The Isabelle/HOL Algebra Library

Clemens Ballarin (Editor)

With contributions by Jesús Aransay, Clemens Ballarin, Martin Baillon, Paulo Emílio de Vilhena, Stephan Hohe, Florian Kammüller and Lawrence C Paulson
September 11, 2023

Contents

1 Objects 13
1.1 Structure with Carrier Set. 13
1.2 Structure with Carrier and Equivalence Relation eq 13
2 Orders 22
2.1 Partial Orders 22
2.1.1 The order relation 23
2.1.2 Upper and lower bounds of a set 25
2.1.3 Least and greatest, as predicate 28
2.1.4 Intervals 31
2.1.5 Isotone functions 31
2.1.6 Idempotent functions 32
2.1.7 Order embeddings 32
2.1.8 Commuting functions 32
2.2 Partial orders where eq is the Equality 32
2.3 Bounded Orders 34
2.4 Total Orders 35
2.5 Total orders where eq is the Equality 35
3 Lattices 36
3.1 Supremum and infimum 36
3.2 Dual operators 37
3.3 Lattices 37
3.3.1 Supremum 38
3.3.2 Infimum 43
3.4 Weak Bounded Lattices 49
3.5 Lattices where eq is the Equality 49
3.6 Bounded Lattices 51
4 Complete Lattices 52
4.1 Infimum Laws 55
4.2 Supremum Laws 56
4.3 Fixed points of a lattice 57
4.3.1 Least fixed points 59
4.3.2 Greatest fixed points 61
4.4 Complete lattices where eq is the Equality 62
4.5 Fixed points 64
4.6 Interval complete lattices 65
4.7 Knaster-Tarski theorem and variants 67
4.8 Examples 76
4.8.1 The Powerset of a Set is a Complete Lattice 76
4.9 Limit preserving functions 76
5 Galois connections 77
5.1 Definition and basic properties 77
5.2 Well-typed connections 78
5.3 Galois connections 78
5.4 Composition of Galois connections 82
5.5 Retracts 84
5.6 Coretracts 84
5.7 Galois Bijections 85
6 Monoids and Groups 86
6.1 Definitions 86
6.2 Groups 90
6.3 Cancellation Laws and Basic Properties 92
6.4 Power 93
6.5 Submonoids 98
6.6 Subgroups 100
6.7 Direct Products 103
6.8 Homomorphisms (mono and epi) and Isomorphisms 105
6.8.1 HOL Light's concept of an isomorphism pair 111
6.8.2 Involving direct products 112
6.9 The locale for a homomorphism between two groups 114
6.10 Commutative Structures 117
6.11 The Lattice of Subgroups of a Group 121
6.12 The units in any monoid give rise to a group 123
6.13 Product Operator for Commutative Monoids 125
6.13.1 Inductive Definition of a Relation for Products over Sets 125
6.13.2 Left-Commutative Operations 126
6.13.3 Products over Finite Sets 131
7 Cosets and Quotient Groups 138
7.1 Stable Operations for Subgroups 140
7.2 Basic Properties of set multiplication 140
7.3 Basic Properties of Cosets 141
7.4 Normal subgroups 146
7.5 More Properties of Left Cosets 149
7.5.1 Set of Inverses of an r_{-}coset. 150
7.5.2 Theorems for <\#> with \#> or <\#. 151
7.5.3 An Equivalence Relation 152
7.5.4 Two Distinct Right Cosets are Disjoint 153
7.6 Further lemmas for $r_{\text {_ }}$ congruent 153
7.7 Order of a Group and Lagrange's Theorem 155
7.8 Quotient Groups: Factorization of a Group 158
7.9 The First Isomorphism Theorem 161
7.9.1 Trivial homomorphisms 167
7.10 Image kernel theorems 167
7.11 Factor Groups and Direct product 170
7.11.1 More Lemmas about set multiplication 172
7.11.2 Lemmas about intersection and normal subgroups 173
8 Flattening the type of group carriers 181
9 Sylow's Theorem 183
9.1 Main Part of the Proof 186
9.2 Discharging the Assumptions of sylow_central 187
9.2.1 Introduction and Destruct Rules for H 188
9.3 Equal Cardinalities of M and the Set of Cosets 189
9.3.1 The Opposite Injection 190
9.4 Sylow's Theorem 192
10 Bijections of a Set, Permutation and Automorphism Groups 192
10.1 Bijections Form a Group 193
10.2 Automorphisms Form a Group 193
11 The Algebraic Hierarchy of Rings 195
11.1 Abelian Groups 195
11.2 Basic Properties 196
11.3 Rings: Basic Definitions 200
11.4 Rings 200
11.4.1 Normaliser for Rings 202
11.4.2 Sums over Finite Sets 205
11.5 Integral Domains 207
11.6 Fields 208
11.7 Morphisms 209
11.8 Jeremy Avigad's More_Finite_Product material 211
11.9 Jeremy Avigad's More_Ring material 212
12 Modules over an Abelian Group 213
12.1 Definitions 213
12.2 Basic Properties of Modules 215
12.3 Submodules 217
12.4 More Lifting from Groups to Abelian Groups 219
12.4.1 Definitions 219
12.4.2 Cosets 220
12.4.3 Subgroups 222
12.4.4 Additive subgroups are normal 223
12.4.5 Congruence Relation 226
12.4.6 Factorization 228
12.4.7 The First Isomorphism Theorem 229
12.4.8 Homomorphisms 229
12.4.9 Cosets 232
12.4.10 Addition of Subgroups 233
13 Ideals 234
13.1 Definitions 234
13.1.1 General definition 234
13.1.2 Ideals Generated by a Subset of carrier R 234
13.1.3 Principal Ideals 234
13.1.4 Maximal Ideals 236
13.1.5 Prime Ideals 236
13.2 Special Ideals 237
13.3 General Ideal Properties 237
13.4 Intersection of Ideals 238
13.5 Addition of Ideals 239
13.6 Ideals generated by a subset of carrier R 240
13.7 Union of Ideals 243
13.8 Properties of Principal Ideals 244
13.9 Prime Ideals 245
13.10Maximal Ideals 246
13.11Derived Theorems 248
14 Homomorphisms of Non-Commutative Rings 250
14.1 The Kernel of a Ring Homomorphism 252
14.2 Cosets 252
15 Univariate Polynomials 255
15.1 The Constructor for Univariate Polynomials 255
15.2 Effect of Operations on Coefficients 258
15.3 Polynomials Form a Ring. 259
15.4 Polynomials Form a Commutative Ring. 263
15.5 Polynomials over a commutative ring for a commutative ring 263
15.6 Polynomials Form an Algebra 264
15.7 Further Lemmas Involving Monomials 265
15.8 The Degree Function 269
15.9 Polynomials over Integral Domains 275
15.10The Evaluation Homomorphism and Universal Property 277
15.11The long division algorithm: some previous facts. 285
15.12The long division proof for commutative rings 287
15.13Sample Application of Evaluation Homomorphism 293
16 Generated Groups 293
16.1 Generated Groups 294
16.1.1 Basic Properties 294
16.2 Derived Subgroup 298
16.2.1 Definitions 298
16.2.2 Basic Properties 298
16.2.3 Generated subgroup of a group 304
16.3 And homomorphisms 307
17 Elementary Group Constructions 310
17.1 Direct sum/product lemmas 310
17.2 The one-element group on a given object 316
17.3 Similarly, trivial groups 316
17.4 The additive group of integers 317
17.5 Additive group of integers modulo n ($\mathrm{n}=0$ gives just the integers) 318
17.6 Cyclic groups 320
18 Simplification Rules for Polynomials 323
19 Properties of the Euler φ-function 325
20 Order of an Element of a Group 329
21 Number of Roots of a Polynomial 339
22 The Multiplicative Group of a Field 343
23 Group Actions 347
23.1 Prelimineries 348
23.2 Orbits 349
23.2.1 Transitive Actions 351
23.3 Stabilizers 351
23.4 The Orbit-Stabilizer Theorem 353
23.4.1 Rcosets - Supporting Lemmas 353
23.4.2 Bijection Between Rcosets and an Orbit - Definition and Supporting Lemmas 353
23.4.3 The Theorem 357
23.5 The Burnside's Lemma 357
23.5.1 Sums and Cardinals 357
23.5.2 The Lemma 358
23.6 Action by Conjugation 359
23.6.1 Action Over Itself 359
23.6.2 Action Over The Set of Subgroups 361
23.6.3 Action Over The Power Set 364
23.7 Subgroup of an Acting Group 366
24 The Zassenhaus Lemma 366
24.1 Lemmas about normalizer 367
24.2 Second Isomorphism Theorem 368
24.3 The Zassenhaus Lemma 375
25 Divisibility in monoids and rings 382
26 Factorial Monoids 383
26.1 Monoids with Cancellation Law 383
26.2 Products of Units in Monoids 383
26.3 Divisibility and Association 385
26.3.1 Function definitions 385
26.3.2 Divisibility 386
26.3.3 Association 388
26.3.4 Division and associativity 390
26.3.5 Multiplication and associativity 391
26.3.6 Units 391
26.3.7 Proper factors 392
26.4 Irreducible Elements and Primes 395
26.4.1 Irreducible elements 395
26.4.2 Prime elements 398
26.5 Factorization and Factorial Monoids 399
26.5.1 Function definitions 399
26.5.2 Comparing lists of elements 400
26.5.3 Properties of lists of elements 403
26.5.4 Factorization in irreducible elements 404
26.5.5 Essentially equal factorizations 407
26.5.6 Factorial monoids and wfactors 414
26.6 Factorizations as Multisets 415
26.6.1 Comparing multisets 416
26.6.2 Interpreting multisets as factorizations 417
26.6.3 Multiplication on multisets 418
26.6.4 Divisibility on multisets 419
26.7 Irreducible Elements are Prime 422
26.8 Greatest Common Divisors and Lowest Common Multiples 424
26.8.1 Definitions 424
26.8.2 Connections to Lattice.thy 425
26.8.3 Existence of gcd and lcm 426
26.9 Conditions for Factoriality 430
26.9.1 Gcd condition 430
26.9.2 Divisor chain condition 436
26.9.3 Primeness condition 437
26.9.4 Application to factorial monoids 441
26.10Factoriality Theorems 445
27 Quotient Rings 446
27.1 Multiplication on Cosets 446
27.2 Quotient Ring Definition 446
27.3 Factorization over General Ideals 447
27.4 Factorization over Prime Ideals 448
27.5 Factorization over Maximal Ideals 448
27.6 Isomorphism 457
28 The Ring of Integers 470
28.1 Some properties of int 470
$28.2 \mathcal{Z}$: The Set of Integers as Algebraic Structure 470
28.3 Interpretations 471
28.4 Generated Ideals of \mathcal{Z} 474
28.5 Ideals and Divisibility 475
28.6 Ideals and the Modulus 475
28.7 Factorization 477
29 Weak Morphisms 478
29.1 Definitions 478
29.2 Weak Group Morphisms 478
29.3 Weak Ring Morphisms 483
29.4 Injective Functions 486
30 Examples 487
30.1 Direct Product 488
30.1.1 Basic Properties 488
31 Product of Ideals 490
31.1 Basic Properties 490
31.2 Structure of the Set of Ideals 497
31.3 Another Characterization of Prime Ideals 502
32 Direct Product of Rings 503
32.1 Definitions 503
32.2 Basic Properties 504
32.3 Direct Product of a List of Rings 506
33 Chinese Remainder Theorem 508
33.1 Definitions 508
33.2 Chinese Remainder Simple 509
33.3 Chinese Remainder Generalized 511
34 Subrings 516
34.1 Definitions 516
34.2 Basic Properties 516
34.2.1 Subrings 516
34.2.2 Subcrings 518
34.2.3 Subdomains 519
34.2.4 Subfields 521
34.3 Subring Homomorphisms 524
35 Generated Rings 527
35.1 Basic Properties of Generated Rings - First Part 527
35.2 Basic Properties of Generated Rings - First Part 530
36 Product and Sum Groups 534
36.1 Product of a Family of Groups 534
36.2 Sum of a Family of Groups 539
37 Free Abelian Groups 545
37.1 Generalised finite product 546
37.2 Free Abelian groups on a set, using the "frag" type constructor. 549
38 Definitions 563
38.0.1 Syntactic Definitions 564
38.1 Basic Properties - First Part 564
38.2 Some Basic Properties of Linear Independence 567
38.3 Basic Properties - Second Part 568
38.4 Span as Linear Combinations 570
38.4.1 Corollaries 572
38.5 Span as the minimal subgroup that contains K <\#> set Us 573
38.5.1 Corollaries 575
38.6 Characterisation of Linearly Independent "Sets" 577
38.7 Replacement Theorem 584
38.8 Dimension 586
38.9 Finite Dimension 598
38.9.1 Basic Properties 598
38.9.2 Reformulation of some lemmas in this new language. 603
39 Solvable Groups 603
39.1 Definitions 603
39.2 Solvable Groups and Derived Subgroups 604
39.3 Short Exact Sequences 605
40 Symmetric Groups 607
40.1 Definitions 607
40.2 Basic Properties 608
40.3 Transposition Sequences 611
40.4 Unsolvability of Symmetric Groups 615
41 Exact Sequences 620
41.1 Definitions 620
41.2 Basic Properties 621
41.3 Link Between Exact Sequences and Solvable Conditions 623
41.4 Splitting lemmas and Short exact sequences 626
42 The Arithmetic of Rings 632
42.1 Definitions 632
42.2 The cancellative monoid of a domain. 632
42.3 Passing from R to Ring_Divisibility.mult_of R and vice-versa. 633
42.4 Irreducible 636
42.5 Primes 638
42.6 Basic Properties 639
42.7 Noetherian Rings 641
42.8 Principal Domains 647
42.9 Euclidean Domains 650
43 Polynomials 652
43.1 Definitions 652
43.2 Basic Properties 653
43.3 Polynomial Addition 661
43.4 Dense Representation 668
43.5 Polynomial Multiplication 669
43.6 Properties Within a Domain 675
43.7 Algebraic Structure of Polynomials 684
43.8 Long Division Theorem 690
43.9 Consistency Rules 693
43.9.1 Corollaries 695
43.10The Evaluation Homomorphism 695
43.11Homomorphisms 699
43.12The X Variable 701
43.13The Constant Term 708
43.14The Canonical Embedding of K in $\mathrm{K}[\mathrm{X}]$ 710
44 Divisibility of Polynomials 711
44.1 Definitions 711
44.2 Basic Properties 711
44.3 Division 718
44.4 Polynomial Power 729
44.5 Ideals 735
44.6 Roots and Multiplicity 738
44.7 Link between pmod and rupture_surj 758
44.8 Dimension 760
45 Indexed Polynomials 765
45.1 Definitions 765
45.2 Basic Properties 766
45.3 Indexed Eval 767
45.4 Link with Weak Morphisms 773
46 Finite Extensions 779
46.1 Definitions 779
46.2 Basic Properties 779
46.3 Minimal Polynomial 781
46.4 Simple Extensions 783
46.5 Link between dimension of K-algebras and algebraic extensions7 788
46.6 Finite Extensions 792
46.7 Arithmetic of algebraic numbers 795
47 Algebraic Closure 797
47.1 Definitions 797
47.2 Basic Properties 797
47.3 Partial Order 799
47.4 Extensions Non Empty 800
47.5 Chains 801
47.6 Zorn 805
47.7 Existence of roots 807
47.8 Existence of Algebraic Closure 811
48 Simple Groups 824
49 The Second Isomorphism Theorem for Groups 826


```
theory Congruence
    imports
        Main
        "HOL-Library.FuncSet"
begin
```


1 Objects

1.1 Structure with Carrier Set.

```
record 'a partial_object =
    carrier :: "'a set"
lemma funcset_carrier:
    "\llbracketf \in carrier X }->\mathrm{ carrier Y; x }\in\mathrm{ carrier X | C f x }\in\mathrm{ carrier Y"
    by (fact funcset_mem)
lemma funcset_carrier':
    "\llbracketf \in carrier A }->\mathrm{ carrier A; x }\in\mathrm{ carrier A \ # f x }\in\mathrm{ carrier A"
    by (fact funcset_mem)
```


1.2 Structure with Carrier and Equivalence Relation eq

```
record 'a eq_object = "'a partial_object" +
    eq :: "'a # 'a # bool" (infixl ".=\imath" 50)
definition
    elem :: " _ # 'a # 'a set }=>\mathrm{ b bool" (infixl ". Єఒ" 50)
    where "x . }\mp@subsup{\in}{S}{}A\longleftrightarrow(\existsy\inA.x .=S y)
definition
    set_eq :: "_ # 'a set => 'a set # bool" (infixl "{.=}\imath" 50)
    where "A {.=\mp@subsup{}}{S}{}}\textrm{B}\longleftrightarrow((\forall\textrm{x}\in\textrm{A}.\textrm{x}.\mp@subsup{\epsilon}{S}{}\textrm{B})\wedge(\forall\textrm{x}\in\textrm{B}.\textrm{x}.\mp@subsup{\in}{S}{}A))
definition
    eq_class_of :: "_ # 'a # 'a set" ("class'_of \imath")
    where "class_of S x = {y \in carrier S. x . ='S y}"
definition
    eq_classes :: "_ # ('a set) set" ("classes\imath")
    where "classesS = {class_of ( x | x. x \in carrier S}"
definition
    eq_closure_of :: "_ # 'a set = 'a set" ("closure'_of\imath")
    where "closure_of S A = {y \in carrier S. y . }\mp@subsup{\in}{S}{}A}
definition
```

```
eq_is_closed :: "_ # 'a set = bool" ("is'_closed\imath")
where "is_closed\overline{S}}\textrm{A}\longleftrightarrow\textrm{A}\subseteq\mathrm{ carrier S ^ closure_ofS A = A"
```


abbreviation

not＿eq ：：＂＿\Rightarrow＇a \Rightarrow＇a \Rightarrow bool＂（infixl $" . \neq \imath " 50$ ）
where $" \mathrm{x} . \neq \mathrm{S} y \equiv \neg\left(\mathrm{x} . \mathrm{F}_{\mathrm{S}} \mathrm{y}\right)$＂
abbreviation
not＿elem ：：＂＿\Rightarrow＇a \Rightarrow＇a set \Rightarrow bool＂（infixl＂．\notin 乙＂50）
where $" \mathrm{x} . \notin \mathrm{S} \mathrm{A} \equiv \neg\left(\mathrm{x} . \in_{\mathrm{S}} \mathrm{A}\right)$＂
abbreviation
set＿not＿eq ：：＂＿\Rightarrow＇a set \Rightarrow＇a set \Rightarrow bool＂（infixl＂\｛．$\neq\}$＂＂50）
where＂A $\{. \neq\}_{S} B \equiv \neg\left(A\{.=\}_{S} B\right)$＂
locale equivalence＝
fixes S（structure）
assumes refl［simp，intro］：＂x carrier $S \Longrightarrow x .=x "$ and sym［sym］：＂【x ．＝$y ; x \in$ carrier $S ; y \in \operatorname{carrier~} S \rrbracket \Longrightarrow y .=$ x＂ and trans［trans］：
"【x .= y; y .= z; x \in carrier $S ; y \in$ carrier $S ; z \in$ carrier $S \rrbracket$
$\Longrightarrow \mathrm{x} .=\mathrm{z}^{\prime \prime}$
lemma equivalenceI：
fixes P ：：＂＇a \Rightarrow＇a \Rightarrow bool＂and $E:: ~ " ’ a$ set＂
assumes refl：＂$\bigwedge \mathrm{x} . \quad \llbracket \mathrm{x} \in \mathrm{E} \rrbracket \Longrightarrow \mathrm{P} \mathrm{x}$ x＂
and sym：＂$\bigwedge \mathrm{x} y . \llbracket \mathrm{x} \in \mathrm{E} ; \mathrm{y} \in \mathrm{E} \rrbracket \Longrightarrow \mathrm{P} \mathrm{x} \mathrm{y} \Longrightarrow \mathrm{P} \mathrm{y} \mathrm{x}$＂ and trans：＂$\bigwedge x y z . \llbracket x \in E ; y \in E ; z \in E \rrbracket \Longrightarrow P x y \Longrightarrow P y z$
\Longrightarrow P x z"
shows＂equivalence（ carrier＝E，eq＝P｜）＂
unfolding equivalence＿def using assms
by（metis eq＿object．select＿convs（1）partial＿object．select＿convs（1））
locale partition＝
fixes A ：：＂＇a set＂and B ：：＂（＇a set）set＂
assumes unique＿class：＂$\bigwedge \mathrm{a} . \mathrm{a} \in \mathrm{A} \Longrightarrow \exists!\mathrm{b} \in \mathrm{B} . \mathrm{a} \in \mathrm{b}$＂ and incl：＂$\wedge \mathrm{b} . \mathrm{b} \in \mathrm{B} \Longrightarrow \mathrm{b} \subseteq \mathrm{A} "$
lemma equivalence＿subset：
assumes＂equivalence L＂＂A \subseteq carrier L＂
shows＂equivalence（L（ carrier ：＝A ））＂
proof－
interpret L：equivalence L
by（simp add：assms）
show ？thesis
by（unfold＿locales，simp＿all add：L．sym assms rev＿subsetD，meson L．trans
assms（2）contra＿subsetD）
qed

```
lemma elemI:
    fixes R (structure)
    assumes "a' \in A" "a .= a'"
    shows "a . \in A"
    unfolding elem_def using assms by auto
lemma (in equivalence) elem_exact:
    assumes "a \in carrier S" "a \in A"
    shows "a . \in A"
    unfolding elem_def using assms by auto
lemma elemE:
    fixes S (structure)
    assumes "a . }\in\mathrm{ A"
        and "^a'. \llbracketa' \in A; a .= a'\rrbracket\Longrightarrow P"
    shows "P"
    using assms unfolding elem_def by auto
lemma (in equivalence) elem_cong_l [trans]:
    assumes "a \in carrier S" "a' \in carrier S" "A \subseteq carrier S"
        and "a' .= a" "a .\in A"
    shows "a' .\in A"
    using assms by (meson elem_def trans subsetCE)
lemma (in equivalence) elem_subsetD:
    assumes "A \subseteq B" "a . }\in\textrm{A}
    shows "a .\in B"
    using assms by (fast intro: elemI elim: elemE dest: subsetD)
lemma (in equivalence) mem_imp_elem [simp, intro]:
    assumes "x \in carrier S"
    shows "x }\in\textrm{A}\Longrightarrow\textrm{x}.\in\textrm{A
    using assms unfolding elem_def by blast
lemma set_eqI:
    fixes R (structure)
    assumes "\a. a }\in\textrm{A}\Longrightarrow\textrm{a}.\in\textrm{B}
        and "\b. b \in B \Longrightarrow b .\in A"
    shows "A {.=} B"
    using assms unfolding set_eq_def by auto
lemma set_eqI2:
    fixes R (structure)
    assumes "\a. a }\in\textrm{A}\Longrightarrow\exists\textrm{b}\in\textrm{B}.\textrm{a}.= b
        and "\b. b \in B \Longrightarrow \existsa\inA. b .= a"
```

```
    shows "A {.=} B"
    using assms by (simp add: set_eqI elem_def)
lemma set_eqD1:
    fixes R (structure)
    assumes "A {.=} A'" and "a \in A"
    shows "\existsa'\inA'. a .= a'"
    using assms by (simp add: set_eq_def elem_def)
lemma set_eqD2:
    fixes R (structure)
    assumes "A {.=} A'" and "a' \in A'"
    shows "\existsa\inA. a' .= a"
    using assms by (simp add: set_eq_def elem_def)
lemma set_eqE:
    fixes R (structure)
    assumes "A {.=} B"
        and "\llbracket\foralla\inA. a . \in B; \forallb G B. b . \in A \rrbracket\Longrightarrow P"
    shows "P"
    using assms unfolding set_eq_def by blast
lemma set_eqE2:
    fixes R (structure)
    assumes "A {.=} B"
        and "\llbracket\foralla\inA. \existsb b B. a .= b; \forallb b B. \existsa\inA. b .= a \\Longrightarrow P"
    shows "P"
    using assms unfolding set_eq_def by (simp add: elem_def)
lemma set_eqE':
    fixes R (structure)
    assumes "A {.=} B" "a \in A" "b \in B"
        and "\a' b'.\llbracket a' }\A;b\prime\in B\rrbracket \Longrightarrow b .= a' \Longrightarrow a .= b' \Longrightarrow P"
    shows "P"
    using assms by (meson set_eqE2)
lemma (in equivalence) eq_elem_cong_r [trans]:
    assumes "A \subseteqcarrier S" "A' \subseteq carrier S" "A {.=} A'"
    shows "\llbracketa < carrier S \rrbracket \Longrightarrow a . }\in\textrm{A}\Longrightarrow\textrm{a}.\in\textrm{A}
    using assms by (meson elemE elem_cong_l set_eqE subset_eq)
lemma (in equivalence) set_eq_sym [sym]:
    assumes "A \subseteq carrier S" "B \subseteq carrier S"
    shows "A {.=} B \Longrightarrow B {.=} A"
    using assms unfolding set_eq_def elem_def by auto
lemma (in equivalence) equal_set_eq_trans [trans]:
    "\llbracketA = B; B {.=} C \ \Longrightarrow A {.=} C"
    by simp
```

```
lemma (in equivalence) set_eq_equal_trans [trans]:
    "\llbracketA {.=} B; B = C \ \Longrightarrow A {.=} C"
    by simp
lemma (in equivalence) set_eq_trans_aux:
    assumes "A \subseteq carrier S" "B \subseteq carrier S" "C \subseteq carrier S"
        and "A {.=} B" "B {.=} C"
    shows "\a. a \in A \Longrightarrow a . \in C"
    using assms by (simp add: eq_elem_cong_r subset_iff)
corollary (in equivalence) set_eq_trans [trans]:
    assumes "A \subseteq carrier S" "B \subseteq carrier S" "C \subseteq carrier S"
        and "A {.=} B" " B {.=} C"
    shows "A {.=} C"
proof (intro set_eqI)
    show "\a. a }\in\textrm{A}\Longrightarrow\textrm{a}.\in\textrm{C}"\mathrm{ using set_eq_trans_aux assms by blast
next
    show "\b. b \in C \Longrightarrow b . \in A" using set_eq_trans_aux set_eq_sym assms
by blast
qed
lemma (in equivalence) is_closedI:
    assumes closed: "\x y. \llbracketx .= y; x \in A; y \in carrier S\rrbracket \Longrightarrow y \in A"
        and S: "A \subseteq carrier S"
    shows "is_closed A"
    unfolding eq_is_closed_def eq_closure_of_def elem_def
    using S
    by (blast dest: closed sym)
lemma (in equivalence) closure_of_eq:
    assumes "A \subseteq carrier S" "x \in closure_of A"
    shows "\llbracketx' \in carrier S; x .= x' \rrbracket \Longrightarrow x' \in closure_of A"
    using assms elem_cong_l sym unfolding eq_closure_of_def by blast
lemma (in equivalence) is_closed_eq [dest]:
    assumes "is_closed A" "x \in A"
    shows "\llbracketx .= x'; x' \in carrier S \rrbracket \Longrightarrow x' \in A"
    using assms closure_of_eq [where A = A] unfolding eq_is_closed_def
by simp
corollary (in equivalence) is_closed_eq_rev [dest]:
    assumes "is_closed A" "x' \in A"
    shows "\llbracketx .= x'; x \in carrier S \rrbracket \Longrightarrow x \in A"
    using sym is_closed_eq assms by (meson contra_subsetD eq_is_closed_def)
lemma closure_of_closed [simp, intro]:
    fixes S (structure)
```

```
    shows "closure_of A \subseteq carrier S"
    unfolding eq_closure_of_def by auto
lemma closure_of_memI:
    fixes S (structure)
    assumes "a .\in A" "a \in carrier S"
    shows "a \in closure of A"
    by (simp add: assms eq_closure_of_def)
lemma closure_ofI2:
    fixes S (structure)
    assumes "a .= a'" and "a' \in A" and "a \in carrier S"
    shows "a \in closure_of A"
    by (meson assms closure_of_memI elem_def)
lemma closure_of_memE:
    fixes S (structure)
    assumes "a \in closure_of A"
        and "\llbracketa \in carrier S; a .\in A\rrbracket\Longrightarrow P"
    shows "P"
    using eq_closure_of_def assms by fastforce
lemma closure_ofE2:
    fixes S (structure)
    assumes "a \in closure_of A"
        and "\a'. \llbracketa < carrier S; a' }\in\textrm{A};\textrm{a .= a'\rrbracket \Longrightarrow P"
    shows "P"
    using assms by (meson closure_of_memE elemE)
lemma (in partition) equivalence_from_partition:
```



```
        unfolding partition_def equivalence_def
proof (auto)
    let ?f = "\lambdax. THE b. b \in B ^ x \in b"
    show "\x. x }\inA\Longrightarrowx\in ?f x"
        using unique_class by (metis (mono_tags, lifting) theI')
    show "\x y. \llbracketx 仵; y \in A\rrbracket \Longrightarrow y \in ?f x \Longrightarrow x f ?f y"
        using unique_class by (metis (mono_tags, lifting) the_equality)
```



```
z \in ?f x"
        using unique_class by (metis (mono_tags, lifting) the_equality)
qed
lemma (in partition) partition_coverture: "\B = A"
    by (meson Sup_le_iff UnionI unique_class incl subsetI subset_antisym)
lemma (in partition) disjoint_union:
    assumes "b1 \in B" "b2 \in B"
```

```
        and "b1 \cap b2 f {}"
    shows "b1 = b2"
proof (rule ccontr)
    assume "b1 f= b2"
    obtain a where "a \in A" "a \in b1" "a \in b2"
            using assms(2-3) incl by blast
    thus False using unique_class <b1 f b2> assms(1) assms(2) by blast
qed
lemma partitionI:
    fixes A :: "'a set" and B :: "('a set) set"
    assumes "\B = A"
        and "\b1 b2. \llbracketb1 G B; b2 \in B \rrbracket\Longrightarrow b1 \cap b2 F={} \Longrightarrow b1 = b2"
    shows "partition A B"
proof
    show "^a. a \inA\Longrightarrow\exists!b. b \in B ^a f b"
    proof (rule ccontr)
        fix a assume "a \inA" "#!b. b \in B ^ a \in b"
        then obtain b1 b2 where "b1 \in B" "a \in b1"
                and "b2 \in B" "a \in b2" "b1 f= b2" using assms(1)
by blast
        thus False using assms(2) by blast
    qed
next
    show "^b. b \in B \Longrightarrow b \subseteq A" using assms(1) by blast
qed
lemma (in partition) remove_elem:
    assumes "b \in B"
    shows "partition (A - b) (B - {b})"
proof
    show "\a. a \in A - b \Longrightarrow \exists!b'. b' \in B - {b} ^a G b'"
        using unique_class by fastforce
next
    show " \b'. b' }\inB-{b}\Longrightarrow b' \subseteq A - b"
        using assms unique_class incl partition_axioms partition_coverture
by fastforce
qed
lemma disjoint_sum:
    "\llbracket finite B; finite A; partition A B\rrbracket\Longrightarrow (\sumb\inB. \suma\inb. f a) = (\suma\inA.
f a)"
proof (induct arbitrary: A set: finite)
    case empty thus ?case using partition.unique_class by fastforce
next
    case (insert b B')
    have "(\sumb\in(insert b B'). \suma\inb. f a) = (\suma\inb. f a) + (\sumb\inB'. \suma\inb.
f a)"
            by (simp add: insert.hyps(1) insert.hyps(2))
```

```
    also have "... = (\suma\inb. f a) + (\suma\in(A - b). f a)"
    using partition.remove_elem[of A "insert b B'" b] insert.hyps insert.prems
    by (metis Diff_insert_absorb finite_Diff insert_iff)
    finally show "(\sumb\in(insert b B'). \suma\inb. f a) = ( \suma\inA. f a)"
        using partition.remove_elem[of A "insert b B'" b] insert.prems
        by (metis add.commute insert_iff partition.incl sum.subset_diff)
qed
lemma (in partition) disjoint_sum:
    assumes "finite A"
    shows "(\sumb\inB. \suma\inb. f a) = (\suma\inA.f a)"
proof -
    have "finite B"
            by (simp add: assms finite_UnionD partition_coverture)
    thus ?thesis using disjoint_sum assms partition_axioms by blast
qed
lemma (in equivalence) set_eq_insert_aux:
    assumes "A \subseteq carrier S"
        and "x \in carrier S" "x' \in carrier S" "x .= x'"
        and "y \in insert x A"
    shows "y .\epsilon insert x' A"
    by (metis assms(1) assms(4) assms(5) contra_subsetD elemI elem_exact
insert_iff)
corollary (in equivalence) set_eq_insert:
    assumes "A \subseteq carrier S"
        and "x \in carrier S" "x' \in carrier S" "x .= x'"
    shows "insert x A {.=} insert x' A"
    by (meson set_eqI assms set_eq_insert_aux sym equivalence_axioms)
lemma (in equivalence) set_eq_pairI:
    assumes xx': "x .= x'"
        and carr: "x \in carrier S" "x' \in carrier S" "y \in carrier S"
    shows "{x, y} {.=} {x', y}"
    using assms set_eq_insert by simp
lemma (in equivalence) closure_inclusion:
    assumes "A}\subseteqB
    shows "closure_of A \subseteq closure_of B"
    unfolding eq_closure_of_def using assms elem_subsetD by auto
lemma (in equivalence) classes_small:
    assumes "is_closed B"
        and "A}\subseteqB
    shows "closure_of A\subseteqB"
    by (metis assms closure_inclusion eq_is_closed_def)
lemma (in equivalence) classes_eq:
```

```
    assumes "A \subseteq carrier S"
    shows "A {.=} closure_of A"
    using assms by (blast intro: set_eqI elem_exact closure_of_memI elim:
closure_of_memE)
lemma (in equivalence) complete_classes:
    assumes "is_closed A"
    shows "A = closure_of A"
    using assms by (simp add: eq_is_closed_def)
lemma (in equivalence) closure_idem_weak:
    "closure_of (closure_of A) {.=} closure_of A"
    by (simp add: classes_eq set_eq_sym)
lemma (in equivalence) closure_idem_strong:
    assumes "A \subseteq carrier S"
    shows "closure_of (closure_of A) = closure_of A"
    using assms closure_of_eq complete_classes is_closedI by auto
lemma (in equivalence) classes_consistent:
    assumes "A \subseteq carrier S"
    shows "is_closed (closure_of A)"
    using closure_idem_strong by (simp add: assms eq_is_closed_def)
lemma (in equivalence) classes_coverture:
    "Uclasses = carrier S"
proof
    show "Uclasses \subseteq carrier S"
        unfolding eq_classes_def eq_class_of_def by blast
next
    show "carrier S \subseteq Uclasses" unfolding eq_classes_def eq_class_of_def
    proof
        fix x assume "x \in carrier S"
        hence "x \in {y \in carrier S. x .= y}" using refl by simp
        thus "x 
    qed
qed
lemma (in equivalence) disjoint_union:
    assumes "class1 \in classes" "class2 \in classes"
        and "class1 \cap class2 }\not={}
        shows "class1 = class2"
proof -
    obtain x y where x: "x \in carrier S" "class1 = class_of x"
                            and y: "y \in carrier S" "class2 = class_of y"
        using assms(1-2) unfolding eq_classes_def by blast
    obtain z where z: "z \in carrier S" "z \in class1 \cap class2"
        using assms classes_coverture by fastforce
    hence "x .= z ^ y .= z" using x y unfolding eq_class_of_def by blast
```

```
    hence "x .= y" using x y z trans sym by meson
    hence "class_of x = class_of y"
    unfolding eq_class_of_def using local.sym trans x y by blast
    thus ?thesis using x y by simp
qed
lemma (in equivalence) partition_from_equivalence:
    "partition (carrier S) classes"
proof (intro partitionI)
    show "Uclasses = carrier S" using classes_coverture by simp
next
    show "\class1 class2. \llbracket class1 \in classes; class2 \in classes \rrbracket\Longrightarrow
                                    class1 \cap class2 }\not={}\Longrightarrow\mathrm{ class1 = class2"
        using disjoint_union by simp
qed
lemma (in equivalence) disjoint_sum:
    assumes "finite (carrier S)"
    shows "(\sumc\inclasses. \sumx\inc. f x ) = (\sum x\in(carrier S). f x)"
proof -
    have "finite classes"
        unfolding eq_classes_def using assms by auto
    thus ?thesis using disjoint_sum assms partition_from_equivalence by
blast
qed
end
```

theory Order
imports
Congruence
begin

2 Orders

2.1 Partial Orders

```
record 'a gorder = "'a eq_object" +
    le :: "['a, 'a] => bool" (infixl "\sqsubseteq\imath" 50)
abbreviation inv_gorder :: "_ # 'a gorder" where
    "inv_gorder L \equiv
        | carrier = carrier L,
            eq = (. = L ) ,
            le = (\lambda x y. y \sqsubseteqL x) D"
lemma inv_gorder_inv:
    "inv_gorder (inv_gorder L) = L"
```

```
    by simp
locale weak_partial_order = equivalence L for L (structure) +
    assumes le_refl [intro, simp]:
            "x }\in\mathrm{ carrier L # x }\sqsubseteqx
            and weak_le_antisym [intro]:
                "\llbracketx \sqsubseteq y; y \sqsubseteq x; x \in carrier L; y \in carrier L\rrbracket \Longrightarrow x .= y"
            and le_trans [trans]:
            "\llbracketx \sqsubseteqy; y \sqsubseteq z; x \in carrier L; y \in carrier L; z \in carrier L\rrbracket \Longrightarrow
x \sqsubseteq z"
            and le_cong:
                "\llbracketx .= y; z .= w; x \in carrier L; y \in carrier L; z \in carrier L; w
carrier L\rrbracket\Longrightarrow
            x}\sqsubseteq\textrm{z}\longleftrightarrow\textrm{y}\sqsubseteq\textrm{w}
```


definition

lless ：：＂［＿，’a，’a］＝＞bool＂（infixl＂匚々＂50）
where $" \mathrm{x} \sqsubset_{\mathrm{L}} \mathrm{y} \longleftrightarrow \mathrm{x} \sqsubseteq_{\mathrm{L}} \mathrm{y} \wedge \mathrm{x} . \neq \mathrm{L} \mathrm{y}$＂

2．1．1 The order relation

```
context weak_partial_order
```

begin
lemma le_cong_l [intro, trans]:
" $\llbracket \mathrm{x} .=\mathrm{y} ; \mathrm{y} \sqsubseteq \mathrm{z} ; \mathrm{x} \in$ carrier $\mathrm{L} ; \mathrm{y} \in \operatorname{carrier} \mathrm{L} ; \mathrm{z} \in \operatorname{carrier} \mathrm{L} \rrbracket \Longrightarrow \mathrm{x}$
$\sqsubseteq \mathrm{z"}$
by (auto intro: le_cong [THEN iffD2])
lemma le_cong_r [intro, trans]:
$" \llbracket \mathrm{x} \sqsubseteq \mathrm{y} ; \mathrm{y} .=\mathrm{z} ; \mathrm{x} \in \operatorname{carrier} \mathrm{L} ; \mathrm{y} \in \operatorname{carrier} \mathrm{L} ; \mathrm{z} \in \operatorname{carrier} \mathrm{L} \rrbracket \Longrightarrow \mathrm{x}$
Б z"
by (auto intro: le_cong [THEN iffD1])
lemma weak_refl [intro, simp]: "【x .= y; $\mathrm{x} \in$ carrier $\mathrm{L} ; \mathrm{y} \in$ carrier
$\mathrm{L} \rrbracket \Longrightarrow \mathrm{x} \sqsubseteq \mathrm{y}$ "
by (simp add: le_cong_l)
end
lemma weak_llessI:
fixes R (structure)
assumes "x $\sqsubseteq y "$ and " $\neg(\mathrm{x} .=\mathrm{y})$ "
shows "x $\sqsubset y$ "
using assms unfolding lless_def by simp
lemma lless_imp_le:
fixes R (structure)
assumes "x $\sqsubset y$ "

```
    shows "x\sqsubseteq y"
    using assms unfolding lless_def by simp
lemma weak_lless_imp_not_eq:
    fixes R (structure)
    assumes "x \sqsubset y"
    shows "\neg (x .= y)"
    using assms unfolding lless_def by simp
lemma weak_llessE:
    fixes R (structure)
    assumes p: "x \sqsubset y" and e: "\llbracketx \sqsubseteq y; ᄀ(x .= y)\rrbracket \Longrightarrow P"
    shows "P"
    using p by (blast dest: lless_imp_le weak_lless_imp_not_eq e)
lemma (in weak_partial_order) lless_cong_l [trans]:
    assumes xx': "x .= x'"
        and xy: "x' \sqsubset y"
        and carr: "x \in carrier L" "x' \in carrier L" "y \in carrier L"
    shows "x \sqsubset y"
    using assms unfolding lless_def by (auto intro: trans sym)
lemma (in weak_partial_order) lless_cong_r [trans]:
    assumes xy: "x \sqsubset y"
        and yy': "y .= y'"
        and carr: "x \in carrier L" "y \in carrier L" "y' \in carrier L"
    shows "x \sqsubset y'"
    using assms unfolding lless_def by (auto intro: trans sym)
lemma (in weak_partial_order) lless_antisym:
    assumes "a \in carrier L" "b \in carrier L"
        and "a \sqsubset b" "b \sqsubset a"
    shows "P"
    using assms
    by (elim weak_llessE) auto
lemma (in weak_partial_order) lless_trans [trans]:
    assumes "a \sqsubset b" "b \sqsubset c"
        and carr[simp]: "a \in carrier L" "b \in carrier L" "c \in carrier L"
    shows "a \sqsubset c"
    using assms unfolding lless_def by (blast dest: le_trans intro: sym)
lemma weak_partial_order_subset:
    assumes "weak_partial_order L" "A \subseteq carrier L"
    shows "weak_partial_order (L() carrier := A ))"
proof -
    interpret L: weak_partial_order L
        by (simp add: assms)
```

```
    interpret equivalence "(L) carrier := A |)"
    by (simp add: L.equivalence_axioms assms(2) equivalence_subset)
    show ?thesis
        apply (unfold_locales, simp_all)
        using assms(2) apply auto[1]
        using assms(2) apply auto[1]
        apply (meson L.le_trans assms(2) contra_subsetD)
        apply (meson L.le_cong assms(2) subsetCE)
    done
qed
```


2.1.2 Upper and lower bounds of a set

definition

Upper :: "[_, 'a set] => 'a set"
where "Upper $L A=\left\{u .\left(\forall x . x \in A \cap\right.\right.$ carrier $\left.\left.L \longrightarrow x \sqsubseteq_{L} u\right)\right\} \cap$ carrier L"

definition

Lower :: "[_, 'a set] => 'a set"
where "Lower $L A=\left\{1 .\left(\forall x . x \in A \cap\right.\right.$ carrier $\left.\left.L \longrightarrow 1 \sqsubseteq_{L} x\right)\right\} \cap$ carrier L"
lemma Lower_dual [simp]:
"Lower (inv_gorder L) A = Upper L A"
by (simp add:Upper_def Lower_def)
lemma Upper_dual [simp]:
"Upper (inv_gorder L) A = Lower L A"
by (simp add:Upper_def Lower_def)
lemma (in weak_partial_order) equivalence_dual: "equivalence (inv_gorder L) "
by (rule equivalence.intro) (auto simp: intro: sym trans)
lemma (in weak_partial_order) dual_weak_order: "weak_partial_order (inv_gorder L) "
by intro_locales (auto simp add: weak_partial_order_axioms_def le_cong intro: equivalence_dual le_trans)
lemma (in weak_partial_order) dual_eq_iff [simp]: "A \{.=\} $\}_{i n v _g o r d e r ~ L ~}^{\text {L }}$
$A^{\prime} \longleftrightarrow A$ \{. \quad \} A'"
by (auto simp: set_eq_def elem_def)
lemma dual_weak_order_iff:
"weak_partial_order (inv_gorder A) \longleftrightarrow weak_partial_order A" proof
assume "weak_partial_order (inv_gorder A)"
then interpret dpo: weak_partial_order "inv_gorder A"

```
    rewrites "carrier (inv_gorder A) = carrier A"
    and "le (inv_gorder A) = ( }\lambda\textrm{x y. le A y x)"
    and "eq (inv_gorder A) = eq A"
        by (simp_all)
    show "weak_partial_order A"
        by (unfold_locales, auto intro: dpo.sym dpo.trans dpo.le_trans)
next
    assume "weak_partial_order A"
    thus "weak_partial_order (inv_gorder A)"
        by (metis weak_partial_order.dual_weak_order)
qed
lemma Upper_closed [iff]:
    "Upper L A \subseteq carrier L"
    by (unfold Upper_def) clarify
lemma Upper_memD [dest]:
    fixes L (structure)
    shows "\llbracketu \in Upper L A; x }\in\textrm{A};\textrm{A}\subseteq\mathrm{ carrier L】 # x }\sqsubsetequ | u \in carrier
L"
    by (unfold Upper_def) blast
lemma (in weak_partial_order) Upper_elemD [dest]:
    "\llbracketu . \in Upper L A; u \in carrier L; x \in A; A \subseteq carrier L\rrbracket\Longrightarrow x \sqsubseteq u"
    unfolding Upper_def elem_def
    by (blast dest: sym)
lemma Upper_memI:
    fixes L (structure)
    shows "\llbracket!! y. y \in A \Longrightarrow y \sqsubseteq x; x \in carrier L\rrbracket \Longrightarrow x \in Upper L A"
    by (unfold Upper_def) blast
lemma (in weak_partial_order) Upper_elemI:
    "\llbracket!! y. y }\in\textrm{A}\Longrightarrow\textrm{y}\sqsubseteq\textrm{x};\textrm{x}\in\operatorname{carrier L\rrbracket\Longrightarrow ( x .\in Upper L A"
    unfolding Upper_def by blast
lemma Upper_antimono:
    "A}\subseteq\textrm{B}\Longrightarrow\mathrm{ Upper L B }\subseteq\mathrm{ Upper L A"
    by (unfold Upper_def) blast
lemma (in weak_partial_order) Upper_is_closed [simp]:
    "A \subseteq carrier L \Longrightarrow is_closed (Upper L A)"
    by (rule is_closedI) (blast intro: Upper_memI)+
lemma (in weak_partial_order) Upper_mem_cong:
    assumes "a' }\in\mathrm{ carrier L" "A }\subseteq\mathrm{ carrier L" "a .= a"" "a }\in\mathrm{ Upper L A"
    shows "a' \in Upper L A"
    by (metis assms Upper_closed Upper_is_closed closure_of_eq complete_classes)
```

```
lemma (in weak_partial_order) Upper_semi_cong:
    assumes "A \subseteqcarrier L" "A {.=} A""
    shows "Upper L A \subseteq Upper L A'"
    unfolding Upper_def
    by clarsimp (meson assms equivalence.refl equivalence_axioms le_cong
set_eqD2 subset_eq)
lemma (in weak_partial_order) Upper_cong:
    assumes "A \subseteq carrier L" "A' \subseteq carrier L" "A {.=} A'"
    shows "Upper L A = Upper L A'"
    using assms by (simp add: Upper_semi_cong set_eq_sym subset_antisym)
lemma Lower_closed [intro!, simp]:
    "Lower L A \subseteq carrier L"
    by (unfold Lower_def) clarify
lemma Lower_memD [dest]:
    fixes L (structure)
    shows "\llbracketl \in Lower L A; x }\in\textrm{A};\textrm{A}\subseteq\mathrm{ carrier L\ C l }\sqsubseteq\textrm{x}\wedge \ f carrier
L"
    by (unfold Lower_def) blast
lemma Lower_memI:
    fixes L (structure)
    shows "\llbracket!! y. y \in A \Longrightarrow x \sqsubseteq y; x \in carrier L\rrbracket \Longrightarrow x f Lower L A"
    by (unfold Lower_def) blast
lemma Lower_antimono:
    "A}\subseteqB\Longrightarrow\mathrm{ Lower L B }\subseteq\mathrm{ Lower L A"
    by (unfold Lower_def) blast
lemma (in weak_partial_order) Lower_is_closed [simp]:
    "A \subseteq carrier L \Longrightarrow is_closed (Lower L A)"
    by (rule is_closedI) (blast intro: Lower_memI dest: sym)+
lemma (in weak_partial_order) Lower_mem_cong:
    assumes "a' \in carrier L" "A \subseteq carrier L" "a .= a'" "a \in Lower L A"
    shows "a' \in Lower L A"
    by (meson assms Lower_closed Lower_is_closed is_closed_eq subsetCE)
lemma (in weak_partial_order) Lower_cong:
    assumes "A \subseteq carrier L" "A' \subseteq carrier L" "A {.=} A'"
    shows "Lower L A = Lower L A'"
    unfolding Upper_dual [symmetric]
    by (rule weak_partial_order.Upper_cong [OF dual_weak_order]) (simp_all
add: assms)
Jacobson: Theorem 8.1
lemma Lower_empty [simp]:
```

```
    "Lower L {} = carrier L"
    by (unfold Lower_def) simp
lemma Upper_empty [simp]:
    "Upper L {} = carrier L"
    by (unfold Upper_def) simp
```


2.1.3 Least and greatest, as predicate

definition

least :: "[_, 'a, 'a set] => bool"
where "least $L 1 A \longleftrightarrow A \subseteq$ carrier $L \wedge 1 \in A \wedge\left(\forall x \in A . l \sqsubseteq_{L} x\right)$ "

definition

greatest :: "[_, 'a, 'a set] => bool"
where "greatest $\mathrm{L} \mathrm{g} \mathrm{A} \longleftrightarrow \mathrm{A} \subseteq$ carrier $\mathrm{L} \wedge \mathrm{g} \in \mathrm{A} \wedge\left(\forall \mathrm{x} \in \mathrm{A} . \mathrm{x} \sqsubseteq_{\mathrm{L}} \mathrm{g}\right)$ "
Could weaken these to $l \in$ carrier $L \wedge l . \in A$ and $g \in$ carrier $L \wedge g . \in$ A.
lemma least_dual [simp]:
"least (inv_gorder L) x A = greatest L x A"
by (simp add:least_def greatest_def)
lemma greatest_dual [simp]:
"greatest (inv_gorder L) x A = least L x A"
by (simp add:least_def greatest_def)
lemma least_closed [intro, simp]:
"least L l A $\Longrightarrow 1 \in$ carrier L"
by (unfold least_def) fast
lemma least_mem:
"least L $1 \mathrm{~A} \Longrightarrow 1 \in A "$
by (unfold least_def) fast
lemma (in weak_partial_order) weak_least_unique:
"【least L x A; least L y A $\Longrightarrow \mathrm{x} .=\mathrm{y}$ "
by (unfold least_def) blast
lemma least_le:
fixes L (structure)
shows "【least L x A; a $\in A \rrbracket \Longrightarrow \mathrm{x} \sqsubseteq \mathrm{a}$ "
by (unfold least_def) fast
lemma (in weak_partial_order) least_cong:
" $\llbracket \mathrm{x} .=\mathrm{x}$; $\mathrm{x} \in$ carrier $\mathrm{L} ; \mathrm{x}$ ' \in carrier L; is_closed $\mathrm{A} \rrbracket \Longrightarrow$ least L x
A = least L x' A"
unfolding least_def
by (meson is_closed_eq is_closed_eq_rev le_cong local.refl subset_iff)

```
abbreviation is_lub :: "[_, 'a, 'a set] => bool"
where "is_lub L x A \equiv least L x (Upper L A)"
least is not congruent in the second parameter for A {.=} A'
lemma (in weak_partial_order) least_Upper_cong_l:
    assumes "x .= x'"
        and "x \in carrier L" "x' \in carrier L"
        and "A \subseteq carrier L"
    shows "least L x (Upper L A) = least L x' (Upper L A)"
    apply (rule least_cong) using assms by auto
lemma (in weak_partial_order) least_Upper_cong_r:
    assumes "A \subseteq carrier L" "A' \subseteq carrier L" "A {.=} A'"
    shows "least L x (Upper L A) = least L x (Upper L A')"
    using Upper_cong assms by auto
lemma least_UpperI:
    fixes L (structure)
    assumes above: "!! x. x }\in\textrm{A}\Longrightarrow\textrm{x}\sqsubseteq\textrm{s}
        and below: "!! y. y \in Upper L A \Longrightarrow s \sqsubseteq y"
        and L: "A \subseteq carrier L" "s \in carrier L"
    shows "least L s (Upper L A)"
proof -
    have "Upper L A \subseteq carrier L" by simp
    moreover from above L have "s \in Upper L A" by (simp add: Upper_def)
    moreover from below have " }\forall\textrm{x}\in\mathrm{ Upper L A. s }\sqsubseteqx" by fas
    ultimately show ?thesis by (simp add: least_def)
qed
lemma least_Upper_above:
    fixes L (structure)
    shows "\llbracketleast L s (Upper L A); x }\in\textrm{A};\textrm{A}\subseteq\mathrm{ carrier L\ C x }\sqsubseteqs
    by (unfold least_def) blast
lemma greatest_closed [intro, simp]:
    "greatest L l A C l G carrier L"
    by (unfold greatest_def) fast
lemma greatest_mem:
    "greatest L l A \Longrightarrow l \in A"
    by (unfold greatest_def) fast
lemma (in weak_partial_order) weak_greatest_unique:
    "\llbracketgreatest L x A; greatest L y A\rrbracket \Longrightarrow x .= y"
    by (unfold greatest_def) blast
lemma greatest_le:
    fixes L (structure)
```

```
    shows "\llbracketgreatest L x A; a \in A\rrbracket \Longrightarrow a \sqsubseteqx"
    by (unfold greatest_def) fast
lemma (in weak_partial_order) greatest_cong:
    "\llbracketx .= x'; x \in carrier L; x' \in carrier L; is_closed A\rrbracket\Longrightarrow
    greatest L x A = greatest L x' A"
    unfolding greatest_def
    by (meson is_closed_eq_rev le_cong_r local.sym subset_eq)
abbreviation is_glb :: "[_, 'a, 'a set] => bool"
where "is_glb L x A \equiv greatest L x (Lower L A)"
greatest is not congruent in the second parameter for A {.=} A,
lemma (in weak_partial_order) greatest_Lower_cong_l:
    assumes "x .= x'"
        and "x \in carrier L" "x' \in carrier L"
    shows "greatest L x (Lower L A) = greatest L x' (Lower L A)"
proof -
    have "\forallA. is_closed (Lower L (A \cap carrier L))"
        by simp
    then show ?thesis
        by (simp add: Lower_def assms greatest_cong)
qed
lemma (in weak_partial_order) greatest_Lower_cong_r:
    assumes "A \subseteq carrier L" "A' \subseteq carrier L" "A {.=} A'"
    shows "greatest L x (Lower L A) = greatest L x (Lower L A')"
    using Lower_cong assms by auto
lemma greatest_LowerI:
    fixes L (structure)
    assumes below: "!! x. x }\in\textrm{A}\Longrightarrow\textrm{i}\sqsubseteqx
        and above: "!! y. y \in Lower L A \Longrightarrow y \sqsubseteq i"
        and L: "A \subseteq carrier L" "i \in carrier L"
    shows "greatest L i (Lower L A)"
proof -
    have "Lower L A \subseteq carrier L" by simp
    moreover from below L have "i \in Lower L A" by (simp add: Lower_def)
    moreover from above have "\forallx L Lower L A. x \sqsubseteq i" by fast
    ultimately show ?thesis by (simp add: greatest_def)
qed
lemma greatest_Lower_below:
    fixes L (structure)
    shows "\llbracketgreatest L i (Lower L A); x G A; A \subseteq carrier L\rrbracket \Longrightarrow i \sqsubseteq x"
    by (unfold greatest_def) blast
```


2.1.4 Intervals

definition

where $"\{1 . . u\}_{A}=\left\{x \in\right.$ carrier $\left.A . l \sqsubseteq_{A} x \wedge x \sqsubseteq_{A} u\right\} "$
context weak_partial_order
begin

```
lemma at_least_at_most_upper [dest]:
    " \(\mathrm{x} \in\{\mathrm{a} . \mathrm{b}\} \Longrightarrow \mathrm{x} \sqsubseteq \mathrm{b} "\)
    by (simp add: at_least_at_most_def)
lemma at_least_at_most_lower [dest]:
    "x \(\in\{a . . b\} \Longrightarrow a \sqsubseteq x "\)
    by (simp add: at_least_at_most_def)
lemma at_least_at_most_closed: "\{a..b\} \(\subseteq\) carrier L"
    by (auto simp add: at_least_at_most_def)
lemma at_least_at_most_member [intro]:
    " \(\llbracket \mathrm{x} \in\) carrier \(\mathrm{L} ; \mathrm{a} \sqsubseteq \mathrm{x} ; \mathrm{x} \sqsubseteq \mathrm{b} \rrbracket \Longrightarrow \mathrm{x} \in\{\mathrm{a} . \mathrm{b}\} \mid "\)
    by (simp add: at_least_at_most_def)
```

end

2.1.5 Isotone functions

```
definition isotone :: "('a, 'c) gorder_scheme # ('b, 'd) gorder_scheme
# ('a # 'b) = bool"
    where
    "isotone A B f 三
        weak_partial_order A ^ weak_partial_order B ^
        (\forallx\incarrier A. }\forall\textrm{y}\in\mathrm{ carrier A. x }\mp@subsup{\sqsubseteq}{\textrm{A}}{}\textrm{y}\longrightarrow\textrm{f}x\mp@subsup{\sqsubseteq}{\textrm{B}}{}f\textrm{f}\mathrm{ )"
lemma isotoneI [intro?]:
    fixes f :: "'a # 'b"
    assumes "weak_partial_order L1"
            "weak_partial_order L2"
            "(\bigwedgex y. \llbracketx \in carrier L1; y \in carrier L1; x \sqsubseteq L1 y\rrbracket
            f x \sqsubseteqL2 f y)"
    shows "isotone L1 L2 f"
    using assms by (auto simp add:isotone_def)
abbreviation Monotone :: "('a, 'b) gorder_scheme # ('a # 'a) => bool"
("Mono\imath")
    where "Monotone L f 三 isotone L L f"
lemma use_iso1:
    "\llbracketisotone A A f; x \in carrier A; y \in carrier A; x \sqsubseteqA y\rrbracket\Longrightarrow
```

```
    f x }\mp@subsup{\sqsubseteq}{\textrm{A}}{}\textrm{f
    by (simp add: isotone_def)
lemma use_iso2:
    "\llbracketisotone A B f; x \in carrier A; y \in carrier A; x \sqsubseteqA y\rrbracket \Longrightarrow
    f x \sqsubseteqB f y"
    by (simp add: isotone_def)
lemma iso_compose:
    "\llbracketf \in carrier A }->\mathrm{ carrier B; isotone A B f; g f carrier B }->\mathrm{ carrier
C; isotone B C g\rrbracket \Longrightarrow
    isotone A C (g \circ f)"
    by (simp add: isotone_def, safe, metis Pi_iff)
lemma (in weak_partial_order) inv_isotone [simp]:
    "isotone (inv_gorder A) (inv_gorder B) f = isotone A B f"
    by (auto simp add:isotone_def dual_weak_order dual_weak_order_iff)
```


2.1.6 Idempotent functions

definition idempotent : :
" ('a, 'b) gorder_scheme $\Rightarrow(\prime a \Rightarrow$ 'a) \Rightarrow bool" ("Idem $")$ where
"idempotent $L f \equiv \forall x \in$ carrier L. f (f x) . $=_{L} f x "$
lemma (in weak_partial_order) idempotent:
"【Idem $f ; x \in$ carrier $L \rrbracket \Longrightarrow f(f x) .=f x "$
by (auto simp add: idempotent_def)

2.1.7 Order embeddings

```
definition order_emb :: "('a, 'c) gorder_scheme = ('b, 'd) gorder_scheme
('a # 'b) # bool"
    where
    "order_emb A B f \equiv weak_partial_order A
                            ^ weak_partial_order B
                            \wedge ( }\forall\textrm{x}\in\mathrm{ carrier A. }\forall\textrm{y}\in\mathrm{ carrier A. f x }\sqsubseteq\textrm{B}f\textrm{f}\longleftrightarrow\textrm{x}\sqsubseteq\textrm{A
y )"
lemma order_emb_isotone: "order_emb A B f \Longrightarrow isotone A B f"
    by (auto simp add: isotone_def order_emb_def)
```


2.1.8 Commuting functions

definition commuting :: " ('a, 'c) gorder_scheme \Rightarrow ('a \Rightarrow 'a) \Rightarrow ('a \Rightarrow
'a) \Rightarrow bool" where
"commuting $\mathrm{A} f \mathrm{~g}=\left(\forall \mathrm{x} \in\right.$ carrier $\left.\mathrm{A} .(\mathrm{f} \circ \mathrm{g}) \mathrm{x} .=_{\mathrm{A}}(\mathrm{g} \circ \mathrm{f}) \mathrm{x}\right)$ "

2.2 Partial orders where eq is the Equality

locale partial_order = weak_partial_order +

```
    assumes eq_is_equal: "(.=) = (=)"
begin
declare weak_le_antisym [rule del]
lemma le_antisym [intro]:
    "\llbracketx \sqsubseteqy; y }\sqsubseteq\textrm{x};\textrm{x}\in\mathrm{ carrier L; y }\in\mathrm{ carrier L\ \ x = y"
    using weak_le_antisym unfolding eq_is_equal.
lemma lless_eq:
    "x \sqsubset y }\longleftrightarrow\textrm{x}\sqsubseteq\textrm{y}\wedge\textrm{x}\not=\textrm{y}
    unfolding lless_def by (simp add: eq_is_equal)
lemma set_eq_is_eq: "A {.=} B \longleftrightarrow A = B"
    by (auto simp add: set_eq_def elem_def eq_is_equal)
end
lemma (in partial_order) dual_order:
    "partial_order (inv_gorder L)"
proof -
    interpret dwo: weak_partial_order "inv_gorder L"
        by (metis dual_weak_order)
    show ?thesis
        by (unfold_locales, simp add:eq_is_equal)
qed
lemma dual_order_iff:
    "partial_order (inv_gorder A) \longleftrightarrow partial_order A"
proof
    assume assm:"partial_order (inv_gorder A)"
    then interpret po: partial_order "inv_gorder A"
    rewrites "carrier (inv_gorder A) = carrier A"
    and "le (inv_gorder A) = ( }\lambda\mathrm{ x y. le A y x)"
    and "eq (inv_gorder A) = eq A"
        by (simp_all)
    show "partial_order A"
        apply (unfold_locales, simp_all add: po.sym)
        apply (metis po.trans)
        apply (metis po.weak_le_antisym, metis po.le_trans)
        apply (metis (full_types) po.eq_is_equal, metis po.eq_is_equal)
    done
next
    assume "partial_order A"
    thus "partial_order (inv_gorder A)"
        by (metis partial_order.dual_order)
qed
```

Least and greatest, as predicate

```
lemma (in partial_order) least_unique:
    "\llbracketleast L x A; least L y A\rrbracket\Longrightarrow x = y"
    using weak_least_unique unfolding eq_is_equal.
lemma (in partial_order) greatest_unique:
    "\llbracketgreatest L x A; greatest L y A\rrbracket \Longrightarrow x = y"
    using weak_greatest_unique unfolding eq_is_equal .
```


2．3 Bounded Orders

definition

```
top ：：＂＿＝＞＇a＂（＂丁 亿＂）where
    "TL = (SOME x. greatest L x (carrier L))"
```


definition

```
bottom ：：＂＿＝＞＇a＂（＂\(\perp\) 乙＂）where
\(" \perp_{\mathrm{L}}=(\) SOME x ．least \(\mathrm{L} x\)（carrier L））＂
locale weak＿partial＿order＿bottom＝weak＿partial＿order L for L（structure） \(+\)
assumes bottom＿exists：＂\(\exists \mathrm{x}\) ．least L x（carrier L）＂
begin
lemma bottom＿least：＂least L \(\perp\)（carrier L）＂
proof－
obtain x where＂least L x（carrier L）＂ by（metis bottom＿exists）
thus ？thesis
        by (auto intro:someI2 simp add: bottom_def)
qed
lemma bottom_closed [simp, intro]:
    "\perp}\in\mathrm{ carrier L"
    by (metis bottom_least least_mem)
lemma bottom_lower [simp, intro]:
    "x \in carrier L \Longrightarrow + \sqsubseteq x"
    by (metis bottom_least least_le)
end
locale weak_partial_order_top = weak_partial_order L for L (structure)
+
    assumes top_exists: "\exists x. greatest L x (carrier L)"
begin
lemma top_greatest: "greatest L T (carrier L)"
proof -
```

```
    obtain x where "greatest L x (carrier L)"
        by (metis top_exists)
    thus ?thesis
        by (auto intro:someI2 simp add: top_def)
qed
lemma top_closed [simp, intro]:
    "T \in carrier L"
    by (metis greatest_mem top_greatest)
lemma top_higher [simp, intro]:
    "x \in carrier L \Longrightarrow x \sqsubseteq丁"
    by (metis greatest_le top_greatest)
end
```


2.4 Total Orders

```
locale weak_total_order = weak_partial_order +
    assumes total: "\llbracketx carrier L; y \in carrier L\rrbracket \Longrightarrow x \sqsubseteq y V y \sqsubseteq x"
```

Introduction rule: the usual definition of total order

```
lemma (in weak_partial_order) weak_total_orderI:
    assumes total: "!!x y. \llbracketx \in carrier L; y \in carrier L\rrbracket \Longrightarrow x \sqsubseteq y V y
\sqsubseteq x"
    shows "weak_total_order L"
    by unfold_locales (rule total)
```


2.5 Total orders where eq is the Equality

```
locale total_order = partial_order +
```

 assumes total_order_total: " \(\llbracket \mathrm{x} \in\) carrier L ; \(\mathrm{y} \in\) carrier \(\mathrm{L} \rrbracket \Longrightarrow \mathrm{x} \sqsubseteq\)
 $\mathrm{y} \vee \mathrm{y} \sqsubseteq \mathrm{x} "$
sublocale total_order < weak?: weak_total_order
by unfold_locales (rule total_order_total)

Introduction rule: the usual definition of total order

```
lemma (in partial_order) total_orderI:
    assumes total: "!!x y. \llbracketx \in carrier L; y \in carrier L\rrbracket \Longrightarrow x \sqsubseteq y V y
\sqsubseteq x"
    shows "total_order L"
    by unfold_locales (rule total)
end
```

theory Lattice

imports Order
 begin

3 Lattices

3．1 Supremum and infimum

definition

sup ：：＂［＿，＇a set］＝＞＇a＂（＂ป乙＿＂［90］90）
where $" \bigsqcup_{L} A=(S O M E x$ ．least L x（Upper LA））＂

definition

inf ：：＂［＿，＇a set］＝＞＇a＂（＂П乙＿＂［90］90）
where $" \prod_{\mathrm{L}} \mathrm{A}=($ SOME x ．greatest L x（Lower L A））＂
definition supr ：：
＂（＇a，＇b）gorder＿scheme \Rightarrow＇c set $\Rightarrow\left({ }^{\prime} c \Rightarrow\right.$＇a）$\Rightarrow$＇a＂
where＂supr LA $f=\bigsqcup_{L}(f$＇A）＂
definition infi ：：
＂（＇a，＇b）gorder＿scheme \Rightarrow＇c set $\Rightarrow(' c \Rightarrow$＇a）$\Rightarrow$＇a＂
where＂infi LA $f=\prod_{L}(f$＇A）＂
syntax

```
    "_inf1" :: "('a, 'b) gorder_scheme \(\Rightarrow\) pttrns \(\Rightarrow\) 'a \(\Rightarrow\) 'a" (" (3IINF \(\imath\)
    / _)" [0, 10] 10)
    "_inf" : : "('a, 'b) gorder_scheme \(\Rightarrow\) pttrn \(\Rightarrow\) 'c set \(\Rightarrow\) 'a \(\Rightarrow\) 'a"
("(3IINF r _:_./ _)" [0, 0, 10] 10)
    "_sup1" \(\quad::\) "('a, 'b) gorder_scheme \(\Rightarrow\) pttrns \(\Rightarrow\) 'a \(\Rightarrow\) 'a" (" (3SSUP \({ }_{2}\)
_./ _)" [0, 10] 10)
    "_sup" \(\quad:\) " ('a, 'b) gorder_scheme \(\Rightarrow\) pttrn \(\Rightarrow\) 'c set \(\Rightarrow\) 'a \(\Rightarrow\) 'a"
("(3SSUP \(\left.\left.\imath_{~ \_~}^{2} . . / ~ \_\right) "[0,0,10] 10\right)\)
translations
    "IINF \({ }_{L}\) x. B" == "CONST infi L CONST UNIV (\%x. B)"
    "IINF L x:A. B" == "CONST infi L A (\%x. B)"
    "SSUP \({ }_{L}\) x. B" == "CONST supr L CONST UNIV (\%x. B)"
    "SSUP \(L\) x:A. B" == "CONST supr L A (\%x. B)"
definition
    join :: "[_, 'a, ’a] => 'a" (infixl "ப乙" 65)
    where "x \(\sqcup_{\mathrm{L}} \mathrm{y}=\bigsqcup_{\mathrm{L}}\{\mathrm{x}, \mathrm{y}\}\) "
definition
    meet :: "[_, ’a, ’a] => 'a" (infixl "П२" 70)
    where "x \(\Pi_{\mathrm{L}} \mathrm{y}=\Pi_{\mathrm{L}}\{\mathrm{x}, \mathrm{y}\}\) "
```


definition

```
LEAST_FP : : "('a, 'b) gorder_scheme \(\Rightarrow(\prime a \Rightarrow\) 'a) \(\Rightarrow\) 'a" ("LFP 2 ") where
```

```
LEAST_FP : : "('a, 'b) gorder_scheme \(\Rightarrow(\prime a \Rightarrow\) 'a) \(\Rightarrow\) 'a" ("LFP 2 ") where
```

"LEAST_FP L f = $\prod_{\mathrm{L}}\left\{\mathrm{u} \in \operatorname{carrier~L.~} \mathrm{f} u \sqsubseteq_{\mathrm{L}} \mathrm{u}\right\} "$ - least fixed point

definition

GREATEST_FP:: "('a, 'b) gorder_scheme $\Rightarrow(\prime a \Rightarrow$ 'a) \Rightarrow 'a" ("GFP $\imath ")$ where
"GREATEST_FP L $f=\bigsqcup_{\mathrm{L}}\left\{u \in \operatorname{carrier~L.~u~} \sqsubseteq_{L} f u\right\} " \quad$ - greatest fixed point

3.2 Dual operators

```
lemma sup_dual [simp]:
    "\inv_gorder LA = П LA"
    by (simp add: sup_def inf_def)
lemma inf_dual [simp]:
    "Пinv_gorder LA = \LA"
    by (simp add: sup_def inf_def)
lemma join_dual [simp]:
    "p \sqcupinv_gorder L q = p П | q"
    by (simp add:join_def meet_def)
lemma meet_dual [simp]:
    "p }\mp@subsup{\Pi}{\mathrm{ inv_gorder L q = p ப}}{\textrm{L}}\mathrm{ q"
    by (simp add:join_def meet_def)
lemma top_dual [simp]:
    "Tinv_gorder L = 的"
    by (simp add: top_def bottom_def)
lemma bottom_dual [simp]:
    " }\mp@subsup{\perp}{\mathrm{ inv_gorder L }}{\mathrm{ L }
    by (simp add: top_def bottom_def)
lemma LFP_dual [simp]:
    "LEAST_FP (inv_gorder L) f = GREATEST_FP L f"
    by (simp add:LEAST_FP_def GREATEST_FP_def)
lemma GFP_dual [simp]:
    "GREATEST_FP (inv_gorder L) f = LEAST_FP L f"
    by (simp add:LEAST_FP_def GREATEST_FP_def)
```


3.3 Lattices

```
locale weak_upper_semilattice = weak_partial_order +
```

 assumes sup_of_two_exists:
 " [| x \(\in\) carrier \(L ; y \in\) carrier \(L\) |] ==> \(\exists\) s. least L \(s\) (Upper L \(\{x\),
 y\})"
locale weak_lower_semilattice = weak_partial_order +
assumes inf_of_two_exists:
" [| x \in carrier L; y \in carrier L $\mid]==>\exists \mathrm{s}$. greatest L s (Lower L $\{x, y\}) "$
locale weak_lattice = weak_upper_semilattice + weak_lower_semilattice
lemma (in weak_lattice) dual_weak_lattice:
"weak_lattice (inv_gorder L)"
proof -
interpret dual: weak_partial_order "inv_gorder L"
by (metis dual_weak_order)
show ?thesis
proof qed (simp_all add: inf_of_two_exists sup_of_two_exists)
qed

3.3.1 Supremum

lemma (in weak_upper_semilattice) joinI:
" [| !!l. least L l (Upper L $\{x, y\}$) ==> P l; $x \in$ carrier L; y \in carrier
L |]
==> P (x $\sqcup \mathrm{y}) "$
proof (unfold join_def sup_def)
assume $L:$ " $x \in$ carrier $L " \quad$ " $y \in c a r r i e r ~ L " ~$
and P: "!!l. least L 1 (Upper L \{x, y\}) ==> P l"
with sup_of_two_exists obtain s where "least L s (Upper L \{x, y\})"
by fast
with L show "P (SOME l. least L 1 (Upper L \{x, y\}))"
by (fast intro: someI2 P)
qed
lemma (in weak_upper_semilattice) join_closed [simp]:

by (rule joinI) (rule least_closed)
lemma (in weak_upper_semilattice) join_cong_l:
assumes carr: "x \in carrier L" "x' \in carrier L" "y \in carrier L"
and xx ': "x . $=\mathrm{x}$ " "
shows " $x \sqcup y .=x$ ' $\sqcup \mathrm{y}$ "
proof (rule joinI, rule joinI)
fix a b
from x ' carr have seq: "\{x, y\} \{.=\} \{x', y\}" by (rule set_eq_pairI)
assume leasta: "least L a (Upper L \{x, y\})"
assume "least L b (Upper L \{x', y\})"
with carr
have leastb: "least L b (Upper L \{x, y\})"
by (simp add: least_Upper_cong_r[0F _ _ seq])

```
    from leasta leastb
        show "a .= b" by (rule weak_least_unique)
qed (rule carr)+
lemma (in weak_upper_semilattice) join_cong_r:
    assumes carr: "x \in carrier L" "y \in carrier L" "y' \in carrier L"
        and yy': "y .= y'"
    shows "x \sqcup y .= x \sqcup y'"
proof (rule joinI, rule joinI)
    fix a b
    have "{x, y} = {y, x}" by fast
    also from carr yy'
        have "{y, x} {.=} {y', x}" by (intro set_eq_pairI)
    also have "{y', x} = {x, y'}" by fast
    finally
        have seq: "{x, y} {.=} {x, y'}" .
    assume leasta: "least L a (Upper L {x, y})"
    assume "least L b (Upper L {x, y'})"
    with carr
        have leastb: "least L b (Upper L {x, y})"
        by (simp add: least_Upper_cong_r[OF _ _ seq])
    from leasta leastb
        show "a .= b" by (rule weak_least_unique)
qed (rule carr)+
lemma (in weak_partial_order) sup_of_singletonI:
    "x \in carrier L ==> least L x (Upper L {x})"
    by (rule least_UpperI) auto
lemma (in weak_partial_order) weak_sup_of_singleton [simp]:
    "x \in carrier L ==> \{x} .= x"
    unfolding sup_def
    by (rule someI2) (auto intro: weak_least_unique sup_of_singletonI)
lemma (in weak_partial_order) sup_of_singleton_closed [simp]:
    "x \in carrier L \Longrightarrow \bigsqcup{x} \in carrier L"
    unfolding sup_def
    by (rule someI2) (auto intro: sup_of_singletonI)
Condition on A: supremum exists.
```

```
lemma (in weak_upper_semilattice) sup_insertI:
```

lemma (in weak_upper_semilattice) sup_insertI:
"[| !!s. least L s (Upper L (insert x A)) ==> P s;
"[| !!s. least L s (Upper L (insert x A)) ==> P s;
least L a (Upper L A); x G carrier L; A \subseteq carrier L |]
least L a (Upper L A); x G carrier L; A \subseteq carrier L |]
==> P (\(insert x A))"
==> P (\(insert x A))"
proof (unfold sup_def)
proof (unfold sup_def)
assume L: "x \in carrier L" "A \subseteq carrier L"
assume L: "x \in carrier L" "A \subseteq carrier L"
and P: "!!l. least L l (Upper L (insert x A)) ==> P l"

```
        and P: "!!l. least L l (Upper L (insert x A)) ==> P l"
```

```
    and least_a: "least L a (Upper L A)"
    from L least_a have La: "a \in carrier L" by simp
    from L sup_of_two_exists least_a
    obtain s where least_s: "least L s (Upper L {a, x})" by blast
    show "P (SOME l. least L l (Upper L (insert x A)))"
    proof (rule someI2)
        show "least L s (Upper L (insert x A))"
        proof (rule least_UpperI)
            fix z
            assume "z \in insert x A"
            then show "z\sqsubseteqs"
            proof
                assume "z = x" then show ?thesis
                    by (simp add: least_Upper_above [OF least_s] L La)
            next
                assume "z \in A"
                    with L least_s least_a show ?thesis
                    by (rule_tac le_trans [where y = a]) (auto dest: least_Upper_above)
        qed
        next
            fix y
            assume y: "y \in Upper L (insert x A)"
            show "s \sqsubseteqy"
            proof (rule least_le [OF least_s], rule Upper_memI)
                    fix z
                    assume z: "z \in {a, x}"
                    then show "z\sqsubseteqy"
                    proof
                    have y': "y \in Upper L A"
                            by (meson Upper_antimono in_mono subset_insertI y)
                    assume "z = a"
                    with y' least_a show ?thesis by (fast dest: least_le)
                    next
                    assume "z \in {x}"
                    with y L show ?thesis by blast
                    qed
        qed (rule Upper_closed [THEN subsetD, OF y])
        next
            from L show "insert x A \subseteq carrier L" by simp
            from least_s show "s \in carrier L" by simp
        qed
    qed (rule P)
qed
lemma (in weak_upper_semilattice) finite_sup_least:
    "[| finite A; A \subseteq carrier L; A \not= {} |] ==> least L (\A) (Upper L A)"
proof (induct set: finite)
    case empty
    then show ?case by simp
```

```
next
    case (insert x A)
    show ?case
    proof (cases "A = {}")
        case True
        with insert show ?thesis
            by simp (simp add: least_cong [OF weak_sup_of_singleton] sup_of_singletonI)
    next
        case False
        with insert have "least L (\A) (Upper L A)" by simp
        with _ show ?thesis
            by (rule sup_insertI) (simp_all add: insert [simplified])
    qed
qed
lemma (in weak_upper_semilattice) finite_sup_insertI:
    assumes P: "!!l. least L l (Upper L (insert x A)) ==> P l"
        and xA: "finite A" "x \in carrier L" "A \subseteq carrier L"
    shows "P (\ (insert x A))"
proof (cases "A = {}")
    case True with P and xA show ?thesis
        by (simp add: finite_sup_least)
next
    case False with P and xA show ?thesis
        by (simp add: sup_insertI finite_sup_least)
qed
lemma (in weak_upper_semilattice) finite_sup_closed [simp]:
    "[| finite A; A \subseteq carrier L; A \not= {} |] ==> \A \in carrier L"
proof (induct set: finite)
    case empty then show ?case by simp
next
    case insert then show ?case
        by - (rule finite_sup_insertI, simp_all)
qed
lemma (in weak_upper_semilattice) join_left:
    "[| x \in carrier L; y \in carrier L l] ==> x \sqsubseteq x \sqcup y"
    by (rule joinI [folded join_def]) (blast dest: least_mem)
lemma (in weak_upper_semilattice) join_right:
    "[| x \in carrier L; y \in carrier L l] ==> y \sqsubseteq x \sqcup y"
    by (rule joinI [folded join_def]) (blast dest: least_mem)
lemma (in weak_upper_semilattice) sup_of_two_least:
    "[| x \in carrier L; y \in carrier L |] ==> least L (\{x, y}) (Upper L
{x, y})"
proof (unfold sup_def)
```

```
    assume L: "x \in carrier L" "y \in carrier L"
    with sup_of_two_exists obtain s where "least L s (Upper L {x, y})"
by fast
    with L show "least L (SOME z. least L z (Upper L {x, y})) (Upper L
{x, y})"
    by (fast intro: someI2 weak_least_unique)
qed
lemma (in weak_upper_semilattice) join_le:
    assumes sub: "x \sqsubseteq z" "y \sqsubseteq z"
        and x: "x \in carrier L" and y: "y \in carrier L" and z: "z \in carrier
L"
    shows "x \sqcup y \sqsubseteq z"
proof (rule joinI [OF _ x y])
    fix s
    assume "least L s (Upper L {x, y})"
    with sub z show "s \sqsubseteq z" by (fast elim: least_le intro: Upper_memI)
qed
lemma (in weak_lattice) weak_le_iff_meet:
    assumes "x \in carrier L" "y \in carrier L"
    shows "x }\sqsubseteqy\longleftrightarrow(x y y) .= y"
    by (meson assms(1) assms(2) join_closed join_le join_left join_right
le_cong_r local.le_refl weak_le_antisym)
lemma (in weak_upper_semilattice) weak_join_assoc_lemma:
    assumes L: "x \in carrier L" "y \in carrier L" "z \in carrier L"
    shows "x \sqcup(y \sqcup z) .= \{x, y, z}"
proof (rule finite_sup_insertI)
    - The textbook argument in Jacobson I, p 457
    fix s
    assume sup: "least L s (Upper L {x, y, z})"
    show "x \sqcup(y \sqcup z) .= s"
    proof (rule weak_le_antisym)
        from sup L show "x \sqcup(y \sqcup z) \sqsubseteq s"
            by (fastforce intro!: join_le elim: least_Upper_above)
    next
        from sup L show "s \sqsubseteqx \sqcup(y \sqcup z)"
        by (erule_tac least_le)
            (blast intro!: Upper_memI intro: le_trans join_left join_right join_closed)
    qed (simp_all add: L least_closed [OF sup])
qed (simp_all add: L)
```

Commutativity holds for $=$.

```
lemma join_comm:
```

 fixes L (structure)
 shows "x \(\sqcup \mathrm{y}=\mathrm{y} \sqcup \mathrm{x}\) "
 by (unfold join_def) (simp add: insert_commute)
    ```
lemma (in weak_upper_semilattice) weak_join_assoc:
    assumes L: "x \in carrier L" "y \in carrier L" "z \in carrier L"
    shows "(x \sqcup y) \sqcup z .= x \sqcup (y \sqcup z)"
proof -
    have "(x \sqcup y) \sqcup z = z \sqcup(x \sqcup y)" by (simp only: join_comm)
    also from L have "... .= \{z, x, y}" by (simp add: weak_join_assoc_lemma)
    also from L have "... = \{x, y, z}" by (simp add: insert_commute)
    also from L have "... .= x \sqcup (y \sqcup z)" by (simp add: weak_join_assoc_lemma
[symmetric])
    finally show ?thesis by (simp add: L)
qed
```


3.3.2 Infimum

```
lemma (in weak_lower_semilattice) meetI:
```

 " [| ! !i. greatest L i (Lower L \(\{x, y\}\)) ==> P i;
 \(\mathrm{x} \in\) carrier \(\mathrm{L} ; \mathrm{y} \in\) carrier \(\mathrm{L} \mid]\)
 =" \(P\) (\(x \sqcap y\))"
 proof (unfold meet_def inf_def)
assume L: "x \in carrier L" "y \in carrier L"
and P: "!!g. greatest L g (Lower L \{x, y\}) ==> P g"
with inf_of_two_exists obtain i where "greatest Li (Lower L \{x, y\})"
by fast
with L show "P (SOME g. greatest L g (Lower L \{x, y\}))"
by (fast intro: someI2 weak_greatest_unique P)
qed
lemma (in weak_lower_semilattice) meet_closed [simp]:

by (rule meetI) (rule greatest_closed)
lemma (in weak_lower_semilattice) meet_cong_l:
assumes carr: "x \in carrier L " "x' \in carrier $L "$ " $y \in c a r r i e r ~ L "$
and xx ': "x .= x "
shows "x $\sqcap \mathrm{y} .=\mathrm{x}$) $\sqcap \mathrm{y}$ "
proof (rule meetI, rule meetI)
fix $a b$
from xx ' carr
have seq: "\{x, y\} \{.=\} \{x', y\}" by (rule set_eq_pairI)
assume greatesta: "greatest L a (Lower L \{x, y\})"
assume "greatest L b (Lower L \{x', y\})"
with carr
have greatestb: "greatest L b (Lower L \{x, y\})"
by (simp add: greatest_Lower_cong_r[0F _ _ seq])
from greatesta greatestb
show "a .= b" by (rule weak_greatest_unique)

```
qed (rule carr)+
lemma (in weak_lower_semilattice) meet_cong_r:
    assumes carr: "x \in carrier L" "y \in carrier L" "y' \in carrier L"
        and yy': "y .= y'"
    shows "x П y .= x П y'"
proof (rule meetI, rule meetI)
    fix a b
    have "{x, y} = {y, x}" by fast
    also from carr yy'
        have "{y, x} {.=} {y', x}" by (intro set_eq_pairI)
    also have "{y', x} = {x, y'}" by fast
    finally
            have seq: "{x, y} {.=} {x, y'}" .
    assume greatesta: "greatest L a (Lower L {x, y})"
    assume "greatest L b (Lower L {x, y'})"
    with carr
        have greatestb: "greatest L b (Lower L {x, y})"
        by (simp add: greatest_Lower_cong_r[OF _ _ seq])
    from greatesta greatestb
        show "a .= b" by (rule weak_greatest_unique)
qed (rule carr)+
lemma (in weak_partial_order) inf_of_singletonI:
    "x \in carrier L ==> greatest L x (Lower L {x})"
    by (rule greatest_LowerI) auto
```

lemma (in weak_partial_order) weak_inf_of_singleton [simp]:
"x \in carrier $L==>~ \bigcap\{x\}$.= x "
unfolding inf_def
by (rule someI2) (auto intro: weak_greatest_unique inf_of_singletonI)
lemma (in weak_partial_order) inf_of_singleton_closed:
" $\mathrm{x} \in$ carrier $\mathrm{L}==>\prod\{\mathrm{x}\} \in$ carrier $\mathrm{L} "$
unfolding inf_def
by (rule someI2) (auto intro: inf_of_singletonI)

Condition on A : infimum exists.

```
lemma (in weak_lower_semilattice) inf_insertI:
    "[l !!i. greatest L i (Lower L (insert x A)) ==> P i;
    greatest L a (Lower L A); x G carrier L; A \subseteq carrier L |]
    ==> P (П(insert x A))"
proof (unfold inf_def)
    assume L: "x \in carrier L" "A \subseteq carrier L"
        and P: "!!g. greatest L g (Lower L (insert x A)) ==> P g"
        and greatest_a: "greatest L a (Lower L A)"
    from L greatest_a have La: "a \in carrier L" by simp
```

```
    from L inf_of_two_exists greatest_a
    obtain i where greatest_i: "greatest L i (Lower L {a, x})" by blast
    show "P (SOME g. greatest L g (Lower L (insert x A)))"
    proof (rule someI2)
        show "greatest L i (Lower L (insert x A))"
        proof (rule greatest_LowerI)
            fix z
        assume "z \in insert x A"
        then show "i \sqsubseteq z"
        proof
            assume "z = x" then show ?thesis
                by (simp add: greatest_Lower_below [OF greatest_i] L La)
        next
            assume "z \in A"
            with L greatest_i greatest_a show ?thesis
                by (rule_tac le_trans [where y = a]) (auto dest: greatest_Lower_below)
        qed
    next
        fix y
        assume y: "y \in Lower L (insert x A)"
        show "y\sqsubseteq i"
        proof (rule greatest_le [OF greatest_i], rule Lower_memI)
            fix z
            assume z: "z \in {a, x}"
            then show "y\sqsubseteq z"
            proof
                have y': "y \in Lower L A"
                    by (meson Lower_antimono in_mono subset_insertI y)
                    assume "z = a"
                    with y' greatest_a show ?thesis by (fast dest: greatest_le)
            next
                assume "z \in {x}"
                with y L show ?thesis by blast
            qed
        qed (rule Lower_closed [THEN subsetD, OF y])
    next
        from L show "insert x A \subseteq carrier L" by simp
        from greatest_i show "i \in carrier L" by simp
        qed
    qed (rule P)
qed
lemma (in weak_lower_semilattice) finite_inf_greatest:
    "[| finite A; A \subseteq carrier L; A # {} |] ==> greatest L (ПA) (Lower
L A)"
proof (induct set: finite)
    case empty then show ?case by simp
next
    case (insert x A)
```

```
    show ?case
    proof (cases "A = {}")
        case True
        with insert show ?thesis
            by simp (simp add: greatest_cong [OF weak_inf_of_singleton]
            inf_of_singleton_closed inf_of_singletonI)
    next
    case False
    from insert show ?thesis
    proof (rule_tac inf_insertI)
        from False insert show "greatest L ( }\\textrm{A})\mathrm{ (Lower L A)" by simp
    qed simp_all
    qed
qed
lemma (in weak_lower_semilattice) finite_inf_insertI:
    assumes P: "!!i. greatest L i (Lower L (insert x A)) ==> P i"
        and xA: "finite A" "x \in carrier L" "A \subseteq carrier L"
    shows "P (П (insert x A))"
proof (cases "A = {}")
    case True with P and xA show ?thesis
        by (simp add: finite_inf_greatest)
next
    case False with P and xA show ?thesis
        by (simp add: inf_insertI finite_inf_greatest)
qed
lemma (in weak_lower_semilattice) finite_inf_closed [simp]:
    "[| finite A; A \subseteq carrier L; A \not={} |] ==> ПA \in carrier L"
proof (induct set: finite)
    case empty then show ?case by simp
next
    case insert then show ?case
        by (rule_tac finite_inf_insertI) (simp_all)
qed
lemma (in weak_lower_semilattice) meet_left:
    "[| x \in carrier L; y \in carrier L l] ==> x П y \sqsubseteq x"
    by (rule meetI [folded meet_def]) (blast dest: greatest_mem)
lemma (in weak_lower_semilattice) meet_right:
    "[| x \in carrier L; y \in carrier L l] ==> x П y \sqsubseteq y"
    by (rule meetI [folded meet_def]) (blast dest: greatest_mem)
lemma (in weak_lower_semilattice) inf_of_two_greatest:
    "[| x \in carrier L; y \in carrier L |] ==>
    greatest L ( }\{x,y}) (Lower L {x, y})"
proof (unfold inf_def)
    assume L: "x \in carrier L" "y \in carrier L"
```

with inf_of_two_exists obtain s where "greatest L s (Lower L \{x, y\})" by fast
with L
show "greatest L (SOME z. greatest L z (Lower L \{x, y\})) (Lower L \{x, y\})"
by (fast intro: someI2 weak_greatest_unique)

qed

lemma (in weak_lower_semilattice) meet_le:
assumes sub: "z $\sqsubseteq \mathrm{x} " \mathrm{z} \sqsubseteq \mathrm{y}$ "
and $\mathrm{x}: ~ " \mathrm{x} \in \operatorname{carrier} \mathrm{L} "$ and $\mathrm{y}: ~ " \mathrm{y} \in \operatorname{carrier} \mathrm{L} "$ and $\mathrm{z}: ~ " \mathrm{z} \in$ carrier L"
shows "z $\sqsubseteq \mathrm{x} \sqcap \mathrm{y}$ "
proof (rule meetI [OF _ x y])
fix i
assume "greatest L i (Lower L \{x, y\})"
with sub z show "z $\sqsubseteq i "$ by (fast elim: greatest_le intro: Lower_memI)
qed
lemma (in weak_lattice) weak_le_iff_join:
assumes "x \in carrier L" "y \in carrier L"
shows "x $\sqsubseteq y \longleftrightarrow x .=(x \sqcap y) "$
by (meson assms(1) assms(2) local.le_refl local.le_trans meet_closed
meet_le meet_left meet_right weak_le_antisym weak_refl)
lemma (in weak_lower_semilattice) weak_meet_assoc_lemma:
assumes L: "x \in carrier L" "y \in carrier L" "z \in carrier L"
shows "x $\sqcap(y \sqcap z) .=\Pi\{x, y, z\} "$
proof (rule finite_inf_insertI)
The textbook argument in Jacobson I, p 457
fix i
assume inf: "greatest L i (Lower L \{x, y, z\})"
show "x $\sqcap(y \sqcap z) .=$ i"
proof (rule weak_le_antisym)
from inf L show "i $\sqsubseteq x \sqcap(y \sqcap z)$ " by (fastforce intro!: meet_le elim: greatest_Lower_below)
next
from inf L show $" x \sqcap(y \sqcap z) \sqsubseteq i "$
by (erule_tac greatest_le)
(blast intro!: Lower_memI intro: le_trans meet_left meet_right meet_closed)
qed (simp_all add: L greatest_closed [OF inf])
qed (simp_all add: L)
lemma meet_comm:
fixes L (structure)
shows "x $\square \mathrm{y}=\mathrm{y} \sqcap \mathrm{x}$ "
by (unfold meet_def) (simp add: insert_commute)

```
lemma (in weak_lower_semilattice) weak_meet_assoc:
    assumes L: "x \in carrier L" "y \in carrier L" "z \in carrier L"
    shows "(x \sqcap y) \sqcap z .= x \sqcap (y \sqcap z)"
proof -
    have "(x \sqcap y) }\square\textrm{z = z \sqcap (x П y)" by (simp only: meet_comm)
    also from L have "... .= \ {z, x, y}" by (simp add: weak_meet_assoc_lemma)
    also from L have "... = \ {x, y, z}" by (simp add: insert_commute)
    also from L have "... .= x П (y П z)" by (simp add: weak_meet_assoc_lemma
[symmetric])
    finally show ?thesis by (simp add: L)
qed
Total orders are lattices.
```

```
sublocale weak_total_order \subseteq weak?: weak_lattice
```

sublocale weak_total_order \subseteq weak?: weak_lattice
proof
fix x y
assume L: "x \in carrier L" "y \in carrier L"
show "\existss. least L s (Upper L {x, y})"
proof -
note total L
moreover
{
assume "x \sqsubseteq y"
with L have "least L y (Upper L {x, y})"
by (rule_tac least_UpperI) auto
}
moreover
{
assume "y \sqsubseteq x"
with L have "least L x (Upper L {x, y})"
by (rule_tac least_UpperI) auto
}
ultimately show ?thesis by blast
qed
next
fix x y
assume L: "x \in carrier L" "y \in carrier L"
show "\existsi. greatest L i (Lower L {x, y})"
proof -
note total L
moreover
{
assume "y \sqsubseteq x"
with L have "greatest L y (Lower L {x, y})"
by (rule_tac greatest_LowerI) auto
}
moreover
{

```
```

 assume "x \sqsubseteq y"
 with L have "greatest L x (Lower L {x, y})"
 by (rule_tac greatest_LowerI) auto
 }
 ultimately show ?thesis by blast
 qed
 qed

```

\subsection*{3.4 Weak Bounded Lattices}
```

locale weak_bounded_lattice =
weak_lattice +
weak_partial_order_bottom +
weak_partial_order_top
begin

```
lemma bottom_meet: "x carrier \(\mathrm{L} \Longrightarrow \perp \sqcap \mathrm{x} .=\perp\) "
    by (metis bottom_least least_def meet_closed meet_left weak_le_antisym)
lemma bottom_join: "x \(\in\) carrier \(L \Longrightarrow \perp \sqcup \mathrm{x} .=\mathrm{x} "\)
    by (metis bottom_least join_closed join_le join_right le_refl least_def
weak_le_antisym)
lemma bottom_weak_eq:
    " \(\llbracket \mathrm{b} \in\) carrier \(\mathrm{L} ; \bigwedge \mathrm{x} . \mathrm{x} \in \operatorname{carrier} \mathrm{L} \Longrightarrow \mathrm{b} \sqsubseteq \mathrm{x} \rrbracket \Longrightarrow \mathrm{b} .=\perp "\)
    by (metis bottom_closed bottom_lower weak_le_antisym)
lemma top_join: "x carrier \(L \Longrightarrow \top \sqcup x\).= \(\rceil\) "
    by (metis join_closed join_left top_closed top_higher weak_le_antisym)
lemma top_meet: "x \(\in\) carrier \(L \Longrightarrow \top \sqcap x .=x "\)
    by (metis le_refl meet_closed meet_le meet_right top_closed top_higher
weak_le_antisym)
lemma top_weak_eq: " \(\llbracket t \in\) carrier \(L ; ~ \bigwedge x . x \in \operatorname{carrier} L \Longrightarrow \mathrm{x} \sqsubseteq \mathrm{t}\)
】 \(\Longrightarrow \mathrm{t} .=\mathrm{T}{ }^{\prime \prime}\)
    by (metis top_closed top_higher weak_le_antisym)
end
sublocale weak_bounded_lattice \(\subseteq\) weak_partial_order ..

\subsection*{3.5 Lattices where eq is the Equality}
locale upper_semilattice = partial_order +
    assumes sup_of_two_exists:
        " [| x \(\in\) carrier \(L ; y \in\) carrier \(L\) |] ==> \(\exists\) s. least L \(s\) (Upper L \(\{x\),
y\})"
sublocale upper_semilattice \(\subseteq\) weak?: weak_upper_semilattice
```

 by unfold_locales (rule sup_of_two_exists)
 locale lower_semilattice = partial_order +
assumes inf_of_two_exists:
"[| x \in carrier L; y \in carrier L |] ==> \existss. greatest L s (Lower L
{x, y})"
sublocale lower_semilattice \subseteq weak?: weak_lower_semilattice
by unfold_locales (rule inf_of_two_exists)
locale lattice = upper_semilattice + lower_semilattice
sublocale lattice \subseteq weak_lattice ..
lemma (in lattice) dual_lattice:
"lattice (inv_gorder L)"
proof -
interpret dual: weak_lattice "inv_gorder L"
by (metis dual_weak_lattice)
show ?thesis
apply (unfold_locales)
apply (simp_all add: inf_of_two_exists sup_of_two_exists)
apply (rule eq_is_equal)
done
qed
lemma (in lattice) le_iff_join:
assumes "x \in carrier L" "y \in carrier L"
shows "x \sqsubseteqy }\longleftrightarrow\textrm{x}=(\textrm{x}\sqcap\textrm{y})
by (simp add: assms(1) assms(2) eq_is_equal weak_le_iff_join)
lemma (in lattice) le_iff_meet:
assumes "x \in carrier L" "y \in carrier L"
shows "x \sqsubseteqy \longleftrightarrow (x \sqcup y) = y"
by (simp add: assms eq_is_equal weak_le_iff_meet)
Total orders are lattices.
sublocale total_order \subseteq weak?: lattice
by standard (auto intro: weak.weak.sup_of_two_exists weak.weak.inf_of_two_exists)
Functions that preserve joins and meets
definition join_pres :: "('a, 'c) gorder_scheme \Rightarrow ('b, 'd) gorder_scheme
\Rightarrow ('a \Rightarrow 'b) \Rightarrow bool" where
"join_pres X Y f \equiv lattice $X \wedge$ lattice $Y \wedge(\forall \mathrm{x} \in \operatorname{carrier} \mathrm{X} . \forall \mathrm{y} \in$ carrier $\left.X . f\left(x \sqcup_{X} y\right)=f x \sqcup_{Y} f y\right) "$
definition meet_pres :: "('a, 'c) gorder_scheme \Rightarrow ('b, 'd) gorder_scheme \Rightarrow (' $\mathrm{a} \Rightarrow$ ' b) \Rightarrow bool" where

```
```

"meet_pres X Y f \equiv lattice X ^ lattice Y ^ (}\forall\textrm{x}\in\mathrm{ carrier X. }\forall\textrm{y}\in\mathrm{ carrier
X. f (x 垪 y) = f x 崄 f y)"
lemma join_pres_isotone:
assumes "f \in carrier X }->\mathrm{ carrier Y" "join_pres X Y f"
shows "isotone X Y f"
proof (rule isotoneI)
show "weak_partial_order X" "weak_partial_order Y"
using assms unfolding join_pres_def lattice_def upper_semilattice_def
lower_semilattice_def
by (meson partial_order.axioms(1))+
show "\x y. \llbracketx \in carrier X; y \in carrier X; x \sqsubseteqx y\rrbracket \Longrightarrow f x \sqsubseteqy f y"
by (metis (no_types, lifting) PiE assms join_pres_def lattice.le_iff_meet)
qed
lemma meet_pres_isotone:
assumes "f \in carrier X }->\mathrm{ carrier Y" "meet_pres X Y f"
shows "isotone X Y f"
proof (rule isotoneI)
show "weak_partial_order X" "weak_partial_order Y"
using assms unfolding meet_pres_def lattice_def upper_semilattice_def
lower_semilattice_def
by (meson partial_order.axioms(1))+
show "\x y. \llbracketx \in carrier X; y \in carrier X; x \sqsubseteqx y\rrbracket\Longrightarrow f x \sqsubseteqY f y"
by (metis (no_types, lifting) PiE assms lattice.le_iff_join meet_pres_def)
qed

```

\section*{3．6 Bounded Lattices}
```

locale bounded_lattice =
lattice +
weak_partial_order_bottom +
weak_partial_order_top

```
sublocale bounded_lattice \(\subseteq\) weak_bounded_lattice ..
context bounded_lattice
begin
lemma bottom_eq:
    "【 b \(\in\) carrier \(\mathrm{L} ; ~ \bigwedge \mathrm{x} . \mathrm{x} \in \operatorname{carrier} \mathrm{L} \Longrightarrow \mathrm{b} \sqsubseteq \mathrm{x} \rrbracket \Longrightarrow \mathrm{b}=\perp "\)
    by (metis bottom_closed bottom_lower le_antisym)
lemma top_eq: \(" \llbracket t \in\) carrier \(L ; ~ \bigwedge x . x \in \operatorname{carrier} L \Longrightarrow x \sqsubseteq t \rrbracket \Longrightarrow\)
\(\mathrm{t}=\mathrm{T}\) "
    by (metis le_antisym top_closed top_higher)
end
```

hide_const (open) Lattice.inf
hide_const (open) Lattice.sup
end

```
```

theory Complete_Lattice
imports Lattice
begin

```

\section*{4 Complete Lattices}
```

locale weak_complete_lattice = weak_partial_order +
assumes sup_exists:
"[| A \subseteq carrier L |] ==> \existss. least L s (Upper L A)"
and inf_exists:
"[| A \subseteq carrier L |] ==> \existsi. greatest L i (Lower L A)"
sublocale weak_complete_lattice }\subseteq\mathrm{ weak_lattice
proof
fix x y
assume a: "x \in carrier L" "y \in carrier L"
thus "\existss. is_lub L s {x, y}"
by (rule_tac sup_exists[of "{x, y}"], auto)
from a show "\existss. is_glb L s {x, y}"
by (rule_tac inf_exists[of "{x, y}"], auto)
qed

```
Introduction rule: the usual definition of complete lattice
```

lemma (in weak_partial_order) weak_complete_latticeI:
assumes sup_exists:
"!!A. [| A \subseteq carrier L |] ==> \existss. least L s (Upper L A)"
and inf_exists:
"!!A. [| A \subseteq carrier L |] ==> \existsi. greatest L i (Lower L A)"
shows "weak_complete_lattice L"
by standard (auto intro: sup_exists inf_exists)
lemma (in weak_complete_lattice) dual_weak_complete_lattice:
"weak_complete_lattice (inv_gorder L)"
proof -
interpret dual: weak_lattice "inv_gorder L"
by (metis dual_weak_lattice)
show ?thesis
by (unfold_locales) (simp_all add:inf_exists sup_exists)
qed
lemma (in weak_complete_lattice) supI:
"[| !!1. least L l (Upper L A) ==> P 1; A \subseteq carrier L |]
==> P (\A)"

```
```

proof (unfold sup_def)
assume L: "A \subseteq carrier L"
and P: "!!l. least L l (Upper L A) ==> P l"
with sup_exists obtain s where "least L s (Upper L A)" by blast
with L show "P (SOME l. least L l (Upper L A))"
by (fast intro: someI2 weak_least_unique P)
qed
lemma (in weak_complete_lattice) sup_closed [simp]:
"A \subseteq carrier L ==> \A G carrier L"
by (rule supI) simp_all
lemma (in weak_complete_lattice) sup_cong:
assumes "A \subseteqcarrier L" "B \subseteq carrier L" "A {.=} B"
shows "\ A .= \ B"
proof -
have "\ x. is_lub L x A \longleftrightarrow is_lub L x B"
by (rule least_Upper_cong_r, simp_all add: assms)
moreover have "\ B \in carrier L"
by (simp add: assms(2))
ultimately show ?thesis
by (simp add: sup_def)
qed
sublocale weak_complete_lattice \subseteq weak_bounded_lattice
apply (unfold_locales)
apply (metis Upper_empty empty_subsetI sup_exists)
apply (metis Lower_empty empty_subsetI inf_exists)
done
lemma (in weak_complete_lattice) infI:
"[| !!i. greatest L i (Lower L A) ==> P i; A \subseteq carrier L |]
==> P (ПA)"
proof (unfold inf_def)
assume L: "A \subseteq carrier L"
and P: "!!l. greatest L l (Lower L A) ==> P l"
with inf_exists obtain s where "greatest L s (Lower L A)" by blast
with L show "P (SOME l. greatest L l (Lower L A))"
by (fast intro: someI2 weak_greatest_unique P)
qed
lemma (in weak_complete_lattice) inf_closed [simp]:
"A \subseteq carrier L ==> ПA \in carrier L"
by (rule infI) simp_all
lemma (in weak_complete_lattice) inf_cong:
assumes "A \subseteqcarrier L" "B \subseteq carrier L" "A {.=} B"
shows "П A .= П B"
proof -

```
```

 have "\ x. is_glb L x A \longleftrightarrow is_glb L x B"
 by (rule greatest_Lower_cong_r, simp_all add: assms)
 moreover have "П B \in carrier L"
 by (simp add: assms(2))
 ultimately show ?thesis
 by (simp add: inf_def)
 qed
theorem (in weak_partial_order) weak_complete_lattice_criterion1:
assumes top_exists: "\existsg. greatest L g (carrier L)"
and inf_exists:
"\A. [| A \subseteq carrier L; A \not= {} |] ==> \existsi. greatest L i (Lower L
A)"
shows "weak_complete_lattice L"
proof (rule weak_complete_latticeI)
from top_exists obtain top where top: "greatest L top (carrier L)"
fix A
assume L: "A \subseteq carrier L"
let ?B = "Upper L A"
from L top have "top \in ?B" by (fast intro!: Upper_memI intro: greatest_le)
then have B_non_empty: "?B \not= {}" by fast
have B_L: "?B \subseteq carrier L" by simp
from inf_exists [OF B_L B_non_empty]
obtain b where b_inf_B: "greatest L b (Lower L ?B)" ..
then have bcarr: "b \in carrier L"
by auto
have "least L b (Upper L A)"
proof (rule least_UpperI)
show "^x. x }\in\textrm{A}\Longrightarrow\textrm{x}\sqsubseteq\textrm{b}
by (meson L Lower_memI Upper_memD b_inf_B greatest_le subsetD)
show "\y. y \in Upper L A \Longrightarrow b }\sqsubseteq y
by (meson B_L b_inf_B greatest_Lower_below)
qed (use bcarr L in auto)
then show "\existss. least L s (Upper L A)" ..
next
fix A
assume L: "A \subseteq carrier L"
show "\existsi. greatest L i (Lower L A)"
by (metis L Lower_empty inf_exists top_exists)
qed
Supremum
declare (in partial_order) weak_sup_of_singleton [simp del]
lemma (in partial_order) sup_of_singleton [simp]:
"x \in carrier L ==> \{x} = x"
using weak_sup_of_singleton unfolding eq_is_equal .

```
```

lemma (in upper_semilattice) join_assoc_lemma:
assumes L: "x \in carrier L" "y \in carrier L" "z \in carrier L"
shows "x \sqcup (y \sqcup z) = \{x, y, z}"
using weak_join_assoc_lemma L unfolding eq_is_equal .
lemma (in upper_semilattice) join_assoc:
assumes L: "x \in carrier L" "y \in carrier L" "z \in carrier L"
shows "(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)"
using weak_join_assoc L unfolding eq_is_equal .

```

\section*{Infimum}
```

declare (in partial_order) weak_inf_of_singleton [simp del]
lemma (in partial_order) inf_of_singleton [simp]:
"x \in carrier L ==> П{x} = x"
using weak_inf_of_singleton unfolding eq_is_equal .

```

Condition on A: infimum exists.
```

lemma (in lower_semilattice) meet_assoc_lemma:
assumes L: "x \in carrier L" "y \in carrier L" "z \in carrier L"
shows "x }\Pi\mathrm{ (y П z) = П{x, y, z}"
using weak_meet_assoc_lemma L unfolding eq_is_equal .
lemma (in lower_semilattice) meet_assoc:
assumes L: "x \in carrier L" "y \in carrier L" "z \in carrier L"
shows "(x П y) }\square\textrm{z = x }\square(y | z)"
using weak_meet_assoc L unfolding eq_is_equal .

```

\subsection*{4.1 Infimum Laws}
context weak_complete_lattice
begin
lemma inf_glb:
    assumes "A \(\subseteq\) carrier L"
    shows "greatest L ( \(П\) A) (Lower L A)"
proof -
    obtain i where "greatest L i (Lower L A)"
        by (metis assms inf_exists)
    thus ?thesis
        by (metis inf_def someI_ex)
qed
lemma inf_lower:
    assumes "A \(\subseteq\) carrier \(L\) " "x \(\in A\) "
    shows " \(П \mathrm{~A} \sqsubseteq \mathrm{x}\) "
    by (metis assms greatest_Lower_below inf_glb)
lemma inf_greatest:
```

 assumes "A \subseteq carrier L" "z \in carrier L"
 "(\bigwedgex. x \in A \Longrightarrow z \sqsubseteq x)"
 shows "z\sqsubseteqПA"
 by (metis Lower_memI assms greatest_le inf_glb)
 lemma weak_inf_empty [simp]: "П{} .= 丁"
by (metis Lower_empty empty_subsetI inf_glb top_greatest weak_greatest_unique)
lemma weak_inf_carrier [simp]: "Пcarrier L .= \perp"
by (metis bottom_weak_eq inf_closed inf_lower subset_refl)
lemma weak_inf_insert [simp]:
assumes "a \in carrier L" "A \subseteq carrier L"
shows "Пinsert a A .= a ППA"
proof (rule weak_le_antisym)
show "Пinsert a A \sqsubseteq a ППA"
by (simp add: assms inf_lower local.inf_greatest meet_le)
show aA: "a ППA \in carrier L"
using assms by simp
show "a }\Pi\Pi\mathrm{ \ }\sqsubseteq \insert a A"
apply (rule inf_greatest)
using assms apply (simp_all add: aA)
by (meson aA inf_closed inf_lower local.le_trans meet_left meet_right
subsetCE)
show "Пinsert a A \in carrier L"
using assms by (force intro: le_trans inf_closed meet_right meet_left
inf_lower)
qed

```

\subsection*{4.2 Supremum Laws}
```

lemma sup_lub:
assumes "A \subseteq carrier L"
shows "least L (\bigsqcup A) (Upper L A)"
by (metis Upper_is_closed assms least_closed least_cong supI sup_closed
sup_exists weak_least_unique)
lemma sup_upper:
assumes "A \subseteq carrier L " " $\mathrm{x} \in \mathrm{A}$ "
shows "x $\sqsubseteq \bigsqcup \mathrm{A}$ "
by (metis assms least_Upper_above supI)
lemma sup_least:
assumes "A \subseteq carrier L" "z \in carrier L"

$$
"(\bigwedge \bar{x} . x \in A \Longrightarrow x \sqsubseteq z) "
$$

shows " $\downarrow \mathrm{A} \sqsubseteq \mathrm{z}$ "
by (metis Upper_memI assms least_le sup_lub)
lemma weak_sup_empty [simp]: " $\downarrow\}$.= \perp "

```
```

 by (metis Upper_empty bottom_least empty_subsetI sup_lub weak_least_unique)
 lemma weak_sup_carrier [simp]: "\carrier L .= \top"
by (metis Lower_closed Lower_empty sup_closed sup_upper top_closed top_higher
weak_le_antisym)
lemma weak_sup_insert [simp]:
assumes "a \in carrier L" "A \subseteq carrier L"
shows "\insert a A .= a \sqcup \A"
proof (rule weak_le_antisym)
show aA: "a \sqcup \A G carrier L"
using assms by simp
show "\insert a A \sqsubseteq a \sqcup لA"
apply (rule sup_least)
using assms apply (simp_all add: aA)
by (meson aA join_left join_right local.le_trans subsetCE sup_closed
sup_upper)
show "a \sqcup \A \sqsubseteq \insert a A"
by (simp add: assms join_le local.sup_least sup_upper)
show "\insert a A G carrier L"
using assms by (force intro: le_trans inf_closed meet_right meet_left
inf_lower)
qed
end

```

\subsection*{4.3 Fixed points of a lattice}
```

definition "fps $L f=\left\{x \in\right.$ carrier L. $\left.f x .==_{L} x\right\} "$

```
abbreviation "fpl L f \(\equiv\) L(carrier := fps L f)"
lemma (in weak_partial_order)
    use_fps: "x \(\in f p s L f \Longrightarrow f x .=x "\)
    by (simp add: fps_def)
lemma fps_carrier [simp]:
    "fps L f \(\subseteq\) carrier L"
    by (auto simp add: fps_def)
lemma (in weak_complete_lattice) fps_sup_image:
    assumes "f \(\in\) carrier \(L \rightarrow\) carrier L" "A \(\subseteq\) fps L f"
    shows " \(ل\) ( \(f\) ( A) . = ل A"
proof -
    from assms (2) have AL: "A \(\subseteq\) carrier L"
        by (auto simp add: fps_def)
    show ?thesis
    proof (rule sup_cong, simp_all add: AL)
        from assms(1) AL show " \(f\) ' \(A \subseteq\) carrier L"
by auto
then have \(*: ~ " \bigwedge b . \llbracket A \subseteq\{x \in\) carrier L. \(f x .=x\} ; b \in A \rrbracket \Longrightarrow \exists a \in f\) ' A. b . = a"
by (meson AL assms(2) image_eqI local.sym subsetCE use_fps)
from assms (2) show " \(f\) ' \(A\{.=\}\) A"
by (auto simp add: fps_def intro: set_eqI2 [0F _ *])
qed
qed
lemma (in weak_complete_lattice) fps_idem:
assumes "f \(\in\) carrier \(L \rightarrow\) carrier L" "Idem f"
shows "fps L f \{.=\} f ' carrier L"
proof (rule set_eqI2)
show " \(\bigwedge \mathrm{a} . \mathrm{a} \in \mathrm{fps} \mathrm{L} f \Longrightarrow \exists \mathrm{~b} \in \mathrm{f}\) ' carrier L. a .= b"
using assms by (force simp add: fps_def intro: local.sym)
show " \(\wedge \mathrm{b} . \mathrm{b} \in \mathrm{f}\) ' carrier \(\mathrm{L} \Longrightarrow \exists \mathrm{a} \in \mathrm{fps} \mathrm{L} \mathrm{f} . \mathrm{b} .=\mathrm{a}\) "
using assms by (force simp add: idempotent_def fps_def)
qed
context weak_complete_lattice
begin
lemma weak_sup_pre_fixed_point:
assumes "f \(\in\) carrier \(L \rightarrow\) carrier \(L "\) "isotone L L f" "A \(\subseteq f p s L f "\)
shows " ( \(\left.\bigsqcup_{L} A\right) \sqsubseteq_{L} f\left(\bigsqcup_{L} A\right) "\)
proof (rule sup_least)
from assms(3) show AL: "A \(\subseteq\) carrier L"
by (auto simp add: fps_def)
thus fA: "f \((\square A) \in\) carrier \(L "\)
by (simp add: assms funcset_carrier[of f L L])
fix \(x\)
assume \(x A: ~ " x \in A "\)
hence "x \(\in f p s L f "\)
using assms subsetCE by blast
hence " \(\mathrm{f} x\). \(=_{\mathrm{L}} \mathrm{x}\) "
by (auto simp add: fps_def)
moreover have \(\mathrm{f} x \sqsubseteq_{\mathrm{L}} \mathrm{f}\left(\bigsqcup_{\mathrm{L}} \mathrm{A}\right)\) "
by (meson AL assms(2) subsetCE sup_closed sup_upper use_iso1 xA)
ultimately show "x \(\sqsubseteq_{L} f\left(\bigsqcup_{L} A\right)\) "
by (meson AL fA assms(1) funcset_carrier le_cong local.refl subsetCE xA )
qed
lemma weak_sup_post_fixed_point:
assumes "f \(\in\) carrier \(L \rightarrow\) carrier L" "isotone L L f" "A \(\subseteq f p s L f "\)
shows "f ( \(\left.\prod_{\mathrm{L}} \mathrm{A}\right) \sqsubseteq_{\mathrm{L}}\left(\prod_{\mathrm{L}} \mathrm{A}\right)\) "
proof (rule inf_greatest)
from assms(3) show AL: "A \(\subseteq\) carrier L"
by (auto simp add: fps_def)
```

 thus fA: "f (ПA) \in carrier L"
 by (simp add: assms funcset_carrier[of f L L])
 fix x
 assume xA: "x \in A"
 hence "x \in fps L f"
 using assms subsetCE by blast
 hence "f x . = L x"
 by (auto simp add: fps_def)
 moreover have "f (}\mp@subsup{\prod}{L}{}A)\mp@subsup{\sqsubseteq}{L}{}f\timesx
 by (meson AL assms(2) inf_closed inf_lower subsetCE use_iso1 xA)
 ultimately show "f (ПLA) \sqsubseteqL x"
 by (meson AL assms(1) fA funcset_carrier le_cong_r subsetCE xA)
 qed

```

\subsection*{4.3.1 Least fixed points}
```

lemma LFP_closed [intro, simp]:
"LFP f \in carrier L"
by (metis (lifting) LEAST_FP_def inf_closed mem_Collect_eq subsetI)
lemma LFP_lowerbound:
assumes "x \in carrier L" "f x \sqsubseteq x"
shows "LFP f \sqsubseteq x"
by (auto intro:inf_lower assms simp add:LEAST_FP_def)
lemma LFP_greatest:
assumes "x \in carrier L"
"(\bigwedgeu. \llbracketu f carrier L; f u \sqsubseteq u\rrbracket\Longrightarrow x \sqsubsetequ)"
shows "x \sqsubseteq LFP f"
by (auto simp add:LEAST_FP_def intro:inf_greatest assms)
lemma LFP_lemma2:
assumes "Mono f" "f \in carrier L }->\mathrm{ carrier L"
shows "f (LFP f) \sqsubseteq LFP f"
proof (rule LFP_greatest)
have f: "\x. x \in carrier L \Longrightarrow f x \in carrier L"
using assms by (auto simp add: Pi_def)
with assms show "f (LFP f) \in carrier L"
by blast
show "\u. \llbracketu \in carrier L; f u \sqsubseteq u\rrbracket \Longrightarrow f (LFP f) \sqsubseteq u"
by (meson LFP_closed LFP_lowerbound assms(1) f local.le_trans use_iso1)
qed
lemma LFP_lemma3:
assumes "Mono f" "f \in carrier L }->\mathrm{ carrier L"
shows "LFP f \sqsubseteq f (LFP f)"
using assms by (simp add: Pi_def) (metis LFP_closed LFP_lemma2 LFP_lowerbound
assms(2) use_iso2)

```
```

lemma LFP_weak_unfold:
"\llbracketMono f; f \in carrier L }->\mathrm{ carrier L | \# LFP f .= f (LFP f)"
by (auto intro: LFP_lemma2 LFP_lemma3 funcset_mem)
lemma LFP_fixed_point [intro]:
assumes "Mono f" "f \in carrier L }->\mathrm{ carrier L"
shows "LFP f \in fps L f"
proof -
have "f (LFP f) \in carrier L"
using assms(2) by blast
with assms show ?thesis
by (simp add: LFP_weak_unfold fps_def local.sym)
qed
lemma LFP_least_fixed_point:
assumes "Mono f" "f \in carrier L }->\mathrm{ carrier L" "x f fps L f"
shows "LFP f \sqsubseteq x"
using assms by (force intro: LFP_lowerbound simp add: fps_def)
lemma LFP_idem:
assumes "f \in carrier L }->\mathrm{ carrier L" "Mono f" "Idem f"
shows "LFP f .= (f \&)"
proof (rule weak_le_antisym)
from assms(1) show fb: "f }\perp\in\mathrm{ carrier L"
by (rule funcset_mem, simp)
from assms show mf: "LFP f \in carrier L"
by blast
show "LFP f \sqsubseteq f \&"
proof -
have "f (f \perp) .= f \perp"
by (auto simp add: fps_def fb assms(3) idempotent)
moreover have "f (f \perp) \in carrier L"
by (rule funcset_mem[of f "carrier L"], simp_all add: assms fb)
ultimately show ?thesis
by (auto intro: LFP_lowerbound simp add: fb)
qed
show "f \perp \sqsubseteq LFP f"
proof -
have "f \perp\sqsubseteq f (LFP f)"
by (auto intro: use_iso1[of _ f] simp add: assms)
moreover have "... .= LFP f"
using assms(1) assms(2) fps_def by force
moreover from assms(1) have "f (LFP f) \in carrier L"
by (auto)
ultimately show ?thesis
using fb by blast
qed
qed

```

\subsection*{4.3.2 Greatest fixed points}
```

lemma GFP_closed [intro, simp]:
"GFP f \in carrier L"
by (auto intro:sup_closed simp add:GREATEST_FP_def)
lemma GFP_upperbound:
assumes "x \in carrier L" "x \sqsubseteq f x"
shows "x \sqsubseteqGFP f"
by (auto intro:sup_upper assms simp add:GREATEST_FP_def)
lemma GFP_least:
assumes "x \in carrier L"
"(\u. \llbracketu c carrier L; u \sqsubseteq f u \rrbracket \Longrightarrow u \sqsubseteq x)"
shows "GFP f \sqsubseteqx"
by (auto simp add:GREATEST_FP_def intro:sup_least assms)
lemma GFP_lemma2:
assumes "Mono f" "f \in carrier L }->\mathrm{ carrier L"
shows "GFP f \sqsubseteqf (GFP f)"
proof (rule GFP_least)
have f: "\x. x \in carrier L \Longrightarrow f x \in carrier L"
using assms by (auto simp add: Pi_def)
with assms show "f (GFP f) \in carrier L"
by blast
show "\u. \llbracketu \in carrier L; u\sqsubseteqf u\rrbracket\Longrightarrowu \ f (GFP f)"
by (meson GFP_closed GFP_upperbound le_trans assms(1) f local.le_trans
use_iso1)
qed
lemma GFP_lemma3:
assumes "Mono f" "f \in carrier L }->\mathrm{ carrier L"
shows "f (GFP f) \sqsubseteq GFP f"
by (metis GFP_closed GFP_lemma2 GFP_upperbound assms funcset_mem use_iso2)
lemma GFP_weak_unfold:
"【Mono f; f \in carrier L }->\mathrm{ carrier L \ C GFP f .= f (GFP f)"
by (auto intro: GFP_lemma2 GFP_lemma3 funcset_mem)
lemma (in weak_complete_lattice) GFP_fixed_point [intro]:
assumes "Mono f" "f \in carrier L }->\mathrm{ carrier L"
shows "GFP f \in fps L f"
using assms
proof -
have "f (GFP f) \in carrier L"
using assms(2) by blast
with assms show ?thesis
by (simp add: GFP_weak_unfold fps_def local.sym)
qed

```
```

lemma GFP_greatest_fixed_point:
assumes "Mono f" "f \in carrier L }->\mathrm{ carrier L" "x f fps L f"
shows "x \sqsubseteqGFP f"
using assms
by (rule_tac GFP_upperbound, auto simp add: fps_def, meson PiE local.sym
weak_refl)
lemma GFP_idem:
assumes "f \in carrier L }->\mathrm{ carrier L" "Mono f" "Idem f"
shows "GFP f .= (f T)"
proof (rule weak_le_antisym)
from assms(1) show fb: "f † \in carrier L"
by (rule funcset_mem, simp)
from assms show mf: "GFP f \in carrier L"
by blast
show "f † \sqsubseteqGFP f"
proof -
have "f (f T) .= f T"
by (auto simp add: fps_def fb assms(3) idempotent)
moreover have "f (f T) \in carrier L"
by (rule funcset_mem[of f "carrier L"], simp_all add: assms fb)
ultimately show ?thesis
by (rule_tac GFP_upperbound, simp_all add: fb local.sym)
qed
show "GFP f \sqsubseteq f 丁"
proof -
have "GFP f \sqsubseteq f (GFP f)"
by (simp add: GFP_lemma2 assms(1) assms(2))
moreover have "... \sqsubseteq f 丁"
by (auto intro: use_iso1[of _ f] simp add: assms)
moreover from assms(1) have "f (GFP f) \in carrier L"
by (auto)
ultimately show ?thesis
using fb local.le_trans by blast
qed
qed
end

```

\subsection*{4.4 Complete lattices where eq is the Equality}
locale complete_lattice = partial_order +
    assumes sup_exists:
        " [| A \(\subseteq\) carrier L I] ==> \(\exists \mathrm{s}\). least L s (Upper L A)"
        and inf_exists:
        " [| A \(\subseteq\) carrier L \(\mid]==>\exists i\). greatest L i (Lower L A)"
sublocale complete_lattice \(\subseteq\) lattice
proof
```

 fix x y
 assume a: "x \in carrier L" "y \in carrier L"
 thus "\existss. is_lub L s {x, y}"
 by (rule_tac sup_exists[of "{x, y}"], auto)
 from a show "\existss. is_glb L s {x, y}"
 by (rule_tac inf_exists[of "{x, y}"], auto)
 qed
sublocale complete_lattice \subseteq weak?: weak_complete_lattice
by standard (auto intro: sup_exists inf_exists)
lemma complete_lattice_lattice [simp]:
assumes "complete_lattice X"
shows "lattice X"
proof -
interpret c: complete_lattice X
by (simp add: assms)
show ?thesis
by (unfold_locales)
qed

```

Introduction rule: the usual definition of complete lattice
```

lemma (in partial_order) complete_latticeI:
assumes sup_exists:
"!!A. [| A \subseteq carrier L |] ==> ヨs. least L s (Upper L A)"
and inf_exists:
"!!A. [| A \subseteq carrier L |] ==> $\exists i$. greatest L $i(L o w e r ~ L A) "$
shows "complete_lattice L"
by standard (auto intro: sup_exists inf_exists)
theorem (in partial_order) complete_lattice_criterion1:
assumes top_exists: " $\exists \mathrm{g}$. greatest L g (carrier L)"
and inf_exists:
"!!A. [| A \subseteq carrier L; A $\neq\{ \} \mid]==>\exists i$. greatest L i (Lower L
A)"
shows "complete_lattice L"
proof (rule complete_latticeI)
from top_exists obtain top where top: "greatest L top (carrier L)"
fix A
assume L: "A \subseteq carrier L"
let $? \mathrm{~B}=$ "Upper L A"
from L top have "top \in ?B" by (fast intro!: Upper_memI intro: greatest_le)
then have B_{-}non_empty: "?B $\neq\{ \} "$ by fast
have B_L: "?B \subseteq carrier L" by simp
from inf_exists [OF B_L B_non_empty]
obtain b where b_inf_B: "greatest L b (Lower L ?B)" ..
then have bcarr: "b \in carrier L"
by blast

```
```

 have "least L b (Upper L A)"
 proof (rule least_UpperI)
 show "\x. x }\in\textrm{A}\Longrightarrow\textrm{x}\sqsubseteq\textrm{b}
 by (meson L Lower_memI Upper_memD b_inf_B greatest_le rev_subsetD)
 show "\y. y \in Upper L A \Longrightarrow b }\sqsubseteqy
 by (auto elim: greatest_Lower_below [OF b_inf_B])
 qed (use L bcarr in auto)
 then show "\existss. least L s (Upper L A)" ..
 next
fix A
assume L: "A \subseteq carrier L"
show "\existsi. greatest L i (Lower L A)"
proof (cases "A = {}")
case True then show ?thesis
by (simp add: top_exists)
next
case False with L show ?thesis
by (rule inf_exists)
qed
qed

```

\subsection*{4.5 Fixed points}
```

context complete_lattice

```
begin
lemma LFP_unfold:
    "【 Monof; f \(\in\) carrier \(L \rightarrow\) carrier L \(\rrbracket \Longrightarrow\) LFP \(f=f(L F P f) "\)
    using eq_is_equal weak.LFP_weak_unfold by auto
lemma LFP_const:
    "t \(\in\) carrier \(L \Longrightarrow \operatorname{LFP}(\lambda \mathrm{x} . \mathrm{t})=\mathrm{t} "\)
    by (simp add: local.le_antisym weak.LFP_greatest weak.LFP_lowerbound)
lemma LFP_id:
    "LFP id = \(\perp\) "
    by (simp add: local.le_antisym weak.LFP_lowerbound)
lemma GFP_unfold:
    "【 Mono f; f carrier L \(\rightarrow\) carrier L \(\rrbracket \Longrightarrow\) GFP \(f=f(G F P f) "\)
    using eq_is_equal weak. GFP_weak_unfold by auto
lemma GFP_const:
    "t \(\in\) carrier \(L \Longrightarrow \operatorname{GFP}(\lambda \mathrm{x} . \mathrm{t})=\mathrm{t} "\)
    by (simp add: local.le_antisym weak.GFP_least weak.GFP_upperbound)
lemma GFP_id:
    "GFP id = T"
    using weak.GFP_upperbound by auto
end

\subsection*{4.6 Interval complete lattices}
```

context weak_complete_lattice

```
begin
lemma at_least_at_most_Sup: " \(\llbracket \mathrm{a} \in\) carrier \(\mathrm{L} ; \mathrm{b} \in\) carrier L; \(\mathrm{a} \sqsubseteq \mathrm{b}\) \(\rrbracket \Longrightarrow \bigsqcup\{\mathrm{a} . . \mathrm{b}\} .=\mathrm{b} "\)
by (rule weak_le_antisym [OF sup_least sup_upper]) (auto simp add: at_least_at_most_closed)
lemma at_least_at_most_Inf: " \(\llbracket \mathrm{a} \in \operatorname{carrier~} \mathrm{L} ; \mathrm{b} \in \operatorname{carrier} \mathrm{L} ; \mathrm{a} \sqsubseteq \mathrm{b}\) \(\rrbracket \Longrightarrow \Pi\) \{a..b\} .= a"
by (rule weak_le_antisym [OF inf_lower inf_greatest]) (auto simp add: at_least_at_most_closed)
end
lemma weak_complete_lattice_interval:
assumes "weak_complete_lattice L" "a \(\in\) carrier L" "b \(\in\) carrier L" "a \(\sqsubseteq_{\mathrm{L}} \mathrm{b}{ }^{\prime \prime}\)
shows "weak_complete_lattice (L \(\mid\) carrier := \{a..b\} \(\}_{\text {L }}\) ))" proof -
interpret L: weak_complete_lattice L
by (simp add: assms)
interpret weak_partial_order "L ( carrier := \{a..b\} L )"
proof -
have "\{a..b \(\}_{\mathrm{L}} \subseteq\) carrier L" by (auto simp add: at_least_at_most_def)
thus "weak_partial_order (L(carrier := \{a..b| \(\}_{\mathrm{L}}\) ))" by (simp add: L.weak_partial_order_axioms weak_partial_order_subset)
qed
show ?thesis
proof
fix A
assume a: "A \(\subseteq\) carrier (L(carrier \(\left.:=\{a . . b \mid\}_{L} \mid\right)\) )"
show " \(\exists \mathrm{s}\). is_lub (L \(\left(\right.\) carrier \(\left.:=\{\mathrm{a} . \mathrm{b} \mid\}_{\mathrm{L}} \mid\right)\) ) s A"
proof (cases "A = \{\}")
case True
thus ?thesis
by (rule_tac \(x=" a "\) in exI, auto simp add: least_def assms)
next
case False
show ?thesis
proof (intro exI least_UpperI, simp_all)
show \(\mathrm{b}:\) " \(\wedge \mathrm{x} . \mathrm{x} \in \mathrm{A} \Longrightarrow \mathrm{x} \sqsubseteq_{\mathrm{L}} \bigsqcup_{\mathrm{L}} \mathrm{A}^{-}\)
using a by (auto intro: L.sup_upper, meson L.at_least_at_most_closed L.sup_upper subset_trans)
show " \(\wedge \mathrm{y} . \mathrm{y} \in \operatorname{Upper}\left(\mathrm{L}\left(\right.\right.\) carrier \(\left.:=\{\mathrm{a} . \mathrm{b}\}_{\mathrm{L}} \mid\right)\) ) \(\mathrm{A} \Longrightarrow \bigsqcup_{\mathrm{L}} \mathrm{A} \sqsubseteq_{\mathrm{L}} \mathrm{y}\) "
using a L.at_least_at_most_closed by (rule_tac L.sup_least,
auto intro: funcset_mem simp add: Upper_def)
from a show \(*:\) "A \(\subseteq\{a . . b\}_{\mathrm{L}} "\)
by auto
show \(" \bigsqcup_{L} A \in\{a . . b\}_{L}\) "
proof (rule_tac L.at_least_at_most_member)
show 1: " \(\bigsqcup_{L} A \in\) carrier \(L "\)
by (meson L.at_least_at_most_closed L.sup_closed subset_trans
*)
show "a \(\sqsubseteq_{\mathrm{L}} \bigsqcup_{\mathrm{L}} \mathrm{A}\) "
by (meson "*" False L.at_least_at_most_closed L.at_least_at_most_lower
L.le_trans L.sup_upper 1 all_not_in_conv assms(2) subsetD subset_trans)
show " \(\bigsqcup_{\mathrm{L}} \mathrm{A} \sqsubseteq_{\mathrm{L}} \mathrm{b}\) "
proof (rule L.sup_least)
show "A \(\subseteq\) carrier \(L\) " " \(\bigwedge x . x \in A \Longrightarrow x \sqsubseteq_{L} b "\)
using * L.at_least_at_most_closed by blast+
qed (simp add: assms)
qed
qed
qed
show " \(\exists\) s. is_glb (L \(\left(\right.\) carrier \(\left.:=\{a . . b\}_{L} \mid\right)\) ) s A"
proof (cases "A = \{\}")
case True
thus ?thesis
by (rule_tac \(\mathrm{x}=\mathrm{l} \mathrm{b}\) " in exI, auto simp add: greatest_def assms)
next
case False
show ?thesis
proof (rule_tac \(x=" \prod_{L} A "\) in exI, rule greatest_LowerI, simp_all)
show \(\mathrm{b}: " \wedge \mathrm{x} . \mathrm{x} \in \mathrm{A} \Longrightarrow \prod_{\mathrm{L}} \mathrm{A} \sqsubseteq_{\mathrm{L}} \mathrm{x} "\)
using a L.at_least_at_most_closed by (force intro!: L.inf_lower)
show " \(\wedge \mathrm{y} . \mathrm{y} \in \operatorname{Lower}\left(\mathrm{L}\left(\operatorname{carrier}:=\{\mathrm{a} . . \mathrm{b}\}_{\mathrm{L}} \mid\right) \mathrm{A} \Longrightarrow \mathrm{y} \sqsubseteq_{\mathrm{L}} \prod_{\mathrm{L}} \mathrm{A}^{\prime}\right.\) "
using a L.at_least_at_most_closed by (rule_tac L.inf_greatest,
auto intro: funcset_carrier' simp add: Lower_def)
from a show \(*:\) " \(\subseteq \subseteq\{a . . b\}_{\mathrm{L}} "\)
by auto
show \(" \prod_{L} A \in\{a . . b\}_{L}\) "
proof (rule_tac L.at_least_at_most_member)
show 1: "П \(\mathrm{L} A \in\) carrier \(\mathrm{L} "\)
by (meson "*" L.at_least_at_most_closed L.inf_closed subset_trans)
show "a \(\sqsubseteq_{\mathrm{L}} \prod_{\mathrm{L}} \mathrm{A}\) "
by (meson "*" L.at_least_at_most_closed L.at_least_at_most_lower
L.inf_greatest assms (2) subsetD subset_trans)
show \(" \prod_{\mathrm{L}} \mathrm{G} \sqsubseteq_{\mathrm{L}} \mathrm{b} "\)
by (meson * 1 False L.at_least_at_most_closed L.at_least_at_most_upper
L.inf_lower L.le_trans all_not_in_conv assms(3) subsetD subset_trans)
```

 qed
 qed
 qed
 qed
 qed

```

\subsection*{4.7 Knaster-Tarski theorem and variants}

The set of fixed points of a complete lattice is itself a complete lattice
```

theorem Knaster_Tarski:
assumes "weak_complete_lattice L" and f: "f \in carrier L }->\mathrm{ carrier
L" and "isotone L L f"
shows "weak_complete_lattice (fpl L f)" (is "weak_complete_lattice ?L'")
proof -
interpret L: weak_complete_lattice L
by (simp add: assms)
interpret weak_partial_order ?L'
proof -
have "{x \in carrier L. f x .=L x} \subseteq carrier L"
by (auto)
thus "weak_partial_order ?L'"
by (simp add: L.weak_partial_order_axioms weak_partial_order_subset)
qed
show ?thesis
proof (unfold_locales, simp_all)
fix A
assume A: "A}\subseteqf\mp@code{fps L f"
show "\existss. is_lub (fpl L f) s A"
proof
from A have AL: "A \subseteq carrier L"
by (meson fps_carrier subset_eq)
let ?w = "
L A"
have w: "f (
LA) \in carrier L"
by (rule funcset_mem[of f "carrier L"], simp_all add: AL assms(2))
have pf_w: "(\mp@subsup{\bigsqcup}{L A A) \sqsubseteq}{L}\mp@code{f (\}\mp@subsup{\}{L}{}A)"
by (simp add: A L.weak_sup_pre_fixed_point assms(2) assms(3))
have f_top_chain: "f ' {{w... TL} }
proof (auto simp add: at_least_at_most_def)
fix x
assume b: "x \in carrier L" "\bigsqcup
from b show fx: "f x \in carrier L"
using assms(2) by blast
show "\bigsqcup
proof -
have "?w \sqsubseteq
proof (rule_tac L.sup_least, simp_all add: AL w)

```
```

 fix y
 assume c: "y \in A"
hence y: "y \in fps L f"
using A subsetCE by blast
with assms have "y .=L f y"
proof -
from y have "y \in carrier L"
by (simp add: fps_def)
moreover hence "f y \in carrier L"
by (rule_tac funcset_mem[of f "carrier L"], simp_all add:
assms)
ultimately show ?thesis using y
by (rule_tac L.sym, simp_all add: L.use_fps)
qed
moreover have "y \sqsubseteqL \ \ LA"
by (simp add: AL L.sup_upper c(1))
ultimately show "y \sqsubseteqL f (\
by (meson fps_def AL funcset_mem L.refl L.weak_complete_lattice_axioms
assms(2) assms(3) c(1) isotone_def rev_subsetD weak_complete_lattice.sup_closed
weak_partial_order.le_cong)
qed
thus ?thesis
by (meson AL funcset_mem L.le_trans L.sup_closed assms(2)
assms(3) b(1) b(2) use_iso2)
qed
show "f x \sqsubseteqL TL"
by (simp add: fx)
qed
let ?L' = "L(carrier := {?w.. . TL} \)"
interpret L': weak_complete_lattice ?L'
by (auto intro: weak_complete_lattice_interval simp add: L.weak_complete_lattice_ax
AL)
let ?L'' = "L(carrier := fps L f)"
show "is_lub ?L'' (LFP?L' f) A"
proof (rule least_UpperI, simp_all)
fix x
assume x: "x \in Upper ?L'' A"
have "LFP?L, f \sqsubseteq?L, x"
proof (rule L'.LFP_lowerbound, simp_all)
show "x\in{
mp@subsup{\}{L}{}A..T}\mp@subsup{T}{L}{}\mp@subsup{}}{L}{}
using x by (auto simp add: Upper_def A AL L.at_least_at_most_member
L.sup_least rev_subsetD)
with x show "f x \sqsubseteq
by (simp add: Upper_def) (meson L.at_least_at_most_closed

```
```

L.use_fps L.weak_refl subsetD f_top_chain imageI)
qed
thus " LFP?, ' f \sqsubseteq
by (simp)
next
fix x
assume xA: "x f A"
show "x \sqsubseteq
proof -
have "LFP?L' f \in carrier ?L'"
by blast
thus ?thesis
by (simp, meson AL L.at_least_at_most_closed L.at_least_at_most_lower
L.le_trans L.sup_closed L.sup_upper xA subsetCE)
qed
next
show "A \subseteq fps L f"
by (simp add: A)
next
show "LFP?L, f \in fps L f"
proof (auto simp add: fps_def)
have "LFP?L, f \in carrier ?L'"
by (rule L'.LFP_closed)
thus c:"LFP?L' f \in carrier L"
by (auto simp add: at_least_at_most_def)
have "LFP?L' f .=?L' f (LFP?L' f)"
proof (rule "L'.LFP_weak_unfold", simp_all)
have "\x. \llbracketx c carrier L; \bigsqcup LA \sqsubseteqL x\rrbracket \Longrightarrow \bigsqcup \bigsqcupLA \sqsubseteqL f x"
by (meson AL funcset_mem L.le_trans L.sup_closed assms(2)
assms(3) pf_w use_iso2)
with f show "f \in{|\mp@subsup{\}{L}{}A..T
by (auto simp add: Pi_def at_least_at_most_def)

```

```

 using L'.weak_partial_order_axioms assms(3)
 by (auto simp add: isotone_def) (meson L.at_least_at_most_closed
 subsetCE)
qed
thus "f (LFP?L, f) .=
by (simp add: L.equivalence_axioms funcset_carrier' c assms(2)
equivalence.sym)
qed
qed
qed
show "\existsi. is_glb (L\carrier := fps L f)) i A"
proof
from A have AL: "A \subseteq carrier L"
by (meson fps_carrier subset_eq)
let ?w = "ПL A"

```
```

 have w: "f (П
 by (simp add: AL funcset_carrier' assms(2))
 have pf_w: "f (泣 A) \sqsubseteqL (䇇 A)"
 by (simp add: A L.weak_sup_post_fixed_point assms(2) assms(3))
 have f_bot_chain: "f ' { | L L..?w}_L }\subseteq{{\mp@subsup{\perp}{L}{}..?w}\mp@subsup{}}{L}{}
 proof (auto simp add: at_least_at_most_def)
 fix x
 assume b: "x \in carrier L" "x \sqsubseteqL ПLA"
 from b show fx: "f x \in carrier L"
 using assms(2) by blast
 show "f x }\mp@subsup{\sqsubseteq}{L}{}\mp@subsup{\prod}{L}{}A
 proof -
 have "f ?w \sqsubseteqL ?w"
 proof (rule_tac L.inf_greatest, simp_all add: AL w)
 fix y
 assume c: "y \in A"
 with assms have "y .= = f y"
 by (metis (no_types, lifting) A funcset_carrier'[OF assms(2)]
 L.sym fps_def mem_Collect_eq subset_eq)
moreover have "ПLLA БL y"
by (simp add: AL L.inf_lower c)
ultimately show "f (ПLA) \sqsubseteqL y"
by (meson AL L.inf_closed L.le_trans c pf_w rev_subsetD
w)
qed
thus ?thesis
by (meson AL L.inf_closed L.le_trans assms(3) b(1) b(2) fx
use_iso2 w)
qed
show " }\mp@subsup{\perp}{L}{}\mp@subsup{\sqsubseteq}{L}{}f\mp@code{x"
by (simp add: fx)
qed
let ?L' = "L(carrier := { | L ..?w}L)"
interpret L': weak_complete_lattice ?L'
by (auto intro!: weak_complete_lattice_interval simp add: L.weak_complete_lattice_a
AL)
let ?L'' = "L(carrier := fps L f)"
show "is_glb ?L'' (GFP?L' f) A"
proof (rule greatest_LowerI, simp_all)
fix x
assume "x \in Lower ?L', A"
then have x: "\forally. y \inA ^ y f fps L f \longrightarrow x \sqsubseteqL y" "x f fps

```
        by (auto simp add: Lower_def)
        have "x \sqsubseteq?L, GFP?'L, f"
            unfolding Lower_def
        proof (rule_tac L'.GFP_upperbound; simp)
```



```
                by (meson x A AL L.at_least_at_most_member L.bottom_lower
L.inf_greatest contra_subsetD fps_carrier)
            show "x \sqsubseteq
                using x by (simp add: funcset_carrier' L.sym assms(2) fps_def)
            qed
            thus "x \sqsubseteqL GFP?L' f"
                by (simp)
    next
            fix x
            assume xA: "x \in A"
            show "GFP?L, f \sqsubseteqL x"
            proof -
            have "GFP?L' f \in carrier ?L'"
                by blast
            thus ?thesis
                by (simp, meson AL L.at_least_at_most_closed L.at_least_at_most_upper
L.inf_closed L.inf_lower L.le_trans subsetCE xA)
            qed
    next
        show "A \subseteqfps L f"
            by (simp add: A)
    next
        show "GFP?L' f \in fps L f"
        proof (auto simp add: fps_def)
            have "GFP?L, f \in carrier ?L'"
                by (rule L'.GFP_closed)
            thus c:"GFP?L' f \in carrier L"
                        by (auto simp add: at_least_at_most_def)
            have "GFP?L' f .=?L' f (GFP?L' f)"
            proof (rule "L'.GFP_weak_unfold", simp_all)
```



```
                    by (meson AL funcset_carrier L.inf_closed L.le_trans assms(2)
assms(3) pf_w use_iso2)
```



```
                            by (auto simp add: Pi_def at_least_at_most_def)
```



```
f x }\mp@subsup{\sqsubseteq}{L}{}f=y
                    by (meson L.at_least_at_most_closed subsetD use_iso1 assms(3))
                            with L'.weak_partial_order_axioms show "Mono 
f"
                by (auto simp add: isotone_def)
            qed
            thus "f (GFP?L, f) . =
```

equivalence.sym)
qed
qed
qed
qed
qed
theorem Knaster_Tarski_top:
assumes "weak_complete_lattice L" "isotone L L f" "f \in carrier L \rightarrow
carrier L"
shows " $T_{\text {fpl }} \mathrm{f} .=_{\mathrm{L}} \mathrm{GFP}_{\mathrm{L}} \mathrm{f}$ "
proof -
interpret L: weak_complete_lattice L
by (simp add: assms)
interpret L': weak_complete_lattice "fpl L f"
by (rule Knaster_Tarski, simp_all add: assms)
show ?thesis
proof (rule L.weak_le_antisym, simp_all)
show "Tfpl L f $\sqsubseteq_{\mathrm{L}} \mathrm{GFP}_{\mathrm{L}} \mathrm{f}$ "
by (rule L.GFP_greatest_fixed_point, simp_all add: assms L'.top_closed[simplified])
show $\operatorname{GGFP}_{\mathrm{L}} \mathrm{f} \sqsubseteq_{\mathrm{L}} \top_{\text {fpl }} \mathrm{L} f "$
proof -
have ${ }^{G F P} P_{L} f \in f p s L f "$
by (rule L.GFP_fixed_point, simp_all add: assms)
hence ${ }^{G F P} P_{L} f \in \operatorname{carrier}(f p l-f) "$
by simp
hence ${ }^{G F P_{L}} \mathbf{f} \sqsubseteq_{f p l} \mathrm{~L} f \top_{f p l} \mathrm{~L} f "$
by (rule L'.top_higher)
thus ?thesis
by simp
qed
show " ${ }^{\text {fpl }}$ Lf \in carrier L"
proof -
have "carrier (fpl L f) \subseteq carrier L"
by (auto simp add: fps_def)
with L'.top_closed show ?thesis
by blast
qed
qed
qed
theorem Knaster_Tarski_bottom:
assumes "weak_complete_lattice L" "isotone L L f" "f \in carrier L \rightarrow
carrier L"
shows ${ }^{\prime} \perp_{f p l}$ L $f .=_{L} \operatorname{LFP}_{L} f "$
proof -
interpret L: weak_complete_lattice L
by (simp add: assms)

```
    interpret L': weak_complete_lattice "fpl L f"
        by (rule Knaster_Tarski, simp_all add: assms)
    show ?thesis
    proof (rule L.weak_le_antisym, simp_all)
        show "LFP
        by (rule L.LFP_least_fixed_point, simp_all add: assms L'.bottom_closed[simplified])
    show " }\mp@subsup{\perp}{fpl L f БL LFP L f "}{l
    proof -
        have "LFP
            by (rule L.LFP_fixed_point, simp_all add: assms)
            hence "LFP
                    by simp
            hence " }\mp@subsup{|}{fpl L f }{ffpl L f LFP
                by (rule L'.bottom_lower)
            thus ?thesis
                by simp
    qed
    show " }\mp@subsup{\perp}{\mathrm{ fpl L f }}{}\in\mathrm{ carrier L"
    proof -
        have "carrier (fpl L f) \subseteq carrier L"
                by (auto simp add: fps_def)
            with L'.bottom_closed show ?thesis
                by blast
        qed
    qed
qed
```

If a function is both idempotent and isotone then the image of the function forms a complete lattice
theorem Knaster_Tarski_idem:
assumes "complete_lattice L" "f \in carrier L \rightarrow carrier L" "isotone
L L f" "idempotent L f"
shows "complete_lattice (L|carrier := f carrier L|)"
proof -
interpret L: complete_lattice L
by (simp add: assms)
have "fps L f = f ' carrier L"
using L.weak.fps_idem [OF assms(2) assms(4)]
by (simp add: L.set_eq_is_eq)
then interpret L': weak_complete_lattice " (L|carrier := f ' carrier
LD)"
by (metis Knaster_Tarski L.weak.weak_complete_lattice_axioms assms(2)
assms(3))
show ?thesis
using L'.sup_exists L'.inf_exists
by (unfold_locales, auto simp add: L.eq_is_equal)
qed
theorem Knaster_Tarski_idem_extremes:

```
    assumes "weak_complete_lattice L" "isotone L L f" "idempotent L f"
"f \in carrier L }->\mathrm{ carrier L"
    shows "T}\mp@subsup{T}{fpl L f . = L f ( }{L
proof -
    interpret L: weak_complete_lattice "L"
        by (simp_all add: assms)
    interpret L': weak_complete_lattice "fpl L f"
        by (rule Knaster_Tarski, simp_all add: assms)
    have FA: "fps L f \subseteq carrier L"
        by (auto simp add: fps_def)
    show "Tfpl L f . = L f ( }\mp@subsup{T}{L}{
    proof -
        from FA have "T fpl L f \in carrier L"
        proof -
                have "Tfpl L f \in fps L f"
                        using L'.top_closed by auto
            thus ?thesis
                using FA by blast
            qed
            moreover with assms have "f TL \in carrier L"
                by (auto)
            ultimately show ?thesis
                using L.trans[OF Knaster_Tarski_top[of L f] L.GFP_idem[of f]]
                by (simp_all add: assms)
    qed
    show " }\mp@subsup{\perp}{fpl L f . = L f ( }{\mathrm{ L L }
    proof -
        from FA have " }\mp@subsup{\perp}{fpl L f }{f
        proof -
                have " }\mp@subsup{\perp}{fpl L f }{f
                        using L'.bottom_closed by auto
            thus ?thesis
                    using FA by blast
            qed
            moreover with assms have "f \mp@subsup{ }{L}{}\in carrier L"
                by (auto)
            ultimately show ?thesis
                using L.trans[OF Knaster_Tarski_bottom[of L f] L.LFP_idem[of f]]
                by (simp_all add: assms)
    qed
qed
theorem Knaster_Tarski_idem_inf_eq:
    assumes "weak_complete_lattice L" "isotone L L f" "idempotent L f"
"f \in carrier L }->\mathrm{ carrier L"
            "A\subseteqfps L f"
    shows "П
```

```
proof -
    interpret L: weak_complete_lattice "L"
        by (simp_all add: assms)
    interpret L': weak_complete_lattice "fpl L f"
        by (rule Knaster_Tarski, simp_all add: assms)
    have FA: "fps L f \subseteq carrier L"
        by (auto simp add: fps_def)
    have A: "A \subseteq carrier L"
        using FA assms(5) by blast
    have fA: "f ( П
        by (metis (no_types, lifting) A L.idempotent L.inf_closed PiE assms(3)
assms(4) fps_def mem_Collect_eq)
    have infA: "П fpl L fA G fps L f"
        by (rule L'.inf_closed[simplified], simp add: assms)
    show ?thesis
    proof (rule L.weak_le_antisym)
        show ic: "П}\mp@subsup{\}{fpl L fA}{A}\in carrier L"
            using FA infA by blast
        show fc: "f ( }\mp@subsup{\}{\textrm{L}}{}\textrm{A})\in\mathrm{ carrier L"
            using FA fA by blast
        show "f (П LA) \sqsubseteqL }\mp@subsup{\}{fpl L fA"}{
        proof -
                have " \x. x }\in\textrm{A}\Longrightarrow\textrm{f}(\mp@subsup{\emptyset}{L}{}A)\mp@subsup{\sqsubseteq}{L}{}\textrm{x}
                    by (meson A FA L.inf_closed L.inf_lower L.le_trans L.weak_sup_post_fixed_point
assms(2) assms(4) assms(5) fA subsetCE)
            hence "f (П LA) \sqsubseteqfpl L f Пfpl L fA"
                by (rule_tac L'.inf_greatest, simp_all add: fA assms(3,5))
            thus ?thesis
                by (simp)
        qed
        show "П
        proof -
            have *: "П}\mp@subsup{\}{\mathrm{ fpl L f A }\in carrier L"}{l
                using FA infA by blast
                have "\x. x }\in\textrm{A}\Longrightarrow\mp@subsup{\prod}{fpl L fA }{ffpl L f x"
                by (rule L'.inf_lower, simp_all add: assms)
            hence "П}\mp@subsup{|}{fpl L f A }{¢L
                by (rule_tac L.inf_greatest, simp_all add: A *)
```



```
                by (metis (no_types, lifting) A FA L.inf_closed assms(2) infA
subsetCE use_iso1)
```



```
                by (metis (no_types, lifting) FA L.sym L.use_fps L.weak_complete_lattice_axioms
PiE assms(4) infA subsetCE weak_complete_lattice_def weak_partial_order.weak_refl)
            show ?thesis
                using FA fA infA by (auto intro!: L.le_trans[OF 2 1] ic fc, metis
FA PiE assms(4) subsetCE)
            qed
    qed
```

qed

4.8 Examples

4.8.1 The Powerset of a Set is a Complete Lattice

theorem powerset_is_complete_lattice:
"complete_lattice (carrier = Pow A, eq = (=), le = (\subseteq))"
(is "complete_lattice ?L")
proof (rule partial_order.complete_latticeI)
show "partial_order ?L"
by standard auto
next
fix B
assume "B \subseteq carrier ?L"
then have "least ?L ($ل$ B) (Upper ?L B)"
by (fastforce intro!: least_UpperI simp: Upper_def)
then show " \exists s. least ?L s (Upper ?L B)" ..
next
fix B
assume "B \subseteq carrier ?L"
then have "greatest ?L ($\cap \mathrm{B} \cap \mathrm{A}$) (Lower ?L B)"
$\bigcap B$ is not the infimum of $B: \bigcap\{ \}=$ UNIV which is in general bigger than $A!$
by (fastforce intro!: greatest_LowerI simp: Lower_def)
then show " $\exists \mathrm{i}$. greatest ?L i (Lower ?L B)" ..
qed
Another example, that of the lattice of subgroups of a group, can be found in Group theory (Section 6.11).

4.9 Limit preserving functions

definition weak_sup_pres :: "('a, 'c) gorder_scheme \Rightarrow ('b, 'd) gorder_scheme \Rightarrow ('a \Rightarrow 'b) \Rightarrow bool" where
"weak_sup_pres X Y f \equiv complete_lattice $X \wedge$ complete_lattice $Y \wedge(\forall \mathrm{~A}$
\subseteq carrier $X . A \neq\{ \} \longrightarrow f\left(\bigsqcup_{X A}\right)=\left(\bigsqcup_{Y}(f\right.$ ' $\left.\left.)\right)\right) "$
definition sup_pres :: "('a, 'c) gorder_scheme \Rightarrow ('b, 'd) gorder_scheme \Rightarrow ('a \Rightarrow 'b) \Rightarrow bool" where
"sup_pres X Y f \equiv complete_lattice $X \wedge$ complete_lattice $Y \wedge(\forall \mathrm{~A} \subseteq$ carrier X. $f(\square X A)=(\bigsqcup Y(f$ ' $A)){ }^{\prime \prime}$
definition weak_inf_pres :: "('a, 'c) gorder_scheme \Rightarrow ('b, 'd) gorder_scheme \Rightarrow ('a \Rightarrow 'b) \Rightarrow bool" where
"weak_inf_pres X Y f \equiv complete_lattice $X \wedge$ complete_lattice $Y \wedge(\forall \mathrm{~A}$
\subseteq carrier $X . A \neq\{ \} \longrightarrow f\left(\prod_{X A}\right)=\left(\prod_{Y}(f\right.$ 'A)))"
definition inf_pres :: "('a, 'c) gorder_scheme \Rightarrow ('b, 'd) gorder_scheme \Rightarrow (' $\mathrm{a} \Rightarrow$ ' b) \Rightarrow bool" where

```
"inf_pres X Y f \equiv complete_lattice X ^ complete_lattice Y ^ ( }\forall\textrm{A}
X. f (贮A) = (ПY (f ' A)))"
lemma weak_sup_pres:
    "sup_pres X Y f \Longrightarrow weak_sup_pres X Y f"
    by (simp add: sup_pres_def weak_sup_pres_def)
lemma weak_inf_pres:
    "inf_pres X Y f \Longrightarrow weak_inf_pres X Y f"
    by (simp add: inf_pres_def weak_inf_pres_def)
lemma sup_pres_is_join_pres:
    assumes "weak_sup_pres X Y f"
    shows "join_pres X Y f"
    using assms by (auto simp: join_pres_def weak_sup_pres_def join_def)
lemma inf_pres_is_meet_pres:
    assumes "weak_inf_pres X Y f"
    shows "meet_pres X Y f"
    using assms by (auto simp: meet_pres_def weak_inf_pres_def meet_def)
end
theory Galois_Connection
imports Complete_Lattice
begin
```


5 Galois connections

5.1 Definition and basic properties

```
record ('a, 'b, 'c, 'd) galcon =
```

record ('a, 'b, 'c, 'd) galcon =
orderA :: "('a, 'c) gorder_scheme" ("\mathcal{X `")} orderA :: "('a, 'c) gorder_scheme" ("\mathcal{X `")}
orderB :: "('b, 'd) gorder_scheme" ("\mathcal{Y}")
orderB :: "('b, 'd) gorder_scheme" ("\mathcal{Y}")
lower :: "'a \# 'b" (" }\mp@subsup{\pi}{}{*}\imath"
lower :: "'a \# 'b" (" }\mp@subsup{\pi}{}{*}\imath"
upper :: "'b = 'a" (" }\mp@subsup{\pi}{*}{}\imath"
upper :: "'b = 'a" (" }\mp@subsup{\pi}{*}{}\imath"
type__synonym ('a, 'b) galois = "('a, 'b, unit, unit) galcon"
abbreviation "inv_galcon G \ (orderA = inv_gorder \mathcal{Y}
\mathcal{X}
definition comp_galcon :: "('b, 'c) galois }=>\mathrm{ ('a, 'b) galois = ('a, 'c)
galois" (infixr "Og" 85)
where "G og F = (orderA = orderA F, orderB = orderB G, lower = lower
G o lower F, upper = upper F o upper G |)"
definition id_galcon :: "'a gorder }=>\mathrm{ ('a, 'a) galois" ("I "') where

```
```

"Ig}(A)=\ orderA = A, orderB = A, lower = id, upper = id |"

```

\subsection*{5.2 Well-typed connections}
locale connection \(=\)
fixes G (structure)
assumes is_order_A: "partial_order \(\mathcal{X}\) "
and is_order_B: "partial_order \(\mathcal{Y}\) "
and lower_closure: " \(\pi^{*} \in\) carrier \(\mathcal{X} \rightarrow\) carrier \(\mathcal{Y}\) "
and upper_closure: " \(\pi_{*} \in\) carrier \(\mathcal{Y} \rightarrow\) carrier \(\mathcal{X}\) "
begin
lemma lower_closed: "x \(\in \operatorname{carrier} \mathcal{X} \Longrightarrow \pi^{*} \mathrm{x} \in \operatorname{carrier} \mathcal{Y}\) " using lower_closure by auto
lemma upper_closed: "y \(\in \operatorname{carrier} \mathcal{Y} \Longrightarrow \pi_{*} y \in \operatorname{carrier} \mathcal{X} "\) using upper_closure by auto
end

\subsection*{5.3 Galois connections}
locale galois_connection \(=\) connection +
assumes galois_property: \(" \llbracket \mathrm{x} \in \operatorname{carrier} \mathcal{X} ; \mathrm{y} \in \operatorname{carrier} \mathcal{Y} \rrbracket \Longrightarrow \pi^{*} \mathrm{x}\)
\(\sqsubseteq \mathcal{Y} \mathrm{y} \longleftrightarrow \mathrm{x} \sqsubseteq \mathcal{X} \pi_{*} \mathrm{y} "\)
begin
lemma is_weak_order_A: "weak_partial_order \(\mathcal{X}\) "
proof -
interpret po: partial_order \(\mathcal{X}\)
by (metis is_order_A)
show ?thesis ..
qed
lemma is_weak_order_B: "weak_partial_order \(\mathcal{Y}^{\prime \prime}\)
proof -
interpret po: partial_order \(\mathcal{Y}\)
by (metis is_order_B)
show ?thesis ..
qed
lemma right: \(" \llbracket \mathrm{x} \in \operatorname{carrier} \mathcal{X} ; \mathrm{y} \in \operatorname{carrier} \mathcal{Y} ; \pi^{*} \mathrm{x} \sqsubseteq \mathcal{Y} \mathrm{y} \rrbracket \Longrightarrow \mathrm{x} \sqsubseteq \mathcal{X}\) \(\pi_{*} y^{\prime \prime}\)
by (metis galois_property)
lemma left: " \(\llbracket \mathrm{x} \in\) carrier \(\mathcal{X} ; \mathrm{y} \in \operatorname{carrier} \mathcal{Y} ; \mathrm{x} \sqsubseteq \mathcal{X} \pi_{*} \mathrm{y} \rrbracket \Longrightarrow \pi^{*} \mathrm{x}\) \(\sqsubseteq \mathcal{y}\) у" by (metis galois_property)
lemma deflation: "y \(\in\) carrier \(\mathcal{Y} \Longrightarrow \pi^{*}\left(\pi_{*}\right.\) y) \(\sqsubseteq \mathcal{Y}\) y"
```

 by (metis Pi_iff is_weak_order_A left upper_closure weak_partial_order.le_refl)
 lemma inflation: "x \in carrier \mathcal{X }\Longrightarrow\textrm{x}\sqsubseteq\mathcal{X}\mp@subsup{\pi}{*}{}(\mp@subsup{\pi}{}{*}\textrm{x})"
 by (metis (no_types, lifting) PiE galois_connection.right galois_connection_axioms
 is_weak_order_B lower_closure weak_partial_order.le_refl)
lemma lower_iso: "isotone \mathcal{X Y }}\mp@subsup{\pi}{}{*"
proof (auto simp add:isotone_def)
show "weak_partial_order \mathcal{X}"
by (metis is_weak_order_A)
show "weak_partial_order \mathcal{Y"}
by (metis is_weak_order_B)
fix x y

```

```

 have b: " }\mp@subsup{\pi}{}{*}\textrm{y}\in\mathrm{ carrier Y"
 using a(2) lower_closure by blast
 then have " }\mp@subsup{\pi}{*}{}(\mp@subsup{\pi}{}{*}\textrm{y})\in\operatorname{carrier \mathcal{X}"
 using upper_closure by blast
 then have "x\sqsubseteq\mathcal{X}}\mp@subsup{\pi}{*}{}(\mp@subsup{\pi}{}{*}\textrm{y})
 by (meson a inflation is_weak_order_A weak_partial_order.le_trans)
 thus " }\mp@subsup{\pi}{}{*}\textrm{x}\sqsubseteq\mathcal{Y}\mp@subsup{\pi}{}{*}\textrm{y}
 by (meson b a(1) Pi_iff galois_property lower_closure upper_closure)
 qed
 lemma upper_iso: "isotone \mathcal{Y }}\mathcal{X}\mp@subsup{\pi}{*}{}
 apply (auto simp add:isotone_def)
 apply (metis is_weak_order_B)
 apply (metis is_weak_order_A)
 apply (metis (no_types, lifting) Pi_mem deflation is_weak_order_B
 lower_closure right upper_closure weak_partial_order.le_trans)
done
lemma lower_comp: "x \in carrier \mathcal{X \Longrightarrow 读 (}\mp@subsup{\pi}{*}{}(\mp@subsup{\pi}{}{*}\textrm{x}))=\mp@subsup{\pi}{}{*}\textrm{x"}
by (meson deflation funcset_mem inflation is_order_B lower_closure
lower_iso partial_order.le_antisym upper_closure use_iso2)
lemma lower_comp': "x \in carrier \mathcal{X C(}\mp@subsup{\pi}{}{*}\circ\mp@subsup{\pi}{*}{}\circ\mp@subsup{\pi}{}{*})\textrm{x}=\mp@subsup{\pi}{}{*}\textrm{x}"
by (simp add: lower_comp)
lemma upper_comp: "y \in carrier \mathcal{Y }\Longrightarrow \mp@subsup{\pi}{*}{}(\mp@subsup{\pi}{}{*}(\mp@subsup{\pi}{*}{}y))=\mp@subsup{\pi}{*}{}y"
proof -
assume a1: "y \in carrier \mathcal{Y"}
hence f1: " }\mp@subsup{\pi}{*}{}\mathrm{ y }\in\mathrm{ carrier }\mathcal{X}" using upper_closure by blast
have f2: " "* (}\mp@subsup{\pi}{*}{}\mathrm{ y) БY y" using a1 deflation by blast
have f3: " }\mp@subsup{\pi}{*}{}(\mp@subsup{\pi}{}{*}(\mp@subsup{\pi}{*}{}\textrm{y})) \in carrier \mathcal{X"
using f1 lower_closure upper_closure by auto
have " }\mp@subsup{\pi}{}{*}(\mp@subsup{\pi}{*}{}\mathrm{ y) E carrier }\mathcal{Y}" using f1 lower_closure by blas
thus " }\mp@subsup{\pi}{*}{}(\mp@subsup{\pi}{}{*}(\mp@subsup{\pi}{*}{}\textrm{y}))=\mp@subsup{\pi}{*}{}\textrm{y}
by (meson a1 f1 f2 f3 inflation is_order_A partial_order.le_antisym

```
```

upper_iso use_iso2)
qed
lemma upper_comp': "y \in carrier \mathcal{Y C(}\mp@subsup{\pi}{*}{}\circ\mp@subsup{\pi}{}{*}\circ\mp@subsup{\pi}{*}{}) y = \mp@subsup{\pi}{*}{}}\textrm{y}
by (simp add: upper_comp)
lemma adjoint_idem1: "idempotent Y (}\mp@subsup{\pi}{}{*}\circ\mp@subsup{|}{*}{})
by (simp add: idempotent_def is_order_B partial_order.eq_is_equal
upper_comp)
lemma adjoint_idem2: "idempotent \mathcal{X (}\mp@subsup{\pi}{*}{}\circ\mp@subsup{\pi}{}{*})"
by (simp add: idempotent_def is_order_A partial_order.eq_is_equal
lower_comp)
lemma fg_iso: "isotone \mathcal{Y Y (}\mp@subsup{\pi}{}{*}\circ\mp@subsup{\pi}{*}{})"
by (metis iso_compose lower_closure lower_iso upper_closure upper_iso)
lemma gf_iso: "isotone \mathcal{X X (}\mp@subsup{\pi}{*}{}\circ\mp@subsup{\pi}{}{*})"
by (metis iso_compose lower_closure lower_iso upper_closure upper_iso)

```

```

 by (metis lower_comp)
 lemma semi_inverse2: "x \in carrier \mathcal{Y }\Longrightarrow \mp@subsup{\pi}{*}{}\textrm{x}=\mp@subsup{\pi}{*}{}(\mp@subsup{\pi}{}{*}(\mp@subsup{\pi}{*}{}\textrm{x}))"
 by (metis upper_comp)
 theorem lower_by_complete_lattice:
assumes "complete_lattice \mathcal{Y" "x \in carrier \mathcal{X"}}\mathbf{}\mathrm{ "}
shows " }\mp@subsup{\pi}{}{*}(\textrm{x})=\emptyset\mathcal{Y}{\textrm{y}\in\operatorname{carrier \mathcal{Y}.\textrm{x}}\sqsubseteq\mathcal{X}\mp@subsup{\pi}{*}{}(\textrm{y})}
proof -
interpret Y: complete_lattice \mathcal{Y}
by (simp add: assms)
show ?thesis
proof (rule Y.le_antisym)
show x: " }\mp@subsup{\pi}{}{*}\textrm{x}\in\mathrm{ carrier Y)"
using assms(2) lower_closure by blast
show " }\mp@subsup{\pi}{*}{*}\textrm{x}\sqsubseteq\mathcal{Y}\emptyset\mathcal{Y}{\textrm{y}\in\operatorname{carrier \mathcal{Y}. x \sqsubseteq\mathcal{X}}\mp@subsup{\pi}{*}{}\textrm{y}}
proof (rule Y.weak.inf_greatest)
show "{y \in carrier \mathcal{Y. x }\sqsubseteq\mathcal{X}\mp@subsup{\pi}{*}{}\textrm{y}}\subseteqcarrier \mathcal{Y"}
by auto
show " }\mp@subsup{\pi}{}{*}\textrm{x}\in\mathrm{ carrier Y Y" by (fact x)
fix z
assume "z \in{y \in carrier \mathcal{Y. x \sqsubseteq\mathcal{X}}\mp@subsup{\pi}{*}{}\textrm{y}}"
thus " }\mp@subsup{\pi}{}{*}\textrm{x}\sqsubseteq\mathcal{Y}z
using assms(2) left by auto
qed
show "П\mathcal{Y}{y \in carrier \mathcal{Y. x \sqsubseteq\mathcal{X }}\mp@subsup{\pi}{*}{}\textrm{y}}\sqsubseteq\mathcal{Y}\mp@subsup{\pi}{}{*}\textrm{x}"
proof (rule Y.weak.inf_lower)

```
```

 show "{y \in carrier \mathcal{Y. x }\sqsubseteq\mathcal{X}\mp@subsup{\pi}{*}{}\textrm{y}}\subseteq\mathrm{ carrier Y Y"}
 by auto
 show " }\mp@subsup{\pi}{}{*}\textrm{x}\in{\textrm{y}\in\mathrm{ carrier Y. . x }\sqsubseteq\mathcal{X}\mp@subsup{\pi}{*}{}\textrm{y}}
 proof (auto)
 show " }\mp@subsup{\pi}{}{*}\textrm{x}\in\mathrm{ carrier Y
 show "x \sqsubseteq\mathcal{X }}\mp@subsup{\pi}{*}{\prime(}\mp@subsup{\pi}{}{*}\textrm{x})
 using assms(2) inflation by blast
 qed
 qed
 show "П\mathcal{Y}{y \in carrier \mathcal{Y. x \sqsubseteq\mathcal{X }}\mp@subsup{\pi}{*}{}\mathrm{ y} }\in\mathrm{ carrier Y "}
 by (auto intro: Y.weak.inf_closed)
 qed
 qed
theorem upper_by_complete_lattice:
assumes "complete_lattice \mathcal{X" "y \in carrier \mathcal{Y"}}\mathbf{|}\mathrm{ "}
shows " }\mp@subsup{\pi}{*}{}(\textrm{y})=\bigsqcup\mathcal{X}{\textrm{x}\in\mathrm{ carrier }\mathcal{X}.\mp@subsup{\pi}{}{*}(\textrm{x})\sqsubseteq\mathcal{Y}\mathrm{ y }"
proof -
interpret X: complete_lattice \mathcal{X}
by (simp add: assms)
show ?thesis
proof (rule X.le_antisym)
show y: " }\mp@subsup{\pi}{*}{}\textrm{y}\in\mathrm{ carrier }\mathcal{X}
using assms(2) upper_closure by blast
show " }\mp@subsup{\pi}{*}{}\textrm{y}\sqsubseteq\mathcal{X}\bigsqcup\mathcal{X}{\textrm{x}\in\mathrm{ carrier }\mathcal{X}. \mp@subsup{\pi}{}{*}\textrm{x}\sqsubseteq\mathcal{Y}\textrm{y}}
proof (rule X.weak.sup_upper)
show "{x\in carrier \mathcal{X. }\mp@subsup{\pi}{}{*}\textrm{x}\sqsubseteq\mathcal{Y}\textrm{y}}\subseteq\mathrm{ carrier }\mathcal{X}"
by auto
show " }\mp@subsup{\pi}{*}{}\textrm{y}\in{\textrm{x}\in\operatorname{carrier \mathcal{X}. \mp@subsup{\pi}{}{*}\textrm{x}\sqsubseteq\mathcal{Y}\textrm{y}}"
proof (auto)
show " }\mp@subsup{\pi}{*}{}\mathrm{ y }\in\mathrm{ carrier }\mathcal{X}" by (fact y
show " }\mp@subsup{\pi}{}{*}(\mp@subsup{\pi}{*}{}\mathrm{ y) }\sqsubseteq\mathcal{Y y"
by (simp add: assms(2) deflation)
qed
qed
show "\bigsqcup\mathcal{X}{\textrm{x}\in\mathrm{ carrier }\mathcal{X}. \mp@subsup{\pi}{}{*}\textrm{x}\sqsubseteq\mathcal{Y}y}\sqsubseteq\mathcal{X}\mp@subsup{\pi}{*}{}\textrm{y}"
proof (rule X.weak.sup_least)

```

```

 by auto
 show " }\mp@subsup{\pi}{*}{}\textrm{y}\in\mathrm{ carrier X X" by (fact y)
 fix z
 assume "z }\in{x\in\operatorname{carrier \mathcal{X}. 片 x \sqsubseteq\mathcal{Y y}"}
 thus "z\sqsubseteq\mathcal{X}}\mp@subsup{\pi}{*}{}\textrm{y}
 by (simp add: assms(2) right)
 qed
 show "\bigsqcup\mathcal{X}{\textrm{x}\in\mathrm{ carrier }\mathcal{X}. \mp@subsup{\pi}{}{*}\textrm{x}\sqsubseteq\mathcal{Y}y}\in\operatorname{carrier \mathcal{X"}}\mathbf{|}\mathrm{ "}
 by (auto intro: X.weak.sup_closed)
 qed
 qed

```
end
lemma dual_galois [simp]: " galois_connection ( orderA = inv_gorder B, orderB = inv_gorder A, lower = f, upper = g D
= galois_connection ( orderA \(=\mathrm{A}\), orderB \(=\mathrm{B}\),
lower \(=\mathrm{g}\), upper \(=\mathrm{f}\) ()"
by (auto simp add: galois_connection_def galois_connection_axioms_def connection_def dual_order_iff)
definition lower_adjoint :: "('a, 'c) gorder_scheme \(\Rightarrow\) ('b, 'd) gorder_scheme \(\Rightarrow\) (' \(\mathrm{a} \Rightarrow\) 'b) \(\Rightarrow\) bool" where
"lower_adjoint A B \(f \equiv \exists \mathrm{~g}\). galois_connection (orderA \(=\mathrm{A}\), orderB \(=\) B, lower = f, upper = g |)"
definition upper_adjoint :: "('a, 'c) gorder_scheme \(\Rightarrow\) ('b, 'd) gorder_scheme \(\Rightarrow\) ('b \(\Rightarrow\) 'a) \(\Rightarrow\) bool" where
"upper_adjoint A B g \(\equiv \exists \mathrm{f}\). galois_connection ( orderA \(=\mathrm{A}\), orderB \(=\) B, lower = f, upper = g |)"
lemma lower_adjoint_dual [simp]: "lower_adjoint (inv_gorder A) (inv_gorder B) \(f=\) upper_adjoint B A f"
by (simp add: lower_adjoint_def upper_adjoint_def)
lemma upper_adjoint_dual [simp]: "upper_adjoint (inv_gorder A) (inv_gorder B) f = lower_adjoint B A f"
by (simp add: lower_adjoint_def upper_adjoint_def)
lemma lower_type: "lower_adjoint \(A B \operatorname{f} \Longrightarrow f \in\) carrier \(A \rightarrow\) carrier B"
by (auto simp add:lower_adjoint_def galois_connection_def galois_connection_axioms_def connection_def)
lemma upper_type: "upper_adjoint A B g g carrier B \(\rightarrow\) carrier A"
by (auto simp add:upper_adjoint_def galois_connection_def galois_connection_axioms_def connection_def)

\subsection*{5.4 Composition of Galois connections}
lemma id_galois: "partial_order \(\mathrm{A} \Longrightarrow\) galois_connection ( \(\mathrm{I}_{g}(\mathrm{~A})\) )"
by (simp add: id_galcon_def galois_connection_def galois_connection_axioms_def
connection_def)
lemma comp_galcon_closed:
assumes "galois_connection \(G\) " "galois_connection F " " \(\mathcal{Y}_{\mathrm{F}}=\mathcal{X}_{\mathrm{G}}\) "
shows "galois_connection ( \(\mathrm{G} \circ_{g} \mathrm{~F}\) )"
proof -
interpret F: galois_connection F
```

 by (simp add: assms)
 interpret G: galois_connection G
 by (simp add: assms)
 have "partial_order 執 Og F"
 by (simp add: F.is_order_A comp_galcon_def)
 moreover have "partial_order 湭 \mp@subsup{O}{g}{}}\mp@subsup{\textrm{F}}{}{\prime
 by (simp add: G.is_order_B comp_galcon_def)
 moreover have " }\mp@subsup{\pi}{}{*}\mp@subsup{}{\textrm{G}}{}\circ\mp@subsup{|}{}{*}\mp@subsup{\textrm{F}}{\textrm{G}}{}\in\mathrm{ carrier }\mp@subsup{\mathcal{X}}{\textrm{F}}{}->\mathrm{ carrier 识"
 using F.lower_closure G.lower_closure assms(3) by auto
 moreover have " }\mp@subsup{\pi}{*F}{}\circ\mp@subsup{\pi}{*G}{}\in\mathrm{ carrier }\mp@subsup{\mathcal{Y}}{\textrm{G}}{}->\mathrm{ carrier }\mp@subsup{\mathcal{X}}{\textrm{F}}{
 using F.upper_closure G.upper_closure assms(3) by auto
 moreover
 have "\ x y. \llbracketx \in carrier \mathcal{X F}; y \in carrier }\mp@subsup{\mathcal{Y}}{\textrm{G}}{\}\rrbracket
 (}\mp@subsup{\pi}{\textrm{G}}{\mp@code{G}}(\mp@subsup{\pi}{}{*}\textrm{F}\textrm{x})\sqsubseteq\mp@subsup{\mathcal{Y}}{\textrm{G}}{}\textrm{y})=(\textrm{x}\sqsubseteq\mp@subsup{\mathcal{X}}{\textrm{F}}{}\mp@subsup{\pi}{*\textrm{F}}{(
 by (metis F.galois_property F.lower_closure G.galois_property G.upper_closure
 assms(3) Pi_iff)
ultimately show ?thesis
by (simp add: comp_galcon_def galois_connection_def galois_connection_axioms_def
connection_def)
qed
lemma comp_galcon_right_unit [simp]: "F }\mp@subsup{\circ}{g}{}\mp@subsup{I}{g}{}(\mp@subsup{\mathcal{X}}{\textrm{F}}{})=\textrm{F}
by (simp add: comp_galcon_def id_galcon_def)
lemma comp_galcon_left_unit [simp]: "I ((\mathcal{YF) og F = F"}
by (simp add: comp_galcon_def id_galcon_def)
lemma galois_connectionI:
assumes
"partial_order A" "partial_order B"
"L \in carrier A }->\mathrm{ carrier B" "R G carrier B }->\mathrm{ carrier A"
"isotone A B L" "isotone B A R"
"^x y. \llbracketx c carrier A; y \in carrier B \rrbracket\Longrightarrow L x \sqsubseteqB y < x \sqsubseteqA R
y"
shows "galois_connection \ orderA = A, orderB = B, lower = L, upper
= R D"
using assms by (simp add: galois_connection_def connection_def galois_connection_axioms_d
lemma galois_connectionI':
assumes
"partial_order A" "partial_order B"
"L \in carrier A }->\mathrm{ carrier B" "R f carrier B }->\mathrm{ carrier A"
"isotone A B L" "isotone B A R"
"^X. X \in carrier (B) \Longrightarrow L(R(X)) \sqsubseteq
"\ X. X G carrier(A) \Longrightarrow X \sqsubseteq
shows "galois_connection \ orderA = A, orderB = B, lower = L, upper
= R ()"
using assms

```
by (auto simp add: galois_connection_def connection_def galois_connection_axioms_def, (meson PiE isotone_def weak_partial_order.le_trans)+)

\subsection*{5.5 Retracts}
locale retract \(=\) galois_connection +
assumes retract_property: "x \(\in \operatorname{carrier} \mathcal{X} \Longrightarrow \pi_{*}\left(\pi^{*} \mathrm{x}\right) \sqsubseteq \mathcal{X}\) x"
begin
lemma retract_inverse: "x \(\in\) carrier \(\mathcal{X} \Longrightarrow \pi_{*}\left(\pi^{*} \mathrm{x}\right)=\mathrm{x} "\)
by (meson funcset_mem inflation is_order_A lower_closure partial_order.le_antisym
retract_axioms retract_axioms_def retract_def upper_closure)
lemma retract_injective: "inj_on \(\pi^{*}\) (carrier \(\mathcal{X}\) )" by (metis inj_onI retract_inverse)
end
theorem comp_retract_closed:
assumes "retract \(\mathrm{G} "\) "retract F " " \(\mathcal{Y}_{\mathrm{F}}=\mathcal{X}_{\mathrm{G}}\) "
shows "retract (G \(\circ_{g}\) F)"
proof -
interpret f: retract F
by (simp add: assms)
interpret \(g\) : retract G
by (simp add: assms)
interpret gf: galois_connection " (G \(\circ_{g}\) F)"
by (simp add: assms(1) assms(2) assms(3) comp_galcon_closed retract.axioms(1))
show ?thesis
proof
fix \(x\)
assume "x \(\in\) carrier \(\mathcal{X}_{\mathrm{G}} \mathrm{og}_{\mathrm{g}} \mathrm{F}\) "
thus "le \(\mathcal{X}_{\mathrm{G}} \circ_{g} \mathrm{~F}\left(\pi_{* \mathrm{G}} \circ_{g} \mathrm{~F}\left(\pi_{\mathrm{G}}^{*} \circ_{g} \mathrm{~F} \quad \mathrm{x}\right)\right) \mathrm{x}\) "
using assms(3) f.inflation f.lower_closed f.retract_inverse g.retract_inverse
by (auto simp add: comp_galcon_def)
qed
qed

\subsection*{5.6 Coretracts}
locale coretract = galois_connection +
assumes coretract_property: "y \(\in \operatorname{carrier} \mathcal{Y} \Longrightarrow y \sqsubseteq \mathcal{Y} \pi^{*}\left(\pi_{*}\right.\) y)"
begin
lemma coretract_inverse: "y \(\in \operatorname{carrier} \mathcal{Y} \Longrightarrow \pi^{*}\left(\pi_{*} y\right)=y "\)
by (meson coretract_axioms coretract_axioms_def coretract_def deflation
funcset_mem is_order_B lower_closure partial_order.le_antisym upper_closure)
lemma retract_injective: "inj_on \(\pi_{*}\) (carrier \(\mathcal{Y}\) )"
by (metis coretract_inverse inj_onI)
end
theorem comp_coretract_closed:
```

 assumes "coretract G" "coretract F" "Y F = \mathcal{XG"}
 shows "coretract (G Og F)"
 proof -
interpret f: coretract F
by (simp add: assms)
interpret g: coretract G
by (simp add: assms)
interpret gf: galois_connection "(G Og F)"
by (simp add: assms(1) assms(2) assms(3) comp_galcon_closed coretract.axioms(1))
show ?thesis
proof
fix y
assume "y \in carrier }\mp@subsup{\mathcal{Y}}{\textrm{G}}{\mp@subsup{\circ}{g}{}

```

```

 by (simp add: comp_galcon_def assms(3) f.coretract_inverse g.coretract_property
 g.upper_closed)
qed
qed

```

\subsection*{5.7 Galois Bijections}
locale galois_bijection \(=\) connection +
assumes lower_iso: "isotone \(\mathcal{X} \mathcal{Y} \pi^{*}\)
and upper_iso: "isotone \(\mathcal{Y} \mathcal{X} \pi_{*}\) "
and lower_inv_eq: "x \(\in\) carrier \(\mathcal{X} \Longrightarrow \pi_{*}\left(\pi^{*} \mathrm{x}\right)=\mathrm{x} "\)
and upper_inv_eq: "y \(\in\) carrier \(\mathcal{Y} \Longrightarrow \pi^{*}\left(\pi_{*} y\right)=y "\)
begin
lemma lower_bij: "bij_betw \(\pi^{*}\) (carrier \(\mathcal{X}\) ) (carrier \(\mathcal{Y}\) )"
by (rule bij_betwI[where \(\left.g=" \pi_{*} "\right]\), auto intro: upper_inv_eq lower_inv_eq upper_closed lower_closed)
lemma upper_bij: "bij_betw \(\pi_{*}\) (carrier \(\mathcal{Y}\) ) (carrier \(\mathcal{X}\) )"
by (rule bij_betwI[where \(\left.g=" \pi^{*} "\right]\), auto intro: upper_inv_eq lower_inv_eq upper_closed lower_closed)
sublocale gal_bij_conn: galois_connection
apply (unfold_locales, auto)
using lower_closed lower_inv_eq upper_iso use_iso2 apply fastforce
using lower_iso upper_closed upper_inv_eq use_iso2 apply fastforce
done
sublocale gal_bij_ret: retract
by (unfold_locales, simp add: gal_bij_conn.is_weak_order_A lower_inv_eq
weak_partial_order.le_refl)
sublocale gal_bij_coret: coretract
by (unfold_locales, simp add: gal_bij_conn.is_weak_order_B upper_inv_eq
weak_partial_order.le_refl)
end
```

theorem comp_galois_bijection_closed:
assumes "galois_bijection G" "galois_bijection F" "\mathcal{Y}
shows "galois_bijection (G og F)"
proof -
interpret f: galois_bijection F
by (simp add: assms)
interpret g: galois_bijection G
by (simp add: assms)
interpret gf: galois_connection "(G Og F)"
by (simp add: assms(3) comp_galcon_closed f.gal_bij_conn.galois_connection_axioms
g.gal_bij_conn.galois_connection_axioms galois_connection.axioms(1))
show ?thesis
proof

```

```

 by (simp add: comp_galcon_def, metis comp_galcon_def galcon.select_convs(1)
 galcon.select_convs(2) galcon.select_convs(3) gf.lower_iso)

```

```

 by (simp add: gf.upper_iso)
 fix x
 assume "x \in carrier }\mp@subsup{\mathcal{X}}{\textrm{G}}{\mp@subsup{\circ}{g}{}
 thus " }\mp@subsup{\pi}{*G 拜 F (}{~
 using assms(3) f.lower_closed f.lower_inv_eq g.lower_inv_eq by (auto
 simp add: comp_galcon_def)
next
fix y
assume "y \in carrier }\mp@subsup{\mathcal{Y}}{\textrm{G}}{\mp@subsup{\circ}{g}{}
thus " }\mp@subsup{\pi}{\textrm{G}}{\textrm{G}}\mp@subsup{\circ}{g}{}\textrm{F}(\mp@subsup{\pi}{*G}{}\mp@subsup{\circ}{g}{\prime}\textrm{F}\mathrm{ y) = y"
by (simp add: comp_galcon_def assms(3) f.upper_inv_eq g.upper_closed
g.upper_inv_eq)
qed
qed
end

```
theory Group
imports Complete_Lattice "HOL-Library.FuncSet"
begin

\section*{6 Monoids and Groups}

\subsection*{6.1 Definitions}

Definitions follow [3].
record 'a monoid = "'a partial_object" +
```

 mult :: "['a, 'a] => 'a" (infixl "\otimes\imath" 70)
 one :: 'a ("1\imath")
    ```
definition
    m_inv :: "('a, 'b) monoid_scheme => 'a => 'a" ("inv 乙 _" [81] 80)
    where \(\operatorname{linv}_{G} \mathrm{x}=\left(\mathrm{THE} \mathrm{y} . \mathrm{y} \in \operatorname{carrier} \mathrm{G} \wedge \mathrm{x} \otimes_{\mathrm{G}} \mathrm{y}=\mathbf{1}_{\mathrm{G}} \wedge \mathrm{y} \otimes_{\mathrm{G}} \mathrm{x}=\mathbf{1}_{\mathrm{G}}\right.\) )"
definition
    Units :: "_ => 'a set"
    - The set of invertible elements
    where "Units \(\mathrm{G}=\left\{\mathrm{y} . \mathrm{y} \in \operatorname{carrier} \mathrm{G} \wedge\left(\exists \mathrm{x} \in \operatorname{carrier} \mathrm{G} . \mathrm{x} \otimes_{\mathrm{G}} \mathrm{y}=\mathbf{1}_{\mathrm{G}}\right.\right.\)
\(\left.\left.\wedge \mathrm{y} \otimes_{\mathrm{G}} \mathrm{x}=\mathbf{1}_{\mathrm{G}}\right)\right\}{ }^{\prime \prime}\)
locale monoid =
    fixes \(G\) (structure)
    assumes m_closed [intro, simp]:
            " \(\llbracket \mathrm{x} \in \operatorname{carrier} \mathrm{G} ; \mathrm{y} \in \operatorname{carrier} \mathrm{G} \rrbracket \Longrightarrow \mathrm{x} \otimes \mathrm{y} \in \operatorname{carrier} \mathrm{G} "\)
        and m_assoc:
            " \(\llbracket \mathrm{x} \in\) carrier \(\mathrm{G} ; \mathrm{y} \in\) carrier \(\mathrm{G} ; \mathrm{z} \in\) carrier \(\mathrm{G} \rrbracket\)
            \(\Longrightarrow(x \otimes y) \otimes z=x \otimes(y \otimes z) "\)
        and one_closed [intro, simp]: "1 \(\in\) carrier \(G "\)
        and l_one [simp]: "x \(\in\) carrier \(G \Longrightarrow 1 \otimes \mathrm{x}=\mathrm{x} "\)
        and \(r_{\text {_one }}\) [simp]: "x \(\in\) carrier \(G \Longrightarrow x \otimes 1=x "\)
lemma monoidI:
    fixes \(G\) (structure)
    assumes m_closed:
    "!!x y. [| x \(\in\) carrier \(G ; y \in \operatorname{carrier~G~l]~==>~x~} \otimes y \in\) carrier
G"
            and one_closed: "1 \(\in\) carrier G"
            and m_assoc:
            "!!x y z. [l x \(\in\) carrier \(G ; y \in \operatorname{carrier~G;~z~} \in\) carrier G l] ==>
            \((x \otimes y) \otimes z=x \otimes(y \otimes z) "\)
            and l_one: "!!x. x \(\in\) carrier \(G==>1 \otimes x=x "\)
            and r_one: "!!x. \(x \in \operatorname{carrier} G==>x \otimes 1=x "\)
    shows "monoid G"
    by (fast intro!: monoid.intro intro: assms)
lemma (in monoid) Units_closed [dest]:
    " \(\mathrm{x} \in\) Units \(\mathrm{G}==>\mathrm{x} \in\) carrier \(\mathrm{G} "\)
    by (unfold Units_def) fast
lemma (in monoid) one_unique:
    assumes "u \(\in\) carrier G"
        and " \(\bigwedge \mathrm{x} . \mathrm{x} \in \operatorname{carrier} \mathrm{G} \Longrightarrow \mathrm{u} \otimes \mathrm{x}=\mathrm{x}\) "
    shows "u = 1"
    using assms(2) [0F one_closed] r_one[0F assms(1)] by simp
lemma (in monoid) inv_unique:
```

 assumes eq: "y \otimes x = 1" "x \otimes y' = 1"
 and G: "x \in carrier G" "y \in carrier G" "y' \in carrier G"
 shows "y = y""
 proof -
from G eq have "y = y \otimes (x \otimes y')" by simp
also from G have "... = (y \otimes x) \otimes y'" by (simp add: m_assoc)
also from G eq have "... = y'" by simp
finally show ?thesis .
qed
lemma (in monoid) Units_m_closed [simp, intro]:
assumes x: "x \in Units G" and y: "y \in Units G"
shows "x \otimes y \in Units G"
proof -
from x obtain x' where x: "x \in carrier G" "x' \in carrier G" and xinv:
"x \& x' = 1" "x' \otimes x = 1"
unfolding Units_def by fast
from y obtain y' where y: "y \in carrier G" "y' \in carrier G" and yinv:
"y \otimes y' = 1" "y' \otimes y = 1"
unfolding Units_def by fast
from x y xinv yinv have "y' \otimes (x' \otimes x) \otimes y = 1" by simp
moreover from x y xinv yinv have "x \otimes (y \otimes y') \otimes x' = 1" by simp
moreover note x y
ultimately show ?thesis unfolding Units_def
by simp (metis m_assoc m_closed)
qed
lemma (in monoid) Units_one_closed [intro, simp]:
"1 \in Units G"
by (unfold Units_def) auto
lemma (in monoid) Units_inv_closed [intro, simp]:
"x \in Units G ==> inv x \in carrier G"
apply (simp add: Units_def m_inv_def)
by (metis (mono_tags, lifting) inv_unique the_equality)
lemma (in monoid) Units_l_inv_ex:
"x \in Units G ==> \existsy \in carrier G. y \otimes x = 1"
by (unfold Units_def) auto
lemma (in monoid) Units_r_inv_ex:
"x \in Units G ==> \existsy \in carrier G. x \otimes y = 1"
by (unfold Units_def) auto
lemma (in monoid) Units_l_inv [simp]:
"x \in Units G ==> inv x \otimes x = 1"
apply (unfold Units_def m_inv_def, simp)
by (metis (mono_tags, lifting) inv_unique the_equality)

```
```

lemma (in monoid) Units_r_inv [simp]:
"x \in Units G ==> x \otimes inv x = 1"
by (metis (full_types) Units_closed Units_inv_closed Units_l_inv Units_r_inv_ex
inv_unique)
lemma (in monoid) inv_one [simp]:
"inv 1 = 1"
by (metis Units_one_closed Units_r_inv l_one monoid.Units_inv_closed
monoid_axioms)
lemma (in monoid) Units_inv_Units [intro, simp]:
"x \in Units G ==> inv x \in Units G"
proof -
assume x: "x \in Units G"
show "inv x \in Units G"
by (auto simp add: Units_def
intro: Units_l_inv Units_r_inv x Units_closed [OF x])
qed
lemma (in monoid) Units_l_cancel [simp]:
"[| x \in Units G; y \in carrier G; z \in carrier G l] ==>
(x \& y = x \& z) = (y = z)"
proof
assume eq: "x \otimes y = x \otimes z"
and G: "x \in Units G" "y \in carrier G" "z \in carrier G"
then have "(inv x \otimes x) \otimes y = (inv x \otimes x) \otimes z"
by (simp add: m_assoc Units_closed del: Units_l_inv)
with G show "y = z" by simp
next
assume eq: "y = z"
and G: "x \in Units G" "y \in carrier G" "z \in carrier G"
then show "x \otimes y = x \otimes z" by simp
qed
lemma (in monoid) Units_inv_inv [simp]:
"x \in Units G ==> inv (inv x) = x"
proof -
assume x: "x \in Units G"
then have "inv x \& inv (inv x) = inv x \& x" by simp
with x show ?thesis by (simp add: Units_closed del: Units_l_inv Units_r_inv)
qed
lemma (in monoid) inv_inj_on_Units:
"inj_on (m_inv G) (Units G)"
proof (rule inj_onI)
fix x y
assume G: "x \in Units G" "y \in Units G" and eq: "inv x = inv y"
then have "inv (inv x) = inv (inv y)" by simp
with G show "x = y" by simp

```

\section*{qed}
lemma (in monoid) Units_inv_comm:
assumes inv: "x \(\otimes y=1 "\)
and G: "x \(\in\) Units \(G\) " "y \(\in\) Units \(G\) "
shows "y \(\otimes \mathrm{x}=1\) "
proof -
from G have \(\mathrm{k} \otimes \mathrm{y} \otimes \mathrm{x}=\mathrm{x} \otimes 1 \mathrm{l}\) by (auto simp add: inv Units_closed)
with G show ?thesis by (simp del: r_one add: m_assoc Units_closed)
qed
lemma (in monoid) carrier_not_empty: "carrier \(G \neq\{ \} "\)
by auto

\subsection*{6.2 Groups}

A group is a monoid all of whose elements are invertible.
locale group \(=\) monoid +
assumes Units: "carrier G <= Units G"
lemma (in group) is_group [iff]: "group G" by (rule group_axioms)
lemma (in group) is_monoid [iff]: "monoid G"
by (rule monoid_axioms)
theorem groupI:
fixes G (structure)
assumes m_closed [simp]:
"!!x y. [| x \(\in\) carrier \(G ; y \in \operatorname{carrier~G~l]~==>~x~} \otimes y \in\) carrier G"
and one_closed [simp]: "1 \(\in\) carrier G"
and m_assoc:
"!!x y z. [| x \(\in\) carrier \(G ; y \in \operatorname{carrier~G;~z~} \in\) carrier \(G\) |] ==>
\((x \otimes y) \otimes z=x \otimes(y \otimes z) "\)
and l_one [simp]: "!!x. x \(\in\) carrier \(G==>1 \otimes x=x "\)
and l_inv_ex: "!!x. \(x \in\) carrier \(G==>\exists y \in \operatorname{carrier~} G . y \otimes x=1 "\)
shows "group G"
proof -
have l_cancel [simp]:
"!!x y z. [| x \(\in\) carrier \(G ; y \in \operatorname{carrier~G;~z~} \in\) carrier G l] ==>
\((x \otimes y=x \otimes z)=(y=z) "\)
proof
fix x y z
assume eq: "x \(\otimes y=x \otimes z "\)
and G: "x \(\in\) carrier \(G " \quad " y \in \operatorname{carrier} G " \quad " z \in \operatorname{carrier} G "\)
with l_inv_ex obtain x_inv where xG: "x_inv \(\in\) carrier G"
and l_inv: "x_inv \(\otimes x=1 "\) by fast
from \(G\) eq \(x G\) have \("\left(x \_i n v ~ \otimes x\right) \otimes y=\left(x \_i n v \otimes x\right) \otimes z "\)
by (simp add: m_assoc)
```

 with G show "y = z" by (simp add: l_inv)
 next
 fix x y z
 assume eq: "y = z"
 and G: "x \in carrier G" "y \in carrier G" "z \in carrier G"
 then show "x }\otimes\textrm{y}=\textrm{x}\otimes\textrm{z
 qed
 have r_one:
 "!!x. x \in carrier G ==> x \otimes 1 = x"
 proof -
 fix x
 assume x: "x \in carrier G"
 with l_inv_ex obtain x_inv where xG: "x_inv \in carrier G"
 and l_inv: "x_inv \otimes x = 1" by fast
 from x xG have "x_inv }\otimes(x)&1)= x_inv \otimes x"
 by (simp add: m_assoc [symmetric] l_inv)
 with x xG show "x \otimes 1 = x" by simp
 qed
 have inv_ex:
 "\x. x \in carrier G \Longrightarrow \existsy f carrier G. y \otimes x = 1 ^ x | y = 1"
 proof -
 fix x
 assume x: "x \in carrier G"
 with l_inv_ex obtain y where y: "y \in carrier G"
 and l_inv: "y \otimes x = 1" by fast
 from x y have "y \otimes (x \otimes y) = y \otimes 1"
 by (simp add: m_assoc [symmetric] l_inv r_one)
 with x y have r_inv: "x \otimes y = 1"
 by simp
 from x y show "\existsy f carrier G. y \otimes x = 1 ^x x y = 1"
 by (fast intro: l_inv r_inv)
 qed
 then have carrier_subset_Units: "carrier G \subseteq Units G"
 by (unfold Units_def) fast
 show ?thesis
 by standard (auto simp: r_one m_assoc carrier_subset_Units)
 qed
lemma (in monoid) group_l_invI:
assumes l_inv_ex:
"!!x. x \in carrier G ==> \existsy \in carrier G. y \otimes x = 1"
shows "group G"
by (rule groupI) (auto intro: m_assoc l_inv_ex)
lemma (in group) Units_eq [simp]:
"Units G = carrier G"
proof
show "Units G \subseteq carrier G" by fast
next

```
```

 show "carrier G \subseteq Units G" by (rule Units)
 qed
lemma (in group) inv_closed [intro, simp]:
"x \in carrier G ==> inv x \in carrier G"
using Units_inv_closed by simp
lemma (in group) l_inv_ex [simp]:
"x \in carrier G ==> \existsy \in carrier G. y \otimes x = 1"
using Units_l_inv_ex by simp
lemma (in group) r_inv_ex [simp]:
"x f carrier G ==> \existsy f carrier G. x \otimes y = 1"
using Units_r_inv_ex by simp
lemma (in group) l_inv [simp]:
"x \in carrier G ==> inv x \otimes x = 1"
by simp

```

\subsection*{6.3 Cancellation Laws and Basic Properties}
```

lemma (in group) inv_eq_1_iff [simp]:
assumes "x carrier G " shows ${ }^{\text {inv }} \mathrm{G}=1_{\mathrm{G}} \longleftrightarrow \mathrm{x}=1_{\mathrm{G}}$ "
proof -
have "x = 1" if "inv $x=1 "$
proof -
have "inv $\mathrm{x} \otimes \mathrm{x}=1$ "
using assms l_inv by blast
then show " $\mathrm{x}=1$ "
using that assms by simp
qed
then show ?thesis
by auto
qed
lemma (in group) r_inv [simp]:
" $\mathrm{x} \in \operatorname{carrier} \mathrm{G}==>\mathrm{x} \otimes$ inv $\mathrm{x}=1 "$
by simp
lemma (in group) right_cancel [simp]:
" [| x \in carrier $G ; y \in \operatorname{carrier~} G ; z \in \operatorname{carrier~G~l]~==>~}$
$(y \otimes x=z \otimes x)=(y=z) "$
by (metis inv_closed m_assoc r_inv r_one)
lemma (in group) inv_inv [simp]:
"x \in carrier G ==> inv (inv x) = x"
using Units_inv_inv by simp
lemma (in group) inv_inj:

```
```

