithm
instantiation complex :: ln
begin

definition ln_complex :: complex ⇒ complex
where ln_complex ≡ λz. THE w. exp w = z & −pi < Im(w) & Im(w) ≤ pi

theorem Ln_series:
fixes z :: complex
assumes norm z < 1
shows (λn. (−1 )^Suc n / of_nat n ∗ z^n) sums ln (1 + z) (is (λn. ?f n ∗

z^n) sums _)

corollary norm_Ln_prod_le:
fixes f :: ′a ⇒ complex
assumes

∧
x. x ∈ A =⇒ f x 6= 0

shows cmod (Ln (prod f A)) ≤ (
∑

x ∈ A. cmod (Ln (f x)))

7.20.5 The Argument of a Complex Number
lemma Arg_def :

shows Arg z = (if z = 0 then 0 else Im (Ln z))

7.20.6 The Unwinding Number and the Ln product Formula

definition unwinding :: complex ⇒ int where
unwinding z ≡ THE k. of_int k = (z − Ln(exp z)) / (of_real(2∗pi) ∗ i)

7.20.7 Characterisation of Im (Ln z) (Wenda Li)
7.20.8 Complex arctangent
definition Arctan :: complex ⇒ complex where

Arctan ≡ λz. (i/2 ) ∗ Ln((1 − i∗z) / (1 + i∗z))

theorem Arctan_series:
assumes z: norm (z :: complex) < 1
defines g ≡ λn. if odd n then −i∗i^n / n else 0
defines h ≡ λz n. (−1 )^n / of_nat (2∗n+1 ) ∗ (z::complex)^(2∗n+1 )
shows (λn. g n ∗ z^n) sums Arctan z
and h z sums Arctan z

theorem ln_series_quadratic:
assumes x: x > (0 ::real)
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shows (λn. (2∗((x − 1 ) / (x + 1 )) ^ (2∗n+1 ) / of_nat (2∗n+1 ))) sums ln x

7.20.9 Inverse Sine
definition Arcsin :: complex ⇒ complex where

Arcsin ≡ λz. −i ∗ Ln(i ∗ z + csqrt(1 − z2))

7.20.10 Inverse Cosine
definition Arccos :: complex ⇒ complex where

Arccos ≡ λz. −i ∗ Ln(z + i ∗ csqrt(1 − z2))

7.20.11 Roots of unity
theorem complex_root_unity:

fixes j::nat
assumes n 6= 0

shows exp(2 ∗ of_real pi ∗ i ∗ of_nat j / of_nat n)^n = 1

corollary bij_betw_roots_unity:
bij_betw (λj. exp(2 ∗ of_real pi ∗ i ∗ of_nat j / of_nat n))

{..<n} {exp(2 ∗ of_real pi ∗ i ∗ of_nat j / of_nat n) | j. j < n}

7.20.12 Normalisation of angles
7.20.13 Convexity of circular sectors in the complex plane
7.20.14 Complex cones

end



Chapter 8

Measure and Integration
Theory

theory Sigma_Algebra
imports

Complex_Main
HOL−Library.Countable_Set
HOL−Library.FuncSet
HOL−Library.Indicator_Function
HOL−Library.Extended_Nonnegative_Real
HOL−Library.Disjoint_Sets

begin

8.1 Sigma Algebra
8.1.1 Families of sets
locale subset_class =

fixes Ω :: ′a set and M :: ′a set set
assumes space_closed: M ⊆ Pow Ω

locale semiring_of_sets = subset_class +
assumes empty_sets[iff ]: {} ∈ M
assumes Int[intro]:

∧
a b. a ∈ M =⇒ b ∈ M =⇒ a ∩ b ∈ M

assumes Diff_cover :∧
a b. a ∈ M =⇒ b ∈ M =⇒ ∃C⊆M . finite C ∧ disjoint C ∧ a − b =

⋃
C

locale ring_of_sets = semiring_of_sets +
assumes Un [intro]:

∧
a b. a ∈ M =⇒ b ∈ M =⇒ a ∪ b ∈ M

locale algebra = ring_of_sets +
assumes top [iff ]: Ω ∈ M

proposition algebra_iff_Un:
algebra Ω M ←→

M ⊆ Pow Ω ∧
{} ∈ M ∧
(∀ a ∈ M . Ω − a ∈ M ) ∧
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(∀ a ∈ M . ∀ b ∈ M . a ∪ b ∈ M ) (is _ ←→ ?Un)

proposition algebra_iff_Int:
algebra Ω M ←→

M ⊆ Pow Ω & {} ∈ M &
(∀ a ∈ M . Ω − a ∈ M ) &
(∀ a ∈ M . ∀ b ∈ M . a ∩ b ∈ M ) (is _ ←→ ?Int)

locale sigma_algebra = algebra +
assumes countable_nat_UN [intro]:

∧
A. range A ⊆ M =⇒ (

⋃
i::nat. A i) ∈ M

Sigma algebras can naturally be created as the closure of any set of M with
regard to the properties just postulated.
inductive_set sigma_sets :: ′a set ⇒ ′a set set ⇒ ′a set set

for sp :: ′a set and A :: ′a set set
where

Basic[intro, simp]: a ∈ A =⇒ a ∈ sigma_sets sp A
| Empty: {} ∈ sigma_sets sp A
| Compl: a ∈ sigma_sets sp A =⇒ sp − a ∈ sigma_sets sp A
| Union: (

∧
i::nat. a i ∈ sigma_sets sp A) =⇒ (

⋃
i. a i) ∈ sigma_sets sp A

definition closed_cdi :: ′a set ⇒ ′a set set ⇒ bool where
closed_cdi Ω M ←→
M ⊆ Pow Ω &
(∀ s ∈ M . Ω − s ∈ M ) &
(∀A. (range A ⊆ M ) & (A 0 = {}) & (∀n. A n ⊆ A (Suc n)) −→

(
⋃

i. A i) ∈ M ) &
(∀A. (range A ⊆ M ) & disjoint_family A −→ (

⋃
i::nat. A i) ∈ M )

locale Dynkin_system = subset_class +
assumes space: Ω ∈ M

and compl[intro!]:
∧

A. A ∈ M =⇒ Ω − A ∈ M
and UN [intro!]:

∧
A. disjoint_family A =⇒ range A ⊆ M

=⇒ (
⋃

i::nat. A i) ∈ M
definition Int_stable :: ′a set set ⇒ bool where
Int_stable M ←→ (∀ a ∈ M . ∀ b ∈ M . a ∩ b ∈ M )
definition Dynkin :: ′a set ⇒ ′a set set ⇒ ′a set set where

Dynkin Ω M = (
⋂
{D. Dynkin_system Ω D ∧ M ⊆ D})

The reason to introduce Dynkin-systems is the following induction rules for
σ-algebras generated by a generator closed under intersection.
proposition sigma_sets_induct_disjoint[consumes 3 , case_names basic empty
compl union]:

assumes Int_stable G
and closed: G ⊆ Pow Ω
and A: A ∈ sigma_sets Ω G

assumes basic:
∧

A. A ∈ G =⇒ P A
and empty: P {}
and compl:

∧
A. A ∈ sigma_sets Ω G =⇒ P A =⇒ P (Ω − A)
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and union:
∧

A. disjoint_family A =⇒ range A ⊆ sigma_sets Ω G =⇒ (
∧

i.
P (A i)) =⇒ P (

⋃
i::nat. A i)

shows P A

8.1.2 Measure type
definition positive :: ′a set set ⇒ ( ′a set ⇒ ennreal) ⇒ bool where

positive M µ ←→ µ {} = 0

definition countably_additive :: ′a set set ⇒ ( ′a set ⇒ ennreal) ⇒ bool where
countably_additive M f ←→
(∀A. range A ⊆ M −→ disjoint_family A −→ (

⋃
i. A i) ∈ M −→

(
∑

i. f (A i)) = f (
⋃

i. A i))

definition measure_space :: ′a set ⇒ ′a set set ⇒ ( ′a set ⇒ ennreal) ⇒ bool
where
measure_space Ω A µ ←→

sigma_algebra Ω A ∧ positive A µ ∧ countably_additive A µ

typedef ′a measure =
{(Ω:: ′a set, A, µ). (∀ a∈−A. µ a = 0 ) ∧ measure_space Ω A µ }

definition space :: ′a measure ⇒ ′a set where
space M = fst (Rep_measure M )

definition sets :: ′a measure ⇒ ′a set set where
sets M = fst (snd (Rep_measure M ))

definition emeasure :: ′a measure ⇒ ′a set ⇒ ennreal where
emeasure M = snd (snd (Rep_measure M ))

definition measure :: ′a measure ⇒ ′a set ⇒ real where
measure M A = enn2real (emeasure M A)

definition measure_of :: ′a set ⇒ ′a set set ⇒ ( ′a set ⇒ ennreal) ⇒ ′a measure
where

measure_of Ω A µ ≡
Abs_measure (Ω, if A ⊆ Pow Ω then sigma_sets Ω A else {{}, Ω},
λa. if a ∈ sigma_sets Ω A ∧ measure_space Ω (sigma_sets Ω A) µ then µ

a else 0 )
proposition emeasure_measure_of :

assumes M : M = measure_of Ω A µ
assumes ms: A ⊆ Pow Ω positive (sets M ) µ countably_additive (sets M ) µ
assumes X : X ∈ sets M
shows emeasure M X = µ X

definition measurable :: ′a measure ⇒ ′b measure ⇒ ( ′a ⇒ ′b) set
(infixr ‹→M › 60 ) where

measurable A B = {f ∈ space A → space B. ∀ y ∈ sets B. f −‘ y ∩ space A ∈ sets
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A}
definition count_space :: ′a set ⇒ ′a measure where
count_space Ω = measure_of Ω (Pow Ω) (λA. if finite A then of_nat (card A)
else ∞)

8.1.3 The smallest σ-algebra regarding a function
definition vimage_algebra :: ′a set ⇒ ( ′a ⇒ ′b) ⇒ ′b measure ⇒ ′a measure
where

vimage_algebra X f M = sigma X {f −‘ A ∩ X | A. A ∈ sets M}

end

8.2 Measurability Prover
theory Measurable

imports
Sigma_Algebra
HOL−Library.Order_Continuity

begin

method_setup measurable = ‹ Scan.lift (Scan.succeed (METHOD o Measur-
able.measurable_tac)) ›

measurability prover

simproc_setup measurable (A ∈ sets M | f ∈ measurable M N ) =
‹K Measurable.proc›

end

8.3 Measure Spaces
theory Measure_Space
imports

Measurable HOL−Library.Extended_Nonnegative_Real
begin

8.3.1 µ-null sets
definition null_sets :: ′a measure ⇒ ′a set set where

null_sets M = {N∈sets M . emeasure M N = 0}

8.3.2 The almost everywhere filter (i.e. quantifier)
definition ae_filter :: ′a measure ⇒ ′a filter where

ae_filter M = (INF N∈null_sets M . principal (space M − N ))
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8.3.3 σ-finite Measures
locale sigma_finite_measure =

fixes M :: ′a measure
assumes sigma_finite_countable:
∃A:: ′a set set. countable A ∧ A ⊆ sets M ∧ (

⋃
A) = space M ∧ (∀ a∈A.

emeasure M a 6= ∞)

8.3.4 Measure space induced by distribution of (→M)-functions
definition distr :: ′a measure ⇒ ′b measure ⇒ ( ′a ⇒ ′b) ⇒ ′b measure where
distr M N f =

measure_of (space N ) (sets N ) (λA. emeasure M (f −‘ A ∩ space M ))

proposition distr_distr :
g ∈ measurable N L =⇒ f ∈ measurable M N =⇒ distr (distr M N f ) L g = distr

M L (g ◦ f )

8.3.5 Set of measurable sets with finite measure
definition fmeasurable :: ′a measure ⇒ ′a set set where
fmeasurable M = {A∈sets M . emeasure M A < ∞}

8.3.6 Measure spaces with emeasure M (space M ) < ∞
locale finite_measure = sigma_finite_measure M for M +

assumes finite_emeasure_space: emeasure M (space M ) 6= top

8.3.7 Scaling a measure
definition scale_measure :: ennreal ⇒ ′a measure ⇒ ′a measure where
scale_measure r M = measure_of (space M ) (sets M ) (λA. r ∗ emeasure M A)

8.3.8 Complete lattice structure on measures

proposition unsigned_Hahn_decomposition:
assumes [simp]: sets N = sets M and [measurable]: A ∈ sets M

and [simp]: emeasure M A 6= top emeasure N A 6= top
shows ∃Y∈sets M . Y ⊆ A ∧ (∀X∈sets M . X ⊆ Y −→ N X ≤ M X) ∧ (∀X∈sets

M . X ⊆ A −→ X ∩ Y = {} −→ M X ≤ N X)
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Define a lexicographical order on measure, in the order space, sets and mea-
sure. The parts of the lexicographical order are point-wise ordered.
instantiation measure :: (type) order_bot
begin

definition less_measure :: ′a measure ⇒ ′a measure ⇒ bool where
less_measure M N ←→ (M ≤ N ∧ ¬ N ≤ M )

definition bot_measure :: ′a measure where
bot_measure = sigma {} {}

proposition le_measure: sets M = sets N =⇒ M ≤ N ←→ (∀A∈sets M . emea-
sure M A ≤ emeasure N A)

definition sup_measure ′ :: ′a measure ⇒ ′a measure ⇒ ′a measure where
sup_measure ′ A B =

measure_of (space A) (sets A)
(λX . SUP Y∈sets A. emeasure A (X ∩ Y ) + emeasure B (X ∩ − Y ))

definition sup_lexord :: ′a ⇒ ′a ⇒ ( ′a ⇒ ′b::order) ⇒ ′a ⇒ ′a ⇒ ′a where
sup_lexord A B k s c =
(if k A = k B then c else
if ¬ k A ≤ k B ∧ ¬ k B ≤ k A then s else
if k B ≤ k A then A else B)

instantiation measure :: (type) semilattice_sup
begin

definition sup_measure :: ′a measure ⇒ ′a measure ⇒ ′a measure where
sup_measure A B =

sup_lexord A B space (sigma (space A ∪ space B) {})
(sup_lexord A B sets (sigma (space A) (sets A ∪ sets B)) (sup_measure ′ A

B))

definition
Sup_lexord :: ( ′a ⇒ ′b::complete_lattice) ⇒ ( ′a set ⇒ ′a) ⇒ ( ′a set ⇒ ′a) ⇒ ′a

set ⇒ ′a
where

Sup_lexord k c s A =
(let U = (SUP a∈A. k a)
in if ∃ a∈A. k a = U then c {a∈A. k a = U} else s A)

instantiation measure :: (type) complete_lattice
begin

definition Sup_measure ′ :: ′a measure set ⇒ ′a measure where
Sup_measure ′ M =

measure_of (
⋃

a∈M . space a) (
⋃

a∈M . sets a)
(λX . (SUP P∈{P. finite P ∧ P ⊆ M }. sup_measure.F id P X))
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definition Sup_measure :: ′a measure set ⇒ ′a measure where
Sup_measure =

Sup_lexord space
(Sup_lexord sets Sup_measure ′

(λU . sigma (
⋃

u∈U . space u) (
⋃

u∈U . sets u)))
(λU . sigma (

⋃
u∈U . space u) {})

definition Inf_measure :: ′a measure set ⇒ ′a measure where
Inf_measure A = Sup {x. ∀ a∈A. x ≤ a}

definition inf_measure :: ′a measure ⇒ ′a measure ⇒ ′a measure where
inf_measure a b = Inf {a, b}

definition top_measure :: ′a measure where
top_measure = Inf {}

end

8.4 Borel Space
theory Borel_Space
imports

Measurable Derivative Ordered_Euclidean_Space Extended_Real_Limits
begin

proposition open_prod_generated: open = generate_topology {A × B | A B. open
A ∧ open B}

proposition mono_on_imp_deriv_nonneg:
assumes mono: mono_on A f and deriv: (f has_real_derivative D) (at x)
assumes x ∈ interior A
shows D ≥ 0

proposition mono_on_ctble_discont:
fixes f :: real ⇒ real
fixes A :: real set
assumes mono_on A f
shows countable {a∈A. ¬ continuous (at a within A) f }

8.4.1 Generic Borel spaces
definition (in topological_space) borel :: ′a measure where

borel = sigma UNIV {S . open S}
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theorem second_countable_borel_measurable:
fixes X :: ′a::second_countable_topology set set
assumes eq: open = generate_topology X
shows borel = sigma UNIV X

proposition borel_eq_countable_basis:
fixes B:: ′a::topological_space set set
assumes countable B
assumes topological_basis B
shows borel = sigma UNIV B

8.4.2 Borel spaces on order topologies
8.4.3 Borel spaces on topological monoids
8.4.4 Borel spaces on Euclidean spaces
8.4.5 Borel measurable operators

lemma borel_measurable_complex_iff :
f ∈ borel_measurable M ←→
(λx. Re (f x)) ∈ borel_measurable M ∧ (λx. Im (f x)) ∈ borel_measurable M

(is ?lhs ←→ ?rhs)

8.4.6 Borel space on the extended reals

theorem borel_measurable_ereal_iff_real:
fixes f :: ′a ⇒ ereal
shows f ∈ borel_measurable M ←→
((λx. real_of_ereal (f x)) ∈ borel_measurable M ∧ f −‘ {∞} ∩ space M ∈ sets

M ∧ f −‘ {−∞} ∩ space M ∈ sets M )

8.4.7 Borel space on the extended non-negative reals

definition [simp]: is_borel f M ←→ f ∈ borel_measurable M

8.4.8 LIMSEQ is borel measurable

proposition measurable_limit [measurable]:
fixes f ::nat ⇒ ′a ⇒ ′b::first_countable_topology
assumes [measurable]:

∧
n::nat. f n ∈ borel_measurable M

shows Measurable.pred M (λx. (λn. f n x) −−−−→ c)



Nonnegative_Lebesgue_Integration.thy 125

end

8.5 Lebesgue Integration for Nonnegative Func-
tions

theory Nonnegative_Lebesgue_Integration
imports Measure_Space Borel_Space

begin

8.5.1 Simple function
definition simple_function M g ←→

finite (g ‘ space M ) ∧
(∀ x ∈ g ‘ space M . g −‘ {x} ∩ space M ∈ sets M )

lemma borel_measurable_implies_simple_function_sequence:
fixes u :: ′a ⇒ ennreal
assumes u[measurable]: u ∈ borel_measurable M
shows ∃ f . incseq f ∧ (∀ i. (∀ x. f i x < top) ∧ simple_function M (f i)) ∧ u =

(SUP i. f i)

lemma simple_function_induct
[consumes 1 , case_names cong set mult add, induct set: simple_function]:

fixes u :: ′a ⇒ ennreal
assumes u: simple_function M u
assumes cong:

∧
f g. simple_function M f =⇒ simple_function M g =⇒ (AE x

in M . f x = g x) =⇒ P f =⇒ P g
assumes set:

∧
A. A ∈ sets M =⇒ P (indicator A)

assumes mult:
∧

u c. P u =⇒ P (λx. c ∗ u x)
assumes add:

∧
u v. P u =⇒ P v =⇒ P (λx. v x + u x)

shows P u

lemma borel_measurable_induct
[consumes 1 , case_names cong set mult add seq, induct set: borel_measurable]:

fixes u :: ′a ⇒ ennreal
assumes u: u ∈ borel_measurable M
assumes cong:

∧
f g. f ∈ borel_measurable M =⇒ g ∈ borel_measurable M =⇒

(
∧

x. x ∈ space M =⇒ f x = g x) =⇒ P g =⇒ P f
assumes set:

∧
A. A ∈ sets M =⇒ P (indicator A)

assumes mult ′:
∧

u c. c < top =⇒ u ∈ borel_measurable M =⇒ (
∧

x. x ∈ space
M =⇒ u x < top) =⇒ P u =⇒ P (λx. c ∗ u x)

assumes add:
∧

u v. u ∈ borel_measurable M=⇒ (
∧

x. x ∈ space M =⇒ u x <
top) =⇒ P u =⇒ v ∈ borel_measurable M =⇒ (

∧
x. x ∈ space M =⇒ v x < top)

=⇒ (
∧

x. x ∈ space M =⇒ u x = 0 ∨ v x = 0 ) =⇒ P v =⇒ P (λx. v x + u x)
assumes seq:

∧
U . (

∧
i. U i ∈ borel_measurable M ) =⇒ (

∧
i x . x ∈ space M =⇒

U i x < top) =⇒ (
∧

i. P (U i)) =⇒ incseq U =⇒ u = (SUP i. U i) =⇒ P (SUP
i. U i)
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shows P u

8.5.2 Simple integral
definition simple_integral :: ′a measure ⇒ ( ′a ⇒ ennreal)⇒ ennreal (‹integralS›)
where

integralS M f = (
∑

x ∈ f ‘ space M . x ∗ emeasure M (f −‘ {x} ∩ space M ))

8.5.3 Integral on nonnegative functions
definition nn_integral :: ′a measure ⇒ ( ′a ⇒ ennreal) ⇒ ennreal (‹integralN ›)
where

integralN M f = (SUP g ∈ {g. simple_function M g ∧ g ≤ f }. integralS M g)

theorem nn_integral_monotone_convergence_SUP_AE :
assumes f :

∧
i. AE x in M . f i x ≤ f (Suc i) x

∧
i. f i ∈ borel_measurable M

shows (
∫

+ x. (SUP i. f i x) ∂M ) = (SUP i. integralN M (f i))

theorem nn_integral_suminf :
assumes f :

∧
i. f i ∈ borel_measurable M

shows (
∫

+ x. (
∑

i. f i x) ∂M ) = (
∑

i. integralN M (f i))

theorem nn_integral_Markov_inequality:
assumes u: (λx. u x ∗ indicator A x) ∈ borel_measurable M and A ∈ sets M
shows (emeasure M ) ({x∈A. 1 ≤ c ∗ u x}) ≤ c ∗ (

∫
+ x. u x ∗ indicator A x

∂M )
(is (emeasure M ) ?A ≤ _ ∗ ?PI )

theorem nn_integral_monotone_convergence_INF_AE :
fixes f :: nat ⇒ ′a ⇒ ennreal
assumes f :

∧
i. AE x in M . f (Suc i) x ≤ f i x

and [measurable]:
∧

i. f i ∈ borel_measurable M
and fin: (

∫
+ x. f i x ∂M ) < ∞

shows (
∫

+ x. (INF i. f i x) ∂M ) = (INF i. integralN M (f i))

theorem nn_integral_liminf :
fixes u :: nat ⇒ ′a ⇒ ennreal
assumes u:

∧
i. u i ∈ borel_measurable M

shows (
∫

+ x. liminf (λn. u n x) ∂M ) ≤ liminf (λn. integralN M (u n))

theorem nn_integral_limsup:
fixes u :: nat ⇒ ′a ⇒ ennreal
assumes [measurable]:

∧
i. u i ∈ borel_measurable M w ∈ borel_measurable M

assumes bounds:
∧

i. AE x in M . u i x ≤ w x and w: (
∫

+x. w x ∂M ) < ∞
shows limsup (λn. integralN M (u n)) ≤ (

∫
+ x. limsup (λn. u n x) ∂M )

theorem nn_integral_dominated_convergence:
assumes [measurable]:
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∧
i. u i ∈ borel_measurable M u ′ ∈ borel_measurable M w ∈ borel_measurable

M
and bound:

∧
j. AE x in M . u j x ≤ w x

and w: (
∫

+x. w x ∂M ) < ∞
and u ′: AE x in M . (λi. u i x) −−−−→ u ′ x

shows (λi. (
∫

+x. u i x ∂M )) −−−−→ (
∫

+x. u ′ x ∂M )

theorem nn_integral_lfp:
assumes sets[simp]:

∧
s. sets (M s) = sets N

assumes f : sup_continuous f
assumes g: sup_continuous g
assumes meas:

∧
F . F ∈ borel_measurable N =⇒ f F ∈ borel_measurable N

assumes step:
∧

F s. F ∈ borel_measurable N =⇒ integralN (M s) (f F) = g
(λs. integralN (M s) F) s

shows (
∫

+ω. lfp f ω ∂M s) = lfp g s

theorem nn_integral_gfp:
assumes sets[simp]:

∧
s. sets (M s) = sets N

assumes f : inf_continuous f and g: inf_continuous g
assumes meas:

∧
F . F ∈ borel_measurable N =⇒ f F ∈ borel_measurable N

assumes bound:
∧

F s. F ∈ borel_measurable N =⇒ (
∫

+x. f F x ∂M s) < ∞
assumes non_zero:

∧
s. emeasure (M s) (space (M s)) 6= 0

assumes step:
∧

F s. F ∈ borel_measurable N =⇒ integralN (M s) (f F) = g
(λs. integralN (M s) F) s

shows (
∫

+ω. gfp f ω ∂M s) = gfp g s

8.5.4 Integral under concrete measures
definition density :: ′a measure ⇒ ( ′a ⇒ ennreal) ⇒ ′a measure where

density M f = measure_of (space M ) (sets M ) (λA.
∫

+ x. f x ∗ indicator A x
∂M )

lemma nn_integral_density:
assumes f : f ∈ borel_measurable M
assumes g: g ∈ borel_measurable M
shows integralN (density M f ) g = (

∫
+ x. f x ∗ g x ∂M )

definition point_measure :: ′a set ⇒ ( ′a ⇒ ennreal) ⇒ ′a measure where
point_measure A f = density (count_space A) f

definition uniform_measure M A = density M (λx. indicator A x / emeasure M
A)
definition uniform_count_measure A = point_measure A (λx. 1 / card A)

end

8.6 Binary Product Measure
theory Binary_Product_Measure
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imports Nonnegative_Lebesgue_Integration
begin

8.6.1 Binary products
definition pair_measure (infixr ‹

⊗
M › 80 ) where

A
⊗

M B = measure_of (space A × space B)
{a × b | a b. a ∈ sets A ∧ b ∈ sets B}
(λX .