 "inj_on (m_inv G) (carrier G)"
 using inv_inj_on_Units by simp
 lemma (in group) inv_mult_group:
"[| x \in carrier G; y \in carrier G |] ==> inv (x \otimes y) = inv y \otimes inv x"
proof -
assume G: "x \in carrier G" "y \in carrier G"
then have "inv (x \& y) \otimes (x \& y) = (inv y \otimes inv x) \otimes (x \otimes y)"
by (simp add: m_assoc) (simp add: m_assoc [symmetric])
with G show ?thesis by (simp del: l_inv Units_l_inv)
qed
lemma (in group) inv_comm:
"[| x \otimes y = 1; x \in carrier G; y \in carrier G |] ==> y \otimes x = 1"
by (rule Units_inv_comm) auto
lemma (in group) inv_equality:
"[ly \otimes x = 1; x \in carrier G; y \in carrier Gl] ==> inv x = y"
using inv_unique r_inv by blast
lemma (in group) inv_solve_left:
"\llbracketa \in carrier G; b \in carrier G; c \in carrier G \rrbracket\Longrightarrow a = inv b \otimes c
\longleftrightarrow = b \otimes a"
by (metis inv_equality l_inv_ex l_one m_assoc r_inv)
lemma (in group) inv_solve_left':
"\llbracketa \in carrier G; b \in carrier G; c \in carrier G \rrbracket\Longrightarrow inv b \otimes c = a
\longleftrightarrow = b \& a"
by (metis inv_equality l_inv_ex l_one m_assoc r_inv)
lemma (in group) inv_solve_right:
"\llbracketa \in carrier G; b \in carrier G; c \in carrier G | \Longrightarrow a = b \otimes inv c
\longleftrightarrow b = a \otimes c"
by (metis inv_equality l_inv_ex l_one m_assoc r_inv)
lemma (in group) inv_solve_right':
"\llbracketa \in carrier G; b \in carrier G; c \in carrier G\rrbracket\Longrightarrow b \otimes inv c = a \longleftrightarrow
b = a \& c"
by (auto simp: m_assoc)

```

\subsection*{6.4 Power}
consts
pow :: "[('a, 'm) monoid_scheme, 'a, 'b::semiring_1] => 'a" (infixr " [^] 乙" 75)
overloading nat_pow == "pow :: [_, 'a, nat] => 'a"
begin
definition "nat_pow \(G\) a \(n=r e c \_n a t ~ 1_{G}\left(\% u b . b \otimes_{G} a\right) n "\)
end
lemma (in monoid) nat_pow_closed [intro, simp]: "x \(\in\) carrier \(G==>x[\uparrow](n:: n a t) \in\) carrier \(G "\) by (induct n) (simp_all add: nat_pow_def)
lemma (in monoid) nat_pow_0 [simp]:
"x [^] (0::nat) = 1"
by (simp add: nat_pow_def)
lemma (in monoid) nat_pow_Suc [simp]:
"x [^] (Suc n) \(=x\) [^] \(n \otimes x^{\wedge}\)
by (simp add: nat_pow_def)
lemma (in monoid) nat_pow_one [simp]:
"1 [^] (n::nat) = 1"
by (induct n) simp_all
lemma (in monoid) nat_pow_mult:
"x \(\in\) carrier \(G==>x[\wedge](n:: n a t) \otimes x[\wedge] m=x[\wedge](n+m) "\)
by (induct m) (simp_all add: m_assoc [THEN sym])
lemma (in monoid) nat_pow_comm:

Q (x [^] n)"
using nat_pow_mult[of x n m ] nat_pow_mult[of x m n ] by (simp add: add.commute)
lemma (in monoid) nat_pow_Suc2:
" \(\mathrm{x} \in \operatorname{carrier} \mathrm{G} \Longrightarrow \mathrm{x}\left[^{\wedge}\right](\) Suc n\()=\mathrm{x} \otimes\left(\mathrm{x}\left[{ }^{\wedge}\right] \mathrm{n}\right)\) "
using nat_pow_mult[of x 1 n ] Suc_eq_plus1[of n]
by (metis One_nat_def Suc_eq_plus1_left l_one nat.rec(1) nat_pow_Suc
nat_pow_def)
lemma (in monoid) nat_pow_pow:
" \(\mathrm{x} \in \operatorname{carrier} \mathrm{G}==>\left(\mathrm{x}\left[{ }^{\wedge}\right] \mathrm{n}\right) \quad[\wedge] \mathrm{m}=\mathrm{x}[\wedge](\mathrm{n} * \mathrm{~m}:\) :nat)"
by (induct \(m\) ) (simp, simp add: nat_pow_mult add.commute)
lemma (in monoid) nat_pow_consistent:

unfolding nat_pow_def by simp
lemma nat_pow_0 [simp]: "x \([\wedge]_{G}(0:\) nat \()=1_{G} "\)
by (simp add: nat_pow_def)
lemma nat_pow_Suc \([\) simp \(]: ~ " x\left[{ }^{\wedge}\right]_{G}(\operatorname{Suc} n)=\left(x\left[{ }^{\wedge}\right]_{G} n\right) \otimes_{G} x "\)
by (simp add: nat_pow_def)
lemma (in group) nat_pow_inv:
assumes "x \(\in\) carrier \(G "\) shows " (inv x) [^] (i :: nat) = inv (x [^]
```

i)"
proof (induction i)
case 0 thus ?case by simp
next
case (Suc i)
have "(inv x) [^] Suc i = ((inv x) [^] i) \otimes inv x"
by simp
also have " ... = (inv (x [^] i)) \otimes inv x"
by (simp add: Suc.IH Suc.prems)
also have " ... = inv (x \& (x [^] i))"
by (simp add: assms inv_mult_group)
also have " ... = inv (x [^] (Suc i))"
using assms nat_pow_Suc2 by auto
finally show ?case .
qed
overloading int_pow == "pow :: [_, 'a, int] => 'a"
begin
definition "int_pow G a z =
(let p = rec_nat 1 1G (%u b. b * \& a)
in if z < O then invg (p (nat (-z))) else p (nat z))"
end
lemma int_pow_int: "x [^`]G (int n) = x [^^]G n"
by(simp add: int_pow_def nat_pow_def)
lemma pow_nat:
assumes "i\geq0"
shows "x [^] G nat i = x [^] G i"
proof (cases i rule: int_cases)
case (nonneg n)
then show ?thesis
by (simp add: int_pow_int)
next
case (neg n)
then show ?thesis
using assms by linarith
qed
lemma int_pow_0 [simp]: "x [^] G (0::int) = 1 1G"
by (simp add: int_pow_def)
lemma int_pow_def2: "a [^] G z =
(if z < 0 then invg (a [^] G (nat (-z))) else a [^^]G (nat z))"
by (simp add: int_pow_def nat_pow_def)
lemma (in group) int_pow_one [simp]:
"1 [^] (z::int) = 1"
by (simp add: int_pow_def2)

```
```

lemma (in group) int_pow_closed [intro, simp]:
"x \in carrier G ==> x [^] (i::int) \in carrier G"
by (simp add: int_pow_def2)
lemma (in group) int_pow_1 [simp]:
"x \in carrier G \Longrightarrow x [^] (1::int) = x"
by (simp add: int_pow_def2)
lemma (in group) int_pow_neg:
"x \in carrier G \Longrightarrow x [^] (-i::int) = inv (x [^] i)"
by (simp add: int_pow_def2)
lemma (in group) int_pow_neg_int: "x \in carrier G }\Longrightarrow\textrm{x [^] -(int n) =
inv (x [^] n)"
by (simp add: int_pow_neg int_pow_int)
lemma (in group) int_pow_mult:
assumes "x \in carrier G" shows "x [^] (i + j::int) = x [^] i \& x [^]
j"
proof -
have [simp]: "-i - j = -j - i" by simp
show ?thesis
by (auto simp: assms int_pow_def2 inv_solve_left inv_solve_right nat_add_distrib
[symmetric] nat_pow_mult)
qed
lemma (in group) int_pow_inv:
"x \in carrier G \Longrightarrow (inv x) [^] (i :: int) = inv (x [^] i)"
by (metis int_pow_def2 nat_pow_inv)
lemma (in group) int_pow_pow:
assumes "x \in carrier G"
shows "(x [^] (n :: int)) [^] (m :: int) = x [^] (n * m :: int)"
proof (cases)
assume n_ge: "n \geq 0" thus ?thesis
proof (cases)
assume m_ge: "m \geq 0" thus ?thesis
using n_ge nat_pow_pow[OF assms, of "nat n" "nat m"] int_pow_def2
[where G=G]
by (simp add: mult_less_0_iff nat_mult_distrib)
next
assume m_lt: "\neg m \geq 0"
with n_ge show ?thesis
apply (simp add: int_pow_def2 mult_less_0_iff)
by (metis assms mult_minus_right n_ge nat_mult_distrib nat_pow_pow)
qed
next
assume n_lt: "\neg n \geq 0" thus ?thesis

```
```

 proof (cases)
 assume m_ge: "m \geq 0"
 have "inv x [^] (nat m * nat (- n)) = inv x [^] nat (- (m * n))"
 by (metis (full_types) m_ge mult_minus_right nat_mult_distrib)
 with m_ge n_lt show ?thesis
 by (simp add: int_pow_def2 mult_less_0_iff assms mult.commute nat_pow_inv
 nat_pow_pow)
next
assume m_lt: "\neg m \geq 0" thus ?thesis
using n_lt by (auto simp: int_pow_def2 mult_less_0_iff assms nat_mult_distrib_neg
nat_pow_inv nat_pow_pow)
qed
qed
lemma (in group) int_pow_diff:
"x f carrier G \Longrightarrow x [^] (n - m :: int) = x [^] n \otimes inv (x [^] m)"
by(simp only: diff_conv_add_uminus int_pow_mult int_pow_neg)
lemma (in group) inj_on_multc: "c \in carrier G \Longrightarrow inj_on (}\lambda\textrm{x}.\textrm{x}\otimes\textrm{x}|\textrm{c
(carrier G)"
by(simp add: inj_on_def)
lemma (in group) inj_on_cmult: "c \in carrier G \Longrightarrow inj_on (}\lambda\textrm{x}.\textrm{c}\otimes|\textrm{x}
(carrier G)"
by(simp add: inj_on_def)
lemma (in monoid) group_commutes_pow:
fixes n::nat
shows "\llbracketx \otimes y = y \otimes x; x \in carrier G; y \in carrier G\rrbracket \Longrightarrow x [^] n \otimes
y = y \otimes x [^] n"
apply (induction n, auto)
by (metis m_assoc nat_pow_closed)
lemma (in monoid) pow_mult_distrib:
assumes eq: "x \otimes y = y \otimes x" and xy: "x \in carrier G" "y \in carrier
G"
shows "(x \otimes y) [^] (n::nat) = x [^] n \otimes y [^] n"
proof (induct n)
case (Suc n)
have "x \otimes (y [^] n \otimes y) = y [^] n \otimes x | y"
by (simp add: eq group_commutes_pow m_assoc xy)
then show ?case
using assms Suc.hyps m_assoc by auto
qed auto
lemma (in group) int_pow_mult_distrib:
assumes eq: "x \otimes y = y \otimes x" and xy: "x \in carrier G" "y \in carrier
G"

```
```

 shows "(x \otimes y) [^] (i::int) = x [^] i \otimes y [^] i"
 proof (cases i rule: int_cases)
case (nonneg n)
then show ?thesis
by (metis eq int_pow_int pow_mult_distrib xy)
next
case (neg n)
then show ?thesis
unfolding neg
apply (simp add: xy int_pow_neg_int del: of_nat_Suc)
by (metis eq inv_mult_group local.nat_pow_Suc nat_pow_closed pow_mult_distrib
xy)
qed
lemma (in group) pow_eq_div2:
fixes m n :: nat
assumes x_car: "x \in carrier G"
assumes pow_eq: "x [^] m = x [^] n"
shows "x [^] (m - n) = 1"
proof (cases "m < n")
case False
have "1 \& x [^] m = x [^] m" by (simp add: x_car)
also have "... = x [^] (m - n) \otimes x [^] n"
using False by (simp add: nat_pow_mult x_car)
also have "... = x [^] (m - n) \otimes x [^] m"
by (simp add: pow_eq)
finally show ?thesis
by (metis nat_pow_closed one_closed right_cancel x_car)
qed simp

```

\subsection*{6.5 Submonoids}
```

locale submonoid $=$
fixes H and G (structure)
assumes subset: "H \subseteq carrier $G "$ and m_closed [intro, simp]: " $\llbracket x \in H ; y \in H \rrbracket \Longrightarrow x \otimes y \in H "$ and one_closed [simp]: "1 \in H"
lemma (in submonoid) is_submonoid:
"submonoid H G" by (rule submonoid_axioms)
lemma (in submonoid) mem_carrier [simp]:
" $\mathrm{x} \in \mathrm{H} \Longrightarrow \mathrm{x} \in$ carrier G "
using subset by blast
lemma (in submonoid) submonoid_is_monoid [intro]:
assumes "monoid G"
shows "monoid (G(carrier := H|))"
proof -

```
```

 interpret monoid G by fact
 show ?thesis
 by (simp add: monoid_def m_assoc)
 qed
lemma submonoid_nonempty:
"~ submonoid {} G"
by (blast dest: submonoid.one_closed)
lemma (in submonoid) finite_monoid_imp_card_positive:
"finite (carrier G) ==> 0 < card H"
proof (rule classical)
assume "finite (carrier G)" and a: "~ 0 < card H"
then have "finite H" by (blast intro: finite_subset [OF subset])
with is_submonoid a have "submonoid {} G" by simp
with submonoid_nonempty show ?thesis by contradiction
qed
lemma (in monoid) monoid_incl_imp_submonoid :
assumes "H \subseteq carrier G"
and "monoid (G(|carrier := H))"
shows "submonoid H G"
proof (intro submonoid.intro[OF assms(1)])
have ab_eq : "\ a b. a }\inH\Longrightarrow\textrm{H}|\textrm{b}=\textrm{a}\mp@subsup{\otimes}{\textrm{G}(\mathrm{ carrier := H) b = a }\otimes}{
b" using assms by simp

```

```

"
using assms ab_eq unfolding group_def using monoid.m_closed by fastforce
thus "\a b. a }\inH\Longrightarrow\textrm{H}=\textrm{b}\in\textrm{H}\Longrightarrow\textrm{a}\otimes\textrm{b}\in\textrm{H}"\mathrm{ by simp
show "1 \in H " using monoid.one_closed[OF assms(2)] assms by simp
qed
lemma (in monoid) inv_unique':
assumes "x \in carrier G" "y \in carrier G"
shows "\llbracketx \& y = 1; y \otimes x = 1\rrbracket\Longrightarrow y = inv x"
proof -
assume "x \otimes y = 1" and l_inv: "y \otimes x = 1"
hence unit: "x \in Units G"
using assms unfolding Units_def by auto
show "y = inv x"
using inv_unique[OF l_inv Units_r_inv[OF unit] assms Units_inv_closed[OF
unit]] .
qed
lemma (in monoid) m_inv_monoid_consistent:
assumes "x \in Units (G (carrier := H |)" and "submonoid H G"
shows "inv(G | carrier := H D) x = inv x"
proof -

```
```

 have monoid: "monoid (G | carrier := H D)"
 using submonoid.submonoid_is_monoid[OF assms(2) monoid_axioms] .
 obtain y where y: "y \in H" "x \otimes y = 1" "y \otimes x = 1"
 using assms(1) unfolding Units_def by auto
 have x: "x \in H" and in_carrier: "x \in carrier G" "y \in carrier G"
 using y(1) submonoid.subset[OF assms(2)] assms(1) unfolding Units_def
 by auto
show ?thesis
using monoid.inv_unique'[OF monoid, of x y] x y
using inv_unique'[OF in_carrier y(2-3)] by auto
qed

```

\subsection*{6.6 Subgroups}
```

locale subgroup $=$
fixes H and G (structure)
assumes subset: "H \subseteq carrier G"
and m_closed [intro, simp]: "\llbracketx \in H; y \in H\rrbracket\Longrightarrow x @ y \in H"
and one_closed [simp]: "1 \in H"
and m_inv_closed [intro,simp]: "x }\in\textrm{H}\Longrightarrow\mathrm{ inv x }\in\textrm{H
lemma (in subgroup) is_subgroup:
"subgroup H G" by (rule subgroup_axioms)
declare (in subgroup) group.intro [intro]
lemma (in subgroup) mem_carrier [simp]:
"x }\in\textrm{H}\Longrightarrow\textrm{x}\in\mathrm{ carrier G"
using subset by blast
lemma (in subgroup) subgroup_is_group [intro]:
assumes "group G"
shows "group (G(|carrier := H|)"
proof -
interpret group G by fact
have "Group.monoid (G(carrier := H))"
by (simp add: monoid_axioms submonoid.intro submonoid.submonoid_is_monoid
subset)
then show ?thesis
by (rule monoid.group_l_invI) (auto intro: l_inv mem_carrier)
qed
lemma (in group) triv_subgroup: "subgroup {1} G"
by (auto simp: subgroup_def)
lemma subgroup_is_submonoid:
assumes "subgroup H G" shows "submonoid H G"
using assms by (auto intro: submonoid.intro simp add: subgroup_def)

```
```

lemma (in group) subgroup_Units:
assumes "subgroup H G" shows "H \subseteq Units (G (carrier := H D)"
using group.Units[OF subgroup.subgroup_is_group[OF assms group_axioms]]
by simp
lemma (in group) m_inv_consistent [simp]:
assumes "subgroup H G" "x \in H"
shows "inv(G | carrier := H D) x = inv x"
using assms m_inv_monoid_consistent[OF _ subgroup_is_submonoid] subgroup_Units[of
H] by auto
lemma (in group) int_pow_consistent:
assumes "subgroup H G" "x \in H"
shows "x [^] (n :: int) = x [^] (G | carrier := H D) n"
proof (cases)
assume ge: "n \geq 0"
hence "x [^] n = x [^] (nat n)"
using int_pow_def2 [of G] by auto
also have " ... = x [^] (G | carrier := H D) (nat n)"
using nat_pow_consistent by simp
also have " ... = x [^] (G | carrier := H D) n"
by (metis ge int_nat_eq int_pow_int)
finally show ?thesis .
next
assume "\neg n \geq 0" hence lt: "n < 0" by simp
hence "x [^] n = inv (x [^] (nat (- n)))"
using int_pow_def2 [of G] by auto
also have " ... = (inv x) [^] (nat (- n))"
by (metis assms nat_pow_inv subgroup.mem_carrier)
also have " ... = (inv(G | carrier := H D) x) [^] (G | carrier := H D) (nat
(- n))"
using m_inv_consistent[OF assms] nat_pow_consistent by auto
also have " ... = inv (G | carrier := H)) (x [^] (G | carrier := H |) (nat
(- n)))"
using group.nat_pow_inv[OF subgroup.subgroup_is_group[OF assms(1)
is_group]] assms(2) by auto
also have " ... = x [^] (G | carrier := H D) n"
by (simp add: int_pow_def2 lt)
finally show ?thesis .
qed

```

Since \(H\) is nonempty, it contains some element x. Since it is closed under inverse, it contains inv \(x\). Since it is closed under product, it contains \(x \otimes\) inv \(\mathrm{x}=1\).
lemma (in group) one_in_subset:
" \([\mid \mathrm{H} \subseteq\) carrier \(\mathrm{G} ; \mathrm{H} \neq\{ \} ; \forall \mathrm{a} \in \mathrm{H}\). inv \(\mathrm{a} \in \mathrm{H} ; \forall \mathrm{a} \in \mathrm{H} . \forall \mathrm{b} \in \mathrm{H} . \mathrm{a} \otimes \mathrm{b}\)
\(\in \mathrm{H}\) l]
\[
=\Rightarrow 1 \in H^{"}
\]

\section*{by force}

A characterization of subgroups: closed, non-empty subset.
```

lemma (in group) subgroupI:
assumes subset: "H \subseteq carrier G" and non_empty: "H \not= {}"
and inv: "!!a. a }\inH\Longrightarrow\mathrm{ inv a }\in\mp@subsup{H}{}{\prime\prime
and mult: "!!a b. \llbracketa \in H; b \in H\rrbracket \Longrightarrow a \otimes b \in H"
shows "subgroup H G"
proof (simp add: subgroup_def assms)
show "1 \in H" by (rule one_in_subset) (auto simp only: assms)
qed
lemma (in group) subgroupE:
assumes "subgroup H G"
shows "H \subseteq carrier G"
and "H\not= {}"
and "^a. a }\inH\Longrightarrow\mathrm{ inv a }\inH
and "\a b. \llbracketa }\in\textrm{H};\textrm{b}\inH\rrbracket\Longrightarrow, a \otimes b \in H"
using assms unfolding subgroup_def[of H G] by auto
declare monoid.one_closed [iff] group.inv_closed [simp]
monoid.l_one [simp] monoid.r_one [simp] group.inv_inv [simp]
lemma subgroup_nonempty:
"\neg subgroup {} G"
by (blast dest: subgroup.one_closed)
lemma (in subgroup) finite_imp_card_positive: "finite (carrier G) \Longrightarrow
O < card H"
using subset one_closed card_gt_0_iff finite_subset by blast
lemma (in subgroup) subgroup_is_submonoid :
"submonoid H G"
by (simp add: submonoid.intro subset)
lemma (in group) submonoid_subgroupI :
assumes "submonoid H G"
and "^a. a }\inH\Longrightarrow\mathrm{ inv a }\inH
shows "subgroup H G"
by (metis assms subgroup_def submonoid_def)
lemma (in group) group_incl_imp_subgroup:
assumes "H \subseteq carrier G"
and "group (G(|carrier := H))"
shows "subgroup H G"
proof (intro submonoid_subgroupI[OF monoid_incl_imp_submonoid[OF assms(1)]])
show "monoid (G(carrier := HD)" using group_def assms by blast

```

```

b" using assms by simp

```
```

 fix a assume aH : "a \in H"
 have " inv
 using assms aH group.inv_closed[OF assms(2)] by auto
 moreover have "1 1G(carrier := H) = 1" using assms monoid.one_closed ab_eq
 one_def by simp
hence "a }\mp@subsup{\otimes}{\textrm{G}(\mathrm{ carrier := H) inv}}{\textrm{G}(\mathrm{ carrier := H) }}\textrm{a}=1
using assms ab_eq aH group.r_inv[OF assms(2)] by simp
hence "a \otimes inv
using aH assms group.inv_closed[OF assms(2)] ab_eq by simp
ultimately have "inv (carrier := H) a = inv a"
by (metis aH assms(1) contra_subsetD group.inv_inv is_group local.inv_equality)
moreover have "inv
using aH group.inv_closed[OF assms(2)] by auto
ultimately show "inv a }\inH\mathrm{ H" by auto
qed

```

\subsection*{6.7 Direct Products}

\section*{definition}
```

 DirProd : : "_ \(\Rightarrow\) _ \(\Rightarrow\) ('a \(\times\) 'b) monoid" (infixr " \(\times \times\) " 80) where
 "G \(\times \times \mathrm{H}=\)
 (carrier \(=\) carrier \(\mathrm{G} \times\) carrier H ,
 mult \(=\left(\lambda(g, h)\left(g{ }^{\prime}, h^{\prime}\right) .\left(g \otimes_{G} g^{\prime}, h \otimes_{H} h^{\prime}\right)\right)\),
 one \(\left.=\left(\mathbf{1}_{G}, \mathbf{1}_{\mathrm{H}}\right)\right)^{\prime \prime}\)
    ```
lemma DirProd_monoid:
    assumes "monoid G" and "monoid H"
    shows "monoid (G \(\times \times \mathrm{H}\) )"
proof -
    interpret G: monoid G by fact
    interpret \(H\) : monoid \(H\) by fact
    from assms
    show ?thesis by (unfold monoid_def DirProd_def, auto)
qed

Does not use the previous result because it's easier just to use auto.
```

lemma DirProd_group:
assumes "group G" and "group H"
shows "group (G }\times\times\mathrm{ H)"
proof -
interpret G: group G by fact
interpret H: group H by fact
show ?thesis by (rule groupI)
(auto intro: G.m_assoc H.m_assoc G.l_inv H.l_inv
simp add: DirProd_def)
qed
lemma carrier_DirProd [simp]: "carrier (G }\times\times\mathrm{ H) = carrier G }\times\mathrm{ carrier
H"

```
```

 by (simp add: DirProd_def)
 lemma one_DirProd [simp]: "1}\mp@subsup{\mathbf{G}}{\textrm{G}\times\textrm{H}}{}=(\mp@subsup{\mathbf{1}}{\textrm{G}}{},\mp@subsup{\mathbf{1}}{\textrm{H}}{})
by (simp add: DirProd_def)
lemma mult_DirProd [simp]: "(g, h) \otimes (G <x H) (g', h') = (g \otimesg g', h

* H h')"
by (simp add: DirProd_def)
lemma mult_DirProd': "x \otimes (G x < H) y = (fst x }\mp@subsup{\otimes}{\textrm{G}}{
y)"
by (subst mult_DirProd [symmetric]) simp
lemma DirProd_assoc: "(G }\times\times\textrm{H}\times\times\textrm{I})=(\textrm{G}\times\times(\textrm{H}\times\times\textrm{I}))
by auto
lemma inv_DirProd [simp]:
assumes "group G" and "group H"
assumes g: "g \in carrier G"
and h: "h \in carrier H"
shows "m_inv (G }\times\times\timesH)(g,h)=(invg g, invH h)"
proof -
interpret G: group G by fact
interpret H: group H by fact
interpret Prod: group "G }\times\times\times\textrm{H
by (auto intro: DirProd_group group.intro group.axioms assms)
show ?thesis by (simp add: Prod.inv_equality g h)
qed
lemma DirProd_subgroups :
assumes "group G"
and "subgroup H G"
and "group K"
and "subgroup I K"
shows "subgroup (H }\times I) (G < < K)"
proof (intro group.group_incl_imp_subgroup[OF DirProd_group[OF assms(1)assms(3)]])
have "H \subseteq carrier G" "I \subseteq carrier K" using subgroup.subset assms by
blast+
thus "(H }\times I) \subseteq carrier (G \times < K)" unfolding DirProd_def by aut
have "Group.group ((G(carrier := H|) }\times\times\mathrm{ (K(carrier := I|))"
using DirProd_group[OF subgroup.subgroup_is_group[OF assms(2)assms(1)]
subgroup.subgroup_is_group[OF assms(4)assms(3)]].
moreover have "((G(carrier := H)) }\times\times(\textrm{K}(\mathrm{ carrier := I|)) = ((G }\times
K)(carrier := H > I|)"
unfolding DirProd_def using assms by simp
ultimately show "Group.group ((G }\times\times\textrm{K})(\mathrm{ carrier := H }\times I|)" by simp
qed

```
```

6.8 Homomorphisms (mono and epi) and Isomorphisms
definition
hom :: "_ => _ => ('a => 'b) set" where
"hom G H =
{h. h \in carrier G }->\mathrm{ carrier H ^

```

```

lemma homI:
"\llbracket\x. x \in carrier G \Longrightarrow h x \in carrier H;
\x y. \llbracketx \in carrier G; y \in carrier G\rrbracket\Longrightarrow h (x \otimesG y) = h x \otimes | h y y\rrbracket
h G hom G H"
by (auto simp: hom_def)
lemma hom_carrier: "h f hom G H \Longrightarrow h ' carrier G \subseteq carrier H"
by (auto simp: hom_def)
lemma hom_in_carrier: "\llbracketh \in hom G H; x \in carrier G\rrbracket \Longrightarrow h x \in carrier
H"
by (auto simp: hom_def)
lemma hom_compose:
"\llbracketf \in hom G H; g \in hom H I \rrbracket \Longrightarrowg of f hom G I"
unfolding hom_def by (auto simp add: Pi_iff)
lemma (in group) hom_restrict:
assumes "h \in hom G H" and "\g. g \in carrier G \Longrightarrow h g = t g" shows
"t \in hom G H"
using assms unfolding hom_def by (auto simp add: Pi_iff)
lemma (in group) hom_compose:
"[|h G hom G H; i \in hom H I|] ==> compose (carrier G) i h \in hom G I"
by (fastforce simp add: hom_def compose_def)
lemma (in group) restrict_hom_iff [simp]:
"(\lambdax. if x \in carrier G then f x else g x) \in hom G H}\longleftrightarrowf\in hom G H"
by (simp add: hom_def Pi_iff)
definition iso :: "_ => _ => ('a => 'b) set"
where "iso G H = {h. h \in hom G H ^ bij_betw h (carrier G) (carrier
H)}"
definition is_iso :: "_ \# _ \# bool" (infixr "\cong" 60)
where "G \congH=(iso G H f {})"
definition mon where "mon G H = {f \in hom G H. inj_on f (carrier G)}"
definition epi where "epi G H = {f \in hom G H. f ' (carrier G) = carrier
H}"

```
```

lemma isoI:
"\llbracketh \in hom G H; bij_betw h (carrier G) (carrier H)\rrbracket \Longrightarrow h \in iso G H"
by (auto simp: iso_def)
lemma is_isoI: "h \in iso G H \LongrightarrowCG\cong H"
using is_iso_def by auto
lemma epi_iff_subset:
"f}\ine\mp@code{epi G G' \longleftrightarrowf \in hom G G' ^ carrier G' }\subseteqf('carrier G"
by (auto simp: epi_def hom_def)
lemma iso_iff_mon_epi: "f \in iso G H \longleftrightarrow f \in mon G H ^f f epi G H"
by (auto simp: iso_def mon_def epi_def bij_betw_def)
lemma iso_set_refl: "(\lambdax. x) \in iso G G"
by (simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)
lemma id_iso: "id \in iso G G"
by (simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)
corollary iso_refl [simp]: "G\cong G"
using iso_set_refl unfolding is_iso_def by auto
lemma iso_iff:
"h iso G H \longleftrightarrow h f hom G H ^ h' (carrier G) = carrier H ^ inj_on
h (carrier G)"
by (auto simp: iso_def hom_def bij_betw_def)
lemma iso_imp_homomorphism:
"h }\in\mathrm{ iso G H }\Longrightarrow\textrm{h}\in\mathrm{ hom G H"
by (simp add: iso_iff)
lemma trivial_hom:
"group H \Longrightarrow (}\lambda\textrm{x}\mathrm{ . one H) G hom G H"
by (auto simp: hom_def Group.group_def)
lemma (in group) hom_eq:
assumes "f \in hom G H" "\x. x \in carrier G \Longrightarrow f' x = f x"
shows "f' \in hom G H"
using assms by (auto simp: hom_def)
lemma (in group) iso_eq:
assumes "f \in iso G H" "\x. x \in carrier G \Longrightarrow f' x = f x"
shows "f' \in iso G H"
using assms by (fastforce simp: iso_def inj_on_def bij_betw_def hom_eq
image_iff)
lemma (in group) iso_set_sym:
assumes "h \in iso G H"

```
```

 shows "inv_into (carrier G) h \in iso H G"
 proof -
have h: "h \in hom G H" "bij_betw h (carrier G) (carrier H)"
using assms by (auto simp add: iso_def bij_betw_inv_into)
then have HG: "bij_betw (inv_into (carrier G) h) (carrier H) (carrier
G)"
by (simp add: bij_betw_inv_into)
have "inv_into (carrier G) h \in hom H G"
unfolding hom_def
proof safe
show *: "\x. x \in carrier H \Longrightarrow inv_into (carrier G) h x \in carrier
G"
by (meson HG bij_betwE)
show "inv_into (carrier G) h (x }\mp@subsup{\otimes}{\textrm{H}}{}\textrm{y}\mathrm{) = inv_into (carrier G) h x
\otimes inv_into (carrier G) h y"
if "x carrier H" "y f carrier H" for x y
proof (rule inv_into_f_eq)
show "inj_on h (carrier G)"
using bij_betw_def h(2) by blast
show "inv_into (carrier G) h x \& inv_into (carrier G) h y f carrier
G"
by (simp add: * that)
show "h (inv_into (carrier G) h x \otimes inv_into (carrier G) h y) =
x \otimesH y"
using h bij_betw_inv_into_right [of h] unfolding hom_def by (simp
add: "*" that)
qed
qed
then show ?thesis
by (simp add: Group.iso_def bij_betw_inv_into h)
qed
corollary (in group) iso_sym: "G }\congH\LongrightarrowH\congG
using iso_set_sym unfolding is_iso_def by auto
lemma iso_set_trans:
"\llbracketh \in Group.iso G H; i \in Group.iso H I\rrbracket \Longrightarrow i ○ h \in Group.iso G I"
by (force simp: iso_def hom_compose intro: bij_betw_trans)
corollary iso_trans [trans]: "\llbracketG\cong H ; H\cong I\rrbracket\LongrightarrowG\cong I"
using iso_set_trans unfolding is_iso_def by blast
lemma iso_same_card: "G \cong H \Longrightarrow card (carrier G) = card (carrier H)"
using bij_betw_same_card unfolding is_iso_def iso_def by auto
lemma iso_finite: "G\cong H \Longrightarrow finite(carrier G) \longleftrightarrow finite(carrier H)"
by (auto simp: is_iso_def iso_def bij_betw_finite)
lemma mon_compose:

```
```

 "\llbracketf\inmon G H; g \in mon H K\rrbracket\Longrightarrow (g o f) \in mon G K"
 by (auto simp: mon_def intro: hom_compose comp_inj_on inj_on_subset
 [OF _ hom_carrier])
lemma mon_compose_rev:
"\llbracketf \in hom G H; g \in hom H K; (g o f) \in mon G K\rrbracket \Longrightarrowf f mon G H"
using inj_on_imageI2 by (auto simp: mon_def)
lemma epi_compose:
"\llbracketf \in epi G H; g \in epi H K\rrbracket\Longrightarrow (g o f) \in epi G K"
using hom_compose by (force simp: epi_def hom_compose simp flip: image_image)
lemma epi_compose_rev:
"\llbracketf \in hom G H; g \in hom H K; (g o f) \in epi G K\rrbracket \Longrightarrowg g e epi H K"
by (fastforce simp: epi_def hom_def Pi_iff image_def set_eq_iff)
lemma iso_compose_rev:
"\llbracketf\inhom G H; g \in hom H K; (g O f) f iso G K\rrbracket\Longrightarrowf\inmon G H ^ g
\epsilon epi H K"
unfolding iso_iff_mon_epi using mon_compose_rev epi_compose_rev by blast
lemma epi_iso_compose_rev:
assumes "f \in epi G H" "g \in hom H K" "(g o f) \in iso G K"
shows "f \in iso G H }\wedge\textrm{g}\in\mathrm{ iso H K"
proof
show "f \in iso G H"
by (metis (no_types, lifting) assms epi_def iso_compose_rev iso_iff_mon_epi
mem_Collect_eq)
then have "f \in hom G H ^ bij_betw f (carrier G) (carrier H)"
using Group.iso_def <f \in Group.iso G H> by blast
then have "bij_betw g (carrier H) (carrier K)"
using Group.iso_def assms(3) bij_betw_comp_iff by blast
then show "g \in iso H K"
using Group.iso_def assms(2) by blast
qed
lemma mon_left_invertible:
"\llbracketf \in hom G H; \x. x \in carrier G \Longrightarrowg(f x) = x\rrbracket \Longrightarrow f f mon G H"
by (simp add: mon_def inj_on_def) metis
lemma epi_right_invertible:
"\llbracketg \in hom H G; f \in carrier G }->\mathrm{ carrier H; \x. x }\in\mathrm{ carrier G }\Longrightarrow\textrm{g}(\textrm{f
x) = x\rrbracket \Longrightarrowg g epi H G"
by (force simp: Pi_iff epi_iff_subset image_subset_iff_funcset subset_iff)
lemma (in monoid) hom_imp_img_monoid:
assumes "h \in hom G H"
shows "monoid (H | carrier := h ' (carrier G), one := h 1 (|)" (is "monoid
?h_img")

```
```

proof (rule monoidI)
show "1?h_img \in carrier ?h_img"
by auto
next
fix x y z assume "x \in carrier ?h_img" "y \in carrier ?h_img" "z \in carrier
?h_img"
then obtain g1 g2 g3
where g1: "g1 \in carrier $G "$ " $\mathrm{x}=\mathrm{h}$ g1"
and g2: "g2 \in carrier G" "y = h g2"
and g3: "g3 \in carrier G" "z = h g3"
using image_iff[where ?f = h and ?A = "carrier G"] by auto
have aux_lemma:

```

```

$(a \otimes b) "$
using assms unfolding hom_def by auto
show "x $\otimes_{\left(? h _i m g\right)} \mathbf{1}_{\left(? h_{-} \text {img) }\right)}=x "$
using aux_lemma[0F g1 (1) one_closed] g1(2) r_one[0F g1(1)] by simp
show "1 (?h_img) $\otimes_{\text {(?h_img) }} \mathrm{x}=\mathrm{x} "$
using aux_lemma[0F one_closed g1(1)] g1(2) l_one[OF g1(1)] by simp
have $" x \otimes\left(? h _i m g\right) \quad y=h(g 1 \otimes g 2) "$
using aux_lemma g1 g2 by auto
thus "x $\otimes_{(? h}$ img) $y \in$ carrier $? h_{\text {_img" }}$
using g1(1) g2(1) by simp
have $"\left(x \otimes\left(? h _i m g\right) y\right) \otimes\left(? h _i m g\right) z=h((g 1 \otimes g 2) \otimes g 3) "$
using aux_lemma g1 g2 g3 by auto
also have " $\ldots=\mathrm{h}(\mathrm{g} 1 \otimes(\mathrm{~g} 2 \otimes \mathrm{~g} 3)) \mathrm{l}$
using m_assoc[0F g1(1) g2(1) g3(1)] by simp
also have " $\ldots=x \otimes$ (?h_img) $\left(y \otimes\left(? h _i m g\right) z\right) "$
using aux_lemma g1 g2 g3 by auto
finally show " $\left(x \otimes_{\left(? h _i m g\right)} y\right) \otimes_{\left(? h _i m g\right)} z=x \otimes_{\left(? h _i m g\right)}\left(y \otimes_{\left(? h _i m g\right)}\right.$
z)" .
qed
lemma (in group) hom_imp_img_group:
assumes "h \in hom G H"
shows "group (H (carrier := h (carrier G), one := $\mathrm{h} \mathbf{1}_{\mathrm{G}}$ D)" (is "group
?h_img")
proof -
interpret monoid ?h_img
using hom_imp_img_monoid[OF assms] .
show ?thesis
proof (unfold_locales)
show "carrier ?h_img \subseteq Units ?h_img"
proof (auto simp add: Units_def)

```
```

 have aux_lemma:
 "\g1 g2. \llbracket g1 \in carrier G; g2 \in carrier G \rrbracket \Longrightarrow h g1 \otimes H h g2
 = h (g1 \otimesg2)"
using assms unfolding hom_def by auto
fix g1 assume g1: "g1 \in carrier G"

```

```

= h 1"
using aux_lemma[OF g1 inv_closed[OF g1]]
aux_lemma[OF inv_closed[OF g1] g1]
inv_closed by auto
qed
qed
qed
lemma (in group) iso_imp_group:
assumes "G \cong H" and "monoid H"
shows "group H"
proof -
obtain \varphi where phi: " }\varphi\in\mathrm{ iso G H" "inv_into (carrier G) }\varphi\in\mathrm{ iso H
G"
using iso_set_sym assms unfolding is_iso_def by blast
define \psi where psi_def: " }\psi=\mathrm{ inv_into (carrier G) }\varphi\mathrm{ "
have surj: " }\varphi\mathrm{ ' (carrier G) = (carrier H)" " % ' (carrier H) = (carrier
G)"
and inj: "inj_on \varphi (carrier G)" "inj_on \psi (carrier H)"
and phi_hom: "^g1 g2. \llbracketg1 \in carrier G; g2 \in carrier G\rrbracket \ \varphi (g1
\otimes g2) = (}\varphi\mathrm{ g1) * *H (}\varphi\textrm{g}2)
and psi_hom: "\h1 h2. \llbracketh1 \in carrier H; h2 \in carrier H\rrbracket \ \psi (h1

* (h2) = (}\psi\mathrm{ h1) \& (}\psi\textrm{h}2)
using phi psi_def unfolding iso_def bij_betw_def hom_def by auto
have phi_one: "\varphi 1 = 1_H"
proof -

```

```

 by (metis assms(2) image_eqI monoid.r_one one_closed phi_hom r_one
 surj(1))
thus ?thesis
by (metis (no_types, opaque_lifting) Units_eq Units_one_closed assms(2)
f_inv_into_f imageI
monoid.l_one monoid.one_closed phi_hom psi_def r_one surj)
qed
have "carrier H \subseteq Units H"
proof
fix h assume h: "h \in carrier H"
let ?inv_h = "\varphi (inv (}\psi\textrm{h}))
have "h }\mp@subsup{\otimes}{\textrm{H}}{}\mathrm{ ?inv_h = }\varphi(\psi\textrm{h})\mp@subsup{\otimes}{\textrm{H}}{

```
by (simp add: f_inv_into_f h psi_def surj(1))
also have " \(\ldots=\varphi((\psi \mathrm{h}) \otimes \operatorname{inv}(\psi \mathrm{h}))\) "
by (metis h imageI inv_closed phi_hom surj(2))
also have " ... = \(\varphi\) 1"
by (simp add: h inv_into_into psi_def surj(1))
finally have 1: "h \(\otimes_{H}\) ?inv_h \(=1_{H} "\)
using phi_one by simp
have "?inv_h \(\otimes_{\mathrm{H}} \mathrm{h}=\) ?inv_h \(\otimes_{\mathrm{H}} \varphi(\psi \mathrm{h})\) "
by (simp add: f_inv_into_f h psi_def surj(1))
also have "..\(=\varphi(\operatorname{inv}(\psi \mathrm{h}) \otimes(\psi \mathrm{h}))\) " by (metis h imageI inv_closed phi_hom surj(2))
also have " ... = \(\varphi\) 1"
by (simp add: h inv_into_into psi_def surj(1))
finally have 2 : "?inv_h \(\otimes_{H} h=1_{H}\) "
using phi_one by simp
thus "h Units H" unfolding Units_def using 12 h surj by fastforce qed
thus ?thesis unfolding group_def group_axioms_def using assms(2) by simp
qed
corollary (in group) iso_imp_img_group:
assumes "h iso G H"
shows "group (H ( one := h 1 ))"
proof -
let ?h_img = "H ( carrier \(:=h\) ' (carrier G), one := h 1 )"
have "h \(\in\) iso \(G\) ?h_img"
using assms unfolding iso_def hom_def bij_betw_def by auto
hence " \(\mathrm{G} \cong\) ?h_img"
unfolding is_iso_def by auto
hence "group ?h_img"
using iso_imp_group [of ?h_img] hom_imp_img_monoid[of h H] assms un-
folding iso_def by simp
moreover have "carrier H = carrier ?h_img"
using assms unfolding iso_def bij_betw_def by simp
hence "H ( one := h 1 ) = ?h_img"
by simp
ultimately show ?thesis by simp
qed

\subsection*{6.8.1 HOL Light's concept of an isomorphism pair}
definition group_isomorphisms
where
"group_isomorphisms G H f g \(\equiv\) \(f \in \operatorname{hom} G H \wedge g \in\) hom \(H\) G \(\wedge\)
\((\forall \mathrm{x} \in\) carrier \(\mathrm{G} . \mathrm{g}(\mathrm{f} \mathrm{x})=\mathrm{x}) \wedge\)
\[
(\forall \mathrm{y} \in \operatorname{carrier} \mathrm{H} . \mathrm{f}(\mathrm{~g} \mathrm{y})=\mathrm{y}) "
\]
lemma group_isomorphisms_sym: "group_isomorphisms G H f g \(\Longrightarrow\) group_isomorphisms H G g f"
by (auto simp: group_isomorphisms_def)
```

lemma group_isomorphisms_imp_iso: "group_isomorphisms G H f g \Longrightarrow f \in
iso G H"
by (auto simp: iso_def inj_on_def image_def group_isomorphisms_def hom_def
bij_betw_def Pi_iff, metis+)
lemma (in group) iso_iff_group_isomorphisms:
"f \in iso G H \longleftrightarrow(قg. group_isomorphisms G H f g)"
proof safe
show "\existsg. group_isomorphisms G H f g" if "f \in Group.iso G H"
unfolding group_isomorphisms_def
proof (intro exI conjI)
let ?g = "inv_into (carrier G) f"
show "\forallx\incarrier G. ?g (f x) = x"
by (metis (no_types, lifting) Group.iso_def bij_betw_inv_into_left
mem_Collect_eq that)
show "\forally\incarrier H. f (?g y) = y"
by (metis (no_types, lifting) Group.iso_def bij_betw_inv_into_right
mem_Collect_eq that)
qed (use Group.iso_def iso_set_sym that in <blast+>)
next
fix g
assume "group_isomorphisms G H f g"
then show "f \in Group.iso G H"
by (auto simp: iso_def group_isomorphisms_def hom_in_carrier intro:
bij_betw_byWitness)
qed

```

\subsection*{6.8.2 Involving direct products}
```

lemma DirProd_commute_iso_set:
shows "(\lambda(x,y). (y,x)) \in iso (G }\times\times\textrm{H}\mathrm{) (H }\times\times\textrm{C
by (auto simp add: iso_def hom_def inj_on_def bij_betw_def)
corollary DirProd_commute_iso :
"(G }\times\times~H)\cong(H\timesNG)
using DirProd_commute_iso_set unfolding is_iso_def by blast
lemma DirProd_assoc_iso_set:

```

```

by (auto simp add: iso_def hom_def inj_on_def bij_betw_def)
lemma (in group) DirProd_iso_set_trans:
assumes "g \in iso G G2"

```
and "h iso H I"
shows " \((\lambda(\mathrm{x}, \mathrm{y})\). ( \(\mathrm{g} \mathrm{x}, \mathrm{h} \mathrm{y})) \in\) iso ( \(\mathrm{G} \times \mathrm{H}\) ) (G2 \(\times \times \mathrm{I}\) )"
proof-
have " \((\lambda(\mathrm{x}, \mathrm{y}) .(\mathrm{g} \mathrm{x}, \mathrm{h} \mathrm{y})) \in \operatorname{hom}(\mathrm{G} \times \times \mathrm{H})(\mathrm{G} 2 \times \times \mathrm{I})\) " using assms unfolding iso_def hom_def by auto
moreover have " inj_on ( \(\lambda(\mathrm{x}, \mathrm{y})\). ( \(\mathrm{g} \mathrm{x}, \mathrm{h} y)\) ) (carrier ( \(\mathrm{G} \times \times \mathrm{H}\) ))"
using assms unfolding iso_def DirProd_def bij_betw_def inj_on_def by auto
moreover have " \((\lambda(\mathrm{x}, \mathrm{y})\). ( \(\mathrm{g} \mathrm{x}, \mathrm{h} y)\) ) ' carrier \((\mathrm{G} \times \times \mathrm{H})=\) carrier (G2 \(\times \times\) I)"
using assms unfolding iso_def bij_betw_def image_def DirProd_def by fastforce
ultimately show \("(\lambda(x, y)\). ( \(\mathrm{g} x, \mathrm{~h} y)) \in\) iso ( \(\mathrm{G} \times \mathrm{H}\) ) ( \(\mathrm{G} 2 \times \times \mathrm{I}\) )" unfolding iso_def bij_betw_def by auto
qed
corollary (in group) DirProd_iso_trans :
assumes " \(\mathrm{G} \cong \mathrm{G} 2\) " and "H \(\cong \mathrm{I}\) "
shows "G \(\times \times \mathrm{H} \cong \mathrm{G} 2 \times \times \mathrm{I}\) "
using DirProd_iso_set_trans assms unfolding is_iso_def by blast
lemma hom_pairwise: "f \(\in\) hom \(G\) (DirProd H K) \(\longleftrightarrow\) (fst \(\circ\) f) \(\in\) hom G H
\(\wedge\) (snd \(\circ\) f) \(\in\) hom G K"
apply (auto simp: hom_def mult_DirProd' dest: Pi_mem)
apply (metis Product_Type.mem_Times_iff comp_eq_dest_lhs funcset_mem)
by (metis mult_DirProd prod.collapse)
lemma hom_paired:
" \((\lambda \mathrm{x} .(\mathrm{f} \mathrm{x}, \mathrm{g} \mathrm{x})) \in \operatorname{hom} \mathrm{G}(\operatorname{DirProd} H \mathrm{~K}) \longleftrightarrow \mathrm{f} \in \operatorname{hom} G H \wedge \mathrm{~g} \in\) hom
G K"
by (simp add: hom_pairwise o_def)
lemma hom_paired2:
assumes "group G" "group H"
shows " \(\left(\lambda(x, y)\right.\). (f \(x, g\) y)) \(\in\) hom (DirProd G H) (DirProd G' \(\left.H^{\prime}\right) \longleftrightarrow\)
\(f \in \operatorname{hom} G G^{\prime} \wedge g \in\) hom \(H^{\prime}{ }^{\prime \prime}\)
using assms
by (fastforce simp: hom_def Pi_def dest!: group.is_monoid)
lemma iso_paired2:
assumes "group G" "group H"
shows " \((\lambda(\mathrm{x}, \mathrm{y})\). (f \(\mathrm{x}, \mathrm{g} \mathrm{y})) \in\) iso (DirProd G H) (DirProd G' H') \(\longleftrightarrow\)
\(f \in\) iso \(G G^{\prime} \wedge g \in\) iso \(H H^{\prime \prime}\)
using assms
by (fastforce simp add: iso_def inj_on_def bij_betw_def hom_paired2
image_paired_Times times_eq_iff group_def monoid.carrier_not_empty)
lemma hom_of_fst:
```

 assumes "group H"
 shows "(f o fst) \in hom (DirProd G H) K \longleftrightarrow f \in hom G K"
 proof -
interpret group H
by (rule assms)
show ?thesis
using one_closed by (auto simp: hom_def Pi_def)
qed
lemma hom_of_snd:
assumes "group G"
shows "(f o snd) \in hom (DirProd G H) K \longleftrightarrow f \in hom H K"
proof -
interpret group G
by (rule assms)
show ?thesis
using one_closed by (auto simp: hom_def Pi_def)
qed

```

\subsection*{6.9 The locale for a homomorphism between two groups}

Basis for homomorphism proofs: we assume two groups G and H, with a homomorphism \(h\) between them
locale group_hom \(=\) G?: group G + H?: group H for G (structure) and H (structure) \(+\)
fixes \(h\)
assumes homh [simp]: "h \(\in\) hom G H"
declare group_hom.homh [simp]
lemma (in group_hom) hom_mult [simp]:
" [| x \(\in\) carrier \(G ; y \in\) carrier \(G \mid]=\Rightarrow h\left(x \otimes_{G} y\right)=h x \otimes_{H} h y "\) proof -
assume "x \(\in\) carrier \(G "\) "y \(\in\) carrier \(G "\)
with homh [unfolded hom_def] show ?thesis by simp
qed
lemma (in group_hom) hom_closed [simp]:
" \(\mathrm{x} \in\) carrier \(\mathrm{G}==>\mathrm{h} x \in\) carrier \(\mathrm{H} "\)
proof -
assume "x \(\in\) carrier G"
with homh [unfolded hom_def] show ?thesis by auto qed
lemma (in group_hom) one_closed: "h 1 e carrier H" by \(\operatorname{simp}\)
lemma (in group_hom) hom_one [simp]: "h \(1=1_{H}\) "
proof -
```

 have "h 1 \otimes | 1 1H
 by (simp add: hom_mult [symmetric] del: hom_mult)
 then show ?thesis
 by (metis H.Units_eq H.Units_l_cancel H.one_closed local.one_closed)
 qed
lemma hom_one:
assumes "h \in hom G H" "group G" "group H"
shows "h (one G) = one H"
apply (rule group_hom.hom_one)
by (simp add: assms group_hom_axioms_def group_hom_def)
lemma hom_mult:
"\llbracketh \in hom G H; x \in carrier G; y \in carrier G\rrbracket \Longrightarrow h (x * G y) = h x * |
h y"
by (auto simp: hom_def)
lemma (in group_hom) inv_closed [simp]:
"x \in carrier G ==> h (inv x) \in carrier H"
by simp
lemma (in group_hom) hom_inv [simp]:
assumes "x f carrier G" shows "h (inv x) = inv (h x)"
proof -
have "h x * \# h (inv x) = h x * \# inve (h x)"
using assms by (simp flip: hom_mult)
with assms show ?thesis by (simp del: H.r_inv H.Units_r_inv)
qed
lemma (in group) int_pow_is_hom:
"x \in carrier G \Longrightarrow (([^]) x) \in hom (carrier = UNIV, mult = (+), one
= 0::int D G "
unfolding hom_def by (simp add: int_pow_mult)
lemma (in group_hom) img_is_subgroup: "subgroup (h ' (carrier G)) H"
apply (rule subgroupI)
apply (auto simp add: image_subsetI)
apply (metis G.inv_closed hom_inv image_iff)
by (metis G.monoid_axioms hom_mult image_eqI monoid.m_closed)
lemma (in group_hom) subgroup_img_is_subgroup:
assumes "subgroup I G"
shows "subgroup (h ' I) H"
proof -
have "h \in hom (G (carrier := I |) H"
using G.subgroupE[OF assms] subgroup.mem_carrier[OF assms] homh
unfolding hom_def by auto
hence "group_hom (G (carrier := I D) H h"

```
```

 using subgroup.subgroup_is_group[OF assms G.is_group] is_group
 unfolding group_hom_def group_hom_axioms_def by simp
 thus ?thesis
 using group_hom.img_is_subgroup[of "G (carrier := I |" H h] by simp
 qed
lemma (in subgroup) iso_subgroup:
assumes "group G" "group F"
assumes "\varphi\in iso G F"
shows "subgroup (\varphi ' H) F"
by (metis assms Group.iso_iff group_hom.intro group_hom_axioms_def group_hom.subgroup_img
subgroup_axioms)
lemma (in group_hom) induced_group_hom:
assumes "subgroup I G"
shows "group_hom (G | carrier := I D) (H | carrier := h ' I D) h"
proof -
have "h \in hom (G \ carrier := I D) (H | carrier := h ' I D)"
using homh subgroup.mem_carrier[OF assms] unfolding hom_def by auto
thus ?thesis
unfolding group_hom_def group_hom_axioms_def
using subgroup.subgroup_is_group[OF assms G.is_group]
subgroup.subgroup_is_group[OF subgroup_img_is_subgroup[OF assms]
is_group] by simp
qed

```

An isomorphism restricts to an isomorphism of subgroups.

\section*{lemma iso_restrict:}
assumes " \(\varphi \in\) iso G F"
assumes groups: "group G" "group F"
assumes HG: "subgroup H G"
shows " (restrict \(\varphi \mathrm{H}\) ) \(\in\) iso ( \(\mathrm{G}(\) carrier \(:=\mathrm{H} \mid)\) ) (F(carrier := \(\left.\varphi^{\text {' }} \mathrm{H} \mid\right)\) )"
proof -
have " \(\wedge \mathrm{x} y . \llbracket \mathrm{x} \in \mathrm{H} ; \mathrm{y} \in \mathrm{H} ; \mathrm{x} \otimes_{\mathrm{G}} \mathrm{y} \in \mathrm{H} \rrbracket \Longrightarrow \varphi\left(\mathrm{x} \otimes_{\mathrm{G}} \mathrm{y}\right)=\varphi \mathrm{x} \otimes_{\mathrm{F}} \varphi\)
y"
by (meson assms hom_mult iso_imp_homomorphism subgroup.mem_carrier)
moreover have " \(\bigwedge \mathrm{x} \mathrm{y} . \llbracket \mathrm{x} \in \mathrm{H} ; \mathrm{y} \in \mathrm{H} ; \mathrm{x} \otimes_{\mathrm{G}} \mathrm{y} \notin \mathrm{H} \rrbracket \Longrightarrow \varphi \mathrm{x} \otimes_{\mathrm{F}} \varphi \mathrm{y}=\)
undefined"
by (simp add: HG subgroup.m_closed)
moreover have " \(\wedge \mathrm{x}\) y. \(\llbracket \mathrm{x} \in \mathrm{H} ; \mathrm{y} \in \mathrm{H} ; \varphi \mathrm{x}=\varphi \mathrm{y} \rrbracket \Longrightarrow \mathrm{x}=\mathrm{y}\) "
by (smt (verit, ccfv_SIG) assms group.iso_iff_group_isomorphisms group_isomorphisms_def
subgroup.mem_carrier)
ultimately show ?thesis
by (auto simp: iso_def hom_def bij_betw_def inj_on_def)
qed
lemma (in group) canonical_inj_is_hom:
assumes "subgroup H G"
shows "group_hom (G | carrier := H |) G id"
unfolding group_hom_def group_hom_axioms_def hom_def
using subgroup. subgroup_is_group[0F assms is_group]
is_group subgroup.subset[0F assms] by auto
lemma (in group_hom) hom_nat_pow:
"x \(\in \operatorname{carrier~} G \Longrightarrow h(x[\uparrow](n:: n a t))=(h x)[\wedge]_{H} n "\)
by (induction n ) auto
lemma (in group_hom) hom_int_pow:
"x \(\in \operatorname{carrier~} G \Longrightarrow h(x[\wedge](n:: i n t))=(h x)\left[{ }^{\wedge}\right]_{H} n "\)
using hom_nat_pow by (simp add: int_pow_def2)
lemma hom_nat_pow:
\(" \llbracket h \in \operatorname{hom~G~H;~x~} \in\) carrier \(G\); group \(G\); group \(H \rrbracket \Longrightarrow h\left(x[\wedge]_{G}\right.\) (n : : nat) \()=(h x)\left[{ }^{\wedge}\right]_{H} n^{\prime \prime}\)
by (simp add: group_hom.hom_nat_pow group_hom_axioms_def group_hom_def)
lemma hom_int_pow:
\(" \llbracket h \in \operatorname{hom} G H ; x \in\) carrier \(G\); group \(G\); group \(H \rrbracket \Longrightarrow h\left(x[\wedge]_{G}\right.\) (n : :
int) \(\left.)=(\mathrm{h} x){ }^{\wedge}\right]_{\mathrm{H}} \mathrm{n}^{\prime \prime}\)
by (simp add: group_hom.hom_int_pow group_hom_axioms.intro group_hom_def)

\subsection*{6.10 Commutative Structures}

Naming convention: multiplicative structures that are commutative are called commutative, additive structures are called Abelian.
```

locale comm_monoid = monoid +
assumes m_comm: " $\llbracket \mathrm{x} \in$ carrier $\mathrm{G} ; \mathrm{y} \in \operatorname{carrier} \mathrm{G} \rrbracket \Longrightarrow \mathrm{x} \otimes \mathrm{y}=\mathrm{y} \otimes \mathrm{x}$ "
lemma (in comm_monoid) m_lcomm:
" $\llbracket \mathrm{x} \in$ carrier $G ; y \in \operatorname{carrier~} G ; z \in$ carrier $G \rrbracket \Longrightarrow$
$x \otimes(y \otimes z)=y \otimes(x \otimes z) "$
proof -
assume xyz: "x \in carrier $G " ~ " y \in \operatorname{carrier~G"~"z~} \in$ carrier $G "$
from xyz have $" x \otimes(y \otimes z)=(x \otimes y) \otimes z "$ by (simp add: m_assoc)
also from xyz have $" . . .=(y \otimes x) \otimes z "$ by (simp add: m_comm)
also from xyz have $" . .=y \otimes(x \otimes z) "$ by (simp add: m_assoc)
finally show ?thesis.
qed
lemmas (in comm_monoid) m_ac = m_assoc m_comm m_lcomm
lemma comm_monoidI:
fixes G (structure)
assumes m_closed:
"!!x y. [| x \in carrier $G ; y \in \operatorname{carrier~G~l]~}==>x \otimes y \in$ carrier
G"
and one_closed: "1 \in carrier G"
and m_assoc:

```
```

 "!!x y z. [| x \in carrier G; y \in carrier G; z \in carrier G |] ==>
 (x & y) \otimes z = x \otimes (y \otimes z)"
 and l_one: "!!x. x \in carrier G ==> 1 \otimes x = x"
 and m_comm:
 "!!x y. [| x \in carrier G; y \in carrier G |] ==> x \otimes y = y \otimes x"
 shows "comm_monoid G"
 using l_one
 by (auto intro!: comm_monoid.intro comm_monoid_axioms.intro monoid.intro
 intro: assms simp: m_closed one_closed m_comm)
 lemma (in monoid) monoid_comm_monoidI:
assumes m_comm:
"!!x y. [l x \in carrier G; y \in carrier G |] ==> x \otimes y = y \otimes x"
shows "comm_monoid G"
by (rule comm_monoidI) (auto intro: m_assoc m_comm)
lemma (in comm_monoid) submonoid_is_comm_monoid :
assumes "submonoid H G"
shows "comm_monoid (G(|carrier := H|)"
proof (intro monoid.monoid_comm_monoidI)
show "monoid (G(carrier := H|)"
using submonoid.submonoid_is_monoid assms comm_monoid_axioms comm_monoid_def
by blast
show "\x y. x \in carrier (G(|carrier := H|) \Longrightarrow y \in carrier (G(carrier
:= H())
\Longrightarrowx *
by simp (meson assms m_comm submonoid.mem_carrier)
qed
locale comm_group = comm_monoid + group
lemma (in group) group_comm_groupI:
assumes m_comm: "!!x y. [l x \in carrier G; y \in carrier G |] ==> x \otimes
y = y \otimes x"
shows "comm_group G"
by standard (simp_all add: m_comm)
lemma comm_groupI:
fixes G (structure)
assumes m_closed:
"!!x y. [| x \in carrier G; y \in carrier G |] ==> x \otimes y \in carrier
G"
and one_closed: "1 \in carrier G"
and m_assoc:
"!!x y z. [| x \in carrier G; y \in carrier G; z \in carrier G l] ==>
(x \otimes y) \otimes z = x \otimes (y \otimes z)"
and m_comm:
"!!x y. [| x \in carrier G; y \in carrier G |] ==> x \otimes y = y \otimes x"
and l_one: "!!x. x \in carrier G ==> 1 \otimes x = x"

```
```

 and l_inv_ex: "!!x. x \in carrier G ==> \existsy \in carrier G. y \otimes x = 1"
 shows "comm_group G"
 by (fast intro: group.group_comm_groupI groupI assms)
 lemma comm_groupE:
fixes G (structure)
assumes "comm_group G"
shows "\x y. \llbracketx f carrier G; y \in carrier G \rrbracket\Longrightarrow x \# y f carrier
G"
and "1 \in carrier G"
and "\x y z.\llbracketx f carrier G; y \in carrier G; z \in carrier G \ \Longrightarrow
(x \otimes y) \otimes z = x \otimes (y \otimes z)"
and "\x y. \llbracketx \in carrier G; y \in carrier G \rrbracket \Longrightarrow x \otimes y = y \otimes x"
and "\x. x \in carrier G }\Longrightarrow1\otimes\textrm{x}=\textrm{x
and "^x. x \in carrier G \Longrightarrow \existsy f carrier G. y \otimes x = 1"
apply (simp_all add: group.axioms assms comm_group.axioms comm_monoid.m_comm
comm_monoid.m_ac(1))
by (simp_all add: Group.group.axioms(1) assms comm_group.axioms(2) monoid.m_closed
group.r_inv_ex)
lemma (in comm_group) inv_mult:
"[| x \in carrier G; y \in carrier G l] ==> inv (x \otimes y) = inv x \otimes inv y"
by (simp add: m_ac inv_mult_group)
lemma (in comm_monoid) nat_pow_distrib:
fixes n::nat
assumes "x \in carrier G" "y \in carrier G"
shows "(x \otimes y) [^] n = x [^] n \otimes y [^] n"
by (simp add: assms pow_mult_distrib m_comm)
lemma (in comm_group) int_pow_distrib:
assumes "x \in carrier G" "y \in carrier G"
shows "(x \otimes y) [^] (i::int) = x [^] i \otimes y [^] i"
by (simp add: assms int_pow_mult_distrib m_comm)
lemma (in comm_monoid) hom_imp_img_comm_monoid:
assumes "h \in hom G H"
shows "comm_monoid (H | carrier := h ' (carrier G), one := h 1 ())"
(is "comm_monoid ?h_img")
proof (rule monoid.monoid_comm_monoidI)
show "monoid ?h_img"
using hom_imp_img_monoid[OF assms] .
next
fix x y assume "x \in carrier ?h_img" "y \in carrier ?h_img"
then obtain g1 g2
where g1: "g1 \in carrier G" "x = h g1"
and g2: "g2 \in carrier G" "y = h g2"
by auto
have "x\otimes(?h_img) y = h (g1 \otimes g2)"

```
using g1 g2 assms unfolding hom_def by auto
also have " \(\ldots=\mathrm{h}(\mathrm{g} 2 \otimes \mathrm{~g} 1) \mathrm{l}\)
using m_comm[0F g1(1) g2(1)] by simp
also have " ... = y \(\otimes_{\left(? h \_i m g\right)} x "\)
using g1 g2 assms unfolding hom_def by auto
finally show \(" x \otimes_{\left(? h \_i m g\right)} y=y \otimes_{\left(? h \_i m g\right)} x "\).
qed
lemma (in comm_group) hom_group_mult: assumes \(" f \in\) hom \(H\) G" "g \(\in\) hom H G" shows " \(\left(\lambda \mathrm{x} . \mathrm{f} \mathrm{x} \otimes_{\mathrm{G}} \mathrm{g} \mathrm{x}\right) \in\) hom H G"
using assms by (auto simp: hom_def Pi_def m_ac)
lemma (in comm_group) hom_imp_img_comm_group:
assumes "h \(\in\) hom G H"
shows "comm_group (H ( carrier := h ' (carrier G), one := h \(\mathbf{1}_{\mathrm{G}}\) |)" "
unfolding comm_group_def
using hom_imp_img_group[OF assms] hom_imp_img_comm_monoid[OF assms]
by simp
lemma (in comm_group) iso_imp_img_comm_group:
assumes "h \(\in\) iso G H"
shows "comm_group (H ( one := h \(\mathbf{1}_{\mathrm{G}}\) D)"
proof -
let ?h_img = "H ( carrier := h (carrier G), one := h 1 )"
have "comm_group ?h_img"
using hom_imp_img_comm_group[of h H] assms unfolding iso_def by auto
moreover have "carrier H = carrier ?h_img"
using assms unfolding iso_def bij_betw_def by simp
hence "H ( one := h 1 ) = ?h_img"
by simp
ultimately show ?thesis by simp
qed
lemma (in comm_group) iso_imp_comm_group:
assumes " \(\mathrm{G} \cong \mathrm{H}\) " "monoid H "
shows "comm_group H"
proof -
obtain \(h\) where \(h\) : "h iso G H"
using assms(1) unfolding is_iso_def by auto
hence comm_gr: "comm_group (H ( one := h 1 ))"
using iso_imp_img_comm_group [of h H] by simp
hence " \(\bigwedge \mathrm{x} . \mathrm{x} \in\) carrier \(\mathrm{H} \Longrightarrow \mathrm{h} 1 \otimes_{\mathrm{H}} \mathrm{x}=\mathrm{x}\) "
using monoid.l_one[of "H ( one := h 1 )"] unfolding comm_group_def
comm_monoid_def by simp
moreover have "h \(1 \in\) carrier \(H\) "
using h one_closed unfolding iso_def hom_def by auto
ultimately have "h \(1=1_{H}\) "
using monoid.one_unique[0F assms(2), of "h 1"] by simp
```

 hence "H = H (| one := h 1 |)"
 by simp
 thus ?thesis
 using comm_gr by simp
 qed
lemma (in group) incl_subgroup:
assumes "subgroup J G"
and "subgroup I (G(carrier:=J))"
shows "subgroup I G" unfolding subgroup_def
proof
have H1: "I \subseteq carrier (G(carrier:=J))" using assms(2) subgroup.subset
by blast
also have H2: "...\subseteqJ" by simp
also have "...\subseteq(carrier G)" by (simp add: assms(1) subgroup.subset)
finally have H: "I \subseteq carrier G" by simp
have "(\x y. \llbracketx G I ; y \in I\rrbracket \Longrightarrow x \otimes y f I)" using assms(2) by (auto
simp add: subgroup_def)
thus "I\subseteq carrier G ^(\forallx y. x }\in\textrm{I}\longrightarrow\textrm{y}\in\textrm{I}\longrightarrow\textrm{x}\otimes\textrm{y}\in\textrm{I})"\mathrm{ us-
ing H by blast
have K: "1 \in I" using assms(2) by (auto simp add: subgroup_def)
have "(\bigwedgex. x \in I \Longrightarrow inv x \in I)" using assms subgroup.m_inv_closed
H
by (metis H1 H2 m_inv_consistent subsetCE)
thus "1 \in I ^ (}\forall\textrm{x}.\textrm{x}\in\textrm{I}\longrightarrow\mathrm{ inv x G I)" using K by blast
qed
lemma (in group) subgroup_incl:
assumes "subgroup I G" and "subgroup J G" and "I \subseteq J"
shows "subgroup I (G (carrier := J D)"
using group.group_incl_imp_subgroup[of "G (carrier := J D)" I]
assms(1-2)[THEN subgroup.subgroup_is_group[OF _ group_axioms]]
assms(3) by auto

```

\subsection*{6.11 The Lattice of Subgroups of a Group}
```

theorem (in group) subgroups_partial_order:
"partial_order (carrier = {H. subgroup H G}, eq = (=), le = (\subseteq)|"
by standard simp_all
lemma (in group) subgroup_self:
"subgroup (carrier G) G"
by (rule subgroupI) auto
lemma (in group) subgroup_imp_group:
"subgroup H G ==> group (G(|carrier := H|)"
by (erule subgroup.subgroup_is_group) (rule group_axioms)

```
```

lemma (in group) subgroup_mult_equality:
"\llbracket subgroup H G; h1 \inH; h2 \inH \ \Longrightarrow h1 * | (carrier := H | h2 = h1
\& h2"
unfolding subgroup_def by simp
theorem (in group) subgroups_Inter:
assumes subgr: "(\H. H \in A \Longrightarrow subgroup H G)"
and not_empty: "A \not= {}"
shows "subgroup (\bigcapA) G"
proof (rule subgroupI)
from subgr [THEN subgroup.subset] and not_empty
show "\bigcapA\subseteq carrier G" by blast
next
from subgr [THEN subgroup.one_closed]
show "\bigcapA \not= {}" by blast
next
fix x assume "x }\in\bigcap\{
with subgr [THEN subgroup.m_inv_closed]
show "inv x }\in\bigcap\A" by blas
next
fix x y assume "x \in\bigcapA" "y \in\bigcapA"
with subgr [THEN subgroup.m_closed]
show "x \otimes y \in \bigcapA" by blast
qed
lemma (in group) subgroups_Inter_pair :
assumes "subgroup I G" "subgroup J G" shows "subgroup (I\capJ) G"
using subgroups_Inter[where ?A = "{I,J}"] assms by auto
theorem (in group) subgroups_complete_lattice:
"complete_lattice \carrier = {H. subgroup H G}, eq = (=), le = (\subseteq)|"
(is "complete_lattice ?L")
proof (rule partial_order.complete_lattice_criterion1)
show "partial_order ?L" by (rule subgroups_partial_order)
next
have "greatest ?L (carrier G) (carrier ?L)"
by (unfold greatest_def) (simp add: subgroup.subset subgroup_self)
then show "\existsG. greatest ?L G (carrier ?L)" ..
next
fix A
assume L: "A \subseteq carrier ?L" and non_empty: "A \not= {}"
then have Int_subgroup: "subgroup (\bigcapA) G"
by (fastforce intro: subgroups_Inter)
have "greatest ?L (\bigcapA) (Lower ?L A)" (is "greatest _ ?Int _")
proof (rule greatest_LowerI)
fix H
assume H: "H \in A"
with L have subgroupH: "subgroup H G" by auto

```
```

 from subgroupH have groupH: "group (G (carrier := H|)" (is "group
 ?H")
by (rule subgroup_imp_group)
from groupH have monoidH: "monoid ?H"
by (rule group.is_monoid)
from H have Int_subset: "?Int \subseteq H" by fastforce
then show "le ?L ?Int H" by simp
next
fix H
assume H: "H \in Lower ?L A"
with L Int_subgroup show "le ?L H ?Int"
by (fastforce simp: Lower_def intro: Inter_greatest)
next
show "A \subseteq carrier ?L" by (rule L)
next
show "?Int \in carrier ?L" by simp (rule Int_subgroup)
qed
then show "\existsI. greatest ?L I (Lower ?L A)" ..
qed

```

\subsection*{6.12 The units in any monoid give rise to a group}

Thanks to Jeremy Avigad. The file Residues.thy provides some infrastructure to use facts about the unit group within the ring locale.
```

definition units_of :: "('a, 'b) monoid_scheme \# 'a monoid"
where "units_of G =
|carrier = Units G, Group.monoid.mult = Group.monoid.mult G, one =
oneG|"
lemma (in monoid) units_group: "group (units_of G)"
proof -
have "\x y z. \llbracketx \in Units G; y \in Units G; z \in Units G\rrbracket \Longrightarrow x \otimes y \otimes
z = x \otimes (y \otimes z)"
by (simp add: Units_closed m_assoc)
moreover have " \x. x f Units G \Longrightarrow \existsy\inUnits G. y \otimes x = 1"
using Units_l_inv by blast
ultimately show ?thesis
unfolding units_of_def
by (force intro!: groupI)
qed
lemma (in comm_monoid) units_comm_group: "comm_group (units_of G)"
proof -
have "\x y. \llbracketx \in carrier (units_of G); y \in carrier (units_of G)\rrbracket

```

```

 by (simp add: Units_closed m_comm units_of_def)
 then show ?thesis
 by (rule group.group_comm_groupI [OF units_group]) auto
 qed

```
```

lemma units_of_carrier: "carrier (units_of G) = Units G"
by (auto simp: units_of_def)
lemma units_of_mult: "mult (units_of G) = mult G"
by (auto simp: units_of_def)
lemma units_of_one: "one (units_of G) = one G"
by (auto simp: units_of_def)
lemma (in monoid) units_of_inv:
assumes "x \in Units G"
shows "m_inv (units_of G) x = m_inv G x"
by (simp add: assms group.inv_equality units_group units_of_carrier
units_of_mult units_of_one)
lemma units_of_units [simp] : "Units (units_of G) = Units G"
unfolding units_of_def Units_def by force
lemma (in group) surj_const_mult: "a \in carrier G \Longrightarrow (}\lambda\textrm{x}.\textrm{a Q x) ' carrier
G = carrier G"
apply (auto simp add: image_def)
by (metis inv_closed inv_solve_left m_closed)
lemma (in group) l_cancel_one [simp]: "x \in carrier G \Longrightarrowa ce carrier
G }\Longrightarrow\textrm{x}\otimes\textrm{a}=\textrm{x}\longleftrightarrow\textrm{a}=\mathrm{ one G"
by (metis Units_eq Units_l_cancel monoid.r_one monoid_axioms one_closed)
lemma (in group) r_cancel_one [simp]: "x \in carrier G \Longrightarrowa ce carrier
G\Longrightarrowa }\otimes\textrm{x}=\textrm{x}\longleftrightarrow\textrm{a}=\mathrm{ one G"
by (metis monoid.l_one monoid_axioms one_closed right_cancel)
lemma (in group) l_cancel_one' [simp]: "x \in carrier G \Longrightarrow a \in carrier
G }\Longrightarrow\textrm{x}=\textrm{x}\otimes\textrm{a}\longleftrightarrow\textrm{a}=\mathrm{ one G"
using l_cancel_one by fastforce
lemma (in group) r_cancel_one' [simp]: "x \in carrier G \Longrightarrowa ce carrier
G
using r_cancel_one by fastforce
declare pow_nat [simp]
end
theory FiniteProduct
imports Group
begin

```

\subsection*{6.13 Product Operator for Commutative Monoids}

\subsection*{6.13.1 Inductive Definition of a Relation for Products over Sets}

Instantiation of locale LC of theory Finite_Set is not possible, because here we have explicit typing rules like \(\mathrm{x} \in\) carrier G . We introduce an explicit argument for the domain \(D\).
```

inductive_set
foldSetD :: "['a set, 'b \# 'a \# 'a, 'a] \# ('b set * 'a) set"
for D :: "'a set" and f :: "'b = 'a \# 'a" and e :: 'a
where
emptyI [intro]: "e \in D \Longrightarrow ({}, e) \in foldSetD D f e"
| insertI [intro]: "\llbracketx \# A; f x y \in D; (A, y) \in foldSetD D f e\rrbracket \Longrightarrow
(insert x A, f x y) f foldSetD D f e"
inductive_cases empty_foldSetDE [elim!]: "({}, x) \in foldSetD D f e"
definition
foldD :: "['a set, 'b \# 'a \# 'a, 'a, 'b set] \# 'a"
where "foldD D f e A = (THE x. (A, x) \in foldSetD D f e)"
lemma foldSetD_closed: "(A, z) f foldSetD D f e \Longrightarrow z \in D"
by (erule foldSetD.cases) auto
lemma Diff1_foldSetD:
"\llbracket(A - {x}, y) \in foldSetD D f e; x f A; f x y f D\rrbracket\Longrightarrow
(A, f x y) \in foldSetD D f e"
by (metis Diff_insert_absorb foldSetD.insertI mk_disjoint_insert)
lemma foldSetD_imp_finite [simp]: "(A, x) \in foldSetD D f e \Longrightarrow finite
A"
by (induct set: foldSetD) auto
lemma finite_imp_foldSetD:
"\llbracketfinite A; e \in D; \x y. \llbracketx f A; y \in D\rrbracket\Longrightarrow f x y \in D\rrbracket
\Longrightarrow\existsx. (A, x) G foldSetD D f e"
proof (induct set: finite)
case empty then show ?case by auto
next
case (insert x F)
then obtain y where y: "(F, y) f foldSetD D f e" by auto
with insert have "y \in D" by (auto dest: foldSetD_closed)
with y and insert have "(insert x F, f x y) \in foldSetD D f e"
by (intro foldSetD.intros) auto
then show ?case ..
qed
lemma foldSetD_backwards:
assumes "A \not= {}" "(A, z) \in foldSetD D f e"

```
```

 shows "\existsx y. x \in A ^ (A - { x }, y) \in foldSetD D f e ^ z = f x y"
 using assms(2) by (cases) (simp add: assms(1), metis Diff_insert_absorb
 insertI1)

```

\subsection*{6.13.2 Left-Commutative Operations}
```

locale LCD =

```
    fixes \(\mathrm{B}:: \mathrm{"'b}\) set"
    and D :: "’a set"
    and \(\mathrm{f}:: \mathrm{l}\) 'b \(\Rightarrow\) 'a \(\Rightarrow\) 'a" (infixl "." 70)
    assumes left_commute:
        \(" \llbracket x \in B ; y \in B ; z \in D \rrbracket \Longrightarrow x \cdot(y \cdot z)=y \cdot(x \cdot z) "\)
    and \(f\) _closed [simp, intro!]: "!!x y. \(\llbracket x \in B ; y \in D \rrbracket \Longrightarrow f x y \in D "\)
lemma (in LCD) foldSetD_closed [dest]: "(A, z) \(\in\) foldSetD D femz
\(\in D^{\prime \prime}\)
    by (erule foldSetD.cases) auto
lemma (in LCD) Diff1_foldSetD:
    \(" \llbracket(A-\{x\}, y) \in\) foldSetD \(D f e ; x \in A ; A \subseteq B \rrbracket \Longrightarrow\)
    (A, f x y) \(\in\) foldSetD D f e"
    by (meson Diff1_foldSetD f_closed local.foldSetD_closed subsetCE)
lemma (in LCD) finite_imp_foldSetD:
    \(" \llbracket\) finite \(A ; A \subseteq B ; e \in D \rrbracket \Longrightarrow \exists x .(A, x) \in\) foldSetD \(D f e "\)
proof (induct set: finite)
    case empty then show ?case by auto
next
    case (insert x F)
    then obtain y where y: " (F, y) f foldSetD D f e" by auto
    with insert have "y \(\in D\) " by auto
    with \(y\) and insert have " (insert x F, f x y) \(\in\) foldSetD D f e"
        by (intro foldSetD.intros) auto
    then show ?case ..
qed
lemma (in LCD) foldSetD_determ_aux:
    assumes "e \(\in D^{\prime \prime}\) and A: "card \(A<n "\) "A \(\subseteq\) B" " \((A, x) \in\) foldSetD D f
e" "(A, y) \(\in\) foldSetD D f e"
    shows "y = x"
    using A
proof (induction \(n\) arbitrary: A x y)
    case 0
    then show ?case
            by auto
next
    case (Suc n)
    then consider "card \(\mathrm{A}=\mathrm{n}\) " | "card \(\mathrm{A}<\mathrm{n}\) "
```

 by linarith
 then show ?case
 proof cases
 case 1
 show ?thesis
 using foldSetD.cases [OF < (A,x) \in foldSetD D (.) e>]
 proof cases
 case 1
 then show ?thesis
 using < (A,y) \in foldSetD D (.) e> by auto
 next
 case (2 x' A' y')
 note A' = this
 show ?thesis
 using foldSetD.cases [OF <(A,y) \in foldSetD D (.) e>]
 proof cases
 case 1
 then show ?thesis
 using < (A,x) \in foldSetD D (.) e> by auto
 next
 case (2 x', A', y'')
 note A'' = this
 show ?thesis
 proof (cases "x' = x',")
 case True
 show ?thesis
 proof (cases "y' = y''")
 case True
 then show ?thesis
 using A' A'' <x' = x''> by (blast elim!: equalityE)
 next
 case False
 then show ?thesis
 using A' A'' <x' = x''>
 by (metis <card A = n> Suc.IH Suc.prems(2) card_insert_disjoint
 foldSetD_imp_finite insert_eq_iff insert_subset lessI)
qed
next
case False
then have *: "A' - {x''} = A', - {x'}" "x', \in A'" "x' \in A',"
using A' A', by fastforce+
then have "A' = insert x'' A', - {x'}"
using <x' \& A'> by blast
then have card: "card A' \leq card A'""
using A' A'' * by (metis card_Suc_Diff1 eq_refl foldSetD_imp_finite)
obtain u where u: "(A' - {x''}, u) \in foldSetD D (.) e"
using finite_imp_foldSetD [of "A' - {x''}"] A' Diff_insert
<A \subseteqB> <e \in D> by fastforce
have "y' = f x'' u"

```
using Diff1＿foldSetD［OF u］〈x＇，\(\left.\in A^{\prime}\right\rangle\langle\) card A＝n＞A＇Suc．IH
\(\langle\mathrm{A} \subseteq \mathrm{B}\rangle\) by auto
then have＂（A＇，－\｛x＇\}, u) \(\in\) foldSetD D fe＂
using＂＊＂（1）u by auto
then have＂\(y\)＂＇＝ \(\mathrm{f} x\)＇\(u\)＂
using A＇，by（metis＊＜card A＝n＞A＇（1）Diff1＿foldSetD Suc．IH
\(\langle\mathrm{A} \subseteq \mathrm{B}\rangle\)
card card＿Suc＿Diff1 card＿insert＿disjoint foldSetD＿imp＿finite
insert＿subset le＿imp＿less＿Suc）
then show ？thesis
using A＇A＇，
by（metis＜A \(\subseteq\) B＞〈y＇＝x＇，• u＞insert＿subset left＿commute
local．foldSetD＿closed u）
qed
qed
qed
next
case 2 with Suc show ？thesis by blast
qed
qed
lemma（in LCD）foldSetD＿determ：
\(" \llbracket(A, x) \in f o l d S e t D D \bar{f} e ;(A, y) \in f o l d S e t D D f e ; e \in D ; A \subseteq B \rrbracket\)
\(\Longrightarrow y=x "\)
by（blast intro：foldSetD＿determ＿aux［rule＿format］）
lemma（in LCD）foldD＿equality：
\(" \llbracket(A, y) \in\) foldSetD \(D f e ; e \in D ; A \subseteq B \rrbracket \Longrightarrow\) foldD D feeA \(=y "\)
by（unfold foldD＿def）（blast intro：foldSetD＿determ）
lemma foldD＿empty［simp］：
＂e \(\in D \Longrightarrow\) foldD \(D\) f e \(\}=e "\)
by（unfold foldD＿def）blast
lemma（in LCD）foldD＿insert＿aux：
\(" \llbracket x \notin A ; x \in B ; e \in D ; A \subseteq B \rrbracket\)
\(\Longrightarrow\)（（insert x A，v）\(\in\) foldSetD \(D f e) \longleftrightarrow(\exists y .(A, y) \in\) foldSetD
D f e \(\wedge v=f x y) "\)
apply auto
by（metis Diff＿insert＿absorb f＿closed finite＿Diff foldSetD．insertI foldSetD＿determ foldSetD＿imp＿finite insert＿subset local．finite＿imp＿foldSetD local．foldSetD＿closed）
lemma（in LCD）foldD＿insert：
assumes＂finite A＂＂x \(\notin \mathrm{A} " \mathrm{k} \in \mathrm{B}\)＂＂e \(\in \mathrm{D}\)＂＂A \(\subseteq\) B＂
shows＂foldD D f e（insert \(x\) A）\(=f x(f o l d D D f e A) "\)
proof－
have＂（THE v．ヨy．（A，y）\(\in\) foldSetD \(D(\cdot) e \wedge v=x \cdot y)=x \cdot(T H E\)
y．（A，y）\(\in\) foldSetD D（．）e）＂
by（rule the＿equality）（use assms foldD＿def foldD＿equality foldD＿def
```

finite_imp_foldSetD in <metis+>)
then show ?thesis
unfolding foldD_def using assms by (simp add: foldD_insert_aux)
qed
lemma (in LCD) foldD_closed [simp]:
"\llbracketfinite A; e \in D; A}\subseteqB\rrbracket\Longrightarrow foldD D f e A \in D"
proof (induct set: finite)
case empty then show ?case by simp
next
case insert then show ?case by (simp add: foldD_insert)
qed
lemma (in LCD) foldD_commute:
"\llbracketfinite A; x \in B; e \in D; A \subseteq B\rrbracket \Longrightarrow
f x (foldD D f e A) = foldD D f (f x e) A"
by (induct set: finite) (auto simp add: left_commute foldD_insert)
lemma Int_mono2:
"\llbracketA\subseteqC; B\subseteqC\rrbracket\LongrightarrowA Int B \subseteqC"
by blast
lemma (in LCD) foldD_nest_Un_Int:
"\llbracketfinite A; finite C; e \in D ; A \subseteq B; C\subseteq B\rrbracket \Longrightarrow
foldD D f (foldD D f e C) A = foldD D f (foldD D f e (A Int C)) (A
Un C)"
proof (induction set: finite)
case (insert x F)
then show ?case
by (simp add: foldD_insert foldD_commute Int_insert_left insert_absorb
Int_mono2)
qed simp
lemma (in LCD) foldD_nest_Un_disjoint:
"\llbracketfinite A; finite B; A Int B = {}; e \in D; A\subseteq B; C\subseteq B\rrbracket
\# foldD D f e (A Un B) = foldD D f (foldD D f e B) A"
by (simp add: foldD_nest_Un_Int)

- Delete rules to do with foldSetD relation.
declare foldSetD_imp_finite [simp del]
empty_foldSetDE [rule del]
foldSetD.intros [rule del]
declare (in LCD)
foldSetD_closed [rule del]

```

\section*{Commutative Monoids}
```

We enter a more restrictive context, with $\mathrm{f}::$ ' $\mathrm{a} \Rightarrow$ ' $\mathrm{a} \Rightarrow$ 'a instead of ' b \Rightarrow ' $\mathrm{a} \Rightarrow$ ' a .

```
```

locale ACeD =
fixes D :: "'a set"
and f :: "'a \# 'a \# 'a" (infixl "." 70)
and e :: 'a
assumes ident [simp]: "x }\in\textrm{D}\Longrightarrow\textrm{x}\cdot\textrm{e = x"
and commute: "\llbracketx \in D; y \in D\rrbracket \Longrightarrow x · y = y · x"
and assoc: "\llbracketx \in D; y \in D; z \in D\rrbracket \Longrightarrow (x · y) · z = x · (y . z)"
and e_closed [simp]: "e \in D"
and f_closed [simp]: "\llbracketx \in D; y \in D\rrbracket \Longrightarrow x y y \in D"
lemma (in ACeD) left_commute:
"\llbracketx \in D; y \in D; z \in D\ \Longrightarrow x · (y . z) = y . (x c z)"
proof -
assume D: "x \& D" "y \in D" "z \in D"
then have "x · (y · z) = (y · z) · x" by (simp add: commute)
also from D have "... = y · (z · x)" by (simp add: assoc)
also from D have "z · x = x · z" by (simp add: commute)
finally show ?thesis .
qed
lemmas (in ACeD) AC = assoc commute left_commute
lemma (in ACeD) left_ident [simp]: "x \in D \Longrightarrow e · x = x"
proof -
assume "x \& D"
then have "x . e = x" by (rule ident)
with <x \in D> show ?thesis by (simp add: commute)
qed
lemma (in ACeD) foldD_Un_Int:
"\llbracketfinite A; finite B; A \subseteq D; B \subseteq D\rrbracket\Longrightarrow
foldD D f e A · foldD D f e B =
foldD D f e (A Un B) . foldD D f e (A Int B)"
proof (induction set: finite)
case empty
then show ?case
by(simp add: left_commute LCD.foldD_closed [OF LCD.intro [of D]])
next
case (insert x F)
then show ?case
by(simp add: AC insert_absorb Int_insert_left Int_mono2
LCD.foldD_insert [OF LCD.intro [of D]]
LCD.foldD_closed [OF LCD.intro [of D]])
qed
lemma (in ACeD) foldD_Un_disjoint:
"\llbracketfinite A; finite B; A Int B = {}; A\subseteq D; B \subseteq D\ \Longrightarrow
foldD D f e (A Un B) = foldD D f e A · foldD D f e B"
by (simp add: foldD_Un_Int

```
left_commute LCD.foldD_closed [OF LCD.intro [of D]])

\subsection*{6.13.3 Products over Finite Sets}
```

definition
finprod :: "[('b, 'm) monoid_scheme, 'a \# 'b, 'a set] => 'b"
where "finprod G f A =
(if finite A
then foldD (carrier G) (mult G ○ f) 1 1G A
else 1G)"
syntax
"_finprod" :: "index }=>\mathrm{ idt }=>\mathrm{ 'a set }=>\mathrm{ 'b = 'b"
("(3\otimes__\in_. _)" [1000, 0, 51, 10] 10)

```

\section*{translations}
```

" $\bigotimes_{G} \mathrm{i} \in \mathrm{A} . \mathrm{b} " \rightleftharpoons$ "CONST finprod $\mathrm{G}(\%$ i. b) A"

- Beware of argument permutation!
lemma (in comm_monoid) finprod_empty [simp]:
"finprod G f \{\} = 1"
by (simp add: finprod_def)
lemma (in comm_monoid) finprod_infinite[simp]:
" \neg finite $A \Longrightarrow$ finprod $G f A=1 "$
by (simp add: finprod_def)
declare funcsetI [intro]
funcset_mem [dest]
context comm_monoid begin
lemma finprod_insert [simp]:
assumes "finite F" "a $\notin F "$ "f $\in \mathcal{F} \rightarrow$ carrier G" "f a \in carrier G"
shows "finprod G f (insert a F) $=\mathrm{f} a \otimes$ finprod G f F "
proof -
have "finprod G f (insert a F) = foldD (carrier G) ((\otimes) ○ f) 1 (insert a F)"
by (simp add: finprod_def assms)
also have $" \ldots=((\otimes) \circ$ f) a (foldD (carrier G) ((\otimes) ○ f) 1 F)"
by (rule LCD.foldD_insert [OF LCD.intro [of "insert a F"]])
(use assms in <auto simp: m_lcomm Pi_iff>)
also have "... = f a \otimes finprod G f F"
using <finite F> by (auto simp add: finprod_def)
finally show ?thesis .
qed
lemma finprod_one_eqI: " $(\bigwedge x . x \in A \Longrightarrow f x=1) \Longrightarrow$ finprod $G f A=$ $1 "$
proof (induct A rule: infinite_finite_induct)

```
```

 case empty show ?case by simp
 next
case (insert a A)
have "(\lambdai. 1) \in A }->\mathrm{ carrier G" by auto
with insert show ?case by simp
qed simp
lemma finprod_one [simp]: "(\bigotimesi\inA. 1) = 1"
by (simp add: finprod_one_eqI)
lemma finprod_closed [simp]:
fixes A
assumes f: "f \in A -> carrier G"
shows "finprod G f A \in carrier G"
using f
proof (induct A rule: infinite_finite_induct)
case empty show ?case by simp
next
case (insert a A)
then have a: "f a \in carrier G" by fast
from insert have A: "f \in A -> carrier G" by fast
from insert A a show ?case by simp
qed simp
lemma funcset_Int_left [simp, intro]:
"\llbracketf\inA->C; f \in B ->C\rrbracket\Longrightarrow f f A Int B }->\textrm{C
by fast
lemma funcset_Un_left [iff]:
"(f \inA Un B C C) = (f \in A ->C ^ f \in B ->C)"
by fast
lemma finprod_Un_Int:
"\llbracketfinite A; finite B; g \in A }->\mathrm{ carrier G; g }\in\textrm{B}->\mathrm{ carrier G】 }
finprod G g (A Un B) \otimes finprod G g (A Int B) =
finprod G g A \otimes finprod G g B'

- The reversed orientation looks more natural, but LOOPS as a simprule!
proof (induct set: finite)
case empty then show ?case by simp
next
case (insert a A)
then have a: "g a \in carrier G" by fast
from insert have A: "g \in A -> carrier G" by fast
from insert A a show ?case
by (simp add: m_ac Int_insert_left insert_absorb Int_mono2)
qed
lemma finprod_Un_disjoint:
"\llbracketfinite A; finite B; A Int B = {};

```
```

 g \in A }->\mathrm{ carrier G; g f B }->\mathrm{ carrier G】
 "finprod G g (A Un B) = finprod G g A \otimes finprod G g B"
 by (metis Pi_split_domain finprod_Un_Int finprod_closed finprod_empty
 r_one)
lemma finprod_multf [simp]:
"\llbracketf \in A }->\mathrm{ carrier G; g }\in\textrm{A}->\mathrm{ carrier G】 }
finprod G (\lambdax.f x \& g x) A = (finprod G f A \otimes finprod G g A)"
proof (induct A rule: infinite_finite_induct)
case empty show ?case by simp
next
case (insert a A) then
have fA: "f \inA -> carrier G" by fast
from insert have fa: "f a \in carrier G" by fast
from insert have gA: "g \in A }->\mathrm{ carrier G" by fast
from insert have ga: "g a \in carrier G" by fast
from insert have fgA: "(%x. f x \otimes g x) \in A }->\mathrm{ carrier G"
by (simp add: Pi_def)
show ?case
by (simp add: insert fA fa gA ga fgA m_ac)
qed simp
lemma finprod_cong':
"\A=B; g \in B -> carrier G;
!!i. i }\in\textrm{B}\Longrightarrow\textrm{f}=\textrm{i}=\textrm{g}i\rrbracket\Longrightarrow\mathrm{ finprod G f A = finprod G g B"
proof -
assume prems: "A = B" "g \in B }->\mathrm{ carrier G"
"!!i. i }\in\textrm{B}\Longrightarrow\textrm{f}=\textrm{i}=\textrm{g}\mathrm{ i"
show ?thesis
proof (cases "finite B")
case True
then have "!!A. \llbracketA = B; g \in B -> carrier G;
!!i. i }\in\textrm{B}\Longrightarrow\textrm{f}=\textrm{i}=\textrm{g}i\rrbracket\Longrightarrow\mathrm{ finprod G f A = finprod G g B"
proof induct
case empty thus ?case by simp
next
case (insert x B)
then have "finprod G f A = finprod G f (insert x B)" by simp
also from insert have "... = f x \& finprod G f B"
proof (intro finprod_insert)
show "finite B" by fact
next
show "x \& B" by fact
next
assume "x \& B" "!!i. i \in insert x B \Longrightarrow f i = g i"
"g \in insert x B }->\mathrm{ carrier G"
thus "f}\inB->\mathrm{ carrier G" by fastforce
next
assume "x \& B" "!!i. i \in insert x B \Longrightarrow f i = g i"

```
```

 "g \in insert x B -> carrier G"
 thus "f x \in carrier G" by fastforce
 qed
 also from insert have "... = g x \otimes finprod G g B" by fastforce
 also from insert have "... = finprod G g (insert x B)"
 by (intro finprod_insert [THEN sym]) auto
 finally show ?case.
 qed
 with prems show ?thesis by simp
 next
 case False with prems show ?thesis by simp
 qed
 qed
lemma finprod_cong:
"\llbracketA = B; f \in B -> carrier G = True;
\i. i }\in\textrm{B}=\mathrm{ simp => f i = g i\ C finprod G f A = finprod G g B"
by (rule finprod_cong') (auto simp add: simp_implies_def)
Usually, if this rule causes a failed congruence proof error, the reason is that the premise $\mathrm{g} \in \mathrm{B} \rightarrow$ carrier G cannot be shown. Adding Pi_def to the simpset is often useful. For this reason, finprod_cong is not added to the simpset by default.
end
declare funcsetI [rule del]
funcset_mem [rule del]
context comm_monoid begin
lemma finprod_0 [simp]:
"f \in {0::nat} }->\mathrm{ carrier G C finprod G f {..O} = f 0"
by (simp add: Pi_def)
lemma finprod_0':
"f \in {..n} }->\mathrm{ carrier G }\Longrightarrow\mathrm{ (f 0) \& finprod G f {Suc 0..n} = finprod
G f {..n}"
proof -
assume A: "f \in {.. n} -> carrier G"
hence "(f 0) \otimes finprod G f {Suc 0..n} = finprod G f {..0} \otimes finprod
G f {Suc 0..n}"
using finprod_0[of f] by (simp add: funcset_mem)
also have " ... = finprod G f ({..0} \cup {Suc 0..n})"
using finprod_Un_disjoint[of "{..O}" "{Suc O..n}" f] A by (simp add:
funcset_mem)
also have " ... = finprod G f {..n}"
by (simp add: atLeastAtMost_insertL atMost_atLeast0)
finally show ?thesis.

```
```

qed
lemma finprod_Suc [simp]:
"f \in {..Suc n} }->\mathrm{ carrier G }
finprod G f {..Suc n} = (f (Suc n) \otimes finprod G f {..n})"
by (simp add: Pi_def atMost_Suc)
lemma finprod_Suc2:
"f \in {..Suc n} }->\mathrm{ carrier G }
finprod G f {..Suc n} = (finprod G (%i. f (Suc i)) {..n} \otimes f 0)"
proof (induct n)
case 0 thus ?case by (simp add: Pi_def)
next
case Suc thus ?case by (simp add: m_assoc Pi_def)
qed
lemma finprod_Suc3:
assumes "f \in {..n :: nat} }->\mathrm{ carrier G"
shows "finprod G f {.. n} = (f n) \otimes finprod G f {..< n}"
proof (cases "n = 0")
case True thus ?thesis
using assms atMost_Suc by simp
next
case False
then obtain k where "n = Suc k"
using notO_implies_Suc by blast
thus ?thesis
using finprod_Suc[of f k] assms atMost_Suc lessThan_Suc_atMost by
simp
qed
lemma finprod_reindex:
"f \in (h ' A) > carrier G \Longrightarrow
inj_on h A \Longrightarrow finprod G f (h ' A) = finprod G (\lambdax. f (h x)) A"
proof (induct A rule: infinite_finite_induct)
case (infinite A)
hence "\neg finite (h ' A)"
using finite_imageD by blast
with < ᄀ finite A> show ?case by simp
qed (auto simp add: Pi_def)
lemma finprod_const:
assumes a [simp]: "a \in carrier G"
shows "finprod G (\lambdax. a) A = a [^] card A"
proof (induct A rule: infinite_finite_induct)
case (insert b A)
show ?case
proof (subst finprod_insert[0F insert(1-2)])
show "a \otimes ((x\inA. a) = a [^] card (insert b A)"

```
by (insert insert, auto, subst m_comm, auto)
qed auto
qed auto
lemma finprod_singleton:
assumes \(i_{\_} i n_{\_} A:\) " \(\in A\) " and fin_A: "finite A" and f_Pi: "f \(\in A \rightarrow\)
carrier G"
shows " \((\bigotimes j \in A\). if \(i=j\) then \(f\) else 1\()=f i "\)
using i_in_A finprod_insert [of "A - \{i\}" i " \((\lambda j\). if \(i=j\) then \(f\) j
else 1)"]
fin_A f_Pi finprod_one [of "A - \{i\}"]
finprod_cong [of "A - \{i\}" "A - \{i\}" " ( \(\lambda j\). if \(i=j\) then \(f\) j else 1)" "( \(\lambda \mathrm{i} .1\) )"]
unfolding Pi_def simp_implies_def by (force simp add: insert_absorb)
lemma finprod_singleton_swap:
assumes i_in_A: "i \(\in A\) " and fin_A: "finite A" and f_Pi: "f \(\in A \rightarrow\)
carrier G"
shows " \((\otimes j \in A\). if \(j=i\) then \(f(\operatorname{l}\) else 1\()=f i "\)
using finprod_singleton [0F assms] by (simp add: eq_commute)
lemma finprod_mono_neutral_cong_left:
assumes "finite B"
and " \(\mathrm{A} \subseteq \mathrm{B}\) "
and 1: " \(}\) i \(\in B-A \Longrightarrow h i=1 "\)
and gh: " \(\wedge x . x \in A \Longrightarrow g x=h x "\)
and \(\mathrm{h}: \mathrm{h} \in \mathrm{B} \rightarrow\) carrier \(\mathrm{G} "\)
shows "finprod G g A \(=\) finprod G h B"
proof-
have eq: "A \(\cup(B-A)=B "\) using \(\langle A \subseteq B\) 〉 by blast
have d: "A \(\cap(B-A)=\{ \} "\) using \(\langle A \subseteq B\rangle\) by blast
from <finite \(B\) 〉 < \(A \subseteq B\) > have f: "finite A" "finite (B - A)" by (auto intro: finite_subset)
have " \(h \in A \rightarrow\) carrier G" "h \(\in B-A \rightarrow\) carrier G"
using assms by (auto simp: image_subset_iff_funcset)
moreover have "finprod G g A \(=\) finprod \(G h A \otimes \operatorname{finprod} G h(B-A) "\)
proof -
have \("\) finprod G h ( \(B-A\) ) = 1"
using "1" finprod_one_eqI by blast
moreover have "finprod G g A = finprod G h A"
using \(\langle\mathrm{h} \in \mathrm{A} \rightarrow\) carrier G\(\rangle\) finprod_cong’ gh by blast
ultimately show ?thesis by (simp add: <h \(\in \mathrm{A} \rightarrow\) carrier G\(\rangle\) )
qed
ultimately show ?thesis
by (simp add: finprod_Un_disjoint [OF f d, unfolded eq])
qed
lemma finprod_mono_neutral_cong_right:
```

 assumes "finite B"
 and "A\subseteq B" "\i. i }\in\textrm{B}-\textrm{A}\Longrightarrow\textrm{g}i=1" "\x. x \in A \Longrightarrowg x = h
 x" "g \in B -> carrier G"
shows "finprod G g B = finprod G h A"
using assms by (auto intro!: finprod_mono_neutral_cong_left [symmetric])
lemma finprod_mono_neutral_cong:
assumes [simp]: "finite B" "finite A"
and *: "\i. i }\in\textrm{B}-\textrm{A}\Longrightarrow\textrm{h}=\textrm{i}=1" "\i. i \in A - B \Longrightarrow g i = 1"
and gh: "\x. x }\inA\capB\Longrightarrowgx=h x"
and g: "g \in A }->\mathrm{ carrier G"
and h: "h \in B }->\mathrm{ carrier G"
shows "finprod G g A = finprod G h B"
proof-
have "finprod G g A = finprod G g (A \cap B)"
by (rule finprod_mono_neutral_cong_right) (use assms in auto)
also have "... = finprod G h (A \cap B)"
by (rule finprod_cong) (use assms in auto)
also have "... = finprod G h B"
by (rule finprod_mono_neutral_cong_left) (use assms in auto)
finally show ?thesis .
qed
end

```
lemma (in comm_group) power_order_eq_one:
    assumes fin [simp]: "finite (carrier G)"
        and a [simp]: "a \(\in\) carrier \(G "\)
    shows "a [^] card(carrier G) = one G"
proof -
    have " \((\otimes x \in\) carrier G. \(x)=(\bigotimes x \in\) carrier \(G . a \otimes x) "\)
        by (subst (2) finprod_reindex [symmetric],
            auto simp add: Pi_def inj_on_cmult surj_const_mult)
    also have \(" . . .=(\otimes x \in\) carrier \(G . a) \otimes(\otimes x \in\) carrier \(G . x) "\)
        by (auto simp add: finprod_multf Pi_def)
    also have " \((\bigotimes x \in\) carrier \(G . a)=a \quad[\wedge] \operatorname{card}(c a r r i e r ~ G) "\)
        by (auto simp add: finprod_const)
    finally show ?thesis
        by auto
qed
lemma (in comm_monoid) finprod_UN_disjoint:
    assumes
        "finite I" " \(} \mathrm{i} \in \mathrm{I} \Longrightarrow\) finite (A i)" "pairwise ( \(\lambda i \operatorname{j}\). disjnt (A
i) ( \(A\) j) ) I"
        " \(\ \mathrm{i} x . \mathrm{i} \in \mathrm{I} \Longrightarrow \mathrm{x} \in \mathrm{A} \mathrm{i} \Longrightarrow \mathrm{g} \mathrm{x} \in \operatorname{carrier} \mathrm{G} "\)
shows "finprod G g (U(A' I)) = finprod G ( \(\lambda_{i} . \operatorname{finprod~Gg(Ai))I"~}\)
```

 using assms
 proof (induction set: finite)
case empty
then show ?case
by force
next
case (insert i I)
then show ?case
unfolding pairwise_def disjnt_def
apply clarsimp
apply (subst finprod_Un_disjoint)
apply (fastforce intro!: funcsetI finprod_closed)+
done
qed
lemma (in comm_monoid) finprod_Union_disjoint:
"\llbracketfinite C; \A. A \in C \Longrightarrow finite A ^ (}\forall\textrm{x}\in\textrm{A}.\textrm{f}x\in\operatorname{carrier G); pairwise
disjnt C\rrbracket \Longrightarrow
finprod G f (UC) = finprod G (finprod G f) C"
by (frule finprod_UN_disjoint [of C id f]) auto
end
theory Coset
imports Group
begin

```

\section*{7 Cosets and Quotient Groups}

\section*{definition}
```

 r_coset :: "[_, 'a set, 'a] => 'a set" (infixl "#> " 60)
    ```
    r_coset :: "[_, 'a set, 'a] => 'a set" (infixl "#> " 60)
    where "H #>
    where "H #>
definition
    l_coset :: "[_, 'a, 'a set] => 'a set" (infixl "<#乙" 60)
    where "a <##G H = (Uh\inH. {a * |G h})"
definition
    RCOSETS :: "[_, 'a set] => ('a set)set" ("rcosets\imath _" [81] 80)
    where "rcosets}\mp@subsup{G}{G}{}H=(\bigcupa\incarrier G. {H #> (G a})"
definition
    set_mult :: "[_, 'a set ,'a set] => 'a set" (infixl "<#>\imath" 60)
    where "H <#>}\mp@subsup{\}{G}{}K=(\bigcuph\inH.\k\inK.{h \otimesg k})"
definition
    SET_INV :: "[_,'a set] => 'a set" ("set'_inv\imath _" [81] 80)
    where "set_invg}H=(\bigcuph\inH. {invg h})"
```

```
locale normal = subgroup + group +
    assumes coset_eq: "(\forallx \in carrier G. H #> x = x <# H)"
abbreviation
    normal_rel :: "['a set, ('a, 'b) monoid_scheme] => bool" (infixl "\triangleleft"
60) where
    "H \triangleleftG \equiv normal H G"
lemma (in comm_group) subgroup_imp_normal: "subgroup A G \Longrightarrow A \triangleleft G"
    by (simp add: normal_def normal_axioms_def l_coset_def r_coset_def m_comm
subgroup.mem_carrier)
lemma l_coset_eq_set_mult:
    fixes G (structure)
    shows "x <# H = {x} <#> H"
    unfolding l_coset_def set_mult_def by simp
lemma r_coset_eq_set_mult:
    fixes G (structure)
    shows "H #> x = H <#> {x}"
    unfolding r_coset_def set_mult_def by simp
lemma (in subgroup) rcosets_non_empty:
    assumes "R \in rcosets H"
    shows "R f= {}"
proof -
    obtain g where "g \in carrier G" "R = H #> g"
        using assms unfolding RCOSETS_def by blast
    hence "1 \otimesg \in R"
        using one_closed unfolding r_coset_def by blast
    thus ?thesis by blast
qed
lemma (in group) diff_neutralizes:
    assumes "subgroup H G" "R \in rcosets H"
    shows "\r1 r2. \llbracket r1 \in R; r2 \in R \ C r1 \otimes (inv r2) \in H"
proof -
    fix r1 r2 assume r1: "r1 \in R" and r2: "r2 \in R"
    obtain g where g: "g \in carrier G" "R = H #> g"
        using assms unfolding RCOSETS_def by blast
    then obtain h1 h2 where h1: "h1 \in H" "r1 = h1 \otimesg"
                        and h2: "h2 \in H" "r2 = h2 & g"
        using r1 r2 unfolding r_coset_def by blast
    hence "r1 \otimes (inv r2) = (h1 \otimesg) \otimes ((inv g) \otimes (inv h2))"
            using inv_mult_group is_group assms(1) g(1) subgroup.mem_carrier by
fastforce
    also have " ... = (h1 \otimes (g \otimes inv g) \otimes inv h2)"
```

using h1 h2 assms(1) g(1) inv_closed m_closed monoid.m_assoc monoid_axioms subgroup.mem_carrier
proof -
have "h1 \in carrier G"
by (meson subgroup.mem_carrier assms(1) h1(1))
moreover have "h2 \in carrier G"
by (meson subgroup.mem_carrier assms(1) h2(1))
ultimately show ?thesis
using $g(1)$ inv_closed m_assoc m_closed by presburger
qed
finally have "r1 \otimes inv r2 = h1 \otimes inv h2"
using assms(1) g(1) h1(1) subgroup.mem_carrier by fastforce
thus "r1 \otimes inv $\mathrm{r} 2 \in \mathrm{H}$ " by (metis assms(1) h1(1) h2(1) subgroup_def)
qed
lemma mono_set_mult: " $\llbracket \mathrm{H} \subseteq \mathrm{H}^{\prime} ; \mathrm{K} \subseteq \mathrm{K}{ }^{\prime} \rrbracket \Longrightarrow \mathrm{H}<\#>_{\mathrm{G}} \mathrm{K} \subseteq \mathrm{H}^{\prime}<\#_{\mathrm{G}} \mathrm{K}{ }^{\prime \prime}$
unfolding set_mult_def by (simp add: UN_mono)

7.1 Stable Operations for Subgroups

```
lemma set_mult_consistent [simp]:
    "N <#> (G ( carrier := H D) K = N <#>G K"
    unfolding set_mult_def by simp
lemma r_coset_consistent [simp]:
    "I #>
    unfolding r_coset_def by simp
lemma l_coset_consistent [simp]:
    "h <##G ( carrier := H ) I = h < "#G I"
    unfolding l_coset_def by simp
```


7.2 Basic Properties of set multiplication

```
lemma (in group) setmult_subset_G:
    assumes "H\subseteq carrier G" "K \subseteq carrier G"
    shows "H <#> K \subseteq carrier G" using assms
    by (auto simp add: set_mult_def subsetD)
lemma (in monoid) set_mult_closed:
    assumes "H \subseteq carrier G" "K \subseteq carrier G"
    shows "H <#> K \subseteq carrier G"
    using assms by (auto simp add: set_mult_def subsetD)
lemma (in group) set_mult_assoc:
    assumes "M\subseteq carrier G" "H\subseteq carrier G" "K \subseteq carrier G"
    shows "(M <#> H) <#> K = M <#> (H <#> K)"
proof
```

```
    show "(M <#> H) <#> K \subseteq M <#> (H <#> K)"
    proof
        fix x assume "x \in (M <#> H) <#> K"
        then obtain m h k where x: "m \in M" "h \in H" "k \in K" "x = (m \otimes h)
\otimes k"
        unfolding set_mult_def by blast
        hence "x = m \otimes (h \otimes k)"
        using assms m_assoc by blast
        thus "x \in M <#> (H <#> K)"
        unfolding set_mult_def using x by blast
    qed
next
    show "M <#> (H <#> K) \subseteq (M <#> H) <#> K"
    proof
        fix x assume "x \in M <#> (H <#> K)"
        then obtain m h k where x: "m \in M" "h \in H" "k \in K" "x = m \otimes (h \otimes
k)"
                unfolding set_mult_def by blast
        hence "x = (m \otimes h) \otimes k"
                using assms m_assoc rev_subsetD by metis
        thus "x \in (M <#> H) <#> K"
                unfolding set_mult_def using x by blast
    qed
qed
```


7.3 Basic Properties of Cosets

```
lemma (in group) coset_mult_assoc:
    assumes "M\subseteq carrier G" "g \in carrier G" "h \in carrier G"
    shows "(M #> g) #> h = M #> (g \otimes h)"
    using assms by (force simp add: r_coset_def m_assoc)
lemma (in group) coset_assoc:
    assumes "x \in carrier G" "y \in carrier G" "H \subseteq carrier G"
    shows "x <# (H #> y) = (x <# H) #> y"
    using set_mult_assoc[of "{x}" H "{y}"]
    by (simp add: l_coset_eq_set_mult r_coset_eq_set_mult assms)
lemma (in group) coset_mult_one [simp]: "M \subseteq carrier G ==> M #> 1 =
M"
by (force simp add: r_coset_def)
lemma (in group) coset_mult_inv1:
    assumes "M #> (x \otimes (inv y)) = M"
        and "x \in carrier G" "y \in carrier G" "M \subseteq carrier G"
    shows "M #> x = M #> y" using assms
    by (metis coset_mult_assoc group.inv_solve_right is_group subgroup_def
subgroup_self)
```

```
lemma (in group) coset_mult_inv2:
    assumes "M #> x = M #> y"
        and "x \in carrier G" "y \in carrier G" "M \subseteq carrier G"
    shows "M #> (x \otimes (inv y)) = M " using assms
    by (metis group.coset_mult_assoc group.coset_mult_one inv_closed is_group
r_inv)
lemma (in group) coset_join1:
    assumes "H #> x = H"
        and "x \in carrier G" "subgroup H G"
    shows "x \in H"
    using assms r_coset_def l_one subgroup.one_closed sym by fastforce
lemma (in group) solve_equation:
    assumes "subgroup H G" "x \in H" "y \in H"
    shows "\existsh\inH. y = h \otimes x"
proof -
    have "y = (y \otimes (inv x)) \otimes x" using assms
        by (simp add: m_assoc subgroup.mem_carrier)
    moreover have "y }\otimes\mathrm{ (inv x) }\inH"\mp@code{using assms
        by (simp add: subgroup_def)
    ultimately show ?thesis by blast
qed
lemma (in group_hom) inj_on_one_iff:
        "inj_on h (carrier G) \longleftrightarrow ( }\forall\textrm{x}.\textrm{x}\in\operatorname{carrier G }\longrightarrow\textrm{h x = one H }\longrightarrow\textrm{x
= one G)"
using G.solve_equation G.subgroup_self by (force simp: inj_on_def)
lemma inj_on_one_iff':
        "\llbracketh G hom G H; group G; group H\rrbracket\Longrightarrow inj_on h (carrier G) \longleftrightarrow (\forallx.
x carrier G \longrightarrow h x = one H \longrightarrow x = one G)"
    using group_hom.inj_on_one_iff group_hom.intro group_hom_axioms.intro
by blast
lemma mon_iff_hom_one:
        "【group G; group H\rrbracket\Longrightarrowf \in mon G H \longleftrightarrow f \in hom G H ^ ( }\forall\textrm{x}.\textrm{x}\in\mathrm{ carrier
G ^ f x = 1H \longrightarrow x = 1/G)"
    by (auto simp: mon_def inj_on_one_iff')
lemma (in group_hom) iso_iff: "h \in iso G H \longleftrightarrow carrier H \subseteq h ' carrier
G ^ ( }\forall\textrm{x}\in\mathrm{ carrier G. h x = 1H}\longrightarrow\textrm{x}=1)
    by (auto simp: iso_def bij_betw_def inj_on_one_iff)
lemma (in group) repr_independence:
    assumes "y \in H #> x" "x \in carrier G" "subgroup H G"
    shows "H #> x = H #> y" using assms
by (auto simp add: r_coset_def m_assoc [symmetric]
                subgroup.subset [THEN subsetD]
```

```
subgroup.m_closed solve_equation)
```

lemma (in group) coset_join2:
assumes "x \in carrier G" "subgroup H G" "x $\in H "$
shows "H \#> x = H" using assms
- Alternative proof is to put $\mathrm{x}=\mathbf{1}$ in repr_independence.
by (force simp add: subgroup.m_closed r_coset_def solve_equation)
lemma (in group) coset_join3:
assumes "x \in carrier G " "subgroup H G" "x $\in H "$
shows "x <\# H = H"
proof
have " $\bigwedge \mathrm{h} . \mathrm{h} \in \mathrm{H} \Longrightarrow \mathrm{x} \otimes \mathrm{h} \in \mathrm{H}$ " using assms
by (simp add: subgroup.m_closed)
thus "x <\# H $\subseteq H$ " unfolding l_{-}coset_def by blast
next
have " $\wedge \mathrm{h} . \mathrm{h} \in \mathrm{H} \Longrightarrow \mathrm{x} \otimes((\operatorname{inv} \mathrm{x}) \otimes \mathrm{h})=\mathrm{h}$ "
by (metis (no_types, lifting) assms group.inv_closed group.inv_solve_left
is_group
monoid.m_closed monoid_axioms subgroup.mem_carrier)
moreover have " $\wedge \mathrm{h} . \mathrm{h} \in \mathrm{H} \Longrightarrow$ (inv x) $\otimes \mathrm{h} \in \mathrm{H}$ "
by (simp add: assms subgroup.m_closed subgroup.m_inv_closed)
ultimately show "H \subseteq x <\# H" unfolding l_coset_def by blast
qed
lemma (in monoid) r_coset_subset_G:
" $\llbracket \mathrm{H} \subseteq$ carrier G ; $\mathrm{x} \in$ carrier $\mathrm{G} \rrbracket \Longrightarrow \mathrm{H} \#>\mathrm{x} \subseteq$ carrier $\mathrm{G} "$
by (auto simp add: r_coset_def)
lemma (in group) rcosI:
" $\llbracket \mathrm{h} \in \mathrm{H} ; \mathrm{H} \subseteq$ carrier $\mathrm{G} ; \mathrm{x} \in$ carrier $\mathrm{G} \rrbracket \Longrightarrow \mathrm{h} \otimes \mathrm{x} \in \mathrm{H} \#>\mathrm{x} "$
by (auto simp add: r_coset_def)
lemma (in group) rcosetsI:
$" \llbracket H \subseteq$ carrier G; $x \in$ carrier $G \rrbracket \Longrightarrow H \#>x \in \operatorname{rcosets} H "$
by (auto simp add: RCOSETS_def)
lemma (in group) rcos_self:
"【x \in carrier G; subgroup $H G \rrbracket \Longrightarrow x \in H \#>x "$
by (metis l_one rcosI subgroup_def)
Opposite of "repr_independence"
lemma (in group) repr_independenceD:
assumes "subgroup H G" "y \in carrier G"
and "H \#> x = H \#> y"
shows "y $\in H$ \#> x"
using assms by (simp add: rcos_self)

Elements of a right coset are in the carrier

```
lemma (in subgroup) elemrcos_carrier:
    assumes "group G" "a \in carrier G"
        and "a' \in H #> a"
    shows "a' \in carrier G"
    by (meson assms group.is_monoid monoid.r_coset_subset_G subset subsetCE)
lemma (in subgroup) rcos_const:
    assumes "group G" "h \in H"
    shows "H #> h = H"
    using group.coset_join2[OF assms(1), of h H]
    by (simp add: assms(2) subgroup_axioms)
lemma (in subgroup) rcos_module_imp:
    assumes "group G" "x \in carrier G"
        and "x' \in H #> x"
    shows "(x' \otimes inv x) \in H"
proof -
    obtain h where h: "h \in H" "x' = h \otimes x"
        using assms(3) unfolding r_coset_def by blast
    hence " }\textrm{x}\mathrm{ ' }\otimes\mathrm{ inv x = h"
        by (metis assms elemrcos_carrier group.inv_solve_right mem_carrier)
    thus ?thesis using h by blast
qed
lemma (in subgroup) rcos_module_rev:
    assumes "group G" "x \in carrier G" "x' \in carrier G"
        and "(x' \otimes inv x) \in H"
    shows "x' \in H #> x"
proof -
    obtain h where h: "h \in H" "x' \otimes inv x = h"
        using assms(4) unfolding r_coset_def by blast
    hence "x' = h \otimes x"
        by (metis assms group.inv_solve_right mem_carrier)
    thus ?thesis using h unfolding r_coset_def by blast
qed
Module property of right cosets
lemma (in subgroup) rcos_module:
    assumes "group G" "x \in carrier G" "x' \in carrier G"
    shows "(x' }\inH|> x) = (x' \otimes inv x \in H)"
    using rcos_module_rev rcos_module_imp assms by blast
Right cosets are subsets of the carrier.
lemma (in subgroup) rcosets_carrier:
assumes "group G" "X \(\in\) rcosets H"
shows "X \(\subseteq\) carrier G"
using assms elemrcos_carrier singletonD
subset_eq unfolding RCOSETS_def by force
```

Multiplication of general subsets

```
lemma (in comm_group) mult_subgroups:
    assumes HG: "subgroup H G" and KG: "subgroup K G"
    shows "subgroup (H <\#> K) G"
proof (rule subgroup.intro)
    show "H <\#> K \(\subseteq\) carrier G"
        by (simp add: setmult_subset_G assms subgroup.subset)
next
    have "1 \(\otimes 1 \in \mathrm{H}<\#>\mathrm{K} "\)
        unfolding set_mult_def using assms subgroup.one_closed by blast
    thus "1 \(\in \mathrm{H}\) <\#> K" by simp
next
    show " \(\bigwedge x . x \in H<\#>K \Longrightarrow\) inv \(x \in H<\#>K "\)
    proof -
        fix \(x\) assume " \(x \in H\) <\#> \(K\) "
        then obtain \(h k\) where \(h k: ~ " h \in H " ~ " k \in K " ~ " x=h \otimes k "\)
            unfolding set_mult_def by blast
        hence "inv \(x=(i n v k) \otimes(i n v h) "\)
                by (meson inv_mult_group assms subgroup.mem_carrier)
        hence "inv \(x=(i n v h) \otimes(i n v k) "\)
                by (metis hk inv_mult assms subgroup.mem_carrier)
        thus "inv \(x \in H\) <\#> K"
                unfolding set_mult_def using hk assms
                by (metis (no_types, lifting) UN_iff singletonI subgroup_def)
    qed
next
    show " \(\bigwedge x \mathrm{y} . \mathrm{x} \in \mathrm{H}<\#>\mathrm{K} \Longrightarrow \mathrm{y} \in \mathrm{H}<\#>\mathrm{K} \Longrightarrow \mathrm{x} \otimes \mathrm{y} \in \mathrm{H}<\#>\mathrm{K}\) "
    proof -
        fix x y assume "x \(\in H\) <\#> K" "y \(\in H\) <\#> K"
        then obtain h1 k1 h2 k2 where h1k1: "h1 \(\in H\) " "k1 \(\in K\) " "x = h1 \(\otimes\)
k1"
                                    and h2k2: "h2 \(\in H^{\prime \prime}\) "k2 \(\in K\) " "y \(=h 2 \otimes k 2 "\)
                unfolding set_mult_def by blast
        with KG HG have carr: "k1 \(\in\) carrier G" "h1 \(\in\) carrier G" "k2 \(\in\) carrier
G" "h2 \(\in\) carrier G"
            by (meson subgroup.mem_carrier)+
        have \(\mathrm{k} \otimes \mathrm{y}=(\mathrm{h} 1 \otimes \mathrm{k} 1) \otimes(\mathrm{h} 2 \otimes \mathrm{k} 2) \mathrm{l}\)
        using h1k1 h2k2 by simp
        also have " ... = h1 \(\otimes(k 1 \otimes h 2) \otimes k 2 "\)
            by (simp add: carr comm_groupE(3) comm_group_axioms)
        also have " ... = h1 \(\otimes(h 2 \otimes k 1) \otimes k 2 "\)
            by (simp add: carr m_comm)
        finally have \(" \mathrm{x} \otimes \mathrm{y}=(\mathrm{h} 1 \otimes \mathrm{~h} 2) \otimes(\mathrm{k} 1 \otimes \mathrm{k} 2) \mathrm{l}\)
                by (simp add: carr comm_groupE(3) comm_group_axioms)
        thus " \(\mathrm{x} \otimes \mathrm{y} \in \mathrm{H}\) <\#> K " unfolding set_mult_def
            using subgroup.m_closed[0F assms(1) h1k1(1) h2k2(1)]
                        subgroup.m_closed[0F assms(2) h1k1(2) h2k2(2)] by blast
    qed
qed
```

```
lemma (in subgroup) lcos_module_rev:
    assumes "group G" "x \in carrier G" "x' \in carrier G"
        and "(inv x \otimes x') \in H"
    shows "x' \in x <# H"
proof -
    obtain h where h: "h \in H" "inv x \otimes x' = h"
        using assms(4) unfolding l_coset_def by blast
    hence " }\textrm{x}\mathrm{ ' = x & h"
        by (metis assms group.inv_solve_left mem_carrier)
    thus ?thesis using h unfolding l_coset_def by blast
qed
```


7.4 Normal subgroups

lemma normal_imp_subgroup: "H $\triangleleft \mathrm{G} \Longrightarrow$ subgroup H G" by (rule normal.axioms(1))
lemma (in group) normall:
"subgroup $H G \Longrightarrow(\forall x \in$ carrier $G . H$ \#> $x=x<\# H) \Longrightarrow H \triangleleft G "$
by (simp add: normal_def normal_axioms_def is_group)
lemma (in normal) inv_op_closed1:
assumes " $\mathrm{x} \in$ carrier G " and " $\mathrm{h} \in \mathrm{H}$ "
shows "(inv x) $\otimes \mathrm{h} \otimes \mathrm{x} \in \mathrm{H}^{\prime}$
proof -
have "h $\otimes \mathrm{x} \in \mathrm{x}<\# \mathrm{H}$ "
using assms coset_eq assms(1) unfolding r_coset_def by blast
then obtain h ' where " h ' $\in H^{\prime \prime}$ " $h \otimes x=x \otimes h$ '"
unfolding l_coset_def by blast
thus ?thesis by (metis assms inv_closed l_inv l_one m_assoc mem_carrier)
qed
lemma (in normal) inv_op_closed2:
assumes " $\mathrm{x} \in$ carrier G " and $\mathrm{n} \in \mathrm{H}$ "
shows $" \mathrm{x} \otimes \mathrm{h} \otimes(i n v \mathrm{x}) \in \mathrm{H} "$
using assms inv_op_closed1 by (metis inv_closed inv_inv)
lemma (in comm_group) normal_iff_subgroup:
"N $\triangleleft \mathrm{G} \longleftrightarrow$ subgroup N G"
proof
assume "subgroup N G"
then show "N \triangleleft G"
by unfold_locales (auto simp: subgroupE subgroup.one_closed l_coset_def
$r_{\text {_ coset_def }} \mathrm{m}_{-}$comm subgroup.mem_carrier)
qed (simp add: normal_imp_subgroup)
Alternative characterization of normal subgroups
lemma (in group) normal_inv_iff:
" $(\mathrm{N} \triangleleft \mathrm{G})=$

```
        (subgroup N G ^ ( }\forall\textrm{x}\in\operatorname{carrier G. }\forall\textrm{h}\in\textrm{N}.\textrm{x}\otimes\textrm{h}\otimes(inv x)\inN))
        (is "_ = ?rhs")
proof
    assume N: "N \triangleleft G"
    show ?rhs
        by (blast intro: N normal.inv_op_closed2 normal_imp_subgroup)
next
    assume ?rhs
    hence sg: "subgroup N G"
        and closed: "\x. x\incarrier G \Longrightarrow \forallh\inN. x \otimes h \otimes inv x \in N" by auto
    hence sb: "N \subseteq carrier G" by (simp add: subgroup.subset)
    show "N \triangleleft G"
    proof (intro normalI [OF sg], simp add: l_coset_def r_coset_def, clarify)
        fix x
        assume x: "x \in carrier G"
        show "(\bigcuph\inN. {h \otimes x}) = (\bigcuph\inN. {x \otimes h})"
        proof
            show "(\bigcuph\inN. {h \otimes x}) \subseteq(\bigcuph\inN. {x \otimesh})"
            proof clarify
                fix n
                assume n: "n \in N"
                show "n \otimes x f (Uh\inN. {x \otimes h})"
                    proof
                        from closed [of "inv x"]
                        show "inv x \otimes n \otimes x \in N" by (simp add: x n)
                        show "n \otimes x \in {x \otimes (inv x \otimes n \otimes x)}"
                        by (simp add: x n m_assoc [symmetric] sb [THEN subsetD])
                    qed
            qed
        next
            show "(\bigcuph\inN. {x \otimesh}) \subseteq (\bigcuph\inN. {h \otimes x})"
            proof clarify
                        fix n
            assume n: "n \in N"
            show "x \otimes n \in (Uh\inN. {h \otimes x})"
                        proof
                show "x \otimes n \otimes inv x f N" by (simp add: x n closed)
                show "x \otimes n \in {x \otimes n \otimes inv x & x}"
                        by (simp add: x n m_assoc sb [THEN subsetD])
                    qed
            qed
        qed
    qed
qed
corollary (in group) normal_invI:
    assumes "subgroup N G" and "^x h. \llbracketx f carrier G; h \in N\rrbracket \Longrightarrow x \otimes
h \otimes inv x }\inN⿱一N口
    shows "N \triangleleft G"
```

```
    using assms normal_inv_iff by blast
corollary (in group) normal_invE:
    assumes "N \triangleleft G"
    shows "subgroup N G" and "\x h. \llbracketx cearrier G; h \in N\rrbracket \Longrightarrow x \otimes h
\otimes inv x \in N"
    using assms normal_inv_iff apply blast
    by (simp add: assms normal.inv_op_closed2)
lemma (in group) one_is_normal: "{1} \triangleleft G"
    using normal_invI triv_subgroup by force
```

The intersection of two normal subgroups is, again, a normal subgroup.

```
lemma (in group) normal_subgroup_intersect:
    assumes "M \triangleleft G" and "N \triangleleft G" shows "M \cap N \triangleleft G"
    using assms normal_inv_iff subgroups_Inter_pair by force
```

Being a normal subgroup is preserved by surjective homomorphisms.

```
lemma (in normal) surj_hom_normal_subgroup:
    assumes \(\varphi\) : "group_hom G F \(\varphi\) "
    assumes \(\varphi\) surj: " \(\varphi\) ' (carrier G) = carrier F"
    shows " ( \(\varphi\) ' H) \(\triangleleft\) F"
proof (rule group.normalI)
    show "group F"
        using \(\varphi\) group_hom.axioms(2) by blast
next
    show "subgroup ( \(\varphi\) ' H) F"
        using \(\varphi\) group_hom.subgroup_img_is_subgroup subgroup_axioms by blast
next
    show \(" \forall \mathrm{x} \in\) carrier \(\mathrm{F} . \varphi\) ' \(\mathrm{H} \#\rangle_{\mathrm{F}} \mathrm{x}=\mathrm{x}\left\langle \#_{\mathrm{F}} \varphi\right.\) ' \(\mathrm{H} "\)
    proof
        fix \(f\)
        assume f: "f \(\in\) carrier F"
        with \(\varphi\) surj obtain \(g\) where \(g: ~ " g \in\) carrier \(G "\) "f \(=\varphi \mathrm{g}\) " by auto
        hence " \(\varphi\) ' \(\mathrm{H} \#_{\mathrm{F}} \mathrm{f}=\varphi\) ' \(\left.\mathrm{H} \#\right\rangle_{\mathrm{F}} \varphi \mathrm{g}\) " by simp
        also have \(" . .=\left(\lambda \mathrm{x}\right.\). ( \(\varphi \mathrm{x}\) ) \(\otimes_{\mathrm{F}}(\varphi \mathrm{g})\) ) ' \(\mathrm{H} "\)
            unfolding r_coset_def image_def by auto
        also have "... = ( \(\lambda \mathrm{x} . \varphi(\mathrm{x} \otimes \mathrm{g})\) ) ' H"
        using subset g \(\varphi\) group_hom.hom_mult unfolding image_def by fastforce
        also have "... = \(\varphi\) ' ( H \#> g)"
        using \(\varphi\) unfolding \(r_{\text {_coset_def }}\) by auto
        also have "... = \(\varphi\) ' ( g <\# H)"
        by (metis coset_eq \(\mathrm{g}(1))\)
        also have "... = ( \(\lambda \mathrm{x} . \varphi(\mathrm{g} \otimes \mathrm{x})\) ) ' \(\mathrm{H} "\)
        using \(\varphi\) unfolding \(l_{-}\)coset_def by auto
    also have \(" . .=\left(\lambda \mathrm{x}\right.\). ( \(\varphi \mathrm{g}\) ) \(\otimes_{\mathrm{F}}(\varphi \mathrm{x})\) ) ' H "
        using subset g \(\varphi\) group_hom.hom_mult by fastforce
        also have "... = \(\varphi \mathrm{g}<\#_{\mathrm{F}} \varphi\) ' \(\mathrm{H} "\)
            unfolding l_coset_def image_def by auto
```

```
        also have "... = f < \(\#_{F} \varphi\) ' H"
        using g by simp
        finally show " \(\varphi\) ' \(\left.H \#^{\prime}\right\rangle_{F} f=f\left\langle \#_{F} \varphi\right.\) ' \(H\) ".
        qed
qed
```

Being a normal subgroup is preserved by group isomorphisms.

```
lemma iso_normal_subgroup:
    assumes \(\varphi\) : " \(\varphi \in\) iso G F" "group G" "group F" "H \(\triangleleft\) G"
    shows " ( \(\varphi\) ' H) \(\triangleleft\) F"
    by (meson assms Group.iso_iff group_hom_axioms_def group_hom_def normal.surj_hom_normal_s
```

The set product of two normal subgroups is a normal subgroup.

```
lemma (in group) setmult_lcos_assoc:
    "\llbracketH\subseteq carrier G; K \subseteq carrier G; x \in carrier G\rrbracket
        \Longrightarrow (x <# H) <#> K = x <# (H <#> K)"
    by (force simp add: l_coset_def set_mult_def m_assoc)
```


7.5 More Properties of Left Cosets

```
lemma (in group) l_repr_independence:
    assumes "y \in x <# H" "x \in carrier G" and HG: "subgroup H G"
    shows "x <# H = y <# H"
proof -
    obtain h' where h': "h' \in H" "y = x \otimes h'"
        using assms(1) unfolding l_coset_def by blast
    hence "x \otimes h = y \otimes ((inv h') \otimes h)" if "h \in H" for h
    proof -
        have "h' \in carrier G"
            by (meson HG h'(1) subgroup.mem_carrier)
            moreover have "h \in carrier G"
                by (meson HG subgroup.mem_carrier that)
            ultimately show ?thesis
                by (metis assms(2) h'(2) inv_closed inv_solve_right m_assoc m_closed)
    qed
    hence "\xh. xh \in x <# H \Longrightarrow xh \in y <# H"
        unfolding l_coset_def by (metis (no_types, lifting) UN_iff HG h'(1)
subgroup_def)
    moreover have " \h. h \in H \Longrightarrow y \otimes h = x \otimes (h' \otimes h)"
        using h' by (meson assms(2) HG m_assoc subgroup.mem_carrier)
    hence "\yh. yh \in y <# H \Longrightarrow yh f x <# H"
        unfolding l_coset_def using subgroup.m_closed[OF HG h'(1)] by blast
    ultimately show ?thesis by blast
qed
lemma (in group) lcos_m_assoc:
    "\llbracketM \subseteq carrier G; g \in carrier G; h \in carrier G \rrbracket \Longrightarrowg <# (h <# M) =
(g \otimes h) <# M"
by (force simp add: l_coset_def m_assoc)
```

```
lemma (in group) lcos_mult_one: "M \subseteq carrier G C < <# M = M"
by (force simp add: l_coset_def)
lemma (in group) l_coset_subset_G:
    "\llbracketH\subseteq carrier G; x \in carrier G \rrbracket \Longrightarrow x <# H \subseteq carrier G"
by (auto simp add: l_coset_def subsetD)
lemma (in group) l_coset_carrier:
    "\llbrackety f x <# H; x \in carrier G; subgroup H G \rrbracket \Longrightarrow y \in carrier G"
    by (auto simp add: l_coset_def m_assoc subgroup.subset [THEN subsetD]
subgroup.m_closed)
lemma (in group) l_coset_swap:
    assumes "y \in x <# H" "x \in carrier G" "subgroup H G"
    shows "x \in y <# H"
    using assms(2) l_repr_independence[OF assms] subgroup.one_closed[OF
assms(3)]
    unfolding l_coset_def by fastforce
lemma (in group) subgroup_mult_id:
    assumes "subgroup H G"
    shows "H <#> H = H"
proof
    show "H <#> H \subseteq H"
            unfolding set_mult_def using subgroup.m_closed[OF assms] by (simp
add: UN_subset_iff)
    show "H \subseteq H <#> H"
    proof
            fix x assume x: "x \in H" thus "x \in H <#> H" unfolding set_mult_def
                using subgroup.m_closed[OF assms subgroup.one_closed[OF assms] x]
subgroup.one_closed[OF assms]
        using assms subgroup.mem_carrier by force
    qed
qed
```


7.5.1 Set of Inverses of an r_coset.

lemma (in normal) rcos_inv:
assumes $\mathrm{x}: \quad \mathrm{x} \in$ carrier $\mathrm{G} "$
shows "set_inv (H \#> x) = H \#> (inv x)"
proof (simp add: r_coset_def SET_INV_def x inv_mult_group, safe)
fix h
assume $h: ~ " h \in H "$
show "inv $\mathrm{x} \otimes$ inv $\mathrm{h} \in(\bigcup \mathrm{j} \in \mathrm{H} .\{\mathrm{j} \otimes$ inv x$\})$ "
proof
show "inv $\mathrm{x} \otimes$ inv $\mathrm{h} \otimes \mathrm{x} \in \mathrm{H} "$
by (simp add: inv_op_closed1 h x)
show "inv $\mathrm{x} \otimes$ inv $\mathrm{h} \in\{$ inv $\mathrm{x} \otimes$ inv $\mathrm{h} \otimes \mathrm{x} \otimes$ inv x$\}$ "

```
        by (simp add: h x m_assoc)
    qed
    show "h \otimes inv x \in ( \j\inH. {inv x }\otimes\mathrm{ inv j})"
    proof
        show "x \otimes inv h & inv x \in H"
        by (simp add: inv_op_closed2 h x)
    show "h \otimes inv x \in {inv x }\otimes\mathrm{ inv (x }\otimes\mathrm{ inv h }\otimes\mathrm{ inv x)}"
        by (simp add: h x m_assoc [symmetric] inv_mult_group)
    qed
qed
```


7.5.2 Theorems for <\#> with \#> or <\#.

```
lemma (in group) setmult_rcos_assoc:
```

 \(" \llbracket H \subseteq\) carrier \(G ; K \subseteq\) carrier \(G ; x \in\) carrier \(G \rrbracket \Longrightarrow\)
 H <\#> (K \#> x) = (H <\#> K) \#> x"
 using set_mult_assoc[of H K "\{x\}"] by (simp add: r_coset_eq_set_mult)
 lemma (in group) rcos_assoc_lcos:
$" \llbracket H \subseteq$ carrier $G ; K \subseteq$ carrier $G ; x \in$ carrier $G \rrbracket \Longrightarrow$
(H \#> x) <\#> K = H <\#> (x <\# K)"
using set_mult_assoc[of H "\{x\}" K]
by (simp add: l_coset_eq_set_mult r_coset_eq_set_mult)
lemma (in normal) rcos_mult_step1:
" $\llbracket \mathrm{x} \in$ carrier $\mathrm{G} ; \mathrm{y} \in$ carrier $\mathrm{G} \rrbracket \Longrightarrow$
(H \#> x) <\#> (H \#> y) = (H <\#> (x <\# H)) \#> y"
by (simp add: setmult_rcos_assoc r_coset_subset_G
subset l_coset_subset_G rcos_assoc_lcos)
lemma (in normal) rcos_mult_step2:
" $\llbracket \mathrm{x} \in$ carrier $\mathrm{G} ; \mathrm{y} \in$ carrier $G \rrbracket$
$\Longrightarrow(\mathrm{H}<\#>(\mathrm{x}<\# \mathrm{H}))$ \#> y = (H <\#> ($\mathrm{H} \#>\mathrm{x}$)) \#> y"
by (insert coset_eq, simp add: normal_def)
lemma (in normal) rcos_mult_step3:
" $\llbracket \mathrm{x} \in$ carrier $\mathrm{G} ; \mathrm{y} \in$ carrier $G \rrbracket$
$\Longrightarrow(H$ <\#> ($\mathrm{H} \#>\mathrm{x}$)) \#> $\mathrm{y}=\mathrm{H} \#>(\mathrm{x} \otimes \mathrm{y}) "$
by (simp add: setmult_rcos_assoc coset_mult_assoc
subgroup_mult_id normal.axioms subset normal_axioms)
lemma (in normal) rcos_sum:
" $\llbracket \mathrm{x} \in$ carrier $\mathrm{G} ; \mathrm{y} \in$ carrier $\mathrm{G} \rrbracket$
\Longrightarrow (H \#> x) <\#> (H \#> y) = H \#> ($\mathrm{x} \otimes \mathrm{y}$)"
by (simp add: rcos_mult_step1 rcos_mult_step2 rcos_mult_step3)
lemma (in normal) rcosets_mult_eq: " $M \in \operatorname{rcosets} H \Longrightarrow H<\#>M=M "$
- generalizes subgroup_mult_id
by (auto simp add: RCOSETS_def subset

```
setmult_rcos_assoc subgroup_mult_id normal.axioms normal_axioms)
```


7.5.3 An Equivalence Relation

```
definition
```

```
    r_congruent :: "[('a,'b)monoid_scheme, 'a set] => ('a*'a)set" ("rcong\imath
```

 r_congruent :: "[('a,'b)monoid_scheme, 'a set] => ('a*'a)set" ("rcong\imath
 _")
_")
where "rcongG H = {(x,y). x \in carrier G ^ y \in carrier G ^ invG x * *G
where "rcongG H = {(x,y). x \in carrier G ^ y \in carrier G ^ invG x * *G
y \in H}"
y \in H}"
lemma (in subgroup) equiv_rcong:
assumes "group G"
shows "equiv (carrier G) (rcong H)"
proof -
interpret group G by fact
show ?thesis
proof (intro equivI)
show "refl_on (carrier G) (rcong H)"
by (auto simp add: r_congruent_def refl_on_def)
next
show "sym (rcong H)"
proof (simp add: r_congruent_def sym_def, clarify)
fix x y
assume [simp]: "x \in carrier G" "y \in carrier G"
and "inv x \otimes y \in H"
hence "inv (inv x \& y) \in H" by simp
thus "inv y \otimes x \in H" by (simp add: inv_mult_group)
qed
next
show "trans (rcong H)"
proof (simp add: r_congruent_def trans_def, clarify)
fix x y z
assume [simp]: "x \in carrier G" "y \in carrier G" "z \in carrier G"
and "inv x \otimes y f H" and "inv y }\otimes\textrm{z}\in\textrm{H
hence "(inv x \& y) \otimes (inv y \otimes z) \in H" by simp
hence "inv x \& (y \otimes inv y) \otimes z \in H"
by (simp add: m_assoc del: r_inv Units_r_inv)
thus "inv x \& z \inH" by simp
qed
qed
qed

```

Equivalence classes of rcong correspond to left cosets. Was there a mistake in the definitions? I'd have expected them to correspond to right cosets.
```

lemma (in subgroup) l_coset_eq_rcong:
assumes "group G"
assumes a: "a \in carrier G"
shows "a <\# H = (rcong H) "، {a}"

```
```

proof -
interpret group G by fact
show ?thesis by (force simp add: r_congruent_def l_coset_def m_assoc
[symmetric] a)
qed

```

\subsection*{7.5.4 Two Distinct Right Cosets are Disjoint}
```

lemma (in group) rcos_equation:
assumes "subgroup H G"
assumes p: "ha \otimes a = h \otimes b" "a \in carrier G" "b \in carrier G" "h \in H"
"ha \in H" "hb \in H"
shows "hb \otimesa\in (Uh\inH. {h \otimes b})"
proof -
interpret subgroup H G by fact
from p show ?thesis
by (rule_tac UN_I [of "hb \otimes ((inv ha) \otimes h)"]) (auto simp: inv_solve_left
m_assoc)
qed
lemma (in group) rcos_disjoint:
assumes "subgroup H G"
shows "pairwise disjnt (rcosets H)"
proof -
interpret subgroup H G by fact
show ?thesis
unfolding RCOSETS_def r_coset_def pairwise_def disjnt_def
by (blast intro: rcos_equation assms sym)
qed

```

\subsection*{7.6 Further lemmas for r_congruent}

The relation is a congruence
```

lemma (in normal) congruent_rcong:
shows "congruent2 (rcong H) (rcong H) (\lambdaa b. a \otimes b <\# H)"
proof (intro congruent2I[of "carrier G" _ "carrier G" _] equiv_rcong is_group)
fix a b c
assume abrcong: "(a, b) \in rcong H"
and ccarr: "c \in carrier G"
from abrcong
have acarr: "a \in carrier G"
and bcarr: "b \in carrier G"
and abH: "inv a \& b \in H"
unfolding r_congruent_def
by fast+
note carr = acarr bcarr ccarr

```
from ccarr and abH
have "inv \(\mathrm{c} \otimes\) (inv \(\mathrm{a} \otimes \mathrm{b}) \otimes \mathrm{c} \in \mathrm{H}\) " by (rule inv_op_closed1)
moreover
from carr and inv_closed
have "inv \(c \otimes(i n v a \otimes b) \otimes c=(i n v c \otimes i n v a) \otimes(b \otimes c) "\)
by (force cong: m_assoc)
moreover
from carr and inv_closed
have "... = (inv \((a \otimes c)) \otimes(b \otimes c) "\)
by (simp add: inv_mult_group)
ultimately
have " (inv \((\mathrm{a} \otimes \mathrm{c})) \otimes(\mathrm{b} \otimes \mathrm{c}) \in \mathrm{H}\) " by simp
from carr and this
have " \((\mathrm{b} \otimes \mathrm{c}) \in(\mathrm{a} \otimes \mathrm{c})<\# \mathrm{H} "\)
by (simp add: lcos_module_rev[0F is_group])
from carr and this and is_subgroup
show " \((\mathrm{a} \otimes \mathrm{c})<\# \mathrm{H}=(\mathrm{b} \otimes \mathrm{c})<\# \mathrm{H} " \mathrm{by}\) (intro l_repr_independence, simp+)
next
fix a b c
assume abrcong: " (a, b) f rcong H" and ccarr: "c \(\in\) carrier G"
from ccarr have "c \(\in\) Units G" by simp
hence cinvc_one: "inv \(c \otimes c=1 "\) by (rule Units_l_inv)
from abrcong
have acarr: "a \(\in\) carrier \(G\) "
and bcarr: "b \(\in\) carrier \(G\) "
and abH: "inv a \(\otimes \mathrm{b} \in \mathrm{H}\) "
by (unfold r_congruent_def, fast+)
note carr = acarr bcarr ccarr
from carr and inv_closed
have "inv \(\mathrm{a} \otimes \mathrm{b}=\) inv \(\mathrm{a} \otimes(1 \otimes \mathrm{~b})\) " by simp
also from carr and inv_closed have \(" . . .=\) inv \(a \otimes(i n v c \otimes c) \otimes b "\) by simp
also from carr and inv_closed have \(" . . .=(i n v a \bar{\otimes}\) inv \(c) \otimes(c \otimes b) "\) by (force cong: m_assoc)
also from carr and inv_closed have \(" . . .=\operatorname{inv}(c \otimes a) \otimes(c \otimes b) "\) by (simp add: inv_mult_group)
finally have "inv \(\mathrm{a} \otimes \mathrm{b}=\operatorname{inv}(\mathrm{c} \otimes \mathrm{a}) \otimes(\mathrm{c} \otimes \mathrm{b}) \mathrm{C}\).
from \(a b H\) and this have "inv \((c \otimes a) \otimes(c \otimes b) \in H\) " by simp
from carr and this have " \((c \otimes b) \in(c \otimes a)<\# H "\)
```

 by (simp add: lcos_module_rev[OF is_group])
 from carr and this and is_subgroup
 show "(c \otimes a) <# H = (c \otimes b) <# H" by (intro l_repr_independence,
 simp+)
qed

```

\subsection*{7.7 Order of a Group and Lagrange's Theorem}

\section*{definition}
```

 order :: "('a, 'b) monoid_scheme # nat"
    ```
    where "order \(S=\) card (carrier S)"
lemma iso_same_order:
    assumes " \(\varphi \in\) iso G H"
    shows "order \(G=\) order \(H "\)
    by (metis assms is_isoI iso_same_card order_def order_def)
lemma (in monoid) order_gt_0_iff_finite: " \(0<\) order \(G \longleftrightarrow\) finite (carrier
G)"
    by (auto simp add: order_def card_gt_0_iff)
lemma (in group) order_one_triv_iff:
    shows "(order G = 1) = (carrier G = \{1\})"
    by (metis One_nat_def card.empty card_Suc_eq empty_iff one_closed order_def
singleton_iff)
lemma (in group) rcosets_part_G:
    assumes "subgroup H G"
    shows " \(\bigcup\) (rcosets \(H\) ) = carrier \(G "\)
proof -
    interpret subgroup H G by fact
    show ?thesis
        unfolding RCOSETS_def \(r_{-}\)coset_def by auto
qed
lemma (in group) cosets_finite:
            " \(\llbracket c \in\) rcosets \(H ; H \subseteq\) carrier \(G ;\) finite (carrier \(G) \rrbracket \Longrightarrow\) finite
c"
    unfolding RCOSETS_def
    by (auto simp add: r_coset_subset_G [THEN finite_subset])

The next two lemmas support the proof of card_cosets_equal.
```

lemma (in group) inj_on_f:
assumes "H \subseteq carrier G" and a: "a \in carrier G"
shows "inj_on (}\lambda\textrm{y}.\textrm{y}\otimes\mathrm{ inv a) (H \#> a)"
proof
fix x y
assume "x \in H \#> a" "y \in H \#> a" and xy: "x \otimes inv a = y \otimes inv a"
then have "x \in carrier G" "y \in carrier G"

```
using assms r_coset_subset_G by blast+
with \(x y\) a show \(" x=y "\)
by auto
qed
lemma (in group) inj_on_g:
"【H \(\subseteq\) carrier \(G ; a \in \operatorname{carrier~} G \rrbracket \Longrightarrow\) inj_on ( \(\lambda y . y \otimes a) H "\)
by (force simp add: inj_on_def subsetD)
```

lemma (in group) card_cosets_equal:
assumes " $R \in$ rcosets H " "H \subseteq carrier G"
shows $" \exists f . b_{i j}$ betw f H R"
proof -
obtain g where $\mathrm{g}: ~ " \mathrm{~g} \in$ carrier $\mathrm{G} "$ " $\mathrm{R}=\mathrm{H}$ \#> $\mathrm{g} "$
using assms(1) unfolding RCOSETS_def by blast
let $? \mathrm{f}=\mathrm{l}$ h $\mathrm{h} . \mathrm{h} \otimes \mathrm{g} "$
have " $\wedge \mathrm{r} . \mathrm{r} \in \mathrm{R} \Longrightarrow \exists \mathrm{h} \in \mathrm{H}$. ?f $\mathrm{h}=\mathrm{r}$ "
proof -
fix r assume $" r \in R "$
then obtain h where $" h \in H "$ " $r=h \otimes g "$
using g unfolding $r_{\text {_coset_def }}$ by blast
thus $" \exists \mathrm{~h} \in \mathrm{H}$. ?f $\mathrm{h}=\mathrm{r}$ " by blast
qed
hence " $\mathrm{R} \subseteq$?f ' H" by blast
moreover have "?f ' $H \subseteq R$ "
using g unfolding $r_{\text {_coset_def }}$ by blast
ultimately show ?thesis using inj_on_g unfolding bij_betw_def
using assms(2) $\mathrm{g}(1)$ by auto
qed
corollary (in group) card_rcosets_equal:
assumes "R \in rcosets \bar{H} " "H \subseteq carrier G"
shows "card H = card R"
using card_cosets_equal assms bij_betw_same_card by blast
corollary (in group) rcosets_finite:
assumes "R rcosets H " "H \subseteq carrier G" "finite H"
shows "finite R"
using card_cosets_equal assms bij_betw_finite is_group by blast

```
lemma (in group) rcosets_subset_PowG:
            "subgroup H G \(\Longrightarrow\) rcosets H \(\subseteq\) Pow(carrier G)"
    using rcosets_part_G by auto
```

proposition (in group) lagrange_finite:
assumes "finite(carrier G)" and HG: "subgroup H G"
shows "card(rcosets H) * card(H) $=\operatorname{order}(\mathrm{G}) "$
proof -
have "card H * card (rcosets H) = card (U (rcosets H))"
proof (rule card_partition)
show " $\bigwedge c 1 \mathrm{c} 2 . \llbracket c 1 \in$ roosets $H ; c 2 \in \operatorname{rcosets} H ; c 1 \neq c 2 \rrbracket \Longrightarrow c 1 \cap$
c2 $=\{ \}{ }^{\prime \prime}$
using HG rcos_disjoint by (auto simp: pairwise_def disjnt_def)
qed (auto simp: assms finite_UnionD rcosets_part_G card_rcosets_equal
subgroup.subset)
then show ?thesis
by (simp add: HG mult.commute order_def rcosets_part_G)
qed
theorem (in group) lagrange:
assumes "subgroup H G"
shows "card (rcosets H) * card H = order G"
proof (cases "finite (carrier G)")
case True thus ?thesis using lagrange_finite assms by simp
next
case False
thus ?thesis
proof (cases "finite H")
case False thus ?thesis using <infinite (carrier G) > by (simp add:
order_def)
next
case True
have "infinite (rcosets H)"
proof
assume "finite (rcosets H)"
hence finite_rcos: "finite (rcosets H)" by simp
hence "card $(\bigcup(r \operatorname{cosets} H))=\left(\sum R \in(r \operatorname{cosets} H)\right.$. card R)"
using card_Union_disjoint[of "rcosets H"] <finite H > rcos_disjoint[0F
assms(1)]
rcosets_finite[where $? \mathrm{H}=\mathrm{H}]$ by (simp add: assms subgroup. subset)
hence "order G = ($\sum \mathrm{R} \in(\mathrm{rcosets} \mathrm{H}$). card R)"
by (simp add: assms order_def rcosets_part_G)
hence "order $G=\left(\sum R \in\right.$ (rcosets H). card H)"
using card_rcosets_equal by (simp add: assms subgroup.subset)

```

```

 hence "order \(G \neq 0\) " using finite_rcos <finite \(H\) 〉 assms ex_in_conv
 rcosets_part_G subgroup.one_closed by
 fastforce
thus False using <infinite (carrier G)> order_gt_0_iff_finite by
blast
qed
thus ?thesis using <infinite (carrier G) > by (simp add: order_def)
qed

```
qed
The cardinality of the right cosets of the trivial subgroup is the cardinality of the group itself:
```

corollary (in group) card_rcosets_triv:
assumes "finite (carrier G)"
shows "card (rcosets {1}) = order G"
using lagrange triv_subgroup by fastforce

```

\subsection*{7.8 Quotient Groups: Factorization of a Group}
```

definition
FactGroup :: "[('a,'b) monoid_scheme, 'a set] => ('a set) monoid" (infixl
"Mod" 65)
- Actually defined for groups rather than monoids
where "FactGroup G H = |carrier = rcosetsG H, mult = set_mult G, one
= H()"
lemma (in normal) setmult_closed:
"\llbracketK1 \in rcosets H; K2 \in rcosets H\rrbracket \Longrightarrow K1 <\#> K2 \in rcosets H"
by (auto simp add: rcos_sum RCOSETS_def)
lemma (in normal) setinv_closed:
"K G roosets H \Longrightarrow set_inv K \in rcosets H"
by (auto simp add: rcos_inv RCOSETS_def)
lemma (in normal) rcosets_assoc:
"【M1 \in rcosets H; M2 \in rcosets H; M3 \in roosets H\rrbracket
\Longrightarrow M1 <\#> M2 <\#> M3 = M1 <\#> (M2 <\#> M3)"
by (simp add: group.set_mult_assoc is_group rcosets_carrier)
lemma (in subgroup) subgroup_in_rcosets:
assumes "group G"
shows "H \in rcosets H"
proof -
interpret group G by fact
from _ subgroup_axioms have "H \#> 1 = H"
by (rule coset_join2) auto
then show ?thesis
by (auto simp add: RCOSETS_def)
qed
lemma (in normal) rcosets_inv_mult_group_eq:
"M \in rcosets H \Longrightarrow set_inv M <\#> M = H"
by (auto simp add: RCOSETS_def rcos_inv rcos_sum subgroup.subset normal.axioms
normal_axioms)
theorem (in normal) factorgroup_is_group: "group (G Mod H)"
proof -

```
```

have "\x. x \in rcosets H \Longrightarrow \existsy\inrcosets H. y <\#> x = H"
using rcosets_inv_mult_group_eq setinv_closed by blast
then show ?thesis
unfolding FactGroup_def
by (intro groupI)
(auto simp: setmult_closed subgroup_in_rcosets rcosets_assoc rcosets_mult_eq)
qed
lemma carrier_FactGroup: "carrier(G Mod N) = (\lambdax. r_coset G N x) ' carrier
G"
by (auto simp: FactGroup_def RCOSETS_def)
lemma one_FactGroup [simp]: "one(G Mod N) = N"
by (auto simp: FactGroup_def)
lemma mult_FactGroup [simp]: "monoid.mult (G Mod N) = set_mult G"
by (auto simp: FactGroup_def)
lemma (in normal) inv_FactGroup:
assumes "X \in carrier (G Mod H)"
shows "invG Mod H X = set_inv X"
proof -
have X: "X G rcosets H"
using assms by (simp add: FactGroup_def)
moreover have "set_inv X <\#> X = H"
using X by (simp add: normal.rcosets_inv_mult_group_eq normal_axioms)
moreover have "Group.group (G Mod H)"
using normal.factorgroup_is_group normal_axioms by blast
ultimately show ?thesis
by (simp add: FactGroup_def group.inv_equality normal.setinv_closed
normal_axioms)
qed
The coset map is a homomorphism from G to the quotient group G Mod H

```
```

lemma (in normal) r_coset_hom_Mod:

```
lemma (in normal) r_coset_hom_Mod:
    "(\lambdaa. H #> a) \in hom G (G Mod H)"
    "(\lambdaa. H #> a) \in hom G (G Mod H)"
    by (auto simp add: FactGroup_def RCOSETS_def Pi_def hom_def rcos_sum)
    by (auto simp add: FactGroup_def RCOSETS_def Pi_def hom_def rcos_sum)
lemma (in comm_group) set_mult_commute:
lemma (in comm_group) set_mult_commute:
    assumes "N\subseteqcarrier G" "x \in rcosets N" "y \in rcosets N"
    assumes "N\subseteqcarrier G" "x \in rcosets N" "y \in rcosets N"
    shows "x <#> y = y <#> x"
    shows "x <#> y = y <#> x"
    using assms unfolding set_mult_def RCOSETS_def
    using assms unfolding set_mult_def RCOSETS_def
    by auto (metis m_comm r_coset_subset_G subsetCE)+
    by auto (metis m_comm r_coset_subset_G subsetCE)+
lemma (in comm_group) abelian_FactGroup:
lemma (in comm_group) abelian_FactGroup:
    assumes "subgroup N G" shows "comm_group(G Mod N)"
    assumes "subgroup N G" shows "comm_group(G Mod N)"
proof (rule group.group_comm_groupI)
proof (rule group.group_comm_groupI)
    have "N \triangleleft G"
```

 have "N \triangleleft G"
    ```
```

 by (simp add: assms normal_iff_subgroup)
 then show "Group.group (G Mod N)"
 by (simp add: normal.factorgroup_is_group)
 fix x :: "'a set" and y :: "'a set"
 assume "x \in carrier (G Mod N)" "y \in carrier (G Mod N)"
 then show "x }\mp@subsup{\otimes}{G}{}\operatorname{Mod}N\quady=y \mp@subsup{\otimes}{G}{\prime}\operatorname{Mod N x"
 by (metis FactGroup_def assms mult_FactGroup partial_object.simps(1)
 set_mult_commute subgroup_def)
qed

```
```

lemma FactGroup_universal:

```
lemma FactGroup_universal:
    assumes "h \(\in\) hom G H" "N \(\triangleleft \mathrm{G} "\)
    assumes "h \(\in\) hom G H" "N \(\triangleleft \mathrm{G} "\)
        and \(h:\) " \(\bigwedge x\) y. \(\llbracket x \in\) carrier \(G ; y \in \operatorname{carrier~} G ; r_{-} \operatorname{coset} G N x=r \_c o s e t\)
        and \(h:\) " \(\bigwedge x\) y. \(\llbracket x \in\) carrier \(G ; y \in \operatorname{carrier~} G ; r_{-} \operatorname{coset} G N x=r \_c o s e t\)
\(\mathrm{G} N \mathrm{y} \rrbracket \Longrightarrow \mathrm{h} x=\mathrm{h} \mathrm{y}^{\prime \prime}\)
\(\mathrm{G} N \mathrm{y} \rrbracket \Longrightarrow \mathrm{h} x=\mathrm{h} \mathrm{y}^{\prime \prime}\)
    obtains g
    obtains g
    where g g hom (G Mod N) H" " \(\bigwedge \mathrm{x} . \mathrm{x} \in \operatorname{carrier~} \mathrm{G} \Longrightarrow \mathrm{g}\left(\mathrm{r}_{-} \operatorname{coset} \mathrm{G} N \mathrm{x}\right.\) )
    where g g hom (G Mod N) H" " \(\bigwedge \mathrm{x} . \mathrm{x} \in \operatorname{carrier~} \mathrm{G} \Longrightarrow \mathrm{g}\left(\mathrm{r}_{-} \operatorname{coset} \mathrm{G} N \mathrm{x}\right.\) )
    = h x"
    = h x"
proof -
proof -
    obtain g where \(\mathrm{g}: ~ " \bigwedge \mathrm{x} . \mathrm{x} \in \operatorname{carrier} \mathrm{G} \Longrightarrow \mathrm{h} x=\mathrm{g}\left(\mathrm{r}_{-} \operatorname{coset} \mathrm{G} N \mathrm{x}\right)\) "
    obtain g where \(\mathrm{g}: ~ " \bigwedge \mathrm{x} . \mathrm{x} \in \operatorname{carrier} \mathrm{G} \Longrightarrow \mathrm{h} x=\mathrm{g}\left(\mathrm{r}_{-} \operatorname{coset} \mathrm{G} N \mathrm{x}\right)\) "
            using \(h\) function_factors_left_gen [of " \(\lambda \mathrm{x}\). \(\mathrm{x} \in\) carrier \(G\) " "r_coset
            using \(h\) function_factors_left_gen [of " \(\lambda \mathrm{x}\). \(\mathrm{x} \in\) carrier \(G\) " "r_coset
G N" h] by blast
G N" h] by blast
    show thesis
    show thesis
    proof
    proof
        show "g \(\in\) hom (G Mod N) H"
        show "g \(\in\) hom (G Mod N) H"
        proof (rule homI)
        proof (rule homI)
            show \(" \mathrm{~g}\left(\mathrm{u} \otimes_{\mathrm{G}} \operatorname{Mod} \mathrm{N} v\right)=\mathrm{g} u \otimes_{\mathrm{H}} \mathrm{g} \mathrm{v}\) "
            show \(" \mathrm{~g}\left(\mathrm{u} \otimes_{\mathrm{G}} \operatorname{Mod} \mathrm{N} v\right)=\mathrm{g} u \otimes_{\mathrm{H}} \mathrm{g} \mathrm{v}\) "
                if "u \(\in\) carrier ( \(G\) Mod \(N\) )" "v \(\in \operatorname{carrier~(G~Mod~N)"~for~} u v\)
                if "u \(\in\) carrier ( \(G\) Mod \(N\) )" "v \(\in \operatorname{carrier~(G~Mod~N)"~for~} u v\)
            proof -
            proof -
                    from that
                    from that
                        obtain \(x\) y where \(x y\) : "x \(\in\) carrier \(G "\) "u = r_coset \(G N x "\) "y \(\in\)
                        obtain \(x\) y where \(x y\) : "x \(\in\) carrier \(G "\) "u = r_coset \(G N x "\) "y \(\in\)
carrier G" "v = r_coset G N y"
carrier G" "v = r_coset G N y"
                    by (auto simp: carrier_FactGroup)
                    by (auto simp: carrier_FactGroup)
            then have \(\mathrm{h} ~\left(\mathrm{x} \otimes_{\mathrm{G}} \mathrm{y}\right)=\mathrm{h} x \otimes_{\mathrm{H}} \mathrm{h} y "\)
            then have \(\mathrm{h} ~\left(\mathrm{x} \otimes_{\mathrm{G}} \mathrm{y}\right)=\mathrm{h} x \otimes_{\mathrm{H}} \mathrm{h} y "\)
                    by (metis hom_mult [ \(\mathrm{OF}<\mathrm{h} \in\) hom G H >])
                    by (metis hom_mult [ \(\mathrm{OF}<\mathrm{h} \in\) hom G H >])
            then show ?thesis
            then show ?thesis
                            by (metis Coset.mult_FactGroup xy <N \(\triangleleft\) G〉 g group.subgroup_self
                            by (metis Coset.mult_FactGroup xy <N \(\triangleleft\) G〉 g group.subgroup_self
normal.axioms(2) normal.rcos_sum subgroup_def)
normal.axioms(2) normal.rcos_sum subgroup_def)
        qed
        qed
        qed (use <h \(\in\) hom \(G\) H > in <auto simp: carrier_FactGroup Pi_iff hom_def
        qed (use <h \(\in\) hom \(G\) H > in <auto simp: carrier_FactGroup Pi_iff hom_def
simp flip: g>)
simp flip: g>)
    qed (auto simp flip: g)
    qed (auto simp flip: g)
qed
qed
lemma (in normal) FactGroup_pow:
    fixes k::nat
    assumes "a \in carrier G"
    shows "pow (FactGroup G H) (r_coset G H a) k = r_coset G H (pow G a
```

```
k)"
proof (induction k)
    case 0
    then show ?case
        by (simp add: r_coset_def)
next
    case (Suc k)
    then show ?case
        by (simp add: assms rcos_sum)
qed
lemma (in normal) FactGroup_int_pow:
    fixes k::int
    assumes "a \in carrier G"
    shows "pow (FactGroup G H) (r_coset G H a) k = r_coset G H (pow G a
k)"
    by (metis Group.group.axioms(1) image_eqI is_group monoid.nat_pow_closed
int_pow_def2 assms
                            FactGroup_pow carrier_FactGroup inv_FactGroup rcos_inv)
```


7.9 The First Isomorphism Theorem

The quotient by the kernel of a homomorphism is isomorphic to the range of that homomorphism.

definition

kernel :: "('a, 'm) monoid_scheme \Rightarrow ('b, 'n) monoid_scheme \Rightarrow ('a \Rightarrow 'b) \Rightarrow 'a set"

- the kernel of a homomorphism
where "kernel G H h $=\left\{x . x \in \operatorname{carrier} G \wedge h x=1_{H}\right\}$ "
lemma (in group_hom) subgroup_kernel: "subgroup (kernel G H h) G"
by (auto simp add: kernel_def group.intro intro: subgroup.intro)
The kernel of a homomorphism is a normal subgroup

```
lemma (in group_hom) normal_kernel: "(kernel G H h) \(\triangleleft\) G"
    apply (simp only: G.normal_inv_iff subgroup_kernel)
    apply (simp add: kernel_def)
    done
lemma iso_kernel_image:
    assumes "group G" "group H"
    shows "f \(\in\) iso \(G H \longleftrightarrow f \in\) hom \(G H \wedge\) kernel \(G H f=\left\{\mathbf{1}_{G}\right\} \wedge f\) ' carrier
G = carrier H"
            (is "?lhs = ?rhs")
proof (intro iffI conjI)
    assume f: ?lhs
    show "f \(\in\) hom G H"
        using Group.iso_iff f by blast
```

```
    show "kernel G H f = {1 (G}"
    using assms f Group.group_def hom_one
    by (fastforce simp add: kernel_def iso_iff_mon_epi mon_iff_hom_one
set_eq_iff)
    show "f ' carrier G = carrier H"
        by (meson Group.iso_iff f)
next
    assume ?rhs
    with assms show ?lhs
        by (auto simp: kernel_def iso_def bij_betw_def inj_on_one_iff')
qed
lemma (in group_hom) FactGroup_nonempty:
    assumes "X \in carrier (G Mod kernel G H h)"
    shows "X \not= {}"
    using assms unfolding FactGroup_def
    by (metis group_hom.subgroup_kernel group_hom_axioms partial_object.simps(1)
subgroup.rcosets_non_empty)
lemma (in group_hom) FactGroup_universal_kernel:
    assumes "N \triangleleftG" and h: "N \subseteq kernel G H h"
    obtains g where "g \in hom (G Mod N) H" "\x. x \in carrier G \Longrightarrowg(r_coset
G N x) = h x"
proof -
    have "h x = h y"
            if "x \in carrier G" "y \in carrier G" "r_coset G N x = r_coset G N y"
for x y
    proof -
            have "x }\mp@subsup{\otimes}{G}{}\mp@subsup{inv}{G}{}y\inN
                using <N \triangleleftG> group.rcos_self normal.axioms(2) normal_imp_subgroup
                    subgroup.rcos_module_imp that by metis
            with h have xy: "x }\mp@subsup{\otimes}{G}{}\mp@subsup{|}{invg}{G}y\in\mp@code{kernel G H h"
                by blast
            have "h x * & invH
                by (simp add: that)
            also have "... = 1H "
                using xy by (simp add: kernel_def)
            finally have "h x * H invH}(\textrm{h}y)=\mp@subsup{1}{H}{\prime}"
            then show ?thesis
                using H.inv_equality that by fastforce
    qed
    with FactGroup_universal [OF homh <N \triangleleft G>] that show thesis
            by metis
qed
lemma (in group_hom) FactGroup_the_elem_mem:
    assumes X: "X \in carrier (G Mod (kernel G H h))"
```

```
    shows "the_elem (h'X) \in carrier H"
proof -
    from X
    obtain g where g: "g \in carrier G"
                and "X = kernel G H h #> g"
            by (auto simp add: FactGroup_def RCOSETS_def)
    hence "h ' X = {h g}" by (auto simp add: kernel_def r_coset_def g intro!:
imageI)
    thus ?thesis by (auto simp add: g)
qed
lemma (in group_hom) FactGroup_hom:
            "(\lambdaX. the_elem (h'X)) \in hom (G Mod (kernel G H h)) H"
proof -
    have "the_elem (h ' (X <#> X')) = the_elem (h ' X) * #H the_elem (h '
X')"
            if X: "X \in carrier (G Mod kernel G H h)" and X': "X' \in carrier (G
Mod kernel G H h)" for X X'
    proof -
            obtain g}\mathrm{ and g'
                where "g \in carrier G" and "g' \in carrier G"
                    and "X = kernel G H h #> g" and "X' = kernel G H h #> g'"
            using X X' by (auto simp add: FactGroup_def RCOSETS_def)
            hence all: "\forallx\inX. h x = h g" "\forallx\inX'. h x = h g'"
                and Xsub: "X \subseteq carrier G" and X'sub: "X' \subseteq carrier G"
                by (force simp add: kernel_def r_coset_def image_def)+
            hence "h ' (X <#> X') = {h g \otimes H h g'}" using X X'
                by (auto dest!: FactGroup_nonempty intro!: image_eqI
                    simp add: set_mult_def
                    subsetD [OF Xsub] subsetD [OF X'sub])
            then show "the_elem (h ' (X <#> X')) = the_elem (h ' X) \otimesH the_elem
(h ' X')"
                by (auto simp add: all FactGroup_nonempty X X' the_elem_image_unique)
    qed
    then show ?thesis
            by (simp add: hom_def FactGroup_the_elem_mem normal.factorgroup_is_group
[OF normal_kernel] group.axioms monoid.m_closed)
qed
Lemma for the following injectivity result
lemma (in group_hom) FactGroup_subset:
    assumes "g \in carrier G" "g' \in carrier G" "h g = h g'"
    shows "kernel G H h #> g \subseteq kernel G H h #> g'"
    unfolding kernel_def r_coset_def
proof clarsimp
    fix y
    assume "y \in carrier G" "h y = 1H"
    with assms show "\existsx. x \in carrier G ^ h x = 1H ^ y Q g = x \otimes g'"
        by (rule_tac x="y \otimes g \otimes inv g'" in exI) (auto simp: G.m_assoc)
```


qed

```
lemma (in group_hom) FactGroup_inj_on:
            "inj_on (\lambdaX. the_elem (h ' X)) (carrier (G Mod kernel G H h))"
proof (simp add: inj_on_def, clarify)
    fix X and X'
    assume X: "X \in carrier (G Mod kernel G H h)"
            and X': "X' \in carrier (G Mod kernel G H h)"
    then
    obtain g and g'
                    where gX: "g \in carrier G" "g' \in carrier G"
                    "X = kernel G H h #> g" "X' = kernel G H h #> g'"
        by (auto simp add: FactGroup_def RCOSETS_def)
    hence all: "\forallx\inX. h x = h g" "\forallx\inX'. h x = h g'"
            by (force simp add: kernel_def r_coset_def image_def)+
    assume "the_elem (h ' X) = the_elem (h ' X')"
    hence h: "h g = h g'"
        by (simp add: all FactGroup_nonempty X X' the_elem_image_unique)
    show "X=X)" by (rule equalityI) (simp_all add: FactGroup_subset h gX)
qed
```

If the homomorphism h is onto H, then so is the homomorphism from the quotient group

```
lemma (in group_hom) FactGroup_onto:
    assumes h: "h ' carrier G = carrier H"
    shows " ( \(\lambda\) X. the_elem (h ' X)) ' carrier (G Mod kernel G H h) = carrier
H"
proof
    show " ( \(\lambda\) X. the_elem (h ' X)) ' carrier (G Mod kernel G H h) \(\subseteq\) carrier
H"
            by (auto simp add: FactGroup_the_elem_mem)
    show "carrier \(H \subseteq(\lambda X\). the_elem (h ' X)) ' carrier (G Mod kernel G
H h)"
    proof
        fix \(y\)
        assume \(y\) : "y \(\in\) carrier \(H "\)
        with \(h\) obtain \(g\) where \(g: ~ " g \in c a r r i e r ~ G " ~ " h ~ g ~=~ y " ~\)
            by (blast elim: equalityE)
        hence " ( \(\bigcup x \in\) kernel \(G\) H h \#> g. \{h x\}) \(=\{y\} "\)
            by (auto simp add: y kernel_def \(r_{-}\)coset_def)
        with g show \(\mathrm{y} \in(\lambda \mathrm{X}\). the_elem ( h ' X)) ' carrier ( G Mod kernel G
H h)"
                apply (auto intro!: bexI image_eqI simp add: FactGroup_def RCOSETS_def)
                apply (subst the_elem_image_unique)
            apply auto
            done
    qed
qed
```

If h is a homomorphism from G onto H, then the quotient group G Mod kernel G H h is isomorphic to H.

```
theorem (in group_hom) FactGroup_iso_set:
    "h ' carrier G = carrier H
    \Longrightarrow(\lambdaX. the_elem (h'X)) \in iso (G Mod (kernel G H h)) H"
by (simp add: iso_def FactGroup_hom FactGroup_inj_on bij_betw_def
                        FactGroup_onto)
corollary (in group_hom) FactGroup_iso :
    "h ' carrier G = carrier H
        "(G Mod (kernel G H h))\cong H"
    using FactGroup_iso_set unfolding is_iso_def by auto
```

lemma (in group_hom) trivial_hom_iff:
"h ' (carrier G) $=\left\{1_{\mathrm{H}}\right\} \longleftrightarrow$ kernel G H h = carrier G"
unfolding kernel_def using one_closed by force
lemma (in group_hom) trivial_ker_imp_inj:
assumes "kernel G H h = \{ 1 \}"
shows "inj_on h (carrier G)"
proof (rule inj_onI)
fix g1 g2 assume A: "g1 \in carrier G" "g2 \in carrier G" "h g1 = h g2"
hence "h (g1 $\otimes(i n v g 2))=1_{H}$ " by simp
hence "g1 $\otimes(i n v g 2)=1 "$
using A assms unfolding kernel_def by blast
thus "g1 = g2"
using A G.inv_equality G.inv_inv by blast
qed
lemma (in group_hom) inj_iff_trivial_ker:
shows "inj_on h (carrier G) \longleftrightarrow kernel G H h = \{ 1 \}"
proof
assume inj: "inj_on h (carrier G)" show "kernel G H h = \{ 1 \}"
unfolding kernel_def
proof (auto)
fix a assume "a \in carrier G " "h a = 1_{H} " thus "a = 1"
using inj hom_one unfolding inj_on_def by force
qed
next
show "kernel G H h = \{ 1 \} \Longrightarrow inj_on $h($ carrier G)"
using trivial_ker_imp_inj by simp
qed
lemma (in group_hom) induced_group_hom':
assumes "subgroup I G" shows "group_hom (G (carrier := I D) H h"
proof -
have "h \in hom (G (carrier := I)) H"
using homh subgroup.subset[0F assms] unfolding hom_def by (auto, meson

```
hom_mult subsetCE)
    thus ?thesis
        using subgroup.subgroup_is_group[OF assms G.group_axioms] group_axioms
        unfolding group_hom_def group_hom_axioms_def by auto
qed
lemma (in group_hom) inj_on_subgroup_iff_trivial_ker:
    assumes "subgroup I G"
    shows "inj_on h I \longleftrightarrow kernel (G | carrier := I D) H h = { 1 }"
    using group_hom.inj_iff_trivial_ker[OF induced_group_hom'[OF assms]]
by simp
lemma set_mult_hom:
    assumes "h \in hom G H" "I \subseteq carrier G" and "J \subseteq carrier G"
    shows "h` (I <#> }\mp@subsup{G}{G}{\prime}\mathrm{ J) = (h ' I) <#> (h ' J)"
proof
    show "h ' (I <#> G J) \subseteq(h' I) <#>> (h ` J)"
    proof
        fix a assume "a \in h ' (I <#>G J)"
        then obtain i j where i: "i \in I" and j: "j \in J" and "a = h (i \otimesG
j)"
        unfolding set_mult_def by auto
        hence "a = (h i) }\mp@subsup{\otimes}{H}{}(\textrm{h}j)
            using assms unfolding hom_def by blast
        thus "a \in (h ' I) <#>H (h ` J)"
            using i and j unfolding set_mult_def by auto
    qed
next
    show "(h` I) <#>> (h` J) \subseteq h` (I <#> G J)"
    proof
        fix a assume "a \in(h ` I) <#> H (h ' J)"
        then obtain i j where i: "i \in I" and j: "j \in J" and "a = (h i)
# (h j)"
                unfolding set_mult_def by auto
        hence "a = h (i }\mp@subsup{\otimes}{G}{\prime}j)
            using assms unfolding hom_def by fastforce
        thus "a \in h ' (I <#>G J)"
            using i and j unfolding set_mult_def by auto
    qed
qed
corollary coset_hom:
    assumes "h \in hom G H" "I \subseteq carrier G" "a \in carrier G"
    shows "h` (a <## I) = h a <#H (h ' I)" and "h ' (I #> G a) = (h ' I)
#>H h a"
    unfolding l_coset_eq_set_mult r_coset_eq_set_mult using assms set_mult_hom[0F
assms(1)] by auto
corollary (in group_hom) set_mult_ker_hom:
```

```
    assumes "I \subseteq carrier G"
    shows "h ' (I <#> (kernel G H h)) = h ' I" and "h ' ((kernel G H h)
<#> I) = h ' I'
proof -
    have ker_in_carrier: "kernel G H h \subseteq carrier G"
        unfolding kernel_def by auto
    have "h ' (kernel G H h) = { 1H }"
        unfolding kernel_def by force
    moreover have "h ' I \subseteq carrier H"
        using assms by auto
    hence "(h ' I) <#>> { { 1H } = h ' I" and "{ 1 1 } <#> (h (h' I) = h '
I"
            unfolding set_mult_def by force+
    ultimately show "h ' (I <#> (kernel G H h)) = h ' I" and "h ' ((kernel
G H h) <#> I) = h ' I'
        using set_mult_hom[OF homh assms ker_in_carrier] set_mult_hom[OF homh
ker_in_carrier assms] by simp+
qed
```


7.9.1 Trivial homomorphisms

definition trivial_homomorphism where
"trivial_homomorphism G H f $\equiv \mathrm{f} \in$ hom $G H \wedge(\forall \mathrm{x} \in$ carrier $\mathrm{G} . \mathrm{f} \mathrm{x}=$ one H)"
lemma trivial_homomorphism_kernel:
"trivial_homomorphism G H $f \longleftrightarrow f \in$ hom $G H \wedge$ kernel $G H f=$ carrier G"
by (auto simp: trivial_homomorphism_def kernel_def)
lemma (in group) trivial_homomorphism_image:
"trivial_homomorphism G H f $\longleftrightarrow \mathrm{f} \in$ hom $G H \wedge \mathrm{f}$ ' carrier $G=$ \{one
H\}"
by (auto simp: trivial_homomorphism_def) (metis one_closed rev_image_eqI)

7.10 Image kernel theorems

lemma group_Int_image_ker:
assumes $f:$ "f \in hom $G H "$ and $g: ~ " g ~ h o m ~ H ~ K " ~$
and "inj_on (g of) (carrier G)" "group G" "group H" "group K"
shows " (f ' carrier G) \cap (kernel H K g) $=\left\{1_{H}\right\}$ "
proof -
have " (f ' carrier G) \cap (kernel H K g) $\subseteq\left\{\mathbf{1}_{\mathrm{H}}\right\}$ "
using assms
apply (clarsimp simp: kernel_def o_def)
by (metis group.is_monoid hom_one inj_on_eq_iff monoid.one_closed)
moreover have "one $H \in f$ ' carrier G "
by (metis f <group G> <group H> group.is_monoid hom_one image_iff
monoid.one_closed)

```
    moreover have "one H \in kernel H K g"
        unfolding kernel_def using Group.group_def <group H> <group K> g
hom_one by blast
    ultimately show ?thesis
        by blast
qed
lemma group_sum_image_ker:
    assumes f: "f \in hom G H" and g: "g \in hom H K" and eq: "(g o f) ' (carrier
G) = carrier K"
    and "group G" "group H" "group K"
    shows "set_mult H (f ' carrier G) (kernel H K g) = carrier H" (is "?lhs
= ?rhs")
proof
    show "?lhs \subseteq ?rhs"
        apply (clarsimp simp: kernel_def set_mult_def)
        by (meson <group H> f group.is_monoid hom_in_carrier monoid.m_closed)
    have "\existsx\incarrier G. \existsz. z \in carrier H ^ g z = 1/K ^ y = f x \otimes | z"
        if y: "y \in carrier H" for y
    proof -
        have "g y \in carrier K"
            using g hom_carrier that by blast
        with assms obtain x where x: "x f carrier G" "(g ○ f) x = g y"
                by (metis image_iff)
            with assms have invf: "invH f x 目 y \in carrier H"
                by (metis group.subgroup_self hom_carrier image_subset_iff subgroup_def
y)
        moreover
        have "g (invH f x * & y ) = 1 ( 
        proof -
                have "invH f x \in carrier H"
            by (meson <group H> f group.inv_closed hom_carrier image_subset_iff
x(1))
```



```
                by (simp add: hom_mult [OF g] y)
            also have "... = invK (g (f x)) * }\mp@subsup{|}{K}{\primeg}y
                    using assms x(1)
                    by (metis (mono_tags, lifting) group_hom.hom_inv group_hom.intro
group_hom_axioms.intro hom_carrier image_subset_iff)
            also have "... = 1/K"
                using <g y \in carrier K> assms(6) group.l_inv x(2) by fastforce
            finally show ?thesis.
            qed
            moreover
```



```
            using x y
            by (meson <group H> invf f group.inv_solve_left' hom_in_carrier)
            ultimately
```

```
    show ?thesis
        using x y by force
    qed
    then show "?rhs \subseteq ?lhs"
        by (auto simp: kernel_def set_mult_def)
qed
lemma group_sum_ker_image:
    assumes f: "f \in hom G H" and g: "g \in hom H K" and eq: "(g o f) ' (carrier
G) = carrier K"
    and "group G" "group H" "group K"
    shows "set_mult H (kernel H K g) (f ' carrier G) = carrier H" (is "?lhs
= ?rhs")
proof
    show "?lhs \subseteq ?rhs"
            apply (clarsimp simp: kernel_def set_mult_def)
            by (meson <group H> f group.is_monoid hom_in_carrier monoid.m_closed)
    have "\existsw\incarrier H. \existsx carrier G. g w = 1. (K ^ y = w * | f x"
            if y: "y \in carrier H" for y
    proof -
        have "g y \in carrier K"
            using g hom_carrier that by blast
            with assms obtain x where x: "x f carrier G" "(g ○ f) x = g y"
                by (metis image_iff)
            with assms have carr: "(y }\mp@subsup{\otimes}{H}{}\mathrm{ invH f x ) f carrier H"
                by (metis group.subgroup_self hom_carrier image_subset_iff subgroup_def
y)
            moreover
            have "g (y \otimes |H invH f x ) = 1/K"
            proof -
                have "invH f x G carrier H"
                    by (meson <group H> f group.inv_closed hom_carrier image_subset_iff
x(1))
            then have "g(y \mp@subsup{\otimes}{H}{}\mp@subsup{\operatorname{inv}}{H}{}f\mp@code{x})=g y \mp@subsup{\otimes}{K}{}g(invH f x)"
                            by (simp add: hom_mult [OF g] y)
            also have "... = g y \otimes | invor (g (f x))"
                    using assms x(1)
                    by (metis group_hom.hom_inv group_hom_axioms.intro group_hom_def
hom_in_carrier)
            also have "... = 1 K"
                using <g y \in carrier K> assms(6) group.l_inv x(2)
                    by (simp add: group.r_inv)
            finally show ?thesis.
            qed
            moreover
```



```
            using x y by (meson <group H> carr f group.inv_solve_right hom_carrier
image_subset_iff)
```

```
    ultimately
    show ?thesis
        using x y by force
    qed
    then show "?rhs \subseteq ?lhs"
        by (force simp: kernel_def set_mult_def)
qed
lemma group_semidirect_sum_ker_image:
    assumes "(g of) \in iso G K" "f \in hom G H" "g \in hom H K" "group G" "group
H" "group K"
    shows "(kernel H K g) \cap (f ' carrier G) = {1 H }"
            "kernel H K g <#> (f ' carrier G) = carrier H"
    using assms
    by (simp_all add: iso_iff_mon_epi group_Int_image_ker group_sum_ker_image
epi_def mon_def Int_commute [of "kernel H K g"])
lemma group_semidirect_sum_image_ker:
    assumes f: "f \in hom G H" and g: "g \in hom H K" and iso: "(g ○ f) \in
iso G K"
            and "group G" "group H" "group K"
            shows "(f ' carrier G) \cap (kernel H K g) = {1_H}"
                        "f ' carrier G <#>H (kernel H K g) = carrier H"
    using group_Int_image_ker [OF f g] group_sum_image_ker [OF f g] assms
    by (simp_all add: iso_def bij_betw_def)
```


7.11 Factor Groups and Direct product

lemma (in group) DirProd_normal :
assumes "group K"
and "H $\triangleleft \mathrm{G}$ "
and "N $\triangleleft \mathrm{K}$ "
shows $" H \times N \triangleleft G \times \times K$ "
proof (intro group.normal_invI[OF DirProd_group[OF group_axioms assms(1)]])
show sub : "subgroup ($\mathrm{H} \times \mathrm{N}$) ($\mathrm{G} \times \times \mathrm{K}$)"
using DirProd_subgroups [OF group_axioms normal_imp_subgroup [OF assms(2)]assms(1)
normal_imp_subgroup[0F assms(3)]].
show " $\bigwedge \mathrm{x} h . \mathrm{x} \in$ carrier $(\mathrm{G} \times \times \mathrm{K}) \Longrightarrow \mathrm{h} \in \mathrm{H} \times \mathrm{N} \Longrightarrow \mathrm{x} \otimes_{\mathrm{G} \times \times \mathrm{K}} \mathrm{h} \otimes_{\mathrm{G} \times \times \mathrm{K}}$
$\operatorname{inv}_{G \times \times K} \mathrm{x} \in \mathrm{H} \times \mathrm{N}^{\prime \prime}$
proof-
fix x h assume $\mathrm{xGK}: ~ " \mathrm{x} \in \operatorname{carrier}(\mathrm{G} \times \times \mathrm{K})$ " and $\mathrm{hHN}: \mathrm{l} \mathrm{h} \in \mathrm{H} \times$
N"
hence hGK : "h \in carrier ($\mathrm{G} \times \times \mathrm{K}$)" using subgroup. subset[0F sub]
by auto
from xGK obtain x 1 x 2 where $\mathrm{x} 1 \mathrm{x} 2: \mathrm{x} 1 \in$ carrier $G " \mathrm{x}$ 2 \in carrier
K" "x = (x1,x2)"
unfolding DirProd_def by fastforce
from hHN obtain h1 h2 where h1h2 : "h1 $\in H^{H}$ "h2 $\in N "$ "h = (h1,h2)"
unfolding DirProd_def by fastforce
hence h1h2GK : "h1 \in carrier G" "h2 \in carrier K"
using normal_imp_subgroup subgroup.subset assms by blast+
have $\operatorname{inv}_{G} \times x{ }_{K} \mathrm{x}=\left(\operatorname{inv}_{G} \mathrm{x} 1, \operatorname{inv}_{K} \mathrm{x} 2\right) "$ using inv_DirProd[OF group_axioms assms(1) x1x2(1) x1x2(2)] x1x2
by auto
hence ${ }^{\mathrm{x}} \otimes_{\mathrm{G}} \times \times \mathrm{K} \mathrm{h} \otimes_{\mathrm{G}} \times \times \mathrm{K} \operatorname{inv}_{\mathrm{G}} \times \times \mathrm{K} \mathrm{x}=(\mathrm{x} 1 \otimes \mathrm{~h} 1 \otimes \operatorname{inv} \mathrm{x} 1, \mathrm{x} 2$
$\left.\otimes_{\mathrm{K}} \mathrm{h} 2 \otimes_{\mathrm{K}} \mathrm{inv}_{\mathrm{K}} \mathrm{x} 2\right) "$
using h1h2 x1x2 h1h2GK by auto
moreover have "x1 $\otimes \mathrm{h} 1 \otimes$ inv $\mathrm{x} 1 \in \mathrm{H}$ " "x2 $\otimes_{\mathrm{K}} \mathrm{h} 2 \otimes_{\mathrm{K}} \operatorname{inv}_{\mathrm{K}} \mathrm{x} 2 \in \mathrm{~N} "$ using assms x1x2 h1h2 assms by (simp_all add: normal.inv_op_closed2)
hence " $\left(\mathrm{x} 1 \otimes_{\mathrm{h}} \mathrm{h}^{2}\right.$ inv $\mathrm{x} 1, \mathrm{x} 2 \otimes_{\mathrm{K}} \mathrm{h} 2 \otimes_{\mathrm{K}}$ inv $\left._{\mathrm{K}} \mathrm{x} 2\right) \in \mathrm{H} \times \mathrm{N}$ " by auto
ultimately show " $\mathrm{x} \otimes_{\mathrm{G}} \times \times \mathrm{K} \mathrm{h} \otimes_{\mathrm{G}} \times \times \mathrm{K}_{\mathrm{K}} \mathrm{inv}_{\mathrm{G}} \times \times \mathrm{K} \times \in \mathrm{H} \times \mathrm{N}$ " by
auto
qed
qed
lemma (in group) FactGroup_DirProd_multiplication_iso_set :
assumes "group K"
and " $\mathrm{H} \triangleleft \mathrm{G}$ "
and " $\mathrm{N} \triangleleft \mathrm{K}$ "
shows " $(\lambda(X, Y) . X \times Y) \in$ iso ($(G \operatorname{Mod} H) \times \times(K \operatorname{Mod} N))(G \times \times K$
Mod H \times N)"
proof-
have $R: "(\lambda(X, Y) . X \times Y) \in \operatorname{carrier}(G \operatorname{Mod} H) \times \operatorname{carrier}(K \operatorname{Mod} N)$
\rightarrow carrier ($\mathrm{G} \times \times \mathrm{K}$ Mod $\mathrm{H} \times \mathrm{N}$)"
unfolding r_coset_def Sigma_def DirProd_def FactGroup_def RCOSETS_def
by force
moreover have " ($\forall \mathrm{x} \in$ carrier (G Mod H). $\forall \mathrm{y} \in \operatorname{carrier~(K~Mod~N).~} \forall$ xa $\operatorname{carrier~}$ (G Mod H).
\forall ya \in carrier $\left.(K \operatorname{Mod} N) .(x<\#>x a) \times(y<\#\rangle_{K} y a\right)=x$
$\times \mathrm{y}\langle \#\rangle_{\mathrm{G}} \times \times \mathrm{K}$ xa $\left.\times \mathrm{ya}\right)^{\prime \prime}$
unfolding set_mult_def by force
moreover have " ($\forall \mathrm{x} \in \operatorname{carrier~(G~Mod~H).~} \forall \mathrm{y} \in \operatorname{carrier~(K~Mod~N).~} \forall x a \in c a r r i e r$ ($\mathrm{G} \operatorname{Mod} \mathrm{H}$).
\forall ya carrier (K Mod N). $\mathrm{x} \times \mathrm{y}=\mathrm{xa} \times \mathrm{ya} \longrightarrow \mathrm{x}=\mathrm{xa}$
$\wedge \mathrm{y}=\mathrm{ya})$ "
unfolding FactGroup_def using times_eq_iff subgroup.rcosets_non_empty by (metis assms(2) assms(3) normal_def partial_object.select_convs(1))
moreover have " $(\lambda(X, Y) . X \times Y)$ (carrier (G Mod H) \times carrier (K
$\operatorname{Mod} N)(=$
carrier ($\mathrm{G} \times \times \mathrm{K}$ Mod $\mathrm{H} \times \mathrm{N}$)"
proof -
have 1: " $\bigwedge \mathrm{x}$ a b. $\llbracket \mathrm{a} \in \operatorname{carrier}(\mathrm{G} \operatorname{Mod} \mathrm{H}) ; \mathrm{b} \in \operatorname{carrier}(\mathrm{K} \operatorname{Mod} \mathrm{N}) \rrbracket \Longrightarrow$
$\mathrm{a} \times \mathrm{b} \in \operatorname{carrier}(\mathrm{G} \times \times \mathrm{K} \operatorname{Mod} \mathrm{H} \times \mathrm{N}) "$
using R by force
have 2: " $\bigwedge \mathrm{z} . \mathrm{z} \in \operatorname{carrier}(\mathrm{G} \times \times \mathrm{K} \operatorname{Mod} \mathrm{H} \times \mathrm{N}) \Longrightarrow \exists \mathrm{x} \in \operatorname{carrier}(\mathrm{G} \operatorname{Mod}$
H). $\exists y \in \operatorname{carrier}(K \operatorname{Mod} N) . z=x \times y "$
unfolding DirProd_def FactGroup_def RCOSETS_def r_coset_def by force show ?thesis

```
        unfolding image_def by (auto simp: intro: 1 2)
    qed
    ultimately show ?thesis
    unfolding iso_def hom_def bij_betw_def inj_on_def by simp
qed
corollary (in group) FactGroup_DirProd_multiplication_iso_1 :
    assumes "group K"
        and "H}\triangleleft\textrm{G}
        and "N \triangleleft K"
    shows " ((G Mod H) }\times\times(\textrm{K Mod N)) \cong (G }\times\times\times\textrm{K Mod H }\timesN)
    unfolding is_iso_def using FactGroup_DirProd_multiplication_iso_set
assms by auto
corollary (in group) FactGroup_DirProd_multiplication_iso_2 :
    assumes "group K"
        and "H \triangleleft G"
        and "N \triangleleft K"
    shows "(G }\times\times\times\mathrm{ K Mod H }\timesN)\cong((G Mod H) < < (K Mod N))"
    using FactGroup_DirProd_multiplication_iso_1 group.iso_sym assms
            DirProd_group[OF normal.factorgroup_is_group normal.factorgroup_is_group]
    by blast
```


7.11.1 More Lemmas about set multiplication

A group multiplied by a subgroup stays the same
lemma (in group) set_mult_carrier_idem:
assumes "subgroup H G"
shows "(carrier G) <\#> H = carrier G"
proof
show " (carrier G)<\#>H \subseteq carrier G"
unfolding set_mult_def using subgroup.subset assms by blast
next
have " (carrier G) \#> 1 = carrier G" unfolding set_mult_def r_coset_def
group_axioms by simp
moreover have "(carrier G) \#> $1 \subseteq$ (carrier G) <\#> H" unfolding set_mult_def
r_coset_def
using assms subgroup.one_closed[0F assms] by blast
ultimately show "carrier $G \subseteq$ (carrier G) <\#> H" by simp
qed
Same lemma as above, but everything is included in a subgroup
lemma (in group) set_mult_subgroup_idem:
assumes HG: "subgroup H G" and NG: "subgroup N (G (carrier := H D)"
shows "H <\#> N = H"
using group.set_mult_carrier_idem[OF subgroup.subgroup_is_group[OF HG
group_axioms] NG] by simp
A normal subgroup is commutative with set multiplication

```
lemma (in group) commut_normal:
    assumes "subgroup H G" and "N\triangleleftG"
    shows "H<#>N = N<#>H"
proof-
    have aux1: "{H <#> N} = {\h\inH. h <# N }" unfolding set_mult_def l_coset_def
by auto
    also have "... = {\h\inH. N #> h }" using assms normal.coset_eq subgroup.mem_carrier
by fastforce
    moreover have aux2: "{N <#> H} = {\h\inH. N #> h }"unfolding set_mult_def
r_coset_def by auto
    ultimately show "H<#>N = N<#>H" by simp
qed
Same lemma as above, but everything is included in a subgroup
```

```
lemma (in group) commut_normal_subgroup:
```

lemma (in group) commut_normal_subgroup:
assumes "subgroup H G" and "N \triangleleft (G(carrier := H))"
assumes "subgroup H G" and "N \triangleleft (G(carrier := H))"
and "subgroup K (G \ carrier := H D)"
and "subgroup K (G \ carrier := H D)"
shows "K <\#> N = N <\#> K"
shows "K <\#> N = N <\#> K"
by (metis assms(2) assms(3) group.commut_normal normal.axioms(2) set_mult_consistent)

```
    by (metis assms(2) assms(3) group.commut_normal normal.axioms(2) set_mult_consistent)
```


7.11.2 Lemmas about intersection and normal subgroups

Mostly by Jakob von Raumer
lemma (in group) normal_inter:
assumes "subgroup H G"
and "subgroup K G"
and "H1 $\triangleleft \mathrm{G}($ carrier : $=\mathrm{H})$ "
shows " $(H 1 \cap K) \triangleleft(G($ carrier: $=(H \cap K) \mid)$ "
proof-
define HK and H 1 K and GH and GHK
where " $\mathrm{HK}=\mathrm{H} \cap \mathrm{K}$ " and "H1K=H1 K " and "GH $=\mathrm{G}($ carrier $:=\mathrm{H})$ " and "GHK
$=(\mathrm{G}($ carrier $:=(\mathrm{H} \cap \mathrm{K}) \mid)) "$
show "H1K \triangleleft GHK"
proof (intro group.normal_invI[of GHK H1K])
show "Group.group GHK"
using GHK_def subgroups_Inter_pair subgroup_imp_group assms by blast
next

```
        have H1K_incl:"subgroup H1K (G(|carrier:= (H\capK)|)"
```

 proof(intro subgroup_incl)
 show "subgroup H1K G"
 using assms normal_imp_subgroup subgroups_Inter_pair incl_subgroup
 H1K_def by blast
next
show "subgroup (HOK) G" using HK_def subgroups_Inter_pair assms
by auto
next
have "H1 \subseteq (carrier (G(|carrier:=H|)))"
using assms(3) normal_imp_subgroup subgroup.subset by blast

```
            also have "... \subseteq H" by simp
            thus "H1K \subseteqH\capK"
            using H1K_def calculation by auto
        qed
        thus "subgroup H1K GHK" using GHK_def by simp
    next
```



```
H1K"
    proof-
            have invHK: "\llbrackety\inHK\rrbracket \Longrightarrow invGHK y = invGH y"
                using m_inv_consistent assms HK_def GH_def GHK_def subgroups_Inter_pair
by simp
            have multHK : "\llbracketx\inHK;y\inHK\rrbracket \Longrightarrow x \otimes (G(carrier:=HK)) y = x | y"
                    using HK_def by simp
            fix x assume p: "x\incarrier GHK"
            fix h assume p2 : "h:H1K"
            have "carrier(GHK)\subseteqHK"
                using GHK_def HK_def by simp
            hence xHK:"x\inHK" using p by auto
            hence invx:"invGHK x = invGH x"
                using invHK assms GHK_def HK_def GH_def m_inv_consistent subgroups_Inter_pair
by simp
            have "H1\subseteqcarrier(GH)"
                using assms GH_def normal_imp_subgroup subgroup.subset by blast
            hence hHK:"h\inHK"
                using p2 H1K_def HK_def GH_def by auto
            hence xhx_egal : "x }\mp@subsup{\otimes}{\textrm{GHK}}{}\textrm{h}\mp@subsup{\otimes}{\textrm{GHK}}{}\mp@subsup{inv}{\textrm{GHK}}{}\textrm{x}=\textrm{x}\mp@subsup{\otimes}{\textrm{GH}}{}\textrm{h}\mp@subsup{\otimes}{\textrm{GH}}{
                using invx invHK multHK GHK_def GH_def by auto
            have xH:"x\incarrier(GH)"
                    using xHK HK_def GH_def by auto
            have hH:"h\incarrier(GH)"
                using hHK HK_def GH_def by auto
            have "(\forallx\incarrier (GH). }\forall\textrm{h}\in\textrm{H}1. \textrm{x}\mp@subsup{\otimes}{\textrm{GH}}{}\textrm{h}\mp@subsup{\otimes}{\textrm{GH}}{}\mp@subsup{\textrm{inv}}{\textrm{GH}}{}\textrm{x}\in\textrm{H}1)
                using assms GH_def normal.inv_op_closed2 by fastforce
            hence INCL_1 : "x * *GH h * GH invGH x \in H1"
                using xH H1K_def p2 by blast
            have " x * *GH h * *GH invGH x }\in\mp@subsup{|}{\textrm{GK}}{
                using assms HK_def subgroups_Inter_pair hHK xHK
                by (metis GH_def inf.cobounded1 subgroup_def subgroup_incl)
            hence " x }\mp@subsup{\otimes}{\textrm{GH}}{}\textrm{h}\mp@subsup{\otimes}{\textrm{GH}}{}\mp@subsup{inv}{\textrm{GH}}{}\textrm{x}\in\textrm{K
```



```
        qed
    qed
qed
lemma (in group) normal_Int_subgroup:
    assumes "subgroup H G"
        and "N \triangleleft G"
```

```
    shows "(N\capH) \triangleleft (G(carrier := H|)"
proof -
    define K where "K = carrier G"
    have "G(|carrier := K) = G" using K_def by auto
    moreover have "subgroup K G" using K_def subgroup_self by blast
    moreover have "normal N (G (carrier :=K|))" using assms K_def by simp
    ultimately have "N \cap H \triangleleftG(carrier := K \cap H|)"
        using normal_inter[of K H N] assms(1) by blast
    moreover have "K \cap H = H" using K_def assms subgroup.subset by blast
    ultimately show "normal (N\capH) (G(carrier := H))"
    by auto
qed
lemma (in group) normal_restrict_supergroup:
    assumes "subgroup S G" "N \triangleleftG" "N \subseteq S"
    shows "N \triangleleft (G(carrier := S))"
    by (metis assms inf.absorb_iff1 normal_Int_subgroup)
```

A subgroup relation survives factoring by a normal subgroup.

```
lemma (in group) normal_subgroup_factorize:
    assumes "N \triangleleftG" and "N \subseteq H" and "subgroup H G"
    shows "subgroup (roosets
proof -
    interpret GModN: group "G Mod N"
        using assms(1) by (rule normal.factorgroup_is_group)
    have "N \triangleleft G(carrier := H)"
        using assms by (metis normal_restrict_supergroup)
    hence grpHN: "group (G(carrier := H) Mod N)"
        by (rule normal.factorgroup_is_group)
```



```
        using set_mult_def by metis
    moreover have "... = ( }\lambda\textrm{U}\textrm{K}.(\\textrm{h}\in\textrm{U}.\\textrm{l}\in\textrm{K}.{\textrm{h}\mp@subsup{\otimes}{\textrm{G}}{\textrm{k}
        by auto
    moreover have "(<#>) = (\lambdaU K. (Uh\inU. \k\inK. {h \otimes k}))"
        using set_mult_def by metis
    ultimately have "(<#>
        by simp
    with grpHN have "group ((G Mod N)|carrier := (rcosets
N)D)"
        unfolding FactGroup_def by auto
    moreover have "rcosets
        unfolding FactGroup_def RCOSETS_def r_coset_def using assms(3) subgroup.subset
```

 by fastforce
 ultimately show ?thesis
 using GModN.group_incl_imp_subgroup by blast
 qed

A normality relation survives factoring by a normal subgroup.

```
lemma (in group) normality_factorization:
    assumes NG: "N \triangleleft G" and NH: "N \subseteq H" and HG: "H \triangleleftG"
    shows "(rcosets
proof -
    from assms(1) interpret GModN: group "G Mod N" by (metis normal.factorgroup_is_group)
    show ?thesis
        unfolding GModN.normal_inv_iff
    proof (intro conjI strip)
        show "subgroup (rcosets}\mp@subsup{\mp@code{G(carrier := H) N) (G Mod N)"}}{(}{
            using assms normal_imp_subgroup normal_subgroup_factorize by force
    next
        fix U V
        assume U: "U \in carrier (G Mod N)" and V: "V \in rcosets
N"
        then obtain g where g: "g \in carrier G" "U = N #> g"
            unfolding FactGroup_def RCOSETS_def by auto
        from V obtain h where h: "h \in H" "V = N #> h"
            unfolding FactGroup_def RCOSETS_def r_coset_def by auto
        hence hG: "h f carrier G"
            using HG normal_imp_subgroup subgroup.mem_carrier by force
            hence ghG: "g \otimes h \in carrier G"
                using g m_closed by auto
            from g h have "g \otimes h \otimes inv g \in H"
                using HG normal_inv_iff by auto
        moreover have "U <#> V <#> invg Mod N U = N #> (g \otimes h \otimes inv g)"
        proof -
            from g U have "invg Mod N U = N #> inv g"
                    using NG normal.inv_FactGroup normal.rcos_inv by fastforce
            hence "U <#> V <#> invG Mod N U = (N #> g) <#> (N #> h) <#> (N #>
inv g)"
                    using g h by simp
                also have "... = N #> (g \otimes h \otimes inv g)"
                    using g hG NG inv_closed ghG normal.rcos_sum by force
                finally show ?thesis .
        qed
```



```
N"
        unfolding RCOSETS_def r_coset_def by auto
    qed
qed
Factorizing by the trivial subgroup is an isomorphism.
```

```
lemma (in group) trivial_factor_iso:
```

lemma (in group) trivial_factor_iso:
shows "the_elem G iso (G Mod {1}) G"
shows "the_elem G iso (G Mod {1}) G"
proof -
proof -
have "group_hom G G (}\lambda\textrm{x}.\textrm{x})\mathrm{ "
have "group_hom G G (}\lambda\textrm{x}.\textrm{x})\mathrm{ "
unfolding group_hom_def group_hom_axioms_def hom_def using is_group
unfolding group_hom_def group_hom_axioms_def hom_def using is_group
by simp

```
by simp
```

```
    moreover have "(\lambdax. x) ' carrier G = carrier G"
        by simp
    moreover have "kernel G G ( }\lambda\textrm{x}.\textrm{x})={{1}
        unfolding kernel_def by auto
    ultimately show ?thesis using group_hom.FactGroup_iso_set
        by force
qed
```

And the dual theorem to the previous one: Factorizing by the group itself gives the trivial group

```
lemma (in group) self_factor_iso:
    shows "(\lambdaX. the_elem ((\lambdax. 1) ' X)) \in iso (G Mod (carrier G)) (G\ carrier
:= {1} D)"
proof -
    have "group (G(carrier := {1}))"
        by (metis subgroup_imp_group triv_subgroup)
    hence "group_hom G (G|carrier := {1}|) (\lambdax. 1)"
        unfolding group_hom_def group_hom_axioms_def hom_def using is_group
by auto
    moreover have "(\lambdax. 1) ' carrier G = carrier (G(|carrier := {1}|)"
        by auto
    moreover have "kernel G (G(carrier := {1}|)) ( }\lambda\textrm{x}.1)=\mathrm{ carrier G"
        unfolding kernel_def by auto
    ultimately show ?thesis using group_hom.FactGroup_iso_set
        by force
qed
```

Factoring by a normal subgroups yields the trivial group iff the subgroup is the whole group.

```
lemma (in normal) fact_group_trivial_iff:
    assumes "finite (carrier G)"
    shows "(carrier (G Mod H) = {1 1G Mod H}})\longleftrightarrow(H= carrier G)"
proof
    assume "carrier (G Mod H) = {1 1G Mod H}"
    moreover have "order (G Mod H) * card H = order G"
        by (simp add: FactGroup_def lagrange order_def subgroup_axioms)
    ultimately have "card H = order G" unfolding order_def by auto
    thus "H = carrier G"
        by (simp add: assms card_subset_eq order_def subset)
next
    assume "H = carrier G"
    with assms is_subgroup lagrange
    have "card (rcosets H) * order G = order G"
        by (simp add: order_def)
    then have "card (rcosets H) = 1"
        using assms order_gt_0_iff_finite by auto
    hence "order (G Mod H) = 1"
        unfolding order_def FactGroup_def by auto
    thus "carrier (G Mod H) = {1 1G Mod H}
```

using factorgroup_is_group by (metis group.order_one_triv_iff)
qed
The union of all the cosets contained in a subgroup of a quotient group acts as a represenation for that subgroup.

```
lemma (in normal) factgroup_subgroup_union_char:
    assumes "subgroup A (G Mod H)"
    shows "(\bigcupA) = {x \in carrier G. H #> x \in A}"
proof
    show "UA\subseteq{x \in carrier G. H #> x \in A}"
    proof
        fix x
        assume x: "x \in \bigcupA"
        then obtain a where a: "a \in A" "x \in a" and xx: "x \in carrier G"
            using subgroup.subset assms by (force simp add: FactGroup_def RCOSETS_def
r_coset_def)
            from assms a obtain y where y: "y \in carrier G" "a = H #> y"
                using subgroup.subset unfolding FactGroup_def RCOSETS_def by force
            with a have "x G H #> y" by simp
            hence "H #> y = H #> x" using y is_subgroup repr_independence by
auto
            with y(2) a(1) have "H #> x \in A"
                    by auto
            with xx show "x }\in{x\in\operatorname{carrier G. H #> x f A}" by simp
    qed
next
    show "{x \in carrier G. H #> x \in A} \subseteq \A"
            using rcos_self subgroup_axioms by auto
qed
lemma (in normal) factgroup_subgroup_union_subgroup:
    assumes "subgroup A (G Mod H)"
    shows "subgroup (UA) G"
proof -
    have "subgroup {x \in carrier G. H #> x \in A} G"
    proof
        show "{x \in carrier G. H #> x \in A} \subseteq carrier G" by auto
    next
        fix x y
        assume xy: "x \in {x \in carrier G. H #> x G A}" "y \in {x \in carrier G.
H #> x \in A}"
            then have "(H #> x) <#> (H #> y) \in A"
                using subgroup.m_closed assms unfolding FactGroup_def by fastforce
            hence "H #> (x \otimes y) \in A"
                using xy rcos_sum by force
            with xy show "x \otimes y \in {x \in carrier G. H #> x \in A}" by blast
    next
        have "H #> 1 \in A"
                using assms subgroup.one_closed subset by fastforce
```

```
        with assms one_closed show "1 \in {x \in carrier G. H #> x \in A}" by
simp
    next
        fix x
        assume x: "x \in {x \in carrier G. H #> x \in A}"
        hence invx: "inv x \in carrier G" using inv_closed by simp
        from assms x have "set_inv (H #> x) \in A" using subgroup.m_inv_closed
            using inv_FactGroup subgroup.mem_carrier by fastforce
            with invx show "inv x }\in{x\in\mathrm{ carrier G. H #> x f A}"
                using rcos_inv x by force
    qed
    with assms factgroup_subgroup_union_char show ?thesis by auto
qed
lemma (in normal) factgroup_subgroup_union_normal:
    assumes "A }\triangleleft\mathrm{ (G Mod H)"
    shows "UA \triangleleftG"
proof -
    have "{x \in carrier G. H #> x A A } \triangleleftG"
            unfolding normal_def normal_axioms_def
    proof (intro conjI strip)
        from assms show "subgroup {x \in carrier G. H #> x \in A} G"
            by (metis (full_types) factgroup_subgroup_union_char factgroup_subgroup_union_subgrou
normal_imp_subgroup)
    next
            interpret Anormal: normal A "(G Mod H)" using assms by simp
            show "{x \in carrier G. H #> x \in A} #> x = x <# {x \in carrier G. H #>
x\inA}" if x: "x carrier G" for x
            proof -
                {fix y
                    assume y: "y \in {x \in carrier G. H #> x \in A} #> x"
                    then obtain x' where x': "x' \in carrier G" "H #> x' \in A" "y =
x' \otimes x"
                unfolding r_coset_def by auto
                    from x(1) have Hx: "H #> x G carrier (G Mod H)"
                    unfolding FactGroup_def RCOSETS_def by force
                            with x' have "(invG Mod H (H #> x)) }\mp@subsup{\otimes}{\textrm{G}}{\mathbf{Mod H}
(H #> x) \in A"
                using Anormal.inv_op_closed1 by auto
            hence "(set_inv (H #> x)) <#> (H #> x') <#> (H #> x) \in A"
                using inv_FactGroup Hx unfolding FactGroup_def by auto
            hence "(H #> (inv x)) <#> (H #> x') <#> (H #> x) \in A"
                using x(1) by (metis rcos_inv)
            hence "H #> (inv x \otimes x' \otimes x) \in A"
                by (metis inv_closed m_closed rcos_sum x'(1) x(1))
            moreover have "inv x \otimes x' \otimes x f carrier G"
                using x x' by (metis inv_closed m_closed)
            ultimately have xcoset: "x \otimes (inv x \otimes x' \otimes x) \in x <# {x c carrier
G. H #> x \in A}"
```

unfolding l_{-}coset_def using $x(1)$ by auto
have $" x \otimes\left(i n v x \otimes x^{\prime} \otimes x\right)=(x \otimes$ inv $x) \otimes x^{\prime} \otimes x^{\prime}$
by (metis Units_eq Units_inv_Units m_assoc m_closed $x^{\prime}(1) \mathrm{x}(1)$)
also have "... = y"
by (simp add: x x')
finally have " $\mathrm{x} \otimes(i n v \mathrm{x} \otimes \mathrm{x}, \otimes \mathrm{x})=\mathrm{y}$ ".
with xcoset have "y $\in \mathrm{x}<\#\{\mathrm{x} \in$ carrier $G . H$ \#> $\mathrm{x} \in \mathrm{A}\}$ " by auto $\}$ moreover
\{ fix y
assume $y: ~ " y \in x<\#\{x \in \operatorname{carrier~G.~H~\# >~} x \in A\} "$
then obtain x ' where $x^{\prime}: ~ " x ' \in$ carrier G" "H \#> x' $\in A "$ "y =
$\mathrm{x} \otimes \mathrm{x}$ '" unfolding $l_{\text {_ }}$ coset_def by auto
from $x(1)$ have invx: "inv $x \in$ carrier $G "$
by (rule inv_closed)
hence Hinvx: "H \#> (inv x) \in carrier (G Mod H)"
unfolding FactGroup_def RCOSETS_def by force
with x' have $\left."(i n v G \operatorname{Mod} H(H \quad \#>\operatorname{inv} x)) \otimes_{G} \operatorname{Mod} H(H \#>x)\right) \otimes_{G} \operatorname{Mod} H$
(H \#> inv x) $\in \mathrm{A}^{\prime \prime}$
using invx Anormal.inv_op_closed1 by auto
hence "(set_inv (H \#> inv x)) <\#> (H \#> x') <\#> (H \#> inv x) \in
A"
using inv_FactGroup Hinvx unfolding FactGroup_def by auto
hence "H \#> ($\mathrm{x} \otimes \mathrm{x}$, \otimes inv x) $\in \mathrm{A}$ "
by (simp add: rcos_inv rcos_sum x x' (1))
moreover have " $\mathrm{x} \otimes \mathrm{x}$ ' \otimes inv $\mathrm{x} \in$ carrier G " using x x' by (metis
inv_closed m_closed)
ultimately have xcoset: " $(x \otimes x$, \otimes inv $x) \otimes x \in\{x \in$ carrier
G. H \#> $x \in A\}$ \#> $x "$
unfolding r_{-}coset_def using invx by auto
have " $\left(x \otimes x^{\prime} \otimes\right.$ inv $\left.x\right) \otimes \mathrm{x}=\left(\mathrm{x} \otimes \mathrm{x}^{\prime}\right) \otimes(\operatorname{inv} \mathrm{x} \otimes \mathrm{x})$ "
by (metis Units_eq Units_inv_Units m_assoc m_closed x' (1) x(1))
also have "... = y"
by (simp add: x x')
finally have $" x \otimes x^{\prime} \otimes$ inv $x \otimes x=y "$.
with xcoset have " $y \in\{x \in$ carrier $G . H$ \#> $x \in A\}$ \#> x " by auto
\}
ultimately show ?thesis
by auto
qed
qed auto
with assms show ?thesis
by (metis (full_types) factgroup_subgroup_union_char normal_imp_subgroup)
qed
lemma (in normal) factgroup_subgroup_union_factor:
assumes "subgroup A (G Mod H)"
shows "A $=$ rcosets $_{G(\text { carrier }}:=\bigcup_{A D} H^{H}$
using assms subgroup.mem_carrier factgroup_subgroup_union_char by (fastforce
simp: RCOSETS_def FactGroup_def)

8 Flattening the type of group carriers

Flattening here means to convert the type of group elements from 'a set to 'a. This is possible whenever the empty set is not an element of the group. By Jakob von Raumer

```
definition flatten where
    "flatten (G::('a set, 'b) monoid_scheme) rep = \carrier=(rep ' (carrier
G)),
            monoid.mult=( }\lambda\mathrm{ x y. rep ((the_inv_into (carrier G) rep x) }\mp@subsup{\otimes}{\textrm{G}}{(}\mathrm{ (the_inv_into
(carrier G) rep y))),
            one=rep 1/G D"
lemma flatten_set_group_hom:
    assumes group: "group G"
    assumes inj: "inj_on rep (carrier G)"
    shows "rep \in hom G (flatten G rep)"
    by (force simp add: hom_def flatten_def inj the_inv_into_f_f)
lemma flatten_set_group:
    assumes "group G" "inj_on rep (carrier G)"
    shows "group (flatten G rep)"
proof (rule groupI)
    fix x y
    assume "x \in carrier (flatten G rep)" and "y \in carrier (flatten G rep)"
    then show "x }\mp@subsup{\otimes}{\mathrm{ flatten G rep y }\in\mathrm{ carrier (flatten G rep)"}}{
        using assms group.surj_const_mult the_inv_into_f_f by (fastforce simp:
flatten_def)
next
    show "1flatten G rep G carrier (flatten G rep)"
        unfolding flatten_def by (simp add: assms group.is_monoid)
next
    fix x y z
    assume "x \in carrier (flatten G rep)" "y \in carrier (flatten G rep)"
"z \in carrier (flatten G rep)"
    then show "x }\mp@subsup{\otimes}{\mathrm{ flatten G rep y }\mp@subsup{\otimes}{\mathrm{ flatten G rep z }}{}=\textrm{x}}{\mp@code{flatten G rep (y}
* flatten G rep z)"
            by (auto simp: assms flatten_def group.is_monoid monoid.m_assoc monoid.m_closed
the_inv_into_f_f)
next
    fix x
    assume x: "x \in carrier (flatten G rep)"
    then show "1}\mp@subsup{1}{\mathrm{ flatten G rep }}{}\mp@subsup{\otimes}{\mathrm{ flatten G rep }}{}\textrm{x}=\textrm{x}
        by (auto simp: assms group.is_monoid the_inv_into_f_f flatten_def)
```



```
for z
        by (metis <group G> group.l_inv_ex that)
    with assms x show "\existsy\incarrier (flatten G rep). y }\mp@subsup{\otimes}{\mathrm{ flatten G rep x =}}{\mathrm{ f }
1flatten G rep"
```

```
    by (auto simp: flatten_def the_inv_into_f_f)
qed
lemma (in normal) flatten_set_group_mod_inj:
    shows "inj_on ( }\lambda\textrm{U}
proof (rule inj_onI)
    fix U V
    assume U: "U \in carrier (G Mod H)" and V: "V \in carrier (G Mod H)"
    then obtain g h where g: "U = H #> g" "g \in carrier G" and h: "V =
H #> h" "h \in carrier G"
            unfolding FactGroup_def RCOSETS_def by auto
    hence notempty: "U \not= {}" "V \not= {}"
            by (metis empty_iff is_subgroup rcos_self)+
    assume "(SOME g. g \in U) = (SOME g. g \in V)"
    with notempty have "(SOME g. g \in U) \in U \cap V"
            by (metis IntI ex_in_conv someI)
    thus "U = V"
        by (metis Int_iff g h is_subgroup repr_independence)
qed
lemma (in normal) flatten_set_group_mod:
    shows "group (flatten (G Mod H) ( }\lambda\textrm{U}
    by (simp add: factorgroup_is_group flatten_set_group flatten_set_group_mod_inj)
lemma (in normal) flatten_set_group_mod_iso:
    shows "(\lambdaU. SOME g. g \in U) \in iso (G Mod H) (flatten (G Mod H) ( }\lambda\textrm{U}
SOME g. g \in U))"
proof -
    have "(\lambdaU. SOME g. g \in U) \in hom (G Mod H) (flatten (G Mod H) ( }\lambda\textrm{U}
g. g \in U))"
            using factorgroup_is_group flatten_set_group_hom flatten_set_group_mod_inj
by blast
    moreover
    have "inj_on ( }\lambda\textrm{U}
        using flatten_set_group_mod_inj by blast
    ultimately show ?thesis
        by (simp add: iso_def bij_betw_def flatten_def)
qed
end
theory Exponent
imports Main "HOL-Computational_Algebra.Primes"
begin
```


9 Sylow's Theorem

The Combinatorial Argument Underlying the First Sylow Theorem
needed in this form to prove Sylow's theorem

```
corollary (in algebraic_semidom) div_combine:
    "\llbracketprime_elem p; ᄀ p ^ Suc r dvd n; p - (a + r) dvd n * k\rrbracket\Longrightarrow p - a
dvd k"
    by (metis add_Suc_right mult.commute prime_elem_power_dvd_cases)
lemma exponent_p_a_m_k_equation:
    fixes p :: nat
    assumes "0 < m" "0 < k" "p f 0" "k < p^a"
        shows "multiplicity p (p^a * m - k) = multiplicity p (p^a - k)"
proof (rule multiplicity_cong [OF iffI])
    fix r
    assume *: "p ^ r dvd p - a * m - k"
    show "p - r dvd p ^ a - k"
    proof -
        have "k\leq p ^ a * m" using assms
            by (meson nat_dvd_not_less dvd_triv_left leI mult_pos_pos order.strict_trans)
            then have "r \leq a"
            by (meson "*" <0 < k> <k < p^a> dvd_diffD1 dvd_triv_left leI less_imp_le_nat
nat_dvd_not_less power_le_dvd)
            then have "p^r dvd p^a * m" by (simp add: le_imp_power_dvd)
            thus ?thesis
                by (meson <k \leq p ^ a * m> <r \leq a> * dvd_diffD1 dvd_diff_nat le_imp_power_dvd)
    qed
next
    fix r
    assume *: "p ^ r dvd p ^ a - k"
    with assms have "r \leq a"
        by (metis diff_diff_cancel less_imp_le_nat nat_dvd_not_less nat_le_linear
power_le_dvd zero_less_diff)
    show "p ~ r dvd p ^ a * m - k"
    proof -
            have "p^r dvd p^a*m"
                by (simp add: <r \leq a> le_imp_power_dvd)
            then show ?thesis
                by (meson assms * dvd_diffD1 dvd_diff_nat le_imp_power_dvd less_imp_le_nat
    <r\leqa>)
    qed
qed
lemma p_not_div_choose_lemma:
    fixes p :: nat
    assumes eeq: "\i. Suc i < K \Longrightarrow multiplicity p (Suc i) = multiplicity
p (Suc (j + i))"
        and "k < K" and p: "prime p"
```

```
        shows "multiplicity p (j + k choose k) = 0"
    using <k < K>
proof (induction k)
    case 0 then show ?case by simp
next
    case (Suc k)
    then have *: "(Suc (j+k) choose Suc k) > 0" by simp
    then have "multiplicity p ((Suc (j+k) choose Suc k) * Suc k) = multiplicity
p (Suc k)"
        by (subst Suc_times_binomial_eq [symmetric], subst prime_elem_multiplicity_mult_distrib
            (insert p Suc.prems, simp_all add: eeq [symmetric] Suc.IH)
    with p * show ?case
        by (subst (asm) prime_elem_multiplicity_mult_distrib) simp_all
qed
```

The lemma above, with two changes of variables
lemma p_not_div_choose:
assumes " k < K " and " $\mathrm{k} \leq \mathrm{n}$ " and eeq: " $\bigwedge j . \llbracket 0<j ; j<K \rrbracket \Longrightarrow$ multiplicity $p(n-k+(K-j))=$
multiplicity p (K - j)" "prime p"
shows "multiplicity p (n choose k) = 0"
apply (rule p_not_div_choose_lemma [of K p "n-k" k, simplified assms nat_minus_add_max
max_absorb1])
apply (metis add_Suc_right eeq diff_diff_cancel order_less_imp_le zero_less_Suc
zero_less_diff)
apply (rule TrueI)+
done
proposition const_p_fac:
assumes "m>0" and prime: "prime p"
shows "multiplicity p (p^a * m choose p^a) = multiplicity p m"
proof-
from assms have $p: ~ " 0<p^{\wedge} a " ~ " 0<p^{\wedge} a * m " ~ " p^{\wedge} a \leq p^{\wedge} a * m "$
by (auto simp: prime_gt_0_nat)
have *: "multiplicity $p\left(\left(p^{\wedge} a * m-1\right)\right.$ choose ($\left.\left.\mathrm{p}^{\wedge} \mathrm{a}-1\right)\right)=0 "$
apply (rule p_not_div_choose [where $\mathrm{K}=$ "p^a"] $^{\text {(}}$
using p exponent_p_a_m_k_equation by (auto simp: diff_le_mono prime)
have "multiplicity p ($\left(\mathrm{p}^{-} \mathrm{a} * \mathrm{~m}\right.$ choose $\left.\left.\mathrm{p}^{-} \mathrm{a}\right) * \mathrm{p}^{\text {- }} \mathrm{a}\right)=\mathrm{a}+$ multiplicity
p m"
proof -
have " (p ^ $\mathrm{a} * \mathrm{~m}$ choose $\left.\mathrm{p}^{\wedge} \mathrm{a}\right) * \mathrm{p}$ ^ $\mathrm{a}=\mathrm{p}$ ^a* $\mathrm{m} *(\mathrm{p}$ - $\mathrm{a} * \mathrm{~m}$ -
1 choose (p ~ a - 1))"
(is "_ = ?rhs") using prime
by (subst times_binomial_minus1_eq [symmetric]) (auto simp: prime_gt_0_nat)
also from p have " p - $a-\operatorname{Suc} 0 \leq p$ - a * m - Suc 0" by linarith
with prime * p have "multiplicity p ?rhs = multiplicity p (p - a

* m)"
by (subst prime_elem_multiplicity_mult_distrib) auto
also have "... = a + multiplicity p m"

```
            using prime p by (subst prime_elem_multiplicity_mult_distrib) simp_all
        finally show ?thesis .
    qed
    then show ?thesis
    using prime p by (subst (asm) prime_elem_multiplicity_mult_distrib)
simp_all
qed
end
```

theory Sylow
imports Coset Exponent
begin

See also [4].
The combinatorial argument is in theory Exponent.

```
lemma le_extend_mult: "\llbracket0 < c; a \leq b\rrbracket \Longrightarrow a \leq b * c"
    for c :: nat
    by (metis divisors_zero dvd_triv_left leI less_le_trans nat_dvd_not_less
zero_less_iff_neq_zero)
locale sylow = group +
    fixes p and a and m and calM and RelM
    assumes prime_p: "prime p"
        and order_G: "order G = (p^a) * m"
        and finite_G[iff]: "finite (carrier G)"
    defines "calM }\equiv{s.s\subseteqcarrier G ^ card s = p^a}"
        and "RelM \equiv{(N1,N2). N1 \in calM ^N2 G calM ^ ( \existsg f carrier G.
N1 = N2 #> g)}"
begin
lemma RelM_refl_on: "refl_on calM RelM"
    by (auto simp: refl_on_def RelM_def calM_def) (blast intro!: coset_mult_one
[symmetric])
lemma RelM_sym: "sym RelM"
proof (unfold sym_def RelM_def, clarify)
    fix y g
    assume "y \in calM"
        and g: "g \in carrier G"
    then have "y = y #> g #> (inv g)"
        by (simp add: coset_mult_assoc calM_def)
    then show "\existsg'\incarrier G. y = y #> g #> g'"
        by (blast intro: g)
qed
lemma RelM_trans: "trans RelM"
    by (auto simp add: trans_def RelM_def calM_def coset_mult_assoc)
```

```
lemma RelM_equiv: "equiv calM RelM"
    unfolding equiv_def by (blast intro: RelM_refl_on RelM_sym RelM_trans)
lemma M_subset_calM_prep: "M' \in calM // RelM \Longrightarrow M' \subseteq calM"
    unfolding RelM_def by (blast elim!: quotientE)
end
```


9.1 Main Part of the Proof

locale sylow_central = sylow +
fixes H and $M 1$ and M
assumes M_in_quot: "M \in calM // RelM"
and not_dvd_M: " \neg (${ }^{\text {- }}$ Suc (multiplicity p m) dvd card M)"
and M1_in_M: "M1 \in M"
defines $" \mathrm{H} \equiv\{\mathrm{g} . \mathrm{g} \in$ carrier $\mathrm{G} \wedge \mathrm{M} 1 \mathrm{\#>} \mathrm{~g}=\mathrm{M} 1\}$ "
begin
lemma M_subset_calM: "M \subseteq calM"
by (rule M_in_quot [THEN M_subset_calM_prep])
lemma card_M1: "card M1 = p^a"
using M1_in_M M_subset_calM calM_def by blast
lemma exists_x_in_M1: " $\exists \mathrm{x} . \mathrm{x} \in \mathrm{M} 1 "$
using prime_p [THEN prime_gt_Suc_0_nat] card_M1
by (metis Suc_lessD card_eq_O_iff empty_subsetI equalityI gr_implies_not0
nat_zero_less_power_iff subsetI)
lemma M1_subset_G [simp]: "M1 \subseteq carrier G"
using M1_in_M M_subset_calM calM_def mem_Collect_eq subsetCE by blast
lemma M1_inj_H: " $\exists \mathrm{f} \in \mathrm{H} \rightarrow \mathrm{M} 1 . \operatorname{inj} _$on f H"
proof -
from exists_x_in_M1 obtain m1 where m1M: "m1 \in M1"..
have m1: "m1 \in carrier G"
by (simp add: m1M M1_subset_G [THEN subsetD])
show ?thesis
proof
show "inj_on ($\lambda \mathrm{z} \in \mathrm{H} . \mathrm{m} 1 \otimes \mathrm{z}) \mathrm{H}$ "
by (simp add: H_def inj_on_def m1)
show "restrict $((\otimes) \mathrm{m} 1) \mathrm{H} \in \mathrm{H} \rightarrow \mathrm{M} 1$ "
proof (rule restrictI)
fix z
assume $\mathrm{zH}: ~ " \mathrm{z} \in \mathrm{H}$ "
show "m1 $\otimes \mathrm{z} \in \mathrm{M} 1$ "
proof -
from zH

```
                have zG: "z \in carrier G" and M1zeq: "M1 #> z = M1"
                    by (auto simp add: H_def)
                show ?thesis
                        by (rule subst [OF M1zeq]) (simp add: m1M zG rcosI)
            qed
        qed
    qed
qed
end
```


9.2 Discharging the Assumptions of sylow_central

```
context sylow
begin
lemma EmptyNotInEquivSet: "{} \not\in calM // RelM"
    by (blast elim!: quotientE dest: RelM_equiv [THEN equiv_class_self])
lemma existsM1inM: "M \in calM // RelM \Longrightarrow \existsM1. M1 \in M"
    using RelM_equiv equiv_Eps_in by blast
lemma zero_less_o_G: "0 < order G"
    by (simp add: order_def card_gt_0_iff carrier_not_empty)
lemma zero_less_m: "m > 0"
    using zero_less_o_G by (simp add: order_G)
lemma card_calM: "card calM = (p^a) * m choose p^a"
    by (simp add: calM_def n_subsets order_G [symmetric] order_def)
lemma zero_less_card_calM: "card calM > 0"
    by (simp add: card_calM zero_less_binomial le_extend_mult zero_less_m)
lemma max_p_div_calM: "\neg (p ^ Suc (multiplicity p m) dvd card calM)"
proof
    assume "p - Suc (multiplicity p m) dvd card calM"
    with zero_less_card_calM prime_p
    have "Suc (multiplicity p m) \leq multiplicity p (card calM)"
        by (intro multiplicity_geI) auto
    then have "multiplicity p m < multiplicity p (card calM)" by simp
    also have "multiplicity p m = multiplicity p (card calM)"
        by (simp add: const_p_fac prime_p zero_less_m card_calM)
    finally show False by simp
qed
lemma finite_calM: "finite calM"
    unfolding calM_def by (rule finite_subset [where B = "Pow (carrier
G)"]) auto
```

lemma lemma_A1: $" \exists M \in \operatorname{calM} / /$ RelM. $\neg\left(p^{-}\right.$Suc (multiplicity p m) dvd card M)"
using RelM_equiv equiv_imp_dvd_card finite_calM max_p_div_calM by blast
end

9.2.1 Introduction and Destruct Rules for H

context sylow_central
begin
lemma H_I: "【g carrier G; M1 \#> g = M1 $\Longrightarrow ~ g ~ \in ~ H " ~$ by (simp add: H_def)

```
lemma H_into_carrier_G: "x \in H \Longrightarrow x \in carrier G"
    by (simp add: H_def)
lemma in_H_imp_eq: "g \in H \Longrightarrow M1 #> g = M1"
    by (simp add: H_def)
lemma H_m_closed: "\llbracketx }\in\textrm{H};\textrm{y}\in\textrm{H}\rrbracket\Longrightarrow\textrm{x}\otimes\textrm{y}\in\textrm{H
    by (simp add: H_def coset_mult_assoc [symmetric])
lemma H_not_empty: "H # {}"
    by (force simp add: H_def intro: exI [of _ 1])
lemma H_is_subgroup: "subgroup H G"
proof (rule subgroupI)
    show "H\subseteq carrier G"
            using H_into_carrier_G by blast
    show "\a. a }\inH\Longrightarrow\mathrm{ inv a }\inH
            by (metis H_I H_into_carrier_G H_m_closed M1_subset_G Units_eq Units_inv_closed
Units_inv_inv coset_mult_inv1 in_H_imp_eq)
    show "\a b. \llbracketa \in H; b \in H\rrbracket\Longrightarrow a \otimes b \in H"
            by (blast intro: H_m_closed)
qed (use H_not_empty in auto)
lemma rcosetGM1g_subset_G: "\llbracketg \in carrier G; x \in M1 #> g\rrbracket\Longrightarrow x f carrier
G"
    by (blast intro: M1_subset_G [THEN r_coset_subset_G, THEN subsetD])
lemma finite_M1: "finite M1"
    by (rule finite_subset [OF M1_subset_G finite_G])
lemma finite_rcosetGM1g: "g \in carrier G \Longrightarrow finite (M1 #> g)"
    using rcosetGM1g_subset_G finite_G M1_subset_G cosets_finite rcosetsI
by blast
```

```
lemma M1_cardeq_rcosetGM1g: "g carrier \(G \Longrightarrow\) card (M1 \#> g) = card
M1"
    by (metis M1_subset_G card_rcosets_equal rcosetsI)
lemma M1_RelM_rcosetGM1g:
    assumes "g \(\in\) carrier G"
    shows "(M1, M1 \#> g) \(\in\) RelM"
proof -
    have "M1 \#> g \(\subseteq\) carrier G"
        by (simp add: assms r_coset_subset_G)
    moreover have "card (M1 \#> g) = p ^ a"
        using assms by (simp add: card_M1 M1_cardeq_rcosetGM1g)
    moreover have " \(\exists \mathrm{h} \in\) carrier G. M1 = M1 \#> g \#> h"
        by (metis assms M1_subset_G coset_mult_assoc coset_mult_one r_inv_ex)
    ultimately show ?thesis
        by (simp add: RelM_def calM_def card_M1)
qed
end
```


9.3 Equal Cardinalities of m and the Set of Cosets

Injections between M and $\operatorname{rcosets}_{G} H$ show that their cardinalities are equal.

```
lemma ElemClassEquiv: "\llbracketequiv A r; C \in A // r\rrbracket \Longrightarrow \forallx C C. }\forall\textrm{y}\inC.(x
y) \in r"
    unfolding equiv_def quotient_def sym_def trans_def by blast
context sylow_central
begin
lemma M_elem_map: "M2 \in M \Longrightarrow \existsg. g \in carrier G ^ M1 #> g = M2"
    using M1_in_M M_in_quot [THEN RelM_equiv [THEN ElemClassEquiv]]
    by (simp add: RelM_def) (blast dest!: bspec)
lemmas M_elem_map_carrier = M_elem_map [THEN someI_ex, THEN conjunct1]
lemmas M_elem_map_eq = M_elem_map [THEN someI_ex, THEN conjunct2]
lemma M_funcset_rcosets_H:
    "(\lambdax\inM. H #> (SOME g. g \in carrier G ^ M1 #> g = x)) \in M -> rcosets
H"
    by (metis (lifting) H_is_subgroup M_elem_map_carrier rcosetsI restrictI
subgroup.subset)
lemma inj_M_GmodH: "\existsf \in M }->\mathrm{ rcosets H. inj_on f M"
proof
    let ?inv = "\lambdax. SOME g. g \in carrier G ^ M1 #> g = x"
    show "inj_on ( }\lambdax\inM.H\mathrm{ #> ?inv x) M"
    proof (rule inj_onI, simp)
```

```
fix \(x\) y
    assume eq: "H #> ?inv x = H #> ?inv y" and xy: "x \in M" "y \in M"
    have "x = M1 #> ?inv x"
        by (simp add: M_elem_map_eq <x }\in\textrm{M}>
    also have "... = M1 #> ?inv y"
    proof (rule coset_mult_inv1 [OF in_H_imp_eq [OF coset_join1]])
        show "H #> ?inv x & inv (?inv y) = H"
            by (simp add: H_into_carrier_G M_elem_map_carrier xy coset_mult_inv2
eq subsetI)
    qed (simp_all add: H_is_subgroup M_elem_map_carrier xy)
    also have "... = y"
        using M_elem_map_eq <y \in M> by simp
        finally show "x=y" .
    qed
    show "(\lambdax\inM. H #> ?inv x) \in M }->\mathrm{ rcosets H"
        by (rule M_funcset_rcosets_H)
qed
end
```


9.3.1 The Opposite Injection

context sylow_central
begin
lemma H_{-}elem_map: "H1 $\in \operatorname{rcosets~} H \Longrightarrow \exists \mathrm{~g} . \mathrm{g} \in \operatorname{carrier} \mathrm{G} \wedge \mathrm{H} \#>\mathrm{g}=$ H1" by (auto simp: RCOSETS_def)
lemmas H_elem_map_carrier = H_elem_map [THEN someI_ex, THEN conjunct1]
lemmas H_elem_map_eq = H_elem_map [THEN someI_ex, THEN conjunct2]
lemma rcosets_H_funcset_M:

$\mathrm{H} \rightarrow \mathrm{M}^{\prime \prime}$
using in_quotient_imp_closed [OF RelM_equiv M_in_quot _ M1_RelM_rcosetGM1g]
by (simp add: M1_in_M H_elem_map_carrier RCOSETS_def)
lemma inj_GmodH_M: " $\exists \mathrm{g} \in \operatorname{rcosets} H \rightarrow M . \operatorname{inj_ ong(r\operatorname {cosets}H)"}$
proof
let $?$ inv $=" \lambda x$. SOME $g . g \in$ carrier $G \wedge H \#>g=x "$
show "inj_on ($\lambda \mathrm{C} \in$ rcosets H. M1 \#> ?inv C) (rcosets H)"
proof (rule inj_onI, simp)
fix $x y$
assume eq: "M1 \#> ?inv $x=M 1$ \#> ?inv y" and xy: "x \in rcosets H"
"y \in rcosets $H "$
have "x = H \#> ?inv x"
by (simp add: H_elem_map_eq <x $\in \operatorname{rcosets~H>)~}$

```
    also have "... = H #> ?inv y"
    proof (rule coset_mult_inv1 [OF coset_join2])
        show "?inv x \otimes inv (?inv y) \in carrier G"
            by (simp add: H_elem_map_carrier <x \in rcosets H> <y \in rcosets
H>)
        then show "(?inv x) \otimes inv (?inv y) \in H"
        by (simp add: H_I H_elem_map_carrier xy coset_mult_inv2 eq)
        show "H \subseteq carrier G"
        by (simp add: H_is_subgroup subgroup.subset)
    qed (simp_all add: H_is_subgroup H_elem_map_carrier xy)
    also have "... = y"
            by (simp add: H_elem_map_eq <y \in rcosets H>)
        finally show "x=y" .
    qed
    show "(\lambdaC\inrcosets H. M1 #> ?inv C) \in rcosets H }->\mathrm{ M"
        using rcosets_H_funcset_M by blast
qed
lemma calM_subset_PowG: "calM \subseteq Pow (carrier G)"
    by (auto simp: calM_def)
lemma finite_M: "finite M"
    by (metis M_subset_calM finite_calM rev_finite_subset)
lemma cardMeqIndexH: "card M = card (rcosets H)"
    using inj_M_GmodH inj_GmodH_M
    by (blast intro: card_bij finite_M H_is_subgroup rcosets_subset_PowG
[THEN finite_subset])
lemma index_lem: "card M * card H = order G"
    by (simp add: cardMeqIndexH lagrange H_is_subgroup)
lemma card_H_eq: "card H = p^a"
proof (rule antisym)
    show "p^a \leq card H"
    proof (rule dvd_imp_le)
        show "p ^ a dvd card H"
            apply (rule div_combine [OF prime_imp_prime_elem[OF prime_p] not_dvd_M])
            by (simp add: index_lem multiplicity_dvd order_G power_add)
            show "0 < card H"
                by (blast intro: subgroup.finite_imp_card_positive H_is_subgroup)
    qed
next
    show "card H \leq p`a"
        using M1_inj_H card_M1 card_inj finite_M1 by fastforce
qed
end
```

```
lemma (in sylow) sylow_thm: "\existsH. subgroup H G ^ card H = p^a"
proof -
    obtain M where M: "M \in calM // RelM" "\neg (p ` Suc (multiplicity p m)
dvd card M)"
            using lemma_A1 by blast
    then obtain M1 where "M1 \in M"
        by (metis existsM1inM)
    define H where "H \equiv {g. g \in carrier G ^ M1 #> g = M1}"
    with M <M1 \in M >
    interpret sylow_central G p a m calM RelM H M1 M
        by unfold_locales (auto simp add: H_def calM_def RelM_def)
    show ?thesis
    using H_is_subgroup card_H_eq by blast
qed
```

Needed because the locale's automatic definition refers to semigroup G and Group.group_axioms G rather than simply to Group.group G.
lemma sylow_eq: "sylow G p a m \longleftrightarrow group $G \wedge$ sylow_axioms G p a m" by (simp add: sylow_def group_def)

9.4 Sylow's Theorem

```
theorem sylow_thm:
```

 "【prime p; group G; order G = (p^a) * m; finite (carrier G)】
 \(\Longrightarrow \exists \mathrm{H}\). subgroup \(H \mathrm{G} \wedge\) card \(H=\mathrm{p}^{\wedge} \mathrm{a}^{\prime \prime}\)
 by (rule sylow.sylow_thm [of G p a m]) (simp add: sylow_eq sylow_axioms_def)
 end

```
theory Bij
imports Group
begin
```


10 Bijections of a Set, Permutation and Automorphism Groups

definition

```
    Bij :: "'a set = ('a # 'a) set"
```

 - Only extensional functions, since otherwise we get too many.
 where "Bij \(S=\) extensional \(S \cap\left\{f . b_{i j _b e t w ~}^{f} S S\right\} "\)
 definition
BijGroup :: "'a set \Rightarrow ('a \Rightarrow 'a) monoid"
where "BijGroup $\mathrm{S}=$
\carrier = Bij S,
mult $=\lambda \mathrm{g} \in \operatorname{Bij} \mathrm{S} . \lambda \mathrm{f} \in \operatorname{Bij} \mathrm{S}$. compose S g f ,

```
    one = \lambdax G S. x|"
declare Id_compose [simp] compose_Id [simp]
lemma Bij_imp_extensional: "f \in Bij S \Longrightarrow f \in extensional S"
    by (simp add: Bij_def)
lemma Bij_imp_funcset: "f \in Bij S \Longrightarrow f \in S -> S"
    by (auto simp add: Bij_def bij_betw_imp_funcset)
```


10.1 Bijections Form a Group

```
lemma restrict_inv_into_Bij: "f \in Bij S \Longrightarrow ( }\lambda\textrm{x}\in\textrm{S}.(\mathrm{ (inv_into S f)
x) \in Bij S"
    by (simp add: Bij_def bij_betw_inv_into)
lemma id_Bij: "(\lambdax\inS. x) \in Bij S "
    by (auto simp add: Bij_def bij_betw_def inj_on_def)
lemma compose_Bij: "\llbracketx \in Bij S; y \in Bij S\rrbracket \Longrightarrow compose S x y \in Bij S"
    by (auto simp add: Bij_def bij_betw_compose)
lemma Bij_compose_restrict_eq:
            "f \in Bij S \Longrightarrow compose S (restrict (inv_into S f) S) f = ( }\lambda\textrm{x}\in\textrm{S}
x)"
    by (simp add: Bij_def compose_inv_into_id)
theorem group_BijGroup: "group (BijGroup S)"
    apply (simp add: BijGroup_def)
    apply (rule groupI)
        apply (auto simp: compose_Bij id_Bij Bij_imp_funcset Bij_imp_extensional
compose_assoc [symmetric])
    apply (blast intro: Bij_compose_restrict_eq restrict_inv_into_Bij)
    done
```


10.2 Automorphisms Form a Group

lemma Bij_inv_into_mem: " $\llbracket f \in \operatorname{Bij} S ; x \in S \rrbracket \Longrightarrow$ inv_into $S f x \in S "$ by (simp add: Bij_def bij_betw_def inv_into_into)
lemma Bij_inv_into_lemma:
assumes eq: " $\wedge \mathrm{x} \overline{\mathrm{y}} . \llbracket \mathrm{x} \in \mathrm{S} ; \mathrm{y} \in \mathrm{S} \rrbracket \Longrightarrow \mathrm{h}(\mathrm{g} x \mathrm{y})=\mathrm{g}(\mathrm{h} x)(\mathrm{h} y) "$
and hg: "h Bij S " $\mathrm{g} \in \mathrm{S} \rightarrow \mathrm{S} \rightarrow \mathrm{S}$ " and "x $\in \mathrm{S} " \mathrm{y} \in \mathrm{S}$ "

proof -
have "h ' S = S"
by (metis (no_types) Bij_def Int_iff assms (2) bij_betw_def mem_Collect_eq)
with $\langle x \in S\rangle\langle\bar{y} \in S\rangle$ have $" \exists x \prime \in \bar{S} . \exists y$, $\in S . x=h \bar{x} \wedge y=h y \prime "$
by auto

```
    then show ?thesis
    using assms
    by (auto simp add: Bij_def bij_betw_def eq [symmetric] inv_f_f funcset_mem
[THEN funcset_mem])
qed
definition
    auto :: "('a, 'b) monoid_scheme # ('a # 'a) set"
    where "auto G = hom G G \cap Bij (carrier G)"
definition
    AutoGroup :: "('a, 'c) monoid_scheme # ('a # 'a) monoid"
    where "AutoGroup G = BijGroup (carrier G) (carrier := auto G|"
lemma (in group) id_in_auto: "( }\lambda\textrm{x}\in\operatorname{carrier G. x) \in auto G"
    by (simp add: auto_def hom_def restrictI group.axioms id_Bij)
lemma (in group) mult_funcset: "mult G \in carrier G }->\mathrm{ carrier G }->\mathrm{ carrier
G"
    by (simp add: Pi_I group.axioms)
lemma (in group) restrict_inv_into_hom:
            "\llbracketh 解 G G; h \in Bij (carrier G)\rrbracket
             restrict (inv_into (carrier G) h) (carrier G) \in hom G G"
    by (simp add: hom_def Bij_inv_into_mem restrictI mult_funcset
                        group.axioms Bij_inv_into_lemma)
lemma inv_BijGroup:
    "f \in Bij S \Longrightarrow m_inv (BijGroup S) f = ( }\\textrm{x}\in\textrm{S}=\mathrm{ S. (inv_into S f) x)"
apply (rule group.inv_equality [OF group_BijGroup])
apply (simp_all add:BijGroup_def restrict_inv_into_Bij Bij_compose_restrict_eq)
done
lemma (in group) subgroup_auto:
                "subgroup (auto G) (BijGroup (carrier G))"
proof (rule subgroup.intro)
    show "auto G \subseteq carrier (BijGroup (carrier G))"
        by (force simp add: auto_def BijGroup_def)
next
    fix x y
    assume "x \in auto G" "y \in auto G"
    thus "x \otimes BijGroup (carrier G) y \in auto G"
        by (force simp add: BijGroup_def is_group auto_def Bij_imp_funcset
                                    group.hom_compose compose_Bij)
next
    show "1 BijGroup (carrier G) \in auto G" by (simp add: BijGroup_def id_in_auto)
next
```

```
    fix x
    assume "x \in auto G"
    thus "inv BijGroup (carrier G) x f auto G"
        by (simp del: restrict_apply
            add: inv_BijGroup auto_def restrict_inv_into_Bij restrict_inv_into_hom)
qed
theorem (in group) AutoGroup: "group (AutoGroup G)"
by (simp add: AutoGroup_def subgroup.subgroup_is_group subgroup_auto
                        group_BijGroup)
end
theory Ring
imports FiniteProduct
begin
```


11 The Algebraic Hierarchy of Rings

11.1 Abelian Groups

```
record 'a ring = "'a monoid" +
    zero :: 'a ("0\imath")
    add :: "['a, 'a] => 'a" (infixl "\oplus\imath" 65)
```

abbreviation
add_monoid :: "('a, 'm) ring_scheme \Rightarrow ('a, 'm) monoid_scheme"
where "add_monoid $R \equiv$ (carrier = carrier R, mult = add R, one = zero
R, ... = (undefined :: 'm) D"

Derived operations.

definition

```
a_inv :: "[('a, 'm) ring_scheme, 'a ] => 'a" ("\ominus\imath _" [81] 80)
    where "a_inv R = m_inv (add_monoid R)"
```

definition
a_minus :: "[(’a, ’m) ring_scheme, 'a, ’a] => 'a" ("(_ Өr _)" [65,66]
65)
where $" x \ominus_{R} y=x \oplus_{R}\left(\ominus_{R} y\right) "$
definition
add_pow :: "[_, ('b :: semiring_1), 'a] \Rightarrow 'a" ("[_] • _" [81, 81]
80)
where "add_pow R k a = pow (add_monoid R) a k"
locale abelian_monoid =
fixes G (structure)
assumes a_comm_monoid:

```
"comm_monoid (add_monoid G)"
```


definition

```
    finsum :: "[('b, 'm) ring_scheme, 'a \(\Rightarrow\) 'b, 'a set] \(\Rightarrow\) 'b" where
```

 "finsum G = finprod (add_monoid G)"

syntax

"_finsum" : : "index \Rightarrow idt \Rightarrow 'a set \Rightarrow ' $b \Rightarrow$ 'b"

translations

$" \bigoplus_{\mathrm{G}} \mathrm{i} \in \mathrm{A} . \mathrm{b} " \rightleftharpoons$ "CONST finsum $\mathrm{G}(\lambda \mathrm{i} . \mathrm{b}) \mathrm{A} "$

- Beware of argument permutation!
locale abelian_group = abelian_monoid +
assumes a_comm_group:
"comm_group (add_monoid G)"

11.2 Basic Properties

```
lemma abelian_monoidI:
    fixes R (structure)
    assumes "\x y. \llbracketx carrier R; y \in carrier R \rrbracket\Longrightarrow x }\oplus\textrm{y}\in\mathrm{ carrier
R"
            and "0 \in carrier R"
            and "\x y z.\llbracketx < carrier R; y \in carrier R; z \in carrier R\rrbracket\Longrightarrow
(x \oplus y) \oplus z = x \oplus (y \oplus z)"
            and "\x. x }\in\mathrm{ carrier R C 0 }\oplus\textrm{x}=\textrm{x
            and "\x y.\llbracketx c carrier R; y \in carrier R \rrbracket \Longrightarrow x }\oplus\textrm{y}=\textrm{y}\oplus\textrm{y
    shows "abelian_monoid R"
    by (auto intro!: abelian_monoid.intro comm_monoidI intro: assms)
lemma abelian_monoidE:
    fixes R (structure)
    assumes "abelian_monoid R"
    shows "\x y. \llbracketx c carrier R; y \in carrier R\rrbracket\Longrightarrow x @ y \in carrier
R"
        and "0 \in carrier R"
        and "\x y z. \llbracketx \in carrier R; y \in carrier R; z \in carrier R | \Longrightarrow
(x \oplus y) }\oplus\textrm{z}=\textrm{x}\oplus(\textrm{y}\oplus\textrm{z})
        and "\x. x \in carrier R \Longrightarrow 0 @ x = x"
        and "\x y. \llbracketx c carrier R; y \in carrier R\rrbracket \Longrightarrow x }\oplus\textrm{y}=\textrm{y}\oplus\textrm{y
    using assms unfolding abelian_monoid_def comm_monoid_def comm_monoid_axioms_def
monoid_def by auto
lemma abelian_groupI:
    fixes R (structure)
    assumes "\x y. \llbracketx c carrier R; y \in carrier R\rrbracket\Longrightarrow x }\\textrm{y}\in\mathrm{ carrier
R"
```

and " $0 \in$ carrier R^{\prime}
and " $\wedge \mathrm{x} y \mathrm{z} . \llbracket \mathrm{x} \in$ carrier $\mathrm{R} ; \mathrm{y} \in \operatorname{carrier} \mathrm{R} ; \mathrm{z} \in \operatorname{carrier} \mathrm{R} \rrbracket \Longrightarrow$ $(x \oplus y) \oplus z=x \oplus(y \oplus z) "$
and " $\wedge \mathrm{x} \mathrm{y} . \llbracket \mathrm{x} \in$ carrier $R ; \mathrm{y} \in \operatorname{carrier} \mathrm{R} \rrbracket \Longrightarrow \mathrm{x} \oplus \mathrm{y}=\mathrm{y} \oplus \mathrm{x}$ "
and " $\wedge \mathrm{x} . \mathrm{x} \in$ carrier $\mathrm{R} \Longrightarrow \mathbf{0} \oplus \mathrm{x}=\mathrm{x}$ "
and " $\ \mathrm{x} . \mathrm{x} \in$ carrier $\mathrm{R} \Longrightarrow \exists \mathrm{y} \in$ carrier $R . \mathrm{y} \oplus \mathrm{x}=0$ "
shows "abelian_group R"
by (auto intro!: abelian_group.intro abelian_monoidI
abelian_group_axioms.intro comm_monoidI comm_groupI
intro: assms)

lemma abelian_groupE:

fixes R (structure)
assumes "abelian_group R"
shows " $\wedge \mathrm{x} \mathrm{y} . \llbracket \mathrm{x} \in$ carrier $\mathrm{R} ; \mathrm{y} \in \operatorname{carrier} \mathrm{R} \rrbracket \Longrightarrow \mathrm{x} \oplus \mathrm{y} \in$ carrier R"
and " 0 e carrier R"
and " $\wedge \mathrm{x}$ y $\mathrm{z} . \llbracket \mathrm{x} \in$ carrier $\mathrm{R} ; \mathrm{y} \in$ carrier $\mathrm{R} ; \mathrm{z} \in$ carrier $\mathrm{R} \rrbracket \Longrightarrow$
$(x \oplus y) \oplus z=x \oplus(y \oplus z) "$
and " $\ \mathrm{x} \mathrm{y} . \llbracket \mathrm{x} \in$ carrier $\mathrm{R} ; \mathrm{y} \in \operatorname{carrier} \mathrm{R} \rrbracket \Longrightarrow \mathrm{x} \oplus \mathrm{y}=\mathrm{y} \oplus \mathrm{x}$ "
and " $\ \mathrm{x} . \mathrm{x} \in$ carrier $\mathrm{R} \Longrightarrow \mathbf{0} \oplus \mathrm{x}=\mathrm{x}$ "
and " $\ \mathrm{x} . \mathrm{x} \in \operatorname{carrier} \mathrm{R} \Longrightarrow \exists \mathrm{y} \in \operatorname{carrier} R$. $\mathrm{y} \oplus \mathrm{x}=0$ "
using abelian_group.a_comm_group assms comm_groupE by fastforce+
lemma (in abelian_monoid) a_monoid:
"monoid (add_monoid G)"
by (rule comm_monoid.axioms, rule a_comm_monoid)
lemma (in abelian_group) a_group:
"group (add_monoid G)"
by (simp add: group_def a_monoid)
(simp add: comm_group.axioms group.axioms a_comm_group)
lemmas monoid_record_simps = partial_object.simps monoid.simps
Transfer facts from multiplicative structures via interpretation.
sublocale abelian_monoid <
add: monoid "(add_monoid G)"
rewrites "carrier (add_monoid G) = carrier G"
and "mult (add_monoid G) = add G"
and "one (add_monoid G) = zero G"
and "(λ a k. pow (add_monoid G) a k) $=(\lambda a \mathrm{k}$. add_pow G k a)"
by (rule a_monoid) (auto simp add: add_pow_def)
context abelian_monoid
begin
lemmas a_closed = add.m_closed
lemmas zero_closed = add.one_closed

```
lemmas a_assoc = add.m_assoc
lemmas l_zero = add.l_one
lemmas r_zero = add.r_one
lemmas minus_unique = add.inv_unique
end
sublocale abelian_monoid <
    add: comm_monoid "(add_monoid G)"
    rewrites "carrier (add_monoid G) = carrier G"
            and "mult (add_monoid G) = add G"
            and "one (add_monoid G) = zero G"
            and "finprod (add_monoid G) = finsum G"
            and "pow (add_monoid G) = ( \lambdaa k. add_pow G k a)"
    by (rule a_comm_monoid) (auto simp: finsum_def add_pow_def)
context abelian_monoid begin
lemmas a_comm = add.m_comm
lemmas a_lcomm = add.m_lcomm
lemmas a_ac = a_assoc a_comm a_lcomm
lemmas finsum_empty = add.finprod_empty
lemmas finsum_insert = add.finprod_insert
lemmas finsum_zero = add.finprod_one
lemmas finsum_closed = add.finprod_closed
lemmas finsum_Un_Int = add.finprod_Un_Int
lemmas finsum_Un_disjoint = add.finprod_Un_disjoint
lemmas finsum_addf = add.finprod_multf
lemmas finsum_cong' = add.finprod_cong'
lemmas finsum_0 = add.finprod_0
lemmas finsum_Suc = add.finprod_Suc
lemmas finsum_Suc2 = add.finprod_Suc2
lemmas finsum_infinite = add.finprod_infinite
lemmas finsum_cong = add.finprod_cong
```

Usually, if this rule causes a failed congruence proof error, the reason is that the premise $\mathrm{g} \in \mathrm{B} \rightarrow$ carrier G cannot be shown. Adding Pi_def to the simpset is often useful.
lemmas finsum_reindex = add.finprod_reindex
lemmas finsum_singleton = add.finprod_singleton
end
sublocale abelian_group <

```
        add: group "(add_monoid G)"
rewrites "carrier (add_monoid G) = carrier G"
    and "mult (add_monoid G) = add G"
    and "one (add_monoid G) = zero G"
    and "m_inv (add_monoid G) = a_inv G"
    and "pow (add_monoid G) = (\lambdaa k. add_pow G k a)"
by (rule a_group) (auto simp: m_inv_def a_inv_def add_pow_def)
context abelian_group
begin
lemmas a_inv_closed = add.inv_closed
lemma minus_closed [intro, simp]:
    "[| x \in carrier G; y \in carrier G |] ==> x \ominus y \in carrier G"
    by (simp add: a_minus_def)
lemmas l_neg = add.l_inv [simp del]
lemmas r_neg = add.r_inv [simp del]
lemmas minus_minus = add.inv_inv
lemmas a_inv_inj = add.inv_inj
lemmas minus_equality = add.inv_equality
end
sublocale abelian_group <
    add: comm_group "(add_monoid G)"
    rewrites "carrier (add_monoid G) = carrier G"
    and "mult (add_monoid G) = add G"
    and "one (add_monoid G) = zero G"
    and "m_inv (add_monoid G) = a_inv G"
    and "finprod (add_monoid G) = finsum G"
    and "pow (add_monoid G) = (\lambdaa k. add_pow G k a)"
    by (rule a_comm_group) (auto simp: m_inv_def a_inv_def finsum_def add_pow_def)
lemmas (in abelian_group) minus_add = add.inv_mult
Derive an abelian_group from a comm_group
lemma comm_group_abelian_groupI:
    fixes G (structure)
    assumes cg: "comm_group (add_monoid G)"
    shows "abelian_group G"
proof -
    interpret comm_group "(add_monoid G)"
            by (rule cg)
    show "abelian_group G" ..
qed
```


11.3 Rings: Basic Definitions

```
locale semiring = abelian_monoid R + monoid R for R (structure) +
    assumes l_distr: "\llbracketx c carrier R; y \in carrier R; z \in carrier R\rrbracket\Longrightarrow
(x }\oplus\textrm{y})\otimes\textrm{z}=\textrm{x}\otimes\textrm{z}\oplus\textrm{y}\otimes\mp@subsup{\textrm{z}}{}{\prime\prime
            and r_distr: "\llbracketx c carrier R; y \in carrier R; z \in carrier R \rrbracket\Longrightarrow
z \otimes (x }\oplus\textrm{y})=\textrm{z}\otimes\textrm{x}\oplus\textrm{z}\otimes\textrm{y
    and l_null[simp]: "x \in carrier R \Longrightarrow0 0 x = 0"
    and r_null[simp]: "x \in carrier R \Longrightarrow x \otimes 0=0"
locale ring = abelian_group R + monoid R for R (structure) +
    assumes "\llbracketx c carrier R; y \in carrier R; z \in carrier R \rrbracket \Longrightarrow( 
\otimes z = x \otimes z \oplus y \otimes z'
    and "\llbracketx c carrier R; y \in carrier R; z \in carrier R \rrbracket\Longrightarrow z \otimes (x
\oplusy) = z \otimes x }\oplus\textrm{z}\otimes\mp@subsup{y}{}{\prime\prime
locale cring = ring + comm_monoid R
locale "domain" = cring +
    assumes one_not_zero [simp]: "1 f= 0"
        and integral: "\llbracketa \otimes b = 0; a \in carrier R; b \in carrier R \ \Longrightarrow
a = 0 V b = 0"
locale field = "domain" +
    assumes field_Units: "Units R = carrier R - {0}"
```


11.4 Rings

```
lemma ringI:
    fixes R (structure)
    assumes "abelian_group R"
        and "monoid R"
        and "\x y z.\llbracketx < carrier R; y \in carrier R; z \in carrier R\rrbracket\Longrightarrow
(x }\oplus\textrm{y})\otimes\textrm{z}=\textrm{x}\otimes\textrm{z}\oplus\textrm{y}\otimes\mp@subsup{\textrm{z}}{}{\prime
            and "\x y z.\llbracketx < carrier R; y \in carrier R; z \in carrier R\rrbracket\Longrightarrow
z \otimes (x }\oplus\textrm{y})=\mp@code{z}\otimes\textrm{x}\oplus\textrm{z}\otimes\textrm{y}
    shows "ring R"
    by (auto intro: ring.intro
        abelian_group.axioms ring_axioms.intro assms)
lemma ringE:
    fixes R (structure)
    assumes "ring R"
    shows "abelian_group R"
        and "monoid R"
        and "\x y z.\llbracketx \in carrier R; y \in carrier R; z \in carrier R \\Longrightarrow
(x }\oplus\textrm{y})\otimes\textrm{z}=\textrm{x}\otimes\textrm{z}\oplus\textrm{y}\otimes\mp@subsup{\textrm{z}}{}{\prime\prime
        and "\x y z. \llbracketx f carrier R; y \in carrier R; z \in carrier R\rrbracket\Longrightarrow
z \otimes (x \oplus y) = z \otimes x }\oplus\textrm{z}\otimes\mp@subsup{y}{}{\prime\prime
    using assms unfolding ring_def ring_axioms_def by auto
```

```
context ring begin
lemma is_abelian_group: "abelian_group R" ..
lemma is_monoid: "monoid R"
    by (auto intro!: monoidI m_assoc)
end
thm monoid_record_simps
lemmas ring_record_simps = monoid_record_simps ring.simps
lemma cringI:
    fixes R (structure)
    assumes abelian_group: "abelian_group R"
        and comm_monoid: "comm_monoid R"
        and l_distr: " \x y z. \llbracket x \in carrier R; y \in carrier R; z \in carrier
R \rrbracket\Longrightarrow
                                    (x \oplus y) \otimes z = x \otimes z }\oplus\textrm{y}\otimes\mp@subsup{\textrm{z}}{}{\prime
    shows "cring R"
proof (intro cring.intro ring.intro)
    show "ring_axioms R"
            - Right-distributivity follows from left-distributivity and commutativity.
    proof (rule ring_axioms.intro)
        fix x y z
        assume R: "x \in carrier R" "y \in carrier R" "z \in carrier R"
        note [simp] = comm_monoid.axioms [OF comm_monoid]
            abelian_group.axioms [OF abelian_group]
            abelian_monoid.a_closed
        from R have "z \otimes (x \oplus y) = (x \oplus y) \otimes z"
            by (simp add: comm_monoid.m_comm [OF comm_monoid.intro])
        also from R have "... = x \otimes z \oplus y \otimes z" by (simp add: l_distr)
        also from R have "... = z & x \oplus z & y"
            by (simp add: comm_monoid.m_comm [OF comm_monoid.intro])
        finally show "z }\otimes(x)y)=z\otimesx\oplusz\otimesy"
    qed (rule l_distr)
qed (auto intro: cring.intro
    abelian_group.axioms comm_monoid.axioms ring_axioms.intro assms)
lemma cringE:
    fixes R (structure)
    assumes "cring R"
    shows "comm_monoid R"
            and "\x y z. \llbracketx \in carrier R; y \in carrier R; z \in carrier R | \Longrightarrow
(x }\oplus\textrm{y})\otimes\textrm{z}=\textrm{x}\otimes\textrm{z}\oplus\textrm{y}\otimes\mp@subsup{\textrm{z}}{}{\prime
    using assms cring_def by auto (simp add: assms cring.axioms(1) ringE(3))
```

```
lemma (in cring) is_cring:
    "cring R" by (rule cring_axioms)
lemma (in ring) minus_zero [simp]: "\ominus 0 = 0"
    by (simp add: a_inv_def)
```


11.4.1 Normaliser for Rings

```
lemma (in abelian_group) r_neg1:
    "\llbracketx < carrier G; y \in carrier G \rrbracket \Longrightarrow( 
proof -
    assume G: "x \in carrier G" "y \in carrier G"
    then have " (\ominus x \oplus x) \oplus y = y"
            by (simp only: l_neg l_zero)
    with G show ?thesis by (simp add: a_ac)
qed
lemma (in abelian_group) r_neg2:
    "\llbracketx\in carrier G; y \in carrier G \rrbracket\Longrightarrow x }\oplus((\ominus\textrm{x})\oplus\textrm{y})=\textrm{y}
proof -
    assume G: "x \in carrier G" "y \in carrier G"
    then have "(x }\oplus\ominusx) \oplus y = y"
        by (simp only: r_neg l_zero)
    with G show ?thesis
        by (simp add: a_ac)
qed
```

context ring begin

The following proofs are from Jacobson, Basic Algebra I, pp. 88-89.

```
sublocale semiring
proof -
    note [simp] = ring_axioms [unfolded ring_def ring_axioms_def]
    show "semiring R"
    proof (unfold_locales)
        fix \(x\)
        assume \(R\) : "x \(\in\) carrier \(R\) "
        then have "0 \(\otimes \mathrm{x} \oplus \mathbf{0} \otimes \mathrm{x}=(\mathbf{0} \oplus \mathbf{0}) \otimes \mathrm{x} "\)
            by (simp del: l_zero r_zero)
        also from \(R\) have "... = \(0 \otimes \mathrm{x} \oplus 0\) " by simp
        finally have \(" 0 \otimes \mathrm{x} \oplus \mathbf{0} \otimes \mathrm{x}=\mathbf{0} \otimes \mathrm{x} \oplus \mathbf{0}^{\prime \prime}\).
        with \(R\) show \(" 0 \otimes x=0 "\) by (simp del: \(\left.r_{-} z e r o\right)\)
        from \(R\) have \(" \mathrm{x} \otimes \mathbf{0} \oplus \mathrm{x} \otimes \mathbf{0}=\mathrm{x} \otimes(\mathbf{0} \oplus \mathbf{0})\) "
            by (simp del: l_zero r_zero)
        also from \(R\) have \(" . .=x \otimes 0 \oplus 0 "\) by simp
        finally have \(" \mathrm{x} \otimes \mathbf{0} \oplus \mathrm{x} \otimes \mathbf{0}=\mathrm{x} \otimes \mathbf{0} \oplus \mathbf{0}\) ".
        with \(R\) show " \(\mathrm{x} \otimes \mathbf{0}=\mathbf{0}\) " by (simp del: \(\mathrm{r}_{\mathbf{\prime}}\) zero)
    qed auto
qed
```

```
lemma l_minus:
    "\llbracketx f carrier R; y \in carrier R \rrbracket \Longrightarrow ( }|\textrm{x})\otimes\textrm{y}=\ominus(\textrm{x}\otimes\textrm{y})
proof -
    assume R: "x \in carrier R" "y \in carrier R"
    then have "(\ominus x) \otimes y \oplus x \otimes y = ( }\ominus\textrm{x}\oplus\textrm{x})\otimes\textrm{y}|\mp@code{by (simp add: l_distr)
    also from R have "... = 0" by (simp add: l_neg)
    finally have "(\ominus x) \otimes y \oplus x \otimes y = 0" .
    with R have " ( }\ominus\textrm{x})\otimes\textrm{y}\oplus\textrm{x}\otimes\textrm{y}|\ominus\ominus\ominus(\textrm{x}\otimes\textrm{y})=\mathbf{0}\oplus\ominus(\textrm{x}\otimes\textrm{y})"\mp@code{by
simp
    with R show ?thesis by (simp add: a_assoc r_neg)
qed
lemma r_minus:
    "\llbracketx f carrier R; y \in carrier R \rrbracket \Longrightarrow x \otimes ( 
proof -
    assume R: "x \in carrier R" "y \in carrier R"
    then have "x \otimes ( }\ominus\textrm{y})\oplus\textrm{x}\otimes\textrm{y}=\textrm{x}\otimes(\ominus\textrm{y}\oplus\textrm{y})"\mp@code{by (simp add: r_distr)
    also from R have "... = 0" by (simp add: l_neg)
    finally have "x \otimes ( 
    with R have "x \otimes ( 
simp
    with R show ?thesis by (simp add: a_assoc r_neg )
qed
end
lemma (in abelian_group) minus_eq: "x \ominus y = x \oplus (\ominus y)"
    by (rule a_minus_def)
```

Setup algebra method: compute distributive normal form in locale contexts

```
ML_file <ringsimp.ML>
attribute_setup algebra = <
    Scan.lift ((Args.add >> K true || Args.del >> K false) --| Args.colon
| Scan.succeed true)
            -- Scan.lift Args.name -- Scan.repeat Args.term
            >> (fn ((b, n), ts) => if b then Ringsimp.add_struct (n, ts) else
Ringsimp.del_struct (n, ts))
> "theorems controlling algebra method"
method__setup algebra = <
    Scan.succeed (SIMPLE_METHOD' o Ringsimp.algebra_tac)
> "normalisation of algebraic structure"
lemmas (in semiring) semiring_simprules
    [algebra ring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult R"]
=
    a_closed zero_closed m_closed one_closed
```

```
    a_assoc l_zero a_comm m_assoc l_one l_distr r_zero
    a_lcomm r_distr l_null r_null
lemmas (in ring) ring_simprules
    [algebra ring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult R"]
=
    a_closed zero_closed a_inv_closed minus_closed m_closed one_closed
    a_assoc l_zero l_neg a_comm m_assoc l_one l_distr minus_eq
    r_zero r_neg r_neg2 r_neg1 minus_add minus_minus minus_zero
    a_lcomm r_distr l_null r_null l_minus r_minus
lemmas (in cring)
    [algebra del: ring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult
R"] =
lemmas (in cring) cring_simprules
[algebra add: cring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult
R"] =
    a_closed zero_closed a_inv_closed minus_closed m_closed one_closed
    a_assoc l_zero l_neg a_comm m_assoc l_one l_distr m_comm minus_eq
    r_zero r_neg r_neg2 r_neg1 minus_add minus_minus minus_zero
    a_lcomm m_lcomm r_distr l_null r_null l_minus r_minus
lemma (in semiring) nat_pow_zero:
    "(n::nat) }=0\Longrightarrow0[^] n = 0"
    by (induct n) simp_all
context semiring begin
lemma one_zeroD:
    assumes onezero: "1 = 0"
    shows "carrier R = {0}"
proof (rule, rule)
    fix x
    assume xcarr: "x \in carrier R"
    from xcarr have "x = x \otimes 1" by simp
    with onezero have "x = x \otimes 0" by simp
    with xcarr have " }x=0"\mathrm{ by simp
    then show "x }\in{0}"\mathrm{ by fast
qed fast
lemma one_zeroI:
    assumes carrzero: "carrier R = {0}"
    shows "1 = 0"
proof -
    from one_closed and carrzero
        show "1 = 0" by simp
qed
```

```
lemma carrier_one_zero: "(carrier R = {0}) = (1 = 0)"
    using one_zeroD by blast
lemma carrier_one_not_zero: "(carrier R f= {0}) = (1 f=0)"
    by (simp add: carrier_one_zero)
end
```

Two examples for use of method algebra

```
lemma
    fixes R (structure) and S (structure)
    assumes "ring R" "cring S"
    assumes RS: "a \in carrier R" "b \in carrier R" "c \in carrier S" "d \in carrier
S"
    shows "a \oplus (\ominus (a \oplus (\ominus b))) = b ^ c \otimes S d = d \otimes S c"
proof -
    interpret ring R by fact
    interpret cring S by fact
    from RS show ?thesis by algebra
qed
lemma
    fixes R (structure)
    assumes "ring R"
    assumes R: "a \in carrier R" "b \in carrier R"
    shows "a \ominus (a \ominus b) = b"
proof -
    interpret ring R by fact
    from R show ?thesis by algebra
qed
```


11．4．2 Sums over Finite Sets

lemma (in semiring) finsum_ldistr:
"【 finite $A ; a \in$ carrier $R ; f: A \rightarrow$ carrier $R \rrbracket \Longrightarrow$
$(\bigoplus i \in A .(f i)) \otimes a=(\bigoplus i \in A .((f i) \otimes a)) "$
proof (induct set: finite)
case empty then show ?case by simp
next
case (insert x F) then show ?case by (simp add: Pi_def l_distr)
qed
lemma (in semiring) finsum_rdistr:
"【年inite A; a \in carrier R; $f: A \rightarrow$ carrier $R \rrbracket \Longrightarrow$
$a \otimes(\bigoplus i \in A .(f i))=(\bigoplus i \in A .(a \otimes(f i))) "$
proof (induct set: finite)
case empty then show ?case by simp
next

```
    case (insert x F) then show ?case by (simp add: Pi_def r_distr)
```

qed

A quick detour

```
lemma add_pow_int_ge: "(k :: int) \geq 0 C [ k ] ·R a = [ nat k ] ·R a"
    by (simp add: add_pow_def int_pow_def nat_pow_def)
lemma add_pow_int_lt: "(k :: int) < 0 \Longrightarrow [ k ] ·R a = ӨR ([ nat (- k)
] 'R a)"
    by (simp add: int_pow_def nat_pow_def a_inv_def add_pow_def)
corollary (in semiring) add_pow_ldistr:
    assumes "a \in carrier R" "b \in carrier R"
    shows "([(k :: nat)] · a) \otimes b = [k] . (a \otimes b)"
proof -
    have "([k] . a) \otimes b = (\bigoplus i \in {..< k}. a) \otimes b"
        using add.finprod_const[OF assms(1), of "{..<k}"] by simp
    also have " ... = (\bigoplus i \in {..< k}. (a \otimes b))"
            using finsum_ldistr[of "{..<k}" b "\lambdax. a"] assms by simp
    also have " ... = [k] . (a \otimes b)"
        using add.finprod_const[of "a \otimes b" "{..<k}"] assms by simp
    finally show ?thesis .
qed
corollary (in semiring) add_pow_rdistr:
    assumes "a \in carrier R" "b \in carrier R"
    shows "a \otimes ([(k :: nat)] . b) = [k] . (a \otimes b)"
proof -
    have "a \otimes ([k] . b) = a \otimes (\bigoplus i \in {..< k}. b)"
        using add.finprod_const[OF assms(2), of "{..<k}"] by simp
    also have " ...= (\bigoplus i \in {..< k}. (a \otimes b))"
            using finsum_rdistr[of "{..<k}" a "\lambdax. b"] assms by simp
    also have " ... = [k] . (a \otimes b)"
        using add.finprod_const[of "a \otimes b" "{..<k}"] assms by simp
    finally show ?thesis .
qed
```

lemma (in ring) add_pow_ldistr_int:
assumes "a \in carrier R" "b \in carrier R"
shows " ([(k : : int)] • a) $\otimes \mathrm{b}=[\mathrm{k}] \cdot(\mathrm{a} \otimes \mathrm{b})$ "
proof (cases "k ≥ 0 ")
case True thus ?thesis
using add_pow_int_ge[of k R] add_pow_ldistr[0F assms] by auto
next
case False thus ?thesis
using add_pow_int_lt[of k R a] add_pow_int_lt[of k R "a $\otimes \mathrm{b}$ "]
add_pow_ldistr [OF assms, of "nat (- k)"] assms l_minus by auto
qed
lemma (in ring) add_pow_rdistr_int:
assumes "a \in carrier R " "b \in carrier R "
shows "a $\otimes([(\mathrm{k}::$ int $)] \cdot \mathrm{b})=[\mathrm{k}] \cdot(\mathrm{a} \otimes \mathrm{b})$ "
proof (cases "k ≥ 0 ")
case True thus ?thesis
using add_pow_int_ge[of k R] add_pow_rdistr [OF assms] by auto
next
case False thus ?thesis
using add_pow_int_lt[of k R b] add_pow_int_lt[of k R "a $\otimes \mathrm{b}$ "] add_pow_rdistr[0F assms, of "nat (-k)"] assms r_minus by auto
qed

11.5 Integral Domains

```
context "domain" begin
lemma zero_not_one [simp]: "0 # 1"
    by (rule not_sym) simp
lemma integral_iff:
    "\llbracketa G carrier R; b G carrier R \rrbracket\Longrightarrow(a \otimes b = 0) = (a = 0 \vee b = 0)"
proof
    assume "a \in carrier R" "b \in carrier R" "a \otimes b = 0"
    then show "a = 0 \vee b = 0" by (simp add: integral)
next
    assume "a \in carrier R" "b \in carrier R" "a = 0 V b = 0"
    then show "a \otimes b = 0" by auto
qed
lemma m_lcancel:
    assumes prem: "a \not=0"
            and R: "a \in carrier R" "b \in carrier R" "c \in carrier R"
    shows "(a \otimes b = a \otimes c) = (b = c)"
proof
    assume eq: "a \otimes b = a \otimes c"
    with R have "a \otimes (b \ominus c) = 0" by algebra
    with R have "a=0 \ ( b \ominus c) = 0" by (simp add: integral_iff)
    with prem and R have "b \ominus c=0" by auto
    with R have "b = b \ominus (b \ominus c)" by algebra
    also from R have "b \ominus (b \ominus c) = c" by algebra
    finally show "b = c" .
next
    assume "b = c" then show "a \otimes b = a \otimes c" by simp
qed
lemma m_rcancel:
    assumes prem: "a \not= 0"
```

```
        and R: "a \in carrier R" "b \in carrier R" "c \in carrier R"
    shows conc: "(b & a = c \otimes a) = (b = c)"
proof -
    from prem and R have " (a \otimes b = a \otimes c) = (b = c)" by (rule m_lcancel)
    with R show ?thesis by algebra
qed
```

end

11.6 Fields

Field would not need to be derived from domain, the properties for domain follow from the assumptions of field

```
lemma (in field) is_ring: "ring R"
    using ring_axioms .
lemma fieldE :
    fixes R (structure)
    assumes "field R"
    shows "cring R"
        and one_not_zero : "1 = 0"
        and integral: "\a b. \llbracket a \otimes b = 0; a \in carrier R; b \in carrier R\rrbracket
"a = 0 \vee b = 0'
    and field_Units: "Units R = carrier R - {0}"
    using assms unfolding field_def field_axioms_def domain_def domain_axioms_def
by simp_all
lemma (in cring) cring_fieldI:
    assumes field_Units: "Units R = carrier R - {0}"
    shows "field R"
proof
    from field_Units have "0 # Units R" by fast
    moreover have "1 \in Units R" by fast
    ultimately show "1 = 0" by force
next
    fix a b
    assume acarr: "a \in carrier R"
        and bcarr: "b \in carrier R"
        and ab: "a \otimes b = 0"
    show "a = 0 \vee b = 0"
    proof (cases "a = 0", simp)
        assume "a \not= 0"
        with field_Units and acarr have aUnit: "a \in Units R" by fast
        from bcarr have "b = 1 \otimes b" by algebra
        also from aUnit acarr have "... = (inv a \otimes a) \otimes b" by simp
        also from acarr bcarr aUnit[THEN Units_inv_closed]
        have "... = (inv a) \otimes (a \otimes b)" by algebra
        also from ab and acarr bcarr aUnit have "... = (inv a) \otimes 0" by simp
        also from aUnit[THEN Units_inv_closed] have "... = 0" by algebra
```

```
        finally have "b = 0" .
        then show "a=0 0 b = 0" by simp
    qed
qed (rule field_Units)
```

Another variant to show that something is a field

```
lemma (in cring) cring_fieldI2:
    assumes notzero: "0 = 1"
        and invex: "\a. \llbracketa \in carrier R; a }=0|0|\exists\textrm{b}\in\mathrm{ carrier R. a }\otimes\textrm{b
= 1"
    shows "field R"
proof -
    have *: "carrier R - {0} \subseteq {y \in carrier R. \existsx\incarrier R. x \otimes y = 1
^ y \otimes x = 1}"
    proof (clarsimp)
        fix x
        assume xcarr: "x \in carrier R" and "x \not= 0"
        obtain y where ycarr: "y \in carrier R" and xy: "x \otimes y = 1"
            using <x }=0\mathrm{ > invex xcarr by blast
        with ycarr and xy show "\existsy\incarrier R. y \otimes x = 1 ^ x & y = 1"
            using m_comm xcarr by fastforce
    qed
    show ?thesis
        apply (rule cring_fieldI, simp add: Units_def)
        using *
        using group_l_invI notzero set_diff_eq by auto
qed
```


11.7 Morphisms

```
definition
    ring_hom :: "[('a, 'm) ring_scheme, ('b, 'n) ring_scheme] => ('a =>
'b) set"
    where "ring_hom R S =
        {h. h \in carrier R }->\mathrm{ carrier S ^
            ( }\forall\textrm{x}y.\textrm{x}\in\mathrm{ carrier R }\wedge\textrm{y}\in\mathrm{ carrier R }
```



```
            h 1, 䫀}"
lemma ring_hom_memI:
    fixes R (structure) and S (structure)
    assumes "\x. x \in carrier R \Longrightarrow h x \in carrier S"
        and "\x y. \llbracketx c carrier R; y \in carrier R\rrbracket\Longrightarrowh(x \otimes y) = h
x }\mp@subsup{\otimes}{S}{
        and "\x y. \llbracketx c carrier R; y \in carrier R\rrbracket\Longrightarrow h (x @ y) = h
x }\mp@subsup{\oplus}{S h y"}{
        and "h 1 = 1S"
    shows "h \in ring_hom R S"
    by (auto simp add: ring_hom_def assms Pi_def)
```

```
lemma ring_hom_memE:
    fixes R (structure) and S (structure)
    assumes "h \in ring_hom R S"
    shows "\x. x \in carrier R \Longrightarrow h x \in carrier S"
        and "\x y. \llbracketx carrier R; y \in carrier R\rrbracket\Longrightarrowh(x | y) = h x
*S h y"
        and "\x y. \llbracketx carrier R; y \in carrier R\rrbracket\Longrightarrowh(x }|\textrm{y})=\textrm{h}
@ h y"
        and "h 1 = 1S"
    using assms unfolding ring_hom_def by auto
lemma ring_hom_closed:
    "\llbracketh G ring_hom R S; x \in carrier R \rrbracket \Longrightarrow h x f carrier S"
    by (auto simp add: ring_hom_def funcset_mem)
lemma ring_hom_mult:
    fixes R (structure) and S (structure)
    shows "\llbracketh G ring_hom R S; x \in carrier R; y \in carrier R \rrbracket \Longrightarrow h (x
| ) = h x *S h y"
        by (simp add: ring_hom_def)
lemma ring_hom_add:
    fixes R (structure) and S (structure)
    shows "\llbracketh f ring_hom R S; x \in carrier R; y \in carrier R \rrbracket \Longrightarrow h (x
y) = h x }\mp@subsup{\oplus}{S h y"}{
        by (simp add: ring_hom_def)
lemma ring_hom_one:
    fixes R (structure) and S (structure)
    shows "h \in ring_hom R S \Longrightarrow h 1 = 1s"
    by (simp add: ring_hom_def)
lemma ring_hom_zero:
    fixes R (structure) and S (structure)
    assumes "h \in ring_hom R S" "ring R" "ring S"
    shows "h 0 = 0
proof -
    have "h 0 = h 0 \oplus S h 0"
        using ring_hom_add[OF assms(1), of 0 0] assms(2)
        by (simp add: ring.ring_simprules(2) ring.ring_simprules(15))
    thus ?thesis
        by (metis abelian_group.l_neg assms ring.is_abelian_group ring.ring_simprules(18)
ring.ring_simprules(2) ring_hom_closed)
qed
locale ring_hom_cring =
    R?: cring R + S?: cring S for R (structure) and S (structure) + fixes
h
```

```
    assumes homh [simp, intro]: "h \in ring_hom R S"
    notes hom_closed [simp, intro] = ring_hom_closed [OF homh]
        and hom_mult [simp] = ring_hom_mult [OF homh]
        and hom_add [simp] = ring_hom_add [OF homh]
        and hom_one [simp] = ring_hom_one [OF homh]
lemma (in ring_hom_cring) hom_zero [simp]: "h 0 = 0 S "
proof -
    have "h 0 }\mp@subsup{\oplus}{\textrm{S}}{h}0=\textrm{h}0\mp@subsup{\oplus}{\textrm{S}}{}\mp@subsup{0}{\textrm{S}}{
        by (simp add: hom_add [symmetric] del: hom_add)
    then show ?thesis by (simp del: S.r_zero)
qed
lemma (in ring_hom_cring) hom_a_inv [simp]:
    "x f carrier R \Longrightarrow h ( 
proof -
    assume R: "x \in carrier R"
    then have "h x }\mp@subsup{\oplus}{S h ( }{\textrm{h}}\textrm{x})=\textrm{h}x\mp@subsup{|}{\textrm{S}}{(}(\mp@subsup{\ominus}{S}{}\textrm{h}x)
        by (simp add: hom_add [symmetric] R.r_neg S.r_neg del: hom_add)
    with R show ?thesis by simp
qed
lemma (in ring_hom_cring) hom_finsum [simp]:
    assumes "f: A }->\mathrm{ carrier R"
    shows "h (\bigoplus i f A.f i) = ( అs i f A. (h o f) i)"
    using assms by (induct A rule: infinite_finite_induct, auto simp: Pi_def)
lemma (in ring_hom_cring) hom_finprod:
    assumes "f: A }->\mathrm{ carrier R"
    shows "h (\otimes i \in A. f i) = ( ( S i f A. (h o f) i)"
    using assms by (induct A rule: infinite_finite_induct, auto simp: Pi_def)
declare ring_hom_cring.hom_finprod [simp]
lemma id_ring_hom [simp]: "id \in ring_hom R R"
    by (auto intro!: ring_hom_memI)
lemma ring_hom_trans:
    "\llbracketf \in ring_hom R S; g \in ring_hom S T \rrbracket \Longrightarrow g o f \in ring_hom R T"
    by (rule ring_hom_memI) (auto simp add: ring_hom_closed ring_hom_mult
ring_hom_add ring_hom_one)
```


11.8 Jeremy Avigad's More_Finite_Product material

```
lemma (in cring) sum_zero_eq_neg: "x \(\in \operatorname{carrier~} R \Longrightarrow y \in \operatorname{carrier} R \Longrightarrow\)
```

lemma (in cring) sum_zero_eq_neg: "x $\in \operatorname{carrier~} R \Longrightarrow y \in \operatorname{carrier} R \Longrightarrow$
x }\oplus\textrm{y}=0\Longrightarrow\textrm{0}\Longrightarrow\textrm{x}=\ominus \mp@subsup{y}{}{\prime\prime
by (metis minus_equality)
lemma (in domain) square_eq_one:

```
```

 fixes x
 assumes [simp]: "x \in carrier R"
 and "x }\otimes\textrm{x}=1
 shows "x = 1 \vee x = \ominus1"
 proof -
have "(x \oplus 1) \otimes (x }\oplus\ominus1)=x x x x ¢ \ominus 1"
by (simp add: ring_simprules)
also from <x \& x = 1> have "... = 0"
by (simp add: ring_simprules)
finally have "(x }\oplus1)\otimes(x\oplus\ominus1)=0" .
then have "(x }\oplus1)=00\vee(x\oplus\ominus1)=0
by (intro integral) auto
then show ?thesis
by (metis add.inv_closed add.inv_solve_right assms(1) l_zero one_closed
zero_closed)
qed
lemma (in domain) inv_eq_self: "x
v = \ominus1"
by (metis Units_closed Units_l_inv square_eq_one)

```

The following translates theorems about groups to the facts about the units of a ring. (The list should be expanded as more things are needed.)
```

lemma (in ring) finite_ring_finite_units [intro]: "finite (carrier R)
"finite (Units R)"
by (rule finite_subset) auto
lemma (in monoid) units_of_pow:
fixes n :: nat
shows "x \in Units G m x [^] units_of G n = x [^] G n"
apply (induct n)
apply (auto simp add: units_group group.is_monoid
monoid.nat_pow_0 monoid.nat_pow_Suc units_of_one units_of_mult)
done
lemma (in cring) units_power_order_eq_one:
"finite (Units R) \Longrightarrowa \in Units R \Longrightarrow a [^] card(Units R) = 1"
by (metis comm_group.power_order_eq_one units_comm_group units_of_carrier
units_of_one units_of_pow)

```

\subsection*{11.9 Jeremy Avigad's More_Ring material}
```

lemma (in cring) field_intro2:
assumes "0}\mp@subsup{0}{R}{}\not=\mp@subsup{1}{R}{}"\mathrm{ and un: "\x. x }\in\mathrm{ carrier R - {0 (}
R"
shows "field R"
proof unfold_locales
show "1 = 0" using assms by auto
show "\llbracketa \otimes b = 0; a \in carrier R;

```
```

b \in carrier R\rrbracket
\Longrightarrowa=0 \vee b = 0" for a b

```
by (metis un Units_l_cancel insert_Diff_single insert_iff r_null zero_closed) qed (use assms in <auto simp: Units_def〉)
lemma (in monoid) inv_char:

shows "inv \(x=y "\)
using assms inv_unique' by auto
lemma (in comm_monoid) comm_inv_char: "x \(\in\) carrier \(G \Longrightarrow y \in c a r r i e r ~\) \(\mathrm{G} \Longrightarrow \mathrm{x} \otimes \mathrm{y}=1 \Longrightarrow\) inv \(\mathrm{x}=\mathrm{y}{ }^{\prime \prime}\)
by (simp add: inv_char m_comm)
lemma (in ring) inv_neg_one [simp]: "inv ( \(\ominus\) 1) = \(\ominus\) 1"
by (simp add: inv_char local.ring_axioms ring.r_minus)
```

lemma (in monoid) inv_eq_imp_eq: "x \in Units G }\Longrightarrow\textrm{y}\in\mathrm{ Units G }\Longrightarrow\mathrm{ inv
x = inv y \Longrightarrow x = y"
by (metis Units_inv_inv)
lemma (in ring) Units_minus_one_closed [intro]: " }\ominus 1 \in Units R"
by (simp add: Units_def) (metis add.l_inv_ex local.minus_minus minus_equality
one_closed r_minus r_one)
lemma (in ring) inv_eq_neg_one_eq: "x \in Units R \Longrightarrow inv x = \ominus 1 \longleftrightarrow
x = \ominus 1"
by (metis Units_inv_inv inv_neg_one)
lemma (in monoid) inv_eq_one_eq: "x \in Units G }\Longrightarrow\mathrm{ inv x = 1 }\longleftrightarrow\textrm{x}
1"
by (metis Units_inv_inv inv_one)
end
theory Module
imports Ring
begin

```

\section*{12 Modules over an Abelian Group}

\subsection*{12.1 Definitions}
```

record ('a, 'b) module = "'b ring" +
smult :: "['a, 'b] => 'b" (infixl "\odot\imath" 70)
locale module = R?: cring + M?: abelian_group M for M (structure) +
assumes smult_closed [simp, intro]:

```
```

 "[| a \in carrier R; x \in carrier M |] ==> a \odot M x f carrier M"
 and smult_l_distr:
 "[| a \in carrier R; b \in carrier R; x \in carrier M |] ==>
    ```

```

 and smult_r_distr:
 "[l a \in carrier R; x \in carrier M; y \in carrier M |] ==>
 a }\mp@subsup{\odot}{M}{\prime}(x \mp@subsup{\oplus}{M}{M}y)=a \mp@subsup{ }{M}{M}x\mp@subsup{\oplus}{M}{}\mathrm{ a }\mp@subsup{\odot}{M}{M}\mp@subsup{y}{}{\prime\prime
 and smult_assoc1:
"[| a \in carrier R; b \in carrier R; x \in carrier M |] ==>
(a \otimes b) }\mp@subsup{\odot}{M}{}x=a \mp@subsup{ }{M}{M}(b \mp@subsup{\odot}{M}{}x)
and smult_one [simp]:
"x \in carrier M ==> 1 }\mp@subsup{\odot}{M}{x = x"
locale algebra = module + cring M +
assumes smult_assoc2:
"[l a \in carrier R; x \in carrier M; y \in carrier M |] ==>
(a }\mp@subsup{\odot}{M}{M}x)\mp@subsup{\otimes}{M}{}y=a \mp@subsup{ }{M}{\prime}(x \mp@subsup{\otimes}{M}{\prime}y)
lemma moduleI:
fixes R (structure) and M (structure)
assumes cring: "cring R"
and abelian_group: "abelian_group M"
and smult_closed:
"!!a x. [| a \in carrier R; x \in carrier M |] ==> a }\mp@subsup{\odot}{M}{M}x\incarrier
M"
and smult_l_distr:
"!!a b x. [l a \in carrier R; b \in carrier R; x \in carrier M |] ==>
(a \oplus b) }\mp@subsup{\odot}{M x = (a }{~M x) }\mp@subsup{\oplus}{M}{M}(b \odotM x)"
and smult_r_distr:
"!!a x y. [| a \in carrier R; x \in carrier M; y \in carrier M |] ==>

```

```

 and smult_assoc1:
 "!!a b x. [l a \in carrier R; b \in carrier R; x \in carrier M |] ==>
    ```

```

 and smult_one:
 "!!x. x \in carrier M ==> 1 \odot m x = x"
 shows "module R M"
 by (auto intro: module.intro cring.axioms abelian_group.axioms
 module_axioms.intro assms)
 lemma algebraI:
fixes R (structure) and M (structure)
assumes R_cring: "cring R"
and M_cring: "cring M"
and smult_closed:
"!!a x. [l a \in carrier R; x \in carrier M |] ==> a }\mp@subsup{\odot}{M}{M}x\incarrier
M"
and smult_l_distr:
"!!a b x. [| a G carrier R; b G carrier R; x \in carrier M |] ==>

```
```

 (a \oplus b) }\mp@subsup{\odot}{M}{M}=(a\mp@subsup{\odot}{M}{}x) \mp@subsup{\oplus}{M}{}(b\mp@subsup{\odot}{M}{}x)
 and smult_r_distr:
 "!!a x y. [| a \in carrier R; x \in carrier M; y \in carrier M |] ==>
 a }\mp@subsup{\odot}{M}{}(x\mp@subsup{\oplus}{M}{M}y)=(a\mp@subsup{\odot}{M}{\prime}x) \mp@subsup{\oplus}{M}{}(a\mp@subsup{\odot}{M}{\prime}y)
 and smult_assoc1:
 "!!a b x. [| a \in carrier R; b \in carrier R; x \in carrier M |] ==>
 (a \otimes b) }\mp@subsup{\odot}{M}{}x=a = \odotM (b \odot <M x)"
 and smult_one:
 "!!x. x \in carrier M ==> (one R) \odotM x = x"
 and smult_assoc2:
 "!!a x y. [| a \in carrier R; x \in carrier M; y \in carrier M |] ==>
 (a \odot }\mp@subsup{M}{M}{}x)\mp@subsup{\otimes}{M}{M}y=a \mp@subsup{ }{M}{M}(x\mp@subsup{\otimes}{M}{\prime}y)
 shows "algebra R M"
 apply intro_locales
 apply (rule cring.axioms ring.axioms abelian_group.axioms
 comm_monoid.axioms assms)+
apply (rule module_axioms.intro)
apply (simp add: smult_closed)
apply (simp add: smult_l_distr)
apply (simp add: smult_r_distr)
apply (simp add: smult_assoc1)
apply (simp add: smult_one)
apply (rule cring.axioms ring.axioms abelian_group.axioms comm_monoid.axioms
assms)+
apply (rule algebra_axioms.intro)
apply (simp add: smult_assoc2)
done
lemma (in algebra) R_cring: "cring R" ..
lemma (in algebra) M_cring: "cring M" ..
lemma (in algebra) module: "module R M"
by (auto intro: moduleI R_cring is_abelian_group smult_l_distr smult_r_distr
smult_assoc1)

```

\subsection*{12.2 Basic Properties of Modules}
```

lemma (in module) smult_l_null [simp]:

```
lemma (in module) smult_l_null [simp]:
    "x \in carrier M ==> 0 }\mp@subsup{\odot}{M}{\prime}x=0\mp@subsup{\mathbf{0}}{M}{\prime
    "x \in carrier M ==> 0 }\mp@subsup{\odot}{M}{\prime}x=0\mp@subsup{\mathbf{0}}{M}{\prime
proof-
proof-
    assume M : "x \in carrier M"
    assume M : "x \in carrier M"
    note facts = M smult_closed [OF R.zero_closed]
    note facts = M smult_closed [OF R.zero_closed]
    from facts have "0 }\mp@subsup{\odot}{M}{}x=(0\oplus0) \odot © x " "
    from facts have "0 }\mp@subsup{\odot}{M}{}x=(0\oplus0) \odot © x " "
        using smult_l_distr by auto
```

 using smult_l_distr by auto
    ```


```

 using smult_l_distr[of 0 0 x] facts by auto
    ```
        using smult_l_distr[of 0 0 x] facts by auto
    finally show "0 }\mp@subsup{\odot}{M}{}\times=\mp@subsup{0}{M}{\prime
    finally show "0 }\mp@subsup{\odot}{M}{}\times=\mp@subsup{0}{M}{\prime
        by (metis M.add.r_cancel_one')
```

 by (metis M.add.r_cancel_one')
    ```
qed
lemma (in module) smult_r_null [simp]:
"a \(\in\) carrier \(R==\) a \(\odot_{M} \mathbf{0}_{M}=\mathbf{0}_{\mathrm{M}}\) "
proof -
assume \(R\) : "a \(\in\) carrier R"
note facts \(=R\) smult_closed
from facts have \(" a \odot_{M} \mathbf{0}_{M}=\left(a \odot_{M} \mathbf{0}_{M} \oplus_{M} a \odot_{M} \mathbf{0}_{M}\right) \oplus_{M} \ominus_{M}\left(a \odot_{M} \mathbf{0}_{M}\right)\) "
by (simp add: M.add.inv_solve_right)
also from \(R\) have \(" . . .=a \odot_{M}\left(0_{M} \oplus_{M} \mathbf{0}_{M}\right) \oplus_{M} \ominus_{M}\left(a \odot_{M} \mathbf{0}_{M}\right) "\)
by (simp add: smult_r_distr del: M.l_zero M.r_zero)
also from facts have "... \(=0_{\mathrm{M}}\) "
by (simp add: M.r_neg)
finally show ?thesis .
qed
lemma (in module) smult_l_minus:
" \(\llbracket a \in\) carrier \(R ; x \in \operatorname{carrier} M \rrbracket \Longrightarrow(\ominus a) \odot_{M} x=\ominus_{M}\left(a \quad \odot_{M} x\right) "\)
proof-
assume RM: "a \(\in\) carrier \(R "\) "x \(\in\) carrier \(M\) "
from RM have a_smult: "a \(\odot_{M} x \in\) carrier \(M\) " by simp
from RM have ma_smult: "Өa \(\odot_{\mathrm{M}} \mathrm{x} \in\) carrier \(M\) " by simp
note facts = RM a_smult ma_smult
from facts have " \((\ominus a) \odot_{M} x=\left(\ominus_{\mathrm{a}} \odot_{\mathrm{M}} \mathrm{x} \oplus_{\mathrm{M}} \mathrm{a} \odot_{\mathrm{M}} \mathrm{x}\right) \oplus_{\mathrm{M}} \ominus_{\mathrm{M}}\left(\mathrm{a} \odot_{\mathrm{M}} \mathrm{x}\right)\) "
by (simp add: M.add.inv_solve_right)
also from RM have "... = ( \(\ominus\) a \(\oplus\) a) \(\odot_{M} \mathrm{x} \oplus_{\mathrm{M}} \ominus_{\mathrm{M}}\left(\mathrm{a} \odot_{\mathrm{M}} \mathrm{x}\right)\) "
by (simp add: smult_l_distr)
also from facts smult_l_null have \(" . . .=\ominus_{M}\left(a \odot_{M} x\right) "\) by (simp add: R.l_neg)
finally show ?thesis .
qed
lemma (in module) smult_r_minus:
" [| \(a \in \operatorname{carrier~} R ; x \in \operatorname{carrier~M~} \mid]=\Rightarrow a \odot_{M}\left(\ominus_{M x}\right)=\ominus_{M}\left(a \odot_{M} x\right) "\)
proof -
assume RM: "a \(\in\) carrier \(R "\) " \(x \in\) carrier \(M "\)
note facts = RM smult_closed
from facts have "a \(\odot_{M}\left(\ominus_{M x}\right)=\left(a \odot_{M} \ominus_{M} x \oplus_{M} a \odot_{M} x\right) \oplus_{M} \ominus_{M}\left(a \odot_{M} x\right)\) " by (simp add: M.add.inv_solve_right)
also from RM have \(" . .=\bar{a} \odot_{M}\left(\ominus_{M X} \oplus_{M} x\right) \oplus_{M} \ominus_{M}\left(a \odot_{M} x\right) "\)
by (simp add: smult_r_distr)
also from facts smult_l_null have "... = \(\ominus_{M}\left(a \odot_{M} x\right) "\)
by (metis M.add.inv_closed M.add.inv_solve_right M.l_neg R.zero_closed
r_null smult_assoc1)
finally show ?thesis .
qed
lemma (in module) finsum_smult_ldistr:
"【 finite A; a \(\in\) carrier \(R\); \(f: A \rightarrow\) carrier \(M \rrbracket \Longrightarrow\)
```

 a }\mp@subsup{\odot}{M}{M}(\mp@subsup{\bigoplus}{M}{\prime
 proof (induct set: finite)
case empty then show ?case
by (metis M.finsum_empty M.zero_closed R.zero_closed r_null smult_assoc1
smult_l_null)
next
case (insert x F) then show ?case
by (simp add: Pi_def smult_r_distr)
qed

```

\subsection*{12.3 Submodules}
locale submodule = subgroup \(H\) "add_monoid \(M\) " for \(H\) and \(R\) : : "('a, 'b) ring_scheme" and M (structure)
+ assumes smult_closed [simp, intro]:
\[
" \llbracket a \in \operatorname{carrier} R ; x \in H \rrbracket \Longrightarrow a \odot_{M} x \in H "
\]
lemma (in module) submoduleI :
assumes subset: "H \(\subseteq\) carrier \(\mathrm{M}^{\prime}\)
and zero: " \(0_{\mathrm{M}} \in \mathrm{H}\) "
and a_inv: "!!a. a \(\in H \Longrightarrow \ominus_{M}\) a \(\in H^{\prime \prime}\)
and add : " \(\bigwedge \mathrm{a} b . \llbracket \mathrm{a} \in \mathrm{H} ; \mathrm{b} \in \mathrm{H} \rrbracket \Longrightarrow \mathrm{a} \oplus \mathrm{M} \mathrm{b} \in \mathrm{H}^{\prime}\)
and smult_closed : " \(\bigwedge\) a \(\mathrm{x} . \llbracket \mathrm{a} \in\) carrier \(R\); \(\mathrm{x} \in \mathrm{H} \rrbracket \Longrightarrow \mathrm{a} \odot_{\mathrm{M}} \mathrm{x} \in \mathrm{H}^{\prime}\)
shows "submodule H R M"
apply (intro submodule.intro subgroup.intro)
using assms unfolding submodule_axioms_def
by (simp_all add : a_inv_def)
lemma (in module) submoduleE :
assumes "submodule H R M"
shows "H \(\subseteq\) carrier M"
and " \(\mathrm{H} \neq\{ \}\) "
and " \(\wedge \mathrm{a} . \mathrm{a} \in \mathrm{H} \Longrightarrow \ominus_{\mathrm{M}} \mathrm{a} \in \mathrm{H}\) "
and " \(\wedge \mathrm{a} b . \llbracket \mathrm{a} \in\) carrier \(\mathrm{R} ; \mathrm{b} \in \mathrm{H} \rrbracket \Longrightarrow \mathrm{a} \odot_{\mathrm{M}} \mathrm{b} \in \mathrm{H}\) "
and " \(\wedge \mathrm{ab} . \llbracket \mathrm{a} \in \mathrm{H} ; \mathrm{b} \in \mathrm{H} \rrbracket \Longrightarrow \mathrm{a} \oplus_{\mathrm{M}} \mathrm{b} \in \mathrm{H}^{\prime}\)
and " \(\bigwedge \mathrm{x} . \mathrm{x} \in \mathrm{H} \Longrightarrow\) (a_inv \(M \mathrm{x}\) ) \(\in \mathrm{H}\) "
using group.subgroupE[of "add_monoid M" H, OF _ submodule.axioms(1) [OF
assms]] a_comm_group submodule.smult_closed[0F assms]
unfolding comm_group_def a_inv_def
by auto
lemma (in module) carrier_is_submodule :
"submodule (carrier M) R M"
apply (intro submoduleI)
using a_comm_group group.inv_closed unfolding comm_group_def a_inv_def
group_def monoid_def
by auto
lemma (in submodule) submodule_is_module :
assumes "module R M"
shows "module \(R\) ( M (carrier : \(=\mathrm{H}\) ))"
proof (auto intro! : moduleI abelian_group.intro)
show "cring (R)" using assms unfolding module_def by auto
show "abelian_monoid (M(carrier := H|)"
using comm_monoid.submonoid_is_comm_monoid[OF _ subgroup_is_submonoid]
assms
unfolding abelian_monoid_def module_def abelian_group_def
by auto
thus "abelian_group_axioms (M()carrier := H|))"
using subgroup_is_group assms
unfolding abelian_group_axioms_def comm_group_def abelian_monoid_def
module_def abelian_group_def
by auto
show " \(\wedge \mathrm{z} . \mathrm{z} \in \mathrm{H} \Longrightarrow \mathbf{1}_{\mathrm{R}} \odot \mathrm{z}=\mathrm{z}\) "
using subgroup.subset[0F subgroup_axioms] module.smult_one[OF assms] by auto
fix a b x y assume a : "a \(\in\) carrier R" and b : "b \(\in\) carrier R" and
\(\mathrm{x}: \mathrm{x} \in \mathrm{H} "\) and \(\mathrm{y}: \mathrm{y} \in \mathrm{H}^{\prime}\)
show " \(\left(a \oplus_{R} b\right) \odot x=a \odot x \oplus b \odot x "\)
using a b x module.smult_l_distr[0F assms] subgroup. subset[0F subgroup_axioms] by auto
show "a \(\odot(\mathrm{x} \oplus \mathrm{y})=\mathrm{a} \odot \mathrm{x} \oplus \mathrm{a} \odot \mathrm{y}\) "
using a x y module.smult_r_distr [OF assms] subgroup.subset [OF subgroup_axioms] by auto
show "a \(\otimes_{R} b \odot x=a \odot(b \odot x) "\)
using a b x module.smult_assoc1[0F assms] subgroup.subset[0F subgroup_axioms] by auto
qed
lemma (in module) module_incl_imp_submodule :
assumes " \(\mathrm{H} \subseteq\) carrier M" and "module R ( \(\mathrm{M}(\) carrier \(:=\mathrm{H})\) )"
shows "submodule H R M"
apply (intro submodule.intro)
using add.group_incl_imp_subgroup[OF assms(1)] assms module.axioms(2) [OF
assms(2)]
module.smult_closed[0F assms(2)]
unfolding abelian_group_def abelian_group_axioms_def comm_group_def
submodule_axioms_def
by simp_all
end
theory AbelCoset
imports Coset Ring
begin

\subsection*{12.4 More Lifting from Groups to Abelian Groups}

\subsection*{12.4.1 Definitions}

Hiding <+> from HOL. Sum_Type until I come up with better syntax here
```

no__notation Sum_Type.Plus (infixr "<+>" 65)
definition
a_r_coset :: "[_, 'a set, 'a] => 'a set" (infixl "+>`" 60)
where "a_r_coset G = r_coset (add_monoid G)"
definition
a_l_coset :: "[_, 'a, 'a set] => 'a set" (infixl "<+\imath" 60)
where "a_l_coset G = l_coset (add_monoid G)"
definition
A_RCOSETS :: "[_, 'a set] => ('a set)set" ("a'_rcosets\imath _" [81] 80)
where "A_RCOSETS G H = RCOSETS (add_monoid G) H"
definition
set_add :: "[_, 'a set ,'a set] => 'a set" (infixl "<+> " 60)
where "set_add G = set_mult (add_monoid G)"
definition
A_SET_INV :: "[_,'a set] => 'a set" ("a'_set'_inv\imath _" [81] 80)
where "A_SET_INV G H = SET_INV (add_monoid G) H"
definition
a_r_congruent :: "[('a,'b)ring_scheme, 'a set] => ('a*'a)set" ("racong\imath")
where "a_r_congruent G = r_congruent (add_monoid G)"
definition
A_FactGroup :: "[('a,'b) ring_scheme, 'a set] => ('a set) monoid" (infixl
"A'_Mod" 65)
- Actually defined for groups rather than monoids
where "A_FactGroup G H = FactGroup (add_monoid G) H"

```
```

definition
a_kernel :: "('a, 'm) ring_scheme \# ('b, 'n) ring_scheme }=>\mathrm{ ('a }
'b) => 'a set"
- the kernel of a homomorphism (additive)
where "a_kernel G H h = kernel (add_monoid G) (add_monoid H) h"

```
```

locale abelian_group_hom = G?: abelian_group G + H?: abelian_group H
for G (structure) and H (structure) +
fixes h
assumes a_group_hom: "group_hom (add_monoid G) (add_monoid H) h"
lemmas a_r_coset_defs =
a_r_coset_def r_coset_def
lemma a_r_coset_def':
fixes G (structure)
shows "H +> a \equiv\h\inH. {h \oplus a}"
unfolding a_r_coset_defs by simp
lemmas a_l_coset_defs =
a_l_coset_def l_coset_def
lemma a_l_coset_def':
fixes G (structure)
shows "a <+ H \equiv\ h\inH. {a \oplus h}"
unfolding a_l_coset_defs by simp
lemmas A_RCOSETS_defs =
A_RCOSETS_def RCOSETS_def
lemma A_RCOSETS_def':
fixes G (structure)
shows "a_rcosets H \equiv \a\incarrier G. {H +> a}"
unfolding A_RCOSETS_defs by (fold a_r_coset_def, simp)
lemmas set_add_defs =
set_add_def set_mult_def
lemma set_add_def':
fixes G (structure)
shows "H <+> K \equiv \h\inH. \k\inK. {h \oplus k}"
unfolding set_add_defs by simp
lemmas A_SET_INV_defs =
A_SET_INV_def SET_INV_def
lemma A_SET_INV_def':
fixes G (structure)
shows "a_set_inv H \equiv\h\inH. {\ominus h}"
unfolding A_SET_INV_defs by (fold a_inv_def)

```

\subsection*{12.4.2 Cosets}
sublocale abelian_group <
add: group "(add_monoid G)"
```

 rewrites "carrier (add_monoid G) = carrier G"
 and " mult (add_monoid G) = add G"
 and " one (add_monoid G) = zero G"
 and " m_inv (add_monoid G) = a_inv G"
 and "finprod (add_monoid G) = finsum G"
 and "r_coset (add_monoid G) = a_r_coset G"
 and "l_coset (add_monoid G) = a_l_coset G"
 and "(\lambdaa k. pow (add_monoid G) a k) = (\lambdaa k. add_pow G k a)"
 by (rule a_group)
(auto simp: m_inv_def a_inv_def finsum_def a_r_coset_def a_l_coset_def
add_pow_def)
context abelian_group
begin
thm add.coset_mult_assoc
lemmas a_repr_independence' = add.repr_independence

```
end
lemma (in abelian_group) a_coset_add_assoc:
        " [l M \(\subseteq\) carrier \(G ;\) g \(\in\) carrier \(G ; h \in\) carrier G |]
        \(=\Rightarrow(M+>g)+>h=M+>(g \oplus h) "\)
by (rule group.coset_mult_assoc [OF a_group,
    folded a_r_coset_def, simplified monoid_record_simps])
thm abelian_group.a_coset_add_assoc
lemma (in abelian_group) a_coset_add_zero [simp]:
" \(M \subseteq\) carrier \(G==>M+>0=M "\)
by (rule group.coset_mult_one [OF a_group, folded a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_coset_add_inv1:
        " [l M +> \((x \oplus(\ominus y))=M\); \(x \in\) carrier \(G ; y \in \operatorname{carrier~} G\);
                \(M \subseteq\) carrier \(G\) l] ==> \(M\) +> \(x=M+>y "\)
by (rule group.coset_mult_inv1 [OF a_group, folded a_r_coset_def a_inv_def, simplified monoid_record_simps])
lemma (in abelian_group) a_coset_add_inv2:
        " [| M +> x = M +> y; x \(\in\) carrier \(G ; y \in \operatorname{carrier~G;~M\subseteq carrier~}\)

G 1]
        \(==>\mathrm{M}+>(\mathrm{x} \oplus(\ominus \mathrm{y}))=M^{\prime \prime}\)
by (rule group.coset_mult_inv2 [OF a_group, folded a_r_coset_def a_inv_def, simplified monoid_record_simps])
lemma (in abelian_group) a_coset_join1:
```

 "[l H +> x = H; x \in carrier G; subgroup H (add_monoid G) |] ==>
 x \in H"
by (rule group.coset_join1 [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_solve_equation:
"\llbracketsubgroup H (add_monoid G); x \in H; y \in H\rrbracket\Longrightarrow \exists h\inH. y = h }\oplus\textrm{x}
by (rule group.solve_equation [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_repr_independence:
"\llbrackety\inH +> x; x \in carrier G; subgroup H (add_monoid G)\rrbracket \Longrightarrow
H +> x = H +> y"
using a_repr_independence' by (simp add: a_r_coset_def)
lemma (in abelian_group) a_coset_join2:
"\llbracketx \in carrier G; subgroup H (add_monoid G); x\inH\rrbracket\Longrightarrow H +> x = H"
by (rule group.coset_join2 [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_monoid) a_r_coset_subset_G:
"[| H \subseteq carrier G; x \in carrier G |] ==> H +> x \subseteq carrier G"
by (rule monoid.r_coset_subset_G [OF a_monoid,
folded a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_rcosI:
"[l h G H; H \subseteq carrier G; x \in carrier Gl] ==> h }\oplus\textrm{x}\in\textrm{H}+>=\textrm{x}
by (rule group.rcosI [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_rcosetsI:
"\llbracketH\subseteq carrier G; x \in carrier G\rrbracket\Longrightarrow H +> x \in a_rcosets H"
by (rule group.rcosetsI [OF a_group,
folded a_r_coset_def A_RCOSETS_def, simplified monoid_record_simps])

```

Really needed?
lemma (in abelian_group) a_transpose_inv:
```

"[| x \oplus y = z; x \in carrier G; y \in carrier G; z \in carrier G |]
==> (

```
using r_neg1 by blast

\subsection*{12.4.3 Subgroups}
locale additive_subgroup =
fixes \(H\) and \(G\) (structure)
assumes a_subgroup: "subgroup H (add_monoid G)"
lemma (in additive_subgroup) is_additive_subgroup:
shows "additive_subgroup H G"
```

by (rule additive_subgroup_axioms)
lemma additive_subgroupI:
fixes G (structure)
assumes a_subgroup: "subgroup H (add_monoid G)"
shows "additive_subgroup H G"
by (rule additive_subgroup.intro) (rule a_subgroup)
lemma (in additive_subgroup) a_subset:
"H \subseteq carrier G"
by (rule subgroup.subset[0F a_subgroup,
simplified monoid_record_simps])
lemma (in additive_subgroup) a_closed [intro, simp]:
"\llbracketx \in H; y \in H\rrbracket\Longrightarrow x }\oplus\textrm{y}\in\textrm{H
by (rule subgroup.m_closed[OF a_subgroup,
simplified monoid_record_simps])
lemma (in additive_subgroup) zero_closed [simp]:
"0 \in H"
by (rule subgroup.one_closed[OF a_subgroup,
simplified monoid_record_simps])
lemma (in additive_subgroup) a_inv_closed [intro,simp]:
"x }\in\textrm{H}\Longrightarrow\ominus\textrm{x}\in\textrm{H
by (rule subgroup.m_inv_closed[OF a_subgroup,
folded a_inv_def, simplified monoid_record_simps])

```

\subsection*{12.4.4 Additive subgroups are normal}
```

Every subgroup of an abelian_group is normal
locale abelian_subgroup = additive_subgroup + abelian_group G +
assumes a_normal: "normal H (add_monoid G)"
lemma (in abelian_subgroup) is_abelian_subgroup:
shows "abelian_subgroup H G"
by (rule abelian_subgroup_axioms)
lemma abelian_subgroupI:
assumes a_normal: "normal H (add_monoid G)"
and a_comm: "!!x y. [| x \in carrier G; y \in carrier G |] ==> x }\mp@subsup{\oplus}{G}{
y = y }\mp@subsup{\oplus}{G}{}\mp@subsup{\textrm{x}}{}{\prime\prime
shows "abelian_subgroup H G"
proof -
interpret normal "H" "(add_monoid G)"
by (rule a_normal)
show "abelian_subgroup H G"
by standard (simp add: a_comm)

```

\section*{qed}
```

lemma abelian_subgroupI2:
fixes G (structure)
assumes a_comm_group: "comm_group (add_monoid G)"
and a_subgroup: "subgroup H (add_monoid G)"
shows "abelian_subgroup H G"
proof -
interpret comm_group "(add_monoid G)"
by (rule a_comm_group)
interpret subgroup "H" "(add_monoid G)"
by (rule a_subgroup)
have "(\bigcupxa\inH. {xa \oplus x}) = (\bigcupxa\inH. {x \oplus xa})" if "x \in carrier G" for
x
proof -
have "H \subseteq carrier G"
using a_subgroup that unfolding subgroup_def by simp
with that show " (\bigcuph\inH. {h \oplusG x}) = (\bigcuph\inH. {x \oplusG h})"
using m_comm [simplified] by fastforce
qed
then show "abelian_subgroup H G"
by unfold_locales (auto simp: r_coset_def l_coset_def)
qed
lemma abelian_subgroupI3:
fixes G (structure)
assumes "additive_subgroup H G"
and "abelian_group G"
shows "abelian_subgroup H G"
using assms abelian_subgroupI2 abelian_group.a_comm_group additive_subgroup_def
by blast
lemma (in abelian_subgroup) a_coset_eq:
"(}\forall\textrm{x}\in\mathrm{ carrier G. H +> x = x <+ H)"
by (rule normal.coset_eq[0F a_normal,
folded a_r_coset_def a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_inv_op_closed1:
shows "\llbracketx \in carrier G; h \in H\rrbracket \Longrightarrow(
by (rule normal.inv_op_closed1 [OF a_normal,
folded a_inv_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_inv_op_closed2:
shows "\llbracketx \in carrier G; h \in H\rrbracket \Longrightarrow x \oplus h }\oplus(\ominus\textrm{x})\in\textrm{H}
by (rule normal.inv_op_closed2 [OF a_normal,
folded a_inv_def, simplified monoid_record_simps])
lemma (in abelian_group) a_lcos_m_assoc:
"\llbracketM\subseteq carrier G; g f carrier G; h f carrier G \ \Longrightarrowg <+ (h <+ M) =

```
```

(g \oplus h) <+ M"
by (rule group.lcos_m_assoc [OF a_group,
folded a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_lcos_mult_one:
"M \subseteq carrier G ==> 0 <+ M = M"
by (rule group.lcos_mult_one [OF a_group,
folded a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_l_coset_subset_G:
"\llbracketH \subseteq carrier G; x \in carrier G \rrbracket \Longrightarrow x <+ H \subseteq carrier G"
by (rule group.l_coset_subset_G [OF a_group,
folded a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_l_coset_swap:
"\llbrackety \in x <+ H; x \in carrier G; subgroup H (add_monoid G)\rrbracket\Longrightarrow x
y <+ H"
by (rule group.l_coset_swap [OF a_group,
folded a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_l_coset_carrier:
"[| y \in x <+ H; x \in carrier G; subgroup H (add_monoid G) |] ==>
y \in carrier G"
by (rule group.l_coset_carrier [OF a_group,
folded a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_l_repr_imp_subset:
assumes "y \in x <+ H" "x \in carrier G" "subgroup H (add_monoid G)"
shows "y <+ H\subseteq x <+ H"
by (metis (full_types) a_l_coset_defs(1) add.l_repr_independence assms
set_eq_subset)
lemma (in abelian_group) a_l_repr_independence:
assumes y: "y \in x <+ H" and x: "x \in carrier G" and sb: "subgroup H
(add_monoid G)"
shows "x <+ H = y <+ H"
apply (rule group.l_repr_independence [OF a_group,
folded a_l_coset_def, simplified monoid_record_simps])
apply (rule y)
apply (rule x)
apply (rule sb)
done
lemma (in abelian_group) setadd_subset_G:
"\llbracketH\subseteq carrier G; K \subseteq carrier G\rrbracket \Longrightarrow H <+> K \subseteq carrier G"
by (rule group.setmult_subset_G [OF a_group,
folded set_add_def, simplified monoid_record_simps])
lemma (in abelian_group) subgroup_add_id: "subgroup H (add_monoid G)

```
```

C <+> H = H"
by (rule group.subgroup_mult_id [OF a_group,
folded set_add_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_rcos_inv:
assumes x: "x f carrier G"
shows "a_set_inv (H +> x) = H +> (}\ominus x)
by (rule normal.rcos_inv [OF a_normal,
folded a_r_coset_def a_inv_def A_SET_INV_def, simplified monoid_record_simps])
(rule x)
lemma (in abelian_group) a_setmult_rcos_assoc:
"\llbracketH\subseteq carrier G; K \subseteq carrier G; x e c carrier G\rrbracket
C <+> (K +> x) = (H <+> K) +> x"
by (rule group.setmult_rcos_assoc [OF a_group,
folded set_add_def a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_rcos_assoc_lcos:
"\llbracketH\subseteq carrier G; K \subseteq carrier G; x \in carrier G\rrbracket
\Longrightarrow(H +> x) <+> K = H <+> (x <+ K)"
by (rule group.rcos_assoc_lcos [OF a_group,
folded set_add_def a_r_coset_def a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_rcos_sum:
"\llbracketx \in carrier G; y \in carrier G\rrbracket
\Longrightarrow(H +> x) <+> (H +> y) = H +> (x \oplus y)"
by (rule normal.rcos_sum [OF a_normal,
folded set_add_def a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) rcosets_add_eq:
"M G a_rcosets H \Longrightarrow H <+> M = M"
- generalizes subgroup_mult_id
by (rule normal.rcosets_mult_eq [OF a_normal,
folded set_add_def A_RCOSETS_def, simplified monoid_record_simps])

```

\subsection*{12.4.5 Congruence Relation}
```

lemma (in abelian_subgroup) a_equiv_rcong:
shows "equiv (carrier G) (racong H)"
by (rule subgroup.equiv_rcong [OF a_subgroup a_group, folded a_r_congruent_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_l_coset_eq_rcong:
assumes a: "a \in carrier G"
shows "a <+ H = racong H '، \{a\}"
by (rule subgroup.l_coset_eq_rcong [OF a_subgroup a_group, folded a_r_congruent_def a_l_coset_def, simplified monoid_record_simps])
(rule a)

```
```

lemma (in abelian_subgroup) a_rcos_equation:
shows
"【ha \oplus a = h \oplus b; a \in carrier G; b \in carrier G;
h \in H; ha \in H; hb G H\rrbracket
\Longrightarrow ~ h b ~ \oplus ~ a ~ \in ~ (U h \in H . ~ \{ h ~ \oplus ~ b \}) " '
by (rule group.rcos_equation [OF a_group a_subgroup,
folded a_r_congruent_def a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_rcos_disjoint: "pairwise disjnt (a_rcosets
H)"
by (rule group.rcos_disjoint [OF a_group a_subgroup,
folded A_RCOSETS_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_rcos_self:
shows "x f carrier G \Longrightarrow x \in H +> x"
by (rule group.rcos_self [OF a_group _ a_subgroup,
folded a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_rcosets_part_G:
shows "U(a_rcosets H) = carrier G"
by (rule group.rcosets_part_G [OF a_group a_subgroup,
folded A_RCOSETS_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_cosets_finite:
"\llbracketc \in a_rcosets H; H \subseteq carrier G; finite (carrier G)\rrbracket\Longrightarrow finite
c"
by (rule group.cosets_finite [OF a_group,
folded A_RCOSETS_def, simplified monoid_record_simps])
lemma (in abelian_group) a_card_cosets_equal:
"\llbracketc \in a_rcosets H; H \subseteq carrier G; finite(carrier G)\rrbracket
card c = card H"
by (simp add: A_RCOSETS_defs(1) add.card_rcosets_equal)
lemma (in abelian_group) rcosets_subset_PowG:
"additive_subgroup H G \Longrightarrow a_rcosets H \subseteq Pow(carrier G)"
by (rule group.rcosets_subset_PowG [OF a_group,
folded A_RCOSETS_def, simplified monoid_record_simps],
rule additive_subgroup.a_subgroup)
theorem (in abelian_group) a_lagrange:
"\llbracketfinite(carrier G); additive_subgroup H G\rrbracket
Card(a_rcosets H) * card(H) = order(G)"
by (rule group.lagrange [OF a_group,
folded A_RCOSETS_def, simplified monoid_record_simps order_def, folded
order_def])
(fast intro!: additive_subgroup.a_subgroup)+

```

\subsection*{12.4.6 Factorization}
```

lemmas A_FactGroup_defs = A_FactGroup_def FactGroup_def
lemma A_FactGroup_def':
fixes G (structure)
shows "G A_Mod H \equiv \carrier = a_rcosetsG H, mult = set_add G, one =
H)"
unfolding A_FactGroup_defs
by (fold A_RCOSETS_def set_add_def)
lemma (in abelian_subgroup) a_setmult_closed:
"\llbracketK1 \in a_rcosets H; K2 \in a_rcosets H\rrbracket \Longrightarrow K1 <+> K2 \in a_rcosets H"
by (rule normal.setmult_closed [OF a_normal,
folded A_RCOSETS_def set_add_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_setinv_closed:
"K \in a_rcosets H \Longrightarrow a_set_inv K \in a_rcosets H"
by (rule normal.setinv_closed [OF a_normal,
folded A_RCOSETS_def A_SET_INV_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_rcosets_assoc:
"\llbracketM1 \in a_rcosets H; M2 \in a_rcosets H; M3 \in a_rcosets H\rrbracket
\Longrightarrow M1 <+> M2 <+> M3 = M1 <+> (M2 <+> M3)"
by (rule normal.rcosets_assoc [OF a_normal,
folded A_RCOSETS_def set_add_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_subgroup_in_rcosets:
"H G a_rcosets H"
by (rule subgroup.subgroup_in_rcosets [OF a_subgroup a_group,
folded A_RCOSETS_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_rcosets_inv_mult_group_eq:
"M \in a_rcosets H \Longrightarrow a_set_inv M <+> M = H"
by (rule normal.rcosets_inv_mult_group_eq [OF a_normal,
folded A_RCOSETS_def A_SET_INV_def set_add_def, simplified monoid_record_simps])
theorem (in abelian_subgroup) a_factorgroup_is_group:
"group (G A_Mod H)"
by (rule normal.factorgroup_is_group [OF a_normal,
folded A_FactGroup_def, simplified monoid_record_simps])

```

Since the Factorization is based on an abelian subgroup, is results in a commutative group
theorem (in abelian_subgroup) a_factorgroup_is_comm_group: "comm_group
(G A_Mod H)"
proof -
    have "Group.comm_monoid_axioms (G A_Mod H)"
        apply (rule comm_monoid_axioms.intro)
apply (auto simp: A_FactGroup_def FactGroup_def RCOSETS_def a_normal
add.m_comm normal.rcos_sum)
done
then show ?thesis
by (intro comm_group.intro comm_monoid.intro) (simp_all add: a_factorgroup_is_group group.is_monoid)

\section*{qed}
lemma add_A_FactGroup [simp]: "X \(\left.\otimes_{(G \operatorname{A} M o d H)} X \prime=X<+\right\rangle_{G} X \prime "\)
by (simp add: A_FactGroup_def set_add_def)
lemma (in abelian_subgroup) a_inv_FactGroup:
"X \(\in \operatorname{carrier~(G~A\_ Mod~H)~} \Longrightarrow \operatorname{inv}_{G} A_{-} M o d H X=a_{-} s e t \_i n v X "\)
by (rule normal.inv_FactGroup [OF a_normal, folded A_FactGroup_def A_SET_INV_def, simplified monoid_record_simps])

The coset map is a homomorphism from \(G\) to the quotient group \(G\) Mod \(H\)
lemma (in abelian_subgroup) a_r_coset_hom_A_Mod:
" ( \(\lambda \mathrm{a} . \mathrm{H}+>\mathrm{a}) \in\) hom (add_monoid G) (G A_Mod H)"
by (rule normal.r_coset_hom_Mod [OF a_normal, folded A_FactGroup_def a_r_coset_def, simplified monoid_record_simps])

The isomorphism theorems have been omitted from lifting, at least for now

\subsection*{12.4.7 The First Isomorphism Theorem}

The quotient by the kernel of a homomorphism is isomorphic to the range of that homomorphism.
```

lemmas a_kernel_defs =
a_kernel_def kernel_def
lemma a_kernel_def':
"a_kernel R S h = {x \in carrier R. h x = 0
by (rule a_kernel_def[unfolded kernel_def, simplified ring_record_simps])

```

\subsection*{12.4.8 Homomorphisms}
lemma abelian_group_homI:
assumes "abelian_group G"
assumes "abelian_group H"
assumes a_group_hom: "group_hom (add_monoid G)
(add_monoid H) h"
shows "abelian_group_hom G H h"
proof -
interpret G: abelian_group G by fact
interpret H: abelian_group H by fact
show ?thesis
by (intro abelian_group_hom.intro abelian_group_hom_axioms.intro
```

 G.abelian_group_axioms H.abelian_group_axioms a_group_hom)
    ```
qed
lemma (in abelian_group_hom) is_abelian_group_hom:
    "abelian_group_hom G H h"
    ..
lemma (in abelian_group_hom) hom_add [simp]:
    " [| x \(\in\) carrier \(G ; y \in\) carrier \(G\) |]
        \(=\Rightarrow h\left(x \oplus_{G} y\right)=h x \oplus_{H} h y^{\prime \prime}\)
by (rule group_hom.hom_mult [OF a_group_hom,
        simplified ring_record_simps])
lemma (in abelian_group_hom) hom_closed [simp]:
    " \(\mathrm{x} \in\) carrier \(\mathrm{G} \Longrightarrow \mathrm{h} x \in\) carrier \(\mathrm{H} "\)
by (rule group_hom.hom_closed[OF a_group_hom,
        simplified ring_record_simps])
lemma (in abelian_group_hom) zero_closed [simp]:
    "h \(0 \in\) carrier H"
    by simp
lemma (in abelian_group_hom) hom_zero [simp]:
    "h \(0=0_{H}\) "
by (rule group_hom.hom_one[0F a_group_hom,
        simplified ring_record_simps])
lemma (in abelian_group_hom) a_inv_closed [simp]:
    "x \(\in\) carrier \(G==>h(\ominus x) \in\) carrier \(H "\)
    by simp
lemma (in abelian_group_hom) hom_a_inv [simp]:
    "x \(\in \operatorname{carrier} G==>h(\ominus x)=\ominus_{H}(h x) "\)
by (rule group_hom.hom_inv[0F a_group_hom,
        folded a_inv_def, simplified ring_record_simps])
lemma (in abelian_group_hom) additive_subgroup_a_kernel:
    "additive_subgroup (a_kernel G H h) G"
    by (simp add: additive_subgroup.intro a_group_hom a_kernel_def group_hom.subgroup_kernel)

The kernel of a homomorphism is an abelian subgroup
```

lemma (in abelian_group_hom) abelian_subgroup_a_kernel:
"abelian_subgroup (a_kernel G H h) G"
apply (rule abelian_subgroupI)
apply (simp add: G.abelian_group_axioms abelian_subgroup.a_normal abelian_subgroupI3
additive_subgroup_a_kernel)
apply (simp add: G.a_comm)
done

```
```

lemma (in abelian_group_hom) A_FactGroup_nonempty:
assumes X: "X \in carrier (G A_Mod a_kernel G H h)"
shows "X $\neq\{ \}$ "
by (rule group_hom.FactGroup_nonempty[0F a_group_hom,
folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])
(rule X)
lemma (in abelian_group_hom) FactGroup_the_elem_mem:
assumes $X:$ "X $\in \operatorname{carrier~(G~A_ Mod~(a_ kernel~G~H~h))"~}$
shows "the_elem (h'X) \in carrier H"
by (rule group_hom.FactGroup_the_elem_mem[0F a_group_hom,
folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])
(rule X)
lemma (in abelian_group_hom) A_FactGroup_hom:
" $(\lambda X$. the_elem (h'X)) \in hom (G A_Mod (a_kernel G H h))
(add_monoid H)"
by (rule group_hom.FactGroup_hom[0F a_group_hom,
folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])
lemma (in abelian_group_hom) A_FactGroup_inj_on:
"inj_on (λ X. the_elem (h'X)) (carrier (G A_Mod a_kernel G H h))"
by (rule group_hom.FactGroup_inj_on[0F a_group_hom,
folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])

```

If the homomorphism h is onto H , then so is the homomorphism from the quotient group
```

lemma (in abelian_group_hom) A_FactGroup_onto:
assumes h: "h ' carrier G = carrier H"
shows "(\lambdaX. the_elem (h ' X)) ' carrier (G A_Mod a_kernel G H h) =
carrier H"
by (rule group_hom.FactGroup_onto[OF a_group_hom,
folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])
(rule h)

```

If h is a homomorphism from G onto H , then the quotient group G Mod kernel GH h is isomorphic to H .
```

theorem (in abelian_group_hom) A_FactGroup_iso_set:
"h ' carrier G = carrier H
\Longrightarrow(\lambdaX. the_elem (h'X)) \in iso (G A_Mod (a_kernel G H h)) (add_monoid
H)"
by (rule group_hom.FactGroup_iso_set[OF a_group_hom,
folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])
corollary (in abelian_group_hom) A_FactGroup_iso :
"h ' carrier G = carrier H
\Longrightarrow(G A_Mod (a_kernel G H h)) \cong (add_monoid H)"

```
    using A_FactGroup_iso_set unfolding is_iso_def by auto

\subsection*{12.4.9 Cosets}

Not eveything from CosetExt.thy is lifted here.
```

lemma (in additive_subgroup) a_Hcarr [simp]:
assumes hH: "h \in H"
shows "h \in carrier G"
by (rule subgroup.mem_carrier [OF a_subgroup,
simplified monoid_record_simps]) (rule hH)
lemma (in abelian_subgroup) a_elemrcos_carrier:
assumes acarr: "a \in carrier G"
and a': "a' \in H +> a"
shows "a' \in carrier G"
by (rule subgroup.elemrcos_carrier [OF a_subgroup a_group,
folded a_r_coset_def, simplified monoid_record_simps]) (rule acarr,
rule a')
lemma (in abelian_subgroup) a_rcos_const:
assumes hH: "h \in H"
shows "H +> h = H"
by (rule subgroup.rcos_const [OF a_subgroup a_group,
folded a_r_coset_def, simplified monoid_record_simps]) (rule hH)
lemma (in abelian_subgroup) a_rcos_module_imp:
assumes xcarr: "x \in carrier G"
and x'cos: "x' \in H +> x"
shows "(x' }\oplus\ominusx)\inH
by (rule subgroup.rcos_module_imp [OF a_subgroup a_group,
folded a_r_coset_def a_inv_def, simplified monoid_record_simps]) (rule
xcarr, rule x'cos)
lemma (in abelian_subgroup) a_rcos_module_rev:
assumes "x \in carrier G" "x' \in carrier G"
and "(x' }\oplus\ominusx)\inH
shows "x' \in H +> x"
using assms
by (rule subgroup.rcos_module_rev [OF a_subgroup a_group,
folded a_r_coset_def a_inv_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_rcos_module:
assumes "x \in carrier G" "x' \in carrier G"
shows "(x' }\inH+>x)=(x' \oplus \ominusx (H)"
using assms
by (rule subgroup.rcos_module [OF a_subgroup a_group,
folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

- variant
lemma (in abelian_subgroup) a_rcos_module_minus:

```
```

 assumes "ring G"
 assumes carr: "x \in carrier G" "x' \in carrier G"
 shows "(x' }\inH+> x)=(x' \ominus x \in H)"
 proof -
interpret G: ring G by fact
from carr
have "(x' \in H +> x) = (}\mp@subsup{\textrm{x}}{}{\prime}\oplus\ominus\ominus\textrm{x}\in\textrm{H})"\mp@code{by (rule a_rcos_module)
with carr
show "(x' \in H +> x) = (x' }\vartheta\textrm{x}\in\textrm{H})
by (simp add: minus_eq)
qed
lemma (in abelian_subgroup) a_repr_independence':
assumes "y \in H +> x" "x \in carrier G"
shows "H +> x = H +> y"
using a_repr_independence a_subgroup assms by blast
lemma (in abelian_subgroup) a_repr_independenceD:
assumes "y \in carrier G" "H +> x = H +> y"
shows "y \in H +> x"
by (simp add: a_rcos_self assms)
lemma (in abelian_subgroup) a_rcosets_carrier:
"X G a_rcosets H \LongrightarrowX X carrier G"
using a_rcosets_part_G by auto

```

\subsection*{12.4.10 Addition of Subgroups}
```

lemma (in abelian_monoid) set_add_closed:

```
lemma (in abelian_monoid) set_add_closed:
    assumes "A \subseteq carrier G" "B \subseteq carrier G"
    assumes "A \subseteq carrier G" "B \subseteq carrier G"
    shows "A <+> B \subseteq carrier G"
    shows "A <+> B \subseteq carrier G"
    by (simp add: assms add.set_mult_closed set_add_defs(1))
    by (simp add: assms add.set_mult_closed set_add_defs(1))
lemma (in abelian_group) add_additive_subgroups:
lemma (in abelian_group) add_additive_subgroups:
    assumes subH: "additive_subgroup H G"
    assumes subH: "additive_subgroup H G"
        and subK: "additive_subgroup K G"
        and subK: "additive_subgroup K G"
    shows "additive_subgroup (H <+> K) G"
    shows "additive_subgroup (H <+> K) G"
    unfolding set_add_def
    unfolding set_add_def
    using add.mult_subgroups additive_subgroup_def subH subK
    using add.mult_subgroups additive_subgroup_def subH subK
    by (blast intro: additive_subgroup.intro)
    by (blast intro: additive_subgroup.intro)
end
theory Ideal
imports Ring AbelCoset
begin
```


13 Ideals

13.1 Definitions

13.1.1 General definition

```
locale ideal = additive_subgroup I R + ring R for I and R (structure) +
    assumes I_l_closed: "\llbracketa \in I; x \in carrier R\rrbracket\Longrightarrow x \otimes a \in I"
    and I_r_closed: "\llbracketa \in I; x \in carrier R\rrbracket\Longrightarrowa @ x \in I"
sublocale ideal \subseteq abelian_subgroup I R
proof (intro abelian_subgroupI3 abelian_group.intro)
    show "additive_subgroup I R"
        by (simp add: is_additive_subgroup)
    show "abelian_monoid R"
        by (simp add: abelian_monoid_axioms)
    show "abelian_group_axioms R"
        using abelian_group_def is_abelian_group by blast
qed
lemma (in ideal) is_ideal: "ideal I R"
    by (rule ideal_axioms)
lemma idealI:
    fixes R (structure)
    assumes "ring R"
    assumes a_subgroup: "subgroup I (add_monoid R)"
            and I_l_closed: "\a x. \llbracketa \in I; x \in carrier R\rrbracket \Longrightarrow x \otimes a \in I"
            and I_r_closed: "\a x. \llbracketa \in I; x \in carrier R\rrbracket \Longrightarrowa a x \in I"
    shows "ideal I R"
proof -
    interpret ring R by fact
    show ?thesis
            by (auto simp: ideal.intro ideal_axioms.intro additive_subgroupI a_subgroup
ring_axioms I_l_closed I_r_closed)
qed
```


13.1.2 Ideals Generated by a Subset of carrier R

```
definition genideal :: "_ # 'a set }=>\mathrm{ 'a set" ("Idl` _" [80] 79)
    where "genideal R S = \bigcap{I. ideal I R ^S \subseteqI}"
```


13.1.3 Principal Ideals

```
locale principalideal = ideal +
    assumes generate: "\existsi \in carrier R. I = Idl {i}"
lemma (in principalideal) is_principalideal: "principalideal I R"
    by (rule principalideal_axioms)
```

```
lemma principalidealI:
    fixes R (structure)
    assumes "ideal I R"
        and generate: "\existsi \in carrier R. I = Idl {i}"
    shows "principalideal I R"
proof -
    interpret ideal I R by fact
    show ?thesis
        by (intro principalideal.intro principalideal_axioms.intro)
            (rule is_ideal, rule generate)
qed
lemma (in ideal) rcos_const_imp_mem:
    assumes "i \in carrier R" and "I +> i = I" shows "i \in I"
    using additive_subgroup.zero_closed[OF ideal.axioms(1)[OF ideal_axioms]]
assms
    by (force simp add: a_r_coset_def')
lemma (in ring) a_rcos_zero:
    assumes "ideal I R" "i \in I" shows "I +> i = I"
    using abelian_subgroupI3[OF ideal.axioms(1) is_abelian_group]
    by (simp add: abelian_subgroup.a_rcos_const assms)
lemma (in ring) ideal_is_normal:
    assumes "ideal I R" shows "I \triangleleft (add_monoid R)"
    using abelian_subgroup.a_normal[OF abelian_subgroupI3[OF ideal.axioms(1)]]
        abelian_group_axioms assms
    by auto
lemma (in ideal) a_rcos_sum:
    assumes "a \in carrier R" and "b \in carrier R" shows "(I +> a) <+> (I
+> b) = I +> (a \oplus b)"
    using normal.rcos_sum[OF ideal_is_normal[OF ideal_axioms]] assms
    unfolding set_add_def a_r_coset_def by simp
lemma (in ring) set_add_comm:
    assumes "I \subseteq carrier R" "J \subseteq carrier R" shows "I <+> J = J <+> I"
proof -
    { fix I J assume "I \subseteq carrier R" "J \subseteq carrier R" hence "I <+> J \subseteq
J <+> I"
```

```
            using a_comm unfolding set_add_def' by (auto, blast) }
    thus ?thesis
    using assms by auto
qed
```


13.1.4 Maximal Ideals

```
locale maximalideal = ideal +
    assumes I_notcarr: "carrier R f= I"
        and I_maximal: "\llbracketideal J R; I \subseteq J; J \subseteq carrier R\rrbracket \Longrightarrow (J = I) V (J
= carrier R)"
lemma (in maximalideal) is_maximalideal: "maximalideal I R"
    by (rule maximalideal_axioms)
lemma maximalidealI:
    fixes R
    assumes "ideal I R"
        and I_notcarr: "carrier R f I"
        and I_maximal: "\J. \llbracketideal J R; I \subseteq J; J \subseteq carrier R\rrbracket \Longrightarrow (J = I)
V (J = carrier R)"
    shows "maximalideal I R"
proof -
    interpret ideal I R by fact
    show ?thesis
        by (intro maximalideal.intro maximalideal_axioms.intro)
            (rule is_ideal, rule I_notcarr, rule I_maximal)
qed
```


13.1.5 Prime Ideals

locale primeideal $=$ ideal + cring +
assumes I_notcarr: "carrier $R \neq I "$
and I_prime: " $\llbracket a \in$ carrier $R ; b \in \operatorname{carrier} R ; a \otimes b \in I \rrbracket \Longrightarrow a \in$
I $\vee \mathrm{b} \in \mathrm{I}^{\prime \prime}$
lemma (in primeideal) primeideal: "primeideal I R"
by (rule primeideal_axioms)
lemma primeidealI:
fixes R (structure)
assumes "ideal I R"
and "cring R"
and I_notcarr: "carrier $R \neq I "$
and I_prime: " $\bigwedge \mathrm{a} \mathrm{b} . \llbracket \mathrm{a} \in \operatorname{carrier~} \mathrm{R} ; \mathrm{b} \in \operatorname{carrier~} \mathrm{R} ; \mathrm{a} \otimes \mathrm{b} \in \mathrm{I} \rrbracket \Longrightarrow$
$a \in I \vee b \in I "$
shows "primeideal I R"
proof -
interpret ideal I R by fact
interpret cring R by fact

```
    show ?thesis
    by (intro primeideal.intro primeideal_axioms.intro)
            (rule is_ideal, rule is_cring, rule I_notcarr, rule I_prime)
qed
lemma primeidealI2:
    fixes R (structure)
    assumes "additive_subgroup I R"
        and "cring R"
        and I_l_closed: "\a x. \llbracketa \in I; x \in carrier R\rrbracket \Longrightarrow x \otimes a \in I"
        and I_r_closed: "\a x. \llbracketa }\inI; x \in carrier R\rrbracket\Longrightarrowa|x\inI"
        and I_notcarr: "carrier R f I"
        and I_prime: " \a b. \llbracketa \in carrier R; b \in carrier R; a \otimes b \in I\rrbracket\Longrightarrow
a }\inIVb\inI
    shows "primeideal I R"
proof -
    interpret additive_subgroup I R by fact
    interpret cring R by fact
    show ?thesis apply intro_locales
        apply (intro ideal_axioms.intro)
        apply (erule (1) I_l_closed)
        apply (erule (1) I_r_closed)
        by (simp add: I_notcarr I_prime primeideal_axioms.intro)
qed
```


13.2 Special Ideals

```
lemma (in ring) zeroideal: "ideal {0} R"
    by (intro idealI subgroup.intro) (simp_all add: ring_axioms)
lemma (in ring) oneideal: "ideal (carrier R) R"
    by (rule idealI) (auto intro: ring_axioms add.subgroupI)
lemma (in "domain") zeroprimeideal: "primeideal {0} R"
proof -
    have "carrier R \not= {0}"
        by (simp add: carrier_one_not_zero)
    then show ?thesis
        by (metis (no_types, lifting) domain_axioms domain_def integral primeidealI
singleton_iff zeroideal)
qed
```


13.3 General Ideal Properties

lemma (in ideal) one_imp_carrier:
assumes I_one_closed: "1 \in I"
shows "I = carrier R"
proof
show "carrier R $\subseteq 1$ "
using I_r_closed assms by fastforce

```
    show "I \subseteq carrier R"
    by (rule a_subset)
qed
lemma (in ideal) Icarr:
    assumes iI: "i \in I"
    shows "i \in carrier R"
    using iI by (rule a_Hcarr)
lemma (in ring) quotient_eq_iff_same_a_r_cos:
    assumes "ideal I R" and "a \in carrier R" and "b \in carrier R"
    shows "a \ominus b \in I \longleftrightarrow I +> a = I +> b"
proof
    assume "I +> a = I +> b"
    then obtain i where "i \in I" and "0 \oplus a = i \oplus b"
        using additive_subgroup.zero_closed[OF ideal.axioms(1)[OF assms(1)]]
assms(2)
            unfolding a_r_coset_def' by blast
    hence "a \ominus b = i"
            using assms(2-3) by (metis a_minus_def add.inv_solve_right assms(1)
ideal.Icarr l_zero)
    with <i \in I> show "a }\ominus b \in I"
        by simp
next
    assume "a \ominus b \in I"
    then obtain i where "i \in I" and "a = i }\oplus\mathrm{ b"
        using ideal.Icarr[OF assms(1)] assms(2-3)
        by (metis a_minus_def add.inv_solve_right)
    hence "I +> a = (I +> i) +> b"
        using ideal.Icarr[OF assms(1)] assms(3)
        by (simp add: a_coset_add_assoc subsetI)
    with <i \in I> show "I +> a = I +> b"
        using a_rcos_zero[OF assms(1)] by simp
qed
```


13.4 Intersection of Ideals

```
Intersection of two ideals The intersection of any two ideals is again an ideal in \(R\)
lemma (in ring) i_intersect:
assumes "ideal I R"
assumes "ideal J R"
shows "ideal (I \(\cap \mathrm{J}\) ) R"
proof -
interpret ideal I R by fact
interpret ideal J R by fact
have IJ: "I \(\cap \mathrm{J} \subseteq\) carrier R"
by (force simp: a_subset)
show ?thesis
```

```
    apply (intro idealI subgroup.intro)
    apply (simp_all add: IJ ring_axioms I_l_closed assms ideal.I_l_closed
ideal.I_r_closed flip: a_inv_def)
    done
qed
```

The intersection of any Number of Ideals is again an Ideal in R

```
lemma (in ring) i_Intersect:
    assumes Sideals: "\I. I \in S \Longrightarrow ideal I R" and notempty: "S f= {}"
    shows "ideal (\bigcapS) R"
proof -
    { fix x y J
        assume "\forallI\inS. x \in I" "\forallI\inS. y \in I" and JS: "J \in S"
        interpret ideal J R by (rule Sideals[OF JS])
        have "x }\oplus\textrm{y}\in\textrm{J}
            by (simp add: JS <\forallI\inS. x \in I> <\forallI\inS. y \in I>) }
    moreover
        have "0 \in J" if "J G S" for J
            by (simp add: that Sideals additive_subgroup.zero_closed ideal.axioms(1))
    moreover
    { fix x J
        assume "\forallI\inS. x \in I" and JS: "J \in S"
        interpret ideal J R by (rule Sideals[OF JS])
        have "\ominus x \in J"
            by (simp add: JS <\forallI\inS. x \in I>) }
    moreover
    { fix x y J
        assume "\forallI\inS. x \in I" and ycarr: "y \in carrier R" and JS: "J \in S"
        interpret ideal J R by (rule Sideals[OF JS])
        have "y \otimes x \in J" "x \otimes y \in J"
            using I_l_closed I_r_closed JS <\forallI\inS. x \in I> ycarr by blast+ }
    moreover
    { fix x
        assume "\forallI\inS. x \in I"
        obtain IO where IOS: "IO \in S"
            using notempty by blast
        interpret ideal IO R by (rule Sideals[OF IOS])
        have "x \in IO"
            by (simp add: IOS <\forallI\inS. x \in I>)
        with a_subset have "x \in carrier R" by fast }
    ultimately show ?thesis
        by unfold_locales (auto simp: Inter_eq simp flip: a_inv_def)
qed
```

13.5 Addition of Ideals
lemma (in ring) add_ideals:
assumes idealI: "ideal I R" and idealJ: "ideal J R"

```
    shows "ideal (I <+> J) R"
proof (rule ideal.intro)
    show "additive_subgroup (I <+> J) R"
            by (intro ideal.axioms[OF idealI] ideal.axioms[OF idealJ] add_additive_subgroups)
    show "ring R"
            by (rule ring_axioms)
    show "ideal_axioms (I <+> J) R"
    proof -
            {fix x i j
                assume xcarr: "x \in carrier R" and iI: "i \in I" and jJ: "j \in J"
                from xcarr ideal.Icarr[OF idealI iI] ideal.Icarr[OF idealJ jJ]
                have "\existsh\inI. \existsk\inJ. (i }\oplus\textrm{j})\otimes\textrm{x}=\textrm{h}\oplus\textrm{k
                    by (meson iI ideal.I_r_closed idealJ jJ l_distr local.idealI)
}
        moreover
        { fix x i j
                assume xcarr: "x \in carrier R" and iI: "i \in I" and jJ: "j \in J"
                from xcarr ideal.Icarr[OF idealI iI] ideal.Icarr[OF idealJ jJ]
                have "\existsh\inI. \existsk\inJ. x \otimes (i }\oplusj)=h h f k
                    by (meson iI ideal.I_l_closed idealJ jJ local.idealI r_distr)
}
        ultimately show "ideal_axioms (I <+> J) R"
        by (intro ideal_axioms.intro) (auto simp: set_add_defs)
    qed
qed
```


13.6 Ideals generated by a subset of carrier R

genideal generates an ideal
lemma (in ring) genideal_ideal:
assumes Scarr: "S \subseteq carrier R"
shows "ideal (Idl S) R"
unfolding genideal_def
proof (rule i_Intersect, fast, simp)
from oneideal and Scarr
show " \exists I. ideal $I R \wedge S \leq I "$ by fast
qed
lemma (in ring) genideal_self:
assumes " $\mathrm{S} \subseteq$ carrier R"
shows "S \subseteq Idl S"
unfolding genideal_def by fast
lemma (in ring) genideal_self':
assumes carr: "i \in carrier R"
shows "i $\in \operatorname{Idl}\{i\} "$
by (simp add: genideal_def)
genideal generates the minimal ideal

```
lemma (in ring) genideal_minimal:
    assumes "ideal I R" "S \subseteq I"
    shows "Idl S \subseteq I"
    unfolding genideal_def by rule (elim InterD, simp add: assms)
Generated ideals and subsets
lemma (in ring) Idl_subset_ideal:
    assumes Iideal: "ideal I R"
        and Hcarr: "H \subseteq carrier R"
    shows "(Idl H \subseteq I) = (H \subseteq I)"
proof
    assume a: "Idl H \subseteq I"
    from Hcarr have "H \subseteq Idl H" by (rule genideal_self)
    with a show "H\subseteq I" by simp
next
    fix x
    assume "H\subseteqI"
    with Iideal have "I \in {I. ideal I R ^ H}\subseteqI}" by fas
    then show "Idl H \subseteq I" unfolding genideal_def by fast
qed
lemma (in ring) subset_Idl_subset:
    assumes Icarr: "I \subseteq carrier R"
        and HI: "H \subseteq I"
    shows "Idl H \subseteq Idl I"
proof -
    from Icarr have Iideal: "ideal (Idl I) R"
        by (rule genideal_ideal)
    from HI and Icarr have "H \subseteq carrier R"
        by fast
    with Iideal have "(H \subseteq Idl I) = (Idl H \subseteq Idl I)"
        by (rule Idl_subset_ideal[symmetric])
    then show "Idl H \subseteq Idl I"
        by (meson HI Icarr genideal_self order_trans)
qed
lemma (in ring) Idl_subset_ideal':
    assumes acarr: "a \in carrier R" and bcarr: "b \in carrier R"
    shows "Idl {a} \subseteq Idl {b} \longleftrightarrowa \in Idl {b}"
proof -
    have "Idl {a} \subseteq Idl {b} \longleftrightarrow {a} \subseteq Idl {b}"
        by (simp add: Idl_subset_ideal acarr bcarr genideal_ideal)
    also have "... \longleftrightarrowa G Idl {b}"
            by blast
    finally show ?thesis .
qed
lemma (in ring) genideal_zero: "Idl {0} = {0}"
proof
```

```
    show "Idl {0} \subseteq {0}"
    by (simp add: genideal_minimal zeroideal)
    show "{0} \subseteq Idl {0}"
    by (simp add: genideal_self')
qed
lemma (in ring) genideal_one: "Idl {1} = carrier R"
proof -
    interpret ideal "Idl {1}" "R" by (rule genideal_ideal) fast
    show "Idl {1} = carrier R"
        using genideal_self' one_imp_carrier by blast
qed
```

Generation of Principal Ideals in Commutative Rings

```
definition cgenideal :: "_ # 'a # 'a set" ("PIdl\imath _" [80] 79)
```


genhideal (?) really generates an ideal
lemma (in cring) cgenideal_ideal:
assumes acarr: "a \in carrier R"
shows "ideal (PIdl a) R"
unfolding cgenideal_def
proof (intro subgroup.intro idealI[OF ring_axioms], simp_all)
show " $\mathrm{x} \otimes \mathrm{a} \mid \mathrm{x} . \mathrm{x} \in$ carrier R$\} \subseteq$ carrier $\mathrm{R} "$
by (blast intro: acarr)
show " $\wedge x$ y. $\llbracket \exists \mathrm{u} . \mathrm{x}=\mathrm{u} \otimes \mathrm{a} \wedge \mathrm{u} \in$ carrier $R ; \exists \mathrm{x} . \mathrm{y}=\mathrm{x} \otimes \mathrm{a} \wedge \mathrm{x} \in$
carrier R】

```
                                    \Longrightarrow\existsv. x }\oplus\textrm{y}=\textrm{v}\otimes\textrm{a}\wedge\textrm{v}\in\operatorname{carrier R"
```

by (metis assms cring.cring_simprules(1) is_cring l_distr)
show " $\exists \mathrm{x} .0=\mathrm{x} \otimes \mathrm{a} \wedge \mathrm{x} \in$ carrier R "
by (metis assms l_null zero_closed)
show " $\wedge \mathrm{x} . \exists \mathrm{u} . \mathrm{x}=\mathrm{u} \otimes \mathrm{a} \wedge \mathrm{u} \in$ carrier R
$\Longrightarrow \exists \mathrm{v}$. invadd_monoid $\mathrm{R} x=\mathrm{v} \otimes \mathrm{a} \wedge \mathrm{v} \in$ carrier $\mathrm{R}^{\prime \prime}$
by (metis a_inv_def add.inv_closed assms l_minus)
show " $\wedge \mathrm{b} \mathrm{x} . \llbracket \exists \mathrm{x} . \mathrm{b}=\mathrm{x} \otimes \mathrm{a} \wedge \mathrm{x} \in$ carrier $\mathrm{R} ; \mathrm{x} \in$ carrier $\mathrm{R} \rrbracket$ $\Longrightarrow \exists \mathrm{z} . \mathrm{x} \otimes \mathrm{b}=\mathrm{z} \otimes \mathrm{a} \wedge \mathrm{z} \in$ carrier $\mathrm{R}^{\prime \prime}$
by (metis assms m_assoc m_closed)
show " $\wedge \mathrm{b} \mathrm{x} . \llbracket \exists \mathrm{x} . \mathrm{b}=\mathrm{x} \otimes \mathrm{a} \wedge \mathrm{x} \in$ carrier $R ; \mathrm{x} \in$ carrier $\mathrm{R} \rrbracket$ $\Longrightarrow \exists \mathrm{z} \cdot \mathrm{b} \otimes \mathrm{x}=\mathrm{z} \otimes \mathrm{a} \wedge \mathrm{z} \in$ carrier $\mathrm{R}^{\prime \prime}$
by (metis assms m_assoc m_comm m_closed)
qed
lemma (in ring) cgenideal_self:
assumes icarr: "i \in carrier R"
shows "i \in PIdl i"
unfolding cgenideal_def
proof simp
from icarr have "i = $1 \otimes$ i"
by simp

```
    with icarr show "\existsx. i = x \otimes i ^ x \in carrier R"
    by fast
qed
cgenideal is minimal
lemma (in ring) cgenideal_minimal:
    assumes "ideal J R"
    assumes aJ: "a \in J"
    shows "PIdl a \subseteq J"
proof -
    interpret ideal J R by fact
    show ?thesis
        unfolding cgenideal_def
        using I_l_closed aJ by blast
qed
lemma (in cring) cgenideal_eq_genideal:
    assumes icarr: "i \in carrier R"
    shows "PIdl i = Idl {i}"
proof
    show "PIdl i \subseteq Idl {i}"
            by (simp add: cgenideal_minimal genideal_ideal genideal_self, icarr)
    show "Idl {i} \subseteq PIdl i"
        by (simp add: cgenideal_ideal cgenideal_self genideal_minimal icarr)
qed
lemma (in cring) cgenideal_eq_rcos: "PIdl i = carrier R #> i"
    unfolding cgenideal_def r_coset_def by fast
lemma (in cring) cgenideal_is_principalideal:
    assumes "i \in carrier R"
    shows "principalideal (PIdl i) R"
proof -
    have "\existsi'\incarrier R. PIdl i = Idl {i'}"
        using cgenideal_eq_genideal assms by auto
    then show ?thesis
        by (simp add: cgenideal_ideal assms principalidealI)
qed
```


13.7 Union of Ideals

```
lemma (in ring) union_genideal:
```

lemma (in ring) union_genideal:
assumes idealI: "ideal I R" and idealJ: "ideal J R"
assumes idealI: "ideal I R" and idealJ: "ideal J R"
shows "Idl (I U J) = I <+> J"
shows "Idl (I U J) = I <+> J"
proof
proof
show "Idl (I U J) \subseteq I <+> J"
show "Idl (I U J) \subseteq I <+> J"
proof (rule ring.genideal_minimal [OF ring_axioms])
proof (rule ring.genideal_minimal [OF ring_axioms])
show "ideal (I <+> J) R"
show "ideal (I <+> J) R"
by (rule add_ideals[OF idealI idealJ])

```
        by (rule add_ideals[OF idealI idealJ])
```

```
    have "^x. x }\inI\Longrightarrow\existsxa\inI.\existsxb\inJ. x = xa \oplus xb"
    by (metis additive_subgroup.zero_closed ideal.Icarr idealJ ideal_def
local.idealI r_zero)
    moreover have "\x. x }\in\textrm{J}\Longrightarrow\exists\textrm{xa}\in\textrm{I}.\exists\textrm{xb}\in\textrm{J}. x = xa \oplus xb"
        by (metis additive_subgroup.zero_closed ideal.Icarr idealJ ideal_def
l_zero local.idealI)
    ultimately show "I U J \subseteq I <+> J"
        by (auto simp: set_add_defs)
    qed
next
    show "I <+> J \subseteq Idl (I \cup J)"
        by (auto simp: set_add_defs genideal_def additive_subgroup.a_closed
ideal_def subsetD)
qed
```


13.8 Properties of Principal Ideals

The zero ideal is a principal ideal

```
corollary (in ring) zeropideal: "principalideal {0} R"
    using genideal_zero principalidealI zeroideal by blast
```

The unit ideal is a principal ideal

```
corollary (in ring) onepideal: "principalideal (carrier R) R"
    using genideal_one oneideal principalidealI by blast
```

Every principal ideal is a right coset of the carrier

```
lemma (in principalideal) rcos_generate:
    assumes "cring R"
    shows "\existsx\inI. I = carrier R #> x"
proof -
    interpret cring R by fact
    from generate obtain i where icarr: "i \in carrier R" and I1: "I = Idl
{i}"
        by fast+
    then have "I = PIdl i"
        by (simp add: cgenideal_eq_genideal)
    moreover have "i f I"
        by (simp add: I1 genideal_self' icarr)
    moreover have "PIdl i = carrier R #> i"
        unfolding cgenideal_def r_coset_def by fast
    ultimately show "\existsx\inI. I = carrier R #> x"
        by fast
qed
```

This next lemma would be trivial if placed in a theory that imports QuotRing, but it makes more sense to have it here (easier to find and coherent with the previous developments).
lemma (in cring) cgenideal_prod:

```
    assumes "a \in carrier R" "b \in carrier R"
    shows "(PIdl a) <#> (PIdl b) = PIdl (a \otimes b)"
proof -
    have "(carrier R #> a) <#> (carrier R #> b) = carrier R #> (a \otimes b)"
    proof
        show "(carrier R #> a) <#> (carrier R #> b) \subseteq carrier R #> a \otimes b"
        proof
            fix x assume "x \in (carrier R #> a) <#> (carrier R #> b)"
            then obtain r1 r2 where r1: "r1 \in carrier R" and r2: "r2 \in carrier
R"
                    and "x = (r1 \otimes a) \otimes (r2 \otimes b)"
                unfolding set_mult_def r_coset_def by blast
                hence "x = (r1 \otimes r2) \otimes (a \otimes b)"
                        by (simp add: assms local.ring_axioms m_lcomm ring.ring_simprules(11))
                thus "x < carrier R #> a \otimes b"
                unfolding r_coset_def using r1 r2 assms by blast
        qed
    next
        show "carrier R #> a \otimes b \subseteq (carrier R #> a) <#> (carrier R #> b)"
        proof
            fix x assume "x \in carrier R #> a \otimes b"
            then obtain r where r: "r f carrier R" "x = r \otimes (a \otimes b)"
                unfolding r_coset_def by blast
            hence "x = (r \otimes a) \otimes (1 \otimes b)"
                using assms by (simp add: m_assoc)
            thus "x \in (carrier R #> a) <#> (carrier R #> b)"
                unfolding set_mult_def r_coset_def using assms r by blast
        qed
    qed
    thus ?thesis
        using cgenideal_eq_rcos[of a] cgenideal_eq_rcos[of b] cgenideal_eq_rcos[of
"a & b"] by simp
qed
```


13.9 Prime Ideals

```
lemma (in ideal) primeidealCD:
    assumes "cring R"
    assumes notprime: "\neg primeideal I R"
    shows "carrier R = I \vee (\existsa b. a \in carrier R ^ b f carrier R ^a \otimes
b}\inI\ a & I ^ b & I)"
proof (rule ccontr, clarsimp)
    interpret cring R by fact
    assume InR: "carrier R f I"
        and "\foralla. a }\in\mathrm{ carrier R }\longrightarrow(\forall\textrm{b}.\textrm{a}\otimes\textrm{b}\in\textrm{I}\longrightarrow\textrm{b}\in\operatorname{carrier R}
a }\inI\veeb\inI)
    then have I_prime: "\ a b. \llbracketa \in carrier R; b \in carrier R; a \otimes b \in
I\rrbracket \Longrightarrowa }\inIV\veeb\inI"
        by simp
```

```
    have "primeideal I R"
    by (simp add: I_prime InR is_cring is_ideal primeidealI)
    with notprime show False by simp
qed
lemma (in ideal) primeidealCE:
    assumes "cring R"
    assumes notprime: "\neg primeideal I R"
    obtains "carrier R = I"
        | "\existsa b. a \in carrier R ^ b \in carrier R ^a & b \in I ^a& I ^b
& I"
proof -
    interpret R: cring R by fact
    assume "carrier R = I ==> thesis"
        and "\existsa b. a \in carrier R ^ b \in carrier R ^ a \otimes b G I ^a a I ^
b & I \Longrightarrow thesis"
    then show thesis using primeidealCD [OF R.is_cring notprime] by blast
qed
If {0} is a prime ideal of a commutative ring, the ring is a domain
```

```
lemma (in cring) zeroprimeideal_domainI:
```

lemma (in cring) zeroprimeideal_domainI:
assumes pi: "primeideal {0} R"
assumes pi: "primeideal {0} R"
shows "domain R"
shows "domain R"
proof (intro domain.intro is_cring domain_axioms.intro)
proof (intro domain.intro is_cring domain_axioms.intro)
show "1 = 0"
show "1 = 0"
using genideal_one genideal_zero pi primeideal.I_notcarr by force
using genideal_one genideal_zero pi primeideal.I_notcarr by force
show "a = 0 \vee b = 0" if ab: "a \otimes b = 0" and carr: "a \in carrier R"
show "a = 0 \vee b = 0" if ab: "a \otimes b = 0" and carr: "a \in carrier R"
"b \in carrier R" for a b
"b \in carrier R" for a b
proof -
proof -
interpret primeideal "{0}" "R" by (rule pi)
interpret primeideal "{0}" "R" by (rule pi)
show "a = 0 \vee b = 0"
show "a = 0 \vee b = 0"
using I_prime ab carr by blast
using I_prime ab carr by blast
qed
qed
qed
qed
corollary (in cring) domain_eq_zeroprimeideal: "domain R = primeideal {0}
R"
using domain.zeroprimeideal zeroprimeideal_domainI by blast

```

\subsection*{13.10 Maximal Ideals}
```

lemma (in ideal) helper_I_closed:

```
lemma (in ideal) helper_I_closed:
    assumes carr: "a \in carrier R" "x \in carrier R" "y \in carrier R"
    assumes carr: "a \in carrier R" "x \in carrier R" "y \in carrier R"
        and axI: "a \otimes x \in I"
        and axI: "a \otimes x \in I"
    shows "a \otimes (x \otimes y) \in I"
    shows "a \otimes (x \otimes y) \in I"
proof -
proof -
    from axI and carr have "(a \otimes x) \otimes y \in I"
    from axI and carr have "(a \otimes x) \otimes y \in I"
        by (simp add: I_r_closed)
        by (simp add: I_r_closed)
    also from carr have "(a \otimes x) \otimes y = a Q (x \otimes y)"
```

 also from carr have "(a \otimes x) \otimes y = a Q (x \otimes y)"
    ```
```

 by (simp add: m_assoc)
 finally show "a \otimes (x \otimes y) \in I" .
 qed
lemma (in ideal) helper_max_prime:
assumes "cring R"
assumes acarr: "a \in carrier R"
shows "ideal {x\incarrier R. a \otimes x f I} R"
proof -
interpret cring R by fact
show ?thesis
proof (rule idealI, simp_all)
show "ring R"
by (simp add: local.ring_axioms)
show "subgroup {x \in carrier R. a \otimes x G I} (add_monoid R)"
by (rule subgroup.intro) (auto simp: r_distr acarr r_minus simp
flip: a_inv_def)
show "\b x. \llbracketb c carrier R ^ a \otimes b \in I; x \in carrier R\rrbracket
Ca}\otimes(x\otimesb)\inI
using acarr helper_I_closed m_comm by auto
show " \b x. \llbracketb \in carrier R ^ a \otimes b \in I; x \in carrier R\rrbracket
\Longrightarrowa\otimes (b \otimes x) \in I'
by (simp add: acarr helper_I_closed)
qed
qed

```

In a cring every maximal ideal is prime
```

lemma (in cring) maximalideal_prime:
assumes "maximalideal I R"
shows "primeideal I R"
proof -
interpret maximalideal I R by fact
show ?thesis
proof (rule ccontr)
assume neg: "\neg primeideal I R"
then obtain a b where acarr: "a \in carrier R" and bcarr: "b \in carrier
R"
and abI: "a \otimes b \in I" and anI: "a \not\in I" and bnI: "b \& I"
using primeidealCE [OF is_cring]
by (metis I_notcarr)
define J where "J = {x\incarrier R. a }\otimesx\inI}
from is_cring and acarr have idealJ: "ideal J R"
unfolding J_def by (rule helper_max_prime)
have IsubJ: "I \subseteq J"
using I_l_closed J_def a_Hcarr acarr by blast
from abI and acarr bcarr have "b \in J"
unfolding J_def by fast
with bnI have JnI: "J f= I" by fast
have "1 \& J"

```
```

 unfolding J_def by (simp add: acarr anI)
 then have Jncarr: "J \not= carrier R" by fast
 interpret ideal J R by (rule idealJ)
 have "J = I V J = carrier R"
 by (simp add: I_maximal IsubJ a_subset is_ideal)
 with JnI and Jncarr show False by simp
 qed
 qed

```

\subsection*{13.11 Derived Theorems}

A non-zero cring that has only the two trivial ideals is a field
```

lemma (in cring) trivialideals_fieldI:
assumes carrnzero: "carrier R \not= {0}"
and haveideals: "{I. ideal I R} = {{0}, carrier R}"
shows "field R"
proof (intro cring_fieldI equalityI)
show "Units R \subseteq carrier R - {0}"
by (metis Diff_empty Units_closed Units_r_inv_ex carrnzero l_null
one_zeroD subsetI subset_Diff_insert)
show "carrier R - {0} \subseteq Units R"
proof
fix x
assume xcarr': "x \in carrier R - {0}"
then have xcarr: "x \in carrier R" and xnZ: "x \not=0" by auto
from xcarr have xIdl: "ideal (PIdl x) R"
by (intro cgenideal_ideal) fast
have "PIdl x = {0}"
using xcarr xnZ cgenideal_self by blast
with haveideals have "PIdl x = carrier R"
by (blast intro!: xIdl)
then have "1 \in PIdl x" by simp
then have "\existsy. 1 = y \otimes x ^ y \in carrier R"
unfolding cgenideal_def by blast
then obtain y where ycarr: " y f carrier R" and ylinv: "1 = y \otimes
x"
by fast
have "\existsy \in carrier R. y \otimes x = 1 ^ x \otimes y = 1"
using m_comm xcarr ycarr ylinv by auto
with xcarr show "x \in Units R"
unfolding Units_def by fast
qed
qed
lemma (in field) all_ideals: "{I. ideal I R} = {{0}, carrier R}"
proof (intro equalityI subsetI)
fix I
assume a: "I \in {I. ideal I R}"
then interpret ideal I R by simp

```
```

 show "I \in {{0}, carrier R}"
 proof (cases "\existsa. a \in I - {0}")
 case True
 then obtain a where aI: "a \in I" and anZ: "a # 0"
 by fast+
 have aUnit: "a \in Units R"
 by (simp add: aI anZ field_Units)
 then have a: "a \otimes inv a = 1" by (rule Units_r_inv)
 from aI and aUnit have "a \otimes inv a \in I"
 by (simp add: I_r_closed del: Units_r_inv)
 then have oneI: "1 \in I" by (simp add: a[symmetric])
 have "carrier R\subseteq I"
 using oneI one_imp_carrier by auto
 with a_subset have "I = carrier R" by fast
 then show "I \in {{0}, carrier R}" by fast
 next
case False
then have IZ: "^a. a \in I \Longrightarrow a = 0" by simp
have a: "I \subseteq {0}"
using False by auto
have "0 \in I" by simp
with a have "I = {0}" by fast
then show "I \in {{0}, carrier R}" by fast
qed
qed (auto simp: zeroideal oneideal)

- "Jacobson Theorem 2.2"
lemma (in cring) trivialideals_eq_field:
assumes carrnzero: "carrier R \not= {0}"
shows "({I. ideal I R} = {{0}, carrier R}) = field R"
by (fast intro!: trivialideals_fieldI[OF carrnzero] field.all_ideals)

```

Like zeroprimeideal for domains
```

lemma (in field) zeromaximalideal: "maximalideal {0} R"
proof (intro maximalidealI zeroideal)
from one_not_zero have "1 \&{0}" by simp
with one_closed show "carrier R }={0}"\mathrm{ by fast
next
fix J
assume Jideal: "ideal J R"
then have "J \in {I. ideal I R}" by fast
with all_ideals show "J = {0} V J = carrier R"
by simp
qed
lemma (in cring) zeromaximalideal_fieldI:
assumes zeromax: "maximalideal {0} R"
shows "field R"

```
```

proof (intro trivialideals_fieldI maximalideal.I_notcarr[OF zeromax])
have "J = carrier R" if Jn0: "J F {0}" and idealJ: "ideal J R" for J
proof -
interpret ideal J R by (rule idealJ)
have "{0}\subseteq J"
by force
from zeromax idealJ this a_subset
have "J = {0} V J = carrier R"
by (rule maximalideal.I_maximal)
with Jn0 show "J = carrier R"
by simp
qed
then show "{I. ideal I R} = {{0}, carrier R}"
by (auto simp: zeroideal oneideal)
qed
lemma (in cring) zeromaximalideal_eq_field: "maximalideal {0} R = field
R"
using field.zeromaximalideal zeromaximalideal_fieldI by blast
end
theory RingHom
imports Ideal
begin

```

\section*{14 Homomorphisms of Non-Commutative Rings}

Lifting existing lemmas in a ring_hom_ring locale
locale ring_hom_ring = R?: ring \(R+S ?:\) ring \(S\) for \(R\) (structure) and \(S\) (structure) +
fixes \(h\)
assumes homh: "h \(\in\) ring_hom R S"
notes hom_mult [simp] = ring_hom_mult [OF homh]
and hom_one [simp] = ring_hom_one [OF homh]
sublocale ring_hom_cring \(\subseteq\) ring: ring_hom_ring
by standard (rule homh)
sublocale ring_hom_ring \(\subseteq\) abelian_group?: abelian_group_hom R S
proof
show "h \(\in\) hom (add_monoid R) (add_monoid S)"
using homh by (simp add: hom_def ring_hom_def)
qed
lemma (in ring_hom_ring) is_ring_hom_ring:
"ring_hom_ring R S h"
```

 by (rule ring_hom_ring_axioms)
 lemma ring_hom_ringI:
fixes R (structure) and S (structure)
assumes "ring R" "ring S"
assumes hom_closed: "!!x. x \in carrier R ==> h x \in carrier S"
and compatible_mult: "\x y. [| x \in carrier R; y \in carrier R |]
=> h (x \otimes y) = h x \otimes S h y"
and compatible_add: "\x y. [| x \in carrier R; y \in carrier R |]
==> h (x }\oplus\textrm{y})=\textrm{h}x\mp@subsup{|}{S}{h}\mp@subsup{\textrm{h}}{}{\prime\prime
and compatible_one: "h 1 = 1S"
shows "ring_hom_ring R S h"
proof -
interpret ring R by fact
interpret ring S by fact
show ?thesis
proof
show "h \in ring_hom R S"
unfolding ring_hom_def
by (auto simp: compatible_mult compatible_add compatible_one hom_closed)
qed
qed
lemma ring_hom_ringI2:
assumes "ring R" "ring S"
assumes h: "h \in ring_hom R S"
shows "ring_hom_ring R S h"
proof -
interpret R: ring R by fact
interpret S: ring S by fact
show ?thesis
proof
show "h \in ring_hom R S"
using h .
qed
qed
lemma ring_hom_ringI3:
fixes R (structure) and S (structure)
assumes "abelian_group_hom R S h" "ring R" "ring S"
assumes compatible_mult: "\x y. [| x \in carrier R; y \in carrier R |]
==> h (x \otimes y) = h x \otimesS h y"
and compatible_one: "h 1 = 1S"
shows "ring_hom_ring R S h"
proof -
interpret abelian_group_hom R S h by fact
interpret R: ring R by fact
interpret S: ring S by fact
show ?thesis

```
```

 proof
 show "h \in ring_hom R S"
 unfolding ring_hom_def by (auto simp: compatible_one compatible_mult)
 qed
 qed
lemma ring_hom_cringI:
assumes "ring_hom_ring R S h" "cring R" "cring S"
shows "ring_hom_cring R S h"
proof -
interpret ring_hom_ring R S h by fact
interpret R: cring R by fact
interpret S: cring S by fact
show ?thesis
proof
show "h \in ring_hom R S"
by (simp add: homh)
qed
qed

```

\subsection*{14.1 The Kernel of a Ring Homomorphism}
```

lemma (in ring_hom_ring) kernel_is_ideal: "ideal (a_kernel R S h) R"
apply (rule idealI [OF R.ring_axioms])
apply (rule additive_subgroup.a_subgroup[OF additive_subgroup_a_kernel])
apply (auto simp: a_kernel_def')
done

```

Elements of the kernel are mapped to zero
```

lemma (in abelian_group_hom) kernel_zero [simp]:
"i \in a_kernel R S h \Longrightarrow h i = 0S"
by (simp add: a_kernel_defs)

```

\subsection*{14.2 Cosets}

Cosets of the kernel correspond to the elements of the image of the homomorphism
```

lemma (in ring_hom_ring) rcos_imp_homeq:
assumes acarr: "a \in carrier R"
and xrcos: "x \in a_kernel R S h +> a"
shows "h x = h a"
proof -
interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)
from xrcos
have " $\exists \mathrm{i} \in$ a_kernel R S h. x = i \oplus a" by (simp add: a_r_coset_defs)
from this obtain i
where iker: "i \in a_kernel R S h"
and x : "x = $\mathrm{i} \oplus \mathrm{a}$ "

```
```

 by fast+
 note carr = acarr iker[THEN a_Hcarr]
 from x
 have "h x = h (i }\oplus\textrm{a})" by sim
 also from carr
 have "... = h i }\mp@subsup{\oplus}{\textrm{S}}{\textrm{h}}\textrm{a"}\mathrm{ by simp
 also from iker
 have "... = 0}\mp@subsup{0}{\textrm{S}}{}\mp@subsup{\oplus}{\textrm{S}}{}\textrm{h}\mathrm{ a" by simp
 also from carr
 have "... = h a" by simp
 finally
 show "h x = h a" .
 qed
lemma (in ring_hom_ring) homeq_imp_rcos:
assumes acarr: "a \in carrier R"
and xcarr: "x \in carrier R"
and hx: "h x = h a"
shows "x \in a_kernel R S h +> a"
proof -
interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)
note carr = acarr xcarr
note hcarr = acarr[THEN hom_closed] xcarr[THEN hom_closed]
from hx and hcarr
have a: "h x }\mp@subsup{\oplus}{S}{}\mp@subsup{\ominus}{Sh}{}\textrm{a}=\mp@subsup{0}{\textrm{S}}{}"\mathrm{ by algebra
from carr
have "h x }\mp@subsup{\oplus}{S}{}\mp@subsup{\ominus}{Sh}{}\textrm{a}=\textrm{h}(\textrm{x}\oplus\ominus\textrm{a})"\mathrm{ " by simp
from a and this
have b: "h (x \oplus \ominusa) = 0
from carr have "x \oplus \ominusa \in carrier R" by simp
from this and b
have "x \oplus \ominusa \in a_kernel R S h"
unfolding a_kernel_def'
by fast
from this and carr
show "x \in a_kernel R S h +> a" by (simp add: a_rcos_module_rev)
qed
corollary (in ring_hom_ring) rcos_eq_homeq:
assumes acarr: "a \in carrier R"
shows "(a_kernel R S h) +> a = {x \in carrier R. h x = h a}"
proof -
interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)
show ?thesis

```
using assms by (auto simp: intro: homeq_imp_rcos rcos_imp_homeq a_elemrcos_carrier) qed
```

lemma (in ring_hom_ring) hom_nat_pow:
"x \in carrier R \Longrightarrow h (x [^] (n :: nat)) = (h x) [^] S n"
by (induct n) (auto)
lemma (in ring_hom_ring) inj_on_domain:
assumes "inj_on h (carrier R)"
shows "domain S \Longrightarrow domain R"
proof -
assume A: "domain S" show "domain R"
proof
have "h 1 = 1 1
hence "h 1 f h 0"
using domain.one_not_zero[OF A] by simp
thus "1 = 0"
using assms unfolding inj_on_def by fastforce
next
fix a b
assume a: "a \in carrier R"
and b: "b \in carrier R"
have "h (a \otimes b) = (h a) }\mp@subsup{\otimes}{S}{}(\textrm{h b})" by (simp add: a b
also have " ... = (h b) *S (h a)" using a b A cringE(1) [of S]
by (simp add: cring.cring_simprules(14) domain_def)
also have " ... = h (b \otimes a)" by (simp add: a b)
finally have "h (a \otimes b) = h (b \& a)".
thus "a \otimes b = b \otimes a"
using assms a b unfolding inj_on_def by simp
assume ab: "a \otimes b = 0"
hence "h (a \otimes b) = 0
hence "(h a) \otimesS (h b) = 0
hence "h a = 0 S V h b = 0 0" using a b domain.integral [OF A] by
simp
thus "a = 0 V b = 0"
using a b assms unfolding inj_on_def by force
qed
qed
end

```
theory UnivPoly
imports Module RingHom
begin

\section*{15 Univariate Polynomials}

Polynomials are formalised as modules with additional operations for extracting coefficients from polynomials and for obtaining monomials from coefficients and exponents (record up_ring). The carrier set is a set of bounded functions from Nat to the coefficient domain. Bounded means that these functions return zero above a certain bound (the degree). There is a chapter on the formalisation of polynomials in the PhD thesis [1], which was implemented with axiomatic type classes. This was later ported to Locales.

\subsection*{15.1 The Constructor for Univariate Polynomials}

Functions with finite support.
```

locale bound =
fixes z :: 'a
and n :: nat
and f :: "nat => 'a"
assumes bound: "!!m. n < m \Longrightarrow f m = z"
declare bound.intro [intro!]
and bound.bound [dest]
lemma bound_below:
assumes bound: "bound z m f" and nonzero: "f n f= z" shows "n \leqm"
proof (rule classical)
assume "\neg ?thesis"
then have "m < n" by arith
with bound have "f n = z" ..
with nonzero show ?thesis by contradiction
qed
record ('a, 'p) up_ring = "('a, 'p) module" +
monom :: "['a, nat] => 'p"
coeff :: "['p, nat] => 'a"
definition
up :: "('a, 'm) ring_scheme => (nat => 'a) set"
where "up R = {f. f \in UNIV -> carrier R ^ (\existsn. bound 0r n f)}"
definition UP :: "('a, 'm) ring_scheme => ('a, nat => 'a) up_ring"
where "UP R = 0
carrier = up R,
mult = (}\lambda\textrm{p}\inup\mp@code{R. \lambdaq\inup R. \lambdan. }\mp@subsup{\bigoplus}{R}{}\textrm{i}\in{..n}. p i \otimes | q (n-i))
one = (}\lambda\textrm{i}.\mathrm{ if i=0 then 1R else 0}\mp@subsup{\mathbf{0}}{\textrm{R}}{}\mathrm{),
zero = (}\lambda\textrm{i}.0\mp@subsup{0}{R}{})\mathrm{),
add = (}\lambda\textrm{p}\in\textrm{up R. }\lambda\textrm{q}\inup R. \lambdai. p i \oplus \oplusR q i),
smult = (}\lambda\textrm{a}\in\mathrm{ carrier R. }\lambda\textrm{p}\in\textrm{up R. \lambdai. a }\mp@subsup{\otimes}{R}{}\textrm{p}\mathrm{ i),

```
```

monom = (\lambdaa\incarrier R. \lambdan i. if i=n then a else 0}\mp@subsup{0}{R}{})\mathrm{ ,
coeff = (\lambdap\inup R. \lambdan. p n)|"

```

Properties of the set of polynomials up.
```

lemma mem_upI [intro]:
"[| \n. f n \in carrier R; \existsn. bound (zero R) n f |] ==> f \in up R"
by (simp add: up_def Pi_def)
lemma mem_upD [dest]:
"f \in up R ==> f n \in carrier R"
by (simp add: up_def Pi_def)
context ring
begin
lemma bound_upD [dest]: "f \in up R \Longrightarrow \existsn. bound 0 n f" by (simp add:
up_def)
lemma up_one_closed: "(\lambdan. if n = 0 then 1 else 0) \in up R" using up_def
by force
lemma up_smult_closed: "[| a \in carrier R; p \in up R |] ==> (\lambdai. a \otimes p
i) \in up R" by force
lemma up_add_closed:
"[| p Gup R; q Gup R |] ==> (\lambdai. p i }\oplus\textrm{q}i)\inup R
proof
fix n
assume "p \in up R" and "q \in up R"
then show "p n \oplus q n \in carrier R"
by auto
next
assume UP: "p \in up R" "q \in up R"
show "\existsn. bound 0 n (}\lambda\textrm{i}.\textrm{p}\mathrm{ i }\oplus\textrm{q}i)
proof -
from UP obtain n where boundn: "bound 0 n p" by fast
from UP obtain m where boundm: "bound 0 m q" by fast
have "bound 0 (max n m) (}\lambda\textrm{i}.\textrm{p}|\textrm{i}\oplus\textrm{q}i)
proof
fix i
assume "max n m < i"
with boundn and boundm and UP show "p i \oplus q i = 0" by fastforce
qed
then show ?thesis ..
qed
qed
lemma up_a_inv_closed:
"p \in up R ==> (\lambdai. \ominus (p i)) \in up R"

```
```

proof
assume R : "p \in up R"
then obtain n where "bound 0 n p " by auto
then have "bound 0 n ($\lambda \mathrm{i} . \ominus \mathrm{p}$ i)"
by (simp add: bound_def minus_equality)
then show $" \exists \mathrm{n}$. bound $0 \mathrm{n}(\lambda i . \ominus \mathrm{p}$ i)" by auto
qed auto
lemma up_minus_closed:
" $[|\mathrm{p} \in \mathrm{up} \mathrm{R} ; \mathrm{q} \in \mathrm{up} \mathrm{R}|]==>(\lambda i . \mathrm{p} i \ominus \mathrm{q} i) \in \operatorname{up} \mathrm{R} "$
unfolding a_minus_def
using mem_upD [of p R] mem_upD [of q R] up_add_closed up_a_inv_closed
by auto
lemma up_mult_closed:
" $[|\mathrm{p} \in \mathrm{up} \mathrm{R} ; \mathrm{q} \in \mathrm{up} \mathrm{R}|]==>$
$(\lambda n . \bigoplus i \in\{. . n\} . p i \otimes q(n-i)) \in u p R "$
proof
fix n
assume "p \in up R" "q \in up R"
then show " $(\bigoplus i \in\{. . n\} . p i \otimes q(n-i)) \in$ carrier $R "$
by (simp add: mem_upD funcsetI)
next
assume UP: "p \in up $R "$ "q \in up $R "$
show $" \exists \mathrm{n}$. bound $0 \mathrm{n}(\lambda \mathrm{n} . \bigoplus \mathrm{Q} \in\{. . \mathrm{n}\} . \mathrm{p}$ i $\otimes \mathrm{q}(\mathrm{n}-\mathrm{i}))$ "
proof -
from UP obtain n where boundn: "bound $0 \mathrm{n} p$ " by fast
from UP obtain m where boundm: "bound $0 \mathrm{~m} q$ " by fast
have "bound $0(n+m)(\lambda n . \bigoplus i \in\{. . n\} . p i \otimes q(n-i)) "$
proof
fix k assume bound: $" n+m<k "$
\{
fix i
have "p i $\otimes q(k-i)=0 "$
proof (cases "n < i")
case True
with boundn have "p i = 0" by auto
moreover from UP have "q (k-i) \in carrier R" by auto
ultimately show ?thesis by simp
next
case False
with bound have "m < k-i" by arith
with boundm have "q (k-i) = 0" by auto
moreover from UP have "p i \in carrier R" by auto
ultimately show ?thesis by simp
qed
\}
then show " $(\bigoplus i \in\{. . k\} . p i \otimes q(k-i))=0 "$
by (simp add: Pi_def)

```
```

 qed
 then show ?thesis by fast
 qed
 qed
end

```

\subsection*{15.2 Effect of Operations on Coefficients}
locale UP =
fixes \(R\) (structure) and \(P\) (structure)
defines \(P_{-}\)def: " \(P==U P R "\)
locale UP_ring \(=U P+R\) ? : ring \(R\)
locale UP_cring = UP + R?: cring R
sublocale UP_cring < UP_ring
by intro_locales [1] (rule P_def)
locale UP_domain = UP + R?: "domain" R
sublocale UP_domain < UP_cring
by intro_locales [1] (rule P_def)
context UP
begin
Temporarily declare \(P \equiv\) UP \(R\) as simp rule.
declare P_def [simp]
lemma up_eqI:
assumes prem: "!!n. coeff P p n = coeff P q n" and R: "p \(\in\) carrier
P" "q \(\in\) carrier P"
shows "p = q"
proof
fix x
from prem and \(R\) show " \(\mathrm{p} x=q \mathrm{x}\) " by (simp add: UP_def)
qed
lemma coeff_closed [simp]:
" \(\mathrm{p} \in\) carrier \(\mathrm{P}==>\) coeff P p \(\mathrm{n} \in\) carrier R" by (auto simp add: UP_def)
end
context UP_ring
begin
```

lemma coeff_monom [simp]:
"a \in carrier R ==> coeff P (monom P a m) n = (if m=n then a else 0)"
proof -
assume R: "a \in carrier R"
then have "(}\lambda\textrm{n}.\mp@code{if n = m then a else 0) \in up R"
using up_def by force
with R show ?thesis by (simp add: UP_def)
qed
lemma coeff_zero [simp]: "coeff P 0P n = 0" by (auto simp add: UP_def)
lemma coeff_one [simp]: "coeff P 1P n = (if n=0 then 1 else 0)"
using up_one_closed by (simp add: UP_def)
lemma coeff_smult [simp]:
"[| a \in carrier R; p \in carrier P |] ==> coeff P (a \odotp p) n = a \otimes coeff
P p n"
by (simp add: UP_def up_smult_closed)
lemma coeff_add [simp]:
"[l p \in carrier P; q \in carrier P |] ==> coeff P (p \oplusp q) n = coeff
P p n \oplus coeff P q n"
by (simp add: UP_def up_add_closed)
lemma coeff_mult [simp]:
"[| p \in carrier P; q \in carrier P |] ==> coeff P (p \otimesp q) n = (\bigoplusi }
{..n}. coeff P p i \otimes coeff P q (n-i))"
by (simp add: UP_def up_mult_closed)
end

```

\subsection*{15.3 Polynomials Form a Ring.}
```

context UP_ring
begin

```

Operations are closed over P.
```

lemma UP_mult_closed [simp]:
"[| p \in carrier P; q \in carrier P |] ==> p \otimesp q \in carrier P" by (simp
add: UP_def up_mult_closed)
lemma UP_one_closed [simp]:
"1P \in carrier P" by (simp add: UP_def up_one_closed)
lemma UP_zero_closed [intro, simp]:
"OP \in carrier P" by (auto simp add: UP_def)
lemma UP_a_closed [intro, simp]:

```
```

 "[| p \in carrier P; q \in carrier P |] ==> p \oplusp q \in carrier P" by (simp
 add: UP_def up_add_closed)
lemma monom_closed [simp]:
"a \in carrier R ==> monom P a n \in carrier P" by (auto simp add: UP_def
up_def Pi_def)
lemma UP_smult_closed [simp]:
"[| a \in carrier R; p \in carrier P |] ==> a }\mp@subsup{\odot}{P}{\prime}p\incarrier P" by (simp
add: UP_def up_smult_closed)
end
declare (in UP) P_def [simp del]
Algebraic ring properties
context UP_ring
begin
lemma UP_a_assoc:
assumes R: "p \in carrier P" "q \in carrier P" "r f carrier P"
shows "(p \oplusp q) }\mp@subsup{\oplus}{\textrm{p}}{}\textrm{r}=\textrm{p}\mp@subsup{\oplus}{\textrm{p}}{}(\textrm{q}\mp@subsup{\oplus}{\textrm{p}}{}\textrm{r})"\mathrm{ " by (rule up_eqI, simp add:
a_assoc R, simp_all add: R)
lemma UP_l_zero [simp]:
assumes R: "p \in carrier P"
shows "0}\mp@subsup{0}{P}{}\mp@subsup{\oplus}{P}{
lemma UP_l_neg_ex:
assumes R: "p \in carrier P"
shows "\existsq| carrier P. q }\mp@subsup{\oplus}{\textrm{p}}{\prime}\textrm{p}=\mp@subsup{0}{\textrm{P}}{\prime\prime
proof -
let ?q = "\lambdai. \ominus (p i)"
from R have closed: "?q \in carrier P"
by (simp add: UP_def P_def up_a_inv_closed)
from R have coeff: "!!n. coeff P ?q n = \ominus (coeff P p n)"
by (simp add: UP_def P_def up_a_inv_closed)
show ?thesis
proof
show "?q }\mp@subsup{\oplus}{p}{
by (auto intro!: up_eqI simp add: R closed coeff R.l_neg)
qed (rule closed)
qed
lemma UP_a_comm:
assumes R: "p \in carrier P" "q \in carrier P"
shows "p }\mp@subsup{\oplus}{\textrm{p}}{~}q=q\mp@code{q p p" by (rule up_eqI, simp add: a_comm R, simp_all
add: R)

```
```

lemma UP_m_assoc:
assumes R: "p \in carrier P" "q \in carrier P" "r \in carrier P"
shows "(p \otimesp q) \otimesp r = p \otimesp (q \otimesp r)"
proof (rule up_eqI)
fix n
{
fix k and a b c :: "nat=>'a"
assume R: "a \in UNIV }->\mathrm{ carrier R" "b G UNIV }->\mathrm{ carrier R"
"c \in UNIV }->\mathrm{ carrier R"
then have "k <= n ==>
(\bigoplusj \in{..k}. (\bigoplusi \in{..j}. a i \otimes b (j-i)) \otimes c (n-j)) =
(\bigoplusj\in {..k}. a j \otimes (\bigoplusi \in {..k-j}. b i \otimes c (n-j-i)))"
(is "_ \Longrightarrow ?eq k")
proof (induct k)
case 0 then show ?case by (simp add: Pi_def m_assoc)
next
case (Suc k)
then have "k <= n" by arith
from this R have "?eq k" by (rule Suc)
with R show ?case
by (simp cong: finsum_cong
add: Suc_diff_le Pi_def l_distr r_distr m_assoc)
(simp cong: finsum_cong add: Pi_def a_ac finsum_ldistr m_assoc)
qed
}
with R show "coeff P ((p \otimesp q) \otimesp r) n = coeff P (p \otimesp (q \otimesp r))
n"
by (simp add: Pi_def)
qed (simp_all add: R)
lemma UP_r_one [simp]:
assumes R: "p \in carrier P" shows "p \otimesp 1p = p"
proof (rule up_eqI)
fix n
show "coeff P (p \otimesp 1P) n = coeff P p n"
proof (cases n)
case 0
{
with R show ?thesis by simp
}
next
case Suc
{
fix nn assume Succ: "n = Suc nn"
have "coeff P (p \& P 1P) (Suc nn) = coeff P p (Suc nn)"
proof -
have "coeff P (p \otimes P 1P) (Suc nn) = (\bigoplusi\in{..Suc nn}. coeff P
p i \otimes (if Suc nn S i then 1 else 0))" using R by simp

```
```

 also have "... = coeff P p (Suc nn) \otimes (if Suc nn \leq Suc nn then
 1 else 0) }\oplus(\bigoplusi\in{..nn}. coeff P p i \otimes (if Suc nn \leqi then 1 else 0))"
using finsum_Suc [of "(\lambdai::nat. coeff P p i \otimes (if Suc nn \leq
i then 1 else 0))" "nn"] unfolding Pi_def using R by simp
also have "... = coeff P p (Suc nn) \otimes (if Suc nn \leq Suc nn then
1 else 0)"
proof -
have "(\bigoplusi\in{..nn}. coeff P p i \otimes (if Suc nn \leq i then 1 else
0)) = (\bigoplusi\in{..nn}. 0)"
using finsum_cong [of "{..nn}" "{..nn}" "(\lambdai::nat. coeff P
p i \otimes (if Suc nn \leq i then 1 else 0))" "(\lambdai::nat. 0)"] using R
unfolding Pi_def by simp
also have "... = 0" by simp
finally show ?thesis using r_zero R by simp
qed
also have "... = coeff P p (Suc nn)" using R by simp
finally show ?thesis by simp
qed
then show ?thesis using Succ by simp
}
qed
qed (simp_all add: R)
lemma UP_l_one [simp]:
assumes R: "p \in carrier P"
shows "1p \otimesp p = p"
proof (rule up_eqI)
fix n
show "coeff P (1_ (}\mp@subsup{|}{P}{
proof (cases n)
case O with R show ?thesis by simp
next
case Suc with R show ?thesis
by (simp del: finsum_Suc add: finsum_Suc2 Pi_def)
qed
qed (simp_all add: R)
lemma UP_l_distr:
assumes R: "p \in carrier P" "q \in carrier P" "r \in carrier P"
shows "(p \mp@subsup{ }{p}{\prime}q)}\mp@subsup{\otimes}{p}{}r=(p\mp@subsup{\otimes}{p}{}r) \mp@subsup{\oplus}{P}{}(q|p r)
by (rule up_eqI) (simp add: l_distr R Pi_def, simp_all add: R)
lemma UP_r_distr:
assumes R: "p \in carrier P" "q \in carrier P" "r \in carrier P"
shows "r \otimes \& (p \oplusp q) = (r \otimesp p) }\mp@subsup{\oplus}{p}{}(r|pq)
by (rule up_eqI) (simp add: r_distr R Pi_def, simp_all add: R)
theorem UP_ring: "ring P"
by (auto intro!: ringI abelian_groupI monoidI UP_a_assoc)

```
```

(auto intro: UP_a_comm UP_l_neg_ex UP_m_assoc UP_l_distr UP_r_distr)

```
end
```

15.4 Polynomials Form a Commutative Ring.
context UP_cring
begin
lemma UP_m_comm:
assumes R1: "p \in carrier P" and R2: "q \in carrier P" shows "p \otimesp q
= q \otimesp p"
proof (rule up_eqI)
fix n
{
fix k and a b :: "nat=>'a"
assume R: "a \in UNIV }->\mathrm{ carrier R" "b }\in\mathrm{ UNIV }->\mathrm{ carrier R"
then have "k <= n ==>
(\bigoplusi\in{..k}. a i \otimes b (n-i)) = (\bigoplusi \in {..k}. a (k-i) \otimes b (i+n-k))"
(is "_ \Longrightarrow ?eq k")
proof (induct k)
case 0 then show ?case by (simp add: Pi_def)
next
case (Suc k) then show ?case
by (subst (2) finsum_Suc2) (simp add: Pi_def a_comm)+
qed
}
note l = this
from R1 R2 show "coeff P (p \otimesp q) n = coeff P (q \otimesp p) n"
unfolding coeff_mult [OF R1 R2, of n]
unfolding coeff_mult [OF R2 R1, of n]
using l [of "(\lambdai. coeff P p i)" "(\lambdai. coeff P q i)" "n"] by (simp
add: Pi_def m_comm)
qed (simp_all add: R1 R2)

```

\subsection*{15.5 Polynomials over a commutative ring for a commutative ring}
theorem UP_cring:
    "cring P" using UP_ring unfolding cring_def by (auto intro!: comm_monoidI
UP_m_assoc UP_m_comm)
end
context UP_ring
begin
lemma UP_a_inv_closed [intro, simp]:
    " \(\mathrm{p} \in\) carrier \(\mathrm{P}==>\) \(\mathrm{P}_{\mathrm{p}} \mathrm{p} \in\) carrier \(\mathrm{P} "\)
```

 by (rule abelian_group.a_inv_closed [OF ring.is_abelian_group [OF UP_ring]])
 lemma coeff_a_inv [simp]:
assumes R: "p \in carrier P"
shows "coeff P (}\mp@subsup{\rho}{\textrm{p} p) n = \ominus (coeff P p n)"}{
proof -
from R coeff_closed UP_a_inv_closed have
"coeff P (Өp p) n = \ominus coeff P p n \oplus (coeff P p n \oplus coeff P (
n)"
by algebra
also from R have "... = \ominus (coeff P p n)"
by (simp del: coeff_add add: coeff_add [THEN sym]
abelian_group.r_neg [OF ring.is_abelian_group [OF UP_ring]])
finally show ?thesis .
qed
end
sublocale UP_ring < P?: ring P using UP_ring .
sublocale UP_cring < P?: cring P using UP_cring .

```

\subsection*{15.6 Polynomials Form an Algebra}

\section*{context UP_ring}
```

begin
lemma UP_smult_l_distr:
" [| a \in carrier R; $b \in$ carrier $R ; p \in$ carrier P |] ==>
(a $\oplus \mathrm{b}) ~ \odot \mathrm{p} p=\mathrm{a} \odot \mathrm{p} p \oplus_{\mathrm{p}} \mathrm{b} \odot_{\mathrm{p}} \mathrm{p}{ }^{\prime \prime}$
by (rule up_eqI) (simp_all add: R.l_distr)
lemma UP_smult_r_distr:
" [| a \in carrier $R ; p \in$ carrier $P ; q \in \operatorname{carrier~} P$ l] ==>
$a \odot_{p}\left(p \oplus_{p} q\right)=a \odot_{p} p \oplus_{p} a \odot_{p} q^{\prime \prime}$
by (rule up_eqI) (simp_all add: R.r_distr)
lemma UP_smult_assoc1:
" [l a \in carrier R; $b \in$ carrier $R ; p \in$ carrier P |] ==>
$(\mathrm{a} \otimes \mathrm{b}) \odot_{\mathrm{p}} \mathrm{p}=\mathrm{a} \odot_{\mathrm{p}}\left(\mathrm{b} \odot_{\mathrm{p}} \mathrm{p}\right) "$
by (rule up_eqI) (simp_all add: R.m_assoc)
lemma UP_smult_zero [simp]:
" $p \in$ carrier $P==>0$ $\odot_{p} p=\mathbf{0}_{\mathrm{P}} "$
by (rule up_eqI) simp_all
lemma UP_smult_one [simp]:
" $\mathrm{p} \in$ carrier $\mathrm{P}==>1 \odot_{p} \mathrm{p}=\mathrm{p} "$
by (rule up_eqI) simp_all

```
```

lemma UP_smult_assoc2:
"[| a \in carrier R; p \in carrier P; q \in carrier P |] ==>
(a \odotp p) }\mp@subsup{\otimes}{p}{}q=a \mp@subsup{ }{p}{}(p)\mp@subsup{\otimes}{p}{\prime}q)
by (rule up_eqI) (simp_all add: R.finsum_rdistr R.m_assoc Pi_def)

```
end

Interpretation of lemmas from algebra.
```

lemma (in UP_cring) UP_algebra:

```
    "algebra R P" by (auto intro!: algebraI R.cring_axioms UP_cring UP_smult_l_distr
UP_smult_r_distr
    UP_smult_assoc1 UP_smult_assoc2)
sublocale UP_cring < algebra R P using UP_algebra.