∫
+x. (

∫
+y. indicator X (x,y) ∂B) ∂A)

proposition (in sigma_finite_measure) emeasure_pair_measure_Times:
assumes A: A ∈ sets N and B: B ∈ sets M
shows emeasure (N

⊗
M M ) (A × B) = emeasure N A ∗ emeasure M B

8.6.2 Binary products of σ-finite emeasure spaces

proposition (in pair_sigma_finite) sigma_finite_up_in_pair_measure_generator :
defines E ≡ {A × B | A B. A ∈ sets M1 ∧ B ∈ sets M2}
shows ∃F ::nat ⇒ ( ′a × ′b) set. range F ⊆ E ∧ incseq F ∧ (

⋃
i. F i) = space

M1 × space M2 ∧
(∀ i. emeasure (M1

⊗
M M2 ) (F i) 6= ∞)

8.6.3 Fubinis theorem

proposition (in pair_sigma_finite) nn_integral_snd:
assumes f [measurable]: f ∈ borel_measurable (M1

⊗
M M2 )

shows (
∫

+ y. (
∫

+ x. f (x, y) ∂M1 ) ∂M2 ) = integralN (M1
⊗

M M2 ) f

theorem (in pair_sigma_finite) Fubini:
assumes f : f ∈ borel_measurable (M1

⊗
M M2 )

shows (
∫

+ y. (
∫

+ x. f (x, y) ∂M1 ) ∂M2 ) = (
∫

+ x. (
∫

+ y. f (x, y) ∂M2 )
∂M1 )

theorem (in pair_sigma_finite) Fubini ′:
assumes f : case_prod f ∈ borel_measurable (M1

⊗
M M2 )

shows (
∫

+ y. (
∫

+ x. f x y ∂M1 ) ∂M2 ) = (
∫

+ x. (
∫

+ y. f x y ∂M2 ) ∂M1 )

8.6.4 Products on counting spaces, densities and distribu-
tions

proposition sigma_prod:
assumes X_cover : ∃E⊆A. countable E ∧ X =

⋃
E and A: A ⊆ Pow X

assumes Y_cover : ∃E⊆B. countable E ∧ Y =
⋃

E and B: B ⊆ Pow Y
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shows sigma X A
⊗

M sigma Y B = sigma (X × Y ) {a × b | a b. a ∈ A ∧ b
∈ B}

(is ?P = ?S)

proposition sets_pair_eq:
assumes Ea: Ea ⊆ Pow (space A) sets A = sigma_sets (space A) Ea

and Ca: countable Ca Ca ⊆ Ea
⋃

Ca = space A
and Eb: Eb ⊆ Pow (space B) sets B = sigma_sets (space B) Eb
and Cb: countable Cb Cb ⊆ Eb

⋃
Cb = space B

shows sets (A
⊗

M B) = sets (sigma (space A × space B) { a × b | a b. a ∈
Ea ∧ b ∈ Eb })

(is _ = sets (sigma ?Ω ?E))

proposition borel_prod:
(borel

⊗
M borel) = (borel :: ( ′a::second_countable_topology × ′b::second_countable_topology)

measure)
(is ?P = ?B)

proposition pair_measure_count_space:
assumes A: finite A and B: finite B
shows count_space A

⊗
M count_space B = count_space (A × B) (is ?P =

?C )

theorem pair_measure_density:
assumes f : f ∈ borel_measurable M1
assumes g: g ∈ borel_measurable M2
assumes sigma_finite_measure M2 sigma_finite_measure (density M2 g)
shows density M1 f

⊗
M density M2 g = density (M1

⊗
M M2 ) (λ(x,y). f x ∗

g y) (is ?L = ?R)

proposition nn_integral_fst_count_space:
(
∫

+ x.
∫

+ y. f (x, y) ∂count_space UNIV ∂count_space UNIV ) = integralN
(count_space UNIV ) f
(is ?lhs = ?rhs)

proposition nn_integral_snd_count_space:
(
∫

+ y.
∫

+ x. f (x, y) ∂count_space UNIV ∂count_space UNIV ) = integralN
(count_space UNIV ) f
(is ?lhs = ?rhs)

8.6.5 Product of Borel spaces
theorem borel_Times:

fixes A :: ′a::topological_space set and B :: ′b::topological_space set
assumes A: A ∈ sets borel and B: B ∈ sets borel
shows A × B ∈ sets borel
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end

8.7 Finite Product Measure
theory Finite_Product_Measure
imports Binary_Product_Measure Function_Topology
begin

8.7.1 Finite product spaces
definition prod_emb where

prod_emb I M K X = (λx. restrict x K ) −‘ X ∩ (ΠE i∈I . space (M i))

definition PiM :: ′i set ⇒ ( ′i ⇒ ′a measure) ⇒ ( ′i ⇒ ′a) measure where
PiM I M = extend_measure (ΠE i∈I . space (M i))
{(J , X). (J 6= {} ∨ I = {}) ∧ finite J ∧ J ⊆ I ∧ X ∈ (Π j∈J . sets (M j))}
(λ(J , X). prod_emb I M J (ΠE j∈J . X j))
(λ(J , X).

∏
j∈J ∪ {i∈I . emeasure (M i) (space (M i)) 6= 1}. if j ∈ J then

emeasure (M j) (X j) else emeasure (M j) (space (M j)))

definition prod_algebra :: ′i set ⇒ ( ′i ⇒ ′a measure) ⇒ ( ′i ⇒ ′a) set set where
prod_algebra I M = (λ(J , X). prod_emb I M J (ΠE j∈J . X j)) ‘
{(J , X). (J 6= {} ∨ I = {}) ∧ finite J ∧ J ⊆ I ∧ X ∈ (Π j∈J . sets (M j))}

proposition prod_algebra_mono:
assumes space:

∧
i. i ∈ I =⇒ space (E i) = space (F i)

assumes sets:
∧

i. i ∈ I =⇒ sets (E i) ⊆ sets (F i)
shows prod_algebra I E ⊆ prod_algebra I F

proposition prod_algebra_cong:
assumes I = J and (

∧
i. i ∈ I =⇒ sets (M i) = sets (N i))

shows prod_algebra I M = prod_algebra J N

proposition sets_PiM_single: sets (PiM I M ) =
sigma_sets (ΠE i∈I . space (M i)) {{f∈ΠE i∈I . space (M i). f i ∈ A} | i A. i

∈ I ∧ A ∈ sets (M i)}
(is _ = sigma_sets ?Ω ?R)

proposition sets_PiM_sigma:
assumes Ω_cover :

∧
i. i ∈ I =⇒ ∃S⊆E i. countable S ∧ Ω i =

⋃
S

assumes E :
∧

i. i ∈ I =⇒ E i ⊆ Pow (Ω i)
assumes J :

∧
j. j ∈ J =⇒ finite j

⋃
J = I

defines P ≡ {{f∈(ΠE i∈I . Ω i). ∀ i∈j. f i ∈ A i} | A j. j ∈ J ∧ A ∈ Pi j E}
shows sets (ΠM i∈I . sigma (Ω i) (E i)) = sets (sigma (ΠE i∈I . Ω i) P)

proposition measurable_PiM :
assumes space: f ∈ space N → (ΠE i∈I . space (M i))
assumes sets:

∧
X J . J 6= {} ∨ I = {} =⇒ finite J =⇒ J ⊆ I =⇒ (

∧
i. i ∈ J
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=⇒ X i ∈ sets (M i)) =⇒
f −‘ prod_emb I M J (PiE J X) ∩ space N ∈ sets N

shows f ∈ measurable N (PiM I M )

proposition measurable_fun_upd:
assumes I : I = J ∪ {i}
assumes f [measurable]: f ∈ measurable N (PiM J M )
assumes h[measurable]: h ∈ measurable N (M i)
shows (λx. (f x) (i := h x)) ∈ measurable N (PiM I M )

proposition measure_eqI_PiM_finite:
assumes [simp]: finite I sets P = PiM I M sets Q = PiM I M
assumes eq:

∧
A. (

∧
i. i ∈ I =⇒ A i ∈ sets (M i)) =⇒ P (PiE I A) = Q (PiE

I A)
assumes A: range A ⊆ prod_algebra I M (

⋃
i. A i) = space (PiM I M )

∧
i::nat.

P (A i) 6= ∞
shows P = Q

proposition measure_eqI_PiM_infinite:
assumes [simp]: sets P = PiM I M sets Q = PiM I M
assumes eq:

∧
A J . finite J =⇒ J ⊆ I =⇒ (

∧
i. i ∈ J =⇒ A i ∈ sets (M i))

=⇒
P (prod_emb I M J (PiE J A)) = Q (prod_emb I M J (PiE J A))

assumes A: finite_measure P
shows P = Q

proposition (in finite_product_sigma_finite) sigma_finite_pairs:
∃F :: ′i ⇒ nat ⇒ ′a set.
(∀ i∈I . range (F i) ⊆ sets (M i)) ∧
(∀ k. ∀ i∈I . emeasure (M i) (F i k) 6= ∞) ∧ incseq (λk. ΠE i∈I . F i k) ∧
(
⋃

k. ΠE i∈I . F i k) = space (PiM I M )

lemma (in product_sigma_finite) distr_merge:
assumes IJ [simp]: I ∩ J = {} and fin: finite I finite J
shows distr (PiM I M

⊗
M PiM J M ) (PiM (I ∪ J ) M ) (merge I J ) = PiM

(I ∪ J ) M
(is ?D = ?P)

proposition (in product_sigma_finite) product_nn_integral_fold:
assumes IJ : I ∩ J = {} finite I finite J
and f [measurable]: f ∈ borel_measurable (PiM (I ∪ J ) M )

shows integralN (PiM (I ∪ J ) M ) f = (
∫

+ x. (
∫

+ y. f (merge I J (x, y)) ∂(PiM
J M )) ∂(PiM I M ))

(is ?lhs = ?rhs)

proposition (in product_sigma_finite) product_nn_integral_insert:
assumes I [simp]: finite I i /∈ I

and f : f ∈ borel_measurable (PiM (insert i I ) M )
shows integralN (PiM (insert i I ) M ) f = (

∫
+ x. (

∫
+ y. f (x(i := y)) ∂(M i))
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∂(PiM I M ))

proposition (in product_sigma_finite) product_nn_integral_pair :
assumes [measurable]: case_prod f ∈ borel_measurable (M x

⊗
M M y)

assumes xy: x 6= y
shows (

∫
+σ. f (σ x) (σ y) ∂PiM {x, y} M ) = (

∫
+z. f (fst z) (snd z) ∂(M x⊗

M M y))

8.7.2 Measurability

proposition sets_PiM_equal_borel:
sets (PiM UNIV (λi::( ′a::countable). borel::( ′b::second_countable_topology mea-

sure))) = sets borel

end

8.8 Caratheodory Extension Theorem
theory Caratheodory
imports Measure_Space
begin

8.8.1 Characterizations of Measures
definition outer_measure_space where
outer_measure_space M f ←→ positive M f ∧ increasing M f ∧ countably_subadditive

M f

Lambda Systems
definition lambda_system :: ′a set ⇒ ′a set set ⇒ ( ′a set ⇒ ennreal) ⇒ ′a set set
where

lambda_system Ω M f = {l ∈ M . ∀ x ∈ M . f (l ∩ x) + f ((Ω − l) ∩ x) = f x}

proposition (in sigma_algebra) lambda_system_caratheodory:
assumes oms: outer_measure_space M f

and A: range A ⊆ lambda_system Ω M f
and disj: disjoint_family A

shows (
⋃

i. A i) ∈ lambda_system Ω M f ∧ (
∑

i. f (A i)) = f (
⋃

i. A i)

proposition (in sigma_algebra) caratheodory_lemma:
assumes oms: outer_measure_space M f
defines L ≡ lambda_system Ω M f
shows measure_space Ω L f
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definition outer_measure :: ′a set set ⇒ ( ′a set ⇒ ennreal) ⇒ ′a set ⇒ ennreal
where

outer_measure M f X =
(INF A∈{A. range A ⊆ M ∧ disjoint_family A ∧ X ⊆ (

⋃
i. A i)}.

∑
i. f (A

i))

8.8.2 Caratheodory’s theorem
theorem (in ring_of_sets) caratheodory ′:

assumes posf : positive M f and ca: countably_additive M f
shows ∃µ :: ′a set ⇒ ennreal. (∀ s ∈ M . µ s = f s) ∧ measure_space Ω

(sigma_sets Ω M ) µ

8.8.3 Volumes
definition volume :: ′a set set ⇒ ( ′a set ⇒ ennreal) ⇒ bool where

volume M f ←→
(f {} = 0 ) ∧ (∀ a∈M . 0 ≤ f a) ∧
(∀C⊆M . disjoint C −→ finite C −→

⋃
C ∈ M −→ f (

⋃
C ) = (

∑
c∈C . f c))

proposition volume_finite_additive:
assumes volume M f
assumes A:

∧
i. i ∈ I =⇒ A i ∈ M disjoint_family_on A I finite I

⋃
(A ‘ I ) ∈

M
shows f (

⋃
(A ‘ I )) = (

∑
i∈I . f (A i))

proposition (in semiring_of_sets) extend_volume:
assumes volume M µ
shows ∃µ ′. volume generated_ring µ ′ ∧ (∀ a∈M . µ ′ a = µ a)

Caratheodory on semirings
theorem (in semiring_of_sets) caratheodory:

assumes pos: positive M µ and ca: countably_additive M µ
shows ∃µ ′ :: ′a set ⇒ ennreal. (∀ s ∈ M . µ ′ s = µ s) ∧ measure_space Ω

(sigma_sets Ω M ) µ ′

proposition extend_measure_caratheodory_pair :
fixes G :: ′i ⇒ ′j ⇒ ′a set
assumes M : M = extend_measure Ω {(a, b). P a b} (λ(a, b). G a b) (λ(a, b).

µ a b)
assumes P i j
assumes semiring: semiring_of_sets Ω {G a b | a b. P a b}
assumes empty:

∧
i j. P i j =⇒ G i j = {} =⇒ µ i j = 0

assumes inj:
∧

i j k l. P i j =⇒ P k l =⇒ G i j = G k l =⇒ µ i j = µ k l
assumes nonneg:

∧
i j. P i j =⇒ 0 ≤ µ i j

assumes add:
∧

A::nat ⇒ ′i.
∧

B::nat ⇒ ′j.
∧

j k.
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(
∧

n. P (A n) (B n)) =⇒ P j k =⇒ disjoint_family (λn. G (A n) (B n)) =⇒
(
⋃

i. G (A i) (B i)) = G j k =⇒ (
∑

n. µ (A n) (B n)) = µ j k
shows emeasure M (G i j) = µ i j

end

8.9 Bochner Integration for Vector-Valued Func-
tions

theory Bochner_Integration
imports Finite_Product_Measure

beginproposition borel_measurable_implies_sequence_metric:
fixes f :: ′a ⇒ ′b :: {metric_space, second_countable_topology}
assumes [measurable]: f ∈ borel_measurable M
shows ∃F . (∀ i. simple_function M (F i)) ∧ (∀ x∈space M . (λi. F i x) −−−−→ f

x) ∧
(∀ i. ∀ x∈space M . dist (F i x) z ≤ 2 ∗ dist (f x) z)

definition simple_bochner_integral :: ′a measure ⇒ ( ′a ⇒ ′b::real_vector) ⇒ ′b
where

simple_bochner_integral M f = (
∑

y∈f‘space M . measure M {x∈space M . f x =
y} ∗R y)

proposition simple_bochner_integral_partition:
assumes f : simple_bochner_integrable M f and g: simple_function M g
assumes sub:

∧
x y. x ∈ space M =⇒ y ∈ space M =⇒ g x = g y =⇒ f x = f y

assumes v:
∧

x. x ∈ space M =⇒ f x = v (g x)
shows simple_bochner_integral M f = (

∑
y∈g ‘ space M . measure M {x∈space

M . g x = y} ∗R v y)
(is _ = ?r)

proposition has_bochner_integral_implies_finite_norm:
has_bochner_integral M f x =⇒ (

∫
+x. norm (f x) ∂M ) < ∞

proposition has_bochner_integral_norm_bound:
assumes i: has_bochner_integral M f x
shows norm x ≤ (

∫
+x. norm (f x) ∂M )

definition lebesgue_integral (‹integralL›) where
integralL M f = (if ∃ x. has_bochner_integral M f x then THE x. has_bochner_integral

M f x else 0 )

proposition nn_integral_dominated_convergence_norm:
fixes u ′ :: _ ⇒ _::{real_normed_vector , second_countable_topology}
assumes [measurable]:∧

i. u i ∈ borel_measurable M u ′ ∈ borel_measurable M w ∈ borel_measurable
M

and bound:
∧

j. AE x in M . norm (u j x) ≤ w x
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and w: (
∫

+x. w x ∂M ) < ∞
and u ′: AE x in M . (λi. u i x) −−−−→ u ′ x

shows (λi. (
∫

+x. norm (u ′ x − u i x) ∂M )) −−−−→ 0

proposition integrableI_bounded:
fixes f :: ′a ⇒ ′b::{banach, second_countable_topology}
assumes f [measurable]: f ∈ borel_measurable M and fin: (

∫
+x. norm (f x) ∂M )

< ∞
shows integrable M f

proposition nn_integral_eq_integral:
assumes f : integrable M f
assumes nonneg: AE x in M . 0 ≤ f x
shows (

∫
+ x. f x ∂M ) = integralL M f

proposition integral_norm_bound [simp]:
fixes f :: _ ⇒ ′a :: {banach, second_countable_topology}
shows norm (integralL M f ) ≤ (

∫
x. norm (f x) ∂M )

proposition integral_abs_bound [simp]:
fixes f :: ′a ⇒ real shows abs (

∫
x. f x ∂M ) ≤ (

∫
x. |f x| ∂M )

proposition integrable_induct[consumes 1 , case_names base add lim, induct pred:
integrable]:

fixes f :: ′a ⇒ ′b::{banach, second_countable_topology}
assumes integrable M f
assumes base:

∧
A c. A ∈ sets M =⇒ emeasure M A < ∞ =⇒ P (λx. indicator

A x ∗R c)
assumes add:

∧
f g. integrable M f =⇒ P f =⇒ integrable M g =⇒ P g =⇒ P

(λx. f x + g x)
assumes lim:

∧
f s. (

∧
i. integrable M (s i)) =⇒ (

∧
i. P (s i)) =⇒

(
∧

x. x ∈ space M =⇒ (λi. s i x) −−−−→ f x) =⇒
(
∧

i x. x ∈ space M =⇒ norm (s i x) ≤ 2 ∗ norm (f x)) =⇒ integrable M f =⇒
P f

shows P f

theorem integral_Markov_inequality:
assumes [measurable]: integrable M u and AE x in M . 0 ≤ u x 0 < (c::real)
shows (emeasure M ) {x∈space M . u x ≥ c} ≤ (1/c) ∗ (

∫
x. u x ∂M )

theorem integral_Markov_inequality_measure:
assumes [measurable]: integrable M u and A ∈ sets M and AE x in M . 0 ≤ u

x 0 < (c::real)
shows measure M {x∈space M . u x ≥ c} ≤ (

∫
x. u x ∂M ) / c

theorem (in finite_measure) second_moment_method:
assumes [measurable]: f ∈ M →M borel
assumes integrable M (λx. f x ^ 2 )
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defines µ ≡ lebesgue_integral M f
assumes a > 0
shows measure M {x∈space M . |f x| ≥ a} ≤ lebesgue_integral M (λx. f x ^ 2 )

/ a2

proof −
have integrable: integrable M f

using assms by (blast dest: square_integrable_imp_integrable)
have {x∈space M . |f x| ≥ a} = {x∈space M . f x ^ 2 ≥ a2}

using ‹a > 0 › by (simp flip: abs_le_square_iff )
hence measure M {x∈space M . |f x| ≥ a} = measure M {x∈space M . f x ^ 2 ≥

a2}
by simp

also have . . . ≤ lebesgue_integral M (λx. f x ^ 2 ) / a2

using assms by (intro integral_Markov_inequality_measure) auto
finally show ?thesis .

qed

proposition tendsto_L1_int:
fixes u :: _ ⇒ _ ⇒ ′b::{banach, second_countable_topology}
assumes [measurable]:

∧
n. integrable M (u n) integrable M f

and ((λn. (
∫

+x. norm(u n x − f x) ∂M )) −−−→ 0 ) F
shows ((λn. (

∫
x. u n x ∂M )) −−−→ (

∫
x. f x ∂M )) F

proposition tendsto_L1_AE_subseq:
fixes u :: nat ⇒ ′a ⇒ ′b::{banach, second_countable_topology}
assumes [measurable]:

∧
n. integrable M (u n)

and (λn. (
∫

x. norm(u n x) ∂M )) −−−−→ 0
shows ∃ r ::nat⇒nat. strict_mono r ∧ (AE x in M . (λn. u (r n) x) −−−−→ 0 )

8.9.1 Restricted measure spaces
8.9.2 Measure spaces with an associated density
8.9.3 Distributions
8.9.4 Lebesgue integration on count_space
8.9.5 Point measure

proposition integrable_point_measure_finite:
fixes g :: ′a ⇒ ′b::{banach, second_countable_topology} and f :: ′a ⇒ real
assumes finite A
shows integrable (point_measure A f ) g

8.9.6 Lebesgue integration on null_measure
8.9.7 Legacy lemmas for the real-valued Lebesgue integral
theorem real_lebesgue_integral_def :
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assumes f [measurable]: integrable M f
shows integralL M f = enn2real (

∫
+x. f x ∂M ) − enn2real (

∫
+x. ennreal (− f

x) ∂M )

theorem real_integrable_def :
integrable M f ←→ f ∈ borel_measurable M ∧
(
∫

+ x. ennreal (f x) ∂M ) 6= ∞ ∧ (
∫

+ x. ennreal (− f x) ∂M ) 6= ∞

8.9.8 Product measure

proposition (in sigma_finite_measure) borel_measurable_lebesgue_integral[measurable
(raw)]:

fixes f :: _ ⇒ _ ⇒ _::{banach, second_countable_topology}
assumes f [measurable]: case_prod f ∈ borel_measurable (N

⊗
M M )

shows (λx.
∫

y. f x y ∂M ) ∈ borel_measurable N

theorem (in pair_sigma_finite) Fubini_integrable:
fixes f :: _ ⇒ _::{banach, second_countable_topology}
assumes f [measurable]: f ∈ borel_measurable (M1

⊗
M M2 )

and integ1 : integrable M1 (λx.
∫

y. norm (f (x, y)) ∂M2 )
and integ2 : AE x in M1 . integrable M2 (λy. f (x, y))

shows integrable (M1
⊗

M M2 ) f

proposition (in pair_sigma_finite) integral_fst ′:
fixes f :: _ ⇒ _::{banach, second_countable_topology}
assumes f : integrable (M1

⊗
M M2 ) f

shows (
∫

x. (
∫

y. f (x, y) ∂M2 ) ∂M1 ) = integralL (M1
⊗

M M2 ) f

proposition (in pair_sigma_finite) Fubini_integral:
fixes f :: _ ⇒ _ ⇒ _ :: {banach, second_countable_topology}
assumes f : integrable (M1

⊗
M M2 ) (case_prod f )

shows (
∫

y. (
∫

x. f x y ∂M1 ) ∂M2 ) = (
∫

x. (
∫

y. f x y ∂M2 ) ∂M1 )

end

8.10 Complete Measures
theory Complete_Measure

imports Bochner_Integration
begin

locale complete_measure =
fixes M :: ′a measure
assumes complete:

∧
A B. B ⊆ A =⇒ A ∈ null_sets M =⇒ B ∈ sets M

definition
split_completion M A p = (if A ∈ sets M then p = (A, {}) else
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∃N ′. A = fst p ∪ snd p ∧ fst p ∩ snd p = {} ∧ fst p ∈ sets M ∧ snd p ⊆ N ′ ∧
N ′ ∈ null_sets M )

definition
main_part M A = fst (Eps (split_completion M A))

definition
null_part M A = snd (Eps (split_completion M A))

definition completion :: ′a measure ⇒ ′a measure where
completion M = measure_of (space M ) { S ∪ N |S N N ′. S ∈ sets M ∧ N ′ ∈

null_sets M ∧ N ⊆ N ′ }
(emeasure M ◦ main_part M )

lemma sets_completion:
sets (completion M ) = { S ∪ N |S N N ′. S ∈ sets M ∧ N ′ ∈ null_sets M ∧ N
⊆ N ′ }

lemma measurable_completion: f ∈ M →M N =⇒ f ∈ completion M →M N

lemma split_completion:
assumes A ∈ sets (completion M )
shows split_completion M A (main_part M A, null_part M A)

lemma emeasure_completion[simp]:
assumes S : S ∈ sets (completion M )
shows emeasure (completion M ) S = emeasure M (main_part M S)

lemma completion_ex_borel_measurable:
fixes g :: ′a ⇒ ennreal
assumes g: g ∈ borel_measurable (completion M )
shows ∃ g ′∈borel_measurable M . (AE x in M . g x = g ′ x)

locale semifinite_measure =
fixes M :: ′a measure
assumes semifinite:∧

A. A ∈ sets M =⇒ emeasure M A = ∞ =⇒ ∃B∈sets M . B ⊆ A ∧ emeasure
M B < ∞

locale locally_determined_measure = semifinite_measure +
assumes locally_determined:∧

A. A ⊆ space M =⇒ (
∧

B. B ∈ sets M =⇒ emeasure M B < ∞ =⇒ A ∩ B
∈ sets M ) =⇒ A ∈ sets M

locale cld_measure =
complete_measure M + locally_determined_measure M for M :: ′a measure

definition outer_measure_of :: ′a measure ⇒ ′a set ⇒ ennreal
where outer_measure_of M A = (INF B ∈ {B∈sets M . A ⊆ B}. emeasure M
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B)

definition measurable_envelope :: ′a measure ⇒ ′a set ⇒ ′a set ⇒ bool
where measurable_envelope M A E ←→
(A ⊆ E ∧ E ∈ sets M ∧ (∀F∈sets M . emeasure M (F ∩ E) = outer_measure_of

M (F ∩ A)))

lemma measurable_envelope_eq2 :
assumes A ⊆ E E ∈ sets M emeasure M E < ∞
shows measurable_envelope M A E ←→ (emeasure M E = outer_measure_of

M A)

proposition (in complete_measure) fmeasurable_inner_outer :
S ∈ fmeasurable M ←→
(∀ e>0 . ∃T∈fmeasurable M . ∃U∈fmeasurable M . T ⊆ S ∧ S ⊆ U ∧ |measure

M T − measure M U | < e)
(is _ ←→ ?approx)

end

8.11 Regularity of Measures
theory Regularity
imports Measure_Space Borel_Space
begin

theorem
fixes M :: ′a::{second_countable_topology, complete_space} measure
assumes sb: sets M = sets borel
assumes emeasure M (space M ) 6= ∞
assumes B ∈ sets borel
shows inner_regular : emeasure M B =
(SUP K ∈ {K . K ⊆ B ∧ compact K}. emeasure M K ) (is ?inner B)

and outer_regular : emeasure M B =
(INF U ∈ {U . B ⊆ U ∧ open U}. emeasure M U ) (is ?outer B)

end

8.12 Lebesgue Measure
theory Lebesgue_Measure
imports

Finite_Product_Measure
Caratheodory
Complete_Measure
Summation_Tests
Regularity

begin
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8.12.1 Measures defined by monotonous functions
definition interval_measure :: (real ⇒ real) ⇒ real measure where

interval_measure F =
extend_measure UNIV {(a, b). a ≤ b} (λ(a, b). {a<..b}) (λ(a, b). ennreal (F

b − F a))

lemma emeasure_interval_measure_Ioc:
assumes a ≤ b
assumes mono_F :

∧
x y. x ≤ y =⇒ F x ≤ F y

assumes right_cont_F :
∧

a. continuous (at_right a) F
shows emeasure (interval_measure F) {a<..b} = F b − F a

lemma sets_interval_measure [simp, measurable_cong]:
sets (interval_measure F) = sets borel

lemma sigma_finite_interval_measure:
assumes mono_F :