\subsection*{15.7 Further Lemmas Involving Monomials}
context UP_ring
begin
lemma monom_zero [simp]:
    "monom P \(0 \mathrm{n}=\mathbf{0}_{\mathrm{P}}\) " by (simp add: UP_def P_def)
lemma monom_mult_is_smult:
    assumes \(\mathrm{R}: ~ " a \in c a r r i e r ~ R " ~ " p \in c a r r i e r ~ P " ~\)
    shows "monom \(P\) a \(0 \otimes_{p} p=a \odot_{p} p\) "
proof (rule up_eqI)
    fix \(n\)
    show "coeff P (monom P a \(0 \otimes_{\mathrm{p}} \mathrm{p}\) ) \(\mathrm{n}=\operatorname{coeff} \mathrm{P}\left(\mathrm{a} \odot_{\mathrm{p}} \mathrm{p}\right) \mathrm{n}\) "
    proof (cases n)
        case 0 with \(R\) show ?thesis by simp
    next
        case Suc with R show ?thesis
                using R.finsum_Suc2 by (simp del: R.finsum_Suc add: Pi_def)
    qed
qed (simp_all add: R)
lemma monom_one [simp]:
    "monom P \(10=1 \mathrm{P}\) "
    by (rule up_eqI) simp_all
lemma monom_add [simp]:
    " [| a \(\in\) carrier \(R ; b \in\) carrier \(R \mid]==>\)
    monom \(\mathrm{P}(\mathrm{a} \oplus \mathrm{b}) \mathrm{n}=\) monom P a \(\mathrm{n} \oplus \mathrm{p}\) monom \(\mathrm{P} \mathrm{b} \mathrm{n} "\)
    by (rule up_eqI) simp_all
lemma monom_one_Suc:
    "monom P 1 (Suc \(n)=\) monom P \(1 \mathrm{n} \otimes_{\mathrm{p}}\) monom P 1 1"
proof (rule up_eqI)
```

 fix k
 show "coeff P (monom P 1 (Suc n)) k = coeff P (monom P 1 n \otimesp monom
 P 1 1) k"
proof (cases "k = Suc n")
case True show ?thesis
proof -
fix m
from True have less_add_diff:
"!!i. [l n < i; i <= n + m l] ==> n + m - i < m" by arith
from True have "coeff P (monom P 1 (Suc n)) k = 1" by simp
also from True
have "... = (\bigoplusi \in{..<n} \cup{n}. coeff P (monom P 1 n) i \otimes
coeff P (monom P 1 1) (k - i))"
by (simp cong: R.finsum_cong add: Pi_def)
also have "... = (\bigoplusi \in {..n}. coeff P (monom P 1 n) i \otimes
coeff P (monom P 1 1) (k - i))"
by (simp only: ivl_disj_un_singleton)
also from True
have "... = (\bigoplusi G {..n} \cup{n<..k}. coeff P (monom P 1 n) i \otimes
coeff P (monom P 1 1) (k - i))"
by (simp cong: R.finsum_cong add: R.finsum_Un_disjoint ivl_disj_int_one
order_less_imp_not_eq Pi_def)
also from True have "... = coeff P (monom P 1 n \otimesp monom P 1 1)
k"
by (simp add: ivl_disj_un_one)
finally show ?thesis .
qed
next
case False
note neq = False
let ?s =
"\lambdai. (if n = i then 1 else 0) \otimes (if Suc 0 = k - i then 1 else 0)"
from neq have "coeff P (monom P 1 (Suc n)) k = 0" by simp
also have "... = (\bigoplusi \in {..k}. ?s i)"
proof -
have f1: "(\bigoplusi \in {..<n}. ?s i) = 0"
by (simp cong: R.finsum_cong add: Pi_def)
from neq have f2: "(\bigoplusi \in {n}. ?s i) = 0"
by (simp cong: R.finsum_cong add: Pi_def) arith
have f3: "n < k ==> (\bigoplusi }\in{n<..k}. ?s i) = 0"
by (simp cong: R.finsum_cong add: order_less_imp_not_eq Pi_def)
show ?thesis
proof (cases "k < n")
case True then show ?thesis by (simp cong: R.finsum_cong add:
Pi_def)
next
case False then have n_le_k: "n <= k" by arith
show ?thesis
proof (cases "n = k")

```
```

 case True
 then have "0 = (\bigoplusi \in {..<n} \cup {n}. ?s i)"
 by (simp cong: R.finsum_cong add: Pi_def)
 also from True have "... = (\bigoplusi \in {..k}. ?s i)"
 by (simp only: ivl_disj_un_singleton)
 finally show ?thesis .
 next
case False with n_le_k have n_less_k: "n < k" by arith
with neq have "0 = (\bigoplusi \in {..<n} \cup {n}. ?s i)"
by (simp add: R.finsum_Un_disjoint f1 f2 Pi_def del: Un_insert_right)
also have "... = (\bigoplusi \in {..n}. ?s i)"
by (simp only: ivl_disj_un_singleton)
also from n_less_k neq have "... = (\bigoplusi \in {..n} U {n<..k}.
?s i)"
by (simp add: R.finsum_Un_disjoint f3 ivl_disj_int_one Pi_def)
also from n_less_k have "... = (\bigoplusi \in {..k}. ?s i)"
by (simp only: ivl_disj_un_one)
finally show ?thesis .
qed
qed
qed
also have "... = coeff P (monom P 1 n \otimesp monom P 1 1) k" by simp
finally show ?thesis .
qed
qed (simp_all)
lemma monom_one_Suc2:
"monom P 1 (Suc n) = monom P 1 1 \otimesp monom P 1 n"
proof (induct n)
case 0 show ?case by simp
next
case Suc
{
fix k:: nat
assume hypo: "monom P 1 (Suc k) = monom P 1 1 \otimesp monom P 1 k"
then show "monom P 1 (Suc (Suc k)) = monom P 1 1 \& monom P 1 (Suc
k)"
proof -
have lhs: "monom P 1 (Suc (Suc k)) = monom P 1 1 \otimesp monom P 1 k
\otimesp monom P 1 1"
unfolding monom_one_Suc [of "Suc k"] unfolding hypo ..
note cl = monom_closed [OF R.one_closed, of 1]
note clk = monom_closed [OF R.one_closed, of k]
have rhs: "monom P 1 1 \& monom P 1 (Suc k) = monom P 1 1 \& m monom
P 1 k \otimesp monom P 1 1"
unfolding monom_one_Suc [of k] unfolding sym [OF m_assoc [OF
cl clk cl]] ..
from lhs rhs show ?thesis by simp
qed

```
\[
\begin{array}{r}
\} \\
\text { qed }
\end{array}
\]

The following corollary follows from lemmas monom P 1 (Suc ?n) \(=\) monom P 1 ?n \(\otimes_{\mathrm{P}}\) monom P 11 and monom P 1 (Suc \(? \mathrm{n}\) ) \(=\) monom \(\mathrm{P} 11 \otimes_{\mathrm{P}}\) monom P 1 ?n, and is trivial in UP_cring
corollary monom_one_comm: shows "monom P \(1 \mathrm{k} \otimes \mathrm{p}\) monom P 11 = monom P \(11 \otimes_{\mathrm{P}}\) monom P \(1 \mathrm{k"}\)
unfolding monom_one_Suc [symmetric] monom_one_Suc2 [symmetric] ..
lemma monom_mult_smult:
" [l \(a \in \operatorname{carrier~} R ; b \in \operatorname{carrier~} R \mid]==>\operatorname{monom} P(a \otimes b) n=a \odot_{p}\) monom P b n"
by (rule up_eqI) simp_all
lemma monom_one_mult:
"monom P \(1(\mathrm{n}+\mathrm{m})=\) monom \(\mathrm{P} 1 \mathrm{n} \otimes_{\mathrm{P}}\) monom \(\mathrm{P} 1 \mathrm{~m} "\)
proof (induct \(n\) )
case 0 show ?case by simp
next
case Suc then show ?case
unfolding add_Suc unfolding monom_one_Suc unfolding Suc.hyps using m_assoc monom_one_comm [of m] by simp
qed
lemma monom_one_mult_comm: "monom P \(1 \mathrm{n} \otimes_{\mathrm{P}}\) monom P \(1 \mathrm{~m}=\) monom P 1 m \(\otimes_{\mathrm{p}}\) monom P \(1 \mathrm{n} "\)
unfolding monom_one_mult [symmetric] by (rule up_eqI) simp_all
lemma monom_mult [simp]:
assumes a_in_R: "a \(\in\) carrier \(R "\) and \(b_{-} i n_{-} R: ~ " b \in c a r r i e r ~ R " ~\)
shows "monom \(P(a \otimes b)(n+m)=\) monom \(P a n \quad \otimes_{P}\) monom \(P b m "\)
proof (rule up_eqI)
fix k
 monom P b m) k"
proof (cases "n + m = k")
case True
\{
show ?thesis
unfolding True [symmetric]
coeff_mult [OF monom_closed [OF a_in_R, of n] monom_closed [OF
\(\mathrm{b}_{-}\)in_R, of m , of \(\mathrm{n}+\mathrm{m}\) "]
coeff_monom [OF a_in_R, of \(n\) ] coeff_monom [OF b_in_R, of m]
using R.finsum_cong [of "\{.. n + m\}" "\{.. n + m\}" "( \(\lambda\) i. (if n
\(=i\) then a else 0) \(\otimes\) (if \(m=n+m-i\) then \(b\) else 0 ))" " ( \(\lambda\) i. if \(\mathrm{n}=\mathrm{i}\) then \(\mathrm{a} \otimes \mathrm{b}\) else 0)"] a_in_R b_in_R
unfolding simp_implies_def
```

 using R.finsum_singleton [of n "{.. n + m}" "(\lambdai. a \otimes b)"]
 unfolding Pi_def by auto
 }
 next
 case False
 {
 show ?thesis
 unfolding coeff_monom [OF R.m_closed [OF a_in_R b_in_R], of "n
 + m" k] apply (simp add: False)
unfolding coeff_mult [OF monom_closed [OF a_in_R, of n] monom_closed
[OF b_in_R, of m], of k]
unfolding coeff_monom [OF a_in_R, of n] unfolding coeff_monom
[OF b_in_R, of m] using False
using R.finsum_cong [of "{..k}" "{..k}" "(\lambdai. (if n = i then a
else 0) \otimes (if m = k - i then b else 0))" "(\lambdai. 0)"]
unfolding Pi_def simp_implies_def using a_in_R b_in_R by force
}
qed
qed (simp_all add: a_in_R b_in_R)
lemma monom_a_inv [simp]:
"a \in carrier R ==> monom P (}\ominus\mathrm{ a) n = Өp monom P a n"
by (rule up_eqI) auto
lemma monom_inj:
"inj_on (\lambdaa. monom P a n) (carrier R)"
proof (rule inj_onI)
fix x y
assume R: "x \in carrier R" "y \in carrier R" and eq: "monom P x n = monom
P y n"
then have "coeff P (monom P x n) n = coeff P (monom P y n) n" by simp
with R show "x = y" by simp
qed
end

```

\subsection*{15.8 The Degree Function}

\section*{definition}
```

 deg :: "[('a, 'm) ring_scheme, nat => 'a] => nat"
    ```
    where \(" \operatorname{deg} R \mathrm{p}=\left(\right.\) LEAST n . bound \(\mathbf{0}_{\mathrm{R}} \mathrm{n}(\operatorname{coeff}(\) UP R) p\())\) "
context UP_ring
begin
lemma deg_aboveI:
    " [| (!!m. \(\mathrm{n}<\mathrm{m}==>\) coeff \(\mathrm{P} \mathrm{pm}=\mathbf{0}\) ); \(\mathrm{p} \in \operatorname{carrier~} \mathrm{P} \mid]==>\operatorname{deg} \mathrm{R} \mathrm{p}<=\)
n"
    by (unfold deg_def P_def) (fast intro: Least_le)
```

lemma deg_aboveD:
assumes "deg R p < m" and "p \in carrier P"
shows "coeff P p m = 0"
proof -
from $<\mathrm{p} \in$ carrier P > obtain n where "bound 0 n (coeff P p)"
by (auto simp add: UP_def P_def)
then have "bound 0 ($\operatorname{deg} R$ p) (coeff P p)"
by (auto simp: deg_def P_def dest: LeastI)
from this and <deg R p < m > show ?thesis ..
qed
lemma deg_belowI:
assumes non_zero: "n $\neq 0 \Longrightarrow$ coeff P p n $\neq 0$ "
and R : "p \in carrier $\mathrm{P} "$
shows " $\mathrm{n} \leq \operatorname{deg} \mathrm{R} \mathrm{p}$ "

- Logically, this is a slightly stronger version of deg_aboveD
proof (cases "n=0")
case True then show ?thesis by simp
next
case False then have "coeff P p n $\neq 0$ " by (rule non_zero)
then have " \neg deg $R \mathrm{p}<\mathrm{n}$ " by (fast dest: deg_aboveD intro: R)
then show ?thesis by arith
qed
lemma lcoeff_nonzero_deg:
assumes deg: "deg $R \quad p \neq 0$ " and R : " $p \in$ carrier $P "$
shows "coeff P p (deg R p) $\neq \mathbf{0}^{\prime \prime}$
proof -
from R obtain m where "deg $R \quad \leq m "$ and m_{-}coeff: "coeff $P \mathrm{p} m \neq 0$ "
proof -
have minus: " $\bigwedge(\mathrm{n}:$:nat) m. $\mathrm{n} \neq 0 \Longrightarrow(\mathrm{n}-$ Suc $0<m)=(\mathrm{n} \leq m) "$
by arith
from deg have "deg R p - 1 < (LEAST n. bound 0 n (coeff P p))"
by (unfold deg_def P_def) simp
then have " \neg bound 0 (deg R p - 1) (coeff P p)" by (rule not_less_Least)
then have $" \exists \mathrm{~m} . \operatorname{deg} \mathrm{R} p-1<\mathrm{m} \wedge$ coeff $\mathrm{P} p \mathrm{~m} \neq \mathbf{0}$ "
by (unfold bound_def) fast
then have $" \exists \mathrm{~m}$. deg $\mathrm{R} p \leq \mathrm{m} \wedge$ coeff $\mathrm{P} p \mathrm{~m} \neq 0$ " by (simp add: deg
minus)
then show ?thesis by (auto intro: that)
qed
with deg_belowI R have "deg $R \mathrm{p}=\mathrm{m}$ " by fastforce
with m_coeff show ?thesis by simp
qed
lemma lcoeff_nonzero_nonzero:

```
```

 assumes deg: "deg R p = 0" and nonzero: " p f= 0p" and R: "p f carrier
 P"
shows "coeff P p 0}\not=0
proof -
have "\existsm. coeff P p m = 0"
proof (rule classical)
assume "\neg ?thesis"
with R have "p = 0 P" by (auto intro: up_eqI)
with nonzero show ?thesis by contradiction
qed
then obtain m where coeff: "coeff P p m f= 0" ..
from this and R have "m s deg R p" by (rule deg_belowI)
then have "m = 0" by (simp add: deg)
with coeff show ?thesis by simp
qed
lemma lcoeff_nonzero:
assumes neq: "p f= Op" and R: "p \in carrier P"
shows "coeff P p (deg R p) f 0"
proof (cases "deg R p = O")
case True with neq R show ?thesis by (simp add: lcoeff_nonzero_nonzero)
next
case False with neq R show ?thesis by (simp add: lcoeff_nonzero_deg)
qed
lemma deg_eqI:
"[| \m. n < m C coeff P p m = 0;
\n. n \# 0 coeff P p n f=0; p c carrier P |] ==> deg R p =
n"
by (fast intro: le_antisym deg_aboveI deg_belowI)
Degree and polynomial operations

```
```

lemma deg_add [simp]:

```
lemma deg_add [simp]:
    "p \in carrier P \Longrightarrow q \in carrier P \Longrightarrow
    "p \in carrier P \Longrightarrow q \in carrier P \Longrightarrow
    deg R (p \oplusp q) \leq max ( deg R p) ( deg R q)"
    deg R (p \oplusp q) \leq max ( deg R p) ( deg R q)"
by(rule deg_aboveI)(simp_all add: deg_aboveD)
by(rule deg_aboveI)(simp_all add: deg_aboveD)
lemma deg_monom_le:
    "a \in carrier R\Longrightarrow deg R (monom P a n) \leq n"
    by (intro deg_aboveI) simp_all
lemma deg_monom [simp]:
    "[| a # 0; a \in carrier R |] ==> deg R (monom P a n) = n"
    by (fastforce intro: le_antisym deg_aboveI deg_belowI)
lemma deg_const [simp]:
    assumes R: "a \in carrier R" shows "deg R (monom P a 0) = 0"
proof (rule le_antisym)
    show "deg R (monom P a 0) \leq 0" by (rule deg_aboveI) (simp_all add:
```

R)
next
show " $0 \leq \operatorname{deg} R(m o n o m P$ a 0)" by (rule deg_belowI) (simp_all add:
R)
qed
lemma deg_zero [simp]:
"deg R $0_{p}=0 "$
proof (rule le_antisym)
show "deg $R 0_{P} \leq 0$ " by (rule deg_aboveI) simp_all
next
show " $0 \leq \operatorname{deg} R \mathbf{0}_{P}$ " by (rule deg_belowI) simp_all
qed
lemma deg_one [simp]:
"deg R $1_{\mathrm{P}}=0 "$
proof (rule le_antisym)
show "deg $R \mathbf{1}_{P} \leq 0$ " by (rule deg_aboveI) simp_all
next
show " $0 \leq \operatorname{deg} R 1$ P" by (rule deg_belowI) simp_all
qed
lemma deg_uminus [simp]:
assumes R: "p carrier P" shows "deg R ($\ominus p \mathrm{p}$) = $\operatorname{deg} R \mathrm{p}$ "
proof (rule le_antisym)
show "deg $R(\ominus p$ $) \leq \operatorname{deg} R p "$ by (simp add: deg_aboveI deg_aboveD R)
next
show $" \operatorname{deg} R p \leq \operatorname{deg} R\left(\ominus_{p} p\right)$ "
by (simp add: deg_belowI lcoeff_nonzero_deg inj_on_eq_iff [OF R.a_inv_inj, of _ "0", simplified] R)
qed
The following lemma is later overwritten by the most specific one for domains, deg_smult.

```
lemma deg_smult_ring [simp]:
    "[| a \in carrier R; p \in carrier P |] ==>
    deg R (a \odotp p) S (if a = 0 then 0 else deg R p)"
    by (cases "a = 0") (simp add: deg_aboveI deg_aboveD)+
end
context UP_domain
begin
lemma deg_smult [simp]:
    assumes R: "a \in carrier R" "p \in carrier P"
    shows "deg R (a \odotp p) = (if a = 0 then 0 else deg R p)"
proof (rule le_antisym)
```

```
    show "deg R (a }\mp@subsup{\odot}{P}{P
    using R by (rule deg_smult_ring)
next
    show "(if a = 0 then 0 else deg R p) S deg R (a }\mp@subsup{\odot}{p}{\prime
    proof (cases "a = 0")
    qed (simp, simp add: deg_belowI lcoeff_nonzero_deg integral_iff R)
qed
end
context UP_ring
begin
lemma deg_mult_ring:
    assumes R: "p \in carrier P" "q \in carrier P"
    shows "deg R (p \otimesp q) \leq deg R p + deg R q"
proof (rule deg_aboveI)
    fix m
    assume boundm: "deg R p + deg R q < m"
    {
        fix k i
        assume boundk: "deg R p + deg R q < k"
        then have "coeff P p i & coeff P q (k - i) = 0"
        proof (cases "deg R p < i")
            case True then show ?thesis by (simp add: deg_aboveD R)
            next
                case False with boundk have "deg R q < k - i" by arith
                then show ?thesis by (simp add: deg_aboveD R)
            qed
    }
    with boundm R show "coeff P (p \otimesp q) m = 0" by simp
qed (simp add: R)
end
context UP_domain
begin
lemma deg_mult [simp]:
    "[| p # = 0
    deg R (p \otimesp q) = deg R p + deg R q"
proof (rule le_antisym)
    assume "p \in carrier P" " q \in carrier P"
    then show "deg R (p \otimesp q) \leq deg R p + deg R q" by (rule deg_mult_ring)
next
    let ?s = "(\lambdai. coeff P p i \otimes coeff P q (deg R p + deg R q - i))"
    assume R: "p \in carrier P" "q \in carrier P" and nz: "p }=\mp@subsup{0}{\textrm{P}}{
    have less_add_diff: "!!(k::nat) n m. k < n ==> m < n + m - k" by arith
    show "deg R p + deg R q \leq deg R (p \otimesp q)"
```

```
    proof (rule deg_belowI, simp add: R)
        have "(\bigoplusi G {.. deg R p + deg R q}. ?s i)
            =(\bigoplusi}\in{..< deg R p} \cup{deg R p .. deg R p + deg R q}. ?s i)"
            by (simp only: ivl_disj_un_one)
    also have "... = (\bigoplusi G {deg R p .. deg R p + deg R q}. ?s i)"
                by (simp cong: R.finsum_cong add: R.finsum_Un_disjoint ivl_disj_int_one
                    deg_aboveD less_add_diff R Pi_def)
    also have "...= (\bigoplusi G {deg R p} \cup{deg R p <.. deg R p + deg R q}.
?s i)"
            by (simp only: ivl_disj_un_singleton)
    also have "... = coeff P p (deg R p) \otimes coeff P q (deg R q)"
        by (simp cong: R.finsum_cong add: deg_aboveD R Pi_def)
    finally have "(\bigoplusi \in{.. deg R p + deg R q}. ?s i)
        = coeff P p (deg R p) \otimes coeff P q (deg R q)" .
    with nz show "(\bigoplusi \in {.. deg R p + deg R q}. ?s i) }\not=
        by (simp add: integral_iff lcoeff_nonzero R)
    qed (simp add: R)
qed
end
```

The following lemmas also can be lifted to UP_ring.

```
context UP_ring
begin
lemma coeff_finsum:
    assumes fin: "finite A"
    shows "p 
        coeff P (finsum P p A) k = (\bigoplusi G A. coeff P (p i) k)"
    using fin by induct (auto simp: Pi_def)
lemma up_repr:
    assumes R: "p \in carrier P"
    shows "(\bigoplusp i \in {..deg R p}. monom P (coeff P p i) i) = p"
proof (rule up_eqI)
    let ?s = "(\lambdai. monom P (coeff P p i) i)"
    fix k
    from R have RR: "!!i. (if i = k then coeff P p i else 0) f carrier
R"
            by simp
    show "coeff P ( Ө p i \in {..deg R p}. ?s i) k = coeff P p k"
    proof (cases "k \leq deg R p")
            case True
            hence "coeff P ( Өp i \in {..deg R p}. ?s i) k =
                coeff P (\bigoplusp i }\in{..k} \cup {k<..deg R p}. ?s i) k"
            by (simp only: ivl_disj_un_one)
            also from True
            have "... = coeff P (\bigoplusP i \in {..k}. ?s i) k"
            by (simp cong: R.finsum_cong add: R.finsum_Un_disjoint
```

```
                ivl_disj_int_one order_less_imp_not_eq2 coeff_finsum R RR Pi_def)
        also
        have "... = coeff P (\bigoplusp i \in {..<k} U {k}. ?s i) k"
        by (simp only: ivl_disj_un_singleton)
        also have "... = coeff P p k"
        by (simp cong: R.finsum_cong add: coeff_finsum deg_aboveD R RR Pi_def)
        finally show ?thesis .
    next
        case False
        hence "coeff P (\bigoplus P i \in {..deg R p}. ?s i) k =
                coeff P ( Өp i G {..<deg R p} U {deg R p}. ?s i) k"
            by (simp only: ivl_disj_un_singleton)
    also from False have "... = coeff P p k"
        by (simp cong: R.finsum_cong add: coeff_finsum deg_aboveD R Pi_def)
        finally show ?thesis .
    qed
qed (simp_all add: R Pi_def)
lemma up_repr_le:
    "[| deg R p <= n; p G carrier P |] ==>
    (\bigoplusp i \in {..n}. monom P (coeff P p i) i) = p"
proof -
    let ?s = "(\lambdai. monom P (coeff P p i) i)"
    assume R: "p \in carrier P" and "deg R p <= n"
    then have "finsum P ?s {..n} = finsum P ?s ({..deg R p} U {deg R p<..n})"
        by (simp only: ivl_disj_un_one)
    also have "... = finsum P ?s {..deg R p}"
        by (simp cong: P.finsum_cong add: P.finsum_Un_disjoint ivl_disj_int_one
            deg_aboveD R Pi_def)
    also have "... = p" using R by (rule up_repr)
    finally show ?thesis .
qed
end
```


15.9 Polynomials over Integral Domains

```
lemma domainI:
    assumes cring: "cring R"
        and one_not_zero: "one R \not= zero R"
        and integral: "\a b. [l mult R a b = zero R; a \in carrier R;
            b \in carrier R |] ==> a = zero R V b = zero R"
    shows "domain R"
    by (auto intro!: domain.intro domain_axioms.intro cring.axioms assms
        del: disjCI)
context UP_domain
begin
```

```
lemma UP_one_not_zero:
    "1
proof
    assume "1 1P = 0
    hence "coeff P 1P O = (coeff P 0P 0)" by simp
    hence "1 = 0" by simp
    with R.one_not_zero show "False" by contradiction
qed
lemma UP_integral:
    "[| p \otimes P q = 0 0 ; p \in carrier P; q \in carrier P | | ==> p = 0
proof -
    fix p q
    assume pq: "p \otimesp q = 0
    show "p = 0p \vee q = 0 P"
    proof (rule classical)
        assume c: "\neg(p = 0
        with R have "deg R p + deg R q = deg R (p \otimesp q)" by simp
        also from pq have "... = 0" by simp
        finally have "deg R p + deg R q = 0".
        then have f1: "deg R p = 0 ^ deg R q = 0" by simp
        from f1 R have "p = (\bigoplusp i \in {..0}. monom P (coeff P p i) i)"
            by (simp only: up_repr_le)
        also from R have "... = monom P (coeff P p 0) 0" by simp
        finally have p: "p = monom P (coeff P p 0) 0" .
        from f1 R have "q = ( Өp i \in {..0}. monom P (coeff P q i) i)"
                by (simp only: up_repr_le)
            also from R have "... = monom P (coeff P q 0) 0" by simp
            finally have q: "q = monom P (coeff P q 0) 0" .
            from R have "coeff P p 0 \otimes coeff P q 0 = coeff P (p \otimesp q) 0" by
simp
            also from pq have "... = 0" by simp
            finally have "coeff P p 0 & coeff P q 0 = 0" .
            with R have "coeff P p 0 = 0 V coeff P q 0 = 0"
                by (simp add: R.integral_iff)
            with p q show "p = 0p \vee q = 0p" by fastforce
    qed
qed
theorem UP_domain:
    "domain P"
    by (auto intro!: domainI UP_cring UP_one_not_zero UP_integral del: disjCI)
end
Interpretation of theorems from domain.
```

```
sublocale UP_domain < "domain" P
```

sublocale UP_domain < "domain" P
by intro_locales (rule domain.axioms UP_domain)+

```
    by intro_locales (rule domain.axioms UP_domain)+
```

```
15.10 The Evaluation Homomorphism and Universal Prop-
    erty
lemma (in abelian_monoid) boundD_carrier:
    "[| bound 0 n f; n < m |] ==> f m \in carrier G"
    by auto
context ring
begin
theorem diagonal_sum:
    "[| f \in {..n + m::nat} -> carrier R; g \in {..n + m} -> carrier R |] ==>
    (\bigoplusk\in{..n + m}. \bigoplusi \in {..k}. f i \otimesg (k - i)) =
    (\bigoplusk\in{..n + m}. \bigoplusi \in{..n + m - k}. f k \otimes g i)"
proof -
    assume Rf: "f \in{..n + m} -> carrier R" and Rg: "g \in {..n + m} ->
carrier R"
    {
        fix j
        have "j <= n + m ==>
            (\bigoplusk\in{..j}. \bigoplusi \in{..k}. f i \otimesg(k - i)) =
            (\oplusk\in{..j}. \bigoplusi \in{..j - k}.f k | g i)"
        proof (induct j)
            case O from Rf Rg show ?case by (simp add: Pi_def)
        next
            case (Suc j)
            have R6: "!!i k. [l k <= j; i <= Suc j - k l] ==> g i G carrier
R"
            using Suc by (auto intro!: funcset_mem [OF Rg])
        have R8: "!!i k. [l k <= Suc j; i <= k l] ==> g (k - i) E carrier
R"
            using Suc by (auto intro!: funcset_mem [OF Rg])
            have R9: "!!i k. [l k <= Suc j l] ==> f k \in carrier R"
                            using Suc by (auto intro!: funcset_mem [OF Rf])
            have R10: "!!i k. [l k <= Suc j; i <= Suc j - k l] ==> g i \in carrier
R"
            using Suc by (auto intro!: funcset_mem [OF Rg])
            have R11: "g 0 G carrier R"
                    using Suc by (auto intro!: funcset_mem [OF Rg])
            from Suc show ?case
                            by (simp cong: finsum_cong add: Suc_diff_le a_ac
                    Pi_def R6 R8 R9 R10 R11)
        qed
    }
    then show ?thesis by fast
qed
theorem cauchy_product:
    assumes bf: "bound 0 n f" and bg: "bound 0 m g"
        and Rf: "f \in {..n} -> carrier R" and Rg: "g \in {..m} -> carrier R"
```

```
    shows "(\bigoplusk\in{..n + m}. \bigoplusi \in {..k}. f i \otimes g (k - i)) =
    (\bigoplusi\in{..n}. f i) \otimes (\bigoplusi \in {..m}.gi)"
proof -
    have f: "!!x. f x \in carrier R"
    proof -
        fix x
        show "f x \in carrier R"
        using Rf bf boundD_carrier by (cases "x <= n") (auto simp: Pi_def)
    qed
    have g: "!!x. g x \in carrier R"
    proof -
        fix x
        show "g x \in carrier R"
        using Rg bg boundD_carrier by (cases "x <= m") (auto simp: Pi_def)
    qed
    from f g have "(\bigoplusk \in {..n + m}. \bigoplusi \in {..k}. f i \otimes g (k - i)) =
        (\bigoplusk\in{..n + m}. \bigoplusi \in{..n + m - k}. f k \otimes g i)"
        by (simp add: diagonal_sum Pi_def)
    also have "... = (\bigoplusk \in{..n} \cup{n<..n + m}. \bigoplusi \in{..n +m - k}.
f k & g i)"
            by (simp only: ivl_disj_un_one)
    also from f g have "... = (\bigoplusk \in {..n}. \bigoplusi \in {..n + m - k}.f k &
g i)"
    by (simp cong: finsum_cong
        add: bound.bound [OF bf] finsum_Un_disjoint ivl_disj_int_one Pi_def)
    also from f g
    have "... = (\bigoplusk \in {..n}. \bigoplusi \in {..m} \cup {m<..n + m - k}. f k \otimes g i)"
        by (simp cong: finsum_cong add: ivl_disj_un_one le_add_diff Pi_def)
    also from f g have "... = (\bigoplusk f {..n}. \bigoplusi \in {..m}. f k \otimes g i)"
        by (simp cong: finsum_cong
            add: bound.bound [OF bg] finsum_Un_disjoint ivl_disj_int_one Pi_def)
    also from f g have "... = (\bigoplusi \in {..n}. f i) \otimes (\bigoplusi \in {..m}.g i)"
    by (simp add: finsum_ldistr diagonal_sum Pi_def,
                simp cong: finsum_cong add: finsum_rdistr Pi_def)
    finally show ?thesis .
qed
end
lemma (in UP_ring) const_ring_hom:
    "(\lambdaa. monom P a 0) \in ring_hom R P"
    by (auto intro!: ring_hom_memI intro: up_eqI simp: monom_mult_is_smult)
definition
    eval :: "[('a, 'm) ring_scheme, ('b, 'n) ring_scheme,
        'a => 'b, 'b, nat => 'a] => 'b"
    where "eval R S phi s = ( }\lambda\textrm{p}\in\mathrm{ carrier (UP R).
        \bigoplus\mp@code{Si}}\in{..deg R p}. phi (coeff (UP R) p i) 目 s [^] [ i)"
```

```
context UP
begin
lemma eval_on_carrier:
    fixes S (structure)
    shows "p \in carrier P ==>
    eval R S phi s p = ( }\mp@subsup{\bigoplus}{S}{S}i\in{..deg R p}. phi (coeff P p i) * *S s [^] [
i)"
    by (unfold eval_def, fold P_def) simp
lemma eval_extensional:
    "eval R S phi p G extensional (carrier P)"
    by (unfold eval_def, fold P_def) simp
end
```

The universal property of the polynomial ring
locale UP_pre_univ_prop = ring_hom_cring + UP_cring
locale UP_univ_prop = UP_pre_univ_prop +
fixes s and Eval
assumes indet_img_carrier [simp, intro]: "s \in carrier S"
defines Eval_def: "Eval == eval R S h s"

JE: I have moved the following lemma from Ring.thy and lifted then to the locale ring_hom_ring from ring_hom_cring.

JE: I was considering using it in eval_ring_hom, but that property does not hold for non commutative rings, so maybe it is not that necessary.

```
lemma (in ring_hom_ring) hom_finsum [simp]:
    "f \in A }->\mathrm{ carrier R }
    h (finsum R f A) = finsum S (h O f) A"
    by (induct A rule: infinite_finite_induct, auto simp: Pi_def)
context UP_pre_univ_prop
begin
theorem eval_ring_hom:
    assumes S: "s \in carrier S"
    shows "eval R S h s \in ring_hom P S"
proof (rule ring_hom_memI)
    fix p
    assume R: "p \in carrier P"
    then show "eval R S h s p \in carrier S"
        by (simp only: eval_on_carrier) (simp add: S Pi_def)
next
    fix p q
    assume R: "p \in carrier P" "q \in carrier P"
```

```
    then show "eval R S h s (p \oplusp q) = eval R S h s p }\mp@subsup{\oplus}{S}{}\mathrm{ eval R S h s
q"
    proof (simp only: eval_on_carrier P.a_closed)
        from S R have
```



```
=
            (}\mp@subsup{\bigoplus}{S}{}i\in{..deg R (p \oplusp q)} U{deg R (p \oplus P q)<..max (deg R p) (deg
R q)}.
            h (coeff P (p \oplusp q) i) }\mp@subsup{\otimes}{S}{S
            by (simp cong: S.finsum_cong
                add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def del:
coeff_add)
            also from R have "... =
                    (}\mp@subsup{\bigoplus}{S}{}i={..max (deg R p) (deg R q)}
```



```
            by (simp add: ivl_disj_un_one)
        also from R S have "... =
```



```
\oplus
            ( అsi\in{..max (deg R p) (deg R q)}. h (coeff P q i) *S s [^] S i)"
            by (simp cong: S.finsum_cong
                add: S.l_distr deg_aboveD ivl_disj_int_one Pi_def)
        also have "... =
            (\bigoplusS i }\in{...deg R p} \cup{deg R p<..max (deg R p) (deg R q)}
                h (coeff P p i) }\mp@subsup{\otimes}{S}{}s\mp@subsup{s}{[}{[}\mp@subsup{]}{S}{}\mathrm{ i) }\mp@subsup{\oplus}{S}{
                    (\bigoplusS i }\in{...deg R q} \cup {deg R q<..max (deg R p) (deg R q)}
                        h (coeff P q i) }\mp@subsup{\otimes}{S}{
            by (simp only: ivl_disj_un_one max.cobounded1 max.cobounded2)
        also from R S have "... =
```



```
            (}\mp@subsup{\bigoplus}{S i }{\mathrm{ i {..deg R q}. h (coeff P q i) }\mp@subsup{\otimes}{S}{} s [^^]S i)"
            by (simp cong: S.finsum_cong
                add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def)
        finally show
```



```
i) =
            (\bigoplus\mp@subsup{S}{}{i}\in{..deg R p}. h (coeff P p i) )}\mp@subsup{\otimes}{S}{
            (\bigoplussi \in {..deg R q}. h (coeff P q i) *S s [^]S i)".
    qed
next
    show "eval R S h s 1P = 1S"
        by (simp only: eval_on_carrier UP_one_closed) simp
next
    fix p q
    assume R: "p \in carrier P" "q \in carrier P"
    then show "eval R S h s (p \otimesp q) = eval R S h s p | eval R S h s
q"
    proof (simp only: eval_on_carrier UP_mult_closed)
        from R S have
```

```
    "(అ)
i) =
    (\bigoplusS i }\in{..deg R (p \otimesp q)} U{deg R (p \otimesp q)<..deg R p + deg
R q}.
            h (coeff P (p \otimesp q) i) }\mp@subsup{\otimes}{S}{S
            by (simp cong: S.finsum_cong
                add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def
                del: coeff_mult)
    also from R have "... =
```



```
i)"
    by (simp only: ivl_disj_un_one deg_mult_ring)
    also from R S have "... =
            (\bigopluss i }\in{...deg R p + deg R q}
                        # k f {..i}.
                        h (coeff P p k) }\mp@subsup{\otimes}{\textrm{S}}{\textrm{h}}\mathrm{ (coeff P q (i - k)) }\mp@subsup{\otimes}{\textrm{S}}{
                        (s [^] S k 新 s [^] S (i - k)))"
        by (simp cong: S.finsum_cong add: S.nat_pow_mult Pi_def
            S.m_ac S.finsum_rdistr)
            also from R S have "... =
```



```
            (\bigopluss i\in{..deg R q}. h (coeff P q i) }\mp@subsup{\otimes}{S}{
            by (simp add: S.cauchy_product [THEN sym] bound.intro deg_aboveD
S.m_ac
            Pi_def)
            finally show
```



```
i) =
            (}\mp@subsup{\bigoplus}{S}{}i\mp@code{{ {..deg R p}. h (coeff P p i) }\mp@subsup{\otimes}{S}{
            (\bigoplusS i \in {..deg R q}. h (coeff P q i) }\mp@subsup{\otimes}{S}{
        qed
qed
```

The following lemma could be proved in UP_cring with the additional assumption that h is closed.
lemma (in UP_pre_univ_prop) eval_const:

h r"
by (simp only: eval_on_carrier monom_closed) simp

Further properties of the evaluation homomorphism.
The following proof is complicated by the fact that in arbitrary rings one might have $1=0$.
lemma (in UP_pre_univ_prop) eval_monom1:
assumes S: "s \in carrier S"
shows "eval R S h s (monom P 1 1) = s"
proof (simp only: eval_on_carrier monom_closed R.one_closed)
from S have

```
    "(\bigoplusS i\in{..deg R (monom P 1 1)}. h (coeff P (monom P 1 1) i) * }\mp@subsup{|}{S}{
[^}\mp@subsup{]}{S i) =}{
    (\bigopluss i\in{..deg R (monom P 1 1)} U{deg R (monom P 1 1)<..1}.
        h (coeff P (monom P 1 1) i) }\mp@subsup{\otimes}{S}{
    by (simp cong: S.finsum_cong del: coeff_monom
        add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def)
    also have "... =
```



```
            by (simp only: ivl_disj_un_one deg_monom_le R.one_closed)
    also have "... = s"
    proof (cases "s = 0
        case True then show ?thesis by (simp add: Pi_def)
    next
        case False then show ?thesis by (simp add: S Pi_def)
    qed
    finally show "(\bigopluss i \in {..deg R (monom P 1 1)}.
        h (coeff P (monom P 1 1) i) }\mp@subsup{\otimes}{S}{}s\mp@subsup{s}{[^]}{S
qed
end
Interpretation of ring homomorphism lemmas.
sublocale UP_univ_prop < ring_hom_cring P S Eval
    unfolding Eval_def
    by unfold_locales (fast intro: eval_ring_hom)
lemma (in UP_cring) monom_pow:
    assumes R: "a }\in\mathrm{ carrier R"
    shows "(monom P a n) [^^] P m = monom P (a [^] m) (n * m)"
proof (induct m)
    case 0 from R show ?case by simp
next
    case Suc with R show ?case
        by (simp del: monom_mult add: monom_mult [THEN sym] add.commute)
qed
lemma (in ring_hom_cring) hom_pow [simp]:
    "x G carrier R ==> h (x [^] n) = h x [^] S (n::nat)"
    by (induct n) simp_all
lemma (in UP_univ_prop) Eval_monom:
    "r \in carrier R ==> Eval (monom P r n) = h r @ S s [^] S n"
proof -
    assume R: "r \in carrier R"
    from R have "Eval (monom P r n) = Eval (monom P r 0 \otimes P (monom P 1 1)
[^}\mp@subsup{]}{\textrm{P}}{~
            by (simp del: monom_mult add: monom_mult [THEN sym] monom_pow)
    also
    from R eval_monom1 [where s = s, folded Eval_def]
```

```
    have "... = h r * S s [^] S n"
    by (simp add: eval_const [where s = s, folded Eval_def])
    finally show ?thesis .
qed
lemma (in UP_pre_univ_prop) eval_monom:
    assumes R: "r \in carrier R" and S: "s \in carrier S"
    shows "eval R S h s (monom P r n) = h r * S s [^] S n"
proof -
    interpret UP_univ_prop R S h P s "eval R S h s"
            using UP_pre_univ_prop_axioms P_def R S
            by (auto intro: UP_univ_prop.intro UP_univ_prop_axioms.intro)
    from R
    show ?thesis by (rule Eval_monom)
qed
lemma (in UP_univ_prop) Eval_smult:
    "[| r \in carrier R; p \in carrier P |] ==> Eval (r \odotp p) = h r \otimesS Eval
p"
proof -
    assume R: "r carrier R" and P: "p \in carrier P"
    then show ?thesis
        by (simp add: monom_mult_is_smult [THEN sym]
            eval_const [where s = s, folded Eval_def])
qed
lemma ring_hom_cringI:
    assumes "cring R"
        and "cring S"
        and "h \in ring_hom R S"
    shows "ring_hom_cring R S h"
    by (fast intro: ring_hom_cring.intro ring_hom_cring_axioms.intro
        cring.axioms assms)
context UP_pre_univ_prop
begin
lemma UP_hom_unique:
    assumes "ring_hom_cring P S Phi"
    assumes Phi: "Phi (monom P 1 (Suc 0)) = s"
        "!!r. r \in carrier R ==> Phi (monom P r 0) = h r"
    assumes "ring_hom_cring P S Psi"
    assumes Psi: "Psi (monom P 1 (Suc 0)) = s"
        "!!r. r \in carrier R ==> Psi (monom P r 0) = h r"
        and P: "p \in carrier P" and S: "s \in carrier S"
    shows "Phi p = Psi p"
proof -
    interpret ring_hom_cring P S Phi by fact
    interpret ring_hom_cring P S Psi by fact
```

```
    have "Phi p =
        Phi (\bigoplusP i \in {..deg R p}. monom P (coeff P p i) 0 \otimesp monom P 1
1 [^}\mp@subsup{]}{\textrm{p}}{~}\mathrm{ i)"
            by (simp add: up_repr P monom_mult [THEN sym] monom_pow del: monom_mult)
    also
    have "... =
                Psi ( }\mp@subsup{\bigoplus}{P}{}i\in{..deg R p}. monom P (coeff P p i) 0 \otimesp monom P 1 1
[^]p i)"
            by (simp add: Phi Psi P Pi_def comp_def)
    also have "... = Psi p"
            by (simp add: up_repr P monom_mult [THEN sym] monom_pow del: monom_mult)
    finally show ?thesis .
qed
lemma ring_homD:
    assumes Phi: "Phi \in ring_hom P S"
    shows "ring_hom_cring P S Phi"
    by unfold_locales (rule Phi)
theorem UP_universal_property:
    assumes S: "s \in carrier S"
    shows " ! Phi. Phi \in ring_hom P S \cap extensional (carrier P) ^
        Phi (monom P 1 1) = s ^
        (}\forallr\incarrier R. Phi (monom P r 0) = h r)"
    using S eval_monom1
    apply (auto intro: eval_ring_hom eval_const eval_extensional)
    apply (rule extensionalityI)
    apply (auto intro: UP_hom_unique ring_homD)
    done
end
JE: The following lemma was added by me; it might be even lifted to a simpler locale
context monoid
begin
lemma nat_pow_eone[simp]: assumes x_in_G: "x \(\in\) carrier \(G\) " shows "x
[^] (1::nat) = x"
    using nat_pow_Suc [of x 0] unfolding nat_pow_0 [of x] unfolding l_one
[OF x_in_G] by simp
end
```

```
context UP_ring
```

context UP_ring
begin
abbreviation lcoeff :: "(nat =>'a) => 'a" where "lcoeff p == coeff P p (deg R p)"

```
lemma lcoeff_nonzero2: assumes p_in_R: "p \(\in\) carrier P" and p_not_zero: " \(p \neq 0_{\mathrm{P}}\) " shows "lcoeff \(\mathrm{p} \neq 0\) "
using lcoeff_nonzero [OF p_not_zero p_in_R] .

\subsection*{15.11 The long division algorithm: some previous facts.}
```

lemma coeff_minus [simp]:
assumes p: "p \in carrier P" and q: "q \in carrier P"
shows "coeff P (p Өp q) n = coeff P p n \ominus coeff P q n"
by (simp add: a_minus_def p q)

```
lemma lcoeff_closed [simp]: assumes p: "p \(\in\) carrier P" shows "lcoeff
\(\mathrm{p} \in\) carrier \(\mathrm{R}^{\prime \prime}\)
    using coeff_closed [OF p, of "deg R p"] by simp
lemma deg_smult_decr: assumes a_in_R: "a \(\in\) carrier R" and f_in_P: "f
\(\in\) carrier \(P\) " shows "deg \(R\left(a \odot_{p} f\right) \leq \operatorname{deg} R f "\)
    using deg_smult_ring [OF a_in_R f_in_P] by (cases "a = 0", auto)
lemma coeff_monom_mult: assumes R: "c \(\in\) carrier R" and P: "p \(\in\) carrier
P"

proof -
    have "coeff P (monom P c \(\mathrm{n} \otimes \mathrm{p} \mathrm{p}\) ) ( \(\mathrm{m}+\mathrm{n}\) ) \(=(\bigoplus i \in\{. . \mathrm{m}+\mathrm{n}\}\). (if \(\mathrm{n}=\)
i then \(c\) else 0\() \otimes\) coeff \(P\) p ( \(m+n-i){ }^{\prime}\)
            unfolding coeff_mult [OF monom_closed [OF R, of \(n\) ] \(P\), of "m + n"]
unfolding coeff_monom [OF \(R\), of \(n\) ] by simp
    also have " \((\bigoplus i \in\{. . m+n\}\). (if \(n=i\) then \(c\) else 0\() \otimes\) coeff \(P\) p (m
\(+\mathrm{n}-\mathrm{i})\) ) \(=\)
            ( \(\bigoplus i \in\{. . m+n\}\). (if \(n=i\) then \(c \otimes\) coeff \(P\) p ( \(m+n-i\) ) else 0\()\) )"
            using R.finsum_cong [of "\{..m + n\}" "\{..m + n\}" "( \(\lambda i\) : :nat. (if \(n\)
\(=i\) then \(c\) else 0\() \otimes\) coeff \(P\) p ( \(m+n-i)) "\)
                " ( \(\lambda i\) : : nat. (if \(n=i\) then \(c \otimes\) coeff \(P\) p (m + n - i) else 0))"]
            using coeff_closed [OF P] unfolding Pi_def simp_implies_def using
\(R\) by auto
    also have "... = c \(\otimes\) coeff P p m" using R.finsum_singleton [of n "\{..m
+ n\}" "( \(\lambda \mathrm{i} . \mathrm{c} \otimes \operatorname{coeff} \mathrm{P}\) p (m + n - i))"]
            unfolding Pi_def using coeff_closed [OF P] using P R by auto
    finally show ?thesis by simp
qed
lemma deg_lcoeff_cancel:
    assumes p_in_P: "p carrier P" and q_in_P: "q \(\in\) carrier P" and r_in_P:
" \(r \in\) carrier \(P "\)
    and deg_r_nonzero: "deg R r \(\neq 0\) "
    and deg_R_p: "deg R p \(\leq \operatorname{deg} R r "\) and \(\operatorname{deg}_{-} R_{-} q: ~ " d e g ~ R ~ q \leq \operatorname{deg} R r "\)
    and coeff_R_p_eq_q: "coeff P p (deg R r) \(=\ominus_{R}(\operatorname{coeff} \mathrm{P} q(\operatorname{deg} R \mathrm{r})\) )"
    shows "deg \(R(p \nsubseteq p q)<\operatorname{deg} R r "\)
```

proof -
have deg_le: "deg $R(p \oplus p q) \leq \operatorname{deg} R r "$
proof (rule deg_aboveI)
fix m
assume deg_r_le: "deg R r < m"
show "coeff $P(p \oplus p q) m=0 "$
proof -
have slp: "deg R p < m" and "deg $R ~ q ~<~ m " ~ u s i n g ~ d e g _R _p ~ d e g _R _q ~$
using deg_r_le by auto
then have max_sl: "max ($\operatorname{deg} R \mathrm{p}$) ($\operatorname{deg} R \mathrm{q}$) < m" by simp
then have "deg $R\left(p \oplus_{p} q\right)<m "$ using deg_add [OF p_in_P q_in_P]
by arith
with deg_R_p deg_R_q show ?thesis using coeff_add [OF p_in_P q_in_P,
of m]
using deg_aboveD [of "p $\oplus \mathrm{p}$ q" m] using p_in_P q_in_P by simp
qed
qed (simp add: p_in_P q_in_P)
moreover have deg_ne: $\operatorname{deg} R(p \oplus p q) \neq \operatorname{deg} R r "$
proof (rule ccontr)
assume nz: " $\neg \operatorname{deg} R\left(p \oplus_{p} q\right) \neq \operatorname{deg} R r$ " then have deg_eq: "deg
$R(p \oplus p q)=\operatorname{deg} R r "$ by simp
from deg_r_nonzero have r_nonzero: "r $\neq \mathbf{0}_{\mathrm{P}}$ " by (cases "r = $\mathbf{0}_{\mathrm{P}}$ ",
simp_all)
have "coeff $P\left(p \oplus_{p} q\right.$) (deg $\left.R \quad r\right)=0_{R}$ " using coeff_add [OF p_in_P
q_in_P, of "deg $R \quad r "]$ using coeff_R_p_eq_q
using coeff_closed [OF p_in_P, of "deg R r"] coeff_closed [OF q_in_P,
of "deg R r"] by algebra
with lcoeff_nonzero [OF r_nonzero r_in_P] and deg_eq show False
using lcoeff_nonzero [of "p $\oplus_{p} q$ "] using p_in_P q_in_P
using deg_r_nonzero by (cases "p $\oplus_{p} q \neq 0 \mathrm{p}$ ", auto)
qed
ultimately show ?thesis by simp
qed
lemma monom_deg_mult:
assumes f_in_P: "f \in carrier $P "$ and g_in_P: "g carrier P" and deg_le:
"deg R g $\leq \operatorname{deg} R f "$
and a_in_R: "a \in carrier R"
shows "deg $R\left(g \otimes_{p}\right.$ monom P a ($\left.\operatorname{deg} R f-\operatorname{deg} R g\right)$) $\leq \operatorname{deg} R f "$
using deg_mult_ring [OF g_in_P monom_closed [OF a_in_R, of "deg R f

- deg R g"]]
apply (cases "a = 0") using g_in_P apply simp
using deg_monom [OF _ a_in_R, of "deg R f - deg R g"] using deg_le by
simp
lemma deg_zero_impl_monom:
assumes f_in_P: "f \in carrier P " and $\operatorname{deg}_{-} f: ~ " d e g R f=0 "$
shows "f = monom P (coeff P f 0) 0"
apply (rule up_eqI) using coeff_monom [OF coeff_closed [OF f_in_P],

```
```

of 0 0]
using f_in_P deg_f using deg_aboveD [of f _] by auto

```
end

\subsection*{15.12 The long division proof for commutative rings}
```

context UP_cring
begin

```
```

lemma exI3: assumes exist: "Pred x y z"

```
lemma exI3: assumes exist: "Pred x y z"
    shows "\exists x y z. Pred x y z"
    shows "\exists x y z. Pred x y z"
    using exist by blast
```

 using exist by blast
    ```

Jacobson's Theorem 2.14
```

lemma long_div_theorem:
assumes g_in_P [simp]: "g \in carrier P" and f_in_P [simp]: "f \in carrier
P"
and g_not_zero: "g $\neq 0_{\mathrm{P}}$ "
shows " $\exists \mathrm{q}$ r (k: nat). ($q \in$ carrier P) $\wedge(r \in$ carrier $P) \wedge$ (lcoeff
g) $\left[{ }^{\wedge}\right]_{R} k \odot_{p} f=g \otimes_{p} q \oplus_{p} r \wedge\left(r=0_{p} \vee \operatorname{deg} R r<\operatorname{deg} R g\right) "$
using f_in_P
proof (induct "deg R f" arbitrary: "f" rule: nat_less_induct)
case (1 f)
note f_in_P [simp] = "1.prems"
let ?pred $=$ " (λ q r (k: nat) .
($q \in$ carrier $P) \wedge(r \in$ carrier $P)$
\wedge (lcoeff g) $\left[^{\wedge}\right]_{\mathrm{R}} \mathrm{k} \odot_{\mathrm{p}} \mathrm{f}=\mathrm{g} \otimes_{\mathrm{p}} \mathrm{q} \oplus_{\mathrm{p}} \mathrm{r} \wedge\left(\mathrm{r}=\mathbf{0}_{\mathrm{P}} \vee \operatorname{deg} \mathrm{R} \mathrm{r}<\operatorname{deg} \mathrm{R}\right.$
g))"
let $? l \mathrm{lg}=$ "lcoeff $\mathrm{g} "$ and $? 1 \mathrm{f}=$ "lcoeff f"
show ?case
proof (cases "deg $R \mathrm{f}<\operatorname{deg} \mathrm{R}$ g")
case True
have "?pred $0_{p} f 0$ " using True by force
then show ?thesis by blast
next
case False then have deg_g_le_deg_f: "deg R g $\leq \operatorname{deg} R f "$ by simp
\{
let ?k = "1::nat"
let ?f1 = " $\left(\mathrm{g} \otimes_{\mathrm{p}}(\right.$ monom $\left.P(? 1 f)(\operatorname{deg} R f-\operatorname{deg} R \mathrm{~g}))\right) \oplus_{\mathrm{p}} \ominus_{\mathrm{p}}(? \mathrm{lg}$
\odot_{p} f)"
let $? q=$ "monom $P(? l f)(\operatorname{deg} R f-\operatorname{deg} R g) "$
have f1_in_carrier: "?f1 \in carrier P " and q_in_carrier: "?q \in carrier
P" by simp_all
show ?thesis
proof (cases "deg R f = 0")
case True
\{
have deg_g: "deg $R \mathrm{~g}=0$ " using True using deg_g_le_deg_f by

```
```

simp
have "?pred f 0p 1"
using deg_zero_impl_monom [OF g_in_P deg_g]
using sym [OF monom_mult_is_smult [OF coeff_closed [OF g_in_P,
of 0] f_in_P]]
using deg_g by simp
then show ?thesis by blast
}
next
case False note deg_f_nzero = False
{
have exist: "lcoeff g [^] ?k \odotp f = g \otimesp ?q }\mp@subsup{\oplus}{\textrm{p}}{~}\mp@subsup{\ominus}{\textrm{p}}{\prime} ?f1
by (simp add: minus_add r_neg sym [
OF a_assoc [of "g \otimesp ?q" "}\mp@subsup{\ominus}{p}{}(g\mp@subsup{\otimes}{p}{} ?q)" "lcoeff g \odot f f"]]),
have deg_remainder_l_f: "deg R (}\mp@subsup{\rho}{p}{\prime}\mathrm{ ?f1) < deg R f"
proof (unfold deg_uminus [OF f1_in_carrier])
show "deg R ?f1 < deg R f"
proof (rule deg_lcoeff_cancel)
show "deg R (}\mp@subsup{\mp@code{p}}{(}{(?lg}\mp@subsup{\rho}{p}{\prime}f))\leq\operatorname{deg R f"
using deg_smult_ring [of ?lg f]
using lcoeff_nonzero2 [OF g_in_P g_not_zero] by simp
show "deg R (g \otimesp ?q) S deg R f"
by (simp add: monom_deg_mult [OF f_in_P g_in_P deg_g_le_deg_f,
of ?lf])
show "coeff P (g \otimesp ?q) (deg R f) = }\ominus\mathrm{ coeff P (}\mp@subsup{\ominus}{P}{\prime}(?l
\odotp f)) (deg R f)"
unfolding coeff_mult [OF g_in_P monom_closed
[OF lcoeff_closed [OF f_in_P],
of "deg R f - deg R g"], of "deg R f"]
unfolding coeff_monom [OF lcoeff_closed
[OF f_in_P], of "(deg R f - deg R g)"]
using R.finsum_cong' [of "{..deg R f}" "{..deg R f}"
"(\lambdai. coeff P g i \otimes (if deg R f - deg R g = deg R f

- i then ?lf else 0))"
"(\lambdai. if deg R g = i then coeff P g i \otimes ?lf else 0)"]
using R.finsum_singleton [of "deg R g" "{.. deg R f}"
"(\lambdai. coeff P g i @ ?lf)"]
unfolding Pi_def using deg_g_le_deg_f by force
qed (simp_all add: deg_f_nzero)
qed
then obtain q' r' k'
where rem_desc: "?lg [^] (k'::nat) }\mp@subsup{\odot}{\textrm{p}}{}(\mp@subsup{\ominus}{\textrm{p}}{
\oplusp r'"
and rem_deg: "(r' = 0}\mp@subsup{\mathbf{0}}{P}{}\vee\operatorname{deg R r' < deg R g)"
and q'_in_carrier: "q' \in carrier P" and r'_in_carrier: "r'
\epsilon carrier P"
using "1.hyps" using f1_in_carrier by blast
show ?thesis
proof (rule exI3 [of _ "((?lg [^] k') \odotp ?q \oplusp q')" r' "Suc

```
```

k'"], intro conjI)
show "(?lg [^] (Suc k')) }\mp@subsup{\odot}{\textrm{p}}{}\textrm{f}=\textrm{g}\mp@subsup{\otimes}{\textrm{p}}{(}((?lg [^] k') \odot © ?
\oplusp q') \oplusp r'"
proof -
have "(?lg [^] (Suc k')) \odotp f = (?lg [^] k') \odotp (g \otimesp
?q }\mp@subsup{\oplus}{p}{}\ominusp ?f1)
using smult_assoc1 [OF _ _ f_in_P] using exist by simp
also have "... = (?lg [^] k') \odotp (g \otimesp ?q) }\mp@subsup{\oplus}{\textrm{p}}{~}((?lg [^
k') }\mp@subsup{\odot}{p}{}(\mp@subsup{\ominus}{p}{\prime} ?f1))"
using UP_smult_r_distr by simp
also have "... = (?lg [^] k') }\mp@subsup{\odot}{\textrm{p}}{(}(\textrm{g}|\textrm{p
\oplusp r')" unfolding rem_desc ..
also have "... = (?lg [^] k') }\mp@subsup{\odot}{\textrm{p}}{(}(\textrm{g}\mp@subsup{\otimes}{\textrm{p}}{
r'"
using sym [OF a_assoc [of "?lg [^] k' }\mp@subsup{\odot}{\textrm{p}}{(}(\textrm{g}\otimes\textrm{P
\otimesp q'" "r'"]]
using r'_in_carrier q'_in_carrier by simp

```

```

r'"
using q'_in_carrier by (auto simp add: m_comm)
also have "... = (((?lg [^] k') \odotp ?q) \otimesp g) }\mp@subsup{\oplus}{\textrm{p}}{\prime}\mp@subsup{q}{}{\prime}\otimes|\textrm{g
\oplusp r'"
using smult_assoc2 q'_in_carrier "1.prems" by auto

```

```

 using sym [OF l_distr] and q'_in_carrier by auto
 finally show ?thesis using m_comm q'_in_carrier by auto
 qed
 qed (simp_all add: rem_deg q'_in_carrier r'_in_carrier)
 }
 qed
 }
 qed
 qed
end

```

The remainder theorem as corollary of the long division theorem.
```

context UP_cring
begin

```
lemma deg_minus_monom:
    assumes a: "a \(\in\) carrier R"
    and R_not_trivial: "(carrier \(R \neq\{0\}\) )"
    shows "deg \(R\) (monom \(P 1_{R} 1 \ominus_{p}\) monom \(P\) a 0 ) \(=1\) "
    (is "deg R ?g = 1")
proof -
    have "deg R ?g \(\leq 1\) "
    proof (rule deg_aboveI)

\section*{fix m}
assume "(1::nat) < m"
then show "coeff P ?g m = 0"
using coeff_minus using a by auto algebra
qed (simp add: a)
moreover have "deg \(R\) ?g \(\geq 1\) "
proof (rule deg_belowI)
show "coeff P ? \(1 \neq 0\) "
using a using R.carrier_one_not_zero R_not_trivial by simp algebra
qed (simp add: a)
ultimately show ?thesis by simp
qed
lemma lcoeff_monom:
assumes a: "a \(\in\) carrier R" and R_not_trivial: "(carrier \(R \neq\{0\}\) )"
shows "lcoeff (monom P \(1_{R} 1 \ominus_{p}\) monom \(P\) a 0 ) = 1"
using deg_minus_monom [OF a R_not_trivial]
using coeff_minus a by auto algebra
lemma deg_nzero_nzero:
assumes deg_p_nzero: "deg R p \(\neq 0\) "
shows "p \(\neq 0_{\mathrm{P}}\) "
using deg_zero deg_p_nzero by auto
lemma deg_monom_minus:
assumes \(a:\) "a \(\in\) carrier R"
and R_not_trivial: "carrier \(R \neq\{0\} "\)
shows "deg \(R\) (monom P \(1_{R} 1 \ominus p\) monom \(P\) a 0 ) \(=1 "\)
(is "deg R ?g = 1")
proof -
have "deg R ?g \(\leq 1\) "
proof (rule deg_aboveI)
fix m: nat assume " \(1<\mathrm{m}\) " then show "coeff P ? \(\mathrm{g}=0\) "
using coeff_minus [OF monom_closed [OF R.one_closed, of 1] monom_closed
[OF a, of 0 ], of m]
using coeff_monom [OF R.one_closed, of 1 m ] using coeff_monom [OF
a, of 0 m ] by auto algebra
qed (simp add: a)
moreover have "1 \(\leq \operatorname{deg} R\) ?g"
proof (rule deg_belowI)
show "coeff P ? \(1 \neq 0\) "
using coeff_minus [OF monom_closed [OF R.one_closed, of 1] monom_closed
[OF a, of 0], of 1]
using coeff_monom [OF R.one_closed, of 1 1] using coeff_monom [OF
a, of 0 1]
using R_not_trivial using R.carrier_one_not_zero by auto algebra
qed (simp add: a)
ultimately show ?thesis by simp

\section*{qed}
```

lemma eval_monom_expr:
assumes a: "a \in carrier R"
shows "eval R R id a (monom P 1 1 1 }
(is "eval R R id a ?g = _")
proof -
interpret UP_pre_univ_prop R R id by unfold_locales simp
have eval_ring_hom: "eval R R id a \in ring_hom P R" using eval_ring_hom
[OF a] by simp
interpret ring_hom_cring P R "eval R R id a" by unfold_locales (rule
eval_ring_hom)
have mon1_closed: "monom P 1 1 R 1 carrier P"
and mon0_closed: "monom P a 0 \in carrier P"
and min_mon0_closed: " }\mp@subsup{\ominus}{p}{\prime}\mathrm{ monom P a 0 G carrier P"
using a R.a_inv_closed by auto
have "eval R R id a ?g = eval R R id a (monom P 1 1) \ominus eval R R id
a (monom P a 0)"
by (simp add: a_minus_def mon0_closed)
also have "... = a \ominus a"
using eval_monom [OF R.one_closed a, of 1] using eval_monom [OF a
a, of 0] using a by simp
also have "... = 0"
using a by algebra
finally show ?thesis by simp
qed
lemma remainder_theorem_exist:
assumes f: "f \in carrier P" and a: "a \in carrier R"
and R_not_trivial: "carrier R }={0}
shows " \exists q r. (q G carrier P) ^ (r cearrier P) ^ f = (monom P 1 1R

```

```

 (is "\exists q r. (q G carrier P) ^ (r carrier P) ^ f = ?g \otimesp q \oplusp r ^
 (deg R r = 0)")
proof -
let ?g = "monom P 1 1R 1 Өp monom P a 0"
from deg_minus_monom [OF a R_not_trivial]
have deg_g_nzero: "deg R ?g \not= 0" by simp
have "\existsq r (k::nat). q \in carrier P ^ r f carrier P ^

```

```

?g)"
using long_div_theorem [OF _ f deg_nzero_nzero [OF deg_g_nzero]] a
by auto
then show ?thesis
unfolding lcoeff_monom [OF a R_not_trivial]
unfolding deg_monom_minus [OF a R_not_trivial]
using smult_one [OF f] using deg_zero by force
qed

```
lemma remainder_theorem_expression:
assumes \(f\) [simp]: "f écarrier \(P\) " and a [simp]: "a \(\in\) carrier R"
and \(q\) [simp]: " \(q \in\) carrier \(P "\) and \(r\) [simp]: " \(r \in\) carrier \(P "\)
and R_not_trivial: "carrier \(R \neq\{0\} "\)
and \(f_{f}\) expr: "f \(=\left(\right.\) monom \(P 1_{R} 1 \ominus_{p}\) monom \(P\) a 0\() \otimes_{p} q \oplus_{p} r "\)
(is " \(f=? g \otimes_{p} q \oplus_{p} r\) " is " \(f=? g q \oplus_{p} r\) ")
and deg_r_0: "deg R \(r=0 "\)
shows " \(\mathrm{r}=\) monom \(P\) (eval \(R \mathrm{R}\) id a f) 0 "
proof -
interpret UP_pre_univ_prop \(R \mathrm{R}\) id P by standard simp
have eval_ring_hom: "eval \(R\) R id a \(\in\) ring_hom P R"
using eval_ring_hom [OF a] by simp
have "eval \(R\) id a \(f=\) eval \(R R\) id a ? gq \(\oplus_{R}\) eval \(R R\) id a \(r\) " unfolding f_expr using ring_hom_add [OF eval_ring_hom] by auto
also have \(" . . .=\left((\right.\) eval \(R R\) id a \(? g) \otimes(\) eval \(R\) id a q) \() \oplus_{R}\) eval \(R\)
R id a r"
using ring_hom_mult [OF eval_ring_hom] by auto
also have \(" . .=\mathbf{0} \oplus\) eval \(R R\) id a \(r "\)
unfolding eval_monom_expr [ OF a] using eval_ring_hom
unfolding ring_hom_def using q unfolding Pi_def by simp
also have "... = eval \(R\) R id a \(r\) "
using eval_ring_hom unfolding ring_hom_def using r unfolding Pi_def
by simp
finally have eval_eq: "eval \(R R\) id a \(f=\) eval \(R R\) id a \(r\) " by simp
from deg_zero_impl_monom [ OF r deg_r_0]
have " \(\mathrm{r}=\) monom P (coeff P r 0) 0" by simp
with eval_const [OF a, of "coeff P r O"] eval_eq
show ?thesis by auto
qed
corollary remainder_theorem:
assumes f [simp]: "f \(\in\) carrier \(P\) " and a [simp]: "a \(\in\) carrier R"
and R_not_trivial: "carrier \(R \neq\{0\}\) "
shows " \(\exists\) q r. ( \(q \in\) carrier \(P) \wedge(r \in\) carrier \(P) \wedge\)
\(f=\left(\right.\) monom \(P 1_{R} 1 \ominus p\) monom \(P\) a 0\() ~ \otimes p q \oplus_{p}\) monom \(P(e v a l R R\) id a
f) \(0 "\)
(is \(\mathrm{l} \exists \mathrm{q} \mathrm{r} .(\mathrm{q} \in\) carrier P\() \wedge(\mathrm{r} \in\) carrier P\() \wedge \mathrm{f}=? \mathrm{~g} \otimes \mathrm{p} q \oplus_{\mathrm{p}}\) monom
P (eval R R id a f) 0")
proof -
from remainder_theorem_exist [OF f a R_not_trivial]
obtain q \(r\)
where q_r: "q \(\in\) carrier \(P \wedge r \in \operatorname{carrier} P \wedge f=? g \otimes p q \oplus_{p} r "\) and deg_r: "deg R r = 0" by force
with remainder_theorem_expression [OF f a _ _ R_not_trivial, of q r]
show ?thesis by auto
qed
end

\subsection*{15.13 Sample Application of Evaluation Homomorphism}
```

lemma UP_pre_univ_propI:
assumes "cring R"
and "cring S"
and "h \in ring_hom R S"
shows "UP_pre_univ_prop R S h"
using assms
by (auto intro!: UP_pre_univ_prop.intro ring_hom_cring.intro
ring_hom_cring_axioms.intro UP_cring.intro)
definition
INTEG :: "int ring"
where "INTEG = |carrier = UNIV, mult = (*), one = 1, zero = 0, add
= (+)|"
lemma INTEG_cring: "cring INTEG"
by (unfold INTEG_def) (auto intro!: cringI abelian_groupI comm_monoidI
left_minus distrib_right)
lemma INTEG_id_eval:
"UP_pre_univ_prop INTEG INTEG id"
by (fast intro: UP_pre_univ_propI INTEG_cring id_ring_hom)

```

Interpretation now enables to import all theorems and lemmas valid in the context of homomorphisms between INTEG and UP INTEG globally.
```

interpretation INTEG: UP_pre_univ_prop INTEG INTEG id "UP INTEG"
using INTEG_id_eval by simp_all
lemma INTEG_closed [intro, simp]:
"z \in carrier INTEG"
by (unfold INTEG_def) simp
lemma INTEG_mult [simp]:
"mult INTEG z w = z * w"
by (unfold INTEG_def) simp
lemma INTEG_pow [simp]:
"pow INTEG z n = z ` n"
by (induct n) (simp_all add: INTEG_def nat_pow_def)
lemma "eval INTEG INTEG id 10 (monom (UP INTEG) 5 2) = 500"
by (simp add: INTEG.eval_monom)
end

```

\section*{16 Generated Groups}
```

theory Generated_Groups

```

\section*{imports Group Coset}

\section*{begin}

\subsection*{16.1 Generated Groups}
```

inductive_set generate :: "('a, 'b) monoid_scheme }=>\mathrm{ 'a set }=>\mathrm{ 'a set"

```
    for \(G\) and \(H\) where
        one: \(\quad 1_{G} \in\) generate \(G\) H"
    | incl: "h \(\in H \Longrightarrow h \in\) generate \(G H "\)
    | inv: \(\mathrm{h} \in \mathrm{H} \Longrightarrow \operatorname{inv}_{\mathrm{G}} \mathrm{h} \in\) generate \(\mathrm{G} H\) "
    | eng: "h1 \(\in\) generate \(\mathrm{G} H \Longrightarrow \mathrm{~h} 2 \in\) generate \(\mathrm{G} H \Longrightarrow \mathrm{~h} 1 \otimes_{\mathrm{G}} \mathrm{h} 2 \in\) generate
G H"

\subsection*{16.1.1 Basic Properties}
```

lemma (in group) generate_consistent:
assumes "K \subseteqH" "subgroup H G" shows "generate (G (| carrier := H D)
K = generate G K"
proof
show "generate (G (carrier := H D) K \subseteq generate G K"
proof
fix h assume "h G generate (G (carrier := H D) K" thus "h \in generate
G K"
proof (induction, simp add: one, simp_all add: incl[of _ K G] eng)
case inv thus ?case
using m_inv_consistent assms generate.inv[of _ K G] by auto
qed
qed
next
show "generate G K \subseteq generate (G \ carrier := H D) K"
proof
note gen_simps = one incl eng
fix h assume "h G generate G K" thus "h \in generate (G | carrier :=
H D) K"
using gen_simps[where ?G = "G (carrier := H D"]
proof (induction, auto)
fix h assume "h \in K" thus "inv h G generate (G | carrier := H D)
K"
using m_inv_consistent assms generate.inv[of h K "G | carrier
:= H ()"] by auto
qed
qed
qed
lemma (in group) generate_in_carrier:
assumes "H \subseteqcarrier G" and "h \in generate G H" shows "h \in carrier
G"
using assms(2,1) by (induct h rule: generate.induct) (auto)

```
```

lemma (in group) generate_incl:
assumes "H \subseteq carrier G " shows "generate $G H \subseteq$ carrier G "
using generate_in_carrier[0F assms(1)] by auto
lemma (in group) generate_m_inv_closed:
assumes "H \subseteq carrier G " and "h generate G H" shows " (inv h) \in generate
G H"
using assms $(2,1)$
proof (induction rule: generate.induct, auto simp add: one inv incl)
fix h1 h2
assume h1: "h1 \in generate G H" "inv h1 \in generate G H"
and h2: "h2 \in generate G H" "inv h2 \in generate G H"
hence "inv (h1 $\otimes \mathrm{h} 2)=($ inv $h 2) \otimes(i n v h 1) "$
by (meson assms generate_in_carrier group.inv_mult_group is_group)
thus "inv (h1 $\otimes \mathrm{h} 2$) \in generate G H"
using generate.eng[0F h2(2) h1(2)] by simp
qed
lemma (in group) generate_is_subgroup:
assumes "H \subseteq carrier G" shows "subgroup (generate G H) G"
using subgroup.intro[OF generate_incl eng one generate_m_inv_closed]
assms by auto
lemma (in group) mono_generate:
assumes "K $\subseteq H$ " shows "generate $G K \subseteq$ generate G H"
proof
fix h assume "h generate G K" thus "h generate G H"
using assms by (induction) (auto simp add: one incl inv eng)
qed
lemma (in group) generate_subgroup_incl:
assumes "K \subseteq H" "subgroup H G" shows "generate G K \subseteq H"
using group.generate_incl[0F subgroup_imp_group[OF assms(2)], of K]
assms(1)
by (simp add: generate_consistent[0F assms])
lemma (in group) generate_minimal:
assumes "H \subseteq carrier G " shows "generate $G H=\bigcap\left\{H^{\prime}\right.$. subgroup H'
$\left.G \wedge H \subseteq H^{\prime}\right\} "$
using generate_subgroup_incl generate_is_subgroup[0F assms] incl[of
_H] by blast
lemma (in group) generateI:
assumes "subgroup E G" "H \subseteq E" and " $\backslash \mathrm{K} . \llbracket$ subgroup $\mathrm{K} G ; H \subseteq K \rrbracket \Longrightarrow$
$\mathrm{E} \subseteq \mathrm{K}^{\prime \prime}$
shows "E = generate G H"
proof -
have subset: "H \subseteq carrier G"
using subgroup.subset assms by auto

```
```

 show ?thesis
 using assms unfolding generate_minimal[OF subset] by blast
 qed
lemma (in group) normal_generateI:
assumes "H\subseteqcarrier G" and "\h g. \llbracketh \in H; g \in carrier G\rrbracket \Longrightarrowg
| h \otimes (inv g) f H"
shows "generate G H \triangleleft G"
proof (rule normal_invI[OF generate_is_subgroup[OF assms(1)]])
fix g h assume g: "g \in carrier G" show "h \in generate G H \Longrightarrowg g \otimes h
\otimes (inv g) \in generate G H"
proof (induct h rule: generate.induct)
case one thus ?case
using g generate.one by auto
next
case incl show ?case
using generate.incl[OF assms(2)[OF incl g]] .
next
case (inv h)
hence h: "h \in carrier G"
using assms(1) by auto
hence "inv (g \otimes h \otimes (inv g)) = g \otimes (inv h) \otimes (inv g)"
using g by (simp add: inv_mult_group m_assoc)
thus ?case
using generate_m_inv_closed[OF assms(1) generate.incl[OF assms(2) [OF
inv g]]] by simp
next
case (eng h1 h2)
note in_carrier = eng(1,3) [THEN generate_in_carrier[OF assms(1)]]
have "g \otimes (h1 \otimes h2) \otimes inv g = (g \otimes h1 \otimes inv g) \otimes (g \otimes h2 \otimes inv
g)"
using in_carrier g by (simp add: inv_solve_left m_assoc)
thus ?case
using generate.eng[OF eng(2,4)] by simp
qed
qed
lemma (in group) subgroup_int_pow_closed:
assumes "subgroup H G" "h \in H" shows "h [^] (k :: int) \in H"
using group.int_pow_closed[OF subgroup_imp_group[OF assms(1)]] assms(2)
unfolding int_pow_consistent[OF assms] by simp
lemma (in group) generate_pow:
assumes "a \in carrier G" shows "generate G { a } = { a [^] (k :: int)
| k. k \in UNIV }"
proof
show "{ a [^] (k :: int) | k. k \in UNIV } \subseteq generate G { a }"
using subgroup_int_pow_closed[OF generate_is_subgroup[of "{ a }"]
incl[of a]] assms by auto

```
```

next
show "generate G { a } \subseteq { a [^] (k :: int) | k. k \in UNIV }"
proof
fix h assume "h \in generate G { a }" hence "\existsk :: int. h = a [^] k"
proof (induction)
case one
then show ?case
using int_pow_0 [of G] by metis
next
case (incl h)
then show ?case
by (metis assms int_pow_1 singletonD)
next
case (inv h)
then show ?case
by (metis assms int_pow_1 int_pow_neg singletonD)
next
case (eng h1 h2)
then show ?case
using assms by (metis int_pow_mult)
qed
then show "h \in { a [^] (k :: int) | k. k \in UNIV }"
by blast
qed
qed
corollary (in group) generate_one: "generate G { 1 } = { 1 }"
using generate_pow[of "1", OF one_closed] by simp
corollary (in group) generate_empty: "generate G {} = { 1 }"
using mono_generate[of "{}" "{ 1 }"] generate.one unfolding generate_one
by auto
lemma (in group_hom)
"subgroup K G \Longrightarrow subgroup (h ' K) H"
using subgroup_img_is_subgroup by auto
lemma (in group_hom) generate_img:
assumes "K \subseteq carrier G" shows "generate H (h ' K) = h ' (generate
G K)"
proof
have "h ' K \subseteq h ' (generate G K)"
using incl[of _ K G] by auto
thus "generate H (h ' K) \subseteq h ' (generate G K)"
using generate_subgroup_incl subgroup_img_is_subgroup[OF G.generate_is_subgroup [OF
assms]] by auto
next
show "h ' (generate G K) \subseteq generate H (h ' K)"
proof

```
```

 fix a assume "a \in h ' (generate G K)"
 then obtain k where "k \in generate G K" "a = h k"
 by blast
 show "a \in generate H (h ' K)"
 using <k \in generate G K> unfolding <a = h k>
 proof (induct k, auto simp add: generate.one[of H] generate.incl[of
 _ "h ' K" H])
case (inv k) show ?case
using assms generate.inv[of "h k" "h ' K" H] inv by auto
next
case eng show ?case
using generate.eng[OF eng(2,4)] eng(1,3)[THEN G.generate_in_carrier [OF
assms]] by auto
qed
qed
qed

```

\subsection*{16.2 Derived Subgroup}

\subsection*{16.2.1 Definitions}
abbreviation derived_set :: "('a, 'b) monoid_scheme \(\Rightarrow\) 'a set \(\Rightarrow\) 'a set" where "derived_set \(G H \equiv\)

\})"
definition derived :: "('a, 'b) monoid_scheme \(\Rightarrow\) 'a set \(\Rightarrow\) 'a set" where "derived G H = generate G (derived_set G H)"

\subsection*{16.2.2 Basic Properties}
```

lemma (in group) derived_set_incl:
assumes "K \subseteq H" "subgroup H G" shows "derived_set G K \subseteq H"
using assms(1) subgroupE(3-4) [OF assms(2)] by (auto simp add: subset_iff)
lemma (in group) derived_incl:
assumes "K \subseteq H" "subgroup H G" shows "derived G K \subseteq H"
using generate_subgroup_incl[OF derived_set_incl] assms unfolding derived_def
by auto
lemma (in group) derived_set_in_carrier:
assumes "H\subseteq carrier G" shows "derived_set G H \subseteq carrier G"
using derived_set_incl[OF assms subgroup_self] .
lemma (in group) derived_in_carrier:
assumes "H\subseteq carrier G" shows "derived G H \subseteq carrier G"
using derived_incl[OF assms subgroup_self] .
lemma (in group) exp_of_derived_in_carrier:
assumes "H \subseteq carrier G" shows "(derived G ^- n) H \subseteq carrier G"

```
using assms derived_in_carrier by (induct n) (auto)
lemma (in group) derived_is_subgroup:
assumes "H \(\subseteq\) carrier G" shows "subgroup (derived G H) G"
unfolding derived_def using generate_is_subgroup[OF derived_set_in_carrier [OF
assms]] .
lemma (in group) exp_of_derived_is_subgroup:
assumes "subgroup H G" shows "subgroup ((derived G n n) H) G"
using assms derived_is_subgroup subgroup.subset by (induct n) (auto)
lemma (in group) exp_of_derived_is_subgroup':
assumes "H carrier \(\bar{G}\) " shows "subgroup ((derived G \({ }^{-1}\) (Suc n)) H)
G"
using assms derived_is_subgroup [OF subgroup.subset] derived_is_subgroup by (induct n ) (auto)
lemma (in group) mono_derived_set:
assumes "K \(\subseteq\) H" shows "derived_set \(G K \subseteq\) derived_set G H"
using assms by auto
lemma (in group) mono_derived:
assumes "K \(\subseteq H^{\prime}\) shows "derived G K \(\subseteq\) derived G H"
unfolding derived_def using mono_generate[0F mono_derived_set[OF assms]]
.
lemma (in group) mono_exp_of_derived:
assumes "K \(\subseteq H^{\prime \prime}\) shows " (derived \(G\) ~~ \(n\) ) \(K \subseteq\) (derived \(G\) ~~n) \(H\) "
using assms mono_derived by (induct \(n\) ) (auto)
lemma (in group) derived_set_consistent:
assumes "K \(\subseteq\) H" "subgroup H G" shows "derived_set (G \(\mid\) carrier :=
H D) K = derived_set G K"
using m_inv_consistent[0F assms(2)] assms(1) by (auto simp add: subset_iff)
lemma (in group) derived_consistent:
assumes "K \(\subseteq\) H" "subgroup H G" shows "derived (G ( carrier := H D)
K = derived G K"
using generate_consistent[0F derived_set_incl] derived_set_consistent
assms by (simp add: derived_def)
lemma (in comm_group) derived_eq_singleton:
assumes "H \(\subseteq\) carrier G" shows "derived G H = \{ 1 \}"
proof (cases "derived_set G H = \{\}")
case True show ?thesis using generate_empty unfolding derived_def True by simp
next
case False
have aux_lemma: "h \(\in\) derived_set \(G H \Longrightarrow h=1 "\) for \(h\)
using assms by (auto simp add: subset_iff)
(metis (no_types, lifting) m_comm m_closed inv_closed inv_solve_right
l_inv l_inv_ex)
have "derived_set G H = \{ 1 \}"
proof
show "derived_set G H \(\subseteq\{1\) \}" using aux_lemma by auto
next
obtain h where h: "h \(\in\) derived_set G H" using False by blast
thus "\{1 \} \(\subseteq\) derived_set G H" using aux_lemma[0F h] by auto
qed
thus ?thesis
using generate_one unfolding derived_def by auto
qed
lemma (in group) derived_is_normal:
assumes "H \(\triangleleft\) G" shows "derived G H \(\triangleleft\) G"
proof -
interpret H: normal H G
using assms .
show ?thesis
unfolding derived_def
proof (rule normal_generateI[OF derived_set_in_carrier[0F H.subset]])
fix h g assume "h \(\in\) derived_set \(G H "\) and \(g: ~ " g \in \operatorname{carrier~G"~}\)
then obtain h1 h2 where \(\mathrm{h}: \mathrm{h} 1 \in \mathrm{H}\) " "h2 \(\in \mathrm{H}\) " "h \(=\mathrm{h} 1 \otimes \mathrm{~h} 2 \otimes\) inv
h1 \(\otimes\) inv h2"
by auto
hence in_carrier: "h1 \(\in\) carrier G" "h2 \(\in\) carrier G" "g \(\in\) carrier
G"
using H.subset \(g\) by auto
have \(\mathrm{g} \boldsymbol{\mathrm { g }} \otimes \mathrm{h} \otimes\) inv \(\mathrm{g}=\)
\(\mathrm{g} \otimes \mathrm{h} 1 \otimes(i n v \mathrm{~g} \otimes \mathrm{~g}) \otimes \mathrm{h} 2 \otimes(i n v \mathrm{~g} \otimes \mathrm{~g}) \otimes\) inv \(\mathrm{h} 1 \otimes(i n v\)
\(\mathrm{g} \otimes \mathrm{g}) \otimes\) inv \(\mathrm{h} 2 \otimes\) inv \(\mathrm{g} "\)
unfolding h(3) by (simp add: in_carrier m_assoc)
also have " ... =
\((\mathrm{g} \otimes \mathrm{h} 1 \otimes i n v \mathrm{~g}) \otimes(\mathrm{g} \otimes \mathrm{h} 2 \otimes \mathrm{inv} \mathrm{g}) \otimes(\mathrm{g} \otimes \mathrm{inv} \mathrm{h} 1 \otimes \mathrm{inv}\)
\(\mathrm{g}) \otimes(\mathrm{g} \otimes\) inv \(\mathrm{h} 2 \otimes\) inv g\() "\)
using in_carrier m_assoc inv_closed m_closed by presburger
finally have \(\mathrm{g} \mathrm{g} \otimes \mathrm{h} \otimes\) inv \(\mathrm{g}=\)
\((\mathrm{g} \otimes \mathrm{h} 1 \otimes\) inv g\() \otimes(\mathrm{g} \otimes \mathrm{h} 2 \otimes \mathrm{inv} \mathrm{g}) \otimes \mathrm{inv}(\mathrm{g} \otimes \mathrm{h} 1 \otimes \mathrm{inv}\)
\(g) \otimes i n v(g \otimes h 2 \otimes i n v g) "\)
by (simp add: in_carrier inv_mult_group m_assoc)
thus \(\mathrm{g} \boldsymbol{\mathrm { g }} \otimes \mathrm{h} \otimes\) inv \(\mathrm{g} \in\) derived_set \(\mathrm{G} \mathrm{H} "\)
using \(h(1-2)\) [THEN H.inv_op_closed2[OF g]] by auto
qed
qed
```

lemma (in group) normal_self: "carrier G \triangleleft G"
by (rule normal_invI[OF subgroup_self], simp)
corollary (in group) derived_self_is_normal: "derived G (carrier G) \triangleleft
G"
using derived_is_normal[OF normal_self] .
corollary (in group) derived_subgroup_is_normal:
assumes "subgroup H G" shows "derived G H \triangleleft G (carrier := H)"
using group.derived_self_is_normal[OF subgroup_imp_group[OF assms]]
derived_consistent[OF _ assms]
by simp

```
corollary (in group) derived_quot_is_group: "group (G Mod (derived G (carrier G)))"
using normal.factorgroup_is_group [OF derived_self_is_normal] by auto
lemma (in group) derived_quot_is_comm_group: "comm_group (G Mod (derived G (carrier G)))"
proof (rule group.group_comm_groupI[OF derived_quot_is_group], simp add:
FactGroup_def)
    interpret DG: normal "derived G (carrier G)" G
        using derived_self_is_normal .
    fix \(H K\) assume \(" H \in \operatorname{rcosets}\) derived \(G\) (carrier \(G\) )" and \(" K \in \operatorname{rcosets}\)
derived G (carrier G)"
    then obtain g1 g2
        where g1: "g1 \(\in\) carrier \(G "\) " \(H=\) derived \(G\) (carrier G) \#> g1"
            and g2: "g2 \(\in\) carrier G" "K = derived G (carrier G) \#> g2"
        unfolding RCOSETS_def by auto
    hence "H <\#> K = derived G (carrier G) \#> (g1 \(\otimes\) g2)"
        by (simp add: DG.rcos_sum)
    also have " ... = derived G (carrier G) \#> (g2 \& g1)"
    proof -
        \{ fix g1 g2 assume g1: "g1 \(\in\) carrier G" and g2: "g2 \(\in\) carrier G"
        have "derived G (carrier G) \#> ( \(\mathrm{g} 1 \otimes \mathrm{~g} 2\) ) \(\subseteq\) derived \(G\) (carrier \(G\) )
\#> \((\mathrm{g} 2 \otimes \mathrm{~g} 1) "\)
            proof
                fix \(h\) assume " \(h \in\) derived \(G\) (carrier \(G\) ) \#> ( \(g 1 \otimes \mathrm{~g} 2\) )"
                    then obtain \(g\) ' where \(h\) : "g' \(\in\) carrier \(G "\) " g' \(\in\) derived \(G\) (carrier
G)" "h = g' \(\otimes(\mathrm{g} 1 \otimes \mathrm{~g} 2) "\)
                using DG.subset unfolding r_coset_def by auto
                hence \(" \mathrm{~h}=\mathrm{g}, \otimes(\mathrm{g} 1 \otimes \mathrm{~g} 2) \otimes(\mathrm{inv} \mathrm{g} 1 \otimes \mathrm{inv} \mathrm{g} 2 \otimes \mathrm{~g} 2 \otimes \mathrm{~g} 1) \mathrm{l}\)
                    using g1 g2 by (simp add: m_assoc)
                    hence \(\mathrm{h}=(\mathrm{g}, \otimes(\mathrm{g} 1 \otimes \mathrm{~g} 2 \otimes\) inv \(\mathrm{g} 1 \otimes\) inv g 2\()) \otimes(\mathrm{g} 2 \otimes \mathrm{~g} 1) \mathrm{l}\)
                    using h(1) g1 g2 inv_closed m_assoc m_closed by presburger
                    moreover have \(\mathrm{g} 1 \otimes \mathrm{~g} 2 \otimes\) inv \(\mathrm{g} 1 \otimes\) inv \(\mathrm{g} 2 \in\) derived G (carrier
G) "
```

 using incl[of _ "derived_set G (carrier G)"] g1 g2 unfolding
 derived_def by blast
hence "g' \otimes (g1 \otimes g2 \otimes inv g1 \otimes inv g2) \in derived G (carrier
G)"
using DG.m_closed[OF h(2)] by simp
ultimately show "h \in derived G (carrier G) \#> (g2 \otimes g1)"
unfolding r_coset_def by blast
qed }
thus ?thesis
using g1(1) g2(1) by auto
qed
also have " ... = K <\#> H"
by (simp add: g1 g2 DG.rcos_sum)
finally show "H <\#> K = K <\#> H" .
qed
corollary (in group) derived_quot_of_subgroup_is_comm_group:
assumes "subgroup H G" shows "comm_group ((G | carrier := H |) Mod
(derived G H))"
using group.derived_quot_is_comm_group[OF subgroup_imp_group[OF assms]]
derived_consistent[OF _ assms]
by simp
proposition (in group) derived_minimal:
assumes "H \triangleleft G" and "comm_group (G Mod H)" shows "derived G (carrier
G) \subseteq H"
proof -
interpret H: normal H G
using assms(1).
show ?thesis
unfolding derived_def
proof (rule generate_subgroup_incl[OF _ H.subgroup_axioms])
show "derived_set G (carrier G) \subseteq H"
proof
fix h assume "h \in derived_set G (carrier G)"
then obtain g1 g2 where h: "g1 \in carrier G" "g2 \in carrier G" "h
= g1 \otimesg2 \otimes inv g1 \otimes inv g2"
by auto
have "H \#> (g1 \otimes g2) = (H \#> g1) <\#> (H \#> g2)"
by (simp add: h(1-2) H.rcos_sum)
also have " ... = (H \#> g2) <\#> (H \#> g1)"
using comm_groupE(4)[OF assms(2)] h(1-2) unfolding FactGroup_def
RCOSETS_def by auto
also have " ... = H \#> (g2 \otimes g1)"
by (simp add: h(1-2) H.rcos_sum)
finally have "H \#> (g1 \otimes g2) = H \#> (g2 \otimes g1)".
then obtain h' where "h'\in H" "1 \& (g1 \otimes g2) = h' \otimes (g2 \& g1)"
using H.one_closed unfolding r_coset_def by blast

```
```

 thus "h \in H"
 using h m_assoc by auto
 qed
 qed
 qed
proposition (in group) derived_of_subgroup_minimal:
assumes "K \triangleleft G (carrier := H)" "subgroup H G" and "comm_group ((G
(carrier := H D) Mod K)"
shows "derived G H \subseteq K"
using group.derived_minimal[OF subgroup_imp_group[OF assms(2)] assms(1,3)]
derived_consistent[OF _ assms(2)]
by simp
lemma (in group_hom) derived_img:
assumes "K \subseteq carrier G" shows "derived H (h ' K) = h ' (derived G
K) "
proof -
have "derived_set H (h' K) = h ' (derived_set G K)"
proof
show "derived_set H (h ' K) \subseteq h ' derived_set G K"
proof
fix a assume "a \in derived_set H (h ' K)"
then obtain k1 k2

```

```

\otimesH invH (h k2)"
by auto
hence "a = h (k1 \otimes k2 \otimes inv k1 \otimes inv k2)"
using assms by (simp add: subset_iff)
from this <k1 GK> and <k2 G K> show "a \in h ' derived_set G
K" by auto
qed
next
show "h ' (derived_set G K) \subseteq derived_set H (h ' K)"
proof
fix a assume "a \in h ' (derived_set G K)"
then obtain k1 k2 where "k1 \in K" "k2 \in K" "a = h (k1 \otimes k2 \otimes inv
k1 \& inv k2)"
by auto

```

```

 using assms by (simp add: subset_iff)
 from this <k1 \inK> and <k2 G K> show "a \in derived_set H (h '
 K)" by auto
qed
qed
thus ?thesis
unfolding derived_def using generate_img[OF G.derived_set_in_carrier[OF
assms]l by simp
qed

```
lemma (in group_hom) exp_of_derived_img:
assumes " \(\mathrm{K} \subseteq\) carrier \(G\) " shows " (derived H ~~ n ) ( h ' K ) = h ' ( (derived G "~n) K)"
using derived_img[OF G.exp_of_derived_in_carrier[OF assms]] by (induct n) (auto)

\subsection*{16.2.3 Generated subgroup of a group}
```

definition subgroup_generated :: "('a, 'b) monoid_scheme }=>\mathrm{ ' 'a set }=>\mathrm{ ('a,
'b) monoid_scheme"
where "subgroup_generated G S = G(carrier := generate G (carrier G
\cap S)|"
lemma carrier_subgroup_generated: "carrier (subgroup_generated G S) =
generate G (carrier G \cap S)"
by (auto simp: subgroup_generated_def)
lemma (in group) subgroup_generated_subset_carrier_subset:
"S \subseteq carrier G C S \subseteq carrier(subgroup_generated G S)"
by (simp add: Int_absorb1 carrier_subgroup_generated generate.incl subsetI)
lemma (in group) subgroup_generated_minimal:
"\llbracketsubgroup H G; S \subseteq H\rrbracket \Longrightarrow carrier(subgroup_generated G S) \subseteq H"
by (simp add: carrier_subgroup_generated generate_subgroup_incl le_infI2)
lemma (in group) carrier_subgroup_generated_subset:
"carrier (subgroup_generated G A) \subseteq carrier G"
apply (clarsimp simp: carrier_subgroup_generated)
by (meson Int_lower1 generate_in_carrier)
lemma (in group) group_subgroup_generated [simp]: "group (subgroup_generated
G S)"
unfolding subgroup_generated_def
by (simp add: generate_is_subgroup subgroup_imp_group)
lemma (in group) abelian_subgroup_generated:
assumes "comm_group G"
shows "comm_group (subgroup_generated G S)" (is "comm_group ?GS")
proof (rule group.group_comm_groupI)
show "Group.group ?GS"
by simp
next
fix x y
assume "x \in carrier ?GS" "y \in carrier ?GS"
with assms show "x \otimes?GS y = y \otimes?GS x"
apply (simp add: subgroup_generated_def)
by (meson Int_lower1 comm_groupE(4) generate_in_carrier)
qed

```
```

lemma (in group) subgroup_of_subgroup_generated:
assumes "H \subseteq B" "subgroup H G"
shows "subgroup H (subgroup_generated G B)"
proof unfold_locales
fix x
assume "x \in H"
with assms show "inv subgroup_generated G B x }\in\mp@subsup{|}{}{\prime
unfolding subgroup_generated_def
by (metis IntI Int_commute Int_lower2 generate.incl generate_is_subgroup
m_inv_consistent subgroup_def subsetCE)
next
show "H \subseteq carrier (subgroup_generated G B)"
using assms apply (auto simp: carrier_subgroup_generated)
by (metis Int_iff generate.incl inf.orderE subgroup.mem_carrier)
qed (use assms in <auto simp: subgroup_generated_def subgroup_def >)
lemma carrier_subgroup_generated_alt:
assumes "Group.group G" "S \subseteq carrier G"
shows "carrier (subgroup_generated G S) = \bigcap{H. subgroup H G ^ carrier
G \cap S \subseteqH}"
using assms by (auto simp: group.generate_minimal subgroup_generated_def)
lemma one_subgroup_generated [simp]: "1 1subgroup_generated G S = 1/G"
by (auto simp: subgroup_generated_def)
lemma mult_subgroup_generated [simp]: "mult (subgroup_generated G S)
= mult G"
by (auto simp: subgroup_generated_def)
lemma (in group) inv_subgroup_generated [simp]:
assumes "f \in carrier (subgroup_generated G S)"
shows "inv subgroup_generated G S f = inv f"
proof (rule group.inv_equality)
show "Group.group (subgroup_generated G S)"
by simp
have [simp]: "f \in carrier G"
by (metis Int_lower1 assms carrier_subgroup_generated generate_in_carrier)
show "inv f \& <subgroup_generated G S f = 1 (subgroup_generated G S"
by (simp add: assms)
show "f \in carrier (subgroup_generated G S)"
using assms by (simp add: generate.incl subgroup_generated_def)
show "inv f \in carrier (subgroup_generated G S)"
using assms by (simp add: subgroup_generated_def generate_m_inv_closed)
qed
lemma subgroup_generated_restrict [simp]:
"subgroup_generated G (carrier G \cap S) = subgroup_generated G S"
by (simp add: subgroup_generated_def)

```
```

lemma (in subgroup) carrier_subgroup_generated_subgroup [simp]:
"carrier (subgroup_generated G H) = H"
by (auto simp: generate.incl carrier_subgroup_generated elim: generate.induct)
lemma (in group) subgroup_subgroup_generated_iff:
"subgroup H (subgroup_generated G B) \longleftrightarrow subgroup H G ^ H \subseteq carrier(subgroup_generated
G B)"
(is "?lhs = ?rhs")
proof
assume L: ?lhs
then have Hsub: "H \subseteq generate G (carrier G \cap B)"
by (simp add: subgroup_def subgroup_generated_def)
then have H: "H \subseteq carrier G" "H \subseteq carrier(subgroup_generated G B)"
unfolding carrier_subgroup_generated
using generate_incl by blast+
with Hsub have "subgroup H G"
by (metis Int_commute Int_lower2 L carrier_subgroup_generated generate_consistent
generate_is_subgroup inf.orderE subgroup.carrier_subgroup_generated_subgroup
subgroup_generated_def)
with H show ?rhs
by blast
next
assume ?rhs
then show ?lhs
by (simp add: generate_is_subgroup subgroup_generated_def subgroup_incl)
qed
lemma (in group) subgroup_subgroup_generated:
"subgroup (carrier(subgroup_generated G S)) G"
using group.subgroup_self group_subgroup_generated subgroup_subgroup_generated_iff
by blast
lemma pow_subgroup_generated:
"pow (subgroup_generated G S) = (pow G :: 'a }=>\mathrm{ nat m 'a)"
proof -
have "x [^] subgroup_generated G S n = x [^] G n" for x and n::nat
by (induction n) auto
then show ?thesis
by force
qed

```
lemma (in group) subgroup_generated2 [simp]: "subgroup_generated (subgroup_generated
G S) S = subgroup_generated G S"
proof -
    have *: " \(\bigwedge \mathrm{A}\). carrier \(\mathrm{G} \cap \mathrm{A} \subseteq\) carrier (subgroup_generated (subgroup_generated
G A) A)"
        by (metis (no_types, opaque_lifting) Int_assoc carrier_subgroup_generated
generate.incl inf.order_iff subset_iff)
```

 show ?thesis
 apply (auto intro!: monoid.equality)
 using group.carrier_subgroup_generated_subset group_subgroup_generated
 apply blast
apply (metis (no_types, opaque_lifting) "*" group.subgroup_subgroup_generated
group_subgroup_generated subgroup_generated_minimal
subgroup_generated_restrict subgroup_subgroup_generated_iff subset_eq)
apply (simp add: subgroup_generated_def)
done
qed
lemma (in group) int_pow_subgroup_generated:
fixes n::int
assumes "x \in carrier (subgroup_generated G S)"
shows "x [^] Subgroup_generated G S n = x [^] G n"
proof -
have "x [^] nat (- n) \in carrier (subgroup_generated G S)"
by (metis assms group.is_monoid group_subgroup_generated monoid.nat_pow_closed
pow_subgroup_generated)
then show ?thesis
by (metis group.inv_subgroup_generated int_pow_def2 is_group pow_subgroup_generated)
qed
lemma kernel_from_subgroup_generated [simp]:
"subgroup S G \# kernel (subgroup_generated G S) H f = kernel G H f
\cap S"
using subgroup.carrier_subgroup_generated_subgroup subgroup.subset
by (fastforce simp add: kernel_def set_eq_iff)
lemma kernel_to_subgroup_generated [simp]:
"kernel G (subgroup_generated H S) f = kernel G H f"
by (simp add: kernel_def)

```

\subsection*{16.3 And homomorphisms}
lemma (in group) hom_from_subgroup_generated:
"h \(\in\) hom \(G H \Longrightarrow h \in\) hom(subgroup_generated G A) H"
apply (simp add: hom_def carrier_subgroup_generated Pi_iff)
apply (metis group.generate_in_carrier inf_le1 is_group)
done
lemma hom_into_subgroup:
\(" \llbracket h \in\) hom \(G \bar{G}\) '; h ' (carrier \(G\) ) \(\subseteq H \rrbracket \Longrightarrow h \in\) hom \(G\) (subgroup_generated
G' H) "
by (auto simp: hom_def carrier_subgroup_generated Pi_iff generate.incl
image_subset_iff)
lemma hom_into_subgroup_eq_gen:
"group \(G \Longrightarrow\)
```

 h G hom K (subgroup_generated G H)
 \longleftrightarrowh hom K G ^ h ' (carrier K) \subseteq carrier(subgroup_generated G H)"
 using group.carrier_subgroup_generated_subset [of G H] by (auto simp:
 hom_def)
lemma hom_into_subgroup_eq:
"\llbracketsubgroup H G; group G\rrbracket
\Longrightarrow(h G hom K (subgroup_generated G H) \longleftrightarrowh f hom K G ^ h ' (carrier
K) \subseteq H)"
by (simp add: hom_into_subgroup_eq_gen image_subset_iff subgroup.carrier_subgroup_generat
lemma (in group_hom) hom_between_subgroups:
assumes "h ' A\subseteq B"
shows "h \in hom (subgroup_generated G A) (subgroup_generated H B)"
proof -
have [simp]: "group G" "group H"
by (simp_all add: G.is_group H.is_group)
have "x g generate G (carrier G \cap A) \Longrightarrow h x G generate H (carrier
H \cap B)" for x
proof (induction x rule: generate.induct)
case (incl h)
then show ?case
by (meson IntE IntI assms generate.incl hom_closed image_subset_iff)
next
case (inv h)
then show ?case
by (metis G.inv_closed G.inv_inv IntE IntI assms generate.simps
hom_inv image_subset_iff local.inv_closed)
next
case (eng h1 h2)
then show ?case
by (metis G.generate_in_carrier generate.simps inf.cobounded1 local.hom_mult)
qed (auto simp: generate.intros)
then have "h ' carrier (subgroup_generated G A) \subseteq carrier (subgroup_generated
H B)"
using group.carrier_subgroup_generated_subset [of G A]
by (auto simp: carrier_subgroup_generated)
then show ?thesis
by (simp add: hom_into_subgroup_eq_gen group.hom_from_subgroup_generated
homh)
qed
lemma (in group_hom) subgroup_generated_by_image:
assumes "S \subseteq carrier G"
shows "carrier (subgroup_generated H (h ' S)) = h ' (carrier(subgroup_generated
G S))"
proof
have "x G generate H (carrier H \cap h' S) \Longrightarrow x G h' generate G (carrier
G \cap S)" for x

```
```

 proof (erule generate.induct)
 show "1 1H}\inh'generate G (carrier G \cap S)"
 using generate.one by force
 next
 fix f
 assume "f \in carrier H \cap h ' S"
 with assms show "f \in h' generate G (carrier G \cap S)" "invH f \in h
 ' generate G (carrier G \cap S)"
apply (auto simp: Int_absorb1 generate.incl)
apply (metis generate.simps hom_inv imageI subsetCE)
done
next
fix h1 h2
assume
"h1 G generate H (carrier H \cap h' S)" "h1 G h' generate G (carrier
G \cap S)"
"h2 G generate H (carrier H \cap h `S)" "h2 \in h` generate G (carrier
G \cap S)"
then show "h1 }\mp@subsup{\otimes}{H}{}h2\inh ' generate G (carrier G \cap S)"
using H.subgroupE(4) group.generate_is_subgroup subgroup_img_is_subgroup
by (simp add: G.generate_is_subgroup)
qed
then
show "carrier (subgroup_generated H (h ' S)) \subseteq h ' carrier (subgroup_generated
G S)"
by (auto simp: carrier_subgroup_generated)
next
have "h ' S \subseteq carrier H"
by (metis (no_types) assms hom_closed image_subset_iff subsetCE)
then show "h ' carrier (subgroup_generated G S) \subseteq carrier (subgroup_generated
H (h ' S))"
apply (clarsimp simp: carrier_subgroup_generated)
by (metis Int_absorb1 assms generate_img imageI)
qed
lemma (in group_hom) iso_between_subgroups:
assumes "h \in iso G H" "S \subseteq carrier G" "h ' S = T"
shows "h \in iso (subgroup_generated G S) (subgroup_generated H T)"
using assms
by (metis G.carrier_subgroup_generated_subset Group.iso_iff hom_between_subgroups
inj_on_subset subgroup_generated_by_image subsetI)
lemma (in group) subgroup_generated_group_carrier:
"subgroup_generated G (carrier G) = G"
proof (rule monoid.equality)
show "carrier (subgroup_generated G (carrier G)) = carrier G"
by (simp add: subgroup.carrier_subgroup_generated_subgroup subgroup_self)
qed (auto simp: subgroup_generated_def)

```
```

lemma iso_onto_image:
assumes "group G" "group H"
shows
"f \in iso G (subgroup_generated H (f ' carrier G)) \longleftrightarrow f \in hom G H
^ inj_on f (carrier G)"
using assms
apply (auto simp: iso_def bij_betw_def hom_into_subgroup_eq_gen carrier_subgroup_generate
hom_carrier generate.incl Int_absorb1 Int_absorb2)
by (metis group.generateI group.subgroupE(1) group.subgroup_self group_hom.generate_img
group_hom.intro group_hom_axioms.intro)
lemma (in group) iso_onto_image:
"group H \Longrightarrowf \in iso G (subgroup_generated H (f ' carrier G)) \longleftrightarrow
f \in mon G H"
by (simp add: mon_def epi_def hom_into_subgroup_eq_gen iso_onto_image)

```
end

\section*{17 Elementary Group Constructions}
```

theory Elementary_Groups
imports Generated_Groups "HOL-Library.Infinite_Set"
begin

```

\subsection*{17.1 Direct sum/product lemmas}
 G for G (structure) and A B
begin
```

lemma subset_one: "A \cap B\subseteq{1} \longleftrightarrow A \cap B = {1}"

```
    by auto
lemma sub_id_iff: "A \(\cap \mathrm{B} \subseteq\{1\} \longleftrightarrow(\forall \mathrm{x} \in \mathrm{A} . \forall \mathrm{y} \in \mathrm{B} . \mathrm{x} \otimes \mathrm{y}=1 \longrightarrow \mathrm{x}=\)
\(1 \wedge \mathrm{y}=1\) )"
    (is "?lhs = ?rhs")
proof -
    have "?lhs = ( \(\forall \mathrm{x} \in \mathrm{A} . \forall \mathrm{y} \in \mathrm{B} . \mathrm{x} \otimes \operatorname{inv} \mathrm{y}=1 \longrightarrow \mathrm{x}=1 \wedge\) inv \(\mathrm{y}=1)\) "
    proof (intro ballI iffI impI)
        fix \(x\) y
        assume " \(\mathrm{A} \cap \mathrm{B} \subseteq\{1\} "\) "x \(\in \mathrm{A} " \mathrm{y} \in \mathrm{B}\) " "x \(\otimes\) inv \(\mathrm{y}=1 "\)
        then have " \(\mathrm{y}=\mathrm{x}\) "
            using group.inv_equality group_l_invI by fastforce
        then show "x \(=1 \wedge\) inv \(y=1 "\)
            using < \(A \cap B \subseteq\{1\}\rangle\langle x \in A\rangle\langle y \in B\) > by fastforce
    next
        assume \(\forall \forall x \in A . \forall y \in B . x \otimes\) inv \(y=1 \longrightarrow x=1 \wedge\) inv \(y=1 "\)
        then show "A \(\cap \mathrm{B} \subseteq\{1\}\) "
                by auto
```

 qed
 also have "... = ?rhs"
 by (metis BG.mem_carrier BG.subgroup_axioms inv_inv subgroup_def)
 finally show ?thesis .
 qed
lemma cancel: "A \cap B\subseteq{1}\longleftrightarrow(\forallx\inA. }\forall\textrm{y}\in\textrm{B}.\forall\textrm{x},\in\textrm{A}.\forall\textrm{y},\in\textrm{B}.\textrm{x}\otimes\textrm{y
= x' \otimes y' \longrightarrow x = x' ^ y = y')"
(is "?lhs = ?rhs")
proof -
have "(\forall\textrm{x}\in\textrm{A}.}\forall\textrm{y}\in\textrm{B}.\textrm{x}\otimes\textrm{y}=1\longrightarrow\textrm{x}=1
textrm{y}=1)= ?rhs
(is "?med = _")
proof (intro ballI iffI impI)
fix x y x' y'
assume * [rule_format]: "\forallx\inA. \forally\inB. x \otimes y = 1 \longrightarrow x = 1 ^ y =
1"
and AB: "x \in A" "y \in B" "x' \in A" "y' \in B" and eq: "x \otimes y = x'
\otimes y'"
then have carr: "x \in carrier G" "x' \in carrier G" "y \in carrier G"
"y' \in carrier G"
using AG.subset BG.subset by auto
then have "inv x' \otimes x \otimes (y \otimes inv y') = inv x' \otimes (x \otimes y) \otimes inv y'"
by (simp add: m_assoc)
also have "... = 1"
using carr by (simp add: eq) (simp add: m_assoc)
finally have 1: "inv x' \otimes x \otimes (y \otimes inv y') = 1" .
show "x = x' ^ y = y'"
using * [OF _ _ 1] AB by simp (metis carr inv_closed inv_inv local.inv_equality)
next
fix x y
assume * [rule_format]: " }\forall\textrm{x}\in\textrm{A}.|\textrm{y}\in\textrm{B}.\forall\textrm{x}'\inA. \forall\textrm{y}'\in\textrm{B}.\textrm{x}\otimes\textrm{y}=\textrm{x
| y' \longrightarrow x = x' ^ y = y'"
and xy: "x \in A" "y \in B" "x \otimes y = 1"
show "x = 1 ^ y = 1"
by (rule *) (use xy in auto)
qed
then show ?thesis
by (simp add: sub_id_iff)
qed
lemma commuting_imp_normal1:
assumes sub: "carrier G \subseteq A <\#> B"
and mult: "\x y. \llbracketx \in A; y \in B\rrbracket \Longrightarrow x \otimes y = y \otimes x"
shows "A \triangleleft G"
proof -
have AB: "A \subseteq carrier G ^ B \subseteq carrier G"
by (simp add: AG.subset BG.subset)
have "A \#> x = x <\# A"
if }\textrm{x}: "\textrm{x}\in\mathrm{ carrier G" for }\textrm{x

```
```

 proof -
 obtain a b where xeq: "x = a \otimes b" and "a \in A" "b \in B" and carr:
 "a \in carrier G" "b \in carrier G"
using x sub AB by (force simp: set_mult_def)
have Ab: "A <\#> {b} = {b} <\#> A"
using AB <a \in A> <b \in B> mult
by (force simp: set_mult_def m_assoc subset_iff)
have "A \#> x = A <\#> {a \otimes b
by (auto simp: l_coset_eq_set_mult r_coset_eq_set_mult xeq)
also have "... = A <\#> {a} <\#> {b}"
using AB <a \in A> <b G B>
by (auto simp: set_mult_def m_assoc subset_iff)
also have "... = {a} <\#> A <\#> {b}"
by (metis AG.rcos_const AG.subgroup_axioms <a \in A> coset_join3
is_group l_coset_eq_set_mult r_coset_eq_set_mult subgroup.mem_carrier)
also have "... = {a} <\#> {b} <\#> A"
by (simp add: is_group carr group.set_mult_assoc AB Ab)
also have "... = {x} <\#> A"
by (auto simp: set_mult_def xeq)
finally show "A \#> x = x <\# A"
by (simp add: l_coset_eq_set_mult)
qed
then show ?thesis
by (auto simp: normal_def normal_axioms_def AG.subgroup_axioms is_group)
qed
lemma commuting_imp_normal2:
assumes"carrier G \subseteqA<\#> B" "\x y. \llbracketx \in A; y \in B\rrbracket \Longrightarrow x \otimes y = y
\otimes x"
shows "B \triangleleft G"
proof (rule group_disjoint_sum.commuting_imp_normal1)
show "group_disjoint_sum G B A"
proof qed
next
show "carrier G \subseteq B <\#> A"
using BG.subgroup_axioms assms commut_normal commuting_imp_normal1
by blast
qed (use assms in auto)
lemma (in group) normal_imp_commuting:
assumes "A \triangleleftG" "B \triangleleftG" "A \cap B \subseteq{1}" "x \in A" "y \in B"
shows "x \otimes y = y \otimes x"
proof -
interpret AG: normal A G
using assms by auto
interpret BG: normal B G
using assms by auto
interpret group_disjoint_sum G A B

```
```

 proof qed
 have * [rule_format]: "(}\forall\textrm{x}\in\textrm{A}.\forall\textrm{y}\in\textrm{B}.\forall\mp@subsup{\textrm{x}}{}{\prime}\in\textrm{A}.\forall\mp@subsup{y}{}{\prime}\in\textrm{B}.\textrm{x}\otimes\textrm{y}=\textrm{x},\otimes\textrm{y
 M = x' ^ y = y')"
using cancel assms by (auto simp: normal_def)
have carr: "x \in carrier G" "y \in carrier G"
using assms AG.subset BG.subset by auto
then show ?thesis
using * [of x _ _ y] AG.coset_eq [rule_format, of y] BG.coset_eq [rule_format,
of x]
by (clarsimp simp: l_coset_def r_coset_def set_eq_iff) (metis <x
GA> <y G B >)
qed
lemma normal_eq_commuting:
assumes "carrier G \subseteq A <\#> B" "A \cap B \subseteq{1}"
shows "A}\triangleleft\textrm{G}\wedge\textrm{B}\triangleleft\textrm{G}\longleftrightarrow(\forall\textrm{x}\in\textrm{A}.\forall\textrm{y}\in\textrm{B}.\textrm{x}\otimes\textrm{y}=\textrm{y}\otimes\textrm{x})
by (metis assms commuting_imp_normal1 commuting_imp_normal2 normal_imp_commuting)
lemma (in group) hom_group_mul_rev:
assumes "(\lambda(x,y). x \otimes y) \in hom (subgroup_generated G A }\times\times\mathrm{ subgroup_generated
G B) G"
(is "?h \in hom ?P G")
and "x \in carrier G" "y \in carrier G" "x \in A" "y \in B"
shows "x \otimes y = y \otimes x"
proof -
interpret P: group_hom ?P G ?h
by (simp add: assms DirProd_group group_hom.intro group_hom_axioms.intro
is_group)
have xy: "(x,y) \in carrier ?P"
by (auto simp: assms carrier_subgroup_generated generate.incl)
have "x \otimes (x \otimes (y \otimes y)) = x \otimes (y \otimes (x \otimes y))"
using P.hom_mult [OF xy xy] by (simp add: m_assoc assms)
then have "x }\otimes(y\otimesy)=y\otimes(x\otimesy)
using assms by simp
then show ?thesis
by (simp add: assms flip: m_assoc)
qed
lemma hom_group_mul_eq:
"(\lambda(x,y). x \otimes y) \in hom (subgroup_generated G A }\times\times\mathrm{ subgroup_generated
G B) G
\longleftrightarrow(}\forall\textrm{x}\in\textrm{A}.\forall\textrm{y}\in\textrm{B}.\textrm{x}\otimes\textrm{y}=\textrm{y}\otimes\textrm{x})
(is "?lhs = ?rhs")
proof
assume ?lhs then show ?rhs
using hom_group_mul_rev AG.subset BG.subset by blast
next
assume R: ?rhs
have subG: "generate G (carrier G \cap A) \subseteq carrier G" for A

```
```

 by (simp add: generate_incl)
 have *: "x & u & (y \otimesv) = x & y \otimes (u \otimes v)"
 if eq [rule_format]: "\forallx\inA. }\forall\textrm{y}\in\textrm{B}.\textrm{x}\otimes\textrm{y}=\textrm{y}\otimes\textrm{x
 and gen: "x f generate G (carrier G \cap A)" "y f generate G (carrier
 G \cap B)"
"u \in generate G (carrier G \cap A)" "v \in generate G (carrier G \cap B)"
for x y u v
proof -
have "u \otimes y = y \otimes u"
by (metis AG.carrier_subgroup_generated_subgroup BG.carrier_subgroup_generated_subgro
carrier_subgroup_generated eq that(3) that(4))
then have "x }\otimes\textrm{u}\otimes\textrm{y}=\textrm{x}\otimes\textrm{y}\otimes\textrm{u}
using gen by (simp add: m_assoc subsetD [OF subG])
then show ?thesis
using gen by (simp add: subsetD [OF subG] flip: m_assoc)
qed
show ?lhs
using R by (auto simp: hom_def carrier_subgroup_generated subsetD
[OF subG] *)
qed

```
lemma epi_group_mul_eq:
    " \((\lambda(x, y) . x \otimes y) \in\) epi (subgroup_generated G A \(\times \times\) subgroup_generated
G B) G
    \(\longleftrightarrow \mathrm{A}<\#>\mathrm{B}=\) carrier \(\mathrm{G} \wedge(\forall \mathrm{x} \in \mathrm{A} . \forall \mathrm{y} \in \mathrm{B} . \mathrm{x} \otimes \mathrm{y}=\mathrm{y} \otimes \mathrm{x}) "\)
proof -
    have subGA: "generate \(G\) (carrier \(G \cap A\) ) \(\subseteq A "\)
        by (simp add: AG.subgroup_axioms generate_subgroup_incl)
    have subGB: "generate \(G\) (carrier \(G \cap B\) ) \(\subseteq B\) "
        by (simp add: BG.subgroup_axioms generate_subgroup_incl)
    have " \((((\lambda(x, y) . x \otimes y)\) ' (generate \(G\) (carrier \(G \cap A) \times\) generate
G (carrier \(G \cap B)))=((A<\#>B)) "\)
        by (auto simp: set_mult_def generate.incl pair_imageI dest: subsetD
[OF subGA] subsetD [OF subGB])
    then show ?thesis
        by (auto simp: epi_def hom_group_mul_eq carrier_subgroup_generated)
qed
lemma mon_group_mul_eq:
    " \((\lambda(\mathrm{x}, \mathrm{y}) . \mathrm{x} \otimes \mathrm{y}) \in\) mon (subgroup_generated \(G \mathrm{~A} \times \times\) subgroup_generated
G B) G
            \(\longleftrightarrow A \cap B=\{1\} \wedge(\forall x \in A . \forall y \in B . x \otimes y=y \otimes x) "\)
proof -
    have subGA: "generate \(G\) (carrier \(G \cap A\) ) \(\subseteq A "\)
            by (simp add: AG.subgroup_axioms generate_subgroup_incl)
    have subGB: "generate \(G\) (carrier \(G \cap B\) ) \(\subseteq\) B"
        by (simp add: BG.subgroup_axioms generate_subgroup_incl)
    show ?thesis
apply (auto simp: mon_def hom_group_mul_eq simp flip: subset_one)
apply (simp_all (no_asm_use) add: inj_on_def AG.carrier_subgroup_generated_subgroup
BG.carrier_subgroup_generated_subgroup)
using cancel apply blast+
done
qed
lemma iso_group_mul_alt:
" \((\lambda(\mathrm{x}, \mathrm{y}) . \mathrm{x} \otimes \mathrm{y}) \in\) iso (subgroup_generated \(\mathrm{G} A \times \times\) subgroup_generated
G B) G
\(\longleftrightarrow A \cap B=\{1\} \wedge A<\#>B=c a r r i e r G \wedge(\forall x \in A . \forall y \in B . x \otimes y=y\)
Q x)"
by (auto simp: iso_iff_mon_epi mon_group_mul_eq epi_group_mul_eq)
lemma iso_group_mul_eq:
" \((\lambda(\mathrm{x}, \mathrm{y}) . \mathrm{x} \otimes \mathrm{y}) \in\) iso (subgroup_generated \(\mathrm{G} A \times \times\) subgroup_generated
G B) G
\(\longleftrightarrow A \cap B=\{1\} \wedge A<\#>B=\) carrier \(G \wedge A \triangleleft G \wedge B \triangleleft G \prime\)
by (simp add: iso_group_mul_alt normal_eq_commuting cong: conj_cong)
lemma (in group) iso_group_mul_gen:
assumes "A \(\triangleleft \mathrm{G}\) " "B \(\triangleleft \mathrm{G}\) "
shows " \((\lambda(\mathrm{x}, \mathrm{y}) . \mathrm{x} \otimes \mathrm{y}) \in\) iso (subgroup_generated \(\mathrm{G} A \times \times\) subgroup_generated
G B) G
\(\longleftrightarrow A \cap B \subseteq\{1\} \wedge A<\#>B=\) carrier \(G^{\prime \prime}\)
proof -
interpret group_disjoint_sum G A B
using assms by (auto simp: group_disjoint_sum_def normal_def)
show ?thesis
by (simp add: subset_one iso_group_mul_eq assms)
qed
lemma iso_group_mul:
assumes "comm_group G"
shows " \(((\lambda(x, y) . x \otimes y) \in\) iso (DirProd (subgroup_generated G A) (subgroup_generated
G B)) G
\(\longleftrightarrow A \cap B \subseteq\{1\} \wedge A<\#>B=\) carrier G)"
proof (rule iso_group_mul_gen)
interpret comm_group
by (rule assms)
show "A \(\triangleleft\) G"
by (simp add: AG.subgroup_axioms subgroup_imp_normal)
show "B \(\triangleleft \mathrm{G}\) "
by (simp add: BG.subgroup_axioms subgroup_imp_normal)
qed
end

\subsection*{17.2 The one-element group on a given object}
```

definition singleton_group :: "'a \# 'a monoid"
where "singleton_group a = (carrier = {a}, monoid.mult = (}\lambda\textrm{x}y.\textrm{a})\mathrm{ ,
one = a)"
lemma singleton_group [simp]: "group (singleton_group a)"
unfolding singleton_group_def by (auto intro: groupI)
lemma singleton_abelian_group [simp]: "comm_group (singleton_group a)"
by (metis group.group_comm_groupI monoid.simps(1) singleton_group singleton_group_def)
lemma carrier_singleton_group [simp]: "carrier (singleton_group a) =
{a}"
by (auto simp: singleton_group_def)
lemma (in group) hom_into_singleton_iff [simp]:
"h \in hom G (singleton_group a) \longleftrightarrow h \in carrier G }->\mathrm{ {a}"
by (auto simp: hom_def singleton_group_def)
declare group.hom_into_singleton_iff [simp]
lemma (in group) id_hom_singleton: "id \in hom (singleton_group 1) G"
by (simp add: hom_def singleton_group_def)

```

\subsection*{17.3 Similarly, trivial groups}
```

definition trivial_group :: "('a, 'b) monoid_scheme = bool"
where "trivial_group G \equiv group G ^ carrier G = {one G}"
lemma trivial_imp_finite_group:
"trivial_group G \Longrightarrow finite(carrier G)"
by (simp add: trivial_group_def)
lemma trivial_singleton_group [simp]: "trivial_group(singleton_group
a)"
by (metis monoid.simps(2) partial_object.simps(1) singleton_group singleton_group_def
trivial_group_def)
lemma (in group) trivial_group_subset:
"trivial_group G \longleftrightarrow carrier G \subseteq {one G}"
using is_group trivial_group_def by fastforce
lemma (in group) trivial_group: "trivial_group G \longleftrightarrow (\existsa. carrier G
= {a})"
unfolding trivial_group_def using one_closed is_group by fastforce
lemma (in group) trivial_group_alt:
"trivial_group G \longleftrightarrow(\existsa. carrier G \subseteq {a})"
by (auto simp: trivial_group)

```
```

lemma (in group) trivial_group_subgroup_generated:
assumes "S \subseteq{one G}"
shows "trivial_group(subgroup_generated G S)"
proof -
have "carrier (subgroup_generated G S) \subseteq{1}"
using generate_empty generate_one subset_singletonD assms
by (fastforce simp add: carrier_subgroup_generated)
then show ?thesis
by (simp add: group.trivial_group_subset)
qed
lemma (in group) trivial_group_subgroup_generated_eq:
"trivial_group(subgroup_generated G s) \longleftrightarrow carrier G \cap s \subseteq {one G}"
apply (rule iffI)
apply (force simp: trivial_group_def carrier_subgroup_generated generate.incl)
by (metis subgroup_generated_restrict trivial_group_subgroup_generated)
lemma isomorphic_group_triviality1:
assumes "G\cong H" "group H" "trivial_group G"
shows "trivial_group H"
using assms
by (auto simp: trivial_group_def is_iso_def iso_def group.is_monoid
Group.group_def bij_betw_def hom_one)
lemma isomorphic_group_triviality:
assumes "G\cong H" "group G" "group H"
shows "trivial_group G \longleftrightarrow trivial_group H"
by (meson assms group.iso_sym isomorphic_group_triviality1)
lemma (in group_hom) kernel_from_trivial_group:
"trivial_group G \Longrightarrow kernel G H h = carrier G"
by (auto simp: trivial_group_def kernel_def)
lemma (in group_hom) image_from_trivial_group:
"trivial_group G \Longrightarrow h ' carrier G = {one H}"
by (auto simp: trivial_group_def)
lemma (in group_hom) kernel_to_trivial_group:
"trivial_group H \Longrightarrow kernel G H h = carrier G"
unfolding kernel_def trivial_group_def
using hom_closed by blast

```

\subsection*{17.4 The additive group of integers}
```

definition integer_group

```
definition integer_group
    where "integer_group = (carrier = UNIV, monoid.mult = (+), one = (0::int)|"
    where "integer_group = (carrier = UNIV, monoid.mult = (+), one = (0::int)|"
lemma group_integer_group [simp]: "group integer_group"
```

unfolding integer_group_def
proof (rule groupI; simp)
show " $\bigwedge \mathrm{x}:$:int. $\exists \mathrm{y} . \mathrm{y}+\mathrm{x}=0$ "
by presburger
qed
lemma carrier_integer_group [simp]: "carrier integer_group = UNIV"
by (auto simp: integer_group_def)
lemma one_integer_group [simp]: "1 integer_group $=0 "$
by (auto simp: integer_group_def)
lemma mult_integer_group [simp]: "x $\otimes_{\text {integer_group }} \mathrm{y}=\mathrm{x}+\mathrm{y}$ "
by (auto simp: integer_group_def)
lemma inv_integer_group [simp]: "invinteger_group x = -x"
by (rule group.inv_equality [OF group_integer_group]) (auto simp: integer_group_def)
lemma abelian_integer_group: "comm_group integer_group"
by (rule group.group_comm_groupI [OF group_integer_group]) (auto simp:
integer_group_def)
lemma group_nat_pow_integer_group [simp]:
fixes n ::nat and x ::int
shows "pow integer_group $\mathrm{x} \mathrm{n}=$ int $\mathrm{n} * \mathrm{x}$ "
by (induction n) (auto simp: integer_group_def algebra_simps)
lemma group_int_pow_integer_group [simp]:
fixes n ::int and $x:$ int
shows "pow integer_group $\mathrm{x} \mathrm{n}=\mathrm{n} * \mathrm{x}$ "
by (simp add: int_pow_def2)
lemma (in group) hom_integer_group_pow:
"x \in carrier $G \Longrightarrow$ pow $G x \in$ hom integer_group $G "$
by (rule homI) (auto simp: int_pow_mult)

17.5 Additive group of integers modulo n ($\mathrm{n}=0$ gives just the integers)

```
definition integer_mod_group :: "nat }=>\mathrm{ int monoid"
    where
    "integer_mod_group n \equiv
        if n = 0 then integer_group
        else |carrier = {0..<int n}, monoid.mult = (\lambdax y. (x+y) mod int n),
one = 0)"
```

lemma carrier_integer_mod_group:
"carrier (integer_mod_group n) = (if n=0 then UNIV else \{0.. <int n\})"
by (simp add: integer_mod_group_def)

```
lemma one_integer_mod_group[simp]: "one(integer_mod_group n) = 0"
    by (simp add: integer_mod_group_def)
lemma mult_integer_mod_group[simp]: "monoid.mult(integer_mod_group n)
= ( }\lambda\textrm{x y. (x + y) mod int n)"
    by (simp add: integer_mod_group_def integer_group_def)
lemma group_integer_mod_group [simp]: "group (integer_mod_group n)"
proof -
    have *: "\existsy\geq0. y < int n ^ (y + x) mod int n = 0" if "x < int n" "0
\leqx" for x
    proof (cases "x=0")
        case False
        with that show ?thesis
            by (rule_tac x="int n - x" in exI) auto
    qed (use that in auto)
    show ?thesis
        apply (rule groupI)
            apply (auto simp: integer_mod_group_def Bex_def *, presburger+)
        done
qed
lemma inv_integer_mod_group[simp]:
    "x \in carrier (integer_mod_group n) \Longrightarrow m_inv(integer_mod_group n) x
= (-x) mod int n"
    by (rule group.inv_equality [OF group_integer_mod_group]) (auto simp:
integer_mod_group_def add.commute mod_add_right_eq)
lemma pow_integer_mod_group [simp]:
    fixes m::nat
    shows "pow (integer_mod_group n) x m = (int m * x) mod int n"
proof (cases "n=0")
    case False
    show ?thesis
        by (induction m) (auto simp: add.commute mod_add_right_eq distrib_left
mult.commute)
qed (simp add: integer_mod_group_def)
lemma int_pow_integer_mod_group:
    "pow (integer_mod_group n) x m = (m * x) mod int n"
proof -
    have "invinteger_mod_group n (- (m * x) mod int n) = m * x mod int n"
            by (simp add: carrier_integer_mod_group mod_minus_eq)
    then show ?thesis
            by (simp add: int_pow_def2)
qed
```

```
lemma abelian_integer_mod_group [simp]: "comm_group(integer_mod_group
n)"
    by (simp add: add.commute group.group_comm_groupI)
lemma integer_mod_group_0 [simp]: "0 \in carrier(integer_mod_group n)"
    by (simp add: integer_mod_group_def)
lemma integer_mod_group_1 [simp]: "1 \in carrier(integer_mod_group n)
\longleftrightarrow (n \not= 1)"
    by (auto simp: integer_mod_group_def)
lemma trivial_integer_mod_group: "trivial_group(integer_mod_group n)
n = 1"
    (is "?lhs = ?rhs")
proof
    assume ?lhs
    then show ?rhs
    by (simp add: trivial_group_def carrier_integer_mod_group set_eq_iff
split: if_split_asm) (presburger+)
next
    assume ?rhs
    then show ?lhs
        by (force simp: trivial_group_def carrier_integer_mod_group)
qed
```


17.6 Cyclic groups

```
lemma (in group) subgroup_of_powers:
    "x \in carrier G \Longrightarrow subgroup (range (\lambdan::int. x [^] n)) G"
    apply (auto simp: subgroup_def image_iff simp flip: int_pow_mult int_pow_neg)
    apply (metis group.int_pow_diff int_pow_closed is_group r_inv)
    done
```

lemma (in group) carrier_subgroup_generated_by_singleton:
assumes "x \in carrier G"
shows "carrier (subgroup_generated G \{x\}) = (range ($\lambda \mathrm{n}:$:int. $\mathrm{x}[\uparrow] \mathrm{n}$))"
proof
show "carrier (subgroup_generated G $\{\mathrm{x}\}$) \subseteq range ($\lambda \mathrm{n}$: :int. $\mathrm{x}[\wedge] \mathrm{n}$)"
proof (rule subgroup_generated_minimal)
show "subgroup (range ($\lambda \mathrm{n}$::int. $\mathrm{x}[\wedge] \mathrm{n}$)) G"
using assms subgroup_of_powers by blast
show $"\{x\} \subseteq$ range ($\lambda \mathrm{n}:$:int. $\mathrm{x}[\wedge] \mathrm{n})$ "
by clarify (metis assms int_pow_1 range_eqI)
qed
have $\mathrm{x}: \mathrm{x} \in$ carrier (subgroup_generated $G\{x\}$)"
using assms subgroup_generated_subset_carrier_subset by auto
show "range ($\lambda \mathrm{n}$: int. $\mathrm{x}\left[{ }^{\wedge}\right] \mathrm{n}$) \subseteq carrier (subgroup_generated $\mathrm{G}\{\mathrm{x}\}$)"
proof clarify
fix n :: "int"

```
        show "x [^] n \in carrier (subgroup_generated G {x})"
            by (simp add: x subgroup_int_pow_closed subgroup_subgroup_generated)
        qed
qed
definition cyclic_group
    where "cyclic_group G \equiv\exists | f carrier G. subgroup_generated G {x} =
G"
lemma (in group) cyclic_group:
    "cyclic_group G \longleftrightarrow (\existsx c carrier G. carrier G = range ( \lambdan::int. x
[^] n))"
proof -
    have "\x. \llbracketx \in carrier G; carrier G = range (\lambdan::int. x [^] n)\rrbracket
                            \Longrightarrow\existsx\incarrier G. subgroup_generated G {x} = G"
        by (rule_tac x=x in bexI) (auto simp: generate_pow subgroup_generated_def
intro!: monoid.equality)
    then show ?thesis
            unfolding cyclic_group_def
            using carrier_subgroup_generated_by_singleton by fastforce
qed
lemma cyclic_integer_group [simp]: "cyclic_group integer_group"
proof -
    have *: "int n \in generate integer_group {1}" for n
    proof (induction n)
            case 0
            then show ?case
            using generate.simps by force
    next
        case (Suc n)
        then show ?case
        by simp (metis generate.simps insert_subset integer_group_def monoid.simps(1)
subsetI)
    qed
    have **: "i \in generate integer_group {1}" for i
    proof (cases i rule: int_cases)
            case (nonneg n)
            then show ?thesis
                by (simp add: *)
    next
        case (neg n)
        then have "-i \in generate integer_group {1}"
            by (metis "*" add.inverse_inverse)
        then have "- (-i) \in generate integer_group {1}"
            by (metis UNIV_I group.generate_m_inv_closed group_integer_group
integer_group_def inv_integer_group partial_object.select_convs(1) subsetI)
    then show ?thesis
```

```
        by simp
    qed
    show ?thesis
    unfolding cyclic_group_def
    by (rule_tac x=1 in bexI)
        (auto simp: carrier_subgroup_generated ** intro: monoid.equality)
qed
lemma nontrivial_integer_group [simp]: "\neg trivial_group integer_group"
    using integer_mod_group_def trivial_integer_mod_group by presburger
lemma (in group) cyclic_imp_abelian_group:
    "cyclic_group G \Longrightarrow comm_group G"
    apply (auto simp: cyclic_group comm_group_def is_group intro!: monoid_comm_monoidI)
    apply (metis add.commute int_pow_mult rangeI)
    done
lemma trivial_imp_cyclic_group:
        "trivial_group G \Longrightarrow cyclic_group G"
    by (metis cyclic_group_def group.subgroup_generated_group_carrier insertI1
trivial_group_def)
lemma (in group) cyclic_group_alt:
        "cyclic_group G \longleftrightarrow (\existsx. subgroup_generated G {x} = G)"
proof safe
    fix x
    assume *: "subgroup_generated G {x} = G"
    show "cyclic_group G"
    proof (cases "x \in carrier G")
        case True
        then show ?thesis
            using <subgroup_generated G {x} = G> cyclic_group_def by blast
    next
        case False
        then show ?thesis
            by (metis "*" Int_empty_right Int_insert_right_if0 carrier_subgroup_generated
generate_empty trivial_group trivial_imp_cyclic_group)
    qed
qed (auto simp: cyclic_group_def)
lemma (in group) cyclic_group_generated:
    "cyclic_group (subgroup_generated G {x})"
    using group.cyclic_group_alt group_subgroup_generated subgroup_generated2
by blast
lemma (in group) cyclic_group_epimorphic_image:
assumes "h \(\in\) epi G H" "cyclic_group G" "group H"
shows "cyclic_group H"
```

```
proof -
    interpret h: group_hom
        using assms
        by (simp add: group_hom_def group_hom_axioms_def is_group epi_def)
    obtain x where "x carrier G" and x: "carrier G = range (\lambdan::int.
x [^] n)" and eq: "carrier H = h ' carrier G"
        using assms by (auto simp: cyclic_group epi_def)
    have "h ' carrier G = range (\lambdan::int. h x [^^] H n)"
        by (metis (no_types, lifting) <x \in carrier G> h.hom_int_pow image_cong
image_image x)
    then show ?thesis
        using <x \in carrier G> eq h.cyclic_group by blast
qed
lemma isomorphic_group_cyclicity:
    "\llbracketG\cong H; group G; group H\rrbracket C cyclic_group G }\longleftrightarrow\mathrm{ cyclic_group H"
    by (meson ex_in_conv group.cyclic_group_epimorphic_image group.iso_sym
is_iso_def iso_iff_mon_epi)
end
theory Multiplicative_Group
imports
    Complex_Main
    Group
    Coset
    UnivPoly
    Generated_Groups
    Elementary_Groups
begin
```


18 Simplification Rules for Polynomials

```
lemma (in ring_hom_cring) hom_sub[simp]:
    assumes "x \in carrier R" "y \in carrier R"
    shows "h (x \ominus y) = h x }\mp@subsup{\ominus}{S}{
    using assms by (simp add: R.minus_eq S.minus_eq)
context UP_ring begin
lemma deg_nzero_nzero:
    assumes deg_p_nzero: "deg R p f= 0"
    shows "p f= 0p"
    using deg_zero deg_p_nzero by auto
lemma deg_add_eq:
    assumes c: "p \in carrier P" "q \in carrier P"
```

```
    assumes "deg R q # deg R p"
    shows "deg R (p \oplusp q) = max ( deg R p) ( deg R q)"
proof -
    let ?m = "max (deg R p) (deg R q)"
    from assms have "coeff P p ?m = 0 \longleftrightarrowcoeff P q ?m f= 0"
        by (metis deg_belowI lcoeff_nonzero[OF deg_nzero_nzero] linear max.absorb_iff2
max.absorb1)
    then have "coeff P (p \oplusp q) ?m \not=0"
            using assms by auto
    then have "deg R (p \oplusp q) \geq ?m"
            using assms by (blast intro: deg_belowI)
    with deg_add[OF c] show ?thesis by arith
qed
lemma deg_minus_eq:
    assumes "p \in carrier P" "q \in carrier P" "deg R q = deg R p"
    shows "deg R (p \ominusp q) = max ( deg R p) (deg R q)"
    using assms by (simp add: deg_add_eq a_minus_def)
end
context UP_cring begin
lemma evalRR_add:
    assumes "p \in carrier P" "q \in carrier P"
    assumes x: "x \in carrier R"
    shows "eval R R id x (p \oplusp q) = eval R R id x p \oplus eval R R id x q"
proof -
    interpret UP_pre_univ_prop R R id by unfold_locales simp
    interpret ring_hom_cring P R "eval R R id x" by unfold_locales (rule
eval_ring_hom[OF x])
    show ?thesis using assms by simp
qed
lemma evalRR_sub:
    assumes "p \in carrier P" "q \in carrier P"
    assumes x: "x \in carrier R"
    shows "eval R R id x (p \ominusp q) = eval R R id x p \ominus eval R R id x q"
proof -
    interpret UP_pre_univ_prop R R id by unfold_locales simp
    interpret ring_hom_cring P R "eval R R id x" by unfold_locales (rule
eval_ring_hom[OF x])
    show ?thesis using assms by simp
qed
lemma evalRR_mult:
    assumes "p \in carrier P" "q \in carrier P"
    assumes x: "x \in carrier R"
    shows "eval R R id x (p \otimesp q) = eval R R id x p \otimes eval R R id x q"
```

```
proof -
    interpret UP_pre_univ_prop R R id by unfold_locales simp
    interpret ring_hom_cring P R "eval R R id x" by unfold_locales (rule
eval_ring_hom[OF x])
    show ?thesis using assms by simp
qed
lemma evalRR_monom:
    assumes a: "a \in carrier R" and x: "x \in carrier R"
    shows "eval R R id x (monom P a d) = a \otimes x [^] d"
proof -
    interpret UP_pre_univ_prop R R id by unfold_locales simp
    show ?thesis using assms by (simp add: eval_monom)
qed
lemma evalRR_one:
    assumes x: "x \in carrier R"
    shows "eval R R id x 1P = 1"
proof -
    interpret UP_pre_univ_prop R R id by unfold_locales simp
    interpret ring_hom_cring P R "eval R R id x" by unfold_locales (rule
eval_ring_hom[0F x])
    show ?thesis using assms by simp
qed
lemma carrier_evalRR:
    assumes x: "x \in carrier R" and "p \in carrier P"
    shows "eval R R id x p \in carrier R"
proof -
    interpret UP_pre_univ_prop R R id by unfold_locales simp
    interpret ring_hom_cring P R "eval R R id x" by unfold_locales (rule
eval_ring_hom[0F x])
    show ?thesis using assms by simp
qed
lemmas evalRR_simps = evalRR_add evalRR_sub evalRR_mult evalRR_monom
evalRR_one carrier_evalRR
end
```


19 Properties of the Euler φ-function

In this section we prove that for every positive natural number the equation $\sum_{d \mid n}^{n} \varphi(d)=n$ holds.

```
lemma dvd_div_ge_1:
    fixes a b :: nat
    assumes "a \geq 1" "b dvd a"
    shows "a div b \geq 1"
```

```
proof -
    from <b dvd a> obtain c where "a = b * c" ..
    with <a \geq 1> show ?thesis by simp
qed
lemma dvd_nat_bounds:
    fixes n p :: nat
    assumes "p > 0" "n dvd p"
    shows "n > 0 ^ n \leq p"
    using assms by (simp add: dvd_pos_nat dvd_imp_le)
definition phi' :: "nat => nat"
    where "phi' m = card {x. 1 \leq x ^ x \leqm ^ coprime x m}"
notation (latex output)
    phi'("\varphi _")
lemma phi'_nonzero:
    assumes "m > 0"
    shows "phi' m > 0"
proof -
    have "1 \in {x. 1 \leq x ^ x \leqm ^ coprime x m}" using assms by simp
    hence "card {x. 1 \leq x ^ x \leq m ^ coprime x m} > 0" by (auto simp: card_gt_0_iff)
    thus ?thesis unfolding phi'_def by simp
qed
lemma dvd_div_eq_1:
    fixes a b c :: nat
    assumes "c dvd a" "c dvd b" "a div c = b div c"
    shows "a = b" using assms dvd_mult_div_cancel[OF <c dvd a>] dvd_mult_div_cancel[OF
<c dvd b>]
            by presburger
lemma dvd_div_eq_2:
    fixes a b c :: nat
    assumes "c>0" "a dvd c" "b dvd c" "c div a = c div b"
    shows "a = b"
    proof -
    have "a > 0" "a \leq c" using dvd_nat_bounds[0F assms(1-2)] by auto
    have "a*(c div a) = c" using assms dvd_mult_div_cancel by fastforce
    also have "... = b*(c div a)" using assms dvd_mult_div_cancel by fastforce
    finally show "a = b" using <c>0> dvd_div_ge_1[OF _ <a dvd c>] by fastforce
qed
lemma div_mult_mono:
    fixes a b c :: nat
    assumes "a > 0" "a\leqd"
    shows "a * b div d \leq b"
```

```
proof -
    have "a*b div d \leq b*a div a" using assms div_le_mono2 mult.commute[of
    ab by presburger
    thus ?thesis using assms by force
qed
```

We arrive at the main result of this section: For every positive natural number the equation $\sum_{d \mid n}^{n} \varphi(d)=n$ holds.
The outline of the proof for this lemma is as follows: We count the n fractions $1 / n, \ldots,(n-1) / n, n / n$. We analyze the reduced form $a / d=m / n$ for any of those fractions. We want to know how many fractions m / n have the reduced form denominator d. The condition $1 \leq m \leq n$ is equivalent to the condition $1 \leq a \leq d$. Therefore we want to know how many a with $1 \leq a \leq d$ exist, s.t. gcd a $\mathrm{d}=$ (1::'a). This number is exactly $\varphi \mathrm{d}$.
Finally, by counting the fractions m / n according to their reduced form denominator, we get:
$\left(\sum \mathrm{d} \mid \mathrm{d} \operatorname{dvd} \mathrm{n} . \varphi \mathrm{d}\right)=\mathrm{n}$
. To formalize this proof in Isabelle, we analyze for an arbitrary divisor d of n

- the set of reduced form numerators $\{\mathrm{a} .1 \leq \mathrm{a} \wedge \mathrm{a} \leq \mathrm{d} \wedge$ coprime a d\}
- the set of numerators m, for which m / n has the reduced form denominator d, i.e. the set $\{m \in\{1 \ldots \mathrm{n}\} . \mathrm{n}$ div $\operatorname{gcd} \mathrm{m} \mathrm{n}=\mathrm{d}\}$

We show that $\lambda \mathrm{a}$. a $* \mathrm{n}$ div d with the inverse $\lambda \mathrm{a}$. a div $\operatorname{gcd} \mathrm{a} \mathrm{n}$ is a bijection between theses sets, thus yielding the equality

```
|d= card {m \in{1..n}. n div gcd m n = d}
```

This gives us

```
(\sumd | d dvd n. \varphi d) = card ( }\mp@subsup{\bigcup}{d\in{d. d dvd n} {m }{\mathrm{ d {1..n}. n div gcd m}
n = d})
```

and by showing $\{1 . . \mathrm{n}\} \subseteq\left(\bigcup_{d \in\{d .} \mathrm{d}\right.$ dvd n$\}\{\mathrm{m} \in\{1 . . \mathrm{n}\}$. n div ged m n $=d\})$ (this is our counting argument) the thesis follows.

```
lemma sum_phi'_factors:
    fixes n :: nat
    assumes "n > 0"
    shows "(\sumd | d dvd n. phi' d) = n"
proof -
    { fix d assume "d dvd n" then obtain q where q: "n = d * q" ..
        have "card {a. 1 \leq a ^a\leqd ^ coprime a d} = card {m \in{1 .. n}.
n div gcd m n = d}"
```

```
        (is "card ?RF = card ?F")
    proof (rule card_bij_eq)
    { fix a b assume "a * n div d = b * n div d"
            hence "a * (n div d) = b * (n div d)"
                using dvd_div_mult[OF <d dvd n>] by (fastforce simp add: mult.commute)
            hence "a = b" using dvd_div_ge_1[OF _ <d dvd n>] <n>0>
                by (simp add: mult.commute nat_mult_eq_cancel1)
    } thus "inj_on (\lambdaa. a*n div d) ?RF" unfolding inj_on_def by blast
    { fix a assume a: "a\in?RF"
        hence "a * (n div d) \geq 1" using <n>0> dvd_div_ge_1[OF _ <d dvd
n>] by simp
            hence ge_1: "a * n div d \geq 1" by (simp add: <d dvd n> div_mult_swap)
            have le_n: "a * n div d \leqn" using div_mult_mono a by simp
            have "gcd (a * n div d) n = n div d * gcd a d"
                by (simp add: gcd_mult_distrib_nat q ac_simps)
            hence "n div gcd (a * n div d) n = d*n div (d*(n div d))" us-
ing a by simp
            hence "a * n div d \in ?F"
                using ge_1 le_n by (fastforce simp add: <d dvd n>)
    } thus "(\lambdaa. a*n div d) ' ?RF \subseteq ?F" by blast
    { fix m l assume A: "m \in ?F" "l \in ?F" "m div gcd m n = l div gcd
l n"
            hence "gcd m n = gcd l n" using dvd_div_eq_2[0F assms] by fastforce
            hence "m = l" using dvd_div_eq_1[of "gcd m n" m l] A(3) by fastforce
            } thus "inj_on ( \lambdaa. a div gcd a n) ?F" unfolding inj_on_def by
blast
            { fix m assume "m \in ?F"
                    hence "m div gcd m n \in ?RF" using dvd_div_ge_1
                by (fastforce simp add: div_le_mono div_gcd_coprime)
            } thus "(\lambdaa. a div gcd a n) ' ?F \subseteq ?RF" by blast
        qed force+
    } hence phi'_eq: "\d. d dvd n \Longrightarrow phi' d = card {m \in {1 .. n}. n div
gcd m n = d}"
            unfolding phi'_def by presburger
    have fin: "finite {d. d dvd n}" using dvd_nat_bounds[OF <n>0>] by force
    have "(\sumd | d dvd n. phi' d)
                        = card (Ud \in {d. d dvd n}. {m \in {1 .. n}. n div gcd
m n = d})"
            using card_UN_disjoint[OF fin, of "(\lambdad. {m \in {1 .. n}. n div gcd m
n = d})"] phi'_eq
            by fastforce
    also have "(Ud \in {d. d dvd n}. {m \in {1 .. n}. n div gcd m n = d}) =
{1 .. n}" (is "?L = ?R")
    proof
            show "?L \supseteq ?R"
            proof
                fix m assume m: "m \in ?R"
                thus "m \in ?L" using dvd_triv_right[of "n div gcd m n" "gcd m n"]
                by simp
```

qed
qed fastforce
finally show ?thesis by force
qed

20 Order of an Element of a Group

context group begin
definition (in group) ord :: "'a \Rightarrow nat" where
"ord $\mathrm{x} \equiv$ (@d. $\forall \mathrm{n}$: :nat. $\mathrm{x}[\stackrel{\wedge}{ } \mathrm{n}=1 \longleftrightarrow \mathrm{~d}$ dvd n)"
lemma (in group) pow_eq_id:
assumes " $\mathrm{x} \in$ carrier G "
shows "x [^] $\mathrm{n}=1 \longleftrightarrow$ (ord x) dvd n "
proof (cases $\forall \forall \mathrm{n}$: :nat. pow $\mathrm{G} \times \mathrm{n}=$ one $\mathrm{G} \longrightarrow \mathrm{n}=0$ ")
case True
show ?thesis
unfolding ord_def
by (rule someI2 [where $\mathrm{a}=0$]) (auto simp: True)
next
case False
define N where $\mathrm{N}^{\mathrm{N}} \equiv$ LEAST n : : nat. $\mathrm{x}\left[{ }^{\wedge}\right] \mathrm{n}=1 \wedge \mathrm{n}>0$ "
have N : "x [^] $N=1 \wedge N>0 "$
using False
apply (simp add: N_def)
by (metis (mono_tags, lifting) LeastI)
have eq0: " $\mathrm{n}=0$ " if "x [^] $\mathrm{n}=1$ " " n < N " for n
using N_def not_less_Least that by fastforce
show ?thesis
unfolding ord_def
proof (rule someI2 [where $\mathrm{a}=\mathrm{N}$], rule allI)
fix n : : "nat" show " $\left(\mathrm{x}\left[{ }^{\wedge}\right] \mathrm{n}=1\right) \longleftrightarrow(\mathrm{N}$ dvd n$)$ " proof (cases "n = 0")
case False
show ?thesis
unfolding dvd_def
proof safe
assume 1: "x $[\wedge] \mathrm{n}=1$ "
have $" \mathrm{x}\left[{ }^{\wedge}\right] \mathrm{n}=\mathrm{x}\left[{ }^{\wedge}\right](\mathrm{n} \bmod \mathrm{N}+\mathrm{N} *(\mathrm{n} \operatorname{div} \mathrm{N}))$ "
by simp
also have $" . . .=x[\wedge](n \bmod N) \otimes x[\wedge](N *(n \operatorname{div} N)) "$
by (simp add: assms nat_pow_mult)
also have $" . . .=x[\sim](n \bmod N) "$
by (metis N assms l_cancel_one nat_pow_closed nat_pow_one nat_pow_pow)
finally have $" x\left[{ }^{\circ}\right](n \bmod N)=1 "$
by (simp add: "1")
then have $" \mathrm{n} \bmod \mathrm{N}=0$ "

```
                    using N eq0 mod_less_divisor by blast
                then show "\existsk. n = N * k"
                    by blast
        next
            fix k :: "nat"
            assume "n = N * k"
            with N show "x [^] (N * k) = 1"
                by (metis assms nat_pow_one nat_pow_pow)
            qed
        qed simp
    qed blast
qed
lemma (in group) pow_ord_eq_1 [simp]:
    "x \in carrier G }\Longrightarrow\textrm{x [^}] ord x = 1"
    by (simp add: pow_eq_id)
lemma (in group) int_pow_eq_id:
    assumes "x \in carrier G"
    shows "(pow G x i = one G \longleftrightarrow int (ord x) dvd i)"
proof (cases i rule: int_cases2)
    case (nonneg n)
    then show ?thesis
        by (simp add: int_pow_int pow_eq_id assms)
next
    case (nonpos n)
    then have "x [^] i = inv (x [^] n)"
        by (simp add: assms int_pow_int int_pow_neg)
    then show ?thesis
        by (simp add: assms pow_eq_id nonpos)
qed
lemma (in group) int_pow_eq:
    "x f carrier G ( x [^] m = x [^] n) \longleftrightarrow int (ord x) dvd (n - m)"
    apply (simp flip: int_pow_eq_id)
    by (metis int_pow_closed int_pow_diff inv_closed r_inv right_cancel)
lemma (in group) ord_eq_0:
    "x \in carrier G C (ord x = 0 \longleftrightarrow ( n n:nat. n f 0 < x [^] n f 1))"
    by (auto simp: pow_eq_id)
lemma (in group) ord_unique:
    "x \in carrier G }\Longrightarrow\mathrm{ ord x = d }\longleftrightarrow(\forall\textrm{n}.\mathrm{ pow G x n = one G }\longleftrightarrow\textrm{d}\mathrm{ dvd
n)"
    by (meson dvd_antisym dvd_refl pow_eq_id)
lemma (in group) ord_eq_1:
    "x f carrier G \Longrightarrow(ord x = 1 \longleftrightarrow x = 1)"
    by (metis pow_eq_id nat_dvd_1_iff_1 nat_pow_eone)
```

```
lemma (in group) ord_id [simp]:
        "ord (one G) = 1 "
    using ord_eq_1 by blast
lemma (in group) ord_inv [simp]:
        "x \(\in\) carrier \(G\)
            \(\Longrightarrow\) ord (m_inv G x) = ord \(x "\)
    by (simp add: ord_unique pow_eq_id nat_pow_inv)
lemma (in group) ord_pow:
    assumes "x \(\in\) carrier \(G\) " "k dvd ord \(x\) " "k \(\neq 0\) "
    shows "ord (pow G x k) = ord x div \(\mathrm{k} "\)
proof -
    have " (x [^] k) [^] (ord \(x\) div k) = 1"
        using assms by (simp add: nat_pow_pow)
    moreover have "ord \(x\) dvd \(k\) * ord ( \(x[\uparrow] k\) )"
        by (metis assms(1) pow_ord_eq_1 pow_eq_id nat_pow_closed nat_pow_pow)
    ultimately show ?thesis
        by (metis assms div_dvd_div dvd_antisym dvd_triv_left pow_eq_id nat_pow_closed
nonzero_mult_div_cancel_left)
qed
lemma (in group) ord_mul_divides:
    assumes eq: "x \(\otimes \mathrm{y}=\mathrm{y} \otimes \mathrm{x}\) " and \(\mathrm{xy}: ~ " \mathrm{x} \in\) carrier \(G "\) " \(\mathrm{f} \in\) carrier
G"
    shows "ord ( \(\mathrm{x} \otimes \mathrm{y}\) ) dvd (ord \(\mathrm{x} *\) ord y )"
apply (simp add: xy flip: pow_eq_id eq)
    by (metis dvd_triv_left dvd_triv_right eq pow_eq_id one_closed pow_mult_distrib
r_one \(x y\) )
lemma (in comm_group) abelian_ord_mul_divides:
    " \(\llbracket \mathrm{x} \in\) carrier \(\mathrm{G} ; \mathrm{y} \in\) carrier \(\mathrm{G} \rrbracket\)
        \(\Longrightarrow\) ord ( \(\mathrm{x} \otimes \mathrm{y}\) ) dvd (ord \(\mathrm{x} *\) ord y )"
    by (simp add: ord_mul_divides m_comm)
lemma ord_inj:
    assumes a: "a \(\in\) carrier G"
    shows "inj_on ( \(\lambda\) x . a [^] x) \{0 .. ord a - 1\}"
proof -
    let \(? \mathrm{M}=\) "Max (ord ' carrier G)"
    have "finite \(\{d \in\{. . ? M\}\). a [^] \(d=1\} "\) by auto
    have *: False if \(A: ~ " x<y " ~ " x \in\{0 \ldots\) ord \(a-1\} "\) " \(y \in\{0 \ldots\) ord a
    - 1\}"
        "a [^] \(\mathrm{x}=\mathrm{a}[] \mathrm{y}\) " for x y
    proof -
        have "y - x < ord a" using that by auto
        moreover have "a [^] ( \(y-x\) ) = 1" using a A by (simp add: pow_eq_div2)
```

```
        ultimately have "min (y - x) (ord a) = ord a"
        using A(1) a pow_eq_id by auto
        with < y - x < ord a> show False by linarith
    qed
    show ?thesis
        unfolding inj_on_def by (metis nat_neq_iff *)
qed
lemma ord_inj':
    assumes a: "a \in carrier G"
    shows "inj_on ( }\lambda\mathrm{ x . a [^] x) {1 .. ord a}"
proof (rule inj_onI, rule ccontr)
    fix x y :: nat
    assume A: "x \in {1 .. ord a}" "y \in {1 .. ord a}" "a [^] x = a [^] y"
"x\not=y"
    { assume "x < ord a" "y < ord a"
        hence False using ord_inj[OF assms] A unfolding inj_on_def by fastforce
    }
    moreover
    { assume "x = ord a" "y < ord a"
        hence "a [^] y = a [^] (0::nat)" using pow_ord_eq_1 A by (simp add:
a)
        hence "y=0" using ord_inj[OF assms] <y < ord a> unfolding inj_on_def
by force
        hence False using A by fastforce
    }
    moreover
    { assume "y = ord a" "x < ord a"
        hence "a [^] x = a [^] (0::nat)" using pow_ord_eq_1 A by (simp add:
a)
        hence "x=0" using ord_inj[OF assms] < x < ord a> unfolding inj_on_def
by force
        hence False using A by fastforce
    }
    ultimately show False using A by force
qed
lemma (in group) ord_ge_1:
    assumes finite: "finite (carrier G)" and a: "a \in carrier G"
    shows "ord a \geq 1"
proof -
    have "((\lambdan::nat. a [^] n) ' {0<..}) \subseteq carrier G"
        using a by blast
    then have "finite ((\lambdan::nat. a [^] n) ' {0<..})"
        using finite_subset finite by auto
    then have "\neg inj_on ( }\lambda\textrm{n}::=\mathrm{ nat. a [^] n) {0<..}"
        using finite_imageD infinite_Ioi by blast
    then obtain i j::nat where "i f= j" "a [^] i = a [^] j"
        by (auto simp: inj_on_def)
```

```
    then have "\existsn::nat. n>0 ^ a [^] n = 1"
        by (metis a diffs0_imp_equal pow_eq_div2 neq0_conv)
    then have "ord a =0"
        by (simp add: ord_eq_0 [OF a])
    then show ?thesis
        by simp
qed
lemma ord_elems:
    assumes "finite (carrier G)" "a \in carrier G"
    shows "{a[^]x | x. x \in (UNIV :: nat set)} = {a[^]x | x. x \in {0 .. ord
a - 1}}" (is "?L = ?R")
proof
    show "?R \subseteq ?L" by blast
    { fix y assume "y \in ?L"
        then obtain x::nat where x: "y = a[^]x" by auto
        define r q where "r = x mod ord a" and "q = x div ord a"
        then have "x = q * ord a + r"
            by (simp add: div_mult_mod_eq)
        hence "y = (a[^]ord a)[^]q & a[^]r"
                using x assms by (metis mult.commute nat_pow_mult nat_pow_pow)
            hence "y = a[^]r" using assms by (simp add: pow_ord_eq_1)
            have "r < ord a" using ord_ge_1[OF assms] by (simp add: r_def)
            hence "r \in {0 .. ord a - 1}" by (force simp: r_def)
            hence "y \in {a[^]x | x. x \in {0 .. ord a - 1}}" using < y=a[^]r> by
blast
    }
    thus "?L \subseteq ?R" by auto
qed
lemma (in group)
    assumes "x \in carrier G"
    shows finite_cyclic_subgroup:
            "finite(carrier(subgroup_generated G {x})) \longleftrightarrow (\existsn::nat. n f
0^ x [^] n = 1)" (is "?fin \longleftrightarrow ?nat1")
        and infinite_cyclic_subgroup:
            "infinite(carrier(subgroup_generated G {x})) \longleftrightarrow (\forallm n::nat.
x [^] m = x [^] n \longrightarrow m = n)" (is "\neg ?fin \longleftrightarrow ?nateq")
        and finite_cyclic_subgroup_int:
            "finite(carrier(subgroup_generated G {x})) \longleftrightarrow (\existsi::int. i f
0^ x [^] i = 1)" (is "?fin \longleftrightarrow ?int1")
        and infinite_cyclic_subgroup_int:
            "infinite(carrier(subgroup_generated G {x})) \longleftrightarrow (\foralli j::int.
x [^] i = x [^] j \longrightarrow i = j)" (is "\neg ?fin \longleftrightarrow ?inteq")
proof -
    have 1: "\neg ?fin" if ?nateq
    proof -
        have "infinite (range ( }\lambda\textrm{n}::=nat. x [^] n))"
        using that range_inj_infinite [of "(\lambdan::nat. x [^] n)"] by (auto
```

```
simp: inj_on_def)
    moreover have "range ( \lambdan::nat. x [^] n) \subseteq range ( \lambdai::int. x [^]
i)"
            apply clarify
            by (metis assms group.int_pow_neg int_pow_closed int_pow_neg_int
is_group local.inv_equality nat_pow_closed r_inv rangeI)
    ultimately show ?thesis
        using carrier_subgroup_generated_by_singleton [OF assms] finite_subset
by auto
    qed
    have 2: "m = n" if mn: "x [^] m = x [^] n" and eq [rule_format]: "?inteq"
for m n::nat
            using eq [of "int m" "int n"]
            by (simp add: int_pow_int mn)
    have 3: ?nat1 if non: "\neg ?inteq"
    proof -
            obtain i j::int where eq: "x [^] i = x [^] j" and "i f j"
            using non by auto
    show ?thesis
    proof (cases i j rule: linorder_cases)
        case less
        then have [simp]: "x [^] (j - i) = 1"
            by (simp add: eq assms int_pow_diff)
        show ?thesis
            using less by (rule_tac x="nat (j-i)" in exI) auto
    next
        case greater
        then have [simp]: "x [^] (i - j) = 1"
            by (simp add: eq assms int_pow_diff)
            then show ?thesis
            using greater by (rule_tac x="nat (i-j)" in exI) auto
    qed (use <i f j > in auto)
    qed
    have 4: "\existsi::int. (i f 0) ^ x [^] i = 1" if "n \not= 0" "x [^] n = 1"
for n::nat
            apply (rule_tac x="int n" in exI)
            by (simp add: int_pow_int that)
    have 5: "finite (carrier (subgroup_generated G {x}))" if "i f= 0" and
1: "x [^] i = 1" for i::int
    proof -
            obtain n::nat where n: "n > 0" "x [^] n = 1"
                using "1" "3" <i f= 0> by fastforce
            have "x [^] a G ([^]) x ' {0..<n}" for a::int
            proof
                show "x [^] a = x [^] nat (a mod int n)"
                    using n
                    by simp (metis (no_types, lifting) assms dvd_minus_mod dvd_trans
int_pow_eq int_pow_eq_id int_pow_int)
        show "nat (a mod int n) \in {0..<n}"
```

```
            using n by (simp add: nat_less_iff)
    qed
    then have "carrier (subgroup_generated G {x}) \subseteq ([^]) x ' {0..<n}"
        using carrier_subgroup_generated_by_singleton [OF assms] by auto
        then show ?thesis
        using finite_surj by blast
    qed
    show "?fin \longleftrightarrow ?nat1" "\neg ?fin \longleftrightarrow ?nateq" "?fin \longleftrightarrow ?int1" "\neg ?fin
\longleftrightarrow ~ ? i n t e q " ~
    using 1 2 3 4 5 by meson+
qed
lemma (in group) finite_cyclic_subgroup_order:
    "x \in carrier G \Longrightarrow finite(carrier(subgroup_generated G {x})) \longleftrightarrow ord
x = 0"
    by (simp add: finite_cyclic_subgroup ord_eq_0)
lemma (in group) infinite_cyclic_subgroup_order:
    "x \in carrier G \Longrightarrow infinite (carrier(subgroup_generated G {x})) \longleftrightarrow
ord x = 0"
    by (simp add: finite_cyclic_subgroup_order)
lemma generate_pow_on_finite_carrier:
    assumes "finite (carrier G)" and a: "a \in carrier G"
    shows "generate G { a } = { a [^] k | k. k \in (UNIV :: nat set) }"
proof
    show "{ a [^] k | k. k \in (UNIV :: nat set) } \subseteq generate G { a }"
    proof
        fix b assume "b \in { a [^] k | k. k \in (UNIV :: nat set) }"
        then obtain k :: nat where "b = a [^] k" by blast
        hence "b = a [^] (int k)"
                by (simp add: int_pow_int)
        thus "b \in generate G { a }"
            unfolding generate_pow[OF a] by blast
    qed
next
    show "generate G { a } \subseteq{ a [^] k | k. k \in (UNIV :: nat set) }"
    proof
        fix b assume "b \in generate G { a }"
        then obtain k :: int where k: "b = a [^] k"
            unfolding generate_pow[OF a] by blast
        show "b \in { a [^] k | k. k \in (UNIV :: nat set) }"
        proof (cases "k < 0")
            assume "\neg k < 0"
            hence "b = a [^] (nat k)"
                    by (simp add: k)
            thus ?thesis by blast
        next
            assume "k < 0"
```

```
            hence b: "b = inv (a [^] (nat (- k)))"
                using k a by (auto simp: int_pow_neg)
            obtain m where m: "ord a * m \geq nat (-k)"
                by (metis assms mult.left_neutral mult_le_mono1 ord_ge_1)
            hence "a [^] (ord a * m) = 1"
                by (metis a nat_pow_one nat_pow_pow pow_ord_eq_1)
            then obtain k' :: nat where "(a [^] (nat (- k))) \otimes (a [^] k') =
1"
                using m a nat_le_iff_add nat_pow_mult by auto
            hence "b = a [^] k'"
                using b a by (metis inv_unique' nat_pow_closed nat_pow_comm)
            thus "b \in { a [^] k | k. k \in (UNIV :: nat set) }" by blast
        qed
    qed
qed
lemma ord_elems_inf_carrier:
    assumes "a \in carrier G" "ord a #= 0"
    shows "{a[^]x | x. x \in (UNIV :: nat set)} = {a[^^] | | x. x \in {0 .. ord
a - 1}}" (is "?L = ?R")
proof
    show "?R \subseteq ?L" by blast
    { fix y assume "y \in ?L"
        then obtain x::nat where x: "y = a[^]x" by auto
        define r q where "r = x mod ord a" and "q = x div ord a"
        then have "x = q * ord a + r"
            by (simp add: div_mult_mod_eq)
    hence "y = (a[^]ord a)[^]q \otimes a[^]r"
            using x assms by (metis mult.commute nat_pow_mult nat_pow_pow)
    hence "y = a[^`]r" using assms by simp
    have "r < ord a" using assms by (simp add: r_def)
    hence "r \in {0 .. ord a - 1}" by (force simp: r_def)
    hence "y \in {a[^]x | x. x \in {0 .. ord a - 1}}" using < y=a[^]r> by
blast
    }
    thus "?L \subseteq ?R" by auto
qed
lemma generate_pow_nat:
    assumes a: "a \in carrier G" and "ord a \not= 0"
    shows "generate G { a } = { a [^] k | k. k \in (UNIV :: nat set) }"
proof
    show "{ a [^] k | k. k \in (UNIV :: nat set) } \subseteq generate G { a }"
    proof
        fix b assume "b \in { a [^] k | k. k \in (UNIV :: nat set) }"
        then obtain k :: nat where "b = a [^] k" by blast
        hence "b = a [^] (int k)"
        by (simp add: int_pow_int)
    thus "b \in generate G { a }"
```

```
        unfolding generate_pow[OF a] by blast
    qed
next
    show "generate G { a } \subseteq { a [^] k | k. k \in (UNIV :: nat set) }"
    proof
        fix b assume "b \in generate G { a }"
        then obtain k :: int where k: "b = a [^] k"
            unfolding generate_pow[OF a] by blast
    show "b \in { a [^] k | k. k \in (UNIV :: nat set) }"
    proof (cases "k < 0")
        assume "\neg k < 0"
        hence "b = a [^] (nat k)"
            by (simp add: k)
        thus ?thesis by blast
    next
        assume "k < 0"
        hence b: "b = inv (a [^] (nat (- k)))"
            using k a by (auto simp: int_pow_neg)
        obtain m where m: "ord a * m \geq nat (-k)"
            by (metis assms(2) dvd_imp_le dvd_triv_right le_zero_eq mult_eq_0_iff
not_gr_zero)
            hence "a [^] (ord a * m) = 1"
            by (metis a nat_pow_one nat_pow_pow pow_ord_eq_1)
            then obtain k' :: nat where "(a [^] (nat (- k))) \otimes (a [^] k') =
1"
            using m a nat_le_iff_add nat_pow_mult by auto
            hence "b = a [^] k'"
            using b a by (metis inv_unique' nat_pow_closed nat_pow_comm)
        thus "b \in { a [^] k | k. k \in (UNIV :: nat set) }" by blast
        qed
    qed
qed
lemma generate_pow_card:
    assumes a: "a \in carrier G"
    shows "ord a = card (generate G { a })"
proof (cases "ord a = 0")
    case True
    then have "infinite (carrier (subgroup_generated G {a}))"
            using infinite_cyclic_subgroup_order[OF a] by auto
    then have "infinite (generate G {a})"
            unfolding subgroup_generated_def
            using a by simp
    then show ?thesis
            using <ord a = 0> by auto
next
    case False
    note finite_subgroup = this
    then have "generate G { a } = (([^]) a) ' {0..ord a - 1}"
```

using generate_pow_nat ord_elems_inf_carrier a by auto
hence "card (generate $G\{a\}$) = card \{0...ord a - 1\}"
using ord_inj[0F a] card_image by metis
also have "... = ord a" using finite_subgroup by auto
finally show ?thesis..
qed
lemma (in group) cyclic_order_is_ord:
assumes "g \in carrier G"
shows "ord g = order (subgroup_generated G \{g\})"
unfolding order_def subgroup_generated_def
using assms generate_pow_card by simp
lemma ord_dvd_group_order:
assumes "a \in carrier G" shows "(ord a) dvd (order G)"
using lagrange[0F generate_is_subgroup[of "\{a\}"]] assms
unfolding generate_pow_card[0F assms]
by (metis dvd_triv_right empty_subsetI insert_subset)
lemma (in group) pow_order_eq_1:
assumes "a \in carrier G" shows "a [^] order G = 1"
using assms by (metis nat_pow_pow ord_dvd_group_order pow_ord_eq_1 dvdE
nat_pow_one)
lemma dvd_gcd:
fixes a b :: nat
obtains q where "a * (b div gcd a b) = b*q"
proof
have " $\mathrm{a} *$ (b div gcd a b) = (a div gcd a b) * b" by (simp add: div_mult_swap
dvd_div_mult)
also have "... = b * (a div gcd a b)" by simp
finally show "a * (b div gcd a b) = b * (a div gcd a b) ".
qed
lemma (in group) ord_le_group_order:
assumes finite: "finite (carrier G)" and a: "a \in carrier G"
shows "ord a \leq order G"
by (simp add: a dvd_imp_le local.finite ord_dvd_group_order order_gt_0_iff_finite)
lemma (in group) ord_pow_gen:
assumes " $\mathrm{x} \in$ carrier G"
shows "ord (pow G x k) = (if $k=0$ then 1 else ord x div gcd (ord x)
k)"
proof -
have "ord ($\mathrm{x}\left[{ }^{\wedge}\right] \mathrm{k}$) = ord x div gcd (ord x$) \mathrm{k} "$
if " 0 < k"
proof -
have "(d dvd k * n) = (d div gcd (d) k dvd n)" for $d n$ using that by (simp add: div_dvd_iff_mult gcd_mult_distrib_nat mult.commute)

```
        then show ?thesis
        using that by (auto simp add: assms ord_unique nat_pow_pow pow_eq_id)
    qed
    then show ?thesis by auto
qed
lemma (in group)
    assumes finite': "finite (carrier G)" "a \in carrier G"
    shows pow_ord_eq_ord_iff: "group.ord G (a [^] k) = ord a \longleftrightarrow coprime
k (ord a)" (is "?L \longleftrightarrow ?R")
            using assms ord_ge_1 [OF assms]
            by (auto simp: div_eq_dividend_iff ord_pow_gen coprime_iff_gcd_eq_1
gcd.commute split: if_split_asm)
lemma element_generates_subgroup:
    assumes finite[simp]: "finite (carrier G)"
    assumes a[simp]: "a \in carrier G"
    shows "subgroup {a [^] i | i. i \in {0 .. ord a - 1}} G"
    using generate_is_subgroup[of "{ a }"] assms(2)
        generate_pow_on_finite_carrier[OF assms]
    unfolding ord_elems[OF assms] by auto
```

end

21 Number of Roots of a Polynomial

```
definition mult_of :: "('a, 'b) ring_scheme = 'a monoid" where
    "mult_of R \equiv ( carrier = carrier R - {0 ( } , mult = mult R, one = 1 1R|"
lemma carrier_mult_of [simp]: "carrier (mult_of R) = carrier R - {0 0
    by (simp add: mult_of_def)
lemma mult_mult_of [simp]: "mult (mult_of R) = mult R"
    by (simp add: mult_of_def)
lemma nat_pow_mult_of: "([^] mult_of R})=(([^] [R) :: _ # nat # _)"
    by (simp add: mult_of_def fun_eq_iff nat_pow_def)
lemma one_mult_of [simp]: "1 1mult_of R = 1R"
    by (simp add: mult_of_def)
lemmas mult_of_simps = carrier_mult_of mult_mult_of nat_pow_mult_of one_mult_of
context field
begin
lemma mult_of_is_Units: "mult_of R = units_of R"
    unfolding mult_of_def units_of_def using field_Units by auto
```

```
lemma m_inv_mult_of:
"\x. x \in carrier (mult_of R) \Longrightarrow m_inv (mult_of R) x = m_inv R x"
    using mult_of_is_Units units_of_inv unfolding units_of_def
    by simp
lemma (in field) field_mult_group: "group (mult_of R)"
    proof (rule groupI)
    show "\existsy\incarrier (mult_of R). y \otimes \otimesmult_of R x = 1mult_of R"
        if "x \in carrier (mult_of R)" for x
        using group.l_inv_ex mult_of_is_Units that units_group by fastforce
qed (auto simp: m_assoc dest: integral)
lemma finite_mult_of: "finite (carrier R) \Longrightarrow finite (carrier (mult_of
R))"
    by simp
lemma order_mult_of: "finite (carrier R) \Longrightarrow> order (mult_of R) = order
R - 1"
    unfolding order_def carrier_mult_of by (simp add: card.remove)
end
```

```
lemma (in monoid) Units_pow_closed :
```

lemma (in monoid) Units_pow_closed :
fixes d :: nat
fixes d :: nat
assumes "x \in Units G"
assumes "x \in Units G"
shows "x [^] d \in Units G"
shows "x [^] d \in Units G"
by (metis assms group.is_monoid monoid.nat_pow_closed units_group
by (metis assms group.is_monoid monoid.nat_pow_closed units_group
units_of_carrier units_of_pow)
units_of_carrier units_of_pow)
lemma (in ring) r_right_minus_eq[simp]:
lemma (in ring) r_right_minus_eq[simp]:
assumes "a \in carrier R" "b \in carrier R"
assumes "a \in carrier R" "b \in carrier R"
shows "a \ominus b = 0 \longleftrightarrow a = b"
shows "a \ominus b = 0 \longleftrightarrow a = b"
using assms by (metis a_minus_def add.inv_closed minus_equality r_neg)
using assms by (metis a_minus_def add.inv_closed minus_equality r_neg)
context UP_cring begin
context UP_cring begin
lemma is_UP_cring: "UP_cring R" by (unfold_locales)
lemma is_UP_cring: "UP_cring R" by (unfold_locales)
lemma is_UP_ring:
lemma is_UP_ring:
shows "UP_ring R" by (unfold_locales)
shows "UP_ring R" by (unfold_locales)
end
context UP_domain begin
lemma roots_bound:
assumes f [simp]: "f \in carrier P"

```
```

 assumes f_not_zero: "f f= 0P"
 assumes finite: "finite (carrier R)"
 shows "finite {a \in carrier R . eval R R id a f = 0} ^
 card {a \in carrier R . eval R R id a f = 0} S deg R f" using
 f f_not_zero
proof (induction "deg R f" arbitrary: f)
case 0
have "\x. eval R R id x f \not=0"
proof -
fix x
have "(\bigoplusi\in{..deg R f}. id (coeff P f i) \otimes x [^] i) \# 0"
using 0 lcoeff_nonzero_nonzero[where p = f] by simp
thus "eval R R id x f == 0" using 0 unfolding eval_def P_def by simp
qed
then have *: "{a G carrier R. eval R R (\lambdaa. a) a f = 0} = {}"
by (auto simp: id_def)
show ?case by (simp add: *)
next
case (Suc x)
show ?case
proof (cases " }\exists\textrm{a}\in\mathrm{ carrier R . eval R R id a f = 0")
case True
then obtain a where a_carrier[simp]: "a \in carrier R" and a_root:
"eval R R id a f = 0" by blast
have R_not_triv: "carrier R f= {0}"
by (metis R.one_zeroI R.zero_not_one)
obtain q where q: "(q \in carrier P)" and
f: "f = (monom P 1R 1 \ominus p monom P a 0) \otimesp q © m monom P (eval R
R id a f) 0"
using remainder_theorem[OF Suc.prems(1) a_carrier R_not_triv] by
auto
hence lin_fac: "f = (monom P 1R 1 \ominus p monom P a 0) \otimesp q" using q
by (simp add: a_root)
have deg: "deg R (monom P 1 1R 1 \ominus p monom P a 0) = 1"
using a_carrier by (simp add: deg_minus_eq)
hence mon_not_zero: "(monom P 1 1R 1 Ө p monom P a 0) }==0\mp@subsup{0}{P}{\prime
by (fastforce simp del: r_right_minus_eq)
have q_not_zero: "q }==0\mp@subsup{0}{P}{\prime}" using Suc by (auto simp add : lin_fac
hence "deg R q = x" using Suc deg deg_mult[OF mon_not_zero q_not_zero
_ q]
by (simp add : lin_fac)
hence q_IH: "finite {a \in carrier R . eval R R id a q = 0}
^card {a \in carrier R . eval R R id a q = 0} S x" us-
ing Suc q q_not_zero by blast
have subs: "{a \in carrier R . eval R R id a f = 0}
\subseteq{a \in carrier R . eval R R id a q = 0} U {a}" (is "?L
\subseteq ?R \cup {a}")
using a_carrier <q G _>
by (auto simp: evalRR_simps lin_fac R.integral_iff)

```
```

 have "{a \in carrier R . eval R R id a f = 0} \subseteq insert a {a \in carrier
 R . eval R R id a q = 0}"
using subs by auto
hence "card {a \in carrier R . eval R R id a f = 0} S
card (insert a {a \in carrier R . eval R R id a q = 0})" us-
ing q_IH by (blast intro: card_mono)
also have "... \leq deg R f" using q_IH <Suc x = _>
by (simp add: card_insert_if)
finally show ?thesis using q_IH <Suc x = _> using finite by force
next
case False
hence "card {a G carrier R. eval R R id a f = 0} = 0" using finite
by auto
also have "... S deg R f" by simp
finally show ?thesis using finite by auto
qed
qed
end
lemma (in domain) num_roots_le_deg :
fixes p d :: nat
assumes finite: "finite (carrier R)"
assumes d_neq_zero: "d \not= 0"
shows "card {x carrier R. x [^] d = 1} \leq d"
proof -
let ?f = "monom (UP R) 1 1R d \ominus (UP R) monom (UP R) 1 1R 0"
have one_in_carrier: "1 \in carrier R" by simp
interpret R: UP_domain R "UP R" by (unfold_locales)
have "deg R ?f = d"
using d_neq_zero by (simp add: R.deg_minus_eq)
hence f_not_zero: "?f f= 0}\mp@subsup{0}{UP}{}R" using d_neq_zero by (auto simp add
: R.deg_nzero_nzero)
have roots_bound: "finite {a G carrier R . eval R R id a ?f = 0} ^
card {a \in carrier R . eval R R id a ?f = 0} \leq deg
R ?f"
using finite by (intro R.roots_bound[OF _ f_not_zero])
simp
have subs: "{x \in carrier R. x [^] d = 1} \subseteq{a \in carrier R . eval R
R id a ?f = 0}"
by (auto simp: R.evalRR_simps)
then have "card {x carrier R. x [^] d = 1} \leq
card {a \in carrier R. eval R R id a ?f = 0}" using finite by (simp
add : card_mono)
thus ?thesis using <deg R ?f = d> roots_bound by linarith
qed

```

\section*{22 The Multiplicative Group of a Field}

In this section we show that the multiplicative group of a finite field is generated by a single element, i.e. it is cyclic. The proof is inspired by the first proof given in the survey [2].
```

context field begin
lemma num_elems_of_ord_eq_phi':
assumes finite: "finite (carrier R)" and dvd: "d dvd order (mult_of
R)"
and exists: "\existsa\incarrier (mult_of R). group.ord (mult_of R) a =
d"
shows "card {a \in carrier (mult_of R). group.ord (mult_of R) a = d}
= phi' d"
proof -
note mult_of_simps[simp]
have finite': "finite (carrier (mult_of R))" using finite by (rule
finite_mult_of)

```
    interpret G: group "mult_of \(\mathrm{R}^{\prime}\) rewrites " \(\left(\left[^{\wedge}\right]_{\text {mult_of }} \mathrm{R}\right)=\left(\left(\left[{ }^{\wedge}\right]\right):: \quad\right.\) _ \(\Rightarrow\)
nat \(\Rightarrow ~_{~) ~ " ~ a n d ~ " ~}^{\text {mult_of } R=1 " ~}\)
            by (rule field_mult_group) simp_all
    from exists
    obtain a where a: "a \(\in\) carrier (mult_of R)" and ord_a: "group.ord (mult_of
R) \(a=d "\)
            by (auto simp add: card_gt_0_iff)
    have set_eq1: " \(\left\{a\left[{ }^{\wedge}\right] n \mid n . n \in\{1 \ldots d\}\right\}=\{x \in \operatorname{carrier}\) (mult_of \(R\) ).
[^] d = 1\}"
    proof (rule card_seteq)
            show "finite \(\left\{x \in\right.\) carrier (mult_of \(R\) ). \(\left.x\left[{ }^{\wedge}\right] d=1\right\} "\) using finite
by auto
    show " \(\{\mathrm{a}[\wedge] \mathrm{n} \mid \mathrm{n} . \mathrm{n} \in\{1 \ldots \mathrm{~d}\}\} \subseteq\{\mathrm{x} \in \operatorname{carrier}\) (mult_of R ). \(\mathrm{x}[\wedge] \mathrm{d}\)
\(=1\} "\)
    proof
            fix \(x\) assume \(" x \in\{a[\wedge] n \mid n . n \in\{1 \ldots d\}\} "\)
            then obtain \(n\) where \(n\) : " \(x=a[\wedge] n \wedge n \in\{1 \ldots d\}\) " by auto
            have \(" x[\wedge] d=(a[\wedge] d)\left[{ }^{\wedge}\right] n "\) using \(n\) a ord_a by (simp add:nat_pow_pow
mult. commute)
            hence \(" x[\wedge] d=1 "\) using ord_a G.pow_ord_eq_1[0F a] by fastforce
            thus "x \(\in\{x \in\) carrier (mult_of \(R\) ). \(x[\wedge] d=1\} "\) using G.nat_pow_closed[0F
a] n by blast
    qed
    show "card \(\{x \in\) carrier (mult_of \(R\) ). \(x[\wedge] d=1\} \leq \operatorname{card}\{a[\wedge] n \mid\)
n. \(n \in\{1\).. d\}\}"
proof -
have \(*: ~ "\{a[\wedge] n \mid n . n \in\{1 \ldots d\}\}=((\lambda n . a[\wedge] n)\) ' \(\{1 \ldots d\}) "\) by auto
have " 0 < order (mult_of R)" unfolding order_mult_of [OF finite] using card_mono[0F finite, of "\{0, 1\}"] by (simp add: order_def)
have "card \(\{x \in\) carrier (mult_of \(R\) ). \(x[\sim] d=1\} \leq \operatorname{card}\{x \in\) carrier R. \(\left.x\left[{ }^{\wedge}\right] d=1\right\} "\)
using finite by (auto intro: card_mono)
also have \(" . . . \leq d "\) using < 0 < order (mult_of \(R\) ) > num_roots_le_deg[0F finite, of d]
by (simp add : dvd_pos_nat[0F _ <d dvd order (mult_of R) >])
finally show ?thesis using G.ord_inj' [OF a] ord_a * by (simp add: card_image)
qed
qed
have set_eq2: "\{x \(\in\) carrier (mult_of \(R\) ) . group.ord (mult_of \(R\) ) \(x=\) d\}
\(=\left(\lambda \mathrm{n} \cdot \mathrm{a}\left[{ }^{\wedge}\right] \mathrm{n}\right)\) ' \(\{\mathrm{n} \in\{1 \ldots \mathrm{~d}\}\). group.ord (mult_of R\()\)
\(\left.\left(\mathrm{a}\left[{ }^{\wedge}\right] \mathrm{n}\right)=\mathrm{d}\right\}\) " (is "? \(\left.\mathrm{L}=? \mathrm{R} "\right)\)
proof
\{ fix \(x\) assume \(x: ~ " x \in\left(c a r r i e r ~\left(m u l t \_o f ~ R\right)\right) ~ \wedge ~ g r o u p . o r d ~\left(m u l t \_o f ~\right.\) R) \(x=d^{\prime \prime}\)
hence \(" x \in\{x \in\) carrier (mult_of \(R\) ). \(x[\wedge] d=1\} "\)
by (simp add: G.pow_ord_eq_1[of \(x\), symmetric])
then obtain \(n\) where \(n: ~ " x=a[\wedge] n \wedge n \in\{1 . . d\} "\) using set_eq1
by blast
hence " \(x \in\) ?R" using \(x\) by fast
\} thus "?L \(\subseteq\) ?R" by blast
show "?R \(\subseteq\) ?L" using a by (auto simp add: carrier_mult_of [symmetric]
simp del: carrier_mult_of)
qed
have "inj_on ( \(\left.\lambda \mathrm{n} . \mathrm{a}^{\wedge}\right] \mathrm{n}\) ) \(\left\{\mathrm{n} \in\{1 \ldots \mathrm{~d}\}\right.\). group.ord (mult_of R ) ( \(\mathrm{a}\left[{ }^{\wedge}\right] \mathrm{n}\) )
= d\}"
using G.ord_inj'[OF a, unfolded ord_a] unfolding inj_on_def by fast
hence "card ( \((\lambda n . a[\wedge] n)\) ' \(\{n \in\{1 \ldots d\}\). group.ord (mult_of \(R\) ) ( \(a[\wedge] n\) )
\(=\mathrm{d}\}\) )
\(=\operatorname{card}\left\{k \in\{1 \ldots d\}\right.\). group.ord (mult_of \(R\) ) \(\left.\left(a\left[{ }^{\wedge}\right] k\right)=d\right\} "\) using card_image by blast
thus ?thesis using set_eq2 G.pow_ord_eq_ord_iff [OF finite' <a \(\in\) _ \(^{\prime}\), unfolded ord_a]
```

 by (simp add: phi'_def)
    ```
qed
end
theorem (in field) finite_field_mult_group_has_gen :
assumes finite: "finite (carrier R)"
```

 shows " \exists a \in carrier (mult_of R) . carrier (mult_of R) = {a[`]i | i::nat
 . i \in UNIV}"
proof -
note mult_of_simps[simp]
have finite': "finite (carrier (mult_of R))" using finite by (rule
finite_mult_of)
interpret G: group "mult_of R" rewrites
"([^] mult_of R) = (([^]) :: _ = nat = _)" and "1 mult_of R = 1"
by (rule field_mult_group) (simp_all add: fun_eq_iff nat_pow_def)
let ?N = " \lambda x . card {a \in carrier (mult_of R). group.ord (mult_of R)
a = x}"
have "0 < order R - 1" unfolding order_def using card_mono[OF finite,
of "{0, 1}"] by simp
then have *: "0 < order (mult_of R)" using assms by (simp add: order_mult_of)
have fin: "finite {d. d dvd order (mult_of R) }" using dvd_nat_bounds[OF
*] by force

```
    have "( \(\sum \mathrm{d} \mid \mathrm{d}\) dvd order (mult_of R ). ? N d)
        \(=\) card (UN \(d:\{d\). \(d\) dvd order (mult_of R) \}. \{a \(\in\) carrier (mult_of
R). group.ord (mult_of R) a = d\})"
            (is "_ = card ?U")
        using fin finite by (subst card_UN_disjoint) auto
    also have "?U = carrier (mult_of R)"
    proof
        \{ fix x assume \(\mathrm{x}: ~ " \mathrm{x} \in\) carrier (mult_of R)"
            hence \(x\) ': "x carrier (mult_of R)" by simp
            then have "group.ord (mult_of R) x dvd order (mult_of R)"
            using G.ord_dvd_group_order by blast
        hence "x \(\in\) ?U" using dvd_nat_bounds[of "order (mult_of R)" "group.ord
(mult_of R) x"] x by blast
        \} thus "carrier (mult_of R) \(\subseteq\) ?U" by blast
    qed auto
    also have "card ... = order (mult_of R)"
        using order_mult_of finite' by (simp add: order_def)
    finally have sum_Ns_eq: "( \(\sum \mathrm{d} \mid \mathrm{d}\) dvd order (mult_of R ). ?N d ) = order
(mult_of R)" .
    \{ fix d assume d: "d dvd order (mult_of R)"
        have "card \(\{a \in \operatorname{carrier}\) (mult_of R). group.ord (mult_of R) \(a=d\}\)
\(\leq\) phi' \({ }^{\prime \prime}\)
    proof cases
                assume "card \{a \(\in\) carrier (mult_of R). group.ord (mult_of R) a
\(=d\}=0 "\) thus \(?\) thesis by presburger
        next
        assume "card \(\{a \in\) carrier (mult_of \(R\) ). group.ord (mult_of R) a
\(=d\} \neq 0 "\)
        hence " \(\exists a \in\) carrier (mult_of \(R\) ). group.ord (mult_of R) a = d" by
```

(auto simp: card_eq_0_iff)
thus ?thesis using num_elems_of_ord_eq_phi'[OF finite d] by auto
qed
}
hence all_le: "\i. i \in {d. d dvd order (mult_of R) }
\Longrightarrow(\lambdai. card {a \in carrier (mult_of R). group.ord (mult_of R)
a = i}) i \leq (\lambdai. phi' i) i" by fast
hence le: "(\sumi | i dvd order (mult_of R). ?N i)
\leq (\sumi | i dvd order (mult_of R). phi' i)"
using sum_mono[of "{d . d dvd order (mult_of R)}"
"\lambdai. card {a \in carrier (mult_of R). group.ord (mult_of
R) a = i}"] by presburger
have "order (mult_of R) = (\sumd | d dvd order (mult_of R). phi' d)"
using *
by (simp add: sum_phi'_factors)
hence eq: "(\sumi | i dvd order (mult_of R). ?N i)
= (\sumi | i dvd order (mult_of R). phi' i)" using le sum_Ns_eq
by presburger
have "\i. i }\in{d. d dvd order (mult_of R) } \Longrightarrow ?N i = (\lambdai. phi' i
i"
proof (rule ccontr)
fix i
assume i1: "i \in {d. d dvd order (mult_of R)}" and "?N i f= phi' i"
hence "?N i = 0"
using num_elems_of_ord_eq_phi'[OF finite, of i] by (auto simp: card_eq_0_iff)
moreover have "0 < i" using * i1 by (simp add: dvd_nat_bounds[of
"order (mult_of R)" i])
ultimately have "?N i < phi' i" using phi'_nonzero by presburger
hence "(\sumi | i dvd order (mult_of R). ?N i)
< (\sumi | i dvd order (mult_of R). phi' i)"
using sum_strict_mono_ex1[OF fin, of "?N" "\lambda i . phi' i"]
i1 all_le by auto
thus False using eq by force
qed
hence "?N (order (mult_of R)) > 0" using * by (simp add: phi'_nonzero)
then obtain a where a: "a \in carrier (mult_of R)" and a_ord: "group.ord
(mult_of R) a = order (mult_of R)"
by (auto simp add: card_gt_0_iff)
hence set_eq: "{a[^]i | i::nat. i \in UNIV} = (}\lambda\textrm{x}.\textrm{a}[^]\textrm{x}) ' {0 .. group.ord
(mult_of R) a - 1}"
using G.ord_elems[OF finite'] by auto
have card_eq: "card ((\lambdax. a[^]x) ' {0 .. group.ord (mult_of R) a - 1})
= card {0 .. group.ord (mult_of R) a - 1}"
by (intro card_image G.ord_inj finite' a)
hence "card ((\lambda x . a[^]x) ' {0 .. group.ord (mult_of R) a - 1}) = card
{0 ..order (mult_of R) - 1}"
using assms by (simp add: card_eq a_ord)
hence card_R_minus_1: "card {a[^]i | i::nat. i \in UNIV} = order (mult_of
R)"

```
```

 using * by (subst set_eq) auto
 have **: "{a[^]i | i::nat. i \in UNIV } \subseteq carrier (mult_of R)"
 using G.nat_pow_closed[OF a] by auto
 with _ have "carrier (mult_of R) = {a[^]i|i::nat. i \in UNIV}"
 by (rule card_seteq[symmetric]) (simp_all add: card_R_minus_1 finite
 order_def del: UNIV_I)
thus ?thesis using a by blast
qed
end

```
theory Group_Action
imports Bij Coset Congruence
begin

\section*{23 Group Actions}
locale group_action =
fixes \(G\) (structure) and \(E\) and \(\varphi\)
assumes group_hom: "group_hom G (BijGroup E) \(\varphi\) "
definition
orbit :: " [_, 'a \(\Rightarrow\) 'b \(\Rightarrow\) 'b, 'b] \(\Rightarrow\) 'b set" where "orbit \(\mathrm{G} \varphi \mathrm{x}=\{(\varphi \mathrm{g}) \mathrm{x} \mid \mathrm{g} . \mathrm{g} \in\) carrier G\(\}\) "
definition
orbits :: "[_, 'b set, 'a \(\Rightarrow\) 'b \(\Rightarrow\) 'b] \(\Rightarrow\) ('b set) set"
where "orbits \(G E \varphi=\left\{\begin{array}{c}\text { Erbit } G|x| x . x \in E\} " ~\end{array}\right.\)
definition
stabilizer :: "[_, 'a \(\Rightarrow\) 'b \(\Rightarrow\) 'b, 'b] \(\Rightarrow\) 'a set"
where "stabilizer \(G \varphi \mathrm{x}=\{\mathrm{g} \in \operatorname{carrier} \mathrm{G} .(\varphi \mathrm{g}) \mathrm{x}=\mathrm{x}\}\) "
definition
invariants : : " \([\) ' \(b\) set, ' \(\mathrm{a} \Rightarrow\) ' \(b \Rightarrow\) ' \(b, ~ ' a] \Rightarrow\) 'b set"
where "invariants \(\mathrm{E} \varphi \mathrm{g}=\{\mathrm{x} \in \mathrm{E}\). ( \(\varphi \mathrm{g}\) ) \(\mathrm{x}=\mathrm{x}\}\) "
definition
normalizer :: "[_, 'a set] \(\Rightarrow\) 'a set"
where "normalizer G H = stabilizer \(G\left(\lambda g . \lambda H \in\{H . H \subseteq\right.\) carrier \(G\} . \operatorname{g}\left\langle \#_{G} H \#_{G}\right)_{i n v}^{G}\)
g) ) \(\mathrm{H}^{\prime \prime}\)
locale faithful_action = group_action +
assumes faithful: "inj_on \(\varphi\) (carrier G)"
locale transitive_action = group_action +
assumes unique_orbit: \(\| \llbracket \mathrm{x} \in \mathrm{E} ; \mathrm{y} \in \mathrm{E} \rrbracket \Longrightarrow \exists \mathrm{g} \in \operatorname{carrier} \mathrm{G} .(\varphi \mathrm{g})\)
\(x=y "\)

\subsection*{23.1 Prelimineries}

Some simple lemmas to make group action's properties more explicit
lemma (in group_action) id_eq_one: " \((\lambda \mathrm{x} \in \mathrm{E} . \mathrm{x})=\varphi\) 1"
by (metis BijGroup_def group_hom group_hom.hom_one select_convs(2))
lemma (in group_action) bij_prop0:
\(" \bigwedge \mathrm{~g} \cdot \mathrm{~g} \in\) carrier \(\mathrm{G} \Longrightarrow(\varphi \mathrm{g}) \in \operatorname{Bij} \mathrm{E} "\)
by (metis BijGroup_def group_hom group_hom.hom_closed partial_object.select_convs(1))
lemma (in group_action) surj_prop:
\(" \wedge \mathrm{~g} \cdot \mathrm{~g} \in\) carrier \(\mathrm{G} \Longrightarrow(\varphi \mathrm{g})\) ' \(\mathrm{E}=\mathrm{E} "\)
using bij_prop0 by (simp add: Bij_def bij_betw_def)
lemma (in group_action) inj_prop:
" \(\bigwedge \mathrm{g} . \mathrm{g} \in\) carrier \(\mathrm{G} \Longrightarrow\) inj_on ( \(\varphi \mathrm{g}\) ) E"
using bij_prop0 by (simp add: Bij_def bij_betw_def)
lemma (in group_action) bij_prop1:
" \(\bigwedge \mathrm{g} \mathrm{y} . \llbracket \mathrm{g} \in\) carrier \(\mathrm{G} ; \mathrm{y} \in \mathrm{E} \rrbracket \Longrightarrow \exists!\mathrm{x} \in \mathrm{E} .(\varphi \mathrm{g}) \mathrm{x}=\mathrm{y} "\)
proof -
fix \(g\) y assume \(" g \in\) carrier \(G "\) "y \(\in E "\)
hence \(" \exists \mathrm{x} \in \mathrm{E}\). ( \(\varphi \mathrm{g}\) ) \(\mathrm{x}=\mathrm{y}\) "
using surj_prop by force
moreover have " \(\bigwedge \mathrm{x} 1 \mathrm{x} 2 . \llbracket \mathrm{x} 1 \in \mathrm{E} ; \mathrm{x} 2 \in \mathrm{E} \rrbracket \Longrightarrow(\varphi \mathrm{g}) \mathrm{x} 1=(\varphi \mathrm{g}) \mathrm{x} 2\)
\(\Longrightarrow \mathrm{x} 1\) = x 2 "

ultimately show \(" \exists!\mathrm{x} \in \mathrm{E}\). ( \(\varphi \mathrm{g}\) ) \(\mathrm{x}=\mathrm{y}\) "
by blast
qed
lemma (in group_action) composition_rule:
assumes "x \(\in E\) " "g1 \(\in\) carrier G" "g2 \(\in\) carrier G"
shows \(" \varphi(\mathrm{~g} 1 \otimes \mathrm{~g} 2) \mathrm{x}=(\varphi \mathrm{g} 1)(\varphi \mathrm{g} 2 \mathrm{x}) "\)
proof -
have " \(\varphi(\mathrm{g} 1 \otimes \mathrm{~g} 2) \mathrm{x}=\left((\varphi \mathrm{g} 1) \otimes_{\mathrm{Bij}} \mathrm{Br}_{\mathrm{oup}} \mathrm{E}(\varphi \mathrm{g} 2)\right) \mathrm{x} "\) using assms(2) assms(3) group_hom group_hom.hom_mult by fastforce
also have " ... = (compose E ( \(\varphi\) g1) ( \(\varphi\) g2)) x"
unfolding BijGroup_def by (simp add: assms bij_prop0)
finally show \(" \varphi(\mathrm{~g} 1 \otimes \mathrm{~g} 2) \mathrm{x}=(\varphi \mathrm{g} 1)(\varphi \mathrm{g} 2 \mathrm{x}) "\)
by (simp add: assms(1) compose_eq)
qed
lemma (in group_action) element_image:
assumes " \(\mathrm{g} \in\) carrier \(\mathrm{G} "\) and \(\mathrm{x} \in \mathrm{E}\) " and " \((\varphi \mathrm{g}) \mathrm{x}=\mathrm{y}\) "
shows "y \(\in\) E"
using surj_prop assms by blast

\subsection*{23.2 Orbits}

We prove here that orbits form an equivalence relation
```

lemma (in group_action) orbit_sym_aux:
assumes "g \in carrier G"
and "x }\inE\mathrm{ "
and "(\varphi g) x = y"
shows "(\varphi (inv g)) y = x"
proof -
interpret group G
using group_hom group_hom.axioms(1) by auto
have "y \in E"
using element_image assms by simp
have "inv g \in carrier G"
by (simp add: assms(1))
have "(\varphi (inv g)) y = (}\varphi(\textrm{inv g})) ((\varphi g) x)"
using assms(3) by simp
also have " ... = compose E (}\varphi\mathrm{ (inv g)) (}\varphi\textrm{g}\mathrm{) x"
by (simp add: assms(2) compose_eq)

```

```

 by (simp add: BijGroup_def assms(1) bij_propO)
 also have " ... = (}\varphi((\mathrm{ inv g) & g)) x"
 by (metis <inv g \in carrier G> assms(1) group_hom group_hom.hom_mult)
 finally show "(\varphi (inv g)) y = x"
 by (metis assms(1) assms(2) id_eq_one l_inv restrict_apply)
 qed
lemma (in group_action) orbit_refl:
"x
proof -
assume "x \in E" hence "(\varphi 1) x = x"
using id_eq_one by (metis restrict_apply')
thus "x \in orbit G \varphi x" unfolding orbit_def
using group.is_monoid group_hom group_hom.axioms(1) by force
qed
lemma (in group_action) orbit_sym:
assumes "x \inE" and "y \inE" and "y \in orbit G \varphi x"
shows "x \in orbit G }\varphi\mathrm{ y"
proof -
have "\existsg g carrier G. (}\varphi\textrm{g}\mathrm{) x = y"
using assms by (auto simp: orbit_def)
then obtain g where g: "g \in carrier G ^ (}\varphi\textrm{g})\textrm{x}=\textrm{y}|=\mp@code{by blast
hence "(\varphi (inv g)) y = x"
using orbit_sym_aux by (simp add: assms(1))
thus ?thesis
using g group_hom group_hom.axioms(1) orbit_def by fastforce
qed

```
```

lemma (in group_action) orbit_trans:
assumes "x \in E" "y \in E" "z \in E"
and "y \in orbit G \varphi x" "z \in orbit G \varphi y"
shows "z \in orbit G \varphi x"
proof -
interpret group G
using group_hom group_hom.axioms(1) by auto
obtain g1 where g1: "g1 \in carrier G ^ (}\varphi\textrm{g}1)\textrm{x}=\textrm{y
using assms by (auto simp: orbit_def)
obtain g2 where g2: "g2 \in carrier G ^ (}\varphi\mathrm{ g2) y = z"
using assms by (auto simp: orbit_def)
have "(\varphi (g2 \otimesg1)) x = ((\varphi g2) \otimes BijGroup E (}\varphi\textrm{g}1))\textrm{x
using g1 g2 group_hom group_hom.hom_mult by fastforce
also have " ... = (\varphi g2) ((\varphi g1) x)"
using composition_rule assms(1) calculation g1 g2 by auto
finally have "(\varphi (g2 \otimesg1)) x = z"
by (simp add: g1 g2)
thus ?thesis
using g1 g2 orbit_def by force
qed
lemma (in group_action) orbits_as_classes:
"classes (carrier = E, eq = \lambdax. \lambday. y \in orbit G \varphi x | = orbits G E \varphi"
unfolding eq_classes_def eq_class_of_def orbits_def orbit_def
using element_image by auto
theorem (in group_action) orbit_partition:
"partition E (orbits G E \varphi)"
proof -
have "equivalence (| carrier = E, eq = \lambdax. \lambday. y \in orbit G \varphi x |"
unfolding equivalence_def apply simp
using orbit_refl orbit_sym orbit_trans by blast
thus ?thesis using equivalence.partition_from_equivalence orbits_as_classes
by fastforce
qed
corollary (in group_action) orbits_coverture:
"U (orbits G E \varphi) = E"
using partition.partition_coverture[OF orbit_partition] by simp
corollary (in group_action) disjoint_union:
assumes "orb1 \in (orbits G E \varphi)" "orb2 \in (orbits G E \varphi)"
shows "(orb1 = orb2) \vee (orb1 \cap orb2) = {}"
using partition.disjoint_union[OF orbit_partition] assms by auto
corollary (in group_action) disjoint_sum:
assumes "finite E"
shows "(\sum orb\in(orbits G E \varphi). \sum x\inorb. f x) = (\sumx\inE. f x)"

```
using partition.disjoint_sum [OF orbit_partition] assms by auto

\subsection*{23.2.1 Transitive Actions}

Transitive actions have only one orbit
```

lemma (in transitive_action) all_equivalent:
"\llbracketx 拢 y \in E\rrbracket\Longrightarrow x . =
proof -
assume "x E E" "y E E"
hence "\exists g \in carrier G. (}\varphi\textrm{g}\mathrm{) x = y"
using unique_orbit by blast
hence "y \in orbit G \varphi x"
using orbit_def by fastforce
thus "x . = (carrier = E, eq = \lambdax y. y \in orbit G \varphi x) y" by simp
qed
proposition (in transitive_action) one_orbit:
assumes "E \not= {}"
shows "card (orbits G E \varphi) = 1"
proof -
have "orbits G E }\varphi\not={}
using assms orbits_coverture by auto
moreover have "^ orb1 orb2. \llbracket orb1 \in (orbits G E \varphi); orb2 \in (orbits
G E \varphi) \ \Longrightarrow orb1 = orb2"
proof -
fix orb1 orb2 assume orb1: "orb1 \in (orbits G E \varphi)"
and orb2: "orb2 \in (orbits G E \varphi "
then obtain x y where x: "orb1 = orbit G \varphi x" and x_E: "x \in E"
and y: "orb2 = orbit G \varphi y" and y_E: "y \in E"
unfolding orbits_def by blast
hence "x \in orbit G \varphi y" using all_equivalent by auto
hence "orb1 \cap orb2 }={{}" using x y x_E orbit_refl by aut
thus "orb1 = orb2" using disjoint_union[of orb1 orb2] orb1 orb2 by
auto
qed
ultimately show "card (orbits G E \varphi) = 1"
by (meson is_singletonI' is_singleton_altdef)
qed

```

\subsection*{23.3 Stabilizers}

We show that stabilizers are subgroups from the acting group
```

lemma (in group_action) stabilizer_subset:
"stabilizer G \varphi x \subseteq carrier G"
by (metis (no_types, lifting) mem_Collect_eq stabilizer_def subsetI)
lemma (in group_action) stabilizer_m_closed:
assumes "x \in E" "g1 \in (stabilizer G \varphi x)" "g2 \in (stabilizer G \varphi x)"

```
```

 shows "(g1 \otimes g2) \in (stabilizer G \varphi x)"
 proof -
interpret group G
using group_hom group_hom.axioms(1) by auto
have "\varphi g1 x = x"
using assms stabilizer_def by fastforce
moreover have "\varphi g2 x = x"
using assms stabilizer_def by fastforce
moreover have g1: "g1 \in carrier G"
by (meson assms contra_subsetD stabilizer_subset)
moreover have g2: "g2 \in carrier G"
by (meson assms contra_subsetD stabilizer_subset)
ultimately have "\varphi (g1 \otimes g2) x = x"
using composition_rule assms by simp
thus ?thesis
by (simp add: g1 g2 stabilizer_def)
qed
lemma (in group_action) stabilizer_one_closed:
assumes "x \in E"
shows "1 \in (stabilizer G \varphi x)"
proof -
have "\varphi 1 x = x"
by (metis assms id_eq_one restrict_apply')
thus ?thesis
using group_def group_hom group_hom.axioms(1) stabilizer_def by fastforce
qed
lemma (in group_action) stabilizer_m_inv_closed:
assumes "x \in E" "g \in(stabilizer G \varphi x)"
shows "(inv g) \in(stabilizer G \varphi x)"
proof -
interpret group G
using group_hom group_hom.axioms(1) by auto
have "\varphi g x = x"
using assms(2) stabilizer_def by fastforce
moreover have g: "g \in carrier G"
using assms(2) stabilizer_subset by blast
moreover have inv_g: "inv g \in carrier G"
by (simp add: g)
ultimately have "\varphi (inv g) x = x"
using assms(1) orbit_sym_aux by blast
thus ?thesis by (simp add: inv_g stabilizer_def)
qed

```
```

theorem (in group_action) stabilizer_subgroup:
assumes "x \in E"
shows "subgroup (stabilizer G \varphi x) G"
unfolding subgroup_def
using stabilizer_subset stabilizer_m_closed stabilizer_one_closed
stabilizer_m_inv_closed assms by simp

```

\subsection*{23.4 The Orbit-Stabilizer Theorem}

In this subsection, we prove the Orbit-Stabilizer theorem. Our approach is to show the existence of a bijection between "rcosets (stabilizer G phi x)" and "orbit G phi x". Then we use Lagrange's theorem to find the cardinal of the first set.

\subsection*{23.4.1 Rcosets - Supporting Lemmas}
```

corollary (in group_action) stab_rcosets_not_empty:
assumes "x \in E" "R G rcosets (stabilizer G \varphi x)"
shows "R f {}"
using subgroup.rcosets_non_empty[OF stabilizer_subgroup[OF assms(1)]
assms(2)] by simp
corollary (in group_action) diff_stabilizes:
assumes "x \in E" "R < rcosets (stabilizer G \varphi x)"
shows "\g1 g2. \llbracket g1 \in R; g2 \in R \ \Longrightarrow g1 \otimes (inv g2) \in stabilizer G
\varphi x"
using group.diff_neutralizes[of G "stabilizer G \varphi x" R] stabilizer_subgroup[OF
assms(1)]
assms(2) group_hom group_hom.axioms(1) by blast

```

\subsection*{23.4.2 Bijection Between Rcosets and an Orbit - Definition and Supporting Lemmas}
```

definition
orb_stab_fun :: "[_, ('a \# 'b \# 'b), 'a set, 'b] \# 'b"
where "orb_stab_fun G \varphi R x = (}\varphi(\mp@subsup{\operatorname{linv}}{G}{}(\operatorname{SOME h. h \in R))) x"
lemma (in group_action) orbit_stab_fun_is_well_defined0:
assumes "x \in E" "R frcosets (stabilizer G \varphi x)"
shows "\g1 g2. \llbracket g1 \in R; g2 \in R\rrbracket \Longrightarrow (\varphi (inv g1)) x = (}\varphi\mathrm{ (inv g2))
x"
proof -
fix g1 g2 assume g1: "g1 \in R" and g2: "g2 \in R"
have R_carr: "R\subseteq carrier G"
using subgroup.rcosets_carrier[OF stabilizer_subgroup[OF assms(1)]]
assms(2) group_hom group_hom.axioms(1) by auto
from R_carr have g1_carr: "g1 \in carrier G" using g1 by blast
from R_carr have g2_carr: "g2 \in carrier G" using g2 by blast

```
```

 have "g1 \otimes (inv g2) \in stabilizer G \varphi x"
 using diff_stabilizes[of x R g1 g2] assms g1 g2 by blast
 hence "\varphi (g1 \otimes (inv g2)) x = x"
 by (simp add: stabilizer_def)
 hence "(\varphi (inv g1)) x = (}\varphi(inv g1)) (\varphi (g1 \otimes (inv g2)) x)" by sim
 also have " ... = \varphi ((inv g1) \otimes (g1 \otimes (inv g2))) x"
 using group_def assms(1) composition_rule g1_carr g2_carr
 group_hom group_hom.axioms(1) monoid.m_closed by fastforce
 also have " ... = \varphi (((inv g1) \otimes g1) \otimes (inv g2)) x"
 using group_def g1_carr g2_carr group_hom group_hom.axioms(1) monoid.m_assoc
 by fastforce
finally show "(\varphi (inv g1)) x = (\varphi (inv g2)) x"
using group_def g1_carr g2_carr group.l_inv group_hom group_hom.axioms(1)
by fastforce
qed
lemma (in group_action) orbit_stab_fun_is_well_defined1:
assumes "x \in E" "R \in rcosets (stabilizer G \varphi x)"
shows "^g. g \in R \Longrightarrow (\varphi (inv (SOME h. h \in R))) x = (}\varphi(inv g)) x"
by (meson assms orbit_stab_fun_is_well_defined0 someI_ex)
lemma (in group_action) orbit_stab_fun_is_inj:
assumes "x \in E"
and "R1 \in rcosets (stabilizer G \varphi x)"
and "R2 \in rcosets (stabilizer G \varphi x)"
and "\varphi (inv (SOME h. h G R1)) x = \varphi (inv (SOME h. h G R2)) x"
shows "R1 = R2"
proof -
have "(\existsg1.g1 \in R1) ^ (}\exists\textrm{g}2.\textrm{g}2\in\textrm{R}2)
using assms(1-3) stab_rcosets_not_empty by auto
then obtain g1 g2 where g1: "g1 \in R1" and g2: "g2 \in R2" by blast
hence g12_carr: "g1 \in carrier G ^ g2 \in carrier G"
using subgroup.rcosets_carrier assms(1-3) group_hom
group_hom.axioms(1) stabilizer_subgroup by blast
then obtain r1 r2 where r1: "r1 \in carrier G" "R1=(stabilizer G \varphi
x) \#> r1"
and r2: "r2 \in carrier G" "R2 = (stabilizer G \varphi
x) \#> r2"
using assms(1-3) unfolding RCOSETS_def by blast
then obtain s1 s2 where s1: "s1 f (stabilizer G \varphi x)" "g1 = s1 \otimes r1"
and s2: "s2 \in (stabilizer G \varphi x)" "g2 = s2 \otimes r2"
using g1 g2 unfolding r_coset_def by blast
have "\varphi (inv g1) x = \varphi (inv (SOME h. h \in R1)) x"
using orbit_stab_fun_is_well_defined1[0F assms(1) assms(2) g1] by
simp
also have " ... = \varphi (inv (SOME h. h \in R2)) x"
using assms(4) by simp

```
```

 finally have "\varphi (inv g1) x = \varphi (inv g2) x"
 using orbit_stab_fun_is_well_defined1[0F assms(1) assms(3) g2] by
 simp
hence "\varphi g2 (}\varphi(\mathrm{ (inv g1) x) = ¢ g2 (}\varphi(\mathrm{ (inv g2) x)" by simp
also have " ... = \varphi (g2 \otimes (inv g2)) x"
using assms(1) composition_rule g12_carr group_hom group_hom.axioms(1)
by fastforce
finally have " }\varphi\mathrm{ g2 (}\varphi\mathrm{ (inv g1) x) = x"
using g12_carr assms(1) group.r_inv group_hom group_hom.axioms(1)
id_eq_one restrict_apply by metis
hence "\varphi (g2 \otimes (inv g1)) x = x"
using assms(1) composition_rule g12_carr group_hom group_hom.axioms(1)
by fastforce
hence "g2 \otimes (inv g1) \in (stabilizer G \varphi x)"
using g12_carr group.subgroup_self group_hom group_hom.axioms(1)
mem_Collect_eq stabilizer_def subgroup_def by (metis (mono_tags,
lifting))
then obtain s where s: "s \in (stabilizer G \varphi x)" "s = g2 \otimes (inv g1)"
by blast
let ?h = "s \& g1"
have "?h = s \otimes (s1 \otimes r1)" by (simp add: s1)
hence "?h = (s \otimes s1) \otimes r1"
using stabilizer_subgroup[OF assms(1)] group_def group_hom
group_hom.axioms(1) monoid.m_assoc r1 s s1 subgroup.mem_carrier
by fastforce
hence inR1: "?h \in (stabilizer G \varphi x) \#> r1" unfolding r_coset_def
using stabilizer_subgroup[0F assms(1)] assms(1) s s1 stabilizer_m_closed
by auto

```
    have "?h = g2" using s stabilizer_subgroup[OF assms(1)] g12_carr group.inv_solve_right
                            group_hom group_hom.axioms(1) subgroup.mem_carrier
by metis
    hence inR2: "?h \(\in\) (stabilizer G \(\varphi\) x) \#> r2"
        using g2 r2 by blast
    have "R1 \(\cap\) R2 \(\neq\{ \}\) " using inR1 inR2 r1 r2 by blast
    thus ?thesis
        using stabilizer_subgroup group.rcos_disjoint[of G "stabilizer G \(\varphi\)
x"] assms group_hom group_hom.axioms(1)
        unfolding disjnt_def pairwise_def by blast
qed
```

lemma (in group_action) orbit_stab_fun_is_surj:
assumes "x \inE" "y \in orbit G \varphi x"
shows "\existsR\in rcosets (stabilizer G \varphi x). \varphi (inv (SOME h. h G R)) x
= y"
proof -

```
```

 have "\existsg \in carrier G. (}\varphi\textrm{g}\mathrm{) x = y"
 using assms(2) unfolding orbit_def by blast
 then obtain g where g: "g \in carrier G ^ (}\varphi\textrm{g})\textrm{x}=\textrm{y}|=\mp@code{by blast
 let ?R = "(stabilizer G \varphi x) #> (inv g)"
 have R: "?R \in rcosets (stabilizer G \varphi x)"
 unfolding RCOSETS_def using g group_hom group_hom.axioms(1) by fastforce
 moreover have "1 \otimes (inv g) }\in\mathrm{ ?R"
 unfolding r_coset_def using assms(1) stabilizer_one_closed by auto
 ultimately have " }\varphi\mathrm{ (inv (SOME h. h G ?R)) x = ¢ (inv (1 & (inv g)))
 x"
using orbit_stab_fun_is_well_defined1[OF assms(1)] by simp
also have " ... = (}\varphi\textrm{g}\mathrm{) x"
using group_def g group_hom group_hom.axioms(1) monoid.l_one by fastforce
finally have "\varphi (inv (SOME h. h \in ?R)) x = y"
using g by simp
thus ?thesis using R by blast
qed
proposition (in group_action) orbit_stab_fun_is_bij:
assumes "x \in E"
shows "bij_betw (}\lambda\mathrm{ R. (}\varphi\mathrm{ (inv (SOME h. h G R))) x) (rcosets (stabilizer
G \varphi x)) (orbit G \varphi x)"
unfolding bij_betw_def
proof
show "inj_on (}\lambda\mathrm{ R. . }\varphi\mathrm{ (inv (SOME h. h G R)) x) (rcosets stabilizer G
\varphi x)"
using orbit_stab_fun_is_inj[OF assms(1)] by (simp add: inj_on_def)
next
have "\R. R ((rcosets stabilizer G \varphi x) \Longrightarrow\varphi (inv (SOME h. h \in R))
x \in orbit G \varphi x "
proof -
fix R assume R: "R ((rcosets stabilizer G \varphi x)"
then obtain g}\mathrm{ where g: "g }\inR
using assms stab_rcosets_not_empty by auto
hence "\varphi (inv (SOME h. h G R)) x = \varphi (inv g) x"
using R assms orbit_stab_fun_is_well_defined1 by blast
thus "\varphi (inv (SOME h. h \in R)) x \in orbit G \varphi x" unfolding orbit_def
using subgroup.rcosets_carrier group_hom group_hom.axioms(1)
g R assms stabilizer_subgroup by fastforce
qed
moreover have "orbit G \varphi x \subseteq (\lambdaR. \varphi (inv (SOME h. h G R)) x) ' (rcosets
stabilizer G \varphi x)"
using assms orbit_stab_fun_is_surj by fastforce
ultimately show "(\lambdaR. \varphi (inv (SOME h. h \in R)) x) ' (rcosets stabilizer
G \varphi x) = orbit G \varphi x "
using assms set_eq_subset by blast
qed

```

\subsection*{23.4.3 The Theorem}
```

theorem (in group_action) orbit_stabilizer_theorem:
assumes "x \in E"
shows "card (orbit G \varphi x) * card (stabilizer G \varphi x) = order G"
proof -
have "card (rcosets stabilizer G \varphi x) = card (orbit G \varphi x)"
using orbit_stab_fun_is_bij[OF assms(1)] bij_betw_same_card by blast
moreover have "card (rcosets stabilizer G \varphi x) * card (stabilizer G
x x) = order G"
using stabilizer_subgroup assms group.lagrange group_hom group_hom.axioms(1)
by blast
ultimately show ?thesis by auto
qed

```

\subsection*{23.5 The Burnside's Lemma}

\subsection*{23.5.1 Sums and Cardinals}
```

lemma card_as_sums:
assumes "A = {x \in B. P x}" "finite B"
shows "card A = (\sumx\inB. (if P x then 1 else 0))"
proof -
have "A \subseteq B" using assms(1) by blast
have "card A = (\sum x\inA. 1)" by simp
also have " ... = (\sum x\inA. (if P x then 1 else 0))"
by (simp add: assms(1))
also have " ... = (\sum x\inA. (if P x then 1 else 0)) + (\sum x\in(B - A). (if
P x then 1 else 0))"
using assms(1) by auto
finally show "card A = (\sum x\inB. (if P x then 1 else 0))"
using <A \subseteq B > add.commute assms(2) sum.subset_diff by metis
qed
lemma sum_invertion:
"\llbracketfinite A; finite B \rrbracket\Longrightarrow(\sumx\inA. \sum y\inB. f x y) = (\sum y\inB. \sumx\inA.
f x y)"
proof (induct set: finite)
case empty thus ?case by simp
next
case (insert x A')
have "(\sumx\ininsert x A'. \sumy\inB. f x y) = (\sumy\inB. f x y) + (\sum m\inA'.
\sumy\inB. f x y)"
by (simp add: insert.hyps)
also have " ... = (\sumy\inB. f x y) + (\sumy\inB. \sum x\inA'. f x y)"
using insert.hyps by (simp add: insert.prems)
also have " ... = (\sumy\inB. (f x y) + (\sumx\inA'. f x y))"
by (simp add: sum.distrib)
finally have "(\sumx\ininsert x A'. \sum y\inB.f x y) = (\sumy\inB. \sumx\ininsert
x A'. f x y)"

```
using sum.swap by blast
thus ?case by simp
qed
lemma (in group_action) card_stablizer_sum:
assumes "finite (carrier G)" "orb \(\in\) (orbits G E \(\varphi\) )"
shows " \(\left(\sum \mathrm{x} \in\right.\) orb. card (stabilizer \(\left.G \varphi \mathrm{x}\right)\) ) = order \(\mathrm{G} "\)
proof -
obtain x where \(\mathrm{x}:\) "x \(\in \mathrm{E}\) " and orb:"orb \(=\operatorname{orbit} G \varphi \mathrm{x} "\)
using assms(2) unfolding orbits_def by blast
have " \(\wedge \mathrm{y} . \mathrm{y} \in \operatorname{orb} \Longrightarrow\) card (stabilizer \(G \varphi \mathrm{x}\) ) = card (stabilizer G
\(\varphi\) у)"
proof -
fix y assume "y \(\in\) orb"
hence \(y: ~ " y \in E \wedge y \in \operatorname{orbit} G \varphi x "\)
using x orb assms(2) orbits_coverture by auto
hence same_orbit: "(orbit G \(\varphi\) x) \(=\) (orbit G \(\varphi\) y)"
using disjoint_union[of "orbit G \(\varphi\) x" "orbit G \(\varphi\) y"] orbit_refl
X
unfolding orbits_def by auto
have "card (orbit G \(\varphi\) x) * card (stabilizer G \(\varphi\) x) = card (orbit G \(\varphi\) y) * card (stabilizer G \(\varphi\) y)"
using y assms(1) x orbit_stabilizer_theorem by simp
hence "card (orbit G \(\varphi\) x) * card (stabilizer G \(\varphi\) x) = card (orbit G \(\varphi\) x) * card (stabilizer G \(\varphi\) y)" using same_orbit
by simp
moreover have "orbit \(G \varphi \mathrm{x} \neq\{ \} \wedge\) finite (orbit \(G \varphi \mathrm{x}\) )" using y orbit_def [of G \(\varphi\) x] assms(1) by auto
hence "card (orbit G \(\varphi\) x) > 0 "
by (simp add: card_gt_0_iff)
ultimately show "card (stabilizer G \(\varphi\) x) \(=\operatorname{card}\) (stabilizer G \(\varphi\) y)"
by auto
qed
hence " ( \(\sum \mathrm{x} \in\) orb. card (stabilizer \(\left.\mathrm{G} \varphi \mathrm{x}\right)\) ) \(=\left(\sum \mathrm{y} \in\right.\) orb. card (stabilizer
G \(\varphi\) x))" by auto
also have "..\(=\) card (stabilizer \(G \varphi \mathrm{x}\) ) \(*\left(\sum \mathrm{y} \in\right.\) orb. 1)" by simp
also have " ... = card (stabilizer G \(\varphi\) x) * card (orbit G \(\varphi\) x)"
using orb by auto
finally show " ( \(\sum \mathrm{x} \in\) orb. card (stabilizer \(\left.G \varphi \mathrm{x}\right)\) ) = order G"
by (metis mult.commute orbit_stabilizer_theorem x)
qed

\subsection*{23.5.2 The Lemma}
theorem (in group_action) burnside:
assumes "finite (carrier G)" "finite E"
shows "card (orbits G E \(\varphi\) ) * order G = ( \(\sum \mathrm{g} \in\) carrier G . card(invariants
E \(\varphi \mathrm{g}\) ))"
proof -
```

 have " \(\left(\sum \mathrm{g} \in\right.\) carrier G. card(invariants \(\left.\left.\mathrm{E} \varphi \mathrm{g}\right)\right)=\)
 (\(\sum \mathrm{g} \in \operatorname{carrier} \mathrm{G} . \sum \mathrm{x} \in \mathrm{E}\). (if (\(\varphi \mathrm{g}\)) \(\mathrm{x}=\mathrm{x}\) then 1 else 0))"
 by (simp add: assms(2) card_as_sums invariants_def)
 also have " \(\ldots=\) (\(\sum \mathrm{x} \in \mathrm{E} . \sum \mathrm{g} \in\) carrier G . (if \((\varphi \mathrm{g}) \mathrm{x}=\mathrm{x}\) then 1
 else 0))"
using sum_invertion[where ?f $=\| \lambda \mathrm{g} \mathrm{x}$. (if ($\varphi \mathrm{g}$) $\mathrm{x}=\mathrm{x}$ then 1 else
0)"] assms by auto
also have " ... = ($\sum \mathrm{x} \in \mathrm{E}$. card (stabilizer $\left.\mathrm{G} \varphi \mathrm{x}\right)$)"
by (simp add: assms(1) card_as_sums stabilizer_def)
also have " ... = (\sum orbit \in (orbits G E φ). $\sum \mathrm{x} \in$ orbit. card (stabilizer
G φ x))"
using disjoint_sum orbits_coverture assms (2) by metis
also have " $\ldots=\left(\sum\right.$ orbit \in (orbits G E φ). order G)"
by (simp add: assms(1) card_stablizer_sum)
finally have " $\left(\sum \mathrm{g} \in\right.$ carrier G. card(invariants $\left.\mathrm{E} \varphi \mathrm{g}\right)$) = card (orbits
G E φ) * order G" by simp
thus ?thesis by simp
qed

```

\subsection*{23.6 Action by Conjugation}

\subsection*{23.6.1 Action Over Itself}

A Group Acts by Conjugation Over Itself
lemma (in group) conjugation_is_inj:
assumes "g \(\in\) carrier G" "h1 \(\in\) carrier G" "h2 \(\in\) carrier G"
and \(\mathrm{g} \boldsymbol{\mathrm { g }} \otimes \mathrm{h} 1 \otimes(\) inv g\()=\mathrm{g} \otimes \mathrm{h} 2 \otimes(\) inv g\() "\)
shows "h1 = h2"
using assms by auto
lemma (in group) conjugation_is_surj:
assumes "g \(\in\) carrier \(G\) " "h \(\in\) carrier \(G\) "
shows \(\mathrm{g} \otimes((\) inv g\() \otimes \mathrm{h} \otimes \mathrm{g}) \otimes(\) inv g\()=\mathrm{h} "\)
using assms m_assoc inv_closed inv_inv m_closed monoid_axioms r_inv
r_one
by metis
lemma (in group) conjugation_is_bij:
assumes " \(\mathrm{g} \in\) carrier G"
shows "bij_betw ( \(\lambda \mathrm{h} \in\) carrier \(G . \mathrm{g} \otimes \mathrm{h} \otimes\) (inv g)) (carrier G) (carrier
G) "
```

 (is "bij_betw ?\varphi (carrier G) (carrier G)")
    ```
unfolding bij_betw_def
proof
show "inj_on ? \(\varphi\) (carrier G)"
using conjugation_is_inj by (simp add: assms inj_on_def)
next
have S: " \(\bigwedge \mathrm{h} . \mathrm{h} \in\) carrier \(\mathrm{G} \Longrightarrow\) (inv g\() \otimes \mathrm{h} \otimes \mathrm{g} \in\) carrier \(\mathrm{G} "\)
using assms by blast
```

 have " \ h. h \in carrier G \Longrightarrow ? ((inv g) \otimes h \otimes g) = h"
 using assms by (simp add: conjugation_is_surj)
 hence "carrier G \subseteq?\varphi ' carrier G"
 using S image_iff by fastforce
 moreover have "\ h. h \in carrier G }\Longrightarrow?\varphi\textrm{h}\in\mathrm{ carrier G"
 using assms by simp
 hence "?\varphi ' carrier G \subseteq carrier G" by blast
 ultimately show "?\varphi ' carrier G = carrier G" by blast
 qed
lemma(in group) conjugation_is_hom:
"(\lambdag. \lambdah \in carrier G. g \otimes h \otimes inv g) \in hom G (BijGroup (carrier G))"
unfolding hom_def
proof -
let ?\psi = "\lambdag. \lambdah. g \otimes h \otimes inv g"
let ?\varphi = "\lambdag. restrict (?\psi g) (carrier G)"
have Step0: "^ g. g \in carrier G \Longrightarrow (?\varphi g) \in Bij (carrier G)"
using Bij_def conjugation_is_bij by fastforce
hence Step1: "?\varphi: carrier G }->\mathrm{ carrier (BijGroup (carrier G))"
unfolding BijGroup_def by simp
have "\ g1 g2. \llbracket g1 \in carrier G; g2 \in carrier G \rrbracket\Longrightarrow
(\ h. h \in carrier G \Longrightarrow ?\psi (g1 \otimes g2) h = (? | g1) ((?\varphi
g2) h))"
proof -
fix g1 g2 h assume g1: "g1 \in carrier G" and g2: "g2 \in carrier G"
and h: "h \in carrier G"
have "inv (g1 \otimes g2) = (inv g2) \otimes (inv g1)"
using g1 g2 by (simp add: inv_mult_group)
thus "?\psi (g1 \otimes g2) h = (?\varphi g1) ((?\varphi g2) h)"
by (simp add: g1 g2 h m_assoc)
qed
hence "\ g1 g2. \llbracket g1 \in carrier G; g2 \in carrier G \rrbracket \Longrightarrow
(}\lambda\textrm{h}\in\mathrm{ carrier G. ? % (g1 \& g2) h) = (}\lambda\textrm{h}\in\operatorname{carrier G. (? }\varphi\textrm{g}1
((?\varphi g2) h))" by auto
hence Step2: "\ g1 g2. \llbracket g1 \in carrier G; g2 \in carrier G \rrbracket\Longrightarrow

```

```

 unfolding BijGroup_def by (simp add: Step0 compose_def)
 thus "?\varphi { {h: carrier G }->\mathrm{ carrier (BijGroup (carrier G)).
 (}\forall\textrm{x}\in\mathrm{ carrier G. }\forall\textrm{y}\in\mathrm{ carrier G. h (x }\otimes\textrm{y})=\textrm{h}x\mp@subsup{\otimes}{\mathrm{ BijGroup (carrier G)}}{\mathrm{ (}
 h y)}"
using Step1 Step2 by auto
qed

```
theorem (in group) action_by_conjugation:
"group_action \(G\) (carrier G) ( \(\lambda \mathrm{g}\). ( \(\lambda \mathrm{h} \in\) carrier \(\mathrm{G} . \mathrm{g} \otimes \mathrm{h} \otimes\) (inv g)))" unfolding group_action_def group_hom_def using conjugation_is_hom by (simp add: group_BijGroup group_hom_axioms.intro is_group)

\subsection*{23.6.2 Action Over The Set of Subgroups}

A Group Acts by Conjugation Over The Set of Subgroups
lemma (in group) subgroup_conjugation_is_inj_aux:
assumes " \(\mathrm{g} \in\) carrier G" "H1 \(\subseteq\) carrier G" "H2 \(\subseteq\) carrier G" and "g <\# H1 \#> (inv g) = g <\# H2 \#> (inv g)" shows "H1 \(\subseteq\) H2"
proof
fix h 1 assume h1: "h1 \(\in \mathrm{H} 1\) "
hence g g \(\otimes \mathrm{h} 1 \otimes(i n v \mathrm{~g}) \in \mathrm{g}<\# \mathrm{H} 1\) \#> (inv g)" unfolding l_coset_def r_coset_def using assms by blast
hence g g \(\otimes \mathrm{h} 1 \otimes(i n v \mathrm{~g}) \in \mathrm{g}\) <\# H2 \#> (inv g)"
using assms by auto
hence \(" \exists \mathrm{~h} 2 \in \mathrm{H} 2 . \mathrm{g} \otimes \mathrm{h} 1 \otimes(\mathrm{inv} \mathrm{g})=\mathrm{g} \otimes \mathrm{h} 2 \otimes(i n v \mathrm{~g})\) " unfolding \(l_{-}\)coset_def \(r_{-}\)coset_def by blast
then obtain h 2 where \(\mathrm{h} 2 \in \mathrm{H} 2 \wedge \mathrm{~g} \otimes \mathrm{~h} 1 \otimes(\mathrm{inv} \mathrm{g})=\mathrm{g} \otimes \mathrm{h} 2 \otimes\) (inv
g)" by blast
thus "h1 \(\in\) H2"
using assms conjugation_is_inj h1 by blast
qed
lemma (in group) subgroup_conjugation_is_inj:
assumes "g carrier G" "H1 \(\subseteq\) carrier G" "H2 \(\subseteq\) carrier G"
and "g <\# H1 \#> (inv g) = g <\# H2 \#> (inv g)"
shows "H1 = H2"
using subgroup_conjugation_is_inj_aux assms set_eq_subset by metis
lemma (in group) subgroup_conjugation_is_surj0:
assumes "g carrier G" "H \(\subseteq\) carrier G"
shows "g <\# ((inv g) <\# H \#> g) \#> (inv g) = H"
using coset_assoc assms coset_mult_assoc l_coset_subset_G lcos_m_assoc
by (simp add: lcos_mult_one)
lemma (in group) subgroup_conjugation_is_surj1:
assumes "g \(\in\) carrier G" "subgroup H G"
shows "subgroup ((inv g) <\# H \#> g) G"
proof
show "1 \(\in\) inv g <\# H \#> g"
proof -
have "1 \(\in\) H" by (simp add: assms(2) subgroup.one_closed)
hence "inv \(\mathrm{g} \otimes 1 \otimes \mathrm{~g} \in \operatorname{inv} \mathrm{~g}\) <\# H \#> g"
unfolding \(l_{-}\)coset_def \(r_{-}\)coset_def by blast
thus "1 \(\in\) inv \(g\) <\# H \#> g" using assms by simp
qed
```

next
show "inv g <\# H \#> g \subseteq carrier G"
proof
fix x assume "x \in inv g <\# H \#> g"
hence "\existsh G H. x = (inv g) \otimes h \otimes g"
unfolding r_coset_def l_coset_def by blast
hence "\existsh \in (carrier G). x = (inv g) \otimes h \otimes g"
by (meson assms subgroup.mem_carrier)
thus "x \in carrier G" using assms by blast
qed
next
show " \ x y.\llbracketx < inv g<\# H \#> g; y \in inv g<\# H \#> g \rrbracket \Longrightarrow x \otimes
y \in inv g <\# H \#> g"
proof -
fix x y assume "x \in inv g <\# H \#> g" "y \in inv g <\# H \#> g"
then obtain h1 h2 where h12: "h1 \in H" "h2 \in H" and "x = (inv g)
| h1 \otimesg ^ y = (inv g) \otimes h2 \otimes g"
unfolding l_coset_def r_coset_def by blast
hence "x \otimes y = ((inv g) \otimes h1 \otimes g) \otimes ((inv g) \otimes h2 \otimes g)" by blast
also have "... = ((inv g) \otimes h1 \otimes (g \otimes inv g) \otimes h2 \otimes g)"
using h12 assms inv_closed m_assoc m_closed subgroup.mem_carrier
[OF <subgroup H G>] by presburger
also have "... = ((inv g) \otimes (h1 \otimes h2) \otimesg)"
by (simp add: h12 assms m_assoc subgroup.mem_carrier [OF <subgroup
H G >])
finally have "\exists h G H. x \& y = (inv g) \otimes h \otimes g"
by (meson assms(2) h12 subgroup_def)
thus "x \otimes y \in inv g <\# H \#> g"
unfolding l_coset_def r_coset_def by blast
qed
next
show "\x. x \in inv g<\# H \#> g \Longrightarrow inv x \in inv g <\# H \#> g"
proof -
fix x assume "x \in inv g <\# H \#> g"
hence "\existsh \in H. x = (inv g) \otimes h \otimes g"
unfolding r_coset_def l_coset_def by blast
then obtain h where h: "h \in H ^ x = (inv g) \otimesh | g" by blast
hence "x \otimes (inv g) \otimes (inv h) \otimes g = 1"
using assms m_assoc monoid_axioms by (simp add: subgroup.mem_carrier)
hence "inv x = (inv g) \otimes (inv h) \& g"
using assms h inv_mult_group m_assoc monoid_axioms by (simp add:
subgroup.mem_carrier)
moreover have "inv h \in H"
by (simp add: assms h subgroup.m_inv_closed)
ultimately show "inv x \in inv g <\# H \#> g" unfolding r_coset_def l_coset_def
by blast
qed
qed

```
```

lemma (in group) subgroup_conjugation_is_surj2:
assumes "g \in carrier G" "subgroup H G"
shows "subgroup (g <\# H \#> (inv g)) G"
using subgroup_conjugation_is_surj1 by (metis assms inv_closed inv_inv)
lemma (in group) subgroup_conjugation_is_bij:
assumes "g \in carrier G"
shows "bij_betw (}\lambda\textrm{H}\in{H.\mathrm{ subgroup H G}. g <\# H \#> (inv g)) {H. subgroup
H G} {H. subgroup H G}"
(is "bij_betw ?\varphi {H. subgroup H G} {H. subgroup H G}")
unfolding bij_betw_def
proof
show "inj_on ?\varphi {H. subgroup H G}"
using subgroup_conjugation_is_inj assms inj_on_def subgroup.subset
by (metis (mono_tags, lifting) inj_on_restrict_eq mem_Collect_eq)
next
have "\H. H \in {H. subgroup H G} \Longrightarrow ?\varphi ((inv g) <\# H \#> g) = H"
by (simp add: assms subgroup.subset subgroup_conjugation_is_surj0
subgroup_conjugation_is_surj1 is_group)
hence " \H. H \in {H. subgroup H G} \Longrightarrow \existsH' }\in{H\mathrm{ . subgroup H G}. ? }\varphi\mathrm{ H'
= H"
using assms subgroup_conjugation_is_surj1 by fastforce
thus "?\varphi ' {H. subgroup H G} = {H. subgroup H G}"
using subgroup_conjugation_is_surj2 assms by auto
qed
lemma (in group) subgroup_conjugation_is_hom:
"(\lambdag. \lambdaH \in {H. subgroup H G}. g <\# H \#> (inv g)) \in hom G (BijGroup
{H. subgroup H G})"
unfolding hom_def
proof -
let ?\psi = "\lambdag. \lambdaH. g <\# H \#> (inv g)"
let ?\varphi = "\lambdag. restrict (?\psi g) {H. subgroup H G}"
have Step0: "^ g. g \in carrier G \Longrightarrow (?\varphi g) \in Bij {H. subgroup H G}"
using Bij_def subgroup_conjugation_is_bij by fastforce
hence Step1: "?\varphi: carrier G }->\mathrm{ carrier (BijGroup {H. subgroup H G})"
unfolding BijGroup_def by simp
have "\ g1 g2. \llbracket g1 \in carrier G; g2 \in carrier G \rrbracket\Longrightarrow
(\ H. H \in {H. subgroup H G} \Longrightarrow ? % (g1 \otimes g2) H = (?\varphi
g1) ((?\varphi g2) H))"
proof -
fix g1 g2 H assume g1: "g1 \in carrier G" and g2: "g2 \in carrier G"
and H': "H }\in{H\mathrm{ . subgroup H G}"
hence H: "subgroup H G" by simp
have "(?\varphi g1) ((?\varphi g2) H) = g1 <\# (g2 <\# H \#> (inv g2)) \#> (inv g1)"
by (simp add: H g2 subgroup_conjugation_is_surj2)

```
```

 also have " ... = g1 <# (g2 <# H) #> ((inv g2) \otimes (inv g1))"
 by (simp add: H coset_mult_assoc g1 g2 group.coset_assoc
 is_group l_coset_subset_G subgroup.subset)
 also have " ... = g1 <# (g2 <# H) #> inv (g1 \otimes g2)"
 using g1 g2 by (simp add: inv_mult_group)
 finally have "(?\varphi g1) ((?\varphi g2) H) = ?\psi (g1 \otimes g2) H"
 by (simp add: H g1 g2 lcos_m_assoc subgroup.subset)
 thus "?\psi (g1 \otimesg2) H = (?\varphi g1) ((?\varphi g2) H)" by auto
 qed
 hence "\ g1 g2. \llbracket g1 \in carrier G; g2 \in carrier G \rrbracket \Longrightarrow
 (\lambdaH }\in{H. subgroup H G}. ?\psi (g1 \otimes g2) H) = (\lambdaH \in {H. subgroup
 H G}. (?\varphi g1) ((?\varphi g2) H))"
by (meson restrict_ext)
hence Step2: "\ g1 g2. \llbracket g1 \in carrier G; g2 \in carrier G \rrbracket\Longrightarrow
?\varphi (g1 \otimes g2) = (?\varphi g1) \otimes BijGroup {H. subgroup H G} (? }
g2)"
unfolding BijGroup_def by (simp add: Step0 compose_def)
show "?\varphi { {h: carrier G }->\mathrm{ carrier (BijGroup {H. subgroup H G}).
\forallx\incarrier G. }\forall\textrm{y}\in\mathrm{ carrier G. h (x }\otimes\textrm{y})=\textrm{h}x\mp@subsup{\textrm{x}}{\mathrm{ BijGroup {H. subgroup H G}}}{\mathrm{ (}
h y}"
using Step1 Step2 by auto
qed
theorem (in group) action_by_conjugation_on_subgroups_set:
"group_action $G\{H$. subgroup $H \mathrm{G}\}(\lambda \mathrm{g} . \lambda \mathrm{H} \in\{\mathrm{H}$. subgroup $\mathrm{H} G\} . \mathrm{g}<\#$ H \#> (inv g))"
unfolding group_action_def group_hom_def using subgroup_conjugation_is_hom
by (simp add: group_BijGroup group_hom_axioms.intro is_group)

```

\subsection*{23.6.3 Action Over The Power Set}

A Group Acts by Conjugation Over The Power Set
lemma (in group) subset_conjugation_is_bij:
assumes "g carrier G"
shows "bij_betw ( \(\lambda \mathrm{H} \in\{\mathrm{H} . \mathrm{H} \subseteq\) carrier G\(\} . \mathrm{g}<\# \mathrm{H} \#>(i n v \mathrm{~g})\) ) \(\{\mathrm{H} . \mathrm{H}\)
\(\subseteq\) carrier \(G\}\{H . H \subseteq\) carrier \(G\} "\)
(is "bij_betw \(? \varphi\{\mathrm{H} . \mathrm{H} \subseteq\) carrier \(G\}\{\mathrm{H} . \mathrm{H} \subseteq\) carrier G\}")
unfolding bij_betw_def
proof
show "inj_on ? \(\varphi\) \{H. H \(\subseteq\) carrier G\}"
using subgroup_conjugation_is_inj assms inj_on_def
by (metis (mono_tags, lifting) inj_on_restrict_eq mem_Collect_eq)
next
have \(" \wedge\) H. H \(\in\{H . H \subseteq\) carrier \(G\} \Longrightarrow ? \varphi((i n v g)<\# H \#>g)=H "\)
by (simp add: assms l_coset_subset_G r_coset_subset_G subgroup_conjugation_is_surj0)
hence \(" \bigwedge H . H \in\{H . H \subseteq\) carrier \(G\} \Longrightarrow \exists H^{\prime} \in\{H . H \subseteq\) carrier \(G\}\). ? \(\varphi\)
\(H^{\prime}=H^{\prime \prime}\)
by (metis assms l_coset_subset_G mem_Collect_eq r_coset_subset_G subgroup_def
```

subgroup_self)
hence "{H. H \subseteq carrier G} \subseteq ? ' ' {H. H \subseteq carrier G}" by blast
moreover have "?\varphi ' {H. H \subseteq carrier G} \subseteq {H. H \subseteq carrier G}"
by clarsimp (meson assms contra_subsetD inv_closed l_coset_subset_G
r_coset_subset_G)
ultimately show "?\varphi ' {H. H \subseteq carrier G} = {H. H \subseteq carrier G}" by
simp
qed
lemma (in group) subset_conjugation_is_hom:
"(\lambdag. \lambdaH \in {H. H \subseteq carrier G}. g <\# H \#> (inv g)) \in hom G (BijGroup
{H. H \subseteq carrier G})"
unfolding hom_def
proof -
let ?\psi = "\lambdag. \lambdaH. g <\# H \#> (inv g)"
let ?\varphi = "\lambdag. restrict (?\psi g) {H. H \subseteq carrier G}"
have Step0: "^ g. g \in carrier G \Longrightarrow (?\varphi g) \in Bij {H. H \subseteq carrier G}"
using Bij_def subset_conjugation_is_bij by fastforce
hence Step1: "?\varphi: carrier G }->\mathrm{ carrier (BijGroup {H. H }\subseteq\mathrm{ carrier G})"
unfolding BijGroup_def by simp
have "\ g1 g2. \llbracket g1 \in carrier G; g2 \in carrier G \rrbracket\Longrightarrow
(\bigwedge H. H \in {H. H \subseteq carrier G} \Longrightarrow ? % (g1 \otimes g2) H =
(?\varphi g1) ((?\varphi g2) H))"
proof -
fix g1 g2 H assume g1: "g1 \in carrier G" and g2: "g2 \in carrier G"
and H: "H \in{H. H \subseteq carrier G}"
hence "(?\varphi g1) ((?\varphi g2) H) = g1 <\# (g2 <\# H \#> (inv g2)) \#> (inv
g1)"
using l_coset_subset_G r_coset_subset_G by auto
also have " ... = g1 <\# (g2 <\# H) \#> ((inv g2) \otimes (inv g1))"
using H coset_assoc coset_mult_assoc g1 g2 l_coset_subset_G by auto
also have " ... = g1 <\# (g2 <\# H) \#> inv (g1 \otimes g2)"
using g1 g2 by (simp add: inv_mult_group)
finally have "(?\varphi g1) ((?\varphi g2) H) = ?\psi (g1 \otimes g2) H"
using H g1 g2 lcos_m_assoc by force
thus "?\psi (g1 \otimes g2) H = (?\varphi g1) ((?\varphi g2) H)" by auto
qed
hence "\ g1 g2. \llbracket g1 \in carrier G; g2 \in carrier G \rrbracket \Longrightarrow
(\lambdaH \in {H. H \subseteq carrier G}. ?\psi (g1 \otimes g2) H) = (}\lambda\textrm{H}\in{H.H\carrier
G}. (?\varphi g1) ((?\varphi g2) H))"
by (meson restrict_ext)
hence Step2: "\ g1 g2. \llbracket g1 \in carrier G; g2 \in carrier G \rrbracket\Longrightarrow

```

```

g2)"
unfolding BijGroup_def by (simp add: StepO compose_def)

```
```

show "?\varphi \in {h: carrier G }->\mathrm{ carrier (BijGroup {H. H }\subseteq\mathrm{ carrier G}).
|x\incarrier G. }\forall\textrm{y}\in\mathrm{ carrier G. h (x }\otimes\textrm{y})=\textrm{h}x\mp@subsup{\otimes}{\mathrm{ BijGroup {H. H}\subseteq}{\}\mathrm{ carrier G}
h y}"
using Step1 Step2 by auto
qed

```
theorem (in group) action_by_conjugation_on_power_set:
"group_action \(G\{H . H \subseteq\) carrier \(G\}(\lambda g . \lambda H \in\{H . H \subseteq\) carrier \(G\} . g\)
<\# H \#> (inv g))"
unfolding group_action_def group_hom_def using subset_conjugation_is_hom
by (simp add: group_BijGroup group_hom_axioms.intro is_group)
corollary (in group) normalizer_imp_subgroup:
assumes "H \(\subseteq\) carrier G"
shows "subgroup (normalizer G H) G"
unfolding normalizer_def
using group_action.stabilizer_subgroup [OF action_by_conjugation_on_power_set]
assms by auto

\subsection*{23.7 Subgroup of an Acting Group}

A Subgroup of an Acting Group Induces an Action
lemma (in group_action) induced_homomorphism:
assumes "subgroup H G"
shows \(" \varphi \in\) hom (G (carrier := H)) (BijGroup E)"
unfolding hom_def apply simp
proof -
have \(\mathrm{SO}:\) " \(\mathrm{H} \subseteq\) carrier G " by (meson assms subgroup_def)
hence " \(\varphi\) : H \(\rightarrow\) carrier (BijGroup E)"
by (simp add: BijGroup_def bij_prop0 subset_eq)
thus \(" \varphi: H \rightarrow\) carrier (BijGroup E) \(\wedge(\forall x \in H . \forall y \in H . \varphi(x \otimes y)=\)
\(\left.\varphi \mathrm{x} \otimes_{\text {BijGroup E }} \varphi \mathrm{y}\right) "\)
by (simp add: SO group_hom group_hom.hom_mult rev_subsetD)
qed
theorem (in group_action) induced_action:
assumes "subgroup H G"
shows "group_action (G (carrier := H|) E \(\varphi\) "
unfolding group_action_def group_hom_def
using induced_homomorphism assms group.subgroup_imp_group group_BijGroup group_hom group_hom.axioms(1) group_hom_axioms_def by blast
end

\section*{24 The Zassenhaus Lemma}
theory Zassenhaus
imports Coset Group_Action
begin
Proves the second isomorphism theorem and the Zassenhaus lemma.

\subsection*{24.1 Lemmas about normalizer}
```

lemma (in group) subgroup_in_normalizer:
assumes "subgroup H G"
shows "normal H (G(carrier:= (normalizer G H)|)"
proof(intro group.normal_invI)
show "Group.group (G(carrier := normalizer G H))"
by (simp add: assms group.normalizer_imp_subgroup is_group subgroup_imp_group
subgroup.subset)
have K:"H \subseteq (normalizer G H)" unfolding normalizer_def
proof
fix x assume xH: "x
from xH have xG : "x f carrier G" using subgroup.subset assms by
auto
have "x <\# H = H"
by (metis <x \in H> assms group.lcos_mult_one is_group
l_repr_independence one_closed subgroup.subset)
moreover have "H \#> inv x = H"
by (simp add: xH assms is_group subgroup.rcos_const subgroup.m_inv_closed)
ultimately have "x <\# H \#> (inv x) = H" by simp
thus " x \in stabilizer G (\lambdag. \lambdaH\in{H. H \subseteq carrier G}. g <\# H \#> inv
g) H"
using assms xG subgroup.subset unfolding stabilizer_def by auto
qed
thus "subgroup H (G(carrier:= (normalizer G H)D)"
using subgroup_incl normalizer_imp_subgroup assms by (simp add: subgroup.subset)
show " \x h. x carrier (G(carrier := normalizer G H|)) > h \in H
\Longrightarrow
x *
\otimes (| carrier := normalizer G H) inv }\mp@subsup{|}{\textrm{G}(\mathrm{ carrier := normalizer G H)}}{(
x \in H"
proof-
fix x h assume xnorm : "x \in carrier (G(carrier := normalizer G H|))"
and hH : "h f H"
have xnormalizer:"x \in normalizer G H" using xnorm by simp
moreover have hnormalizer:"h \in normalizer G H" using hH K by auto
ultimately have "x 顛(carrier := normalizer G H) h = x \otimes h" by simp
moreover have " inv (carrier := normalizer G H) x = inv x"
using xnormalizer
by (simp add: assms normalizer_imp_subgroup subgroup.subset m_inv_consistent)
ultimately have xhxegal: "x * \&G(carrier := normalizer G H) h
* (carrier := normalizer G H) inv (carrier := normalizer G H)
x
= x \otimesh \otimes inv x"
using hnormalizer by simp

```
```

 have "x \otimesh \otimes inv x f (x <# H #> inv x)"
 unfolding l_coset_def r_coset_def using hH by auto
 moreover have "x <# H #> inv x = H"
 using xnormalizer assms subgroup.subset[0F assms]
 unfolding normalizer_def stabilizer_def by auto
 ultimately have "x }\otimes\textrm{h}\otimes\mathrm{ inv x }\inH"\mathrm{ by simp
 thus " x * & (carrier := normalizer G H) h
 \otimes (|carrier := normalizer G H) inv (carrier := normalizer G H)
 x }\in\mp@subsup{H}{}{\prime\prime
using xhxegal hH xnorm by simp
qed
qed
lemma (in group) normal_imp_subgroup_normalizer:
assumes "subgroup H G"
and "N \triangleleft (G(carrier := H))"
shows "subgroup H (G(carrier := normalizer G N|))"
proof-
have N_carrierG : "N \subseteq carrier(G)"
using assms normal_imp_subgroup subgroup.subset
using incl_subgroup by blast
{have "H\subseteq normalizer G N" unfolding normalizer_def stabilizer_def
proof
fix x assume xH : "x }\inH
hence xcarrierG : "x \in carrier(G)" using assms subgroup.subset
by auto
have " N \#> x = x <\# N" using assms xH
unfolding r_coset_def l_coset_def normal_def normal_axioms_def
subgroup_imp_group by auto
hence "x <\# N \#> inv x =(N \#> x) \#> inv x"
by simp
also have "... = N \#> 1"
using assms r_inv xcarrierG coset_mult_assoc[OF N_carrierG] by
simp
finally have "x <\# N \#> inv x = N" by (simp add: N_carrierG)
thus "x }\in{g\in\mathrm{ carrier G. (}\lambda\textrm{H}\in{H.H\subseteq\mathrm{ carrier G}. g <\# H \#> inv
g) N = N}"
using xcarrierG by (simp add : N_carrierG)
qed}
thus "subgroup H (G(carrier := normalizer G N|)"
using subgroup_incl[OF assms(1) normalizer_imp_subgroup]
assms normal_imp_subgroup subgroup.subset
by (metis group.incl_subgroup is_group)
qed

```

\subsection*{24.2 Second Isomorphism Theorem}
lemma (in group) mult_norm_subgroup:
```

 assumes "normal N G"
 and "subgroup H G"
 shows "subgroup (N<#>H) G" unfolding subgroup_def
 proof-
have A :"N <\#> H \subseteq carrier G"
using assms setmult_subset_G by (simp add: normal_imp_subgroup subgroup.subset)
have B :"\ x y. \llbracketx \in (N <\#> H); y \in (N <\#> H)\rrbracket \Longrightarrow(x \otimes y) \in (N<\#>H)"
proof-
fix x y assume B1a: "x \in (N <\#> H)" and B1b: "y \in (N <\#> H)"
obtain n1 h1 where B2:"n1 \in N ^ h1 \in H ^ n1\otimesh1 = x"
using set_mult_def B1a by (metis (no_types, lifting) UN_E singletonD)
obtain n2 h2 where B3:"n2
using set_mult_def B1b by (metis (no_types, lifting) UN_E singletonD)
have "N \#> h1 = h1 <\# N"
using normalI B2 assms normal.coset_eq subgroup.subset by blast
hence "h1\otimesn2 \in N \#> h1"
using B2 B3 assms l_coset_def by fastforce
from this obtain y2 where y2_def:"y2 \in N" and y2_prop:"y2\otimesh1 = h1 \otimesn2"
using singletonD by (metis (no_types, lifting) UN_E r_coset_def)
have "\a. a \in N \Longrightarrow a \in carrier G" "\a. a }\inH\Longrightarrowa| carrier
G"
by (meson assms normal_def subgroup.mem_carrier)+
then have "x\otimesy = n1 \otimes y2 \otimes h1 \otimes h2" using y2_def B2 B3
by (metis (no_types) B2 B3 <\a. a }\inN\Longrightarrow\textrm{N}\Longrightarrow\textrm{a}\in\mathrm{ carrier G> m_assoc
m_closed y2_def y2_prop)
moreover have B4 :"n1 \otimes y2 \inN"
using B2 y2_def assms normal_imp_subgroup by (metis subgroup_def)
moreover have "h1 \otimesh2 \inH" using B2 B3 assms by (simp add: subgroup.m_closed)
hence "(n1 \otimes y2) \otimes (h1 \otimes h2) \in(N<\#>H) "
using B4 unfolding set_mult_def by auto
hence "n1 \otimes y2 \otimes h1 \otimes h2 \in(N<\#>H)"
using m_assoc B2 B3 assms normal_imp_subgroup by (metis B4 subgroup.mem_carrier)
ultimately show "x \# y \inN <\#> H" by auto
qed
have C :"\ x. x\in(N<\#>H) \Longrightarrow (inv x)\in(N<\#>H)"
proof-
fix x assume C1 : "x \in (N<\#>H)"
obtain n h where C2:"n \inN ^h G H ^n\otimesh = x"
using set_mult_def C1 by (metis (no_types, lifting) UN_E singletonD)
have C3 :"inv(n\otimesh) = inv(h)\otimesinv(n)"
by (meson C2 assms inv_mult_group normal_imp_subgroup subgroup.mem_carrier)
hence "... \otimesh \in N"
using assms C2
by (meson normal.inv_op_closed1 normal_def subgroup.m_inv_closed
subgroup.mem_carrier)
hence C4:"(inv h \otimes inv n \otimes h) \otimes inv h \in (N<\#>H)"
using C2 assms subgroup.m_inv_closed[of H G h] unfolding set_mult_def

```
```

by auto
have "inv h \& inv n \& h \& inv h = inv h \& inv n"
using subgroup.subset[OF assms(2)]
by (metis A C1 C2 C3 inv_closed inv_solve_right m_closed subsetCE)
thus "inv(x)\inN<\#>H" using C4 C2 C3 by simp
qed
have D : "1 \in N <\#> H"
proof-
have D1 : "1 \in N"
using assms by (simp add: normal_def subgroup.one_closed)
have D2 :"1 \in H"
using assms by (simp add: subgroup.one_closed)
thus "1 \in (N <\#> H)"
using set_mult_def D1 assms by fastforce
qed

```

```

x \otimes y G N <\#> H)) ^
1\inN<\#> H ^(}\forall\textrm{x}.\textrm{x}\in\textrm{N}<\#> H\longrightarrow inv x G N<\#> H)" using A B C
D assms by blast
qed
lemma (in group) mult_norm_sub_in_sub:
assumes "normal N (G(carrier:=K|)"
assumes "subgroup H (G(carrier:=K))"
assumes "subgroup K G"
shows "subgroup (N<\#>H) (G(|carrier:=K))"
proof-

```

```

 using group.mult_norm_subgroup[where ?G = "G(carrier := K)"] assms
 subgroup_imp_group by auto
have "H \subseteq carrier(G(carrier := K|))" using assms subgroup.subset by
blast
also have "... \subseteqK" by simp
finally have Incl1:"H \subseteqK" by simp
have "N \subseteq carrier(G(carrier := K|)" using assms normal_imp_subgroup
subgroup.subset by blast
also have "... \subseteq K" by simp
finally have Incl2:"N \subseteqK" by simp
have "(N <\#> }\mp@subsup{\mp@code{G(carrier := K) H) = (N <\#> H)"}}{}{\prime
using set_mult_consistent by simp
thus "subgroup (N<\#>H) (G(carrier:=K))" using Hyp by auto
qed

```
lemma (in group) subgroup_of_normal_set_mult:
    assumes "normal N G"
and "subgroup H G"
```

shows "subgroup H (G(carrier := N <\#> H))"
proof-
have "1 \in N" using normal_imp_subgroup assms(1) subgroup_def by blast
hence "1 <\# H \subseteq N <\#> H" unfolding set_mult_def l_coset_def by blast
hence H_incl : "H \subseteq N <\#> H"
by (metis assms(2) lcos_mult_one subgroup_def)
show "subgroup H (G(carrier := N <\#> H|))"
using subgroup_incl[OF assms(2) mult_norm_subgroup[OF assms(1) assms(2)]
H_incl] .
qed

```
lemma (in group) normal_in_normal_set_mult:
    assumes "normal \(N\) G"
and "subgroup H G"
shows "normal N (G(carrier := N <\#> H|))"
proof-
    have "1 \(\in \mathrm{H}^{\prime}\) using assms(2) subgroup_def by blast
    hence "N \#> \(1 \subseteq N\) <\#> H" unfolding set_mult_def r_coset_def by blast
    hence \(N\) _incl : "N \(\subseteq\) N <\#> H"
        by (metis assms(1) normal_imp_subgroup coset_mult_one subgroup_def)
    thus "normal \(N\) (G(carrier := N <\#> H|))"
        using normal_Int_subgroup[OF mult_norm_subgroup [OF assms] assms (1)]
        by (simp add : inf_absorb1)
qed
proposition (in group) weak_snd_iso_thme:
    assumes "subgroup H G"
        and " \(\mathrm{N} \triangleleft \mathrm{G}\) "
    shows "(G(carrier := N<\#>H) Mod \(N \cong G(\) carrier: \(=H \mid)\) Mod (N \(N H)\) )"
proof-
    define \(f\) where \(" f=(\#>) N "\)
    have GroupNH : "Group.group (G(|carrier := N<\#>H))"
        using subgroup_imp_group assms mult_norm_subgroup by simp
    have HcarrierNH : "H \(\subseteq\) carrier (G(carrier := N<\#>H())"
        using assms subgroup_of_normal_set_mult subgroup.subset by blast
    hence \(H N H: " H \subseteq N<\#>H "\) by simp
    have op_hom : "f \(\in\) hom (G(carrier := H|) (G(carrier := \(N\) <\#> H|) Mod
N)" unfolding hom_def
    proof
        have " \(\bigwedge \mathrm{x} . \mathrm{x} \in\) carrier ( \(\mathrm{G}(\) (carrier \(:=\mathrm{H} \mid)\) ) \(\Longrightarrow\)
                (\#> \(_{\mathrm{G}}(\) carrier \(:=\mathrm{N}\) <\#> H|) \(\mathrm{N} x \in\) carrier (G(carrier \(:=\mathrm{N}\) <\#> H) Mod
N) "
            proof-
                fix \(x\) assume \(" x \in \operatorname{carrier}(G(\mid c a r r i e r ~:=H)) "\)
        hence \(x H: ~ " x \in H "\) by simp

N"
```

 using HcarrierNH RCOSETS_def[where ?G = "G(carrier := N <#> H)"]
 by blast
thus "(\#>G(|carrier := N <\#> H|) N x \in carrier (G(carrier := N <\#>
H) Mod N)"
unfolding FactGroup_def by simp
qed
hence "(\#> (|carrier := N <\#> H|) N \in carrier (G(|carrier :=H)) ->
carrier (G(carrier := N <\#> H) Mod N)" by auto
hence "f \in carrier (G(carrier :=H)) -> carrier (G(carrier := N <\#>
H() Mod N)"
unfolding r_coset_def f_def by simp
moreover have "^x y. x\incarrier (G(carrier := H)) \Longrightarrow y\incarrier (G(carrier
:= H()) \Longrightarrow

```

```

f(y)"
proof-
fix x y assume "x\incarrier (G(carrier := H))" "y\incarrier (G(carrier
:= H|) "
hence xHyH :"x \in H" "y \in H" by auto
have Nxeq :"N \#> G(carrier := N<\#>H) x = N \#>x" unfolding r_coset_def
by simp
have Nyeq :"N \#>
by simp
have "x * *G(carrier := H) y =x * *

```

```

 = N #>
 also have "... = (N #> }\mp@subsup{\textrm{G}}{(\mathrm{ carrier := N<#>H) x) <#>}}{\textrm{G}(\mathrm{ (carrier := N<#>H)}
 (N #>
 using normal.rcos_sum[OF normal_in_normal_set_mult[OF assms(2)
 assms(1)], of x y]
xHyH assms HcarrierNH by auto
finally show "f (x * \&G(carrier := H) y) = f(x) 目 (|carrier := N <\#> H) Mod N
f(y)"
unfolding FactGroup_def r_coset_def f_def using Nxeq Nyeq by
auto
qed
hence "(\forallx\incarrier (G(carrier := H|). \forally\incarrier (G(carrier := H|)).

```

```

f(y))" by blast
ultimately show " f \in carrier (G(|carrier := H|)) > carrier (G(carrier
:= N <\#> H() Mod N) ^
(\forallx\incarrier (G(carrier := H)). \forally\incarrier (G(carrier := H)).
f (x * \& (carrier := H) y) = f(x) * |G(carrier := N <\#> H) Mod N f(y))"
by auto
qed
hence homomorphism : "group_hom (G(carrier := H)) (G(carrier := N <\#>

```
H) \(\operatorname{Mod} N) f "\)
unfolding group_hom_def group_hom_axioms_def using subgroup_imp_group [OF assms(1)]
normal.factorgroup_is_group[OF normal_in_normal_set_mult [OF assms(2) assms(1)]] by auto
moreover have im_f : "(f ' carrier (G(carrier:=H|)) \(=\) carrier \((G(\) carrier := N <\#> H|) Mod N)"
proof
show "f ' carrier (G(carrier := H|)) \(\subseteq\) carrier (G(carrier := N <\#>
H() Mod N)"
using op_hom unfolding hom_def using funcset_image by blast
next
show "carrier (G(carrier := N <\#> H) Mod N) \(\subseteq\) f ' carrier (G(carrier : = H())"
proof
fix \(x\) assume \(p: " x \in \operatorname{carrier}(G(c a r r i e r ~:=N<\#>H \mid) ~ M o d N) "\)

x\}\}"
unfolding FactGroup_def RCOSETS_def by auto
hence hyp : " \(\exists \mathrm{y}\). \(\exists \mathrm{h} \in\) carrier ( \(\mathrm{G}(\) carrier \(:=\mathrm{N}<\#>\mathrm{H})\) ). y \(=\left\{\mathrm{N} \quad \#>_{G}(\right.\) carrier \(:=\mathrm{N}<\#>\mathrm{H})\) h\} \(\wedge \mathrm{x} \in \mathrm{y}^{\prime \prime}\)
using Union_iff by blast
from hyp obtain nh where nhNH: "nh \(\in\) carrier (G)carrier := N <\#>
H())"
\[
\text { and } \mathrm{x} \in\{\mathrm{~N} \#\rangle_{\mathrm{G}(\text { carrier }:=\mathrm{N}<\#>\mathrm{H}) \mathrm{nh}\} "}
\]
by blast
hence K : "x \(=(\#\rangle_{\mathrm{G}}(\) carrier \(:=\mathrm{N}<\#>\mathrm{H})\) ) N nh" by simp
have "nh \(\in N\) <\#> H" using nhNH by simp
from this obtain \(n h\) where \(n N: ~ " n \in N "\) and \(h H: ~ " h \in H "\) and
nhnh: " \(\mathrm{n} \otimes \mathrm{h}=\mathrm{nh}\) "
unfolding set_mult_def by blast
have "x = (\#> \({ }_{G}(\) carrier \(:=N\) <\#> \(H\) ) \(N(n \otimes h) "\) using \(K\) nhnh by simp
hence \(" \mathrm{x}=(\#>) \mathrm{N}(\mathrm{n} \otimes \mathrm{h})\) " using K nhnh unfolding \(r_{-}\)coset_def
by auto
also have "... = ( N \#> n ) \#>h"
using coset_mult_assoc hH nN assms subgroup.subset normal_imp_subgroup
by (metis subgroup.mem_carrier)
finally have "x = (\#>) N h"
using coset_join2[of n N] nN assms by (simp add: normal_imp_subgroup
subgroup.mem_carrier)
thus "x \(\in\) f carrier ( \(G(\) carrier \(:=H)\) )" using hH unfolding f_def
by simp
qed
qed
moreover have ker_f :"kernel (G(|carrier := H)) (G(carrier := N<\#>H)
\(\operatorname{Mod} N) f=N \cap H^{\prime \prime}\)
unfolding kernel_def f_def
proofhave \("\left\{x \in\right.\) carrier \(\left.\left.(G(|c a r r i e r ~:=H|)) . N \#>x=1_{G(\text { carrier }}:=N<\#>H\right) \operatorname{Mod} N\right\}\)
\(\{x \in \operatorname{carrier}(G(|c a r r i e r ~:=H|)\). \(N\) \#> \(x=N\} "\) unfolding FactGroup_def
by simp
also have "... = \(\{\mathrm{x} \in \operatorname{carrier}(\mathrm{G}(\) carrier \(:=H \mid)\) ). \(\mathrm{x} \in \mathrm{N}\}\) "
using coset_join1
by (metis (no_types, lifting) assms group.subgroup_self incl_subgroup
is_group
normal_imp_subgroup subgroup.mem_carrier subgroup.rcos_const
subgroup_imp_group)
also have "... =N \(\cap\) (carrier \((G(|c a r r i e r ~:=H|))\) )" by auto
finally show " \(\{\mathrm{x} \in\) carrier (G(carrier \(:=H \mid)\) ) N\#>x \(=1_{G}(\) carrier \(\left.:=N<\#>H \mid) M o d N\right\}\) \(=\mathrm{N} \cap \mathrm{H}^{\prime \prime}\)
by simp
qed
ultimately have " (G(|carrier \(:=H)\) Mod \(N \cap H\) ) \(\cong\) (G(carrier \(:=N\) <\#>
H) Mod N)"
using group_hom.FactGroup_iso[OF homomorphism im_f] by auto
hence "G(carrier := N <\#> H) Mod \(N \cong G(\) carrier := H) Mod N \(\cap H "\)
by (simp add: group.iso_sym assms normal.factorgroup_is_group normal_Int_subgroup)
thus "G(carrier := \(N\) <\#> H) Mod \(N \cong G(\) carrier \(:=H)\) Mod \(N \cap H "\) by
auto
qed
theorem (in group) snd_iso_thme:
assumes "subgroup H G"
and "subgroup N G"
and "subgroup H (G(carrier:= (normalizer G N)|)"
shows " (G(|carrier:= N<\#>H) Mod N) \(\cong(G(\) carrier: \(=H \mid) M o d(H \cap N)) "\)
proof-
have "G(carrier := normalizer G N, carrier := H)
= G(carrier :=H)" by simp
hence "G()carrier \(:=\) normalizer \(G N\), carrier \(:=H \mid)\) Mod \(N \cap H=\) G(carrier := H) Mod \(N \cap H^{\prime \prime}\) by auto
moreover have "G(carrier := normalizer G N,
carrier := \(\mathrm{N}\langle \#\rangle_{\mathrm{G}}(\) carrier := normalizer \(\mathrm{G} N(\mathrm{H} \mid)=\)

hence "G(carrier := normalizer G N,
carrier := N <\#> \({ }_{\mathrm{G}}(\) carrier \(:=\) normalizer \(\left.\mathrm{G} N \mid) \mathrm{H}\right)\) Mod \(\mathrm{N}=\)
G(carrier :=N <\#> \({ }_{G}(\) carrier \(:=\) normalizer \(G\) N) \(H\) ) Mod N" by auto
hence "G(carrier := normalizer G N,
carrier :=N \(\mathrm{N}\langle \#\rangle_{\mathrm{G}(\text { carrier }}:=\) normalizer \(\left.G N()_{H}\right) \operatorname{Mod} N \cong\)
G(carrier := normalizer G \(N\), carrier := H|) Mod \(N \cap H=\)
(G(carrier:= N<\#>H) Mod N) \(\cong\)
G(carrier := normalizer G N, carrier := H|) Mod N \(\cap H^{\prime \prime}\)
using subgroup.subset[0F assms(3)] subgroup.subset [OF normal_imp_subgroup [OF subgroup_in_normalizer[0F
assms(2)]]]
```

 by simp
 ultimately have "G(carrier := normalizer G N,
 carrier := N <#>
 \
G(|carrier := normalizer G N, carrier := H) Mod N \cap H
=
(G(carrier:= N<\#>H) Mod N) \cong G(carrier := H|)Mod N
\cap H" by auto
moreover have "G(carrier := normalizer G N,
carrier := N <\#> G(carrier := normalizer G N|) H|) Mod N
\cong
G(carrier := normalizer G N, carrier := H) Mod N \cap H"
using group.weak_snd_iso_thme[OF subgroup_imp_group[OF normalizer_imp_subgroup[OF
subgroup.subset[OF assms(2)]]] assms(3) subgroup_in_normalizer[OF
assms(2)]]
by simp
moreover have "H\capN = N\capH" using assms by auto
ultimately show "(G(|carrier:= N<\#>H) Mod N) \cong G(carrier := H|) Mod
H \cap N" by auto
qed

```
corollary (in group) snd_iso_thme_recip :
    assumes "subgroup H G"
        and "subgroup \(N\) G"
        and "subgroup H (G(carrier:= (normalizer G N)D)"
    shows "(G(carrier:= H<\#>N) Mod N) \(\cong(G(c a r r i e r:=H)\) Mod (HN))"
    by (metis assms commut_normal_subgroup group.subgroup_in_normalizer
is_group subgroup.subset
        normalizer_imp_subgroup snd_iso_thme)

\subsection*{24.3 The Zassenhaus Lemma}
lemma (in group) distinc:
assumes "subgroup H G" and "H1 \(\triangleleft \mathrm{G}(\) carrier : \(=\mathrm{H})\) "
and "subgroup K G"
and "K1 \(\triangleleft G(\) carrier: \(=K)\) "
shows "subgroup ( \(\mathrm{H} \cap \mathrm{K}\) ) (G(carrier:=(normalizer G (H1<\#>(H K1)))) D)"
proof (intro subgroup_incl[0F subgroups_Inter_pair[0F assms(1) assms(3)]])
show "subgroup (normalizer G (H1 <\#> H \(\cap\) K1)) G"
using normalizer_imp_subgroup assms normal_imp_subgroup subgroup.subset
by (metis group.incl_subgroup is_group setmult_subset_G subgroups_Inter_pair)
next
show "H \(\cap \mathrm{K} \subseteq\) normalizer \(G(H 1<\#>H \cap K 1)\) " unfolding normalizer_def
stabilizer_def
proof
fix \(x\) assume \(x H K: ~ " x \in H \cap K "\)
hence \(\mathrm{xG}: ~ "\{\mathrm{x}\} \subseteq\) carrier \(G "\) "\{inv x\(\} \subseteq\) carrier \(G "\)
using subgroup.subset assms inv_closed xHK by auto
have allG : "H \(\subseteq\) carrier \(G\) " "K \(\subseteq\) carrier G" "H1 \(\subseteq\) carrier G" "K1 \(\subseteq\) carrier \(\mathrm{G"}^{\prime \prime}\)
using assms subgroup.subset normal_imp_subgroup incl_subgroup apply blast+.
have HK1: "H \(\cap \mathrm{K} 1 \subseteq\) carrier \(\mathrm{G} "\)
by (simp add: allG(1) le_infI1)
have HK1_normal: "H \(\mathrm{K} 1 \triangleleft\) (G(carrier \(:=\mathrm{H} \cap \mathrm{K})\) )" using normal_inter [OF assms(3) assms(1) assms (4)]
by (simp add : inf_commute)
have " \(\mathrm{H} \cap \mathrm{K} \subseteq\) normalizer \(G(H \cap K 1)\) "
using subgroup. subset[OF normal_imp_subgroup_normalizer[OF subgroups_Inter_pair [OF assms(1)assms(3)]HK1_normal]] by auto
hence "x <\# ( \(H \cap K 1\) ) \#> inv \(x=(H \cap K 1) "\)
using xHK subgroup.subset[OF subgroups_Inter_pair[OF assms(1) incl_subgroup [OF assms(3)
assms(4)]J] ]
unfolding normalizer_def stabilizer_def by auto
moreover have " \(\mathrm{H} \subseteq\) normalizer G H1" using subgroup.subset [OF normal_imp_subgroup_normalizer [OF assms(1)assms (2)]]
by auto
hence "x <\# H1 \#> inv \(x=H 1 "\)
using xHK subgroup. subset[OF incl_subgroup [OF assms(1) normal_imp_subgroup [OF
assms(2)]] ]
unfolding normalizer_def stabilizer_def by auto
ultimately have "H1 <\#> H \(\cap \mathrm{K} 1=(\mathrm{x}\) <\# H1 \#> inv x) <\#> ( x <\# \(\mathrm{H} \cap\) K1 \#> inv x)" by auto
also have "... = (\{x\} <\#> H1) <\#> \{inv x\} <\#> (\{x\} <\#> H \(\cap \mathrm{K} 1<\#>\) \{inv x\})"
by (simp add : r_coset_eq_set_mult l_coset_eq_set_mult)
also have "... = (\{x\} <\#> H1 <\#> \{inv x\} <\#> \{x\}) <\#> (H \(\cap \mathrm{K} 1<\#>\) \{inv x\})"
using HK1 allG(3) set_mult_assoc setmult_subset_G xG(1) by auto
also have "... = (\{x\} <\#> H1 <\#> \{1\}) <\#> (H \(\cap \mathrm{K} 1<\#>\{i n v ~ x\}) "\)
using allG xG coset_mult_assoc by (simp add: r_coset_eq_set_mult setmult_subset_G)
also have "... =(\{x\} <\#> H1) <\#> (H \(\cap \mathrm{K} 1<\#>~\{i n v ~ x\}) " ~\)
using coset_mult_one r_coset_eq_set_mult[of G H1 1] set_mult_assoc[0F \(x G(1)\) allG(3)] allG
by auto
also have "... = \{x\} <\#> (H1 <\#> H \(\cap \mathrm{K} 1\) ) <\#> \{inv x\}"
using allG xG set_mult_assoc setmult_subset_G by (metis inf.coboundedI2)
finally have "H1 <\#> H \(\cap \mathrm{K} 1=\mathrm{x}\) <\# ( \(\mathrm{H} 1<\#>\mathrm{H} \cap \mathrm{K} 1\) ) \#> inv \(\mathrm{x} "\)
using xG setmult_subset_G allG by (simp add: l_coset_eq_set_mult r_coset_eq_set_mult)
thus \(\mathrm{x} \in\{\mathrm{g} \in\) carrier \(\mathrm{G} .(\lambda \mathrm{H} \in\{\mathrm{H} . \mathrm{H} \subseteq\) carrier G\(\} . \mathrm{g}<\# \mathrm{H} \#>\) inv g\()\) ( \(\mathrm{H} 1<\#>\mathrm{H} \cap \mathrm{K} 1\) )

H 1 <\#> \(\mathrm{H} \cap \mathrm{K} 1\} "\)
using xG allG setmult_subset_G[OF allG(3), where ?K = "HOK1"] xHK by auto
qed
qed
lemma (in group) preliminary1:
assumes "subgroup H G"
and "H1 \(\triangleleft \mathrm{G}(\) carrier : \(=\mathrm{H})\) "
and "subgroup K G"
and "K1 \(\triangleleft \mathrm{G}(\) carrier: \(=\mathrm{K})\) "
shows " \((H \cap K) \cap(H 1<\#>(H \cap K 1))=(H 1 \cap K)<\#>(H \cap K 1) "\)
proof
have all_inclG : "H \(\subseteq\) carrier G" "H1 \(\subseteq\) carrier G" "K \(\subseteq\) carrier G" "K1 \(\subseteq\) carrier G" using assms subgroup. subset normal_imp_subgroup incl_subgroup apply blast+.
show " \(\mathrm{H} \cap \mathrm{K} \cap\) (H1 <\#> \(H \cap \mathrm{~K} 1) \subseteq \mathrm{H} 1 \cap \mathrm{~K}\) <\#> \(\mathrm{H} \cap \mathrm{K} 1\) "
proof
fix \(x\) assume \(x_{-} d e f: ~ " x \in(H \cap K) ~ \cap(H 1<\#>(H \cap K 1)) "\)
from \(x_{-}\)def have \(x_{-}\)incl \(: ~ " x \in H " ~ " x \in K " ~ " x \in(H 1<\#>(H \cap K 1)) "\)
by auto
then obtain h1 hk1 where h1hk1_def : "h1 \(\in\) H1" "hk1 \(\in H \cap K 1 "\) "h1
Q hk1 = \(\mathrm{x} "\)
using assms unfolding set_mult_def by blast
hence "hk1 \(\in \mathrm{H} \cap \mathrm{K}\) " using subgroup. subset[OF normal_imp_subgroup[OF assms(4)]] by auto
hence "inv hk1 \(\in \mathrm{H} \cap \mathrm{K}\) " using subgroup.m_inv_closed[0F subgroups_Inter_pair] assms by auto
moreover have " \(\mathrm{h} 1 \otimes \mathrm{hk} 1 \in \mathrm{H} \cap \mathrm{K}\) " using \(\mathrm{x}_{-}\)incl h1hk1_def by auto
ultimately have "h1 \(\otimes\) hk1 \(\otimes\) inv hk1 \(\in \mathrm{H} \cap \mathrm{K} "\)
using subgroup.m_closed[0F subgroups_Inter_pair] assms by auto
hence "h1 \(\in \mathrm{H} \cap \mathrm{K}\) " using h1hk1_def assms subgroup. subset incl_subgroup
normal_imp_subgroup
by (metis Int_iff contra_subsetD inv_solve_right m_closed)
hence "h1 \(\in H 1 \cap H \cap K "\) using h1hk1_def by auto
hence "h1 \(\in \mathrm{H} 1 \cap \mathrm{~K}\) " using subgroup. subset[OF normal_imp_subgroup [OF
assms(2)]] by auto
hence "h1 \(\otimes \mathrm{hk} 1 \in(\mathrm{H} 1 \cap \mathrm{~K})<\#>(\mathrm{H} \cap \mathrm{K} 1)\) "
using h1hk1_def unfolding set_mult_def by auto
thus " \(\mathrm{x} \in(\mathrm{H} 1 \cap \mathrm{~K})<\#>(\mathrm{H} \cap \mathrm{K} 1)\) " using h1hk1_def x _def by auto
qed
show " \(\mathrm{H} 1 \cap \mathrm{~K}\) <\#> \(\mathrm{H} \cap \mathrm{K} 1 \subseteq \mathrm{H} \cap \mathrm{K} \cap\) ( \(\mathrm{H} 1<\#>\mathrm{H} \cap \mathrm{K} 1\) )"
proof-
have " \(\mathrm{H} 1 \cap \mathrm{~K} \subseteq \mathrm{H} \cap \mathrm{K}\) " using subgroup. subset[0F normal_imp_subgroup [OF assms(2)]] by auto
moreover have " \(\mathrm{H} \cap \mathrm{K} 1 \subseteq \mathrm{H} \cap \mathrm{K}\) "
using subgroup.subset[OF normal_imp_subgroup [OF assms(4)]] by auto
ultimately have " \(\mathrm{H} 1 \cap \mathrm{~K}\) <\#> \(\mathrm{H} \cap \mathrm{K} 1 \subseteq \mathrm{H} \cap \mathrm{K}\) " unfolding set_mult_def
using subgroup.m_closed[OF subgroups_Inter_pair [OF assms(1)assms(3)]]

\section*{by blast}
moreover have "H1 \(\cap \mathrm{K} \subseteq\) H1" by auto
hence " \(\mathrm{H} 1 \cap \mathrm{~K}\) <\#> \(\mathrm{H} \cap \mathrm{K} 1 \subseteq\) ( H 1 <\#> \(\mathrm{H} \cap \mathrm{K} 1\) )" unfolding set_mult_def
by auto
ultimately show " \(\mathrm{H} 1 \cap \mathrm{~K}<\#>\mathrm{H} \cap \mathrm{K} 1 \subseteq \mathrm{H} \cap \mathrm{K} \cap(\mathrm{H} 1<\#>\mathrm{H} \cap \mathrm{K} 1)\) " by auto
qed
qed
lemma (in group) preliminary2:
assumes "subgroup H G"
and "H1 \(\triangleleft \mathrm{G}(\) carrier : \(=\mathrm{H})\) "
and "subgroup K G"
and "K1 \(\triangleleft \mathrm{G}(\) carrier: \(=\mathrm{K})\) "
shows "(H1<\#>(HกK1)) \(\triangleleft G(\) carrier: \(=(H 1<\#>(H \cap K))) "\)
proof-
have all_inclG : "H \(\subseteq\) carrier G" "H1 \(\subseteq\) carrier G" "K \(\subseteq\) carrier G" "K1 \(\subseteq\) carrier G"
using assms subgroup.subset normal_imp_subgroup incl_subgroup apply blast+.
have subH1:"subgroup (H1 <\#> H \(\cap \mathrm{K}\) ) (G(|carrier := H|))"
using mult_norm_sub_in_sub[0F assms(2)subgroup_incl[0F subgroups_Inter_pair [OF assms(1) assms (3)] assms(1)]] assms by auto
have "Group.group (G(carrier:=(H1<\#>(HK))))"
using subgroup_imp_group[OF incl_subgroup[OF assms(1) subH1]].
moreover have subH2 : "subgroup (H1 <\#> H \(\cap \mathrm{K} 1\) ) (G(carrier := H|))"
using mult_norm_sub_in_sub[OF assms (2) subgroup_incl[0F subgroups_Inter_pair [OF assms(1) incl_subgroup[OF assms(3)normal_imp_subgroup[OF assms(4)]]]]]
assms by auto
hence " \((H \cap K 1) \subseteq(H \cap K) "\)
using assms subgroup.subset normal_imp_subgroup monoid.cases_scheme
by (metis inf.mono partial_object.simps(1) partial_object.update_convs(1)
subset_refl)
hence incl:"(H1<\#>(HOK1)) \(\subseteq H 1<\#>(H \cap K) "\) using assms subgroup. subset normal_imp_subgroup
unfolding set_mult_def by blast

using assms subgroup_incl[0F incl_subgroup[OF assms(1)subH2]incl_subgroup [OF
assms(1)
subH1]] normal_imp_subgroup subgroup.subset unfolding set_mult_def
by blast
moreover have " ( \(\bigwedge\) x. x \(\in\) carrier ( \(G(\) carrier \(:=H 1<\#>H \cap K D) \Longrightarrow\)
H1 <\#> H \(\cap\) K1 \#> \({ }_{G}(\) carrier \(:=H 1<\#>H \cap K) ~ x=x<\#_{G}(\) carrier \(:=H 1<\#>H \cap K)\)
(H1 <\#> H K K1))"
proof-
fix \(x\) assume " \(x \in\) carrier ( \(G(\) carrier : \(=H 1<\#>H \cap K)\) )" hence \(x\) _def : "x \(\in H 1\) <\#> \(H \cap K "\) by simp
from this obtain h1 hk where h1hk_def :"h1 \(\in H 1 "\) "hk \(\in H \cap K "\) "h1 \(\otimes h k=x "\)
unfolding set_mult_def by blast
have HK1: "H \(\cap \mathrm{K} 1 \subseteq\) carrier G "
by (simp add: all_inclG(1) le_infI1)
have \(\mathrm{xH}:\) " \(\mathrm{x} \in \mathrm{H}\) " using subgroup. subset[0F subH1] using x _def by auto
hence allG : "h1 \(\in\) carrier \(G\) " "hk \(\in\) carrier \(G "\) "x \(\in\) carrier G" using assms subgroup.subset h1hk_def normal_imp_subgroup incl_subgroup apply blast+.
 H \(\cap\) K1) "
using subgroup. subset xH h1hk_def by (simp add: l_coset_def)
also have "... = h1 <\# (hk <\# (H1 <\#> H K1))"
using lcos_m_assoc[0F subgroup.subset[0F incl_subgroup[0F assms(1) subH1]]allG(1)allG(2)]
by (metis allG(1) allG(2) assms(1) incl_subgroup lcos_m_assoc subH2 subgroup. subset)
also have "... = h1 <\# (hk <\# H1 <\#> H KK1)"
using set_mult_assoc all_inclG allG by (simp add: l_coset_eq_set_mult
inf. coboundedI1)
also have "... = h1 <\# (hk <\# H1 \#> 1 <\#> H \(\cap\) K1 \#> 1)"
using coset_mult_one allG all_inclG l_coset_subset_G
by (simp add: inf.coboundedI2 setmult_subset_G)
also have "... = h1 <\# (hk <\# H1 \#> inv hk \#> hk <\#> HOK1 \#> inv hk \#> hk)"
using all_inclG allG coset_mult_assoc l_coset_subset_G
by (simp add: inf.coboundedI1 setmult_subset_G)
finally have "x <\# \({ }_{G}(\) carrier \(:=H 1<\#>H \cap K)\) (H1 <\#> H \(\left.\cap \mathrm{K} 1\right)\)
= h1 <\# ( \(h k\) <\# H1 \#> inv hk) <\#> (hk <\# HกK1 \#> inv
hk) \#> hk)"
using rcos_assoc_lcos allG all_inclG HK1
by (simp add: l_coset_subset_G r_coset_subset_G setmult_rcos_assoc)
moreover have "H \(\subseteq\) normalizer G H1"
using assms h1hk_def subgroup.subset[OF normal_imp_subgroup_normalizer]
by simp
hence " \(\wedge \mathrm{g} . \mathrm{g} \in \mathrm{H} \Longrightarrow \mathrm{g} \in\{\mathrm{g} \in\) carrier \(\mathrm{G} .(\lambda \mathrm{H} \in\{\mathrm{H} . \mathrm{H} \subseteq\) carrier G\(\}\). g <\# H \#> inv g) H1 = H1\}"
using all_inclG assms unfolding normalizer_def stabilizer_def by auto
hence " \(\wedge \mathrm{g} . \mathrm{g} \in \mathrm{H} \Longrightarrow \mathrm{g}<\# \mathrm{H} 1 \mathrm{\#>}\) inv \(\mathrm{g}=\mathrm{H} 1 \mathrm{l}\) using all_inclG by simp
hence "(hk <\# H1 \#> inv hk) = H1" using h1hk_def all_inclG by simp
moreover have "H \(\mathrm{K} \subseteq\) normalizer G (HOK1)"
using normal_inter[0F assms(3) assms(1) assms(4)] assms subgroups_Inter_pair subgroup.subset [OF normal_imp_subgroup_normalizer] by (simp
add: inf_commute)
hence " \(\wedge \mathrm{g} . \mathrm{g} \in \mathrm{H} \cap \mathrm{K} \Longrightarrow \mathrm{g} \in\{\mathrm{g} \in\) carrier \(\mathrm{G} .(\lambda \mathrm{H} \in\{\mathrm{H} . \mathrm{H} \subseteq\) carrier G\(\} . \mathrm{g}\) <\# H \#> inv g) (H〇K1) = H K K1\}"
using all_inclG assms unfolding normalizer_def stabilizer_def by auto
hence " \(\bigwedge \mathrm{g} . \mathrm{g} \in \mathrm{H} \cap \mathrm{K} \Longrightarrow \mathrm{g}<\#(\mathrm{H} \cap \mathrm{K} 1)\) \#> inv \(\mathrm{g}=\mathrm{H} \cap \mathrm{K} 1 "\)
using subgroup.subset [OF subgroups_Inter_pair[0F assms(1) incl_subgroup [OF assms(3)normal_imp_subgroup[0F assms(4)]]]] by auto
hence "(hk <\# H KK1 \#> inv hk) = H
ultimately have " \(\left.\mathrm{x}<\#_{\mathrm{G}(\text { carrier }}:=\mathrm{H} 1<\#>\mathrm{H} \cap \mathrm{K}\right) \quad(\mathrm{H} 1<\#>\mathrm{H} \cap \mathrm{K} 1)=\mathrm{h} 1\) <\#(H1 <\#> (H \(\cap \mathrm{K} 1)\) \#> hk)"
by auto
also have "... = h1 <\# H1 <\#> ( (H \(\cap \mathrm{K} 1)\) \#> hk)"
using set_mult_assoc[where \(? \mathrm{M}=\) "\{h1\}" and \(? \mathrm{H}=\mathrm{H}=\mathrm{H} 1 \mathrm{and}\) ? \(\mathrm{K}=\) "(H \(\cap\) K1)\#> hk"] allG all_inclG
by (simp add: l_coset_eq_set_mult inf.coboundedI2 r_coset_subset_G
setmult_rcos_assoc)
also have "... = H1 <\#> ( \(\mathrm{H} \cap \mathrm{K} 1\) )\#> hk)"
using coset_join3 allG incl_subgroup[OF assms(1)normal_imp_subgroup [OF
assms(2)]] h1hk_def
by auto
finally have eq1 : "x <\# \({ }_{G}(\) carrier \(:=H 1<\#>H \cap K)(H 1<\#>H \cap K 1)=\) H1 <\#> (H \(\cap \mathrm{K} 1\) ) \#> hk"
by (simp add: allG(2) all_inclG inf.coboundedI2 setmult_rcos_assoc)
have "H1 <\#> H \(\cap \mathrm{K} 1\) \#> \({ }_{\mathrm{G}}(\) carrier \(:=\mathrm{H} 1\) <\#> \(\mathrm{H} \cap \mathrm{K})\) x \(=\mathrm{H} 1\) <\#> H \(\cap \mathrm{K} 1\) \#>
(h1 \& hk)"
using subgroup.subset xH h1hk_def by (simp add: r_coset_def)
also have "... = H1 <\#> H \(\cap\) K1 \#> h1 \#> hk"
using coset_mult_assoc by (simp add: allG all_inclG inf.coboundedI2
setmult_subset_G)
also have"... = H \(\cap\) K1 <\#> H1 \#> h1 \#> hk"
using commut_normal_subgroup[OF assms(1)assms(2) subgroup_incl[OF
subgroups_Inter_pair [0F
assms(1)incl_subgroup[OF assms(3)normal_imp_subgroup[0F assms(4)]]]assms(1)]]
by simp
also have "... = H \(\cap\) K1 <\#> H1 \#> hk"
using coset_join2[OF allG(1)incl_subgroup[OF assms(1)normal_imp_subgroup]
h1hk_def(1)] all_inclG allG assms by (metis inf.coboundedI2
setmult_rcos_assoc)
finally have "H1 <\#> H \(\cap \mathrm{K} 1\) \#> \({ }_{\mathrm{G}}(\) carrier \(:=\mathrm{H} 1<\#>H \cap \mathrm{~K}) \mathrm{x}=\mathrm{H} 1<\#>H\)
○ K1 \#> hk"
using commut_normal_subgroup [OF assms(1)assms(2) subgroup_incl [OF subgroups_Inter_pair[0F
assms(1)incl_subgroup[0F assms(3)normal_imp_subgroup[0F assms(4)]]]assms(1)]]
by simp
thus " H1 <\#> H \(\cap \mathrm{K} 1\) \#> \(\left.{ }_{\mathrm{G}(\text { carrier }}:=\mathrm{H} 1<\#>\mathrm{H} \cap \mathrm{K}\right) \mathrm{x}=\) \(\left.\mathrm{x}<\#_{\mathrm{G}(\mathrm{carrier}}:=\mathrm{H} 1<\#>\mathrm{H} \cap \mathrm{K}\right)\) ( \(\mathrm{H} 1<\#>\mathrm{H} \cap \mathrm{K} 1\) )" using eq1 by simp
qed
ultimately show "H1 <\#> H \(\cap \mathrm{K} 1 \triangleleft \mathrm{G}(\) carrier \(:=\mathrm{H} 1<\#>\mathrm{H} \cap \mathrm{K})\) "
unfolding normal_def normal_axioms_def by auto
qed
```

proposition (in group) Zassenhaus_1:
assumes "subgroup H G"
and "H1\triangleleftG(carrier := H)"
and "subgroup K G"
and "K1\triangleleftG(carrier:=K)"
shows "(G(|carrier:= H1 <\#> (H\capK)) Mod (H1<\#>H\capK1)) \cong (G(carrier:= (H\capK))
Mod ((H1\capK)<\#>(H\capK1)))"
proof-
define N and N1 where "N = (HOK)" and "N1 =H1<\#>(H\capK1)"
have normal_N_N1 : "subgroup N (G(carrier:=(normalizer G N1)|)"
by (simp add: N1_def N_def assms distinc normal_imp_subgroup)
have Hp:"(G(carrier:= N<\#>N1) Mod N1) \cong (G(ccarrier:= N|) Mod (N\capN1))"
by (metis N1_def N_def assms incl_subgroup inf_le1 mult_norm_sub_in_sub
normal_N_N1 normal_imp_subgroup snd_iso_thme_recip subgroup_incl
subgroups_Inter_pair)
have H_simp: "N<\#>N1 = H1<\#> (H\capK)"
proof-
have H1_incl_G : "H1 \subseteq carrier G"
using assms normal_imp_subgroup incl_subgroup subgroup.subset by
blast
have K1_incl_G :"K1 \subseteq carrier G"
using assms normal_imp_subgroup incl_subgroup subgroup.subset by
blast
have "N<\#>N1= (H\capK)<\#> (H1<\#>(H\capK1))" by (auto simp add: N_def N1_def)
also have "... = ((H\capK)<\#>H1) <\#>(H\capK1)"
using set_mult_assoc[where ?M = "H\capK"] K1_incl_G H1_incl_G assms
by (simp add: inf.coboundedI2 subgroup.subset)
also have "... = (H1<\#> (H\capK))<\#> (H\capK1)"
using commut_normal_subgroup assms subgroup_incl subgroups_Inter_pair
by auto
also have "... = H1 <\#> ((H\capK)<\#>(H\capK1))"
using set_mult_assoc K1_incl_G H1_incl_G assms
by (simp add: inf.coboundedI2 subgroup.subset)
also have " ((H\capK)<\#>(H\capK1)) = (H\capK)"
proof (intro set_mult_subgroup_idem[where ?H = "H\capK" and ?N="H\capK1",
OF subgroups_Inter_pair[OF assms(1) assms(3)]])
show "subgroup (H \cap K1) (G(carrier := H \cap K|)"
using subgroup_incl[where ?I = "H\capK1" and ?J = "H\capK",OF subgroups_Inter_pair[OF
assms(1)
incl_subgroup[OF assms(3) normal_imp_subgroup]] subgroups_Inter_pair]
assms
normal_imp_subgroup by (metis inf_commute normal_inter)
qed
hence " H1 <\#> ((H\capK)<\#>(H\capK1)) = H1 <\#> ((H\capK))"
by simp
thus "N <\#> N1 = H1 <\#> H \cap K"
by (simp add: calculation)

```
```

 qed
 have "N\capN1 = (H1\capK)<#>(H\capK1)"
 using preliminary1 assms N_def N1_def by simp
 thus "(G(carrier:= H1 <\#> (H\capK)) Mod N1) \cong (G(carrier:= N|)Mod ((H1\capK)<\#>(H\capK1)))"
using H_simp Hp by auto
qed
theorem (in group) Zassenhaus:
assumes "subgroup H G"
and "H1\triangleleftG(carrier := H)"
and "subgroup K G"
and "K1\triangleleftG(carrier:=K()"
shows "(G(carrier:= H1 <\#> (H\capK)| Mod (H1<\#>(H\capK1))) \cong
(G(carrier:= K1 <\#> (H\capK)) Mod (K1<\#>(K\capH1)))"
proof-
define Gmod1 Gmod2 Gmod3 Gmod4
where "Gmod1 = (G(carrier:= H1 <\#> (H\capK)| Mod (H1<\#>(H\capK1))) "
and "Gmod2 = (G(carrier:= K1 <\#> (K\capH)) Mod (K1<\#>(K\capH1)))"
and "Gmod3 = (G(carrier:= (H\capK)) Mod ((H1\capK)<\#>(H\capK1)))"
and "Gmod4 = (G(carrier:= (K\capH)) Mod ((K1\capH)<\#>(K\capH1)))"
have Hyp : "Gmod1 \cong Gmod3" "Gmod2 \cong Gmod4"
using Zassenhaus_1 assms Gmod1_def Gmod2_def Gmod3_def Gmod4_def by
auto
have Hp : "Gmod3 = G(carrier:= (K\capH)) Mod ((K\capH1)<\#>(K1\capH))"
by (simp add: Gmod3_def inf_commute)
have "(K\capH1)<\#>(K1\capH) = (K1\capH)<\#>(K\capH1)"
proof (intro commut_normal_subgroup[OF subgroups_Inter_pair[OF assms(1)assms(3)]])
show "K1 \cap H \triangleleft G(carrier := H \cap K)"
using normal_inter[OF assms(3) assms(1)assms(4)] by (simp add: inf_commute)
next
show "subgroup (K \cap H1) (G(carrier := H \cap K|))"
using subgroup_incl by (simp add: assms inf_commute normal_imp_subgroup
normal_inter)
qed
hence "Gmod3 = Gmod4" using Hp Gmod4_def by simp
hence "Gmod1 \cong Gmod2"
by (metis assms group.iso_sym iso_trans Hyp normal.factorgroup_is_group
Gmod2_def preliminary2)
thus ?thesis using Gmod1_def Gmod2_def by (simp add: inf_commute)
qed
end

```

\section*{25 Divisibility in monoids and rings}
```

theory Divisibility
imports "HOL-Combinatorics.List_Permutation" Coset Group

```
begin

\section*{26 Factorial Monoids}

\subsection*{26.1 Monoids with Cancellation Law}
```

locale monoid_cancel = monoid +

```
    assumes l_cancel: " \(\llbracket \mathrm{c} \otimes \mathrm{a}=\mathrm{c} \otimes \mathrm{b} ; \mathrm{a} \in \operatorname{carrier} \mathrm{G} ; \mathrm{b} \in\) carrier \(\mathrm{G} ; \mathrm{c}\)
\(\in\) carrier \(\mathrm{G} \rrbracket \Longrightarrow \mathrm{a}=\mathrm{b} "\)
            and r_cancel: "【a \(\otimes c=b \otimes c ; a \in \operatorname{carrier} G ; b \in \operatorname{carrier} G ; c \in\)
carrier \(\mathrm{G} \rrbracket \Longrightarrow \mathrm{a}=\mathrm{b} "\)
lemma (in monoid) monoid_cancelI:
    assumes l_cancel: " \(\bigwedge \mathrm{a}\) b \(\mathrm{c} . \llbracket \mathrm{c} \otimes \mathrm{a}=\mathrm{c} \otimes \mathrm{b} ; \mathrm{a} \in\) carrier \(\mathrm{G} ; \mathrm{b} \in\) carrier
\(\mathrm{G} ; \mathrm{c} \in\) carrier \(\mathrm{G} \rrbracket \Longrightarrow \mathrm{a}=\mathrm{b}{ }^{\prime \prime}\)
            and r_cancel: " \(\bigwedge \mathrm{a} b \mathrm{c} . \llbracket \mathrm{a} \otimes \mathrm{c}=\mathrm{b} \otimes \mathrm{c} ; \mathrm{a} \in\) carrier \(\mathrm{G} ; \mathrm{b} \in\) carrier
\(\mathrm{G} ; \mathrm{c} \in\) carrier \(\mathrm{G} \rrbracket \Longrightarrow \mathrm{a}=\mathrm{b}{ }^{\prime \prime}\)
    shows "monoid_cancel G"
            by standard fact+
lemma (in monoid_cancel) is_monoid_cancel: "monoid_cancel G" ..
sublocale group \(\subseteq\) monoid_cancel
    by standard simp_all
locale comm_monoid_cancel = monoid_cancel + comm_monoid
lemma comm_monoid_cancell:
    fixes \(G\) (structure)
    assumes "comm_monoid G"
    assumes cancel: " \(\backslash \mathrm{a} \mathrm{b} \mathrm{c} . \llbracket \mathrm{a} \otimes \mathrm{c}=\mathrm{b} \otimes \mathrm{c} ; \mathrm{a} \in\) carrier \(\mathrm{G} ; \mathrm{b} \in\) carrier
\(\mathrm{G} ; \mathrm{c} \in\) carrier \(\mathrm{G} \rrbracket \Longrightarrow \mathrm{a}=\mathrm{b}{ }^{\prime \prime}\)
    shows "comm_monoid_cancel G"
proof -
    interpret comm_monoid G by fact
    show "comm_monoid_cancel G"
        by unfold_locales (metis assms(2) m_ac(2))+
qed
lemma (in comm_monoid_cancel) is_comm_monoid_cancel: "comm_monoid_cancel
G"
    by intro_locales
sublocale comm_group \(\subseteq\) comm_monoid_cancel ..

\subsection*{26.2 Products of Units in Monoids}
lemma (in monoid) prod_unit_l:
```

 assumes abunit[simp]: "a \otimes b \in Units G"
 and aunit[simp]: "a \in Units G"
 and carr[simp]: "a \in carrier G" "b \in carrier G"
 shows "b \in Units G"
 proof -
have c: "inv (a \otimes b) \otimes a \in carrier G" by simp
have "(inv (a \otimes b) \otimes a) \otimes b = inv (a \otimes b) \otimes (a \otimes b)"
by (simp add: m_assoc)
also have "... = 1" by simp
finally have li: "(inv (a \otimes b) \otimes a) \otimes b = 1".
have "1 = inv a \otimes a" by (simp add: Units_l_inv[symmetric])
also have "... = inv a \otimes 1 \otimes a" by simp
also have "... = inv a \otimes ((a \otimes b) \otimes inv (a \otimes b)) \otimes a"
by (simp add: Units_r_inv[OF abunit, symmetric] del: Units_r_inv)
also have "... = ((inv a \otimes a) \otimes b) \otimes inv (a \otimes b) \otimes a"
by (simp add: m_assoc del: Units_l_inv)
also have "... = b \otimes inv (a \otimes b) \otimes a" by simp
also have "... = b \otimes (inv (a \otimes b) \otimes a)" by (simp add: m_assoc)
finally have ri: "b \otimes (inv (a \otimes b) \otimes a) = 1 " by simp
from c li ri show "b \in Units G" by (auto simp: Units_def)
qed
lemma (in monoid) prod_unit_r:
assumes abunit[simp]: "a \otimes b \in Units G"
and bunit[simp]: "b \in Units G"
and carr[simp]: "a \in carrier G" "b \in carrier G"
shows "a \in Units G"
proof -
have c: "b \otimes inv (a \otimes b) \in carrier G" by simp
have "a \otimes (b \& inv (a \otimes b)) = (a \otimes b) \otimes inv (a \otimes b)"
by (simp add: m_assoc del: Units_r_inv)
also have "... = 1" by simp
finally have li: "a \otimes (b \& inv (a \otimes b)) = 1".
have "1 = b \otimes inv b" by (simp add: Units_r_inv[symmetric])
also have "... = b \& 1 \otimes inv b" by simp
also have "... = b \otimes (inv (a \otimes b) \otimes (a \otimes b)) \otimes inv b"
by (simp add: Units_l_inv[OF abunit, symmetric] del: Units_l_inv)
also have "... = (b \otimes inv (a \otimes b) \otimes a) \otimes (b \otimes inv b)"
by (simp add: m_assoc del: Units_l_inv)
also have "... = b \otimes inv (a \otimes b) \otimes a" by simp
finally have ri: "(b \otimes inv (a \otimes b)) \otimesa=1 " by simp
from c li ri show "a \in Units G" by (auto simp: Units_def)
qed

```
```

lemma (in comm_monoid) unit_factor:
assumes abunit: "a \otimes b \in Units G"
and [simp]: "a \in carrier G" "b \in carrier G"
shows "a \in Units G"
using abunit[simplified Units_def]
proof clarsimp
fix i
assume [simp]: "i \in carrier G"
have carr': "b \otimes i \in carrier G" by simp
have "(b \otimes i) \otimes a = (i \otimes b) \otimes a" by (simp add: m_comm)
also have "... = i \otimes (b \otimes a)" by (simp add: m_assoc)
also have "... = i \otimes (a \otimes b)" by (simp add: m_comm)
also assume "i \otimes (a \otimes b) = 1"
finally have li': "(b \otimes i) \otimes a = 1" .
have "a \otimes (b \otimes i) = a \otimes b \otimes i" by (simp add: m_assoc)
also assume "a \otimes b \otimes i = 1"
finally have ri': "a \otimes (b \otimes i) = 1" .
from carr' li' ri'
show "a \in Units G" by (simp add: Units_def, fast)
qed

```

\subsection*{26.3 Divisibility and Association}

\subsection*{26.3.1 Function definitions}
```

definition factor :: "[_, 'a, ’a] \Rightarrow bool" (infix "divides 乙" 65)
where "a divides $\mathrm{b} \longleftrightarrow\left(\exists \mathrm{c} \in\right.$ carrier $\left.\mathrm{G} . \mathrm{b}=\mathrm{a} \otimes_{\mathrm{G}} \mathrm{c}\right)$ "
definition associated :: "[_, 'a, 'a] \Rightarrow bool" (infix "~々" 55)
where $" \mathrm{a} \sim_{\mathrm{G}} \mathrm{b} \longleftrightarrow$ a $\operatorname{divides}_{\mathrm{G}} \mathrm{b} \wedge \mathrm{b} \operatorname{divides}_{\mathrm{G}} \mathrm{a}$ "
abbreviation "division_rel $G \equiv$ (carrier $=$ carrier G, eq $=\left(\sim_{G}\right)$, le $=$
(dividesG))"
definition properfactor :: "[_, 'a, 'a] \Rightarrow bool"
where "properfactor $\mathrm{G} \mathrm{a} \mathrm{b} \longleftrightarrow \mathrm{a}^{\text {divides }} \mathrm{G}$ b $\wedge \neg\left(\mathrm{b} \operatorname{divides}_{\mathrm{G}} \mathrm{a}\right)$ "
definition irreducible :: "[_, 'a] \Rightarrow bool"
where "irreducible $G a \longleftrightarrow a \notin$ Units $G \wedge$ ($\forall \mathrm{b} \in$ carrier G. properfactor
G b a $\longrightarrow \mathrm{b} \in$ Units G)"
definition prime :: "[_, 'a] \Rightarrow bool"
where "prime G p \longleftrightarrow
p \notin Units $G \wedge$
($\forall \mathrm{a} \in$ carrier $\mathrm{G} . \forall \mathrm{b} \in$ carrier $\mathrm{G} . \mathrm{p} \operatorname{divides}_{\mathrm{G}}\left(\mathrm{a} \otimes_{\mathrm{G}} \mathrm{b}\right) \longrightarrow$ p divides $_{\mathrm{G}}$

```
\(\left.a \vee p \operatorname{divides}_{G} b\right) "\)

\subsection*{26.3.2 Divisibility}
```

lemma dividesI:
fixes G (structure)
assumes carr: "c \in carrier G"
and p: "b = a \otimes c"
shows "a divides b"
unfolding factor_def using assms by fast
lemma dividesI' [intro]:
fixes G (structure)
assumes p: "b = a \otimesc"
and carr: "c \in carrier G"
shows "a divides b"
using assms by (fast intro: dividesI)
lemma dividesD:
fixes G (structure)
assumes "a divides b"
shows "\existsc\incarrier G. b = a @ c"
using assms unfolding factor_def by fast
lemma dividesE [elim]:
fixes G (structure)
assumes d: "a divides b"
and elim: "\bigwedgec. \llbracketb = a \otimes c; c \in carrier G\rrbracket\Longrightarrow P"
shows "P"
proof -
from dividesD[OF d] obtain c where "c f carrier G" and "b = a \otimes c"
by auto
then show P by (elim elim)
qed
lemma (in monoid) divides_refl[simp, intro!]:
assumes carr: "a \in carrier G"
shows "a divides a"
by (intro dividesI[of "1"]) (simp_all add: carr)
lemma (in monoid) divides_trans [trans]:
assumes dvds: "a divides b" "b divides c"
and acarr: "a \in carrier G"
shows "a divides c"
using dvds[THEN dividesD] by (blast intro: dividesI m_assoc acarr)
lemma (in monoid) divides_mult_lI [intro]:
assumes "a divides b" "a \in carrier G" "c \in carrier G"
shows "(c \otimes a) divides (c \otimes b)"

```
```

 by (metis assms factor_def m_assoc)
 lemma (in monoid_cancel) divides_mult_l [simp]:
assumes carr: "a \in carrier G" "b \in carrier G" "c \in carrier G"
shows "(c \otimes a) divides (c \otimes b) = a divides b"
proof
show "c \otimes a divides c \otimes b \Longrightarrow a divides b"
using carr monoid.m_assoc monoid_axioms monoid_cancel.l_cancel monoid_cancel_axioms
by fastforce
show "a divides b }\Longrightarrow\textrm{c}\otimes\textrm{a}\mathrm{ divides c \& b"
using carr(1) carr(3) by blast
qed
lemma (in comm_monoid) divides_mult_rI [intro]:
assumes ab: "a divides b"
and carr: "a \in carrier G" "b \in carrier G" "c \in carrier G"
shows "(a \otimes c) divides (b \otimes c)"
using carr ab by (metis divides_mult_lI m_comm)
lemma (in comm_monoid_cancel) divides_mult_r [simp]:
assumes carr: "a \in carrier G" "b \in carrier G" "c \in carrier G"
shows "(a \& c) divides (b \otimes c) = a divides b"
using carr by (simp add: m_comm[of a c] m_comm[of b c])
lemma (in monoid) divides_prod_r:
assumes ab: "a divides b"
and carr: "a \in carrier G" "c \in carrier G"
shows "a divides (b \& c)"
using ab carr by (fast intro: m_assoc)
lemma (in comm_monoid) divides_prod_l:
assumes "a \in carrier G" "b \in carrier G" "c \in carrier G" "a divides
b"
shows "a divides (c \otimes b)"
using assms by (simp add: divides_prod_r m_comm)
lemma (in monoid) unit_divides:
assumes uunit: "u \in Units G"
and acarr: "a \in carrier G"
shows "u divides a"
proof (intro dividesI[of "(inv u) \otimes a"], fast intro: uunit acarr)
from uunit acarr have xcarr: "inv u \otimes a \in carrier G" by fast
from uunit acarr have "u \otimes (inv u \otimes a) = (u \otimes inv u) \otimes a"
by (fast intro: m_assoc[symmetric])
also have "... = 1 \otimes a" by (simp add: Units_r_inv[OF uunit])
also from acarr have "... = a" by simp
finally show "a = u \otimes (inv u \otimes a)" ..
qed

```
```

lemma (in comm_monoid) divides_unit:
assumes udvd: "a divides u"
and carr: "a \in carrier G" "u \in Units G"
shows "a \in Units G"
using udvd carr by (blast intro: unit_factor)
lemma (in comm_monoid) Unit_eq_dividesone:
assumes ucarr: "u \in carrier G"
shows "u \in Units G = u divides 1"
using ucarr by (fast dest: divides_unit intro: unit_divides)

```

\subsection*{26.3.3 Association}
```

lemma associatedI:
fixes G (structure)
assumes "a divides b" "b divides a"
shows "a ~ b"
using assms by (simp add: associated_def)
lemma (in monoid) associatedI2:
assumes uunit[simp]: "u \in Units G"
and a: "a = b \& u"
and bcarr: "b \in carrier G"
shows "a ~ b"
using uunit bcarr
unfolding a
apply (intro associatedI)
apply (metis Units_closed divides_mult_lI one_closed r_one unit_divides)
by blast
lemma (in monoid) associatedI2':
assumes "a = b \& u"
and "u \in Units G"
and "b \in carrier G"
shows "a ~ b"
using assms by (intro associatedI2)
lemma associatedD:
fixes G (structure)
assumes "a ~ b"
shows "a divides b"
using assms by (simp add: associated_def)
lemma (in monoid_cancel) associatedD2:
assumes assoc: "a ~ b"
and carr: "a \in carrier G" "b \in carrier G"
shows "\existsu\inUnits G. a = b \otimes u"
using assoc
unfolding associated_def

```
```

proof clarify
assume "b divides a"
then obtain u where ucarr: "u \in carrier G" and a: "a = b \otimes u"
by (rule dividesE)
assume "a divides b"
then obtain u' where u'carr: "u' \in carrier G" and b: "b = a \otimes u'"
by (rule dividesE)
note carr = carr ucarr u'carr
from carr have "a \otimes 1 = a" by simp
also have "... = b \otimes u" by (simp add: a)
also have "... = a \otimes u' \otimes u" by (simp add: b)
also from carr have "... = a \otimes (u' \otimes u)" by (simp add: m_assoc)
finally have "a \otimes 1 = a \otimes (u' \otimes u)".
with carr have u1: "1 = u' \otimes u" by (fast dest: l_cancel)
from carr have "b \otimes 1 = b" by simp
also have "... = a \otimes u'" by (simp add: b)
also have "... = b \otimes u \otimes u'" by (simp add: a)
also from carr have "... = b \otimes (u \otimes u')" by (simp add: m_assoc)
finally have "b \otimes 1 = b \otimes (u \otimes u')".
with carr have u2: "1 = u \otimes u'" by (fast dest: l_cancel)
from u'carr u1[symmetric] u2[symmetric] have " \existsu'\incarrier G. u' \&
u = 1 ^ u \otimes u' = 1''
by fast
then have "u \in Units G"
by (simp add: Units_def ucarr)
with ucarr a show "\existsu\inUnits G. a = b \otimes u" by fast
qed
lemma associatedE:
fixes G (structure)
assumes assoc: "a ~ b"
and e: "\llbracketa divides b; b divides a\rrbracket \Longrightarrow P"
shows "P"
proof -
from assoc have "a divides b" "b divides a"
by (simp_all add: associated_def)
then show P by (elim e)
qed
lemma (in monoid_cancel) associatedE2:
assumes assoc: "a ~ b"
and e: "^u. \llbracketa = b \otimes u; u \in Units G\rrbracket \Longrightarrow P"
and carr: "a \in carrier G" "b \in carrier G"
shows "P"
proof -

```
```

 from assoc and carr have "\existsu\inUnits G. a = b \otimes u"
 by (rule associatedD2)
 then obtain u where "u \in Units G" "a = b \otimes u"
 by auto
 then show P by (elim e)
 qed
lemma (in monoid) associated_refl [simp, intro!]:
assumes "a \in carrier G"
shows "a ~ a"
using assms by (fast intro: associatedI)
lemma (in monoid) associated_sym [sym]:
assumes "a ~ b"
shows "b ~ a"
using assms by (iprover intro: associatedI elim: associatedE)
lemma (in monoid) associated_trans [trans]:
assumes "a ~ b" "b ~ c"
and "a \in carrier G" "c \in carrier G"
shows "a ~ c"
using assms by (iprover intro: associatedI divides_trans elim: associatedE)
lemma (in monoid) division_equiv [intro, simp]: "equivalence (division_rel
G)"
apply unfold_locales
apply simp_all
apply (metis associated_def)
apply (iprover intro: associated_trans)
done

```

\subsection*{26.3.4 Division and associativity}
```

lemmas divides_antisym = associatedI
lemma (in monoid) divides_cong_l [trans]:
assumes "x ~ x'" "x' divides y" "x \in carrier G"
shows "x divides y"
by (meson assms associatedD divides_trans)
lemma (in monoid) divides_cong_r [trans]:
assumes "x divides y" "y ~ y'" "x \in carrier G"
shows "x divides y'"
by (meson assms associatedD divides_trans)
lemma (in monoid) division_weak_partial_order [simp, intro!]:
"weak_partial_order (division_rel G)"
apply unfold_locales
apply (simp_all add: associated_sym divides_antisym)

```
```

 apply (metis associated_trans)
 apply (metis divides_trans)
 by (meson associated_def divides_trans)

```

\subsection*{26.3.5 Multiplication and associativity}
```

lemma (in monoid) mult_cong_r:
assumes "b ~ b'" "a \in carrier G" "b \in carrier G" "b' \in carrier G"
shows "a \otimes b ~ a \otimes b'"
by (meson assms associated_def divides_mult_lI)

```
lemma (in comm_monoid) mult_cong_l:
    assumes "a ~ a'" "a \(\in\) carrier \(G\) " \(\quad\) "a' \(\in\) carrier \(G " ~ " b \in \operatorname{carrier~G"~}\)
    shows "a \(\otimes \mathrm{b} \sim \mathrm{a}\) ' \(\otimes \mathrm{b}\) "
    using assms m_comm mult_cong_r by auto
lemma (in monoid_cancel) assoc_l_cancel:
    assumes "a \(\in\) carrier \(G\) " "b \(\in\) carrier \(G\) " "b' \(\in\) carrier \(G "\) "a \(\otimes\) b
\(\sim \mathrm{a} \otimes \mathrm{b}^{\prime \prime}\)
    shows "b ~ b" "
    by (meson assms associated_def divides_mult_l)
lemma (in comm_monoid_cancel) assoc_r_cancel:
    assumes "a \(\otimes \mathrm{b} \sim \mathrm{a}\), \(\otimes \mathrm{b}\) " "a \(\in \operatorname{carrier~G"~"a'~} \in \operatorname{carrier~G"~"b\in ~}\)
carrier G"
    shows "a ~ a'"
    using assms assoc_l_cancel m_comm by presburger

\subsection*{26.3.6 Units}
```

lemma (in monoid_cancel) assoc_unit_l [trans]:
assumes "a ~ b"
and "b \in Units G"
and "a \in carrier G"
shows "a \in Units G"
using assms by (fast elim: associatedE2)
lemma (in monoid_cancel) assoc_unit_r [trans]:
assumes aunit: "a \in Units G"
and asc: "a ~ b"
and bcarr: "b \in carrier G"
shows "b \in Units G"
using aunit bcarr associated_sym[OF asc] by (blast intro: assoc_unit_l)
lemma (in comm_monoid) Units_cong:
assumes aunit: "a \in Units G" and asc: "a ~ b"
and bcarr: "b \in carrier G"
shows "b \in Units G"
using assms by (blast intro: divides_unit elim: associatedE)

```
```

lemma (in monoid) Units_assoc:
assumes units: "a \in Units G" "b \in Units G"
shows "a ~ b"
using units by (fast intro: associatedI unit_divides)
lemma (in monoid) Units_are_ones: "Units G {.=}(division_rel G) {1}"
proof -
have "a . }\mp@subsup{\in}{\mathrm{ division_rel G {1}" if "a }\in\mathrm{ Units G" for a}}{\mathrm{ a}
proof -
have "a ~ 1"
by (rule associatedI) (simp_all add: Units_closed that unit_divides)
then show ?thesis
by (simp add: elem_def)
qed
moreover have "1 . (Gdivision_rel G Units G"
by (simp add: equivalence.mem_imp_elem)
ultimately show ?thesis
by (auto simp: set_eq_def)
qed
lemma (in comm_monoid) Units_Lower: "Units G = Lower (division_rel G)
(carrier G)"
apply (auto simp add: Units_def Lower_def)
apply (metis Units_one_closed unit_divides unit_factor)
apply (metis Unit_eq_dividesone Units_r_inv_ex m_ac(2) one_closed)
done
lemma (in monoid_cancel) associated_iff:
assumes "a \in carrier G" "b \in carrier G"
shows "a ~ b \longleftrightarrow(\existsc\inUnits G. a = b \otimes c)"
using assms associatedI2' associatedD2 by auto

```

\subsection*{26.3.7 Proper factors}
lemma properfactorI:
fixes \(G\) (structure)
assumes "a divides b"
and " \(\neg(\mathrm{b}\) divides a\()\) "
shows "properfactor G a b"
using assms unfolding properfactor_def by simp
lemma properfactorI2:
fixes \(G\) (structure)
assumes advdb: "a divides b"
and neq: " \(\neg(\mathrm{a} \sim \mathrm{b})\) "
shows "properfactor G a b"
proof (rule properfactorI, rule advdb, rule notI)
assume "b divides a"
with advdb have "a \(\sim \mathrm{b}\) " by (rule associatedI)
```

 with neq show "False" by fast
 qed
lemma (in comm_monoid_cancel) properfactorI3:
assumes p: "p = a \otimes b"
and nunit: "b \& Units G"
and carr: "a \in carrier G" "b \in carrier G"
shows "properfactor G a p"
unfolding p
using carr
apply (intro properfactorI, fast)
proof (clarsimp, elim dividesE)
fix c
assume ccarr: "c \in carrier G"
note [simp] = carr ccarr
have "a \otimes 1 = a" by simp
also assume "a = a \otimes b \otimes c"
also have "... = a \otimes (b \otimes c)" by (simp add: m_assoc)
finally have "a \otimes 1 = a \otimes (b \& c)".
then have rinv: "1 = b \& c" by (intro l_cancel[of "a" "1" "b \otimes c"],
simp+)
also have "... = c \otimes b" by (simp add: m_comm)
finally have linv: "1 = c \otimes b" .
from ccarr linv[symmetric] rinv[symmetric] have "b \in Units G"
unfolding Units_def by fastforce
with nunit show False ..
qed
lemma properfactorE:
fixes G (structure)
assumes pf: "properfactor G a b"
and r: "\llbracketa divides b; \neg(b divides a)\rrbracket\Longrightarrow P"
shows "P"
using pf unfolding properfactor_def by (fast intro: r)
lemma properfactorE2:
fixes G (structure)
assumes pf: "properfactor G a b"
and elim: "\llbracketa divides b; \neg(a ~ b)\rrbracket\Longrightarrow P"
shows "P"
using pf unfolding properfactor_def by (fast elim: elim associatedE)
lemma (in monoid) properfactor_unitE:
assumes uunit: "u \in Units G"
and pf: "properfactor G a u"
and acarr: "a \in carrier G"

```
```

 shows "P"
 using pf unit_divides[OF uunit acarr] by (fast elim: properfactorE)
 lemma (in monoid) properfactor_divides:
assumes pf: "properfactor G a b"
shows "a divides b"
using pf by (elim properfactorE)
lemma (in monoid) properfactor_trans1 [trans]:
assumes "a divides b" "properfactor G b c" "a f carrier G" "c e carrier
G"
shows "properfactor G a c"
by (meson divides_trans properfactorE properfactorI assms)
lemma (in monoid) properfactor_trans2 [trans]:
assumes "properfactor G a b" "b divides c" "a \in carrier G" "b \in carrier
G"
shows "properfactor G a c"
by (meson divides_trans properfactorE properfactorI assms)
lemma properfactor_lless:
fixes G (structure)
shows "properfactor G = lless (division_rel G)"
by (force simp: lless_def properfactor_def associated_def)
lemma (in monoid) properfactor_cong_1 [trans]:
assumes x'x: "x' ~ x"
and pf: "properfactor G x y"
and carr: "x \in carrier G" "x' \in carrier G" "y \in carrier G"
shows "properfactor G x' y"
using pf
unfolding properfactor_lless
proof -
interpret weak_partial_order "division_rel G" ..
from x'x have "x' .=division_rel G x" by simp
also assume "x \complementdivision_rel G y"
finally show "x' \sqsubsetdivision_rel G y" by (simp add: carr)
qed
lemma (in monoid) properfactor_cong_r [trans]:
assumes pf: "properfactor G x y"
and yy': "y ~ y'"
and carr: "x \in carrier G" "y \in carrier G" "y' \in carrier G"
shows "properfactor G x y'"
using pf
unfolding properfactor_lless
proof -
interpret weak_partial_order "division_rel G" ..
assume "x \sqsubsetdivision_rel G y"

```
```

 also from yy'
 have "y .=division_rel G y'" by simp
 finally show "x \complement_division_rel G y'" by (simp add: carr)
 qed
lemma (in monoid_cancel) properfactor_mult_lI [intro]:
assumes ab: "properfactor G a b"
and carr: "a \in carrier G" "c \in carrier G"
shows "properfactor G (c \otimes a) (c \otimes b)"
using ab carr by (fastforce elim: properfactorE intro: properfactorI)
lemma (in monoid_cancel) properfactor_mult_l [simp]:
assumes carr: "a \in carrier G" "b \in carrier G" "c \in carrier G"
shows "properfactor G (c \otimes a) (c \otimes b) = properfactor G a b"
using carr by (fastforce elim: properfactorE intro: properfactorI)
lemma (in comm_monoid_cancel) properfactor_mult_rI [intro]:
assumes ab: "properfactor G a b"
and carr: "a \in carrier G" "c \in carrier G"
shows "properfactor G (a \otimes c) (b \otimes c)"
using ab carr by (fastforce elim: properfactorE intro: properfactorI)
lemma (in comm_monoid_cancel) properfactor_mult_r [simp]:
assumes carr: "a \in carrier G" "b \in carrier G" "c \in carrier G"
shows "properfactor G (a \otimes c) (b \otimes c) = properfactor G a b"
using carr by (fastforce elim: properfactorE intro: properfactorI)
lemma (in monoid) properfactor_prod_r:
assumes ab: "properfactor G a b"
and carr[simp]: "a \in carrier G" "b \in carrier G" "c \in carrier G"
shows "properfactor G a (b \otimes c)"
by (intro properfactor_trans2[OF ab] divides_prod_r) simp_all
lemma (in comm_monoid) properfactor_prod_l:
assumes ab: "properfactor G a b"
and carr[simp]: "a \in carrier G" "b \in carrier G" "c \in carrier G"
shows "properfactor G a (c \otimes b)"
by (intro properfactor_trans2[0F ab] divides_prod_l) simp_all

```

\subsection*{26.4 Irreducible Elements and Primes}

\subsection*{26.4.1 Irreducible elements}
lemma irreducibleI:
fixes \(G\) (structure)
assumes "a \(\notin\) Units G"
and " \(\wedge \mathrm{b}\). \(\llbracket \mathrm{b} \in\) carrier G ; properfactor \(\mathrm{G} \mathrm{b} \mathrm{a} \rrbracket \Longrightarrow \mathrm{b} \in\) Units \(\mathrm{G} "\)
shows "irreducible G a"
using assms unfolding irreducible_def by blast
```

lemma irreducibleE:
fixes G (structure)
assumes irr: "irreducible G a"
and elim: "\llbracketa \& Units G; \forallb. b \in carrier G ^ properfactor G b a }
b \in Units G\ \Longrightarrow P"
shows "P"
using assms unfolding irreducible_def by blast
lemma irreducibleD:
fixes G (structure)
assumes irr: "irreducible G a"
and pf: "properfactor G b a"
and bcarr: "b \in carrier G"
shows "b \in Units G"
using assms by (fast elim: irreducibleE)
lemma (in monoid_cancel) irreducible_cong [trans]:
assumes "irreducible G a" "a ~ a'" "a \in carrier G" "a' \in carrier
G"
shows "irreducible G a'"
proof -
have "a' divides a"
by (meson <a ~ a'> associated_def)
then show ?thesis
by (metis (no_types) assms assoc_unit_l irreducibleE irreducibleI
monoid.properfactor_trans2 monoid_axioms)
qed
lemma (in monoid) irreducible_prod_rI:
assumes "irreducible G a" "b \in Units G" "a \in carrier G" "b \in carrier
G"
shows "irreducible G (a \otimes b)"
using assms
by (metis (no_types, lifting) associatedI2' irreducible_def monoid.m_closed
monoid_axioms prod_unit_r properfactor_cong_r)
lemma (in comm_monoid) irreducible_prod_lI:
assumes birr: "irreducible G b"
and aunit: "a \in Units G"
and carr [simp]: "a \in carrier G" "b \in carrier G"
shows "irreducible G (a \otimes b)"
by (metis aunit birr carr irreducible_prod_rI m_comm)
lemma (in comm_monoid_cancel) irreducible_prodE [elim]:
assumes irr: "irreducible G (a \otimes b)"
and carr[simp]: "a \in carrier G" "b \in carrier G"
and e1: "\llbracketirreducible G a; b \in Units G\rrbracket \Longrightarrow P"
and e2: "\llbracketa \in Units G; irreducible G b\rrbracket\Longrightarrow P"
shows P

```
```

 using irr
 proof (elim irreducibleE)
assume abnunit: "a \otimes b \not\in Units G"
and isunit[rule_format]: "\forallba. ba \in carrier G ^ properfactor G ba
(a \otimes b) \longrightarrow ba \in Units G"
show P
proof (cases "a \in Units G")
case aunit: True
have "irreducible G b"
proof (rule irreducibleI, rule notI)
assume "b \in Units G"
with aunit have "(a \otimes b) \in Units G" by fast
with abnunit show "False" ..
next
fix c
assume ccarr: "c \in carrier G"
and "properfactor G c b"
then have "properfactor G c (a \otimes b)" by (simp add: properfactor_prod_l[of
c b a])
with ccarr show "c \in Units G" by (fast intro: isunit)
qed
with aunit show "P" by (rule e2)
next
case anunit: False
with carr have "properfactor G b (b \otimes a)" by (fast intro: properfactorI3)
then have bf: "properfactor G b (a \otimes b)" by (subst m_comm[of a b],
simp+)
then have bunit: "b \in Units G" by (intro isunit, simp)
have "irreducible G a"
proof (rule irreducibleI, rule notI)
assume "a \in Units G"
with bunit have "(a \otimes b) \in Units G" by fast
with abnunit show "False" ..
next
fix c
assume ccarr: "c \in carrier G"
and "properfactor G c a"
then have "properfactor G c (a \& b)"
by (simp add: properfactor_prod_r[of c a b])
with ccarr show "c \in Units G" by (fast intro: isunit)
qed
from this bunit show "P" by (rule e1)
qed
qed
lemma divides_irreducible_condition:
assumes "irreducible G r" and "a \in carrier G"
shows "a dividesG r \Longrightarrowa f Units G V a ~G r"

```
using assms unfolding irreducible_def properfactor_def associated_def by (cases "r divides \({ }_{G}\) a", auto)

\subsection*{26.4.2 Prime elements}
```

lemma primeI:
fixes G (structure)
assumes "p \& Units G"
and "\a b. \llbracketa \in carrier G; b \in carrier G; p divides (a \otimes b)\rrbracket\Longrightarrow
p divides a V p divides b"
shows "prime G p"
using assms unfolding prime_def by blast
lemma primeE:
fixes G (structure)
assumes pprime: "prime G p"
and e: "\llbracketp \not\inUnits G; \foralla\incarrier G. \forallb\incarrier G.
p divides a }\otimes\textrm{b}\longrightarrow\textrm{p}\mathrm{ divides a }\vee\textrm{p}\mathrm{ divides b\ \# P"
shows "P"
using pprime unfolding prime_def by (blast dest: e)
lemma (in comm_monoid_cancel) prime_divides:
assumes carr: "a \in carrier G" "b \in carrier G"
and pprime: "prime G p"
and pdvd: "p divides a \otimes b"
shows "p divides a V p divides b"
using assms by (blast elim: primeE)
lemma (in monoid_cancel) prime_cong [trans]:
assumes "prime G p"
and pp': "p ~ p'" "p \in carrier G" "p' \in carrier G"
shows "prime G p'"
using assms
by (auto simp: prime_def assoc_unit_l) (metis pp' associated_sym divides_cong_l)
lemma (in comm_monoid_cancel) prime_irreducible:
assumes "prime G p"
shows "irreducible G p"
proof (rule irreducibleI)
show "p \& Units G"
using assms unfolding prime_def by simp
next
fix b assume A: "b \in carrier G" "properfactor G b p"
then obtain c where c: "c \in carrier G" "p = b \& c"
unfolding properfactor_def factor_def by auto
hence "p divides c"
using A assms unfolding prime_def properfactor_def by auto
then obtain b' where b': "b' \in carrier G" "c = p \otimes b'"
unfolding factor_def by auto

```
```

 hence "1 = b \otimes b'"
 by (metis A(1) l_cancel m_closed m_lcomm one_closed r_one c)
 thus "b \in Units G"
 using A(1) Units_one_closed b'(1) unit_factor by presburger
 qed
lemma (in comm_monoid_cancel) prime_pow_divides_iff:
assumes "p \in carrier G" "a \in carrier G" "b \in carrier G" and "prime
G p" and "\neg (p divides a)"
shows "(p [^] (n :: nat)) divides (a \otimes b) \longleftrightarrow (p [^] n) divides b"
proof
assume "(p [^] n) divides b" thus "(p [^] n) divides (a \otimes b)"
using divides_prod_l[of "p [^] n" b a] assms by simp
next
assume "(p [^] n) divides (a \otimes b)" thus "(p [^] n) divides b"
proof (induction n)
case O with <b \in carrier G> show ?case
by (simp add: unit_divides)
next
case (Suc n)
hence "(p [^] n) divides (a \otimes b)" and "(p [^] n) divides b"
using assms(1) divides_prod_r by auto
with < (p [^] (Suc n)) divides (a \otimes b) > obtain c d
where c: "c \in carrier G" and "b = (p [^] n) \otimes c"
and d: "d \in carrier G" and "a \otimes b = (p [^] (Suc n)) \otimes d"
using assms by blast
hence "(p [^] n) \otimes (a \otimes c) = (p [^] n) \otimes (p \otimes d)"
using assms by (simp add: m_assoc m_lcomm)
hence "a \otimes c = p \otimes d"
using c d assms(1) assms(2) l_cancel by blast
with <\neg (p divides a) > and <prime G p> have "p divides c"
by (metis assms(2) c d dividesI' prime_divides)
with <b = (p [^] n) \otimes c> show ?case
using assms(1) c by simp
qed
qed

```

\subsection*{26.5 Factorization and Factorial Monoids}

\subsection*{26.5.1 Function definitions}
definition factors :: "('a, _) monoid_scheme \(\Rightarrow\) 'a list \(\Rightarrow\) 'a \(\Rightarrow\) bool"
where "factors \(G\) fs \(a \longleftrightarrow(\forall x \in\) (set fs). irreducible \(G x) \wedge\) foldr \(\left(\otimes_{G}\right)\) fs \(1_{G}=a^{\prime \prime}\)
definition wfactors ::"('a, _) monoid_scheme \(\Rightarrow\) 'a list \(\Rightarrow\) 'a \(\Rightarrow\) bool" where "wfactors \(G\) fs \(a \longleftrightarrow(\forall x \in\) (set fs). irreducible \(G \mathrm{x}) \wedge\) foldr \(\left(\otimes_{G}\right)\) fs \(1_{G} \sim_{G}\) a"
abbreviation list_assoc :: "('a, _) monoid_scheme \(\Rightarrow\) 'a list \(\Rightarrow\) 'a list
```

=> bool" (infix "[~]\imath" 44)
where "list_assoc G \equiv list_all2 (~G)"
definition essentially_equal :: "('a, _) monoid_scheme = 'a list => 'a
list = bool"
where "essentially_equal G fs1 fs2 \longleftrightarrow(\existsfs1'. fs1 <~~> fs1' ^ fs1'
[~]}\mp@subsup{]}{\textrm{G}}{\textrm{fs}2)"

```
```

locale factorial_monoid = comm_monoid_cancel +

```
locale factorial_monoid = comm_monoid_cancel +
    assumes factors_exist: " \(\llbracket a \in\) carrier \(G ; a \notin\) Units \(G \rrbracket \Longrightarrow \exists f s\). set fs
    assumes factors_exist: " \(\llbracket a \in\) carrier \(G ; a \notin\) Units \(G \rrbracket \Longrightarrow \exists f s\). set fs
\(\subseteq\) carrier \(G \wedge\) factors \(G\) fs a"
\(\subseteq\) carrier \(G \wedge\) factors \(G\) fs a"
    and factors_unique:
    and factors_unique:
            \(" \llbracket f a c t o r s ~ G ~ f s ~ a ; ~ f a c t o r s ~ G ~ f s ' ~ a ; ~ a ~ \in ~ c a r r i e r ~ G ; ~ a ~ \not ~ \# ~ U n i t s ~ G ; ~\)
            \(" \llbracket f a c t o r s ~ G ~ f s ~ a ; ~ f a c t o r s ~ G ~ f s ' ~ a ; ~ a ~ \in ~ c a r r i e r ~ G ; ~ a ~ \not ~ \# ~ U n i t s ~ G ; ~\)
                set \(\mathrm{fs} \subseteq\) carrier \(G\); set \(f s^{\prime} \subseteq\) carrier \(G \rrbracket \Longrightarrow\) essentially_equal
                set \(\mathrm{fs} \subseteq\) carrier \(G\); set \(f s^{\prime} \subseteq\) carrier \(G \rrbracket \Longrightarrow\) essentially_equal
G fs fs'"
```

G fs fs'"

```

\subsection*{26.5.2 Comparing lists of elements}

Association on lists
```

lemma (in monoid) listassoc_refl [simp, intro]:
assumes "set as \subseteq carrier G"
shows "as [~] as"
using assms by (induct as) simp_all
lemma (in monoid) listassoc_sym [sym]:
assumes "as [~] bs"
and "set as \subseteqcarrier G"
and "set bs \subseteq carrier G"
shows "bs [~] as"
using assms
proof (induction as arbitrary: bs)
case Cons
then show ?case
by (induction bs) (use associated_sym in auto)
qed auto
lemma (in monoid) listassoc_trans [trans]:
assumes "as [~] bs" and "bs [~] cs"
and "set as \subseteq carrier G" and "set bs \subseteq carrier G" and "set cs \subseteq
carrier G"
shows "as [~] cs"
using assms
apply (simp add: list_all2_conv_all_nth set_conv_nth, safe)
by (metis (mono_tags, lifting) associated_trans nth_mem subsetCE)
lemma (in monoid_cancel) irrlist_listassoc_cong:
assumes "\foralla\inset as. irreducible G a"
and "as [~] bs"

```
```

 and "set as \subseteqcarrier G" and "set bs \subseteq carrier G"
 shows "\foralla\inset bs. irreducible G a"
 using assms
 by (fastforce simp add: list_all2_conv_all_nth set_conv_nth intro: irreducible_cong)
    ```

\section*{Permutations}
```

lemma perm_map [intro]:

```
lemma perm_map [intro]:
    assumes p: "a <~~> b"
    assumes p: "a <~~> b"
    shows "map fac~~> map f b"
    shows "map fac~~> map f b"
    using p by simp
    using p by simp
lemma perm_map_switch:
lemma perm_map_switch:
    assumes m: "map f a = map f b" and p: "b <~~> c"
    assumes m: "map f a = map f b" and p: "b <~~> c"
    shows \(" \exists \mathrm{~d} . \mathrm{a}<\sim \sim>\mathrm{d} \wedge \operatorname{map} \mathrm{f} d=\operatorname{map} \mathrm{f} \mathrm{c} "\)
    shows \(" \exists \mathrm{~d} . \mathrm{a}<\sim \sim>\mathrm{d} \wedge \operatorname{map} \mathrm{f} d=\operatorname{map} \mathrm{f} \mathrm{c} "\)
proof -
proof -
    from m have <length \(\mathrm{a}=\) length b >
    from m have <length \(\mathrm{a}=\) length b >
        by (rule map_eq_imp_length_eq)
        by (rule map_eq_imp_length_eq)
    from \(p\) have <mset \(c=m s e t b\) >
    from \(p\) have <mset \(c=m s e t b\) >
        by simp
        by simp
    then obtain p where <p permutes \(\{. .<\) length b\(\}\) 〉 <permute_list \(\mathrm{p} \mathrm{b}=\)
    then obtain p where <p permutes \(\{. .<\) length b\(\}\) 〉 <permute_list \(\mathrm{p} \mathrm{b}=\)
c >
c >
            by (rule mset_eq_permutation)
            by (rule mset_eq_permutation)
    with <length \(\mathrm{a}=\) length b > have <p permutes \{..<length a\(\}\) >
    with <length \(\mathrm{a}=\) length b > have <p permutes \{..<length a\(\}\) >
        by simp
        by simp
    moreover define \(d\) where <d = permute_list p a>
    moreover define \(d\) where <d = permute_list p a>
    ultimately have <mset \(a=m s e t d\rangle\langle m a p f d=m a p f c\)
    ultimately have <mset \(a=m s e t d\rangle\langle m a p f d=m a p f c\)
        using \(m\) <p permutes \{..<length b\}> <permute_list \(p\) b \(=c\) >
        using \(m\) <p permutes \{..<length b\}> <permute_list \(p\) b \(=c\) >
        by (auto simp flip: permute_list_map)
        by (auto simp flip: permute_list_map)
    then show ?thesis
    then show ?thesis
        by auto
        by auto
qed
qed
lemma (in monoid) perm_assoc_switch:
lemma (in monoid) perm_assoc_switch:
    assumes a:"as [~] bs" and p: "bs <~~> cs"
    assumes a:"as [~] bs" and p: "bs <~~> cs"
    shows " \(\exists \mathrm{bs}\) '. as <~~> bs' \(\wedge\) bs' [~] cs"
    shows " \(\exists \mathrm{bs}\) '. as <~~> bs' \(\wedge\) bs' [~] cs"
proof -
proof -
    from p have <mset cs = mset bs>
    from p have <mset cs = mset bs>
        by simp
        by simp
    then obtain p where <p permutes \{..<length bs\}> <permute_list p bs
    then obtain p where <p permutes \{..<length bs\}> <permute_list p bs
= cs \(>\)
= cs \(>\)
            by (rule mset_eq_permutation)
            by (rule mset_eq_permutation)
    moreover define bs' where <bs' = permute_list p as>
    moreover define bs' where <bs' = permute_list p as>
    ultimately have <as <~~> bs'> and 〈bs' [~] cs〉
    ultimately have <as <~~> bs'> and 〈bs' [~] cs〉
        using a by (auto simp add: list_all2_permute_list_iff list_all2_lengthD)
        using a by (auto simp add: list_all2_permute_list_iff list_all2_lengthD)
    then show ?thesis by blast
    then show ?thesis by blast
qed
qed
lemma (in monoid) perm_assoc_switch_r:
lemma (in monoid) perm_assoc_switch_r:
    assumes p: "as <~~> bs" and a:"bs [~] cs"
```

 assumes p: "as <~~> bs" and a:"bs [~] cs"
    ```
```

 shows "\existsbs'. as [~] bs' ^ bs' <~~> cs"
 using a p by (rule list_all2_reorder_left_invariance)
 declare perm_sym [sym]
lemma perm_setP:
assumes perm: "as <~~> bs"
and as: "P (set as)"
shows "P (set bs)"
using assms by (metis set_mset_mset)
lemmas (in monoid) perm_closed = perm_setP[of _ _ "\lambdaas. as \subseteq carrier
G"]
lemmas (in monoid) irrlist_perm_cong = perm_setP[of _ _ "\lambdaas. \foralla\inas.
irreducible G a"]
Essentially equal factorizations
lemma (in monoid) essentially_equalI:
assumes ex: "fs1 <~~> fs1'" "fs1' [~] fs2"
shows "essentially_equal G fs1 fs2"
using ex unfolding essentially_equal_def by fast
lemma (in monoid) essentially_equalE:
assumes ee: "essentially_equal G fs1 fs2"
and e: "\fs1'. \llbracketfs1 <~~> fs1'; fs1' [~] fs2\rrbracket \Longrightarrow P"
shows "P"
using ee unfolding essentially_equal_def by (fast intro: e)
lemma (in monoid) ee_refl [simp,intro]:
assumes carr: "set as \subseteq carrier G"
shows "essentially_equal G as as"
using carr by (fast intro: essentially_equalI)
lemma (in monoid) ee_sym [sym]:
assumes ee: "essentially_equal G as bs"
and carr: "set as \subseteq carrier G" "set bs \subseteq carrier G"
shows "essentially_equal G bs as"
using ee
proof (elim essentially_equalE)
fix fs
assume "as <~~> fs" "fs [~] bs"
from perm_assoc_switch_r [OF this] obtain fs' where a: "as [~] fs'"
and p: "fs' <~~> bs"
by blast
from p have "bs <~~> fs'" by (rule perm_sym)
with a[symmetric] carr show ?thesis
by (iprover intro: essentially_equall perm_closed)
qed

```
```

lemma (in monoid) ee_trans [trans]:
assumes ab: "essentially_equal G as bs" and bc: "essentially_equal
G bs cs"
and ascarr: "set as \subseteq carrier G"
and bscarr: "set bs \subseteq carrier G"
and cscarr: "set cs \subseteq carrier G"
shows "essentially_equal G as cs"
using ab bc
proof (elim essentially_equalE)
fix abs bcs
assume "abs [~] bs" and pb: "bs <~~> bcs"
from perm_assoc_switch [OF this] obtain bs' where p: "abs <~~> bs'"
and a: "bs' [~] bcs"
by blast
assume "as <~~> abs"
with p have pp: "as <~~> bs'" by simp
from pp ascarr have c1: "set bs' \subseteq carrier G" by (rule perm_closed)
from pb bscarr have c2: "set bcs }\subseteq\mathrm{ carrier G" by (rule perm_closed)
assume "bcs [~] cs"
then have "bs' [~] cs"
using a c1 c2 cscarr listassoc_trans by blast
with pp show ?thesis
by (rule essentially_equalI)
qed

```

\subsection*{26.5.3 Properties of lists of elements}

Multiplication of factors in a list
```

lemma (in monoid) multlist_closed [simp, intro]:
assumes ascarr: "set fs \subseteq carrier G"
shows "foldr (}\otimes\mathrm{) fs 1 f carrier G"
using ascarr by (induct fs) simp_all
lemma (in comm_monoid) multlist_dividesI:
assumes "f \in set fs" and "set fs \subseteq carrier G"
shows "f divides (foldr (}\otimes\mathrm{) fs 1)"
using assms
proof (induction fs)
case (Cons a fs)
then have f: "f \in carrier G"
by blast
show ?case
using Cons.IH Cons.prems(1) Cons.prems(2) divides_prod_l f by auto
qed auto
lemma (in comm_monoid_cancel) multlist_listassoc_cong:
assumes "fs [~] fs'"
and "set fs \subseteq carrier G" and "set fs' \subseteq carrier G"

```
```

 shows "foldr (\otimes) fs 1 ~ foldr (\otimes) fs' 1"
 using assms
 proof (induct fs arbitrary: fs')
case (Cons a as fs')
then show ?case
proof (induction fs')
case (Cons b bs)
then have p: "a \otimes foldr (\otimes) as 1 ~ b \otimes foldr (\otimes) as 1"
by (simp add: mult_cong_l)
then have "foldr (}\otimes\mathrm{) as 1 ~ foldr (}\otimes\mathrm{) bs 1"
using Cons by auto
with Cons have "b \otimes foldr (\otimes) as 1 ~ b \otimes foldr (\otimes) bs 1"
by (simp add: mult_cong_r)
then show ?case
using Cons.prems(3) Cons.prems(4) monoid.associated_trans monoid_axioms
p by force
qed auto
qed auto
lemma (in comm_monoid) multlist_perm_cong:
assumes prm: "as <~~> bs"
and ascarr: "set as \subseteq carrier G"
shows "foldr (\otimes) as 1 = foldr (\otimes) bs 1"
proof -
from prm have <mset (rev as) = mset (rev bs)>
by simp
moreover note one_closed
ultimately have <fold (}\otimes\mathrm{) (rev as) 1 = fold (}\otimes\mathrm{) (rev bs) 1>
by (rule fold_permuted_eq) (use ascarr in <auto intro: m_lcomm>)
then show ?thesis
by (simp add: foldr_conv_fold)
qed
lemma (in comm_monoid_cancel) multlist_ee_cong:
assumes "essentially_equal G fs fs'"
and "set fs \subseteq carrier G" and "set fs' \subseteq carrier G"
shows "foldr (}\otimes\mathrm{) fs 1 ~ foldr (() fs' 1"
using assms
by (metis essentially_equal_def multlist_listassoc_cong multlist_perm_cong
perm_closed)

```

\subsection*{26.5.4 Factorization in irreducible elements}
```

lemma wfactorsI:
fixes G (structure)
assumes "\forallf\inset fs. irreducible G f"
and "foldr (}\otimes\mathrm{) fs 1 ~ a"
shows "wfactors G fs a"
using assms unfolding wfactors_def by simp

```
```

lemma wfactorsE:
fixes G (structure)
assumes wf: "wfactors G fs a"
and e: "\llbracket\forallf\inset fs. irreducible G f; foldr (\otimes) fs 1 ~ a\rrbracket \Longrightarrow P"
shows "P"
using wf unfolding wfactors_def by (fast dest: e)
lemma (in monoid) factorsI:
assumes "\forallf\inset fs. irreducible G f"
and "foldr (\otimes) fs 1 = a"
shows "factors G fs a"
using assms unfolding factors_def by simp
lemma factorsE:
fixes G (structure)
assumes f: "factors G fs a"
and e: "\llbracket\forallf\inset fs. irreducible G f; foldr (\otimes) fs 1 = a\rrbracket\Longrightarrow P"
shows "P"
using f unfolding factors_def by (simp add: e)
lemma (in monoid) factors_wfactors:
assumes "factors G as a" and "set as \subseteqcarrier G"
shows "wfactors G as a"
using assms by (blast elim: factorsE intro: wfactorsI)
lemma (in monoid) wfactors_factors:
assumes "wfactors G as a" and "set as \subseteq carrier G"
shows " }\exists\textrm{a}\mathrm{ '. factors G as a' }\wedge a' ~ a"
using assms by (blast elim: wfactorsE intro: factorsI)
lemma (in monoid) factors_closed [dest]:
assumes "factors G fs a" and "set fs \subseteq carrier G"
shows "a \in carrier G"
using assms by (elim factorsE, clarsimp)
lemma (in monoid) nunit_factors:
assumes anunit: "a \& Units G"
and fs: "factors G as a"
shows "length as > 0"
proof -
from anunit Units_one_closed have "a \not= 1" by auto
with fs show ?thesis by (auto elim: factorsE)
qed
lemma (in monoid) unit_wfactors [simp]:
assumes aunit: "a \in Units G"
shows "wfactors G [] a"
using aunit by (intro wfactorsI) (simp, simp add: Units_assoc)

```
```

lemma (in comm_monoid_cancel) unit_wfactors_empty:
assumes aunit: "a \in Units G"
and wf: "wfactors G fs a"
and carr[simp]: "set fs \subseteq carrier G"
shows "fs = []"
proof (cases fs)
case fs: (Cons f fs')
from carr have fcarr[simp]: "f \in carrier G" and carr'[simp]: "set
fs' \subseteq carrier G"
by (simp_all add: fs)
from fs wf have "irreducible G f" by (simp add: wfactors_def)
then have fnunit: "f \& Units G" by (fast elim: irreducibleE)
from fs wf have a: "f \otimes foldr (() fs' 1 ~ a" by (simp add: wfactors_def)
note aunit
also from fs wf
have a: "f \otimes foldr (\otimes) fs' 1 ~ a" by (simp add: wfactors_def)
have "a ~ f \otimes foldr (\otimes) fs' 1"
by (simp add: Units_closed[OF aunit] a[symmetric])
finally have "f \otimes foldr (}\otimes\mathrm{) fs' 1 G Units G" by simp
then have "f \in Units G" by (intro unit_factor[of f], simp+)
with fnunit show ?thesis by contradiction
qed
Comparing wfactors
lemma (in comm_monoid_cancel) wfactors_listassoc_cong_l:
assumes fact: "wfactors G fs a"
and asc: "fs [~] fs'"
and carr: "a \in carrier G" "set fs }\subseteq\mathrm{ carrier G" "set fs' }\subseteq\mathrm{ carrier
G"
shows "wfactors G fs' a"
proof -
{ from asc[symmetric] have "foldr (\otimes) fs' 1 ~ foldr (\otimes) fs 1"
by (simp add: multlist_listassoc_cong carr)
also assume "foldr (\otimes) fs 1 ~ a"
finally have "foldr (}\otimes\mathrm{) fs' 1 ~ a" by (simp add: carr) }
then show ?thesis
using fact
by (meson asc carr(2) carr(3) irrlist_listassoc_cong wfactors_def)
qed
lemma (in comm_monoid) wfactors_perm_cong_l:
assumes "wfactors G fs a"
and "fs <~~> fs'"
and "set fs \subseteq carrier G"
shows "wfactors G fs' a"

```
using assms irrlist_perm_cong multlist_perm_cong wfactors_def by fastforce
lemma (in comm_monoid_cancel) wfactors_ee_cong_l [trans]:
assumes ee: "essentially_equal \(G\) as bs"
and bfs: "wfactors G bs b"
and carr: "b \(\in\) carrier G" "set as \(\subseteq\) carrier G" "set bs \(\subseteq\) carrier
G"
shows "wfactors G as b"
using ee
proof (elim essentially_equalE)
fix fs
assume prm: "as <~~> fs"
with carr have fscarr: "set fs \(\subseteq\) carrier G"
using perm_closed by blast
note bfs
also assume [symmetric]: "fs [~] bs"
also (wfactors_listassoc_cong_l)
have <mset fs = mset as> using prm by simp
finally (wfactors_perm_cong_1)
show "wfactors G as b" by (simp add: carr fscarr)
qed
lemma (in monoid) wfactors_cong_r [trans]:
assumes fac: "wfactors G fs a" and aa': "a ~ a""
and carr[simp]: "a \(\in\) carrier G" "a' \(\in\) carrier G" "set fs \(\subseteq\) carrier
G"
shows "wfactors G fs a'"
using fac
proof (elim wfactorsE, intro wfactorsI)
assume "foldr ( \(\otimes\) ) fs \(1 \sim\) a" also note aa'
finally show "foldr ( \(\otimes\) ) fs \(1 \sim\) a'" by simp
qed

\subsection*{26.5.5 Essentially equal factorizations}
```

lemma (in comm_monoid_cancel) unitfactor_ee:
assumes uunit: "u \in Units G"
and carr: "set as \subseteq carrier G"
shows "essentially_equal G (as[0 := (as!0 \otimes u)]) as"
(is "essentially_equal G ?as' as")
proof -
have "as[0 := as ! 0 \otimes u] [~] as"
proof (cases as)
case (Cons a as')
then show ?thesis
using associatedI2 carr uunit by auto
qed auto
then show ?thesis

```
using essentially_equal_def by blast
qed
lemma (in comm_monoid_cancel) factors_cong_unit:
assumes \(\mathrm{u}: ~ " \mathrm{u} \in\) Units G"
and a: "a \(\notin\) Units G"
and afs: "factors \(G\) as a"
and ascarr: "set as \(\subseteq\) carrier \(G\) "
shows "factors \(G(a s[0:=(a s!0 \otimes u)])(a \otimes u) "\)
(is "factors G ?as' ?a'")
proof (cases as)
case Nil
then show ?thesis
using afs a nunit_factors by auto
next
case (Cons b bs)
have *: " \(\forall \mathrm{f} \in\) set as. irreducible G f " "foldr ( \(\otimes\) ) as \(\mathbf{1}=\mathrm{a}\) "
using afs by (auto simp: factors_def)
show ?thesis
proof (intro factorsI)
show "foldr ( \(\otimes\) ) (as [0 := as ! \(0 \otimes u]\) ) \(1=a \otimes u "\) using Cons u ascarr * by (auto simp add: m_ac Units_closed)
show \(" \forall f \in\) set (as[0 := as \(!0 \otimes u])\). irreducible \(G f "\) using Cons u ascarr * by (force intro: irreducible_prod_rI)
qed
qed
lemma (in comm_monoid) perm_wfactorsD:
assumes prm: "as <~~> bs"
and afs: "wfactors \(G\) as a"
and bfs: "wfactors \(G\) bs b"
and [simp]: "a \(\in\) carrier G" "b \(\in\) carrier G"
and ascarr [simp]: "set as \(\subseteq\) carrier G"
shows "a ~b"
using afs bfs
proof (elim wfactorsE)
from prm have [simp]: "set bs \(\subseteq\) carrier G" by (simp add: perm_closed)
assume "foldr ( \(\otimes\) ) as \(1 \sim\) a"
then have "a \(\sim\) foldr \((\otimes)\) as \(1 "\)
by (simp add: associated_sym)
also from prm
have "foldr ( \(\otimes\) ) as \(1=\) foldr ( \(\otimes\) ) bs 1" by (rule multlist_perm_cong, simp)
also assume "foldr ( \(\otimes\) ) bs \(1 \sim \mathrm{~b}\) "
finally show "a \(\sim\) b" by simp
qed
lemma (in comm_monoid_cancel) listassoc_wfactorsD:
assumes assoc: "as [~] bs"
```

 and afs: "wfactors G as a"
 and bfs: "wfactors G bs b"
 and [simp]: "a \in carrier G" "b \in carrier G"
 and [simp]: "set as \subseteq carrier G" "set bs \subseteq carrier G"
 shows "a ~ b"
 using afs bfs
 proof (elim wfactorsE)
assume "foldr (\otimes) as 1 ~ a"
then have "a ~ foldr (\otimes) as 1" by (simp add: associated_sym)
also from assoc
have "foldr (}\otimes\mathrm{) as 1 ~ foldr (}\otimes\mathrm{) bs 1" by (rule multlist_listassoc_cong,
simp+)
also assume "foldr (\otimes) bs 1 ~ b"
finally show "a ~ b" by simp
qed
lemma (in comm_monoid_cancel) ee_wfactorsD:
assumes ee: "essentially_equal G as bs"
and afs: "wfactors G as a" and bfs: "wfactors G bs b"
and [simp]: "a \in carrier G" "b \in carrier G"
and ascarr[simp]: "set as \subseteq carrier G" and bscarr[simp]: "set bs
Ccarrier G"
shows "a ~ b"
using ee
proof (elim essentially_equalE)
fix fs
assume prm: "as <~~> fs"
then have as'carr[simp]: "set fs \subseteq carrier G"
by (simp add: perm_closed)
from afs prm have afs': "wfactors G fs a"
by (rule wfactors_perm_cong_l) simp
assume "fs [~] bs"
from this afs' bfs show "a ~ b"
by (rule listassoc_wfactorsD) simp_all
qed
lemma (in comm_monoid_cancel) ee_factorsD:
assumes ee: "essentially_equal G as bs"
and afs: "factors G as a" and bfs:"factors G bs b"
and "set as \subseteqcarrier G" "set bs \subseteq carrier G"
shows "a ~ b"
using assms by (blast intro: factors_wfactors dest: ee_wfactorsD)
lemma (in factorial_monoid) ee_factorsI:
assumes ab: "a ~ b"
and afs: "factors G as a" and anunit: "a \& Units G"
and bfs: "factors G bs b" and bnunit: "b \& Units G"
and ascarr: "set as \subseteq carrier G" and bscarr: "set bs \subseteq carrier G"
shows "essentially_equal G as bs"

```
```

proof -
note carr[simp] = factors_closed[OF afs ascarr] ascarr[THEN subsetD]
factors_closed[OF bfs bscarr] bscarr [THEN subsetD]
from ab carr obtain u where uunit: "u \in Units G" and a: "a = b \otimes u"
by (elim associatedE2)
from uunit bscarr have ee: "essentially_equal G (bs[0 := (bs!0 \otimes u)])
bs"
(is "essentially_equal G ?bs' bs")
by (rule unitfactor_ee)
from bscarr uunit have bs'carr: "set ?bs' \subseteq carrier G"
by (cases bs) (simp_all add: Units_closed)
from uunit bnunit bfs bscarr have fac: "factors G ?bs' (b \& u)"
by (rule factors_cong_unit)
from afs fac[simplified a[symmetric]] ascarr bs'carr anunit
have "essentially_equal G as ?bs'"
by (blast intro: factors_unique)
also note ee
finally show "essentially_equal G as bs"
by (simp add: ascarr bscarr bs'carr)
qed
lemma (in factorial_monoid) ee_wfactorsI:
assumes asc: "a ~ b"
and asf: "wfactors G as a" and bsf: "wfactors G bs b"
and acarr[simp]: "a \in carrier G" and bcarr[simp]: "b \in carrier G"
and ascarr[simp]: "set as \subseteq carrier G" and bscarr[simp]: "set bs
Ccarrier G"
shows "essentially_equal G as bs"
using assms
proof (cases "a \in Units G")
case aunit: True
also note asc
finally have bunit: "b \in Units G" by simp
from aunit asf ascarr have e: "as = []"
by (rule unit_wfactors_empty)
from bunit bsf bscarr have e': "bs = []"
by (rule unit_wfactors_empty)
have "essentially_equal G [] []"
by (fast intro: essentially_equalI)
then show ?thesis
by (simp add: e e')
next

```
```

 case anunit: False
 have bnunit: "b & Units G"
 proof clarify
 assume "b \in Units G"
 also note asc[symmetric]
 finally have "a \in Units G" by simp
 with anunit show False ..
 qed
 from wfactors_factors[OF asf ascarr] obtain a' where fa': "factors
 G as a'" and a': "a' ~ a"
by blast
from fa' ascarr have a'carr[simp]: "a' \in carrier G"
by fast
have a'nunit: "a' \& Units G"
proof clarify
assume "a' \in Units G"
also note a'
finally have "a \in Units G" by simp
with anunit
show "False" ..
qed
from wfactors_factors[OF bsf bscarr] obtain b' where fb': "factors
G bs b'" and b': "b' ~ b"
by blast
from fb' bscarr have b'carr[simp]: "b' \in carrier G"
by fast
have b'nunit: "b' \& Units G"
proof clarify
assume "b' \in Units G"
also note b'
finally have "b \in Units G" by simp
with bnunit show False ..
qed
note a'
also note asc
also note b'[symmetric]
finally have "a' ~ b'" by simp
from this fa' a'nunit fb' b'nunit ascarr bscarr show "essentially_equal
G as bs"
by (rule ee_factorsI)
qed
lemma (in factorial_monoid) ee_wfactors:
assumes asf: "wfactors G as a"

```
```

 and bsf: "wfactors G bs b"
 and acarr: "a \in carrier G" and bcarr: "b \in carrier G"
 and ascarr: "set as \subseteq carrier G" and bscarr: "set bs \subseteq carrier G"
 shows asc: "a ~ b = essentially_equal G as bs"
 using assms by (fast intro: ee_wfactorsI ee_wfactorsD)
 lemma (in factorial_monoid) wfactors_exist [intro, simp]:
assumes acarr[simp]: "a \in carrier G"
shows " \existsfs. set fs \subseteq carrier G ^ wfactors G fs a"
proof (cases "a \in Units G")
case True
then have "wfactors G [] a" by (rule unit_wfactors)
then show ?thesis by (intro exI) force
next
case False
with factors_exist [OF acarr] obtain fs where fscarr: "set fs }\subseteq\mathrm{ carrier
G" and f: "factors G fs a"
by blast
from f have "wfactors G fs a" by (rule factors_wfactors) fact
with fscarr show ?thesis by fast
qed
lemma (in monoid) wfactors_prod_exists [intro, simp]:
assumes "\foralla < set as. irreducible G a" and "set as }\subseteq\mathrm{ carrier G"
shows "\existsa. a \in carrier G ^ wfactors G as a"
unfolding wfactors_def using assms by blast
lemma (in factorial_monoid) wfactors_unique:
assumes "wfactors G fs a"
and "wfactors G fs' a"
and "a \in carrier G"
and "set fs \subseteq carrier G"
and "set fs' \subseteq carrier G"
shows "essentially_equal G fs fs'"
using assms by (fast intro: ee_wfactorsI[of a a])
lemma (in monoid) factors_mult_single:
assumes "irreducible G a" and "factors G fb b" and "a \in carrier G"
shows "factors G (a \# fb) (a \otimes b)"
using assms unfolding factors_def by simp
lemma (in monoid_cancel) wfactors_mult_single:
assumes f: "irreducible G a" "wfactors G fb b"
"a \in carrier G" "b \in carrier G" "set fb \subseteq carrier G"
shows "wfactors G (a \# fb) (a \otimes b)"
using assms unfolding wfactors_def by (simp add: mult_cong_r)
lemma (in monoid) factors_mult:
assumes factors: "factors G fa a" "factors G fb b"

```
```

 and ascarr: "set fa \subseteq carrier G"
 and bscarr: "set fb \subseteq carrier G"
 shows "factors G (fa @ fb) (a \otimes b)"
 proof -
have "foldr (\otimes) (fa @ fb) 1 = foldr (\otimes) fa 1 \& foldr (\otimes) fb 1" if
"set fa \subseteq carrier G"
"Ball (set fa) (irreducible G)"
using that bscarr by (induct fa) (simp_all add: m_assoc)
then show ?thesis
using assms unfolding factors_def by force
qed
lemma (in comm_monoid_cancel) wfactors_mult [intro]:
assumes asf: "wfactors G as a" and bsf:"wfactors G bs b"
and acarr: "a \in carrier G" and bcarr: "b \in carrier G"
and ascarr: "set as \subseteq carrier G" and bscarr:"set bs \subseteq carrier G"
shows "wfactors G (as @ bs) (a \otimes b)"
using wfactors_factors[OF asf ascarr] and wfactors_factors[OF bsf bscarr]
proof clarsimp
fix a' b'
assume asf': "factors G as a'" and a'a: "a' ~ a"
and bsf': "factors G bs b'" and b'b: "b' ~ b"
from asf' have a'carr: "a' \in carrier G" by (rule factors_closed) fact
from bsf' have b'carr: "b' \in carrier G" by (rule factors_closed) fact
note carr = acarr bcarr a'carr b'carr ascarr bscarr
from asf' bsf' have "factors G (as @ bs) (a' \otimes b')"
by (rule factors_mult) fact+
with carr have abf': "wfactors G (as @ bs) (a' \otimes b')"
by (intro factors_wfactors) simp_all
also from b'b carr have trb: "a' \otimes b' ~ a' \otimes b"
by (intro mult_cong_r)
also from a'a carr have tra: "a' \otimes b ~ a \otimes b"
by (intro mult_cong_l)
finally show "wfactors G (as @ bs) (a \otimes b)"
by (simp add: carr)
qed
lemma (in comm_monoid) factors_dividesI:
assumes "factors G fs a"
and "f \in set fs"
and "set fs \subseteq carrier G"
shows "f divides a"
using assms by (fast elim: factorsE intro: multlist_dividesI)
lemma (in comm_monoid) wfactors_dividesI:
assumes p: "wfactors G fs a"

```
```

 and fscarr: "set fs \subseteq carrier G" and acarr: "a \in carrier G"
 and f: "f \in set fs"
 shows "f divides a"
 using wfactors_factors[OF p fscarr]
 proof clarsimp
fix a'
assume fsa': "factors G fs a'" and a'a: "a' ~ a"
with fscarr have a'carr: "a' \in carrier G"
by (simp add: factors_closed)
from fsa' fscarr f have "f divides a'"
by (fast intro: factors_dividesI)
also note a'a
finally show "f divides a"
by (simp add: f fscarr[THEN subsetD] acarr a'carr)
qed

```

\subsection*{26.5.6 Factorial monoids and wfactors}
```

lemma (in comm_monoid_cancel) factorial_monoidI:
assumes wfactors_exists: "\a. \llbracket a \in carrier G; a \not\in Units G \rrbracket \Longrightarrow \existsfs.
set fs }\subseteq\mathrm{ carrier G ^ wfactors G fs a"
and wfactors_unique:
"\a fs fs'. |a \in carrier G; set fs \subseteq carrier G; set fs' }\subseteq\mathrm{ carrier
G;
wfactors G fs a; wfactors G fs' a\rrbracket \Longrightarrow essentially_equal G fs
fs'"
shows "factorial_monoid G"
proof
fix a
assume acarr: "a \in carrier G" and anunit: "a \not\in Units G"
from wfactors_exists[OF acarr anunit]
obtain as where ascarr: "set as \subseteq carrier G" and afs: "wfactors G
as a"
by blast
from wfactors_factors [OF afs ascarr] obtain a' where afs': "factors
G as a'" and a'a: "a' ~ a"
by blast
from afs' ascarr have a'carr: "a' \in carrier G"
by fast
have a'nunit: "a' \& Units G"
proof clarify
assume "a' \in Units G"
also note a'a
finally have "a \in Units G" by (simp add: acarr)
with anunit show False ..
qed

```
    from a'carr acarr a'a obtain \(u\) where uunit: \(" u \in\) Units \(G\) " and a':
```

"a' = a \& u"
by (blast elim: associatedE2)
note [simp] = acarr Units_closed[OF uunit] Units_inv_closed[OF uunit]
have "a = a \otimes 1" by simp
also have "... = a \otimes (u \otimes inv u)" by (simp add: uunit)
also have "... = a' \otimes inv u" by (simp add: m_assoc[symmetric] a'[symmetric])
finally have a: "a = a' Q inv u".
from ascarr uunit have cr: "set (as[0:=(as!0 \otimes inv u)]) \subseteq carrier
G"
by (cases as) auto
from afs' uunit a'nunit acarr ascarr have "factors G (as[0:=(as!0 \otimes
inv u)]) a"
by (simp add: a factors_cong_unit)
with cr show " }\exists\mathrm{ fs. set fs }\subseteq\mathrm{ carrier G ^ factors G fs a"
by fast
qed (blast intro: factors_wfactors wfactors_unique)

```

\subsection*{26.6 Factorizations as Multisets}

Gives useful operations like intersection
```

abbreviation "assocs G x \equiv eq_closure_of (division_rel G) {x}"

```
definition "fmset \(G\) as \(=\) mset (map (assocs G) as)"

Helper lemmas
lemma (in monoid) assocs_repr_independence:
assumes "y \(\in \operatorname{assocs} G \operatorname{x"~"x\in carrier~G"~}\)
shows "assocs \(G x=\operatorname{assocs} G y "\)
using assms
by (simp add: eq_closure_of_def elem_def) (use associated_sym associated_trans in <blast+>)
lemma (in monoid) assocs_self:
assumes "x \(\in\) carrier \(G\) "
shows "x \(\in\) assocs \(G x\) "
using assms by (fastforce intro: closure_ofI2)
lemma (in monoid) assocs_repr_independenceD:
assumes repr: "assocs \(G x=\operatorname{assocs} G y "\) and ycarr: "y \(\in\) carrier \(G "\)
shows "y \(\in\) assocs \(G\) x"
unfolding repr using ycarr by (intro assocs_self)
lemma (in comm_monoid) assocs_assoc:
assumes "a \(\in \operatorname{assocs} G \operatorname{b"~"b} \in\) carrier \(G "\)
shows "a ~ b"
using assms by (elim closure_ofE2) simp
lemmas (in comm_monoid) assocs_eqD = assocs_repr_independenceD[THEN assocs_assoc]

\subsection*{26.6.1 Comparing multisets}
```

lemma (in monoid) fmset_perm_cong:
assumes prm: "as <~~> bs"
shows "fmset G as = fmset G bs"
using perm_map[OF prm] unfolding fmset_def by blast
lemma (in comm_monoid_cancel) eqc_listassoc_cong:
assumes "as [~] bs" and "set as }\subseteq\mathrm{ carrier G" and "set bs }\subseteq\mathrm{ carrier
G"
shows "map (assocs G) as = map (assocs G) bs"
using assms
proof (induction as arbitrary: bs)
case Nil
then show ?case by simp
next
case (Cons a as)
then show ?case
proof (clarsimp simp add: Cons_eq_map_conv list_all2_Cons1)
fix z zs
assume zzs: "a \in carrier G" "set as \subseteq carrier G" "bs = z \# zs" "a
~ z"
"as [~] zs" "z \in carrier G" "set zs \subseteq carrier G"
then show "assocs G a = assocs G z"
apply (simp add: eq_closure_of_def elem_def)
using <a \in carrier G> <z \in carrier G> <a ~ z> associated_sym
associated_trans by blast+
qed
qed
lemma (in comm_monoid_cancel) fmset_listassoc_cong:
assumes "as [~] bs"
and "set as \subseteq carrier G" and "set bs \subseteq carrier G"
shows "fmset G as = fmset G bs"
using assms unfolding fmset_def by (simp add: eqc_listassoc_cong)
lemma (in comm_monoid_cancel) ee_fmset:
assumes ee: "essentially_equal G as bs"
and ascarr: "set as \subseteq carrier G" and bscarr: "set bs \subseteq carrier G"
shows "fmset G as = fmset G bs"
using ee
thm essentially_equal_def
proof (elim essentially_equalE)
fix as'
assume prm: "as <~~> as'"
from prm ascarr have as'carr: "set as' \subseteq carrier G"
by (rule perm_closed)

```
```

 from prm have "fmset G as = fmset G as'"
 by (rule fmset_perm_cong)
 also assume "as' [~] bs"
 with as'carr bscarr have "fmset G as' = fmset G bs"
 by (simp add: fmset_listassoc_cong)
 finally show "fmset G as = fmset G bs" .
 qed
lemma (in comm_monoid_cancel) fmset_ee:
assumes mset: "fmset G as = fmset G bs"
and ascarr: "set as \subseteq carrier G" and bscarr: "set bs \subseteq carrier G"
shows "essentially_equal G as bs"
proof -
from mset have "mset (map (assocs G) bs) = mset (map (assocs G) as)"
by (simp add: fmset_def)
then obtain p where <p permutes {..<length (map (assocs G) as)}>
<permute_list p (map (assocs G) as) = map (assocs G) bs>
by (rule mset_eq_permutation)
then have <p permutes {..<length as}>
<map (assocs G) (permute_list p as) = map (assocs G) bs>
by (simp_all add: permute_list_map)
moreover define as' where <as' = permute_list p as>
ultimately have tp: "as <~~> as'" and tm: "map (assocs G) as' = map
(assocs G) bs"
by simp_all
from tp show ?thesis
proof (rule essentially_equalI)
from tm tp ascarr have as'carr: "set as' \subseteq carrier G"
using perm_closed by blast
from tm as'carr[THEN subsetD] bscarr[THEN subsetD] show "as' [~]
bs"
by (induct as' arbitrary: bs) (simp, fastforce dest: assocs_eqD[THEN
associated_sym])
qed
qed
lemma (in comm_monoid_cancel) ee_is_fmset:
assumes "set as \subseteq carrier G" and "set bs \subseteq carrier G"
shows "essentially_equal G as bs = (fmset G as = fmset G bs)"
using assms by (fast intro: ee_fmset fmset_ee)

```

\subsection*{26.6.2 Interpreting multisets as factorizations}
lemma (in monoid) mset_fmsetEx:
assumes elems: " \(\bigwedge X . \bar{X} \in\) set_mset \(C s \Longrightarrow \exists x . P \mathrm{x} \wedge X=\) assocs \(G \mathrm{x} "\)
shows " \(\exists \mathrm{cs} .(\forall \mathrm{c} \in\) set cs. P c) \(\wedge\) fmset G cs \(=\) Cs"
proof -
from surjE[OF surj_mset] obtain Cs' where Cs: "Cs = mset Cs'" by blast
```

 have "\existscs. (\forallc \in set cs. P c) ^ mset (map (assocs G) cs) = Cs"
 using elems unfolding Cs
 proof (induction Cs')
 case (Cons a Cs')
 then obtain c cs where csP: "\forallx\inset cs. P x" and mset: "mset (map
 (assocs G) cs) = mset Cs'"
and cP: "P c" and a: "a = assocs G c"
by force
then have tP: "\forallx\inset (c\#cs). P x"
by simp
show ?case
using tP mset a by fastforce
qed auto
then show ?thesis by (simp add: fmset_def)
qed
lemma (in monoid) mset_wfactorsEx:
assumes elems: "\X. X }\in\mathrm{ set_mset Cs }\Longrightarrow\exists\textrm{x}.(\textrm{x}\in\operatorname{carrier G ^ irreducible
G x) ^ X = assocs G x"
shows "\existsc cs. c \in carrier G ^ set cs \subseteq carrier G ^ wfactors G cs c
^fmset G cs = Cs"
proof -
have "\existscs. (}\forall\textrm{c}\in\mathrm{ set cs. c }\in\mathrm{ carrier G ^ irreducible G c) ^ fmset G
cs = Cs"
by (intro mset_fmsetEx, rule elems)
then obtain cs where p[rule_format]: "\forallc\inset cs. c \in carrier G ^ irreducible
G c"
and Cs[symmetric]: "fmset G cs = Cs" by auto
from p have cscarr: "set cs \subseteq carrier G" by fast
from p have "\existsc. c \in carrier G ^ wfactors G cs c"
by (intro wfactors_prod_exists) auto
then obtain c where ccarr: "c \in carrier G" and cfs: "wfactors G cs
c" by auto
with cscarr Cs show ?thesis by fast
qed

```

\subsection*{26.6.3 Multiplication on multisets}
```

lemma (in factorial_monoid) mult_wfactors_fmset:

```
lemma (in factorial_monoid) mult_wfactors_fmset:
    assumes afs: "wfactors G as a"
    assumes afs: "wfactors G as a"
        and bfs: "wfactors G bs b"
        and bfs: "wfactors G bs b"
        and cfs: "wfactors G cs (a \otimes b)"
        and cfs: "wfactors G cs (a \otimes b)"
        and carr: "a \in carrier G" "b \in carrier G"
        and carr: "a \in carrier G" "b \in carrier G"
            "set as \subseteqcarrier G" "set bs \subseteq carrier G" "set cs }\subseteq\mathrm{ carrier
            "set as \subseteqcarrier G" "set bs \subseteq carrier G" "set cs }\subseteq\mathrm{ carrier
G"
G"
    shows "fmset G cs = fmset G as + fmset G bs"
    shows "fmset G cs = fmset G as + fmset G bs"
proof -
proof -
    from assms have "wfactors G (as @ bs) (a \otimes b)"
    from assms have "wfactors G (as @ bs) (a \otimes b)"
        by (intro wfactors_mult)
```

 by (intro wfactors_mult)
    ```
```

 with carr cfs have "essentially_equal G cs (as@bs)"
 by (intro ee_wfactorsI[of "a\otimesb" "a\otimesb"]) simp_all
 with carr have "fmset G cs = fmset G (as@bs)"
 by (intro ee_fmset) simp_all
 also have "fmset G (as@bs) = fmset G as + fmset G bs"
 by (simp add: fmset_def)
 finally show "fmset G cs = fmset G as + fmset G bs" .
 qed
lemma (in factorial_monoid) mult_factors_fmset:
assumes afs: "factors G as a"
and bfs: "factors G bs b"
and cfs: "factors G cs (a \otimes b)"
and "set as \subseteqcarrier G" "set bs \subseteqcarrier G" "set cs \subseteqcarrier
G"
shows "fmset G cs = fmset G as + fmset G bs"
using assms by (blast intro: factors_wfactors mult_wfactors_fmset)
lemma (in comm_monoid_cancel) fmset_wfactors_mult:
assumes mset: "fmset G cs = fmset G as + fmset G bs"
and carr: "a \in carrier G" "b \in carrier G" "c \in carrier G"
"set as \subseteqcarrier G" "set bs \subseteq carrier G" "set cs \subseteq carrier G"
and fs: "wfactors G as a" "wfactors G bs b" "wfactors G cs c"
shows "c ~ a \otimes b"
proof -
from carr fs have m: "wfactors G (as @ bs) (a \& b)"
by (intro wfactors_mult)
from mset have "fmset G cs = fmset G (as@bs)"
by (simp add: fmset_def)
then have "essentially_equal G cs (as@bs)"
by (rule fmset_ee) (simp_all add: carr)
then show "c ~ a \otimes b"
by (rule ee_wfactorsD[of "cs" "as@bs"]) (simp_all add: assms m)
qed

```

\subsection*{26.6.4 Divisibility on multisets}
```

lemma (in factorial_monoid) divides_fmsubset:

```
lemma (in factorial_monoid) divides_fmsubset:
    assumes ab: "a divides b"
    assumes ab: "a divides b"
        and afs: "wfactors G as a"
        and afs: "wfactors G as a"
        and bfs: "wfactors G bs b"
        and bfs: "wfactors G bs b"
        and carr: "a \in carrier G" "b \in carrier G" "set as \subseteq carrier G"
        and carr: "a \in carrier G" "b \in carrier G" "set as \subseteq carrier G"
"set bs \subseteq carrier G"
"set bs \subseteq carrier G"
    shows "fmset G as \subseteq_# fmset G bs"
    shows "fmset G as \subseteq_# fmset G bs"
    using ab
    using ab
proof (elim dividesE)
proof (elim dividesE)
    fix c
    fix c
    assume ccarr: "c \in carrier G"
```

 assume ccarr: "c \in carrier G"
    ```
```

 from wfactors_exist [OF this]
 obtain cs where cscarr: "set cs \subseteq carrier G" and cfs: "wfactors G
 cs c"
by blast
note carr = carr ccarr cscarr
assume "b = a \otimes c"
with afs bfs cfs carr have "fmset G bs = fmset G as + fmset G cs"
by (intro mult_wfactors_fmset[OF afs cfs]) simp_all
then show ?thesis by simp
qed
lemma (in comm_monoid_cancel) fmsubset_divides:
assumes msubset: "fmset G as \subseteq\# fmset G bs"
and afs: "wfactors G as a"
and bfs: "wfactors G bs b"
and acarr: "a \in carrier G"
and bcarr: "b \in carrier G"
and ascarr: "set as \subseteq carrier G"
and bscarr: "set bs \subseteq carrier G"
shows "a divides b"
proof -
from afs have airr: "\foralla \in set as. irreducible G a" by (fast elim:
wfactorsE)
from bfs have birr: "\forallb \in set bs. irreducible G b" by (fast elim:
wfactorsE)
have "\existsc cs. c \in carrier G ^ set cs \subseteq carrier G ^ wfactors G cs c
^fmset G cs = fmset G bs - fmset G as"
proof (intro mset_wfactorsEx, simp)
fix X
assume "X \in\# fmset G bs - fmset G as"
then have "X \in\# fmset G bs" by (rule in_diffD)
then have "X \in set (map (assocs G) bs)" by (simp add: fmset_def)
then have "\existsx. x \in set bs }\wedge X = assocs G x" by (induct bs) aut
then obtain x where xbs: "x \in set bs" and X: "X = assocs G x" by
auto
with bscarr have xcarr: "x \in carrier G" by fast
from xbs birr have xirr: "irreducible G x" by simp
from xcarr and xirr and X show "\existsx. x \in carrier G ^ irreducible
G x ^ X = assocs G x"
by fast
qed
then obtain c cs
where ccarr: "c \in carrier G"
and cscarr: "set cs \subseteq carrier G"
and csf: "wfactors G cs c"
and csmset: "fmset G cs = fmset G bs - fmset G as" by auto

```
```

 from csmset msubset
 have "fmset G bs = fmset G as + fmset G cs"
 by (simp add: multiset_eq_iff subseteq_mset_def)
 then have basc: "b ~ a \otimes c"
 by (rule fmset_wfactors_mult) fact+
 then show ?thesis
 proof (elim associatedE2)
 fix u
 assume "u \in Units G" "b = a \otimes c & u"
 with acarr ccarr show "a divides b"
 by (fast intro: dividesI[of "c \otimes u"] m_assoc)
 qed (simp_all add: acarr bcarr ccarr)
 qed
lemma (in factorial_monoid) divides_as_fmsubset:
assumes "wfactors G as a"
and "wfactors G bs b"
and "a \in carrier G"
and "b \in carrier G"
and "set as \subseteq carrier G"
and "set bs \subseteq carrier G"
shows "a divides b = (fmset G as \subseteq\# fmset G bs)"
using assms
by (blast intro: divides_fmsubset fmsubset_divides)

```

Proper factors on multisets
lemma (in factorial_monoid) fmset_properfactor:
    assumes asubb: "fmset \(G\) as \(\subseteq\) \# fmset \(G\) bs"
        and anb: "fmset \(G\) as \(\neq\) fmset \(G\) bs"
        and "wfactors \(G\) as a"
        and "wfactors G bs b"
        and "a \(\in\) carrier \(G\) "
        and "b \(\in\) carrier G"
        and "set as \(\subseteq\) carrier G"
        and "set bs \(\subseteq\) carrier G"
    shows "properfactor G a b"
proof (rule properfactorI)
    show "a divides b"
        using assms asubb fmsubset_divides by blast
    show "ᄀ b divides a"
        by (meson anb assms asubb factorial_monoid.divides_fmsubset factorial_monoid_axioms
subset_mset.antisym)
qed
lemma (in factorial_monoid) properfactor_fmset:
    assumes "properfactor G a b"
        and "wfactors G as a"
        and "wfactors G bs b"
```

 and "a \in carrier G"
 and "b \in carrier G"
 and "set as \subseteqcarrier G"
 and "set bs \subseteq carrier G"
 shows "fmset G as \subseteq# fmset G bs"
 using assms
 by (meson divides_as_fmsubset properfactor_divides)
 lemma (in factorial_monoid) properfactor_fmset_ne:
assumes pf: "properfactor G a b"
and "wfactors G as a"
and "wfactors G bs b"
and "a \in carrier G"
and "b \in carrier G"
and "set as \subseteq carrier G"
and "set bs \subseteq carrier G"
shows "fmset G as }\not=\mathrm{ fmset G bs"
using properfactorE [OF pf] assms divides_as_fmsubset by force

```

\subsection*{26.7 Irreducible Elements are Prime}
```

lemma (in factorial_monoid) irreducible_prime:
assumes pirr: "irreducible G p" and pcarr: "p \in carrier G"
shows "prime G p"
using pirr
proof (elim irreducibleE, intro primeI)
fix a b
assume acarr: "a \in carrier G" and bcarr: "b \in carrier G"
and pdvdab: "p divides (a \otimes b)"
and pnunit: "p \& Units G"
assume irreduc[rule_format]:
"\forallb. b \in carrier G ^ properfactor G b p \longrightarrow b \in Units G"
from pdvdab obtain c where ccarr: "c \in carrier G" and abpc: "a \otimes b
= p\otimesc"
by (rule dividesE)
obtain as where ascarr: "set as \subseteq carrier G" and afs: "wfactors G
as a"
using wfactors_exist [OF acarr] by blast
obtain bs where bscarr: "set bs \subseteq carrier G" and bfs: "wfactors G
bs b"
using wfactors_exist [OF bcarr] by blast
obtain cs where cscarr: "set cs \subseteq carrier G" and cfs: "wfactors G
cs c"
using wfactors_exist [OF ccarr] by blast
note carr[simp] = pcarr acarr bcarr ccarr ascarr bscarr cscarr
from pirr cfs abpc have "wfactors G (p \# cs) (a \otimes b)"
by (simp add: wfactors_mult_single)
moreover have "wfactors G (as @ bs) (a \otimes b)"
by (rule wfactors_mult [OF afs bfs]) fact+

```
```

 ultimately have "essentially_equal G (p # cs) (as @ bs)"
 by (rule wfactors_unique) simp+
 then obtain ds where "p # cs <~~> ds" and dsassoc: "ds [~] (as @ bs)"
 by (fast elim: essentially_equalE)
 then have "p \in set ds"
 by (metis <mset (p # cs) = mset ds> insert_iff list.set(2) perm_set_eq)
 with dsassoc obtain p' where "p' \in set (as@bs)" and pp': "p ~ p'"
 unfolding list_all2_conv_all_nth set_conv_nth by force
 then consider "p' \in set as" | "p' \in set bs" by auto
 then show "p divides a }\vee p divides b"
 using afs bfs divides_cong_l pp' wfactors_dividesI
 by (meson acarr ascarr bcarr bscarr pcarr)
 qed

```
- A version using factors, more complicated
```

lemma (in factorial_monoid) factors_irreducible_prime:
assumes pirr: "irreducible G p" and pcarr: "p \in carrier G"
shows "prime G p"
proof (rule primeI)
show "p \& Units G"
by (meson irreducibleE pirr)
have irreduc: "^b. \llbracketb \in carrier G; properfactor G b p\rrbracket\Longrightarrow b \in Units
G"
using pirr by (auto simp: irreducible_def)
show "p divides a \vee p divides b"
if acarr: "a \in carrier G" and bcarr: "b \in carrier G" and pdvdab:
"p divides (a \otimes b)" for a b
proof -
from pdvdab obtain c where ccarr: "c \in carrier G" and abpc: "a \otimes
b = p \otimes c"
by (rule dividesE)
note [simp] = pcarr acarr bcarr ccarr
show "p divides a \vee p divides b"
proof (cases "a \in Units G")
case True
then have "p divides b"
by (metis acarr associatedI2' associated_def bcarr divides_trans
m_comm pcarr pdvdab)
then show ?thesis ..
next
case anunit: False
show ?thesis
proof (cases "b \in Units G")
case True
then have "p divides a"
by (meson acarr bcarr divides_unit irreducible_prime pcarr pdvdab

```
```

pirr prime_def)
then show ?thesis ..
next
case bnunit: False
then have cnunit: "c \& Units G"
by (metis abpc acarr anunit bcarr ccarr irreducible_prodE irreducible_prod_rI
pcarr pirr)
then have abnunit: "a \otimes b \& Units G"
using acarr anunit bcarr unit_factor by blast
obtain as where ascarr: "set as \subseteq carrier G" and afac: "factors
G as a"
using factors_exist [OF acarr anunit] by blast
obtain bs where bscarr: "set bs \subseteq carrier G" and bfac: "factors
G bs b"
using factors_exist [OF bcarr bnunit] by blast
obtain cs where cscarr: "set cs \subseteq carrier G" and cfac: "factors
G cs c"
using factors_exist [OF ccarr cnunit] by auto
note [simp] = ascarr bscarr cscarr
from pirr cfac abpc have abfac': "factors G (p \# cs) (a \otimes b)"
by (simp add: factors_mult_single)
from afac and bfac have "factors G (as @ bs) (a \otimes b)"
by (rule factors_mult) fact+
with abfac' have "essentially_equal G (p \# cs) (as @ bs)"
using abnunit factors_unique by auto
then obtain ds where "p \# cs <~~> ds" and dsassoc: "ds [~] (as
@ bs)"
by (fast elim: essentially_equalE)
then have "p \in set ds"
by (metis list.set_intros(1) set_mset_mset)
with dsassoc obtain p' where "p' \in set (as@bs)" and pp': "p
~ p'"
unfolding list_all2_conv_all_nth set_conv_nth by force
then consider "p' }\in\mathrm{ set as" | "p' }\in\mathrm{ set bs" by auto
then show "p divides a V p divides b"
by (meson afac bfac divides_cong_l factors_dividesI pp' ascarr
bscarr pcarr)
qed
qed
qed
qed

```

\subsection*{26.8 Greatest Common Divisors and Lowest Common Multiples}

\subsection*{26.8.1 Definitions}
```

definition isgcd :: "[('a,_) monoid_scheme, 'a, 'a, 'a] => bool" ("(_

```
gcdof r _ _)" \([81,81,81]\) 80)
    where \(\mathrm{m}^{\mathrm{x}} \operatorname{gcdof}_{\mathrm{G}} \mathrm{a} \mathrm{b} \longleftrightarrow \mathrm{x} \operatorname{divides}_{\mathrm{G}} \mathrm{a} \wedge \mathrm{x} \operatorname{divides}_{\mathrm{G}} \mathrm{b} \wedge\)

```

definition islcm :: "[_, 'a, 'a, 'a] => bool" ("(_ lcmof \imath _ _)" [81,81,81]
80)
where "x lcmof
(\forally\incarrier G. (a dividesG y ^ b dividesG y m x divides
definition somegcd :: "('a,_) monoid_scheme }=>\mathrm{ ' 'a m 'a m 'a"
where "somegcd G a b = (SOME x. x \in carrier G ^ x gcdof G a b)"
definition somelcm :: "('a,_) monoid_scheme }=>\mathrm{ ' 'a m 'a m 'a"
where "somelcm G a b = (SOME x. x \in carrier G ^ x lcmof
definition "SomeGcd G A = Lattice.inf (division_rel G) A"
locale gcd_condition_monoid = comm_monoid_cancel +
assumes gcdof_exists: "\llbracketa \in carrier G; b \in carrier G\rrbracket \Longrightarrow \existsc.c \in carrier
G ^ c gcdof a b"
locale primeness_condition_monoid = comm_monoid_cancel +
assumes irreducible_prime: "\llbracketa \in carrier G; irreducible G a\rrbracket \Longrightarrow prime
G a"
locale divisor_chain_condition_monoid = comm_monoid_cancel +
assumes division_wellfounded: "wf {(x, y). x \in carrier G ^ y \in carrier
G ^ properfactor G x y}"

```

\subsection*{26.8.2 Connections to Lattice.thy}
```

lemma gcdof_greatestLower:

```
lemma gcdof_greatestLower:
    fixes G (structure)
    fixes G (structure)
    assumes carr[simp]: "a \in carrier G" "b \in carrier G"
    assumes carr[simp]: "a \in carrier G" "b \in carrier G"
    shows "(x \in carrier G ^ x gcdof a b) = greatest (division_rel G) x
    shows "(x \in carrier G ^ x gcdof a b) = greatest (division_rel G) x
(Lower (division_rel G) {a, b})'
(Lower (division_rel G) {a, b})'
    by (auto simp: isgcd_def greatest_def Lower_def elem_def)
    by (auto simp: isgcd_def greatest_def Lower_def elem_def)
lemma lcmof_leastUpper:
lemma lcmof_leastUpper:
    fixes G (structure)
    fixes G (structure)
    assumes carr[simp]: "a \in carrier G" "b \in carrier G"
    assumes carr[simp]: "a \in carrier G" "b \in carrier G"
    shows "(x \in carrier G ^ x lcmof a b) = least (division_rel G) x (Upper
    shows "(x \in carrier G ^ x lcmof a b) = least (division_rel G) x (Upper
(division_rel G) {a, b})"
(division_rel G) {a, b})"
    by (auto simp: islcm_def least_def Upper_def elem_def)
    by (auto simp: islcm_def least_def Upper_def elem_def)
lemma somegcd_meet:
lemma somegcd_meet:
    fixes G (structure)
    fixes G (structure)
    assumes carr: "a \in carrier G" "b \in carrier G"
    assumes carr: "a \in carrier G" "b \in carrier G"
    shows "somegcd G a b = meet (division_rel G) a b"
    shows "somegcd G a b = meet (division_rel G) a b"
    by (simp add: somegcd_def meet_def inf_def gcdof_greatestLower[OF carr])
```

 by (simp add: somegcd_def meet_def inf_def gcdof_greatestLower[OF carr])
    ```
```

lemma (in monoid) isgcd_divides_l:
assumes "a divides b"
and "a \in carrier G" "b \in carrier G"
shows "a gcdof a b"
using assms unfolding isgcd_def by fast
lemma (in monoid) isgcd_divides_r:
assumes "b divides a"
and "a \in carrier G" "b \in carrier G"
shows "b gcdof a b"
using assms unfolding isgcd_def by fast

```

\subsection*{26.8.3 Existence of gcd and lcm}
```

lemma (in factorial_monoid) gcdof_exists:
assumes acarr: "a \in carrier G"
and bcarr: "b \in carrier G"
shows "\existsc. c \in carrier G ^ c gcdof a b"
proof -
from wfactors_exist [OF acarr]
obtain as where ascarr: "set as }\subseteq\mathrm{ carrier G" and afs: "wfactors G
as a"
by blast
from afs have airr: "\foralla \in set as. irreducible G a"
by (fast elim: wfactorsE)
from wfactors_exist [OF bcarr]
obtain bs where bscarr: "set bs \subseteq carrier G" and bfs: "wfactors G
bs b"
by blast
from bfs have birr: "\forallb \in set bs. irreducible G b"
by (fast elim: wfactorsE)
have "\existsc cs. c \in carrier G ^ set cs \subseteq carrier G ^ wfactors G cs c
^
fmset G cs = fmset G as \cap\# fmset G bs"
proof (intro mset_wfactorsEx)
fix X
assume "X \in\# fmset G as \cap\# fmset G bs"
then have "X \in\# fmset G as" by simp
then have "X \in set (map (assocs G) as)"
by (simp add: fmset_def)
then have "\existsx. X = assocs G x ^ x f set as"
by (induct as) auto
then obtain x where X: "X = assocs G x" and xas: "x \in set as"
by blast
with ascarr have xcarr: "x \in carrier G"
by blast

```
```

 from xas airr have xirr: "irreducible G x"
 by simp
 from xcarr and xirr and X show "\existsx. (x \in carrier G ^ irreducible
 G x) ^ X = assocs G x"
by blast
qed
then obtain c cs
where ccarr: "c \in carrier G"
and cscarr: "set cs \subseteq carrier G"
and csirr: "wfactors G cs c"
and csmset: "fmset G cs = fmset G as \cap\# fmset G bs"
by auto
have "c gcdof a b"
proof (simp add: isgcd_def, safe)
from csmset
have "fmset G cs \subseteq\# fmset G as"
by simp
then show "c divides a" by (rule fmsubset_divides) fact+
next
from csmset have "fmset G cs \subseteq\# fmset G bs"
by simp
then show "c divides b"
by (rule fmsubset_divides) fact+
next
fix y
assume "y \in carrier G"
from wfactors_exist [OF this]
obtain ys where yscarr: "set ys }\subseteq\mathrm{ carrier G" and yfs: "wfactors
G ys y"
by blast
assume "y divides a"
then have ya: "fmset G ys \subseteq\# fmset G as"
by (rule divides_fmsubset) fact+
assume "y divides b"
then have yb: "fmset G ys \subseteq\# fmset G bs"
by (rule divides_fmsubset) fact+
from ya yb csmset have "fmset G ys \subseteq\# fmset G cs"
by (simp add: subset_mset_def)
then show "y divides c"
by (rule fmsubset_divides) fact+
qed
with ccarr show "\existsc. c \in carrier G ^ c gcdof a b"
by fast
qed

```
```

lemma (in factorial_monoid) lcmof_exists:
assumes acarr: "a \in carrier G"
and bcarr: "b \in carrier G"
shows "\existsc. c \in carrier G ^ c lcmof a b"
proof -
from wfactors_exist [OF acarr]
obtain as where ascarr: "set as \subseteq carrier G" and afs: "wfactors G
as a"
by blast
from afs have airr: "\foralla \in set as. irreducible G a"
by (fast elim: wfactorsE)
from wfactors_exist [OF bcarr]
obtain bs where bscarr: "set bs \subseteq carrier G" and bfs: "wfactors G
bs b"
by blast
from bfs have birr: "\forallb \in set bs. irreducible G b"
by (fast elim: wfactorsE)
have "\existsc cs. c \in carrier G ^ set cs \subseteq carrier G ^ wfactors G cs c
^
fmset G cs = (fmset G as - fmset G bs) + fmset G bs"
proof (intro mset_wfactorsEx)
fix X
assume "X \in\# (fmset G as - fmset G bs) + fmset G bs"
then have "X \in\# fmset G as V X \in\# fmset G bs"
by (auto dest: in_diffD)
then consider "X \in set_mset (fmset G as)" | "X \in set_mset (fmset
G bs)"
by fast
then show " }\exists\textrm{x}.(\textrm{x}\in\mathrm{ carrier G ^ irreducible G x) ^ X = assocs G
x"
proof cases
case 1
then have "X \in set (map (assocs G) as)" by (simp add: fmset_def)
then have "\existsx. x \in set as }\wedge X = assocs G x" by (induct as) aut
then obtain x where xas: "x \in set as" and X: "X = assocs G x"
by auto
with ascarr have xcarr: "x \in carrier G" by fast
from xas airr have xirr: "irreducible G x" by simp
from xcarr and xirr and X show ?thesis by fast
next
case 2
then have "X \in set (map (assocs G) bs)" by (simp add: fmset_def)
then have "\existsx. x }\in\mathrm{ set bs }\wedgeX=\mp@code{assocs G x" by (induct as) auto
then obtain x where xbs: "x \in set bs" and X: "X = assocs G x"
by auto
with bscarr have xcarr: "x \in carrier G" by fast
from xbs birr have xirr: "irreducible G x" by simp

```
```

 from xcarr and xirr and X show ?thesis by fast
 qed
 qed
then obtain c cs
where ccarr: "c \in carrier G"
and cscarr: "set cs \subseteq carrier G"
and csirr: "wfactors G cs c"
and csmset: "fmset G cs = fmset G as - fmset G bs + fmset G bs"
by auto
have "c lcmof a b"
proof (simp add: islcm_def, safe)
from csmset have "fmset G as \subseteq\# fmset G cs"
by (simp add: subseteq_mset_def, force)
then show "a divides c"
by (rule fmsubset_divides) fact+
next
from csmset have "fmset G bs \subseteq\# fmset G cs"
by (simp add: subset_mset_def)
then show "b divides c"
by (rule fmsubset_divides) fact+
next
fix y
assume "y \in carrier G"
from wfactors_exist [OF this]
obtain ys where yscarr: "set ys }\subseteq\mathrm{ carrier G" and yfs: "wfactors
G ys y"
by blast
assume "a divides y"
then have ya: "fmset G as \subseteq\# fmset G ys"
by (rule divides_fmsubset) fact+
assume "b divides y"
then have yb: "fmset G bs \subseteq\# fmset G ys"
by (rule divides_fmsubset) fact+
from ya yb csmset have "fmset G cs \subseteq\# fmset G ys"
using subset_eq_diff_conv subset_mset.le_diff_conv2 by fastforce
then show "c divides y"
by (rule fmsubset_divides) fact+
qed
with ccarr show "\existsc. c \in carrier G ^ c lcmof a b"
by fast
qed

```

\subsection*{26.9 Conditions for Factoriality}

\subsection*{26.9.1 Gcd condition}
```

lemma (in gcd_condition_monoid) division_weak_lower_semilattice [simp]:
"weak_lower_semilattice (division_rel G)"
proof -
interpret weak_partial_order "division_rel G" ..
show ?thesis
proof (unfold_locales, simp_all)
fix x y
assume carr: "x \in carrier G" "y \in carrier G"
from gcdof_exists [OF this] obtain z where zcarr: "z \in carrier G"
and isgcd: "z gcdof x y"
by blast
with carr have "greatest (division_rel G) z (Lower (division_rel
G) {x, y})"
by (subst gcdof_greatestLower[symmetric], simp+)
then show " }\exists\textrm{z}\mathrm{ . greatest (division_rel G) z (Lower (division_rel G)
{x, y})"
by fast
qed
qed

```
lemma (in gcd_condition_monoid) gcdof_cong_l:
    assumes "a' ~ a" "a gcdof b c" "a' \(\in\) carrier G" and carr': "a \(\in\) carrier
G" "b \(\in\) carrier G" "c \(\in\) carrier G"
    shows "a' gcdof b c"
proof -
    interpret weak_lower_semilattice "division_rel G" by simp
    have "is_glb (division_rel G) a' \{b, c\}"
            by (subst greatest_Lower_cong_l[of _ a]) (simp_all add: assms gcdof_greatestLower [symme
    then have " \(a\) ' \(\in\) carrier \(G \wedge\) a' gcdof \(b c\) "
            by (simp add: gcdof_greatestLower carr')
    then show ?thesis ..
qed
lemma (in gcd_condition_monoid) gcd_closed [simp]:
    assumes "a \(\in\) carrier G" "b \(\in\) carrier G"
    shows "somegcd G a b \(\in\) carrier \(G\) "
proof -
    interpret weak_lower_semilattice "division_rel G" by simp
    show ?thesis
    using assms meet_closed by (simp add: somegcd_meet)
qed
lemma (in gcd_condition_monoid) gcd_isgcd:
    assumes "a \(\in\) carrier G" "b \(\in\) carrier G"
    shows "(somegcd G a b) gcdof a b"
proof -
```

 interpret weak_lower_semilattice "division_rel G"
 by simp
 from assms have "somegcd G a b \in carrier G ^(somegcd G a b) gcdof
 a b"
by (simp add: gcdof_greatestLower inf_of_two_greatest meet_def somegcd_meet)
then show "(somegcd G a b) gcdof a b"
by simp
qed
lemma (in gcd_condition_monoid) gcd_exists:
assumes "a \in carrier G" "b \in carrier G"
shows " }\exists\textrm{x}\in\mathrm{ carrier G. x = somegcd G a b"
proof -
interpret weak_lower_semilattice "division_rel G"
by simp
show ?thesis
by (metis assms gcd_closed)
qed
lemma (in gcd_condition_monoid) gcd_divides_l:
assumes "a \in carrier G" "b \in carrier G"
shows "(somegcd G a b) divides a"
proof -
interpret weak_lower_semilattice "division_rel G"
by simp
show ?thesis
by (metis assms gcd_isgcd isgcd_def)
qed
lemma (in gcd_condition_monoid) gcd_divides_r:
assumes "a \in carrier G" "b \in carrier G"
shows "(somegcd G a b) divides b"
proof -
interpret weak_lower_semilattice "division_rel G"
by simp
show ?thesis
by (metis assms gcd_isgcd isgcd_def)
qed
lemma (in gcd_condition_monoid) gcd_divides:
assumes "z divides x" "z divides y"
and L: "x \in carrier G" "y \in carrier G" "z \in carrier G"
shows "z divides (somegcd G x y)"
proof -
interpret weak_lower_semilattice "division_rel G"
by simp
show ?thesis
by (metis gcd_isgcd isgcd_def assms)
qed

```
```

lemma (in gcd_condition_monoid) gcd_cong_l:
assumes "x ~ x'" "x \in carrier G" "x' \in carrier G" "y \in carrier G"
shows "somegcd G x y ~ somegcd G x' y"
proof -
interpret weak_lower_semilattice "division_rel G"
by simp
show ?thesis
using somegcd_meet assms
by (metis eq_object.select_convs(1) meet_cong_l partial_object.select_convs(1))
qed
lemma (in gcd_condition_monoid) gcd_cong_r:
assumes "y ~ y'" "x \in carrier G" "y \in carrier G" "y' \in carrier G"
shows "somegcd G x y ~ somegcd G x y'"
proof -
interpret weak_lower_semilattice "division_rel G" by simp
show ?thesis
by (meson associated_def assms gcd_closed gcd_divides gcd_divides_l
gcd_divides_r monoid.divides_trans monoid_axioms)
qed
lemma (in gcd_condition_monoid) gcdI:
assumes dvd: "a divides b" "a divides c"
and others: "\y. \llbrackety\incarrier G; y divides b; y divides c\rrbracket \Longrightarrow y divides
a"
and acarr: "a \in carrier G" and bcarr: "b \in carrier G" and ccarr:
"c \in carrier G"
shows "a ~ somegcd G b c"
proof -
have "\existsa. a \in carrier G ^ a gcdof b c"
by (simp add: bcarr ccarr gcdof_exists)
moreover have "\x. x \in carrier G ^ x gcdof b c \Longrightarrowa ~ x"
by (simp add: acarr associated_def dvd isgcd_def others)
ultimately show ?thesis
unfolding somegcd_def by (blast intro: someI2_ex)
qed
lemma (in gcd_condition_monoid) gcdI2:
assumes "a gcdof b c" and "a \in carrier G" and "b \in carrier G" and
"c \in carrier G"
shows "a ~ somegcd G b c"
using assms unfolding isgcd_def
by (simp add: gcdI)
lemma (in gcd_condition_monoid) SomeGcd_ex:
assumes "finite A" "A\subseteqcarrier G" "A = {}"
shows " \existsx \in carrier G. x = SomeGcd G A"
proof -

```
```

 interpret weak_lower_semilattice "division_rel G"
 by simp
 show ?thesis
 using finite_inf_closed by (simp add: assms SomeGcd_def)
 qed
lemma (in gcd_condition_monoid) gcd_assoc:
assumes "a \in carrier G" "b \in carrier G" "c \in carrier G"
shows "somegcd G (somegcd G a b) c ~ somegcd G a (somegcd G b c)"
proof -
interpret weak_lower_semilattice "division_rel G"
by simp
show ?thesis
unfolding associated_def
by (meson assms divides_trans gcd_divides gcd_divides_l gcd_divides_r
gcd_exists)
qed
lemma (in gcd_condition_monoid) gcd_mult:
assumes acarr: "a \in carrier G" and bcarr: "b \in carrier G" and ccarr:
"c \in carrier G"
shows "c \otimes somegcd G a b ~ somegcd G (c \& a) (c \& b)"
proof -
let ?d = "somegcd G a b"
let ?e = "somegcd G (c \otimes a) (c \& b)"
note carr[simp] = acarr bcarr ccarr
have dcarr: "?d \in carrier G" by simp
have ecarr: "?e \in carrier G" by simp
note carr = carr dcarr ecarr
have "?d divides a" by (simp add: gcd_divides_l)
then have cd'ca: "c \otimes ?d divides (c \otimes a)" by (simp add: divides_mult_lI)
have "?d divides b" by (simp add: gcd_divides_r)
then have cd'cb: "c \otimes ?d divides (c \otimes b)" by (simp add: divides_mult_lI)
from cd'ca cd'cb have cd'e: "c \otimes ?d divides ?e"
by (rule gcd_divides) simp_all
then obtain u where ucarr[simp]: "u \in carrier G" and e_cdu: "?e =
c \otimes ?d \otimes u"
by blast
note carr = carr ucarr
have "?e divides c Q a" by (rule gcd_divides_l) simp_all
then obtain x where xcarr: "x \in carrier G" and ca_ex: "c \otimes a = ?e
\otimes x"
by blast
with e_cdu have ca_cdux: "c \otimes a = c \& ?d \otimes u \otimes x"

```
```

 by simp
 from ca_cdux xcarr have "c Q a = c \otimes (?d \otimes u | x)"
 by (simp add: m_assoc)
 then have "a = ?d \otimes u & x"
 by (rule l_cancel[of c a]) (simp add: xcarr)+
 then have du'a: "?d \otimes u divides a"
 by (rule dividesI[OF xcarr])
 have "?e divides c \otimes b" by (intro gcd_divides_r) simp_all
 then obtain x where xcarr: "x \in carrier G" and cb_ex: "c \otimes b = ?e
 x"
by blast
with e_cdu have cb_cdux: "c \otimes b = c Q ?d \otimes u | x"
by simp
from cb_cdux xcarr have "c \otimes b = c \otimes (?d \otimes u \otimes x)"
by (simp add: m_assoc)
with xcarr have "b = ?d \otimes u \otimes x"
by (intro l_cancel[of c b]) simp_all
then have du'b: "?d \otimes u divides b"
by (intro dividesI[OF xcarr])
from du'a du'b carr have du'd: "?d \otimes u divides ?d"
by (intro gcd_divides) simp_all
then have uunit: "u \in Units G"
proof (elim dividesE)
fix v
assume vcarr[simp]: "v \in carrier G"
assume d: "?d = ?d \otimes u \otimes v"
have "?d \otimes1 = ?d \otimes u \otimes v" by simp fact
also have "?d \otimes u \otimes v = ?d \otimes (u \otimes v)" by (simp add: m_assoc)
finally have "?d \otimes 1 = ?d \& (u \otimes v)" .
then have i2: "1 = u \otimes v" by (rule l_cancel) simp_all
then have i1: "1 = v \otimes u" by (simp add: m_comm)
from vcarr i1[symmetric] i2[symmetric] show "u \in Units G"
by (auto simp: Units_def)
qed
from e_cdu uunit have "somegcd G (c \& a) (c \& b) ~ c \& somegcd G
a b"
by (intro associatedI2[of u]) simp_all
from this[symmetric] show "c \otimes somegcd G a b ~ somegcd G (c \otimes a)
(c\&b)"
by simp
qed
lemma (in monoid) assoc_subst:
assumes ab: "a ~ b"

```
```

 and cP: "\foralla b. a \in carrier G ^ b \in carrier G ^ a ~ b
 f a \in carrier G ^ f b \in carrier G ^ f a ~ f b"
 and carr: "a \in carrier G" "b \in carrier G"
 shows "f a ~ f b"
 using assms by auto
 lemma (in gcd_condition_monoid) relprime_mult:
assumes abrelprime: "somegcd G a b ~ 1"
and acrelprime: "somegcd G a c ~ 1"
and carr[simp]: "a \in carrier G" "b \in carrier G" "c \in carrier G"
shows "somegcd G a (b \& c) ~ 1"
proof -
have "c = c \& 1" by simp
also from abrelprime[symmetric]
have "... ~ c \otimes somegcd G a b"
by (rule assoc_subst) (simp add: mult_cong_r)+
also have "... ~ somegcd G (c \otimes a) (c \otimes b)"
by (rule gcd_mult) fact+
finally have c: "c ~ somegcd G (c \& a) (c \otimes b)"
by simp
from carr have a: "a ~ somegcd G a (c \otimes a)"
by (fast intro: gcdI divides_prod_l)
have "somegcd G a (b \& c) ~ somegcd G a (c \otimes b)"
by (simp add: m_comm)
also from a have "... ~ somegcd G (somegcd G a (c \& a)) (c \otimes b)"
by (rule assoc_subst) (simp add: gcd_cong_l)+
also from gcd_assoc have "... ~ somegcd G a (somegcd G (c \& a) (c \otimes
b))"
by (rule assoc_subst) simp+
also from c[symmetric] have "... ~ somegcd G a c"
by (rule assoc_subst) (simp add: gcd_cong_r)+
also note acrelprime
finally show "somegcd G a (b \otimes c) ~ 1"
by simp
qed
lemma (in gcd_condition_monoid) primeness_condition: "primeness_condition_monoid
G"
proof -
have *: "p divides a V p divides b"
if pcarr[simp]: "p \in carrier G" and acarr[simp]: "a \in carrier G" and
bcarr[simp]: "b \in carrier G"
and pirr: "irreducible G p" and pdvdab: "p divides a \otimes b"
for p a b
proof -
from pirr have pnunit: "p \& Units G"
and r: "\b. \llbracketb \in carrier G; properfactor G b p\rrbracket \Longrightarrow b \in Units G"

```
```

 by (fast elim: irreducibleE)+
 show "p divides a V p divides b"
 proof (rule ccontr, clarsimp)
 assume npdvda: "\neg p divides a" and npdvdb: "\neg p divides b"
 have "1 ~ somegcd G p a"
 proof (intro gcdI unit_divides)
 show "^y. \llbrackety \in carrier G; y divides p; y divides a\rrbracket \Longrightarrow y \in Units
 G"
by (meson divides_trans npdvda pcarr properfactorI r)
qed auto
with pcarr acarr have pa: "somegcd G p a ~ 1"
by (fast intro: associated_sym[of "1"] gcd_closed)
have "1 ~ somegcd G p b"
proof (intro gcdI unit_divides)
show "^y. \llbrackety \in carrier G; y divides p; y divides b\rrbracket \Longrightarrow y \in Units
G"
by (meson divides_trans npdvdb pcarr properfactorI r)
qed auto
with pcarr bcarr have pb: "somegcd G p b ~ 1"
by (fast intro: associated_sym[of "1"] gcd_closed)
have "p ~ somegcd G p (a \otimes b)"
using pdvdab by (simp add: gcdI2 isgcd_divides_l)
also from pa pb pcarr acarr bcarr have "somegcd G p (a \otimes b) ~ 1"
by (rule relprime_mult)
finally have "p ~ 1"
by simp
with pcarr have "p \in Units G"
by (fast intro: assoc_unit_l)
with pnunit show False ..
qed
qed
show ?thesis
by unfold_locales (metis * primeI irreducibleE)
qed

```
sublocale gcd_condition_monoid \(\subseteq\) primeness_condition_monoid
    by (rule primeness_condition)

\subsection*{26.9.2 Divisor chain condition}
```

lemma (in divisor_chain_condition_monoid) wfactors_exist:
assumes acarr: "a \in carrier G"
shows "\existsas. set as }\subseteq\mathrm{ carrier G ^ wfactors G as a"
proof -
have r: "a \in carrier G \Longrightarrow (\existsas. set as \subseteq carrier G ^ wfactors G as
a)"
using division_wellfounded
proof (induction rule: wf_induct_rule)

```
```

 case (less x)
 then have xcarr: "x \in carrier G"
 by auto
 show ?case
 proof (cases "x \in Units G")
 case True
 then show ?thesis
 by (metis bot.extremum list.set(1) unit_wfactors)
 next
 case xnunit: False
 show ?thesis
 proof (cases "irreducible G x")
 case True
 then show ?thesis
 by (rule_tac x="[x]" in exI) (simp add: wfactors_def xcarr)
 next
 case False
 then obtain y where ycarr: "y \in carrier G" and ynunit: "y }\not
 Units G" and pfyx: "properfactor G y x"
by (meson irreducible_def xnunit)
obtain ys where yscarr: "set ys \subseteq carrier G" and yfs: "wfactors
G ys y"
using less ycarr pfyx by blast
then obtain z where zcarr: "z \in carrier G" and x: "x = y \otimes z"
by (meson dividesE pfyx properfactorE2)
from zcarr ycarr have "properfactor G z x"
using m_comm properfactorI3 x ynunit by blast
with less zcarr obtain zs where zscarr: "set zs \subseteq carrier G"
and zfs: "wfactors G zs z"
by blast
from yscarr zscarr have xscarr: "set (ys@zs) \subseteq carrier G"
by simp
have "wfactors G (ys@zs) (y\otimesz)"
using xscarr ycarr yfs zcarr zfs by auto
then have "wfactors G (ys@zs) x"
by (simp add: x)
with xscarr show "\existsxs. set xs }\subseteq\mathrm{ carrier G ^ wfactors G xs x"
by fast
qed
qed
qed
from acarr show ?thesis by (rule r)
qed

```

\subsection*{26.9.3 Primeness condition}
lemma (in comm_monoid_cancel) multlist_prime_pos:
assumes aprime: "prime G a" and carr: "a \(\in\) carrier G" and as: "set as \(\subseteq\) carrier \(G\) " "a divides (foldr ( \(\otimes\) ) as 1)"
```

 shows "\existsi<length as. a divides (as!i)"
 using as
 proof (induction as)
case Nil
then show ?case
by simp (meson Units_one_closed aprime carr divides_unit primeE)
next
case (Cons x as)
then have "x carrier G" "set as \subseteq carrier G" and "a divides x \otimes
foldr (\otimes) as 1"
by auto
with carr aprime have "a divides x V a divides foldr (\otimes) as 1"
by (intro prime_divides) simp+
then show ?case
using Cons.IH Cons.prems(1) by force
qed
proposition (in primeness_condition_monoid) wfactors_unique:
assumes "wfactors G as a" "wfactors G as' a"
and "a \in carrier G" "set as \subseteq carrier G" "set as' }\subseteq\mathrm{ carrier G"
shows "essentially_equal G as as'"
using assms
proof (induct as arbitrary: a as')
case Nil
then have "a ~ 1"
by (simp add: perm_wfactorsD)
then have "as' = []"
using Nil.prems assoc_unit_l unit_wfactors_empty by blast
then show ?case
by auto
next
case (Cons ah as)
then have ahdvda: "ah divides a"
using wfactors_dividesI by auto
then obtain a'' where a'carr: "a' \in carrier G" and a: "a = ah \otimes a'"
by blast
have carr_ah: "ah \in carrier G" "set as }\subseteq\mathrm{ carrier G"
using Cons.prems by fastforce+
have "ah }\otimes\mathrm{ foldr (}\otimes\mathrm{) as 1 ~ a"
by (rule wfactorsE[OF <wfactors G (ah \# as) a>]) auto
then have "foldr (}\otimes\mathrm{) as 1 ~ a'"
by (metis Cons.prems(4) a a'carr assoc_l_cancel insert_subset list.set(2)
monoid.multlist_closed monoid_axioms)
then
have a'fs: "wfactors G as a'"
by (meson Cons.prems(1) set_subset_Cons subset_iff wfactorsE wfactorsI)
then have ahirr: "irreducible G ah"
by (meson Cons.prems(1) list.set_intros(1) wfactorsE)
with Cons have ahprime: "prime G ah"

```
```

 by (simp add: irreducible_prime)
 note ahdvda
 also have "a divides (foldr (\otimes) as' 1)"
 by (meson Cons.prems(2) associatedE wfactorsE)
 finally have "ah divides (foldr (}\otimes\mathrm{) as' 1)"
 using Cons.prems(4) by auto
 with ahprime have "\existsi<length as'. ah divides as'!i"
 by (intro multlist_prime_pos) (use Cons.prems in auto)
 then obtain i where len: "i<length as'" and ahdvd: "ah divides as'!i"
 by blast
 then obtain x where "x \in carrier G" and asi: "as'!i = ah \otimes x"
 by blast
 have irrasi: "irreducible G (as'!i)"
 using nth_mem[OF len] wfactorsE
 by (metis Cons.prems(2))
 have asicarr[simp]: "as'!i \in carrier G"
 using len <set as' \subseteq carrier G> nth_mem by blast
 have asiah: "as'!i ~ ah"
 by (metis <ah \in carrier G> <x \in carrier G> asi irrasi ahprime
 associatedI2 irreducible_prodE primeE)
note setparts = set_take_subset[of i as'] set_drop_subset[of "Suc
i" as']
have "\existsaa_1. aa_1 G carrier G ^ wfactors G (take i as') aa_1"
using Cons
by (metis setparts(1) subset_trans in_set_takeD wfactorsE wfactors_prod_exists)
then obtain aa_1 where aa1carr [simp]: "aa_1 \in carrier G" and aa1fs:
"wfactors G (take i as') aa_1"
by auto
obtain aa_2 where aa2carr [simp]: "aa_2 \in carrier G"
and aa2fs: "wfactors G (drop (Suc i) as') aa_2"
by (metis Cons.prems(2) Cons.prems(5) subset_code(1) in_set_dropD
wfactors_def wfactors_prod_exists)
have set_drop: "set (drop (Suc i) as') \subseteq carrier G"
using Cons.prems(5) setparts(2) by blast
moreover have set_take: "set (take i as') \subseteq carrier G"
using Cons.prems(5) setparts by auto
moreover have v1: "wfactors G (take i as' @ drop (Suc i) as') (aa_1
\otimes aa_2)"
using aa1fs aa2fs <set as' \subseteq carrier G> by (force simp add: dest:
in_set_takeD in_set_dropD)
ultimately have v1': "wfactors G (as'!i \# take i as' @ drop (Suc i)
as') (as'!i \otimes (aa_1 \otimes aa_2))"
using irrasi wfactors_mult_single
by (simp add: irrasi v1 wfactors_mult_single)
have "wfactors G (as'!i \# drop (Suc i) as') (as'!i \otimes aa_2)"
by (simp add: aa2fs irrasi set_drop wfactors_mult_single)
with len aa1carr aa2carr aa1fs
have v2: "wfactors G (take i as' @ as'!i \# drop (Suc i) as') (aa_1

```
\(\theta\) (as'!i \(\otimes\) aa_2))"
using wfactors_mult by (simp add: set_take set_drop)
from len have as': "as' = (take i as' @ as'!i \# drop (Suc i) as')" by (simp add: Cons_nth_drop_Suc)
have eer: "essentially_equal G (take i as' @ as'!i \# drop (Suc i)
as') as'"
using Cons.prems(5) as' by auto
with v2 aa1carr aa2carr nth_mem[0F len] have "aa_1 \(\otimes\) (as'!i \(\otimes\) aa_2)
~ a" using Cons.prems as' comm_monoid_cancel.ee_wfactorsD is_comm_monoid_cancel
by fastforce
then have t1: "as'!i \(\otimes\left(a a_{-} 1 \otimes\right.\) aa_2) \(\sim\) a" by (metis aa1carr aa2carr asicarr m_lcomm)
from asiah have "ah \(\otimes\left(a a_{-} 1 \otimes\right.\) aa_2) \(\sim\) as'!i \(\otimes\left(a a_{-} 1 \otimes\right.\) aa_2)" by (simp add: <ah \(\in\) carrier \(G\) > associated_sym mult_cong_l)
also note t1
finally have "ah \(\otimes\left(a a_{1} 1 \otimes\right.\) aa_2) ~ a" using Cons.prems (3) carr_ah aa1carr aa2carr by blast
with aa1carr aa2carr a'carr nth_mem[0F len] have a': "aa_1 \& aa_2
~ a'"
using a assoc_l_cancel carr_ah(1) by blast
note v1
also note \(a\) '
finally have "wfactors G (take i as' @ drop (Suc i) as') a'" by (simp add: a'carr set_drop set_take)
from a'fs this have "essentially_equal G as (take i as' @ drop (Suc i) as')" using Cons.hyps a'carr carr_ah(2) set_drop set_take by auto
then obtain bs where <mset as \(=\) mset bs> <bs [~] take i as' @ drop (Suc i) as'>
by (auto simp add: essentially_equal_def)
with carr_ah have <mset (ah \# as) = mset (ah \# bs) > <ah \# bs [~] ah \# take i as' @ drop (Suc i) as'>
by simp_all
then have ee1: "essentially_equal G (ah \# as) (ah \# take i as' @
drop (Suc i) as')"
unfolding essentially_equal_def by blast
have ee2: "essentially_equal G (ah \# take i as' @ drop (Suc i) as') (as' ! i \# take i as' @ drop (Suc i) as')"
proof (intro essentially_equalI) show "ah \# take i as' @ drop (Suc i) as' <~~> ah \# take i as' @
drop (Suc i) as'" by simp
next
show "ah \# take i as' @ drop (Suc i) as' [~] as' ! i \# take i as' @ drop (Suc i) as'"
```

 by (simp add: asiah associated_sym set_drop set_take)
    ```
qed
```

 note ee1
 also note ee2
 also have "essentially_equal G (as' ! i # take i as' @ drop (Suc i)
 as')
(take i as' @ as' ! i \# drop (Suc i)
as')"
by (metis Cons.prems(5) as' essentially_equalI listassoc_refl perm_append_Cons)
finally have "essentially_equal G (ah \# as) (take i as' @ as' ! i \#
drop (Suc i) as')"
using Cons.prems(4) set_drop set_take by auto
then show ?case
using as' by auto
qed