∧
x y. x ≤ y =⇒ F x ≤ F y

assumes right_cont_F :
∧

a. continuous (at_right a) F
shows sigma_finite_measure (interval_measure F)

8.12.2 Lebesgue-Borel measure
definition lborel :: ( ′a :: euclidean_space) measure where

lborel = distr (ΠM b∈Basis. interval_measure (λx. x)) borel (λf .
∑

b∈Basis. f
b ∗R b)

abbreviation lebesgue :: ′a::euclidean_space measure
where lebesgue ≡ completion lborel

abbreviation lebesgue_on :: ′a set ⇒ ′a::euclidean_space measure
where lebesgue_on Ω ≡ restrict_space (completion lborel) Ω

8.12.3 Borel measurability

lemma emeasure_lborel_cbox[simp]:
assumes [simp]:

∧
b. b ∈ Basis =⇒ l · b ≤ u · b

shows emeasure lborel (cbox l u) = (
∏

b∈Basis. (u − l) · b)

8.12.4 Affine transformation on the Lebesgue-Borel
lemma lborel_eqI :

fixes M :: ′a::euclidean_space measure
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assumes emeasure_eq:
∧

l u. (
∧

b. b ∈ Basis =⇒ l · b ≤ u · b) =⇒ emeasure M
(box l u) = (

∏
b∈Basis. (u − l) · b)

assumes sets_eq: sets M = sets borel
shows lborel = M

lemma lborel_affine_euclidean:
fixes c :: ′a::euclidean_space ⇒ real and t
defines T x ≡ t + (

∑
j∈Basis. (c j ∗ (x · j)) ∗R j)

assumes c:
∧

j. j ∈ Basis =⇒ c j 6= 0
shows lborel = density (distr lborel borel T ) (λ_. (

∏
j∈Basis. |c j|)) (is _ = ?D)

lemma lborel_integral_real_affine:
fixes f :: real ⇒ ′a :: {banach, second_countable_topology} and c :: real
assumes c: c 6= 0 shows (

∫
x. f x ∂ lborel) = |c| ∗R (

∫
x. f (t + c ∗ x) ∂lborel)

corollary lebesgue_real_affine:
c 6= 0 =⇒ lebesgue = density (distr lebesgue lebesgue (λx. t + c ∗ x)) (λ_.

ennreal (abs c))

lemma lborel_prod:
lborel

⊗
M lborel = (lborel :: ( ′a::euclidean_space × ′b::euclidean_space) mea-

sure)

8.12.5 Lebesgue measurable sets
abbreviation lmeasurable :: ′a::euclidean_space set set
where

lmeasurable ≡ fmeasurable lebesgue

lemma lmeasurable_iff_integrable:
S ∈ lmeasurable ←→ integrable lebesgue (indicator S :: ′a::euclidean_space ⇒

real)

8.12.6 A nice lemma for negligibility proofs

proposition starlike_negligible_bounded_gmeasurable:
fixes S :: ′a :: euclidean_space set
assumes S : S ∈ sets lebesgue and bounded S

and eq1 :
∧

c x. [[(c ∗R x) ∈ S ; 0 ≤ c; x ∈ S ]] =⇒ c = 1
shows S ∈ null_sets lebesgue

corollary starlike_negligible_compact:
compact S =⇒ (

∧
c x. [[(c ∗R x) ∈ S ; 0 ≤ c; x ∈ S ]] =⇒ c = 1 ) =⇒ S ∈ null_sets

lebesgue

proposition outer_regular_lborel_le:
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assumes B[measurable]: B ∈ sets borel and 0 < (e::real)
obtains U where open U B ⊆ U and emeasure lborel (U − B) ≤ e

lemma outer_regular_lborel:
assumes B: B ∈ sets borel and 0 < (e::real)
obtains U where open U B ⊆ U emeasure lborel (U − B) < e

8.12.7 F_sigma and G_delta sets.
inductive fsigma :: ′a::topological_space set ⇒ bool where
(
∧

n::nat. closed (F n)) =⇒ fsigma (
⋃
(F ‘ UNIV ))

inductive gdelta :: ′a::topological_space set ⇒ bool where
(
∧

n::nat. open (F n)) =⇒ gdelta (
⋂
(F ‘ UNIV ))

end

8.13 Tagged Divisions for Henstock-Kurzweil In-
tegration

theory Tagged_Division
imports Topology_Euclidean_Space

begin

8.13.1 Some useful lemmas about intervals
8.13.2 Bounds on intervals where they exist
definition interval_upperbound :: ( ′a::euclidean_space) set ⇒ ′a

where interval_upperbound s = (
∑

i∈Basis. (SUP x∈s. x·i) ∗R i)

definition interval_lowerbound :: ( ′a::euclidean_space) set ⇒ ′a
where interval_lowerbound s = (

∑
i∈Basis. (INF x∈s. x·i) ∗R i)

8.13.3 The notion of a gauge — simply an open set contain-
ing the point

definition gauge γ ←→ (∀ x. x ∈ γ x ∧ open (γ x))

8.13.4 Attempt a systematic general set of "offset" results
for components

8.13.5 Divisions
definition division_of (infixl ‹division ′_of › 40 )
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where
s division_of i ←→

finite s ∧
(∀K∈s. K ⊆ i ∧ K 6= {} ∧ (∃ a b. K = cbox a b)) ∧
(∀K1∈s. ∀K2∈s. K1 6= K2 −→ interior(K1 ) ∩ interior(K2 ) = {}) ∧
(
⋃

s = i)

proposition partial_division_extend_interval:
assumes p division_of (

⋃
p) (

⋃
p) ⊆ cbox a b

obtains q where p ⊆ q q division_of cbox a (b:: ′a::euclidean_space)

proposition division_union_intervals_exists:
assumes cbox a b 6= {}
obtains p where (insert (cbox a b) p) division_of (cbox a b ∪ cbox c d)

8.13.6 Tagged (partial) divisions
definition tagged_partial_division_of (infixr ‹tagged ′_partial ′_division ′_of › 40 )

where s tagged_partial_division_of i ←→
finite s ∧
(∀ x K . (x, K ) ∈ s −→ x ∈ K ∧ K ⊆ i ∧ (∃ a b. K = cbox a b)) ∧
(∀ x1 K1 x2 K2 . (x1 , K1 ) ∈ s ∧ (x2 , K2 ) ∈ s ∧ (x1 , K1 ) 6= (x2 , K2 ) −→

interior K1 ∩ interior K2 = {})

definition tagged_division_of (infixr ‹tagged ′_division ′_of › 40 )
where s tagged_division_of i ←→ s tagged_partial_division_of i ∧ (

⋃
{K . ∃ x.

(x,K ) ∈ s} = i)

8.13.7 Functions closed on boxes: morphisms from boxes to
monoids

Using additivity of lifted function to encode definedness. defini-
tion lift_option :: ( ′a ⇒ ′b ⇒ ′c) ⇒ ′a option ⇒ ′b option ⇒ ′c option
where

lift_option f a ′ b ′ = Option.bind a ′ (λa. Option.bind b ′ (λb. Some (f a b)))

lemma comm_monoid_lift_option:
assumes comm_monoid f z
shows comm_monoid (lift_option f ) (Some z)

Misc

Division points definition division_points (k::( ′a::euclidean_space) set) d =
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{(j,x). j ∈ Basis ∧ (interval_lowerbound k)·j < x ∧ x < (interval_upperbound
k)·j ∧

(∃ i∈d. (interval_lowerbound i)·j = x ∨ (interval_upperbound i)·j = x)}

Operative
proposition tagged_division:

assumes d tagged_division_of (cbox a b)
shows F (λ(_, l). g l) d = g (cbox a b)

8.13.8 Special case of additivity we need for the FTC
8.13.9 Fine-ness of a partition w.r.t. a gauge
definition fine (infixr ‹fine› 46 )

where d fine s ←→ (∀ (x,k) ∈ s. k ⊆ d x)

8.13.10 Some basic combining lemmas
8.13.11 General bisection principle for intervals; might be

useful elsewhere
8.13.12 Cousin’s lemma
8.13.13 A technical lemma about "refinement" of division
Covering lemma
proposition covering_lemma:

assumes S ⊆ cbox a b box a b 6= {} gauge g
obtains D where

countable D
⋃
D ⊆ cbox a b∧

K . K ∈ D =⇒ interior K 6= {} ∧ (∃ c d. K = cbox c d)
pairwise (λA B. interior A ∩ interior B = {}) D∧

K . K ∈ D =⇒ ∃ x ∈ S ∩ K . K ⊆ g x∧
u v. cbox u v ∈ D =⇒ ∃n. ∀ i ∈ Basis. v · i − u · i = (b · i − a · i) / 2^n

S ⊆
⋃
D

8.13.14 Division filter
definition division_filter :: ′a::euclidean_space set ⇒ ( ′a × ′a set) set filter
where division_filter s = (INF g∈{g. gauge g}. principal {p. p tagged_division_of

s ∧ g fine p})

proposition eventually_division_filter :
(∀ F p in division_filter s. P p) ←→
(∃ g. gauge g ∧ (∀ p. p tagged_division_of s ∧ g fine p −→ P p))
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end

8.14 Henstock-Kurzweil Gauge Integration in Many
Dimensions

theory Henstock_Kurzweil_Integration
imports

Lebesgue_Measure Tagged_Division HOL−Real_Asymp.Real_Asymp

begin

8.14.1 Content (length, area, volume, etc.) of an interval
8.14.2 Gauge integral
8.14.3 Basic theorems about integrals
corollary integral_mult_left [simp]:

fixes c:: ′a::{real_normed_algebra,division_ring}
shows integral S (λx. f x ∗ c) = integral S f ∗ c

corollary integral_mult_right [simp]:
fixes c:: ′a::{real_normed_field}
shows integral S (λx. c ∗ f x) = c ∗ integral S f

corollary integral_divide [simp]:
fixes z :: ′a::real_normed_field
shows integral S (λx. f x / z) = integral S (λx. f x) / z

8.14.4 Cauchy-type criterion for integrability
proposition integrable_Cauchy:

fixes f :: ′n::euclidean_space ⇒ ′a::{real_normed_vector ,complete_space}
shows f integrable_on cbox a b ←→

(∀ e>0 . ∃ γ. gauge γ ∧
(∀D1 D2 . D1 tagged_division_of (cbox a b) ∧ γ fine D1 ∧
D2 tagged_division_of (cbox a b) ∧ γ fine D2 −→
norm ((

∑
(x,K )∈D1 . content K ∗R f x) − (

∑
(x,K )∈D2 . content K ∗R

f x)) < e))
(is ?l = (∀ e>0 . ∃ γ. ?P e γ))

8.14.5 Additivity of integral on abutting intervals

proposition has_integral_split:
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fixes f :: ′a::euclidean_space ⇒ ′b::real_normed_vector
assumes fi: (f has_integral i) (cbox a b ∩ {x. x·k ≤ c})

and fj: (f has_integral j) (cbox a b ∩ {x. x·k ≥ c})
and k: k ∈ Basis

shows (f has_integral (i + j)) (cbox a b)

8.14.6 A sort of converse, integrability on subintervals
8.14.7 Bounds on the norm of Riemann sums and the inte-

gral itself

corollary integrable_bound:
fixes f :: ′a::euclidean_space ⇒ ′b::real_normed_vector
assumes 0 ≤ B

and f integrable_on (cbox a b)
and

∧
x. x∈cbox a b =⇒ norm (f x) ≤ B

shows norm (integral (cbox a b) f ) ≤ B ∗ content (cbox a b)

8.14.8 Similar theorems about relationship among compo-
nents

8.14.9 Uniform limit of integrable functions is integrable

8.14.10 Negligible sets

proposition negligible_standard_hyperplane[intro]:
fixes k :: ′a::euclidean_space
assumes k: k ∈ Basis
shows negligible {x. x·k = c}

corollary negligible_standard_hyperplane_cart:
fixes k :: ′a::finite
shows negligible {x. x$k = (0 ::real)}

proposition has_integral_negligible:
fixes f :: ′b::euclidean_space ⇒ ′a::real_normed_vector
assumes negs: negligible S

and
∧

x. x ∈ (T − S) =⇒ f x = 0
shows (f has_integral 0 ) T
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8.14.11 Some other trivialities about negligible sets
8.14.12 Finite case of the spike theorem is quite commonly

needed

corollary has_integral_bound_real:
fixes f :: real ⇒ ′b::real_normed_vector
assumes 0 ≤ B finite S

and (f has_integral i) {a..b}
and

∧
x. x ∈ {a..b} − S =⇒ norm (f x) ≤ B

shows norm i ≤ B ∗ content {a..b}

8.14.13 In particular, the boundary of an interval is negligi-
ble

8.14.14 Integrability of continuous functions
8.14.15 Specialization of additivity to one dimension
8.14.16 A useful lemma allowing us to factor out the content

size
8.14.17 Fundamental theorem of calculus

theorem fundamental_theorem_of_calculus:
fixes f :: real ⇒ ′a::banach
assumes a ≤ b

and vecd:
∧

x. x ∈ {a..b} =⇒ (f has_vector_derivative f ′ x) (at x within
{a..b})

shows (f ′ has_integral (f b − f a)) {a..b}

8.14.18 Taylor series expansion
8.14.19 Only need trivial subintervals if the interval itself is

trivial
proposition division_of_nontrivial:

fixes D :: ′a::euclidean_space set set
assumes sdiv: D division_of (cbox a b)

and cont0 : content (cbox a b) 6= 0
shows {k. k ∈ D ∧ content k 6= 0} division_of (cbox a b)
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8.14.20 Integrability on subintervals
8.14.21 Combining adjacent intervals in 1 dimension
8.14.22 Reduce integrability to "local" integrability
8.14.23 Second FTC or existence of antiderivative

8.14.24 Combined fundamental theorem of calculus
8.14.25 General "twiddling" for interval-to-interval function

image
8.14.26 Special case of a basic affine transformation
8.14.27 Special case of stretching coordinate axes separately
8.14.28 even more special cases
8.14.29 Stronger form of FCT; quite a tedious proof

theorem fundamental_theorem_of_calculus_interior :
fixes f :: real ⇒ ′a::real_normed_vector
assumes a ≤ b

and contf : continuous_on {a..b} f
and derf :

∧
x. x ∈ {a <..< b} =⇒ (f has_vector_derivative f ′ x) (at x)

shows (f ′ has_integral (f b − f a)) {a..b}

8.14.30 Stronger form with finite number of exceptional points

corollary fundamental_theorem_of_calculus_strong:
fixes f :: real ⇒ ′a::banach
assumes finite S

and a ≤ b
and vec:

∧
x. x ∈ {a..b} − S =⇒ (f has_vector_derivative f ′(x)) (at x)

and continuous_on {a..b} f
shows (f ′ has_integral (f b − f a)) {a..b}

proposition indefinite_integral_continuous_left:
fixes f :: real ⇒ ′a::banach
assumes intf : f integrable_on {a..b} and a < c c ≤ b e > 0
obtains d where d > 0

and ∀ t. c − d < t ∧ t ≤ c −→ norm (integral {a..c} f − integral {a..t} f ) <
e

theorem integral_has_vector_derivative ′:
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fixes f :: real ⇒ ′b::banach
assumes continuous_on {a..b} f

and x ∈ {a..b}
shows ((λu. integral {u..b} f ) has_vector_derivative − f x) (at x within {a..b})

8.14.31 This doesn’t directly involve integration, but that
gives an easy proof

8.14.32 Generalize a bit to any convex set
8.14.33 Integrating characteristic function of an interval

corollary has_integral_restrict_UNIV :
fixes f :: ′n::euclidean_space ⇒ ′a::banach
shows ((λx. if x ∈ s then f x else 0 ) has_integral i) UNIV ←→ (f has_integral

i) s

8.14.34 Integrals on set differences

corollary integral_spike_set:
fixes f :: ′n::euclidean_space ⇒ ′a::banach
assumes negligible {x ∈ S − T . f x 6= 0} negligible {x ∈ T − S . f x 6= 0}
shows integral S f = integral T f

8.14.35 More lemmas that are useful later
8.14.36 Continuity of the integral (for a 1-dimensional inter-

val)
8.14.37 A straddling criterion for integrability
8.14.38 Adding integrals over several sets
8.14.39 Also tagged divisions
8.14.40 Henstock’s lemma
8.14.41 Monotone convergence (bounded interval first)
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8.14.42 differentiation under the integral sign
8.14.43 Exchange uniform limit and integral
8.14.44 Integration by parts
8.14.45 Integration by substitution
8.14.46 Compute a double integral using iterated integrals

and switching the order of integration

theorem integral_swap_continuous:
fixes f :: [ ′a::euclidean_space, ′b::euclidean_space] ⇒ ′c::banach
assumes continuous_on (cbox (a,c) (b,d)) (λ(x,y). f x y)

shows integral (cbox a b) (λx. integral (cbox c d) (f x)) =
integral (cbox c d) (λy. integral (cbox a b) (λx. f x y))

8.14.47 Definite integrals for exponential and power function
8.14.48 Adaption to ordered Euclidean spaces and the Carte-

sian Euclidean space

end



Chapter 9

Kronecker’s Theorem with
Applications

theory Kronecker_Approximation_Theorem

imports Complex_Transcendental Henstock_Kurzweil_Integration
HOL−Real_Asymp.Real_Asymp

begin

9.1 Dirichlet’s Approximation Theorem
theorem Dirichlet_approx_simult:

fixes ϑ :: nat ⇒ real and N n :: nat
assumes N > 0
obtains q p where 0<q q ≤ int (N^n)

and
∧

i. i<n =⇒ |of_int q ∗ ϑ i − of_int(p i)| < 1/N
corollary Dirichlet_approx:

fixes ϑ:: real and N :: nat
assumes N > 0
obtains h k where 0 < k k ≤ int N |of_int k ∗ ϑ − of_int h| < 1/N

corollary Dirichlet_approx_coprime:
fixes ϑ:: real and N :: nat
assumes N > 0
obtains h k where coprime h k 0 < k k ≤ int N |of_int k ∗ ϑ − of_int h| <

1/N
theorem infinite_approx_set:

assumes infinite (approx_set ϑ)
shows ∃ h k. (h,k) ∈ approx_set ϑ ∧ k > K

theorem rational_iff_finite_approx_set:
shows ϑ ∈ � ←→ finite (approx_set ϑ)
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9.2 Kronecker’s Approximation Theorem: the One-
dimensional Case

theorem Kronecker_approx_1_explicit:
fixes ϑ :: real
assumes ϑ /∈ � and α: 0 ≤ α α ≤ 1 and ε > 0
obtains k where k>0 |frac(real k ∗ ϑ) − α| < ε

corollary Kronecker_approx_1 :
fixes ϑ :: real
assumes ϑ /∈ �
shows closure (range (λn. frac (real n ∗ ϑ))) = {0 ..1} (is ?C = _)

corollary sequence_of_fractional_parts_is_dense:
fixes ϑ :: real
assumes ϑ /∈ � ε > 0
obtains h k where k > 0 |of_int k ∗ ϑ − of_int h − α| < ε

9.3 Extension of Kronecker’s Theorem to Simul-
taneous Approximation

9.3.1 Towards Lemma 1
9.3.2 Towards Lemma 2
9.3.3 Towards lemma 3

9.3.4 And finally Kroncker’s theorem itself
theorem Kronecker_thm_1 :

fixes α ϑ:: nat ⇒ real and n:: nat
assumes indp: module.independent (λr . (∗) (real_of_int r)) (ϑ ‘ {..<n})

and injϑ: inj_on ϑ {..<n} and ε > 0
obtains t h where

∧
i. i < n =⇒ |t ∗ ϑ i − of_int (h i) − α i| < ε

corollary Kronecker_thm_2 :
fixes α ϑ :: nat ⇒ real and n :: nat
assumes indp: module.independent (λr x. of_int r ∗ x) (ϑ ‘ {..n})

and injϑ: inj_on ϑ {..n} and [simp]: ϑ n = 1 and ε > 0
obtains k m where

∧
i. i < n =⇒ |of_int k ∗ ϑ i − of_int (m i) − α i| < ε

end
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9.4 Bernstein-Weierstrass and Stone-Weierstrass
theory Weierstrass_Theorems
imports Uniform_Limit Path_Connected Derivative
begin

9.4.1 Bernstein polynomials
definition Bernstein :: [nat,nat,real] ⇒ real where

Bernstein n k x ≡ of_nat (n choose k) ∗ x^k ∗ (1 − x)^(n − k)

9.4.2 Explicit Bernstein version of the 1D Weierstrass ap-
proximation theorem

theorem Bernstein_Weierstrass:
fixes f :: real ⇒ real
assumes contf : continuous_on {0 ..1} f and e: 0 < e

shows ∃N . ∀n x. N ≤ n ∧ x ∈ {0 ..1}
−→ |f x − (

∑
k≤n. f (k/n) ∗ Bernstein n k x)| < e

9.4.3 General Stone-Weierstrass theorem

definition normf :: ( ′a::t2_space ⇒ real) ⇒ real
where normf f ≡ SUP x∈S . |f x|

proposition (in function_ring_on) Stone_Weierstrass_basic:
assumes f : continuous_on S f and e: e > 0
shows ∃ g ∈ R. ∀ x∈S . |f x − g x| < e

theorem (in function_ring_on) Stone_Weierstrass:
assumes f : continuous_on S f
shows ∃F∈UNIV → R. LIM n sequentially. F n :> uniformly_on S f

corollary Stone_Weierstrass_HOL:
fixes R :: ( ′a::t2_space ⇒ real) set and S :: ′a set
assumes compact S

∧
c. P(λx. c::real)∧

f . P f =⇒ continuous_on S f∧
f g. P(f ) ∧ P(g) =⇒ P(λx. f x + g x)

∧
f g. P(f ) ∧ P(g) =⇒ P(λx. f

x ∗ g x)∧
x y. x ∈ S ∧ y ∈ S ∧ x 6= y =⇒ ∃ f . P(f ) ∧ f x 6= f y

continuous_on S f
0 < e

shows ∃ g. P(g) ∧ (∀ x ∈ S . |f x − g x| < e)

9.4.4 Polynomial functions
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definition polynomial_function :: ( ′a::real_normed_vector ⇒ ′b::real_normed_vector)
⇒ bool

where
polynomial_function p ≡ (∀ f . bounded_linear f −→ real_polynomial_function

(f o p))

9.4.5 Stone-Weierstrass theorem for polynomial functions

theorem Stone_Weierstrass_polynomial_function:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes S : compact S

and f : continuous_on S f
and e: 0 < e

shows ∃ g. polynomial_function g ∧ (∀ x ∈ S . norm(f x − g x) < e)

proposition Stone_Weierstrass_uniform_limit:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes S : compact S

and f : continuous_on S f
obtains g where uniform_limit S g f sequentially

∧
n. polynomial_function (g

n)

9.4.6 Polynomial functions as paths

proposition connected_open_polynomial_connected:
fixes S :: ′a::euclidean_space set
assumes S : open S connected S

and x ∈ S y ∈ S
shows ∃ g. polynomial_function g ∧ path_image g ⊆ S ∧ pathstart g = x ∧

pathfinish g = y

theorem Stone_Weierstrass_polynomial_function_subspace:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes compact S

and contf : continuous_on S f
and 0 < e
and subspace T f ‘ S ⊆ T

obtains g where polynomial_function g g ‘ S ⊆ T∧
x. x ∈ S =⇒ norm(f x − g x) < e

end
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9.5 Radon-Nikodým Derivative
theory Radon_Nikodym
imports Bochner_Integration
begin

definition diff_measure :: ′a measure ⇒ ′a measure ⇒ ′a measure
where

diff_measure M N = measure_of (space M ) (sets M ) (λA. emeasure M A −
emeasure N A)
proposition (in sigma_finite_measure) obtain_positive_integrable_function:

obtains f :: ′a ⇒ real where
f ∈ borel_measurable M∧

x. f x > 0∧
x. f x ≤ 1

integrable M f

9.5.1 Absolutely continuous
definition absolutely_continuous :: ′a measure ⇒ ′a measure ⇒ bool where

absolutely_continuous M N ←→ null_sets M ⊆ null_sets N

9.5.2 Existence of the Radon-Nikodym derivative
proposition
(in finite_measure) Radon_Nikodym_finite_measure:
assumes finite_measure N and sets_eq[simp]: sets N = sets M
assumes absolutely_continuous M N
shows ∃ f ∈ borel_measurable M . density M f = N

proposition (in finite_measure) Radon_Nikodym_finite_measure_infinite:
assumes absolutely_continuous M N and sets_eq: sets N = sets M
shows ∃ f∈borel_measurable M . density M f = N

theorem (in sigma_finite_measure) Radon_Nikodym:
assumes ac: absolutely_continuous M N assumes sets_eq: sets N = sets M
shows ∃ f ∈ borel_measurable M . density M f = N

9.5.3 Uniqueness of densities

proposition (in sigma_finite_measure) density_unique:
assumes f : f ∈ borel_measurable M
assumes f ′: f ′ ∈ borel_measurable M
assumes density_eq: density M f = density M f ′

shows AE x in M . f x = f ′ x
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9.5.4 Radon-Nikodym derivative
definition RN_deriv :: ′a measure ⇒ ′a measure ⇒ ′a ⇒ ennreal where

RN_deriv M N =
(if ∃ f . f ∈ borel_measurable M ∧ density M f = N

then SOME f . f ∈ borel_measurable M ∧ density M f = N
else (λ_. 0 ))

proposition (in sigma_finite_measure) real_RN_deriv:
assumes finite_measure N
assumes ac: absolutely_continuous M N sets N = sets M
obtains D where D ∈ borel_measurable M

and AE x in M . RN_deriv M N x = ennreal (D x)
and AE x in N . 0 < D x
and

∧
x. 0 ≤ D x

end



Chapter 10

Integrals over a Set

theory Set_Integral
imports Radon_Nikodym

begin

10.1 Notation
definition set_borel_measurable M A f ≡ (λx. indicator A x ∗R f x) ∈ borel_measurable
M

definition set_integrable M A f ≡ integrable M (λx. indicator A x ∗R f x)

definition set_lebesgue_integral M A f ≡ lebesgue_integral M (λx. indicator A
x ∗R f x)

10.2 Basic properties

proposition set_borel_measurable_subset:
fixes f :: _ ⇒ _ :: {banach, second_countable_topology}
assumes [measurable]: set_borel_measurable M A f B ∈ sets M and B ⊆ A
shows set_borel_measurable M B f

10.3 Complex integrals

157
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10.4 NN Set Integrals

proposition nn_integral_disjoint_family:
assumes [measurable]: f ∈ borel_measurable M

∧
(n::nat). B n ∈ sets M

and disjoint_family B
shows (

∫
+x ∈ (

⋃
n. B n). f x ∂M ) = (

∑
n. (

∫
+x ∈ B n. f x ∂M ))

10.5 Scheffé’s lemma
proposition Scheffe_lemma1 :

assumes
∧

n. integrable M (F n) integrable M f
AE x in M . (λn. F n x) −−−−→ f x
limsup (λn.

∫
+ x. norm(F n x) ∂M ) ≤ (

∫
+ x. norm(f x) ∂M )

shows (λn.
∫

+ x. norm(F n x − f x) ∂M ) −−−−→ 0

proposition Scheffe_lemma2 :
fixes F ::nat ⇒ ′a ⇒ ′b::{banach, second_countable_topology}
assumes

∧
n::nat. F n ∈ borel_measurable M integrable M f

AE x in M . (λn. F n x) −−−−→ f x∧
n. (

∫
+ x. norm(F n x) ∂M ) ≤ (

∫
+ x. norm(f x) ∂M )

shows (λn.
∫

+ x. norm(F n x − f x) ∂M ) −−−−→ 0

10.6 Convergence of integrals over an interval

proposition tendsto_set_lebesgue_integral_at_top:
fixes f :: real ⇒ ′a::{banach, second_countable_topology}
assumes sets:

∧
b. b ≥ a =⇒ {a..b} ∈ sets M

and int: set_integrable M {a..} f
shows ((λb. set_lebesgue_integral M {a..b} f ) −−−→ set_lebesgue_integral M
{a..} f ) at_top

proposition tendsto_set_lebesgue_integral_at_bot:
fixes f :: real ⇒ ′a::{banach, second_countable_topology}
assumes sets:

∧
a. a ≤ b =⇒ {a..b} ∈ sets M

and int: set_integrable M {..b} f
shows ((λa. set_lebesgue_integral M {a..b} f ) −−−→ set_lebesgue_integral M

{..b} f ) at_bot

theorem integral_Markov_inequality ′:
fixes u :: ′a ⇒ real
assumes [measurable]: set_integrable M A u and A ∈ sets M
assumes AE x in M . x ∈ A −→ u x ≥ 0 and 0 < (c::real)
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shows emeasure M {x∈A. u x ≥ c} ≤ (1/c::real) ∗ (
∫

x∈A. u x ∂M )

theorem integral_Markov_inequality ′_measure:
assumes [measurable]: set_integrable M A u and A ∈ sets M

and AE x in M . x ∈ A −→ 0 ≤ u x 0 < (c::real)
shows measure M {x∈A. u x ≥ c} ≤ (

∫
x∈A. u x ∂M ) / c

theorem (in finite_measure) Chernoff_ineq_ge:
assumes s: s > 0
assumes integrable: set_integrable M A (λx. exp (s ∗ f x)) and A ∈ sets M
shows measure M {x∈A. f x ≥ a} ≤ exp (−s ∗ a) ∗ (

∫
x∈A. exp (s ∗ f x) ∂M )

proof −
have {x∈A. f x ≥ a} = {x∈A. exp (s ∗ f x) ≥ exp (s ∗ a)}

using s by auto
also have measure M . . . ≤ set_lebesgue_integral M A (λx. exp (s ∗ f x)) / exp

(s ∗ a)
by (intro integral_Markov_inequality ′_measure assms) auto

finally show ?thesis
by (simp add: exp_minus field_simps)

qed

theorem (in finite_measure) Chernoff_ineq_le:
assumes s: s > 0
assumes integrable: set_integrable M A (λx. exp (−s ∗ f x)) and A ∈ sets M
shows measure M {x∈A. f x ≤ a} ≤ exp (s ∗ a) ∗ (

∫
x∈A. exp (−s ∗ f x) ∂M )

proof −
have {x∈A. f x ≤ a} = {x∈A. exp (−s ∗ f x) ≥ exp (−s ∗ a)}

using s by auto
also have measure M . . . ≤ set_lebesgue_integral M A (λx. exp (−s ∗ f x)) /

exp (−s ∗ a)
by (intro integral_Markov_inequality ′_measure assms) auto

finally show ?thesis
by (simp add: exp_minus field_simps)

qed

10.7 Integrable Simple Functions
lemma integrable_simple_function_induct[consumes 2 , case_names cong indica-
tor add, induct set: simple_function]:

fixes f :: ′a ⇒ ′b :: {second_countable_topology, banach}
assumes f : simple_function M f emeasure M {y ∈ space M . f y 6= 0} 6= ∞
assumes cong:

∧
f g. simple_function M f =⇒ emeasure M {y ∈ space M . f y

6= 0} 6= ∞
=⇒ simple_function M g =⇒ emeasure M {y ∈ space M . g y 6=

0} 6= ∞
=⇒ (

∧
x. x ∈ space M =⇒ f x = g x) =⇒ P f =⇒ P g

assumes indicator :
∧

A y. A ∈ sets M =⇒ emeasure M A < ∞ =⇒ P (λx.
indicator A x ∗R y)

assumes add:
∧

f g. simple_function M f =⇒ emeasure M {y ∈ space M . f y 6=
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0} 6= ∞ =⇒
simple_function M g =⇒ emeasure M {y ∈ space M . g y 6= 0}

6= ∞ =⇒
(
∧

z. z ∈ space M =⇒ norm (f z + g z) = norm (f z) + norm
(g z)) =⇒

P f =⇒ P g =⇒ P (λx. f x + g x)
shows P f

lemma integrable_simple_function_induct_nn[consumes 3 , case_names cong in-
dicator add, induct set: simple_function]:

fixes f :: ′a ⇒ ′b :: {second_countable_topology, banach, linorder_topology, or-
dered_real_vector}

assumes f : simple_function M f emeasure M {y ∈ space M . f y 6= 0} 6= ∞
∧

x.
x ∈ space M −→ f x ≥ 0

assumes cong:
∧

f g. simple_function M f =⇒ emeasure M {y ∈ space M . f y
6= 0} 6= ∞ =⇒ (

∧
x. x ∈ space M =⇒ f x ≥ 0 ) =⇒ simple_function M g =⇒

emeasure M {y ∈ space M . g y 6= 0} 6= ∞ =⇒ (
∧

x. x ∈ space M =⇒ g x ≥ 0 )
=⇒ (

∧
x. x ∈ space M =⇒ f x = g x) =⇒ P f =⇒ P g

assumes indicator :
∧

A y. y ≥ 0 =⇒ A ∈ sets M =⇒ emeasure M A < ∞ =⇒
P (λx. indicator A x ∗R y)

assumes add:
∧

f g. (
∧

x. x ∈ space M =⇒ f x ≥ 0 ) =⇒ simple_function M f
=⇒ emeasure M {y ∈ space M . f y 6= 0} 6= ∞ =⇒

(
∧

x. x ∈ space M =⇒ g x ≥ 0 ) =⇒ simple_function M g =⇒
emeasure M {y ∈ space M . g y 6= 0} 6= ∞ =⇒

(
∧

z. z ∈ space M =⇒ norm (f z + g z) = norm (f z) + norm
(g z)) =⇒

P f =⇒ P g =⇒ P (λx. f x + g x)
shows P f

10.7.1 Totally Ordered Banach Spaces
10.7.2 Auxiliary Lemmas for Set Integrals
10.7.3 Integrability and Measurability of the Diameter
10.7.4 Averaging Theorem

corollary integral_nonneg_eq_0_iff_AE_banach:
fixes f :: ′a ⇒ ′b :: {second_countable_topology, banach, linorder_topology, or-

dered_real_vector}
assumes f [measurable]: integrable M f and nonneg: AE x in M . 0 ≤ f x
shows integralL M f = 0 ←→ (AE x in M . f x = 0 )

corollary integral_eq_mono_AE_eq_AE :
fixes f g :: ′a ⇒ ′b :: {second_countable_topology, banach, linorder_topology,

ordered_real_vector}
assumes integrable M f integrable M g integralL M f = integralL M g AE x in

M . f x ≤ g x
shows AE x in M . f x = g x
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end

10.8 Homeomorphism Theorems
theory Homeomorphism
imports Homotopy
begin

10.8.1 Homeomorphism of all convex compact sets with nonempty
interior

proposition
fixes S :: ′a::euclidean_space set
assumes compact S and 0 : 0 ∈ rel_interior S

and star :
∧

x. x ∈ S =⇒ open_segment 0 x ⊆ rel_interior S
shows starlike_compact_projective1_0 :

S − rel_interior S homeomorphic sphere 0 1 ∩ affine hull S
(is ?SMINUS homeomorphic ?SPHER)

and starlike_compact_projective2_0 :
S homeomorphic cball 0 1 ∩ affine hull S
(is S homeomorphic ?CBALL)

corollary
fixes S :: ′a::euclidean_space set
assumes compact S and a: a ∈ rel_interior S

and star :
∧

x. x ∈ S =⇒ open_segment a x ⊆ rel_interior S
shows starlike_compact_projective1 :

S − rel_interior S homeomorphic sphere a 1 ∩ affine hull S
and starlike_compact_projective2 :

S homeomorphic cball a 1 ∩ affine hull S

corollary starlike_compact_projective_special:
assumes compact S

and cb01 : cball (0 :: ′a::euclidean_space) 1 ⊆ S
and scale:

∧
x u. [[x ∈ S ; 0 ≤ u; u < 1 ]] =⇒ u ∗R x ∈ S − frontier S

shows S homeomorphic (cball (0 :: ′a::euclidean_space) 1 )

10.8.2 Homeomorphisms between punctured spheres and affine
sets

theorem homeomorphic_punctured_affine_sphere_affine:
fixes a :: ′a :: euclidean_space
assumes 0 < r b ∈ sphere a r affine T a ∈ T b ∈ T affine p

and aff : aff_dim T = aff_dim p + 1
shows (sphere a r ∩ T ) − {b} homeomorphic p

Homeomorphism.html


162

corollary homeomorphic_punctured_sphere_affine:
fixes a :: ′a :: euclidean_space
assumes 0 < r and b: b ∈ sphere a r

and affine T and affS : aff_dim T + 1 = DIM ( ′a)
shows (sphere a r − {b}) homeomorphic T

corollary homeomorphic_punctured_sphere_hyperplane:
fixes a :: ′a :: euclidean_space
assumes 0 < r and b: b ∈ sphere a r

and c 6= 0
shows (sphere a r − {b}) homeomorphic {x:: ′a. c · x = d}

proposition homeomorphic_punctured_sphere_affine_gen:
fixes a :: ′a :: euclidean_space
assumes convex S bounded S and a: a ∈ rel_frontier S

and affine T and affS : aff_dim S = aff_dim T + 1
shows rel_frontier S − {a} homeomorphic T

proposition homeomorphic_closedin_convex:
fixes S :: ′m::euclidean_space set
assumes aff_dim S < DIM ( ′n)
obtains U and T :: ′n::euclidean_space set

where convex U U 6= {} closedin (top_of_set U ) T
S homeomorphic T

10.8.3 Locally compact sets in an open set

proposition locally_compact_homeomorphic_closed:
fixes S :: ′a::euclidean_space set
assumes locally compact S and dimlt: DIM ( ′a) < DIM ( ′b)
obtains T :: ′b::euclidean_space set where closed T S homeomorphic T

proposition homeomorphic_convex_compact_cball:
fixes e :: real

and S :: ′a::euclidean_space set
assumes S : convex S compact S interior S 6= {} and e > 0
shows S homeomorphic (cball (b:: ′a) e)

corollary homeomorphic_convex_compact:
fixes S :: ′a::euclidean_space set

and T :: ′a set
assumes convex S compact S interior S 6= {}

and convex T compact T interior T 6= {}
shows S homeomorphic T
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10.8.4 Covering spaces and lifting results for them
definition covering_space

:: ′a::topological_space set ⇒ ( ′a ⇒ ′b) ⇒ ′b::topological_space set ⇒ bool
where
covering_space c p S ≡

continuous_on c p ∧ p ‘ c = S ∧
(∀ x ∈ S . ∃T . x ∈ T ∧ openin (top_of_set S) T ∧

(∃ v.
⋃

v = c ∩ p −‘ T ∧
(∀ u ∈ v. openin (top_of_set c) u) ∧
pairwise disjnt v ∧
(∀ u ∈ v. ∃ q. homeomorphism u T p q)))

proposition covering_space_open_map:
fixes S :: ′a :: metric_space set and T :: ′b :: metric_space set
assumes p: covering_space c p S and T : openin (top_of_set c) T

shows openin (top_of_set S) (p ‘ T )

proposition covering_space_lift_unique:
fixes f :: ′a::topological_space ⇒ ′b::topological_space
fixes g1 :: ′a ⇒ ′c::real_normed_vector
assumes covering_space c p S

g1 a = g2 a
continuous_on T f f ∈ T → S
continuous_on T g1 g1 ∈ T → c

∧
x. x ∈ T =⇒ f x = p(g1 x)

continuous_on T g2 g2 ∈ T → c
∧

x. x ∈ T =⇒ f x = p(g2 x)
connected T a ∈ T x ∈ T

shows g1 x = g2 x

proposition covering_space_locally_eq:
fixes p :: ′a::real_normed_vector ⇒ ′b::real_normed_vector
assumes cov: covering_space C p S

and pim:
∧

T . [[T ⊆ C ; ϕ T ]] =⇒ ψ(p ‘ T )
and qim:

∧
q U . [[U ⊆ S ; continuous_on U q; ψ U ]] =⇒ ϕ(q ‘ U )

shows locally ψ S ←→ locally ϕ C
(is ?lhs = ?rhs)

proposition covering_space_lift_homotopy:
fixes p :: ′a::real_normed_vector ⇒ ′b::real_normed_vector

and h :: real × ′c::real_normed_vector ⇒ ′b
assumes cov: covering_space C p S

and conth: continuous_on ({0 ..1} × U ) h
and him: h ∈ ({0 ..1} × U ) → S
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and heq:
∧

y. y ∈ U =⇒ h (0 ,y) = p(f y)
and contf : continuous_on U f and fim: f ∈ U → C

obtains k where continuous_on ({0 ..1} × U ) k
k ∈ ({0 ..1} × U ) → C∧

y. y ∈ U =⇒ k(0 , y) = f y∧
z. z ∈ {0 ..1} × U =⇒ h z = p(k z)

corollary covering_space_lift_homotopy_alt:
fixes p :: ′a::real_normed_vector ⇒ ′b::real_normed_vector

and h :: ′c::real_normed_vector × real ⇒ ′b
assumes cov: covering_space C p S

and conth: continuous_on (U × {0 ..1}) h
and him: h ∈ (U × {0 ..1}) → S
and heq:

∧
y. y ∈ U =⇒ h (y,0 ) = p(f y)

and contf : continuous_on U f and fim: f ∈ U → C
obtains k where continuous_on (U × {0 ..1}) k

k ∈ (U × {0 ..1}) → C∧
y. y ∈ U =⇒ k(y, 0 ) = f y∧
z. z ∈ U × {0 ..1} =⇒ h z = p(k z)

corollary covering_space_lift_homotopic_function:
fixes p :: ′a::real_normed_vector ⇒ ′b::real_normed_vector and g:: ′c::real_normed_vector
⇒ ′a

assumes cov: covering_space C p S
and contg: continuous_on U g
and gim: g ∈ U → C
and pgeq:

∧
y. y ∈ U =⇒ p(g y) = f y

and hom: homotopic_with_canon (λx. True) U S f f ′

obtains g ′ where continuous_on U g ′ image g ′ U ⊆ C
∧

y. y ∈ U =⇒ p(g ′

y) = f ′ y

corollary covering_space_lift_inessential_function:
fixes p :: ′a::real_normed_vector ⇒ ′b::real_normed_vector and U :: ′c::real_normed_vector

set
assumes cov: covering_space C p S

and hom: homotopic_with_canon (λx. True) U S f (λx. a)
obtains g where continuous_on U g g ‘ U ⊆ C

∧
y. y ∈ U =⇒ p(g y) = f y

10.8.5 Lifting of general functions to covering space
proposition covering_space_lift_path_strong:

fixes p :: ′a::real_normed_vector ⇒ ′b::real_normed_vector
and f :: ′c::real_normed_vector ⇒ ′b

assumes cov: covering_space C p S and a ∈ C
and path g and pag: path_image g ⊆ S and pas: pathstart g = p a

obtains h where path h path_image h ⊆ C pathstart h = a
and

∧
t. t ∈ {0 ..1} =⇒ p(h t) = g t
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corollary covering_space_lift_path:
fixes p :: ′a::real_normed_vector ⇒ ′b::real_normed_vector
assumes cov: covering_space C p S and path g and pig: path_image g ⊆ S
obtains h where path h path_image h ⊆ C

∧
t. t ∈ {0 ..1} =⇒ p(h t) = g t

proposition covering_space_lift_homotopic_paths:
fixes p :: ′a::real_normed_vector ⇒ ′b::real_normed_vector
assumes cov: covering_space C p S

and path g1 and pig1 : path_image g1 ⊆ S
and path g2 and pig2 : path_image g2 ⊆ S
and hom: homotopic_paths S g1 g2
and path h1 and pih1 : path_image h1 ⊆ C and ph1 :

∧
t. t ∈ {0 ..1} =⇒

p(h1 t) = g1 t
and path h2 and pih2 : path_image h2 ⊆ C and ph2 :

∧
t. t ∈ {0 ..1} =⇒

p(h2 t) = g2 t
and h1h2 : pathstart h1 = pathstart h2

shows homotopic_paths C h1 h2

corollary covering_space_monodromy:
fixes p :: ′a::real_normed_vector ⇒ ′b::real_normed_vector
assumes cov: covering_space C p S

and path g1 and pig1 : path_image g1 ⊆ S
and path g2 and pig2 : path_image g2 ⊆ S
and hom: homotopic_paths S g1 g2
and path h1 and pih1 : path_image h1 ⊆ C and ph1 :

∧
t. t ∈ {0 ..1} =⇒

p(h1 t) = g1 t
and path h2 and pih2 : path_image h2 ⊆ C and ph2 :

∧
t. t ∈ {0 ..1} =⇒

p(h2 t) = g2 t
and h1h2 : pathstart h1 = pathstart h2

shows pathfinish h1 = pathfinish h2

corollary covering_space_lift_homotopic_path:
fixes p :: ′a::real_normed_vector ⇒ ′b::real_normed_vector
assumes cov: covering_space C p S

and hom: homotopic_paths S f f ′

and path g and pig: path_image g ⊆ C
and a: pathstart g = a and b: pathfinish g = b
and pgeq:

∧
t. t ∈ {0 ..1} =⇒ p(g t) = f t

obtains g ′ where path g ′ path_image g ′ ⊆ C
pathstart g ′ = a pathfinish g ′ = b

∧
t. t ∈ {0 ..1} =⇒ p(g ′ t) = f ′ t

proposition covering_space_lift_general:
fixes p :: ′a::real_normed_vector ⇒ ′b::real_normed_vector

and f :: ′c::real_normed_vector ⇒ ′b
assumes cov: covering_space C p S and a ∈ C z ∈ U
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and U : path_connected U locally path_connected U
and contf : continuous_on U f and fim: f ∈ U → S
and feq: f z = p a
and hom:

∧
r . [[path r ; path_image r ⊆ U ; pathstart r = z; pathfinish r = z]]
=⇒ ∃ q. path q ∧ path_image q ⊆ C ∧

pathstart q = a ∧ pathfinish q = a ∧
homotopic_paths S (f ◦ r) (p ◦ q)

obtains g where continuous_on U g g ∈ U → C g z = a
∧

y. y ∈ U =⇒ p(g
y) = f y

corollary covering_space_lift_stronger :
fixes p :: ′a::real_normed_vector ⇒ ′b::real_normed_vector

and f :: ′c::real_normed_vector ⇒ ′b
assumes cov: covering_space C p S a ∈ C z ∈ U

and U : path_connected U locally path_connected U
and contf : continuous_on U f and fim: f ∈ U → S
and feq: f z = p a
and hom:

∧
r . [[path r ; path_image r ⊆ U ; pathstart r = z; pathfinish r = z]]
=⇒ ∃ b. homotopic_paths S (f ◦ r) (linepath b b)

obtains g where continuous_on U g g ∈ U → C g z = a
∧

y. y ∈ U =⇒ p(g
y) = f y

corollary covering_space_lift_strong:
fixes p :: ′a::real_normed_vector ⇒ ′b::real_normed_vector

and f :: ′c::real_normed_vector ⇒ ′b
assumes cov: covering_space C p S a ∈ C z ∈ U

and scU : simply_connected U and lpcU : locally path_connected U
and contf : continuous_on U f and fim: f ∈ U → S
and feq: f z = p a

obtains g where continuous_on U g g ∈ U → C g z = a
∧

y. y ∈ U =⇒ p(g
y) = f y

corollary covering_space_lift:
fixes p :: ′a::real_normed_vector ⇒ ′b::real_normed_vector

and f :: ′c::real_normed_vector ⇒ ′b
assumes cov: covering_space C p S

and U : simply_connected U locally path_connected U
and contf : continuous_on U f and fim: f ∈ U → S

obtains g where continuous_on U g g ∈ U → C
∧

y. y ∈ U =⇒ p(g y) = f y

end

theory Equivalence_Lebesgue_Henstock_Integration
imports

Lebesgue_Measure
Henstock_Kurzweil_Integration
Complete_Measure
Set_Integral
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Homeomorphism
Cartesian_Euclidean_Space

begin

10.8.6 Equivalence Lebesgue integral on lborel and HK-integral
10.8.7 Absolute integrability (this is the same as Lebesgue

integrability)

corollary absolutely_integrable_spike_set:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes f : f absolutely_integrable_on S and neg: negligible {x ∈ S − T . f x 6=

0} negligible {x ∈ T − S . f x 6= 0}
shows f absolutely_integrable_on T

10.8.8 Applications to Negligibility

corollary eventually_ae_filter_negligible:
eventually P (ae_filter lebesgue) ←→ (∃N . negligible N ∧ {x. ¬ P x} ⊆ N )

proposition negligible_convex_frontier :
fixes S :: ′N :: euclidean_space set
assumes convex S

shows negligible(frontier S)

corollary negligible_sphere: negligible (sphere a e)

proposition open_not_negligible:
assumes open S S 6= {}
shows ¬ negligible S

10.8.9 Negligibility of image under non-injective linear map

10.8.10 Negligibility of a Lipschitz image of a negligible set

proposition negligible_locally_Lipschitz_image:
fixes f :: ′M ::euclidean_space ⇒ ′N ::euclidean_space
assumes MleN : DIM ( ′M ) ≤ DIM ( ′N ) negligible S

and lips:
∧

x. x ∈ S
=⇒ ∃T B. open T ∧ x ∈ T ∧
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(∀ y ∈ S ∩ T . norm(f y − f x) ≤ B ∗ norm(y − x))
shows negligible (f ‘ S)

corollary negligible_differentiable_image_negligible:
fixes f :: ′M ::euclidean_space ⇒ ′N ::euclidean_space
assumes MleN : DIM ( ′M ) ≤ DIM ( ′N ) negligible S

and diff_f : f differentiable_on S
shows negligible (f ‘ S)

corollary negligible_differentiable_image_lowdim:
fixes f :: ′M ::euclidean_space ⇒ ′N ::euclidean_space
assumes MlessN : DIM ( ′M ) < DIM ( ′N ) and diff_f : f differentiable_on S

shows negligible (f ‘ S)

10.8.11 Measurability of countable unions and intersections
of various kinds.

10.8.12 Negligibility is a local property
10.8.13 Integral bounds

proposition bounded_variation_absolutely_integrable_interval:
fixes f :: ′n::euclidean_space ⇒ ′m::euclidean_space
assumes f : f integrable_on cbox a b

and ∗:
∧

d. d division_of (cbox a b) =⇒ sum (λK . norm(integral K f )) d ≤ B
shows f absolutely_integrable_on cbox a b

10.8.14 Outer and inner approximation of measurable sets
by well-behaved sets.

proposition measurable_outer_intervals_bounded:
assumes S ∈ lmeasurable S ⊆ cbox a b e > 0
obtains D
where countable D∧

K . K ∈ D =⇒ K ⊆ cbox a b ∧ K 6= {} ∧ (∃ c d. K = cbox c d)
pairwise (λA B. interior A ∩ interior B = {}) D∧

u v. cbox u v ∈ D =⇒ ∃n. ∀ i ∈ Basis. v · i − u · i = (b · i − a · i)/2^n∧
K . [[K ∈ D; box a b 6= {}]] =⇒ interior K 6= {}

S ⊆
⋃
D

⋃
D ∈ lmeasurable measure lebesgue (

⋃
D) ≤ measure lebesgue S

+ e

10.8.15 Transformation of measure by linear maps

proposition measure_linear_sufficient:
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fixes f :: ′n::euclidean_space ⇒ ′n
assumes linear f and S : S ∈ lmeasurable

and im:
∧

a b. measure lebesgue (f ‘ (cbox a b)) = m ∗ measure lebesgue (cbox
a b)

shows f ‘ S ∈ lmeasurable ∧ m ∗ measure lebesgue S = measure lebesgue (f ‘ S)

10.8.16 Lemmas about absolute integrability

corollary absolutely_integrable_on_const [simp]:
fixes c :: ′a::euclidean_space
assumes S ∈ lmeasurable
shows (λx. c) absolutely_integrable_on S

10.8.17 Componentwise
proposition absolutely_integrable_componentwise_iff :
shows f absolutely_integrable_on A←→ (∀ b∈Basis. (λx. f x · b) absolutely_integrable_on

A)

corollary absolutely_integrable_max_1 :
fixes f :: ′n::euclidean_space ⇒ real
assumes f absolutely_integrable_on S g absolutely_integrable_on S
shows (λx. max (f x) (g x)) absolutely_integrable_on S

corollary absolutely_integrable_min_1 :
fixes f :: ′n::euclidean_space ⇒ real
assumes f absolutely_integrable_on S g absolutely_integrable_on S
shows (λx. min (f x) (g x)) absolutely_integrable_on S

10.8.18 Dominated convergence

proposition integral_countable_UN :
fixes f :: real^ ′m ⇒ real^ ′n
assumes f : f absolutely_integrable_on (

⋃
(range s))

and s:
∧

m. s m ∈ sets lebesgue
shows

∧
n. f absolutely_integrable_on (

⋃
m≤n. s m)

and (λn. integral (
⋃

m≤n. s m) f ) −−−−→ integral (
⋃
(s ‘ UNIV )) f (is ?F

−−−−→ ?I )
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10.8.19 Fundamental Theorem of Calculus for the Lebesgue
integral

10.8.20 Integration by parts
10.8.21 A non-negative continuous function whose integral

is zero must be zero

corollary integral_cbox_eq_0_iff :
fixes f :: ′a::euclidean_space ⇒ real
assumes continuous_on (cbox a b) f and box a b 6= {}

and
∧

x. x ∈ cbox a b =⇒ f x ≥ 0
shows integral (cbox a b) f = 0 ←→ (∀ x ∈ cbox a b. f x = 0 ) (is ?lhs = ?rhs)

10.8.22 Various common equivalent forms of function mea-
surability

10.8.23 Lebesgue sets and continuous images
proposition lebesgue_regular_inner :
assumes S ∈ sets lebesgue
obtains K C where negligible K