```

\subsection*{26.9.4 Application to factorial monoids}

\section*{Number of factors for wellfoundedness}
```

definition factorcount :: " _ = 'a \# nat"
where "factorcount G a =
(THE c. \forallas. set as }\subseteq\mathrm{ carrier G ^ wfactors G as a }\longrightarrow\textrm{c}=\mathrm{ length
as)"
lemma (in monoid) ee_length:
assumes ee: "essentially_equal G as bs"
shows "length as = length bs"
by (rule essentially_equalE[OF ee]) (metis list_all2_conv_all_nth perm_length)
lemma (in factorial_monoid) factorcount_exists:
assumes carr[simp]: "a \in carrier G"
shows "\existsc. }\forall\mathrm{ as. set as }\subseteq\mathrm{ carrier G ^ wfactors G as a }\longrightarrowc=l=length
as"
proof -
have "\existsas. set as \subseteq carrier G ^ wfactors G as a"
by (intro wfactors_exist) simp
then obtain as where ascarr[simp]: "set as \subseteq carrier G" and afs: "wfactors
G as a"
by (auto simp del: carr)
have "\forallas'. set as' \subseteq carrier G ^ wfactors G as' a }\longrightarrow\mathrm{ length as =
length as'"
by (metis afs ascarr assms ee_length wfactors_unique)
then show "\existsc. }\forall\mathrm{ as'. set as' }\subseteq\mathrm{ carrier G ^ wfactors G as' a }\longrightarrow\textrm{c
= length as'" ..
qed
lemma (in factorial_monoid) factorcount_unique:
assumes afs: "wfactors G as a"
and acarr[simp]: "a \in carrier G" and ascarr: "set as \subseteq carrier G"
shows "factorcount G a = length as"
proof -

```
```

 have "\existsac. \forallas. set as \subseteq carrier G ^ wfactors G as a }\longrightarrow\mathrm{ ac = length
 as"
by (rule factorcount_exists) simp
then obtain ac where alen: " }\forall\mathrm{ as. set as }\subseteq\mathrm{ carrier G ^ wfactors G as
a }\longrightarrow\mathrm{ ac = length as"
by auto
then have ac: "ac = factorcount G a"
unfolding factorcount_def using ascarr by (blast intro: theI2 afs)
from ascarr afs have "ac = length as"
by (simp add: alen)
with ac show ?thesis
by simp
qed
lemma (in factorial_monoid) divides_fcount:
assumes dvd: "a divides b"
and acarr: "a \in carrier G"
and bcarr:"b \in carrier G"
shows "factorcount G a \leq factorcount G b"
proof (rule dividesE[OF dvd])
fix c
from assms have "\existsas. set as \subseteq carrier G ^ wfactors G as a"
by blast
then obtain as where ascarr: "set as \subseteq carrier G" and afs: "wfactors
G as a"
by blast
with acarr have fca: "factorcount G a = length as"
by (intro factorcount_unique)
assume ccarr: "c \in carrier G"
then have " }\exists\textrm{cs}. set cs \subseteq carrier G ^ wfactors G cs c"
by blast
then obtain cs where cscarr: "set cs \subseteq carrier G" and cfs: "wfactors
G cs c"
by blast
note [simp] = acarr bcarr ccarr ascarr cscarr
assume b: "b = a \& c"
from afs cfs have "wfactors G (as@cs) (a \otimes c)"
by (intro wfactors_mult) simp_all
with b have "wfactors G (as@cs) b"
by simp
then have "factorcount G b = length (as@cs)"
by (intro factorcount_unique) simp_all
then have "factorcount G b = length as + length cs"
by simp
with fca show ?thesis
by simp
qed

```
```

lemma (in factorial_monoid) associated_fcount:
assumes acarr: "a \in carrier G"
and bcarr: "b \in carrier G"
and asc: "a ~ b"
shows "factorcount G a = factorcount G b"
using assms
by (auto simp: associated_def factorial_monoid.divides_fcount factorial_monoid_axioms
le_antisym)
lemma (in factorial_monoid) properfactor_fcount:
assumes acarr: "a \in carrier G" and bcarr:"b \in carrier G"
and pf: "properfactor G a b"
shows "factorcount G a < factorcount G b"
proof (rule properfactorE[OF pf], elim dividesE)
fix c
from assms have "\existsas. set as \subseteq carrier G ^ wfactors G as a"
by blast
then obtain as where ascarr: "set as \subseteq carrier G" and afs: "wfactors
G as a"
by blast
with acarr have fca: "factorcount G a = length as"
by (intro factorcount_unique)
assume ccarr: "c \in carrier G"
then have "\existscs. set cs \subseteq carrier G ^ wfactors G cs c"
by blast
then obtain cs where cscarr: "set cs \subseteq carrier G" and cfs: "wfactors
G cs c"
by blast
assume b: "b = a \otimes c"
have "wfactors G (as@cs) (a \otimes c)"
by (rule wfactors_mult) fact+
with b have "wfactors G (as@cs) b"
by simp
with ascarr cscarr bcarr have "factorcount G b = length (as@cs)"
by (simp add: factorcount_unique)
then have fcb: "factorcount G b = length as + length cs"
by simp
assume nbdvda: "\neg b divides a"
have "c \& Units G"
proof
assume cunit:"c \in Units G"
have "b \otimes inv c = a \otimes c \otimes inv c"
by (simp add: b)
also from ccarr acarr cunit have "... = a \otimes (c \otimes inv c)"

```
```

 by (fast intro: m_assoc)
 also from ccarr cunit have "... = a \otimes 1" by simp
 also from acarr have "... = a" by simp
 finally have "a = b & inv c" by simp
 with ccarr cunit have "b divides a"
 by (fast intro: dividesI[of "inv c"])
 with nbdvda show False by simp
 qed
 with cfs have "length cs > 0"
 by (metis Units_one_closed assoc_unit_r ccarr foldr.simps(1) id_apply
 length_greater_O_conv wfactors_def)
with fca fcb show ?thesis
by simp
qed
sublocale factorial_monoid \subseteq divisor_chain_condition_monoid
apply unfold_locales
apply (rule wfUNIVI)
apply (rule measure_induct[of "factorcount G"])
using properfactor_fcount by auto
sublocale factorial_monoid \subseteq primeness_condition_monoid
by standard (rule irreducible_prime)
lemma (in factorial_monoid) primeness_condition: "primeness_condition_monoid
G" ..
lemma (in factorial_monoid) gcd_condition [simp]: "gcd_condition_monoid
G"
by standard (rule gcdof_exists)
sublocale factorial_monoid \subseteq gcd_condition_monoid
by standard (rule gcdof_exists)
lemma (in factorial_monoid) division_weak_lattice [simp]: "weak_lattice
(division_rel G)"
proof -
interpret weak_lower_semilattice "division_rel G"
by simp
show "weak_lattice (division_rel G)"
proof (unfold_locales, simp_all)
fix x y
assume carr: "x \in carrier G" "y \in carrier G"
from lcmof_exists [OF this] obtain z where zcarr: "z \in carrier G"
and isgcd: "z lcmof x y"
by blast
with carr have "least (division_rel G) z (Upper (division_rel G)
{x, y})"

```
```

 by (simp add: lcmof_leastUpper[symmetric])
 then show "\existsz. least (division_rel G) z (Upper (division_rel G) {x,
 y})"
by blast
qed
qed

```

\subsection*{26.10 Factoriality Theorems}
```

theorem factorial_condition_one:
"divisor_chain_condition_monoid G ^ primeness_condition_monoid G \longleftrightarrow
factorial_monoid G"
proof (rule iffI, clarify)
assume dcc: "divisor_chain_condition_monoid G"
and pc: "primeness_condition_monoid G"
interpret divisor_chain_condition_monoid "G" by (rule dcc)
interpret primeness_condition_monoid "G" by (rule pc)
show "factorial_monoid G"
by (fast intro: factorial_monoidI wfactors_exist wfactors_unique)
next
assume "factorial_monoid G"
then interpret factorial_monoid "G" .
show "divisor_chain_condition_monoid G ^ primeness_condition_monoid
G"
by rule unfold_locales
qed
theorem factorial_condition_two:
"divisor_chain_condition_monoid G ^ gcd_condition_monoid G \longleftrightarrow factorial_monoid
G"
proof (rule iffI, clarify)
assume dcc: "divisor_chain_condition_monoid G"
and gc: "gcd_condition_monoid G"
interpret divisor_chain_condition_monoid "G" by (rule dcc)
interpret gcd_condition_monoid "G" by (rule gc)
show "factorial_monoid G"
by (simp add: factorial_condition_one[symmetric], rule, unfold_locales)
next
assume "factorial_monoid G"
then interpret factorial_monoid "G" .
show "divisor_chain_condition_monoid G ^ gcd_condition_monoid G"
by rule unfold_locales
qed
end

```
theory QuotRing
imports RingHom
begin

\section*{27 Quotient Rings}

\subsection*{27.1 Multiplication on Cosets}
```

definition rcoset_mult :: "[('a, _) ring_scheme, 'a set, 'a set, 'a set]

'a set"

 ("[mod _:] _ @ \imath _" [81,81,81] 80)
 where "rcoset_mult R I A B = (\bigcupa\inA. \bigcupb\inB. I +> R (a \otimes | b))"
    ```
rcoset_mult fulfils the properties required by congruences
```

lemma (in ideal) rcoset_mult_add:
assumes "x \in carrier R" "y \in carrier R"
shows "[mod I:] (I +> x) \otimes (I +> y) = I +> (x \otimes y)"
proof -
have 1: "z \in I +> x \otimes y"
if x'rcos: "x' \in I +> x" and y'rcos: "y' \in I +> y" and zrcos: "z
G I +> x' \otimes y'" for z x' y'
proof -
from that
obtain hx hy hz where hxI: "hx \in I" and x': "x' = hx }\oplus\textrm{x"}\mathrm{ and hyI:
"hy \in I" and y': "y' = hy }\oplus\mathrm{ y"
and hzI: "hz \in I" and z: "z = hz \oplus (x' \otimes y')"
by (auto simp: a_r_coset_def r_coset_def)
note carr = assms hxI[THEN a_Hcarr] hyI[THEN a_Hcarr] hzI[THEN a_Hcarr]
from z x' y' have "z = hz \oplus ((hx \oplus x) \otimes (hy \oplus y))" by simp
also from carr have "... = (hz \oplus (hx \otimes (hy \oplus y)) }\oplus\textrm{x}\otimes\textrm{my})\oplus\textrm{x
\otimes y" by algebra
finally have z2: "z = (hz \oplus (hx \otimes (hy \oplus y)) \oplus x \& hy) \oplus x \otimes y".
from hxI hyI hzI carr have "hz }\oplus(hx \otimes(hy \oplus y)) \oplus x \otimes hy \in I"
by (simp add: I_l_closed I_r_closed)
with z2 show ?thesis
by (auto simp add: a_r_coset_def r_coset_def)
qed
have 2: "\existsa\inI +> x. \existsb\inI +> y. z \in I +> a \otimes b" if "z \in I +> x \otimes y"
for z
using assms a_rcos_self that by blast
show ?thesis
unfolding rcoset_mult_def using assms
by (auto simp: intro!: 1 2)
qed

```

\subsection*{27.2 Quotient Ring Definition}
```

definition FactRing :: "[('a,'b) ring_scheme, 'a set] }=>\mathrm{ ('a set) ring"
(infixl "Quot" 65)
where "FactRing R I =
|carrier = a_rcosetsR I, mult = rcoset_mult R I,

```
```

one = (I +> R 1 1), zero = I, add = set_add R|"

```
lemmas FactRing_simps = FactRing_def A_RCOSETS_defs a_r_coset_def [symmetric]

\subsection*{27.3 Factorization over General Ideals}

The quotient is a ring
```

lemma (in ideal) quotient_is_ring: "ring (R Quot I)"
proof (rule ringI)
show "abelian_group (R Quot I)"
apply (rule comm_group_abelian_groupI)
apply (simp add: FactRing_def a_factorgroup_is_comm_group[unfolded
A_FactGroup_def'])
done
show "Group.monoid (R Quot I)"
by (rule monoidI)
(auto simp add: FactRing_simps rcoset_mult_add m_assoc)
qed (auto simp: FactRing_simps rcoset_mult_add a_rcos_sum l_distr r_distr)

```

This is a ring homomorphism
```

lemma (in ideal) rcos_ring_hom: "((+>) I) \in ring_hom R (R Quot I)"
by (simp add: ring_hom_memI FactRing_def a_rcosetsI[OF a_subset] rcoset_mult_add
a_rcos_sum)
lemma (in ideal) rcos_ring_hom_ring: "ring_hom_ring R (R Quot I) ((+>)
I)"
by (simp add: local.ring_axioms quotient_is_ring rcos_ring_hom ring_hom_ringI2)

```

The quotient of a cring is also commutative
```

lemma (in ideal) quotient_is_cring:
assumes "cring R"
shows "cring (R Quot I)"
proof -
interpret cring R by fact
show ?thesis
apply (intro cring.intro comm_monoid.intro comm_monoid_axioms.intro
quotient_is_ring)
apply (rule ring.axioms[OF quotient_is_ring])
apply (auto simp add: FactRing_simps rcoset_mult_add m_comm)
done
qed

```

Cosets as a ring homomorphism on crings
lemma (in ideal) rcos_ring_hom_cring:
assumes "cring R"
shows "ring_hom_cring R (R Quot I) ((+>) I)"
proof -
interpret cring \(R\) by fact
```

 show ?thesis
 apply (rule ring_hom_cringI)
 apply (rule rcos_ring_hom_ring)
 apply (rule is_cring)
 apply (rule quotient_is_cring)
 apply (rule is_cring)
 done
 qed

```

\subsection*{27.4 Factorization over Prime Ideals}

The quotient ring generated by a prime ideal is a domain
```

lemma (in primeideal) quotient_is_domain: "domain (R Quot I)"
proof -
have 1: "I +> 1 = I \Longrightarrow False"
using I_notcarr a_rcos_self one_imp_carrier by blast
have 2: "I +> x = I"
if carr: "x \in carrier R" "y \in carrier R"
and a: "I +> x \otimes y = I"
and b: "I +> y \not= I" for x y
by (metis I_prime a a_rcos_const a_rcos_self b m_closed that)
show ?thesis
apply (intro domain.intro quotient_is_cring is_cring domain_axioms.intro)
apply (metis "1" FactRing_def monoid.simps(2) ring.simps(1))
apply (simp add: FactRing_simps)
by (metis "2" rcoset_mult_add)
qed

```

Generating right cosets of a prime ideal is a homomorphism on commutative rings
lemma (in primeideal) rcos_ring_hom_cring: "ring_hom_cring R (R Quot
I) ((+>) I)"
by (rule rcos_ring_hom_cring) (rule is_cring)

\subsection*{27.5 Factorization over Maximal Ideals}

In a commutative ring, the quotient ring over a maximal ideal is a field. The proof follows "W. Adkins, S. Weintraub: Algebra - An Approach via Module Theory"
```

proposition (in maximalideal) quotient_is_field:
assumes "cring R"
shows "field (R Quot I)"
proof -
interpret cring R by fact
have 1: "0}\mp@subsup{0}{R}{}\mathrm{ Quot I }\not=\mp@subsup{\mathbf{1}}{R}{}\mathrm{ Quot I" - Quotient is not empty
proof
assume "0}\mp@subsup{0}{R}{}\mathrm{ Quot I = 1 1R Quot I"

```
```

 then have II1: "I = I +> 1" by (simp add: FactRing_def)
 then have "I = carrier R"
 using a_rcos_self one_imp_carrier by blast
 with I_notcarr show False by simp
 qed
 have 2: "\existsy\incarrier R. I +> a \otimes y = I +> 1" if IanI: "I +> a f= I" and
 acarr: "a \in carrier R" for a
- Existence of Inverse
proof -
- Helper ideal J
define J :: "'a set" where "J = (carrier R \#> a) <+> I"
have idealJ: "ideal J R"
using J_def acarr add_ideals cgenideal_eq_rcos cgenideal_ideal is_ideal
by auto
have IinJ: "I \subseteq J"
proof (clarsimp simp: J_def r_coset_def set_add_defs)
fix x
assume xI: "x \in I"
have "x = 0 \& a }\oplus\textrm{x}
by (simp add: acarr xI)
with xI show "\existsxa\incarrier R. \existsk\inI. x = xa \otimes a \oplus k" by fast
qed
have JnI: "J f= I"
proof -
have "a \& I"
using IanI a_rcos_const by blast
moreover have "a \in J"
proof (simp add: J_def r_coset_def set_add_defs)
from acarr
have "a = 1 \otimes a }\oplus\mathrm{ 0" by algebra
with one_closed and additive_subgroup.zero_closed[OF is_additive_subgroup]
show "\existsx\incarrier R. \existsk\inI. a = x \otimes a \oplus k" by fast
qed
ultimately show ?thesis by blast
qed
then have Jcarr: "J = carrier R"
using I_maximal IinJ additive_subgroup.a_subset idealJ ideal_def
by blast

```
- Calculating an inverse for a
    from one_closed[folded Jcarr]
    obtain \(r\) i where rcarr: " \(r \in\) carrier \(R "\)
        and iI: "i \(\in\) I" and one: "1 = r \(\otimes\) a \(\oplus\) i"
        by (auto simp add: J_def r_coset_def set_add_defs)
    from one and rcarr and acarr and iI[THEN a_Hcarr]
    have rai1: "a \(\otimes \mathrm{r}=\ominus \mathrm{i} \oplus 1\) " by algebra
— Lifting to cosets
```

 from iI have "\ominusi \oplus 1\in I +> 1"
 by (intro a_rcosI, simp, intro a_subset, simp)
 with rai1 have "a \otimes r \in I +> 1" by simp
 then have "I +> 1 = I +> a \otimes r"
 by (rule a_repr_independence, simp) (rule a_subgroup)
 from rcarr and this[symmetric]
 show "\existsr\incarrier R. I +> a \otimes r = I +> 1" by fast
 qed
 show ?thesis
 apply (intro cring.cring_fieldI2 quotient_is_cring is_cring 1)
 apply (clarsimp simp add: FactRing_simps rcoset_mult_add 2)
 done
 qed
lemma (in ring_hom_ring) trivial_hom_iff:
"(h ' (carrier R) = { 0
using group_hom.trivial_hom_iff[0F a_group_hom] by (simp add: a_kernel_def)
lemma (in ring_hom_ring) trivial_ker_imp_inj:
assumes "a_kernel R S h = { 0 }"
shows "inj_on h (carrier R)"
using group_hom.trivial_ker_imp_inj[OF a_group_hom] assms a_kernel_def [of
R S h] by simp
lemma (in ring_hom_ring) inj_iff_trivial_ker:
shows "inj_on h (carrier R) \longleftrightarrow a_kernel R S h = { 0 }"
using group_hom.inj_iff_trivial_ker[OF a_group_hom] a_kernel_def[of
R S h] by simp
corollary ring_hom_in_hom:
assumes "h \in ring_hom R S" shows "h \in hom R S" and "h \in hom (add_monoid
R) (add_monoid S)"
using assms unfolding ring_hom_def hom_def by auto
corollary set_add_hom:
assumes "h \in ring_hom R S" "I \subseteq carrier R" and "J \subseteq carrier R"
shows "h ' (I <+> R J) = h ' I <+> S h ' J"
using set_mult_hom[OF ring_hom_in_hom(2)[0F assms(1)]] assms(2-3)
unfolding a_kernel_def[of R S h] set_add_def by simp
corollary a_coset_hom:
assumes "h \in ring_hom R S" "I \subseteq carrier R" "a \in carrier R"
shows "h' (a <+ R I) = h a <+S (h ' I)" and "h ' (I +> R a) = (h ' I)

```
```

+>S h a"
using assms coset_hom[OF ring_hom_in_hom(2) [OF assms(1)], of I a]
unfolding a_l_coset_def l_coset_eq_set_mult
a_r_coset_def r_coset_eq_set_mult
by simp_all
corollary (in ring_hom_ring) set_add_ker_hom:
assumes "I \subseteq carrier R"
shows "h ' (I <+> (a_kernel R S h)) = h ' I" and "h ' ((a_kernel R
S h) <+> I) = h ' I"
using group_hom.set_mult_ker_hom[OF a_group_hom] assms
unfolding a_kernel_def[of R S h] set_add_def by simp+
lemma (in ring_hom_ring) non_trivial_field_hom_imp_inj:
assumes "field R"
shows "h ' (carrier R) }={={\mp@subsup{0}{S}{}}\Longrightarrow\mathrm{ inj_on h (carrier R)"
proof -
assume "h ' (carrier R)}\not={\mp@subsup{0}{S}{}}
hence "a_kernel R S h f carrier R"
using trivial_hom_iff by linarith
hence "a_kernel R S h = { 0 }"
using field.all_ideals[OF assms] kernel_is_ideal by blast
thus "inj_on h (carrier R)"
using trivial_ker_imp_inj by blast
qed
lemma "field R \Longrightarrow cring R"
using fieldE(1) by blast
lemma non_trivial_field_hom_is_inj:
assumes "h \in ring_hom R S" and "field R" and "field S" shows "inj_on
h (carrier R)"
proof -
interpret ring_hom_cring R S h
using assms(1) ring_hom_cring.intro[OF assms(2-3) [THEN fieldE(1)]]
unfolding symmetric[OF ring_hom_cring_axioms_def] by simp
have "h 1 1R = 1S" and "1 S f 0 0
using domain.one_not_zero[OF field.axioms(1)[OF assms(3)]] by auto
hence "h ' (carrier R) }\not={\mp@subsup{0}{S}{}}
using ring.kernel_zero ring.trivial_hom_iff by fastforce
thus ?thesis
using ring.non_trivial_field_hom_imp_inj[OF assms(2)] by simp
qed
lemma (in ring_hom_ring) img_is_add_subgroup:
assumes "subgroup H (add_monoid R)"
shows "subgroup (h ' H) (add_monoid S)"

```
```

proof -
have "group ((add_monoid R) \ carrier := H \)"
using assms R.add.subgroup_imp_group by blast
moreover have "H\subseteq carrier R" by (simp add: R.add.subgroupE(1) assms)
hence "h \in hom ((add_monoid R) \ carrier := H D) (add_monoid S)"
unfolding hom_def by (auto simp add: subsetD)
ultimately have "subgroup (h ' carrier ((add_monoid R) | carrier :=
H D)) (add_monoid S)"
using group_hom.img_is_subgroup[of "(add_monoid R) | carrier := H
)" "add_monoid S" h]
using a_group_hom group_hom_axioms.intro group_hom_def by blast
thus "subgroup (h ' H) (add_monoid S)" by simp
qed
lemma (in ring) ring_ideal_imp_quot_ideal:
assumes "ideal I R"
shows "ideal J R \Longrightarrow ideal ((+>) I ' J) (R Quot I)"
proof -
assume A: "ideal J R" show "ideal (((+>) I) ' J) (R Quot I)"
proof (rule idealI)
show "ring (R Quot I)"
by (simp add: assms(1) ideal.quotient_is_ring)
next
have "subgroup J (add_monoid R)"
by (simp add: additive_subgroup.a_subgroup A ideal.axioms(1))
moreover have "((+>) I) \in ring_hom R (R Quot I)"
by (simp add: assms(1) ideal.rcos_ring_hom)
ultimately show "subgroup ((+>) I ' J) (add_monoid (R Quot I))"
using assms(1) ideal.rcos_ring_hom_ring ring_hom_ring.img_is_add_subgroup
by blast
next
fix a x assume "a \in (+>) I ' J" "x \in carrier (R Quot I)"
then obtain i j where i: "i \in carrier R" "x = I +> i"
and j: "j \in J" "a = I +> j"
unfolding FactRing_def using A_RCOSETS_def'[of R I] by auto
hence "a \otimes R Quot I x = [mod I:] (I +> j) \otimes (I +> i)"
unfolding FactRing_def by simp
hence "a \otimes R Quot I x = I +> (j \otimes i)"
using ideal.rcoset_mult_add[OF assms(1), of j i] i(1) j(1) A ideal.Icarr
by force
thus "a }\mp@subsup{\otimes}{R}{}\mathrm{ Quot I x }\in(+>) I ' J"
using A i(1) j(1) by (simp add: ideal.I_r_closed)
have "x \otimesR Quot I a = [mod I:] (I +> i) \otimes (I +> j)"
unfolding FactRing_def i j by simp
hence "x \otimes | Quot I a = I +> (i \otimes j)"
using ideal.rcoset_mult_add[OF assms(1), of i j] i(1) j(1) A ideal.Icarr
by force
thus "x \otimesR Quot I a \in (+>) I ' J"

```
```

 using A i(1) j(1) by (simp add: ideal.I_l_closed)
 qed
 qed
lemma (in ring_hom_ring) ideal_vimage:
assumes "ideal I S"
shows "ideal { r \in carrier R. h r \in I } R"
proof
show "{ r \in carrier R. h r f I } \subseteq carrier (add_monoid R)" by auto
next
show "1 1add_monoid R \in {r f carrier R. h r f I }"
by (simp add: additive_subgroup.zero_closed assms ideal.axioms(1))
next
fix a b
assume "a \in {r cearrier R. h r \in I }"
and "b \in { r \in carrier R. h r \in I }"
hence a: "a \in carrier R" "h a \in I"
and b: "b \in carrier R" "h b \in I" by auto
hence "h (a \oplus b) = (h a) }\mp@subsup{\oplus}{S}{}(\textrm{h}|)"\mathrm{ using hom_add by blast
moreover have "(h a) }\mp@subsup{\oplus}{S}{}(\textrm{h b})\inI" using a b assm
by (simp add: additive_subgroup.a_closed ideal.axioms(1))
ultimately show "a \otimesadd_monoid R b \in { r f carrier R. h r f I }"
using a(1) b (1) by auto
have "h (}\ominus a)= ӨS (h a)" by (simp add: a)
moreover have "}\mp@subsup{\ominus}{S}{}(\textrm{h a)}\in\textrm{I}
by (simp add: a(2) additive_subgroup.a_inv_closed assms ideal.axioms(1))
ultimately show "invadd_monoid R a \in { r \in carrier R. h r \in I }"
using a by (simp add: a_inv_def)
next
fix a r
assume "a \in {r f carrier R. h r f I }" and r: "r f carrier R"
hence a: "a \in carrier R" "h a \in I" by auto
have "h a *S h r \in I"
using assms a r by (simp add: ideal.I_r_closed)
thus "a \otimes r \in {r carrier R. h r f I }" by (simp add: a(1) r)
have "h r }\mp@subsup{\otimes}{S}{}h\textrm{h}| |
using assms a r by (simp add: ideal.I_l_closed)
thus "r \otimes a \in {r carrier R. h r f I }" by (simp add: a(1) r)
qed
lemma (in ring) canonical_proj_vimage_in_carrier:
assumes "ideal I R"
shows "J \subseteq carrier (R Quot I) \Longrightarrow U J \subseteq carrier R"
proof -
assume A: "J \subseteq carrier (R Quot I)" show "U J \subseteq carrier R"
proof

```
```

 fix j assume j: "j \in U J"
 then obtain j' where j': "j' \in J" "j \in j'" by blast
 then obtain r where r: "r \in carrier R" "j' = I +> r"
 using A j' unfolding FactRing_def using A_RCOSETS_def'[of R I] by
 auto
thus "j \in carrier R" using j' assms
by (meson a_r_coset_subset_G additive_subgroup.a_subset contra_subsetD
ideal.axioms(1))
qed
qed
lemma (in ring) canonical_proj_vimage_mem_iff:
assumes "ideal I R" "J \subseteq carrier (R Quot I)"
shows "\a. a }\in\mathrm{ carrier R }\Longrightarrow(a\in(\bigcupJ))=(I +> a \inJ)"
proof -
fix a assume a: "a \in carrier R" show "(a \in (U J)) = (I +> a \in J)"
proof
assume "a \in U J"
then obtain j where j: "j \in J" "a \in j" by blast
then obtain r where r: "r c carrier R" "j = I +> r"
using assms j unfolding FactRing_def using A_RCOSETS_def'[of R I]
by auto
hence "I +> r = I +> a"
using add.repr_independence[of a I r] j r
by (metis a_r_coset_def additive_subgroup.a_subgroup assms(1) ideal.axioms(1))
thus "I +> a \in J" using r j by simp
next
assume "I +> a \in J"
hence "0 \oplus a \in I +> a"
using additive_subgroup.zero_closed[OF ideal.axioms(1)[OF assms(1)]]
a_r_coset_def'[of R I a] by blast
thus "a \in \bigcup J" using a <I +> a \in J> by auto
qed
qed
corollary (in ring) quot_ideal_imp_ring_ideal:
assumes "ideal I R"
shows "ideal J (R Quot I) \Longrightarrow ideal (U J) R"
proof -
assume A: "ideal J (R Quot I)"
have "U J = {r f carrier R. I +> r \in J }"
using canonical_proj_vimage_in_carrier[OF assms, of J]
canonical_proj_vimage_mem_iff[0F assms, of J]
additive_subgroup.a_subset[OF ideal.axioms(1)[OF A]] by blast
thus "ideal (U J) R"
using ring_hom_ring.ideal_vimage[OF ideal.rcos_ring_hom_ring[OF assms]
A] by simp
qed

```
```

lemma (in ring) ideal_incl_iff:
assumes "ideal I R" "ideal J R"
shows "(I \subseteqJ) = (J = (U j \in J. I +> j))"
proof
assume A: "J = (U j \in J. I +> j)" hence "I +> 0 \subseteq J"
using additive_subgroup.zero_closed[OF ideal.axioms(1)[OF assms(2)]]
by blast
thus "I \subseteqJ" using additive_subgroup.a_subset[OF ideal.axioms(1) [OF
assms(1)]] by simp
next
assume A: "I \subseteq J" show "J = (Uj\inJ. I +> j)"
proof
show "J \subseteq(U j \in J. I +> j)"
proof
fix j assume j: "j \in J"
have "0 \in I" by (simp add: additive_subgroup.zero_closed assms(1)
ideal.axioms(1))
hence "0 \oplus j \in I +> j"
using a_r_coset_def'[of R I j] by blast
thus "j \in (\bigcupj\inJ. I +> j)"
using assms(2) j additive_subgroup.a_Hcarr ideal.axioms(1) by
fastforce
qed
next
show "(U j \in J. I +> j)\subseteq J"
proof
fix x assume "x \in (U j \in J. I +> j)"
then obtain j where j: "j \in J" "x \in I +> j" by blast
then obtain i where i: "i \in I" "x = i }\oplus\textrm{j}
using a_r_coset_def'[of R I j] by blast
thus "x\in J"
using assms(2) j A additive_subgroup.a_closed[OF ideal.axioms(1)[OF
assms(2)]] by blast
qed
qed
qed
theorem (in ring) quot_ideal_correspondence:
assumes "ideal I R"
shows "bij_betw (\lambdaJ. (+>) I ' J) { J. ideal J R ^ I \subseteq J } { J . ideal
J (R Quot I) }"
proof (rule bij_betw_byWitness[where ?f' = "\lambdaX. \ X"])
show "\forallJ G { J. ideal J R ^ I \subseteq J }. (}\lambda\textrm{X}.\cup\textrm{X})((+>) I ' J) = J"
using assms ideal_incl_iff by blast
next
show "(\lambdaJ. (+>) I ' J) ' { J. ideal J R ^ I \subseteq J } \subseteq { J. ideal J (R
Quot I) }"
using assms ring_ideal_imp_quot_ideal by auto
next

```
```

 show "(\lambdaX. U X) ' { J. ideal J (R Quot I) } \subseteq { J. ideal J R ^ I \subseteq
 J }"
proof
fix J assume "J G ((}\lambda\textrm{X}.
X)' { J. ideal J (R Quot I) })"
then obtain J' where J': "ideal J' (R Quot I)" "J = \ J'" by blast
hence "ideal J R"
using assms quot_ideal_imp_ring_ideal by auto
moreover have "I \in J'"
using additive_subgroup.zero_closed[OF ideal.axioms(1)[OF J'(1)]]
unfolding FactRing_def by simp
ultimately show "J \in { J. ideal J R ^ I \subseteq J }" using J'(2) by auto
qed
next
show "\forallJ' \in { J. ideal J (R Quot I) }. ((+>) I ' (U J')) = J'"
proof
fix J' assume "J' \in { J. ideal J (R Quot I) }"
hence subset: "J' \subseteq carrier (R Quot I) ^ ideal J' (R Quot I)"
using additive_subgroup.a_subset ideal_def by blast
hence "((+>) I ' (U J')) \subseteq J'"
using canonical_proj_vimage_in_carrier canonical_proj_vimage_mem_iff
by (meson assms contra_subsetD image_subsetI)
moreover have "J' \subseteq ((+>) I ' (U J'))"
proof
fix x assume "x \in J'"
then obtain r where r: "r \in carrier R" "x = I +> r"
using subset unfolding FactRing_def A_RCOSETS_def'[of R I] by
auto
hence "r \in (U J')"
using <x \in J'> assms canonical_proj_vimage_mem_iff subset by
blast
thus "x \in ((+>) I ' (\ J'))" using r(2) by blast
qed
ultimately show "((+>) I ' (U J')) = J'" by blast
qed
qed
lemma (in cring) quot_domain_imp_primeideal:
assumes "ideal P R"
shows "domain (R Quot P) \Longrightarrow primeideal P R"
proof -
assume A: "domain (R Quot P)" show "primeideal P R"
proof (rule primeidealI)
show "ideal P R" using assms .
show "cring R" using is_cring .
next
show "carrier R f= P"
proof (rule ccontr)
assume "\neg carrier R f= P" hence "carrier R = P" by simp
hence "\I. I G carrier (R Quot P) \Longrightarrow I = P"

```
unfolding FactRing_def A_RCOSETS_def' apply simp
using a_coset_join2 additive_subgroup.a_subgroup assms ideal.axioms(1)
by blast
hence \({ }^{1} 1_{(R \text { Quot } P)}=0_{(R \text { Quot } P)} "\)
by (metis assms ideal.quotient_is_ring ring.ring_simprules(2)
ring.ring_simprules(6))
thus False using domain.one_not_zero[OF A] by simp qed
next
fix \(a \operatorname{b}\) assume \(a: ~ " a \in c a r r i e r ~ R " ~ a n d ~ b: ~ " b ~ \in a r r i e r ~ R " ~ a n d ~ a b: ~\)
"a \(\otimes \mathrm{b} \in \mathrm{P} "\)
hence " \(P\) +> \((\mathrm{a} \otimes \mathrm{b})=\mathbf{0}_{(\mathrm{R} \text { Quot } \mathrm{P})}\) " unfolding FactRing_def
by (simp add: a_coset_join2 additive_subgroup.a_subgroup assms ideal.axioms (1))
moreover have " \((\mathrm{P}+>\mathrm{a}) \otimes_{(\mathrm{R} \text { Quot } \mathrm{P})}(\mathrm{P}+>\mathrm{b})=\mathrm{P}+>(\mathrm{a} \otimes \mathrm{b}) "\) un-
folding FactRing_def
using a b by (simp add: assms ideal.rcoset_mult_add)
moreover have " \(P\) +> \(a \in \operatorname{carrier}(R\) Quot \(P) \wedge P+>b \in \operatorname{carrier~(R~}\)
Quot P)"
by (simp add: a b FactRing_def a_rcosetsI additive_subgroup.a_subset assms ideal.axioms(1))
ultimately have " \(P\) +> \(a=0_{(R \text { Quot } P)} \vee P+>b=0_{(R \text { Quot } P) "}\)
using domain.integral[OF \(A\), of "P +> a" "P +> b"] by auto
thus "a \(\in P \vee b \in P\) " unfolding FactRing_def apply simp
using a b assms a_coset_join1 additive_subgroup.a_subgroup ideal.axioms(1)
by blast
qed
qed
lemma (in cring) quot_domain_iff_primeideal:
assumes "ideal P R"
shows "domain ( \(R\) Quot \(P\) ) = primeideal P R"
using quot_domain_imp_primeideal[0F assms] primeideal.quotient_is_domain[of
\(P R]\) by auto

\subsection*{27.6 Isomorphism}

\section*{definition}
ring_iso : : "_ \(\Rightarrow{ }_{-} \Rightarrow\) ('a \(\Rightarrow\) 'b) set"
where "ring_iso \(R \mathrm{~S}=\{\mathrm{h} . \mathrm{h} \in\) ring_hom \(\mathrm{R} S \wedge\) bij_betw \(h\) (carrier R )
(carrier S) \}"

\section*{definition}
is_ring_iso : : "_ \(\Rightarrow\) _ \(\Rightarrow\) bool" (infixr " \(\simeq\) " 60)
where " \(R \simeq S=\) (ring_iso \(R S \neq\{ \}\) )"

\section*{definition}
```

morphic_prop : : "_ \Rightarrow ('a \Rightarrow bool) \Rightarrow bool"
where "morphic_prop R P =
$\left(\left(P 1_{R}\right) \wedge\right.$

```
```

(\forallr \in carrier R. P r) ^
(\forallr1 \in carrier R. }\forall\textrm{r}2\in\mathrm{ carrier R. P (r1 * }\mp@subsup{\textrm{R}}{\textrm{r}}{\textrm{r}2))})
(\forallr1\in carrier R. }\forall\textrm{r}2\in\mathrm{ carrier R. P (r1 }\mp@subsup{\oplus}{\textrm{R}}{}\textrm{r}2)))

```
lemma ring_iso_memI:
    fixes \(R\) (structure) and \(S\) (structure)
    assumes " \(\bigwedge \mathrm{x} . \mathrm{x} \in\) carrier \(\mathrm{R} \Longrightarrow \mathrm{h} x \in\) carrier \(\mathrm{S} "\)
        and " \(\bigwedge \mathrm{x} y . \llbracket \mathrm{x} \in\) carrier \(\mathrm{R} ; \mathrm{y} \in\) carrier \(\mathrm{R} \rrbracket \Longrightarrow \mathrm{h}(\mathrm{x} \otimes \mathrm{y})=\mathrm{h}\)
\(x \otimes_{S} h y "\)
        and " \(\bigwedge \mathrm{x} y . \llbracket \mathrm{x} \in \operatorname{carrier} \mathrm{R} ; \mathrm{y} \in \operatorname{carrier} \mathrm{R} \rrbracket \Longrightarrow \mathrm{h}(\mathrm{x} \oplus \mathrm{y})=\mathrm{h}\)
\(\mathrm{x} \oplus_{\mathrm{S}} \mathrm{h} y "\)
        and \(\mathrm{h} 1=1_{\mathrm{S}}\) "
        and "bij_betw h (carrier R) (carrier S)"
    shows "h \(\in\) ring_iso R S"
    by (auto simp add: ring_hom_memI assms ring_iso_def)
lemma ring_iso_memE:
    fixes \(R\) (structure) and \(S\) (structure)
    assumes "h \(\in\) ring_iso \(R\) S"
    shows " \(\bigwedge \mathrm{x} . \mathrm{x} \in\) carrier \(\mathrm{R} \Longrightarrow \mathrm{h} x \in\) carrier \(\mathrm{S} "\)
    and " \(\wedge \mathrm{x} y . \llbracket \mathrm{x} \in\) carrier \(\mathrm{R} ; \mathrm{y} \in \operatorname{carrier} \mathrm{R} \rrbracket \Longrightarrow \mathrm{h}(\mathrm{x} \otimes \mathrm{y})=\mathrm{h} \mathrm{x} \otimes_{\mathrm{S}}\)
h y"
    and " \(\wedge \mathrm{x} \mathrm{y} . \llbracket \mathrm{x} \in \operatorname{carrier} \mathrm{R} ; \mathrm{y} \in \operatorname{carrier} \mathrm{R} \rrbracket \Longrightarrow \mathrm{h}(\mathrm{x} \oplus \mathrm{y})=\mathrm{h} \mathrm{x} \oplus_{\mathrm{S}}\)
h y"
    and "h \(1=1_{\text {S }}\) "
    and "bij_betw h (carrier R) (carrier S)"
    using assms unfolding ring_iso_def ring_hom_def by auto
lemma morphic_propI:
    fixes \(R\) (structure)
    assumes "P 1"
        and " \(\bigwedge\) r. \(r \in\) carrier \(R \Longrightarrow P r "\)
        and " \(\bigwedge\) r1 r2. \(\llbracket r 1 \in\) carrier \(R ; r 2 \in \operatorname{carrier} R \rrbracket \Longrightarrow P(r 1 \otimes r 2) "\)
        and " \(\\) r1 r2. \(\llbracket r 1 \in\) carrier \(R ; r 2 \in \operatorname{carrier~} R \rrbracket \Longrightarrow P(r 1 \oplus r 2) "\)
    shows "morphic_prop R P"
    unfolding morphic_prop_def using assms by auto
lemma morphic_propE:
    fixes \(R\) (structure)
    assumes "morphic_prop R P"
    shows "P 1"
        and " \(\bigwedge\) r. \(r \in\) carrier \(R \Longrightarrow P r "\)
        and " \(\\) r1 r2. \(\llbracket r 1 \in\) carrier \(R ; r 2 \in \operatorname{carrier~} R \rrbracket \Longrightarrow P(r 1 \otimes r 2) "\)
        and " \(\\) r1 r2. \(\llbracket r 1 \in\) carrier \(R ; r 2 \in \operatorname{carrier~} R \rrbracket \Longrightarrow P(r 1 \oplus r 2) "\)
    using assms unfolding morphic_prop_def by auto
lemma (in ring) ring_hom_restrict:
    assumes "f \(\in\) ring_hom \(R S\) " and " \(\ r . r \in \operatorname{carrier~} R \Longrightarrow f r=g r "\) shows
```

"g \in ring_hom R S"
using assms(2) ring_hom_memE[OF assms(1)] by (auto intro: ring_hom_memI)
lemma (in ring) ring_iso_restrict:
assumes "f \in ring_iso R S" and "\r. r f carrier R \Longrightarrow f r = g r" shows
"g \in ring_iso R S"
proof -
have hom: "g \in ring_hom R S"
using ring_hom_restrict assms unfolding ring_iso_def by auto
have "bij_betw g (carrier R) (carrier S)"
using bij_betw_cong[of "carrier R" f g] ring_iso_memE(5)[0F assms(1)]
assms(2) by simp
thus ?thesis
using ring_hom_memE[OF hom] by (auto intro!: ring_iso_memI)
qed
lemma ring_iso_morphic_prop:
assumes "f \in ring_iso R S"
and "morphic_prop R P"
and "\r. P r \Longrightarrow f r = g r"
shows "g \in ring_iso R S"
proof -
have eq0: "\r. r \in carrier R \Longrightarrow fr = g r"
and eq1: "f 1 1R = g 1 R"
and eq2: "\r1 r2. \llbracketr1 \in carrier R; r2 \in carrier R \rrbracket \Longrightarrow f (r1 \otimesR
r2) = g (r1 * \& r2)"
and eq3: "\r1 r2. \llbracketr1 \in carrier R; r2 \in carrier R\rrbracket\Longrightarrow m (r1 \oplus |
r2) = g (r1 \oplus }\mp@subsup{\textrm{R}}{\textrm{R}}{(2)"
using assms(2-3) unfolding morphic_prop_def by auto
show ?thesis
apply (rule ring_iso_memI)
using assms(1) eq0 ring_iso_memE(1) apply fastforce
apply (metis assms(1) eq0 eq2 ring_iso_memE(2))
apply (metis assms(1) eq0 eq3 ring_iso_memE(3))
using assms(1) eq1 ring_iso_memE(4) apply fastforce
using assms(1) bij_betw_cong eqO ring_iso_memE(5) by blast
qed
lemma (in ring) ring_hom_imp_img_ring:
assumes "h \in ring_hom R S"
shows "ring (S | carrier := h ' (carrier R), zero := h 0 D)" (is "ring
?h_img")
proof -
have "h \in hom (add_monoid R) (add_monoid S)"
using assms unfolding hom_def ring_hom_def by auto
hence "comm_group ((add_monoid S) | carrier := h ' (carrier R), one
:= h 0 D)"
using add.hom_imp_img_comm_group[of h "add_monoid S"] by simp

```
```

 hence comm_group: "comm_group (add_monoid ?h_img)"
 by (auto intro: comm_monoidI simp add: monoid.defs)
 moreover have "h \in hom R S"
 using assms unfolding ring_hom_def hom_def by auto
 hence "monoid (S \ carrier := h ' (carrier R), one := h 1 D)"
 using hom_imp_img_monoid[of h S] by simp
 hence monoid: "monoid ?h_img"
 using ring_hom_memE(4) [OF assms] unfolding monoid_def by (simp add:
 monoid.defs)
show ?thesis
proof (rule ringI, simp_all add: comm_group_abelian_groupI[OF comm_group]
monoid)
fix x y z assume "x \in h' carrier R" "y f h' carrier R" "z \in h '
carrier R"
then obtain r1 r2 r3
where r1: "r1 \in carrier R" "x = h r1"
and r2: "r2 \in carrier R" "y = h r2"
and r3: "r3 \in carrier R" "z = h r3" by blast
hence "(x \oplus S y) \otimesS z = h ((r1 \oplus r2) \otimes r3)"
using ring_hom_memE[OF assms] by auto
also have " ... = h ((r1 \otimes r3) \oplus (r2 \otimes r3))"
using l_distr[0F r1(1) r2(1) r3(1)] by simp
also have " ... = (x * S z) }\mp@subsup{\oplus}{S}{}(y\mp@subsup{\otimes}{S}{\prime}z)
using ring_hom_memE[OF assms] r1 r2 r3 by auto
finally show "(x }\mp@subsup{\oplus}{S}{}y)\mp@subsup{\otimes}{S}{
have "z \& S (x \oplus | y) = h (r3 \otimes (r1 \oplus r2))"
using ring_hom_memE[OF assms] r1 r2 r3 by auto
also have " ... = h ((r3 \otimes r1) \oplus (r3 \otimes r2))"
using r_distr[OF r1(1) r2(1) r3(1)] by simp
also have " ... = (z \& < x) }\mp@subsup{\oplus}{S}{}(z\mp@subsup{\otimes}{S}{}y)
using ring_hom_memE[OF assms] r1 r2 r3 by auto

```

```

 qed
 qed
lemma (in ring) ring_iso_imp_img_ring:
assumes "h \in ring_iso R S"
shows "ring (S (zero := h 0 \)"
proof -
have "ring (S | carrier := h ' (carrier R), zero := h 0 |)"
using ring_hom_imp_img_ring[of h S] assms unfolding ring_iso_def by
auto
moreover have "h ' (carrier R) = carrier S"
using assms unfolding ring_iso_def bij_betw_def by auto
ultimately show ?thesis by simp
qed

```
```

lemma (in cring) ring_iso_imp_img_cring:
assumes "h \in ring_iso R S"
shows "cring (S (| zero := h 0 D)" (is "cring ?h_img")
proof -
note m_comm
interpret h_img?: ring ?h_img
using ring_iso_imp_img_ring[0F assms] .
show ?thesis
proof (unfold_locales)
fix x y assume "x \in carrier ?h_img" "y \in carrier ?h_img"
then obtain r1 r2
where $\mathrm{r} 1:$ " $\mathrm{r} 1 \in$ carrier $\mathrm{R} " \mathrm{k}=\mathrm{h}$ r1"
and r2: "r2 \in carrier $R "$ " $y=h r 2 "$
using assms image_iff[where $? \mathrm{f}=\mathrm{h}$ and $? \mathrm{~A}=$ "carrier $\mathrm{R"}$]
unfolding ring_iso_def bij_betw_def by auto
have $" x \otimes\left(? h _i m g\right) y=h(r 1 \otimes r 2) "$
using assms r1 r2 unfolding ring_iso_def ring_hom_def by auto
also have " ... = h (r2 $\otimes \mathrm{r} 1)$ "
using m_comm[0F r1(1) r2(1)] by simp
also have " . . = y $\otimes_{(? h \text { img })} x$ "
using assms r1 r2 unfolding ring_iso_def ring_hom_def by auto
finally show $" x \otimes$ (?h_img) $y=y ~\left(? h _i m g\right) x "$.
qed
qed
lemma (in domain) ring_iso_imp_img_domain:
assumes "h \in ring_iso R S"
shows "domain (S | zero := h 0 D)" (is "domain ?h_img")
proof -
note aux = m_closed integral one_not_zero one_closed zero_closed
interpret h_img?: cring ?h_img
using ring_iso_imp_img_cring[0F assms] .
show ?thesis
proof (unfold_locales)
have $" 1_{\text {?h_img }}=0_{\text {?h_img }} \Longrightarrow$ h $1=$ h $0 "$
using ring_iso_memE(4) [OF assms] by simp
moreover have "h $1 \neq \mathrm{h} 0$ "
using ring_iso_memE(5) [0F assms] aux(3-4)
unfolding bij_betw_def inj_on_def by force
ultimately show " $1_{\text {?h_img }} \neq 0_{\text {?h_img }}$ "
by auto
next
fix a b
assume A: "a $\otimes_{\text {?h_img }} b=0_{\text {?h_img" }}$ "a \in carrier ?h_img" "b carrier
?h_img"
then obtain r1 r2
where $\mathrm{r} 1:$ " $\mathrm{r} 1 \in$ carrier $\mathrm{R} " \mathrm{"a}=\mathrm{h}$ r1"
and r2: "r2 \in carrier R" "b = h r2"
using assms image_iff[where ?f = h and ?A = "carrier R"]

```
```

 unfolding ring_iso_def bij_betw_def by auto
 hence "a \otimes?h_img b = h (r1 \otimes r2)"
 using assms r1 r2 unfolding ring_iso_def ring_hom_def by auto
 hence "h (r1 \otimes r2) = h 0"
 using A(1) by simp
 hence "r1 \otimes r2 = 0"
 using ring_iso_memE(5) [OF assms] aux(1) [OF r1(1) r2(1)] aux(5)
 unfolding bij_betw_def inj_on_def by force
 hence "r1 = 0 V r2 = 0"
 using aux(2)[0F _ r1(1) r2(1)] by simp
 thus "a = 0}\mp@subsup{\mathrm{ ?h_img }}{\mathrm{ % b = 0}}{\mathrm{ ?h_img"}
 unfolding r1 r2 by auto
 qed
 qed
lemma (in field) ring_iso_imp_img_field:
assumes "h G ring_iso R S"
shows "field (S (zero := h 0 D)" (is "field ?h_img")
proof -
interpret h_img?: domain ?h_img
using ring_iso_imp_img_domain[0F assms] .
show ?thesis
proof (unfold_locales, auto simp add: Units_def)
interpret field R using field_axioms .
fix a assume a: "a \in carrier S" "a }\mp@subsup{\otimes}{S}{}\textrm{h 0 = 1
then obtain r where r: "r f carrier R" "a = h r"
using assms image_iff[where ?f = h and ?A = "carrier R"]
unfolding ring_iso_def bij_betw_def by auto
have "a * S h 0 = h (r \& 0)" unfolding r(2)
using ring_iso_memE(2) [OF assms r(1)] by simp
hence "h 1 = h 0"
using ring_iso_memE(4) [OF assms] r(1) a(2) by simp
thus False
using ring_iso_memE(5) [OF assms]
unfolding bij_betw_def inj_on_def by force
next
interpret field R using field_axioms .
fix s assume s: "s \in carrier S" "s \not= h 0"
then obtain r where r: "r f carrier R" "s = h r"
using assms image_iff[where ?f = h and ?A = "carrier R"]
unfolding ring_iso_def bij_betw_def by auto
hence "r f 0" using s(2) by auto
hence inv_r: "inv r f carrier R" "inv r f= 0" "r \otimes inv r = 1" "inv
r @ r = 1"
using field_Units r(1) by auto
have "h (inv r) }\mp@subsup{\otimes}{S}{}hr=h 1" and "h r * S h (inv r) = h 1"
using ring_iso_memE(2) [OF assms inv_r(1) r(1)] inv_r(3-4)
ring_iso_memE(2) [OF assms r(1) inv_r(1)] by auto
thus " }\exists\textrm{s}\mathrm{ ' }\in\mathrm{ carrier S. s' }\mp@subsup{\otimes}{S}{}\textrm{s}=\mp@subsup{1}{S}{}\wedge\textrm{s}\mp@subsup{\otimes}{S}{}\mp@subsup{s}{}{\prime}=\mp@subsup{1}{S}{}

```
```

 using ring_iso_memE(1,4)[OF assms] inv_r(1) r(2) by auto
 qed
 qed
lemma ring_iso_same_card: "R \simeq S \Longrightarrow card (carrier R) = card (carrier
S)"
using bij_betw_same_card unfolding is_ring_iso_def ring_iso_def by auto
lemma ring_iso_set_refl: "id \in ring_iso R R"
by (rule ring_iso_memI) (auto)
corollary ring_iso_refl: "R \simeq R"
using is_ring_iso_def ring_iso_set_refl by auto
lemma ring_iso_set_trans:
"\llbracketf\in ring_iso R S; g \in ring_iso S Q \rrbracket \Longrightarrow(g o f) \in ring_iso R Q"
unfolding ring_iso_def using bij_betw_trans ring_hom_trans by fastforce
corollary ring_iso_trans: "\llbracketR\simeqS;S\simeqQ \ \Longrightarrow R \simeq Q"
using ring_iso_set_trans unfolding is_ring_iso_def by blast
lemma ring_iso_set_sym:
assumes "ring R" and h: "h \in ring_iso R S"
shows "(inv_into (carrier R) h) E ring_iso S R"
proof -
have h_hom: "h \in ring_hom R S"
and h_surj: "h ' (carrier R) = (carrier S)"
and h_inj: "^ x1 x2. \llbracket x1 \in carrier R; x2 \in carrier R\rrbracket \Longrightarrow h x1
= h x2 \Longrightarrow x1 = x2"
using h unfolding ring_iso_def bij_betw_def inj_on_def by auto
have h_inv_bij: "bij_betw (inv_into (carrier R) h) (carrier S) (carrier
R)"
by (simp add: bij_betw_inv_into h ring_iso_memE(5))
have "inv_into (carrier R) h \in ring_hom S R"
using ring_iso_memE [OF h] bij_betwE [OF h_inv_bij] <ring R>
by (simp add: bij_betw_imp_inj_on bij_betw_inv_into_right inv_into_f_eq
ring.ring_simprules ring_hom_memI)
moreover have "bij_betw (inv_into (carrier R) h) (carrier S) (carrier
R)"
using h_inv_bij by force
ultimately show "inv_into (carrier R) h \in ring_iso S R"
by (simp add: ring_iso_def)
qed

```
```

corollary ring_iso_sym:
assumes "ring R"
shows $" R \simeq S \Longrightarrow S \simeq R "$
using assms ring_iso_set_sym unfolding is_ring_iso_def by auto
lemma (in ring_hom_ring) the_elem_simp [simp]:
" $\bigwedge \mathrm{x} . \mathrm{x} \in$ carrier $\mathrm{R} \Longrightarrow$ the_elem (h ((a_kernel R S h) +> x$)$) $=\mathrm{h} x$ "
proof -
fix x assume $x: ~ " x \in$ carrier $R "$
hence "h x $\in \mathrm{h}$ ' ((a_kernel R S h) +> x$)$ "
using homeq_imp_rcos by blast
thus "the_elem (h ' ((a_kernel R S h) +> x)) = h x"
by (metis (no_types, lifting) x empty_iff homeq_imp_rcos rcos_imp_homeq
the_elem_image_unique)
qed
lemma (in ring_hom_ring) the_elem_inj:

```

```

(a_kernel R S h)) 】 \Longrightarrow
the_elem (h ' X) = the_elem (h ' Y) $\Longrightarrow X=Y$ '
proof -
fix X Y
assume "X \in carrier (R Quot (a_kernel R S h))"
and " $\mathrm{Y} \in$ carrier (R Quot (a_kernel R S h))"
and Eq: "the_elem (h'X) = the_elem (h ' Y)"
then obtain x y where $x: ~ " x \in$ carrier $R "$ " $X=\left(a_{-} k e r n e l R S h\right)+>x "$
and y: "y \in carrier R" "Y = (a_kernel R S h) +> y"
unfolding FactRing_def A_RCOSETS_def' by auto
hence "h x = h y" using Eq by simp
hence "x $\ominus \mathrm{y} \in$ (a_kernel R S h)"
by (simp add: a_minus_def abelian_subgroup.a_rcos_module_imp
abelian_subgroup_a_kernel homeq_imp_rcos x(1) y(1))
thus "X = Y"
by (metis R.a_coset_add_inv1 R.minus_eq abelian_subgroup.a_rcos_const
abelian_subgroup_a_kernel additive_subgroup.a_subset additive_subgroup_a_kernel
x y)
qed
lemma (in ring_hom_ring) quot_mem:
" $\bigwedge \mathrm{X} . \mathrm{X} \in \operatorname{carrier~(R~Quot~(a_ kernel~R~S~h)~)~} \Longrightarrow \exists \mathrm{x} \in$ carrier R. $\mathrm{X}=$
(a_kernel R S h) +> x"
proof -
fix X assume $" X \in \operatorname{carrier~(R~Quot~(a_ kernel~R~S~h))"~}$
thus " $\exists \mathrm{x} \in$ carrier R. X = (a_kernel R S h) +> x"
unfolding FactRing_simps by (simp add: a_r_coset_def)
qed
lemma (in ring_hom_ring) the_elem_wf:
" $\bigwedge \mathrm{X}$. $\mathrm{X} \in$ carrier (R Quot (a_kernel R S h)) $\Longrightarrow \exists y \in \operatorname{carrier~S.~(h~'~}$

```
```

X) = { y }"
proof -
fix X assume "X \in carrier (R Quot (a_kernel R S h))"
then obtain x where x: "x \in carrier R" and X: "X = (a_kernel R S h)
+> x"
using quot_mem by blast
hence "\x'. x' }\in\textrm{X}\Longrightarrow\textrm{h}\mp@subsup{\textrm{x}}{}{\prime}=\textrm{h}\mp@subsup{\textrm{x}}{}{\prime
proof -
fix x' assume "x' \in X" hence "x' \in (a_kernel R S h) +> x" using X
by simp
then obtain k where k: "k \in a_kernel R S h" "x' = k \oplus x"
by (metis R.add.inv_closed R.add.m_assoc R.l_neg R.r_zero
abelian_subgroup.a_elemrcos_carrier
abelian_subgroup.a_rcos_module_imp abelian_subgroup_a_kernel
x)
hence "h x' = h k }\mp@subsup{\oplus}{S h x"}{
by (meson additive_subgroup.a_Hcarr additive_subgroup_a_kernel hom_add
x)
also have " ... = h x"
using k by (auto simp add: x)
finally show "h x' = h x" .
qed
moreover have "h x f h ' X"
by (simp add: X homeq_imp_rcos x)
ultimately have "(h' X) = { h x }"
by blast
thus "\existsy \in carrier S. (h ' X) = { y }" using x by simp
qed
corollary (in ring_hom_ring) the_elem_wf':
"\X. X \in carrier (R Quot (a_kernel R S h)) \Longrightarrow \existsr carrier R. (h '
X) = { h r }"
using the_elem_wf by (metis quot_mem the_elem_eq the_elem_simp)
lemma (in ring_hom_ring) the_elem_hom:
"(\lambdaX. the_elem (h ' X)) \in ring_hom (R Quot (a_kernel R S h)) S"
proof (rule ring_hom_memI)
show " \x. x \in carrier (R Quot a_kernel R S h) \Longrightarrow the_elem (h ' x)
\epsilon carrier S"
using the_elem_wf by fastforce
show "the_elem (h ' 1}\mp@subsup{\mathbf{1}}{R}{}\mathrm{ Quot a_kernel R S h) = 1_S"
unfolding FactRing_def using the_elem_simp[of "11R"] by simp
fix X Y
assume "X \in carrier (R Quot a_kernel R S h)"
and "Y \in carrier (R Quot a_kernel R S h)"
then obtain x y where x: "x \in carrier R" "X = (a_kernel R S h) +> x"
and y: "y \in carrier R" "Y = (a_kernel R S h) +> y"

```
using quot_mem by blast
```

 have "X \otimes R Quot a_kernel R S h Y = (a_kernel R S h) +> (x \otimes y)"
 by (simp add: FactRing_def ideal.rcoset_mult_add kernel_is_ideal x
 y)
thus "the_elem (h' (X \& R Quot a_kernel R S h Y)) = the_elem (h ' X) }\mp@subsup{\otimes}{S}{
the_elem (h ' Y)"

```
        by (simp add: x y)
    have " \(\mathrm{X} \oplus_{\mathrm{R}}\) Quot a_kernel R S h \(\mathrm{Y}=(\) a_kernel R S h) +> ( \(\mathrm{x} \oplus \mathrm{y}\) )"
        using ideal.rcos_ring_hom kernel_is_ideal ring_hom_add x y by fastforce
    thus "the_elem (h' (X \(\oplus_{R}\) Quot a_kernel R S h Y)) = the_elem (h ' X) \(\oplus_{S}\)
the_elem (h ' Y)"
        by (simp add: x y)
qed
lemma (in ring_hom_ring) the_elem_surj:
        " \((\lambda \mathrm{X}\). (the_elem (h ' X))) ' carrier (R Quot (a_kernel R S h)) = (h
' (carrier R))"
proof
    show " ( \(\lambda\) X. the_elem (h ' X)) ' carrier (R Quot a_kernel R S h) \(\subseteq h\)
' carrier R"
        using the_elem_wf' by fastforce
next
    show "h ' carrier \(R \subseteq(\lambda X\). the_elem (h'X)) ' carrier ( R Quot a_kernel
R S h)"
    proof
        fix y assume "y \(\in \mathrm{h}\) ' carrier R"
        then obtain \(x\) where \(x: ~ " x \in\) carrier \(R " ~ " h x=y "\)
            by (metis image_iff)
            hence "the_elem (h ' ((a_kernel R S h) +> x)) = y" by simp
            moreover have "(a_kernel R S h) +> \(x \in\) carrier (R Quot (a_kernel
R S h))"
                unfolding FactRing_simps by (auto simp add: x a_r_coset_def)
            ultimately show \(" \mathrm{y} \in(\lambda \mathrm{X}\). (the_elem (h'X))) ' carrier (R Quot (a_kernel
R S h))" by blast
    qed
qed
proposition (in ring_hom_ring) FactRing_iso_set_aux:
    " ( \(\lambda \mathrm{X}\). the_elem (h' X)) \(\in\) ring_iso ( R Quot (a_kernel R S h) ) (S ( carrier
:= h ' (carrier R) D)"
proof -
    have "bij_betw ( \(\lambda\) X. the_elem (h' X)) (carrier (R Quot a_kernel R S
h)) (h ' (carrier R))"
            unfolding bij_betw_def inj_on_def using the_elem_surj the_elem_inj
by simp
moreover
```

 have "(\lambdaX. the_elem (h ' X)): carrier (R Quot (a_kernel R S h)) > h
 ، (carrier R)"
using the_elem_wf' by fastforce
hence "(\lambdaX. the_elem (h ' X)) G ring_hom (R Quot (a_kernel R S h))
(S | carrier := h ' (carrier R) D)"
using the_elem_hom the_elem_wf' unfolding ring_hom_def by simp
ultimately show ?thesis unfolding ring_iso_def using the_elem_hom by
simp
qed
theorem (in ring_hom_ring) FactRing_iso_set:
assumes "h ' carrier R = carrier S"
shows "(\lambdaX. the_elem (h ' X)) E ring_iso (R Quot (a_kernel R S h))
S"
using FactRing_iso_set_aux assms by auto
corollary (in ring_hom_ring) FactRing_iso:
assumes "h ' carrier R = carrier S"
shows "R Quot (a_kernel R S h) \simeq S"
using FactRing_iso_set assms is_ring_iso_def by auto
corollary (in ring) FactRing_zeroideal:
shows "R Quot { 0 } \simeq R" and "R \simeq R Quot { 0 }"
proof -
have "ring_hom_ring R R id"
using ring_axioms by (auto intro: ring_hom_ringI)
moreover have "a_kernel R R id = { 0 }"
unfolding a_kernel_def, by auto
ultimately show "R Quot { 0 } \simeq R" and "R \simeq R Quot { 0 }"
using ring_hom_ring.FactRing_iso[of R R id]
ring_iso_sym[OF ideal.quotient_is_ring[OF zeroideal], of R]
by auto
qed
lemma (in ring_hom_ring) img_is_ring: "ring (S | carrier := h ' (carrier
R) D)"
proof -
let ?the_elem = "\lambdaX. the_elem (h ' X)"
have FactRing_is_ring: "ring (R Quot (a_kernel R S h))"
by (simp add: ideal.quotient_is_ring kernel_is_ideal)
have "ring ((S | carrier := ?the_elem ' (carrier (R Quot (a_kernel R
S h))) D)
| zero := ?the_elem 0
using ring.ring_iso_imp_img_ring[OF FactRing_is_ring, of ?the_elem
"S (carrier := ?the_elem ' (carrier (R Quot (a_kernel R S h)))
|"]
FactRing_iso_set_aux the_elem_surj by auto

```
```

 moreover
 have "0 G (a_kernel R S h)"
 using a_kernel_def,[of R S h] by auto
 hence "1 \in (a_kernel R S h) +> 1"
 using a_r_coset_def'[of R "a_kernel R S h" 1] by force
 hence "1}\mp@subsup{1}{S}{}\in(h ' ((a_kernel R S h) +> 1))"
 using hom_one by force
 hence "?the_elem 1 (R Quot (a_kernel R S h)) = 1 1S"
 using the_elem_wf[of "(a_kernel R S h) +> 1"] by (simp add: FactRing_def)
 moreover
 have "0}\mp@subsup{0}{S}{}\in(h ' (a_kernel R S h))"
 using a_kernel_def'[of R S h] hom_zero by force
 hence "0}\mp@subsup{0}{S}{}\in(h'0\mp@subsup{0}{(R Quot (a_kernel R S h)))"}{
 by (simp add: FactRing_def)
 hence "?the_elem 0
 using the_elem_wf[OF ring.ring_simprules(2) [OF FactRing_is_ring]]
 by (metis singletonD the_elem_eq)
 ultimately
 have "ring ((S | carrier := h ' (carrier R) D) \ one := 1 1 , zero :=
 0S D)"
using the_elem_surj by simp
thus ?thesis
by auto
qed
lemma (in ring_hom_ring) img_is_cring:
assumes "cring S"
shows "cring (S | carrier := h ' (carrier R) D)"
proof -
interpret ring "S \ carrier := h ' (carrier R) D"
using img_is_ring .
show ?thesis
apply unfold_locales
using assms unfolding cring_def comm_monoid_def comm_monoid_axioms_def
by auto
qed
lemma (in ring_hom_ring) img_is_domain:
assumes "domain S"
shows "domain (S | carrier := h ' (carrier R) D)"
proof -
interpret cring "S | carrier := h ' (carrier R) D"
using img_is_cring assms unfolding domain_def by simp
show ?thesis
apply unfold_locales
using assms unfolding domain_def domain_axioms_def apply auto
using hom_closed by blast

```

\section*{qed}
```

proposition (in ring_hom_ring) primeideal_vimage:
assumes "cring R"
shows "primeideal P S \Longrightarrow primeideal { r f carrier R. h r f P } R"
proof -
assume A: "primeideal P S"
hence is_ideal: "ideal P S" unfolding primeideal_def by simp
have "ring_hom_ring R (S Quot P) (((+>S) P) o h)" (is "ring_hom_ring
?A ?B ?h")
using ring_hom_trans[OF homh, of "(+>S) P" "S Quot P"]
ideal.rcos_ring_hom_ring[OF is_ideal] assms
unfolding ring_hom_ring_def ring_hom_ring_axioms_def cring_def by
simp
then interpret hom: ring_hom_ring R "S Quot P" "((+>S) P) o h" by simp
have "inj_on (}\lambda\textrm{X}
Quot P) ?h)))"
using hom.the_elem_inj unfolding inj_on_def by simp
moreover
have "ideal (a_kernel R (S Quot P) ?h) R"
using hom.kernel_is_ideal by auto
have hom': "ring_hom_ring (R Quot (a_kernel R (S Quot P) ?h)) (S Quot
P) (}\lambda\textrm{X}
using hom.the_elem_hom hom.kernel_is_ideal
by (meson hom.ring_hom_ring_axioms ideal.rcos_ring_hom_ring ring_hom_ring_axioms_def
ring_hom_ring_def)
ultimately
have "primeideal (a_kernel R (S Quot P) ?h) R"
using ring_hom_ring.inj_on_domain[OF hom'] primeideal.quotient_is_domain[OF
A]
cring.quot_domain_imp_primeideal[OF assms hom.kernel_is_ideal]
by simp
moreover have "a_kernel R (S Quot P) ?h = { r f carrier R. h r f P
}"
proof
show "a_kernel R (S Quot P) ?h \subseteq { r f carrier R. h r f P }"
proof
fix r assume "r G a_kernel R (S Quot P) ?h"
hence r: "r f carrier R" "P +> S (h r) = P"
unfolding a_kernel_def kernel_def FactRing_def by auto
hence "h r \in P"
using S.a_rcosI R.l_zero S.l_zero additive_subgroup.a_subset[OF
ideal.axioms(1)[OF is_ideal]]
additive_subgroup.zero_closed[OF ideal.axioms(1)[OF is_ideal]]
hom_closed by metis
thus "r \in { r f carrier R. h r \in P }" using r by simp

```
```

 qed
 next
 show "{ r \in carrier R. h r \in P } \subseteq a_kernel R (S Quot P) ?h"
 proof
 fix r assume "r \in {r f carrier R. h r \in P }"
 hence r: "r \in carrier R" "h r \in P" by simp_all
 hence "?h r = P"
 by (simp add: S.a_coset_join2 additive_subgroup.a_subgroup ideal.axioms(1)
 is_ideal)
thus "r G a_kernel R (S Quot P) ?h"
unfolding a_kernel_def kernel_def FactRing_def using r(1) by auto
qed
qed
ultimately show "primeideal { r f carrier R. h r f P } R" by simp
qed
end

```
theory IntRing
imports "HOL-Computational_Algebra.Primes" QuotRing Lattice
begin

\section*{28 The Ring of Integers}

\subsection*{28.1 Some properties of int}
lemma dvds_eq_abseq:
fixes \(k\) : : int
shows "l dvd \(\mathrm{k} \wedge \mathrm{k} \operatorname{dvd} \mathrm{l} \longleftrightarrow|\mathrm{l}|=|\mathrm{k}| "\)
by (metis dvd_if_abs_eq lcm.commute lcm_proj1_iff_int)

\subsection*{28.2 Z: The Set of Integers as Algebraic Structure}
abbreviation int_ring :: "int ring" ("Z")
where "int_ring \(\equiv\) (carrier \(=\) UNIV, mult \(=(*)\), one \(=1\), zero = 0, add
\(=(+) \mid)\)
lemma int_Zcarr [intro!, simp]: "k \(\in\) carrier \(\mathcal{Z} "\)
by simp
lemma int_is_cring: "cring \(\mathcal{Z}\) "
proof (rule cringI)
show "abelian_group \(\mathcal{Z}\) "
by (rule abelian_groupI) (auto intro: left_minus)
show "Group.comm_monoid \(\mathcal{Z}\) "
by (simp add: Group.monoid.intro monoid.monoid_comm_monoidI)
qed (auto simp: distrib_right)

\subsection*{28.3 Interpretations}

Since definitions of derived operations are global, their interpretation needs to be done as early as possible - that is, with as few assumptions as possible.
```

interpretation int: monoid }\mathcal{Z
rewrites "carrier \mathcal{Z = UNIV"}
and "mult \mathcal{Z x y = x * y"}
and "one \mathcal{Z = 1"}
and "pow \mathcal{Z x n = x^n"}
proof -
- Specification
show "monoid \mathcal{Z" by standard auto}
then interpret int: monoid \mathcal{Z .}
- Carrier
show "carrier \mathcal{Z = UNIV" by simp}
- Operations
{ fix x y show "mult \mathcal{Z x y = x * y" by simp }}
show "one \mathcal{Z = 1" by simp}
show "pow \mathcal{Z x n = x^n" by (induct n) simp_all}
qed
interpretation int: comm_monoid \mathcal{Z}
rewrites "finprod \mathcal{Z f A = prod f A"}
proof -
- Specification
show "comm_monoid \mathcal{Z" by standard auto}
then interpret int: comm_monoid \mathcal{Z .}
- Operations
{ fix x y have "mult \mathcal{Z x y = x * y" by simp }}
note mult = this
have one: "one \mathcal{Z = 1" by simp}
show "finprod \mathcal{Z f A = prod f A"}
by (induct A rule: infinite_finite_induct, auto)
qed
interpretation int: abelian_monoid \mathcal{Z}
rewrites int_carrier_eq: "carrier \mathcal{Z = UNIV"}
and int_zero_eq: "zero \mathcal{Z = 0"}
and int_add_eq: "add \mathcal{Z x y = x + y"}
and int_finsum_eq: "finsum \mathcal{Z f A = sum f A"}
proof -
- Specification
show "abelian_monoid \mathcal{Z" by standard auto}
then interpret int: abelian_monoid \mathcal{Z .}
- Carrier

```
```

 show "carrier \mathcal{Z = UNIV" by simp}
 - Operations
 { fix x y show "add \mathcal{Z x y = x + y" by simp }}
 note add = this
 show zero: "zero \mathcal{Z = 0"}
 by simp
 show "finsum \mathcal{Z f A = sum f A"}
 by (induct A rule: infinite_finite_induct, auto)
 qed
interpretation int: abelian_group \mathcal{Z}
rewrites "carrier \mathcal{Z = UNIV"}
and "zero \mathcal{Z = 0"}
and "add \mathcal{Z x y = x + y"}
and "finsum \mathcal{Z f A = sum f A"}
and int_a_inv_eq: "a_inv \mathcal{Z x = - x"}
and int_a_minus_eq: "a_minus \mathcal{Z x y = x - y"}
proof -
- Specification
show "abelian_group \mathcal{Z"}
proof (rule abelian_groupI)
fix x
assume "x \in carrier \mathcal{Z"}
then show "\existsy\in carrier \mathcal{Z. y }\mp@subsup{\oplus}{\mathcal{Z}}{}\textrm{x}=\mp@subsup{0}{\mathcal{Z}}{\prime}"
by simp arith
qed auto
then interpret int: abelian_group \mathcal{Z .}
- Operations
{ fix x y have "add \mathcal{Z x y = x + y" by simp }}
note add = this
have zero: "zero \mathcal{Z = 0" by simp}
{
fix x
have "add \mathcal{Z (- x) x = zero \mathcal{Z"}}\mathbf{\prime}=\mp@code{l}
by (simp add: add zero)
then show "a_inv \mathcal{Z x = - x"}
by (simp add: int.minus_equality)
}
note a_inv = this
show "a_minus \mathcal{Z x y = x - y"}
by (simp add: int.minus_eq add a_inv)
qed (simp add: int_carrier_eq int_zero_eq int_add_eq int_finsum_eq)+
interpretation int: "domain" \mathcal{Z}
rewrites "carrier \mathcal{Z = UNIV"}
and "zero \mathcal{Z = 0"}

```
```

 and "add \mathcal{Z x y = x + y"}
 and "finsum \mathcal{Z f A = sum f A"}
 and "a_inv \mathcal{Z x = - x"}
 and "a_minus \mathcal{Z x y = x - y"}
 proof -
show "domain Z"
by unfold_locales (auto simp: distrib_right distrib_left)
qed (simp add: int_carrier_eq int_zero_eq int_add_eq int_finsum_eq int_a_inv_eq
int_a_minus_eq)+

```

Removal of occurrences of UNIV in interpretation result - experimental.
```

lemma UNIV:
"x \in UNIV \longleftrightarrow True"
"A}\subseteq\mathrm{ UNIV }\longleftrightarrow True"
"(}\forall\textrm{x}\in\mathrm{ UNIV. P x) < (
"(\existsx\in UNIV. P x) \longleftrightarrow (\existsx. P x)"
"(True \longrightarrow Q) \longleftrightarrow Q"
"(True \Longrightarrow PROP R) \equiv PROP R"
by simp_all

```
interpretation int :
    partial_order "()carrier = UNIV::int set, eq = (=), le = ( \(\leq\) ) )"
    rewrites "carrier (carrier = UNIV::int set, eq = (=), le = ( \(\leq\) )) = UNIV"
        and "le (carrier = UNIV::int set, eq \(=(=)\), le \(=(\leq) \mid\) x \(y=(x \leq\)
y)"
        and "lless (carrier = UNIV::int set, eq = (=), le = ( \(\leq\) ) ) x y = (x
< y)"
proof -
    show "partial_order (carrier = UNIV::int set, eq = (=), le = ( \(\leq\) ) |)"
        by standard simp_all
    show "carrier (carrier = UNIV::int set, eq = (=), le = ( \(\leq\) )|) = UNIV"
        by simp
    show "le (carrier = UNIV: int set, eq \(=(=)\), \(l_{e}=(\leq)\) ) \(\mathrm{x} y=(\mathrm{x} \leq \mathrm{y})\) "
        by simp
    show "lless (carrier = UNIV::int set, eq \(=(=)\), le \(=(\leq)\) ) \(\mathrm{x} \mathrm{y}=(\mathrm{x}\)
< y)"
        by (simp add: lless_def) auto
qed
interpretation int :
    lattice "(|carrier = UNIV::int set, eq = (=), le = ( \(\leq\) ))"
    rewrites "join (carrier = UNIV::int set, eq = (=), le \(=(\leq)) \mathrm{x} \mathrm{y}=\max\)
x y"
    and "meet (carrier = UNIV: :int set, eq \(=(=)\), le \(=(\leq) \mid\) x \(\mathrm{y}=\min\)
x y"
proof -
    let \(? \mathrm{Z}=\) "()carrier \(=\) UNIV: int set, eq = (=), le \(=(\leq) \mid) "\)
    show "lattice ?Z"
        apply unfold_locales
```

 apply (simp_all add: least_def Upper_def greatest_def Lower_def)
 apply arith+
 done
 then interpret int: lattice "?Z" .
 show "join ?Z x y = max x y"
 by (metis int.le_iff_meet iso_tuple_UNIV_I join_comm linear max.absorb_iff2
 max_def)
show "meet ?Z x y = min x y"
using int.meet_le int.meet_left int.meet_right by auto
qed
interpretation int :
total_order "(|carrier = UNIV::int set, eq = (=), le = (\leq)|"
by standard clarsimp

```

\subsection*{28.4 Generated Ideals of \(\mathcal{Z}\)}
```

lemma int_Idl: "Idl\mathcal{Z {a} = {x * a | x. True}"}
by (simp_all add: cgenideal_def int.cgenideal_eq_genideal[symmetric])
lemma multiples_principalideal: "principalideal {x * a | x. True } \mathcal{Z"}
by (metis UNIV_I int.cgenideal_eq_genideal int.cgenideal_is_principalideal
int_Idl)
lemma prime_primeideal:
assumes prime: "Factorial_Ring.prime p"
shows "primeideal (Idl\mathcal{Z {p}) \mathcal{Z"}}\mathbf{~}=
proof (rule primeidealI)
show "ideal (Idl }\mathcal{Z {p}) Z"
by (rule int.genideal_ideal, simp)
show "cring \mathcal{Z"}
by (rule int_is_cring)
have False if "UNIV = {v::int. \existsx. v = x * p}"
proof -
from that
obtain i where "1 = i * p"
by (blast intro: elim:)
then show False
using prime by (auto simp add: abs_mult zmult_eq_1_iff)
qed
then show "carrier \mathcal{Z }\not=\mp@subsup{\operatorname{Idl}}{\mathcal{Z}}{{p}"}
by (auto simp add: int.cgenideal_eq_genideal[symmetric] cgenideal_def)
have "p dvd a V p dvd b" if "a * b = x * p" for a b x
by (simp add: prime prime_dvd_multD that)

```

```

 "a}\in\mp@subsup{\operatorname{Idl}}{\mathcal{Z}}{{p}}\vee\textrm{b}\in\mp@subsup{\operatorname{Idl}}{\mathcal{Z}}{{p}"
 by (auto simp add: int.cgenideal_eq_genideal[symmetric] cgenideal_def
 dvd_def mult.commute)
qed

```

\subsection*{28.5 Ideals and Divisibility}
```

lemma int_Idl_subset_ideal: "Idl\mathcal{Z }{\textrm{k}}\subseteq\mp@subsup{\operatorname{Idl}}{\mathcal{Z}}{}{1}=(k\in\operatorname{Idl}\mathcal{Z}{l})"
by (rule int.Idl_subset_ideal') simp_all
lemma Idl_subset_eq_dvd: "Idl }\mp@subsup{\mathcal{Z}}{{}{{k}}\subseteq\mp@subsup{\operatorname{Idl}}{\mathcal{Z}}{}{l}\longleftrightarrowl dvd k"
by (subst int_Idl_subset_ideal) (auto simp: dvd_def int_Idl)
lemma dvds_eq_Idl: "l dvd k ^ k dvd l \longleftrightarrow Idl Z {k} = Idl\mathcal{Z {l}"}
proof -
have a: "l dvd k \longleftrightarrow(Idl\mathcal{Z }{k}\subseteq Idl \mathcal{Z {l})"}
by (rule Idl_subset_eq_dvd[symmetric])

```

```

 by (rule Idl_subset_eq_dvd[symmetric])
 have "l dvd k ^ k dvd l \longleftrightarrow Idl \mathcal{Z }{\textrm{k}}\subseteq\mp@subsup{\operatorname{Idl}}{\mathcal{Z}}{}{I}\wedge Idl\mathcal{Z }{I}\subseteq Idl}\mathcal{Z
 {k}"
by (subst a, subst b, simp)
also have "Idl }\mathcal{Z}{\textrm{k}}\subseteq\mp@subsup{\operatorname{Idl}}{\mathcal{Z}}{{I|}\wedge\mp@subsup{\operatorname{Idl}}{\mathcal{Z}}{}{I}\subseteq\mp@subsup{\operatorname{Idl}}{\mathcal{Z}}{{k}}\longleftrightarrow\mp@subsup{\operatorname{Idl}}{\mathcal{Z}}{{k}
= Idl_\mathcal{Z {I}"}
by blast
finally show ?thesis .
qed
lemma Idl_eq_abs: "Idl_\mathcal{Z }{\textrm{k}}=\mp@subsup{\operatorname{Idl}}{\mathcal{Z}}{}{1}\longleftrightarrow|l|=|k|"
apply (subst dvds_eq_abseq[symmetric])
apply (rule dvds_eq_Idl[symmetric])
done

```

\subsection*{28.6 Ideals and the Modulus}
```

definition ZMod :: "int }=>\mathrm{ int }=>\mathrm{ int set"

```

```

lemmas ZMod_defs =
ZMod_def genideal_def
lemma rcos_zfact:
assumes kIl: "k \in ZMod l r"
shows "\existsx. k = x * l + r"
proof -
from kIl[unfolded ZMod_def] have "\existsxl\inIdl\mathcal{Z {l}. k = xl + r"}
by (simp add: a_r_coset_defs)
then obtain xl where xl: "xl \in Idl }\mathcal{Z {l}" and k: "k = xl + r"
by auto
from xl obtain x where "xl = x * l"
by (auto simp: int_Idl)
with k have "k = x * l + r"
by simp
then show "\existsx. k = x * l + r" ..

```

\section*{qed}
lemma ZMod_imp_zmod:
assumes zmods: "ZMod m a = ZMod m b"
shows "a mod m = b mod m"
proof -
interpret ideal "Idl \(_{\mathcal{Z}}\{\mathrm{m}\}\) " \(\mathcal{Z}\)
by (rule int.genideal_ideal) fast
from zmods have "b \(\in\) ZMod \(m\) a"
unfolding ZMod_def by (simp add: a_repr_independenceD)
then have " \(\exists \mathrm{x} . \mathrm{b}=\mathrm{x} * \mathrm{~m}+\mathrm{a}\) "
by (rule rcos_zfact)
then obtain x where \(\mathrm{b} \mathrm{b}=\mathrm{x} * \mathrm{~m}+\mathrm{a}\) "
by fast
then have "b mod \(m=(x * m+a) \bmod m "\)
by simp
also have \(" .\). = ( \((x * m) \bmod m)+(a \bmod m) "\)
by (simp add: mod_add_eq)
also have "... = a mod m"
by simp
finally have \(" b \bmod m=a \bmod m\) ".
then show "a mod \(m=b \bmod m "\)..
qed
lemma ZMod_mod: "ZMod m a = ZMod m (a mod m)"
proof -
interpret ideal \(\operatorname{IId}_{\mathcal{Z}}\{\mathrm{m}\} " \mathcal{Z}\)
by (rule int.genideal_ideal) fast
show ?thesis
unfolding ZMod_def
apply (rule a_repr_independence'[symmetric])
apply (simp add: int_Idl a_r_coset_defs)
proof -
have \(" \mathrm{a}=\mathrm{m} *(\mathrm{a} \operatorname{div} \mathrm{m})+(\mathrm{a} \bmod \mathrm{m}) "\)
by (simp add: mult_div_mod_eq [symmetric])
then have \(\mathrm{a}=(\mathrm{a} \operatorname{div} \mathrm{m}) * \mathrm{~m}+(\mathrm{a} \bmod \mathrm{m}) "\)
by simp
then show \(" \exists \mathrm{~h} .(\exists \mathrm{x} . \mathrm{h}=\mathrm{x} * \mathrm{~m}) \wedge \mathrm{a}=\mathrm{h}+\mathrm{a} \bmod \mathrm{m} "\) by fast
qed simp
qed
lemma zmod_imp_ZMod:
assumes modeq: "a mod m = b mod m"
shows "ZMod m a \(=\) ZMod m b"
proof -
have "ZMod ma=ZMod m (a mod m)"
by (rule ZMod_mod)
also have "... = ZMod m (b mod m)"
```

 by (simp add: modeq[symmetric])
 also have "... = ZMod m b"
 by (rule ZMod_mod[symmetric])
 finally show ?thesis .
 qed
corollary ZMod_eq_mod: "ZMod m a = ZMod m b \longleftrightarrow a mod m = b mod m"
apply (rule iffI)
apply (erule ZMod_imp_zmod)
apply (erule zmod_imp_ZMod)
done

```

\subsection*{28.7 Factorization}
```

definition ZFact :: "int }=>\mathrm{ int set ring"
where "ZFact k = \mathcal{Z Quot (Idl\mathcal{Z {k})"}}\mathbf{~}=\mp@code{L}
lemmas ZFact_defs = ZFact_def FactRing_def
lemma ZFact_is_cring: "cring (ZFact k)"
by (simp add: ZFact_def ideal.quotient_is_cring int.cring_axioms int.genideal_ideal)
lemma ZFact_zero: "carrier (ZFact 0) = (\a. {{a}})"
by (simp add: ZFact_defs A_RCOSETS_defs r_coset_def int.genideal_zero)
lemma ZFact_one: "carrier (ZFact 1) = {UNIV}"
unfolding ZFact_defs A_RCOSETS_defs r_coset_def ring_record_simps int.genideal_one
proof
have "\a b::int. \existsx. b = x + a"
by presburger
then show "(\a::int. {\bigcuph. {h + a}}) \subseteq {UNIV}"
by force
then show "{UNIV} \subseteq(Ua::int. {\bigcuph. {h + a}})"
by (metis (no_types, lifting) UNIV_I UN_I singletonD singletonI subset_iff)
qed
lemma ZFact_prime_is_domain:
assumes pprime: "Factorial_Ring.prime p"
shows "domain (ZFact p)"
by (simp add: ZFact_def pprime prime_primeideal primeideal.quotient_is_domain)
end

```
theory Weak_Morphisms
    imports QuotRing
begin

\section*{29 Weak Morphisms}

The definition of ring isomorphism, as well as the definition of group isomorphism, doesn't enforce any algebraic constraint to the structure of the schemes involved. This seems unnatural, but it turns out to be very useful: in order to prove that a scheme B satisfy certain algebraic constraints, it's sufficient to prove those for a scheme A and show the existence of an isomorphism between A and B . In this section, we explore this idea in a different way: given a scheme \(A\) and a function \(f\), we build a scheme \(B\) with an algebraic structure of same strength as A where f is an homomorphism from A to B .

\subsection*{29.1 Definitions}
locale weak_group_morphism = normal H G for f and H and G (structure) \(+\)
assumes inj_mod_subgroup: "【a \(\in\) carrier \(G ; b \in \operatorname{carrier~G~\rrbracket ~} \Longrightarrow \mathrm{f}\) a
\(=f b \longleftrightarrow a \otimes(i n v b) \in H^{\prime \prime}\)
locale weak_ring_morphism = ideal I R for f and I and R (structure) + assumes inj_mod_ideal: " \(\llbracket a \in\) carrier \(R ; b \in \operatorname{carrier~} R \rrbracket \Longrightarrow f a=\) \(\mathrm{f} \mathrm{b} \longleftrightarrow \mathrm{a} \ominus \mathrm{b} \in \mathrm{I}{ }^{\prime \prime}\)
```

definition image_group :: " ('a \Rightarrow ' b) \Rightarrow ('a, 'c) monoid_scheme \Rightarrow 'b monoid"
where "image_group f G \equiv
(carrier = f ' (carrier G),
mult $=\left(\lambda a b . f\left(\left(i n v _i n t o(c a r r i e r ~ G) f a\right) ~ \otimes_{G}\right.\right.$ (inv_into
(carrier G) f b))),
one $=f \mathbf{1}_{G}$)"
definition image_ring :: "('a \Rightarrow 'b) \Rightarrow ('a, 'c) ring_scheme \Rightarrow 'b ring"
where "image_ring f $R \equiv$ monoid.extend (image_group f R)
(zero $=f 0_{R}$,
add $=\left(\lambda a \mathrm{~b} . \mathrm{f}\left(\left(i n v_{-}\right.\right.\right.$into $($carrier $R) \mathrm{f}$ a) \oplus_{R} (inv_into
(carrier R) f b))) D"

```

\subsection*{29.2 Weak Group Morphisms}
```

lemma image_group_carrier: "carrier (image_group f G) = f ' (carrier
G)"
unfolding image_group_def by simp
lemma image_group_one: "one (image_group f G) = f 1G"
unfolding image_group_def by simp
lemma weak_group_morphismsI:

```
```

 assumes "H \triangleleft G" and "\a b. \llbracket a \in carrier G; b \in carrier G \rrbracket \Longrightarrow f
 a = f b \longleftrightarrow a \otimes G (invG b) \in H"
shows "weak_group_morphism f H G"
using assms unfolding weak_group_morphism_def weak_group_morphism_axioms_def
by auto
lemma image_group_truncate:
fixes R :: "('a, 'b) monoid_scheme"
shows "monoid.truncate (image_group f R) = image_group f (monoid.truncate
R)"
by (simp add: image_group_def monoid.defs)
lemma image_ring_truncate: "monoid.truncate (image_ring f R) = image_group
f R"
by (simp add: image_ring_def monoid.defs)
lemma (in ring) weak_add_group_morphism:
assumes "weak_ring_morphism f I R" shows "weak_group_morphism f I (add_monoid
R)"
proof -
have is_normal: "I \triangleleft (add_monoid R)"
using ideal_is_normal[OF weak_ring_morphism.axioms(1)[OF assms]]
show ?thesis
using weak_group_morphism.intro[OF is_normal]
weak_ring_morphism.inj_mod_ideal[OF assms]
unfolding weak_group_morphism_axioms_def a_minus_def a_inv_def
by auto
qed
lemma (in group) weak_group_morphism_range:
assumes "weak_group_morphism f H G" and "a \in carrier G" shows "f '
(H \#> a) = { f a }"
proof -
interpret H: subgroup H G
using weak_group_morphism.axioms(1) [OF assms(1)] unfolding normal_def
by simp
show ?thesis
proof
show "{ f a } \subseteq f ' (H \#> a)"
using H.one_closed assms(2) unfolding r_coset_def by force
next
show "f ' (H \#> a) \subseteq { f a }"
proof
fix b assume "b f f ' (H \#> a)" then obtain h where "h \in H" "h
\epsilon carrier G" "b = f (h \otimes a)"
unfolding r_coset_def using H.subset by auto
thus "b \in { f a }"
using weak_group_morphism.inj_mod_subgroup[OF assms(1)] assms(2)

```
```

 by (metis inv_solve_right m_closed singleton_iff)
 qed
 qed
 qed
lemma (in group) vimage_eq_rcoset:
assumes "weak_group_morphism f H G" and "a \in carrier G"
shows "{ b \in carrier G. f b = f a } = H \#> a" and "{ b \in carrier G.
f b = f a } = a<\# H"
proof -
interpret H: normal H G
using weak_group_morphism.axioms(1)[0F assms(1)] by simp
show "{b f carrier G. f b = f a } = H \#> a"
proof
show "H \#> a \subseteq{ b \in carrier G. f b = f a }"
using r_coset_subset_G[OF H.subset assms(2)] weak_group_morphism_range [OF
assms] by auto
next
show "{ b \in carrier G. f b = f a } \subseteq H \#> a"
proof
fix b assume b: "b \in { b \in carrier G. f b = f a }" then obtain
h where "h \in H" "b \otimes (inv a) = h"
using weak_group_morphism.inj_mod_subgroup[OF assms(1)] assms(2)
by fastforce
thus "b \in H \#> a"
using H.rcos_module[OF is_group] b assms(2) by blast
qed
qed
thus "{ b \in carrier G. f b = f a } = a <\# H"
by (simp add: assms(2) H.coset_eq)
qed
lemma (in group) weak_group_morphism_ker:
assumes "weak_group_morphism f H G" shows "kernel G (image_group f
G) f = H"
using vimage_eq_rcoset(1) [OF assms one_closed] weak_group_morphism.axioms(1) [OF
assms(1)]
by (simp add: image_group_def kernel_def normal_def subgroup.subset)
lemma (in group) weak_group_morphism_inv_into:
assumes "weak_group_morphism f H G" and "a \in carrier G"
obtains h h' where "h \in H" "inv_into (carrier G) f (f a) = h \otimes a"
and "h' \in H" "inv_into (carrier G) f (f a) = a \otimes h'"
proof -
have "inv_into (carrier G) f (f a) \in { b \in carrier G. f b = f a }"
using assms(2) by (auto simp add: inv_into_into f_inv_into_f)
thus thesis
using that vimage_eq_rcoset[OF assms] unfolding r_coset_def l_coset_def
by blast

```
qed
proposition (in group) weak_group_morphism_is_iso:
assumes "weak_group_morphism f H G" shows " ( \(\lambda \mathrm{x}\). the_elem (f ' x )) \(\in\) iso (G Mod H) (image_group f G)"
proof (auto simp add: iso_def hom_def image_group_def)
interpret H: normal H G
using weak_group_morphism.axioms(1) [OF assms] .
show " \(\wedge x . x \in \operatorname{carrier}(G \operatorname{Mod} H) \Longrightarrow\) the_elem (f 'x) \(\in f\) ' carrier G"
unfolding FactGroup_def RCOSETS_def using weak_group_morphism_range[0F assms] by auto
thus "bij_betw ( \(\lambda\) x. the_elem (f ' x)) (carrier (G Mod H)) (f ' carrier G) "
unfolding bij_betw_def
proof (auto)
fix a assume "a \(\in\) carrier \(G\) "
hence "the_elem (f ' (H \#> a)) = fa" and "H \#> a \(\in\) carrier (G Mod
H) "
using weak_group_morphism_range[0F assms] unfolding FactGroup_def
RCOSETS_def by auto
thus "f \(a \in(\lambda x\). the_elem ( \(f\) ' \(x)\) ) ' carrier (G Mod H)"
using image_iff by fastforce
next
show "inj_on ( \(\lambda \mathrm{x}\). the_elem (f ' x)) (carrier (G Mod H))"
proof (rule inj_onI)
fix \(x\) y assume \(" x \in(c a r r i e r ~(G M o d H)) "\) and \(" y \in(c a r r i e r ~(G ~ M o d ~\)
H) )"
then obtain \(a \operatorname{b}\) where \(a: ~ " a \in \operatorname{carrier~G"~"x~=~H~\# >~a"~and~b:~"b~}\)
E carrier G" "y = H \#> b"
unfolding FactGroup_def RCOSETS_def by auto
assume "the_elem (f ' x) = the_elem (f ' y)"
hence " \(\mathrm{a} \otimes\) (inv b) \(\in \mathrm{H}\) "
using weak_group_morphism.inj_mod_subgroup[0F assms]
weak_group_morphism_range[0F assms] a b by auto
thus "x = y"
using \(a(1) b(1)\) unfolding \(a b\)
by (meson H.rcos_const H.subset group.coset_mult_inv1 is_group)
qed
qed
fix \(x\) y assume \(" x \in \operatorname{carrier~(G~Mod~H)"~"y~} \in \operatorname{carrier~(G~Mod~H)"~}\)
then obtain \(a \operatorname{b}\) where \(a: ~ " a \in \operatorname{carrier~} G "\) "x = H \#> \(a\) " and \(b: ~ " b \in\) carrier G" "y = H \#> b"
unfolding FactGroup_def RCOSETS_def by auto
show "the_elem (f ' (x <\#> y)) = f (inv_into (carrier G) f (the_elem
```

(f ' x)) \otimes
(f ' y)))"
proof (simp add: weak_group_morphism_range[OF assms] a b)
obtain h1 h2
where h1: "h1 \in H" "inv_into (carrier G) f (f a) = a \otimes h1"
and h2: "h2 \in H" "inv_into (carrier G) f (f b) = h2 \otimes b"
using weak_group_morphism_inv_into[0F assms] a(1) b(1) by metis
have "the_elem (f ' ((H \#> a) <\#> (H \#> b))) = the_elem (f ' (H \#>
(a \otimes b)))"
by (simp add: a b H.rcos_sum)
hence "the_elem (f ' ((H \#> a) <\#> (H \#> b))) = f (a \otimes b)"
using weak_group_morphism_range[OF assms] a(1) b(1) by auto
moreover
have "(a \otimes h1) \otimes (h2 \otimes b) = a \otimes (h1 \otimes h2 \otimes b)"
by (simp add: a(1) b(1) h1(1) h2(1) H.subset m_assoc)
hence "(a \otimes h1) \otimes (h2 \otimes b) \in a <\# (H \#> b)"
using h1(1) h2(1) unfolding l_coset_def r_coset_def by auto
hence "(a \otimes h1) \otimes (h2 \otimes b) \in (a \otimes b) <\# H"
by (simp add: H.subset H.coset_eq a(1) b(1) lcos_m_assoc)
hence "f (inv_into (carrier G) f (f a) \otimes inv_into (carrier G) f (f
b)) = f (a \& b)"
using vimage_eq_rcoset(2) [OF assms] a(1) b(1) unfolding h1 h2 by
auto
ultimately
show "the_elem (f ' ((H \#> a) <\#> (H \#> b))) = f (inv_into (carrier
G) f (f a) \otimes
inv_into (carrier
G) f (f b))"
by simp
qed
qed
corollary (in group) image_group_is_group:
assumes "weak_group_morphism f H G" shows "group (image_group f G)"
proof -
interpret H: normal H G
using weak_group_morphism.axioms(1)[OF assms] .
have "group ((image_group f G) (one := the_elem (f ' 1. (G Mod H) D)"
using group.iso_imp_img_group[OF H.factorgroup_is_group weak_group_morphism_is_iso[OF
assms]] .
moreover have "1 1G Mod H = H \#> 1"
unfolding FactGroup_def using H.subset by force
hence "the_elem (f ' }\mp@subsup{1}{G}{}M\mathrm{ Mod H) = f 1"
using weak_group_morphism_range[OF assms one_closed] by simp
ultimately show ?thesis by (simp add: image_group_def)
qed

```
corollary (in group) weak_group_morphism_is_hom:
assumes "weak_group_morphism f H G" shows "f \(\in\) hom G (image_group f G) "
proof -
interpret H : normal H G
using weak_group_morphism.axioms(1) [OF assms] .
have the_elem_hom: " \((\lambda x\). the_elem (f ' \(x\) )) \(\in\) hom (G Mod H) (image_group f G)"
using weak_group_morphism_is_iso[OF assms] by (simp add: iso_def)
have hom: " \((\lambda x\). the_elem ( \(f(x)) \circ(\#>) H \in\) hom \(G\) (image_group \(f\) \(G\) )" using hom_compose[OF H.r_coset_hom_Mod the_elem_hom]
using Group.hom_compose H.r_coset_hom_Mod the_elem_hom by blast
have restrict: " \(\wedge \mathrm{a} . \mathrm{a} \in \operatorname{carrier~} G \Longrightarrow((\lambda \mathrm{x}\). the_elem (f 'x)) ○ (\#>)
H) \(a=f a "\)
using weak_group_morphism_range[0F assms] by auto
show ?thesis
using hom_restrict[OF hom restrict] by simp
qed
corollary (in group) weak_group_morphism_group_hom:
assumes "weak_group_morphism f H G" shows "group_hom G (image_group
f G) f"
using image_group_is_group [OF assms] weak_group_morphism_is_hom[OF assms] group_axioms
unfolding group_hom_def group_hom_axioms_def by simp

\subsection*{29.3 Weak Ring Morphisms}
lemma image_ring_carrier: "carrier (image_ring f R) = f (carrier R)" unfolding image_ring_def image_group_def by (simp add: monoid.defs)
lemma image_ring_one: "one (image_ring f \(R\) ) \(=f 1_{R}\) "
unfolding image_ring_def image_group_def by (simp add: monoid.defs)
lemma image_ring_zero: "zero (image_ring f R) =f \(\mathbf{0}_{\mathrm{R}}\) "
unfolding image_ring_def image_group_def by (simp add: monoid.defs)
lemma weak_ring_morphismI:
assumes "ideal \(I R\) " and " \(\bigwedge a \operatorname{b} . \llbracket a \in \operatorname{carrier} R ; b \in \operatorname{carrier} R \rrbracket \Longrightarrow\)
\(\mathrm{f} a=\mathrm{f} b \longleftrightarrow \mathrm{a} \ominus_{\mathrm{R}} \mathrm{b} \in \mathrm{I}^{\prime \prime}\)
shows "weak_ring_morphism f I R"
using assms unfolding weak_ring_morphism_def weak_ring_morphism_axioms_def
by auto
lemma (in ring) weak_ring_morphism_range:
assumes "weak_ring_morphism f I R" and "a \(\in\) carrier R" shows "f '
\((I+>a)=\{f a\} \prime\)
using add.weak_group_morphism_range [OF weak_add_group_morphism [OF assms (1)]
```

assms(2)]
unfolding a_r_coset_def .
lemma (in ring) vimage_eq_a_rcoset:
assumes "weak_ring_morphism f I R" and "a \in carrier R" shows "{ b
\epsilon carrier R. f b = f a } = I +> a"
using add.vimage_eq_rcoset[OF weak_add_group_morphism[OF assms(1)] assms(2)]
unfolding a_r_coset_def by simp
lemma (in ring) weak_ring_morphism_ker:
assumes "weak_ring_morphism f I R" shows "a_kernel R (image_ring f
R) f = I'
using add.weak_group_morphism_ker[OF weak_add_group_morphism[OF assms]]
unfolding kernel_def a_kernel_def, image_ring_def image_group_def by
(simp add: monoid.defs)
lemma (in ring) weak_ring_morphism_inv_into:
assumes "weak_ring_morphism f I R" and "a \in carrier R"
obtains i where "i \in I" "inv_into (carrier R) f (f a) = i \oplus a"
using add.weak_group_morphism_inv_into(1) [OF weak_add_group_morphism[OF
assms(1)] assms(2)] by auto
proposition (in ring) weak_ring_morphism_is_iso:
assumes "weak_ring_morphism f I R" shows "(\lambdax. the_elem (f ' x)) \in
ring_iso (R Quot I) (image_ring f R)"
proof (rule ring_iso_memI)
show "bij_betw (}\lambda\textrm{x}
(image_ring f R))"
and add_hom: "^x y. \llbracket x \in carrier (R Quot I); y \in carrier (R Quot
I) \rrbracket\Longrightarrow
the_elem (f ' (x \oplus R Quot I y)) = the_elem (f ' x) \oplusimage_ring f R
the_elem (f ' y)"
using add.weak_group_morphism_is_iso[OF weak_add_group_morphism[OF
assms]]
unfolding iso_def hom_def FactGroup_def FactRing_def A_RCOSETS_def
set_add_def
by (auto simp add: image_ring_def image_group_def monoid.defs)
next
interpret I: ideal I R
using weak_ring_morphism.axioms(1) [OF assms] .
show "the_elem (f ' }\mp@subsup{\mathbf{1}}{R}{}\mathrm{ Quot I) = 1 1mage_ring f R"
and "^x. x \in carrier (R Quot I) \Longrightarrow the_elem (f ' x) \in carrier (image_ring
f R)"
using weak_ring_morphism_range[OF assms] one_closed I.Icarr
by (auto simp add: image_ring_def image_group_def monoid.defs FactRing_def
A_RCOSETS_def')
fix x y assume "x \in carrier (R Quot I)" "y \in carrier (R Quot I)"

```
then obtain \(a \operatorname{b}\) where \(a: ~ " a \in \operatorname{carrier~} R "\) " \(x=I+>a "\) and \(b: ~ " b \in\) carrier R" "y = I +> b"
unfolding FactRing_def A_RCOSETS_def' by auto
hence prod: "x \(\otimes_{R}\) Quot \(I\) y \(=I+>(a \otimes b) "\)
unfolding FactRing_def by (simp add: I.rcoset_mult_add)
```

 show "the_elem (f ' \(\left(x \otimes_{R}\right.\) Quot I \(\left.y\right)\)) \(=\) the_elem (\(f\) ' \(\left.x\right) \otimes_{\text {image_ring }} \mathrm{f}\)
 the_elem (f ' y)"
unfolding prod
proof (simp add: weak_ring_morphism_range[0F assms] a b image_ring_def
image_group_def monoid.defs)
obtain i j
where i: "i \in I" "inv_into (carrier R) f (f a) = i \oplus a"
and $j: ~ " j \in I "$ "inv_into (carrier R) f (f b) = j \oplus b"
using weak_ring_morphism_inv_into[0F assms] a(1) b(1) by metis
have "i \in carrier R " and " $j \in$ carrier R"
using I.Icarr $i(1) j(1)$ by auto
hence " $(i \oplus a) \otimes(j \oplus b)=(i \oplus a) \otimes j \oplus(i \otimes b) \oplus(a \otimes b) "$
using $a(1) b(1)$ by algebra
hence " $(i \oplus a) \otimes(j \oplus b) \in I+>(a \otimes b) "$
using $i(1) j(1) a(1) b(1)$ unfolding $a_{-} r_{-} c o s e t _d e f$ '
by (simp add: I.I_l_closed I.I_r_closed)
thus $" f(a \otimes b)=f$ (inv_into (carrier R) $f(f a) \otimes$ inv_into (carrier
R) $f(f \quad b)) "$
unfolding i j using weak_ring_morphism_range[0F assms m_closed[0F
$\mathrm{a}(1) \mathrm{b}(1)]$]
by (metis imageI singletonD)
qed
qed
corollary (in ring) image_ring_zero':
assumes "weak_ring_morphism f I R" shows "the_elem (f ' 0_{R} Quot I)
$=0_{\text {image_ring f R" }}$
proof -
interpret I: ideal I R
using weak_ring_morphism.axioms(1) [0F assms] .
have " $0_{\text {R }}$ Quot I = I +> 0"
unfolding FactRing_def a_r_coset_def' by force
thus ?thesis
using weak_ring_morphism_range[0F assms zero_closed] unfolding image_ring_zero
by simp
qed
corollary (in ring) image_ring_is_ring:
assumes "weak_ring_morphism f I R" shows "ring (image_ring f R)"
proof -
interpret I: ideal I R
using weak_ring_morphism.axioms(1) [0F assms] .

```
```

 have "ring ((image_ring f R) (zero := the_elem (f ' 0}\mp@subsup{0}{R}{}\mathrm{ Quot I) D)"
 using ring.ring_iso_imp_img_ring[OF I.quotient_is_ring weak_ring_morphism_is_iso[OF
 assms]l by simp
thus ?thesis
unfolding image_ring_zero'[OF assms] by simp
qed
corollary (in ring) image_ring_is_field:
assumes "weak_ring_morphism f I R" and "field (R Quot I)" shows "field
(image_ring f R)"
using field.ring_iso_imp_img_field[OF assms(2) weak_ring_morphism_is_iso[OF
assms(1)]]
unfolding image_ring_zero'[OF assms(1)] by simp
corollary (in ring) weak_ring_morphism_is_hom:
assumes "weak_ring_morphism f I R" shows "f \in ring_hom R (image_ring
f R)"
proof -
interpret I: ideal I R
using weak_ring_morphism.axioms(1)[0F assms] .
have the_elem_hom: "(\lambdax. the_elem (f ' x)) G ring_hom (R Quot I) (image_ring
f R)"
using weak_ring_morphism_is_iso[OF assms] by (simp add: ring_iso_def)
have ring_hom: "(\lambdax. the_elem (f ' x)) ○ (+>) I G ring_hom R (image_ring
f R)"
using ring_hom_trans[OF I.rcos_ring_hom the_elem_hom] .
have restrict: "\a. a \in carrier R \Longrightarrow ((\lambdax. the_elem (f ' x)) ○ (+>)
I) a = f a"
using weak_ring_morphism_range[OF assms] by auto
show ?thesis
using ring_hom_restrict[OF ring_hom restrict] by simp
qed
corollary (in ring) weak_ring_morphism_ring_hom:
assumes "weak_ring_morphism f I R" shows "ring_hom_ring R (image_ring
f R) f"
using ring_hom_ringI2[OF ring_axioms image_ring_is_ring[OF assms] weak_ring_morphism_is_h
assms]] .

```

\subsection*{29.4 Injective Functions}

If the fuction is injective, we don't need to impose any algebraic restriction to the input scheme in order to state an isomorphism.
```

lemma inj_imp_image_group_iso:
assumes "inj_on f (carrier G)" shows "f \in iso G (image_group f G)"
using assms by (auto simp add: image_group_def iso_def bij_betw_def
hom_def)

```
```

lemma inj_imp_image_group_inv_iso:
assumes "inj f" shows "Hilbert_Choice.inv f \in iso (image_group f G)
G"
using assms by (auto simp add: image_group_def iso_def bij_betw_def
hom_def inj_on_def)
lemma inj_imp_image_ring_iso:
assumes "inj_on f (carrier R)" shows "f \in ring_iso R (image_ring f
R)"
using assms by (auto simp add: image_ring_def image_group_def ring_iso_def
bij_betw_def ring_hom_def monoid.defs)
lemma inj_imp_image_ring_inv_iso:
assumes "inj f" shows "Hilbert_Choice.inv f \in ring_iso (image_ring
f R) R"
using assms by (auto simp add: image_ring_def image_group_def ring_iso_def
bij_betw_def ring_hom_def inj_on_def
monoid.defs)
lemma (in group) inj_imp_image_group_is_group:
assumes "inj_on f (carrier G)" shows "group (image_group f G)"
using iso_imp_img_group[OF inj_imp_image_group_iso[OF assms]] by (simp
add: image_group_def)
lemma (in ring) inj_imp_image_ring_is_ring:
assumes "inj_on f (carrier R)" shows "ring (image_ring f R)"
using ring_iso_imp_img_ring[OF inj_imp_image_ring_iso[OF assms]]
by (simp add: image_ring_def image_group_def monoid.defs)
lemma (in domain) inj_imp_image_ring_is_domain:
assumes "inj_on f (carrier R)" shows "domain (image_ring f R)"
using ring_iso_imp_img_domain[OF inj_imp_image_ring_iso[OF assms]]
by (simp add: image_ring_def image_group_def monoid.defs)
lemma (in field) inj_imp_image_ring_is_field:
assumes "inj_on f (carrier R)" shows "field (image_ring f R)"
using ring_iso_imp_img_field[OF inj_imp_image_ring_iso[OF assms]]
by (simp add: image_ring_def image_group_def monoid.defs)

```

\section*{30 Examples}

In a lot of different contexts, the lack of dependent types make some definitions quite complicated. The tools developed in this theory give us a way to change the type of a scheme and preserve all of its algebraic properties. We show, in this section, how to make use of this feature in order to solve the problem mentioned above.

\subsection*{30.1 Direct Product}
abbreviation nil_monoid :: "('a list) monoid"
where "nil_monoid \(\equiv\) ( carrier = \{ [] \}, mult = ( \(\lambda \mathrm{a} \mathrm{b}\). []), one = [] )"
definition DirProd_list : : "(('a, 'b) monoid_scheme) list \(\Rightarrow\) ('a list) monoid"
where "DirProd_list \(G s=\) foldr ( \(\lambda \mathrm{G}\) H. image_group ( \(\lambda(\mathrm{x}, \mathrm{xs}\) ). x \# xs)
( \(\mathrm{G} \times \times \mathrm{H}\) ) ) Gs nil_monoid"

\subsection*{30.1.1 Basic Properties}
```

lemma DirProd_list_carrier:
shows "carrier (DirProd_list (G \# Gs)) = (\lambda(x, xs). x \# xs) ' (carrier
G > carrier (DirProd_list Gs))"
unfolding DirProd_list_def image_group_def by auto
lemma DirProd_list_one:
shows "one (DirProd_list Gs) = foldr (}\lambda\textrm{G}\mathrm{ tl. (one G) \# tl) Gs []"
unfolding DirProd_list_def DirProd_def image_group_def by (induct Gs)
(auto)
lemma DirProd_list_carrier_mem:
assumes "gs \in carrier (DirProd_list Gs)"
shows "length gs = length Gs" and "\i. i < length Gs \Longrightarrow (gs ! i)
\epsilon carrier (Gs ! i)"
proof -
let ?same_length = "\lambdaxs ys. length xs = length ys"
let ?in_carrier = "\lambdai gs Gs. (gs ! i) \in carrier (Gs ! i)"
from assms have "?same_length gs Gs ^ (}\forall\textrm{i}< l length Gs. ?in_carrier
i gs Gs)"
proof (induct Gs arbitrary: gs, simp add: DirProd_list_def)
case (Cons G Gs)
then obtain g' gs'
where g': "g' \in carrier G" and gs': "gs' \in carrier (DirProd_list
Gs)" and gs: "gs = g' \# gs'"
unfolding DirProd_list_carrier by auto
hence "?same_length gs (G \# Gs)" and "\i. i \in {(Suc 0)..< length
(G \# Gs)} \Longrightarrow ?in_carrier i gs (G \# Gs)"
using Cons(1) by auto
moreover have "?in_carrier 0 gs (G \# Gs)"
unfolding gs using g' by simp
ultimately show ?case
by (metis atLeastLessThan_iff eq_imp_le less_Suc0 linorder_neqE_nat
nat_less_le)
qed
thus "?same_length gs Gs" and "\i. i < length Gs \Longrightarrow ?in_carrier i
gs Gs"
by simp+

```
qed
lemma DirProd_list_carrier_memI:
assumes "length gs = length Gs" and "へi. i < length Gs \(\Longrightarrow\) (gs ! i)
\(\in\) carrier (Gs ! i)"
shows "gs \(\in\) carrier (DirProd_list Gs)"
using assms
proof (induct Gs arbitrary: gs, simp add: DirProd_list_def)
case (Cons G Gs)
then obtain g' gs' where gs: "gs = g' \# gs'"
by (metis length_Suc_conv)
have "g' \(\in\) carrier G"
using Cons(3) [of 0] unfolding gs by auto
moreover have "gs' \(\in\) carrier (DirProd_list Gs)"
using Cons unfolding gs by force
ultimately show ?case
unfolding DirProd_list_carrier gs by blast
qed
lemma inj_on_DirProd_carrier:
shows "inj_on ( \(\lambda(\mathrm{g}, \mathrm{gs}) . \mathrm{g} \# \mathrm{gs}\) ) (carrier (G \(\times \times\) (DirProd_list Gs)))"
unfolding DirProd_def inj_on_def by auto
lemma DirProd_list_is_group:
assumes " \(\\) i. i < length Gs \(\Longrightarrow\) group (Gs ! i)" shows "group (DirProd_list
Gs)"
using assms
proof (induct Gs)
case Nil thus ?case
unfolding DirProd_list_def by (unfold_locales, auto simp add: Units_def)
next
case (Cons G Gs)
hence is_group: "group ( \(G \times \times\) (DirProd_list Gs))"
using DirProd_group[of G "DirProd_list Gs"] by force
show ?case
using group.inj_imp_image_group_is_group [OF is_group inj_on_DirProd_carrier]
unfolding DirProd_list_def by auto
qed
lemma DirProd_list_iso:
" ( \(\lambda(\mathrm{g}, \mathrm{gs}) . \mathrm{g} \# \mathrm{gs}) \in\) iso (G \(\times \times\) (DirProd_list Gs)) (DirProd_list (G
\# Gs))"
using inj_imp_image_group_iso[0F inj_on_DirProd_carrier] unfolding DirProd_list_def by auto
end
theory Ideal_Product

\section*{imports Ideal}
begin

\section*{31 Product of Ideals}

In this section, we study the structure of the set of ideals of a given ring.
```

inductive_set
ideal_prod :: "[('a, 'b) ring_scheme, 'a set, 'a set] => 'a set" (infixl
"`" 80)
for R and I and J where
prod: "\llbracketi \inI; j \in J \ \Longrightarrow i }\mp@subsup{\otimes}{R}{}j\in ideal_prod R I J"
| sum: "\llbracket s1 G ideal_prod R I J; s2 \in ideal_prod R I J \rrbracket \Longrightarrow s1 }\mp@subsup{\oplus}{R}{
s2 G ideal_prod R I J"
definition ideals_set :: "('a, 'b) ring_scheme \# ('a set) ring"
where "ideals_set R = \ carrier = {I. ideal I R },
mult = ideal_prod R,
one = carrier R,
zero = { 0 OR },
add = set_add R D"

```

\subsection*{31.1 Basic Properties}
```

lemma (in ring) ideal_prod_in_carrier:
assumes "ideal I R" "ideal J R"
shows "I . J \subseteq carrier R"
proof
fix s assume "s \in I · J" thus "s \in carrier R"
by (induct s rule: ideal_prod.induct) (auto, meson assms ideal.I_l_closed
ideal.Icarr)
qed
lemma (in ring) ideal_prod_inter:
assumes "ideal I R" "ideal J R"
shows "I · J \subseteq I \cap J"
proof
fix s assume "s \in I . J" thus "s \in I \cap J"
apply (induct s rule: ideal_prod.induct)
apply (auto, (meson assms ideal.I_r_closed ideal.I_l_closed ideal.Icarr)+)
apply (simp_all add: additive_subgroup.a_closed assms ideal.axioms(1))
done
qed
lemma (in ring) ideal_prod_is_ideal:
assumes "ideal I R" "ideal J R"
shows "ideal (I · J) R"
proof (rule idealI)
show "ring R" using ring_axioms .

```
```

next
show "subgroup (I • J) (add_monoid R)"
unfolding subgroup_def
proof (auto)
show "0 \in I • J" using ideal_prod.prod[of 0 I 0 J R]
by (simp add: additive_subgroup.zero_closed assms ideal.axioms(1))
next
fix s1 s2 assume s1: "s1 $\in \mathrm{I} \cdot \mathrm{J}$ " and s2: "s2 $\in \mathrm{I} \cdot \mathrm{J} "$
have IJcarr: " $\ a . a \in I \cdot J \Longrightarrow a \in$ carrier $R "$
by (meson assms subsetD ideal_prod_in_carrier)
show "s1 \in carrier R" using ideal_prod_in_carrier[0F assms] s1 by
blast
show "s1 \oplus s2 \in I • J" by (simp add: ideal_prod.sum[0F s1 s2])
show "invadd_monoid R s1 \in I • J" using s1
proof (induct s1 rule: ideal_prod.induct)
case (prod i j)
hence "invadd_monoid $R(i \otimes j)=\left(i n v a d d _m o n o i d ~ R i\right) ~(j "$
by (metis a_inv_def assms(1) assms(2) ideal.Icarr l_minus)
thus ?case using ideal_prod.prod[of "invadd_monoid R i" I j J R]
assms
by (simp add: additive_subgroup.a_subgroup ideal.axioms(1) prod.hyps
subgroup.m_inv_closed)
next
case (sum s1 s2) thus ?case
by (metis (no_types) IJcarr a_inv_def add.inv_mult_group ideal_prod.sum
sum.hyps)
qed
qed
next
fix $s \mathrm{x}$ assume $\mathrm{s}: ~ " \mathrm{~s} \in \mathrm{I} \cdot \mathrm{J} "$ and $\mathrm{x}: ~ " \mathrm{x} \in \operatorname{carrier} \mathrm{R}$ "
show "x $\otimes s \in I \cdot J "$ using s
proof (induct s rule: ideal_prod.induct)
case (prod i j) thus ?case using ideal_prod.prod[of "x \otimes i" I j J
R] assms
by (simp add: x ideal.I_l_closed ideal.Icarr m_assoc)
next
case (sum s1 s2) thus ?case
proof -
have IJ: "I • J \subseteq carrier R"
by (metis (no_types) assms(1) assms(2) ideal.axioms(2) ring.ideal_prod_in_carrier)
then have "s2 \in carrier R"
using sum.hyps(3) by blast
moreover have "s1 \in carrier R "
using IJ sum.hyps(1) by blast
ultimately show ?thesis
by (simp add: ideal_prod.sum r_distr sum.hyps x)
qed
qed
show "s $\otimes \mathrm{x} \in \mathrm{I} \cdot \mathrm{J}$ " using s

```
```

 proof (induct s rule: ideal_prod.induct)
 case (prod i j) thus ?case using ideal_prod.prod[of i I "j \otimes x" J
 R] assms x
by (simp add: x ideal.I_r_closed ideal.Icarr m_assoc)
next
case (sum s1 s2) thus ?case
proof -
have "s1 \in carrier R" "s2 \in carrier R"
by (meson assms subsetD ideal_prod_in_carrier sum.hyps)+
then show ?thesis
by (metis ideal_prod.sum l_distr sum.hyps(2) sum.hyps(4) x)
qed
qed
qed
lemma (in ring) ideal_prod_eq_genideal:
assumes "ideal I R" "ideal J R"
shows "I . J = Idl (I <\#> J)"
proof
have "I <\#> J \subseteq I · J"
proof
fix s assume "s \in I <\#> J"
then obtain i j where "i \in I" "j \in J" "s = i \otimes j"
unfolding set_mult_def by blast
thus "s \in I . J" using ideal_prod.prod by simp
qed
thus "Idl (I <\#> J) \subseteq I . J"
unfolding genideal_def using ideal_prod_is_ideal[OF assms] by blast
next
show "I . J \subseteq Idl (I <\#> J)"
proof
fix s assume "s \in I · J" thus "s \in Idl (I <\#> J)"
proof (induct s rule: ideal_prod.induct)
case (prod i j) hence "i \# j f I <\#> J" unfolding set_mult_def
by blast
thus ?case unfolding genideal_def by blast
next
case (sum s1 s2) thus ?case
by (simp add: additive_subgroup.a_closed additive_subgroup.a_subset
assms genideal_ideal ideal.axioms(1) set_mult_closed)
qed
qed
qed

```
lemma (in ring) ideal_prod_simp:
    assumes "ideal I R" "ideal J R"
    shows "I = I <+> (I • J)"
proof
```

 show "I \subseteq I <+> I · J"
 proof
 fix i assume "i \in I" hence "i \oplus 0 \in I <+> I . J"
 using set_add_def'[of R I "I · J"] ideal_prod_is_ideal[OF assms]
 additive_subgroup.zero_closed[OF ideal.axioms(1), of "I · J"
 R] by auto
thus "i \in I <+> I . J"
using <i \in I> assms(1) ideal.Icarr by fastforce
qed
next
show "I <+> I . J \subseteq I"
proof
fix s assume "s \in I <+> I . J"
then obtain i ij where "i \in I" "ij \in I . J" "s = i }\oplus ij
using set_add_def'[of R I "I · J"] by auto
thus "s \in I"
using ideal_prod_inter[OF assms]
by (meson additive_subgroup.a_closed assms(1) ideal.axioms(1) inf_sup_ord(1)
subsetCE)
qed
qed
lemma (in ring) ideal_prod_one:
assumes "ideal I R"
shows "I . (carrier R) = I"
proof
show "I · (carrier R) \subseteq I"
proof
fix s assume "s \in I . (carrier R)" thus "s \in I"
by (induct s rule: ideal_prod.induct)
(simp_all add: assms ideal.I_r_closed additive_subgroup.a_closed
ideal.axioms(1))
qed
next
show "I \subseteq I . (carrier R)"
proof
fix i assume "i \in I" thus "i \in I . (carrier R)"
by (metis assms ideal.Icarr ideal_prod.simps one_closed r_one)
qed
qed
lemma (in ring) ideal_prod_zero:
assumes "ideal I R"
shows "I . { 0 } = { 0 }"
proof
show "I . { 0 } \subseteq{ 0 }"
proof
fix s assume "s \in I . {0}" thus "s \in { 0 }"
using assms ideal.Icarr by (induct s rule: ideal_prod.induct) (fastforce,

```
```

simp)
qed
next
show "{ 0 } \subseteq I . { 0 }"
by (simp add: additive_subgroup.zero_closed assms
ideal.axioms(1) ideal_prod_is_ideal zeroideal)
qed
lemma (in ring) ideal_prod_assoc:
assumes "ideal I R" "ideal J R" "ideal K R"
shows "(I · J) · K = I · (J · K)"
proof
show "(I · J) · K \subseteq I · (J · K)"
proof
fix s assume "s \in (I · J) · K" thus "s \in I · (J · K)"
proof (induct s rule: ideal_prod.induct)
case (sum s1 s2) thus ?case
by (simp add: ideal_prod.sum)
next
case (prod i k) thus ?case
proof (induct i rule: ideal_prod.induct)
case (prod i j) thus ?case
using ideal_prod.prod[OF prod(1) ideal_prod.prod[OF prod(2-3),of
R], of R]
by (metis assms ideal.Icarr m_assoc)
next
case (sum s1 s2) thus ?case
proof -
have "s1 \in carrier R" "s2 \in carrier R"
by (meson assms subsetD ideal.axioms(2) ring.ideal_prod_in_carrier
sum.hyps)+
moreover have "k \in carrier R"
by (meson additive_subgroup.a_Hcarr assms(3) ideal.axioms(1)
sum.prems)
ultimately show ?thesis
by (metis ideal_prod.sum l_distr sum.hyps(2) sum.hyps(4) sum.prems)
qed
qed
qed
qed
next
show "I · (J · K) \subseteq (I · J) · K"
proof
fix s assume "s \in I · (J · K)" thus "s \in (I · J) · K"
proof (induct s rule: ideal_prod.induct)
case (sum s1 s2) thus ?case by (simp add: ideal_prod.sum)
next
case (prod i j) show ?case using prod(2) prod(1)
proof (induct j rule: ideal_prod.induct)

```
```

 case (prod j k) thus ?case
 using ideal_prod.prod[OF ideal_prod.prod[OF prod(3) prod(1),
 of R] prod (2), of R]
by (metis assms ideal.Icarr m_assoc)
next
case (sum s1 s2) thus ?case
proof -
have "\a A B. \llbracketa \in B . A; ideal A R; ideal B R\rrbracket\Longrightarrow a }\in\mathrm{ carrier
R"
by (meson subsetD ideal_prod_in_carrier)
moreover have "i \in carrier R"
by (meson additive_subgroup.a_Hcarr assms(1) ideal.axioms(1)
sum.prems)
ultimately show ?thesis
by (metis (no_types) assms(2) assms(3) ideal_prod.sum r_distr
sum)
qed
qed
qed
qed
qed
lemma (in ring) ideal_prod_r_distr:
assumes "ideal I R" "ideal J R" "ideal K R"
shows "I · (J <+> K) = (I · J) <+> (I · K)"
proof
show "I · (J <+> K) \subseteq I · J <+> I · K"
proof
fix s assume "s \in I . (J <+> K)" thus "s \in I . J <+> I . K"
proof(induct s rule: ideal_prod.induct)
case (prod i jk)
then obtain j k where j: "j \in J" and k: "k \in K" and jk: "jk =
j \oplus k"
using set_add_def'[of R J K] by auto
hence "i \otimes j \oplus i \otimes k G I . J <+> I . K"
using ideal_prod.prod[OF prod(1) j,of R]
ideal_prod.prod[OF prod(1) k,of R]
set_add_def'[of R "I · J" "I · K"] by auto
thus ?case
using assms ideal.Icarr r_distr jk j k prod(1) by metis
next
case (sum s1 s2) thus ?case
by (simp add: add_ideals additive_subgroup.a_closed assms ideal.axioms(1)
local.ring_axioms ring.ideal_prod_is_ideal)
qed
qed
next
{ fix s J K assume A: "ideal J R" "ideal K R" "s \in I · J"
have "s \in I . (J <+> K) ^ s \in I . (K <+> J)"

```
```

 proof -
 from <s \in I . J> have "s \in I . (J <+> K)"
 proof (induct s rule: ideal_prod.induct)
 case (prod i j)
 hence "(j \oplus 0) \in J <+> K"
 using set_add_def'[of R J K]
 additive_subgroup.zero_closed[OF ideal.axioms(1), of K
 R] A(2) by auto
thus ?case
by (metis A(1) additive_subgroup.a_Hcarr ideal.axioms(1) ideal_prod.prod
prod r_zero)
next
case (sum s1 s2) thus ?case
by (simp add: ideal_prod.sum)
qed
thus ?thesis
by (metis A(1) A(2) ideal_def ring.union_genideal sup_commute)
qed } note aux_lemma = this
show "I · J <+> I · K \subseteq I . (J <+> K)"
proof
fix s assume "s \in I · J <+> I · K"
then obtain s1 s2 where s1: "s1 \in I . J" and s2: "s2 \in I . K" and
s: "s = s1 \oplus s2"
using set_add_def'[of R "I · J" "I · K"] by auto
thus "s \in I . (J <+> K)"
using aux_lemma[0F assms(2) assms(3) s1]
aux_lemma[OF assms(3) assms(2) s2] by (simp add: ideal_prod.sum)
qed
qed
lemma (in cring) ideal_prod_commute:
assumes "ideal I R" "ideal J R"
shows "I . J = J . I"
proof -
{ fix I J assume A: "ideal I R" "ideal J R"
have "I . J \subseteq J . I"
proof
fix s assume "s \in I . J" thus "s \in J . I"
proof (induct s rule: ideal_prod.induct)
case (prod i j) thus ?case
using m_comm[OF ideal.Icarr[OF A(1) prod(1)] ideal.Icarr[OF
A(2) prod(2)]]
by (simp add: ideal_prod.prod)
next
case (sum s1 s2) thus ?case by (simp add: ideal_prod.sum)
qed
qed }

```
```

 thus ?thesis using assms by blast
 qed
The following result would also be true for locale ring
lemma (in cring) ideal_prod_distr:
assumes "ideal I R" "ideal J R" "ideal K R"
shows "I · (J <+> K) = (I · J) <+> (I · K)"
and "(J <+> K) · I = (J · I) <+> (K · I)"
by (simp_all add: assms ideal_prod_commute local.ring_axioms
ring.add_ideals ring.ideal_prod_r_distr)
lemma (in cring) ideal_prod_eq_inter:
assumes "ideal I R" "ideal J R"
and "I <+> J = carrier R"
shows "I . J = I \cap J"
proof
show "I · J \subseteq I \cap J"
using assms ideal_prod_inter by auto
next
show "I \cap J \subseteq I . J"
proof
have "1 \in I <+> J" using assms(3) one_closed by simp
then obtain i j where ij: "i \in I" "j \in J" "1 = i ¢ j"
using set_add_def'[of R I J] by auto
fix s assume s: "s \in I \cap J"
hence "(i \otimes s\inI . J) ^ (s \otimes j \in I · J)"
using ij(1-2) by (simp add: ideal_prod.prod)
moreover have "s = (i \& s) \oplus (s \& j)"
using ideal.Icarr[0F assms(1) ij(1)]
ideal.Icarr[0F assms(2) ij(2)]
ideal.Icarr[OF assms(1), of s]
by (metis ij(3) s m_comm[of s i] Int_iff r_distr r_one)
ultimately show "s \in I . J"
using ideal_prod.sum by fastforce
qed
qed

```

\subsection*{31.2 Structure of the Set of Ideals}

We focus on commutative rings for convenience.
```

lemma (in cring) ideals_set_is_semiring: "semiring (ideals_set R)"
proof -
have "abelian_monoid (ideals_set R)"
apply (rule abelian_monoidI) unfolding ideals_set_def
apply (simp_all add: add_ideals zeroideal)
apply (simp add: add.set_mult_assoc additive_subgroup.a_subset ideal.axioms(1)
set_add_defs(1))
apply (metis Un_absorb1 additive_subgroup.a_subset additive_subgroup.zero_closed

```
```

 cgenideal_minimal cgenideal_self empty_iff genideal_minimal ideal.axioms(1)
 local.ring_axioms order_refl ring.genideal_self subset_antisym
 subset_singletonD
union_genideal zero_closed zeroideal)
by (metis sup_commute union_genideal)
moreover have "monoid (ideals_set R)"
apply (rule monoidI) unfolding ideals_set_def
apply (simp_all add: ideal_prod_is_ideal oneideal
ideal_prod_commute ideal_prod_one)
by (metis ideal_prod_assoc ideal_prod_commute)
ultimately show ?thesis
unfolding semiring_def semiring_axioms_def ideals_set_def
by (simp_all add: ideal_prod_distr ideal_prod_commute ideal_prod_zero
zeroideal)
qed
lemma (in cring) ideals_set_is_comm_monoid: "comm_monoid (ideals_set
R)"
proof -
have "monoid (ideals_set R)"
apply (rule monoidI) unfolding ideals_set_def
apply (simp_all add: ideal_prod_is_ideal oneideal
ideal_prod_commute ideal_prod_one)
by (metis ideal_prod_assoc ideal_prod_commute)
thus ?thesis
unfolding comm_monoid_def comm_monoid_axioms_def
by (simp add: ideal_prod_commute ideals_set_def)
qed
lemma (in cring) ideal_prod_eq_Inter_aux:
assumes "I: {..(Suc n)} -> { J. ideal J R }"
and "\i j.\llbracket i < Suc n; j \leq Suc n\rrbracket\Longrightarrow
i}\not=j\Longrightarrow(I i) <+> (I j) = carrier R"
shows "(\otimes (ideals_set R) k \in {..n}. I k) <+> (I (Suc n)) = carrier R"
using assms
proof (induct n arbitrary: I)
case 0
hence "(\otimes (ideals_set R) k { {..0}. I k) <+> I (Suc 0) = (I 0) <+> (I
(Suc 0))"
using comm_monoid.finprod_0[OF ideals_set_is_comm_monoid, of I]
by (simp add: atMost_Suc ideals_set_def)
also have " ... = carrier R"
using O(2)[of 0 "Suc 0"] by simp
finally show ?case .
next
interpret ISet: comm_monoid "ideals_set R"
by (simp add: ideals_set_is_comm_monoid)

```
```

 case (Suc n)
 let ?I' = "\lambdai. I (Suc i)"
 have "?I': {..(Suc n)} -> { J. ideal J R }"
 using Suc.prems(1) by auto
 moreover have "\i j. \llbracket i \leq Suc n; j \leq Suc n\rrbracket\Longrightarrow
 i }\not=j\Longrightarrow(?I' i) <+> (?I' j) = carrier R"
 by (simp add: Suc.prems(2))
 ultimately have "(囚 (ideals_set R) k \in {..n}. ?I' k) <+> (?I' (Suc n))
 = carrier R"
using Suc.hyps by metis
moreover have I_carr: "I: {..Suc (Suc n)} -> carrier (ideals_set R)"
unfolding ideals_set_def using Suc by simp
hence I'_carr: "I \in Suc ' {..n} }->\mathrm{ carrier (ideals_set R)" by auto
ultimately have "(囚 (ideals_set R) k \in {(Suc 0)..Suc n}. I k) <+> (I
(Suc (Suc n))) = carrier R"
using ISet.finprod_reindex[of I "\lambdai. Suc i" "{..n}"] by (simp add:
atMost_atLeast0)
hence "(carrier R) . (I 0) = ((囚 (ideals_set R) k \in {Suc 0..Suc n}. I
k) <+> I (Suc (Suc n))) · (I 0)"
by auto
moreover have fprod_cl1: "ideal (}\otimes\mathrm{ (ideals_set R) k }\in{Suc O..Suc n}
I k) R"
by (metis I'_carr ISet.finprod_closed One_nat_def ideals_set_def image_Suc_atMost
mem_Collect_eq partial_object.select_convs(1))
ultimately
have "I 0 = (囚 (ideals_set R) k \in {Suc 0..Suc n}. I k) . (I 0) <+> I
(Suc (Suc n)) . (I 0)"
by (metis PiE Suc.prems(1) atLeastO_atMost_Suc atLeast0_atMost_Suc_eq_insert_0
atMost_atLeastO ideal_prod_commute ideal_prod_distr(2) ideal_prod_one
insertI1
mem_Collect_eq oneideal)
also have " ... = (I 0) . (((ideals_set R) k \in {Suc 0..Suc n}. I k)
<+> I (Suc (Suc n)) . (I 0)"
using fprod_cl1 ideal_prod_commute Suc.prems(1)
by (simp add: atLeast0_atMost_Suc_eq_insert_0 atMost_atLeast0)
also have " ... = (I 0) \otimes (ideals_set R) (}\mp@subsup{\otimes}{(ideals_set R) k \in {Suc 0..Suc}{(id
n}. I k) <+>
I (Suc (Suc n)) . (I 0)"
by (simp add: ideals_set_def)
finally have IO: "I 0 = (囚 (ideals_set R) k \in {..Suc n}. I k) <+> I (Suc
(Suc n)) . (I 0)"
using ISet.finprod_insert[of "{Suc 0..Suc n}" O I]
I_carr I'_carr atMost_atLeastO ISet.finprod_O' atMost_Suc by
auto
have I＿SucSuc＿IO：＂ideal（I（Suc（Suc n）））R \wedge ideal（I 0）R＂

```
using Suc.prems(1) by auto

by (metis (no_types) ISet.finprod_closed I_carr Pi_split_insert_domain atMost_Suc ideals_set_def mem_Collect_eq partial_object.select_convs(1))
have "carrier R = I (Suc (Suc n)) <+> I 0"
by (simp add: Suc.prems(2))
also have " ... = I (Suc (Suc n)) <+>
\(\left(\left(\otimes_{\text {(ideals_set } R)} k \in\{.\right.\right.\). Suc \(n\}\). I k) <+> I (Suc (Suc
n)) • (I 0))"
using IO by auto
also have " ... = I (Suc (Suc n)) <+> (I (Suc (Suc n)) • (I 0) <+> \(\left(\bigotimes_{\text {(ideals_set R) }} k \in\right.\) \{..Suc n\}. I k))"
using fprod_cl2 I_SucSuc_IO by (metis Un_commute ideal_prod_is_ideal union_genideal)
also have " ... = (I (Suc (Suc n)) <+> I (Suc (Suc n)) • (I 0)) <+> ( \(\otimes_{\text {(ideals_set } R)} k \in\{.\). Suc \(n\}\). I k)"
using fprod_cl2 I_SucSuc_I0 by (metis add.set_mult_assoc ideal_def ideal_prod_in_carrier oneideal ring.ideal_prod_one
set_add_defs(1))
 I k)"
using ideal_prod_simp[of "I (Suc (Suc n))" "I 0"] I_SucSuc_IO by simp
also have " \(\ldots=(\bigotimes\) (ideals_set \(R\) ) \(k \in\{.\). Suc n\}. I k) <+> I (Suc (Suc n))"
using fprod_cl2 I_SucSuc_IO by (metis Un_commute union_genideal)
finally show ?case by simp qed
```

theorem (in cring) ideal_prod_eq_Inter:
assumes "I: {..n :: nat} -> { J. ideal J R }"
and "\i j. \llbracketi i {..n}; j \in{..n} \rrbracket\Longrightarrow i = j \Longrightarrow (I i) <+> (I j)
= carrier R"
shows "(\otimes (ideals_set R) k \in {..n}. I k) = (\bigcap k \in {..n}. I k)" us-
ing assms
proof (induct n)
case O thus ?case
using comm_monoid.finprod_O[OF ideals_set_is_comm_monoid] by (simp
add: ideals_set_def)
next
interpret ISet: comm_monoid "ideals_set R"
by (simp add: ideals_set_is_comm_monoid)
case (Suc n)
hence IH: "((\otimes (ideals_set R) k \in {..n}. I k) = (\bigcap k \in {..n}. I k)"
by (simp add: atMost_Suc)
hence "(\otimes (ideals_set R) k f {..Suc n}. I k) = I (Suc n) \otimes (ideals_set R)

```
```

(\bigcap k \in {..n}. I k)"
using ISet.finprod_insert[of "{Suc 0..Suc n}" O I] atMost_Suc_eq_insert_0[of
n]
by (metis ISet.finprod_Suc Suc.prems(1) ideals_set_def partial_object.select_convs(1))
hence "(| (ideals_set R) k f {..Suc n}. I k) = I (Suc n) . (\bigcap k f {..n}.
I k)"
by (simp add: ideals_set_def)
moreover have "(\bigcap k \in {..n}. I k) <+> I (Suc n) = carrier R"
using ideal_prod_eq_Inter_aux[of I n] by (simp add: Suc.prems IH)
moreover have "ideal (\bigcap k \in {..n}. I k) R"
using ring.i_Intersect[of R "I ' {..n}"]
by (metis IH ISet.finprod_closed Pi_split_insert_domain Suc.prems(1)
atMost_Suc
ideals_set_def mem_Collect_eq partial_object.select_convs(1))
ultimately
have "(| (ideals_set R) k \in {..Suc n}. I k) = (\bigcap k \in {..n}. I k) \cap
I (Suc n)"
using ideal_prod_eq_inter[of "\bigcap k \in {..n}. I k" "I (Suc n)"]
ideal_prod_commute[of "\bigcap k \in {..n}. I k" "I (Suc n)"]
by (metis PiE Suc.prems(1) atMost_iff mem_Collect_eq order_refl)
thus ?case by (simp add: Int_commute atMost_Suc)
qed
corollary (in cring) inter_plus_ideal_eq_carrier:
assumes "\i. i \leq Suc n \Longrightarrow ideal (I i) R"
and "\i j.\llbracket i \leq Suc n; j \leq Suc n; i f j \rrbracket\Longrightarrow I i <+> I j = carrier
R"
shows "(\bigcap i < n. I i) <+> (I (Suc n)) = carrier R"
using ideal_prod_eq_Inter[of I n] ideal_prod_eq_Inter_aux[of I n] by
(auto simp add: assms)
corollary (in cring) inter_plus_ideal_eq_carrier_arbitrary:
assumes "\i. i \leq Suc n \Longrightarrow ideal (I i) R"
and "\i j.\llbracket i \leq Suc n; j \leq Suc n; i f j\rrbracket\Longrightarrow I i <+> I j = carrier
R"
and "j \leq Suc n"
shows "(\bigcap i \in ({..(Suc n)} - { j }). I i) <+> (I j) = carrier R"
proof -
define I' where "I' = (\lambdai. if i = Suc n then (I j) else
if i = j then (I (Suc n))
else (I i))"
have "\i. i \leq Suc n \Longrightarrow ideal (I' i) R"
using I'_def assms(1) assms(3) by auto
moreover have "\i j. \llbracket i \leq Suc n; j \leq Suc n; i f j\rrbracket\Longrightarrow I' i <+>
I' j = carrier R"
using I'_def assms(2-3) by force
ultimately have "(\bigcap i \leqn. I' i) <+> (I' (Suc n)) = carrier R"
using inter_plus_ideal_eq_carrier by simp

```
```

 moreover have "I' ' {..n} = I ' ({..(Suc n)} - { j })"
 proof
 show "I' ' {..n} \subseteq I ' ({..Suc n} - {j})"
 proof
 fix x assume "x \in I' ' {..n}"
 then obtain i where i: "i \in {..n}" "I' i = x" by blast
 thus "x \in I ' ({..Suc n} - {j})"
 proof (cases)
 assume "i = j" thus ?thesis using i I'_def by auto
 next
 assume "i f j" thus ?thesis using I'_def i insert_iff by auto
 qed
 qed
 next
 show "I ' ({..Suc n} - {j}) \subseteq I' ' {..n}"
 proof
 fix x assume "x \in I ' ({..Suc n} - {j})"
 then obtain i where i: "i \in {..Suc n}" "i f j" "I i = x" by blast
 thus "x\in I' ' {..n}"
 proof (cases)
 assume "i = Suc n" thus ?thesis using I'_def assms(3) i(2-3)
 by auto
next
assume "i f Suc n" thus ?thesis using I'_def i by auto
qed
qed
qed
ultimately show ?thesis using I'_def by metis
qed

```

\subsection*{31.3 Another Characterization of Prime Ideals}

With product of ideals being defined, we can give another definition of a prime ideal
lemma (in ring) primeideal_divides_ideal_prod:
assumes "primeideal P R" "ideal I R" "ideal J R" and "I \(\cdot \mathrm{J} \subseteq \mathrm{P}\) "
shows "I \(\subseteq P \vee \mathrm{~J} \subseteq \mathrm{P}\) "
proof (cases)
assume " \(\exists\) i \(\in\) I. i \(\notin \mathrm{P} "\)
then obtain \(i\) where \(i: ~ " i \in I " ~ " i \notin P "\) by blast
have "J \(\subseteq\) P"
proof
fix \(j\) assume \(j: ~ " j \in J "\)
hence "i \(\otimes j \in P\) " using ideal_prod.prod[OF i(1) j, of R] assms(4) by auto
thus " \(j \in P\) "
using primeideal.I_prime[OF assms(1), of i j] i \(j\) by (meson assms(2-3) ideal.Icarr)
```

 qed
 thus ?thesis by blast
 next
assume "\neg (\exists i \in I. i \& P)" thus ?thesis by blast
qed
lemma (in cring) divides_ideal_prod_imp_primeideal:
assumes "ideal P R"
and "P \not= carrier R"
and "\I J. \llbracket ideal I R; ideal J R; I . J \subseteq P \ C I \subseteqP V J \subseteq P"
shows "primeideal P R"
proof -
have "\a b. \llbracketa < carrier R; b \in carrier R; a \otimes b | P |\Longrightarrowa < P
b b G P"
proof -
fix a b assume A: "a \in carrier R" "b \in carrier R" "a \otimes b \in P"
have "(PIdl a). (PIdl b) = Idl (PIdl (a \otimes b))"
using ideal_prod_eq_genideal[of "Idl { a }" "Idl { b }"]
A(1-2) cgenideal_eq_genideal cgenideal_ideal cgenideal_prod
by auto
hence "(PIdl a) . (PIdl b) = PIdl (a \otimes b)"
by (simp add: A Idl_subset_ideal cgenideal_ideal cgenideal_minimal
genideal_self oneideal subset_antisym)
hence "(PIdl a) · (PIdl b) \subseteq P"
by (simp add: A(3) assms(1) cgenideal_minimal)
hence "(PIdl a) \subseteq P \vee (PIdl b) \subseteq P"
by (simp add: A assms(3) cgenideal_ideal)
thus "a \in P V b \in P"
using A cgenideal_self by blast
qed
thus ?thesis
using assms is_cring by (simp add: primeidealI)
qed
end

```
theory Chinese_Remainder
    imports Weak_Morphisms Ideal_Product
begin

\section*{32 Direct Product of Rings}

\subsection*{32.1 Definitions}
definition RDirProd :: "('a, 'n) ring_scheme \(\Rightarrow\) ('b, 'm) ring_scheme \(\Rightarrow\) ('a \(\times\) 'b) ring" where "RDirProd \(\mathrm{R} S=\) monoid.extend ( \(\mathrm{R} \times \times \mathrm{S}\) )
```

(zero = one ((add_monoid R) < × (add_monoid S)),
add = mult ((add_monoid R) }\times\times\mathrm{ (add_monoid S))) "

```
```

abbreviation nil_ring :: "('a list) ring"

```
    where "nil_ring \(\equiv\) monoid.extend nil_monoid (| zero = [], add = ( \(\lambda \mathrm{a}\) b.
[]) (D"
definition RDirProd_list :: "(('a, 'n) ring_scheme) list \(\Rightarrow\) ('a list) ring"
    where "RDirProd_list Rs = foldr ( \(\lambda \mathrm{R}\) S. image_ring ( \(\lambda(\mathrm{a}, \mathrm{as}\) ). a \# as)
(RDirProd R S)) Rs nil_ring"

\subsection*{32.2 Basic Properties}
```

lemma RDirProd_carrier: "carrier (RDirProd R S) = carrier R < carrier

```
S"
    unfolding RDirProd_def DirProd_def by (simp add: monoid.defs)
lemma RDirProd_add_monoid [simp]: "add_monoid (RDirProd R S) = (add_monoid
R) \(\times \times\) (add_monoid S)"
    by (simp add: RDirProd_def monoid.defs)
lemma RDirProd_ring:
    assumes "ring R" and "ring S" shows "ring (RDirProd R S)"
proof -
    have "monoid (RDirProd R S)"
        using DirProd_monoid[OF assms[THEN ring.axioms(2)]] unfolding monoid_def
        by (auto simp add: DirProd_def RDirProd_def monoid.defs)
    then interpret Prod: group "add_monoid (RDirProd R S)" + monoid "RDirProd
R S"
            using DirProd_group[OF assms[THEN abelian_group.a_group[OF ring.is_abelian_group]]]
            unfolding RDirProd_add_monoid by auto
    show ?thesis
            by (unfold_locales, auto simp add: RDirProd_def DirProd_def monoid.defs
assms ring.ring_simprules)
qed
lemma RDirProd_iso1:
    " \((\lambda(\mathrm{x}, \mathrm{y}) .(\mathrm{y}, \mathrm{x})) \in\) ring_iso (RDirProd R S) (RDirProd S R)"
    unfolding ring_iso_def ring_hom_def bij_betw_def inj_on_def
    by (auto simp add: RDirProd_def DirProd_def monoid.defs)
lemma RDirProd_iso2:
    " \((\lambda(x, \quad(y, z)) .((x, y), z)) \in\) ring_iso (RDirProd R (RDirProd S T))
(RDirProd (RDirProd R S) T)"
    unfolding ring_iso_def ring_hom_def bij_betw_def inj_on_def
    by (auto simp add: image_iff RDirProd_def DirProd_def monoid.defs)
lemma RDirProd_iso3:
    " \((\lambda((x, y), z) .(x,(y, z))) \in\) ring_iso (RDirProd (RDirProd R S) T)
```

(RDirProd R (RDirProd S T))"
unfolding ring_iso_def ring_hom_def bij_betw_def inj_on_def
by (auto simp add: image_iff RDirProd_def DirProd_def monoid.defs)
lemma RDirProd_iso4:
assumes "f \in ring_iso R S" shows "(\lambda(r, t). (f r, t)) \in ring_iso (RDirProd
R T) (RDirProd S T)"
using assms unfolding ring_iso_def ring_hom_def bij_betw_def inj_on_def
by (auto simp add: image_iff RDirProd_def DirProd_def monoid.defs)+
lemma RDirProd_iso5:
assumes "f \in ring_iso S T" shows "(\lambda(r, s). (r, f s)) \in ring_iso (RDirProd
R S) (RDirProd R T)"
using ring_iso_set_trans[OF ring_iso_set_trans[OF RDirProd_iso1 RDirProd_iso4[OF
assms]] RDirProd_iso1]
by (simp add: case_prod_unfold comp_def)
lemma RDirProd_iso6:
assumes "f \in ring_iso R R'" and "g \in ring_iso S S'"
shows "(\lambda(r, s). (f r, g s)) \in ring_iso (RDirProd R S) (RDirProd R'
S')"
using ring_iso_set_trans[OF RDirProd_iso4[OF assms(1)] RDirProd_iso5[OF
assms(2)]]
by (simp add: case_prod_beta' comp_def)
lemma RDirProd_iso7:
shows "(\lambdaa. (a, [])) E ring_iso R (RDirProd R nil_ring)"
unfolding ring_iso_def ring_hom_def bij_betw_def inj_on_def
by (auto simp add: RDirProd_def DirProd_def monoid.defs)
lemma RDirProd_hom1:
shows "(\lambdaa. (a, a)) E ring_hom R (RDirProd R R)"
by (auto simp add: ring_hom_def RDirProd_def DirProd_def monoid.defs)
lemma RDirProd_hom2:
assumes "f \in ring_hom S T"
shows "(\lambda(x, y). (x, f y)) \in ring_hom (RDirProd R S) (RDirProd R T)"
and "(\lambda(x, y). (f x, y)) \in ring_hom (RDirProd S R) (RDirProd T R)"
using assms by (auto simp add: ring_hom_def RDirProd_def DirProd_def
monoid.defs)
lemma RDirProd_hom3:
assumes "f \in ring_hom R R'" and "g \in ring_hom S S'"
shows "(\lambda(r, s). (f r, g s)) \in ring_hom (RDirProd R S) (RDirProd R'
S')"
using ring_hom_trans[OF RDirProd_hom2(2) [OF assms(1)] RDirProd_hom2(1) [OF
assms(2)]]
by (simp add: case_prod_beta' comp_def)

```

\subsection*{32.3 Direct Product of a List of Rings}
```

lemma RDirProd_list_nil [simp]: "RDirProd_list [] = nil_ring"
unfolding RDirProd_list_def by simp
lemma nil_ring_simprules [simp]:
"carrier nil_ring = { [] }" and "one nil_ring = []" and "zero nil_ring
= []"
by (auto simp add: monoid.defs)
lemma RDirProd_list_truncate:
shows "monoid.truncate (RDirProd_list Rs) = DirProd_list Rs"
proof (induct Rs, simp add: RDirProd_list_def DirProd_list_def monoid.defs)
case (Cons R Rs)
have "monoid.truncate (RDirProd_list (R \# Rs)) =
monoid.truncate (image_ring (}\lambda\mathrm{ (a, as). a \# as) (RDirProd R (RDirProd_list
Rs)))"
unfolding RDirProd_list_def by simp
also have " ... = image_group (}\lambda\mathrm{ (a, as). a \# as) (monoid.truncate (RDirProd
R (RDirProd_list Rs)))"
by (simp add: image_ring_def image_group_def monoid.defs)
also have " ... = image_group (}\lambda\mathrm{ (a, as). a \# as) (R }\times\times\times\mathrm{ (monoid.truncate
(RDirProd_list Rs)))"
by (simp add: RDirProd_def DirProd_def monoid.defs)
also have " ... = DirProd_list (R \# Rs)"
unfolding Cons DirProd_list_def by simp
finally show ?case .
qed
lemma RDirProd_list_carrier_def':
shows "carrier (RDirProd_list Rs) = carrier (DirProd_list Rs)"
proof -
have "carrier (RDirProd_list Rs) = carrier (monoid.truncate (RDirProd_list
Rs))"
by (simp add: monoid.defs)
thus ?thesis
unfolding RDirProd_list_truncate .
qed
lemma RDirProd_list_carrier:
shows "carrier (RDirProd_list (G \# Gs)) = (\lambda(x, xs). x \# xs) ' (carrier
G > carrier (RDirProd_list Gs))"
unfolding RDirProd_list_carrier_def' using DirProd_list_carrier .
lemma RDirProd_list_one:
shows "one (RDirProd_list Rs) = foldr (}\lambda\textrm{R tl. (one R) \# tl) Rs []"
unfolding RDirProd_list_def RDirProd_def image_ring_def image_group_def
by (induct Rs) (auto simp add: monoid.defs)
lemma RDirProd_list_zero:

```
```

 shows "zero (RDirProd_list Rs) = foldr (\lambdaR tl. (zero R) # tl) Rs []"
 unfolding RDirProd_list_def RDirProd_def image_ring_def
 by (induct Rs) (auto simp add: monoid.defs)
 lemma RDirProd_list_zero':
 shows "zero (RDirProd_list (R # Rs)) = (zero R) # (zero (RDirProd_list
 Rs))"
unfolding RDirProd_list_zero by simp
lemma RDirProd_list_carrier_mem:
assumes "as \in carrier (RDirProd_list Rs)"
shows "length as = length Rs" and "\i. i < length Rs \Longrightarrow (as ! i)
\epsilon carrier (Rs ! i)"
using assms DirProd_list_carrier_mem unfolding RDirProd_list_carrier_def,
by auto
lemma RDirProd_list_carrier_memI:
assumes "length as = length Rs" and "\i. i < length Rs \Longrightarrow (as ! i)
\epsilon carrier (Rs ! i)"
shows "as \in carrier (RDirProd_list Rs)"
using assms DirProd_list_carrier_memI unfolding RDirProd_list_carrier_def'
by auto
lemma inj_on_RDirProd_carrier:
shows "inj_on (}\lambda\mathrm{ (a, as). a \# as) (carrier (RDirProd R (RDirProd_list
Rs)))"
unfolding RDirProd_def DirProd_def inj_on_def by auto
lemma RDirProd_list_is_ring:
assumes "\i. i < length Rs \Longrightarrow ring (Rs ! i)" shows "ring (RDirProd_list
Rs)"
using assms
proof (induct Rs)
case Nil thus ?case
unfolding RDirProd_list_def by (unfold_locales, auto simp add: monoid.defs
Units_def)
next
case (Cons R Rs)
hence is_ring: "ring (RDirProd R (RDirProd_list Rs))"
using RDirProd_ring[of R "RDirProd_list Rs"] by force
show ?case
using ring.inj_imp_image_ring_is_ring[OF is_ring inj_on_RDirProd_carrier]
unfolding RDirProd_list_def by auto
qed
lemma RDirProd_list_iso1:
"(\lambda(a, as). a \# as) \in ring_iso (RDirProd R (RDirProd_list Rs)) (RDirProd_list
(R \# Rs))"
using inj_imp_image_ring_iso[OF inj_on_RDirProd_carrier] unfolding RDirProd_list_def

```
by auto
lemma RDirProd_list_iso2:
"Hilbert_Choice.inv ( \(\lambda\) (a, as). a \# as) \(\in\) ring_iso (RDirProd_list (R
\# Rs)) (RDirProd R (RDirProd_list Rs))"
unfolding RDirProd_list_def by (auto intro: inj_imp_image_ring_inv_iso
simp add: inj_def)
lemma RDirProd_list_iso3:
"( \(\lambda \mathrm{a}\). [ a ]) \(\in\) ring_iso R (RDirProd_list [ R ])"
proof -
have [simp]: "( \(\lambda \mathrm{a} .[\mathrm{a}])=(\lambda(\mathrm{a}, \mathrm{as}) . \mathrm{a} \# \mathrm{as}) \circ(\lambda \mathrm{a} .(\mathrm{a},[])) \mathrm{l}\) by auto
show ?thesis
using ring_iso_set_trans[OF RDirProd_iso7] RDirProd_list_iso1[of R
" [] "]
unfolding RDirProd_list_def by simp
qed
lemma RDirProd_list_hom1:
" ( \(\lambda\) (a, as). a \# as) \(\in\) ring_hom (RDirProd R (RDirProd_list Rs)) (RDirProd_list (R \# Rs))"
using RDirProd_list_iso1 unfolding ring_iso_def by auto
lemma RDirProd_list_hom2:
assumes "f \(\in\) ring_hom \(R\) S" shows " ( \(\lambda \mathrm{a} .[\mathrm{f}\) a ]) \(\in\) ring_hom R (RDirProd_list
[ S ])"
proof -
have hom1: "( \(\lambda \mathrm{a}\). (a, [])) \(\in\) ring_hom \(R\) (RDirProd \(R\) nil_ring)"
using RDirProd_iso7 unfolding ring_iso_def by auto
have hom2: "( \(\lambda(\mathrm{a}, \mathrm{as})\). a \# as) \(\in\) ring_hom (RDirProd S nil_ring) (RDirProd_list
[ S ])"
using RDirProd_list_hom1[of _ " []"] unfolding RDirProd_list_def by auto
have [simp]: " \((\lambda(\mathrm{a}, \mathrm{as}) . \mathrm{a} \# \mathrm{as}) \circ((\lambda(\mathrm{x}, \mathrm{y}) .(\mathrm{f} \mathrm{x}, \mathrm{y})) \circ(\lambda \mathrm{a} .(\mathrm{a},[])))\)
\(=(\lambda a .[f a]) "\) by auto
show ?thesis
using ring_hom_trans[0F ring_hom_trans[0F hom1 RDirProd_hom2(2) [OF assms]] hom2] by simp
qed

\section*{33 Chinese Remainder Theorem}

\subsection*{33.1 Definitions}
abbreviation (in ring) canonical_proj :: "'a set \(\Rightarrow\) 'a set \(\Rightarrow\) 'a \(\Rightarrow\) 'a set \(\times\) 'a set"
where "canonical_proj I J \(\equiv\) ( \(\lambda\) a. ( \(I\) +> a, J +> a))"
```

definition (in ring) canonical_proj_ext : : " (nat \Rightarrow 'a set) \Rightarrow nat \Rightarrow 'a
\Rightarrow ('a set) list"
where "canonical_proj_ext $I n=(\lambda a . \operatorname{map}(\lambda i .(I \quad i)+>a)[0 . .<$ Suc
n])"

```

\subsection*{33.2 Chinese Remainder Simple}
lemma (in ring) canonical_proj_is_surj:
assumes "ideal I R" "ideal J R" and "I <+> J = carrier R"
shows "(canonical_proj I J) ' carrier R = carrier (RDirProd (R Quot
I) (R Quot J))"
unfolding RDirProd_def DirProd_def FactRing_def A_RCOSETS_def,
proof (auto simp add: monoid.defs)
\{ fix I i assume "ideal I R" "i \(\in I\) " hence "I +> i = \(0_{R}\) Quot I" using a_rcos_zero by (simp add: FactRing_def)
\} note aux_lemma1 = this
\{ fix I i \(j\) assume A: "ideal I R" "i \(\in I "\) " \(j \in \operatorname{carrier~R"~"i~} \oplus j=\) 1"
have " (I +> i) \(\oplus_{R}\) Quot I (I +> j) = I +> 1" using ring_hom_memE(3)[OF ideal.rcos_ring_hom ideal.Icarr[OF _ A(2)] A(3)] A(1,4) by simp
moreover have "I +> i = I" using abelian_subgroupI3[OF ideal.axioms(1) is_abelian_group] by (simp add: A(1-2) abelian_subgroup.a_rcos_const)
moreover have "I +> j \(\in \operatorname{carrier~(R~Quot~I)"~and~"I~=~} 0_{R}\) Quot I" and "I +> \(1=1_{R}\) Quot \(I "\)
by (auto simp add: FactRing_def A_RCOSETS_def' A(3))
ultimately have "I +> \(j=1_{R}\) Quot I"
using ring.ring_simprules(8) [OF ideal.quotient_is_ring[OF A(1)]]
by simp
\} note aux_lemma2 = this
interpret I: ring "R Quot I" + J: ring "R Quot J"
using assms(1-2) [THEN ideal.quotient_is_ring] by auto
fix a b assume \(a: ~ " a \in \operatorname{carrier} R "\) and \(b: ~ " b \in \operatorname{carrier~} R "\)
have "1 \(\in\) I <+> J"
using assms(3) by blast
then obtain \(i \operatorname{j}\) where \(i: ~ " i \in c a r r i e r ~ R " ~ " i \in I " ~ a n d ~ j: ~ " j \in c a r r i e r ~\) R" "j \(\in J "\) and \(i j: ~ " i ~ j e 1 "\)
using assms(1-2) [THEN ideal.Icarr] unfolding set_add_def' by auto
hence rcos_j: "I +> \(j=1_{R}\) Quot I" and rcos_i: "J +> i \(=1_{R}\) Quot J"
using assms(1-2) [THEN aux_lemma2] a_comm by simp+
define \(s\) where \(" s=(a \otimes j) \oplus(b \otimes i) "\)
hence "s \(\in\) carrier R"
using a b i \(j\) by simp

```

 using ring_hom_memE(2-3)[0F ideal.rcos_ring_hom[OF assms(1)]]
 by (simp add: a b i(1) j(1) s_def)
 moreover have "I +> a \in carrier (R Quot I)"
 by (auto simp add: FactRing_def A_RCOSETS_def' a)
 ultimately have "I +> s = I +> a"
 unfolding rcos_j aux_lemma1[OF assms(1) ideal.I_l_closed[OF assms(1)
 i(2) b]] by simp
have "J +> s = (J +> (a \otimes j)) \oplus R Quot J ((J +> b) \otimes | Quot J (J +> i))"
using ring_hom_memE(2-3)[OF ideal.rcos_ring_hom[OF assms(2)]]
by (simp add: a b i(1) j(1) s_def)
moreover have "J +> b \in carrier (R Quot J)"
by (auto simp add: FactRing_def A_RCOSETS_def' b)
ultimately have "J +> s = J +> b"
unfolding rcos_i aux_lemma1[OF assms(2) ideal.I_l_closed[OF assms(2)
j(2) a]] by simp
from <I +> s = I +> a> and <J +> s = J +> b> and <s \in carrier R>
show "(I +> a, J +> b) \in (canonical_proj I J) ' carrier R" by blast
qed
lemma (in ring) canonical_proj_ker:
assumes "ideal I R" and "ideal J R"
shows "a_kernel R (RDirProd (R Quot I) (R Quot J)) (canonical_proj I
J) = I \cap J"
proof
show "a_kernel R (RDirProd (R Quot I) (R Quot J)) (canonical_proj I
J) \subseteq I \cap J"
unfolding FactRing_def RDirProd_def DirProd_def a_kernel_def,
by (auto simp add: assms[THEN ideal.rcos_const_imp_mem] monoid.defs)
next
show "I \cap J \subseteq a_kernel R (RDirProd (R Quot I) (R Quot J)) (canonical_proj
I J)"
proof
fix s assume s: "s \in I \cap J" then have "I +> s = I" and "J +> s =
J"
using abelian_subgroupI3[OF ideal.axioms(1) is_abelian_group]
by (simp add: abelian_subgroup.a_rcos_const assms)+
thus "s \in a_kernel R (RDirProd (R Quot I) (R Quot J)) (canonical_proj
I J)"
unfolding FactRing_def RDirProd_def DirProd_def a_kernel_def,
using ideal.Icarr[OF assms(1)] s by (simp add: monoid.defs)
qed
qed
lemma (in ring) canonical_proj_is_hom:
assumes "ideal I R" and "ideal J R"
shows "(canonical_proj I J) \in ring_hom R (RDirProd (R Quot I) (R Quot

```
```

J))"
unfolding RDirProd_def DirProd_def FactRing_def A_RCOSETS_def'
by (auto intro!: ring_hom_memI
simp add: assms[THEN ideal.rcoset_mult_add]
assms[THEN ideal.a_rcos_sum] monoid.defs)
lemma (in ring) canonical_proj_ring_hom:
assumes "ideal I R" and "ideal J R"
shows "ring_hom_ring R (RDirProd (R Quot I) (R Quot J)) (canonical_proj
I J)"
using ring_hom_ring.intro[OF ring_axioms RDirProd_ring[OF assms[THEN
ideal.quotient_is_ring]]]
by (simp add: ring_hom_ring_axioms_def canonical_proj_is_hom[OF assms])
theorem (in ring) chinese_remainder_simple:
assumes "ideal I R" "ideal J R" and "I <+> J = carrier R"
shows "R Quot (I \cap J) \simeq RDirProd (R Quot I) (R Quot J)"
using ring_hom_ring.FactRing_iso[OF canonical_proj_ring_hom canonical_proj_is_surj]
by (simp add: canonical_proj_ker assms)

```

\subsection*{33.3 Chinese Remainder Generalized}
```

lemma (in ring) canonical_proj_ext_zero [simp]: "(canonical_proj_ext
I 0) = (\lambdaa. [(I 0) +> a])"
unfolding canonical_proj_ext_def by simp
lemma (in ring) canonical_proj_ext_tl:
"(\lambdaa. canonical_proj_ext I (Suc n) a) = (\lambdaa. ((I 0) +> a) \# (canonical_proj_ext
(\lambdai. I (Suc i)) n a))"
unfolding canonical_proj_ext_def by (induct n) (auto, metis (lifting)
append.assoc append_Cons append_Nil)
lemma (in ring) canonical_proj_ext_is_hom:
assumes "\i. i }\leqn\Longrightarrow\mathrm{ ideal (I i) R"
shows "(canonical_proj_ext I n) \in ring_hom R (RDirProd_list (map (}\lambdai\mathrm{ .
R Quot (I i)) [0..< Suc n]))"
using assms
proof (induct n arbitrary: I)
case 0 thus ?case
using RDirProd_list_hom2[OF ideal.rcos_ring_hom[of _ R]] by (simp
add: canonical_proj_ext_def)
next
let ?DirProd = "\lambdaI n. RDirProd_list (map (\lambdai. R Quot (I i)) [0..<Suc
n])"
let ?proj = "\lambdaI n. canonical_proj_ext I n"
case (Suc n)
hence I: "ideal (I O) R" by simp
have hom: "(?proj (\lambdai. I (Suc i)) n) \in ring_hom R (?DirProd (\lambdai. I

```
(Suc i)) n)"
using Suc(1)[of " \(\lambda\) i. I (Suc i)"] Suc(2) by simp
have [simp]:
" ( \(\lambda(\mathrm{a}, \mathrm{as}) . \mathrm{a} \# \mathrm{as}) \circ((\lambda(\mathrm{r}, \mathrm{s})\). (I 0 +> r, ?proj ( \(\lambda i\). I (Suc i))
n s) ) \(\circ(\lambda \mathrm{a} .(\mathrm{a}, \mathrm{a})))=\) ?proj I (Suc n)" unfolding canonical_proj_ext_tl by auto moreover have " (R Quot I 0) \# (map ( \(\lambda\) i. R Quot I (Suc i)) \([0 . .<\operatorname{Suc} n]\) ) \(=\operatorname{map}(\lambda i\).
R Quot (I i)) [0.. < Suc (Suc n)]" by (induct n ) (auto)
moreover show ?case
using ring_hom_trans[OF ring_hom_trans[OF RDirProd_hom1
RDirProd_hom3[0F ideal.rcos_ring_hom[0F I] hom]] RDirProd_list_hom1]
unfolding calculation(2) by simp
qed
lemma (in ring) RDirProd_Quot_list_is_ring:
assumes " \(\wedge\) i. i \(\leq n \Longrightarrow\) ideal ( I i) R " shows "ring (RDirProd_list (map
( \(\lambda\) i. R Quot ( I i)) \([0 . .<\) Suc n]))"
proof -
have ring_list: " \(} \mathrm{i}<\operatorname{Suc} \mathrm{n} \Longrightarrow\) ring ((map ( \(\lambda \mathrm{i} . \mathrm{R}\) Quot I i) [0..<
Suc n]) ! i)"
using ideal.quotient_is_ring[0F assms]
by (metis add.left_neutral diff_zero le_simps(2) nth_map_upt)
show ?thesis
using RDirProd_list_is_ring[0F ring_list] by simp
qed
lemma (in ring) canonical_proj_ext_ring_hom:
assumes " \(\wedge\) i. \(i \leq n \Longrightarrow\) ideal ( I i) R"
shows "ring_hom_ring R (RDirProd_list (map ( \(\lambda i . \operatorname{R~Quot~(I~i))~[0..<~}\)
Suc n])) (canonical_proj_ext I n)"
proof -
have ring: "ring (RDirProd_list (map ( \(\lambda \mathrm{i} . \mathrm{R}\) Quot (I i)) [0..< Suc n]))"
using RDirProd_Quot_list_is_ring[OF assms] by simp
show ?thesis
using canonical_proj_ext_is_hom assms ring_hom_ring.intro[0F ring_axioms
ring]
unfolding ring_hom_ring_axioms_def by blast
qed
lemma (in ring) canonical_proj_ext_ker:
assumes "^i. i \(\leq\) ( \(n::\) nat) \(\Longrightarrow\) ideal (I i) R"
shows "a_kernel R (RDirProd_list (map ( \(\lambda \mathrm{i} . \mathrm{R}\) Quot (I i)) [0..< Suc
n]) ) (canonical_proj_ext I n) = ( \(\bigcap_{i} \leq n\). I i)"
proof -
let ?map_Quot \(=\) " \(\lambda \mathrm{I} \mathrm{n} . \operatorname{map}(\lambda i . \operatorname{R}\) Quot ( I i)) \([0 . .<\) Suc n]"
let ?ker = " \(\lambda \mathrm{I}\) n. a_kernel R (RDirProd_list (?map_Quot I n) ) (canonical_proj_ext
I n)"
```

 from assms show ?thesis
 proof (induct n arbitrary: I)
 case 0 then have I: "ideal (I 0) R" by simp
 show ?case
 unfolding a_kernel_def' RDirProd_list_zero canonical_proj_ext_def
 FactRing_def
using ideal.rcos_const_imp_mem a_rcos_zero ideal.Icarr I by auto
next
case (Suc n)
hence I: "ideal (I 0) R" by simp
have map_simp: "?map_Quot I (Suc n) = (R Quot I 0) \# (?map_Quot (\lambdai.
I (Suc i)) n)"
by (induct n) (auto)
have ker_IO: "I O = a_kernel R (R Quot (I O)) (\lambdaa. (I 0) +> a)"
using ideal.rcos_const_imp_mem[OF I] a_rcos_zero[OF I] ideal.Icarr[OF
I]
unfolding a_kernel_def' FactRing_def by auto
hence "?ker I (Suc n) = (?ker (\lambdai. I (Suc i)) n) \cap (I 0)"
unfolding a_kernel_def' map_simp RDirProd_list_zero' canonical_proj_ext_tl
by auto
moreover have "?ker (\lambdai. I (Suc i)) n = (\bigcapi \leq n. I (Suc i))"
using Suc(1)[of "\lambdai. I (Suc i)"] Suc(2) by auto
ultimately show ?case
by (auto simp add: INT_extend_simps(10) atMost_atLeast0)
(metis atLeastAtMost_iff le_zero_eq not_less_eq_eq)
qed
qed
lemma (in cring) canonical_proj_ext_is_surj:
assumes "\i. i \leq n \Longrightarrow ideal (I i) R" and "\i j. \llbracket i \leqn; j \leqn
\ \Longrightarrow i f j \Longrightarrow I i <+> I j = carrier R"
shows "(canonical_proj_ext I n) ' carrier R = carrier (RDirProd_list
(map (\lambdai. R Quot (I i)) [0..< Suc n]))"
using assms
proof (induct n arbitrary: I)
case 0 show ?case
by (auto simp add: RDirProd_list_carrier FactRing_def A_RCOSETS_def')
next
{ fix S :: "'c ring" and T :: "'d ring" and f g
assume A: "ring T" "f \in ring_hom R S" "g \in ring_hom R T" "f ' carrier
R \subseteq f ' (a_kernel R T g)"
have "(\lambdaa. (f a, g a)) ' carrier R = (f ' carrier R) × (g' carrier
R)"
proof
show "(\lambdaa. (f a, g a)) ' carrier R \subseteq (f ' carrier R) > (g ' carrier
R)"
by blast

```
```

 next
 show "(f ' carrier R) > (g' carrier R) \subseteq(\lambdaa. (f a, g a)) ' carrier
 R"
proof
fix t assume "t G (f ' carrier R) > (g ' carrier R)"
then obtain a b where a: "a \in carrier R" "f a = fst t" and b:
"b \in carrier R" "g b = snd t"
by auto
obtain c where c: "c \in a_kernel R T g" "f c = f (a \ominus b)"
using A(4) minus_closed[OF a(1) b (1)] by auto
have "f (c \oplus b) = f (a \ominus b) \oplusS f b"
using ring_hom_memE(3)[OF A(2)] b c unfolding a_kernel_def'
by auto
hence "f (c \oplus b) = f a"
using ring_hom_memE(3) [OF A(2) minus_closed[of a b], of b] a
b by algebra
moreover have "g (c \oplus b) = g b"
using ring_hom_memE(1,3) [OF A(3)] b(1) c ring.ring_simprules(8)[0F
A(1)]
unfolding a_kernel_def' by auto
ultimately have "(\lambdaa. (f a, g a)) (c \oplus b) = t" and "c \oplus b \in
carrier R"
using a b c unfolding a_kernel_def' by auto
thus "t \in (\lambdaa. (f a, g a)) ' carrier R"
by blast
qed
qed } note aux_lemma = this
let ?map_Quot = "\lambdaI n. map (\lambdai. R Quot (I i)) [0..< Suc n]"
let ?DirProd = "\lambdaI n. RDirProd_list (?map_Quot I n)"
let ?proj = "\lambdaI n. canonical_proj_ext I n"
case (Suc n)
interpret I: ideal "I 0" R + Inter: ideal "\bigcapi \leq n. I (Suc i)" R
using i_Intersect[of "(\lambdai. I (Suc i)) ' {..n}"] Suc(2) by auto
have map_simp: "?map_Quot I (Suc n) = (R Quot I 0) \# (?map_Quot (\lambdai.
I (Suc i)) n)"
by (induct n) (auto)
have IH: "(?proj (\lambdai. I (Suc i)) n) ' carrier R = carrier (?DirProd
(\lambdai. I (Suc i)) n)"
and ring: "ring (?DirProd (\lambdai. I (Suc i)) n)"
and hom: "?proj (\lambdai. I (Suc i)) n \in ring_hom R (?DirProd (}\lambdai
i)) n)"
using RDirProd_Quot_list_is_ring[of n "\lambdai. I (Suc i)"] Suc(1)[of " \i.
I (Suc i)"]
canonical_proj_ext_is_hom[of n "\lambdai. I (Suc i)"] Suc(2-3) by
auto

```
have ker: "a_kernel R (?DirProd ( \(\lambda i\) i. I (Suc i)) n) (?proj ( \(\lambda i\). I (Suc i) \() n\) ) ( \(\bigcap_{i} \leq n\). I (Suc i))"
using canonical_proj_ext_ker[of n " \(\lambda\) i. I (Suc i)"] Suc(2) by auto have carrier_Quot: "carrier (R Quot (I O)) = ( \(\lambda\) a. (I O) +> a) ' carrier R"
by (auto simp add: RDirProd_list_carrier FactRing_def A_RCOSETS_def')
have ring: "ring (?DirProd ( \(\lambda \mathrm{i} . \mathrm{I}(\) (Suc i)) n)"
and hom: "?proj ( \(\lambda i\) i. I (Suc i)) \(n \in\) ring_hom \(R\) (?DirProd ( \(\lambda i\). I (Suc
i) ) n)"
using RDirProd_Quot_list_is_ring[of n " \(\lambda i\). I (Suc i)"]
canonical_proj_ext_is_hom[of n " \(\lambda i\). I (Suc i)"] Suc(2) by auto
have "carrier (R Quot (I 0)) \(\subseteq\left(\lambda a\right.\). (I 0) +> a) ' ( \(\bigcap_{i} \leq n\). I (Suc i))"
proof
have " (
using inter_plus_ideal_eq_carrier_arbitrary[of n I 0]
by (simp add: Suc(2-3) atLeast1_atMost_eq_remove0)
hence eq_carrier: " (I 0) <+> ( \(\bigcap_{i} \leq n\). I (Suc i)) = carrier R" using set_add_comm[0F I.a_subset Inter.a_subset]
by (metis INT_extend_simps(10) atMost_atLeast0 image_Suc_atLeastAtMost)
fix \(b\) assume "b \(\in \operatorname{carrier~(R~Quot~(I~0))"~}\)
hence " \((b,(\bigcap i \leq n\). I (Suc i))) \(\in \operatorname{carrier}(R\) Quot I 0\() \times\) carrier (R Quot ( \(\bigcap i \leq n\). I (Suc i)))" using ring.ring_simprules(2) [OF Inter.quotient_is_ring] by (simp add: FactRing_def)
then obtain \(s\)
where "s \(\in\) carrier R" "(canonical_proj (I 0) ( \(\bigcap_{i} \leq n\). I (Suc i)))
\(\mathrm{s}=(\mathrm{b},(\bigcap \mathrm{i} \leq \mathrm{n} . \mathrm{I}(\operatorname{Suc} \mathrm{i}))) "\)
using canonical_proj_is_surj[OF I.is_ideal Inter.is_ideal eq_carrier] unfolding RDirProd_carrier by (metis (no_types, lifting) imageE)
hence "s \(\in(\bigcap i \leq n\). I (Suc i))" and "( \(\lambda \mathrm{a}\). (I 0) \(+>\mathrm{a}\) ) \(\mathrm{s}=\mathrm{b}\) " using Inter.rcos_const_imp_mem by auto
thus "b \(\in(\lambda a .(I \quad 0)+>)^{\prime}(\bigcap i \leq n . I(S u c i)) "\) by auto
qed
hence " ( \(\lambda \mathrm{a} .((\mathrm{I} 0)\) +> a , ?proj ( \(\lambda \mathrm{i}\). I (Suc i)) n a)) ' carrier \(\mathrm{R}=\) carrier (R Quot (I 0)) \(\times\) carrier (?DirProd ( \(\lambda i\). I (Suc i)) n)"
using aux_lemma[OF ring I.rcos_ring_hom hom] unfolding carrier_Quot ker IH by simp
moreover show ?case
unfolding map_simp RDirProd_list_carrier sym[OF calculation(1)] canonical_proj_ext_tl by auto
qed
theorem (in cring) chinese_remainder:
 \(\rrbracket \Longrightarrow i \neq j \Longrightarrow I \quad\) i <+> I \(j=\) carrier R"
```

 shows "R Quot (\bigcapi \leq n. I i) \simeq RDirProd_list (map (\lambdai. R Quot (I i))
 [0..< Suc n])"
using ring_hom_ring.FactRing_iso[OF canonical_proj_ext_ring_hom, of
n I]
canonical_proj_ext_is_surj[of n I] canonical_proj_ext_ker[of n
I] assms
by auto
end

```
theory Subrings
    imports Ring RingHom QuotRing Multiplicative_Group
begin

\section*{34 Subrings}

\subsection*{34.1 Definitions}
```

locale subring =
subgroup H "add_monoid R" + submonoid H R for H and R (structure)
locale subcring = subring +
assumes sub_m_comm: "\llbracketh1 \in H; h2 \in H \rrbracket\Longrightarrow h1 \otimes h2 = h2 \otimes h1"
locale subdomain = subcring +
assumes sub_one_not_zero [simp]: "1 = 0"
assumes subintegral: "\llbracketh1 \in H; h2 \in H \rrbracket\Longrightarrow h1 \otimes h2 = 0 \Longrightarrow h1 = 0
h2 = 0"
locale subfield = subdomain K R for K and R (structure) +
assumes subfield_Units: "Units (R | carrier := K |) = K - { 0 }"

```

\subsection*{34.2 Basic Properties}

\subsection*{34.2.1 Subrings}
```

lemma (in ring) subringI:
assumes "H \subseteq carrier R"
and "1 \in H"
and "\h. h \in H \Longrightarrow
and "\h1 h2. \llbracketh1 \in H; h2 \in H\rrbracket \Longrightarrow h1 \otimes h2 \in H"
and "\bigwedgeh1 h2. \llbracketh1 \inH; h2 \inH\rrbracket\Longrightarrow h1 }\oplus\textrm{h}2\inH
shows "subring H R"
using add.subgroupI[OF assms(1) _ assms(3, 5)] assms(2)
submonoid.intro[OF assms(1, 4, 2)]
unfolding subring_def by auto

```
lemma subringE:
    assumes "subring H R"
```

 shows "H \subseteq carrier R"
 and "0}\mp@subsup{0}{R}{}\inH
 and "1}\mp@subsup{1}{R}{}\inH
 and "H = {}"
 and "\h. h \in H \Longrightarrow
 and "\h1 h2.\llbracketh1 \in H; h2 \in H\rrbracket\Longrightarrow h1 \otimesR h2 \in H"
 and "\h1 h2. \llbracketh1 \in H; h2 \inH\rrbracket # h1 }\mp@subsup{\oplus}{\textrm{R}}{}\textrm{h}2\in\textrm{H
 using subring.axioms[OF assms]
 unfolding submonoid_def subgroup_def a_inv_def by auto
 lemma (in ring) carrier_is_subring: "subring (carrier R) R"
by (simp add: subringI)
lemma (in ring) subring_inter:
assumes "subring I R" and "subring J R"
shows "subring (I \cap J) R"
using subringE[OF assms(1)] subringE[OF assms(2)] subringI[of "I \cap J"]
by auto
lemma (in ring) subring_Inter:
assumes "\I. I }\inS\Longrightarrow\mathrm{ subring I R" and "S f= {}"
shows "subring (\bigcapS) R"
proof (rule subringI, auto simp add: assms subringE[of _ R])
fix x assume "\forallI \inS. x \in I" thus "x \in carrier R"
using assms subringE(1)[of _ R] by blast
qed
lemma (in ring) subring_is_ring:
assumes "subring H R" shows "ring (R | carrier := H D)"
proof -
interpret group "add_monoid (R | carrier := H |)" + monoid "R | carrier
:= H |"
using subgroup.subgroup_is_group[OF subring.axioms(1) add.is_group]
assms
submonoid.submonoid_is_monoid[OF subring.axioms(2) monoid_axioms]
by auto
show ?thesis
using subringE(1)[OF assms]
by (unfold_locales, simp_all add: subringE(1)[OF assms] add.m_comm
subset_eq l_distr r_distr)
qed
lemma (in ring) ring_incl_imp_subring:
assumes "H \subseteq carrier R"
and "ring (R (carrier := H |)"
shows "subring H R"
using group.group_incl_imp_subgroup[OF add.group_axioms, of H] assms(1)
monoid.monoid_incl_imp_submonoid[OF monoid_axioms assms(1)]
ring.axioms(1, 2)[OF assms(2)] abelian_group.a_group[of "R \ carrier

```
```

:= H ()"]
unfolding subring_def by auto
lemma (in ring) subring_iff:
assumes "H \subseteq carrier R"
shows "subring H R \longleftrightarrow ring (R | carrier := H D)"
using subring_is_ring ring_incl_imp_subring[OF assms] by auto

```

\subsection*{34.2.2 Subcrings}
```

lemma (in ring) subcringI:
assumes "subring H R"
and "\h1 h2.\llbracketh1 \in H; h2 \in H\rrbracket \Longrightarrow h1 \otimes h2 = h2 \otimes h1"
shows "subcring H R"
unfolding subcring_def subcring_axioms_def using assms by simp+
lemma (in cring) subcringI':
assumes "subring H R"
shows "subcring H R"
using subcringI[OF assms] subringE(1)[OF assms] m_comm by auto
lemma subcringE:
assumes "subcring H R"
shows "H \subseteq carrier R"
and "0}\mp@subsup{0}{R}{}\inH
and "1}\mp@subsup{1}{R}{}\inH
and "H}\not={}
and " \h. h }\in\textrm{H}\Longrightarrow\mp@subsup{\ominus}{\textrm{R}}{}\textrm{h}\in\mp@subsup{\textrm{H}}{}{\prime
and "\h1 h2. \llbracketh1 \in H; h2 \in H \rrbracket \Longrightarrow h1 \otimes | h2 \in H"
and "\h1 h2. \llbracketh1 \in H; h2 \in H\rrbracket \Longrightarrow h1 }\mp@subsup{\oplus}{\textrm{R}}{}\textrm{h}2\in\textrm{H
and "\h1 h2. \llbracketh1 \in H; h2 \in H\rrbracket \Longrightarrow h1 * \& h2 = h2 * \& h1"
using subringE[OF subcring.axioms(1)[OF assms]] subcring.sub_m_comm[OF
assms] by simp+
lemma (in cring) carrier_is_subcring: "subcring (carrier R) R"
by (simp add: subcringI' carrier_is_subring)
lemma (in ring) subcring_inter:
assumes "subcring I R" and "subcring J R"
shows "subcring (I \cap J) R"
using subcringE[OF assms(1)] subcringE[OF assms(2)]
subcringI[of "I \cap J"] subringI[of "I \cap J"] by auto
lemma (in ring) subcring_Inter:
assumes "\I. I \in S \Longrightarrow subcring I R" and "S \not= {}"
shows "subcring (\bigcapS) R"
proof (rule subcringI)
show "subring (\bigcapS) R"
using subcring.axioms(1)[of _ R] subring_Inter[of S] assms by auto

```
```

next
fix h1 h2 assume h1: "h1 \in\bigcapS" and h2: "h2 \in \bigcapS"
obtain S' where S': "S' }\in\mp@subsup{S}{}{\prime
using assms(2) by blast
hence "h1 \in S'" "h2 \in S'"
using h1 h2 by blast+
thus "h1 \otimes h2 = h2 \& h1"
using subcring.sub_m_comm[OF assms(1) [OF S']] by simp
qed
lemma (in ring) subcring_iff:
assumes "H \subseteq carrier R"
shows "subcring H R \longleftrightarrow cring (R | carrier := H |)"
proof
assume A: "subcring H R"
hence ring: "ring (R (carrier := H D)"
using subring_iff[OF assms] subcring.axioms(1) [OF A] by simp
moreover have "comm_monoid (R | carrier := H |)"
using monoid.monoid_comm_monoidI[OF ring.is_monoid[OF ring]]
subcring.sub_m_comm[OF A] by auto
ultimately show "cring (R | carrier := H D)"
using cring_def by blast
next
assume A: "cring (R (carrier := H D)"
hence "subring H R"
using cring.axioms(1) subring_iff[OF assms] by simp
moreover have "comm_monoid (R | carrier := H |)"
using A unfolding cring_def by simp
hence"\h1 h2. \llbracketh1 \in H; h2 \in H\rrbracket \Longrightarrow h1 \otimes h2 = h2 \otimes h1"
using comm_monoid.m_comm[of "R () carrier := H)"] by auto
ultimately show "subcring H R"
unfolding subcring_def subcring_axioms_def by auto
qed

```

\subsection*{34.2.3 Subdomains}
```

lemma (in ring) subdomainI:

```
lemma (in ring) subdomainI:
    assumes "subcring H R"
    assumes "subcring H R"
        and "1 = 0"
        and "1 = 0"
        and "\h1 h2.\llbracketh1 \in H; h2 \in H\rrbracket \Longrightarrow h1 \otimes h2 = 0 C h1 = 0 V h2
        and "\h1 h2.\llbracketh1 \in H; h2 \in H\rrbracket \Longrightarrow h1 \otimes h2 = 0 C h1 = 0 V h2
= 0"
= 0"
    shows "subdomain H R"
    shows "subdomain H R"
    unfolding subdomain_def subdomain_axioms_def using assms by simp+
    unfolding subdomain_def subdomain_axioms_def using assms by simp+
lemma (in domain) subdomainI':
lemma (in domain) subdomainI':
    assumes "subring H R"
    assumes "subring H R"
    shows "subdomain H R"
    shows "subdomain H R"
proof (rule subdomainI[OF subcringI[OF assms]], simp_all)
proof (rule subdomainI[OF subcringI[OF assms]], simp_all)
    show "\h1 h2. \llbracketh1 G H; h2 \in H\rrbracket \Longrightarrow h1 \otimes h2 = h2 \otimes h1"
```

 show "\h1 h2. \llbracketh1 G H; h2 \in H\rrbracket \Longrightarrow h1 \otimes h2 = h2 \otimes h1"
    ```
using m_comm subringE(1) [OF assms] by auto
show " \(\wedge \mathrm{h} 1 \mathrm{~h} 2 . \llbracket \mathrm{h} 1 \in \mathrm{H} ; \mathrm{h} 2 \in \mathrm{H} ; \mathrm{h} 1 \otimes \mathrm{~h} 2=0 \rrbracket \Longrightarrow(\mathrm{~h} 1=0) \vee(\mathrm{h} 2=\) 0)"
using integral subringE(1) [OF assms] by auto
qed
lemma subdomainE:
assumes "subdomain H R"
shows " \(\mathrm{H} \subseteq\) carrier R"
and " \(0_{R} \in H "\)
and \(" 1_{R} \in H "\)
and " \(\mathrm{H} \neq\{ \}\) "
and " \(\wedge \mathrm{h} . \mathrm{h} \in \mathrm{H} \Longrightarrow \ominus_{\mathrm{R}} \mathrm{h} \in \mathrm{H}\) "
and " \(\bigwedge \mathrm{h} 1 \mathrm{~h} 2 . \llbracket \mathrm{h} 1 \in \mathrm{H} ; \mathrm{h} 2 \in \mathrm{H} \rrbracket \Longrightarrow \mathrm{h} 1 \otimes_{\mathrm{R}} \mathrm{h} 2 \in \mathrm{H}\) "
and " \(\bigwedge \mathrm{h} 1 \mathrm{~h} 2 . \llbracket \mathrm{h} 1 \in \mathrm{H} ; \mathrm{h} 2 \in \mathrm{H} \rrbracket \Longrightarrow \mathrm{h} 1 \oplus_{\mathrm{R}} \mathrm{h} 2 \in \mathrm{H}\) "
and " \(\bigwedge\) h1 h2. \(\llbracket \mathrm{h} 1 \in \mathrm{H} ; \mathrm{h} 2 \in \mathrm{H} \rrbracket \Longrightarrow \mathrm{h} 1 \otimes_{\mathrm{R}} \mathrm{h} 2=\mathrm{h} 2 \otimes_{\mathrm{R}} \mathrm{h} 1 "\) and " \(\backslash \mathrm{h} 1 \mathrm{~h} 2 . \llbracket \mathrm{h} 1 \in \mathrm{H} ; \mathrm{h} 2 \in \mathrm{H} \rrbracket \Longrightarrow \mathrm{h} 1 \otimes_{\mathrm{R}} \mathrm{h} 2=\mathrm{o}_{\mathrm{R}} \Longrightarrow \mathrm{h} 1=\mathrm{o}_{\mathrm{R}} \vee\)
\(\mathrm{h} 2=\mathrm{O}_{\mathrm{R}}\) "
and " \(1_{R} \neq 0_{R}\) "
using subcringE[OF subdomain.axioms(1)[OF assms]] assms
unfolding subdomain_def subdomain_axioms_def by auto
lemma (in ring) subdomain_iff:
assumes " \(\mathrm{H} \subseteq\) carrier \(R\) "
shows "subdomain \(H R \longleftrightarrow\) domain ( R ( carrier \(:=\mathrm{H} \|)\) )"
proof
assume A: "subdomain H R"
hence cring: "cring ( R ( carrier := H D)"
using subcring_iff[0F assms] subdomain.axioms(1) [OF A] by simp
thus "domain (R ( carrier := H D)"
using domain.intro[OF cring] subdomain.subintegral[OF A] subdomain.sub_one_not_zero[OF
A]
unfolding domain_axioms_def by auto
next
assume A: "domain (R ( carrier := H D)"
hence subcring: "subcring \(H\) R"
using subcring_iff[0F assms] unfolding domain_def by simp
thus "subdomain H R"
using subdomain.intro[0F subcring] domain.integral[OF A] domain.one_not_zero[OF
A]
unfolding subdomain_axioms_def by auto
qed
lemma (in domain) subring_is_domain:
assumes "subring \(H\) R" shows "domain ( \(R\) | carrier := H D)"
using subdomainI' [OF assms] unfolding subdomain_iff [OF subringE(1) [OF
assms]] .
lemma (in ring) subdomain_is_domain:
assumes "subdomain H R" shows "domain ( \(\mathrm{R} \mid\) carrier : \(=\mathrm{H} \|)\) )"
using assms unfolding subdomain_iff[0F subdomainE(1) [OF assms]] .

\subsection*{34.2.4 Subfields}
lemma (in ring) subfieldI:
    assumes "subcring \(K\) R" and "Units ( R ( carrier := K D) = K - \{ 0 \}"
    shows "subfield K R"
proof (rule subfield.intro)
    show "subfield_axioms K R"
            using assms(2) unfolding subfield_axioms_def .
    show "subdomain K R"
    proof (rule subdomainI[0F assms(1)], auto)
        have subM: "submonoid K R"
            using subring.axioms(2) [OF subcring.axioms(1) [OF assms(1)]].
            show contr: "1 = 0 \(\Longrightarrow\) False"
            proof -
                assume one_eq_zero: "1 = 0"
                have "1 \(\in K\) " and "1 \(\otimes 1\) = \(1 "\)
                    using submonoid.one_closed[OF subM] by simp+
            hence "1 \(\in\) Units ( R 人 carrier \(:=\mathrm{K}\) ))"
                unfolding Units_def by (simp, blast)
            hence "1 \(=0\) "
                using assms(2) by simp
            thus False
                using one_eq_zero by simp
            qed
        fix \(k 1 \mathrm{k} 2\) assume \(k 1: ~ " k 1 \in K "\) and \(k 2: ~ " k 2 \in K " ~ " k 2 \neq 0 "\) and \(k 12:\)
\(" k 1 \otimes k 2=0 "\)
            obtain \(k 2^{\prime}\) where \(k 2^{\prime}: ~ " k 2{ }^{\prime} \in \mathrm{K}^{\prime \prime} \mathrm{"k}^{\prime} \otimes \mathrm{k} 2=1 " \mathrm{k} 2 \otimes \mathrm{k} 2^{\prime}=1 "\)
            using assms(2) k2 unfolding Units_def by auto
            have \(" 0=(k 1 \otimes k 2) \otimes k 2 \prime "\)
                using k12 k2'(1) submonoid.mem_carrier[0F subM] by fastforce
            also have "... = k 1 "
                using k1 k2(1) k2' \((1,3)\) submonoid.mem_carrier [OF subM] by (simp
add: m_assoc)
            finally have " \(0=k 1 "\).
            thus "k1 = 0" by simp
        qed
qed
lemma (in field) subfieldI':
    assumes "subring \(K R "\) and \(" \wedge k . k \in K-\{0\} \Longrightarrow\) inv \(k \in K "\)
    shows "subfield K R"
proof (rule subfieldI)
    show "subcring K R"
using subcringI[OF assms(1)] m_comm subringE(1) [OF assms(1)] by auto
    show "Units ( R ( carrier \(:=\mathrm{K}\) ) ) = K - \{ 0 \}"
    proof
        show "K - \{ 0 \} \(\subseteq\) Units ( R ( carrier := K D)"
        proof
            fix \(k\) assume \(k: ~ " k \in K-\{0\} "\)
            hence inv_k: "inv \(k \in K\) "
                using assms(2) by simp
            moreover have "k \(\in\) carrier \(R-\{0\} "\)
                using subringE(1) [OF assms(1)] \(k\) by auto
            ultimately have \(\mathrm{k} \otimes\) inv \(\mathrm{k}=1 \mathrm{l}\) " inv \(\mathrm{k} \otimes \mathrm{k}=1 "\)
                by (simp add: field_Units)+
            thus "k Units ( R ( carrier \(:=\mathrm{K}\) ))"
            unfolding Units_def using k inv_k by auto
    qed
    next
        show "Units ( R ( carrier :=K ) \(\subseteq \mathrm{K}-\{0\) \}"
        proof

            then obtain \(k\) ' where \(k^{\prime}: ~ " k ' \in K^{\prime} " k \otimes k \prime=1 "\)
                unfolding Units_def by auto
            hence "k \(\in\) carrier \(R\) " and "k' \(\in\) carrier R"
                using \(k\) subringE(1) [OF assms(1)] unfolding Units_def by auto
            hence " \(0=1\) " if " \(k=0\) "
                using that \(k^{\prime}(2)\) by auto
            thus " \(k \in K-\{0\}\) "
                using k unfolding Units_def by auto
        qed
    qed
qed
lemma (in field) carrier_is_subfield: "subfield (carrier R) R"
    by (auto intro: subfieldI[OF carrier_is_subcring] simp add: field_Units)
lemma subfieldE:
    assumes "subfield K R"
    shows "subring K R" and "subcring K R"
        and "K \(\subseteq\) carrier R"
        and " \(\bigwedge k 1 \mathrm{k} 2 . \llbracket \mathrm{k} 1 \in \mathrm{~K} ; \mathrm{k} 2 \in \mathrm{~K} \rrbracket \Longrightarrow \mathrm{k} 1 \otimes_{\mathrm{R}} \mathrm{k} 2=\mathrm{k} 2 \otimes_{\mathrm{R}} \mathrm{k} 1 "\)
        and " \(\wedge \mathrm{k} 1 \mathrm{k} 2 . \llbracket \mathrm{k} 1 \in \mathrm{~K} ; \mathrm{k} 2 \in \mathrm{~K} \rrbracket \Longrightarrow \mathrm{k} 1 \otimes_{\mathrm{R}} \mathrm{k} 2=\mathrm{o}_{\mathrm{R}} \Longrightarrow \mathrm{k} 1=\mathbf{0}_{\mathrm{R}} \vee\)
\(\mathrm{k} 2=\mathrm{o}_{\mathrm{R}}\) "
        and \(" 1_{R} \neq 0_{R}\) "
    using subdomain.axioms(1) [0F subfield.axioms(1) [OF assms]] subcring_def
                        subdomainE (1, 8, 9, 10) [OF subfield.axioms(1) [OF assms]] by auto
lemma (in ring) subfield_m_inv:
    assumes "subfield \(K\) R" and "k \(\in K-\{0\} "\)
    shows "inv \(k \in K-\{0\) \}" and \(\mathrm{k} \otimes\) inv \(k=1 "\) and \(" i n v k \otimes k=1 "\)
proof -
have K: "subring K R" "submonoid K R"
using subfieldE(1) [OF assms(1)] subring.axioms(2) by auto
have monoid: "monoid (R ( carrier := K D)"
using submonoid.submonoid_is_monoid[OF subring.axioms(2) [OF K(1)] is_monoid] .
have "monoid R"
by (simp add: monoid_axioms)

using subfield.subfield_Units[0F assms(1)] assms(2) by blast
hence unit_of_R: "k \(\in\) Units R"
using assms(2) subringE(1) [OF subfieldE(1) [OF assms(1)]] unfolding
Units_def by auto
 by (simp add: k monoid monoid.Units_inv_Units)
hence "inv \((\mathrm{R} \mid\) carrier \(:=\mathrm{K} \mid) \mathrm{k} \in \mathrm{K}-\{0\) \}" using subfield.subfield_Units[0F assms(1)] by blast
thus "inv \(k \in K-\{0\} "\) and \(" k \otimes i n v k=1 "\) and \(\mathrm{k} i n v k \otimes k=1 "\)
using Units_l_inv[OF unit_of_R] Units_r_inv [OF unit_of_R]
using monoid.m_inv_monoid_consistent[0F monoid_axioms \(\mathrm{k} \mathrm{K}(2)\) ] by auto
qed
lemma (in ring) subfield_m_inv_simprule:
assumes "subfield K R"
shows "【k \(k\) K \(-\{0\} ; a \in \operatorname{carrier~} R \rrbracket \Longrightarrow k \otimes a \in K \Longrightarrow a \in K "\)
proof -
note subring_props = subringE[OF subfieldE(1) [OF assms] ]
assume A: "k \(\in K-\{0\} "\) "a \(\in \operatorname{carrier~R"~"k~} \otimes a \in K "\)
then obtain \(k\), where \(k \prime: ~ " k ' \in K " ~ " k \otimes a=k ' "\) by blast
have inv_k: "inv \(k \in K "\) "inv \(k \otimes k=1 "\)
using subfield_m_inv[0F assms \(A(1)]\) by auto
hence "inv \(k \otimes(k \otimes a) \in K "\)
using k' A(3) subring_props(6) by auto
thus "a \(\in K\) "
using m_assoc[of "inv k" k a] A(2) inv_k subring_props (1)
by (metis (no_types, opaque_lifting) A(1) Diff_iff l_one subsetCE)
qed
lemma (in ring) subfield_iff:
shows "【 field (R 0 carrier \(:=K D) ; K \subseteq\) carrier \(R \rrbracket \Longrightarrow\) subfield \(K\) R"
and "subfield \(\mathrm{K} R \Longrightarrow\) field ( R ( carrier \(:=\mathrm{K}\) ))"
proof-
assume A: "field (R (| carrier := K D)" "K \(\subseteq\) carrier R"
have " \(\ k 1 \mathrm{k} 2 . \llbracket \mathrm{k} 1 \in \mathrm{~K} ; \mathrm{k} 2 \in \mathrm{~K} \rrbracket \Longrightarrow \mathrm{k} 1 \otimes \mathrm{k} 2=\mathrm{k} 2 \otimes \mathrm{k} 1\) "
using comm_monoid.m_comm[OF cring.axioms(2) [OF fieldE(1) [OF A(1)]]]
by simp
```

 moreover have "subring K R"
 using ring_incl_imp_subring[OF A(2) cring.axioms(1) [OF fieldE(1) [OF
 A(1)]]] .
ultimately have "subcring K R"
using subcringI by simp
thus "subfield K R"
using field.field_Units[OF A(1)] subfieldI by auto
next
assume A: "subfield K R"
have cring: "cring (R | carrier := K D)"
using subcring_iff[OF subringE(1)[OF subfieldE(1)[OF A]]] subfieldE(2) [OF
A] by simp
thus "field (R | carrier := K D)"
using cring.cring_fieldI[OF cring] subfield.subfield_Units[OF A] by
simp
qed
lemma (in field) subgroup_mult_of :
assumes "subfield K R"
shows "subgroup (K - {0}) (mult_of R)"
proof (intro group.group_incl_imp_subgroup[OF field_mult_group])
show "K - {0} \subseteq carrier (mult_of R)"
by (simp add: Diff_mono assms carrier_mult_of subfieldE(3))
show "group ((mult_of R) (carrier := K - {0} |)"
using field.field_mult_group[OF subfield_iff(2)[OF assms]]
unfolding mult_of_def by simp
qed

```

\subsection*{34.3 Subring Homomorphisms}
```

lemma (in ring) hom_imp_img_subring:
assumes "h \in ring_hom R S" and "subring K R"
shows "ring (S | carrier := h ' K, one := h 1, zero := h 0 D)"
proof -
have [simp]: "h 1 = 1S"
using assms ring_hom_one by blast
have "ring (R \ carrier := K D)"
by (simp add: assms(2) subring_is_ring)
moreover have "h \in ring_hom (R | carrier := K D) S"
using assms subringE(1) [OF assms (2)] unfolding ring_hom_def
apply simp
apply blast
done
ultimately show ?thesis
using ring.ring_hom_imp_img_ring[of "R (carrier := K)" h S] by simp
qed
lemma (in ring_hom_ring) img_is_subring:
assumes "subring K R" shows "subring (h ' K) S"

```
```

proof -
have "ring (S | carrier := h ' K D)"
using R.hom_imp_img_subring[OF homh assms] hom_zero hom_one by simp
moreover have "h ' K \subseteq carrier S"
using ring_hom_memE(1) [OF homh] subringE(1) [OF assms] by auto
ultimately show ?thesis
using ring_incl_imp_subring by simp
qed
lemma (in ring_hom_ring) img_is_subfield:
assumes "subfield K R" and "1S
shows "inj_on h K" and "subfield (h ' K) S"
proof -
have K: "K \subseteq carrier R" "subring K R" "subring (h ' K) S"
using subfieldE(1) [OF assms(1)] subringE(1) img_is_subring by auto
have field: "field (R | carrier := K D)"
using R.subfield_iff(2) <subfield K R> by blast
moreover have ring: "ring (R (carrier := K D)"
using K R.ring_axioms R.subring_is_ring by blast
moreover have ringS: "ring (S | carrier := h ' K D)"
using subring_is_ring K by simp
ultimately have h: "h \in ring_hom (R | carrier := K D) (S | carrier :=
h ' K D)"
unfolding ring_hom_def apply auto
using ring_hom_memE[OF homh] K
by (meson contra_subsetD)+
hence ring_hom: "ring_hom_ring (R | carrier := K |) (S | carrier :=
h ' K D) h"
using ring_axioms ring ringS ring_hom_ringI2 by blast
have "h ' K}\not={\mp@code{0}\mp@subsup{\textrm{S}}{6}{}
using subfieldE(1, 5)[OF assms(1)] subringE(3) assms(2)
by (metis hom_one image_eqI singletonD)
thus "inj_on h K"
using ring_hom_ring.non_trivial_field_hom_imp_inj[OF ring_hom field]
by auto
hence "h \in ring_iso (R | carrier := K D) (S \ carrier := h ' K D)"
using h unfolding ring_iso_def bij_betw_def by auto
hence "field (S | carrier := h ' K D)"
using field.ring_iso_imp_img_field[OF field, of h "S | carrier :=
h ' K D"] by auto
thus "subfield (h ' K) S"
using S.subfield_iff[of "h ' K"] K(1) ring_hom_memE(1) [OF homh] by
blast
qed
lemma (in ring_hom_ring) induced_ring_hom:
assumes "subring K R" shows "ring_hom_ring (R | carrier := K |) S h"

```
```

proof -
have "h \in ring_hom (R | carrier := K \) S"
using homh subringE(1) [OF assms] unfolding ring_hom_def
by (auto, meson hom_mult hom_add subsetCE)+
thus ?thesis
using R.subring_is_ring[OF assms] ring_axioms
unfolding ring_hom_ring_def ring_hom_ring_axioms_def by auto
qed
lemma (in ring_hom_ring) inj_on_subgroup_iff_trivial_ker:
assumes "subring K R"
shows "inj_on h K \longleftrightarrow a_kernel (R | carrier := K D) S h = { 0 }"
using ring_hom_ring.inj_iff_trivial_ker[0F induced_ring_hom[OF assms]]
by simp
lemma (in ring_hom_ring) inv_ring_hom:
assumes "inj_on h K" and "subring K R"
shows "ring_hom_ring (S (carrier := h ' K D) R (inv_into K h)"
proof (intro ring_hom_ringI[OF _ R.ring_axioms], auto)
show "ring (S | carrier := h ` K |)"
using subring_is_ring[OF img_is_subring[OF assms(2)]] .
next
show "inv_into K h 1S = 1R"
using assms(1) subringE(3) [OF assms(2)] hom_one by (simp add: inv_into_f_eq)
next
fix k1 k2
assume k1: "k1 \in K" and k2: "k2 \in K"
with <k1 G K> show "inv_into K h (h k1) \in carrier R"
using assms(1) subringE(1)[OF assms(2)] by (simp add: subset_iff)
from <k1 \in K> and <k2 \in K>
have "h k1 }\mp@subsup{\oplus}{S}{}h\textrm{k}2=\textrm{h}(\textrm{k}1\mp@subsup{\oplus}{\textrm{R}}{\prime}\textrm{k}2)"\mathrm{ and "k1 }\mp@subsup{\oplus}{\textrm{R}}{}\textrm{k}2\in\textrm{K
and "h k1 }\mp@subsup{\otimes}{S}{}h\textrm{k}2=h (k1 \otimesR k2)" and "k1 \otimesR k2 \in K"
using subringE(1,6,7)[OF assms(2)] by (simp add: subset_iff)+
thus "inv_into K h (h k1 }\mp@subsup{\oplus}{\textrm{S}}{\textrm{h}}\textrm{h}2\mathrm{) = inv_into K h (h k1) }\mp@subsup{\oplus}{\textrm{R}}{\prime}\mathrm{ inv_into
K h (h k2)"
and "inv_into K h (h k1 }\mp@subsup{\otimes}{S}{} h k2) = inv_into K h (h k1) * | inv_int
K h (h k2)"
using assms(1) k1 k2 by simp+
qed
end

```
imports Subrings
begin

\section*{35 Generated Rings}
inductive＿set
generate＿ring ：：＂（＇a，＇b）ring＿scheme \(\Rightarrow\)＇a set \(\Rightarrow\)＇a set＂
for \(R\) and \(H\) where
one：\(\quad{ }^{1} 1_{R} \in\) generate＿ring \(R H "\)
｜incl：＂h \(\in H \Longrightarrow h \in\) generate＿ring \(R H\)＂
｜a＿inv：＂h \(\in\) generate＿ring \(R H \Longrightarrow \ominus_{R} h \in\) generate＿ring \(R H "\)
｜eng＿add ：＂【h1 \(\in\) generate＿ring R H；h2 \(\in\) generate＿ring R H 】 \(\Longrightarrow\)
h1 \(\oplus_{\mathrm{R}} \mathrm{h} 2 \in\) generate＿ring \(\mathrm{R} \mathrm{H}^{\prime \prime}\)
｜eng＿mult：＂【h1 \(\in\) generate＿ring \(\mathrm{R} \mathrm{H} ; \mathrm{h} 2 \in\) generate＿ring \(\mathrm{R} \mathrm{H} \rrbracket \Longrightarrow\)
h1 \(\otimes_{\mathrm{R}}\) h2 \(\in\) generate＿ring \(\mathrm{R} \mathrm{H"}\)

\section*{35．1 Basic Properties of Generated Rings－First Part}
lemma（in ring）generate＿ring＿in＿carrier：
assumes＂H \(\subseteq\) carrier R＂
shows＂h \(\in\) generate＿ring \(R H \Longrightarrow h \in c a r r i e r ~ R " ~\)
apply（induction rule：generate＿ring．induct）using assms
by blast＋
lemma（in ring）generate＿ring＿incl：
assumes＂ \(\mathrm{H} \subseteq\) carrier R＂
shows＂generate＿ring R H \(\subseteq\) carrier R＂
using generate＿ring＿in＿carrier［0F assms］by auto
lemma（in ring）zero＿in＿generate：＂ \(0_{R} \in\) generate＿ring \(R\) H＂
using one a＿inv by（metis generate＿ring．eng＿add one＿closed r＿neg）
lemma（in ring）generate＿ring＿is＿subring：
assumes＂H \(\subseteq\) carrier R＂
shows＂subring（generate＿ring R H）R＂
by（auto intro！：subringI［of＂generate＿ring R H＂］
simp add：generate＿ring＿in＿carrier［OF assms］one a＿inv eng＿mult
eng＿add）
lemma（in ring）generate＿ring＿is＿ring：
assumes＂ \(\mathrm{H} \subseteq\) carrier R＂
shows＂ring（R（ carrier ：＝generate＿ring R H D）＂
using subring＿iff［0F generate＿ring＿incl［0F assms］］generate＿ring＿is＿subring［OF
assms］by simp
lemma（in ring）generate＿ring＿min＿subring1：
assumes＂ \(\mathrm{H} \subseteq\) carrier \(R\)＂and＂subring E R＂＂H \(\subseteq\) E＂
shows＂generate＿ring R H \(\subseteq\) E＂
proof
fix h assume h: "h generate_ring R H"
show "h \(\in\) E"
using \(h\) and assms (3) by (induct rule: generate_ring.induct)
(auto simp add: subringE(3,5-7)[0F assms(2)])
qed
lemma (in ring) generate_ringI:
assumes " \(\mathrm{H} \subseteq\) carrier R"
and "subring E R" "H \(\subseteq\) E"
and " \(\wedge \mathrm{K} . \llbracket\) subring \(\mathrm{K} \mathrm{R} ; \mathrm{H} \subseteq \mathrm{K} \rrbracket \Longrightarrow \mathrm{E} \subseteq \mathrm{K}\) "
shows "E = generate_ring R H"
proof
show "E \(\subseteq\) generate_ring \(\mathrm{R} \mathrm{H"}\)
using assms generate_ring_is_subring generate_ring.incl by (metis
subset_iff)
show "generate_ring R H \(\subseteq\) E"
using generate_ring_min_subring1[0F assms(1-3)] by simp
qed
lemma (in ring) generate_ringE:
assumes "H \(\subseteq\) carrier \(R\) " and "E = generate_ring R H"
shows "subring ER" and "H \(\subseteq\) E" and " \(\wedge\) K. \(\llbracket\) subring \(K R ; H \subseteq K \rrbracket \Longrightarrow\)
\(\mathrm{E} \subseteq \mathrm{K}^{\prime \prime}\)
proof -
show "subring E R" using assms generate_ring_is_subring by simp
show "H \(\subseteq\) E" using assms(2) by (simp add: generate_ring.incl subsetI)
show " \(\bigwedge K\). subring \(K R \Longrightarrow H \subseteq K \Longrightarrow E \subseteq K\) "
using assms generate_ring_min_subring1 by auto
qed
lemma (in ring) generate_ring_min_subring2:
assumes " \(\mathrm{H} \subseteq\) carrier R"
shows "generate_ring \(R H=\bigcap\{K\). subring \(K R \wedge H \subseteq K\} "\)
proof
have "subring (generate_ring \(R H\) ) \(R \wedge H \subseteq\) generate_ring \(R H "\)
by (simp add: assms generate_ringE(2) generate_ring_is_subring)
thus " \(\cap\{\mathrm{K}\). subring \(\mathrm{K} R \wedge \mathrm{H} \subseteq \mathrm{K}\} \subseteq\) generate_ring \(\mathrm{R} H\) " by blast
next
have " \(\bigwedge K\). subring \(K R \wedge H \subseteq K \Longrightarrow\) generate_ring \(R H \subseteq K "\)
by (simp add: assms generate_ring_min_subring1)
thus "generate_ring \(R=\bigcap\) h \(K\). subring \(K R \wedge H \subseteq K\}\) " by blast qed
lemma (in ring) mono_generate_ring:
assumes "I \(\subseteq\) J" and "J \(\subseteq\) carrier R"
shows "generate_ring R I \(\subseteq\) generate_ring R J"
proof-
have "I \(\subseteq\) generate_ring R J "
using assms generate_ringE(2) by blast
thus "generate_ring \(R \bar{I} \subseteq\) generate_ring \(R \quad J "\)
using generate_ring_min_subring1[of I "generate_ring R J"] assms generate_ring_is_subri assms(2)]
by blast
qed
lemma (in ring) subring_gen_incl :
assumes "subring H R"
and "subring K R"
and "I \(\subseteq \mathrm{H}^{\prime}\)
and " \(\mathrm{I} \subseteq \mathrm{K}\) "
shows "generate_ring ( \(R(\) carrier \(:=K)\) ) \(\subseteq\) generate_ring ( \(R(\) carrier
:= H|) I"
proof
\{fix J assume J_def : "subring J R" "I \(\subseteq\) J"
have "generate_ring ( R ( carrier \(:=\mathrm{J}\) D) I \(\subseteq \mathrm{J}\) "
using ring.mono_generate_ring[of "(R(carrier := J|))" I J ] subring_is_ring[0F
J_def (1)]
ring.generate_ring_in_carrier[of "R(carrier := J)"] ring_axioms
J_def(2) by auto\}
note incl_HK = this
\{fix \(x\) have \(" x \in\) generate_ring ( \(R(\) carrier \(:=K)\) ) \(I \Longrightarrow x \in\) generate_ring
(R(carrier := H|) I"
proof (induction rule : generate_ring.induct)
case one
have \(\left." 1_{R(\text { carrier }:=H)} \otimes 1_{R(\text { carrier }}:=\mathrm{K}\right)=1_{\mathrm{R}(\text { carrier }:=\mathrm{H} \mid)}\) " by
simp
moreover have \(\left.\left." 1_{\mathrm{R}(\text { carrier }}:=\mathrm{H}\right) \otimes \mathbf{1}_{\mathrm{R}(\text { carrier }}:=\mathrm{K}\right)=\mathbf{1}_{\mathrm{R}(\text { carrier }:=K)}\) "
by simp
ultimately show ?case using assms generate_ring.one by metis
next
case (incl h) thus ?case using generate_ring.incl by force
next
case (a_inv h)
note hyp = this
have "a_inv ( \(\mathrm{R}(\) carrier \(:=\mathrm{K}\) ) ) h = a_inv R h"
using assms group.m_inv_consistent[of "add_monoid R" K] a_comm_group
incl_HK[of K] hyp
unfolding subring_def comm_group_def a_inv_def by auto
moreover have "a_inv ( \(\mathrm{R}(\) carrier \(:=H \mid)\) ) h = a_inv R h"
using assms group.m_inv_consistent [of "add_monoid R" H] a_comm_group incl_HK[of H] hyp
unfolding subring_def comm_group_def a_inv_def by auto
ultimately show ?case using generate_ring.a_inv a_inv.IH by fastforce next
case (eng_add h1 h2)
thus ?case using incl_HK assms generate_ring.eng_add by force
```

 next
 case (eng_mult h1 h2)
 thus ?case using generate_ring.eng_mult by force
 qed}
 thus "\x. x \in generate_ring (R()carrier := K|) I \Longrightarrow x G generate_ring
 (R(carrier := H)) I"
by auto
qed
lemma (in ring) subring_gen_equality:
assumes "subring H R" "K \subseteq H"
shows "generate_ring R K = generate_ring (R (carrier := H D) K"
using subring_gen_incl[OF assms(1)carrier_is_subring assms(2)] assms
subringE(1)
subring_gen_incl[OF carrier_is_subring assms(1) _ assms(2)]
by force
end
theory Generated_Fields
imports Generated_Rings Subrings Multiplicative_Group
begin
inductive_set
generate_field :: "('a, 'b) ring_scheme \# 'a set = 'a set"
for R and H where
one : "11R G generate_field R H"
| incl : "h }\inH\Longrightarrowh G generate_field R H"
| a_inv: "h \in generate_field R H }\Longrightarrow\mp@subsup{\ominus}{R}{}h=\mp@code{generate_field R H"
| m_inv: "\llbracketh G generate_field R H; h \# 0 0R \rrbracket\Longrightarrow invR h G generate_field
R H"
| eng_add : "\llbracketh1 G generate_field R H; h2 \in generate_field R H \rrbracket\Longrightarrow
h1 }\mp@subsup{\oplus}{\textrm{R}}{\textrm{h}
| eng_mult: "\llbracketh1 E generate_field R H; h2 \in generate_field R H \rrbracket\Longrightarrow
h1 }\mp@subsup{\otimes}{\textrm{R}}{\prime}\textrm{h}2 \in generate_field R H"

```

\subsection*{35.2 Basic Properties of Generated Rings - First Part}
```

lemma (in field) generate_field_in_carrier:

```
lemma (in field) generate_field_in_carrier:
    assumes "H \subseteq carrier R"
    assumes "H \subseteq carrier R"
    shows "h \in generate_field R H \Longrightarrow h \in carrier R"
    shows "h \in generate_field R H \Longrightarrow h \in carrier R"
    apply (induction rule: generate_field.induct)
    apply (induction rule: generate_field.induct)
    using assms field_Units
    using assms field_Units
    by blast+
    by blast+
lemma (in field) generate_field_incl:
lemma (in field) generate_field_incl:
    assumes "H \subseteq carrier R"
    assumes "H \subseteq carrier R"
    shows "generate_field R H \subseteq carrier R"
```

 shows "generate_field R H \subseteq carrier R"
    ```
using generate_field_in_carrier[0F assms] by auto
lemma (in field) zero_in_generate: " \(0_{R} \in\) generate_field \(R\) H" using one a_inv generate_field.eng_add one_closed r_neg
by metis
```

lemma (in field) generate_field_is_subfield:
assumes "H \subseteq carrier R"
shows "subfield (generate_field R H) R"
proof (intro subfieldI', simp_all add: m_inv)
show "subring (generate_field R H) R"
by (auto intro: subringI[of "generate_field R H"]
simp add: eng_add a_inv eng_mult one generate_field_in_carrier[OF
assms])
qed

```
lemma (in field) generate_field_is_add_subgroup:
    assumes "H \(\subseteq\) carrier R"
    shows "subgroup (generate_field R H) (add_monoid R)"
    using subring.axioms(1) [OF subfieldE(1) [OF generate_field_is_subfield[OF
assms]]] .
lemma (in field) generate_field_is_field :
    assumes " \(\mathrm{H} \subseteq\) carrier R"
    shows "field (R ( carrier := generate_field R H D)"
    using subfield_iff generate_field_is_subfield assms by simp
lemma (in field) generate_field_min_subfield1:
    assumes " \(\mathrm{H} \subseteq\) carrier R"
        and "subfield E R" "H \(\subseteq\) E"
    shows "generate_field R H \(\subseteq\) E"
proof
    fix h
    assume h: "h G generate_field R H"
    show "h \(\in\) E"
        using \(h\) and assms(3) and subfield_m_inv[0F assms(2)]
        by (induct rule: generate_field.induct)
            (auto simp add: subringE(3,5-7) [OF subfieldE(1) [OF assms(2)]])
qed
lemma (in field) generate_fieldI:
    assumes " \(\mathrm{H} \subseteq\) carrier R"
        and "subfield E R" "H \(\subseteq\) E"
        and " \(\ \mathrm{~K} . \llbracket\) subfield \(\mathrm{K} R ; \mathrm{H} \subseteq \mathrm{K} \rrbracket \Longrightarrow \mathrm{E} \subseteq \mathrm{K}\) "
    shows "E = generate_field R H"
proof
    show "E \(\subseteq\) generate_field R H"
        using assms generate_field_is_subfield generate_field.incl by (metis
subset_iff)
```

 show "generate_field R H \subseteq E"
 using generate_field_min_subfield1[OF assms(1-3)] by simp
 qed
lemma (in field) generate_fieldE:
assumes "H\subseteq carrier R" and "E = generate_field R H"
shows "subfield E R" and "H\subseteq E" and "\K.\llbracket subfield K R; H \subseteqK\rrbracket
E \subseteq K"
proof -
show "subfield E R" using assms generate_field_is_subfield by simp
show "H \subseteq E" using assms(2) by (simp add: generate_field.incl subsetI)
show "\K. subfield K R \LongrightarrowH\subseteqK\LongrightarrowE\subseteqK"
using assms generate_field_min_subfield1 by auto
qed
lemma (in field) generate_field_min_subfield2:
assumes "H \subseteq carrier R"
shows "generate_field R H = \bigcap{K. subfield K R ^H\subseteqK}"
proof
have "subfield (generate_field R H) R ^ H \subseteq generate_field R H"
by (simp add: assms generate_fieldE(2) generate_field_is_subfield)
thus "\bigcap{K. subfield K R ^ H\subseteq K} \subseteq generate_field R H" by blast
next
have "\K. subfield K R ^ H \subseteqK M generate_field R H \subseteqK"
by (simp add: assms generate_field_min_subfield1)
thus "generate_field R H \subseteq\bigcap{{. subfield K R ^ H\subseteq K}" by blast
qed
lemma (in field) mono_generate_field:
assumes "I \subseteq J" and "J \subseteq carrier R"
shows "generate_field R I \subseteq generate_field R J"
proof-
have "I \subseteq generate_field R J "
using assms generate_fieldE(2) by blast
thus "generate_field R I \subseteq generate_field R J"
using generate_field_min_subfield1[of I "generate_field R J"] assms
generate_field_is_subfield[OF assms(2)]
by blast
qed
lemma (in field) subfield_gen_incl :
assumes "subfield H R"
and "subfield K R"
and "I \subseteqH"
and "I \subseteqK"
shows "generate_field (R(carrier := K|) I \subseteq generate_field (R(carrier
:= H()) I"
proof

```
```

 {fix J assume J_def : "subfield J R" "I \subseteq J"
 have "generate_field (R | carrier := J D) I \subseteq J"
 using field.mono_generate_field[of "(R(carrier := J|)" I J] subfield_iff(2)[OF
 J_def(1)]
field.generate_field_in_carrier[of "R(carrier := J)"] field_axioms
J_def
by auto}
note incl_HK = this
{fix x have "x \in generate_field (R(carrier := K|)) I \Longrightarrow x G generate_field
(R(carrier := H|) I"
proof (induction rule : generate_field.induct)
case one
have "1 }\mp@subsup{1}{R(\mathrm{ carrier := H) }}{}\otimes\mp@subsup{1}{\textrm{R}(\mathrm{ carrier := K) }}{}=\mp@subsup{1}{\textrm{R}(\mathrm{ carrier : }}{
simp

```

```

by simp
ultimately show ?case using assms generate_field.one by metis
next
case (incl h) thus ?case using generate_field.incl by force
next
case (a_inv h)
note hyp = this
have "a_inv (R()carrier := K|) h = a_inv R h"
using assms group.m_inv_consistent[of "add_monoid R" K] a_comm_group
incl_HK[of K] hyp
subring.axioms(1) [OF subfieldE(1) [OF assms(2)]]
unfolding comm_group_def a_inv_def by auto
moreover have "a_inv (R(carrier := H|)) h = a_inv R h"
using assms group.m_inv_consistent[of "add_monoid R" H] a_comm_group
incl_HK[of H] hyp
subring.axioms(1)[OF subfieldE(1)[OF assms(1)]]
unfolding comm_group_def a_inv_def by auto
ultimately show ?case using generate_field.a_inv a_inv.IH by fastforce
next
case (m_inv h)
note hyp = this
have h_K : "h \in (K - {0})" using incl_HK[OF assms(2) assms(4)]
hyp by auto
hence "m_inv (R()carrier := K|) h = m_inv R h"
using field.m_inv_mult_of[OF subfield_iff(2)[OF assms(2)]]
group.m_inv_consistent[of "mult_of R" "K - {0}"] field_mult_group
units_of_inv
subgroup_mult_of subfieldE[OF assms(2)] unfolding mult_of_def
apply simp
by (metis h_K mult_of_def mult_of_is_Units subgroup.mem_carrier
units_of_carrier assms(2))
moreover have h_H : "h G (H - {0})" using incl_HK[OF assms(1) assms(3)]
hyp by auto
hence "m_inv (R(|carrier := H|) h = m_inv R h"

```
```

 using field.m_inv_mult_of[OF subfield_iff(2)[OF assms(1)]]
 group.m_inv_consistent[of "mult_of R" "H - {0}"] field_mult_group
 subgroup_mult_of [OF assms(1)] unfolding mult_of_def ap-
 ply simp
by (metis h_H field_Units m_inv_mult_of mult_of_is_Units subgroup.mem_carrier
units_of_def)
ultimately show ?case using generate_field.m_inv m_inv.IH h_H by
fastforce
next
case (eng_add h1 h2)
thus ?case using incl_HK assms generate_field.eng_add by force
next
case (eng_mult h1 h2)
thus ?case using generate_field.eng_mult by force
qed}
thus "^x. x G generate_field (R(|carrier := K|) I \Longrightarrow x G generate_field
(R(|carrier := H|) I"
by auto
qed
lemma (in field) subfield_gen_equality:
assumes "subfield H R" "K \subseteq H"
shows "generate_field R K = generate_field (R | carrier := H |) K"
using subfield_gen_incl[OF assms(1) carrier_is_subfield assms(2)] assms
subringE(1)
subfield_gen_incl[OF carrier_is_subfield assms(1) _ assms(2)]
subfieldE(1)[OF assms(1)]
by force
end

```

\section*{36 Product and Sum Groups}
theory Product_Groups
imports Elementary_Groups "HOL-Library.Equipollence"
begin

\subsection*{36.1 Product of a Family of Groups}
definition product_group:: "'a set \(\Rightarrow\) ('a \(\Rightarrow\) ('b, 'c) monoid_scheme) \(\Rightarrow\) ('a \(\Rightarrow\) 'b) monoid"
where "product_group \(I G \equiv\) ( carrier \(=\left(\Pi_{E} i \in I . \operatorname{carrier~(Gi)),~}\right.\) monoid.mult \(=\left(\lambda x\right.\) y. \(\left(\lambda i \in I . x\right.\) i \(\otimes_{G}\) i \(y\) i)),
```

 one = (\lambdai\inI. 1_ (i)|"
    ```
lemma carrier_product_group [simp]: "carrier (product_group I G) = \(\left(\Pi_{E}\right.\)
```

i\inI. carrier (G i))"
by (simp add: product_group_def)
lemma one_product_group [simp]: "one(product_group I G) = (}\lambda\textrm{i}\in\textrm{I}
(G i))"
by (simp add: product_group_def)
lemma mult_product_group [simp]: "(}\mp@subsup{\otimes}{\mathrm{ product_group I G) = (}\lambda\textrm{x y. \lambdai\inI.}}{\mathrm{ I }
x i }\mp@subsup{\otimes}{G}{\prime
by (simp add: product_group_def)
lemma product_group [simp]:
assumes "\i. i }\inI\Longrightarrow\mathrm{ group (G i)" shows "group (product_group I
G)"
proof (rule groupI; simp)
show "(\lambdai. x i }\mp@subsup{\otimes}{\textrm{G}}{\textrm{i}}\textrm{y}\mathrm{ y i) }\in(\Pi\mathrm{ i (I. carrier (G i))"
if "x ((}\mp@subsup{|}{E}{}i\inI. carrier (G i))" "y \in (\PiE i\inI. carrier (G i))" for
x y
using that assms group.subgroup_self subgroup.m_closed by fastforce
show "(\lambdai. 1 1G i) \in (\Pi i\inI. carrier (G i))"
by (simp add: assms group.is_monoid)

```

```

=
(}\lambdai\inI. x i | | i (if i \in I then y i |G i z i else undefined))"
if "x ((}\mp@subsup{E}{E}{}i\inI. carrier (G i))" "y \in (\PiE i\inI. carrier (G i))" "
\epsilon (\Pi
using that by (auto simp: PiE_iff assms group.is_monoid monoid.m_assoc
intro: restrict_ext)
show "(}\lambda\textrm{i}\in\textrm{I}.(\mathrm{ (if i }\inI\mathrm{ then 1 1G i else undefined) }\mp@subsup{|}{G}{
if "x }\in(\mp@subsup{\Pi}{E}{} i\inI. carrier (G i))" for x
using assms that by (fastforce simp: Group.group_def PiE_iff)
show "\existsy\in\mp@subsup{\Pi}{E}{}}\mathbf{i}\inI.\mp@code{carrier (G i). (}\lambda\textrm{i}\in\textrm{I}.\mp@code{y i }\mp@subsup{\otimes}{\textrm{G}}{\textrm{i}}\textrm{i
if "x \in (\Pi}\mp@subsup{|}{E}{}\textrm{i}\in\textrm{I}
by (rule_tac x="\lambdai\inI. invg i x i" in bexI) (use assms that in <auto
simp: PiE_iff group.l_inv>)
qed
lemma inv_product_group [simp]:
assumes "f \in (}\mp@subsup{\Pi}{E}{}i\inI. carrier (G i))" "\i. i \in I \Longrightarrow group (G i)"

```

```

proof (rule group.inv_equality)
show "Group.group (product_group I G)"
by (simp add: assms)
show "(\lambdai\inI. invG i f i) \otimesproduct_group I G f = 1 1 product_group I G"
using assms by (auto simp: PiE_iff group.l_inv)
show "f \in carrier (product_group I G)"
using assms by simp
show "(\lambdai\inI. invG i f i) \in carrier (product_group I G)"
using PiE_mem assms by fastforce

```
qed
lemma trivial_product_group: "trivial_group(product_group I G) \(\longleftrightarrow(\forall\) i
\(\in\) I. trivial_group(G i))"
(is "?1hs = ?rhs")
proof
assume L: ?1hs
then have "inv product_group I G \(\left(\lambda a \in I . \mathbf{1}_{G}\right.\) a \()=\mathbf{1}_{\text {product_group I G" }}\)
by (metis group.is_monoid monoid.inv_one one_product_group trivial_group_def)

unfolding trivial_group_def
proof -
have 1: " \(\left(\lambda a \in I .1_{G}\right)\) i \(=1_{G}\) i"
by (simp add: that)
have \("\left(\lambda \mathrm{a} \in \mathrm{I} . \mathbf{1}_{\mathrm{G}} \mathrm{a}\right)=\left(\lambda \mathrm{a} \in \mathrm{I} . \mathbf{1}_{\mathrm{G}} \mathrm{a}\right) \otimes_{\text {product_group I }}\left(\lambda \mathrm{a} \in \mathrm{I} . \mathbf{1}_{\mathrm{G}} \mathrm{a}\right)\) " by (metis (no_types) L group.is_monoid monoid.l_one one_product_group
singletonI trivial_group_def)
then show ?thesis
using 1 by (simp add: that)
qed
show ?rhs
using L
by (auto simp: trivial_group_def product_group_def PiE_eq_singleton
intro: groupI)
next
assume ?rhs
then show ?lhs
by (simp add: PiE_eq_singleton trivial_group_def)
qed
lemma PiE_subgroup_product_group:
assumes " \(\bigwedge i . i \in I \Longrightarrow \operatorname{group}(G i) "\)
shows "subgroup (PiE I H) (product_group I G) \(\longleftrightarrow(\forall i \in I\). subgroup
( H i) (Gi))"
(is "?lhs = ?rhs")
proof
assume L: ?lhs
then have [simp]: "PiE I H \(\neq\{ \}\) "
using subgroup_nonempty by force
show ?rhs
proof (clarify; unfold_locales)
show sub: "H i \(\subseteq\) carrier ( \(G\) i)" if "i \(\in\) I" for i
using that L by (simp add: subgroup_def) (metis (no_types, lifting)
L subgroup_nonempty subset_PiE)
show \(" x \otimes_{G}\) i \(y \in H\) i" if "i \(\in I "\) "x \(\in H\) i" "y \(\in H\) i" for \(i x y\)
proof -
have *: " \(\wedge \mathrm{x} . \mathrm{x} \in \mathrm{Pi}_{E} \mathrm{I} H \Longrightarrow\left(\forall \mathrm{y} \in \mathrm{Pi}_{E} \mathrm{I} H . \forall \mathrm{i} \in \mathrm{I} . \mathrm{x} \mathrm{i} \otimes_{\mathrm{G}} \mathrm{i} y\right.\)
```

i (H i)"
using L by (auto simp: subgroup_def Pi_iff)
have "\forally\inH i. f i }\mp@subsup{\otimes}{G}{
for i f
using * [OF f] <i \in I>
by (subst(asm) all_PiE_elements) auto
then have "\forallf \in Pi
by blast
with that show ?thesis
by (subst(asm) all_PiE_elements) auto
qed
show "1}\mp@subsup{|}{G i}{}\inH i" if "i \in I" for i
using L subgroup.one_closed that by fastforce
show "invG i x }\inH\mathrm{ i" if "i }\inI" and x: "x \in H i" for i x
proof -
have *: "\forally\in PiE I H. }\forall\textrm{i}\in\textrm{I}.|\mp@code{|nvg i y i }\inH\mp@code{i"
proof
fix y
assume y: "y \in Pi}E I H
then have yc: "y \in carrier (product_group I G)"
by (metis (no_types) L subgroup_def subsetCE)
have "invproduct_group I G y \in Pi}E I H"
by (simp add: y L subgroup.m_inv_closed)
moreover have "invproduct_group I G y = (\lambdai\inI. invG i y i)"
using yc by (simp add: assms)
ultimately show "\foralli\inI. invG i y i }\inH\mp@code{i"
by auto
qed
then have "\foralli\inI. \forallx\inH i. invg i x }
by (subst(asm) all_PiE_elements) auto
then show ?thesis
using that(1) x by blast
qed
qed
next
assume R: ?rhs
show ?lhs
proof
show "Pi}E I H \subseteq carrier (product_group I G)"
using R by (force simp: subgroup_def)

```

```

I H" for x y
using R that by (auto simp: PiE_iff subgroup_def)
show "1}\mp@subsup{1}{\mathrm{ product_group I G }\in Pi}{E I H"
using R by (force simp: subgroup_def)
show "invproduct_group I G x }\in\mp@subsup{\textrm{Pi}}{E}{}I\textrm{I}H"\mathrm{ if "x }\in\mp@subsup{\textrm{Pi}}{E}{}I|H"\mathrm{ for x
proof -
have x: "x \in (}\mp@subsup{\Pi}{E}{}i\inI. carrier (G i))"
using R that by (force simp: subgroup_def)

```
```

 show ?thesis
 using assms R that by (fastforce simp: x assms subgroup_def)
 qed
 qed
 qed
lemma product_group_subgroup_generated:
assumes "^i. i }\inI\Longrightarrow\mathrm{ subgroup (H i) (G i)" and gp: "^i. i }\inI
group (G i)"
shows "product_group I (\lambdai. subgroup_generated (G i) (H i))
= subgroup_generated (product_group I G) (PiE I H)"
proof (rule monoid.equality)
have [simp]: "\i. i }\inI\Longrightarrow\mathrm{ carrier (G i) }\cap\textrm{H}\mathrm{ i = H i" "(П
(G i)) \cap Pi
using assms by (force simp: subgroup_def)+
have "(\Pi}\mp@subsup{\Pi}{E}{}\textrm{i}\in\textrm{I}.\mp@code{generate (G i) (H i)) = generate (product_group I G)
(Pi}\mp@subsup{\mp@code{E I H)"}}{}{\prime
proof (rule group.generateI)
show "Group.group (product_group I G)"
using assms by simp
show "subgroup (}\mp@subsup{\Pi}{E}{}\mathrm{ i i I. generate (G i) (H i)) (product_group I G)"
using assms by (simp add: PiE_subgroup_product_group group.generate_is_subgroup
subgroup.subset)
show "Pi}\mp@subsup{|}{E}{\prime}|\mp@code{H}\subseteq(\mp@subsup{\Pi}{E}{}i\inI.\mp@code{generate (G i) (H i))"
using assms by (auto simp: PiE_iff generate.incl)
show "(\Pi}\mp@subsup{|}{E}{}\textrm{i}\in\textrm{I}.\mp@code{generate (G i) (H i)) \subseteq K"
if "subgroup K (product_group I G)" "PiE I H \subseteq K" for K
using assms that group.generate_subgroup_incl by fastforce
qed
with assms
show "carrier (product_group I (\lambdai. subgroup_generated (G i) (H i)))
=
carrier (subgroup_generated (product_group I G) (Pi
by (simp add: carrier_subgroup_generated cong: PiE_cong)
qed auto
lemma finite_product_group:
assumes "\i. i }\inI\Longrightarrowgroup (G i)"
shows
"finite (carrier (product_group I G)) \longleftrightarrow
finite {i. i \in I ^ ~ trivial_group(G i)} ^ (\foralli \in I. finite(carrier(G
i)))"
proof -
have [simp]: "\i. i \in I \Longrightarrow carrier (G i) f {}"
using assms group.is_monoid by blast
show ?thesis
by (auto simp: finite_PiE_iff PiE_eq_empty_iff group.trivial_group_alt
[OF assms] cong: Collect_cong conj_cong)
qed

```

\subsection*{36.2 Sum of a Family of Groups}
```

definition sum_group : : "'a set \Rightarrow ('a \Rightarrow ('b, 'c) monoid_scheme) \Rightarrow ('a
\Rightarrow 'b) monoid"
where "sum_group I G \equiv
subgroup_generated
(product_group I G)
$\left\{x \in \Pi_{E} i \in I\right.$. carrier (Gi). finite $\left\{i \in I . x\right.$ i $\neq \mathbf{1}_{G}$ i\}\}"

```
lemma subgroup_sum_group:
    assumes " \(\bigwedge\) i. i \(\in I \Longrightarrow\) group (G i)"
    shows "subgroup \(\left\{x \in \Pi_{E} i \in I\right.\). carrier (Gi). finite \(\left.\left\{i \in I . x i \neq 1_{G}\right\}\right\}\)
                            (product_group I G)"
proof unfold_locales
    fix \(x\) y
    have \(*:\) "\{i. (i \(\in I \longrightarrow x\) i \(\otimes_{G}\) i \(y i \neq 1_{G}\) i) \(\left.\wedge i \in I\right\}\)
                \(\subseteq\left\{i \in I . x i \neq 1_{G i}\right\} \cup\left\{i \in I . y i \neq \mathbf{1}_{G i}\right\} "\)
        by (auto simp: Group.group_def dest: assms)
    assume
        "x \(\in\left\{x \in \Pi_{E}\right.\) i \(\in I\). carrier ( \(G\) i). finite \(\left\{i \in I . x i \neq 1_{G}\right.\) i \(\left.\}\right\}\) "

    then
    show "x \(\otimes_{\text {product_group }} \mathrm{G}\) \(\mathrm{y} \in\left\{\mathrm{x} \in \Pi_{E} \mathrm{i} \in \mathrm{I}\right.\). carrier ( G i). finite \(\{i\)
\(\left.\in \operatorname{I} . \mathrm{x} i \neq \mathbf{1}_{\mathrm{G}}^{\mathrm{i}} \mathrm{\}}\right\}{ }^{\prime \prime}\)
            using assms
            apply (auto simp: Group.group_def monoid.m_closed PiE_iff)
            apply (rule finite_subset [OF *])
            by blast
next
    fix \(x\)
    assume \(" x \in\left\{x \in \Pi_{E} i \in I\right.\). carrier ( \(G i\) i). finite \(\left\{i \in I . x i \neq 1_{G}\right.\) i \(\left.\}\right\}\) "
    then show "inv product_group \(I G X \in\left\{x \in \Pi_{E} i \in I\right.\). carrier ( \(G\) i). finite
\(\left\{i \in I . x\right.\) i \(\left.\left.\neq \mathbf{1}_{G}{ }_{i}\right\}\right\} "\)
            using assms
            by (auto simp: PiE_iff assms group.inv_eq_1_iff [OF assms] conj_commute
cong: rev_conj_cong)
qed (use assms [unfolded Group.group_def] in auto)
lemma carrier_sum_group:
    assumes " \(\bigwedge\) i. i \(\in I \Longrightarrow\) group (G i)"
    shows "carrier(sum_group \(I G)=\left\{x \in \Pi_{E} i \in I\right.\). carrier ( \(G\) i). finite
\(\left.\left\{i \in I . x i \neq 1_{G i}\right\}\right\} "\)
proof -
    interpret \(S G:\) subgroup \("\left\{x \in \Pi_{E} i \in I\right.\). carrier ( \(G\) i). finite \(\{i \in I\).
    \(x\) i \(\left.\neq 1_{\mathrm{G}}^{\mathrm{i}} \mathrm{\}}\right\}\) " "(product_group I G)"
        by (simp add: assms subgroup_sum_group)
    show ?thesis
        by (simp add: sum_group_def subgroup_sum_group carrier_subgroup_generated_alt)
qed
```

lemma one_sum_group [simp]: " }\mp@subsup{1}{\mathrm{ sum_group I G = (}\lambda\textrm{i}\in\textrm{I}.}{1}\mp@subsup{\mathbf{1}}{\textrm{G}}{\textrm{i}
by (simp add: sum_group_def)
lemma mult_sum_group [simp]: "(}\mp@subsup{\otimes}{\mathrm{ sum_group I G) = (}\lambda\textrm{x}}{\mathrm{ y . . (}\lambda\textrm{i}\in\textrm{I}. x i }\mp@subsup{\otimes}{\textrm{G}}{\textrm{i}
y i))"
by (auto simp: sum_group_def)
lemma sum_group [simp]:
assumes "\i. i }\inI\Longrightarrow\mathrm{ group (G i)" shows "group (sum_group I G)"
proof (rule groupI)
note group.is_monoid [OF assms, simp]
show "x \otimes sum_group I G y \in carrier (sum_group I G)"
if "x \in carrier (sum_group I G)" and
"y \in carrier (sum_group I G)" for x y
proof -
have *: "{i \in I. x i }\mp@subsup{\otimes}{\textrm{G}}{\textrm{i}}\mathrm{ y i }\not=\mp@subsup{\mathbf{1}}{\textrm{G}}{\textrm{i}
| I. y i f = 1'G i}"
by auto
show ?thesis
using that
apply (simp add: assms carrier_sum_group PiE_iff monoid.m_closed
conj_commute cong: rev_conj_cong)
apply (blast intro: finite_subset [OF *])
done
qed
show "1 1sum_group I G * *sum_group I G x = x"
if "x \in carrier (sum_group I G)" for x
using that by (auto simp: assms carrier_sum_group PiE_iff extensional_def)
show "\existsy\incarrier (sum_group I G). y }\mp@subsup{\otimes}{\mathrm{ sum_group I G x = 1 1 sum_group I G"}}{
if "x \in carrier (sum_group I G)" for x
proof
let ?y = "\lambdai\inI. m_inv (G i) (x i)"
show "?y }\mp@subsup{\otimes}{\mathrm{ sum_group I G x = 1 1 Sum_group I G"}}{
using that assms
by (auto simp: carrier_sum_group PiE_iff group.l_inv)
show "?y \in carrier (sum_group I G)"
using that assms
by (auto simp: carrier_sum_group PiE_iff group.inv_eq_1_iff group.l_inv
cong: conj_cong)
qed
qed (auto simp: assms carrier_sum_group PiE_iff group.is_monoid monoid.m_assoc)
lemma inv_sum_group [simp]:
assumes "\i. i }\inI\Longrightarrow\mathrm{ group (G i)" and x: "x f carrier (sum_group
I G)"
shows "m_inv (sum_group I G) x = (\lambdai\inI. m_inv (G i) (x i))"
proof (rule group.inv_equality)
show "(\lambdai\inI. invg i x i) * *sum_group I G x = 1 1sum_group I G"
using x by (auto simp: carrier_sum_group PiE_iff group.l_inv assms

```
```

intro: restrict_ext)
show "(\lambdai\inI. invg i x i) }\in\mathrm{ carrier (sum_group I G)"
using x by (simp add: carrier_sum_group PiE_iff group.inv_eq_1_iff
assms conj_commute cong: rev_conj_cong)
qed (auto simp: assms)
thm group.subgroups_Inter
theorem subgroup_Inter:
assumes subgr: "(\bigwedgeH. H \in A \Longrightarrow subgroup H G)"
and not_empty: "A f= {}"
shows "subgroup (\bigcapA) G"
proof
show "\bigcap A \subseteq carrier G"
by (simp add: Inf_less_eq not_empty subgr subgroup.subset)
qed (auto simp: subgr subgroup.m_closed subgroup.one_closed subgroup.m_inv_closed)
thm group.subgroups_Inter_pair
lemma subgroup_Int:
assumes "subgroup I G" "subgroup J G"
shows "subgroup (I \cap J) G" using subgroup_Inter[where ?A = "{I,J}"]
assms by auto

```
lemma sum_group_subgroup_generated:
assumes " \(\bigwedge i . i \in I \Longrightarrow\) group (G i)" and sg: "^i. i \(\in I \Longrightarrow\) subgroup
(Hi) (G i)"
shows "sum_group I ( \(\lambda i\). subgroup_generated (G i) (Hi)) = subgroup_generated (sum_group I G) (PiE I H)"
proof (rule monoid.equality)
have "subgroup (carrier (sum_group I G) \(\cap \mathrm{Pi}_{E} \mathrm{I}\) H) (product_group I
G) "
by (rule subgroup_Int) (auto simp: assms carrier_sum_group subgroup_sum_group
PiE_subgroup_product_group)
moreover have "carrier (sum_group I G) \(\cap \mathrm{Pi}_{E} \mathrm{I} \mathrm{H}\)
\(\subseteq\) carrier (subgroup_generated (product_group I G)
\(\left\{x \in \Pi_{E} i \in I . \operatorname{carrier}(G i)\right.\). finite \(\{i \in I . x i \neq\)
\(1_{G}\) i\}\})"
by (simp add: assms subgroup_sum_group subgroup.carrier_subgroup_generated_subgroup carrier_sum_group)
ultimately
have "subgroup (carrier (sum_group I G) \(\cap \mathrm{Pi}_{E}\) I H) (sum_group I G)"
by (simp add: assms sum_group_def group.subgroup_subgroup_generated_iff)
then have \(*:\) " \(\left\{f \in \Pi_{E} i \in I\right.\). carrier (subgroup_generated (Gi) (Hi)).
finite \(\left\{i \in I . f\right.\) i \(\left.\neq 1_{G} \in\right\}\)
= carrier (subgroup_generated (sum_group I G) (carrier (sum_group
I G) \(\left.\left.\cap \mathrm{Pi}_{E} \mathrm{I} H\right)\right)^{\prime \prime}\)
apply (simp only: subgroup.carrier_subgroup_generated_subgroup)
using subgroup.subset [OF sg]
apply (auto simp: set_eq_iff PiE_def Pi_def assms carrier_sum_group subgroup.carrier_subgroup_generated_subgroup)
done
then show "carrier (sum_group I ( \(\lambda\) i. subgroup_generated (Gi) (Hi))) \(=\)
carrier (subgroup_generated (sum_group I G) ( \(\mathrm{Pi}_{E} \mathrm{I}\) H))"
by simp (simp add: assms group.subgroupE(1) group.group_subgroup_generated carrier_sum_group)
qed (auto simp: sum_group_def subgroup_generated_def)

\section*{lemma iso_product_groupI:}
assumes iso: " \(\bigwedge i . i \in I \Longrightarrow G i \cong H i "\)

(H i)"
shows "product_group I G \(\cong\) product_group I H" (is "?IG \(\cong\) ?IH")
proof -
have " \(\bigwedge i . i \in I \Longrightarrow \exists h . h \in i s o(G i)(H i) "\)
using iso by (auto simp: is_iso_def)
then obtain \(f\) where \(f:\) " 1 i. \(i \in I \Longrightarrow f i \in\) iso ( \(G\) i) (Hi)" by metis
define h where \(\mathrm{h} \equiv \lambda \mathrm{x}\). ( \(\lambda \mathrm{i} \in \mathrm{I}\). \(\mathrm{f} \mathrm{i}(\mathrm{x} \mathrm{i})\) )"
have hom: "h iso ?IG ?IH"
proof (rule isoI)
show hom: "h \(\in\) hom ?IG ?IH"
proof (rule homI)
fix x
assume "x \(\in\) carrier ?IG"
with \(f\) show "h \(x \in\) carrier ?IH"
using PiE by (fastforce simp add: h_def PiE_def iso_def hom_def)
next
fix x y
assume "x \(\in\) carrier ?IG" "y \(\in\) carrier ?IG"
with \(f\) show "h ( \(x \otimes\) ? IG \(y\) ) \(=h x \otimes\) ? IH \(h y "\)
apply (simp add: h_def PiE_def iso_def hom_def)
using PiE by (fastforce simp add: h_def PiE_def iso_def hom_def
intro: restrict_ext)
qed
with G H interpret GH : group_hom "?IG" "?IH" h
by (simp add: group_hom_def group_hom_axioms_def)
show "bij_betw h (carrier ?IG) (carrier ?IH)"
unfolding bij_betw_def
proof (intro conjI subset_antisym) have " \(\gamma\) i \(=\mathbf{1}_{\text {G }}\) i"
if \(\gamma:\) " \(\gamma \in\left(\Pi_{E} i \in I\right.\). carrier (Gi))" and eq: " \((\lambda i \in I . f\) i ( \(\gamma\) i))
\(\left.=\left(\lambda i \in I .1_{H}\right)\right)\) " and \(" i \in I "\)
for \(\gamma\) i
proof -
have "inj_on (f i) (carrier (G i))" "f i \(\in \operatorname{hom}(\mathrm{G} i)(H i) "\)
```

 using <i \in I> f by (auto simp: iso_def bij_betw_def)
    ```

```

 by (metis G Group.group_def H hom_one inj_onD monoid.one_closed
 <i \in I>)
show ?thesis
using eq <i \in I> * \gamma by (simp add: fun_eq_iff) (meson PiE_iff)
qed
then show "inj_on h (carrier ?IG)"
apply (simp add: iso_def bij_betw_def GH.inj_on_one_iff flip:
carrier_product_group)
apply (force simp: h_def)
done
next
show "h ' carrier ?IG }\subseteq\mathrm{ carrier ?IH"
unfolding h_def using f
by (force simp: PiE_def Pi_def Group.iso_def dest!: bij_betwE)
next
show "carrier ?IH \subseteqh ' carrier ?IG"
unfolding h_def
proof (clarsimp simp: iso_def bij_betw_def)
fix x
assume "x \in (}\mp@subsup{\Pi}{E}{}\textrm{i}\inI
with f have x: "x ((}\mp@subsup{E}{E}{
unfolding h_def by (auto simp: iso_def bij_betw_def)
have "\i. i }\inI\Longrightarrow inj_on (f i) (carrier (G i))"
using f by (auto simp: iso_def bij_betw_def)
let ?g = "\lambdai\inI. inv_into (carrier (G i)) (f i) (x i)"
show "x }\in(\lambdag. \lambdai\inI. f i (g i)) ' (\Pi E i\inI. carrier (G i))"
proof
show "x = (}\lambdai\inI.f i (?g i))"
using x by (auto simp: PiE_iff fun_eq_iff extensional_def
f_inv_into_f)
show "?g \in (}\mp@subsup{\Pi}{E}{}\mathrm{ i i I. carrier (G i))"
using x by (auto simp: PiE_iff inv_into_into)
qed
qed
qed
qed
then show ?thesis
using is_iso_def by auto
qed
lemma iso_sum_groupI:
assumes iso: "\i. i }\inI\LongrightarrowG i\cong H i"
and G: "\i. i }\inI\Longrightarrow\mathrm{ group (G i)" and H: "^i. i }\inI=I\Longrightarrowgrou
(H i)"
shows "sum_group I G \cong sum_group I H" (is "?IG \cong?IH")
proof -
have "\i. i }\inI\Longrightarrow\exists\textrm{h}.\textrm{h}\in\mathrm{ iso (G i) (H i)"

```
```

 using iso by (auto simp: is_iso_def)
 then obtain f where f: "\i. i f I \Longrightarrow f i f iso (G i) (H i)"
 by metis
 then have injf: "inj_on (f i) (carrier (G i))"
 and homf: "f i \in hom (G i) (H i)" if "i \in I" for i
 using <i G I> f by (auto simp: iso_def bij_betw_def)
 then have one: "\bigwedgex. \llbracketf i x = 1H i; x }\in\operatorname{carrier (G i)\rrbracket \Longrightarrow x = 1'G i"
 if "i \in I" for i
by (metis G H group.subgroup_self hom_one inj_on_eq_iff subgroup.one_closed
that)
have fin1: "finite {i \in I. x i f 1 1 G i} \Longrightarrow finite {i G I. f i (x i)
\not= 1_H i}" for x
using homf by (auto simp: G H hom_one elim!: rev_finite_subset)
define h where "h \equiv \x. (}\lambda\textrm{i}\in\textrm{I}.\textrm{f} \textrm{i}(\textrm{x i)})
have hom: "h \in iso ?IG ?IH"
proof (rule isoI)
show hom: "h \in hom ?IG ?IH"
proof (rule homI)
fix x
assume "x \in carrier ?IG"
with f fin1 show "h x \in carrier ?IH"
by (force simp: h_def PiE_def iso_def hom_def carrier_sum_group
assms conj_commute cong: conj_cong)
next
fix x y
assume "x \in carrier ?IG" "y \in carrier ?IG"
with homf show "h (x \otimes?IG y) = h x \otimes ?IH h y"
by (fastforce simp add: h_def PiE_def hom_def carrier_sum_group
assms intro: restrict_ext)
qed
with G H interpret GH : group_hom "?IG" "?IH" h
by (simp add: group_hom_def group_hom_axioms_def)
show "bij_betw h (carrier ?IG) (carrier ?IH)"
unfolding bij_betw_def
proof (intro conjI subset_antisym)
have }\gamma: "\gamma i= 1 (G i"
if "\gamma ((\Pi}E i\inI. carrier (G i))" and eq: "(\lambdai\inI. f i ((i))
= (\lambdai\inI. 1H i)" and "i \in I"
for }\gamma\mathrm{ i
using <i G I> one that by (simp add: fun_eq_iff) (meson PiE_iff)
show "inj_on h (carrier ?IG)"
apply (simp add: iso_def bij_betw_def GH.inj_on_one_iff assms
one flip: carrier_sum_group)
apply (auto simp: h_def fun_eq_iff carrier_sum_group assms PiE_def
Pi_def extensional_def one)
done
next
show "h ' carrier ?IG \subseteq carrier ?IH"
using homf GH.hom_closed

```
```

 by (fastforce simp: h_def PiE_def Pi_def dest!: bij_betwE)
 next
 show "carrier ?IH \subseteqh ' carrier ?IG"
 unfolding h_def
 proof (clarsimp simp: iso_def bij_betw_def carrier_sum_group assms)
 fix x
 assume x: "x \in (的 i\inI. carrier (H i))" and fin: "finite {i
 | . x i }\not=\mp@subsup{1}{H}{H}\mp@subsup{i}{}{\prime}}
with f have xf: "x }\in(\mp@subsup{\Pi}{E}{} i\inI. f i ' carrier (G i))"
unfolding h_def
by (auto simp: iso_def bij_betw_def)
have "\i. i }\inI\Longrightarrow inj_on (f i) (carrier (G i))"
using f by (auto simp: iso_def bij_betw_def)
let ?g = "\lambdai\inI. inv_into (carrier (G i)) (f i) (x i)"
show "x f (}\lambda\textrm{g}.\lambdai\inI. f i (g i))
' {x \in \Pi}\mp@subsup{|}{E}{}i\inI. carrier (G i). finite {i \in I. x i \# =
1G i}}"
proof
show xeq: "x = (}\lambda\textrm{i}\in\textrm{I}.\textrm{f}\mp@code{i (?g i))"
using x by (clarsimp simp: PiE_iff fun_eq_iff extensional_def)
(metis iso_iff f_inv_into_f f)
have "finite {i \in I. inv_into (carrier (G i)) (f i) (x i) f
1/G i}"
apply (rule finite_subset [OF _ fin])
using G H group.subgroup_self hom_one homf injf inv_into_f_eq
subgroup.one_closed by fastforce
with x show "?g \in {x \in \Pi
I. x i f= 1'G i}}"
apply (auto simp: PiE_iff inv_into_into conj_commute cong:
conj_cong)
by (metis (no_types, opaque_lifting) iso_iff f inv_into_into)
qed
qed
qed
qed
then show ?thesis
using is_iso_def by auto
qed
end

```

\section*{37 Free Abelian Groups}
```

theory Free_Abelian_Groups
imports
Product_Groups FiniteProduct "HOL-Cardinals.Cardinal_Arithmetic"
"HOL-Library.Countable_Set" "HOL-Library.Poly_Mapping" "HOL-Library.Equipollence"

```
begin
```

lemma eqpoll_Fpow:
assumes "infinite A" shows "Fpow A \approx A"
unfolding eqpoll_iff_card_of_ordIso
by (metis assms card_of_Fpow_infinite)

```
lemma infinite_iff_card_of_countable: "【countable B; infinite B】 \(\Longrightarrow\)
infinite \(\mathrm{A} \longleftrightarrow(|\mathrm{B}| \leq 0|A|) "\)
    unfolding infinite_iff_countable_subset card_of_ordLeq countable_def
    by (force intro: card_of_ordLeqI ordLeq_transitive)
lemma iso_imp_eqpoll_carrier: \(\mathrm{G} \cong \mathrm{H} \Longrightarrow\) carrier \(G \approx\) carrier \(H "\)
    by (auto simp: is_iso_def iso_def eqpoll_def)

\section*{37．1 Generalised finite product}
```

definition
gfinprod :: "[('b, 'm) monoid_scheme, 'a \# 'b, 'a set] \# 'b"
where "gfinprod G f A =
(if finite {x \in A. f x
1G)"
context comm_monoid begin
lemma gfinprod_closed [simp]:
"f \in A }->\mathrm{ carrier G \# gfinprod G f A f carrier G"
unfolding gfinprod_def
by (auto simp: image_subset_iff_funcset intro: finprod_closed)
lemma gfinprod_cong:
"\llbracketA=B; f \in B -> carrier G;
\i. i }\in\textrm{B}=\mathrm{ simp=> f i=g i\ \# gfinprod G f A = gfinprod G g B"
unfolding gfinprod_def
by (auto simp: simp_implies_def cong: conj_cong intro: finprod_cong)
lemma gfinprod_eq_finprod [simp]: "\llbracketfinite A; f \in A }->\mathrm{ carrier G】 C
gfinprod G f A = finprod G f A"
by (auto simp: gfinprod_def intro: finprod_mono_neutral_cong_left)
lemma gfinprod_insert [simp]:
assumes "finite {x G A. f x = 1 1G}" "f \in A -> carrier G" "f i f carrier
G"
shows "gfinprod G f (insert i A) = (if i \in A then gfinprod G f A else
f i \otimes gfinprod G f A)"
proof -
have f: "f \in {x \in A. f x = 1} }->\mathrm{ carrier G"
using assms by (auto simp: image_subset_iff_funcset)
have "{x. x = i ^f x\not=1\vee x f A ^f x\not=1} = (if f i=1 then {x

```
```

GA. f x f 1} else insert i {x \in A. f x f=1})"
by auto
then show ?thesis
using assms
unfolding gfinprod_def by (simp add: conj_disj_distribR insert_absorb
f split: if_split_asm)
qed
lemma gfinprod_distrib:

```

```

 and "f \in A -> carrier G" "g \in A -> carrier G"
 shows "gfinprod G (\lambdai. f i \otimes g i) A = gfinprod G f A \otimes gfinprod G
 g A"
proof -
have "finite {x\inA. f x \& g x = 1}"
by (auto intro: finite_subset [OF _ finite_UnI [OF fin]])
then have "gfinprod G (\lambdai. f i \otimesg i) A = gfinprod G (\lambdai. f i }\otimes\textrm{g
i) ({i G A. f i }\not=\mp@subsup{\mathbf{1}}{G}{}}\cup{i\inA.g i \not= 1GG)"
unfolding gfinprod_def
using assms by (force intro: finprod_mono_neutral_cong)
also have "... = gfinprod G f A \otimes gfinprod G g A"
proof -
have "finprod G f ({i G A. f i f= 1GG} {i G A. g i
G f A"
"finprod G g ({i G A. f i }=\mp@subsup{\mathbf{1}}{\textrm{G}}{}}\cup{i\inA.g i {=\mp@subsup{1}{G}{}})=gfinpro
G g A"
using assms by (auto simp: gfinprod_def intro: finprod_mono_neutral_cong_right)
moreover have "(\lambdai. f i \otimesg i) }\in{i\inA.f i\not=1}\cup{i\inA.g
\not=1} }->\mathrm{ carrier G"
using assms by (force simp: image_subset_iff_funcset)
ultimately show ?thesis
using assms
apply simp
apply (subst finprod_multf, auto)
done
qed
finally show ?thesis .
qed
lemma gfinprod_mono_neutral_cong_left:
assumes "A}\subseteq\textrm{B}
and 1: "^i. i }\in\textrm{B}-\textrm{A}\Longrightarrow\textrm{h}i=1
and gh: "\x. x }\in\textrm{A}\Longrightarrow\textrm{g}x=h\textrm{x
and h: "h \in B }->\mathrm{ carrier G"
shows "gfinprod G g A = gfinprod G h B"
proof (cases "finite {x G B. h x = 1}")
case True
then have "finite {x \in A. h x f= 1}"
apply (rule rev_finite_subset)

```
```

 using <A \subseteq B > by auto
 with True assms show ?thesis
 apply (simp add: gfinprod_def cong: conj_cong)
 apply (auto intro!: finprod_mono_neutral_cong_left)
 done
 next
case False
have "{x\inB. h x f 1} \subseteq{x \in A. h x f=1}"
using 1 by auto
with False have "infinite {x \in A. h x = 1}"
using infinite_super by blast
with False assms show ?thesis
by (simp add: gfinprod_def cong: conj_cong)
qed
lemma gfinprod_mono_neutral_cong_right:
assumes "A}\subseteqB" "\i. i \in B - A \Longrightarrow g i = 1" "\x. x \in A \Longrightarrowg x =
h x" "g \in B }->\mathrm{ carrier G"
shows "gfinprod G g B = gfinprod G h A"
using assms by (auto intro!: gfinprod_mono_neutral_cong_left [symmetric])
lemma gfinprod_mono_neutral_cong:
assumes [simp]: "finite B" "finite A"
and *: "^i. i }\in\textrm{B}-\textrm{A}\Longrightarrow\textrm{h}i=1" "\i. i \in A - B \Longrightarrow g i = 1"
and gh: "\x. x \in A \cap B \Longrightarrowg x = h x"
and g: "g \in A }->\mathrm{ carrier G"
and h: "h \in B }->\mathrm{ carrier G"
shows "gfinprod G g A = gfinprod G h B"
proof-
have "gfinprod G g A = gfinprod G g (A \cap B)"
by (rule gfinprod_mono_neutral_cong_right) (use assms in auto)
also have "... = gfinprod G h (A \cap B)"
by (rule gfinprod_cong) (use assms in auto)
also have "... = gfinprod G h B"
by (rule gfinprod_mono_neutral_cong_left) (use assms in auto)
finally show ?thesis .
qed
end
lemma (in comm_group) hom_group_sum:
assumes hom: "\i. i }\inI\Longrightarrowf i \in hom (A i) G" and grp: "\i. i \in
I \Longrightarrowgroup (A i)"
shows "(\lambdax. gfinprod G (\lambdai. (f i) (x i)) I) \in hom (sum_group I A) G"
unfolding hom_def
proof (intro CollectI conjI ballI)
show "(\lambdax. gfinprod G (\lambdai. f i (x i)) I) \in carrier (sum_group I A)
carrier G"
using assms

```
```

 by (force simp: hom_def carrier_sum_group intro: gfinprod_closed simp
 flip: image_subset_iff_funcset)
next
fix x y
assume x: "x \in carrier (sum_group I A)" and y: "y \in carrier (sum_group
I A)"
then have finx: "finite {i \in I. x i f= 1/A i}" and finy: "finite {i
|. y i }\not=\mp@subsup{1}{\textrm{A}}{\textrm{i}
using assms by (auto simp: carrier_sum_group)
have finfx: "finite {i \in I. f i (x i) f= 1}"
using assms by (auto simp: is_group hom_one [OF hom] intro: finite_subset
[OF _ finx])
have finfy: "finite {i \in I. f i (y i) \not= 1}"
using assms by (auto simp: is_group hom_one [OF hom] intro: finite_subset
[OF _ finy])
have carr: "f i (x i) \in carrier G" "f i (y i) \in carrier G" if "i \in
I" for i
using hom_carrier [OF hom] that x y assms
by (fastforce simp add: carrier_sum_group)+
have lam: "(\lambdai. f i (x i }\mp@subsup{\otimes}{\textrm{A}}{\textrm{A}}\textrm{i
using x y assms by (auto simp: hom_def carrier_sum_group PiE_def Pi_def)
have lam': "(\lambdai. f i (if i f I then x i }\mp@subsup{\otimes}{A}{A}\mathrm{ i y i else undefined)) }
I }->\mathrm{ carrier G"
by (simp add: lam Pi_cong)
with lam x y assms
show "gfinprod G (\lambdai. f i ((x * sum_group I A y) i)) I
= gfinprod G (\lambdai. f i (x i)) I \otimes gfinprod G (\lambdai. f i (y i)) I"
by (simp add: carrier_sum_group PiE_def Pi_def hom_mult [OF hom]
gfinprod_distrib finfx finfy carr cong: gfinprod_cong)
qed

```

\subsection*{37.2 Free Abelian groups on a set, using the "frag" type constructor.}
definition free_Abelian_group : : "'a set \(\Rightarrow\) ('a \(\Rightarrow_{0}\) int) monoid"
where "free_Abelian_group \(S=\) (carrier \(=\) \{c. Poly_Mapping.keys \(c \subseteq\) S\}, monoid.mult = (+), one = O)"
lemma group_free_Abelian_group [simp]: "group (free_Abelian_group S)" proof -
have " \(\bigwedge x\). Poly_Mapping.keys \(\mathrm{x} \subseteq \mathrm{S} \Longrightarrow \mathrm{x} \in\) Units (free_Abelian_group S)"
unfolding free_Abelian_group_def Units_def
by clarsimp (metis eq_neg_iff_add_eq_0 neg_eq_iff_add_eq_0 keys_minus)
then show ?thesis
unfolding free_Abelian_group_def
by unfold_locales (auto simp: dest: subsetD [OF keys_add])
qed
```

lemma carrier_free_Abelian_group_iff [simp]:
shows "x \in carrier (free_Abelian_group S) \longleftrightarrow Poly_Mapping.keys x }
S"
by (auto simp: free_Abelian_group_def)
lemma one_free_Abelian_group [simp]: "1 (free_Abelian_group S = 0"
by (auto simp: free_Abelian_group_def)
lemma mult_free_Abelian_group [simp]: "x }\mp@subsup{\otimes}{\mathrm{ free_Abelian_group S y = x +}}{\mathrm{ _}
y"
by (auto simp: free_Abelian_group_def)
lemma inv_free_Abelian_group [simp]: "Poly_Mapping.keys x \subseteqS C invfree_Abelian_group S
x = -x"
by (rule group.inv_equality [OF group_free_Abelian_group]) auto
lemma abelian_free_Abelian_group: "comm_group(free_Abelian_group S)"
apply (rule group.group_comm_groupI [OF group_free_Abelian_group])
by (simp add: free_Abelian_group_def)
lemma pow_free_Abelian_group [simp]:
fixes n::nat
shows "Group.pow (free_Abelian_group S) x n = frag_cmul (int n) x"
by (induction n) (auto simp: nat_pow_def free_Abelian_group_def frag_cmul_distrib)
lemma int_pow_free_Abelian_group [simp]:
fixes n::int
assumes "Poly_Mapping.keys x \subseteq S"
shows "Group.pow (free_Abelian_group S) x n = frag_cmul n x"
proof (induction n)
case (nonneg n)
then show ?case
by (simp add: int_pow_int)
next
case (neg n)
have "x [^] free_Abelian_group S - int (Suc n)
= invfree_Abelian_group S (x [^] free_Abelian_group S int (Suc n))"
by (rule group.int_pow_neg [OF group_free_Abelian_group]) (use assms
in <simp add: free_Abelian_group_def >)
also have "... = frag_cmul (- int (Suc n)) x"
by (metis assms inv_free_Abelian_group pow_free_Abelian_group int_pow_int
minus_frag_cmul
order_trans keys_cmul)
finally show ?case .
qed
lemma frag_of_in_free_Abelian_group [simp]:
"frag_of x \in carrier(free_Abelian_group S) \longleftrightarrow x \in S"
by simp

```
```

lemma free_Abelian_group_induct:
assumes major: "Poly_Mapping.keys x \subseteq S"
and minor: "P(0)"
"\x y. \llbracketPoly_Mapping.keys x \subseteq S; Poly_Mapping.keys y \subseteq S;
P x; P y\rrbracket \Longrightarrow P(x-y)"
"\a. a }\inS=P(frag_of a)"
shows "P x"
proof -
have "Poly_Mapping.keys x \subseteq S ^ P x"
using major
proof (induction x rule: frag_induction)
case (diff a b)
then show ?case
by (meson Un_least minor(2) order.trans keys_diff)
qed (auto intro: minor)
then show ?thesis ..
qed
lemma sum_closed_free_Abelian_group:
"(\i. i }\inI|\mp@code{x i G carrier (free_Abelian_group S)) \Longrightarrow sum x I
\epsilon carrier (free_Abelian_group S)"
apply (induction I rule: infinite_finite_induct, auto)
by (metis (no_types, opaque_lifting) UnE subsetCE keys_add)
lemma (in comm_group) free_Abelian_group_universal:
fixes f :: "'c \# 'a"
assumes "f ' S \subseteq carrier G"
obtains h where "h \in hom (free_Abelian_group S) G" "^x. x }\inS
h(frag_of x) = f x"
proof
have fin: "Poly_Mapping.keys u \subseteq S \Longrightarrow finite {x G S. f x [^] poly_mapping.lookup
u x \not= 1}" for u :: "'c =
apply (rule finite_subset [OF _ finite_keys [of u]])
unfolding keys.rep_eq by force
define h :: "('c \#
where "h \equiv \lambdax. gfinprod G (\lambdaa. f a [^] poly_mapping.lookup x a) S"
show "h \in hom (free_Abelian_group S) G"
proof (rule homI)
fix x y
assume xy: "x \in carrier (free_Abelian_group S)" "y \in carrier (free_Abelian_group
S)"
then show "h (x \otimesfree_Abelian_group S y) = h x \& h y"
using assms unfolding h_def free_Abelian_group_def
by (simp add: fin gfinprod_distrib image_subset_iff Poly_Mapping.lookup_add
int_pow_mult cong: gfinprod_cong)
qed (use assms in <force simp: free_Abelian_group_def h_def intro: gfinprod_closed>)
show "h(frag_of x) = f x" if "x \in S" for x

```
```

 proof -
 have fin: "(\lambdaa. f x [^] (1::int)) \in {x} -> carrier G" "f x [^] (1::int)
 \epsilon carrier G"
using assms that by force+
show ?thesis
by (cases " f x [^] (1::int) = 1") (use assms that in <auto simp:
h_def gfinprod_def finprod_singleton>)
qed
qed
lemma eqpoll_free_Abelian_group_infinite:
assumes "infinite A" shows "carrier(free_Abelian_group A) \approx A"
proof (rule lepoll_antisym)
have "carrier (free_Abelian_group A) \lesssim {f::'a=>int. f ' A \subseteq UNIV ^
{x. f x
unfolding lepoll_def
by (rule_tac x="Poly_Mapping.lookup" in exI) (auto simp: poly_mapping_eqI
lookup_not_eq_zero_eq_in_keys inj_onI)
also have "... \lesssim Fpow (A × (UNIV::int set))"
by (rule lepoll_restricted_funspace)
also have "... \approx A }\times\mathrm{ (UNIV::int set)"
proof (rule eqpoll_Fpow)
show "infinite (A }\times\mathrm{ (UNIV::int set))"
using assms finite_cartesian_productD1 by fastforce
qed
also have "... \approx A"
unfolding eqpoll_iff_card_of_ordIso
proof -
have "|A > (UNIV::int set)| <=o |A|"
by (simp add: assms card_of_Times_ordLeq_infinite flip: infinite_iff_card_of_countabl
moreover have "|A| \leqo |A × (UNIV::int set)|"
by simp
ultimately have "|A| *c |(UNIV::int set)| =o |A|"
by (simp add: cprod_def ordIso_iff_ordLeq)
then show "|A }\times\mathrm{ (UNIV::int set)| =o |A|"
by (metis Times_cprod ordIso_transitive)
qed
finally show "carrier (free_Abelian_group A) \lesssim A" .
have "inj_on frag_of A"
by (simp add: frag_of_eq inj_on_def)
moreover have "frag_of ' A \subseteq carrier (free_Abelian_group A)"
by (simp add: image_subsetI)
ultimately show "A \lesssim carrier (free_Abelian_group A)"
by (force simp: lepoll_def)
qed
proposition (in comm_group) eqpoll_homomorphisms_from_free_Abelian_group:
"{f. f \in extensional (carrier(free_Abelian_group S)) ^ f \in hom (free_Abelian_group
S) G}

```
```

 \approx (S }\mp@subsup{->}{E}{}\mathrm{ carrier G)" (is "?lhs * ?rhs")
 unfolding eqpoll_def bij_betw_def
 proof (intro exI conjI)
let ?f = "\lambdaf. restrict (f o frag_of) S"
show "inj_on ?f ?lhs"
proof (clarsimp simp: inj_on_def)
fix g h
assume
g: "g \in extensional (carrier (free_Abelian_group S))" "g \in hom (free_Abelian_group
S) G"
and h: "h \in extensional (carrier (free_Abelian_group S))" "h \in
hom (free_Abelian_group S) G"
and eq: "restrict (g o frag_of) S = restrict (h ○ frag_of) S"
have 0: "0 \in carrier (free_Abelian_group S)"
by simp
interpret hom_g: group_hom "free_Abelian_group S" G g
using g by (auto simp: group_hom_def group_hom_axioms_def is_group)
interpret hom_h: group_hom "free_Abelian_group S" G h
using h by (auto simp: group_hom_def group_hom_axioms_def is_group)
have "Poly_Mapping.keys c \subseteq S \Longrightarrow Poly_Mapping.keys c \subseteq S ^ g c
= h c" for c
proof (induction c rule: frag_induction)
case zero
show ?case
using hom_g.hom_one hom_h.hom_one by auto
next
case (one x)
then show ?case
using eq by (simp add: fun_eq_iff) (metis comp_def)
next
case (diff a b)
then show ?case
using hom_g.hom_mult hom_h.hom_mult hom_g.hom_inv hom_h.hom_inv
apply (auto simp: dest: subsetD [OF keys_diff])
by (metis keys_minus uminus_add_conv_diff)
qed
then show "g = h"
by (meson g h carrier_free_Abelian_group_iff extensionalityI)
qed
have "f \in (\lambdaf. restrict (f ○ frag_of) S) '
{f \in extensional (carrier (free_Abelian_group S)). f \in hom
(free_Abelian_group S) G}"
if f: "f \inS S
for f :: "'c = 'a"
proof -
obtain h where h: "h \in hom (free_Abelian_group S) G" "^x. x \in S
h(frag_of x) = f x"
proof (rule free_Abelian_group_universal)
show "f ' S \subseteq carrier G"

```
```

 using f by blast
 qed auto
 let ?h = "restrict h (carrier (free_Abelian_group S))"
 show ?thesis
 proof
 show "f = restrict (?h \circ frag_of) S"
 using f by (force simp: h)
 show "?h \in {f \in extensional (carrier (free_Abelian_group S)). f
 \epsilon hom (free_Abelian_group S) G}"
using h by (auto simp: hom_def dest!: subsetD [OF keys_add])
qed
qed
then show "?f ' ?lhs = S }\mp@subsup{->}{E}{}\mathrm{ carrier G"
by (auto simp: hom_def Ball_def Pi_def)
qed
lemma hom_frag_minus:
assumes "h \in hom (free_Abelian_group S) (free_Abelian_group T)" "Poly_Mapping.keys
a}\subseteq\mp@subsup{S}{}{\prime\prime
shows "h (-a) = - (h a)"
proof -
have "Poly_Mapping.keys (h a) \subseteq T"
by (meson assms carrier_free_Abelian_group_iff hom_in_carrier)
then show ?thesis
by (metis (no_types) assms carrier_free_Abelian_group_iff group_free_Abelian_group
group_hom.hom_inv group_hom_axioms_def group_hom_def inv_free_Abelian_group)
qed
lemma hom_frag_add:
assumes "h \in hom (free_Abelian_group S) (free_Abelian_group T)" "Poly_Mapping.keys
a \subseteqS" "Poly_Mapping.keys b \subseteq S"
shows "h (a+b) = h a + h b"
proof -
have "Poly_Mapping.keys (h a) \subseteq T"
by (meson assms carrier_free_Abelian_group_iff hom_in_carrier)
moreover
have "Poly_Mapping.keys (h b) \subseteq T"
by (meson assms carrier_free_Abelian_group_iff hom_in_carrier)
ultimately show ?thesis
using assms hom_mult by fastforce
qed
lemma hom_frag_diff:
assumes "h \in hom (free_Abelian_group S) (free_Abelian_group T)" "Poly_Mapping.keys
a \subseteq S" "Poly_Mapping.keys b \subseteq S"
shows "h (a-b) = h a - h b"
by (metis (no_types, lifting) assms diff_conv_add_uminus hom_frag_add
hom_frag_minus keys_minus)

```
```

proposition isomorphic_free_Abelian_groups:
"free_Abelian_group S \cong free_Abelian_group T \longleftrightarrow S T" (is "(?FS
\cong ?FT) = ?rhs")
proof
interpret S: group "?FS"
by simp
interpret T: group "?FT"
by simp
interpret G2: comm_group "integer_mod_group 2"
by (rule abelian_integer_mod_group)
let ?Two = "{0..<2::int}"
have [simp]: "\neg ?Two \subseteq {a}" for a
by (simp add: subset_iff) presburger
assume L: "?FS \cong ?FT"
let ?HS = "{h \in extensional (carrier ?FS). h \in hom ?FS (integer_mod_group
2)}"
let ?HT = "{h \in extensional (carrier ?FT). h \in hom ?FT (integer_mod_group
2)}"
have "S }\mp@subsup{->}{E}{}\mathrm{ ?Two }\approx ?HS
apply (rule eqpoll_sym)
using G2.eqpoll_homomorphisms_from_free_Abelian_group by (simp add:
carrier_integer_mod_group)
also have "... \approx ?HT"
proof -
obtain f g where "group_isomorphisms ?FS ?FT f g"
using L S.iso_iff_group_isomorphisms by (force simp: is_iso_def)
then have f: "f \in hom ?FS ?FT"
and g: "g \in hom ?FT ?FS"
and gf: "\forallx \in carrier ?FS. g(f x) = x"
and fg: "\forally \in carrier ?FT. f(g y) = y"
by (auto simp: group_isomorphisms_def)
let ?f = "\lambdah. restrict (h o g) (carrier ?FT)"
let ?g = "\lambdah. restrict (h \circ f) (carrier ?FS)"
show ?thesis
proof (rule lepoll_antisym)
show "?HS \lesssim ?HT"
unfolding lepoll_def
proof (intro exI conjI)
show "inj_on ?f ?HS"
apply (rule inj_on_inverseI [where g = ?g])
using hom_in_carrier [OF f]
by (auto simp: gf fun_eq_iff carrier_integer_mod_group Ball_def
Pi_def extensional_def)
show "?f ` ?HS \subseteq ?HT"
proof clarsimp
fix h
assume h: "h \in hom ?FS (integer_mod_group 2)"
have "h o g \in hom ?FT (integer_mod_group 2)"

```
```

 by (rule hom_compose [OF g h])
 moreover have "restrict (h O g) (carrier ?FT) x = (h ○ g) x"
 if "x carrier ?FT" for x
using g that by (simp add: hom_def)
ultimately show "restrict (h o g) (carrier ?FT) \in hom ?FT (integer_mod_group
2)"
using T.hom_restrict by fastforce
qed
qed
next
show "?HT \lesssim ?HS"
unfolding lepoll_def
proof (intro exI conjI)
show "inj_on ?g ?HT"
apply (rule inj_on_inverseI [where g = ?f])
using hom_in_carrier [OF g]
by (auto simp: fg fun_eq_iff carrier_integer_mod_group Ball_def
Pi_def extensional_def)
show "?g ` ?HT \subseteq ?HS"
proof clarsimp
fix k
assume k: "k \in hom ?FT (integer_mod_group 2)"
have "k \circ f \in hom ?FS (integer_mod_group 2)"
by (rule hom_compose [OF f k])
moreover have "restrict (k \circ f) (carrier ?FS) x = (k ○ f) x"
if "x \in carrier ?FS" for x
using f that by (simp add: hom_def)
ultimately show "restrict (k ○ f) (carrier ?FS) \in hom ?FS (integer_mod_group
2)"
using S.hom_restrict by fastforce
qed
qed
qed
qed
also have "... }\approx\textrm{T}\mp@subsup{->}{E}{}\mathrm{ ?Two"
using G2.eqpoll_homomorphisms_from_free_Abelian_group by (simp add:
carrier_integer_mod_group)
finally have *: "S }\mp@subsup{->}{E}{}\mathrm{ ?Two }\approx\textrm{T}\mp@subsup{->}{E}{E}\mathrm{ ?Two" .
then have "finite (S }\mp@subsup{->}{E}{}\mathrm{ ?Two) }\longleftrightarrow\mathrm{ finite (T }\mp@subsup{->}{E}{}\mathrm{ ?Two)"
by (rule eqpoll_finite_iff)
then have "finite S \longleftrightarrow finite T"
by (auto simp: finite_funcset_iff)
then consider "finite S" "finite T" | "~ finite S" "~ finite T"
by blast
then show ?rhs
proof cases
case 1
with * have "2 ^ card S = (2::nat) ^ card T"
by (simp add: card_PiE finite_PiE eqpoll_iff_card)

```
```

 then have "card S = card T"
 by auto
 then show ?thesis
 using eqpoll_iff_card 1 by blast
 next
 case 2
 have "carrier (free_Abelian_group S) \approx carrier (free_Abelian_group
 T)"
using L by (simp add: iso_imp_eqpoll_carrier)
then show ?thesis
using 2 eqpoll_free_Abelian_group_infinite eqpoll_sym eqpoll_trans
by metis
qed
next
assume ?rhs
then obtain f g where f: " \x. x \in S \Longrightarrow f x \in T ^ g(f x) = x"
and g: "\y. y \in T \Longrightarrow g y \in S ^ f(g y) = y"
using eqpoll_iff_bijections by metis
interpret S: comm_group "?FS"
by (simp add: abelian_free_Abelian_group)
interpret T: comm_group "?FT"
by (simp add: abelian_free_Abelian_group)
have "(frag_of o f) ' S \subseteq carrier (free_Abelian_group T)"
using f by auto
then obtain h where h: "h \in hom (free_Abelian_group S) (free_Abelian_group
T)"
and h_frag: "\x. x \in S C h (frag_of x) = (frag_of o f) x"
using T.free_Abelian_group_universal [of "frag_of o f" S] by blast
interpret hhom: group_hom "free_Abelian_group S" "free_Abelian_group
T" h
by (simp add: h group_hom_axioms_def group_hom_def)
have "(frag_of o g) ' T \subseteq carrier (free_Abelian_group S)"
using g by auto
then obtain k where k: "k \in hom (free_Abelian_group T) (free_Abelian_group
S)"
and k_frag: "\x. x \in T \Longrightarrow k (frag_of x) = (frag_of o g) x"
using S.free_Abelian_group_universal [of "frag_of o g" T] by blast
interpret khom: group_hom "free_Abelian_group T" "free_Abelian_group
S" k
by (simp add: k group_hom_axioms_def group_hom_def)
have kh: "Poly_Mapping.keys x \subseteqS C Poly_Mapping.keys x \subseteqS ^ k
(h x) = x" for x
proof (induction rule: frag_induction)
case zero
then show ?case
apply auto
by (metis group_free_Abelian_group h hom_one k one_free_Abelian_group)
next
case (one x)

```
```

 then show ?case
 by (auto simp: h_frag k_frag f)
 next
 case (diff a b)
 with keys_diff have "Poly_Mapping.keys (a - b) \subseteq S"
 by (metis Un_least order_trans)
 with diff hhom.hom_closed show ?case
 by (simp add: hom_frag_diff [OF h] hom_frag_diff [OF k])
 qed
 have hk: "Poly_Mapping.keys y \subseteq T C Poly_Mapping.keys y \subseteq T ^ h
 (k y) = y" for y
proof (induction rule: frag_induction)
case zero
then show ?case
apply auto
by (metis group_free_Abelian_group h hom_one k one_free_Abelian_group)
next
case (one y)
then show ?case
by (auto simp: h_frag k_frag g)
next
case (diff a b)
with keys_diff have "Poly_Mapping.keys (a - b) \subseteq T"
by (metis Un_least order_trans)
with diff khom.hom_closed show ?case
by (simp add: hom_frag_diff [OF h] hom_frag_diff [OF k])
qed
have "h \in iso ?FS ?FT"
unfolding iso_def bij_betw_iff_bijections mem_Collect_eq
proof (intro conjI exI ballI h)
fix x
assume x: "x \in carrier (free_Abelian_group S)"
show "h x \in carrier (free_Abelian_group T)"
by (meson x h hom_in_carrier)
show "k (h x) = x"
using x by (simp add: kh)
next
fix y
assume y: "y \in carrier (free_Abelian_group T)"
show "k y \in carrier (free_Abelian_group S)"
by (meson y k hom_in_carrier)
show "h (k y) = y"
using y by (simp add: hk)
qed
then show "?FS \cong ?FT"
by (auto simp: is_iso_def)
qed
lemma isomorphic_group_integer_free_Abelian_group_singleton:

```
```

 "integer_group \cong free_Abelian_group {x}"
 proof -
have "(\lambdan. frag_cmul n (frag_of x)) \in iso integer_group (free_Abelian_group
{x})"
proof (rule isoI [OF homI])
show "bij_betw (\lambdan. frag_cmul n (frag_of x)) (carrier integer_group)
(carrier (free_Abelian_group {x}))"
apply (rule bij_betwI [where g = "\lambday. Poly_Mapping.lookup y x"])
by (auto simp: integer_group_def in_keys_iff intro!: poly_mapping_eqI)
qed (auto simp: frag_cmul_distrib)
then show ?thesis
unfolding is_iso_def
by blast
qed
lemma group_hom_free_Abelian_groups_id:
"id \in hom (free_Abelian_group S) (free_Abelian_group T) \longleftrightarrow S \subseteq T"
proof -
have "x G T" if ST: "\c:: 'a mo int. Poly_Mapping.keys c \subseteq S \longrightarrow Poly_Mapping.keys
c}\subseteqT" and "x\inS" for x
using ST [of "frag_of x"] <x G S> by simp
then show ?thesis
by (auto simp: hom_def free_Abelian_group_def Pi_def)
qed
proposition iso_free_Abelian_group_sum:
assumes "pairwise (\lambdai j. disjnt (S i) (S j)) I"
shows "(\lambdaf. sum' f I) \in iso (sum_group I (\lambdai. free_Abelian_group(S
i))) (free_Abelian_group (U (S ` I)))"
(is "?h \in iso ?G ?H")
proof (rule isoI)
show hom: "?h \in hom ?G ?H"
proof (rule homI)
show "?h c \in carrier ?H" if "c \in carrier ?G" for c
using that
apply (simp add: sum.G_def carrier_sum_group)
apply (rule order_trans [OF keys_sum])
apply (auto simp: free_Abelian_group_def)
done
show "?h (x \otimes?G y) = ?h x \otimes ?H ?h y"
if "x \in carrier ?G" "y \in carrier ?G" for x y
using that by (simp add: sum.finite_Collect_op carrier_sum_group
sum.distrib')
qed
interpret GH: group_hom "?G" "?H" "?h"
using hom by (simp add: group_hom_def group_hom_axioms_def)
show "bij_betw ?h (carrier ?G) (carrier ?H)"
unfolding bij_betw_def
proof (intro conjI subset_antisym)

```
```

 show "?h ' carrier ?G \subseteq carrier ?H"
 apply (clarsimp simp: sum.G_def carrier_sum_group simp del: carrier_free_Abelian_grou
 by (force simp: PiE_def Pi_iff intro!: sum_closed_free_Abelian_group)
 have *: "poly_mapping.lookup (Abs_poly_mapping (}\lambdaj\mathrm{ . if j }\inS\mathrm{ S i then
 poly_mapping.lookup x j else 0)) k
= (if k \in S i then poly_mapping.lookup x k else 0)" if "i \in
I" for i k and x :: "'b = =0 int"
using that by (auto simp: conj_commute cong: conj_cong)
have eq: "Abs_poly_mapping (}\lambda\textrm{j}. if j \in S i then poly_mapping.lookup
x j else 0) =0
\longleftrightarrow (\forallc \in S i. poly_mapping.lookup x c = 0)" if "i \in I" for i and
x :: "'b = =0 int"
apply (auto simp: poly_mapping_eq_iff fun_eq_iff)
apply (simp add: * Abs_poly_mapping_inverse conj_commute cong: conj_cong)
apply (force dest!: spec split: if_split_asm)
done
have "x f ?h ' {x \in \Pi}\mp@subsup{|}{E}{}\textrm{i}\in\textrm{I}.{c. Poly_Mapping.keys c\subseteqS i}. finit
{i\inI. xi\not= 0}}"
if x: "Poly_Mapping.keys x \subseteq U (S ' I)" for x :: "'b }\mp@subsup{=}{0}{\prime}\mathrm{ int"
proof -
let ?f = "(\lambdai c. if c E S i then Poly_Mapping.lookup x c else 0)"
define J where "J \equiv{i\inI. \existsc\inS i. c \in Poly_Mapping.keys x}"
have "J \subseteq (\lambdac. THE i. i \in I ^c\inS i)' Poly_Mapping.keys x"
proof (clarsimp simp: J_def)
show "i }\in\mathrm{ (\c. THE i. i }\inI\wedge c\inS i)' Poly_Mapping.keys x"
if "i \in I" "c \in S i" "c \in Poly_Mapping.keys x" for i c
proof
show "i = (THE i. i G I ^c\inS i)"
using assms that by (auto simp: pairwise_def disjnt_def intro:
the_equality [symmetric])
qed (simp add: that)
qed
then have fin: "finite J"
using finite_subset finite_keys by blast
have [simp]: "Poly_Mapping.keys (Abs_poly_mapping (?f i)) = {k.
?f i k \not=0}" if "i\in I" for i
by (simp add: eq_onp_def keys.abs_eq conj_commute cong: conj_cong)
have [simp]: "Poly_Mapping.lookup (Abs_poly_mapping (?f i)) c =
?f i c" if "i \in I" for i c
by (auto simp: Abs_poly_mapping_inverse conj_commute cong: conj_cong)
show ?thesis
proof
have "poly_mapping.lookup x c = poly_mapping.lookup (?h (\lambdai\inI.
Abs_poly_mapping (?f i))) c"
for c
proof (cases "c \in Poly_Mapping.keys x")
case True
then obtain i where "i \in I" "c \in S i" "?f i c \# 0"
using x by (auto simp: in_keys_iff)

```
then have 1: "poly_mapping.lookup (sum' ( \(\lambda j\). Abs_poly_mapping
```

disjnt_def)

```
(?f j)) (I - \{i\})) c = \(0^{\prime \prime}\)
                    using assms
                            apply (simp add: sum.G_def Poly_Mapping.lookup_sum pairwise_def
    apply (force simp: eq split: if_split_asm intro!: comm_monoid_add_class.sum.neu
    done
    have 2: "poly_mapping.lookup x c = poly_mapping.lookup (Abs_poly_mapping
(?f i)) c"
            by (auto simp: <c \(\in S\) i> Abs_poly_mapping_inverse conj_commute
cong: conj_cong)
            have "finite \(\{i \in I\). Abs_poly_mapping (?f i) \(\neq 0\}\) "
            by (rule finite_subset [OF _ fin]) (use <i \(\in I\) > J_def eq
in <auto simp: in_keys_iff>)
                            with <i \(\in I\) > have "?h ( \(\lambda j \in I\). Abs_poly_mapping (?f \(j\) )) = Abs_poly_mapping
(?f i) + sum' ( \(\lambda \mathrm{j}\). Abs_poly_mapping (?f j)) (I - \{i\})"
            by (simp add: sum_diff1')
            then show ?thesis
                            by (simp add: 12 Poly_Mapping.lookup_add)
        next
            case False
            then have "poly_mapping.lookup x c = 0"
                    using keys.rep_eq by force
            then show ?thesis
                    unfolding sum.G_def by (simp add: lookup_sum * comm_monoid_add_class.sum.neutra
        qed
        then show "x = ?h ( \(\lambda \mathrm{i} \in \mathrm{I}\). Abs_poly_mapping (?f i))"
                            by (rule poly_mapping_eqI)
        have " ( \(\lambda \mathrm{i}\). Abs_poly_mapping \((? f\) i)) \(\in(\Pi\) i \(\in \mathrm{I}\). \{c. Poly_Mapping.keys
\(c \subseteq S i\}) "\)
            by (auto simp: PiE_def Pi_def in_keys_iff)
        then show " ( \(\lambda i \in \mathrm{I}\). Abs_poly_mapping (?f i))
                            \(\in\left\{x \in \Pi_{E}\right.\) i \(\in\) I. \{c. Poly_Mapping.keys \(c \subseteq S\) i\}. finite
\(\{i \in I . x i \neq 0\}\} "\)
            using fin unfolding J_def by (force simp add: eq in_keys_iff
cong: conj_cong)
        qed
    qed
    then show "carrier ?H \(\subseteq\) ?h ' carrier ?G"
        by (simp add: carrier_sum_group) (auto simp: free_Abelian_group_def)
    show "inj_on ?h (carrier (sum_group I ( \(\lambda\) i. free_Abelian_group (S
i))))"
            unfolding GH.inj_on_one_iff
    proof clarify
        fix \(x\)
        assume "x \(\in\) carrier ?G" "?h x = \(1_{\text {?H" }}\)
        then have eq0: "sum' \(x\) I = 0"
            and xs: " \(\bigwedge i . i \in I \Longrightarrow\) Poly_Mapping.keys (x i) \(\subseteq\) S i" and xext:
"x \(\in\) extensional I"
```

 and fin: "finite {i \in I. x i f= 0}"
 by (simp_all add: carrier_sum_group PiE_def Pi_def)
 have "x i = 0" if "i \in I" for i
 proof -
 have "sum' x (insert i (I - {i})) = 0"
 using eq0 that by (simp add: insert_absorb)
 moreover have "Poly_Mapping.keys (sum' x (I - {i})) = {}"
 proof -
 have "x i = - sum' x (I - {i})"
 by (metis (mono_tags, lifting) diff_zero eq0 fin sum_diff1'
 minus_diff_eq that)
then have "Poly_Mapping.keys (x i) = Poly_Mapping.keys (sum'
x (I - {i}))"
by simp
then have "Poly_Mapping.keys (sum' x (I - {i})) \subseteq S i"
using that xs by metis
moreover
have "Poly_Mapping.keys (sum' x (I - {i})) \subseteq (Uj \in I - {i}.
S j)"
proof -
have "Poly_Mapping.keys (sum' x (I - {i})) \subseteq(\bigcupi\in{j \in I.
j f i ^ x j f= 0}. Poly_Mapping.keys (x i))"
using keys_sum [of x "{j \in I. j f i ^ x j \not= 0}"] by (simp
add: sum.G_def)
also have "...\subseteq\ (S ' (I - {i}))"
using xs by force
finally show ?thesis .
qed
moreover have "A = {}" if "A \subseteq S i" "A \subseteq U (S ' (I - {i}))"
for A
using assms that <i \in I>
by (force simp: pairwise_def disjnt_def image_def subset_iff)
ultimately show ?thesis
by metis
qed
then have [simp]: "sum' x (I - {i}) = 0"
by (auto simp: sum.G_def)
have "sum' x (insert i (I - {i})) = x i"
by (subst sum.insert' [OF finite_subset [OF _ fin]]) auto
ultimately show ?thesis
by metis
qed
with xext [unfolded extensional_def]
show "x = 1 1 Sum_group I (}\lambda\textrm{i}
by (force simp: free_Abelian_group_def)
qed
qed
qed

```
lemma isomorphic_free_Abelian_group_Union:
"pairwise disjnt I \(\Longrightarrow\) free_Abelian_group \((\bigcup\) I) \(\cong\) sum_group I free_Abelian_group" using iso_free_Abelian_group_sum [of " \(\lambda \mathrm{X}\). X" I]
by (metis SUP_identity_eq empty_iff group.iso_sym group_free_Abelian_group
is_iso_def sum_group)
lemma isomorphic_sum_integer_group:
"sum_group I ( \(\lambda_{i}\). integer_group) \(\cong\) free_Abelian_group I"
proof -
have "sum_group I ( \(\lambda\) i. integer_group) \(\cong\) sum_group I ( \(\lambda i\). free_Abelian_group
\{i\})"
by (rule iso_sum_groupI) (auto simp: isomorphic_group_integer_free_Abelian_group_single also have "... \(\cong\) free_Abelian_group I"
using iso_free_Abelian_group_sum [of " \(\lambda \mathrm{x}\). \{x\}" I] by (auto simp: is_iso_def) finally show ?thesis.
qed
end
theory Embedded_Algebras
imports Subrings Generated_Groups
begin

\section*{38 Definitions}
locale embedded_algebra =
K?: subfield K R + R?: ring R for \(K\) :: "'a set" and R : : "('a, 'b) ring_scheme" (structure)
definition (in ring) line_extension : : "'a set \(\Rightarrow\) 'a \(\Rightarrow\) 'a set \(\Rightarrow\) 'a set" where "line_extension \(K\) a \(E=(K\) \#> a) <+> \(R\) E"
fun (in ring) Span : : "'a set \(\Rightarrow\) 'a list \(\Rightarrow\) 'a set"
where "Span K Us = foldr (line_extension K) Us \{ 0 \}"
fun (in ring) combine : : "'a list \(\Rightarrow\) 'a list \(\Rightarrow\) 'a"
where
"combine (k \# Ks) (u \# Us) = (k \(\otimes \mathrm{u}) \oplus\) (combine Ks Us)"
| "combine Ks Us = 0"
inductive (in ring) independent : : "'a set \(\Rightarrow\) 'a list \(\Rightarrow\) bool" where
li_Nil [simp, intro]: "independent K []"
| li_Cons: "【u \(u\) carrier \(R\); \(u \notin S p a n K\) Us; independent \(K\) Us 】 \(\Longrightarrow\) independent K (u \# Us)"
inductive (in ring) dimension : : "nat \(\Rightarrow\) 'a set \(\Rightarrow\) 'a set \(\Rightarrow\) bool" where
```

 zero_dim [simp, intro]: "dimension O K { 0 }"
 | Suc_dim: "\llbracketv \in carrier R; v \not\inE; dimension n K E \rrbracket \Longrightarrow dimension
 (Suc n) K (line_extension K v E)"

```

\subsection*{38.0.1 Syntactic Definitions}
abbreviation (in ring) dependent : : "'a set \(\Rightarrow\) 'a list \(\Rightarrow\) bool"
where "dependent K U \(\equiv \neg\) independent \(K\) U"
```

definition over :: " ('a \Rightarrow ' b) \Rightarrow ' $a \Rightarrow$ 'b" (infixl "over" 65)
where "f over $a=f a "$

```

\section*{context ring}
begin

\subsection*{38.1 Basic Properties - First Part}
```

lemma line_extension_consistent:
assumes "subring K R" shows "ring.line_extension (R | carrier := K
D) = line_extension"
unfolding ring.line_extension_def[OF subring_is_ring[OF assms]] line_extension_def
by (simp add: set_add_def set_mult_def)
lemma Span_consistent:
assumes "subring K R" shows "ring.Span (R | carrier := K D) = Span"
unfolding ring.Span.simps[OF subring_is_ring[OF assms]] Span.simps
line_extension_consistent[OF assms] by simp
lemma combine_in_carrier [simp, intro]:
"\llbracket set Ks \subseteqccarrier R; set Us \subseteq carrier R \rrbracket\Longrightarrow combine Ks Us }\in\mathrm{ carrier
R"
by (induct Ks Us rule: combine.induct) (auto)
lemma combine_r_distr:
"\llbracket set Ks \subseteq carrier R; set Us \subseteq carrier R \rrbracket\Longrightarrow
k carrier R \Longrightarrow k \otimes (combine Ks Us) = combine (map ((\otimes) k) Ks)
Us"
by (induct Ks Us rule: combine.induct) (auto simp add: m_assoc r_distr)
lemma combine_l_distr:
"\llbracket set Ks \subseteq carrier R; set Us \subseteq carrier R \rrbracket\Longrightarrow
u \in carrier R \Longrightarrow (combine Ks Us) \otimes u = combine Ks (map (}\lambda\textrm{u},\textrm{l
\otimes u) Us)"
by (induct Ks Us rule: combine.induct) (auto simp add: m_assoc l_distr)
lemma combine_eq_foldr:
"combine Ks Us = foldr (((k, u). \lambdal. (k \otimes u) \oplus l) (zip Ks Us) 0"
by (induct Ks Us rule: combine.induct) (auto)

```
```

lemma combine_replicate:
"set Us \subseteq carrier R C combine (replicate (length Us) 0) Us = 0"
by (induct Us) (auto)
lemma combine_take:
"combine (take (length Us) Ks) Us = combine Ks Us"
by (induct Us arbitrary: Ks)
(auto, metis combine.simps(1) list.exhaust take.simps(1) take_Suc_Cons)
lemma combine_append_zero:
"set Us \subseteq carrier R \Longrightarrow combine (Ks @ [0]) Us = combine Ks Us"
proof (induct Ks arbitrary: Us)
case Nil thus ?case by (induct Us) (auto)
next
case Cons thus ?case by (cases Us) (auto)
qed
lemma combine_prepend_replicate:
"\llbracket set Ks \subseteqccarrier R; set Us \subseteq carrier R \rrbracket\Longrightarrow
combine ((replicate n 0) @ Ks) Us = combine Ks (drop n Us)"
proof (induct n arbitrary: Us, simp)
case (Suc n) thus ?case
by (cases Us) (auto, meson combine_in_carrier ring_simprules(8) set_drop_subset
subset_trans)
qed
lemma combine_append_replicate:
"set Us \subseteq carrier R \Longrightarrow combine (Ks @ (replicate n 0)) Us = combine
Ks Us"
by (induct n) (auto, metis append.assoc combine_append_zero replicate_append_same)
lemma combine_append:
assumes "length Ks = length Us"
and "set Ks \subseteqcarrier R" "set Us \subseteq carrier R"
and "set Ks' \subseteq carrier R" "set Vs \subseteq carrier R"
shows "(combine Ks Us) \oplus (combine Ks' Vs) = combine (Ks @ Ks') (Us
@ Vs)"
using assms
proof (induct Ks arbitrary: Us)
case Nil thus ?case by auto
next
case (Cons k Ks)
then obtain u Us' where Us: "Us = u \# Us'"
by (metis length_Suc_conv)
hence u: "u \in carrier R" and Us': "set Us' \subseteq carrier R"
using Cons(4) by auto
then show ?case
using combine_in_carrier[OF _ Us', of Ks] Cons

```
```

 combine_in_carrier[OF Cons(5-6)] unfolding Us
 by (auto, simp add: add.m_assoc)
 qed
lemma combine_add:
assumes "length Ks = length Us" and "length Ks' = length Us"
and "set Ks \subseteq carrier R" "set Ks' \subseteq carrier R" "set Us \subseteq carrier
R"
shows "(combine Ks Us) }\oplus\mathrm{ (combine Ks' Us) = combine (map2 (}\oplus\mathrm{) Ks Ks')
Us"
using assms
proof (induct Us arbitrary: Ks Ks')
case Nil thus ?case by simp
next
case (Cons u Us)
then obtain c c' Cs Cs' where Ks: "Ks = c \# Cs" and Ks': "Ks' = c'

Cs'"

 by (metis length_Suc_conv)
 hence in_carrier:
 "c \in carrier R" "set Cs \subseteq carrier R"
 "c' \in carrier R" "set Cs' \subseteq carrier R"
 "u \in carrier R" "set Us \subseteq carrier R"
 using Cons(4-6) by auto
 hence lc_in_carrier: "combine Cs Us \in carrier R" "combine Cs' Us \in
 carrier R"
using combine_in_carrier by auto
have "combine Ks (u \# Us) \oplus combine Ks' (u \# Us) =
((c \otimes u) }\oplus\mathrm{ combine Cs Us) }\oplus((c' \otimes u) \oplus combine Cs' Us)"
unfolding Ks Ks' by auto
also have " ... = ((c \oplus c') \otimes u \oplus (combine Cs Us }\oplus\mathrm{ combine Cs' Us))"
using lc_in_carrier in_carrier(1,3,5) by (simp add: l_distr ring_simprules(7,22))
also have " ... = combine (map2 (}\oplus\mathrm{) Ks Ks') (u \# Us)"
using Cons unfolding Ks Ks' by auto
finally show ?case .
qed
lemma combine_normalize:
assumes "set Ks \subseteq carrier R" "set Us \subseteq carrier R" "combine Ks Us =
a"
obtains Ks'
where "set (take (length Us) Ks) \subseteq set Ks'" "set Ks' \subseteq set (take (length
Us) Ks) U { 0 }"
and "length Ks' = length Us" "combine Ks' Us = a"
proof -
define Ks'
where "Ks' = (if length Ks \leq length Us
then Ks @ (replicate (length Us - length Ks) 0) else
take (length Us) Ks)"
hence "set (take (length Us) Ks) \subseteq set Ks'" "set Ks' \subseteq set (take (length

```
```

Us) Ks) U { 0 }"
"length Ks' = length Us" "a = combine Ks' Us"
using combine_append_replicate[OF assms(2)] combine_take assms(3)
by auto
thus thesis
using that by blast
qed
lemma line_extension_mem_iff: "u \in line_extension K a E \longleftrightarrow (\existsk G K.
\existsv E E. u = k \otimes a \oplus v)"
unfolding line_extension_def set_add_def'[of R "K \#> a" E] unfolding
r_coset_def by blast
lemma line_extension_in_carrier:
assumes "K \subseteq carrier R" "a }\in\mathrm{ carrier R" "E }\subseteq\mathrm{ carrier R"
shows "line_extension K a E \subseteq carrier R"
using set_add_closed[OF r_coset_subset_G[OF assms(1-2)] assms(3)]
by (simp add: line_extension_def)
lemma Span_in_carrier:
assumes "K\subseteq carrier R" "set Us \subseteq carrier R"
shows "Span K Us \subseteq carrier R"
using assms by (induct Us) (auto simp add: line_extension_in_carrier)

```

\subsection*{38.2 Some Basic Properties of Linear Independence}
```

lemma independent_in_carrier: "independent K Us }\Longrightarrow\mathrm{ set Us }\subseteq carrier
R"
by (induct Us rule: independent.induct) (simp_all)
lemma independent_backwards:
"independent K (u \# Us) \Longrightarrowu \& Span K Us"
"independent K (u \# Us) \Longrightarrow independent K Us"
"independent K (u \# Us) \Longrightarrow u \in carrier R"
by (cases rule: independent.cases, auto)+
lemma dimension_independent [intro]: "independent K Us }\Longrightarrow\mathrm{ dimension
(length Us) K (Span K Us)"
proof (induct Us)
case Nil thus ?case by simp
next
case Cons thus ?case
using Suc_dim independent_backwards[OF Cons(2)] by auto
qed

```

Now, we fix K, a subfield of the ring. Many lemmas would also be true for weaker structures, but our interest is to work with subfields, so generalization could be the subject of a future work.
```

context

```
fixes K :: "’a set" assumes K: "subfield K R"
begin

\subsection*{38.3 Basic Properties - Second Part}
```

lemmas subring_props [simp] =
subringE[OF subfieldE(1) [OF K]]

```
lemma line_extension_is_subgroup:
    assumes "subgroup E (add_monoid R)" "a \(\in\) carrier R"
    shows "subgroup (line_extension K a E) (add_monoid R)"
proof (rule add.subgroupI)
    show "line_extension \(K\) a \(E \subseteq\) carrier R"
    by (simp add: assms add.subgroupE(1) line_extension_def r_coset_subset_G
set_add_closed)
next
    have "0 = 0 \(\otimes \mathrm{a} \oplus \mathbf{0 "}\)
            using assms(2) by simp
    hence " 0 G line_extension \(K\) a E"
            using line_extension_mem_iff subgroup.one_closed[OF assms(1)] by auto
    thus "line_extension \(K\) a \(E \neq\{ \}\) " by auto
next
    fix u1 u2
    assume "u1 \(\in\) line_extension \(K\) a E" and "u2 \(\in\) line_extension \(K\) a E"
    then obtain k1 k2 v1 v2
        where \(u 1: ~ " k 1 \in K " ~ " v 1 \in E " ~ " u 1=(k 1 \otimes a) \oplus v 1 "\)
            and u2: "k2 \(\in K "\) "v2 \(\in E "\) "u2 = (k2 \(\otimes\) a) \(\oplus\) v2"
            and in_carr: "k1 \(\in\) carrier \(R "\) "v1 \(\in\) carrier \(R "\) "k2 \(\in\) carrier R"
"v2 \(\in\) carrier R"
        using line_extension_mem_iff by (meson add.subgroupE(1) [OF assms(1)]
subring_props(1) subsetCE)
    hence \(\mathrm{k} 1 \oplus \mathrm{u} 2=((\mathrm{k} 1 \oplus \mathrm{k} 2) \otimes \mathrm{a}) \oplus(\mathrm{v} 1 \oplus \mathrm{v} 2)\) "
        using assms(2) by algebra
    moreover have "k1 \(\oplus \mathrm{k} 2 \in \mathrm{~K}\) " and "v1 \(\oplus \mathrm{v} 2 \in \mathrm{E}\) "
        using add.subgroupE(4) [0F assms(1)] u1 u2 by auto
    ultimately show "u1 \(\oplus \mathrm{u} 2 \in\) line_extension K a E"
        using line_extension_mem_iff by auto
    have " \(\ominus \mathrm{u} 1=((\ominus \mathrm{k} 1) \otimes \mathrm{a}) \oplus(\ominus \mathrm{v} 1)\) "
        using in_carr(1-2) u1(3) assms(2) by algebra
    moreover have " \(\ominus \mathrm{k} 1 \in \mathrm{~K}\) " and " \(\ominus \mathrm{v} 1 \in \mathrm{E}\) "
        using add.subgroupE(3)[0F assms(1)] u1 by auto
    ultimately show " \((\ominus\) u1) \(\in\) line_extension \(K\) a E"
        using line_extension_mem_iff by auto
qed
corollary Span_is_add_subgroup:
    "set Us \(\subseteq\) carrier \(R \Longrightarrow\) subgroup (Span K Us) (add_monoid R)"
using line_extension_is_subgroup normal_imp_subgroup [OF add.one_is_normal] by (induct Us) (auto)
lemma line_extension_smult_closed:
assumes " \(\backslash \mathrm{k} v . \llbracket \mathrm{k} \in \mathrm{K} ; \mathrm{v} \in \mathrm{E} \rrbracket \Longrightarrow \mathrm{k} \otimes \mathrm{v} \in \mathrm{E}\) " and "E \(\subseteq\) carrier R"
"a \(\in\) carrier R"
shows " \(\ \mathrm{k} u . \llbracket \mathrm{k} \in \mathrm{K} ; \mathrm{u} \in\) line_extension K a \(\mathrm{E} \rrbracket \Longrightarrow \mathrm{k} \otimes \mathrm{u} \in\) line_extension K a E" proof -
fix \(k\) u assume A: "k \(\in K\) " "u \(\in\) line_extension \(K\) a E"
then obtain \(k\) ' \(v\) '
where \(u: ~ " k ' \in K " ~ " v ' \in E " ~ " u=k ' ~ \otimes a \oplus v "\)
and in_carr: "k \(\in\) carrier \(R "\) "k' \(\in\) carrier R" " v ' \(\in\) carrier R"
using line_extension_mem_iff assms(2) by (meson subring_props(1) subsetCE)

using assms(3) by algebra
thus " \(k \otimes u \in\) line_extension \(K\) a \(E "\)
using assms(1) [OF A(1) u(2)] line_extension_mem_iff \(u(1) A(1)\) by auto
qed
lemma Span_subgroup_props [simp]:
assumes "set Us \(\subseteq\) carrier R"
shows "Span K Us \(\subseteq\) carrier R"
and "0 \(\in\) Span K Us"
and " \(\bigwedge \mathrm{v} 1 \mathrm{v} 2 . \llbracket \mathrm{v} 1 \in \operatorname{Span} \mathrm{~K}\) Us; \(\mathrm{v} 2 \in \operatorname{Span} \mathrm{~K}\) Us \(\rrbracket \Longrightarrow(\mathrm{v} 1 \oplus \mathrm{v} 2) \in\)
Span K Us"
and " \(\bigwedge v . v \in \operatorname{Span} K\) Us \(\Longrightarrow(\ominus v) \in \operatorname{Span} K\) Us"
using add.subgroupE subgroup.one_closed[of _ "add_monoid R"]
Span_is_add_subgroup [0F assms(1)] by auto
lemma Span_smult_closed [simp]:
assumes "set Us \(\subseteq\) carrier R"
shows " \(\ \mathrm{k} v . \llbracket \mathrm{k} \in \mathrm{K} ; \mathrm{v} \in \operatorname{Span} \mathrm{K} \operatorname{Us} \rrbracket \Longrightarrow \mathrm{k} \otimes \mathrm{v} \in \operatorname{Span} \mathrm{K}\) Us"
using assms
proof (induct Us)
case Nil thus ?case
using r_null subring_props(1) by (auto, blast)
next
case Cons thus ?case
using Span_subgroup_props(1) line_extension_smult_closed by auto
qed
lemma Span_m_inv_simprule [simp]:
assumes "set Us \(\subseteq\) carrier R"
shows \(\llbracket \llbracket k \in K-\{0\} ; a \in\) carrier \(R \rrbracket \Longrightarrow k \otimes a \in \operatorname{Span} K U s \Longrightarrow a\)
\(\in\) Span K Us"
proof -
assume k: "k \(\in \mathrm{K}\) - \{ 0 \}" and \(a:\) "a \(\in \operatorname{carrier~R"~and~ka:~"k~} \otimes a \in\) Span K Us"
```

 have inv_k: "inv k \in K" "inv k \otimes k = 1"
 using subfield_m_inv[OF K k] by simp+
 hence "inv k \otimes (k \otimes a) \in Span K Us"
 using Span_smult_closed[OF assms _ ka] by simp
 thus ?thesis
 using inv_k subring_props(1)a k
 by (metis (no_types, lifting) DiffE l_one m_assoc subset_iff)
 qed

```

\subsection*{38.4 Span as Linear Combinations}

We show that Span is the set of linear combinations
```

lemma line_extension_of_combine_set:
assumes "u \in carrier R"
shows "line_extension $\mathrm{K} u$ \{ combine Ks Us | Ks. set $\mathrm{Ks} \subseteq \mathrm{K}\}=$
\{ combine Ks (u \# Us) | Ks. set Ks \subseteq K \}"
(is "?line_extension = ?combinations")
proof
show "?line_extension \subseteq ?combinations"
proof
fix v assume "v \in ?line_extension"
then obtain k Ks
where "k $\in K$ " "set $K s \subseteq K$ " and "v = combine (k \# Ks) (u \# Us)"
using line_extension_mem_iff by auto
thus "v \in ?combinations"
by (metis (mono_tags, lifting) insert_subset list.simps(15) mem_Collect_eq)
qed
next
show "?combinations \subseteq ?line_extension"
proof
fix v assume "v \in ?combinations"
then obtain Ks where v : "set $\mathrm{Ks} \subseteq \mathrm{K} " \mathrm{v}$ v = combine Ks (u \# Us)"
by auto
thus "v \in ?line_extension"
proof (cases Ks)
case Cons thus ?thesis
using v line_extension_mem_iff by auto
next
case Nil
hence "v = 0"
using v by simp
moreover have "combine [] Us $=0$ " by simp
hence " $0 \in\{$ combine Ks Us $\mid \mathrm{Ks} . \operatorname{set} \mathrm{Ks} \subseteq \mathrm{K}\} "$
by (metis (mono_tags, lifting) local.Nil mem_Collect_eq v(1))
hence " $(0 \otimes u) \oplus 0 \in$?line_extension"
using line_extension_mem_iff subring_props(2) by blast
hence "0 \in ?line_extension"
using assms by auto
ultimately show ?thesis by auto

```
```

 qed
 qed
 qed
lemma Span_eq_combine_set:
assumes "set Us \subseteq carrier R" shows "Span K Us = { combine Ks Us |
Ks. set Ks \subseteq K }"
using assms line_extension_of_combine_set
by (induct Us) (auto, metis empty_set empty_subsetI)
lemma line_extension_of_combine_set_length_version:
assumes "u \in carrier R"
shows "line_extension K u { combine Ks Us | Ks. length Ks = length Us
set Ks \subseteqK } =
{ combine Ks (u \# Us) | Ks. length Ks = length (u

Us) ^ set Ks \subseteq K }"

 (is "?line_extension = ?combinations")
 proof
show "?line_extension \subseteq ?combinations"
proof
fix v assume "v \in ?line_extension"
then obtain k Ks
where "v = combine (k \# Ks) (u \# Us)" "length (k \# Ks) = length
(u \# Us)" "set (k \# Ks) \subseteq K"
using line_extension_mem_iff by auto
thus "v \in ?combinations" by blast
qed
next
show "?combinations \subseteq ?line_extension"
proof
fix c assume "c \in ?combinations"
then obtain Ks where c: "c = combine Ks (u \# Us)" "length Ks = length
(u \# Us)" "set Ks \subseteq K"
by blast
then obtain k Ks' where k: "Ks = k \# Ks'"
by (metis length_Suc_conv)
thus "c \in ?line_extension"
using c line_extension_mem_iff unfolding k by auto
qed
qed
lemma Span_eq_combine_set_length_version:
assumes "set Us \subseteq carrier R"
shows "Span K Us = { combine Ks Us | Ks. length Ks = length Us }^ se
Ks \subseteq K }"
using assms line_extension_of_combine_set_length_version by (induct
Us) (auto)

```

\subsection*{38.4.1 Corollaries}
```

corollary Span_mem_iff_length_version:
assumes "set Us \subseteq carrier R"
shows "a }\in\mathrm{ Span K Us }\longleftrightarrow (\exists\textrm{Ks. set Ks \subseteq K ^ length Ks = length Us
^ a = combine Ks Us)"
using Span_eq_combine_set_length_version[OF assms] by blast
corollary Span_mem_imp_non_trivial_combine:
assumes "set Us }\subseteq\mathrm{ carrier R" and "a }\in\mathrm{ Span K Us"
obtains k Ks
where "k \in K - { 0 }" "set Ks \subseteq K" "length Ks = length Us" "combine
(k \# Ks) (a \# Us) = 0"
proof -
obtain Ks where Ks: "set Ks \subseteq K" "length Ks = length Us" "a = combine
Ks Us"
using Span_mem_iff_length_version[OF assms(1)] assms(2) by auto
hence "((\ominus 1) \otimes a) \oplus a = combine ((\ominus 1) \# Ks) (a \# Us)"
by auto
moreover have "((\ominus 1) \otimes a) \oplus a = 0"
using assms(2) Span_subgroup_props(1) [OF assms(1)] l_minus l_neg by
auto
moreover have "\ominus 1 = 0"
using subfieldE(6)[OF K] l_neg by force
ultimately show ?thesis
using that subring_props(3,5) Ks(1-2) by (force simp del: combine.simps)
qed
corollary Span_mem_iff:
assumes "set Us \subseteqcarrier R" and "a \in carrier R"
shows "a }\in\mathrm{ Span K Us }\longleftrightarrow(\exists\textrm{k}\in\textrm{K}-{0\boldsymbol{0}}.\exists\textrm{Ks.}\mathrm{ set Ks }\subseteq\textrm{K}\wedge combin
(k \# Ks) (a \# Us) = 0)"
(is "?in_Span \longleftrightarrow ?exists_combine")
proof
assume "?in_Span"
then obtain Ks where Ks: "set Ks \subseteq K" "a = combine Ks Us"
using Span_eq_combine_set[0F assms(1)] by auto
hence "((\ominus 1) \otimes a) \oplus a = combine ((\ominus 1) \# Ks) (a \# Us)"
by auto
moreover have "((\ominus 1) \otimes a) \oplus a = 0"
using assms(2) l_minus l_neg by auto
moreover have "\ominus 1 =0"
using subfieldE(6) [OF K] l_neg by force
ultimately show "?exists_combine"
using subring_props(3,5) Ks(1) by (force simp del: combine.simps)
next
assume "?exists_combine"
then obtain k Ks
where k: "k \in K" "k f=0" and Ks: "set Ks \subseteq K" and a: "(k \otimes a) }
combine Ks Us = 0"

```
```

 by auto
 hence "combine Ks Us \in Span K Us"
 using Span_eq_combine_set[0F assms(1)] by auto
 hence "k \otimes a \in Span K Us"
 using Span_subgroup_props[OF assms(1)] k Ks a
 by (metis (no_types, lifting) assms(2) contra_subsetD m_closed minus_equality
 subring_props(1))
thus "?in_Span"
using Span_m_inv_simprule[OF assms(1) _ assms(2), of k] k by auto
qed

```

\subsection*{38.5 Span as the minimal subgroup that contains K <\#> set Us}

Now we show the link between Span and Group.generate
```

lemma mono_Span:
assumes "set Us \subseteq carrier R" and "u \in carrier R"
shows "Span K Us \subseteq Span K (u \# Us)"
proof
fix v assume v: "v \in Span K Us"
hence "(0 \otimes u) }\oplus\textrm{v}\in\operatorname{Span K (u \# Us)"
using line_extension_mem_iff by auto
thus "v \in Span K (u \# Us)"
using Span_subgroup_props(1)[OF assms(1)] assms(2) v
by (auto simp del: Span.simps)
qed
lemma Span_min:
assumes "set Us \subseteq carrier R" and "subgroup E (add_monoid R)"
shows "K <\#> (set Us) \subseteq E C Span K Us \subseteq E"
proof -
assume "K <\#> (set Us) \subseteq E" show "Span K Us \subseteq E"
proof
fix v assume "v \in Span K Us"
then obtain Ks where v: "set Ks \subseteq K" "v = combine Ks Us"
using Span_eq_combine_set[0F assms(1)] by auto
from <set Ks \subseteqK> <set Us \subseteq carrier R> and <K <\#> (set Us) \subseteq E>
show "v \in E" unfolding v(2)
proof (induct Ks Us rule: combine.induct)
case (1 k Ks u Us)
hence "k \in K" and "u \in set (u \# Us)" by auto
hence "k \otimes u \in E"
using 1(4) unfolding set_mult_def by auto
moreover have "K <\#> set Us \subseteq E"
using 1(4) unfolding set_mult_def by auto
hence "combine Ks Us \in E"
using 1 by auto
ultimately show ?case
using add.subgroupE(4)[OF assms(2)] by auto

```
```

 next
 case "2_1" thus ?case
 using subgroup.one_closed[OF assms(2)] by auto
 next
 case "2_2" thus ?case
 using subgroup.one_closed[OF assms(2)] by auto
 qed
 qed
 qed
lemma Span_eq_generate:
assumes "set Us \subseteq carrier R" shows "Span K Us = generate (add_monoid
R) (K <\#> (set Us))"
proof (rule add.generateI)
show "subgroup (Span K Us) (add_monoid R)"
using Span_is_add_subgroup[OF assms] .
next
show "\E. \llbracket subgroup E (add_monoid R); K <\#> set Us \subseteq E \rrbracket\Longrightarrow Span
K Us \subseteq E"
using Span_min assms by blast
next
show "K <\#> set Us \subseteq Span K Us"
using assms
proof (induct Us)
case Nil thus ?case
unfolding set_mult_def by auto
next
case (Cons u Us)
have "K <\#> set (u \# Us) = (K <\#> { u }) U (K <\#> set Us)"
unfolding set_mult_def by auto
moreover have "\k. k G K \Longrightarrow k | u G Span K (u \# Us)"
proof -
fix k assume k: "k \in K"
hence "combine [k] (u \# Us) \in Span K (u \# Us)"
using Span_eq_combine_set[OF Cons(2)] by (auto simp del: combine.simps)
moreover have "k \in carrier R" and "u \in carrier R"
using Cons(2) k subring_props(1) by (blast, auto)
ultimately show "k \otimes u \in Span K (u \# Us)"
by (auto simp del: Span.simps)
qed
hence "K <\#> { u } \subseteq Span K (u \# Us)"
unfolding set_mult_def by auto
moreover have "K <\#> set Us \subseteq Span K (u \# Us)"
using mono_Span[of Us u] Cons by (auto simp del: Span.simps)
ultimately show ?case
using Cons by (auto simp del: Span.simps)
qed
qed

```

\subsection*{38.5.1 Corollaries}
```

corollary Span_same_set:
assumes "set Us }\subseteq\mathrm{ carrier R"
shows "set Us = set Vs \Longrightarrow Span K Us = Span K Vs"
using Span_eq_generate assms by auto
corollary Span_incl: "set Us \subseteq carrier R \Longrightarrow K <\#> (set Us) \subseteq Span K Us"
using Span_eq_generate generate.incl[of _ _ "add_monoid R"] by auto
corollary Span_base_incl: "set Us \subseteq carrier R C set Us \subseteq Span K Us"
proof -
assume A: "set Us }\subseteq\mathrm{ carrier R"
hence "{1 } <\#> set Us = set Us"
unfolding set_mult_def by force
moreover have "{ 1 } <\#> set Us \subseteq K <\#> set Us"
using subring_props(3) unfolding set_mult_def by blast
ultimately show ?thesis
using Span_incl[OF A] by auto
qed
corollary mono_Span_sublist:
assumes "set Us \subseteq set Vs" "set Vs \subseteq carrier R"
shows "Span K Us \subseteq Span K Vs"
using add.mono_generate[OF mono_set_mult[OF _ assms(1), of K K R]]
Span_eq_generate[OF assms(2)] Span_eq_generate[of Us] assms by
auto
corollary mono_Span_append:
assumes "set Us \subseteq carrier R" "set Vs \subseteq carrier R"
shows "Span K Us \subseteq Span K (Us @ Vs)"
and "Span K Us \subseteq Span K (Vs @ Us)"
using mono_Span_sublist[of Us "Us @ Vs"] assms
Span_same_set[of "Us @ Vs" "Vs @ Us"] by auto
corollary mono_Span_subset:
assumes "set Us \subseteq Span K Vs" "set Vs \subseteq carrier R"
shows "Span K Us \subseteq Span K Vs"
proof (rule Span_min[OF _ Span_is_add_subgroup[OF assms(2)]])
show "set Us \subseteq carrier R"
using Span_subgroup_props(1) [OF assms(2)] assms by auto
show "K <\#> set Us \subseteq Span K Vs"
using Span_smult_closed[OF assms(2)] assms(1) unfolding set_mult_def
by blast
qed
lemma Span_strict_incl:
assumes "set Us \subseteqcarrier R" "set Vs \subseteq carrier R"
shows "Span K Us \subset Span K Vs \Longrightarrow(\existsv \in set Vs. v \& Span K Us)"
proof -

```
```

 assume "Span K Us \subset Span K Vs" show "\existsv \in set Vs. v & Span K Us"
 proof (rule ccontr)
 assume "\neg(\existsv \in set Vs. v & Span K Us)"
 hence "Span K Vs \subseteq Span K Us"
 using mono_Span_subset[OF _ assms(1), of Vs] by auto
 from and
 show False by simp
 qed
 qed
lemma Span_append_eq_set_add:
assumes "set Us \subseteq carrier R" and "set Vs \subseteq carrier R"
shows "Span K (Us @ Vs) = (Span K Us <+>R Span K Vs)"
using assms
proof (induct Us)
case Nil thus ?case
using Span_subgroup_props(1)[OF Nil(2)] unfolding set_add_def' by
force
next
case (Cons u Us)
hence in_carrier:
"u \in carrier R" "set Us \subseteq carrier R" "set Vs \subseteq carrier R"
by auto
have "line_extension K u (Span K Us <+>> Span K Vs) = (Span K (u \# Us)
<+>R Span K Vs)"
proof
show "line_extension K u (Span K Us <+> R Span K Vs) \subseteq (Span K (u

Us) <+>R Span K Vs)"

 proof
 fix v assume "v G line_extension K u (Span K Us <+>R Span K Vs)"
 then obtain k u' v'
 where v: "k \in K" "u' \in Span K Us" "v' \in Span K Vs" "v = k &
 u \oplus (u' }\oplus v')"
using line_extension_mem_iff[of v _ u "Span K Us <+>> R Span K Vs"]
unfolding set_add_def, by blast
hence "v = (k \otimes u \oplus u') \oplus v'"
using in_carrier(2-3)[THEN Span_subgroup_props(1)] in_carrier(1)
subring_props(1)
by (metis (no_types, lifting) rev_subsetD ring_simprules(7) semiring_simprules(3))
moreover have "k \otimes u \oplus u' }\in\mathrm{ Span K (u \# Us)"
using line_extension_mem_iff v(1-2) by auto
ultimately show "v \in Span K (u \# Us) <+> R Span K Vs"
unfolding set_add_def' using v(3) by auto
qed
next
show "Span K (u \# Us) <+>>R Span K Vs \subseteq line_extension K u (Span K
Us <+>> Span K Vs)"
proof

```
```

 fix v assume "v \in Span K (u # Us) <+>R Span K Vs"
 then obtain k u' v'
 where v: "k \in K" "u' \in Span K Us" "v' \in Span K Vs" "v = (k \otimes
 u \oplus u') }\oplus v'"
using line_extension_mem_iff[of _ _ u "Span K Us"] unfolding set_add_def'
by auto
hence "v = (k \otimes u) \oplus (u' \oplus v')"
using in_carrier(2-3) [THEN Span_subgroup_props(1)] in_carrier(1)
subring_props(1)
by (metis (no_types, lifting) rev_subsetD ring_simprules(5,7))
thus "v \in line_extension K u (Span K Us <+>> Span K Vs)"
using line_extension_mem_iff[of "(k \otimes u) \oplus (u' \oplus v')" K u "Span
K Us <+>> Span K Vs"]
unfolding set_add_def' using v by auto
qed
qed
thus ?case
using Cons by auto
qed

```

\subsection*{38.6 Characterisation of Linearly Independent "Sets"}
```

declare independent_backwards [intro]
declare independent_in_carrier [intro]
lemma independent_distinct: "independent K Us \Longrightarrow distinct Us"
proof (induct Us rule: list.induct)
case Nil thus ?case by simp
next
case Cons thus ?case
using independent_backwards [0F Cons(2)]
independent_in_carrier[0F Cons(2)]
Span_base_incl
by auto
qed
lemma independent_strict_incl:
assumes "independent K (u \# Us)" shows "Span K Us \subset Span K (u \# Us)"
proof -
have "u $\in \operatorname{Span} K$ (u \# Us)"
using Span_base_incl[OF independent_in_carrier[0F assms]] by auto
moreover have "Span K Us \subseteq Span K (u \# Us)"
using mono_Span independent_in_carrier[0F assms] by auto
ultimately show ?thesis
using independent_backwards(1) [0F assms] by auto
qed
corollary independent_replacement:
assumes "independent K (u \# Us)" and "independent K Vs"

```
```

 shows "Span K (u # Us) \subseteq Span K Vs \Longrightarrow(\existsv \in set Vs. independent K
 (v \# Us))"
proof -
assume "Span K (u \# Us) \subseteq Span K Vs"
hence "Span K Us \subset Span K Vs"
using independent_strict_incl[0F assms(1)] by auto
then obtain v where v: "v \in set Vs" "v \& Span K Us"
using Span_strict_incl[of Us Vs] assms[THEN independent_in_carrier]
by auto
thus ?thesis
using li_Cons[of v K Us] assms independent_in_carrier[OF assms(2)]
by auto
qed
lemma independent_split:
assumes "independent K (Us @ Vs)"
shows "independent K Vs"
and "independent K Us"
and "Span K Us \cap Span K Vs = { 0 }"
proof -
from assms show "independent K Vs"
by (induct Us) (auto)
next
from assms show "independent K Us"
proof (induct Us)
case Nil thus ?case by simp
next
case (Cons u Us')
hence u: "u \in carrier R" and "set Us' }\subseteq\mathrm{ carrier R" "set Vs }\subseteq\mathrm{ carrier
R"
using independent_in_carrier[of K "(u \# Us') @ Vs"] by auto
hence "Span K Us' \subseteq Span K (Us' @ Vs)"
using mono_Span_append(1) by simp
thus ?case
using independent_backwards[of K u "Us' @ Vs"] Cons li_Cons[OF u]
by auto
qed
next
from assms show "Span K Us \cap Span K Vs = { 0 }"
proof (induct Us rule: list.induct)
case Nil thus ?case
using Span_subgroup_props(2) [OF independent_in_carrier[of K Vs]]
by simp
next
case (Cons u Us)
hence IH: "Span K Us \cap Span K Vs = {0}" by auto
have in_carrier:
"u \in carrier R" "set Us \subseteq carrier R" "set Vs \subseteq carrier R" "set
(u \# Us) \subseteq carrier R"

```
```

 using Cons(2) [THEN independent_in_carrier] by auto
 hence "{ 0 } \subseteq Span K (u # Us) \cap Span K Vs"
 using in_carrier(3-4) [THEN Span_subgroup_props(2)] by auto
 moreover have "Span K (u # Us) \cap Span K Vs \subseteq{ 0 }"
 proof (rule ccontr)
 assume "\neg Span K (u # Us) \cap Span K Vs \subseteq{0}"
 hence "\existsa. a \not=0^ a \in Span K (u # Us) ^ a \in Span K Vs" by auto
 then obtain k u' v'
 where u': "u' \in Span K Us" "u' \in carrier R"
 and v': "v' \in Span K Vs" "v' \in carrier R" "v' f= 0"
 and k: "k \in K" "(k \otimes u \oplus u') = v'"
 using line_extension_mem_iff[of _ _ u "Span K Us"] in_carrier(2-3)[THEN
 Span_subgroup_props(1)]
subring_props(1) by force
hence "v' = 0" if "k = 0"
using in_carrier(1) that IH by auto
hence diff_zero: "k = 0" using v'(3) by auto
have "k \in carrier R"
using subring_props(1) k(1) by blast
hence "k \otimes u = (}\ominus\textrm{u}) \oplus v'"
using in_carrier(1) k(2) u'(2) v'(2) add.m_comm r_neg1 by auto
hence "k \otimes u G Span K (Us @ Vs)"
using Span_subgroup_props(4) [OF in_carrier(2) u'(1)] v'(1)
Span_append_eq_set_add[OF in_carrier(2-3)] unfolding set_add_def'
by blast
hence "u \in Span K (Us @ Vs)"
using Cons(2) Span_m_inv_simprule[OF _ _ in_carrier(1), of "Us
@ Vs" k]
diff_zero k(1) in_carrier(2-3) by auto
moreover have "u \& Span K (Us @ Vs)"
using independent_backwards(1)[of K u "Us @ Vs"] Cons(2) by auto
ultimately show False by simp
qed
ultimately show ?case by auto
qed
qed
lemma independent_append:
assumes "independent K Us" and "independent K Vs" and "Span K Us \cap
Span K Vs = { 0 }"
shows "independent K (Us @ Vs)"
using assms
proof (induct Us rule: list.induct)
case Nil thus ?case by simp
next
case (Cons u Us)

```
```

 hence in_carrier:
 "u \in carrier R" "set Us \subseteq carrier R" "set Vs \subseteq carrier R" "set (u

Us) \subseteq carrier R"

 using Cons(2-3)[THEN independent_in_carrier] by auto
 hence "Span K Us \subseteq Span K (u # Us)"
 using mono_Span by auto
 hence "Span K Us \cap Span K Vs = { 0 }"
 using Cons(4) Span_subgroup_props(2) [OF in_carrier(2)] by auto
 hence "independent K (Us @ Vs)"
 using Cons by auto
 moreover have "u & Span K (Us @ Vs)"
 proof (rule ccontr)
 assume "\neg u & Span K (Us @ Vs)"
 then obtain u' v'
 where u': "u' \in Span K Us" "u' \in carrier R"
 and v': "v' \in Span K Vs" "v' \in carrier R" and u:"u = u' \oplus v'"
 using Span_append_eq_set_add[OF in_carrier(2-3)] in_carrier(2-3) [THEN
 Span_subgroup_props(1)]
unfolding set_add_def' by blast
hence "u \oplus (\ominus u') = v'"
using in_carrier(1) by algebra
moreover have "u \in Span K (u \# Us)" and "u' \in Span K (u \# Us)"
using Span_base_incl[OF in_carrier(4)] mono_Span[OF in_carrier(2,1)]
u'(1)
by (auto simp del: Span.simps)
hence "u \oplus (}\ominus\mathrm{ u') G Span K (u \# Us)"
using Span_subgroup_props(3-4)[OF in_carrier(4)] by (auto simp del:
Span.simps)
ultimately have "u \oplus (\ominus u') = 0"
using Cons(4) v'(1) by auto
hence "u = u'"
using Cons(4) v'(1) in_carrier(1) u'(2) <u }\oplus\ominus |' = v'> u by aut
thus False
using u'(1) independent_backwards(1) [OF Cons(2)] by simp
qed
ultimately show ?case
using in_carrier(1) li_Cons by simp
qed
lemma independent_imp_trivial_combine:
assumes "independent K Us"
shows "\Ks. \llbracket set Ks \subseteq K; combine Ks Us = 0 \rrbracket \Longrightarrow set (take (length
Us) Ks) \subseteq{ 0 }"
using assms
proof (induct Us rule: list.induct)
case Nil thus ?case by simp
next
case (Cons u Us) thus ?case
proof (cases "Ks = []")

```
```

 assume "Ks = []" thus ?thesis by auto
 next
 assume "Ks \not= []"
 then obtain k Ks' where k: "k \in K" and Ks': "set Ks' \subseteq K" and Ks:
 "Ks = k \# Ks'"
using Cons(2) by (metis insert_subset list.exhaust_sel list.simps(15))
hence Us: "set Us \subseteq carrier R" and u: "u \in carrier R"
using independent_in_carrier[OF Cons(4)] by auto
have "u \in Span K Us" if "k = 0"
using that Span_mem_iff[OF Us u] Cons(3-4) Ks' k unfolding Ks by
blast
hence k_zero: "k = 0"
using independent_backwards[OF Cons(4)] by blast
hence "combine Ks' Us = 0"
using combine_in_carrier[OF _ Us, of Ks'] Ks' u Cons(3) subring_props(1)
unfolding Ks by auto
hence "set (take (length Us) Ks') \subseteq { 0 }"
using Cons(1)[OF Ks' _ independent_backwards(2) [OF Cons(4)]] by
simp
thus ?thesis
using k_zero unfolding Ks by auto
qed
qed
lemma non_trivial_combine_imp_dependent:
assumes "set Ks \subseteqK" and "combine Ks Us = 0" and "\neg set (take (length
Us) Ks) \subseteq { 0 }"
shows "dependent K Us"
using independent_imp_trivial_combine[OF _ assms(1-2)] assms(3) by blast
lemma trivial_combine_imp_independent:
assumes "set Us \subseteq carrier R"
and "\Ks. \llbracket set Ks \subseteq K; combine Ks Us = 0 \rrbracket\Longrightarrow set (take (length
Us) Ks)\subseteq{0 }"
shows "independent K Us"
using assms
proof (induct Us)
case Nil thus ?case by simp
next
case (Cons u Us)
hence Us: "set Us \subseteq carrier R" and u: "u \in carrier R" by auto
have "\Ks.\llbracket set Ks \subseteq K; combine Ks Us = 0\rrbracket\Longrightarrow set (take (length
Us) Ks) \subseteq{0 }"
proof -
fix Ks assume Ks: "set Ks \subseteq K" and lin_c: "combine Ks Us = 0"
hence "combine (0 \# Ks) (u \# Us) = 0"
using u subring_props(1) combine_in_carrier[OF _ Us] by auto

```
```

 hence "set (take (length (u # Us)) (0 # Ks)) \subseteq { 0 }"
 using Cons(3)[of "0 # Ks"] subring_props(2) Ks by auto
 thus "set (take (length Us) Ks) \subseteq{0 }" by auto
 qed
 hence "independent K Us"
 using Cons(1) [OF Us] by simp
 moreover have "u & Span K Us"
 proof (rule ccontr)
 assume "\neg u & Span K Us"
 then obtain k Ks where k: "k G K" "k f=0" and Ks: "set Ks \subseteq K"
 and u: "combine (k \# Ks) (u \# Us) = 0"
using Span_mem_iff[OF Us u] by auto
have "set (take (length (u \# Us)) (k \# Ks)) \subseteq { 0 }"
using Cons(3)[OF _ u] k(1) Ks by auto
hence "k = 0" by auto
from <k = 0> and <k f 0> show False by simp
qed
ultimately show ?case
using li_Cons[OF u] by simp
qed
corollary dependent_imp_non_trivial_combine:
assumes "set Us \subseteq carrier R" and "dependent K Us"
obtains Ks where "length Ks = length Us" "combine Ks Us = 0" "set Ks
\subseteqK" "set Ks \not= { 0 }"
proof -
obtain Ks
where Ks: "set Ks \subseteq carrier R" "set Ks \subseteq K" "combine Ks Us = 0"
"\neg set (take (length Us) Ks) \subseteq { 0 }"
using trivial_combine_imp_independent[OF assms(1)] assms(2) subring_props(1)
by blast
obtain Ks'
where Ks': "set (take (length Us) Ks) \subseteq set Ks'" "set Ks' \subseteq set
(take (length Us) Ks) \cup { 0 }"
"length Ks' = length Us" "combine Ks' Us = 0"
using combine_normalize[OF Ks(1) assms(1) Ks(3)] by metis
have "set (take (length Us) Ks) \subseteq set Ks"
by (simp add: set_take_subset)
hence "set Ks'\subseteq K"
using Ks(2) Ks'(2) subring_props(2) Un_commute by blast
moreover have "set Ks' \not= { 0 }"
using Ks'(1) Ks(4) by auto
ultimately show thesis
using that Ks' by blast
qed
corollary unique_decomposition:

```
```

 assumes "independent K Us"
 shows "a }\in\mathrm{ Span K Us }\Longrightarrow\exists!Ks. set Ks \subseteq K ^ length Ks = length U
 ^ a = combine Ks Us"
proof -
note in_carrier = independent_in_carrier[OF assms]
assume "a \in Span K Us"
then obtain Ks where Ks: "set Ks \subseteq K" "length Ks = length Us" "a =
combine Ks Us"
using Span_mem_iff_length_version[OF in_carrier] by blast
moreover
have "\Ks'. \llbracket set Ks' \subseteq K; length Ks' = length Us; a = combine Ks'
Us \rrbracket \Longrightarrow Ks = Ks'"
proof -
fix Ks' assume Ks': "set Ks' \subseteq K" "length Ks' = length Us" "a = combine
Ks' Us"
hence set_Ks: "set Ks \subseteq carrier R" and set_Ks': "set Ks' \subseteq carrier
R"
using subring_props(1) Ks(1) by blast+
have same_length: "length Ks = length Ks'"
using Ks Ks' by simp
have "(combine Ks Us) }\oplus((\ominus1) \otimes (combine Ks' Us)) = 0"
using combine_in_carrier[OF set_Ks in_carrier]
combine_in_carrier[OF set_Ks' in_carrier] Ks(3) Ks'(3) by
algebra
hence "(combine Ks Us) \oplus (combine (map ((\otimes) (\ominus 1)) Ks') Us) = 0"
using combine_r_distr[OF set_Ks' in_carrier, of "\ominus 1"] subring_props
by auto
moreover have set_map: "set (map ((\otimes) (\ominus 1)) Ks') \subseteq K"
using Ks'(1) subring_props by (induct Ks') (auto)
hence "set (map ((\otimes) (\ominus 1)) Ks') \subseteq carrier R"
using subring_props(1) by blast
ultimately have "combine (map2 (}\odot)\textrm{Ks (map ((\otimes) (\ominus 1)) Ks')) Us
= 0"
using combine_add[OF Ks(2) _ set_Ks _ in_carrier, of "map ((\otimes) (\ominus
1)) Ks'"] Ks'(2) by auto
moreover have "set (map2 (}\oplus\mathrm{) Ks (map ((\&) ((1)) Ks')) }\subseteqK
using Ks(1) set_map subring_props(7)
by (induct Ks) (auto, metis contra_subsetD in_set_zipE local.set_map
set_ConsD subring_props(7))
ultimately have "set (take (length Us) (map2 (})\mathrm{) Ks (map ((\&) (
1)) Ks'))) \subseteq { 0 }"
using independent_imp_trivial_combine[0F assms] by auto
hence "set (map2 (\oplus) Ks (map ((\otimes) (\ominus 1)) Ks')) \subseteq{ 0 }"
using Ks(2) Ks'(2) by auto
thus "Ks = Ks'"
using set_Ks set_Ks' same_length

```
```

 proof (induct Ks arbitrary: Ks')
 case Nil thus?case by simp
 next
 case (Cons k Ks)
 then obtain k' Ks'' where k': "Ks' = k' # Ks''"
 by (metis Suc_length_conv)
 have "Ks = Ks')"
 using Cons unfolding k' by auto
 moreover have "k = k'"
 using Cons(2-4) l_minus minus_equality unfolding k' by (auto,
 fastforce)
ultimately show ?case
unfolding k' by simp
qed
qed
ultimately show ?thesis by blast
qed

```

\subsection*{38.7 Replacement Theorem}
```

lemma independent_rotate1_aux:
"independent K (u \# Us @ Vs) \Longrightarrow independent K ((Us @ [u]) @ Vs)"
proof -
assume "independent K (u \# Us @ Vs)"
hence li: "independent K [u]" "independent K Us" "independent K Vs"
and inter: "Span K [u] \cap Span K Us = { 0 }"
"Span K (u \# Us) \cap Span K Vs = { 0 }"
using independent_split[of "u \# Us" Vs] independent_split[of "[u]"
Us] by auto
hence "independent K (Us @ [u])"
using independent_append[OF li(2,1)] by auto
moreover have "Span K (Us @ [u]) \cap Span K Vs = { 0 }"
using Span_same_set[of "u \# Us" "Us @ [u]"] li(1-2) [THEN independent_in_carrier]
inter(2) by auto
ultimately show "independent K ((Us @ [u]) @ Vs)"
using independent_append[OF _ li(3), of "Us @ [u] "] by simp
qed
corollary independent_rotate1:
"independent K (Us @ Vs) \Longrightarrow independent K ((rotate1 Us) @ Vs)"
using independent_rotate1_aux by (cases Us) (auto)

```
corollary independent_same_set:
    assumes "set Us = set Vs" and "length Us = length Vs"
    shows "independent \(K\) Us \(\Longrightarrow\) independent K Vs"
proof -
```

 assume "independent K Us" thus ?thesis
 using assms
 proof (induct Us arbitrary: Vs rule: list.induct)
 case Nil thus ?case by simp
 next
 case (Cons u Us)
 then obtain Vs' Vs', where Vs: "Vs = Vs' @ (u # Vs'')"
 by (metis list.set_intros(1) split_list)
 have in_carrier: "u \in carrier R" "set Us \subseteq carrier R"
 using independent_in_carrier[OF Cons(2)] by auto
 have "distinct Vs"
 using Cons(3-4) independent_distinct[OF Cons(2)]
 by (metis card_distinct distinct_card)
 hence "u & set (Vs' @ Vs'')" and "u & set Us"
 using independent_distinct[OF Cons(2)] unfolding Vs by auto
 hence set_eq: "set Us = set (Vs' @ Vs'')" and "length (Vs' @ Vs'')
 = length Us"
using Cons(3-4) unfolding Vs by auto
hence "independent K (Vs' @ Vs'')"
using Cons(1)[OF independent_backwards(2)[OF Cons(2)]] unfolding
Vs by simp
hence "independent K (u \# (Vs' @ Vs''))"
using li_Cons Span_same_set[OF _ set_eq] independent_backwards(1)[OF
Cons(2)] in_carrier by auto
hence "independent K (Vs' @ (u \# Vs''))"
using independent_rotate1[of "u \# Vs'" Vs''] by auto
thus ?case unfolding Vs .
qed
qed
lemma replacement_theorem:
assumes "independent K (Us' @ Us)" and "independent K Vs"
and "Span K (Us' @ Us) \subseteq Span K Vs"
shows " \existsVs'. set Vs' \subseteq set Vs ^ length Vs' = length Us' ^ independent
K (Vs' @ Us)"
using assms
proof (induct "length Us'" arbitrary: Us' Us)
case 0 thus ?case by auto
next
case (Suc n)
then obtain u Us'' where Us'': "Us' = Us'' @ [u]"
by (metis list.size(3) nat.simps(3) rev_exhaust)
then obtain Vs' where Vs': "set Vs' \subseteq set Vs" "length Vs' = n" "independent
K (Vs' @ (u \# Us))"
using Suc(1)[of Us'' "u \# Us"] Suc(2-5) by auto
hence li: "independent K ((u \# Vs') @ Us)"
using independent_same_set[OF _ _ Vs'(3), of "(u \# Vs') @ Us"] by

```
```

auto
moreover have in_carrier:
"u \in carrier R" "set Us \subseteq carrier R" "set Us' \subseteq carrier R" "set Vs
Ccarrier R"
using Suc(3-4) [THEN independent_in_carrier] Us', by auto
moreover have "Span K ((u \# Vs') @ Us) \subseteq Span K Vs"
proof -
have "set Us \subseteq Span K Vs" "u \in Span K Vs"
using Suc(5) Span_base_incl[of "Us' @ Us"] Us', in_carrier(2-3)
by auto
moreover have "set Vs' \subseteq Span K Vs"
using Span_base_incl[OF in_carrier(4)] Vs'(1) by auto
ultimately have "set ((u \# Vs') @ Us) \subseteq Span K Vs" by auto
thus ?thesis
using mono_Span_subset[OF _ in_carrier(4)] by (simp del: Span.simps)
qed
ultimately obtain v where "v \in set Vs" "independent K ((v \# Vs') @
Us)"
using independent_replacement[OF _ Suc(4), of u "Vs' @ Us"] by auto
thus ?case
using Vs'(1-2) Suc(2)
by (metis (mono_tags, lifting) insert_subset length_Cons list.simps(15))
qed
corollary independent_length_le:
assumes "independent K Us" and "independent K Vs"
shows "set Us \subseteq Span K Vs }\Longrightarrow\mathrm{ length Us }\leq\mathrm{ length Vs"
proof -
assume "set Us \subseteq Span K Vs"
hence "Span K Us \subseteqSpan K Vs"
using mono_Span_subset[OF _ independent_in_carrier[OF assms(2)]] by
simp
then obtain Vs' where Vs': "set Vs' \subseteq set Vs" "length Vs' = length
Us" "independent K Vs'"
using replacement_theorem[OF _ assms(2), of Us "[]"] assms(1) by auto
hence "card (set Vs') \leq card (set Vs)"
by (simp add: card_mono)
thus "length Us \leq length Vs"
using independent_distinct assms(2) Vs'(2-3) by (simp add: distinct_card)
qed

```

\subsection*{38.8 Dimension}
```

lemma exists_base:

```
lemma exists_base:
    assumes "dimension n K E"
    assumes "dimension n K E"
    shows "\existsVs. set Vs \subseteq carrier R ^ independent K Vs ^ length Vs = n
    shows "\existsVs. set Vs \subseteq carrier R ^ independent K Vs ^ length Vs = n
^ Span K Vs = E"
^ Span K Vs = E"
    (is "\existsVs. ?base K Vs E n")
    (is "\existsVs. ?base K Vs E n")
    using assms
```

 using assms
    ```
```

proof (induct E rule: dimension.induct)
case zero_dim thus ?case by auto
next
case (Suc_dim v E n K)
then obtain Vs where Vs: "set Vs \subseteq carrier R" "independent K Vs" "length
Vs = n" "Span K Vs = E"
by auto
hence "?base K (v \# Vs) (line_extension K v E) (Suc n)"
using Suc_dim li_Cons by auto
thus ?case by blast
qed
lemma dimension_zero: "dimension 0 K E \Longrightarrow E = { 0 }"
proof -
assume "dimension O K E"
then obtain Vs where "length Vs = 0" "Span K Vs = E"
using exists_base by blast
thus ?thesis
by auto
qed
lemma dimension_one [iff]: "dimension 1 K K"
proof -
have "K = Span K [1]"
using line_extension_mem_iff[of _ K 1 "{ 0 }"] subfieldE(3)[OF K]
by (auto simp add: rev_subsetD)
thus ?thesis
using dimension.Suc_dim[OF one_closed _ dimension.zero_dim, of K]
subfieldE(6)[OF K] by auto
qed
lemma dimensionI:
assumes "independent K Us" "Span K Us = E"
shows "dimension (length Us) K E"
using dimension_independent[OF assms(1)] assms(2) by simp
lemma space_subgroup_props:
assumes "dimension n K E"
shows "E\subseteq carrier R"
and "0 \in E"
and "\v1 v2.\llbracketv1 \in E; v2 \in E \rrbracket \Longrightarrow(v1 }\oplus\textrm{v}2)\inE
and "\v. v \in E \Longrightarrow (\ominus v) \in E"
and "\k v. \llbracketk k K; v \in E\rrbracket \Longrightarrow k | v \in E"
and "\llbracketk\inK - {0 }; a \in carrier R \ \Longrightarrow k \otimesa
using exists_base[OF assms] Span_subgroup_props Span_smult_closed Span_m_inv_simprule
by auto
lemma independent_length_le_dimension:
assumes "dimension n K E" and "independent K Us" "set Us \subseteq E"

```
```

 shows "length Us \(\leq n\) "
 proof -
obtain Vs where Vs: "set Vs \subseteq carrier R" "independent K Vs" "length
Vs = n" "Span K Vs = E"
using exists_base[OF assms(1)] by auto
thus ?thesis
using independent_length_le assms(2-3) by auto
qed
lemma dimension_is_inj:
assumes "dimension n K E" and "dimension m K E"
shows " $\mathrm{n}=\mathrm{m}$ "
proof -
\{ fix $\mathrm{n} m$ assume n : "dimension n K E" and m: "dimension m K E"
then obtain Vs
where Vs: "set Vs \subseteq carrier R" "independent K Vs" "length Vs =
n" "Span K Vs = E"
using exists_base by meson
hence " $\mathrm{n} \leq \mathrm{m}$ "
using independent_length_le_dimension[OF m Vs(2)] Span_base_incl[OF
Vs(1)] by auto
\} note aux_lemma = this
show ?thesis
using aux_lemma[0F assms] aux_lemma[0F assms $(2,1)]$ by simp
qed
corollary independent_length_eq_dimension:
assumes "dimension n K E" and "independent K Us" "set Us \subseteq E"
shows "length Us $=\mathrm{n} \longleftrightarrow$ Span K Us $=E "$
proof
assume len: "length Us = n" show "Span K Us = E"
proof (rule ccontr)
assume "Span K Us $\neq \mathrm{E}$ "
hence "Span K Us $\subset E$ "
using mono_Span_subset[of Us] exists_base[OF assms(1)] assms(3)
by blast
then obtain v where $v: ~ " v \in E " ~ " v \notin \operatorname{Span} K$ Us"
using Span_strict_incl exists_base[0F assms(1)] space_subgroup_props(1) [0F
assms(1)] assms by blast
hence "independent K (v \# Us)"
using li_Cons[OF _ _ assms(2)] space_subgroup_props(1)[0F assms(1)]
by auto
hence "length (v \# Us) $\leq n$ "
using independent_length_le_dimension[0F assms(1)] v(1) assms(2-3)
by fastforce
moreover have "length (v \# Us) = Suc n"
using len by simp
ultimately show False by simp

```
```

 qed
 next
assume "Span K Us = E"
hence "dimension (length Us) K E"
using dimensionI assms by auto
thus "length Us = n"
using dimension_is_inj[OF assms(1)] by auto
qed
lemma complete_base:
assumes "dimension n K E" and "independent K Us" "set Us \subseteq E"
shows "\existsVs. length (Vs @ Us) = n ^ independent K (Vs @ Us) ^ Span K
(Vs @ Us) = E"
proof -
{ fix Us k assume "k \leq n" "independent K Us" "set Us \subseteq E" "length Us
= k"
hence "\existsVs. length (Vs @ Us) = n ^ independent K (Vs @ Us) ^ Span
K (Vs @ Us) = E"
proof (induct arbitrary: Us rule: inc_induct)
case base thus ?case
using independent_length_eq_dimension[0F assms(1) base(1-2)] by
auto
next
case (step m)
have "Span K Us \subseteq E"
using mono_Span_subset step(4-6) exists_base[OF assms(1)] by blast
hence "Span K Us \subset E"
using independent_length_eq_dimension[OF assms(1) step(4-5)] step(2,6)
assms(1) by blast
then obtain v where v: "v \in E" "v \& Span K Us"
using Span_strict_incl exists_base[OF assms(1)] by blast
hence "independent K (v \# Us)"
using space_subgroup_props(1)[0F assms(1)] li_Cons[OF _ v(2) step(4)]
by auto
then obtain Vs
where "length (Vs @ (v \# Us)) = n" "independent K (Vs @ (v \#
Us))" "Span K (Vs @ (v \# Us)) = E"
using step(3)[of "v \# Us"] step(1-2,4-6) v by auto
thus ?case
by (metis append.assoc append_Cons append_Nil)
qed } note aux_lemma = this
have "length Us \leq n"
using independent_length_le_dimension[OF assms] .
thus ?thesis
using aux_lemma[OF _ assms(2-3)] by auto
qed
lemma filter_base:

```
```

 assumes "set Us \subseteq carrier R"
 obtains Vs where "set Vs \subseteq carrier R" and "independent K Vs" and "Span
 K Vs = Span K Us"
proof -
from <set Us \subseteq carrier R> have "\existsVs. independent K Vs }\wedge Span K V
= Span K Us"
proof (induction Us)
case Nil thus ?case by auto
next
case (Cons u Us)
then obtain Vs where Vs: "independent K Vs" "Span K Vs = Span K Us"
by auto
show ?case
proof (cases "u \in Span K Us")
case True
hence "Span K (u \# Us) = Span K Us"
using Span_base_incl mono_Span_subset
by (metis Cons.prems insert_subset list.simps(15) subset_antisym)
thus ?thesis
using Vs by blast
next
case False
hence "Span K (u \# Vs) = Span K (u \# Us)" and "independent K (u

Vs)"

 using li_Cons[of u K Vs] Cons(2) Vs by auto
 thus ?thesis
 by blast
 qed
 qed
 thus ?thesis
 using independent_in_carrier that by auto
 qed
 lemma dimension_backwards:
 "dimension (Suc n) K E \Longrightarrow \existsv G carrier R. \existsE'. dimension n K E' ^
 v \not\in E' ^ E = line_extension K v E'"
by (cases rule: dimension.cases) (auto)
lemma dimension_direct_sum_space:
assumes "dimension n K E" and "dimension m K F" and "E \cap F = { 0 }"
shows "dimension (n + m) K (E <+> R F)"
proof -
obtain Us Vs
where Vs: "set Vs \subseteq carrier R" "independent K Vs" "length Vs = n"
"Span K Vs = E"
and Us: "set Us \subseteq carrier R" "independent K Us" "length Us = m"
"Span K Us = F"
using assms(1-2) [THEN exists_base] by auto
hence "Span K (Vs @ Us) = E <+>> R F"

```
using Span_append_eq_set_add by auto
moreover have "independent K (Vs @ Us)"
using assms(3) independent_append[OF Vs(2) Us(2)] unfolding Vs(4)
Us (4) by simp
ultimately show "dimension ( \(n+m\) ) K (E <+> \(R\) F)"
using dimensionI[of "Vs @ Us"] Vs(3) Us(3) by auto
qed
lemma dimension_sum_space:
assumes "dimension n K E" and "dimension m K F" and "dimension k K ( \(\mathrm{E} \cap \mathrm{F}\) )"
shows "dimension \(\left.(n+m-k) K(E<+\rangle_{R} F\right)\) "
proof -
obtain Bs
where Bs: "set Bs \(\subseteq\) carrier R" "length Bs = k" "independent K Bs"
"Span K Bs = E \(\cap \mathrm{F}\) "
using exists_base[0F assms(3)] by blast
then obtain Us Vs
where Us: "length (Us @ Bs) = n" "independent K (Us @ Bs)" "Span
\(K\) (Us @ Bs) = E"
and Vs: "length (Vs @ Bs) = m" "independent K (Vs @ Bs)" "Span K
(Vs @ Bs) = F"
using Span_base_incl[OF Bs(1)] assms(1-2) [THEN complete_base] by (metis le_infE)
hence in_carrier: "set Us \(\subseteq\) carrier R" "set (Vs @ Bs) \(\subseteq\) carrier R"
using independent_in_carrier[0F Us(2)] independent_in_carrier[OF Vs(2)]
by auto
hence "Span K Us \(\cap(\) Span K (Vs @ Bs) ) \(\subseteq\) Span K Bs"
using Bs (4) Us(3) Vs(3) mono_Span_append(1) [OF _ Bs(1), of Us] by
auto
hence "Span K Us \(\cap(\) Span K (Vs @ Bs) ) \(\subseteq\{0\) \}"
using independent_split(3) [OF Us(2)] by blast
hence "Span K Us \(\cap(\operatorname{Span} K(V s @ B s))=\{0\) \}"
using in_carrier[THEN Span_subgroup_props(2)] by auto
hence dim: "dimension ( \(n+m-k\) ) K (Span K (Us @ (Vs @ Bs)))" using independent_append[OF independent_split(2) [OF Us(2)] Vs(2)]
Us(1) Vs(1) Bs(2)
dimension_independent[of K "Us @ (Vs @ Bs)"] by auto
have " (Span K Us) \(\left.<+\rangle_{R} F \subseteq E<+\right\rangle_{R} F\) "
using mono_Span_append(1) [OF in_carrier(1) Bs(1)] Us(3) unfolding
set_add_def' by auto
moreover have "E <+> \(R_{R}\) F (Span K Us) <+> \(R_{R}\) F"
proof
fix \(v\) assume \(" v \in E<+\rangle_{R} F "\)
then obtain \(u\) ' \(v\) ' where \(v: ~ " u ' \in E " ~ " v ' \in F " ~ " v=u \prime \oplus v^{\prime} "\)
unfolding set_add_def' by auto
then obtain u1' u2' where u1': "u1' \(\in \operatorname{Span} K\) Us" and \(u 2\) ': "u2' \(\in\)

Span K Bs" and u': "u' = u1' \(\oplus\) u2'"
using Span_append_eq_set_add [OF in_carrier(1) Bs(1)] Us(3) unfold-
ing set_add_def' by blast
have "v = u1' \(\oplus\left(u 2\right.\) ' \(\left.\oplus \mathrm{v}^{\prime}\right)\) "
using Span_subgroup_props(1) [OF Bs(1)] Span_subgroup_props(1) [OF in_carrier(1)]
space_subgroup_props(1) [0F assms(2)] u' v u1' u2' a_assoc [of
u1' u2' v'] by auto
moreover have "u2' \(\oplus\) v' \(\in\) F"
using space_subgroup_props(3) [OF assms(2) _ v(2)] u2' Bs(4) by auto
ultimately show "v \(\in\) (Span K Us) <+> \({ }_{R}\) F"
using u1' unfolding set_add_def' by auto
qed
ultimately have "Span K (Us @ (Vs @ Bs)) = E <+> \({ }_{R}\) F"
using Span_append_eq_set_add[OF in_carrier] Vs(3) by auto
thus ?thesis using dim by simp
qed
end
end
lemma (in ring) telescopic_base_aux:
assumes "subfield K R" "subfield F R"
and "dimension n K F" and "dimension 1 F E"
shows "dimension n K E"
proof -
obtain Us u
where Us: "set Us \(\subseteq\) carrier R" "length Us = n" "independent K Us"
"Span K Us = F"

using exists_base[0F assms \((2,4)]\) exists_base[0F assms \((1,3)]\) independent_backwards (3)
assms (2)
by (metis One_nat_def length_O_conv length_Suc_conv)
have in_carrier: "set (map ( \(\lambda u^{\prime} . u^{\prime} \otimes u\) ) Us) \(\subseteq\) carrier R"
using Us(1) u(1) by (induct Us) (auto)
have li: "independent \(K\left(m a p\left(\lambda u^{\prime} . u^{\prime} \otimes u\right) U s\right) "\)
proof (rule trivial_combine_imp_independent[0F assms(1) in_carrier])
fix Ks assume Ks: "set \(\mathrm{Ks} \subseteq \mathrm{K}\) " and "combine Ks (map ( \(\lambda \mathrm{u}\) '. u ' \(\otimes \mathrm{u}\) )
Us) = \(0 "\)
hence "(combine Ks Us) \(\otimes \mathrm{u}=0\) "
using combine_l_distr [OF _ Us(1) u(1)] subring_props(1) [OF assms(1)]
by auto
hence "combine [ combine Ks Us ] [ u ] = 0" by simp
```

 moreover have "combine Ks Us \in F"
 using Us(4) Ks(1) Span_eq_combine_set[OF assms(1) Us(1)] by auto
 ultimately have "combine Ks Us = 0"
 using independent_imp_trivial_combine[OF assms(2) u(2), of "[combine
 Ks Us ["] by auto
hence "set (take (length Us) Ks) \subseteq { 0 }"
using independent_imp_trivial_combine[OF assms(1) Us(3) Ks(1)] by
simp
thus "set (take (length (map (}\lambda\textrm{u},\cdot\mp@code{u' \otimes u) Us)) Ks) \subseteq { 0 }" by simp
qed
have "E\subseteq Span K(map (}\lambda\textrm{u},\cdot\mp@code{u' \otimes u) Us)"
proof
fix v assume "v \in E"
then obtain f where f: "f \in F" "v = f \otimes u ¢ 0"
using u(1,3) line_extension_mem_iff by auto
then obtain Ks where Ks: "set Ks \subseteq K" "f = combine Ks Us"
using Span_eq_combine_set[OF assms(1) Us(1)] Us(4) by auto
have "v = f \otimes u"
using subring_props(1)[OF assms(2)] f u(1) by auto
hence "v = combine Ks (map (}\lambda\textrm{u},.\mp@code{u' \otimes u) Us)"
using combine_l_distr[OF _ Us(1) u(1), of Ks] Ks(1-2)
subring_props(1) [OF assms(1)] by blast
thus "v \in Span K (map (}\lambda\textrm{u},.\mp@code{u}|\mp@code{u})\textrm{Us})
unfolding Span_eq_combine_set[OF assms(1) in_carrier] using Ks(1)
by blast
qed
moreover have "Span K (map (}\lambda\textrm{u}'. . u' \otimes u) Us) \subseteq E"
proof
fix v assume "v \in Span K (map (}\lambda\mathrm{ ''. u' @ u) Us)"
then obtain Ks where Ks: "set Ks \subseteq K" "v = combine Ks (map (\lambdau'.
u' \otimes u) Us)"
unfolding Span_eq_combine_set[OF assms(1) in_carrier] by blast
hence "v = (combine Ks Us) \& u"
using combine_l_distr[OF _ Us(1) u(1), of Ks] subring_props(1)[OF
assms(1)] by auto
moreover have "combine Ks Us \in F"
using Us(4) Span_eq_combine_set[OF assms(1) Us(1)] Ks(1) by blast
ultimately have "v = (combine Ks Us) \otimes u \oplus 0" and "combine Ks Us
E F"
using subring_props(1) [OF assms(2)] u(1) by auto
thus "v \in E"
using u(3) line_extension_mem_iff by auto
qed
ultimately have "Span K (map (}\lambda\textrm{u},\textrm{l
thus ?thesis
using dimensionI[OF assms(1) li] Us(2) by simp
qed

```
```

lemma (in ring) telescopic_base:
assumes "subfield K R" "subfield F R"
and "dimension n K F" and "dimension m F E"
shows "dimension (n * m) K E"
using assms(4)
proof (induct m arbitrary: E)
case 0 thus ?case
using dimension_zero[OF assms(2)] zero_dim by auto
next
case (Suc m)
obtain Vs
where Vs: "set Vs \subseteq carrier R" "length Vs = Suc m" "independent F
Vs" "Span F Vs = E"
using exists_base[OF assms(2) Suc(2)] by blast
then obtain v Vs' where v: "Vs = v \# Vs'"
by (meson length_Suc_conv)
hence li: "independent F [v]" "independent F Vs'" and inter: "Span
F [v] \cap Span F Vs' = { 0 }"
using Vs(3) independent_split[OF assms(2), of "[v]" Vs'] by auto
have "dimension n K (Span F [v])"
using dimension_independent[OF li(1)] telescopic_base_aux[OF assms(1-3)]
by simp
moreover have "dimension (n * m) K (Span F Vs')"
using Suc(1) dimension_independent[OF li(2)] Vs(2) unfolding v by
auto
ultimately have "dimension (n * Suc m) K (Span F [v] <+>R Span F Vs')"
using dimension_direct_sum_space[OF assms(1) _ _ inter] by auto
thus "dimension (n * Suc m) K E"
using Span_append_eq_set_add[OF assms(2) li[THEN independent_in_carrier]]
Vs(4) v by auto
qed

```
context ring_hom_ring
begin
lemma combine_hom:
    "【 set Ks \(\subseteq\) carrier \(R\); set Us \(\subseteq\) carrier \(R \rrbracket \Longrightarrow\) combine (map h Ks) (map
h Us) = h (R.combine Ks Us)"
    by (induct Ks Us rule: R.combine.induct) (auto)
lemma line_extension_hom:
    assumes "K \(\subseteq\) carrier R" "a \(\in\) carrier R" "E \(\subseteq\) carrier R"
    shows "line_extension (h' K) (h a) (h'E) = h ' R.line_extension K
a E"
    using set_add_hom[OF homh R.r_coset_subset_G[OF assms(1-2)] assms (3)]
        coset_hom(2) [OF ring_hom_in_hom(1) [OF homh] assms(1-2)]
    unfolding R.line_extension_def S.line_extension_def
    by simp
```

lemma Span_hom:
assumes "K \subseteq carrier R" "set Us \subseteq carrier R"
shows "Span (h ' K) (map h Us) = h ' R.Span K Us"
using assms line_extension_hom R.Span_in_carrier by (induct Us) (auto)
lemma inj_on_subgroup_iff_trivial_ker:
assumes "subgroup H (add_monoid R)"
shows "inj_on h H \longleftrightarrow a_kernel (R | carrier := H D) S h = { 0 }"
using group_hom.inj_on_subgroup_iff_trivial_ker[OF a_group_hom assms]
unfolding a_kernel_def[of "R (carrier := H D" S h] by simp
corollary inj_on_Span_iff_trivial_ker:
assumes "subfield K R" "set Us \subseteq carrier R"
shows "inj_on h (R.Span K Us) \longleftrightarrow a_kernel (R | carrier := R.Span K
Us \) S h = { 0 }"
using inj_on_subgroup_iff_trivial_ker[OF R.Span_is_add_subgroup[OF assms]]
context
fixes K :: "'a set" assumes K: "subfield K R" and one_zero: "1S f= 0S"
begin
lemma inj_hom_preserves_independent:
assumes "inj_on h (R.Span K Us)"
and "R.independent K Us" shows "independent (h ' K) (map h Us)"
proof (rule ccontr)
have in_carrier: "set Us \subseteq carrier R" "set (map h Us) \subseteq carrier S"
using R.independent_in_carrier[OF assms(2)] by auto
assume ld: "dependent (h ' K) (map h Us)"
obtain Ks :: "'c list"
where Ks: "length Ks = length Us" "combine Ks (map h Us) = 0S" "set
Ks \subseteqh ' K" "set Ks }\not={\mp@subsup{|}{\textrm{S}}{\prime}}
using dependent_imp_non_trivial_combine[OF img_is_subfield(2) [OF K
one_zero] in_carrier(2) ld]
by (metis length_map)
obtain Ks' where Ks': "set Ks' \subseteq K" "Ks = map h Ks'"
using Ks(3) by (induct Ks) (auto, metis insert_subset list.simps(15,9))
hence "h (R.combine Ks' Us) = 0}\mp@subsup{\mathbf{S}}{\textrm{S}}{
using combine_hom[OF _ in_carrier(1)] Ks(2) subfieldE(3) [OF K] by
(metis subset_trans)
moreover have "R.combine Ks' Us \in R.Span K Us"
using R.Span_eq_combine_set[OF K in_carrier(1)] Ks'(1) by auto
ultimately have "R.combine Ks' Us = 0"
using assms hom_zero R.Span_subgroup_props(2) [OF K in_carrier(1)]
by (auto simp add: inj_on_def)
hence "set Ks' \subseteq { 0 }"

```
using R.independent_imp_trivial_combine[OF K assms(2)] Ks' Ks(1) by (metis length_map order_refl take_all)
hence "set \(K s \subseteq\left\{0_{S}\right\}\) "
unfolding Ks' using hom_zero by (induct Ks') (auto)
hence "Ks = []"
using Ks(4) by (metis set_empty2 subset_singletonD)
hence "independent (h ' K) (map h Us)"
using independent.li_Nil Ks(1) by simp
from <dependent (h ' K) (map \(h\) Us) > and this show False by simp qed
corollary inj_hom_dimension:
assumes "inj_on h E"
and "R.dimension n K E" shows "dimension n ( h ‘ K) (h ' E)"
proof -
obtain Us
where Us: "set Us \(\subseteq\) carrier R" "R.independent K Us" "length Us =
n" "R.Span K Us = E"
using R.exists_base[0F K assms(2)] by blast
hence "dimension \(n\) ( \(h\) ' K) (Span (h ' K) (map h Us))"
using dimension_independent[0F inj_hom_preserves_independent[0F _
Us(2)]] assms(1) by auto
thus ?thesis
using Span_hom[OF subfieldE(3) [OF K] Us(1)] Us (4) by simp
qed
corollary rank_nullity_theorem:
assumes "R.dimension n K E" and "R.dimension m K (a_kernel (R ( carrier := E D) S h)"
shows "dimension ( \(n-m\) ) (h ' K) (h' E)"
proof -
obtain Us
where Us: "set Us \(\subseteq\) carrier R" "R.independent K Us" "length Us =
m"
"R.Span K Us = a_kernel (R ( carrier := E D) S h"
using R.exists_base[OF K assms(2)] by blast
obtain Vs
where Vs: "R.independent K (Vs @ Us)" "length (Vs @ Us) = n" "R.Span
K (Vs @ Us) = E"
using R.complete_base[OF K assms(1) Us(2)] R.Span_base_incl[OF K Us(1)]
Us (4)
unfolding a_kernel_def' by auto
have set_Vs: "set Vs \(\subseteq\) carrier R"
using R.independent_in_carrier[0F Vs(1)] by auto
have "R.Span K Vs \(\cap\) a_kernel ( R ( carrier : \(=\mathrm{E}\) D) S h = \{ 0 \}"
using R.independent_split[0F K Vs(1)] Us(4) by simp
moreover have "R.Span \(K\) Vs \(\subseteq E\) "
using R.mono_Span_append(1) [OF K set_Vs Us(1)] Vs(3) by auto
ultimately have "a_kernel (R | carrier := R.Span K Vs D) S h \(\subseteq\left\{\begin{array}{l}\text { ( \}" }\end{array}\right.\)
unfolding a_kernel_def' by (simp del: R.Span.simps, blast)
hence "a_kernel ( R ( carrier := R.Span K Vs D) S h = \{ 0 \}"
using R.Span_subgroup_props(2) [OF K set_Vs]
unfolding a_kernel_def' by (auto simp del: R.Span.simps)
hence "inj_on h (R.Span K Vs)"
using inj_on_Span_iff_trivial_ker[OF K set_Vs] by simp
moreover have "R.dimension ( \(n-m\) ) K (R.Span K Vs)"
using R.dimension_independent[OF R.independent_split(2) [OF K Vs(1)]]
Vs(2) Us(3) by auto
ultimately have "dimension ( \(n-m\) ) (h ' K) (h ' (R.Span K Vs))" using assms(1) inj_hom_dimension by simp
have "h' \(E=h\) ' (R.Span K Vs <+> \({ }_{R}\) R.Span K Us)"
using R.Span_append_eq_set_add[0F K set_Vs Us(1)] Vs(3) by simp
hence "h ' \(\mathrm{E}=\mathrm{h}\) ' (R.Span K Vs) <+> \(\mathrm{S}_{\mathrm{h}}\) ' (R.Span K Us)"
using R.Span_subgroup_props(1) [OF K] set_Vs Us(1) set_add_hom[OF homh]
by auto
moreover have "h ' (R.Span K Us) = \{ \(\left.0_{S}\right\}\) "
using R.space_subgroup_props(2) [OF K assms(1)] unfolding Us(4) a_kernel_def,
by force
ultimately have " h ' \(\mathrm{E}=\mathrm{h}\) ' (R.Span K Vs) <+> \(\mathrm{S}_{\mathrm{S}}\left\{\mathbf{0}_{\mathrm{S}}\right\}\) "
by simp
hence "h ' \(\mathrm{E}=\mathrm{h}\) ' (R.Span K Vs)"
using R.Span_subgroup_props(1-2) [OF K set_Vs] unfolding set_add_def'
by force
from <dimension ( \(n-m\) ) (h ' K) (h ' (R.Span K Vs)) > and this show
?thesis by simp
qed
end
end
```

lemma (in ring_hom_ring)
assumes "subfield K R" and "set Us \subseteq carrier R" and "1 1S f 0 0
and "independent (h ' K) (map h Us)" shows "R.independent K Us"
proof (rule ccontr)
assume "R.dependent K Us"
then obtain Ks
where "length Ks = length Us" and "R.combine Ks Us = 0" and "set
Ks \subseteqK" and "set Ks \not= { 0 }"
using R.dependent_imp_non_trivial_combine[OF assms(1-2)] by metis
hence "combine (map h Ks) (map h Us) = 0S"
using combine_hom[OF _ assms(2), of Ks] subfieldE(3)[OF assms(1)]
by simp
moreover from <set Ks \subseteq K> have "set (map h Ks) \subseteq h ' K"
by (induction Ks) (auto)
moreover have "\neg set (map h Ks) \subseteq { h 0 }"

```
```

 proof (rule ccontr)
 assume "\neg \neg set (map h Ks) \subseteq{ h 0 }" then have "set (map h Ks)
 \subseteq{h 0 }"
by simp
moreover from <R.dependent K Us> and <length Ks = length Us> have
"Ks \not= []"
by auto
ultimately have "set (map h Ks) = { h 0 }"
using subset_singletonD by fastforce
with <set Ks \subseteqK> have "set Ks = { 0 }"
using inj_onD[OF _ _ _ subringE(2)[OF subfieldE(1)[OF assms(1)]],
of h]
img_is_subfield(1)[OF assms(1,3)] subset_singletonD
by (induction Ks) (auto simp add: subset_singletonD, fastforce)
with <set Ks \not= { 0 }> show False
by simp
qed
with <length Ks = length Us> have "\neg set (take (length (map h Us))
(map h Ks)) \subseteq{ h 0 }"
by auto
ultimately have "dependent (h ' K) (map h Us)"
using non_trivial_combine_imp_dependent[OF img_is_subfield(2) [OF assms(1,3)],
of "map h Ks"] by simp
with <independent (h ' K) (map h Us)> show False
by simp
qed

```

\subsection*{38.9 Finite Dimension}
```

definition (in ring) finite_dimension :: "'a set }=>\mathrm{ ' 'a set }=>\mathrm{ b bool"

```
    where "finite_dimension \(K E \longleftrightarrow(\exists \mathrm{n}\). dimension \(\mathrm{n} K \mathrm{E})\) "
abbreviation (in ring) infinite_dimension :: "'a set \(\Rightarrow\) 'a set \(\Rightarrow\) bool"
    where "infinite_dimension K \(\bar{E} \equiv \neg\) finite_dimension K E"
definition (in ring) dim :: "'a set \(\Rightarrow\) 'a set \(\Rightarrow\) nat"
    where \(" \operatorname{dim} K E=(T H E n\). dimension \(n K E) "\)
locale subalgebra \(=\) subgroup \(V\) "add_monoid \(R\) " for \(K\) and \(V\) and \(R\) (structure)
\(+\)
    assumes smult_closed: " \(\llbracket \mathrm{k} \in \mathrm{K} ; \mathrm{v} \in \mathrm{V} \rrbracket \Longrightarrow \mathrm{k} \otimes \mathrm{v} \in \mathrm{V} "\)

\subsection*{38.9.1 Basic Properties}
lemma (in ring) unique_dimension:
assumes "subfield K R" and "finite_dimension K E" shows " \(\exists\) !n. dimension
n K E"
using assms(2) dimension_is_inj[0F assms(1)] unfolding finite_dimension_def by auto
```

lemma (in ring) finite_dimensionI:
assumes "dimension n K E" shows "finite_dimension K E"
using assms unfolding finite_dimension_def by auto
lemma (in ring) finite_dimensionE:
assumes "subfield K R" and "finite_dimension K E" shows "dimension
((dim over K) E) K E"
using theI'[OF unique_dimension[OF assms]] unfolding over_def dim_def
by simp
lemma (in ring) dimI:
assumes "subfield K R" and "dimension n K E" shows "(dim over K) E
= n"
using finite_dimensionE[OF assms(1) finite_dimensionI] dimension_is_inj[OF
assms(1)] assms(2)
unfolding over_def dim_def by auto
lemma (in ring) finite_dimensionE' [elim]:
assumes "finite_dimension K E" and "\n. dimension n K E \Longrightarrow P" shows
P
using assms unfolding finite_dimension_def by auto
lemma (in ring) Span_finite_dimension:
assumes "subfield K R" and "set Us \subseteq carrier R"
shows "finite_dimension K (Span K Us)"
using filter_base[OF assms] finite_dimensionI[OF dimension_independent[of
K]] by metis
lemma (in ring) carrier_is_subalgebra:
assumes "K\subseteq carrier R" shows "subalgebra K (carrier R) R"
using assms subalgebra.intro[OF add.group_incl_imp_subgroup[of "carrier
R"], of K] add.group_axioms
unfolding subalgebra_axioms_def by auto
lemma (in ring) subalgebra_in_carrier:
assumes "subalgebra K V R" shows "V \subseteq carrier R"
using subgroup.subset[OF subalgebra.axioms(1) [OF assms]] by simp
lemma (in ring) subalgebra_inter:
assumes "subalgebra K V R" and "subalgebra K V' R" shows "subalgebra
K (V \cap V') R"
using add.subgroups_Inter_pair assms unfolding subalgebra_def subalgebra_axioms_def
by auto
lemma (in ring_hom_ring) img_is_subalgebra:
assumes "K \subseteq carrier R" and "subalgebra K V R" shows "subalgebra (h
' K) (h ' V) S"
proof (intro subalgebra.intro)
have "group_hom (add_monoid R) (add_monoid S) h"

```
using ring_hom_in_hom(2) [0F homh] R.add.group_axioms add.group_axioms unfolding group_hom_def group_hom_axioms_def by auto
thus "subgroup (h ' V) (add_monoid S)"
using group_hom.subgroup_img_is_subgroup[0F _ subalgebra.axioms(1) [0F assms(2)]] by force
next
show "subalgebra_axioms (h ' K) (h ' V) S"
using R.subalgebra_in_carrier [OF assms(2)] subalgebra.axioms(2) [OF
assms(2)] assms(1)
unfolding subalgebra_axioms_def
by (auto, metis hom_mult image_eqI subset_iff)
qed
lemma (in ring) ideal_is_subalgebra:
assumes "K \(\subseteq\) carrier \(R\) " "ideal I R" shows "subalgebra K I R"
using ideal.axioms(1) [OF assms(2)] ideal.I_l_closed[0F assms(2)] assms(1)
unfolding subalgebra_def subalgebra_axioms_def additive_subgroup_def
by auto
lemma (in ring) Span_is_subalgebra:
assumes "subfield K R" "set Us \(\subseteq\) carrier R" shows "subalgebra K (Span K Us) R"
using Span_smult_closed[OF assms] Span_is_add_subgroup [OF assms]
unfolding subalgebra_def subalgebra_axioms_def by auto
lemma (in ring) finite_dimension_imp_subalgebra:
assumes "subfield K R" "finite_dimension K E" shows "subalgebra K E R"
using exists_base[OF assms(1) finite_dimensionE[OF assms]] Span_is_subalgebra[OF assms(1)] by auto
lemma (in ring) subalgebra_Span_incl:
assumes "subfield K R" and "subalgebra K V R" "set Us \(\subseteq\) V" shows "Span K Us \(\subseteq \mathrm{V}^{\prime \prime}\)
proof -
have "K <\#> (set Us) \(\subseteq\) V"
using subalgebra.smult_closed [0F assms(2)] assms(3) unfolding set_mult_def
by blast
moreover have "set Us \(\subseteq\) carrier R"
using subalgebra_in_carrier [OF assms(2)] assms(3) by auto
ultimately show ?thesis
using subalgebra.axioms(1) [OF assms(2)] Span_min[OF assms(1)] by blast
qed
lemma (in ring) Span_subalgebra_minimal:
assumes "subfield K R" "set Us \(\subseteq\) carrier R"
shows "Span \(K\) Us \(=\bigcap\) \{ V. subalgebra K V R \(\wedge\) set Us \(\subseteq\) V \}"
using Span_is_subalgebra[0F assms] Span_base_incl[0F assms] subalgebra_Span_incl[OF assms(1)]
```

 by blast
 lemma (in ring) Span_subalgebraI:
assumes "subfield K R"
and "subalgebra K E R" "set Us \subseteq E"
and "\V.\llbracket subalgebra K V R; set Us \subseteq V\rrbracket\Longrightarrow E\subseteqV"
shows "E = Span K Us"
proof -
have "\bigcap { V. subalgebra K V R ^ set Us \subseteq V } = E"
using assms(2-4) by auto
thus "E = Span K Us"
using Span_subalgebra_minimal subalgebra_in_carrier[of K E] assms
by auto
qed
lemma (in ring) subalbegra_incl_imp_finite_dimension:
assumes "subfield K R" and "finite_dimension K E"
and "subalgebra K V R" "V \subseteq E" shows "finite_dimension K V"
proof -
obtain n where n: "dimension n K E"
using assms(2) by auto
define S where "S = { Us. set Us \subseteq V ^ independent K Us }"
have "length ' S \subseteq{..n}"
unfolding S_def using independent_length_le_dimension[OF assms(1)
n] assms(4) by auto
moreover have "[] \in S"
unfolding S_def by simp
hence "length ' S \not= {}" by blast
ultimately obtain m where m: "m f length ' S" and greatest: " \k. k
length ' S C k \leq m'
by (meson Max_ge Max_in finite_atMost rev_finite_subset)
then obtain Us where Us: "set Us \subseteq V" "independent K Us" "m = length
Us"
unfolding S_def by auto
have "Span K Us = V"
proof (rule ccontr)
assume "\neg Span K Us = V" then have "Span K Us \subset V"
using subalgebra_Span_incl[OF assms(1,3) Us(1)] by blast
then obtain v where v:"v \in V" "v \& Span K Us"
by blast
hence "independent K (v \# Us)"
using independent.li_Cons[OF _ _ Us(2)] subalgebra_in_carrier [OF
assms(3)] by auto
hence "(v \# Us) \in S"
unfolding S_def using Us(1) v(1) by auto
hence "length (v \# Us) \leq m"
using greatest by blast
moreover have "length (v \# Us) = Suc m"

```
```

 using Us(3) by auto
 ultimately show False by simp
 qed
 thus ?thesis
 using finite_dimensionI[OF dimension_independent[OF Us(2)]] by simp
 qed
lemma (in ring_hom_ring) infinite_dimension_hom:
assumes "subfield K R" and "1 1 \# = 0
K E R"
shows "R.infinite_dimension K E \Longrightarrow infinite_dimension (h ' K) (h '
E)"
proof -
note subfield = img_is_subfield(2)[0F assms(1-2)]
assume "R.infinite_dimension K E"
show "infinite_dimension (h ' K) (h ' E)"
proof (rule ccontr)
assume "\neg infinite_dimension (h ' K) (h ' E)"
then obtain Vs where "set Vs \subseteq carrier S" and "Span (h ' K) Vs =
h ' E"
using exists_base[OF subfield] by blast
hence "set Vs \subseteqh ' E"
using Span_base_incl[OF subfield] by blast
hence "\existsUs. set Us \subseteqE ^ Vs = map h Us"
by (induct Vs) (auto, metis insert_subset list.simps(9,15))
then obtain Us where "set Us \subseteq E" and "Vs = map h Us"
by blast
with have "h ' (R.Span K Us) = h ' E"
using R.subalgebra_in_carrier [OF assms(4)] Span_hom assms(1) by
auto
moreover from <set Us \subseteqE> have "R.Span K Us \subseteqE"
using R.subalgebra_Span_incl assms(1-4) by blast
ultimately have "R.Span K Us = E"
proof (auto simp del: R.Span.simps)
fix a assume "a \in E"
with <h ' (R.Span K Us) = h ' E> obtain b where "b \in R.Span K
Us" and "h a = h b"
by auto
with <R.Span K Us \subseteqE> and <a \in E> have "a = b"
using inj_onD[OF assms(3)] by auto
with <b \in R.Span K Us> show "a \in R.Span K Us"
by simp
qed
with <set Us \subseteqE> have "R.finite_dimension K E"
using R.Span_finite_dimension[OF assms(1)] R.subalgebra_in_carrier[OF
assms(4)] by auto
with <R.infinite_dimension K E> show False
by simp

```
qed
qed
38.9.2 Reformulation of some lemmas in this new language.
```

lemma (in ring) sum_space_dim:
assumes "subfield K R" "finite_dimension K E" "finite_dimension K F"
shows "finite_dimension K (E <+> R F)"
and "((dim over K) (E <+> R F)) = ((dim over K) E) + ((dim over K)
F) - ((dim over K) (E \cap F))"
proof -
obtain n m k where n: "dimension n K E" and m: "dimension m K F" and
k: "dimension k K (E \cap F)"
using assms(2-3) subalbegra_incl_imp_finite_dimension[OF assms(1-2)
subalgebra_inter[OF assms(2-3) [THEN finite_dimension_imp_subalgebra[OF
assms(1)]]J]

```
            by (meson inf_le1 finite_dimension_def)
    hence "dimension ( \(n+m-k\) ) K (E <+> \(R_{R}\) F)"
            using dimension_sum_space[0F assms(1)] by simp
    thus "finite_dimension \(\left.K(E \quad<+\rangle_{R} F\right) "\)
    and " ((dim over K) (E <+> R F) ) = ((dim over K) E) + ((dim over K) F)
- ((dim over K) (E \(\cap \mathrm{F}))\) "
            using finite_dimensionI dimI[0F assms(1)] nm k by auto
qed
lemma (in ring) telescopic_base_dim:
    assumes "subfield K R" "subfield F R" and "finite_dimension K F" and
"finite_dimension F E"
    shows "finite_dimension K E" and "(dim over K) E = ((dim over K) F)
* ((dim over F) E)"
    using telescopic_base[0F assms(1-2)
                finite_dimensionE[OF assms \((1,3)]\)
                finite_dimensionE[OF assms \((2,4)]]\)
            dimI[0F assms(1)] finite_dimensionI
    by auto
end
theory Solvable_Groups
imports Generated_Groups
begin

\section*{39 Solvable Groups}

\subsection*{39.1 Definitions}
inductive solvable_seq :: "('a, 'b) monoid_scheme \(\Rightarrow\) 'a set \(\Rightarrow\) bool"
```

 for G where
 unity: "solvable_seq G { 1 1G }"
 | extension: "【 solvable_seq G K; K \triangleleft (G | carrier := H D); subgroup
 H G;
G H"
definition solvable :: "('a, 'b) monoid_scheme => bool"
where "solvable G \longleftrightarrow solvable_seq G (carrier G)"

```

\subsection*{39.2 Solvable Groups and Derived Subgroups}

We show that a group G is solvable iff the subgroup (derived G ' n ) (carrier G ) is trivial for a sufficiently large n .
lemma (in group) solvable_imp_subgroup:
assumes "solvable_seq G H" shows "subgroup H G"
using assms normal.axioms(1) [0F one_is_normal] by (induction) (auto)
lemma (in group) augment_solvable_seq:
assumes "subgroup H G" and "solvable_seq G (derived G H)" shows "solvable_seq
G H"
using extension[OF _ derived_subgroup_is_normal _ derived_quot_of_subgroup_is_comm_group]
assms by simp
theorem (in group) trivial_derived_seq_imp_solvable:
assumes "subgroup H G" and "((derived G) ~n n H = \{ 1 \}" shows "solvable_seq
G H"
using assms
proof (induct n arbitrary: H, simp add: unity[of G])
case (Suc n) thus ?case
using augment_solvable_seq derived_is_subgroup [OF subgroup.subset]
by (simp add: funpow_swap1)
qed
theorem (in group) solvable_imp_trivial_derived_seq:
assumes "solvable_seq G H" shows " \(\exists \mathrm{n}\). (derived G \({ }^{-\sim} \mathrm{n}\) ) H = \{ 1 \}"
using assms
proof (induction)
case unity
have "(derived G - 0) \{ 1 \} = \{ 1 \}"
by simp
thus ?case by blast
next
case (extension K H)
obtain \(n\) where "(derived G "- n) K = \{ 1 \}"
using solvable_imp_subgroup extension \((1,5)\) by auto
hence " (derived G " (Suc n)) H \(\subseteq\{1\} "\)
using mono_exp_of_derived[OF derived_of_subgroup_minimal [OF extension(2-4)],
of n] by (simp add: funpow_swap1)
```

 moreover have "{ 1 } \subseteq(derived G "~ (Suc n)) H"
 using subgroup.one_closed[OF exp_of_derived_is_subgroup[OF extension(3)],
 of "Suc n"] by auto
ultimately show ?case
by blast
qed
theorem (in group) solvable_iff_trivial_derived_seq:
"solvable G \longleftrightarrow (
using solvable_imp_trivial_derived_seq subgroup_self trivial_derived_seq_imp_solvable
by (auto simp add: solvable_def)
corollary (in group) solvable_subgroup:
assumes "subgroup H G" and "solvable G" shows "solvable_seq G H"
proof -
obtain n where n: "(derived G ~n n) (carrier G) = { 1 }"
using assms(2) solvable_imp_trivial_derived_seq by (auto simp add:
solvable_def)
show ?thesis
proof (rule trivial_derived_seq_imp_solvable[OF assms(1), of n])
show "(derived G ~ n) H = { 1 }"
using subgroup.one_closed[OF exp_of_derived_is_subgroup[OF assms(1)],
of n]
mono_exp_of_derived[OF subgroup.subset [OF assms(1)], of n]
n
by auto
qed
qed

```

\subsection*{39.3 Short Exact Sequences}

Even if we don't talk about short exact sequences explicitly, we show that given an injective homomorphism from a group \(H\) to a group G, if H isn't solvable the group G isn't neither.
theorem (in group_hom) solvable_img_imp_solvable:
assumes "subgroup K G" and "inj_on h K" and "solvable_seq H (h ' K)"
shows "solvable_seq G K"
proof -
obtain \(n\) where " (derived \(H \cdots n\) ) (h \(\left.\mathrm{h}^{\prime} \mathrm{K}\right)=\left\{\mathbf{1}_{\mathrm{H}}\right\}\) "
using solvable_imp_trivial_derived_seq assms (1,3) by auto
hence "h ' ((derived G \(n\) ) \(K\) ) \(=\left\{1_{H}\right\}\) "
unfolding exp_of_derived_img[OF subgroup.subset[OF assms(1)]].
moreover have " (derived \(G\) n \(n\) ) \(K \subseteq K\) "
using G.mono_derived[of _ K] G.derived_incl[OF _ assms(1)] by (induct
n) (auto)
hence "inj_on h ((derived G n) K)"
using inj_on_subset[0F assms (2)] by blast
moreover have "\{1\} 1\(\}\) (derived \(G{ }^{\sim}\) ) \(K^{\prime \prime}\)
using subgroup.one_closed[OF G.exp_of_derived_is_subgroup[OF assms(1)]]
by blast
ultimately show ?thesis
using G.trivial_derived_seq_imp_solvable[0F assms(1), of n]
by (metis (no_types, lifting) hom_one image_empty image_insert inj_on_image_eq_iff
order_refl)
qed
corollary (in group_hom) inj_hom_imp_solvable:
assumes "inj_on h (carrier G)" and "solvable H" shows "solvable G"
using solvable_img_imp_solvable[OF _ assms(1)] G.subgroup_self
solvable_subgroup[OF subgroup_img_is_subgroup assms(2)]
unfolding solvable_def
by simp
theorem (in group_hom) solvable_imp_solvable_img:
assumes "solvable_seq G K" shows "solvable_seq H (h ' K)"
proof -
obtain n where "(derived \(\mathrm{G}^{\sim} \mathrm{n}\) ) \(\mathrm{K}=\{1\) \}"
using G.solvable_imp_trivial_derived_seq[OF assms] by blast
thus ?thesis
using trivial_derived_seq_imp_solvable[OF subgroup_img_is_subgroup,
of _ n]
exp_of_derived_img[OF subgroup.subset, of _ n] G.solvable_imp_subgroup [OF
assms]
by auto
qed
corollary (in group_hom) surj_hom_imp_solvable:
assumes "h carrier \(G=\) carrier \(H\) " and "solvable \(G\) " shows "solvable H"
using assms solvable_imp_solvable_img[of "carrier G"] unfolding solvable_def by simp
lemma solvable_seq_condition:
assumes "group_hom G H f" "group_hom H K g" and "f ' I \(\subseteq\) J" and "kernel
HKg \(\subseteq\) f ' I' and "subgroup J H" and "solvable_seq G I" "solvable_seq K (g ‘ J)"
shows "solvable_seq H J"
proof -
interpret \(G\) : group \(G+H\) : group \(H+K\) : group \(K+J\) : subgroup \(J H+I\) : subgroup I G using assms (1-2,5) group.solvable_imp_subgroup [0F _ assms(6)] un-
folding group_hom_def by auto
obtain \(n \mathrm{~m}\)
where n : "(derived \(\mathrm{G}^{-1} \mathrm{n}\) ) \(\mathrm{I}=\left\{\mathbf{1}_{\mathrm{G}}\right\}^{\prime \prime}\) and m : "(derived \(\mathrm{K}{ }^{-1} \mathrm{~m}\) ) ( g
' J) = \{ \(\left.1_{\mathrm{K}}\right\}^{\prime \prime}\)
using G.solvable_imp_trivial_derived_seq[OF assms(6)]

\section*{K.solvable_imp_trivial_derived_seq[0F assms (7)]}
by auto
have "(derived \(H^{\sim} m\) ) \(J \subseteq f\) ' \(I^{\prime \prime}\)
using m H.exp_of_derived_in_carrier[OF J.subset, of m] assms(4)
by (auto simp add: group_hom.exp_of_derived_img[0F assms(2) J.subset]
kernel_def)
 I)"
using \(n\) H.mono_exp_of_derived unfolding sym[OF group_hom.exp_of_derived_img[OF assms(1) I.subset, of \(n\) ]] by simp
hence "(derived \(\left.H^{\sim}(n+m)\right) J \subseteq\left\{1_{H}\right\} "\)
using group_hom.hom_one[OF assms(1)] unfolding \(n\) by (simp add: funpow_add)
moreover have \("\left\{1_{H} \overline{\}} \subseteq\right.\) (derived \(\left.H \cdots(n+m)\right)\) J"
using subgroup.one_closed[OF H.exp_of_derived_is_subgroup [OF assms(5), of "n + m"]] by blast
ultimately show ?thesis
using H.trivial_derived_seq_imp_solvable[OF assms(5)] by simp
qed
lemma solvable_condition:
assumes "group_hom G H f" "group_hom H K g"
and "g' (carrier H) = carrier K" and "kernel H K g \(\subseteq\) f ' (carrier
G) "
and "solvable G" "solvable K" shows "solvable H"
using solvable_seq_condition[0F assms(1-2) _ assms(4) group.subgroup_self]
assms (3,5-6)
subgroup.subset[OF group_hom.img_is_subgroup[OF assms(1)]] group_hom.axioms(2)[0F
assms(1)]
by (simp add: solvable_def)
end
```

theory Sym_Groups
imports
"HOL-Combinatorics.Cycles"
Solvable_Groups

```
begin

\section*{40 Symmetric Groups}

\subsection*{40.1 Definitions}
abbreviation inv' : : " ('a \(\Rightarrow\) ' \(b\) ) \(\Rightarrow\left(\prime b \Rightarrow{ }^{\prime} \mathrm{a}\right)\) "
where "inv' \(f \equiv\) Hilbert_Choice.inv f"
definition sym_group : : "nat \(\Rightarrow\) (nat \(\Rightarrow\) nat) monoid"
where "sym_group \(n=\) ( carrier \(=\{\mathrm{p} . \mathrm{p}\) permutes \{1..n\} \}, mult \(=(0)\), one = id |)"
```

definition alt_group :: "nat }=>\mathrm{ (nat }=>\mathrm{ nat) monoid"
where "alt_group n = (sym_group n) | carrier := { p. p permutes {1..n}
^ evenperm p } D"
definition sign_img :: "int monoid"
where "sign_img = (carrier = { -1, 1 }, mult = (*), one = 1)"

```

\subsection*{40.2 Basic Properties}
```

lemma sym_group_carrier: "p \in carrier (sym_group n) \longleftrightarrow p permutes {1..n}"
unfolding sym_group_def by simp
lemma sym_group_mult: "mult (sym_group n) = (o)"
unfolding sym_group_def by simp
lemma sym_group_one: "one (sym_group n) = id"
unfolding sym_group_def by simp
lemma sym_group_carrier': "p \in carrier (sym_group n) \Longrightarrow permutation
p"
unfolding sym_group_carrier permutation_permutes by auto
lemma alt_group_carrier: "p \in carrier (alt_group n) \longleftrightarrow p permutes {1..n}
^ evenperm p"
unfolding alt_group_def by auto
lemma alt_group_mult: "mult (alt_group n) = (o)"
unfolding alt_group_def using sym_group_mult by simp
lemma alt_group_one: "one (alt_group n) = id"
unfolding alt_group_def using sym_group_one by simp
lemma alt_group_carrier': "p \in carrier (alt_group n) \Longrightarrow permutation
p"
unfolding alt_group_carrier permutation_permutes by auto
lemma sym_group_is_group: "group (sym_group n)"
using permutes_inv permutes_inv_o(2)
by (auto intro!: groupI
simp add: sym_group_def permutes_compose
permutes_id comp_assoc, blast)
lemma sign_img_is_group: "group sign_img"
unfolding sign_img_def by (unfold_locales, auto simp add: Units_def)
lemma sym_group_inv_closed:
assumes "p \in carrier (sym_group n)" shows "inv' p \in carrier (sym_group
n)"

```
using assms permutes_inv sym_group_def by auto
lemma alt_group_inv_closed:
assumes "p \(\in\) carrier (alt_group n)" shows "inv' \(p \in\) carrier (alt_group n)"
using evenperm_inv[0F alt_group_carrier'] permutes_inv assms alt_group_carrier by auto
lemma sym_group_inv_equality [simp]:
assumes "p \(\in\) carrier (sym_group \(n\) )" shows "inv(sym_group n) \(p=\) inv'
p"
proof -
have "inv' \(p \circ p=i d "\)
using assms permutes_inv_o(2) sym_group_def by auto
hence "(inv' p) \(\otimes_{(\text {(sym_group n) }} \mathrm{p}=\) one (sym_group n)"
by (simp add: sym_group_def)
thus ?thesis using group.inv_equality [OF sym_group_is_group] by (simp add: assms sym_group_inv_closed)
qed
lemma sign_is_hom: "sign \(\in\) hom (sym_group n) sign_img"
unfolding hom_def sign_img_def sym_group_mult using sym_group_carrier'[of n]
by (auto simp add: sign_compose, meson sign_def)
lemma sign_group_hom: "group_hom (sym_group n) sign_img sign"
using group_hom.intro[0F sym_group_is_group sign_img_is_group] sign_is_hom
by (simp add: group_hom_axioms_def)
lemma sign_is_surj:
assumes " \(\mathrm{n} \geq 2\) " shows "sign ' (carrier (sym_group n)) = carrier sign_img"
proof -
have "swapidseq (Suc 0) (Fun.swap (1 : : nat) 2 id)"
using comp_Suc[OF id, of "1 :: nat" "2"] by auto
hence "sign (Fun.swap (1 :: nat) 2 id) = (-1 :: int)"
by (simp add: sign_swap_id)
moreover have "Fun.swap (1 : : nat) 2 id \(\in\) carrier (sym_group n)" and
"id \(\in\) carrier (sym_group n)"
using assms permutes_swap_id[of "1 :: nat" "\{1..n\}" 2] permutes_id
unfolding sym_group_carrier by auto
ultimately have "carrier sign_img \(\subseteq\) sign ' (carrier (sym_group n))"
using sign_id mk_disjoint_insert unfolding sign_img_def by fastforce
moreover have "sign ' (carrier (sym_group n)) \(\subseteq\) carrier sign_img"
using sign_is_hom unfolding hom_def by auto
ultimately show ?thesis
by blast
qed
lemma alt_group_is_sign_kernel:
```

 "carrier (alt_group n) = kernel (sym_group n) sign_img sign"
 unfolding alt_group_def sym_group_def sign_img_def kernel_def sign_def
 by auto
lemma alt_group_is_subgroup: "subgroup (carrier (alt_group n)) (sym_group
n)"
using group_hom.subgroup_kernel[OF sign_group_hom]
unfolding alt_group_is_sign_kernel by blast
lemma alt_group_is_group: "group (alt_group n)"
using group.subgroup_imp_group[OF sym_group_is_group alt_group_is_subgroup]
by (simp add: alt_group_def)