∧
n::nat. compact(C n) S = (

⋃
n. C n) ∪ K

10.8.24 Affine lemmas

lemma lebesgue_integral_real_affine:
fixes f :: real ⇒ ′a :: euclidean_space and c :: real
assumes c: c 6= 0 shows (

∫
x. f x ∂ lebesgue) = |c| ∗R (

∫
x. f (t + c ∗ x)

∂lebesgue)

10.8.25 More results on integrability

proposition measurable_bounded_by_integrable_imp_integrable:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes f : f ∈ borel_measurable (lebesgue_on S) and g: g integrable_on S

and normf :
∧

x. x ∈ S =⇒ norm(f x) ≤ g x and S : S ∈ sets lebesgue
shows f integrable_on S

corollary measurable_bounded_by_integrable_imp_lebesgue_integrable:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes f : f ∈ borel_measurable (lebesgue_on S) and g: integrable (lebesgue_on

S) g
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and normf :
∧

x. x ∈ S =⇒ norm(f x) ≤ g x and S : S ∈ sets lebesgue
shows integrable (lebesgue_on S) f

corollary measurable_bounded_by_integrable_imp_integrable_real:
fixes f :: ′a::euclidean_space ⇒ real
assumes f ∈ borel_measurable (lebesgue_on S) g integrable_on S

∧
x. x ∈ S

=⇒ abs(f x) ≤ g x S ∈ sets lebesgue
shows f integrable_on S

10.8.26 Relation between Borel measurability and integra-
bility.

proposition negligible_differentiable_vimage:
fixes f :: ′a ⇒ ′a::euclidean_space
assumes negligible T

and f ′:
∧

x. x ∈ S =⇒ inj(f ′ x)
and derf :

∧
x. x ∈ S =⇒ (f has_derivative f ′ x) (at x within S)

shows negligible {x ∈ S . f x ∈ T}
proposition has_derivative_inverse_within:

fixes f :: ′a::real_normed_vector ⇒ ′b::euclidean_space
assumes der_f : (f has_derivative f ′) (at a within S)

and cont_g: continuous (at (f a) within f ‘ S) g
and a ∈ S linear g ′ and id: g ′ ◦ f ′ = id
and gf :

∧
x. x ∈ S =⇒ g(f x) = x

shows (g has_derivative g ′) (at (f a) within f ‘ S)

end

10.9 Harmonic Numbers
theory Harmonic_Numbers
imports

Complex_Transcendental
Summation_Tests

begin

10.9.1 The Harmonic numbers
definition harm :: nat ⇒ ′a :: real_normed_field where

harm n = (
∑

k=1 ..n. inverse (of_nat k))

theorem not_convergent_harm: ¬convergent (harm :: nat ⇒ ′a :: real_normed_field)

10.9.2 The Euler-Mascheroni constant
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lemma euler_mascheroni_LIMSEQ:
(λn. harm n − ln (of_nat n) :: real) −−−−→ euler_mascheroni

theorem alternating_harmonic_series_sums: (λk. (−1 )^k / real_of_nat (Suc
k)) sums ln 2

end

10.10 The Gamma Function
theory Gamma_Function

imports
Equivalence_Lebesgue_Henstock_Integration
Summation_Tests
Harmonic_Numbers
HOL−Library.Nonpos_Ints
HOL−Library.Periodic_Fun

begin

10.10.1 The Euler form and the logarithmic Gamma func-
tion

definition Gamma_series :: ( ′a :: {banach,real_normed_field})⇒ nat ⇒ ′a where
Gamma_series z n = fact n ∗ exp (z ∗ of_real (ln (of_nat n))) / pochhammer

z (n+1 )
definition ln_Gamma_series :: ( ′a :: {banach,real_normed_field,ln}) ⇒ nat ⇒
′a where

ln_Gamma_series z n = z ∗ ln (of_nat n) − ln z − (
∑

k=1 ..n. ln (z / of_nat
k + 1 ))

theorem ln_Gamma_complex_LIMSEQ: (z :: complex) /∈ �≤0 =⇒ ln_Gamma_series
z −−−−→ ln_Gamma z

10.10.2 The Polygamma functions

definition Polygamma :: nat ⇒ ( ′a :: {real_normed_field,banach}) ⇒ ′a where
Polygamma n z = (if n = 0 then

(
∑

k. inverse (of_nat (Suc k)) − inverse (z + of_nat k)) − euler_mascheroni
else

(−1 )^Suc n ∗ fact n ∗ (
∑

k. inverse ((z + of_nat k)^Suc n)))

abbreviation Digamma :: ( ′a :: {real_normed_field,banach}) ⇒ ′a where
Digamma ≡ Polygamma 0
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theorem Digamma_LIMSEQ:
fixes z :: ′a :: {banach,real_normed_field}
assumes z: z 6= 0
shows (λm. of_real (ln (real m)) − (

∑
n<m. inverse (z + of_nat n))) −−−−→

Digamma z

theorem Polygamma_LIMSEQ:
fixes z :: ′a :: {banach,real_normed_field}
assumes z 6= 0 and n > 0
shows (λk. inverse ((z + of_nat k)^Suc n)) sums ((−1 ) ^ Suc n ∗ Polygamma

n z / fact n)

theorem has_field_derivative_ln_Gamma_complex [derivative_intros]:
fixes z :: complex
assumes z: z /∈ �≤0

shows (ln_Gamma has_field_derivative Digamma z) (at z)

theorem Polygamma_plus1 :
assumes z 6= 0
shows Polygamma n (z + 1 ) = Polygamma n z + (−1 )^n ∗ fact n / (z ^ Suc

n)

theorem Digamma_of_nat:
Digamma (of_nat (Suc n) :: ′a :: {real_normed_field,banach}) = harm n −

euler_mascheroni

theorem has_field_derivative_Polygamma [derivative_intros]:
fixes z :: ′a :: {real_normed_field,euclidean_space}
assumes z: z /∈ �≤0

shows (Polygamma n has_field_derivative Polygamma (Suc n) z) (at z within
A)

10.10.3 Basic properties

theorem Gamma_series_LIMSEQ [tendsto_intros]:
Gamma_series z −−−−→ Gamma z

theorem Gamma_plus1 : z /∈ �≤0 =⇒ Gamma (z + 1 ) = z ∗ Gamma z

theorem pochhammer_Gamma: z /∈ �≤0 =⇒ pochhammer z n = Gamma (z +
of_nat n) / Gamma z

theorem Gamma_fact: Gamma (1 + of_nat n) = fact n
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10.10.4 Differentiability

theorem has_field_derivative_Gamma [derivative_intros]:
z /∈ �≤0 =⇒ (Gamma has_field_derivative Gamma z ∗ Digamma z) (at z within

A)

theorem log_convex_Gamma_real: convex_on {0<..} (ln ◦ Gamma :: real ⇒
real)

10.10.5 The uniqueness of the real Gamma function

theorem Gamma_pos_real_unique:
assumes x: x > 0
shows G x = Gamma x

10.10.6 The Beta function

theorem Beta_plus1_plus1 :
assumes x /∈ �≤0 y /∈ �≤0

shows Beta (x + 1 ) y + Beta x (y + 1 ) = Beta x y

theorem Beta_plus1_left:
assumes x /∈ �≤0

shows (x + y) ∗ Beta (x + 1 ) y = x ∗ Beta x y

theorem Beta_plus1_right:
assumes y /∈ �≤0

shows (x + y) ∗ Beta x (y + 1 ) = y ∗ Beta x y

10.10.7 Legendre duplication theorem

theorem Gamma_legendre_duplication:
fixes z :: complex
assumes z /∈ �≤0 z + 1/2 /∈ �≤0

shows Gamma z ∗ Gamma (z + 1/2 ) =
exp ((1 − 2∗z) ∗ of_real (ln 2 )) ∗ of_real (sqrt pi) ∗ Gamma (2∗z)
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10.10.8 Alternative definitions

theorem Gamma_series_euler ′:
assumes z: (z :: ′a :: Gamma) /∈ �≤0

shows (λn. Gamma_series_euler ′ z n) −−−−→ Gamma z

theorem Gamma_Weierstrass_complex: Gamma_series_Weierstrass z −−−−→
Gamma (z :: complex)

theorem gbinomial_Gamma:
assumes z + 1 /∈ �≤0

shows (z gchoose n) = Gamma (z + 1 ) / (fact n ∗ Gamma (z − of_nat n +
1 ))

theorem Gamma_integral_complex:
assumes z: Re z > 0
shows ((λt. of_real t powr (z − 1 ) / of_real (exp t)) has_integral Gamma z)
{0 ..}

theorem has_integral_Beta_real:
assumes a: a > 0 and b: b > (0 :: real)
shows ((λt. t powr (a − 1 ) ∗ (1 − t) powr (b − 1 )) has_integral Beta a b)
{0 ..1}

10.10.9 The Weierstraß product formula for the sine
theorem sin_product_formula_complex:

fixes z :: complex
shows (λn. of_real pi ∗ z ∗ (

∏
k=1 ..n. 1 − z^2 / of_nat k^2 )) −−−−→ sin

(of_real pi ∗ z)

theorem wallis: (λn.
∏

k=1 ..n. (4∗real k^2 ) / (4∗real k^2 − 1 )) −−−−→ pi / 2

10.10.10 The Solution to the Basel problem
theorem inverse_squares_sums: (λn. 1 / (n + 1 )2) sums (pi2 / 6 )

end

theory Interval_Integral
imports Equivalence_Lebesgue_Henstock_Integration

begin

Interval{_}{\kern 0pt}Integral.html


176

10.10.11 Approximating a (possibly infinite) interval

proposition einterval_Icc_approximation:
fixes a b :: ereal
assumes a < b
obtains u l :: nat ⇒ real where

einterval a b = (
⋃

i. {l i .. u i})
incseq u decseq l

∧
i. l i < u i

∧
i. a < l i

∧
i. u i < b

l −−−−→ a u −−−−→ b

definition interval_lebesgue_integral :: real measure ⇒ ereal ⇒ ereal ⇒ (real ⇒
′a) ⇒ ′a::{banach, second_countable_topology} where

interval_lebesgue_integral M a b f =
(if a ≤ b then (LINT x:einterval a b|M . f x) else − (LINT x:einterval b a|M . f

x))

definition interval_lebesgue_integrable :: real measure ⇒ ereal ⇒ ereal ⇒ (real
⇒ ′a::{banach, second_countable_topology}) ⇒ bool where

interval_lebesgue_integrable M a b f =
(if a ≤ b then set_integrable M (einterval a b) f else set_integrable M (einterval

b a) f )

10.10.12 Basic properties of integration over an interval

proposition interval_integrable_to_infinity_eq: (interval_lebesgue_integrable M
a ∞ f ) =
(set_integrable M {a<..} f )

10.10.13 Basic properties of integration over an interval wrt
lebesgue measure

10.10.14 General limit approximation arguments
proposition interval_integral_Icc_approx_nonneg:

fixes a b :: ereal
assumes a < b
fixes u l :: nat ⇒ real
assumes approx: einterval a b = (

⋃
i. {l i .. u i})

incseq u decseq l
∧

i. l i < u i
∧

i. a < l i
∧

i. u i < b
l −−−−→ a u −−−−→ b

fixes f :: real ⇒ real
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assumes f_integrable:
∧

i. set_integrable lborel {l i..u i} f
assumes f_nonneg: AE x in lborel. a < ereal x −→ ereal x < b −→ 0 ≤ f x
assumes f_measurable: set_borel_measurable lborel (einterval a b) f
assumes lbint_lim: (λi. LBINT x=l i.. u i. f x) −−−−→ C
shows

set_integrable lborel (einterval a b) f
(LBINT x=a..b. f x) = C

proposition interval_integral_Icc_approx_integrable:
fixes u l :: nat ⇒ real and a b :: ereal
fixes f :: real ⇒ ′a::{banach, second_countable_topology}
assumes a < b
assumes approx: einterval a b = (

⋃
i. {l i .. u i})

incseq u decseq l
∧

i. l i < u i
∧

i. a < l i
∧

i. u i < b
l −−−−→ a u −−−−→ b

assumes f_integrable: set_integrable lborel (einterval a b) f
shows (λi. LBINT x=l i.. u i. f x) −−−−→ (LBINT x=a..b. f x)

10.10.15 A slightly stronger Fundamental Theorem of Cal-
culus

theorem interval_integral_FTC_integrable:
fixes f F :: real ⇒ ′a::euclidean_space and a b :: ereal
assumes a < b
assumes F :

∧
x. a < ereal x =⇒ ereal x < b =⇒ (F has_vector_derivative f x)

(at x)
assumes f :

∧
x. a < ereal x =⇒ ereal x < b =⇒ isCont f x

assumes f_integrable: set_integrable lborel (einterval a b) f
assumes A: ((F ◦ real_of_ereal) −−−→ A) (at_right a)
assumes B: ((F ◦ real_of_ereal) −−−→ B) (at_left b)
shows (LBINT x=a..b. f x) = B − A

theorem interval_integral_FTC2 :
fixes a b c :: real and f :: real ⇒ ′a::euclidean_space
assumes a ≤ c c ≤ b
and contf : continuous_on {a..b} f
fixes x :: real
assumes a ≤ x and x ≤ b
shows ((λu. LBINT y=c..u. f y) has_vector_derivative (f x)) (at x within {a..b})

proposition einterval_antiderivative:
fixes a b :: ereal and f :: real ⇒ ′a::euclidean_space
assumes a < b and contf :

∧
x :: real. a < x =⇒ x < b =⇒ isCont f x

shows ∃F . ∀ x :: real. a < x −→ x < b −→ (F has_vector_derivative f x) (at x)
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10.10.16 The substitution theorem
theorem interval_integral_substitution_finite:

fixes a b :: real and f :: real ⇒ ′a::euclidean_space
assumes a ≤ b
and derivg:

∧
x. a ≤ x =⇒ x ≤ b =⇒ (g has_real_derivative (g ′ x)) (at x within

{a..b})
and contf : continuous_on (g ‘ {a..b}) f
and contg ′: continuous_on {a..b} g ′

shows (LBINT x=a..b. g ′ x ∗R f (g x)) = (LBINT y=g a..g b. f y)

theorem interval_integral_substitution_integrable:
fixes f :: real ⇒ ′a::euclidean_space and a b u v :: ereal
assumes a < b
and deriv_g:

∧
x. a < ereal x =⇒ ereal x < b =⇒ DERIV g x :> g ′ x

and contf :
∧

x. a < ereal x =⇒ ereal x < b =⇒ isCont f (g x)
and contg ′:

∧
x. a < ereal x =⇒ ereal x < b =⇒ isCont g ′ x

and g ′_nonneg:
∧

x. a ≤ ereal x =⇒ ereal x ≤ b =⇒ 0 ≤ g ′ x
and A: ((ereal ◦ g ◦ real_of_ereal) −−−→ A) (at_right a)
and B: ((ereal ◦ g ◦ real_of_ereal) −−−→ B) (at_left b)
and integrable: set_integrable lborel (einterval a b) (λx. g ′ x ∗R f (g x))
and integrable2 : set_integrable lborel (einterval A B) (λx. f x)
shows (LBINT x=A..B. f x) = (LBINT x=a..b. g ′ x ∗R f (g x))

theorem interval_integral_substitution_nonneg:
fixes f g g ′:: real ⇒ real and a b u v :: ereal
assumes a < b
and deriv_g:

∧
x. a < ereal x =⇒ ereal x < b =⇒ DERIV g x :> g ′ x

and contf :
∧

x. a < ereal x =⇒ ereal x < b =⇒ isCont f (g x)
and contg ′:

∧
x. a < ereal x =⇒ ereal x < b =⇒ isCont g ′ x

and f_nonneg:
∧

x. a < ereal x =⇒ ereal x < b =⇒ 0 ≤ f (g x)
and g ′_nonneg:

∧
x. a ≤ ereal x =⇒ ereal x ≤ b =⇒ 0 ≤ g ′ x

and A: ((ereal ◦ g ◦ real_of_ereal) −−−→ A) (at_right a)
and B: ((ereal ◦ g ◦ real_of_ereal) −−−→ B) (at_left b)
and integrable_fg: set_integrable lborel (einterval a b) (λx. f (g x) ∗ g ′ x)
shows

set_integrable lborel (einterval A B) f
(LBINT x=A..B. f x) = (LBINT x=a..b. (f (g x) ∗ g ′ x))

proposition interval_integral_norm:
fixes f :: real ⇒ ′a :: {banach, second_countable_topology}
shows interval_lebesgue_integrable lborel a b f =⇒ a ≤ b =⇒
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norm (LBINT t=a..b. f t) ≤ LBINT t=a..b. norm (f t)

proposition interval_integral_norm2 :
interval_lebesgue_integrable lborel a b f =⇒

norm (LBINT t=a..b. f t) ≤ |LBINT t=a..b. norm (f t)|

end

10.11 Integration by Substition for the Lebesgue
Integral

theory Lebesgue_Integral_Substitution
imports Interval_Integral
begin

theorem nn_integral_substitution:
fixes f :: real ⇒ real
assumes Mf [measurable]: set_borel_measurable borel {g a..g b} f
assumes derivg:

∧
x. x ∈ {a..b} =⇒ (g has_real_derivative g ′ x) (at x)

assumes contg ′: continuous_on {a..b} g ′

assumes derivg_nonneg:
∧

x. x ∈ {a..b} =⇒ g ′ x ≥ 0
assumes a ≤ b
shows (

∫
+x. f x ∗ indicator {g a..g b} x ∂lborel) =

(
∫

+x. f (g x) ∗ g ′ x ∗ indicator {a..b} x ∂lborel)

theorem integral_substitution:
assumes integrable: set_integrable lborel {g a..g b} f
assumes derivg:

∧
x. x ∈ {a..b} =⇒ (g has_real_derivative g ′ x) (at x)

assumes contg ′: continuous_on {a..b} g ′

assumes derivg_nonneg:
∧

x. x ∈ {a..b} =⇒ g ′ x ≥ 0
assumes a ≤ b
shows set_integrable lborel {a..b} (λx. f (g x) ∗ g ′ x)

and (LBINT x. f x ∗ indicator {g a..g b} x) = (LBINT x. f (g x) ∗ g ′ x ∗
indicator {a..b} x)

theorem interval_integral_substitution:
assumes integrable: set_integrable lborel {g a..g b} f
assumes derivg:

∧
x. x ∈ {a..b} =⇒ (g has_real_derivative g ′ x) (at x)

assumes contg ′: continuous_on {a..b} g ′

assumes derivg_nonneg:
∧

x. x ∈ {a..b} =⇒ g ′ x ≥ 0
assumes a ≤ b
shows set_integrable lborel {a..b} (λx. f (g x) ∗ g ′ x)

and (LBINT x=g a..g b. f x) = (LBINT x=a..b. f (g x) ∗ g ′ x)

end
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10.12 The Volume of an n-Dimensional Ball
theory Ball_Volume

imports Gamma_Function Lebesgue_Integral_Substitution
begindefinition unit_ball_vol :: real ⇒ real where

unit_ball_vol n = pi powr (n / 2 ) / Gamma (n / 2 + 1 )

corollary content_ball:
content (ball c r) = unit_ball_vol (DIM ( ′a)) ∗ r ^ DIM ( ′a)

end

10.13 Integral Test for Summability
theory Integral_Test
imports Henstock_Kurzweil_Integration
beginlocale antimono_fun_sum_integral_diff =

fixes f :: real ⇒ real
assumes dec:

∧
x y. x ≥ 0 =⇒ x ≤ y =⇒ f x ≥ f y

assumes nonneg:
∧

x. x ≥ 0 =⇒ f x ≥ 0
assumes cont: continuous_on {0 ..} f

begin

theorem integral_test:
summable (λn. f (of_nat n)) ←→ convergent (λn. integral {0 ..of_nat n} f )

end

10.14 Continuity of the indefinite integral; improper
integral theorem

theory Improper_Integral
imports Equivalence_Lebesgue_Henstock_Integration

begin

10.14.1 Equiintegrability
definition equiintegrable_on (infixr ‹equiintegrable ′_on› 46 )

where F equiintegrable_on I ≡
(∀ f ∈ F . f integrable_on I ) ∧
(∀ e > 0 . ∃ γ. gauge γ ∧

(∀ f D. f ∈ F ∧ D tagged_division_of I ∧ γ fine D
−→ norm ((

∑
(x,K ) ∈ D. content K ∗R f x) − integral I f )

< e))
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corollary equiintegrable_sum_real:
fixes F :: (real ⇒ ′b::euclidean_space) set
assumes F equiintegrable_on {a..b}
shows (

⋃
I ∈ Collect finite.

⋃
c ∈ {c. (∀ i ∈ I . c i ≥ 0 ) ∧ sum c I = 1}.⋃

f ∈ I → F . {(λx. sum (λi. c i ∗R f i x) I )})
equiintegrable_on {a..b}

theorem equiintegrable_limit:
fixes g :: ′a :: euclidean_space ⇒ ′b :: banach
assumes feq: range f equiintegrable_on cbox a b

and to_g:
∧

x. x ∈ cbox a b =⇒ (λn. f n x) −−−−→ g x
shows g integrable_on cbox a b ∧ (λn. integral (cbox a b) (f n)) −−−−→ integral

(cbox a b) g

10.14.2 Subinterval restrictions for equiintegrable families

proposition sum_content_area_over_thin_division:
assumes div: D division_of S and S : S ⊆ cbox a b and i: i ∈ Basis

and a · i ≤ c c ≤ b · i
and nonmt:

∧
K . K ∈ D =⇒ K ∩ {x. x · i = c} 6= {}

shows (b · i − a · i) ∗ (
∑

K∈D. content K / (interval_upperbound K · i −
interval_lowerbound K · i))

≤ 2 ∗ content(cbox a b)

proposition bounded_equiintegral_over_thin_tagged_partial_division:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes F : F equiintegrable_on cbox a b and f : f ∈ F and 0 < ε

and norm_f :
∧

h x. [[h ∈ F ; x ∈ cbox a b]] =⇒ norm(h x) ≤ norm(f x)
obtains γ where gauge γ∧

c i S h. [[c ∈ cbox a b; i ∈ Basis; S tagged_partial_division_of cbox a
b;

γ fine S ; h ∈ F ;
∧

x K . (x,K ) ∈ S =⇒ (K ∩ {x. x · i = c · i}
6= {})]]

=⇒ (
∑

(x,K ) ∈ S . norm (integral K h)) < ε

proposition equiintegrable_halfspace_restrictions_le:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes F : F equiintegrable_on cbox a b and f : f ∈ F

and norm_f :
∧

h x. [[h ∈ F ; x ∈ cbox a b]] =⇒ norm(h x) ≤ norm(f x)
shows (

⋃
i ∈ Basis.

⋃
c.

⋃
h ∈ F . {(λx. if x · i ≤ c then h x else 0 )})

equiintegrable_on cbox a b

Improper{_}{\kern 0pt}Integral.html


182

corollary equiintegrable_halfspace_restrictions_ge:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes F : F equiintegrable_on cbox a b and f : f ∈ F

and norm_f :
∧

h x. [[h ∈ F ; x ∈ cbox a b]] =⇒ norm(h x) ≤ norm(f x)
shows (

⋃
i ∈ Basis.

⋃
c.

⋃
h ∈ F . {(λx. if x · i ≥ c then h x else 0 )})

equiintegrable_on cbox a b

corollary equiintegrable_halfspace_restrictions_lt:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes F : F equiintegrable_on cbox a b and f : f ∈ F

and norm_f :
∧

h x. [[h ∈ F ; x ∈ cbox a b]] =⇒ norm(h x) ≤ norm(f x)
shows (

⋃
i ∈ Basis.

⋃
c.

⋃
h ∈ F . {(λx. if x · i < c then h x else 0 )}) equiin-

tegrable_on cbox a b
(is ?G equiintegrable_on cbox a b)

corollary equiintegrable_halfspace_restrictions_gt:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes F : F equiintegrable_on cbox a b and f : f ∈ F

and norm_f :
∧

h x. [[h ∈ F ; x ∈ cbox a b]] =⇒ norm(h x) ≤ norm(f x)
shows (

⋃
i ∈ Basis.

⋃
c.

⋃
h ∈ F . {(λx. if x · i > c then h x else 0 )}) equiin-

tegrable_on cbox a b
(is ?G equiintegrable_on cbox a b)

proposition equiintegrable_closed_interval_restrictions:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes f : f integrable_on cbox a b
shows (

⋃
c d. {(λx. if x ∈ cbox c d then f x else 0 )}) equiintegrable_on cbox a b

10.14.3 Continuity of the indefinite integral
proposition indefinite_integral_continuous:

fixes f :: ′a :: euclidean_space ⇒ ′b :: euclidean_space
assumes int_f : f integrable_on cbox a b

and c: c ∈ cbox a b and d: d ∈ cbox a b 0 < ε
obtains δ where 0 < δ∧

c ′ d ′. [[c ′ ∈ cbox a b; d ′ ∈ cbox a b; norm(c ′ − c) ≤ δ; norm(d ′ − d)
≤ δ]]

=⇒ norm(integral(cbox c ′ d ′) f − integral(cbox c d) f ) < ε

corollary indefinite_integral_uniformly_continuous:
fixes f :: ′a :: euclidean_space ⇒ ′b :: euclidean_space
assumes f integrable_on cbox a b
shows uniformly_continuous_on (cbox (Pair a a) (Pair b b)) (λy. integral (cbox

(fst y) (snd y)) f )
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corollary bounded_integrals_over_subintervals:
fixes f :: ′a :: euclidean_space ⇒ ′b :: euclidean_space
assumes f integrable_on cbox a b
shows bounded {integral (cbox c d) f |c d. cbox c d ⊆ cbox a b}

theorem absolutely_integrable_improper :
fixes f :: ′M ::euclidean_space ⇒ ′N ::euclidean_space
assumes int_f :

∧
c d. cbox c d ⊆ box a b =⇒ f integrable_on cbox c d

and bo: bounded {integral (cbox c d) f |c d. cbox c d ⊆ box a b}
and absi:

∧
i. i ∈ Basis

=⇒ ∃ g. g absolutely_integrable_on cbox a b ∧
((∀ x ∈ cbox a b. f x · i ≤ g x) ∨ (∀ x ∈ cbox a b. f x · i ≥ g x))

shows f absolutely_integrable_on cbox a b

10.14.4 Second mean value theorem and corollaries

theorem second_mean_value_theorem_full:
fixes f :: real ⇒ real
assumes f : f integrable_on {a..b} and a ≤ b

and g:
∧

x y. [[a ≤ x; x ≤ y; y ≤ b]] =⇒ g x ≤ g y
obtains c where c ∈ {a..b}

and ((λx. g x ∗ f x) has_integral (g a ∗ integral {a..c} f + g b ∗ integral {c..b}
f )) {a..b}

corollary second_mean_value_theorem:
fixes f :: real ⇒ real
assumes f : f integrable_on {a..b} and a ≤ b
and g:

∧
x y. [[a ≤ x; x ≤ y; y ≤ b]] =⇒ g x ≤ g y

obtains c where c ∈ {a..b}
integral {a..b} (λx. g x ∗ f x) = g a ∗ integral {a..c} f + g b ∗ integral

{c..b} f

end

10.15 Continuous Extensions of Functions
theory Continuous_Extension
imports Starlike
begin

10.15.1 Partitions of unity subordinate to locally finite open
coverings

proposition subordinate_partition_of_unity:
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fixes S :: ′a::metric_space set
assumes S ⊆

⋃
C and opC :

∧
T . T ∈ C =⇒ open T

and fin:
∧

x. x ∈ S =⇒ ∃V . open V ∧ x ∈ V ∧ finite {U ∈ C. U ∩ V 6= {}}
obtains F :: [ ′a set, ′a] ⇒ real

where
∧

U . U ∈ C =⇒ continuous_on S (F U ) ∧ (∀ x ∈ S . 0 ≤ F U x)
and

∧
x U . [[U ∈ C; x ∈ S ; x /∈ U ]] =⇒ F U x = 0

and
∧

x. x ∈ S =⇒ supp_sum (λW . F W x) C = 1
and

∧
x. x ∈ S =⇒ ∃V . open V ∧ x ∈ V ∧ finite {U ∈ C. ∃ x∈V . F U x 6=

0}

10.15.2 Urysohn’s Lemma for Euclidean Spaces

proposition Urysohn_local_strong:
assumes US : closedin (top_of_set U ) S

and UT : closedin (top_of_set U ) T
and S ∩ T = {} a 6= b

obtains f :: ′a::euclidean_space ⇒ ′b::euclidean_space
where continuous_on U f∧

x. x ∈ U =⇒ f x ∈ closed_segment a b∧
x. x ∈ U =⇒ (f x = a ←→ x ∈ S)∧
x. x ∈ U =⇒ (f x = b ←→ x ∈ T )

proposition Urysohn:
assumes US : closed S

and UT : closed T
and S ∩ T = {}

obtains f :: ′a::euclidean_space ⇒ ′b::euclidean_space
where continuous_on UNIV f∧

x. f x ∈ closed_segment a b∧
x. x ∈ S =⇒ f x = a∧
x. x ∈ T =⇒ f x = b

10.15.3 Dugundji’s Extension Theorem and Tietze Variants
theorem Dugundji:

fixes f :: ′a::{metric_space,second_countable_topology} ⇒ ′b::real_inner
assumes convex C C 6= {}

and cloin: closedin (top_of_set U ) S
and contf : continuous_on S f and f ‘ S ⊆ C

obtains g where continuous_on U g g ‘ U ⊆ C∧
x. x ∈ S =⇒ g x = f x

corollary Tietze:
fixes f :: ′a::{metric_space,second_countable_topology} ⇒ ′b::real_inner
assumes continuous_on S f

and closedin (top_of_set U ) S
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and 0 ≤ B
and

∧
x. x ∈ S =⇒ norm(f x) ≤ B

obtains g where continuous_on U g
∧

x. x ∈ S =⇒ g x = f x∧
x. x ∈ U =⇒ norm(g x) ≤ B

end

10.16 Equivalence Between Classical Borel Mea-
surability and HOL Light’s

theory Equivalence_Measurable_On_Borel
imports Equivalence_Lebesgue_Henstock_Integration Improper_Integral Con-

tinuous_Extension
begin

10.16.1 Austin’s Lemma
10.16.2 A differentiability-like property of the indefinite in-

tegral.
proposition integrable_ccontinuous_explicit:

fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes

∧
a b:: ′a. f integrable_on cbox a b

obtains N where
negligible N∧

x e. [[x /∈ N ; 0 < e]] =⇒
∃ d>0 . ∀ h. 0 < h ∧ h < d −→

norm(integral (cbox x (x + h ∗R One)) f /R h ^ DIM ( ′a) − f
x) < e

10.16.3 HOL Light measurability

proposition integrable_subintervals_imp_measurable:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes

∧
a b. f integrable_on cbox a b

shows f measurable_on UNIV

10.16.4 Composing continuous and measurable functions; a
few variants

proposition indicator_measurable_on:
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assumes S ∈ sets lebesgue
shows indicat_real S measurable_on UNIV

lemma simple_function_induct_real
[consumes 1 , case_names cong set mult add, induct set: simple_function]:

fixes u :: ′a ⇒ real
assumes u: simple_function M u
assumes cong:

∧
f g. simple_function M f =⇒ simple_function M g =⇒ (AE x

in M . f x = g x) =⇒ P f =⇒ P g
assumes set:

∧
A. A ∈ sets M =⇒ P (indicator A)

assumes mult:
∧

u c. P u =⇒ P (λx. c ∗ u x)
assumes add:

∧
u v. P u =⇒ P v =⇒ P (λx. u x + v x)

and nn:
∧

x. u x ≥ 0
shows P u

proposition simple_function_measurable_on_UNIV :
fixes f :: ′a::euclidean_space ⇒ real
assumes f : simple_function lebesgue f and nn:

∧
x. f x ≥ 0

shows f measurable_on UNIV

corollary simple_function_measurable_on:
fixes f :: ′a::euclidean_space ⇒ real
assumes f : simple_function lebesgue f and nn:

∧
x. f x ≥ 0 and S : S ∈ sets

lebesgue
shows f measurable_on S

proposition measurable_on_componentwise_UNIV :
f measurable_on UNIV ←→ (∀ i∈Basis. (λx. (f x · i) ∗R i) measurable_on UNIV )
(is ?lhs = ?rhs)

corollary measurable_on_componentwise:
f measurable_on S ←→ (∀ i∈Basis. (λx. (f x · i) ∗R i) measurable_on S)

lemma borel_measurable_implies_simple_function_sequence_real:
fixes u :: ′a ⇒ real
assumes u[measurable]: u ∈ borel_measurable M and nn:

∧
x. u x ≥ 0

shows ∃ f . incseq f ∧ (∀ i. simple_function M (f i)) ∧ (∀ x. bdd_above (range
(λi. f i x))) ∧

(∀ i x. 0 ≤ f i x) ∧ u = (SUP i. f i)

proposition homeomorphic_box_UNIV :
fixes a b:: ′a::euclidean_space
assumes box a b 6= {}
shows box a b homeomorphic (UNIV :: ′a set)
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proposition measurable_on_imp_borel_measurable_lebesgue_UNIV :
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes f measurable_on UNIV
shows f ∈ borel_measurable lebesgue

corollary measurable_on_imp_borel_measurable_lebesgue:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes f measurable_on S and S : S ∈ sets lebesgue
shows f ∈ borel_measurable (lebesgue_on S)

proposition measurable_on_limit:
fixes f :: nat ⇒ ′a::euclidean_space ⇒ ′b::euclidean_space
assumes f :

∧
n. f n measurable_on S and N : negligible N

and lim:
∧

x. x ∈ S − N =⇒ (λn. f n x) −−−−→ g x
shows g measurable_on S

proposition lebesgue_measurable_imp_measurable_on:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes f : f ∈ borel_measurable lebesgue and S : S ∈ sets lebesgue
shows f measurable_on S

proposition measurable_on_iff_borel_measurable:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes S ∈ sets lebesgue
shows f measurable_on S ←→ f ∈ borel_measurable (lebesgue_on S) (is ?lhs =

?rhs)

10.16.5 Monotonic functions are Lebesgue integrable
10.16.6 Measurability on generalisations of the binary prod-

uct

end

10.17 Embedding Measure Spaces with a Function
theory Embed_Measure
imports Binary_Product_Measure
begindefinition embed_measure :: ′a measure ⇒ ( ′a ⇒ ′b) ⇒ ′b measure where
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embed_measure M f = measure_of (f ‘ space M ) {f ‘ A |A. A ∈ sets M}
(λA. emeasure M (f −‘ A ∩ space M ))

end

10.18 Brouwer’s Fixed Point Theorem
theory Brouwer_Fixpoint

imports Homeomorphism Derivative
begin

10.18.1 Retractions

10.18.2 Kuhn Simplices
10.18.3 Brouwer’s fixed point theorem
theorem brouwer :

fixes f :: ′a::euclidean_space ⇒ ′a
assumes S : compact S convex S S 6= {}

and contf : continuous_on S f
and fim: f ∈ S → S

obtains x where x ∈ S and f x = x

10.18.4 Applications
corollary no_retraction_cball:

fixes a :: ′a::euclidean_space
assumes e > 0
shows ¬ (frontier (cball a e) retract_of (cball a e))

corollary contractible_sphere:
fixes a :: ′a::euclidean_space
shows contractible(sphere a r) ←→ r ≤ 0

corollary connected_sphere_eq:
fixes a :: ′a :: euclidean_space
shows connected(sphere a r) ←→ 2 ≤ DIM ( ′a) ∨ r ≤ 0
(is ?lhs = ?rhs)

corollary path_connected_sphere_eq:
fixes a :: ′a :: euclidean_space
shows path_connected(sphere a r) ←→ 2 ≤ DIM ( ′a) ∨ r ≤ 0

(is ?lhs = ?rhs)
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proposition frontier_subset_retraction:
fixes S :: ′a::euclidean_space set
assumes bounded S and fros: frontier S ⊆ T

and contf : continuous_on (closure S) f
and fim: f ∈ S → T
and fid:

∧
x. x ∈ T =⇒ f x = x

shows S ⊆ T

corollary rel_frontier_retract_of_punctured_affine_hull:
fixes S :: ′a::euclidean_space set
assumes bounded S convex S a ∈ rel_interior S

shows rel_frontier S retract_of (affine hull S − {a})

corollary rel_boundary_retract_of_punctured_affine_hull:
fixes S :: ′a::euclidean_space set
assumes compact S convex S a ∈ rel_interior S

shows (S − rel_interior S) retract_of (affine hull S − {a})
theorem has_derivative_inverse_on:

fixes f :: ′n::euclidean_space ⇒ ′n
assumes open S

and
∧

x. x ∈ S =⇒ (f has_derivative f ′(x)) (at x)
and

∧
x. x ∈ S =⇒ g (f x) = x

and f ′ x ◦ g ′ x = id
and x ∈ S

shows (g has_derivative g ′(x)) (at (f x))

end

10.19 Fashoda Meet Theorem
theory Fashoda_Theorem
imports Brouwer_Fixpoint Path_Connected Cartesian_Euclidean_Space
begin

10.19.1 Bijections between intervals
definition interval_bij :: ′a × ′a ⇒ ′a × ′a ⇒ ′a ⇒ ′a::euclidean_space

where interval_bij =
(λ(a, b) (u, v) x. (

∑
i∈Basis. (u·i + (x·i − a·i) / (b·i − a·i) ∗ (v·i − u·i))

∗R i))

10.19.2 Fashoda meet theorem

proposition fashoda_unit:
fixes f g :: real ⇒ real^2
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assumes f ‘ {−1 .. 1} ⊆ cbox (−1 ) 1
and g ‘ {−1 .. 1} ⊆ cbox (−1 ) 1
and continuous_on {−1 .. 1} f
and continuous_on {−1 .. 1} g
and f (− 1 )$1 = − 1
and f 1$1 = 1 g (− 1 ) $2 = −1
and g 1 $2 = 1

shows ∃ s∈{−1 .. 1}. ∃ t∈{−1 .. 1}. f s = g t

proposition fashoda_unit_path:
fixes f g :: real ⇒ real^2
assumes path f

and path g
and path_image f ⊆ cbox (−1 ) 1
and path_image g ⊆ cbox (−1 ) 1
and (pathstart f )$1 = −1
and (pathfinish f )$1 = 1
and (pathstart g)$2 = −1
and (pathfinish g)$2 = 1

obtains z where z ∈ path_image f and z ∈ path_image g

theorem fashoda:
fixes b :: real^2
assumes path f

and path g
and path_image f ⊆ cbox a b
and path_image g ⊆ cbox a b
and (pathstart f )$1 = a$1
and (pathfinish f )$1 = b$1
and (pathstart g)$2 = a$2
and (pathfinish g)$2 = b$2

obtains z where z ∈ path_image f and z ∈ path_image g

10.19.3 Useful Fashoda corollary pointed out to me by Tom
Hales

corollary fashoda_interlace:
fixes a :: real^2
assumes path f

and path g
and paf : path_image f ⊆ cbox a b
and pag: path_image g ⊆ cbox a b
and (pathstart f )$2 = a$2
and (pathfinish f )$2 = a$2
and (pathstart g)$2 = a$2
and (pathfinish g)$2 = a$2
and (pathstart f )$1 < (pathstart g)$1
and (pathstart g)$1 < (pathfinish f )$1
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and (pathfinish f )$1 < (pathfinish g)$1
obtains z where z ∈ path_image f and z ∈ path_image g

end

10.20 Vector Cross Products in 3 Dimensions
theory Cross3

imports Determinants Cartesian_Euclidean_Space
begin

definition cross3 :: [real^3 , real^3 ] ⇒ real^3 (infixr ‹×› 80 )
where a × b ≡

vector [a$2 ∗ b$3 − a$3 ∗ b$2 ,
a$3 ∗ b$1 − a$1 ∗ b$3 ,
a$1 ∗ b$2 − a$2 ∗ b$1 ]

10.20.1 Basic lemmas

proposition Jacobi: x × (y × z) + y × (z × x) + z × (x × y) = 0 for x::real^3

proposition Lagrange: x × (y × z) = (x · z) ∗R y − (x · y) ∗R z

proposition cross_triple: (x × y) · z = (y × z) · x

proposition dot_cross: (w × x) · (y × z) = (w · y) ∗ (x · z) − (w · z) ∗ (x · y)

proposition norm_cross: (norm (x × y))2 = (norm x)2 ∗ (norm y)2 − (x · y)2

10.20.2 Preservation by rotation, or other orthogonal trans-
formation up to sign

10.20.3 Continuity

end

10.21 Bounded Continuous Functions
theory Bounded_Continuous_Function

imports
Topology_Euclidean_Space
Uniform_Limit

begin
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10.21.1 Definition
definition bcontfun = {f . continuous_on UNIV f ∧ bounded (range f )}

instantiation bcontfun :: (topological_space, metric_space) metric_space
begin

lift_definition dist_bcontfun :: ′a ⇒C
′b ⇒ ′a ⇒C

′b ⇒ real
is λf g. (SUP x . dist (f x) (g x))

10.21.2 Complete Space
instance bcontfun :: (metric_space, complete_space) complete_space

end

10.22 Infinite Products
theory Infinite_Products

imports Topology_Euclidean_Space Complex_Transcendental
begin

10.22.1 Definitions and basic properties
definition raw_has_prod :: [nat ⇒ ′a::{t2_space, comm_semiring_1}, nat, ′a]
⇒ bool

where raw_has_prod f M p ≡ (λn.
∏

i≤n. f (i+M )) −−−−→ p ∧ p 6= 0

definition
has_prod :: (nat ⇒ ′a::{t2_space, comm_semiring_1}) ⇒ ′a ⇒ bool (infixr

‹has ′_prod› 80 )
where f has_prod p ≡ raw_has_prod f 0 p ∨ (∃ i q. p = 0 ∧ f i = 0 ∧

raw_has_prod f (Suc i) q)

definition convergent_prod :: (nat ⇒ ′a :: {t2_space,comm_semiring_1})⇒ bool
where

convergent_prod f ≡ ∃M p. raw_has_prod f M p

definition prodinf :: (nat ⇒ ′a::{t2_space, comm_semiring_1}) ⇒ ′a
(binder ‹

∏
› 10 )

where prodinf f = (THE p. f has_prod p)

10.22.2 Absolutely convergent products
definition abs_convergent_prod :: (nat ⇒ _) ⇒ bool where

abs_convergent_prod f ←→ convergent_prod (λi. 1 + norm (f i − 1 ))

lemma convergent_prod_iff_convergent:
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fixes f :: nat ⇒ ′a :: {topological_semigroup_mult,t2_space,idom}
assumes

∧
i. f i 6= 0

shows convergent_prod f ←→ convergent (λn.
∏

i≤n. f i) ∧ lim (λn.
∏

i≤n. f
i) 6= 0

theorem abs_convergent_prod_conv_summable:
fixes f :: nat ⇒ ′a :: real_normed_div_algebra
shows abs_convergent_prod f ←→ summable (λi. norm (f i − 1 ))

10.22.3 More elementary properties
theorem abs_convergent_prod_imp_convergent_prod:

fixes f :: nat ⇒ ′a :: {real_normed_div_algebra,complete_space,comm_ring_1}
assumes abs_convergent_prod f
shows convergent_prod f

corollary convergent_prod_offset_0 :
fixes f :: nat ⇒ ′a :: {idom,topological_semigroup_mult,t2_space}
assumes convergent_prod f

∧
i. f i 6= 0

shows ∃ p. raw_has_prod f 0 p

theorem has_prod_iff : f has_prod x ←→ convergent_prod f ∧ prodinf f = x

10.22.4 Exponentials and logarithms

theorem convergent_prod_iff_summable_real:
fixes a :: nat ⇒ real
assumes

∧
n. a n > 0

shows convergent_prod (λk. 1 + a k) ←→ summable a (is ?lhs = ?rhs)

theorem Ln_prodinf_complex:
fixes z :: nat ⇒ complex
assumes z:

∧
j. z j 6= 0 and ξ: ξ 6= 0

shows ((λn.
∏

j≤n. z j) −−−−→ ξ) ←→ (∃ k. (λn. (
∑

j≤n. Ln (z j))) −−−−→ Ln
ξ + of_int k ∗ (of_real(2∗pi) ∗ i)) (is ?lhs = ?rhs)
proposition convergent_prod_iff_summable_complex:

fixes z :: nat ⇒ complex
assumes

∧
k. z k 6= 0

shows convergent_prod (λk. z k) ←→ summable (λk. Ln (z k)) (is ?lhs = ?rhs)
proposition summable_imp_convergent_prod_complex:

fixes z :: nat ⇒ complex
assumes z: summable (λk. norm (z k)) and non0 :

∧
k. z k 6= −1

shows convergent_prod (λk. 1 + z k)
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corollary summable_imp_convergent_prod_real:
fixes z :: nat ⇒ real
assumes z: summable (λk. |z k|) and non0 :

∧
k. z k 6= −1

shows convergent_prod (λk. 1 + z k)

10.22.5 Convergence criteria: especially uniform convergence
of infinite products

end

10.23 Sums over Infinite Sets
theory Infinite_Set_Sum

imports Set_Integral Infinite_Sum
begin

definition abs_summable_on ::
( ′a ⇒ ′b :: {banach, second_countable_topology}) ⇒ ′a set ⇒ bool
(infix ‹abs ′_summable ′_on› 50 )

where
f abs_summable_on A ←→ integrable (count_space A) f

definition infsetsum ::
( ′a ⇒ ′b :: {banach, second_countable_topology}) ⇒ ′a set ⇒ ′b

where
infsetsum f A = lebesgue_integral (count_space A) f

theorem infsetsum_reindex:
assumes inj_on g A
shows infsetsum f (g ‘ A) = infsetsum (λx. f (g x)) A

theorem infsetsum_Sigma:
fixes A :: ′a set and B :: ′a ⇒ ′b set
assumes [simp]: countable A and

∧
i. countable (B i)

assumes summable: f abs_summable_on (Sigma A B)
shows infsetsum f (Sigma A B) = infsetsum (λx. infsetsum (λy. f (x, y)) (B

x)) A

theorem abs_summable_on_Sigma_iff :
assumes [simp]: countable A and

∧
x. x ∈ A =⇒ countable (B x)

shows f abs_summable_on Sigma A B ←→
(∀ x∈A. (λy. f (x, y)) abs_summable_on B x) ∧
((λx. infsetsum (λy. norm (f (x, y))) (B x)) abs_summable_on A)
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theorem infsetsum_prod_PiE :
fixes f :: ′a ⇒ ′b ⇒ ′c :: {real_normed_field,banach,second_countable_topology}
assumes finite: finite A and countable:

∧
x. x ∈ A =⇒ countable (B x)

assumes summable:
∧

x. x ∈ A =⇒ f x abs_summable_on B x
shows infsetsum (λg.

∏
x∈A. f x (g x)) (PiE A B) = (

∏
x∈A. infsetsum (f x)

(B x))

end

10.24 Faces, Extreme Points, Polytopes, Polyhe-
dra etc

theory Polytope
imports Cartesian_Euclidean_Space Path_Connected
begin

10.24.1 Faces of a (usually convex) set
definition face_of :: [ ′a::real_vector set, ′a set] ⇒ bool (infixr ‹(face ′_of )› 50 )

where
T face_of S ←→

T ⊆ S ∧ convex T ∧
(∀ a ∈ S . ∀ b ∈ S . ∀ x ∈ T . x ∈ open_segment a b −→ a ∈ T ∧ b ∈ T )

proposition face_of_imp_eq_affine_Int:
fixes S :: ′a::euclidean_space set
assumes S : convex S and T : T face_of S
shows T = (affine hull T ) ∩ S

proposition face_of_conic:
assumes conic S f face_of S
shows conic f

proposition face_of_convex_hulls:
assumes S : finite S T ⊆ S and disj: affine hull T ∩ convex hull (S − T ) =

{}
shows (convex hull T ) face_of (convex hull S)

proposition face_of_convex_hull_insert:
assumes finite S a /∈ affine hull S and T : T face_of convex hull S
shows T face_of convex hull insert a S

proposition face_of_affine_trivial:
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assumes affine S T face_of S
shows T = {} ∨ T = S

proposition Inter_faces_finite_altbound:
fixes T :: ′a::euclidean_space set set
assumes cfaI :

∧
c. c ∈ T =⇒ c face_of S

shows ∃F ′. finite F ′ ∧ F ′ ⊆ T ∧ card F ′ ≤ DIM ( ′a) + 2 ∧
⋂

F ′ =
⋂

T

proposition face_of_Times:
assumes F face_of S and F ′ face_of S ′

shows (F × F ′) face_of (S × S ′)

corollary face_of_Times_decomp:
fixes S :: ′a::euclidean_space set and S ′ :: ′b::euclidean_space set
shows C face_of (S × S ′) ←→ (∃F F ′. F face_of S ∧ F ′ face_of S ′ ∧ C =

F × F ′)
(is ?lhs = ?rhs)

10.24.2 Exposed faces
definition exposed_face_of :: [ ′a::euclidean_space set, ′a set] ⇒ bool

(infixr ‹(exposed ′_face ′_of )› 50 )
where T exposed_face_of S ←→

T face_of S ∧ (∃ a b. S ⊆ {x. a · x ≤ b} ∧ T = S ∩ {x. a · x = b})

proposition exposed_face_of_Int:
assumes T exposed_face_of S

and U exposed_face_of S
shows (T ∩ U ) exposed_face_of S

proposition exposed_face_of_Inter :
fixes P :: ′a::euclidean_space set set

assumes P 6= {}
and

∧
T . T ∈ P =⇒ T exposed_face_of S

shows
⋂

P exposed_face_of S

proposition exposed_face_of_sums:
assumes convex S and convex T

and F exposed_face_of {x + y | x y. x ∈ S ∧ y ∈ T}
(is F exposed_face_of ?ST )

obtains k l
where k exposed_face_of S l exposed_face_of T

F = {x + y | x y. x ∈ k ∧ y ∈ l}

proposition exposed_face_of_parallel:
T exposed_face_of S ←→
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T face_of S ∧
(∃ a b. S ⊆ {x. a · x ≤ b} ∧ T = S ∩ {x. a · x = b} ∧

(T 6= {} −→ T 6= S −→ a 6= 0 ) ∧
(T 6= S −→ (∀w ∈ affine hull S . (w + a) ∈ affine hull S)))

(is ?lhs = ?rhs)

10.24.3 Extreme points of a set: its singleton faces
definition extreme_point_of :: [ ′a::real_vector , ′a set] ⇒ bool

(infixr ‹(extreme ′_point ′_of )› 50 )
where x extreme_point_of S ←→

x ∈ S ∧ (∀ a ∈ S . ∀ b ∈ S . x /∈ open_segment a b)

proposition extreme_points_of_convex_hull:
{x. x extreme_point_of (convex hull S)} ⊆ S

10.24.4 Facets
definition facet_of :: [ ′a::euclidean_space set, ′a set] ⇒ bool

(infixr ‹(facet ′_of )› 50 )
where F facet_of S ←→ F face_of S ∧ F 6= {} ∧ aff_dim F = aff_dim S − 1

10.24.5 Edges: faces of affine dimension 1
definition edge_of :: [ ′a::euclidean_space set, ′a set] ⇒ bool (infixr ‹(edge ′_of )›
50 )

where e edge_of S ←→ e face_of S ∧ aff_dim e = 1

10.24.6 Existence of extreme points
proposition different_norm_3_collinear_points:

fixes a :: ′a::euclidean_space
assumes x ∈ open_segment a b norm(a) = norm(b) norm(x) = norm(b)
shows False

proposition extreme_point_exists_convex:
fixes S :: ′a::euclidean_space set
assumes compact S convex S S 6= {}
obtains x where x extreme_point_of S

10.24.7 Krein-Milman, the weaker form
proposition Krein_Milman:

fixes S :: ′a::euclidean_space set
assumes compact S convex S
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shows S = closure(convex hull {x. x extreme_point_of S})

theorem Krein_Milman_Minkowski:
fixes S :: ′a::euclidean_space set
assumes compact S convex S

shows S = convex hull {x. x extreme_point_of S}

10.24.8 Applying it to convex hulls of explicitly indicated
finite sets

corollary Krein_Milman_polytope:
fixes S :: ′a::euclidean_space set
shows
finite S

=⇒ convex hull S =
convex hull {x. x extreme_point_of (convex hull S)}

proposition face_of_convex_hull_insert_eq:
fixes a :: ′a :: euclidean_space
assumes finite S and a: a /∈ affine hull S
shows (F face_of (convex hull (insert a S)) ←→

F face_of (convex hull S) ∨
(∃F ′. F ′ face_of (convex hull S) ∧ F = convex hull (insert a F ′)))
(is F face_of ?CAS ←→ _)

proposition face_of_convex_hull_affine_independent:
fixes S :: ′a::euclidean_space set
assumes ¬ affine_dependent S

shows (T face_of (convex hull S) ←→ (∃ c. c ⊆ S ∧ T = convex hull c))
(is ?lhs = ?rhs)

proposition Krein_Milman_frontier :
fixes S :: ′a::euclidean_space set
assumes convex S compact S

shows S = convex hull (frontier S)
(is ?lhs = ?rhs)

10.24.9 Polytopes
definition polytope where
polytope S ≡ ∃ v. finite v ∧ S = convex hull v

proposition face_of_polytope_insert2 :
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fixes a :: ′a :: euclidean_space
assumes polytope S a /∈ affine hull S F face_of S
shows convex hull (insert a F) face_of convex hull (insert a S)

10.24.10 Polyhedra
definition polyhedron where
polyhedron S ≡

∃F . finite F ∧
S =

⋂
F ∧

(∀ h ∈ F . ∃ a b. a 6= 0 ∧ h = {x. a · x ≤ b})

10.24.11 Canonical polyhedron representation making facial
structure explicit

proposition polyhedron_Int_affine:
fixes S :: ′a :: euclidean_space set
shows polyhedron S ←→

(∃F . finite F ∧ S = (affine hull S) ∩
⋂

F ∧
(∀ h ∈ F . ∃ a b. a 6= 0 ∧ h = {x. a · x ≤ b}))

proposition rel_interior_polyhedron_explicit:
assumes finite F

and seq: S = affine hull S ∩
⋂

F
and faceq:

∧
h. h ∈ F =⇒ a h 6= 0 ∧ h = {x. a h · x ≤ b h}

and psub:
∧

F ′. F ′ ⊂ F =⇒ S ⊂ affine hull S ∩
⋂

F ′

shows rel_interior S = {x ∈ S . ∀ h ∈ F . a h · x < b h}

proposition polyhedron_Int_affine_parallel_minimal:
fixes S :: ′a :: euclidean_space set
shows polyhedron S ←→

(∃F . finite F ∧
S = (affine hull S) ∩ (

⋂
F) ∧

(∀ h ∈ F . ∃ a b. a 6= 0 ∧ h = {x. a · x ≤ b} ∧
(∀ x ∈ affine hull S . (x + a) ∈ affine hull S)) ∧

(∀F ′. F ′ ⊂ F −→ S ⊂ (affine hull S) ∩ (
⋂

F ′)))
(is ?lhs = ?rhs)

proposition facet_of_polyhedron_explicit:
assumes finite F

and seq: S = affine hull S ∩
⋂

F
and faceq:

∧
h. h ∈ F =⇒ a h 6= 0 ∧ h = {x. a h · x ≤ b h}

and psub:
∧

F ′. F ′ ⊂ F =⇒ S ⊂ affine hull S ∩
⋂

F ′
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shows C facet_of S ←→ (∃ h. h ∈ F ∧ C = S ∩ {x. a h · x = b h})

proposition face_of_polyhedron_explicit:
fixes S :: ′a :: euclidean_space set
assumes finite F

and seq: S = affine hull S ∩
⋂

F
and faceq:

∧
h. h ∈ F =⇒ a h 6= 0 ∧ h = {x. a h · x ≤ b h}

and psub:
∧

F ′. F ′ ⊂ F =⇒ S ⊂ affine hull S ∩
⋂

F ′

and C : C face_of S and C 6= {} C 6= S
shows C =

⋂
{S ∩ {x. a h · x = b h} | h. h ∈ F ∧ C ⊆ S ∩ {x. a h · x = b

h}}

10.24.12 More general corollaries from the explicit represen-
tation

corollary facet_of_polyhedron:
assumes polyhedron S and C facet_of S
obtains a b where a 6= 0 S ⊆ {x. a · x ≤ b} C = S ∩ {x. a · x = b}

corollary face_of_polyhedron:
assumes polyhedron S and C face_of S and C 6= {} and C 6= S

shows C =
⋂
{F . F facet_of S ∧ C ⊆ F}

proposition rel_interior_of_polyhedron:
fixes S :: ′a :: euclidean_space set
assumes polyhedron S

shows rel_interior S = S −
⋃
{F . F facet_of S}

proposition polyhedron_eq_finite_exposed_faces:
fixes S :: ′a :: euclidean_space set
shows polyhedron S ←→ closed S ∧ convex S ∧ finite {F . F exposed_face_of S}

(is ?lhs = ?rhs)

corollary polyhedron_eq_finite_faces:
fixes S :: ′a :: euclidean_space set
shows polyhedron S ←→ closed S ∧ convex S ∧ finite {F . F face_of S}

(is ?lhs = ?rhs)

10.24.13 Relation between polytopes and polyhedra
proposition polytope_eq_bounded_polyhedron:

fixes S :: ′a :: euclidean_space set
shows polytope S ←→ polyhedron S ∧ bounded S

(is ?lhs = ?rhs)
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10.24.14 Relative and absolute frontier of a polytope

proposition frontier_of_convex_hull:
fixes S :: ′a::euclidean_space set
assumes card S = Suc (DIM ( ′a))

shows frontier(convex hull S) =
⋃
{convex hull (S − {a}) | a. a ∈ S}

10.24.15 Special case of a triangle
proposition frontier_of_triangle:

fixes a :: ′a::euclidean_space
assumes DIM ( ′a) = 2
shows frontier(convex hull {a,b,c}) = closed_segment a b ∪ closed_segment b

c ∪ closed_segment c a
(is ?lhs = ?rhs)

corollary inside_of_triangle:
fixes a :: ′a::euclidean_space
assumes DIM ( ′a) = 2
shows inside (closed_segment a b ∪ closed_segment b c ∪ closed_segment c

a) = interior(convex hull {a,b,c})

corollary interior_of_triangle:
fixes a :: ′a::euclidean_space
assumes DIM ( ′a) = 2
shows interior(convex hull {a,b,c}) =

convex hull {a,b,c} − (closed_segment a b ∪ closed_segment b c ∪
closed_segment c a)

10.24.16 Subdividing a cell complex

proposition cell_complex_subdivision_exists:
fixes F :: ′a::euclidean_space set set
assumes 0 < e finite F

and poly:
∧

X . X ∈ F =⇒ polytope X
and aff :

∧
X . X ∈ F =⇒ aff_dim X ≤ d

and face:
∧

X Y . [[X ∈ F ; Y ∈ F ]] =⇒ X ∩ Y face_of X
obtains F ′ where finite F ′ ⋃F ′ =

⋃
F

∧
X . X ∈ F ′ =⇒ diameter X < e∧

X . X ∈ F ′ =⇒ polytope X
∧

X . X ∈ F ′ =⇒ aff_dim X ≤ d∧
X Y . [[X ∈ F ′; Y ∈ F ′]] =⇒ X ∩ Y face_of X∧
C . C ∈ F ′ =⇒ ∃D. D ∈ F ∧ C ⊆ D∧
C x. C ∈ F ∧ x ∈ C =⇒ ∃D. D ∈ F ′ ∧ x ∈ D ∧ D ⊆ C
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10.24.17 Simplexes
definition simplex :: int ⇒ ′a::euclidean_space set ⇒ bool (infix ‹simplex› 50 )

where n simplex S ≡ ∃C . ¬ affine_dependent C ∧ int(card C ) = n + 1 ∧ S =
convex hull C

10.24.18 Simplicial complexes and triangulations
definition simplicial_complex where
simplicial_complex C ≡

finite C ∧
(∀S ∈ C. ∃n. n simplex S) ∧
(∀F S . S ∈ C ∧ F face_of S −→ F ∈ C) ∧
(∀S S ′. S ∈ C ∧ S ′ ∈ C −→ (S ∩ S ′) face_of S)

definition triangulation where
triangulation T ≡

finite T ∧
(∀T ∈ T . ∃n. n simplex T ) ∧
(∀T T ′. T ∈ T ∧ T ′ ∈ T −→ (T ∩ T ′) face_of T )

10.24.19 Refining a cell complex to a simplicial complex
proposition convex_hull_insert_Int_eq:

fixes z :: ′a :: euclidean_space
assumes z: z ∈ rel_interior S

and T : T ⊆ rel_frontier S
and U : U ⊆ rel_frontier S
and convex S convex T convex U

shows convex hull (insert z T ) ∩ convex hull (insert z U ) = convex hull (insert
z (T ∩ U ))

(is ?lhs = ?rhs)

proposition simplicial_subdivision_of_cell_complex:
assumes finite M

and poly:
∧

C . C ∈ M =⇒ polytope C
and face:

∧
C1 C2 . [[C1 ∈ M; C2 ∈ M]] =⇒ C1 ∩ C2 face_of C1

obtains T where simplicial_complex T⋃
T =

⋃
M∧

C . C ∈ M =⇒ ∃F . finite F ∧ F ⊆ T ∧ C =
⋃

F∧
K . K ∈ T =⇒ ∃C . C ∈ M ∧ K ⊆ C

corollary fine_simplicial_subdivision_of_cell_complex:
assumes 0 < e finite M

and poly:
∧

C . C ∈ M =⇒ polytope C
and face:

∧
C1 C2 . [[C1 ∈ M; C2 ∈ M]] =⇒ C1 ∩ C2 face_of C1

obtains T where simplicial_complex T
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∧
K . K ∈ T =⇒ diameter K < e⋃
T =

⋃
M∧

C . C ∈ M =⇒ ∃F . finite F ∧ F ⊆ T ∧ C =
⋃

F∧
K . K ∈ T =⇒ ∃C . C ∈ M ∧ K ⊆ C

10.24.20 Some results on cell division with full-dimensional
cells only

proposition fine_triangular_subdivision_of_cell_complex:
assumes 0 < e finite M

and poly:
∧

C . C ∈ M =⇒ polytope C
and aff :

∧
C . C ∈ M =⇒ aff_dim C = d

and face:
∧

C1 C2 . [[C1 ∈ M; C2 ∈ M]] =⇒ C1 ∩ C2 face_of C1
obtains T where triangulation T

∧
k. k ∈ T =⇒ diameter k < e∧

k. k ∈ T =⇒ aff_dim k = d
⋃
T =

⋃
M∧

C . C ∈ M =⇒ ∃ f . finite f ∧ f ⊆ T ∧ C =
⋃

f∧
k. k ∈ T =⇒ ∃C . C ∈ M ∧ k ⊆ C

10.25 Finitely generated cone is polyhedral, and
hence closed

proposition polyhedron_convex_cone_hull:
fixes S :: ′a::euclidean_space set
assumes finite S
shows polyhedron(convex_cone hull S)

end

10.26 Absolute Retracts, Absolute Neighbourhood
Retracts and Euclidean Neighbourhood Re-
tracts

theory Retracts
imports

Brouwer_Fixpoint
Continuous_Extension

begindefinition AR :: ′a::topological_space set ⇒ bool where
AR S ≡ ∀U . ∀S ′::( ′a ∗ real) set.

S homeomorphic S ′ ∧ closedin (top_of_set U ) S ′ −→ S ′ retract_of U

definition ANR :: ′a::topological_space set ⇒ bool where
ANR S ≡ ∀U . ∀S ′::( ′a ∗ real) set.

S homeomorphic S ′ ∧ closedin (top_of_set U ) S ′
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−→ (∃T . openin (top_of_set U ) T ∧ S ′ retract_of T )

definition ENR :: ′a::topological_space set ⇒ bool where
ENR S ≡ ∃U . open U ∧ S retract_of U

corollary ANR_imp_absolute_neighbourhood_retract:
fixes S :: ′a::euclidean_space set and S ′ :: ′b::euclidean_space set
assumes ANR S S homeomorphic S ′

and clo: closedin (top_of_set U ) S ′

obtains V where openin (top_of_set U ) V S ′ retract_of V

corollary ANR_imp_absolute_neighbourhood_retract_UNIV :
fixes S :: ′a::euclidean_space set and S ′ :: ′b::euclidean_space set
assumes ANR S and hom: S homeomorphic S ′ and clo: closed S ′

obtains V where open V S ′ retract_of V

corollary neighbourhood_extension_into_ANR:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes contf : continuous_on S f and fim: f ∈ S → T and ANR T closed S
obtains V g where S ⊆ V open V continuous_on V g

g ∈ V → T
∧

x. x ∈ S =⇒ g x = f x

10.26.1 Analogous properties of ENRs

corollary ENR_imp_absolute_neighbourhood_retract_UNIV :
fixes S :: ′a::euclidean_space set and S ′ :: ′b::euclidean_space set
assumes ENR S S homeomorphic S ′

obtains T ′ where open T ′ S ′ retract_of T ′

corollary AR_closed_Un:
fixes S :: ′a::euclidean_space set
shows [[closed S ; closed T ; AR S ; AR T ; AR (S ∩ T )]] =⇒ AR (S ∪ T )

corollary ANR_closed_Un:
fixes S :: ′a::euclidean_space set
shows [[closed S ; closed T ; ANR S ; ANR T ; ANR (S ∩ T )]] =⇒ ANR (S ∪ T )

10.26.2 More advanced properties of ANRs and ENRs
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10.26.3 Original ANR material, now for ENRs

10.26.4 Finally, spheres are ANRs and ENRs
10.26.5 Spheres are connected, etc
10.26.6 Borsuk homotopy extension theorem
theorem Borsuk_homotopy_extension_homotopic:

fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes cloTS : closedin (top_of_set T ) S

and anr : (ANR S ∧ ANR T ) ∨ ANR U
and contf : continuous_on T f
and f ∈ T → U
and homotopic_with_canon (λx. True) S U f g

obtains g ′ where homotopic_with_canon (λx. True) T U f g ′

continuous_on T g ′ image g ′ T ⊆ U∧
x. x ∈ S =⇒ g ′ x = g x

10.26.7 More extension theorems

10.26.8 The complement of a set and path-connectedness

theorem connected_complement_homeomorphic_convex_compact:
fixes S :: ′a::euclidean_space set and T :: ′b::euclidean_space set
assumes hom: S homeomorphic T and T : convex T compact T and 2 : 2 ≤

DIM ( ′a)
shows connected(− S)

corollary path_connected_complement_homeomorphic_convex_compact:
fixes S :: ′a::euclidean_space set and T :: ′b::euclidean_space set
assumes hom: S homeomorphic T convex T compact T 2 ≤ DIM ( ′a)

shows path_connected(− S)

end
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10.27 Extending Continous Maps, Invariance of
Domain, etc

theory Further_Topology
imports Weierstrass_Theorems Polytope Complex_Transcendental Equivalence_Lebesgue_Henstock_Integration

Retracts
begin

10.27.1 A map from a sphere to a higher dimensional sphere
is nullhomotopic

proposition inessential_spheremap_lowdim_gen:
fixes f :: ′M ::euclidean_space ⇒ ′a::euclidean_space
assumes convex S bounded S convex T bounded T

and affST : aff_dim S < aff_dim T
and contf : continuous_on (rel_frontier S) f
and fim: f ∈ (rel_frontier S) → rel_frontier T

obtains c where homotopic_with_canon (λz. True) (rel_frontier S) (rel_frontier
T ) f (λx. c)

10.27.2 Some technical lemmas about extending maps from
cell complexes

theorem extend_map_cell_complex_to_sphere:
assumes finite F and S : S ⊆

⋃
F closed S and T : convex T bounded T

and poly:
∧

X . X ∈ F =⇒ polytope X
and aff :

∧
X . X ∈ F =⇒ aff_dim X < aff_dim T

and face:
∧

X Y . [[X ∈ F ; Y ∈ F ]] =⇒ (X ∩ Y ) face_of X
and contf : continuous_on S f and fim: f ∈ S → rel_frontier T

obtains g where continuous_on (
⋃
F) g

g ∈ (
⋃
F) → rel_frontier T

∧
x. x ∈ S =⇒ g x = f x

theorem extend_map_cell_complex_to_sphere_cofinite:
assumes finite F and S : S ⊆

⋃
F closed S and T : convex T bounded T

and poly:
∧

X . X ∈ F =⇒ polytope X
and aff :

∧
X . X ∈ F =⇒ aff_dim X ≤ aff_dim T

and face:
∧

X Y . [[X ∈ F ; Y ∈ F ]] =⇒ (X ∩ Y ) face_of X
and contf : continuous_on S f and fim: f ∈ S → rel_frontier T

obtains C g where finite C disjnt C S continuous_on (
⋃
F − C ) g

g ∈ (
⋃
F − C ) → rel_frontier T

∧
x. x ∈ S =⇒ g x = f x
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10.27.3 Special cases and corollaries involving spheres
proposition extend_map_affine_to_sphere_cofinite_simple:

fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes compact S convex U bounded U

and aff : aff_dim T ≤ aff_dim U
and S ⊆ T and contf : continuous_on S f
and fim: f ∈ S → rel_frontier U

obtains K g where finite K K ⊆ T disjnt K S continuous_on (T − K ) g
g ∈ (T − K ) → rel_frontier U∧

x. x ∈ S =⇒ g x = f x

10.27.4 Extending maps to spheres

proposition extend_map_affine_to_sphere_cofinite_gen:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes SUT : compact S convex U bounded U affine T S ⊆ T

and aff : aff_dim T ≤ aff_dim U
and contf : continuous_on S f
and fim: f ∈ S → rel_frontier U
and dis:

∧
C . [[C ∈ components(T − S); bounded C ]] =⇒ C ∩ L 6= {}

obtains K g where finite K K ⊆ L K ⊆ T disjnt K S continuous_on (T − K )
g

g ∈ (T − K ) → rel_frontier U∧
x. x ∈ S =⇒ g x = f x

corollary extend_map_affine_to_sphere_cofinite:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes SUT : compact S affine T S ⊆ T

and aff : aff_dim T ≤ DIM ( ′b) and 0 ≤ r
and contf : continuous_on S f
and fim: f ∈ S → sphere a r
and dis:

∧
C . [[C ∈ components(T − S); bounded C ]] =⇒ C ∩ L 6= {}

obtains K g where finite K K ⊆ L K ⊆ T disjnt K S continuous_on (T − K )
g

g ∈ (T − K ) → sphere a r
∧

x. x ∈ S =⇒ g x = f x

corollary extend_map_UNIV_to_sphere_cofinite:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes DIM ( ′a) ≤ DIM ( ′b) and 0 ≤ r

and compact S
and continuous_on S f
and f ∈ S → sphere a r
and

∧
C . [[C ∈ components(− S); bounded C ]] =⇒ C ∩ L 6= {}

obtains K g where finite K K ⊆ L disjnt K S continuous_on (− K ) g
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g ∈ (− K ) → sphere a r
∧

x. x ∈ S =⇒ g x = f x

corollary extend_map_UNIV_to_sphere_no_bounded_component:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes aff : DIM ( ′a) ≤ DIM ( ′b) and 0 ≤ r

and SUT : compact S
and contf : continuous_on S f
and fim: f ∈ S → sphere a r
and dis:

∧
C . C ∈ components(− S) =⇒ ¬ bounded C

obtains g where continuous_on UNIV g g ∈ UNIV → sphere a r
∧

x. x ∈ S
=⇒ g x = f x

theorem Borsuk_separation_theorem_gen:
fixes S :: ′a::euclidean_space set
assumes compact S

shows (∀ c ∈ components(− S). ¬bounded c) ←→
(∀ f . continuous_on S f ∧ f ∈ S → sphere (0 :: ′a) 1

−→ (∃ c. homotopic_with_canon (λx. True) S (sphere 0 1 ) f (λx.
c)))

(is ?lhs = ?rhs)

corollary Borsuk_separation_theorem:
fixes S :: ′a::euclidean_space set
assumes compact S and 2 : 2 ≤ DIM ( ′a)

shows connected(− S) ←→
(∀ f . continuous_on S f ∧ f ∈ S → sphere (0 :: ′a) 1

−→ (∃ c. homotopic_with_canon (λx. True) S (sphere 0 1 ) f (λx.
c)))

(is ?lhs = ?rhs)

proposition Jordan_Brouwer_separation:
fixes S :: ′a::euclidean_space set and a:: ′a
assumes hom: S homeomorphic sphere a r and 0 < r

shows ¬ connected(− S)

proposition Jordan_Brouwer_frontier :
fixes S :: ′a::euclidean_space set and a:: ′a
assumes S : S homeomorphic sphere a r and T : T ∈ components(− S) and 2 :

2 ≤ DIM ( ′a)
shows frontier T = S

proposition Jordan_Brouwer_nonseparation:
fixes S :: ′a::euclidean_space set and a:: ′a
assumes S : S homeomorphic sphere a r and T ⊂ S and 2 : 2 ≤ DIM ( ′a)

shows connected(− T )
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10.27.5 Invariance of domain and corollaries
theorem invariance_of_domain:

fixes f :: ′a ⇒ ′a::euclidean_space
assumes continuous_on S f open S inj_on f S

shows open(f ‘ S)

corollary invariance_of_domain_subspaces:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes ope: openin (top_of_set U ) S

and subspace U subspace V and VU : dim V ≤ dim U
and contf : continuous_on S f and fim: f ∈ S → V
and injf : inj_on f S

shows openin (top_of_set V ) (f ‘ S)

corollary invariance_of_dimension_subspaces:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes ope: openin (top_of_set U ) S

and subspace U subspace V
and contf : continuous_on S f and fim: f ∈ S → V
and injf : inj_on f S and S 6= {}

shows dim U ≤ dim V

corollary invariance_of_domain_affine_sets:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes ope: openin (top_of_set U ) S

and aff : affine U affine V aff_dim V ≤ aff_dim U
and contf : continuous_on S f and fim: f ∈ S → V
and injf : inj_on f S

shows openin (top_of_set V ) (f ‘ S)

corollary invariance_of_dimension_affine_sets:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes ope: openin (top_of_set U ) S

and aff : affine U affine V
and contf : continuous_on S f and fim: f ∈ S → V
and injf : inj_on f S and S 6= {}

shows aff_dim U ≤ aff_dim V

corollary invariance_of_dimension:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes contf : continuous_on S f and open S

and injf : inj_on f S and S 6= {}
shows DIM ( ′a) ≤ DIM ( ′b)
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corollary continuous_injective_image_subspace_dim_le:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes subspace S subspace T

and contf : continuous_on S f and fim: f ∈ S → T
and injf : inj_on f S

shows dim S ≤ dim T

corollary invariance_of_domain_homeomorphic:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes open S continuous_on S f DIM ( ′b) ≤ DIM ( ′a) inj_on f S
shows S homeomorphic (f ‘ S)

proposition homeomorphic_interiors:
fixes S :: ′a::euclidean_space set and T :: ′b::euclidean_space set
assumes S homeomorphic T interior S = {} ←→ interior T = {}

shows (interior S) homeomorphic (interior T )

proposition uniformly_continuous_homeomorphism_UNIV_trivial:
fixes f :: ′a::euclidean_space ⇒ ′a
assumes contf : uniformly_continuous_on S f and hom: homeomorphism S

UNIV f g
shows S = UNIV

10.27.6 Formulation of loop homotopy in terms of maps out
of type complex

proposition simply_connected_eq_homotopic_circlemaps:
fixes S :: ′a::real_normed_vector set
shows simply_connected S ←→

(∀ f g::complex ⇒ ′a.
continuous_on (sphere 0 1 ) f ∧ f ∈ (sphere 0 1 ) → S ∧
continuous_on (sphere 0 1 ) g ∧ g ∈ (sphere 0 1 ) → S
−→ homotopic_with_canon (λh. True) (sphere 0 1 ) S f g)

proposition simply_connected_eq_contractible_circlemap:
fixes S :: ′a::real_normed_vector set
shows simply_connected S ←→

path_connected S ∧
(∀ f ::complex ⇒ ′a.

continuous_on (sphere 0 1 ) f ∧ f ‘(sphere 0 1 ) ⊆ S
−→ (∃ a. homotopic_with_canon (λh. True) (sphere 0 1 ) S f (λx. a)))
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corollary homotopy_eqv_simple_connectedness:
fixes S :: ′a::real_normed_vector set and T :: ′b::real_normed_vector set
shows S homotopy_eqv T =⇒ simply_connected S ←→ simply_connected T

10.27.7 Homeomorphism of simple closed curves to circles
proposition homeomorphic_simple_path_image_circle:

fixes a :: complex and γ :: real ⇒ ′a::t2_space
assumes simple_path γ and loop: pathfinish γ = pathstart γ and 0 < r
shows (path_image γ) homeomorphic sphere a r

10.27.8 Dimension-based conditions for various homeomor-
phisms

10.27.9 more invariance of domain
proposition invariance_of_domain_sphere_affine_set_gen:

fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes contf : continuous_on S f and injf : inj_on f S and fim: f ∈ S → T

and U : bounded U convex U
and affine T and affTU : aff_dim T < aff_dim U
and ope: openin (top_of_set (rel_frontier U )) S

shows openin (top_of_set T ) (f ‘ S)

proposition simply_connected_punctured_convex:
fixes a :: ′a::euclidean_space
assumes convex S and 3 : 3 ≤ aff_dim S

shows simply_connected(S − {a})

corollary simply_connected_punctured_universe:
fixes a :: ′a::euclidean_space
assumes 3 ≤ DIM ( ′a)
shows simply_connected(− {a})

10.27.10 The power, squaring and exponential functions as
covering maps

proposition covering_space_power_punctured_plane:
assumes 0 < n

shows covering_space (− {0}) (λz::complex. z^n) (− {0})

corollary covering_space_square_punctured_plane:
covering_space (− {0}) (λz::complex. z^2 ) (− {0})
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proposition covering_space_exp_punctured_plane:
covering_space UNIV (λz::complex. exp z) (− {0})

10.27.11 Hence the Borsukian results about mappings into
circles

corollary inessential_imp_continuous_logarithm_circle:
fixes f :: ′a::real_normed_vector ⇒ complex
assumes homotopic_with_canon (λh. True) S (sphere 0 1 ) f (λt. a)
obtains g where continuous_on S g and

∧
x. x ∈ S =⇒ f x = exp(g x)

proposition homotopic_with_sphere_times:
fixes f :: ′a::real_normed_vector ⇒ complex
assumes hom: homotopic_with_canon (λx. True) S (sphere 0 1 ) f g and conth:

continuous_on S h
and hin:

∧
x. x ∈ S =⇒ h x ∈ sphere 0 1

shows homotopic_with_canon (λx. True) S (sphere 0 1 ) (λx. f x ∗ h x) (λx.
g x ∗ h x)

proposition homotopic_circlemaps_divide:
fixes f :: ′a::real_normed_vector ⇒ complex

shows homotopic_with_canon (λx. True) S (sphere 0 1 ) f g ←→
continuous_on S f ∧ f ∈ S → sphere 0 1 ∧
continuous_on S g ∧ g ∈ S → sphere 0 1 ∧
(∃ c. homotopic_with_canon (λx. True) S (sphere 0 1 ) (λx. f x / g x)

(λx. c))

10.27.12 Upper and lower hemicontinuous functions

proposition upper_lower_hemicontinuous_explicit:
fixes T :: ( ′b::{real_normed_vector ,heine_borel}) set
assumes fST :

∧
x. x ∈ S =⇒ f x ⊆ T

and ope:
∧

U . openin (top_of_set T ) U
=⇒ openin (top_of_set S) {x ∈ S . f x ⊆ U}

and clo:
∧

U . closedin (top_of_set T ) U
=⇒ closedin (top_of_set S) {x ∈ S . f x ⊆ U}

and x ∈ S 0 < e and bofx: bounded(f x) and fx_ne: f x 6= {}
obtains d where 0 < d∧

x ′. [[x ′ ∈ S ; dist x x ′ < d]]
=⇒ (∀ y ∈ f x. ∃ y ′. y ′ ∈ f x ′ ∧ dist y y ′ < e) ∧

(∀ y ′ ∈ f x ′. ∃ y. y ∈ f x ∧ dist y ′ y < e)
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10.27.13 Complex logs exist on various "well-behaved" sets
10.27.14 Another simple case where sphere maps are null-

homotopic
10.27.15 Holomorphic logarithms and square roots

10.27.16 The "Borsukian" property of sets
definition Borsukian where

Borsukian S ≡
∀ f . continuous_on S f ∧ f ∈ S → (− {0 ::complex})
−→ (∃ a. homotopic_with_canon (λh. True) S (− {0}) f (λx. a))

proposition Borsukian_sphere:
fixes a :: ′a::euclidean_space
shows 3 ≤ DIM ( ′a) =⇒ Borsukian (sphere a r)

proposition Borsukian_open_Un:
fixes S :: ′a::real_normed_vector set
assumes opeS : openin (top_of_set (S ∪ T )) S

and opeT : openin (top_of_set (S ∪ T )) T
and BS : Borsukian S and BT : Borsukian T and ST : connected(S ∩ T )

shows Borsukian(S ∪ T )

proposition closed_irreducible_separator :
fixes a :: ′a::real_normed_vector
assumes closed S and ab: ¬ connected_component (− S) a b
obtains T where T ⊆ S closed T T 6= {} ¬ connected_component (− T ) a b∧

U . U ⊂ T =⇒ connected_component (− U ) a b

10.27.17 Unicoherence (closed)
definition unicoherent where

unicoherent U ≡
∀S T . connected S ∧ connected T ∧ S ∪ T = U ∧

closedin (top_of_set U ) S ∧ closedin (top_of_set U ) T
−→ connected (S ∩ T )

proposition homeomorphic_unicoherent:
assumes ST : S homeomorphic T and S : unicoherent S
shows unicoherent T
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corollary contractible_imp_unicoherent:
fixes U :: ′a::euclidean_space set
assumes contractible U shows unicoherent U

corollary convex_imp_unicoherent:
fixes U :: ′a::euclidean_space set
assumes convex U shows unicoherent U

corollary unicoherent_UNIV : unicoherent (UNIV :: ′a :: euclidean_space set)

10.27.18 Several common variants of unicoherence
10.27.19 Some separation results

proposition separation_by_component_open:
fixes S :: ′a :: euclidean_space set
assumes open S and non: ¬ connected(− S)
obtains C where C ∈ components S ¬ connected(− C )

proposition inessential_eq_extensible:
fixes f :: ′a::euclidean_space ⇒ complex
assumes closed S
shows (∃ a. homotopic_with_canon (λh. True) S (−{0}) f (λt. a)) ←→

(∃ g. continuous_on UNIV g ∧ (∀ x ∈ S . g x = f x) ∧ (∀ x. g x 6= 0 ))
(is ?lhs = ?rhs)

proposition Janiszewski_dual:
fixes S :: complex set
assumes compact S compact T connected S connected T connected(− (S ∪ T ))

shows connected(S ∩ T )

end

10.28 The Jordan Curve Theorem and Applica-
tions

theory Jordan_Curve
imports Arcwise_Connected Further_Topology

begin

10.28.1 Janiszewski’s theorem
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theorem Janiszewski:
fixes a b :: complex
assumes compact S closed T and conST : connected (S ∩ T )

and ccS : connected_component (− S) a b and ccT : connected_component
(− T ) a b

shows connected_component (− (S ∪ T )) a b

10.28.2 The Jordan Curve theorem

corollary Jordan_inside_outside:
fixes c :: real ⇒ complex
assumes simple_path c pathfinish c = pathstart c

shows inside(path_image c) 6= {} ∧
open(inside(path_image c)) ∧
connected(inside(path_image c)) ∧
outside(path_image c) 6= {} ∧
open(outside(path_image c)) ∧
connected(outside(path_image c)) ∧
bounded(inside(path_image c)) ∧
¬ bounded(outside(path_image c)) ∧
inside(path_image c) ∩ outside(path_image c) = {} ∧
inside(path_image c) ∪ outside(path_image c) =
− path_image c ∧
frontier(inside(path_image c)) = path_image c ∧
frontier(outside(path_image c)) = path_image c

theorem split_inside_simple_closed_curve:
fixes c :: real ⇒ complex
assumes simple_path c1 and c1 : pathstart c1 = a pathfinish c1 = b

and simple_path c2 and c2 : pathstart c2 = a pathfinish c2 = b
and simple_path c and c: pathstart c = a pathfinish c = b
and a 6= b
and c1c2 : path_image c1 ∩ path_image c2 = {a,b}
and c1c: path_image c1 ∩ path_image c = {a,b}
and c2c: path_image c2 ∩ path_image c = {a,b}
and ne_12 : path_image c ∩ inside(path_image c1 ∪ path_image c2 ) 6= {}

obtains inside(path_image c1 ∪ path_image c) ∩ inside(path_image c2 ∪
path_image c) = {}

inside(path_image c1 ∪ path_image c) ∪ inside(path_image c2 ∪
path_image c) ∪

(path_image c − {a,b}) = inside(path_image c1 ∪ path_image c2 )

end
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10.29 Polynomial Functions: Extremal Behaviour
and Root Counts

theory Poly_Roots
imports Complex_Main
begin

10.29.1 Basics about polynomial functions: extremal behaviour
and root counts

proposition polyfun_extremal_lemma:
fixes c :: nat ⇒ ′a::real_normed_div_algebra
assumes e > 0

shows ∃M . ∀ z. M ≤ norm z −→ norm(
∑

i≤n. c i ∗ z^i) ≤ e ∗ norm(z) ^
Suc n

proposition polyfun_extremal:
fixes c :: nat ⇒ ′a::real_normed_div_algebra
assumes ∃ k. k 6= 0 ∧ k ≤ n ∧ c k 6= 0

shows eventually (λz. norm(
∑

i≤n. c i ∗ z^i) ≥ B) at_infinity

proposition polyfun_rootbound:
fixes c :: nat ⇒ ′a::{comm_ring,real_normed_div_algebra}
assumes ∃ k. k ≤ n ∧ c k 6= 0

shows finite {z. (
∑

i≤n. c i ∗ z^i) = 0} ∧ card {z. (
∑

i≤n. c i ∗ z^i) = 0}
≤ n

corollary
fixes c :: nat ⇒ ′a::{comm_ring,real_normed_div_algebra}
assumes ∃ k. k ≤ n ∧ c k 6= 0

shows polyfun_rootbound_finite: finite {z. (
∑

i≤n. c i ∗ z^i) = 0}
and polyfun_rootbound_card: card {z. (

∑
i≤n. c i ∗ z^i) = 0} ≤ n

proposition polyfun_finite_roots:
fixes c :: nat ⇒ ′a::{comm_ring,real_normed_div_algebra}

shows finite {z. (
∑

i≤n. c i ∗ z^i) = 0} ←→ (∃ k. k ≤ n ∧ c k 6= 0 )

theorem polyfun_eq_const:
fixes c :: nat ⇒ ′a::{comm_ring,real_normed_div_algebra}

shows (∀ z. (
∑

i≤n. c i ∗ z^i) = k) ←→ c 0 = k ∧ (∀ k. k 6= 0 ∧ k ≤ n −→
c k = 0 )

end

10.30 Generalised Binomial Theorem
theory Generalised_Binomial_Theorem
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imports
Complex_Main
Complex_Transcendental
Summation_Tests

begin

theorem gen_binomial_complex:
fixes z :: complex
assumes norm z < 1
shows (λn. (a gchoose n) ∗ z^n) sums (1 + z) powr a

end

10.31 Vitali Covering Theorem and an Applica-
tion to Negligibility

theory Vitali_Covering_Theorem
imports

HOL−Combinatorics.Permutations
Equivalence_Lebesgue_Henstock_Integration

begin

10.31.1 Vitali covering theorem

theorem Vitali_covering_theorem_cballs:
fixes a :: ′a ⇒ ′n::euclidean_space
assumes r :

∧
i. i ∈ K =⇒ 0 < r i

and S :
∧

x d. [[x ∈ S ; 0 < d]]
=⇒ ∃ i. i ∈ K ∧ x ∈ cball (a i) (r i) ∧ r i < d

obtains C where countable C C ⊆ K
pairwise (λi j. disjnt (cball (a i) (r i)) (cball (a j) (r j))) C
negligible(S − (

⋃
i ∈ C . cball (a i) (r i)))

theorem Vitali_covering_theorem_balls:
fixes a :: ′a ⇒ ′b::euclidean_space
assumes S :

∧
x d. [[x ∈ S ; 0 < d]] =⇒ ∃ i. i ∈ K ∧ x ∈ ball (a i) (r i) ∧ r i < d

obtains C where countable C C ⊆ K
pairwise (λi j. disjnt (ball (a i) (r i)) (ball (a j) (r j))) C
negligible(S − (

⋃
i ∈ C . ball (a i) (r i)))

proposition negligible_eq_zero_density:
negligible S ←→
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(∀ x∈S . ∀ r>0 . ∀ e>0 . ∃ d. 0 < d ∧ d ≤ r ∧
(∃U . S ∩ ball x d ⊆ U ∧ U ∈ lmeasurable ∧ measure lebesgue U

< e ∗ measure lebesgue (ball x d)))

end

10.32 Change of Variables Theorems
theory Change_Of_Vars

imports Vitali_Covering_Theorem Determinants

begin

10.32.1 Measurable Shear and Stretch
proposition

fixes a :: real^ ′n
assumes m 6= n and ab_ne: cbox a b 6= {} and an: 0 ≤ a$n
shows measurable_shear_interval: (λx. χ i. if i = m then x$m + x$n else x$i)

‘ (cbox a b) ∈ lmeasurable
(is ?f ‘ _ ∈ _)

and measure_shear_interval: measure lebesgue ((λx. χ i. if i = m then x$m +
x$n else x$i) ‘ cbox a b)

= measure lebesgue (cbox a b) (is ?Q)

proposition
fixes S :: (real^ ′n) set
assumes S ∈ lmeasurable
shows measurable_stretch: ((λx. χ k. m k ∗ x$k) ‘ S) ∈ lmeasurable (is ?f ‘ S
∈ _)

and measure_stretch: measure lebesgue ((λx. χ k. m k ∗ x$k) ‘ S) = |prod m
UNIV | ∗ measure lebesgue S

(is ?MEQ)

proposition
fixes f :: real^ ′n::{finite,wellorder} ⇒ real^ ′n::_
assumes linear f S ∈ lmeasurable
shows measurable_linear_image: (f ‘ S) ∈ lmeasurable

and measure_linear_image: measure lebesgue (f ‘ S) = |det (matrix f )| ∗
measure lebesgue S (is ?Q f S)

proposition measure_semicontinuous_with_hausdist_explicit:
assumes bounded S and neg: negligible(frontier S) and e > 0
obtains d where d > 0∧

T . [[T ∈ lmeasurable;
∧

y. y ∈ T =⇒ ∃ x. x ∈ S ∧ dist x y < d]]
=⇒ measure lebesgue T < measure lebesgue S + e
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proposition
fixes f :: real^ ′n::{finite,wellorder} ⇒ real^ ′n::_
assumes S : S ∈ lmeasurable
and deriv:

∧
x. x ∈ S =⇒ (f has_derivative f ′ x) (at x within S)

and int: (λx. |det (matrix (f ′ x))|) integrable_on S
and bounded:

∧
x. x ∈ S =⇒ |det (matrix (f ′ x))| ≤ B

shows measurable_bounded_differentiable_image:
f ‘ S ∈ lmeasurable

and measure_bounded_differentiable_image:
measure lebesgue (f ‘ S) ≤ B ∗ measure lebesgue S (is ?M )

theorem
fixes f :: real^ ′n::{finite,wellorder} ⇒ real^ ′n::_
assumes S : S ∈ sets lebesgue

and deriv:
∧

x. x ∈ S =⇒ (f has_derivative f ′ x) (at x within S)
and int: (λx. |det (matrix (f ′ x))|) integrable_on S

shows measurable_differentiable_image: f ‘ S ∈ lmeasurable
and measure_differentiable_image:

measure lebesgue (f ‘ S) ≤ integral S (λx. |det (matrix (f ′ x))|) (is ?M )

10.32.2 Borel measurable Jacobian determinant

proposition borel_measurable_partial_derivatives:
fixes f :: real^ ′m::{finite,wellorder} ⇒ real^ ′n
assumes S : S ∈ sets lebesgue

and f :
∧

x. x ∈ S =⇒ (f has_derivative f ′ x) (at x within S)
shows (λx. (matrix(f ′ x)$m$n)) ∈ borel_measurable (lebesgue_on S)

theorem borel_measurable_det_Jacobian:
fixes f :: real^ ′n::{finite,wellorder} ⇒ real^ ′n::_
assumes S : S ∈ sets lebesgue and f :

∧
x. x ∈ S =⇒ (f has_derivative f ′ x) (at

x within S)
shows (λx. det(matrix(f ′ x))) ∈ borel_measurable (lebesgue_on S)

theorem borel_measurable_lebesgue_on_preimage_borel:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes S ∈ sets lebesgue
shows f ∈ borel_measurable (lebesgue_on S) ←→

(∀T . T ∈ sets borel −→ {x ∈ S . f x ∈ T} ∈ sets lebesgue)

Change{_}{\kern 0pt}Of{_}{\kern 0pt}Vars.html


220

10.32.3 Simplest case of Sard’s theorem (we don’t need con-
tinuity of derivative)

theorem baby_Sard:
fixes f :: real^ ′m::{finite,wellorder} ⇒ real^ ′n::{finite,wellorder}
assumes mlen: CARD( ′m) ≤ CARD( ′n)

and der :
∧

x. x ∈ S =⇒ (f has_derivative f ′ x) (at x within S)
and rank:

∧
x. x ∈ S =⇒ rank(matrix(f ′ x)) < CARD( ′n)

shows negligible(f ‘ S)

10.32.4 A one-way version of change-of-variables not assum-
ing injectivity.

proposition absolutely_integrable_on_image:
fixes f :: real^ ′m::{finite,wellorder} ⇒ real^ ′n and g :: real^ ′m::_ ⇒ real^ ′m::_
assumes der_g:

∧
x. x ∈ S =⇒ (g has_derivative g ′ x) (at x within S)

and intS : (λx. |det (matrix (g ′ x))| ∗R f (g x)) absolutely_integrable_on S
shows f absolutely_integrable_on (g ‘ S)

proposition integral_on_image_ubound:
fixes f :: real^ ′n::{finite,wellorder} ⇒ real and g :: real^ ′n::_ ⇒ real^ ′n::_
assumes

∧
x. x ∈ S =⇒ 0 ≤ f (g x)

and
∧

x. x ∈ S =⇒ (g has_derivative g ′ x) (at x within S)
and (λx. |det (matrix (g ′ x))| ∗ f (g x)) integrable_on S

shows integral (g ‘ S) f ≤ integral S (λx. |det (matrix (g ′ x))| ∗ f (g x))

10.32.5 Change-of-variables theorem

theorem has_absolute_integral_change_of_variables_invertible:
fixes f :: real^ ′m::{finite,wellorder} ⇒ real^ ′n and g :: real^ ′m::_ ⇒ real^ ′m::_
assumes der_g:

∧
x. x ∈ S =⇒ (g has_derivative g ′ x) (at x within S)

and hg:
∧

x. x ∈ S =⇒ h(g x) = x
and conth: continuous_on (g ‘ S) h

shows (λx. |det (matrix (g ′ x))| ∗R f (g x)) absolutely_integrable_on S ∧ integral
S (λx. |det (matrix (g ′ x))| ∗R f (g x)) = b ←→

f absolutely_integrable_on (g ‘ S) ∧ integral (g ‘ S) f = b
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(is ?lhs = ?rhs)

theorem has_absolute_integral_change_of_variables_compact:
fixes f :: real^ ′m::{finite,wellorder} ⇒ real^ ′n and g :: real^ ′m::_ ⇒ real^ ′m::_
assumes compact S

and der_g:
∧

x. x ∈ S =⇒ (g has_derivative g ′ x) (at x within S)
and inj: inj_on g S

shows ((λx. |det (matrix (g ′ x))| ∗R f (g x)) absolutely_integrable_on S ∧
integral S (λx. |det (matrix (g ′ x))| ∗R f (g x)) = b

←→ f absolutely_integrable_on (g ‘ S) ∧ integral (g ‘ S) f = b)

theorem has_absolute_integral_change_of_variables:
fixes f :: real^ ′m::{finite,wellorder} ⇒ real^ ′n and g :: real^ ′m::_ ⇒ real^ ′m::_
assumes S : S ∈ sets lebesgue

and der_g:
∧

x. x ∈ S =⇒ (g has_derivative g ′ x) (at x within S)
and inj: inj_on g S

shows (λx. |det (matrix (g ′ x))| ∗R f (g x)) absolutely_integrable_on S ∧
integral S (λx. |det (matrix (g ′ x))| ∗R f (g x)) = b

←→ f absolutely_integrable_on (g ‘ S) ∧ integral (g ‘ S) f = b

corollary absolutely_integrable_change_of_variables:
fixes f :: real^ ′m::{finite,wellorder} ⇒ real^ ′n and g :: real^ ′m::_ ⇒ real^ ′m::_
assumes S ∈ sets lebesgue

and
∧

x. x ∈ S =⇒ (g has_derivative g ′ x) (at x within S)
and inj_on g S

shows f absolutely_integrable_on (g ‘ S)
←→ (λx. |det (matrix (g ′ x))| ∗R f (g x)) absolutely_integrable_on S

corollary integral_change_of_variables:
fixes f :: real^ ′m::{finite,wellorder} ⇒ real^ ′n and g :: real^ ′m::_ ⇒ real^ ′m::_
assumes S : S ∈ sets lebesgue

and der_g:
∧

x. x ∈ S =⇒ (g has_derivative g ′ x) (at x within S)
and inj: inj_on g S
and disj: (f absolutely_integrable_on (g ‘ S) ∨

(λx. |det (matrix (g ′ x))| ∗R f (g x)) absolutely_integrable_on S)
shows integral (g ‘ S) f = integral S (λx. |det (matrix (g ′ x))| ∗R f (g x))

corollary absolutely_integrable_change_of_variables_1 :
fixes f :: real ⇒ real^ ′n::{finite,wellorder} and g :: real ⇒ real
assumes S : S ∈ sets lebesgue

and der_g:
∧

x. x ∈ S =⇒ (g has_vector_derivative g ′ x) (at x within S)
and inj: inj_on g S

shows (f absolutely_integrable_on g ‘ S ←→
(λx. |g ′ x| ∗R f (g x)) absolutely_integrable_on S)

Change{_}{\kern 0pt}Of{_}{\kern 0pt}Vars.html


222

10.32.6 Change of variables for integrals: special case of lin-
ear function

10.32.7 Change of variable for measure

end

10.33 Lipschitz Continuity
theory Lipschitz

imports
Derivative Abstract_Metric_Spaces

begin

definition lipschitz_on
where lipschitz_on C U f ←→ (0 ≤ C ∧ (∀ x ∈ U . ∀ y∈U . dist (f x) (f y) ≤ C
∗ dist x y))
notation

lipschitz_on (‹(‹open_block notation=‹postfix lipschitz_on››_−lipschitz ′_on)›
[1000 ])
proposition lipschitz_on_uniformly_continuous:

assumes L−lipschitz_on X f
shows uniformly_continuous_on X f

proposition lipschitz_on_continuous_on:
continuous_on X f if L−lipschitz_on X f

proposition bounded_derivative_imp_lipschitz:
assumes

∧
x. x ∈ X =⇒ (f has_derivative f ′ x) (at x within X)

assumes convex: convex X
assumes

∧
x. x ∈ X =⇒ onorm (f ′ x) ≤ C 0 ≤ C

shows C−lipschitz_on X f

10.33.1 Local Lipschitz continuity
proposition lipschitz_on_closed_Union:

assumes
∧

i. i ∈ I =⇒ lipschitz_on M (U i) f∧
i. i ∈ I =⇒ closed (U i)

finite I
M ≥ 0
{u..(v::real)} ⊆ (

⋃
i∈I . U i)

shows lipschitz_on M {u..v} f
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10.33.2 Local Lipschitz continuity (uniform for a family of
functions)

definition local_lipschitz::
′a::metric_space set ⇒ ′b::metric_space set ⇒ ( ′a ⇒ ′b ⇒ ′c::metric_space) ⇒

bool
where
local_lipschitz T X f ≡ ∀ x ∈ X . ∀ t ∈ T .
∃ u>0 . ∃L. ∀ t ∈ cball t u ∩ T . L−lipschitz_on (cball x u ∩ X) (f t)

proposition c1_implies_local_lipschitz:
fixes T ::real set and X :: ′a::{banach,heine_borel} set

and f ::real ⇒ ′a ⇒ ′a
assumes f ′:

∧
t x. t ∈ T =⇒ x ∈ X =⇒ (f t has_derivative blinfun_apply (f ′

(t, x))) (at x)
assumes cont_f ′: continuous_on (T × X) f ′

assumes open T
assumes open X
shows local_lipschitz T X f

end
theory

Multivariate_Analysis
imports

Ordered_Euclidean_Space
Determinants
Cross3
Lipschitz
Starlike

beginend

10.34 Volume of a Simplex
theory Simplex_Content
imports Change_Of_Vars
begin

theorem content_std_simplex:
measure lborel (convex hull (insert 0 Basis :: ′a :: euclidean_space set)) =

1 / fact DIM ( ′a)

proposition measure_lebesgue_linear_transformation:
fixes A :: (real ^ ′n :: {finite, wellorder}) set
fixes f :: _ ⇒ real ^ ′n :: {finite, wellorder}
assumes bounded A A ∈ sets lebesgue linear f
shows measure lebesgue (f ‘ A) = |det (matrix f )| ∗ measure lebesgue A

theorem content_simplex:
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fixes X :: (real ^ ′n :: {finite, wellorder}) set and f :: ′n :: _ ⇒ real ^ ( ′n :: _)
assumes finite X card X = Suc CARD( ′n) and x0 : x0 ∈ X and bij: bij_betw f

UNIV (X − {x0})
defines M ≡ (χ i. χ j. f j $ i − x0 $ i)
shows content (convex hull X) = |det M | / fact (CARD( ′n))

theorem content_triangle:
fixes A B C :: real ^ 2
shows content (convex hull {A, B, C}) =

|(C $ 1 − A $ 1 ) ∗ (B $ 2 − A $ 2 ) − (B $ 1 − A $ 1 ) ∗ (C $ 2 − A
$ 2 )| / 2

theorem heron:
fixes A B C :: real ^ 2
defines a ≡ dist B C and b ≡ dist A C and c ≡ dist A B
defines s ≡ (a + b + c) / 2
shows content (convex hull {A, B, C}) = sqrt (s ∗ (s − a) ∗ (s − b) ∗ (s −

c))

end

10.35 Convergence of Formal Power Series
theory FPS_Convergence
imports

Generalised_Binomial_Theorem
HOL−Computational_Algebra.Formal_Power_Series
HOL−Computational_Algebra.Polynomial_FPS

begin

10.35.1 Basic properties of convergent power series
definition fps_conv_radius :: ′a :: {banach, real_normed_div_algebra} fps ⇒
ereal where

fps_conv_radius f = conv_radius (fps_nth f )

definition eval_fps :: ′a :: {banach, real_normed_div_algebra} fps ⇒ ′a ⇒ ′a
where

eval_fps f z = (
∑

n. fps_nth f n ∗ z ^ n)

theorem sums_eval_fps:
fixes f :: ′a :: {banach, real_normed_div_algebra} fps
assumes norm z < fps_conv_radius f
shows (λn. fps_nth f n ∗ z ^ n) sums eval_fps f z
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10.35.2 Evaluating power series
theorem eval_fps_deriv:

assumes norm z < fps_conv_radius f
shows eval_fps (fps_deriv f ) z = deriv (eval_fps f ) z

theorem fps_nth_conv_deriv:
fixes f :: complex fps
assumes fps_conv_radius f > 0
shows fps_nth f n = (deriv ^^ n) (eval_fps f ) 0 / fact n

theorem eval_fps_eqD:
fixes f g :: complex fps
assumes fps_conv_radius f > 0 fps_conv_radius g > 0
assumes eventually (λz. eval_fps f z = eval_fps g z) (nhds 0 )
shows f = g

10.35.3 FPS of a polynomial
10.35.4 Power series expansions of analytic functions
definition

has_fps_expansion :: ( ′a :: {banach,real_normed_div_algebra} ⇒ ′a) ⇒ ′a fps
⇒ bool
(infixl ‹has ′_fps ′_expansion› 60 )
where (f has_fps_expansion F) ←→

fps_conv_radius F > 0 ∧ eventually (λz. eval_fps F z = f z) (nhds 0 )

end
theory Smooth_Paths

imports Retracts
begin

10.35.5 Piecewise differentiability of paths
10.35.6 Valid paths, and their start and finish
definition valid_path :: (real ⇒ ′a :: real_normed_vector) ⇒ bool

where valid_path f ≡ f piecewise_C1_differentiable_on {0 ..1 ::real}

end

10.36 Metrics on product spaces
theory Function_Metric

imports
Function_Topology
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Elementary_Metric_Spaces
begininstantiation fun :: (countable, metric_space) metric_space
begin

definition dist_fun_def :
dist x y = (

∑
n. (1/2 )^n ∗ min (dist (x (from_nat n)) (y (from_nat n))) 1 )

definition uniformity_fun_def :
(uniformity::(( ′a ⇒ ′b) × ( ′a ⇒ ′b)) filter) = (INF e∈{0<..}. principal {(x, y).

dist (x::( ′a⇒ ′b)) y < e})
end
theory Analysis

imports

Convex
Determinants

FSigma
Sum_Topology
Abstract_Topological_Spaces
Abstract_Metric_Spaces
Urysohn
Connected
Abstract_Limits
Isolated
Sparse_In

Elementary_Normed_Spaces
Norm_Arith

Convex_Euclidean_Space
Operator_Norm

Line_Segment
Derivative
Cartesian_Euclidean_Space
Kronecker_Approximation_Theorem
Weierstrass_Theorems

Ball_Volume
Integral_Test
Improper_Integral
Equivalence_Measurable_On_Borel
Lebesgue_Integral_Substitution
Embed_Measure
Complete_Measure
Radon_Nikodym
Fashoda_Theorem
Cross3
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Homeomorphism
Bounded_Continuous_Function
Abstract_Topology
Product_Topology
Lindelof_Spaces
Infinite_Products
Infinite_Sum
Infinite_Set_Sum
Polytope
Jordan_Curve
Poly_Roots
Generalised_Binomial_Theorem
Gamma_Function
Change_Of_Vars
Multivariate_Analysis
Simplex_Content
FPS_Convergence
Smooth_Paths
Abstract_Euclidean_Space
Function_Metric

begin

end

10.37 Poly Mappings as a Real Normed Vector
theory Finite_Function_Topology

imports Function_Topology HOL−Library.Poly_Mapping

begin

instantiation poly_mapping :: (type, real_vector) real_vector
begin

instantiation poly_mapping :: (type, real_normed_vector) metric_space
begin

instantiation poly_mapping :: (type, real_normed_vector) real_normed_vector
begin

end
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