```
lemma sign_iso:
    assumes " \(\mathrm{n} \geq 2\) " shows " (sym_group n) Mod (carrier (alt_group n)) \(\cong\)
sign_img"
    using group_hom.FactGroup_iso[0F sign_group_hom sign_is_surj[0F assms]]
    unfolding alt_group_is_sign_kernel .
lemma alt_group_inv_equality:
    assumes "p \(\in\) carrier (alt_group n)" shows "inv(alt_group n) p = inv'
p"
proof -
    have "inv' p \(\circ p=i d "\)
            using assms permutes_inv_o(2) alt_group_def by auto
    hence "(inv' p) \(\otimes\) (alt_group n) \(p=\) one (alt_group n)"
            by (simp add: alt_group_def sym_group_def)
    thus ?thesis using group.inv_equality [OF alt_group_is_group]
        by (simp add: assms alt_group_inv_closed)
qed
lemma sym_group_card_carrier: "card (carrier (sym_group n)) = fact n"
    using card_permutations[of "\{1..n\}" n] unfolding sym_group_def by simp
lemma alt_group_card_carrier:
    assumes " \(\mathrm{n} \geq 2\) " shows " 2 * card (carrier (alt_group n)) = fact n"
proof -
    have "card (rcosetssym_group n (carrier (alt_group n))) = 2"
            using iso_same_card[OF sign_iso[OF assms]] unfolding FactGroup_def
sign_img_def by auto
    thus ?thesis
            using group.lagrange[OF sym_group_is_group alt_group_is_subgroup,
of \(n\) ]
            unfolding order_def sym_group_card_carrier by simp
qed

\subsection*{40.3 Transposition Sequences}

In order to prove that the Alternating Group can be generated by 3-cycles, we need a stronger decomposition of permutations as transposition sequences than the one proposed at Permutations.thy.
```

inductive swapidseq_ext :: "'a set }=>\mathrm{ nat }=>\mathrm{ ('a }=>\mathrm{ 'a) }=>\mathrm{ bool"
where
empty: "swapidseq_ext {} 0 id"
| single: "\llbracket swapidseq_ext S n p; a }\not=S|\Longrightarrow\mathrm{ swapidseq_ext (insert
a S) n p"
| comp: "\llbracketswapidseq_ext S n p; a f b \ \Longrightarrow
swapidseq_ext (insert a (insert b S)) (Suc n) ((transpose
a b) ○ p)"
lemma swapidseq_ext_finite:
assumes "swapidseq_ext S n p" shows "finite S"
using assms by (induction) (auto)
lemma swapidseq_ext_zero:
assumes "finite S" shows "swapidseq_ext S O id"
using assms empty by (induct set: "finite", fastforce, simp add: single)
lemma swapidseq_ext_imp_swapidseq:
<swapidseq n p> if <swapidseq_ext S n p>
using that proof induction
case empty
then show ?case
by (simp add: fun_eq_iff)
next
case (single S n p a)
then show ?case by simp
next
case (comp S n p a b)
then have <swapidseq (Suc n) (transpose a b o p) >
by (simp add: comp_Suc)
then show ?case by (simp add: comp_def)
qed
lemma swapidseq_ext_zero_imp_id:
assumes "swapidseq_ext S 0 p" shows "p = id"
proof -
have "\llbracket swapidseq_ext S n p; n = 0 \ \Longrightarrow p = id" for n
by (induction rule: swapidseq_ext.induct, auto)
thus ?thesis
using assms by simp
qed
lemma swapidseq_ext_finite_expansion:

```
```

 assumes "finite B" and "swapidseq_ext A n p" shows "swapidseq_ext
 (A \cup B) n p"
using assms
proof (induct set: "finite", simp)
case (insert b B) show ?case
using insert single[OF insert(3), of b] by (metis Un_insert_right
insert_absorb)
qed
lemma swapidseq_ext_backwards:
assumes "swapidseq_ext A (Suc n) p"
shows "\existsa b A' p'. a }=\textrm{b}\wedge\textrm{A}=(\mathrm{ (insert a (insert b A')) ^
swapidseq_ext A' n p' ^ p = (transpose a b) ○ p'"
proof -
{ fix A n k and p :: "'a \# 'a"
assume "swapidseq_ext A n p" "n = Suc k"
hence "\existsa b A' p'. a }\not=\textrm{b}\wedge\wedge\textrm{A}=\mathrm{ (insert a (insert b A')) ^
swapidseq_ext A' k p' ^ p = (transpose a b) ○ p'"
proof (induction, simp)
case single thus ?case
by (metis Un_insert_right insert_iff insert_is_Un swapidseq_ext.single)
next
case comp thus ?case
by blast
qed }
thus ?thesis
using assms by simp
qed
lemma swapidseq_ext_backwards':
assumes "swapidseq_ext A (Suc n) p"
shows "\existsa b A' p'. a }\in\textrm{A}\wedge b \in A ^ a f= b ^ swapidseq_ext A n p' ^
p = (transpose a b) ○ p'"
using swapidseq_ext_backwards[OF assms] swapidseq_ext_finite_expansion
by (metis Un_insert_left assms insertI1 sup.idem sup_commute swapidseq_ext_finite)
lemma swapidseq_ext_endswap:
assumes "swapidseq_ext S n p" "a f= b"
shows "swapidseq_ext (insert a (insert b S)) (Suc n) (p o (transpose
a b))"
using assms
proof (induction n arbitrary: S p a b)
case 0 hence "p = id"
using swapidseq_ext_zero_imp_id by blast
thus ?case
using O by (metis comp_id id_comp swapidseq_ext.comp)
next
case (Suc n)
then obtain c d S' and p' :: "'a \# 'a"

```
```

 where cd: "c f= d" and S: "S = (insert c (insert d S'))" "swapidseq_ext
 S' n p'"
and p: "p = transpose c d o p'"
using swapidseq_ext_backwards[OF Suc(2)] by blast
hence "swapidseq_ext (insert a (insert b S')) (Suc n) (p' o (transpose
a b))"
by (simp add: Suc.IH Suc.prems(2))
hence "swapidseq_ext (insert c (insert d (insert a (insert b S'))))
(Suc (Suc n))
(transpose c d o p' o (transpose a b))"
by (metis cd fun.map_comp swapidseq_ext.comp)
thus ?case
by (metis S(1) p insert_commute)
qed
lemma swapidseq_ext_extension:
assumes "swapidseq_ext A n p" and "swapidseq_ext B m q" and "A \cap B
= {}"
shows "swapidseq_ext (A \cup B) (n + m) (p o q)"
using assms (1,3)
proof (induction, simp add: assms(2))
case single show ?case
using swapidseq_ext.single[OF single(3)] single(2,4) by auto
next
case comp show ?case
using swapidseq_ext.comp[OF comp (3,2)] comp(4)
by (metis Un_insert_left add_Suc insert_disjoint(1) o_assoc)
qed
lemma swapidseq_ext_of_cycles:
assumes "cycle cs" shows "swapidseq_ext (set cs) (length cs - 1) (cycle_of_list
cs)"
using assms
proof (induct cs rule: cycle_of_list.induct)
case (1 i j cs) show ?case
using comp[OF 1(1), of i j] 1(2) by (simp add: o_def)
next
case "2_1" show ?case
by (simp, metis eq_id_iff empty)
next
case ("2_2" v) show ?case
using single[OF empty, of v] by (simp, metis eq_id_iff)
qed
lemma cycle_decomp_imp_swapidseq_ext:
assumes "cycle_decomp S p" shows "\existsn. swapidseq_ext S n p"
using assms
proof (induction)
case empty show ?case

```
using swapidseq_ext.empty by blast
next
case (comp I p cs)
then obtain \(m\) where \(m\) : "swapidseq_ext I m p" by blast
hence "swapidseq_ext (set cs) (length cs - 1) (cycle_of_list cs)" using comp.hyps(2) swapidseq_ext_of_cycles by blast
thus ?case using swapidseq_ext_extension \(m\) using comp.hyps(3) by blast
qed
lemma swapidseq_ext_of_permutation:
assumes "p permutes \(S\) " and "finite S " shows \(" \exists \mathrm{n}\). swapidseq_ext S n p"
using cycle_decomp_imp_swapidseq_ext[0F cycle_decomposition[OF assms]]
lemma split_swapidseq_ext:
assumes " \(\mathrm{k} \leq \mathrm{n}\) " and "swapidseq_ext S n p "
obtains q r U V where "swapidseq_ext U (n - k) q" and "swapidseq_ext
V k r" and "p = q ○ r" and "U U V = S"
proof -
from assms
have \(\because \exists \mathrm{q}\) r U V. swapidseq_ext \(\mathrm{U}(\mathrm{n}-\mathrm{k}) \mathrm{q} \wedge\) swapidseq_ext Vkr\(\wedge \mathrm{p}\)
\(=q \circ r \wedge U \cup V=S "\) (is "ヨq r U V. ?split k q r U V")
proof (induct k rule: inc_induct)
case base thus ?case
by (metis diff_self_eq_0 id_o sup_bot.left_neutral empty)
next
case (step m)
then obtain q r U V
where q: "swapidseq_ext \(U\) ( \(n-S u c m\) ) q" and r: "swapidseq_ext
V (Suc m) r"
and \(p: ~ " p=q \circ r "\) and \(S: ~ " U \cup V=S "\)
by blast
obtain a b r' V'
where "a \(\neq \mathrm{b}\) " and r ': "V = (insert a (insert b V'))" "swapidseq_ext
V' m r'" "r = (transpose a b) o r'"
using swapidseq_ext_backwards [OF r] by blast
have "swapidseq_ext (insert a (insert b U)) ( \(n\) - m) (q \(\circ\) (transpose a b))"
using swapidseq_ext_endswap[0F q <a \(\neq \mathrm{b}>\) ] step(2) by (metis Suc_diff_Suc)
hence "?split m (q o (transpose a b)) r' (insert a (insert b U)) V'"
using \(r\) ' \(S\) unfolding \(p\) by fastforce
thus ?case by blast
qed
thus ?thesis
using that by blast
qed

\subsection*{40.4 Unsolvability of Symmetric Groups}

We show that symmetric groups (sym_group n) are unsolvable for (5::'a) \(\leq \mathrm{n}\).
abbreviation three_cycles :: "nat \(\Rightarrow\) (nat \(\Rightarrow\) nat) set"
where "three_cycles \(\mathrm{n} \equiv\)
\{ cycle_of_list cs | cs. cycle cs \(\wedge\) length cs \(=3 \wedge\) set cs \(\subseteq\{1 . . n\}\) \}"
lemma stupid_lemma:
assumes "length cs = 3" shows "cs = [ (cs ! 0), (cs ! 1), (cs ! 2) ]"
using assms by (auto intro!: nth_equalityI)
(metis Suc_lessI less_2_cases not_less_eq nth_Cons_0
nth_Cons_Suc numeral_2_eq_2 numeral_3_eq_3)
lemma three_cycles_incl: "three_cycles n \(\subseteq\) carrier (alt_group n)" proof
fix \(p\) assume " \(p \in\) three_cycles \(n "\)
then obtain cs where cs: "p = cycle_of_list cs" "cycle cs" "length cs = 3" "set cs \(\subseteq\) \{1..n\}"
by auto
obtain a b c where cs_def: "cs = [ a, b, c ]" using stupid_lemma[0F cs(3)] by auto
have "swapidseq (Suc (Suc 0)) ((transpose a b) o (Fun.swap b c id))" using comp_Suc[OF comp_Suc[OF id], of b c a b] cs(2) unfolding cs_def by simp
hence "evenperm p "
using cs(1) unfolding cs_def by (simp add: evenperm_unique)
thus "p \(\in\) carrier (alt_group n)"
using permutes_subset[0F cycle_permutes cs(4)]
unfolding alt_group_carrier cs(1) by simp
qed
lemma alt_group_carrier_as_three_cycles:
"carrier (alt_group n) = generate (alt_group n) (three_cycles n)"
proof -
interpret A: group "alt_group n"
using alt_group_is_group by simp
show ?thesis
proof
show "generate (alt_group n) (three_cycles n) \(\subseteq\) carrier (alt_group
n)"
using A.generate_subgroup_incl[ 0 F three_cycles_incl A.subgroup_self]
next
show "carrier (alt_group n) \(\subseteq\) generate (alt_group n) (three_cycles
n)"
proof
\{ fix \(q\) :: "nat \(\Rightarrow\) nat" and a b c
assume "a \(\neq \mathrm{b}\) " "b \(\neq \mathrm{c}\) " "\{ \(\mathrm{a}, \mathrm{b}, \mathrm{c}\} \subseteq\{1 . . \mathrm{n}\}\) "
have "cycle_of_list [a, b, c] \(\in\) generate (alt_group n) (three_cycles
n)"
proof (cases)
assume "c = a"
hence "cycle_of_list [ a, b, c ] = id"
by (simp add: swap_commute)
thus "cycle_of_list [ a, b, c ] G generate (alt_group n) (three_cycles
n) "
using one[of "alt_group n"] unfolding alt_group_one by simp
next
assume "c \(\neq \mathrm{a}\) "
have "distinct [a, b, c]"
using \(\langle\mathrm{a} \neq \mathrm{b}\rangle\) and \(\langle\mathrm{b} \neq \mathrm{c}\rangle\) and \(\langle\mathrm{c} \neq \mathrm{a}\) 〉 by auto
with <\{ \(a, b, c\} \subseteq\{1 \ldots n\}\)
show "cycle_of_list [ a, b, c ] G generate (alt_group n) (three_cycles
n) "
by (intro incl, fastforce)
qed \} note aux_lemma1 = this
\{ fix S :: "nat set" and q :: "nat \(\Rightarrow\) nat"
assume seq: "swapidseq_ext \(S(\operatorname{Suc}(\operatorname{Suc} 0))\) q" and \(S: ~ " S \subseteq\{1 . . n\} "\)
have "q \(\in\) generate (alt_group n) (three_cycles n)"
proof -
obtain a b q' where ab: "a \(\neq \mathrm{b} " \mathrm{"a} \in \mathrm{~S} " \mathrm{"b} \in \mathrm{~S} "\) and q': "swapidseq_ext \(S(S u c\) 0) q'" "q = (transpose a b)
q'"
using swapidseq_ext_backwards' [OF seq] by auto
obtain c d where cd: "c \(\neq \mathrm{d}\) " "c \(\in S\) " "d \(\in S\) " and q: "q = (transpose a b) o (Fun.swap c d id)" using swapidseq_ext_backwards'[0F q'(1)] swapidseq_ext_zero_imp_id
unfolding \(\mathrm{q}^{\prime}(2)\)
by fastforce
consider (eq) "b = c" | (ineq) "b \(\neq \mathrm{c}\) " by auto
thus ?thesis
proof cases
case eq then have "q = cycle_of_list [ a, b, d ]" unfolding \(q\) by simp
moreover have "\{ a, b, d \} \(\subseteq\{1 . . \mathrm{n}\}\) "
using ab cd S by blast
ultimately show ?thesis
using aux_lemma1[0F ab(1)] cd(1) eq by simp
next
case ineq
hence " \(q\) = cycle_of_list [ a, b, c ] o cycle_of_list [ b,
unfolding q by (simp add: swap_nilpotent o_assoc)
moreover have "\{ \(\mathrm{a}, \mathrm{b}, \mathrm{c}\} \subseteq\{1 . . \mathrm{n}\}\) " and "\{ b, \(\mathrm{c}, \mathrm{d}\} \subseteq\)
using ab cd S by blast+
ultimately show ?thesis using eng[OF aux_lemma1 [OF ab(1) ineq] aux_lemma1[0F ineq
unfolding alt_group_mult by simp
qed
qed \(\}\) note aux_lemma2 \(=\) this
fix \(p\) assume \(" p \in\) carrier (alt_group \(n\) )" then have \(p: ~ " p\) permutes \{1..n\}" "evenperm p"
unfolding alt_group_carrier by auto
obtain m where m: "swapidseq_ext \{1..n\} m p"
using swapidseq_ext_of_permutation [OF p(1)] by auto
have "even m"
using swapidseq_ext_imp_swapidseq[0F m] p(2) evenperm_unique by
blast
then obtain k where k : "m \(=2 * \mathrm{k} "\)
by auto
show "p generate (alt_group n) (three_cycles n)" using \(m\) unfolding \(k\)
proof (induct \(k\) arbitrary: \(p\) )
case 0 then have " \(p=i d "\)
using swapidseq_ext_zero_imp_id by simp
show ?case
using generate.one[of "alt_group n" "three_cycles n"]
unfolding alt_group_one <p = id>.
next
case (Suc m)
have arith: "2 * (Suc m) - (Suc (Suc 0)) = \(2 * \mathrm{~m}\) " and "Suc (Suc
\(0) \leq 2 *\) Suc \(\mathrm{m}^{\prime \prime}\)
by auto
then obtain q \(r\) U V
where q: "swapidseq_ext \(U(2 * m)\) q" and r: "swapidseq_ext
V (Suc (Suc 0)) r"
and \(p: ~ " p=q \circ r "\) and \(U V: ~ " U \cup V=\{1 \ldots n\} "\)
using split_swapidseq_ext[0F _ Suc(2), of "Suc (Suc 0)"] un-
folding arith by metis
have "swapidseq_ext \{1..n\} ( 2 * m) q"
using UV q swapidseq_ext_finite_expansion[OF swapidseq_ext_finite[0F
r] q] by \(\operatorname{simp}\)
thus ?case
using eng[0F Suc(1) aux_lemma2[OF r], of q] UV unfolding alt_group_mult
p by blast
qed
```

 qed
 qed
 qed
theorem derived_alt_group_const:
assumes "n \geq 5" shows "derived (alt_group n) (carrier (alt_group n))
= carrier (alt_group n)"
proof
show "derived (alt_group n) (carrier (alt_group n)) \subseteq carrier (alt_group
n)"
using group.derived_in_carrier[OF alt_group_is_group] by simp
next
{ fix p assume "p \in three_cycles n" have "p \in derived (alt_group n)
(carrier (alt_group n))"
proof -
obtain cs where cs: "p = cycle_of_list cs" "cycle cs" "length cs
= 3" "set cs \subseteq {1..n}"
using <p \in three_cycles n> by auto
then obtain a b c where cs_def: "cs = [a, b, c]"
using stupid_lemma[OF cs(3)] by blast
have "card (set cs) = 3"
using cs(2-3)
by (simp add: distinct_card)
have "set cs \not= {1..n}"
using assms cs(3) unfolding sym[OF distinct_card[OF cs(2)]] by
auto
then obtain d where d: "d \& set cs" "d \in {1..n}"
using cs(4) by blast
hence "cycle (d \# cs)" and "length (d \# cs) = 4" and "card {1..n}
= n"
using cs(2-3) by auto
hence "set (d \# cs) f= {1..n}"
using assms unfolding sym[OF distinct_card[OF <cycle (d \# cs)>]]
by (metis Suc_n_not_le_n eval_nat_numeral(3))
then obtain e where e: "e \& set (d \# cs)" "e \in {1..n}"
using d cs(4) by (metis insert_subset list.simps(15) subsetI subset_antisym)
define q where "q = (Fun.swap d e id) ○ (Fun.swap b c id)"
hence "bij q"
by (simp add: bij_comp)
moreover have "q b = c" and "q c = b"
using d(1) e(1) unfolding q_def cs_def by simp+
moreover have "q a = a"
using d(1) e(1) cs(2) unfolding q_def cs_def by auto
ultimately have "q ○ p ○ (inv' q) = cycle_of_list [a, c, b]"
using conjugation_of_cycle[OF cs(2), of q]

```
```

 unfolding sym[OF cs(1)] unfolding cs_def by simp
 also have " ... = p ○ p"
 using cs(2) unfolding cs(1) cs_def
 by (simp add: comp_swap swap_commute transpose_comp_triple)
 finally have "q ○ p ○ (inv' q) = p \circ p" .
 moreover have "bij p"
 unfolding cs(1) cs_def by (simp add: bij_comp)
 ultimately have p: "q\circ p ○ (inv' q) ○ (inv' p) = p"
 by (simp add: bijection.intro bijection.inv_comp_right comp_assoc)
 have "swapidseq (Suc (Suc 0)) q"
 using comp_Suc[OF comp_Suc[OF id], of b c d e] e(1) cs(2) un-
 folding q_def cs_def by auto
hence "evenperm q"
using even_Suc_Suc_iff evenperm_unique by blast
moreover have "q permutes { d, e, b, c }"
unfolding q_def by (simp add: permutes_compose permutes_swap_id)
hence "q permutes {1..n}"
using cs(4) d(2) e(2) permutes_subset unfolding cs_def by fastforce
ultimately have "q \in carrier (alt_group n)"
unfolding alt_group_carrier by simp
moreover have "p \in carrier (alt_group n)"
using <p \in three_cycles n> three_cycles_incl by blast
ultimately have "p \in derived_set (alt_group n) (carrier (alt_group
n))"
using p alt_group_inv_equality unfolding alt_group_mult
by (metis (no_types, lifting) UN_iff singletonI)
thus "p f derived (alt_group n) (carrier (alt_group n))"
unfolding derived_def by (rule incl)
qed } note aux_lemma = this
interpret A: group "alt_group n"
using alt_group_is_group .
have "generate (alt_group n) (three_cycles n) \subseteq derived (alt_group
n) (carrier (alt_group n))"
using A.generate_subgroup_incl[OF _ A.derived_is_subgroup] aux_lemma
by (meson subsetI)
thus "carrier (alt_group n) \subseteq derived (alt_group n) (carrier (alt_group
n))"
using alt_group_carrier_as_three_cycles by simp
qed
corollary alt_group_is_unsolvable:
assumes "n \geq 5" shows "\neg solvable (alt_group n)"
proof (rule ccontr)
assume "\neg ᄀ solvable (alt_group n)"
then obtain m where "(derived (alt_group n) - m m) (carrier (alt_group
n)) = { id }"

```
using group.solvable_iff_trivial_derived_seq[OF alt_group_is_group]
unfolding alt_group_one by blast
moreover have "(derived (alt_group n) ~~ m) (carrier (alt_group n))
= carrier (alt_group n)"
using derived_alt_group_const[0F assms] by (induct m) (auto)
ultimately have card_eq_1: "card (carrier (alt_group n)) = 1"
by simp
have ge_2: "n \(\geq 2\) "
using assms by simp
moreover have " \(2=\) fact \(n\) "
using alt_group_card_carrier [0F ge_2] unfolding card_eq_1
by (metis fact_2 mult.right_neutral of_nat_fact)
ultimately have \(" \mathrm{n}=2\) "
by (metis antisym_conv fact_ge_self)
thus False
using assms by simp
qed
corollary sym_group_is_unsolvable:
assumes \(" \mathrm{n} \geq 5\) " shows " \(\neg\) solvable (sym_group n)"
proof -
interpret Id: group_hom "alt_group n" "sym_group n" id
using group.canonical_inj_is_hom[OF sym_group_is_group alt_group_is_subgroup] alt_group_def by simp
show ?thesis
using Id.inj_hom_imp_solvable alt_group_is_unsolvable[OF assms] by auto
qed
end

\section*{41 Exact Sequences}
theory Exact_Sequence
imports Elementary_Groups Solvable_Groups
begin

\subsection*{41.1 Definitions}
inductive exact_seq : : "'a monoid list \(\times\left({ }^{\prime} \mathrm{a} \Rightarrow\right.\) 'a) list \(\Rightarrow\) bool" where
unity: " group_hom G1 G2 f \(\Longrightarrow\) exact_seq ([G2, G1], [f])" |
extension: " \(\mathbb{L}\) exact_seq ( (G \# K \# l), (g \# q) ) group H ; h \(\in\) hom G H ;
kernel G H h = image g (carrier K) 】 \(\Longrightarrow\) exact_seq (H \#
G \# K \# l, h \# g \# q)"
inductive_simps exact_seq_end_iff [simp]: "exact_seq ([G,H], (g \# q))" inductive_simps exact_seq_cons_iff [simp]: "exact_seq ((G \# K \# H \# l), (g \# h \# q) )"
```

abbreviation exact_seq_arrow ::

```

```

monoid list }\times ('a \# 'a) list"
("(3_ / \longrightarrow\imath _)" [1000, 60])
where "exact_seq_arrow f t G \equiv (G \# (fst t), f \# (snd t))"

```

\subsection*{41.2 Basic Properties}
```

lemma exact_seq_length1: "exact_seq t C length (fst t) = Suc (length
(snd t))"
by (induct t rule: exact_seq.induct) auto
lemma exact_seq_length2: "exact_seq t }\Longrightarrow\mathrm{ length (snd t) }\geq\mathrm{ Suc 0"
by (induct t rule: exact_seq.induct) auto
lemma dropped_seq_is_exact_seq:
assumes "exact_seq (G, F)" and "(i :: nat) < length F"
shows "exact_seq (drop i G, drop i F)"
proof-
{ fix t i assume "exact_seq t" "i < length (snd t)"
hence "exact_seq (drop i (fst t), drop i (snd t))"
proof (induction arbitrary: i)
case (unity G1 G2 f) thus ?case
by (simp add: exact_seq.unity)
next
case (extension G K l g q H h) show ?case
proof (cases)
assume "i = 0" thus ?case
using exact_seq.extension[OF extension.hyps] by simp
next
assume "i f= 0" hence "i \geq Suc 0" by simp
then obtain k where "k < length (snd (G \# K \# l, g \# q))" "i
= Suc k"
using Suc_le_D extension.prems by auto
thus ?thesis using extension.IH by simp
qed
qed }
thus ?thesis using assms by auto
qed
lemma truncated_seq_is_exact_seq:
assumes "exact_seq (l, q)" and "length l \geq 3"
shows "exact_seq (tl l, tl q)"
using exact_seq_length1[OF assms(1)] dropped_seq_is_exact_seq[OF assms(1),
of "Suc 0"]
exact_seq_length2[OF assms(1)] assms(2) by (simp add: drop_Suc)

```
```

lemma exact_seq_imp_exact_hom:
assumes "exact_seq(G1 \# l,q) \longrightarrowg1 G2 \longrightarrowg2 G3"
shows "g1 ' (carrier G1) = kernel G2 G3 g2"
proof-
{ fix t assume "exact_seq t" and "length (fst t) \geq 3 ^ length (snd
t) \geq 2"
hence "(hd (tl (snd t))) ' (carrier (hd (tl (tl (fst t))))) =
kernel (hd (tl (fst t))) (hd (fst t)) (hd (snd t))"
proof (induction)
case (unity G1 G2 f)
then show ?case by auto
next
case (extension G l g q H h)
then show ?case by auto
qed }
thus ?thesis using assms by fastforce
qed
lemma exact_seq_imp_exact_hom_arbitrary:
assumes "exact_seq (G, F)"
and "Suc i < length F"
shows "(F ! (Suc i)) ' (carrier (G ! (Suc (Suc i)))) = kernel (G !
(Suc i)) (G ! i) (F ! i)"
proof -
have "length (drop i F) \geq 2" "length (drop i G) \geq 3"
using assms(2) exact_seq_length1[OF assms(1)] by auto
then obtain l q
where "drop i G = (G ! i) \# (G ! (Suc i)) \# (G ! (Suc (Suc i))) \#
1"
and "drop i F = (F ! i) \# (F ! (Suc i)) \# q"
by (metis Cons_nth_drop_Suc Suc_less_eq assms exact_seq_length1 fst_conv
le_eq_less_or_eq le_imp_less_Suc prod.sel(2))
thus ?thesis
using dropped_seq_is_exact_seq[OF assms(1), of i] assms(2)
exact_seq_imp_exact_hom[of "G ! i" "G ! (Suc i)" "G ! (Suc (Suc
i))" l q] by auto
qed
lemma exact_seq_imp_group_hom :
assumes "exact_seq ((G \# l, q)) \longrightarrowg H"
shows "group_hom G H g"
proof-
{ fix t assume "exact_seq t"
hence "group_hom (hd (tl (fst t))) (hd (fst t)) (hd(snd t))"
proof (induction)
case (unity G1 G2 f)
then show ?case by auto
next
case (extension G l g q H h)

```
then show ?case unfolding group_hom_def group_hom_axioms_def by
auto
qed \(\}\)
note aux_lemma = this
show ?thesis using aux_lemma[0F assms] by simp
qed
lemma exact_seq_imp_group_hom_arbitrary:
assumes "exact_seq (G, F)" and "(i :: nat) < length F"
shows "group_hom (G ! (Suc i)) (G ! i) (F ! i)"
proof -
have "length (drop i F) \(\geq 1 "\) "length (drop i G) \(\geq 2\) "
using assms(2) exact_seq_length1[0F assms(1)] by auto
then obtain 1 q
where "drop i G = (G ! i) \# (G ! (Suc i)) \# l"
and "drop i \(F=(F!i)\) \# q"
by (metis Cons_nth_drop_Suc Suc_leI assms exact_seq_length1 fst_conv
le_eq_less_or_eq le_imp_less_Suc prod.sel(2))
thus ?thesis
using dropped_seq_is_exact_seq[0F assms(1), of i] assms(2)
exact_seq_imp_group_hom[of "G ! i" "G ! (Suc i)" l q "F ! i"]
by simp
qed

\subsection*{41.3 Link Between Exact Sequences and Solvable Conditions}
lemma exact_seq_solvable_imp :
assumes "exact_seq ([G1], []) \(\longrightarrow \mathrm{g} 1 \mathrm{G} 2 \longrightarrow \mathrm{~g} 2\) G3"
and "inj_on g1 (carrier G1)"
and "g2 ' (carrier G2) = carrier G3"
shows "solvable G2 \(\Longrightarrow\) (solvable G1) \(\wedge\) (solvable G3)"
proof -
assume G2: "solvable G2"
have "group_hom G1 G2 g1"
using exact_seq_imp_group_hom_arbitrary[0F assms(1), of "Suc 0"] by
simp
hence "solvable G1"
using group_hom.inj_hom_imp_solvable[of G1 G2 g1] assms(2) G2 by simp
moreover have "group_hom G2 G3 g2"
using exact_seq_imp_group_hom_arbitrary[0F assms(1), of 0] by simp
hence "solvable G3"
using group_hom.surj_hom_imp_solvable[of G2 G3 g2] assms(3) G2 by simp
ultimately show ?thesis by simp
qed
lemma exact_seq_solvable_recip :
assumes "exact_seq ([G1], []) \(\longrightarrow \mathrm{g} 1 \mathrm{G} 2 \longrightarrow \mathrm{~g} 2 \mathrm{G} 3\) "
```

 and "inj_on g1 (carrier G1)"
 and "g2 ' (carrier G2) = carrier G3"
 shows "(solvable G1) ^(solvable G3) \Longrightarrow solvable G2"
 proof -
assume "(solvable G1) ^ (solvable G3)"
hence G1: "solvable G1" and G3: "solvable G3" by auto
have g1: "group_hom G1 G2 g1" and g2: "group_hom G2 G3 g2"
using exact_seq_imp_group_hom_arbitrary[OF assms(1), of "Suc 0"]
exact_seq_imp_group_hom_arbitrary[0F assms(1), of 0] by auto
show ?thesis
using solvable_condition[OF g1 g2 assms(3)]
exact_seq_imp_exact_hom[OF assms(1)] G1 G3 by auto
qed
proposition exact_seq_solvable_iff :
assumes "exact_seq ([G1],[]) \longrightarrowg1 G2 \longrightarrowg2 G3"
and "inj_on g1 (carrier G1)"
and "g2 ' (carrier G2) = carrier G3"
shows "(solvable G1) ^(solvable G3) \longleftrightarrow solvable G2"
using exact_seq_solvable_recip exact_seq_solvable_imp assms by blast
lemma exact_seq_eq_triviality:
assumes "exact_seq ([E,D,C,B,A], [k,h,g,f])"
shows "trivial_group C \longleftrightarrow f ' carrier A = carrier B ^ inj_on k (carrier
D)" (is "_ = ?rhs")
proof
assume C: "trivial_group C"
with assms have "inj_on k (carrier D)"
apply (auto simp: group_hom.image_from_trivial_group trivial_group_def
hom_one)
apply (simp add: group_hom_def group_hom_axioms_def group_hom.inj_iff_trivial_ker)
done
with assms C show ?rhs
apply (auto simp: group_hom.image_from_trivial_group trivial_group_def
hom_one)
apply (auto simp: group_hom_def group_hom_axioms_def hom_def kernel_def)
done
next
assume ?rhs
with assms show "trivial_group C"
apply (simp add: trivial_group_def)
by (metis group_hom.inj_iff_trivial_ker group_hom.trivial_hom_iff
group_hom_axioms.intro group_hom_def)
qed
lemma exact_seq_imp_triviality:
"\llbracketexact_seq ([E,D,C,B,A], [k,h,g,f]); f \in iso A B; k \in iso D E\rrbracket \Longrightarrow
trivial_group C"

```
```

 by (metis (no_types, lifting) Group.iso_def bij_betw_def exact_seq_eq_triviality
 mem_Collect_eq)
lemma exact_seq_epi_eq_triviality:
"exact_seq ([D,C,B,A], [h,g,f]) \Longrightarrow (f ' carrier A = carrier B) \longleftrightarrow
trivial_homomorphism B C g"
by (auto simp: trivial_homomorphism_def kernel_def)
lemma exact_seq_mon_eq_triviality:
"exact_seq ([D,C,B,A], [h,g,f]) \Longrightarrow inj_on h (carrier C) \longleftrightarrow trivial_homomorphism
B C g"
by (auto simp: trivial_homomorphism_def kernel_def group.is_monoid inj_on_one_iff'
image_def) blast
lemma exact_sequence_sum_lemma:
assumes "comm_group G" and h: "h \in iso A C" and k: "k \in iso B D"
and ex: "exact_seq ([D,G,A], [g,i])" "exact_seq ([C,G,B], [f,j])"
and fih: "\x. x \in carrier A \Longrightarrow f(i x) = h x"
and gjk: "\x. x \in carrier B \Longrightarrowg(j x) = k x"
shows "(\lambda(x, y). i x }\mp@subsup{\otimes}{G}{
g z)) \in Group.iso G (C }\times\times\mathrm{ D)"
(is "?ij \in _ ^ ?gf \in _")
proof (rule epi_iso_compose_rev)
interpret comm_group G
by (rule assms)
interpret f: group_hom G C f
using ex by (simp add: group_hom_def group_hom_axioms_def)
interpret g: group_hom G D g
using ex by (simp add: group_hom_def group_hom_axioms_def)
interpret i: group_hom A G i
using ex by (simp add: group_hom_def group_hom_axioms_def)
interpret j: group_hom B G j
using ex by (simp add: group_hom_def group_hom_axioms_def)
have kerf: "kernel G C f = j ' carrier B" and "group A" "group B" "i
\epsilon hom A G"
using ex by (auto simp: group_hom_def group_hom_axioms_def)
then obtain h' where "h' }\in\mathrm{ hom C A" "(}\forall\textrm{x}\in\operatorname{carrier A. h'(h x) = x)"
and hh': "(\forally \in carrier C. h(h' y) = y)" and "group_isomorphisms
A C h h'"
using h by (auto simp: group.iso_iff_group_isomorphisms group_isomorphisms_def)
have homij: "?ij \in hom (A }\times\times\mathrm{ (B) G"
unfolding case_prod_unfold
apply (rule hom_group_mult)
using ex by (simp_all add: group_hom_def hom_of_fst [unfolded o_def]
hom_of_snd [unfolded o_def])
show homgf: "?gf \in hom G (C }\times\times\mathrm{ D)"
using ex by (simp add: hom_paired)
show "?ij \in epi (A }\times\times\mathrm{ B) G"
proof (clarsimp simp add: epi_iff_subset homij)

```
```

 fix x
 assume x: "x \in carrier G"
 with <i \in hom A G> <h' G hom C A> have "x * |G invG(i(h'(f x))) \in
 kernel G C f"
by (simp add: kernel_def hom_in_carrier hh' fih)
with kerf obtain y where y: "y \in carrier B" "j y = x * |G invG(i(h)(f
x)))"
by auto

```

```

x)) }\mp@subsup{\otimes}{G}{}\mp@subsup{\operatorname{inv}}{G}{}i(h)(f x)))
by (meson <h' \in hom C A> x f.hom_closed hom_in_carrier i.hom_closed
inv_closed m_lcomm)
also have "... = x"
using <h' \in hom C A> hom_in_carrier x by fastforce
finally show "x }\in(\lambda(x,y). i x *G j y) ' (carrier A x carrier B)"
using x y apply (clarsimp simp: image_def)
apply (rule_tac x="h'(f x)" in bexI)
apply (rule_tac x=y in bexI, auto)
by (meson <h' \in hom C A> f.hom_closed hom_in_carrier)
qed

```

```

B) (C }\times\times\textrm{D})
apply (rule group.iso_eq [where f = " }\lambda(\textrm{x},\textrm{y}).(h\textrm{x},\textrm{k}y)"]
using ex
apply (auto simp: group_hom_def group_hom_axioms_def DirProd_group
iso_paired2 h k fih gjk kernel_def set_eq_iff)
apply (metis f.hom_closed f.r_one fih imageI)
apply (metis g.hom_closed g.l_one gjk imageI)
done
qed

```

\subsection*{41.4 Splitting lemmas and Short exact sequences}

Ported from HOL Light by LCP
definition short_exact_sequence
where "short_exact_sequence A B C f g \(\equiv \exists \mathrm{T} 1 \mathrm{~T} 2 \mathrm{e} 1 \mathrm{e} 2\). exact_seq ([T1, \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{T} 2]\), [e1,f,g,e2]) ^ trivial_group T1 \(\wedge\) trivial_group T2"
lemma short_exact_sequenceD:
assumes "short_exact_sequence A B C f g" shows "exact_seq ([A,B,C], \([f, g]) \wedge f \in \operatorname{epi} B A \wedge g \in \operatorname{mon} C B \prime \prime\)
using assms
apply (auto simp: short_exact_sequence_def group_hom_def group_hom_axioms_def)
apply (simp add: epi_iff_subset group_hom.intro group_hom.kernel_to_trivial_group
group_hom_axioms.intro)
by (metis (no_types, lifting) group_hom.inj_iff_trivial_ker group_hom.intro
group_hom_axioms.intro
hom_one image_empty image_insert mem_Collect_eq mon_def trivial_group_def)
```

lemma short_exact_sequence_iff:
"short_exact_sequence A B C f g \longleftrightarrow exact_seq ([A,B,C], [f,g]) ^ f
epi B A ^g g mon C B"
proof -
have "short_exact_sequence A B C f g"
if "exact_seq ([A, B, C], [f, g])" and "f \in epi B A" and "g \in mon
C B"
proof -
show ?thesis
unfolding short_exact_sequence_def
proof (intro exI conjI)
have "kernel A (singleton_group 1_ () (}\textrm{x}.\mp@subsup{\mathbf{1}}{\textrm{A}}{\prime}\mathrm{) = f ' carrier B"
using that by (simp add: kernel_def singleton_group_def epi_def)
moreover have "kernel C B g = {1 C }"
using that group_hom.inj_iff_trivial_ker mon_def by fastforce
ultimately show "exact_seq ([singleton_group (one A), A, B, C, singleton_group
(one C)], [\lambdax. 1_A, f, g, id])"
using that
by (simp add: group_hom_def group_hom_axioms_def group.id_hom_singleton)
qed auto
qed
then show ?thesis
using short_exact_sequenceD by blast
qed
lemma very_short_exact_sequence:
assumes "exact_seq ([D,C,B,A], [h,g,f])" "trivial_group A" "trivial_group
D"
shows "g \in iso B C"
using assms
apply simp
by (metis (no_types, lifting) group_hom.image_from_trivial_group group_hom.iso_iff
group_hom.kernel_to_trivial_group group_hom.trivial_ker_imp_inj
group_hom_axioms.intro group_hom_def hom_carrier inj_on_one_iff')
lemma splitting_sublemma_gen:
assumes ex: "exact_seq ([C,B,A], [g,f])" and fim: "f ' carrier A =
H"
and "subgroup K B" and 1: "H \cap K \subseteq {one B}" and eq: "set_mult
B H K = carrier B"
shows "g \in iso (subgroup_generated B K) (subgroup_generated C(g ' carrier
B))"
proof -
interpret KB: subgroup K B
by (rule assms)
interpret fAB: group_hom A B f
using ex by simp
interpret gBC: group_hom B C g
using ex by (simp add: group_hom_def group_hom_axioms_def)

```
```

 have "group A" "group B" "group C" and kerg: "kernel B C g = f ` carrier
 A"
using ex by (auto simp: group_hom_def group_hom_axioms_def)
have ker_eq: "kernel B C g = H"
using ex by (simp add: fim)
then have "subgroup H B"
using ex by (simp add: group_hom.img_is_subgroup)
show ?thesis
unfolding iso_iff
proof (intro conjI)
show "g \in hom (subgroup_generated B K) (subgroup_generated C(g '
carrier B))"
by (metis ker_eq <subgroup K B> eq gBC.hom_between_subgroups gBC.set_mult_ker_hom(2)
order_refl subgroup.subset)
show "g ' carrier (subgroup_generated B K) = carrier (subgroup_generated
C(g ' carrier B))"
by (metis assms(3) eq fAB.H.subgroupE(1) gBC.img_is_subgroup gBC.set_mult_ker_hom(2)
ker_eq subgroup.carrier_subgroup_generated_subgroup)
interpret gKBC: group_hom "subgroup_generated B K" C g
apply (auto simp: group_hom_def group_hom_axioms_def <group C>)
by (simp add: fAB.H.hom_from_subgroup_generated gBC.homh)
have *: "x = 1B"
if x: "x \in carrier (subgroup_generated B K)" and "g x = 1C" for
x
proof -
have x': "x \in carrier B"
using that fAB.H.carrier_subgroup_generated_subset by blast
moreover have "x \in H"
using kerg fim x' that by (auto simp: kernel_def set_eq_iff)
ultimately show ?thesis
by (metis "1" x Int_iff singletonD KB.carrier_subgroup_generated_subgroup
subsetCE)
qed
show "inj_on g (carrier (subgroup_generated B K))"
using "*" gKBC.inj_on_one_iff by auto
qed
qed
lemma splitting_sublemma:
assumes ex: "short_exact_sequence C B A g f" and fim: "f ' carrier
A = H"
and "subgroup K B" and 1: "H \cap K \subseteq {one B}" and eq: "set_mult
B H K = carrier B"
shows "f \in iso A (subgroup_generated B H)" (is ?f)
"g \in iso (subgroup_generated B K) C" (is ?g)
proof -
show ?f
using short_exact_sequenceD [OF ex]
apply (clarsimp simp add: group_hom_def group.iso_onto_image)

```
```

 using fim group.iso_onto_image by blast
 have "C = subgroup_generated C(g ' carrier B)"
 using short_exact_sequenceD [OF ex]
 apply simp
 by (metis epi_iff_subset group.subgroup_generated_group_carrier hom_carrier
 subset_antisym)
then show ?g
using short_exact_sequenceD [OF ex]
by (metis "1" <subgroup K B> eq fim splitting_sublemma_gen)
qed
lemma splitting_lemma_left_gen:
assumes ex: "exact_seq ([C,B,A], [g,f])" and f': "f' \in hom B A" and
iso: "(f, ○ f) \in iso A A"
and injf: "inj_on f (carrier A)" and surj: "g ' carrier B = carrier
C"
obtains H K where "H \triangleleft B" "K \triangleleft B" "H \cap K \subseteq {one B}" "set_mult B H K
= carrier B"
"f \in iso A (subgroup_generated B H)" "g \in iso (subgroup_generated
B K) C"
proof -
interpret gBC: group_hom B C g
using ex by (simp add: group_hom_def group_hom_axioms_def)
have "group A" "group B" "group C" and kerg: "kernel B C g = f ' carrier
A"
using ex by (auto simp: group_hom_def group_hom_axioms_def)
then have *: "f ' carrier A \cap kernel B A f' = {1 B } ^ f ' carrier A
<\#>B kernel B A f' = carrier B"
using group_semidirect_sum_image_ker [of f A B f' A] assms by auto
interpret f'AB: group_hom B A f'
using assms by (auto simp: group_hom_def group_hom_axioms_def)
let ?H = "f ' carrier A"
let ?K = "kernel B A f'"
show thesis
proof
show "?H \triangleleft B"
by (simp add: gBC.normal_kernel flip: kerg)
show "?K \triangleleft B"
by (rule f'AB.normal_kernel)
show "?H \cap ?K \subseteq{1, } }" "?H <\#>B ?K = carrier B"
using * by auto
show "f \in Group.iso A (subgroup_generated B ?H)"
using ex by (simp add: injf iso_onto_image group_hom_def group_hom_axioms_def)
have C: "C = subgroup_generated C(g ' carrier B)"
using surj by (simp add: gBC.subgroup_generated_group_carrier)
show "g \in Group.iso (subgroup_generated B ?K) C"
apply (subst C)
apply (rule splitting_sublemma_gen [OF ex refl])
using * by (auto simp: f'AB.subgroup_kernel)

```
```

 qed
 qed
lemma splitting_lemma_left:
assumes ex: "exact_seq ([C,B,A], [g,f])" and f': "f' \in hom B A"
and inv: "(\bigwedgex. x \in carrier A \Longrightarrow f'(f x) = x)"
and injf: "inj_on f (carrier A)" and surj: "g ' carrier B = carrier
C"
obtains H K where "H \triangleleft B" "K \triangleleft B" "H \cap K \subseteq {one B}" "set_mult B H K
= carrier B"
"f \in iso A (subgroup_generated B H)" "g \in iso (subgroup_generated
B K) C"
proof -
interpret fAB: group_hom A B f
using ex by simp
interpret gBC: group_hom B C g
using ex by (simp add: group_hom_def group_hom_axioms_def)
have "group A" "group B" "group C" and kerg: "kernel B C g = f ' carrier
A"
using ex by (auto simp: group_hom_def group_hom_axioms_def)
have iso: "f' ○ f \in Group.iso A A"
using ex by (auto simp: inv intro: group.iso_eq [OF <group A> id_iso])
show thesis
by (metis that splitting_lemma_left_gen [OF ex f' iso injf surj])
qed
lemma splitting_lemma_right_gen:
assumes ex: "short_exact_sequence C B A g f" and g': "g' \in hom C B"
and iso: "(g \circ g') \in iso C C"
obtains H K where "H \triangleleft B" "subgroup K B" "H \cap K \subseteq {one B}" "set_mult
B H K = carrier B"
"f \in iso A (subgroup_generated B H)" "g \in iso (subgroup_generated
B K) C"
proof
interpret fAB: group_hom A B f
using short_exact_sequenceD [OF ex] by (simp add: group_hom_def group_hom_axioms_def)
interpret gBC: group_hom B C g
using short_exact_sequenceD [OF ex] by (simp add: group_hom_def group_hom_axioms_def)
have *: "f ' carrier A \cap g' ' carrier C = {1_B }
"f ' carrier A <\#>B g' ' carrier C = carrier B"
"group A" "group B" "group C"
"kernel B C g = f ' carrier A"
using group_semidirect_sum_ker_image [of g g' C C B] short_exact_sequenceD
[OF ex]
by (simp_all add: g' iso group_hom_def)
show "kernel B C g \triangleleft B"
by (simp add: gBC.normal_kernel)
show "(kernel B C g) \cap (g' ' carrier C) \subseteq {1 1 }" "(kernel B C g) <\#>B
(g' ' carrier C) = carrier B'

```
```

 by (auto simp: *)
 show "f \in Group.iso A (subgroup_generated B (kernel B C g))"
 by (metis "*"(6) fAB.group_hom_axioms group.iso_onto_image group_hom_def
 short_exact_sequenceD [OF ex])
show "subgroup (g' ' carrier C) B"
using splitting_sublemma
by (simp add: fAB.H.is_group g' gBC.is_group group_hom.img_is_subgroup
group_hom_axioms_def group_hom_def)
then show "g \in Group.iso (subgroup_generated B (g' ' carrier C)) C"
by (metis (no_types, lifting) iso_iff fAB.H.hom_from_subgroup_generated
gBC.homh image_comp inj_on_imageI iso subgroup.carrier_subgroup_generated_subgroup)
qed
lemma splitting_lemma_right:
assumes ex: "short_exact_sequence C B A g f" and g': "g' \in hom C B"
and gg': "\z. z \in carrier C \Longrightarrowg(g' z) = z"
obtains H K where "H \triangleleft B" "subgroup K B" "H \cap K \subseteq {one B}" "set_mult
B H K = carrier B"
"f \in iso A (subgroup_generated B H)" "g \in iso (subgroup_generated
B K) C"
proof -
have *: "group A" "group B" "group C"
using group_semidirect_sum_ker_image [of g g' C C B] short_exact_sequenceD
[OF ex]
by (simp_all add: g' group_hom_def)
show thesis
apply (rule splitting_lemma_right_gen [OF ex g' group.iso_eq [OF _
id_iso]])
using * apply (auto simp: gg' intro: that)
done
qed

```
end
theory Ring_Divisibility
imports Ideal Divisibility QuotRing Multiplicative_Group
begin
definition mult_of :: "('a, 'b) ring_scheme \(\Rightarrow\) 'a monoid" where
    "mult_of \(R \equiv\) ( carrier = carrier \(R-\left\{\mathbf{0}_{R}\right\}\), mult \(=\) mult \(R\), one \(=\mathbf{1}_{R} \mid\) "
lemma carrier_mult_of [simp]: "carrier (mult_of \(R\) ) = carrier \(R-\left\{0_{R}\right\}\) "
    by (simp add: mult_of_def)
lemma mult_mult_of [simp]: "mult (mult_of R) = mult R"
```

by (simp add: mult_of_def)

```
```

lemma nat_pow_mult_of: " $\left(\left[^{\wedge}\right]_{\text {mult_of }}\right)=\left(\left(\left[{ }^{\wedge}\right]_{R}\right):\right.$ _ \Rightarrow nat \Rightarrow _)"
by (simp add: mult_of_def fun_eq_iff nat_pow_def)
lemma one_mult_of [simp]: "1 $1_{\text {mult_of }} R=1_{R}$ "
by (simp add: mult_of_def)

```

\section*{42 The Arithmetic of Rings}

In this section we study the links between the divisibility theory and that of rings

\subsection*{42.1 Definitions}
```

locale factorial_domain = domain + factorial_monoid "mult_of R"
locale noetherian_ring = ring +
assumes finetely_gen: "ideal I R \Longrightarrow \existsA \subseteq carrier R. finite A ^ I
= Idl A"
locale noetherian_domain = noetherian_ring + domain
locale principal_domain = domain +
assumes exists_gen: "ideal I R \Longrightarrow \existsa \in carrier R. I = PIdl a"
locale euclidean_domain =
domain R for R (structure) + fixes \varphi :: "'a m nat"
assumes euclidean_function:
"\llbracketa \in carrier R - { 0 }; b \in carrier R - { 0 } | \Longrightarrow
\existsq r. q \in carrier R ^ r \in carrier R ^a=(b \& q) }
textrm{r}\wedge ^((r = 0)
V (\varphi r < \varphi b))"
definition ring_irreducible :: "('a, 'b) ring_scheme = 'a \# bool" ("ring'_irreducible\imath")
where "ring_irreducible e a \longleftrightarrow (a \not= 0}\mp@subsup{\mathbf{0}}{R}{})\wedge(irreducible R a)"
definition ring_prime :: "('a, 'b) ring_scheme \# 'a \# bool" ("ring'_prime\imath")
where "ring_prime R a \longleftrightarrow (a\not= 0}\mp@subsup{0}{R}{})\wedge(\mathrm{ prime R a)"

```

\subsection*{42.2 The cancellative monoid of a domain.}
```

sublocale domain < mult_of: comm_monoid_cancel "mult_of R"
rewrites "mult (mult_of R) = mult R"
and "one (mult_of R) = one R"
using m_comm m_assoc
by (auto intro!: comm_monoid_cancelI comm_monoidI
simp add: m_rcancel integral_iff)

```
```

sublocale factorial_domain < mult_of: factorial_monoid "mult_of R"
rewrites "mult (mult_of R) = mult R"
and "one (mult_of R) = one R"
using factorial_monoid_axioms by auto
lemma (in ring) noetherian_ringI:
assumes "\I. ideal I R \Longrightarrow \existsA\subseteq carrier R. finite A ^ I = Idl A"
shows "noetherian_ring R"
using assms by unfold_locales auto
lemma (in domain) euclidean_domainI:
assumes "\a b. \llbracketa c carrier R - { 0 }; b \in carrier R - { 0 } \ \Longrightarrow
\existsqr. q \in carrier R ^r c carrier R ^a=(b \otimesq) }\oplus\textrm{r}
((r = 0) V (\varphi r < \varphi b))"
shows "euclidean_domain R \varphi"
using assms by unfold_locales auto

```

\subsection*{42.3 Passing from \(R\) to Ring_Divisibility.mult_of \(R\) and vice-} versa.
```

lemma divides_mult_imp_divides [simp]: "a divides(mult_of R) b \Longrightarrow a dividesR
b"
unfolding factor_def by auto
lemma (in domain) divides_imp_divides_mult [simp]:
"\llbracketa \in carrier R; b \in carrier R - { 0 } \rrbracket \Longrightarrow a divides (b C a divides(mult_of R)
b"
unfolding factor_def using integral_iff by auto
lemma (in cring) divides_one:
assumes "a \in carrier R"
shows "a divides 1 \longleftrightarrow a \in Units R"
using assms m_comm unfolding factor_def Units_def by force
lemma (in ring) one_divides:
assumes "a \in carrier R" shows "1 divides a"
using assms unfolding factor_def by simp
lemma (in ring) divides_zero:
assumes "a \in carrier R" shows "a divides 0"
using r_null[OF assms] unfolding factor_def by force
lemma (in ring) zero_divides:
shows "0 divides a \longleftrightarrow a = 0"
unfolding factor_def by auto
lemma (in domain) divides_mult_zero:
assumes "a \in carrier R" shows "a divides(mult_of R) 0 \Longrightarrowa = 0"
using integral[OF _ assms] unfolding factor_def by auto

```
```

lemma (in ring) divides_mult:
assumes "a \in carrier R" "c \in carrier R"
shows "a divides b \Longrightarrow (c \otimes a) divides (c \otimes b)"
using m_assoc[OF assms(2,1)] unfolding factor_def by auto
lemma (in domain) mult_divides:
assumes "a \in carrier R" "b \in carrier R" "c \in carrier R - { 0 }"
shows "(c \otimes a) divides (c \otimes b) \Longrightarrow a divides b"
using assms m_assoc[of c] unfolding factor_def by (simp add: m_lcancel)
lemma (in domain) assoc_iff_assoc_mult:
assumes "a \in carrier R" and "b \in carrier R"
shows "a ~ b \longleftrightarrow a ~ (mult_of R) b"
proof
assume "a ~(mult_of R) b" thus "a ~ b"
unfolding associated_def factor_def by auto
next
assume A: "a ~ b"
then obtain c1 c2
where c1: "c1 \in carrier R" "a = b \otimes c1" and c2: "c2 \in carrier R"
"b = a \& c2"
unfolding associated_def factor_def by auto
show "a ~(mult_of R) b"
proof (cases "a=0")
assume a: "a = 0" then have b: "b = 0"
using c2 by auto
show ?thesis
unfolding associated_def factor_def a b by auto
next
assume a: "a \not= 0"
hence b: "b \not= 0" and c1_not_zero: "c1 \not= 0"
using c1 assms by auto
hence c2_not_zero: "c2 = 0"
using c2 assms by auto
show ?thesis
unfolding associated_def factor_def using c1 c2 c1_not_zero c2_not_zero
a b by auto
qed
qed
lemma (in domain) Units_mult_eq_Units [simp]: "Units (mult_of R) = Units
R"
unfolding Units_def using insert_Diff integral_iff by auto
lemma (in domain) ring_associated_iff:
assumes "a \in carrier R" "b \in carrier R"
shows "a ~ b \longleftrightarrow (\existsu G Units R. a = u \otimes b)"
proof (cases "a = 0")

```
```

 assume [simp]: "a = 0" show ?thesis
 proof
 assume "a ~ b" thus " }\exists\textrm{u}\in\mathrm{ Units R. a = u @ b"
 using zero_divides unfolding associated_def by force
 next
 assume "\existsu \in Units R. a = u \otimes b" then have "b = 0"
 by (metis Units_closed Units_l_cancel <a = 0> assms r_null)
 thus "a ~ b"
 using zero_divides[of 0] by auto
 qed
 next
assume a: "a f= 0" show ?thesis
proof (cases "b = 0")
assume "b = 0" thus ?thesis
using assms a zero_divides[of a] r_null unfolding associated_def
by blast
next
assume b: "b \not= 0"
have "(\existsu G Units R. a = u \otimes b) \longleftrightarrow (\existsu G Units R. a = b \otimes u)"
using m_comm[OF assms(2)] Units_closed by auto
thus ?thesis
using mult_of.associated_iff[of a b] a b assms
unfolding assoc_iff_assoc_mult[OF assms] Units_mult_eq_Units
by auto
qed
qed
lemma (in domain) properfactor_mult_imp_properfactor:
"\llbracketa carrier R; b \in carrier R \rrbracket \Longrightarrow properfactor (mult_of R) b a \Longrightarrow
properfactor R b a"
proof -
assume A: "a \in carrier R" "b \in carrier R" "properfactor (mult_of R)
b a"
then obtain c where c: "c \in carrier (mult_of R)" "a = b \& c"
unfolding properfactor_def factor_def by auto
have "a f= 0"
proof (rule ccontr)
assume a: "\neg a f= 0"
hence "b = 0" using c A integral[of b c] by auto
hence "b = a \otimes 1" using a A by simp
hence "a divides(mult of R) b"
unfolding factor_def by auto
thus False using A unfolding properfactor_def by simp
qed
hence "b f= 0"
using c A integral_iff by auto
thus "properfactor R b a"
using A divides_imp_divides_mult[of a b] unfolding properfactor_def
by (meson DiffI divides_mult_imp_divides empty_iff insert_iff)

```
qed
lemma (in domain) properfactor_imp_properfactor_mult:
" \(\llbracket \mathrm{a} \in\) carrier \(\mathrm{R}-\{\mathbf{0}\} ; \mathrm{b} \in\) carrier \(\mathrm{R} \rrbracket \Longrightarrow\) properfactor \(\mathrm{R} \mathrm{b} \mathrm{a} \Longrightarrow\) properfactor (mult_of R) b a"
unfolding properfactor_def factor_def by auto
lemma (in domain) properfactor_of_zero:
assumes "b \(\in\) carrier R"
shows " \(\neg\) properfactor (mult_of R) b 0" and "properfactor R b 0 \(\longleftrightarrow\)
b \(\neq 0\) "
using divides_mult_zero[0F assms] divides_zero[0F assms] unfolding properfactor_def by auto

\subsection*{42.4 Irreducible}

The following lemmas justify the need for a definition of irreducible specific to rings: for irreducible \(R\), we need to suppose we are not in a field (which is plausible, but \(\neg\) field \(R\) is an assumption we want to avoid; for irreducible (Ring_Divisibility.mult_of \(R\) ), zero is allowed.
lemma (in domain) zero_is_irreducible_mult:
shows "irreducible (mult_of R) 0"
unfolding irreducible_def Units_def properfactor_def factor_def
using integral_iff by fastforce
lemma (in domain) zero_is_irreducible_iff_field:
shows "irreducible R \(0 \longleftrightarrow\) field R"
proof
assume irr: "irreducible R 0"
have " \(\ a . \llbracket a \in \operatorname{carrier} R ; a \neq 0 \rrbracket \Longrightarrow\) properfactor \(R\) a \(0 "\)
unfolding properfactor_def factor_def by (auto, metis r_null zero_closed)
hence "carrier R - \{ 0 \} = Units R"
using irr unfolding irreducible_def by auto
thus "field R"
using field.intro[OF domain_axioms] unfolding field_axioms_def by

\section*{simp}
next
assume field: "field R" show "irreducible R 0"
using field.field_Units[OF field]
unfolding irreducible_def properfactor_def factor_def by blast
qed
lemma (in domain) irreducible_imp_irreducible_mult:
"【a \(\in\) carrier \(R\); irreducible \(R\) a 】 \(\Longrightarrow\) irreducible (mult_of \(R\) ) a"
using zero_is_irreducible_mult Units_mult_eq_Units properfactor_mult_imp_properfactor
by (cases "a = 0") (auto simp add: irreducible_def)
lemma (in domain) irreducible_mult_imp_irreducible:
```

 "\llbracketa \in carrier R - { 0 }; irreducible (mult_of R) a \rrbracket \Longrightarrow irreducible
 R a"
unfolding irreducible_def using properfactor_imp_properfactor_mult
properfactor_divides by fastforce
lemma (in domain) ring_irreducibleE:
assumes "r \in carrier R" and "ring_irreducible r"
shows "r f= 0" "irreducible R r" "irreducible (mult_of R) r" "r \not Units
R"
and "\a b. \llbracket a \in carrier R; b \in carrier R\rrbracket \Longrightarrow r = a \otimes b C a
\in Units R V b \in Units R"
proof -
show "irreducible (mult_of R) r" "irreducible R r"
using assms irreducible_imp_irreducible_mult unfolding ring_irreducible_def
by auto
show "r f= 0" "r \& Units R"
using assms unfolding ring_irreducible_def irreducible_def by auto
next
fix a b assume a: "a \in carrier R" and b: "b \in carrier R" and r: "r
= a \& b"
show "a \in Units R V b \in Units R"
proof (cases "properfactor R a r")
assume "properfactor R a r" thus ?thesis
using a assms(2) unfolding ring_irreducible_def irreducible_def
by auto
next
assume not_proper: "\neg properfactor R a r"
hence "r divides a"
using r b unfolding properfactor_def by auto
then obtain c where c: "c \in carrier R" "a = r \otimes c"
unfolding factor_def by auto
have "1 = c \& b"
using r c(1) b assms m_assoc m_lcancel[OF _ assms(1) one_closed
m_closed[OF c(1) b]]
unfolding c(2) ring_irreducible_def by auto
thus ?thesis
using c(1) b m_comm unfolding Units_def by auto
qed
qed
lemma (in domain) ring_irreducibleI:
assumes "r \in carrier R - { 0 }" "r \& Units R"
and "\a b. \llbracketa G carrier R; b G carrier R\rrbracket\Longrightarrow r = a \otimes b C a
\in Units R V b \in Units R"
shows "ring_irreducible r"
unfolding ring_irreducible_def
proof
show "r f 0" using assms(1) by blast
next

```
```

 show "irreducible R r"
 proof (rule irreducibleI[OF assms(2)])
 fix a assume a: "a \in carrier R" "properfactor R a r"
 then obtain b where b: "b \in carrier R" "r = a \otimes b"
 unfolding properfactor_def factor_def by blast
 hence "a \in Units R V b \in Units R"
 using assms(3)[OF a(1) b(1)] by simp
 thus "a \in Units R"
 proof (auto)
 assume "b \in Units R"
 hence "r \otimes inv b = a" and "inv b \in carrier R"
 using b a by (simp add: m_assoc)+
 thus ?thesis
 using a(2) unfolding properfactor_def factor_def by blast
 qed
 qed
 qed
lemma (in domain) ring_irreducibleI':
assumes "r f carrier R - { 0 }" "irreducible (mult_of R) r"
shows "ring_irreducible r"
unfolding ring_irreducible_def
using irreducible_mult_imp_irreducible[0F assms] assms(1) by auto

```

\subsection*{42.5 Primes}
lemma (in domain) zero_is_prime: "prime R 0" "prime (mult_of R) 0" using integral unfolding prime_def factor_def Units_def by auto
lemma (in domain) prime_eq_prime_mult:
assumes " \(p \in\) carrier R"
shows "prime \(R \quad p \longleftrightarrow\) prime (mult_of R) p"
proof (cases "p = 0", auto simp add: zero_is_prime)
assume "p \(\neq 0\) " "prime \(R p\) " thus "prime (mult_of \(R\) ) \(p\) " unfolding prime_def using divides_mult_imp_divides Units_mult_eq_Units mult_mult_of by (metis DiffD1 assms carrier_mult_of divides_imp_divides_mult)
next
assume \(p: \quad\) p \(\neq 0\) " "prime (mult_of \(R\) ) \(p\) " show "prime \(R\) p"
proof (rule primeI)
show "p \(\notin\) Units R"
using p(2) Units_mult_eq_Units unfolding prime_def by simp
next
fix a b assume \(a:\) "a carrier \(R "\) and \(b: ~ " b \in \operatorname{carrier~R"~and~dvd:~}\)
" p divides \(\mathrm{a} \otimes \mathrm{b}\) "
then obtain \(c\) where \(c: ~ " c \in c a r r i e r ~ R " ~ " a ~ \otimes b=p \otimes c "\)
unfolding factor_def by auto
show "p divides a \(\vee\) p divides \(b\) "
proof (cases "a \(\otimes \mathrm{b}=0\) ")
```

 case True thus ?thesis
 using integral[OF _ a b] c unfolding factor_def by force
 next
 case False
 hence "p divides(mult_of R) (a \otimes b)"
 using divides_imp_divides_mult[OF assms _ dvd] m_closed[OF a b]
 by simp
moreover have "a \not=0" "b = 0" "c f=0"
using False a b c p l_null integral_iff by (auto, simp add: assms)
ultimately show ?thesis
using a b p unfolding prime_def
by (auto, metis Diff_iff divides_mult_imp_divides singletonD)
qed
qed
qed
lemma (in domain) ring_primeE:
assumes "p \in carrier R" "ring_prime p"
shows "p f=0" "prime (mult_of R) p" "prime R p"
using assms prime_eq_prime_mult unfolding ring_prime_def by auto
lemma (in ring) ring_primeI:
assumes "p f= 0" "prime R p" shows "ring_prime p"
using assms unfolding ring_prime_def by auto
lemma (in domain) ring_primeI':
assumes "p \in carrier R - { 0 }" "prime (mult_of R) p"
shows "ring_prime p"
using assms prime_eq_prime_mult unfolding ring_prime_def by auto

```

\subsection*{42.6 Basic Properties}
```

lemma (in cring) to_contain_is_to_divide:

```
lemma (in cring) to_contain_is_to_divide:
    assumes "a \in carrier R" "b \in carrier R"
    assumes "a \in carrier R" "b \in carrier R"
    shows "PIdl b \subseteq PIdl a \longleftrightarrow a divides b"
    shows "PIdl b \subseteq PIdl a \longleftrightarrow a divides b"
proof
proof
    show "PIdl b \subseteq PIdl a }\Longrightarrow\mathrm{ a divides b"
    show "PIdl b \subseteq PIdl a }\Longrightarrow\mathrm{ a divides b"
    proof -
    proof -
        assume "PIdl b \subseteq PIdl a"
        assume "PIdl b \subseteq PIdl a"
        hence "b \in PIdl a"
        hence "b \in PIdl a"
            by (meson assms(2) local.ring_axioms ring.cgenideal_self subsetCE)
            by (meson assms(2) local.ring_axioms ring.cgenideal_self subsetCE)
        thus ?thesis
        thus ?thesis
            unfolding factor_def cgenideal_def using m_comm assms(1) by blast
            unfolding factor_def cgenideal_def using m_comm assms(1) by blast
    qed
    qed
    show "a divides b \Longrightarrow PIdl b \subseteq PIdl a"
    show "a divides b \Longrightarrow PIdl b \subseteq PIdl a"
    proof -
    proof -
        assume "a divides b" then obtain c where c: "c \in carrier R" "b =
        assume "a divides b" then obtain c where c: "c \in carrier R" "b =
c \otimes a"
c \otimes a"
        unfolding factor_def using m_comm[OF assms(1)] by blast
```

 unfolding factor_def using m_comm[OF assms(1)] by blast
    ```
```

 show "PIdl b \subseteq PIdl a"
 proof
 fix x assume "x < PIdl b"
 then obtain d where d: "d \in carrier R" "x = d \otimes b"
 unfolding cgenideal_def by blast
 hence "x = (d \otimes c) \otimes a"
 using c d m_assoc assms by simp
 thus "x \in PIdl a"
 unfolding cgenideal_def using m_assoc assms c d by blast
 qed
 qed
 qed
lemma (in cring) associated_iff_same_ideal:
assumes "a \in carrier R" "b \in carrier R"
shows "a ~ b \longleftrightarrow PIdl a = PIdl b"
unfolding associated_def
using to_contain_is_to_divide[OF assms]
to_contain_is_to_divide[OF assms(2,1)] by auto
lemma (in cring) ideal_eq_carrier_iff:
assumes "a \in carrier R"
shows "carrier R = PIdl a \longleftrightarrow a \in Units R"
proof
assume "carrier R = PIdl a"
hence "1 \in PIdl a"
by auto
then obtain b where "b \in carrier R" "1 = a \otimes b" "1 = b \otimes a"
unfolding cgenideal_def using m_comm[OF assms] by auto
thus "a \in Units R"
using assms unfolding Units_def by auto
next
assume "a \in Units R"
then have inv_a: "inv a \in carrier R" "inv a \otimes a = 1"
by auto
have "carrier R\subseteq PIdl a"
proof
fix b assume "b \in carrier R"
hence "(b \otimes inv a) \otimes a = b" and "b \otimes inv a \in carrier R"
using m_assoc[OF _ inv_a(1) assms] inv_a by auto
thus "b \in PIdl a"
unfolding cgenideal_def by force
qed
thus "carrier R = PIdl a"
using assms by (simp add: cgenideal_eq_rcos r_coset_subset_G subset_antisym)
qed
lemma (in domain) primeideal_iff_prime:
assumes "p \in carrier R - { 0 }"

```
```

 shows "primeideal (PIdl p) R \longleftrightarrow ring_prime p"
 proof
assume PIdl: "primeideal (PIdl p) R" show "ring_prime p"
proof (rule ring_primeI)
show "p f=0" using assms by simp
next
show "prime R p"
proof (rule primeI)
show "p \& Units R"
using ideal_eq_carrier_iff[of p] assms primeideal.I_notcarr[OF
PIdl] by auto
next
fix a b assume a: "a \in carrier R" and b: "b \in carrier R" and dvd:
"p divides a \otimes b"
hence "a \otimes b \in PIdl p"
by (meson assms DiffD1 cgenideal_self contra_subsetD m_closed
to_contain_is_to_divide)
hence "a \in PIdl p V b \in PIdl p"
using primeideal.I_prime[OF PIdl a b] by simp
thus "p divides a V p divides b"
using assms a b Idl_subset_ideal' cgenideal_eq_genideal to_contain_is_to_divide
by auto
qed
qed
next
assume prime: "ring_prime p" show "primeideal (PIdl p) R"
proof (rule primeidealI[OF cgenideal_ideal cring_axioms])
show "p \in carrier R" and "carrier R f PIdl p"
using ideal_eq_carrier_iff[of p] assms prime
unfolding ring_prime_def prime_def by auto
next
fix a b assume a: "a \in carrier R" and b: "b \in carrier R" "a \otimes b
\in PIdl p"
hence "p divides a \otimes b"
using assms Idl_subset_ideal' cgenideal_eq_genideal to_contain_is_to_divide
by auto
hence "p divides a V p divides b"
using a b assms primeE[OF ring_primeE(3)[OF _ prime]] by auto
thus "a \in PIdl p \vee b \in PIdl p"
using a b assms Idl_subset_ideal' cgenideal_eq_genideal to_contain_is_to_divide
by auto
qed
qed

```

\subsection*{42.7 Noetherian Rings}
lemma (in ring) chain_Union_is_ideal:
assumes "subset.chain \{ I. ideal I R \} C"
shows "ideal (if \(C=\{ \}\) then \(\{0\}\) else (UC)) R"
```

proof (cases "C = {}")
case True thus ?thesis by (simp add: zeroideal)
next
case False have "ideal (UC) R"
proof (rule idealI[OF ring_axioms])
show "subgroup (UC) (add_monoid R)"
proof
show "UC\subseteq carrier (add_monoid R)"
using assms subgroup.subset[OF additive_subgroup.a_subgroup]
unfolding pred_on.chain_def ideal_def by auto
obtain I where I: "I \in C" "ideal I R"
using False assms unfolding pred_on.chain_def by auto
thus "1 1add_monoid R }\in\bigcup\
using additive_subgroup.zero_closed[OF ideal.axioms(1)[OF I(2)]]
by auto
next
fix x y assume "x < \C" "y \in \C"
then obtain I where I: "I \inC" "x \in I" "y \in I"
using assms unfolding pred_on.chain_def by blast
hence ideal: "ideal I R"
using assms unfolding pred_on.chain_def by auto
thus "x \otimes add_monoid R y }\in\bigcup
\
using UnionI I additive_subgroup.a_closed unfolding ideal_def
by fastforce
show "invadd_monoid R x G \C"
using UnionI I additive_subgroup.a_inv_closed ideal unfolding
ideal_def a_inv_def by metis
qed
next
fix a x assume a: "a \in \C" and x: "x \in carrier R"
then obtain I where I: "ideal I R" "a \in I" and "I \in C"
using assms unfolding pred_on.chain_def by auto
thus "x \otimes a \in UC" and "a }\otimes\textrm{x}\in\bigcup

using ideal.I_l_closed[OF I x] ideal.I_r_closed[OF I x] by auto
qed
thus ?thesis
using False by simp
qed
lemma (in noetherian_ring) ideal_chain_is_trivial:
assumes "C f= {}" "subset.chain { I. ideal I R } C"
shows "\C \in C"
proof -
{ fix S assume "finite S" "S \subseteq UC"
hence "\existsI. I G C ^ S\subseteqI"
proof (induct S)
case empty thus ?case

```
```

 using assms(1) by blast
 next
 case (insert s S)
 then obtain I where I: "I \in C" "S \subseteq I"
 by blast
 moreover obtain I' where I': "I' \in C" "s \in I'"
 using insert(4) by blast
 ultimately have "I \subseteq I' V I' \subseteq I"
 using assms unfolding pred_on.chain_def by blast
 thus ?case
 using I I' by blast
 qed } note aux_lemma = this
 obtain S where S: "finite S" "S \subseteq carrier R" "UC = Idl S"
 using finetely_gen[OF chain_Union_is_ideal[OF assms(2)]] assms(1)
 by auto
then obtain I where I: "I \in C" and "S \subseteq I"
using aux_lemma[OF S(1)] genideal_self[OF S(2)] by blast
hence "Idl S \subseteq I"
using assms unfolding pred_on.chain_def
by (metis genideal_minimal mem_Collect_eq rev_subsetD)
hence "UC = I"
using S(3) I by auto
thus ?thesis
using I by simp
qed
lemma (in ring) trivial_ideal_chain_imp_noetherian:
assumes "\C. \llbracketC f {}; subset.chain {I. ideal I R } C \rrbracket\Longrightarrow \C C
C"
shows "noetherian_ring R"
proof (rule noetherian_ringI)
fix I assume I: "ideal I R"
have in_carrier: "I \subseteq carrier R" and add_subgroup: "additive_subgroup
I R"
using ideal.axioms(1) [OF I] additive_subgroup.a_subset by auto
define S where "S = { Idl S' | S'. S' \subseteq I ^ finite S' }"
have "\existsM \in S. \forallS' \in S. M \subseteq S' }\longrightarrow\mp@subsup{S}{}{\prime}=\mp@subsup{M}{}{\prime
proof (rule subset_Zorn)
fix C assume C: "subset.chain S C"
show "\existsU \in S. }\forall\mp@subsup{S}{}{\prime}\inC.S'\subseteqU
proof (cases "C = {}")
case True
have "{ 0 } \in S"
using additive_subgroup.zero_closed[OF add_subgroup] genideal_zero
by (auto simp add: S_def)
thus ?thesis
using True by auto

```
```

 next
 case False
 have "S \subseteq{ I. ideal I R }"
 using additive_subgroup.a_subset[OF add_subgroup] genideal_ideal
 by (auto simp add: S_def)
 hence "subset.chain { I. ideal I R } C"
 using C unfolding pred_on.chain_def by auto
 then have "UC\inC"
 using assms False by simp
 thus ?thesis
 by (meson C Union_upper pred_on.chain_def subsetCE)
 qed
 qed
 then obtain M where M: "M \in S" "^S'. \llbracketS' \in S; M \subseteq S' \rrbracket\Longrightarrow S' = M"
 by auto
 then obtain S' where S': "S' \subseteq I" "finite S'" "M = Idl S'"
 by (auto simp add: S_def)
 hence "M\subseteq I"
using I genideal_minimal by (auto simp add: S_def)
moreover have "I \subseteq M"
proof (rule ccontr)
assume "\neg I \subseteq M"
then obtain a where a: "a \in I" "a \& M"
by auto
have "M \subseteq Idl (insert a S')"
using S' a(1) genideal_minimal[of "Idl (insert a S')" S']
in_carrier genideal_ideal genideal_self
by (meson insert_subset subset_trans)
moreover have "Idl (insert a S') \in S"
using a(1) S' by (auto simp add: S_def)
ultimately have "M = Idl (insert a S')"
using M(2) by auto
hence "a \in M"
using genideal_self S'(1) a (1) in_carrier by (meson insert_subset
subset_trans)
from <a \in M> and <a \& M show False by simp
qed
ultimately have "M = I" by simp
thus " }\exists\textrm{A}\subseteq\mathrm{ carrier R. finite A ^ I = Idl A"
using S' in_carrier by blast
qed
lemma (in noetherian_domain) factorization_property:
assumes "a \in carrier R - { 0 }" "a \& Units R"
shows " }\exists\mathrm{ fs. set fs }\subseteq\mathrm{ carrier (mult_of R) ^ wfactors (mult_of R) fs
a" (is "?factorizable a")
proof (rule ccontr)
assume a: "\neg ?factorizable a"
define S where "S = { PIdl r | r. r G carrier R - { 0 } ^ r \& Units

```
```

R ^ ᄀ ?factorizable r }"
then obtain C where C: "subset.maxchain S C"
using subset.Hausdorff by blast
hence chain: "subset.chain S C"
using pred_on.maxchain_def by blast
moreover have "S \subseteq { I. ideal I R }"
using cgenideal_ideal by (auto simp add: S_def)
ultimately have "subset.chain { I. ideal I R } C"
by (meson dual_order.trans pred_on.chain_def)
moreover have "PIdl a \in S"
using assms a by (auto simp add: S_def)
hence "subset.chain S { PIdl a }"
unfolding pred_on.chain_def by auto
hence "C = {}"
using C unfolding pred_on.maxchain_def by auto
ultimately have "\C \inC"
using ideal_chain_is_trivial by simp
hence "UC G S"
using chain unfolding pred_on.chain_def by auto
then obtain r where r: "\C = PIdl r" "r \in carrier R - { 0 }" "r \&
Units R" "\neg ?factorizable r"
by (auto simp add: S_def)
have "\existsp. p \in carrier R - { 0 } ^ p \& Units R ^ ᄀ ?factorizable p
p divides r ^ ᄀ r divides p"
proof -
have "wfactors (mult_of R) [r] r" if "irreducible (mult_of R) r"
using r(2) that unfolding wfactors_def by auto
hence "\neg irreducible (mult_of R) r"
using r (2,4) by auto
hence "\neg ring_irreducible r"
using ring_irreducibleE(3) r(2) by auto
then obtain p1 p2
where p1_p2: "p1 \in carrier R" "p2 \in carrier R" "r = p1 \& p2" "p1
\not\in Units R" "p2 \& Units R"
using ring_irreducibleI[OF r(2-3)] by auto
hence in_carrier: "p1 \in carrier (mult_of R)" "p2 \in carrier (mult_of
R)"
using r(2) by auto
have "\llbracket ?factorizable p1; ?factorizable p2 \rrbracket \Longrightarrow ?factorizable r"
using mult_of.wfactors_mult[OF _ _ in_carrier] p1_p2(3) by (metis
le_sup_iff set_append)
hence "\neg ?factorizable p1 V \neg ?factorizable p2"
using r(4) by auto
moreover
have "\p1 p2. \llbracket p1 \in carrier R; p2 \in carrier R; r = p1 \otimes p2; r divides
p1 \ \Longrightarrow p2 \in Units R"
proof -

```
fix p1 p2 assume A: "p1 \(\in\) carrier R" "p2 \(\in \operatorname{carrier~R"~"r~=~p1~} \otimes\) p2" "r divides p1"
then obtain \(c\) where \(c: ~ " c \in\) carrier \(R "\) " 1 1 \(=r \otimes c\) "
unfolding factor_def by blast
hence "1 = c \(\otimes \mathrm{p} 2\) "
using A m_lcancel[0F _ _ one_closed, of r "c \(\otimes \mathrm{p} 2 \mathrm{Cl}\) ] \(\mathrm{r}(2)\) by (auto,
metis m_assoc m_closed)
thus "p2 \(\in\) Units R"
unfolding Units_def using c A(2) m_comm[0F c(1) A(2)] by auto
qed
hence " \(\neg\) r divides \(p 1\) " and " \(\neg\) r divides \(p\) ""
using p1_p2 m_comm[OF p1_p2(1-2)] by blast+
ultimately show ?thesis
using p1_p2 in_carrier by (metis carrier_mult_of dividesI' m_comm)
qed
then obtain \(p\)
where \(p:\) " \(p \in\) carrier \(R-\{0\) \}" "p \(\notin\) Units \(R "\) " \(\neg\) ?factorizable p" "p divides r" " r r divides p "
by blast
hence "PIdl \(p \in S "\)
unfolding S_def by auto
moreover have " \(\cup C \subset\) PIdl p"
using p r to_contain_is_to_divide unfolding r(1) by (metis Diff_iff psubsetI)
ultimately have "subset.chain \(S\) (insert (PIdl p) C)" and "C (insert (PIdl p) C)"
unfolding pred_on.chain_def by (metis C psubsetE subset_maxchain_max, blast)
thus False
using C unfolding pred_on.maxchain_def by blast
qed
lemma (in noetherian_domain) exists_irreducible_divisor:
assumes "a \(\in\) carrier \(R-\{0\}\) " and "a \(\notin\) Units R"
obtains \(b\) where " \(b \in\) carrier \(R\) " and "ring_irreducible \(b\) " and "b divides a"
proof -
obtain fs where set_fs: "set fs \(\subseteq\) carrier (mult_of R)" and "wfactors
(mult_of R) fs a"
using factorization_property[0F assms] by blast
hence "a \(\in\) Units \(R\) " if "fs = []"
using that assms(1) Units_cong assoc_iff_assoc_mult unfolding wfactors_def
by (simp, blast)
hence "fs \(\neq[]\) "
using assms(2) by auto
then obtain f' fs' where fs: "fs = f' \# fs'"
using list.exhaust by blast
from <wfactors (mult_of \(R\) ) fs a> have "f' divides a"
using mult_of.wfactors_dividesI[OF _ set_fs] assms(1) unfolding fs by auto
moreover from <wfactors (mult_of R) fs a> have "ring_irreducible f"" and "f" \(\in\) carrier R"
using set_fs ring_irreducibleI'[of f'] unfolding wfactors_def fs by auto
ultimately show thesis
using that by blast
qed

\subsection*{42.8 Principal Domains}
sublocale principal_domain \(\subseteq\) noetherian_domain proof
fix I assume "ideal I R"
then obtain \(i\) where "i \(\in\) carrier R" "I = Idl \{ i \}"
using exists_gen cgenideal_eq_genideal by auto
thus \(" \exists \mathrm{~A} \subseteq\) carrier \(R\). finite \(A \wedge I=I d l\) A" by blast
qed
lemma (in principal_domain) irreducible_imp_maximalideal:
assumes " \(p \in\) carrier R" and "ring_irreducible p"
shows "maximalideal (PIdl p) R"
proof (rule maximalidealI)
show "ideal (PIdl p) R"
using assms(1) by (simp add: cgenideal_ideal)
next
show "carrier \(R \neq\) PIdl p"
using ideal_eq_carrier_iff[0F assms(1)] ring_irreducibleE(4) [OF assms]
by auto
next
fix J assume J: "ideal J R" "PIdl \(\mathrm{p} \subseteq \mathrm{J}\) " "J \(\subseteq\) carrier R"
then obtain \(q\) where \(q: ~ " q \in\) carrier R" "J = PIdl q"
using exists_gen[0F J(1)] cgenideal_eq_rcos by metis
hence " \(q\) divides \(p\) "
using to_contain_is_to_divide[of q p] using assms(1) J(1-2) by simp
then obtain \(r\) where \(r: ~ " r \in c a r r i e r ~ R " ~ " p=q \otimes r "\)
unfolding factor_def by auto
hence " \(q \in\) Units \(R \vee r \in\) Units \(R\) "
using ring_irreducibleE(5) [OF assms \(q\) (1)] by auto
thus "J = PIdl p V J = carrier R"
proof
assume "q \(\in\) Units \(R\) " thus ?thesis
using ideal_eq_carrier_iff[0F q(1)] q(2) by auto
next
assume " \(r \in\) Units \(R\) " hence " \(p\) ~ \(q\) "
using assms(1) r q(1) associatedI2' by blast
```

 thus ?thesis
 unfolding associated_iff_same_ideal[OF assms(1) q(1)] q(2) by auto
 qed
 qed
corollary (in principal_domain) primeness_condition:
assumes "p \in carrier R"
shows "ring_irreducible p \longleftrightarrow ring_prime p"
proof
show "ring_irreducible p \Longrightarrow ring_prime p"
using maximalideal_prime[OF irreducible_imp_maximalideal] ring_irreducibleE(1)
primeideal_iff_prime assms by auto
next
show "ring_prime p \Longrightarrow ring_irreducible p"
using mult_of.prime_irreducible ring_primeI[of p] ring_irreducibleI'
assms
unfolding ring_prime_def prime_eq_prime_mult[OF assms] by auto
qed
lemma (in principal_domain) domain_iff_prime:
assumes "a \in carrier R - { 0 }"
shows "domain (R Quot (PIdl a)) \longleftrightarrow ring_prime a"
using quot_domain_iff_primeideal[of "PIdl a"] primeideal_iff_prime[of
a]
cgenideal_ideal[of a] assms by auto
lemma (in principal_domain) field_iff_prime:
assumes "a \in carrier R - { 0 }"
shows "field (R Quot (PIdl a)) \longleftrightarrow ring_prime a"
proof
show "ring_prime a \Longrightarrow field (R Quot (PIdl a))"
using primeness_condition[of a] irreducible_imp_maximalideal[of a]
maximalideal.quotient_is_field[of "PIdl a" R] is_cring assms
by auto
next
show "field (R Quot (PIdl a)) \Longrightarrow ring_prime a"
unfolding field_def using domain_iff_prime[of a] assms by auto
qed
sublocale principal_domain < mult_of: primeness_condition_monoid "mult_of
R"
rewrites "mult (mult_of R) = mult R"
and "one (mult_of R) = one R"
unfolding primeness_condition_monoid_def
primeness_condition_monoid_axioms_def
proof (auto simp add: mult_of.is_comm_monoid_cancel)
fix a assume a: "a \in carrier R" "a \not= 0" "irreducible (mult_of R) a"
show "prime (mult_of R) a"

```
using primeness_condition[OF a(1)] irreducible_mult_imp_irreducible[OF _ \(a(3)] a(1-2)\)
unfolding ring_prime_def ring_irreducible_def prime_eq_prime_mult [OF a(1)] by auto qed
sublocale principal_domain < mult_of: factorial_monoid "mult_of R"
rewrites "mult (mult_of \(R\) ) = mult \(R\) " and "one (mult_of \(R\) ) = one R"
using mult_of.wfactors_unique factorization_property mult_of.is_comm_monoid_cancel
by (auto intro!: mult_of.factorial_monoidI)
sublocale principal_domain \(\subseteq\) factorial_domain
unfolding factorial_domain_def using domain_axioms mult_of.factorial_monoid_axioms
by simp
lemma (in principal_domain) ideal_sum_iff_gcd:
assumes "a \(\in\) carrier \(R\) " "b \(\in \operatorname{carrier~R"~"d~} \in \operatorname{carrier~R"~}\)
shows "PIdl \(d=P I d l a<+>_{R}\) PIdl \(b \longleftrightarrow d\) gcdof \(a b "\)
proof -
\(\{\) fix \(a b d\)
assume in_carrier: "a \(\in\) carrier \(R\) " "b \(\in\) carrier R" "d \(\in\) carrier
R"
and ideal_eq: "PIdl d = PIdl a <+>R PIdl b" have "d gcdof a b" proof (auto simp add: isgcd_def)
have "a \(\in\) PIdl d" and "b \(\in\) PIdl d"
using in_carrier(1-2) [THEN cgenideal_ideal] additive_subgroup.zero_closed [OF ideal.axioms(1)]
in_carrier (1-2) [THEN cgenideal_self] in_carrier(1-2)
unfolding ideal_eq set_add_def' by force+
thus "d divides \(a\) " and "d divides b"
using in_carrier (1,2) [THEN to_contain_is_to_divide[OF in_carrier(3)]]
cgenideal_minimal[OF cgenideal_ideal[OF in_carrier(3)]]
by simp+ next
fix \(c\) assume \(c: ~ " c \in\) carrier \(R "\) "c divides \(a\) " "c divides b"
hence "PIdl \(\mathrm{a} \subseteq\) PIdl c " and "PIdl b \(\subseteq\) PIdl c"
using to_contain_is_to_divide in_carrier by auto
hence "PIdl \(a<+\rangle_{R}\) PIdl \(b \subseteq P I d l c\) "
by (metis Un_subset_iff c(1) in_carrier(1-2) cgenideal_ideal genideal_minimal union_genideal)
thus "c divides d"
using ideal_eq to_contain_is_to_divide[OF c(1) in_carrier(3)]
by simp qed \(\}\) note aux_lemma \(=\) this
have "PIdl \(d=\) PIdl \(a<+>_{R}\) PIdl \(b \Longrightarrow d\) gcdof \(a b "\) using aux_lemma assms by simp
```

 moreover
 have "d gcdof a b \Longrightarrow PIdl d = PIdl a <+>> PIdl b"
 proof -
 assume d: "d gcdof a b"
 obtain c where c: "c \in carrier R" "PIdl c = PIdl a <+> R PIdl b"
 using exists_gen[OF add_ideals[OF assms(1-2) [THEN cgenideal_ideal]]]
 by blast
hence "c gcdof a b"
using aux_lemma assms by simp
from <d gcdof a b > and <c gcdof a b> have "d ~ c"
using assms c(1) by (simp add: associated_def isgcd_def)
thus ?thesis
using c(2) associated_iff_same_ideal[OF assms(3) c(1)] by simp
qed
ultimately show ?thesis by auto
qed
lemma (in principal_domain) bezout_identity:
assumes "a \in carrier R" "b \in carrier R"
shows "PIdl a <+> R PIdl b = PIdl (somegcd R a b)"
proof -
have "\existsd \in carrier R. d gcdof a b"
using exists_gen[OF add_ideals[OF assms(1-2)[THEN cgenideal_ideal]]]
ideal_sum_iff_gcd[OF assms(1-2)] by auto
thus ?thesis
using ideal_sum_iff_gcd[OF assms(1-2)] somegcd_def
by (metis (no_types, lifting) tfl_some)
qed

```

\subsection*{42.9 Euclidean Domains}
sublocale euclidean_domain \(\subseteq\) principal_domain
    unfolding principal_domain_def principal_domain_axioms_def
proof (auto)
    show "domain R" by (simp add: domain_axioms)
next
    fix I assume I: "ideal I R" have "principalideal I R"
    proof (cases "I = \{ 0 \}")
        case True thus ?thesis by (simp add: zeropideal)
    next
        case False hence A: "I - \{ 0\(\} \neq\{ \}\) "
            using I additive_subgroup.zero_closed ideal.axioms(1) by auto
        define phi_img :: "nat set" where "phi_img = ( \(\varphi\) ( \(\left(\begin{array}{l}\text { - \{ } 0 \text { \}) )" }\end{array}\right.\)
        hence "phi_img \(\neq\{ \}\) " using A by simp
        then obtain \(m\) where \(" m \in\) phi_img" " \(\wedge \mathrm{k} . \mathrm{k} \in\) phi_img \(\Longrightarrow \mathrm{m} \leq \mathrm{k} "\)
            using exists_least_iff[of " \(\lambda\) n. \(n \in\) phi_img"] not_less by force
            then obtain a where \(\mathrm{a}: \mathrm{a} \in \mathrm{I}-\{0\} \mathrm{l}\) " \(\wedge \mathrm{b}, \mathrm{b} \in \mathrm{I}-\{0\} \Longrightarrow \varphi\)
```

a}\leq\varphi\mp@code{b'
using phi_img_def by blast
have "I = PIdl a"
proof (rule ccontr)
assume "I f= PIdl a"
then obtain b where b: "b \in I" "b \& PIdl a"
using I <a \in I - {0}> cgenideal_minimal by auto
hence "b f= 0"
by (metis DiffD1 I a(1) additive_subgroup.zero_closed cgenideal_ideal
ideal.Icarr ideal.axioms(1))
then obtain q r
where eucl_div: "q \in carrier R" "r f carrier R" "b = (a \otimes q)
\oplus r" "r = 0 V \varphi r < \varphi a"
using euclidean_function[of b a] a(1) b(1) ideal.Icarr[OF I] by
auto
hence "r = 0 \Longrightarrow b \in PIdl a"
unfolding cgenideal_def using m_comm[of a] ideal.Icarr[OF I] a(1)
by auto
hence 1: "\varphi r < \varphi a ^ r f=0"
using eucl_div(4) b(2) by auto
have "r = (\ominus (a \otimes q)) \oplus b"
using eucl_div(1-3) a(1) b(1) ideal.Icarr[OF I] r_neg1 by auto
moreover have "\ominus (a \otimes q) \in I"
using eucl_div(1) a(1) I
by (meson DiffD1 additive_subgroup.a_inv_closed ideal.I_r_closed
ideal.axioms(1))
ultimately have 2: "r \in I"
using b(1) additive_subgroup.a_closed[OF ideal.axioms(1) [OF I]]
by auto
from 1 and 2 show False
using a(2) by fastforce
qed
thus ?thesis
by (meson DiffD1 I cgenideal_is_principalideal ideal.Icarr local.a(1))
qed
thus "\existsa \in carrier R. I = PIdl a"
by (simp add: cgenideal_eq_genideal principalideal.generate)
qed
sublocale field \subseteq euclidean_domain R " }\mp@subsup{\lambda}{_}{\prime}\mathrm{ . 0"
proof (rule euclidean_domainI)
fix a b
let ?eucl_div = "\lambdaq r. q \in carrier R ^r f carrier R ^a=b \& q }
r ^ (r = 0 \vee 0 < 0)"
assume a: "a \in carrier R - { 0 }" and b: "b \in carrier R - { 0 }"

```
```

 hence "a = b \otimes ((inv b) \otimes a) \oplus 0"
 by (metis DiffD1 Units_inv_closed Units_r_inv field_Units l_one m_assoc
 r_zero)
hence "?eucl_div _ ((inv b) \otimes a) 0"
using a b field_Units by auto
thus "\existsq r. ?eucl_div _ q r"
by blast
qed
end

```
theory Polynomials
    imports Ring Ring_Divisibility Subrings
begin

\section*{43 Polynomials}

\subsection*{43.1 Definitions}
abbreviation lead_coeff :: "'a list \(\Rightarrow\) 'a" where "lead_coeff \(\equiv\) hd"
abbreviation degree :: "'a list \(\Rightarrow\) nat"
where "degree \(\mathrm{p} \equiv\) length \(\mathrm{p}-1\) "
definition polynomial :: "_ \(\Rightarrow\) 'a set \(\Rightarrow\) 'a list \(\Rightarrow\) bool" ("polynomial \({ }^{\prime}\) ")
where "polynomial \(K p \longleftrightarrow p=[] \vee\left(\right.\) set \(p \subseteq K \wedge\) lead_coeff \(p \neq 0_{R}\) )"
definition (in ring) monom :: "'a \(\Rightarrow\) nat \(\Rightarrow\) 'a list"
where "monom a \(\mathrm{n}=\mathrm{a} \#\) (replicate \(\mathrm{n} 0_{\mathrm{R}}\) )"
fun (in ring) eval :: "'a list \(\Rightarrow\) 'a \(\Rightarrow\) 'a"
where
"eval [] = ( \(\lambda_{-} .0\) )"
\(\mid\) "eval \(p=(\lambda x\). ((lead_coeff \(p) \otimes\left(x\left[^{\wedge}\right](\right.\) degree \(\left.\left.p)\right)\right) \oplus(\) eval (tl
p) \(x\) ))"
fun (in ring) coeff : : "'a list \(\Rightarrow\) nat \(\Rightarrow\) 'a"
where
"coeff [] = ( \(\lambda_{-} .0\) )"
| "coeff \(\mathrm{p}=\left(\lambda_{i}\right.\). if \(i=\) degree \(p\) then lead_coeff \(p\) else (coeff (tl
p) ) i)"
fun (in ring) normalize :: "'a list \(\Rightarrow\) 'a list"
where
"normalize [] = []"
| "normalize \(p=\) (if lead_coeff \(p \neq 0\) then \(p\) else normalize (tl p))"
```

fun (in ring) poly_add :: "'a list }=>\mathrm{ 'a list }=>\mathrm{ ' 'a list"
where "poly_add p1 p2 =
(if length p1 \geq length p2
then normalize (map2 (}\oplus\mathrm{) p1 ((replicate (length p1 - length
p2) 0) @ p2))
else poly_add p2 p1)"
fun (in ring) poly_mult :: "'a list }=>\mathrm{ ' 'a list }=>\mathrm{ ' 'a list"
where
"poly_mult [] p2 = []"
| "poly_mult p1 p2 =
poly_add ((map (\lambdaa. lead_coeff p1 \otimes a) p2) @ (replicate (degree
p1) 0)) (poly_mult (tl p1) p2)"
fun (in ring) dense_repr :: "'a list \# ('a × nat) list"
where
"dense_repr [] = []"
| "dense_repr p = (if lead_coeff p f= 0
then (lead_coeff p, degree p) \# (dense_repr (tl p))
else (dense_repr (tl p)))"
fun (in ring) poly_of_dense :: "('a < nat) list }=>\mathrm{ ('a list"
where "poly_of_dense dl = foldr (}\lambda(\textrm{a},\textrm{n}) l. poly_add (monom a n) l)
dl []"
definition (in ring) poly_of_const :: "'a \# 'a list"
where "poly_of_const = (}\lambda\textrm{k}.\mathrm{ normalize [k])"

```

\subsection*{43.2 Basic Properties}
context ring
begin
lemma polynomialI [intro]: " set \(\mathrm{p} \subseteq \mathrm{K}\); lead_coeff \(\mathrm{p} \neq \mathbf{0} \rrbracket \Longrightarrow\) polynomial K p" unfolding polynomial_def by auto
lemma polynomial_incl: "polynomial \(\mathrm{K} p \Longrightarrow\) set \(\mathrm{p} \subseteq \mathrm{K}\) " unfolding polynomial_def by auto
lemma monom_in_carrier [intro]: "a \(\in \operatorname{carrier~} R \Longrightarrow\) set (monom a n) \(\subseteq\) carrier R"
unfolding monom_def by auto
lemma lead_coeff_not_zero: "polynomial K (a \# p) \(\Longrightarrow \mathrm{a} \in \mathrm{K}\) - \{ 0 \}" unfolding polynomial_def by simp
lemma zero_is_polynomial [intro]: "polynomial K []"
unfolding polynomial_def by simp
lemma const_is_polynomial [intro]: "a \(\in \mathrm{K}-\{0\} \Longrightarrow\) polynomial K [ a ]" unfolding polynomial_def by auto
```

lemma normalize_gives_polynomial: "set p \subseteq K \Longrightarrow polynomial K (normalize
p)"
by (induction p) (auto simp add: polynomial_def)
lemma normalize_in_carrier: "set p \subseteq carrier R \Longrightarrow set (normalize p)
@carrier R"
by (induction p) (auto)
lemma normalize_polynomial: "polynomial K p \Longrightarrow normalize p = p"
unfolding polynomial_def by (cases p) (auto)
lemma normalize_idem: "normalize ((normalize p) @ q) = normalize (p @
q)"
by (induct p) (auto)
lemma normalize_length_le: "length (normalize p) \leq length p"
by (induction p) (auto)
lemma eval_in_carrier: "\llbracket set p \subseteq carrier R; x \in carrier R \rrbracket\Longrightarrow (eval
p) x \in carrier R"
by (induction p) (auto)
lemma coeff_in_carrier [simp]: "set p \subseteq carrier R \Longrightarrow(coeff p) i }
carrier R"
by (induction p) (auto)
lemma lead_coeff_simp [simp]: "p \# [] \Longrightarrow (coeff p) (degree p) = lead_coeff
p"
by (metis coeff.simps(2) list.exhaust_sel)
lemma coeff_list: "map (coeff p) (rev [0..< length p]) = p"
proof (induction p)
case Nil thus ?case by simp
next
case (Cons a p)
have "map (coeff (a \# p)) (rev [0..<length (a \# p)]) =
a \# (map (coeff p) (rev [0..<length p]))"
by auto
also have " ... = a \# p"
using Cons by simp
finally show ?case .
qed

```
```

lemma coeff_nth: "i < length p (coeff p) i = p ! (length p - 1 -
i)"
proof -
assume i_lt: "i < length p"
hence "(coeff p) i = (map (coeff p) [0..< length p]) ! i"
by simp
also have " ... = (rev (map (coeff p) (rev [0..< length p]))) ! i"
by (simp add: rev_map)
also have " ... = (map (coeff p) (rev [0..< length p])) ! (length p

- 1 - i)"
using coeff_list i_lt rev_nth by auto
also have " ... = p ! (length p - 1 - i)"
using coeff_list[of p] by simp
finally show "(coeff p) i = p ! (length p - 1 - i)".
qed
lemma coeff_iff_length_cond:
assumes "length p1 = length p2"
shows "p1 = p2 \longleftrightarrow coeff p1 = coeff p2"
proof
show "p1 = p2 \Longrightarrow coeff p1 = coeff p2"
by simp
next
assume A: "coeff p1 = coeff p2"
have "p1 = map (coeff p1) (rev [0..< length p1])"
using coeff_list[of p1] by simp
also have " ... = map (coeff p2) (rev [0..< length p2])"
using A assms by simp
also have " ... = p2"
using coeff_list[of p2] by simp
finally show "p1 = p2" .
qed
lemma coeff_img_restrict: "(coeff p) ' {..< length p} = set p"
using coeff_list[of p] by (metis atLeast_upt image_set set_rev)
lemma coeff_length: "\i. i \geq length p \# (coeff p) i = 0"
by (induction p) (auto)
lemma coeff_degree: "\i. i > degree p \Longrightarrow (coeff p) i = 0"
using coeff_length by (simp)
lemma replicate_zero_coeff [simp]: "coeff (replicate n 0) = (}\mp@subsup{\lambda}{~}{\prime}.0)
by (induction n) (auto)
lemma scalar_coeff: "a \in carrier R \Longrightarrow coeff (map (\lambdab. a \otimes b) p) = (}\lambda\textrm{i}
a \otimes (coeff p) i)"
by (induction p) (auto)

```
```

lemma monom_coeff: "coeff (monom a n) = (\lambdai. if i = n then a else 0)"
unfolding monom_def by (induction n) (auto)
lemma coeff_img:
"(coeff p) ' {..< length p} = set p"
"(coeff p) ' { length p ..} = { 0 }"
"(coeff p)' UNIV = (set p) \cup { 0 }"
using coeff_img_restrict
proof (simp)
show coeff_img_up: "(coeff p) ' { length p ..} = { 0 }"
using coeff_length[of p] by force
from coeff_img_up and coeff_img_restrict[of p]
show "(coeff p)' UNIV = (set p) \cup { 0 }"
by force
qed
lemma degree_def':
assumes "polynomial K p"
shows "degree p = (LEAST n. \foralli. i > n \longrightarrow (coeff p) i = 0)"
proof (cases p)
case Nil thus ?thesis by auto
next
define P where "P = (}\lambda\textrm{n}.\forall\textrm{i}. i > n \longrightarrow (coeff p) i = 0)"
case (Cons a ps)
hence "(coeff p) (degree p) f= 0"
using assms unfolding polynomial_def by auto
hence "\n. n < degree p \Longrightarrow ᄀ P n"
unfolding P_def by auto
moreover have "P (degree p)"
unfolding P_def using coeff_degree[of p] by simp
ultimately have "degree p = (LEAST n. P n)"
by (meson LeastI nat_neq_iff not_less_Least)
thus ?thesis unfolding P_def .
qed
lemma coeff_iff_polynomial_cond:
assumes "polynomial K p1" and "polynomial K p2"
shows "p1 = p2 \longleftrightarrow coeff p1 = coeff p2"
proof
show "p1 = p2 \Longrightarrow coeff p1 = coeff p2"
by simp
next
assume coeff_eq: "coeff p1 = coeff p2"
hence deg_eq: "degree p1 = degree p2"
using degree_def'[OF assms(1)] degree_def'[OF assms(2)] by auto
thus "p1 = p2"
proof (cases)
assume "p1 f [] ^ p2 f []"

```
```

 hence "length p1 = length p2"
 using deg_eq by (simp add: Nitpick.size_list_simp(2))
 thus ?thesis
 using coeff_iff_length_cond[of p1 p2] coeff_eq by simp
 next
 { fix p1 p2 assume A: "p1 = []" "coeff p1 = coeff p2" "polynomial
 K p2"
have "p2 = []"
proof (rule ccontr)
assume "p2 f []"
hence "(coeff p2) (degree p2) f=0"
using A(3) unfolding polynomial_def
by (metis coeff.simps(2) list.collapse)
moreover have "(coeff p1)' UNIV = {0 }"
using A(1) by auto
hence "(coeff p2)' UNIV = { 0 }"
using A(2) by simp
ultimately show False
by blast
qed } note aux_lemma = this
assume "\neg(p1 f [] ^ p2 f [])"
hence "p1 = [] \vee p2 = []" by simp
thus ?thesis
using assms coeff_eq aux_lemma[of p1 p2] aux_lemma[of p2 p1] by
auto
qed
qed
lemma normalize_lead_coeff:
assumes "length (normalize p) < length p"
shows "lead_coeff p = 0"
proof (cases p)
case Nil thus ?thesis
using assms by simp
next
case (Cons a ps) thus ?thesis
using assms by (cases "a = 0") (auto)
qed
lemma normalize_length_lt:
assumes "lead_coeff p = 0" and "length p > 0"
shows "length (normalize p) < length p"
proof (cases p)
case Nil thus ?thesis
using assms by simp
next
case (Cons a ps) thus ?thesis
using normalize_length_le[of ps] assms by simp
qed

```
```

lemma normalize_length_eq:
assumes "lead_coeff $p \neq 0$ "
shows "length (normalize p) = length p"
using normalize_length_le[of p] assms nat_less_le normalize_lead_coeff
by auto
lemma normalize_replicate_zero: "normalize ((replicate n 0) @ p) = normalize
p"
by (induction n) (auto)
lemma normalize_def':
shows $" p=(r e p l i c a t e ~(l e n g t h ~ p ~-~ l e n g t h ~(n o r m a l i z e ~ p)) ~ 0) ~ © ~$
(drop (length p - length (normalize p)) p)" (is ?statement1)
and "normalize $\mathrm{p}=$ drop (length p - length (normalize p)) p" (is ?statement2)
proof -
show ?statement1
proof (induction p)
case Nil thus ?case by simp
next
case (Cons a p) thus ?case
proof (cases "a = 0")
assume "a $\neq 0$ " thus ?case
using Cons by simp
next
assume eq_zero: "a = 0"
hence len_eq:
"Suc (length p - length (normalize p)) = length (a \# p) - length
(normalize (a \# p))"
by (simp add: Suc_diff_le normalize_length_le)
have "a \# p = 0 \# (replicate (length p - length (normalize p)) 0
©
drop (length p - length (normalize p)) p)"
using eq_zero Cons by simp
also have " ... = (replicate (Suc (length p - length (normalize
p))) 0 ©
drop (Suc (length p - length (normalize
p)) ((a \# p))"
by simp
also have " ... = (replicate (length (a \# p) - length (normalize
(a \# p))) 0 @
drop (length (a \# p) - length (normalize
(a \# p))) (a \# p))"
using len_eq by simp
finally show ?case .
qed
qed
next
show ?statement2

```
```

 proof -
 have "\existsm. normalize p = drop m p"
 proof (induction p)
 case Nil thus ?case by simp
 next
 case (Cons a p) thus ?case
 apply (cases "a = 0")
 apply (auto)
 apply (metis drop_Suc_Cons)
 apply (metis drop0)
 done
 qed
 then obtain m where m: "normalize p = drop m p" by auto
 hence "length (normalize p) = length p - m" by simp
 thus ?thesis
 using m by (metis rev_drop rev_rev_ident take_rev)
 qed
 qed
corollary normalize_trick:
shows "p = (replicate (length p - length (normalize p)) 0) @ (normalize
p)"
using normalize_def'(1)[of p] unfolding sym[OF normalize_def'(2)] .
lemma normalize_coeff: "coeff p = coeff (normalize p)"
proof (induction p)
case Nil thus ?case by simp
next
case (Cons a p)
have "coeff (normalize p) (length p) = 0"
using normalize_length_le[of p] coeff_degree[of "normalize p"] coeff_length
by blast
then show ?case
using Cons by (cases "a = 0") (auto)
qed
lemma append_coeff:
"coeff (p @ q) = (\lambdai. if i < length q then (coeff q) i else (coeff p)
(i - length q))"
proof (induction p)
case Nil thus ?case
using coeff_length[of q] by auto
next
case (Cons a p)
have "coeff ((a \# p) @ q) = (\lambdai. if i = length p + length q then a else
(coeff (p @ q)) i)"
by auto
also have " ... = (\lambdai. if i = length p + length q then a
else if i < length q then (coeff q) i

```
```

 else (coeff p) (i - length q))"
 using Cons by auto
 also have " ... = (\lambdai. if i < length q then (coeff q) i
 else if i = length p + length q then a else (coeff
 p) (i - length q))"
by auto
also have " ... = (\lambdai. if i < length q then (coeff q) i
else if i - length q = length p then a else (coeff
p) (i - length q))"
by fastforce
also have " ... = (\lambdai. if i < length q then (coeff q) i else (coeff
(a \# p)) (i - length q))"
by auto
finally show ?case .
qed
lemma prefix_replicate_zero_coeff: "coeff p = coeff ((replicate n 0)
@ p)"
using append_coeff[of "replicate n 0" p] replicate_zero_coeff[of n]
coeff_length[of p] by auto
context
fixes K :: "'a set" assumes K: "subring K R"
begin
lemma polynomial_in_carrier [intro]: "polynomial K p \Longrightarrow set p \subseteq carrier
R"
unfolding polynomial_def using subringE(1) [OF K] by auto
lemma carrier_polynomial [intro]: "polynomial K p m polynomial (carrier
R) p"
unfolding polynomial_def using subringE(1) [OF K] by auto
lemma append_is_polynomial: "\llbracket polynomial K p; p \not= [] \rrbracket \Longrightarrow polynomial
K (p @ (replicate n 0))"
unfolding polynomial_def using subringE(2) [OF K] by auto
lemma lead_coeff_in_carrier: "polynomial K (a \# p) \Longrightarrow a \in carrier R

- { 0 }"
unfolding polynomial_def using subringE(1) [OF K] by auto
lemma monom_is_polynomial [intro]: "a \in K - { 0 } \Longrightarrow polynomial K (monom
a n)"
unfolding polynomial_def monom_def using subringE(2) [OF K] by auto
lemma eval_poly_in_carrier: "\llbracket polynomial K p; x \in carrier R \rrbracket \Longrightarrow (eval
p) x f carrier R"
using eval_in_carrier[OF polynomial_in_carrier] .

```
lemma poly_coeff_in_carrier [simp]: "polynomial K p \(\Longrightarrow\) coeff pi \(\in\) carrier R"
using coeff_in_carrier[OF polynomial_in_carrier].
end

\subsection*{43.3 Polynomial Addition}
context
fixes K :: "’a set" assumes K: "subring K R"
begin
lemma poly_add_is_polynomial:
assumes "set p1 \(\subseteq \mathrm{K}\) " and "set p2 \(\subseteq \mathrm{K}\) "
shows "polynomial K (poly_add p1 p2)"
proof -
\(\{\) fix p1 p2 assume A: "set p1 \(\subseteq\) K" "set \(\mathrm{p} 2 \subseteq \mathrm{~K}\) " "length \(\mathrm{p} 1 \geq\) length p2"
hence "polynomial K (poly_add p1 p2)"
proof -

p2"
hence "set p 2 ' \(\subseteq \mathrm{K}\) " and "length \(\mathrm{p} 1=\) length p 2 ""
using \(A(2-3)\) subringE(2) [OF K] by auto
hence "set (map2 ( \(\oplus\) ) p1 p2') \(\subseteq K\) "
using \(A(1)\) subringE(7) [OF K]
by (induct p1) (auto, metis set_ConsD subsetD set_zip_leftD set_zip_rightD)
thus ?thesis
unfolding p2'_def using normalize_gives_polynomial A(3) by simp qed \(\}\)
thus ?thesis
using assms by auto
qed
lemma poly_add_closed: "【 polynomial K p1; polynomial K p2 】 \(\Longrightarrow\) polynomial
K (poly_add p1 p2)"
using poly_add_is_polynomial polynomial_incl by simp
lemma poly_add_length_eq:
assumes "polynomial K p1" "polynomial K p2" and "length p1 \(\neq\) length p2"
shows "length (poly_add p1 p2) = max (length p1) (length p2)"
proof -
\{ fix p1 p2 assume A: "polynomial K p1" "polynomial K p2" "length p1 > length p2"
hence "length (poly_add p1 p2) = max (length p1) (length p2)"
proof -
```

 let ?p2 = "(replicate (length p1 - length p2) 0) @ p2"
    ```
```

 have p1: "p1 f []" and p2: "?p2 f []"
 using A(3) by auto
 then have "zip p1 (replicate (length p1 - length p2) 0 @ p2) =
 zip (lead_coeff p1 \# tl p1) (lead_coeff (replicate (length p1 - length
p2) 0 @ p2) \# tl (replicate (length p1 - length p2) 0 @ p2))"
by auto
hence "lead_coeff (map2 (}\oplus\mathrm{) p1 ?p2) = lead_coeff p1 }\oplus\mathrm{ lead_coeff
?p2"
by simp
moreover have "lead_coeff p1 \in carrier R"
using p1 A(1) lead_coeff_in_carrier[OF K, of "hd p1" "tl p1"]
by auto
ultimately have "lead_coeff (map2 (}\oplus\mathrm{) p1 ?p2) = lead_coeff p1"
using A(3) by auto
moreover have "lead_coeff p1 f= 0"
using p1 A(1) unfolding polynomial_def by simp
ultimately have "length (normalize (map2 (}\oplus\mathrm{) p1 ?p2)) = length
p1"
using normalize_length_eq by auto
thus ?thesis
using A(3) by auto
qed }
thus ?thesis
using assms by auto
qed
lemma poly_add_degree_eq:
assumes "polynomial K p1" "polynomial K p2" and "degree p1 f= degree
p2"
shows "degree (poly_add p1 p2) = max (degree p1) (degree p2)"
using poly_add_length_eq[0F assms(1-2)] assms(3) by simp
end
lemma poly_add_in_carrier:
"\llbracket set p1 \subseteq carrier R; set p2 \subseteq carrier R \rrbracket \Longrightarrow set (poly_add p1 p2)
\subseteq \mp@code { c a r r i e r ~ R " }
using polynomial_incl[OF poly_add_is_polynomial[OF carrier_is_subring]]
by simp
lemma poly_add_length_le: "length (poly_add p1 p2) \leq max (length p1)
(length p2)"
proof -
{ fix p1 p2 :: "'a list" assume A: "length p1 \geq length p2"
let ?p2 = "(replicate (length p1 - length p2) 0) @ p2"
have "length (poly_add p1 p2) \leq max (length p1) (length p2)"
using normalize_length_le[of "map2 (}\oplus\mathrm{) p1 ?p2"] A by auto }
thus ?thesis

```
```

 by (metis le_cases max.commute poly_add.simps)
 qed
lemma poly_add_degree: "degree (poly_add p1 p2) \leq max (degree p1) (degree
p2)"
using poly_add_length_le by (meson diff_le_mono le_max_iff_disj)
lemma poly_add_coeff_aux:
assumes "length p1 \geq length p2"
shows "coeff (poly_add p1 p2) = (\lambdai. ((coeff p1) i) \oplus ((coeff p2) i))"
proof
fix i
have "i < length p1 \Longrightarrow (coeff (poly_add p1 p2)) i = ((coeff p1) i)
\oplus ((coeff p2) i)"
proof -
let ?p2 = "(replicate (length p1 - length p2) 0) @ p2"
have len_eqs: "length p1 = length ?p2" "length (map2 (}\oplus\mathrm{) p1 ?p2)
= length p1"
using assms by auto
assume i_lt: "i < length p1"
have "(coeff (poly_add p1 p2)) i = (coeff (map2 (}\oplus\mathrm{) p1 ?p2)) i"
using normalize_coeff[of "map2 (}\oplus\mathrm{) p1 ?p2"] assms by auto
also have " ... = (map2 (}\oplus\mathrm{) p1 ?p2) ! (length p1 - 1 - i)"
using coeff_nth[of i "map2 (}\oplus\mathrm{) p1 ?p2"] len_eqs(2) i_lt by auto
also have " ... = (p1 ! (length p1 - 1 - i)) \oplus (?p2 ! (length ?p2

- 1 - i))"
using len_eqs i_lt by auto
also have " ... = ((coeff p1) i) \oplus ((coeff ?p2) i)"
using coeff_nth[of i p1] coeff_nth[of i ?p2] i_lt len_eqs(1) by
auto
also have " ... = ((coeff p1) i) \oplus ((coeff p2) i)"
using prefix_replicate_zero_coeff by simp
finally show "(coeff (poly_add p1 p2)) i = ((coeff p1) i) \oplus ((coeff
p2) i)" .
qed
moreover
have "i \geq length p1 \Longrightarrow(coeff (poly_add p1 p2)) i = ((coeff p1) i)
\oplus ((coeff p2) i)"
using coeff_length[of "poly_add p1 p2"] coeff_length[of p1] coeff_length[of
p2]
poly_add_length_le[of p1 p2] assms by auto
ultimately show "(coeff (poly_add p1 p2)) i = ((coeff p1) i) \oplus ((coeff
p2) i)"
using not_le by blast
qed
lemma poly_add_coeff:
assumes "set p1 \subseteq carrier R" "set p2 \subseteq carrier R"
shows "coeff (poly_add p1 p2) = (\lambdai. ((coeff p1) i) \oplus ((coeff p2) i))"

```
```

proof -
have "length p1 \geq length p2 \vee length p2 > length p1"
by auto
thus ?thesis
proof
assume "length p1 \geq length p2" thus ?thesis
using poly_add_coeff_aux by simp
next
assume "length p2 > length p1"
hence "coeff (poly_add p1 p2) = (\lambdai. ((coeff p2) i) \oplus ((coeff p1)
i))"
using poly_add_coeff_aux by simp
thus ?thesis
using assms by (simp add: add.m_comm)
qed
qed
lemma poly_add_comm:
assumes "set p1\subseteq carrier R" "set p2 \subseteq carrier R"
shows "poly_add p1 p2 = poly_add p2 p1"
proof -
have "coeff (poly_add p1 p2) = coeff (poly_add p2 p1)"
using poly_add_coeff[OF assms] poly_add_coeff[OF assms(2) assms(1)]
coeff_in_carrier[OF assms(1)] coeff_in_carrier[OF assms(2)]
add.m_comm by auto
thus ?thesis
using coeff_iff_polynomial_cond[OF
poly_add_is_polynomial[OF carrier_is_subring assms]
poly_add_is_polynomial[OF carrier_is_subring assms(2,1)]] by
simp
qed
lemma poly_add_monom:
assumes "set p\subseteq carrier R" and "a \in carrier R - { 0 }"
shows "poly_add (monom a (length p)) p = a \# p"
unfolding monom_def using assms by (induction p) (auto)
lemma poly_add_append_replicate:
assumes "set p \subseteq carrier R" "set q \subseteq carrier R"
shows "poly_add (p @ (replicate (length q) 0)) q = normalize (p @ q)"
proof -
have "map2 (}\oplus\mathrm{) (p @ (replicate (length q) 0)) ((replicate (length p)
0) @ q) = p @ q"
using assms by (induct p) (induct q, auto)
thus ?thesis by simp
qed
lemma poly_add_append_zero:
assumes "set p\subseteq carrier R" "set q \subseteq carrier R"

```
```

 shows "poly_add (p @ [0]) (q @ [0]) = normalize ((poly_add p q)
 @ [0])"
proof -
have in_carrier: "set (p @ [0]) \subseteq carrier R" "set (q@ [0]) \subseteq carrier
R"
using assms by auto
have "coeff (poly_add (p @ [0]) (q @ [0])) = coeff ((poly_add p
q) @ [0])"
using append_coeff[of p "[0]"] poly_add_coeff[OF in_carrier]
append_coeff[of q "[0]"] append_coeff[of "poly_add p q" "[
0]"]
poly_add_coeff[OF assms] assms[THEN coeff_in_carrier] by auto
hence "coeff (poly_add (p @ [0]) (q@ [0])) = coeff (normalize
((poly_add p q) @ [0]))"
using normalize_coeff by simp
moreover have "set ((poly_add p q) @ [0]) \subseteq carrier R"
using poly_add_in_carrier[OF assms] by simp
ultimately show ?thesis
using coeff_iff_polynomial_cond[OF poly_add_is_polynomial[OF carrier_is_subring
in_carrier]
normalize_gives_polynomial] by simp
qed
lemma poly_add_normalize_aux:
assumes "set p1 \subseteq carrier R" "set p2 \subseteq carrier R"
shows "poly_add p1 p2 = poly_add (normalize p1) p2"
proof -
{ fix n p1 p2 assume "set p1 \subseteq carrier R" "set p2 \subseteq carrier R"
hence "poly_add p1 p2 = poly_add ((replicate n 0) @ p1) p2"
proof (induction n)
case 0 thus ?case by simp
next
{ fix p1 p2 :: "'a list"
assume in_carrier: "set p1 \subseteq carrier R" "set p2 \subseteq carrier R"
have "poly_add p1 p2 = poly_add (0 \# p1) p2"
proof -
have "length p1 \geq length p2 \Longrightarrow ?thesis"
proof -
assume A: "length p1 \geq length p2"
let ?p2 = "\lambdan. (replicate n 0) @ p2"
have "poly_add p1 p2 = normalize (map2 (}\oplus\mathrm{) (0 \# p1) (0 \#
?p2 (length p1 - length p2)))"
using A by simp
also have " ... = normalize (map2 (}\oplus\mathrm{) (0 \# p1) (?p2 (length
(0 \# p1) - length p2)))"
by (simp add: A Suc_diff_le)
also have " ... = poly_add (0 \# p1) p2"
using A by simp
finally show ?thesis .

```
```

 qed
 moreover have "length p2 > length p1 \Longrightarrow ?thesis"
 proof -
 assume A: "length p2 > length p1"
 let ?f = "\lambdan p. (replicate n 0) @ p"
 have "poly_add p1 p2 = poly_add p2 p1"
 using A by simp
 also have " ... = normalize (map2 (}\oplus\mathrm{) p2 (?f (length p2 -
 length p1) p1))"
using A by simp
also have " ... = normalize (map2 (}\oplus\mathrm{) p2 (?f (length p2 -
Suc (length p1)) (0 \# p1)))"
by (metis A Suc_diff_Suc append_Cons replicate_Suc replicate_app_Cons_same)
also have " ... = poly_add p2 (0 \# p1)"
using A by simp
also have " ... = poly_add (0 \# p1) p2"
using poly_add_comm[of p2 "0 \# p1"] in_carrier by auto
finally show ?thesis .
qed
ultimately show ?thesis by auto
qed } note aux_lemma = this
case (Suc n)
hence in_carrier: "set (replicate n 0 @ p1) \subseteq carrier R"
by auto
have "poly_add p1 p2 = poly_add (replicate n 0 @ p1) p2"
using Suc by simp
also have " ... = poly_add (replicate (Suc n) 0 @ p1) p2"
using aux_lemma[OF in_carrier Suc(3)] by simp
finally show ?case .
qed } note aux_lemma = this
have "poly_add p1 p2 =
poly_add ((replicate (length p1 - length (normalize p1)) 0) @
normalize p1) p2"
using normalize_def'[of p1] by simp
also have " ... = poly_add (normalize p1) p2"
using aux_lemma[OF normalize_in_carrier[OF assms(1)] assms(2)] by
simp
finally show ?thesis .
qed
lemma poly_add_normalize:
assumes "set p1 \subseteq carrier R" "set p2 \subseteq carrier R"
shows "poly_add p1 p2 = poly_add (normalize p1) p2"
and "poly_add p1 p2 = poly_add p1 (normalize p2)"
and "poly_add p1 p2 = poly_add (normalize p1) (normalize p2)"

```
```

proof -
show "poly_add p1 p2 = poly_add p1 (normalize p2)"
unfolding poly_add_comm[OF assms] poly_add_normalize_aux[OF assms(2)
assms(1)]
poly_add_comm[OF normalize_in_carrier[OF assms(2)] assms(1)]
by simp
next
show "poly_add p1 p2 = poly_add (normalize p1) p2"
using poly_add_normalize_aux[OF assms] .
also have " ... = poly_add (normalize p2) (normalize p1)"
unfolding poly_add_comm[OF normalize_in_carrier[OF assms(1)] assms(2)]
poly_add_normalize_aux[OF assms(2) normalize_in_carrier [OF
assms(1)]] by simp
finally show "poly_add p1 p2 = poly_add (normalize p1) (normalize p2)"
unfolding poly_add_comm[OF assms[THEN normalize_in_carrier]].
qed
lemma poly_add_zero':
assumes "set p\subseteq carrier R"
shows "poly_add p [] = normalize p" and "poly_add [] p = normalize
p"
proof -
have "map2 (}\oplus\mathrm{) p (replicate (length p) 0) = p"
using assms by (induct p) (auto)
thus "poly_add p [] = normalize p" and "poly_add [] p = normalize p"
using poly_add_comm[OF assms, of "[]"] by simp+
qed
lemma poly_add_zero:
assumes "subring K R" "polynomial K p"
shows "poly_add p [] = p" and "poly_add [] p = p"
using poly_add_zero' normalize_polynomial polynomial_in_carrier assms
by auto
lemma poly_add_replicate_zero':
assumes "set p\subseteq carrier R"
shows "poly_add p (replicate n 0) = normalize p" and "poly_add (replicate
n 0) p = normalize p"
proof -
have "poly_add p (replicate n 0) = poly_add p []"
using poly_add_normalize(2) [OF assms, of "replicate n 0"]
normalize_replicate_zero[of n "[]"] by force
also have " ... = normalize p"
using poly_add_zero'[0F assms] by simp
finally show "poly_add p (replicate n 0) = normalize p" .
thus "poly_add (replicate n 0) p = normalize p"
using poly_add_comm[OF assms, of "replicate n 0"] by force
qed

```
```

lemma poly_add_replicate_zero:
assumes "subring K R" "polynomial K p"
shows "poly_add p (replicate $n \mathbf{0}$) = p" and "poly_add (replicate $n 0$)
p = p"
using poly_add_replicate_zero' normalize_polynomial polynomial_in_carrier
assms by auto

```

\subsection*{43.4 Dense Representation}
```

lemma dense_repr_replicate_zero: "dense_repr ((replicate n 0) @ p) =
dense_repr p"
by (induction n) (auto)
lemma dense_repr_normalize: "dense_repr (normalize p) = dense_repr p"
by (induct p) (auto)
lemma polynomial_dense_repr:
assumes "polynomial K p" and "p f= []"
shows "dense_repr p = (lead_coeff p, degree p) \# dense_repr (normalize
(tl p))"
proof -
let ?len = length and ?norm = normalize
obtain a p' where p: "p = a \# p'"
using assms(2) list.exhaust_sel by blast
hence a: "a \in K - { 0 }" and p': "set p' \subseteq K"
using assms(1) unfolding p by (auto simp add: polynomial_def)
hence "dense_repr p = (lead_coeff p, degree p) \# dense_repr p'"
unfolding p by simp
also have " ... =
(lead_coeff p, degree p) \# dense_repr ((replicate (?len p' - ?len
(?norm p')) 0) @ ?norm p')"
using normalize_def' dense_repr_replicate_zero by simp
also have " ... = (lead_coeff p, degree p) \# dense_repr (?norm p')"
using dense_repr_replicate_zero by simp
finally show ?thesis
unfolding p by simp
qed
lemma monom_decomp:
assumes "subring K R" "polynomial K p"
shows "p = poly_of_dense (dense_repr p)"
using assms(2)
proof (induct "length p" arbitrary: p rule: less_induct)
case less thus ?case
proof (cases p)
case Nil thus ?thesis by simp
next
case (Cons a l)
hence a: "a \in carrier R - { 0 }" and l: "set l \subseteq carrier R" "set

```
```

l \subseteq K'
using less(2) subringE(1)[OF assms(1)] by (auto simp add: polynomial_def)
hence "a \# l = poly_add (monom a (degree (a \# l))) l"
using poly_add_monom[of l a] by simp
also have " ... = poly_add (monom a (degree (a \# l))) (normalize l)"
using poly_add_normalize(2)[of "monom a (degree (a \# l))", OF _
l(1)] a
unfolding monom_def by force
also have " ... = poly_add (monom a (degree (a \# l))) (poly_of_dense
(dense_repr (normalize l)))"
using less(1)[OF _ normalize_gives_polynomial[OF l(2)]] normalize_length_le[of
1]
unfolding Cons by simp
also have " ... = poly_of_dense ((a, degree (a \# l)) \# dense_repr
(normalize l))"
by simp
also have " ... = poly_of_dense (dense_repr (a \# l))"
using polynomial_dense_repr[OF less(2)] unfolding Cons by simp
finally show ?thesis
unfolding Cons by simp
qed
qed

```

\subsection*{43.5 Polynomial Multiplication}
lemma poly_mult_is_polynomial:
assumes "subring \(K\) R" "set \(\mathrm{p} 1 \subseteq \mathrm{~K}\) " and "set \(\mathrm{p} 2 \subseteq \mathrm{~K}\) "
shows "polynomial K (poly_mult p1 p2)"
using assms (2-3)
proof (induction p1)
case Nil thus ?case
by (simp add: polynomial_def)
next
case (Cons a p1)

have "set (poly_mult p1 p2) \(\subseteq\) K"
using Cons unfolding polynomial_def by auto
moreover have "set ?a_p2 \(\subseteq\) K" using assms(3) Cons(2) subringE(1-2,6) [OF assms(1)] by (induct p2)
(auto)
ultimately have "polynomial K (poly_add ?a_p2 (poly_mult p1 p2))"
using poly_add_is_polynomial[0F assms(1)] by blast
thus ?case by simp
qed
lemma poly_mult_closed:
assumes "subring K R"
shows "【 polynomial K p1; polynomial K p2 】 \(\Longrightarrow\) polynomial K (poly_mult
```

p1 p2)"
using poly_mult_is_polynomial polynomial_incl assms by simp
lemma poly_mult_in_carrier:
"\llbracket set p1 \subseteq carrier R; set p2 \subseteq carrier R \rrbracket \Longrightarrow set (poly_mult p1 p2)
C carrier R"
using poly_mult_is_polynomial polynomial_in_carrier carrier_is_subring
by simp
lemma poly_mult_coeff:
assumes "set p1 \subseteq carrier R" "set p2 \subseteq carrier R"
shows "coeff (poly_mult p1 p2) = (}\mp@subsup{\lambda}{i}{\prime}.\bigoplus\mathrm{ @ k G {..i}. (coeff p1) k \&
(coeff p2) (i - k))"
using assms(1)
proof (induction p1)
case Nil thus ?case using assms(2) by auto
next
case (Cons a p1)
hence in_carrier:
"a \in carrier R" "\i. (coeff p1) i \in carrier R" "\i. (coeff p2) i
\epsilon carrier R"
using coeff_in_carrier assms(2) by auto
let ?a_p2 = "(map (}\lambda\textrm{b}.\textrm{a \otimes b) p2) @ (replicate (degree (a \# p1)) 0)"
have "coeff (replicate (degree (a \# p1)) 0) = ((\lambda_. 0)"
and "length (replicate (degree (a \# p1)) 0) = length p1"
using prefix_replicate_zero_coeff[of "[]" "length p1"] by auto
hence "coeff ?a_p2 = (\lambdai. if i < length p1 then 0 else (coeff (map
(\lambdab. a \& b) p2)) (i - length p1))"
using append_coeff[of "map (}\lambda\textrm{b}.\textrm{a \otimes b) p2" "replicate (length p1)
0"] by auto
also have " ... = (}\lambda\textrm{i}.\mp@code{if i < length p1 then 0 else a }\otimes\mathrm{ ((coeff p2)
(i - length p1)))"
proof -
have "\i. i < length p2 \Longrightarrow (coeff (map (\lambdab. a \otimes b) p2)) i = a \otimes
((coeff p2) i)"
proof -
fix i assume i_lt: "i < length p2"
hence "(coeff (map (}\lambda\textrm{b}.\textrm{a}\otimes\textrm{b})\textrm{p}2)) i = (map (\lambdab.a \& b) p2) !
(length p2 - 1 - i)"
using coeff_nth[of i "map (}\lambda\textrm{b}.\textrm{a Q b})\textrm{p}2"] by aut
also have " ... = a \otimes (p2 ! (length p2 - 1 - i))"
using i_lt by auto
also have " ... = a \otimes ((coeff p2) i)"
using coeff_nth[OF i_lt] by simp
finally show "(coeff (map (\lambdab. a \otimes b) p2)) i = a \otimes ((coeff p2)
i)" .
qed
moreover have "\i. i \geq length p2 \Longrightarrow(coeff (map (}\lambda\textrm{b}.\textrm{a}\otimes\textrm{b})\textrm{p}2)

```
```

i = a \otimes ((coeff p2) i)"
using coeff_length[of p2] coeff_length[of "map (}\lambda\textrm{b}.\textrm{a \otimes b) p2"]
in_carrier by auto
ultimately show ?thesis by (meson not_le)
qed
also have " ... = (}\lambda\textrm{i}.\bigoplus\textrm{k}\in{..i}. (if k = length p1 then a els
0) \otimes (coeff p2) (i - k))"
(is "?f1 = (\lambdai. (\bigoplus k \in {..i}. ?f2 k \otimes ?f3 (i - k)))")
proof
fix i
have "\k. k { {..i} \Longrightarrow ?f2 k \& ?f3 (i - k) = 0" if "i < length p1"
using in_carrier that by auto
hence "(\bigoplus k { {..i}. ?f2 k \otimes ?f3 (i - k)) = 0" if "i < length p1"
using that in_carrier
add.finprod_cong'[of "{..i}" "{..i}" "\lambdak. ?f2 k \otimes ?f3 (i

- k)" "\lambdai. 0"]
by auto
hence eq_lt: "?f1 i = (\lambdai. (\bigoplus k \in {..i}. ?f2 k \otimes ?f3 (i - k)))
i" if "i < length p1"
using that by auto
have "\k. k \in {..i} \Longrightarrow
?f2 k \otimesR ?f3 (i - k) = (if length p1 = k then a \otimes coeff
p2 (i - k) else 0)"
using in_carrier by auto
hence "(\bigoplus k \in {..i}. ?f2 k \otimes ?f3 (i - k)) =
(\bigoplus k \in {..i}. (if length p1 = k then a }\otimes\operatorname{coeff p2 (i - k)
else 0))"
using in_carrier
add.finprod_cong'[of "{..i}" "{..i}" "\lambdak. ?f2 k \otimes ?f3 (i
- k)"
" \lambdak. (if length p1 = k then a \otimes coeff p2
(i - k) else 0)"]
by fastforce
also have " ... = a \otimes (coeff p2) (i - length p1)" if "i \geq length p1"
using add.finprod_singleton[of "length p1" "{..i}" "\lambdaj. a \otimes (coeff
p2) (i - j)"]
in_carrier that by auto
finally
have "(\bigoplus k { {..i}. ?f2 k @ ?f3 (i - k)) = a \otimes (coeff p2) (i -
length p1)" if "i \geq length p1"
using that by simp
hence eq_ge: "?f1 i = (\lambdai. (}\bigoplus\textrm{k}\in{\mp@code{{.i}. ?f2 k \otimes ?f3 (i - k)))
i" if "i \geq length p1"
using that by auto
from eq_lt eq_ge show "?f1 i = (\lambdai. (\bigoplus k \in {..i}. ?f2 k \otimes ?f3 (i
- k))) i" by auto
qed

```
```

 finally have coeff_a_p2:
 "coeff ?a_p2 = (\lambdai. \bigoplus k \in {..i}. (if k = length p1 then a else 0)
 \otimes (coeff p2) (i - k))" .
have "set ?a_p2 \subseteq carrier R"
using in_carrier(1) assms(2) by auto
moreover have "set (poly_mult p1 p2) \subseteq carrier R"
using poly_mult_in_carrier[OF _ assms(2)] Cons(2) by simp
ultimately
have "coeff (poly_mult (a \# p1) p2) = (\lambdai. ((coeff ?a_p2) i) \oplus ((coeff
(poly_mult p1 p2)) i))"
using poly_add_coeff[of ?a_p2 "poly_mult p1 p2"] by simp
also have " ... = (}\lambda\textrm{i}.(\bigoplus)\textrm{k}\in{..i}. (if k = length p1 then a els
0) \otimes (coeff p2) (i - k)) \oplus
(\bigoplus k { {..i}. (coeff p1) k \otimes (coeff p2) (i

- k)))"
using Cons coeff_a_p2 by simp
also have " ... = (}\lambda\textrm{i}.(\bigoplus)\textrm{k}\in{..i}. ((if k = length p1 then a els

0) \otimes (coeff p2) (i - k)) \oplus
((coeff p1)
k \otimes (coeff p2) (i - k))))"
using add.finprod_multf in_carrier by auto
also have " ... = (\lambdai. (\bigoplus k \in {..i}. (coeff (a \# p1) k) \otimes (coeff p2)
(i - k)))"
(is "(\lambdai. (\bigoplus k \in {..i}. ?f i k)) = (\lambdai. (\bigoplus k \in {..i}. ?g i k))")
proof
fix i
have "\k. ?f i k = ?g i k"
using in_carrier coeff_length[of p1] by auto
thus "(\bigoplus k \in {..i}. ?f i k) = (\bigoplus k \in {..i}. ?g i k)" by simp
qed
finally show ?case .
qed
lemma poly_mult_zero:
assumes "set p\subseteq carrier R"
shows "poly_mult [] p = []" and "poly_mult p [] = []"
proof (simp)
have "coeff (poly_mult p []) = (}\mp@subsup{\lambda}{_}{\prime. 0)"
using poly_mult_coeff[OF assms, of "[]"] coeff_in_carrier[OF assms]
by auto
thus "poly_mult p [] = []"
using coeff_iff_polynomial_cond[OF
poly_mult_is_polynomial[OF carrier_is_subring assms] zero_is_polynomial]
by simp
qed
```
```

lemma poly_mult_l_distr':
assumes "set p1 \subseteq carrier R" "set p2 \subseteq carrier R" "set p3 \subseteq carrier
R"
shows "poly_mult (poly_add p1 p2) p3 = poly_add (poly_mult p1 p3) (poly_mult
p2 p3)"
proof -
let ?c1 = "coeff p1" and ?c2 = "coeff p2" and ?c3 = "coeff p3"
have in_carrier:
"\i. ?c1 i \in carrier R" "\i. ?c2 i \in carrier R" "\i. ?c3 i \in carrier
R"
using assms coeff_in_carrier by auto
have "coeff (poly_mult (poly_add p1 p2) p3) = (\lambdan. \bigoplusi \in {..n}. (?c1
i
\oplus ?c2 i) \otimes ?c3 (n - i))"
using poly_mult_coeff[of "poly_add p1 p2" p3] poly_add_coeff[OF assms(1-2)]
poly_add_in_carrier[OF assms(1-2)] assms by auto
also have " ... = (\lambdan. \bigoplusi \in {..n}. (?c1 i \otimes ?c3 (n - i)) \oplus (?c2 i
Q ?c3 (n - i)))"
using in_carrier l_distr by auto
also
have " ... = (\lambdan. (\bigoplusi \in {..n}. (?c1 i \otimes ?c3 (n - i))) \oplus (\bigoplusi \in {..n}.
(?c2 i \& ?c3 (n - i))))"
using add.finprod_multf in_carrier by auto
also have " ... = coeff (poly_add (poly_mult p1 p3) (poly_mult p2 p3))"
using poly_mult_coeff[0F assms(1) assms(3)] poly_mult_coeff[OF assms(2-3)]
poly_add_coeff[OF poly_mult_in_carrier[OF assms(1) assms(3)]]
poly_mult_in_carrier[OF assms(2-3)] by simp
finally have "coeff (poly_mult (poly_add p1 p2) p3) =
coeff (poly_add (poly_mult p1 p3) (poly_mult p2 p3))"
moreover have "polynomial (carrier R) (poly_mult (poly_add p1 p2) p3)"
and "polynomial (carrier R) (poly_add (poly_mult p1 p3) (poly_mult
p2 p3))"
using assms poly_add_is_polynomial poly_mult_is_polynomial polynomial_in_carrier
carrier_is_subring by auto
ultimately show ?thesis
using coeff_iff_polynomial_cond by auto
qed
lemma poly_mult_l_distr:
assumes "subring K R" "polynomial K p1" "polynomial K p2" "polynomial
K p3"
shows "poly_mult (poly_add p1 p2) p3 = poly_add (poly_mult p1 p3) (poly_mult
p2 p3)"
using poly_mult_l_distr' polynomial_in_carrier assms by auto
lemma poly_mult_prepend_replicate_zero:
assumes "set p1 \subseteqcarrier R" "set p2 \subseteq carrier R"

```
```

 shows "poly_mult p1 p2 = poly_mult ((replicate n 0) @ p1) p2"
 proof -
{ fix p1 p2 assume A: "set p1 \subseteq carrier R" "set p2 \subseteq carrier R"
hence "poly_mult p1 p2 = poly_mult (0 \# p1) p2"
proof -
let ?a_p2 = "(map ((\otimes) 0) p2) @ (replicate (length p1) 0)"
have "?a_p2 = replicate (length p2 + length p1) 0"
using A(2) by (induction p2) (auto)
hence "poly_mult (0 \# p1) p2 = poly_add (replicate (length p2 +
length p1) 0) (poly_mult p1 p2)"
by simp
also have " ... = poly_add (normalize (replicate (length p2 + length
p1) 0)) (poly_mult p1 p2)"
using poly_add_normalize(1)[of "replicate (length p2 + length
p1) 0" "poly_mult p1 p2"]
poly_mult_in_carrier[OF A] by force
also have " ... = poly_mult p1 p2"
using poly_add_zero(2)[OF _ poly_mult_is_polynomial[OF _ A]] carrier_is_subring
normalize_replicate_zero[of "length p2 + length p1" "[]"]
by simp
finally show ?thesis by auto
qed } note aux_lemma = this
from assms show ?thesis
proof (induction n)
case 0 thus ?case by simp
next
case (Suc n) thus ?case
using aux_lemma[of "replicate n 0 @ p1" p2] by force
qed
qed
lemma poly_mult_normalize:
assumes "set p1 \subseteq carrier R" "set p2 \subseteq carrier R"
shows "poly_mult p1 p2 = poly_mult (normalize p1) p2"
proof -
let ?replicate = "replicate (length p1 - length (normalize p1)) 0"
have "poly_mult p1 p2 = poly_mult (?replicate @ (normalize p1)) p2"
using normalize_def'[of p1] by simp
thus ?thesis
using poly_mult_prepend_replicate_zero normalize_in_carrier assms
by auto
qed
lemma poly_mult_append_zero:
assumes "set p \subseteq carrier R" "set q \subseteq carrier R"
shows "poly_mult (p @ [0]) q = normalize ((poly_mult p q) @ [0])"
using assms(1)
proof (induct p)

```
```

 case Nil thus ?case
 using poly_mult_normalize[OF _ assms(2), of "[] @ [0]"]
 poly_mult_zero(1) poly_mult_zero(1)[of "q @ [0]"] assms(2)
 by auto
next
case (Cons a p)
let ?q_a = "\lambdan. (map ((\otimes) a) q) @ (replicate n 0)"
have set_q_a: "\n. set (?q_a n) \subseteq carrier R"
using Cons(2) assms(2) by (induct q) (auto)
have set_poly_mult: "set ((poly_mult p q) @ [0]) \subseteq carrier R"
using poly_mult_in_carrier[OF _ assms(2)] Cons(2) by auto
have "poly_mult ((a \# p) @ [0]) q = poly_add (?q_a (Suc (length p)))
(poly_mult (p @ [0]) q)"
by auto
also have " ... = poly_add (?q_a (Suc (length p))) (normalize ((poly_mult
p q) © [0]))"
using Cons by simp
also have " ... = poly_add ((?q_a (length p)) @ [0]) ((poly_mult p
q) @ [0])"
using poly_add_normalize(2) [OF set_q_a[of "Suc (length p)"] set_poly_mult]
by (simp add: replicate_append_same)
also have " ... = normalize ((poly_add (?q_a (length p)) (poly_mult
p q)) @ [0])"
using poly_add_append_zero[OF set_q_a[of "length p"] poly_mult_in_carrier[OF
_ assms(2)]] Cons(2) by auto
also have " ... = normalize ((poly_mult (a \# p) q) @ [0])"
by auto
finally show ?case .
qed
end

```

\subsection*{43.6 Properties Within a Domain}
context domain
begin
 unfolding polynomial_def using subringE(3) by auto
lemma poly_mult_comm:
assumes "set p1 \(\subseteq\) carrier R" "set p2 \(\subseteq\) carrier R"
shows "poly_mult p1 p2 = poly_mult p2 p1"
proof -
let \(? \mathrm{c} 1=\) "coeff p1" and ?c2 = "coeff p2"
have " \(\wedge i .(\bigoplus k \in\{. . i\} . ? c 1 k \otimes ? c 2(i-k))=(\bigoplus k \in\{. . i\} . ? c 2\)
\(\mathrm{k} \otimes\) ?c1 (i - k))"
proof -
fix i : : nat
let ?f = " \(\lambda \mathrm{k}\). ? \(\mathrm{c} 1 \mathrm{k} \otimes\) ?c2 ( \(\mathrm{i}-\mathrm{k}) "\)
have in_carrier: " \(\bigwedge i . \quad ? c 1 i \in \operatorname{carrier} R "\) " \(\ i . \quad ? c 2 i \in c a r r i e r ~ R " ~\) using coeff_in_carrier[0F assms(1)] coeff_in_carrier[0F assms (2)] by auto
have reindex_inj: "inj_on ( \(\lambda \mathrm{k} . \mathrm{i}-\mathrm{k}\) ) \{..i\}" using inj_on_def by force
moreover have " ( \(\lambda \mathrm{k} . \mathrm{i}-\mathrm{k}\) ) ' \{..i\} \(\subseteq\{\)..i\}" by auto
hence " \((\lambda \mathrm{k} . \mathrm{i}-\mathrm{k})\) ' \{..i\} = \{..i\}" using reindex_inj endo_inj_surj[of "\{..i\}" " \(\lambda \mathrm{k} . \mathrm{i}-\mathrm{k} "]\) by simp
ultimately have \("(\bigoplus k \in\{. . i\}\). ?f \(k)=(\bigoplus k \in\{\ldots i\}\). ?f (i \(-k))\) " using add.finprod_reindex[of ?f " \(\lambda \mathrm{k} . \mathrm{i}-\mathrm{k} "\) "\{..i\}"] in_carrier by auto
moreover have \(" \wedge k . k \in\{. . i\} \Longrightarrow ? f(i-k)=? c 2 k \otimes ? c 1(i-\) k)"
using in_carrier m_comm by auto
hence " \((\bigoplus k \in\{. . i\}\). ?f \((i-k))=(\bigoplus k \in\{. . i\}\). \(\quad \mathrm{c} 2 \mathrm{k} \otimes\) ?c1 (i - k))"
using add.finprod_cong'[of "\{..i\}" "\{..i\}"] in_carrier by auto
ultimately show \("(\bigoplus k \in\{. . i\}\). ?f \(k)=(\bigoplus k \in\{. . i\} . ? c 2 k \otimes ? c 1\) (i - k))" by simp
qed
hence "coeff (poly_mult p1 p2) = coeff (poly_mult p2 p1)"
using poly_mult_coeff[0F assms] poly_mult_coeff[0F assms(2,1)] by simp
thus ?thesis
using coeff_iff_polynomial_cond[OF poly_mult_is_polynomial [OF _ assms] poly_mult_is_polynomial[0F _ assms \((2,1)]]\)
carrier_is_subring by simp
qed
lemma poly_mult_r_distr':
assumes "set p1 \(\subseteq\) carrier R" "set p2 \(\subseteq\) carrier R" "set p3 \(\subseteq\) carrier R"
shows "poly_mult p1 (poly_add p2 p3) = poly_add (poly_mult p1 p2) (poly_mult p1 p3)"
unfolding poly_mult_comm[OF assms(1) poly_add_in_carrier [OF assms(2-3)]]
poly_mult_l_distr' \([\mathrm{OF}\) assms \((2-3,1)]\) assms (2-3) [THEN poly_mult_comm[0F _ assms(1)]] ..
lemma poly_mult_r_distr:
assumes "subring K R" "polynomial K p1" "polynomial K p2" "polynomial
K p3"
shows "poly_mult p1 (poly_add p2 p3) = poly_add (poly_mult p1 p2) (poly_mult p1 p3)"
using poly_mult_r_distr' polynomial_in_carrier assms by auto
```

lemma poly_mult_replicate_zero:
assumes "set p\subseteqcarrier R"
shows "poly_mult (replicate n 0) p = []"
and "poly_mult p (replicate n 0) = []"
proof -
have in_carrier: "\n. set (replicate n 0) \subseteq carrier R" by auto
show "poly_mult (replicate n 0) p = []" using assms
proof (induction n)
case 0 thus ?case by simp
next
case (Suc n)
hence "poly_mult (replicate (Suc n) 0) p = poly_mult (0 \# (replicate
n 0)) p"
by simp
also have " ... = poly_add ((map (\lambdaa. 0 \otimes a) p) @ (replicate n 0))
[]"
using Suc by simp
also have " ...= poly_add ((map (\lambdaa. 0) p) @ (replicate n 0)) []"
proof -
have "map ((\otimes) 0) p = map (\lambdaa. 0) p"
using Suc.prems by auto
then show ?thesis
by presburger
qed
also have " ... = poly_add (replicate (length p + n) 0) []"
by (simp add: map_replicate_const replicate_add)
also have " ... = poly_add [] []"
using poly_add_normalize(1)[of "replicate (length p + n) 0" "[]"]
normalize_replicate_zero[of "length p + n" "[]"] by auto
also have " ... = []" by simp
finally show ?case .
qed
thus "poly_mult p (replicate n 0) = []"
using poly_mult_comm[0F assms in_carrier] by simp
qed
lemma poly_mult_const':
assumes "set p \subseteq carrier R" "a \in carrier R"
shows "poly_mult [a] p = normalize (map (\lambdab. a \otimes b) p)"
and "poly_mult p [a] = normalize (map (\lambdab, a \otimes b) p)"
proof -
have "map2 (}\otimes\mathrm{) (map ((\&) a) p) (replicate (length p) 0) = map ((}
a) p"
using assms by (induction p) (auto)
thus "poly_mult [a] p = normalize (map (\lambdab. a \otimes b) p)" by simp
thus "poly_mult p [a] = normalize (map (\lambdab. a \otimes b) p)"
using poly_mult_comm[0F assms(1), of "[a]"] assms(2) by auto
qed

```
```

lemma poly_mult_const:
assumes "subring K R" "polynomial K p" "a \in K - { 0 }"
shows "poly_mult [a] p = map (\lambdab. a \otimes b) p"
and "poly_mult p [a] = map (\lambdab. a \otimes b) p"
proof -
have in_carrier: "set p \subseteq carrier R" "a \in carrier R"
using polynomial_in_carrier[OF assms(1-2)] assms(3) subringE(1) [OF
assms(1)] by auto
show "poly_mult [a] p = map (\lambdab. a \otimes b) p"
proof (cases p)
case Nil thus ?thesis
using poly_mult_const'(1) in_carrier by auto
next
case (Cons b q)
have "lead_coeff (map (}\lambda\textrm{b}.\textrm{a }\otimes\textrm{b})\textrm{p})\not=0
using assms subringE(1) [OF assms(1)] integral[of a b] Cons lead_coeff_in_carrier
by auto
hence "normalize (map (}\lambda\textrm{b}.\textrm{a \otimes b})\textrm{p})=(map (\lambdab. a \otimes b) p)"
unfolding Cons by simp
thus ?thesis
using poly_mult_const'(1) in_carrier by auto
qed
thus "poly_mult p [a] = map (\lambdab. a \otimes b) p"
using poly_mult_comm[OF in_carrier(1)] in_carrier(2) by auto
qed
lemma poly_mult_semiassoc:
assumes "set p \subseteq carrier R" "set q \subseteq carrier R" and "a \in carrier R"
shows "poly_mult (poly_mult [a] p) q = poly_mult [a] (poly_mult
p q)"
proof -
let ?cp = "coeff p" and ?cq = "coeff q"
have "coeff (poly_mult [a] p) = (\lambdai. (a \otimes ?cp i))"
using poly_mult_const'(1) [OF assms(1,3)] normalize_coeff scalar_coeff[0F
assms(3)] by simp
hence "coeff (poly_mult (poly_mult [a] p) q) = (\lambdai. (\bigoplusj \in {..i}.
(a \otimes ?cp j) \otimes ?cq (i - j)))"
using poly_mult_coeff[0F poly_mult_in_carrier[OF _ assms(1)] assms(2),
of "[a]"] assms(3) by auto
also have " ... = (\lambdai. a \otimes (\bigoplusj\in{..i}. ?cp j \otimes ?cq (i - j)))"
proof
fix i show "(\bigoplusj \in{..i}. (a \otimes ?cp j) \otimes ?cq (i - j)) = a \otimes (\bigoplusj
\epsilon {..i}. ?cp j \otimes ?cq (i - j))"
using finsum_rdistr[OF _ assms(3), of _ "\lambdaj. ?cp j \otimes ?cq (i - j)"]
assms(1-2)[THEN coeff_in_carrier] by (simp add: assms(3) m_assoc)
qed

```
```

 also have " ... = coeff (poly_mult [a] (poly_mult p q))"
 unfolding poly_mult_const'(1) [OF poly_mult_in_carrier[OF assms(1-2)]
 assms(3)]
using scalar_coeff[OF assms(3), of "poly_mult p q"]
poly_mult_coeff[0F assms(1-2)] normalize_coeff by simp
finally have "coeff (poly_mult (poly_mult [a] p) q) = coeff (poly_mult
[a] (poly_mult p q))" .
moreover have "polynomial (carrier R) (poly_mult (poly_mult [a] p)
q) "
and "polynomial (carrier R) (poly_mult [a] (poly_mult p
q))"
using poly_mult_is_polynomial[OF _ poly_mult_in_carrier[OF _ assms(1)]
assms(2)]
poly_mult_is_polynomial[OF _ _ poly_mult_in_carrier[OF assms(1-2)]]
carrier_is_subring assms(3) by (auto simp del: poly_mult.simps)
ultimately show ?thesis
using coeff_iff_polynomial_cond by simp
qed
Note that "polynomial (carrier R) p" and "subring K p; polynomial K p" are "equivalent" assumptions for any lemma in ring which the result doesn't depend on K , because carrier is a subring and a polynomial for a subset of the carrier is a carrier polynomial. The decision between one of them should be based on how the lemma is going to be used and proved. These are some tips: (a) Lemmas about the algebraic structure of polynomials should use the latter option. (b) Also, if the lemma deals with lots of polynomials, then the latter option is preferred. (c) If the proof is going to be much easier with the first option, do not hesitate.

```
    case Nil thus ?thesis
```

```
lemma poly_mult_monom':
```

lemma poly_mult_monom':
assumes "set p\subseteq carrier R" "a \in carrier R"
assumes "set p\subseteq carrier R" "a \in carrier R"
shows "poly_mult (monom a n) p = normalize ((map ((\otimes) a) p) @ (replicate
shows "poly_mult (monom a n) p = normalize ((map ((\otimes) a) p) @ (replicate
n 0))"
n 0))"
proof -
proof -
have set_map: "set ((map ((\otimes) a) p) @ (replicate n 0)) \subseteq carrier R"
have set_map: "set ((map ((\otimes) a) p) @ (replicate n 0)) \subseteq carrier R"
using assms by (induct p) (auto)
using assms by (induct p) (auto)
show ?thesis
show ?thesis
using poly_mult_replicate_zero(1) [OF assms(1), of n]
using poly_mult_replicate_zero(1) [OF assms(1), of n]
poly_add_zero'(1) [OF set_map]
poly_add_zero'(1) [OF set_map]
unfolding monom_def by simp
unfolding monom_def by simp
qed
qed
lemma poly_mult_monom:
lemma poly_mult_monom:
assumes "polynomial (carrier R) p" "a \in carrier R - { 0 }"
assumes "polynomial (carrier R) p" "a \in carrier R - { 0 }"
shows "poly_mult (monom a n) p =
shows "poly_mult (monom a n) p =
(if p = [] then [] else (poly_mult [a] p) @ (replicate n
(if p = [] then [] else (poly_mult [a] p) @ (replicate n
0))"
0))"
proof (cases p)

```
proof (cases p)
```

using poly_mult_zero(2) [of "monom a n"] assms(2) monom_def by fastforce next
case (Cons b ps)
hence "lead_coeff ((map ($\lambda \mathrm{b} . \mathrm{a} \otimes \mathrm{b}$) p) @ (replicate n 0)) $\neq 0$ " using Cons assms integral[of a b] unfolding polynomial_def by auto
thus ?thesis using poly_mult_monom'[0F polynomial_incl[0F assms(1)], of a n] assms(2) Cons unfolding poly_mult_const(1) [OF carrier_is_subring assms] by simp qed

```
lemma poly_mult_one':
```

 assumes "set \(p \subseteq\) carrier \(R\) "
 shows "poly_mult [1] p = normalize p" and "poly_mult p [1] = normalize
 p"
proof -
have $" m a p 2(\oplus)(\operatorname{map}((\otimes) 1) p)(r e p l i c a t e(l e n g t h ~ p) 0)=p "$
using assms by (induct p) (auto)
thus "poly_mult [1] $p=$ normalize p " and "poly_mult p [1] = normalize
p"
using poly_mult_comm[0F assms, of "[1]"] by auto
qed
lemma poly_mult_one:
assumes "subring K R" "polynomial K p"
shows "poly_mult [1] p = p" and "poly_mult p [1] = p"
using poly_mult_one'[OF polynomial_in_carrier [OF assms]] normalize_polynomial [OF
assms(2)] by auto
lemma poly_mult_lead_coeff_aux:
assumes "subring K R" "polynomial K p1" "polynomial K p2" and "p1 \neq []" and "p2 \neq []"
shows "(coeff (poly_mult p1 p2)) (degree p1 + degree p2) = (lead_coeff
p1) \otimes (lead_coeff p2)"
proof -
have p1: "lead_coeff p1 \in carrier R - \{ 0 \}" and p2: "lead_coeff p2
\in carrier R - \{ 0 \}"
using assms(2-5) lead_coeff_in_carrier[0F assms(1)] by (metis list.collapse)+
have "(coeff (poly_mult p1 p2)) (degree p1 + degree p2) =
$(\bigoplus k \in\{.(($ degree $p 1)+($ degree $p 2))\}$.
(coeff p1) k \otimes (coeff p2) ((degree p1) + (degree p2) - k))"
using poly_mult_coeff[0F assms(2-3) [THEN polynomial_in_carrier [OF
assms(1)]]] by simp
also have " $\ldots=\left(\right.$ lead_coeff p1) $\otimes\left(l_{\text {ead_coeff p2)" }}\right.$
proof -
let $? \mathrm{f}=\mathrm{Mi}$ i. (coeff p1) i $\otimes($ coeff p2) ((degree p1) + (degree p2)

- i)"
have in_carrier: " 1 i. (coeff p1) i \in carrier R" " $\bigwedge i$ i. (coeff p2)

```
i G carrier R"
        using coeff_in_carrier assms by auto
    have "\i. i < degree p1\Longrightarrow ?f i = 0"
        using coeff_degree[of p2] in_carrier by auto
    moreover have "\i. i > degree p1 \Longrightarrow ?f i = 0"
        using coeff_degree[of p1] in_carrier by auto
    moreover have "?f (degree p1) = (lead_coeff p1) \otimes (lead_coeff p2)"
        using assms(4-5) lead_coeff_simp by simp
    ultimately have "?f = ( }\lambda\textrm{i}.\mp@code{if degree p1 = i then (lead_coeff p1) \otimes
(lead_coeff p2) else 0)"
        using nat_neq_iff by auto
    thus ?thesis
        using add.finprod_singleton[of "degree p1" "{..((degree p1) + (degree
p2))}"
                            "\lambdai. (lead_coeff p1) \otimes (lead_coeff
p2)"] p1 p2 by auto
    qed
    finally show ?thesis .
qed
lemma poly_mult_degree_eq:
    assumes "subring K R" "polynomial K p1" "polynomial K p2"
    shows "degree (poly_mult p1 p2) = (if p1 = [] \vee p2 = [] then O else
(degree p1) + (degree p2))"
proof (cases p1)
    case Nil thus ?thesis by simp
next
    case (Cons a p1') note p1 = Cons
    show ?thesis
    proof (cases p2)
        case Nil thus ?thesis
        using poly_mult_zero(2)[OF polynomial_in_carrier[OF assms(1-2)]]
by simp
    next
        case (Cons b p2') note p2 = Cons
        have a: "a \in carrier R" and b: "b \in carrier R"
        using p1 p2 polynomial_in_carrier[OF assms(1-2)] polynomial_in_carrier[OF
assms(1,3)] by auto
            have "(coeff (poly_mult p1 p2)) ((degree p1) + (degree p2)) = a Q
b"
            using poly_mult_lead_coeff_aux[0F assms] p1 p2 by simp
    hence neq0: "(coeff (poly_mult p1 p2)) ((degree p1) + (degree p2))
# 0"
            using assms(2-3) integral[of a b] lead_coeff_in_carrier[OF assms(1)]
p1 p2 by auto
    moreover have eq0: "\i. i > (degree p1) + (degree p2) \Longrightarrow (coeff
(poly_mult p1 p2)) i = 0"
    proof -
                have aux_lemma: "degree (poly_mult p1 p2) \leq (degree p1) + (degree
```

```
p2)"
    proof (induct p1)
    case Nil
    then show ?case by simp
next
    case (Cons a p1)
    let ?a_p2 = "(map ( }\lambda\textrm{b}.\textrm{a \otimes b) p2) @ (replicate (degree (a # p1))
0)"
    have "poly_mult (a # p1) p2 = poly_add ?a_p2 (poly_mult p1 p2)"
by simp
    hence "degree (poly_mult (a # p1) p2) \leq max (degree ?a_p2) (degree
(poly_mult p1 p2))"
            using poly_add_degree[of ?a_p2 "poly_mult p1 p2"] by simp
            also have " ... \leqmax ((degree (a # p1)) + (degree p2)) (degree
(poly_mult p1 p2))"
                by auto
            also have " ... \leq max ((degree (a # p1)) + (degree p2)) ((degree
p1) + (degree p2))"
                using Cons by simp
                            also have " ... \leq (degree (a # p1)) + (degree p2)"
                by auto
            finally show ?case .
            qed
            fix i show "i > (degree p1) + (degree p2) \Longrightarrow (coeff (poly_mult
p1 p2)) i = 0"
            using coeff_degree aux_lemma by simp
        qed
        moreover have "polynomial K (poly_mult p1 p2)"
            by (simp add: assms poly_mult_closed)
    ultimately have "degree (poly_mult p1 p2) = degree p1 + degree p2"
            by (metis (no_types) assms(1) coeff.simps(1) coeff_degree domain.poly_mult_one(1)
domain_axioms eq0 lead_coeff_simp length_greater_0_conv neq0 normalize_length_lt
not_less_iff_gr_or_eq poly_mult_one'(1) polynomial_in_carrier)
            thus ?thesis
                using p1 p2 by auto
    qed
qed
lemma poly_mult_integral:
    assumes "subring K R" "polynomial K p1" "polynomial K p2"
    shows "poly_mult p1 p2 = [] \Longrightarrow p1 = [] \vee p2 = []"
proof (rule ccontr)
    assume A: "poly_mult p1 p2 = []" "\neg (p1 = [] V p2 = [])"
    hence "degree (poly_mult p1 p2) = degree p1 + degree p2"
        using poly_mult_degree_eq[OF assms] by simp
    hence "length p1 = 1 ^ length p2 = 1"
        using A Suc_diff_Suc by fastforce
    then obtain a b where p1: "p1 = [ a ]" and p2: "p2 = [ b ]"
        by (metis One_nat_def length_0_conv length_Suc_conv)
```

```
    hence "a \in carrier R - { 0 }" and "b \in carrier R - { 0 }"
        using assms lead_coeff_in_carrier by auto
    hence "poly_mult [ a ] [ b ] = [ a & b ]"
        using integral by auto
    thus False using A(1) p1 p2 by simp
qed
lemma poly_mult_lead_coeff:
    assumes "subring K R" "polynomial K p1" "polynomial K p2" and "p1 \not=
[]" and "p2 f []"
    shows "lead_coeff (poly_mult p1 p2) = (lead_coeff p1) \otimes (lead_coeff
p2)"
proof -
    have "poly_mult p1 p2 f= []"
        using poly_mult_integral[OF assms(1-3)] assms(4-5) by auto
    hence "lead_coeff (poly_mult p1 p2) = (coeff (poly_mult p1 p2)) (degree
p1 + degree p2)"
    using poly_mult_degree_eq[OF assms(1-3)] assms(4-5) by (metis coeff.simps(2)
list.collapse)
    thus ?thesis
        using poly_mult_lead_coeff_aux[OF assms] by simp
qed
lemma poly_mult_append_zero_lcancel:
    assumes "subring K R" and "polynomial K p" "polynomial K q"
    shows "poly_mult (p @ [ 0 ]) q = r @ [ 0 ] \Longrightarrow poly_mult p q = r"
proof -
    note in_carrier = assms(2-3)[THEN polynomial_in_carrier[OF assms(1)]]
    assume pmult: "poly_mult (p @ [ 0 ]) q = r @ [ 0 ]"
    have "poly_mult (p @ [ 0 ]) q = []" if "q = []"
        using poly_mult_zero(2)[of "p @ [ 0 ] "] that in_carrier(1) by auto
    moreover have "poly_mult (p @ [ 0 ]) q = []" if "p = []"
        using poly_mult_normalize[OF _ in_carrier(2), of "p @ [ 0 ] "] poly_mult_zero[OF
in_carrier(2)]
            unfolding that by auto
    ultimately have "p \not= []" and "q \not= []"
        using pmult by auto
    hence "poly_mult p q \not= []"
        using poly_mult_integral[OF assms] by auto
    hence "normalize ((poly_mult p q) @ [ 0 ]) = (poly_mult p q) @ [ 0
]"
            using normalize_polynomial[OF append_is_polynomial[OF assms(1) poly_mult_closed[OF
assms], of "Suc 0"]] by auto
    thus "poly_mult p q = r"
            using poly_mult_append_zero[OF assms(2-3) [THEN polynomial_in_carrier[OF
assms(1)]]] pmult by simp
qed
```

```
lemma poly_mult_append_zero_rcancel:
    assumes "subring K R" and "polynomial K p" "polynomial K q"
    shows "poly_mult p (q@ [ 0 ]) = r @ [ 0 ] \Longrightarrow poly_mult p q = r"
    using poly_mult_append_zero_lcancel[OF assms(1,3,2)]
        poly_mult_comm[of p "q @ [ 0 ]"] poly_mult_comm[of p q]
        assms(2-3)[THEN polynomial_in_carrier[OF assms(1)]]
    by auto
```

end

43.7 Algebraic Structure of Polynomials

```
definition univ_poly :: "('a, 'b) ring_scheme \(\Rightarrow\) 'a set \(\Rightarrow\) ('a list) ring"
```

("_ [X] っ" 80)
where "univ_poly R K =
(carrier = \{ p. polynomial ${ }_{R} \mathrm{~K} p$ \},
mult $=$ ring. poly_mult R,
one $=\left[1_{R}\right]$,
zero = [],
add = ring.poly_add R ()"

These lemmas allow you to unfold one field of the record at a time.

```
lemma univ_poly_carrier: "polynomial R K p \longleftrightarrow p \in carrier (K[X]R)"
    unfolding univ_poly_def by simp
lemma univ_poly_mult: "mult (K[X] R) = ring.poly_mult R"
    unfolding univ_poly_def by simp
lemma univ_poly_one: "one (K[X] ) = [ 1 1R ]"
    unfolding univ_poly_def by simp
lemma univ_poly_zero: "zero (K[X]_R ) = []"
    unfolding univ_poly_def by simp
lemma univ_poly_add: "add (K[X]R) = ring.poly_add R"
    unfolding univ_poly_def by simp
lemma univ_poly_zero_closed [intro]: "[] \in carrier (K[X]_)"
    unfolding sym[OF univ_poly_carrier] polynomial_def by simp
context domain
begin
lemma poly_mult_monom_assoc:
    assumes "set p\subseteqcarrier R" "set q \subseteq carrier R" and "a \in carrier R"
        shows "poly_mult (poly_mult (monom a n) p) q =
```

```
    poly_mult (monom a n) (poly_mult p q)"
proof (induct n)
    case 0 thus ?case
            unfolding monom_def using poly_mult_semiassoc[OF assms] by (auto simp
del: poly_mult.simps)
next
    case (Suc n)
    have "poly_mult (poly_mult (monom a (Suc n)) p) q =
                poly_mult (normalize ((poly_mult (monom a n) p) @ [ 0 ])) q"
        using poly_mult_append_zero[OF monom_in_carrier[OF assms(3), of n]
assms(1)]
            unfolding monom_def by (auto simp del: poly_mult.simps simp add: replicate_append_same)
    also have " ... = normalize ((poly_mult (poly_mult (monom a n) p) q)
@ [ 0 ])"
            using poly_mult_normalize[OF _ assms(2)] poly_mult_append_zero[OF
_ assms(2)]
                    poly_mult_in_carrier[OF monom_in_carrier[OF assms(3), of n]
assms(1)] by auto
    also have " . . = normalize ((poly_mult (monom a n) (poly_mult p q))
@ [ 0 ])"
            using Suc by simp
    also have " ... = poly_mult (monom a (Suc n)) (poly_mult p q)"
        using poly_mult_append_zero[OF monom_in_carrier[OF assms(3), of n]
                                    poly_mult_in_carrier[OF assms(1-2)]]
            unfolding monom_def by (simp add: replicate_append_same)
    finally show ?case .
qed
context
    fixes K :: "'a set" assumes K: "subring K R"
begin
lemma univ_poly_is_monoid: "monoid (K[X])"
    unfolding univ_poly_def using poly_mult_one[OF K]
proof (auto simp add: K poly_add_closed poly_mult_closed one_is_polynomial
monoid_def)
    fix p1 p2 p3
    let ?P = "poly_mult (poly_mult p1 p2) p3 = poly_mult p1 (poly_mult p2
p3)"
    assume A: "polynomial K p1" "polynomial K p2" "polynomial K p3"
    show ?P using polynomial_in_carrier[OF K A(1)]
    proof (induction p1)
        case Nil thus ?case by simp
    next
next
        case (Cons a p1) thus ?case
        proof (cases "a = 0")
```

assume eq_zero: "a = 0"
have p1: "set p1 \subseteq carrier R"
using Cons(2) by simp
have "poly_mult (poly_mult (a \# p1) p2) p3 = poly_mult (poly_mult
p1 p2) p3"
using poly_mult_prepend_replicate_zero[OF p1 polynomial_in_carrier[0F
K A(2)], of "Suc 0"]
eq_zero by simp
also have " ... = poly_mult p1 (poly_mult p2 p3)"
using p1[THEN Cons(1)] by simp
also have " ... = poly_mult (a \# p1) (poly_mult p2 p3)"
using poly_mult_prepend_replicate_zero[OF p1 poly_mult_in_carrier [OF A(2-3) [THEN polynomial_in_carrier [OF
K]l], of "Suc 0"] eq_zero by simp
finally show ?thesis.
next
assume "a $\neq 0$ " hence in_carrier:
"set p1 \subseteq carrier R" "set p2 \subseteq carrier R" "set p3 \subseteq carrier R" "a \in carrier $R-\{0$ \}"
using A(2-3) polynomial_in_carrier [OF K] Cons by auto
let $\mathrm{a}_{\mathrm{a}} \mathrm{p} 2="(\operatorname{map}(\lambda \mathrm{~b} . \mathrm{a} \otimes \mathrm{b}) \mathrm{p} 2)$ @ (replicate (length p1) 0)"
have a_p2_in_carrier: "set ?a_p2 \subseteq carrier R"
using in_carrier by auto
have "poly_mult (poly_mult (a \# p1) p2) p3 = poly_mult (poly_add ?a_p2 (poly_mult p1 p2)) p3"
by simp
also have " . . = poly_add (poly_mult ?a_p2 p3) (poly_mult (poly_mult p1 p2) p3)"
using poly_mult_l_distr' [OF a_p2_in_carrier poly_mult_in_carrier[0F in_carrier(1-2)] in_carrier(3)].
also have " ... = poly_add (poly_mult ?a_p2 p3) (poly_mult p1 (poly_mult p2 p3))"
using Cons(1) [OF in_carrier(1)] by simp
also have " ... = poly_add (poly_mult (normalize ?a_p2) p3) (poly_mult p1 (poly_mult p2 p3))"
using poly_mult_normalize[0F a_p2_in_carrier in_carrier(3)] by simp
also have " ... = poly_add (poly_mult (poly_mult (monom a (length p1)) p2) p3)

> (poly_mult p1 (poly_mult p2 p3))"
using poly_mult_monom'[0F in_carrier(2), of a "length p1"] in_carrier(4)
by simp
also have " ... = poly_add (poly_mult (a \# (replicate (length p1)
0)) (poly _mult p2 p3))
(poly_mult p1 (poly_mult p2 p3))"
using poly_mult_monom_assoc[of p2 p3 a "length p1"] in_carrier
unfolding monom_def by simp
also have " ... = poly_mult (poly_add (a \# (replicate (length p1)
0)) p1) (poly_mult p2 p3)"
using poly_mult_l_distr'[of "a \# (replicate (length p1) 0)" p1 "poly_mult p2 p3"]
poly_mult_in_carrier [0F in_carrier(2-3)] in_carrier by force
also have " ... = poly_mult (a \# p1) (poly_mult p2 p3)"
using poly_add_monom[0F in_carrier(1) in_carrier(4)] unfolding
monom_def by simp
finally show ?thesis.
qed
qed
qed
declare poly_add.simps[simp del]
lemma univ_poly_is_abelian_monoid: "abelian_monoid (K[X])"
unfolding univ_poly_def
using poly_add_closed poly_add_zero zero_is_polynomial K
proof (auto simp add: abelian_monoid_def comm_monoid_def monoid_def comm_monoid_axioms_def)
fix p 1 p 2 p 3
let $? c=" \lambda p$. coeff $p "$
assume A: "polynomial K p1" "polynomial K p2" "polynomial K p3"
hence
p1: " $\ i .(? c$ p1) $i \in$ carrier $R "$ "set $p 1 \subseteq$ carrier $R "$ and
p2: " $\bigwedge i .(? c \quad$ p2) $i \in$ carrier $R "$ "set $p 2 \subseteq$ carrier R" and
p3: " 1 i. (?c p3) i \in carrier R" "set p3 \subseteq carrier R"
using A[THEN polynomial_in_carrier[OF K]] coeff_in_carrier by auto
have "?c (poly_add (poly_add p1 p2) p3) = (λ_{i}. (?c p1 i \oplus ?c p2 i)
\oplus (?c p3 i))"
using poly_add_coeff[0F poly_add_in_carrier[0F p1(2) p2(2)] p3(2)] poly_add_coeff[0F p1(2) p2(2)] by simp
also have " ... = (λ i. (?c p1 i) $\oplus((? c$ p2 i) $\oplus(? c$ p3 i)))"
using p1 p2 p3 add.m_assoc by simp
also have " $\ldots=$?c (poly_add p1 (poly_add p2 p3))"
using poly_add_coeff[0F p1(2) poly_add_in_carrier[0F p2(2) p3(2)]] poly_add_coeff[0F p2(2) p3(2)] by simp
finally have "?c (poly_add (poly_add p1 p2) p3) = ?c (poly_add p1 (poly_add p2 p3))" .
thus "poly_add (poly_add p1 p2) p3 = poly_add p1 (poly_add p2 p3)" using coeff_iff_polynomial_cond poly_add_closed[0F K] A by meson
show "poly_add p1 p2 = poly_add p2 p1" using poly_add_comm[0F p1(2) p2(2)].
qed
lemma univ_poly_is_abelian_group: "abelian_group (K[X])"
proof -
interpret abelian_monoid "K[X]"
using univ_poly_is_abelian_monoid.

```
    show ?thesis
    proof (unfold_locales)
        show "carrier (add_monoid (K[X])) \subseteq Units (add_monoid (K[X]))"
        unfolding univ_poly_def Units_def
    proof (auto)
        fix p assume p: "polynomial K p"
        have "polynomial K [ \ominus 1 ]"
            unfolding polynomial_def using r_neg subringE(3,5) [OF K] by force
        hence condO: "polynomial K (poly_mult [ \ominus 1 ] p)"
            using poly_mult_closed[OF K, of "[ \ominus 1 ]" p] p by simp
        have "poly_add p (poly_mult [ \ominus 1 ] p) = poly_add (poly_mult [
1 ] p) (poly_mult [ Ө 1 ] p)"
                using poly_mult_one[OF K p] by simp
            also have " ... = poly_mult (poly_add [ 1 ] [ \ominus 1 ]) p"
                using poly_mult_l_distr' polynomial_in_carrier[OF K p] by auto
            also have " ... = poly_mult [] p"
                using poly_add.simps[of "[ 1 ]" "[ \ominus 1 ]"]
                by (simp add: case_prod_unfold r_neg)
            also have " ... = []" by simp
            finally have cond1: "poly_add p (poly_mult [ \ominus 1 ] p) = []" .
            have "poly_add (poly_mult [ \ominus 1 ] p) p = poly_add (poly_mult [
\ominus 1 ] p) (poly_mult [ 1 ] p)"
                using poly_mult_one[OF K p] by simp
            also have " ... = poly_mult (poly_add [ }\ominus 1 ] [ 1 ]) p"
                using poly_mult_l_distr' polynomial_in_carrier[OF K p] by auto
            also have " ... = poly_mult [] p"
                using <poly_mult (poly_add [1] [\ominus 1]) p = poly_mult [] p> poly_add_comm
by auto
            also have " ... = []" by simp
            finally have cond2: "poly_add (poly_mult [ \ominus 1 ] p) p = []" .
            from cond0 cond1 cond2 show " \existsq. polynomial K q ^ poly_add q p
= [] ^ poly_add p q = []"
                by auto
            qed
    qed
qed
lemma univ_poly_is_ring: "ring (K[X])"
proof -
    interpret UP: abelian_group "K[X]" + monoid "K[X]"
        using univ_poly_is_abelian_group univ_poly_is_monoid.
    show ?thesis
        by (unfold_locales)
            (auto simp add: univ_poly_def poly_mult_r_distr[OF K] poly_mult_l_distr[OF
K])
qed
```

```
lemma univ_poly_is_cring: "cring (K[X])"
proof -
    interpret UP: ring "K[X]"
        using univ_poly_is_ring .
    have "\p q. \llbracket p \in carrier (K[X]); q \in carrier (K[X])\rrbracket \Longrightarrow p \otimes K[X]
q = q * 
        unfolding univ_poly_def using poly_mult_comm polynomial_in_carrier[OF
K] by auto
    thus ?thesis
        by unfold_locales auto
qed
lemma univ_poly_is_domain: "domain (K[X])"
proof -
    interpret UP: cring "K[X]"
        using univ_poly_is_cring .
    show ?thesis
        by (unfold_locales, auto simp add: univ_poly_def poly_mult_integral[0F
K])
qed
declare poly_add.simps[simp]
lemma univ_poly_a_inv_def':
    assumes "p \in carrier (K[X])" shows " }\mp@subsup{\ominus}{K[X] p = map (\lambdaa. \ominus a) p"}{l
proof -
    have aux_lemma:
        "\p. p \in carrier (K[X]) \Longrightarrow p \oplus \ [X] (map (\lambdaa. \ominus a) p) = []"
        "\p. p \in carrier (K[X]) \Longrightarrow(map (\lambdaa. \ominus a) p) \in carrier (K[X])"
    proof -
        fix p assume p: "p \in carrier (K[X])"
        hence set_p: "set p \subseteq K"
            unfolding univ_poly_def using polynomial_incl by auto
        show "(map (\lambdaa. \ominus a) p) \in carrier (K[X])"
        proof (cases "p = []")
            assume "p = []" thus ?thesis
                    unfolding univ_poly_def polynomial_def by auto
        next
            assume not_nil: "p f []"
            hence "lead_coeff p\not=0"
                using p unfolding univ_poly_def polynomial_def by auto
            moreover have "lead_coeff (map ( \lambdaa. \ominus a) p) = \ominus (lead_coeff p)"
                using not_nil by (simp add: hd_map)
            ultimately have "lead_coeff (map (\lambdaa. \ominus a) p) \not= 0"
                using hd_in_set local.minus_zero not_nil set_p subringE(1) [OF
K] by force
            moreover have "set (map (\lambdaa. \ominus a) p) \subseteq K"
                using set_p subringE(5) [OF K] by (induct p) (auto)
```

```
            ultimately show ?thesis
            unfolding univ_poly_def polynomial_def by simp
        qed
    have "map2 ( }\oplus\mathrm{ ) p (map ( \a. Ө a) p) = replicate (length p) 0"
        using set_p subringE(1) [OF K] by (induct p) (auto simp add: r_neg)
    thus "p \oplus }\mp@subsup{\textrm{K}}{[x]}{}(map (\lambdaa.\ominus a) p) = []"
        unfolding univ_poly_def using normalize_replicate_zero[of "length
p" "[]"] by auto
    qed
    interpret UP: ring "K[X]"
        using univ_poly_is_ring .
    from aux_lemma
    have "\p. p \in carrier (K[X]) \Longrightarrow Ө K[X] p = map ( \lambdaa. \ominus a) p"
        by (metis Nil_is_map_conv UP.add.inv_closed UP.l_zero UP.r_neg1 UP.r_zero
UP.zero_closed)
    thus ?thesis
        using assms by simp
qed
corollary univ_poly_a_inv_length:
    assumes "p \in carrier (K[X])" shows "length ( }\mp@subsup{\Theta}{K[X] p) = length p"}{
    unfolding univ_poly_a_inv_def'[OF assms] by simp
corollary univ_poly_a_inv_degree:
    assumes "p \in carrier (K[X])" shows "degree ( }\mp@subsup{\ominus}{K[X] p) = degree p"}{l
    using univ_poly_a_inv_length[OF assms] by simp
```


43.8 Long Division Theorem

```
lemma long_division_theorem:
assumes "polynomial K p" and "polynomial K b" "b \(\neq[]\) "
and "lead_coeff b \(\in\) Units ( \(\mathrm{R} \mid\) carrier := K D)"
shows " \(\exists \mathrm{q}\) r. polynomial K q \(\wedge\) polynomial \(\mathrm{K} \mathrm{r} \wedge\)
\[
\mathrm{p}=\left(\mathrm{b} \otimes_{\mathrm{K}[\mathrm{X}]} \mathrm{q}\right) \oplus_{\mathrm{K}[\mathrm{X}]} \mathrm{r} \wedge(\mathrm{r}=[] \vee \text { degree } \mathrm{r}<\text { degree }
\]
b)"
(is " \(\exists \mathrm{q}\) r. ?long_division p q r")
using assms(1)
proof (induct "length p" arbitrary: p rule: less_induct)
case less thus ?case
proof (cases p)
case Nil
hence "?long_division p [] []" using zero_is_polynomial poly_mult_zero[OF polynomial_in_carrier [OF
K assms(2)]]
```

```
            by (simp add: univ_poly_def)
    thus ?thesis by blast
    next
    case (Cons a p') thus ?thesis
    proof (cases "length b > length p")
        assume "length b > length p"
            hence "p = [] V degree p < degree b"
            by (meson diff_less_mono length_0_conv less_one not_le)
            hence "?long_division p [] p"
                    using poly_mult_zero(2)[0F polynomial_in_carrier[OF K assms(2)]]
                        poly_add_zero(2)[OF K less(2)] zero_is_polynomial less(2)
            by (simp add: univ_poly_def)
        thus ?thesis by blast
    next
        interpret UP: cring "K[X]"
            using univ_poly_is_cring .
            assume "\neg length b > length p"
            hence len_ge: "length p \geq length b" by simp
            obtain c b' where b: "b = c # b'"
            using assms(3) list.exhaust_sel by blast
            then obtain c' where c': "c' \in carrier R" "c' \in K" "c' \otimes c = 1"
"c \otimes c' = 1"
            using assms(4) subringE(1) [OF K] unfolding Units_def by auto
    have c: "c \in carrier R" "c\in K" "c = 0" and a: "a \in carrier R"
"a \in K" "a \not= 0"
            using less(2) assms(2) lead_coeff_not_zero subringE(1)[OF K] b
Cons by auto
    hence lc: "c' \otimes (\ominus a) \in K - { 0 }"
            using subringE(5-6) [OF K] c' add.inv_solve_right integral_iff
by fastforce
    let ?len = "length"
    define s where "s = monom (c' \otimes ( }\ominus\mathrm{ a)) (?len p - ?len b)"
    hence s: "polynomial K s" "s \not= []" "degree s = ?len p - ?len b"
"length s \geq 1"
            using monom_is_polynomial[OF K lc] unfolding monom_def by auto
    hence is_polynomial: "polynomial K (p \oplus K [x] (b * < [X] s))"
        using poly_add_closed[OF K less(2) poly_mult_closed[OF K assms(2),
of s]]
            by (simp add: univ_poly_def)
    have "lead_coeff (b * < K[x] s) = \ominus a"
        using poly_mult_lead_coeff[OF K assms(2) s(1) assms(3) s(2)] c
c' a
            unfolding b s_def monom_def univ_poly_def by (auto simp del: poly_mult.simps,
algebra)
            then obtain s' where s': "b \mp@subsup{\otimes}{\textrm{K}[\textrm{X}]}{}\textrm{s}=(\ominus a) # s'"
            using poly_mult_integral[OF K assms(2) s(1)] assms(2-3) s(2)
```

```
    by (simp add: univ_poly_def, metis hd_Cons_tl)
    moreover have "degree p = degree (b }\mp@subsup{\otimes}{\textrm{K}}{[x] s)"
        using poly_mult_degree_eq[0F K assms(2) s(1)] assms(3) s(2-4)
len_ge b Cons
            by (auto simp add: univ_poly_def)
            hence "?len p = ?len (b }\mp@subsup{\otimes}{\textrm{K}[\textrm{X}]}{}\textrm{s})
            unfolding Cons s' by simp
            hence "?len (p }\mp@subsup{\oplus}{\textrm{K}[\textrm{X}]}{}(\textrm{b}\mp@subsup{\otimes}{\textrm{K}[\textrm{X}]}{}\mathrm{ s)) < ?len p"
            unfolding Cons s' using a normalize_length_le[of "map2 ( }\oplus\mathrm{ ) p'
s'"]
            by (auto simp add: univ_poly_def r_neg)
            then obtain q' r' where l_div: "?long_division (p }\mp@subsup{\oplus}{\textrm{K}[\textrm{X}]}{}(\textrm{b}\mp@subsup{\otimes}{\textrm{K}[\textrm{X}}{
s)) q' r'"
                            using less(1)[OF _ is_polynomial] by blast
            have in_carrier:
                "p \in carrier (K[X])" "b \in carrier (K[X])" "s \in carrier (K[X])"
                "q' \in carrier (K[X])" "r' \in carrier (K[X])"
                using l_div assms less(2) s unfolding univ_poly_def by auto
```



```
                using l_div by simp
```



```
                    using in_carrier by algebra
            moreover have "q' }\mp@subsup{\ominus}{K[X] s }{\mathrm{ f carrier (K[X])"}
                    using in_carrier by algebra
            hence "polynomial K (q' }\mp@subsup{\ominus}{K[X] s)"}{
                unfolding univ_poly_def by simp
            ultimately have "?long_division p (q' }\mp@subsup{\ominus}{K[x] s) r'"}{
                using l_div by auto
            thus ?thesis by blast
        qed
    qed
qed
end
end
```

lemma (in domain) field_long_division_theorem:
assumes "subfield K R" "polynomial K p" and "polynomial K b" "b \neq
[] "
shows $\mathrm{\|} \exists \mathrm{q}$ r. polynomial K q \wedge polynomial K r \wedge
$p=\left(b \otimes_{K[X]} q\right) \oplus_{K[X]} r \wedge(r=[] \vee$ degree r < degree
b) "
using long_division_theorem[OF subfieldE(1) [OF assms(1)] assms(2-4)]
assms (3-4)
subfield.subfield_Units[0F assms(1)] lead_coeff_not_zero[of K

```
"hd b" "tl b"]
    by simp
```

The same theorem as above, but now, everything is in a shell.

```
lemma (in domain) field_long_division_theorem_shell:
    assumes "subfield K R" "p \(\in \operatorname{carrier~(K[X])"~and~"b~} \in \operatorname{carrier~(K[X])"~}\)
" \(\mathrm{b} \neq \mathrm{o}_{\mathrm{K}[\mathrm{X}]}\) "
    shows " \(\exists \mathrm{q}\) r. \(\mathrm{q} \in \operatorname{carrier~}(\mathrm{K}[\mathrm{X}]) \wedge \mathrm{r} \in \operatorname{carrier}(\mathrm{K}[\mathrm{X}]) \wedge\)
                        \(p=\left(b \otimes_{K[X]} q\right) \oplus_{K[X]} r \wedge\left(r=0_{K}[X] \vee\right.\) degree \(r<d e g r e e\)
b) "
    using field_long_division_theorem assms by (auto simp add: univ_poly_def)
```


43.9 Consistency Rules

```
lemma polynomial_consistent [simp]:
    shows "polynomial(R | carrier := K D) K p \Longrightarrow polynomial R K p"
    unfolding polynomial_def by auto
lemma (in ring) eval_consistent [simp]:
    assumes "subring K R" shows "ring.eval (R (| carrier := K D) = eval"
proof
    fix p show "ring.eval (R ( carrier := K D) p = eval p"
        using nat_pow_consistent ring.eval.simps[OF subring_is_ring[OF assms]]
by (induct p) (auto)
qed
```

lemma (in ring) coeff_consistent [simp]:
assumes "subring K R" shows "ring.coeff (R (| carrier := K D) = coeff"
proof
fix p show "ring.coeff (R (carrier := K D) p = coeff p"
using ring.coeff.simps[0F subring_is_ring[OF assms]] by (induct p)
(auto)
qed
lemma (in ring) normalize_consistent [simp]:
assumes "subring K R" shows "ring.normalize (R (carrier := K)) =
normalize"
proof
fix p show "ring.normalize (R (carrier := K D) $\mathrm{p}=$ normalize p "
using ring.normalize.simps [OF subring_is_ring[OF assms]] by (induct
p) (auto)
qed
lemma (in ring) poly_add_consistent [simp]:
assumes "subring K R" shows "ring.poly_add (R (carrier := K)) = poly_add"
proof -
have " $\bigwedge \mathrm{p}$ q. ring.poly_add (R (carrier := K D) p q = poly_add p q"
proof -

```
        fix p q show "ring.poly_add (R | carrier := K D) p q = poly_add p
q"
        using ring.poly_add.simps[OF subring_is_ring[OF assms]] normalize_consistent[OF
assms] by auto
    qed
    thus ?thesis by (auto simp del: poly_add.simps)
qed
lemma (in ring) poly_mult_consistent [simp]:
    assumes "subring K R" shows "ring.poly_mult (R | carrier := K |) =
poly_mult"
proof -
    have "\p q. ring.poly_mult (R \ carrier := K D) p q = poly_mult p q"
    proof -
        fix p q show "ring.poly_mult (R ( carrier := K D) p q = poly_mult
p q"
        using ring.poly_mult.simps[OF subring_is_ring[OF assms]] poly_add_consistent[OF
assms]
            by (induct p) (auto)
    qed
    thus ?thesis by auto
qed
lemma (in domain) univ_poly_a_inv_consistent:
    assumes "subring K R" "p \in carrier (K[X])"
    shows "}\mp@subsup{\ominus}{K}{[X] p = Ө(carrier R)[X] p"
proof -
    have in_carrier: "p \in carrier ((carrier R)[X])"
        using assms carrier_polynomial by (auto simp add: univ_poly_def)
    show ?thesis
        using univ_poly_a_inv_def'[OF assms]
            univ_poly_a_inv_def'[OF carrier_is_subring in_carrier] by simp
qed
lemma (in domain) univ_poly_a_minus_consistent:
    assumes "subring K R" "q \in carrier (K[X])"
    shows "p Ө K[x] q = p Ө (carrier R)[x] q"
    using univ_poly_a_inv_consistent[OF assms]
    unfolding a_minus_def univ_poly_def by auto
lemma (in ring) univ_poly_consistent:
    assumes "subring K R"
    shows "univ_poly (R \ carrier := K D) = univ_poly R"
    unfolding univ_poly_def polynomial_def
    using poly_add_consistent[OF assms]
        poly_mult_consistent[0F assms]
        subringE(1)[OF assms]
    by auto
```


43.9.1 Corollaries

corollary (in ring) subfield_long_division_theorem_shell:
assumes "subfield K R" "p \in carrier ($K[X])$ " and "b $\in \operatorname{carrier~(K[X])"~}$
" $\mathrm{b} \neq \mathbf{0}_{\mathrm{K}}[\mathrm{X}]$ "
shows " $\exists \mathrm{q}$ r. $\mathrm{q} \in \operatorname{carrier}(\mathrm{K}[\mathrm{X}]) \wedge \mathrm{r} \in \operatorname{carrier}(\mathrm{K}[\mathrm{X}]) \wedge$ $\mathrm{p}=\left(\mathrm{b} \otimes_{\mathrm{K}[\mathrm{X}]} \mathrm{q}\right) \oplus_{\mathrm{K}[\mathrm{X}]} \mathrm{r} \wedge\left(\mathrm{r}=\mathbf{0}_{\mathrm{K}[\mathrm{X}]} \vee\right.$ degree $\mathrm{r}<$ degree
b) "
using domain.field_long_division_theorem_shell[OF subdomain_is_domain [OF subfield.axioms(1)] field.carrier_is_subfield[0F subfield_iff(2) [OF assms(1)]] assms(1-4)
unfolding univ_poly_consistent[OF subfieldE(1)[0F assms(1)]]
by auto
corollary (in domain) univ_poly_is_euclidean:
assumes "subfield K R" shows "euclidean_domain (K[X]) degree"
proof -
interpret UP: domain "K[X]"
using univ_poly_is_domain[OF subfieldE(1) [OF assms]] field_def by blast
show ?thesis
using subfield_long_division_theorem_shell[0F assms]
by (auto intro!: UP.euclidean_domainI)
qed
corollary (in domain) univ_poly_is_principal:
assumes "subfield K R" shows "principal_domain (K[X])"
proof -
interpret UP: euclidean_domain "K[X]" degree
using univ_poly_is_euclidean[0F assms] .
show ?thesis ..
qed

43.10 The Evaluation Homomorphism

lemma (in ring) eval_replicate:
assumes "set $p \subseteq$ carrier R " "a \in carrier R"
shows "eval ((replicate n 0) @ p) a = eval p a"
using assms eval_in_carrier by (induct n) (auto)
lemma (in ring) eval_normalize:
assumes "set $p \subseteq$ carrier R" "a \in carrier R"
shows "eval (normalize p) a = eval p a"
using eval_replicate[OF normalize_in_carrier] normalize_def'[of p] assms
by metis
lemma (in ring) eval_poly_add_aux:
assumes "set $\mathrm{p} \subseteq$ carrier R" "set $\mathrm{q} \subseteq$ carrier R" and "length $\mathrm{p}=$ length
q" and "a \in carrier R"
shows "eval (poly_add p q) a $=($ eval p a) $\oplus(e v a l q$ a)"

```
proof -
    have "eval (map2 ( }\oplus\mathrm{ ) p q) a = (eval p a) }\oplus(eval q a)"
        using assms
    proof (induct p arbitrary: q)
        case Nil thus ?case by simp
    next
        case (Cons b1 p')
        then obtain b2 q' where q: "q = b2 # q'"
            by (metis length_Cons list.exhaust list.size(3) nat.simps(3))
            show ?case
                using eval_in_carrier[OF _ Cons(5), of q']
                    eval_in_carrier[OF _ Cons(5), of p'] Cons unfolding q
                by (auto simp add: ring_simprules(7,13,22))
    qed
    moreover have "set (map2 ( }\oplus\mathrm{ ) p q) }\subseteq\mathrm{ carrier R"
        using assms(1-2)
        by (induct p arbitrary: q) (auto, metis add.m_closed in_set_zipE set_ConsD
subsetCE)
    ultimately show ?thesis
        using assms(3) eval_normalize[OF _ assms(4), of "map2 (\oplus) p q"] by
auto
qed
lemma (in ring) eval_poly_add:
    assumes "set p\subseteq carrier R" "set q \subseteq carrier R" and "a \in carrier R"
    shows "eval (poly_add p q) a = (eval p a) \oplus (eval q a)"
proof -
    { fix p q assume A: "set p \subseteq carrier R" "set q \subseteq carrier R" "length
p}\geq\mathrm{ length q"
    hence "eval (poly_add p ((replicate (length p - length q) 0) @ q))
a =
                            (eval p a) \oplus (eval ((replicate (length p - length q) 0) @ q)
a)"
        using eval_poly_add_aux[0F A(1) _ _ assms(3), of "(replicate (length
p - length q) 0) @ q"] by force
    hence "eval (poly_add p q) a = (eval p a) \oplus (eval q a)"
        using eval_replicate[OF A(2) assms(3)] A(3) by auto }
    note aux_lemma = this
    have ?thesis if "length q \geq length p"
        using assms(1-2)[THEN eval_in_carrier[OF _ assms(3)]] poly_add_comm[OF
assms(1-2)]
                            aux_lemma[OF assms(2,1) that]
        by (auto simp del: poly_add.simps simp add: add.m_comm)
    moreover have ?thesis if "length p \geq length q"
        using aux_lemma[OF assms(1-2) that] .
    ultimately show ?thesis by auto
qed
```

```
lemma (in ring) eval_append_aux:
    assumes "set p\subseteqcarrier R" and "b \in carrier R" and "a \in carrier
R"
    shows "eval (p @ [ b ]) a = ((eval p a) \otimes a) \oplus b"
    using assms(1)
proof (induct p)
    case Nil thus ?case by (auto simp add: assms(2-3))
next
    case (Cons l q)
    have "a [^] length q \in carrier R" "eval q a \in carrier R"
        using eval_in_carrier Cons(2) assms(2-3) by auto
    thus ?case
        using Cons assms(2-3) by (auto, algebra)
qed
lemma (in ring) eval_append:
    assumes "set p \subseteq carrier R" "set q \subseteq carrier R" and "a \in carrier R"
    shows "eval (p @ q) a = ((eval p a) \otimes (a [^] (length q))) \oplus (eval q
a)"
    using assms(2)
proof (induct "length q" arbitrary: q)
    case 0 thus ?case
        using eval_in_carrier[OF assms(1,3)] by auto
next
    case (Suc n)
    then obtain b q' where q: "q = q' @ [ b ]"
        by (metis length_Suc_conv list.simps(3) rev_exhaust)
    hence in_carrier: "eval p a \in carrier R" "eval q' a \in carrier R"
                        "a [^] (length q') \in carrier R" "b \in carrier R"
        using assms(1,3) Suc(3) eval_in_carrier[OF _ assms(3)] by auto
    have "eval (p @ q) a = ((eval (p @ q') a) \otimes a) \oplus b"
        using eval_append_aux[OF _ _ assms(3), of "p @ q'" b] assms(1) Suc(3)
unfolding q by auto
    also have " ... = ((((eval p a) \otimes (a [^] (length q'))) \oplus (eval q' a))
\otimes a) }\oplus\textrm{b}
            using Suc unfolding q by auto
    also have " ... = (((eval p a) \otimes ((a [^] (length q')) \otimes a))) \otimes (((eval
q' a) \otimes a) \oplus b)"
            using assms(3) in_carrier by algebra
    also have " ... = (eval p a) \otimes (a [^] (length q)) }\oplus(\mathrm{ eval q a)"
        using eval_append_aux[OF _ in_carrier(4) assms(3), of q'] Suc(3) un-
folding q by auto
    finally show ?case .
qed
lemma (in ring) eval_monom:
    assumes "b \in carrier R" and "a \in carrier R"
    shows "eval (monom b n) a = b \otimes (a [^] n)"
```

```
proof (induct n)
    case O thus ?case
        using assms unfolding monom_def by auto
next
    case (Suc n)
    have "monom b (Suc n) = (monom b n) @ [ 0 ]"
        unfolding monom_def by (simp add: replicate_append_same)
    hence "eval (monom b (Suc n)) a = ((eval (monom b n) a) \otimes a) \oplus 0"
        using eval_append_aux[OF monom_in_carrier[OF assms(1)] zero_closed
assms(2), of n] by simp
    also have " ... = b & (a [^] (Suc n))"
        using Suc assms m_assoc by auto
    finally show ?case .
qed
lemma (in cring) eval_poly_mult:
    assumes "set p \subseteq carrier R" "set q \subseteq carrier R" and "a \in carrier R"
    shows "eval (poly_mult p q) a = (eval p a) \otimes (eval q a)"
    using assms(1)
proof (induct p)
    case Nil thus ?case
        using eval_in_carrier[OF assms(2-3)] by simp
next
    { fix n b assume b: "b \in carrier R"
        hence "set (map ((\otimes) b) q) \subseteq carrier R" and "set (replicate n 0)
\subseteq \mp@code { c a r r i e r ~ R " }
            using assms(2) by (induct q) (auto)
        hence "eval ((map ((\otimes) b) q) @ (replicate n 0)) a = (eval ((map ((\otimes)
b) q)) a) }\otimes(a [^] n) \oplus 0"
            using eval_append[OF _ _ assms(3), of "map ((\otimes) b) q" "replicate
n 0"]
                            eval_replicate[0F _ assms(3), of "[] "] by auto
            moreover have "eval (map ((\otimes) b) q) a = b \otimes eval q a"
                using assms(2-3) eval_in_carrier b by(induct q) (auto simp add:
m_assoc r_distr)
            ultimately have "eval ((map ((\otimes) b) q) @ (replicate n 0)) a = (b
\otimes eval q a) \otimes (a [^] n) }\oplus0
                by simp
            also have " ... = (b \otimes (a [^] n)) \otimes (eval q a)"
                using eval_in_carrier[OF assms(2-3)] b assms(3) m_assoc m_comm by
auto
            finally have "eval ((map ((\otimes) b) q) @ (replicate n 0)) a = (eval (monom
b n) a) \otimes (eval q a)"
            using eval_monom[OF b assms(3)] by simp }
    note aux_lemma = this
    case (Cons b p)
    hence in_carrier:
    "eval (monom b (length p)) a \in carrier R" "eval p a \in carrier R" "eval
```

```
q a }\in\mathrm{ carrier R" "b E carrier R"
    using eval_in_carrier monom_in_carrier assms by auto
    have set_map: "set ((map ((\otimes) b) q) @ (replicate (length p) 0)) \subseteq carrier
R"
    using in_carrier(4) assms(2) by (induct q) (auto)
    have set_poly: "set (poly_mult p q) \subseteq carrier R"
        using poly_mult_in_carrier[OF _ assms(2), of p] Cons(2) by auto
    have "eval (poly_mult (b # p) q) a =
        ((eval (monom b (length p)) a) \otimes (eval q a)) \oplus ((eval p a) \otimes (eval
q a))"
        using eval_poly_add[OF set_map set_poly assms(3)] aux_lemma[OF in_carrier(4),
of "length p"] Cons
        by (auto simp del: poly_add.simps)
    also have " ... = ((eval (monom b (length p)) a) \oplus (eval p a)) \otimes (eval
q a)"
        using l_distr[OF in_carrier(1-3)] by simp
    also have " ... = (eval (b # p) a) \otimes (eval q a)"
        unfolding eval_monom[OF in_carrier(4) assms(3), of "length p"] by
auto
    finally show ?case .
qed
proposition (in cring) eval_is_hom:
    assumes "subring K R" and "a \in carrier R"
    shows "(\lambdap. (eval p) a) \in ring_hom (K[X]) R"
    unfolding univ_poly_def
    using polynomial_in_carrier[OF assms(1)] eval_in_carrier
        eval_poly_add eval_poly_mult assms(2)
    by (auto intro!: ring_hom_memI
        simp add: univ_poly_carrier
        simp del: poly_add.simps poly_mult.simps)
theorem (in domain) eval_cring_hom:
    assumes "subring K R" and "a \in carrier R"
    shows "ring_hom_cring (K[X]) R (\lambdap. (eval p) a)"
    unfolding ring_hom_cring_def ring_hom_cring_axioms_def
    using domain.axioms(1) [OF univ_poly_is_domain[OF assms(1)]]
        eval_is_hom[OF assms] cring_axioms by auto
corollary (in domain) eval_ring_hom:
    assumes "subring K R" and "a }\in\mathrm{ carrier R"
    shows "ring_hom_ring (K[X]) R ( }\lambda\textrm{p}.(\textrm{eval p) a)"
    using eval_cring_hom[OF assms] ring_hom_ringI2
    unfolding ring_hom_cring_def ring_hom_cring_axioms_def cring_def by
auto
```


43.11 Homomorphisms

```
lemma (in ring_hom_ring) eval_hom':
```

```
    assumes "a \in carrier R" and "set p \subseteq carrier R"
    shows "h (R.eval p a) = eval (map h p) (h a)"
    using assms by (induct p, auto simp add: R.eval_in_carrier hom_nat_pow)
lemma (in ring_hom_ring) eval_hom:
    assumes "subring K R" and "a \in carrier R" and "p \in carrier (K[X])"
    shows "h (R.eval p a) = eval (map h p) (h a)"
proof -
    have "set p \subseteq carrier R"
        using subringE(1)[OF assms(1)] R.polynomial_incl assms(3)
        unfolding sym[OF univ_poly_carrier[of R]] by auto
    thus ?thesis
        using eval_hom'[OF assms(2)] by simp
qed
lemma (in ring_hom_ring) coeff_hom':
    assumes "set p\subseteqcarrier R" shows "h (R.coeff p i) = coeff (map h
p) i"
    using assms by (induct p) (auto)
lemma (in ring_hom_ring) poly_add_hom':
    assumes "set p\subseteqcarrier R" and "set q \subseteq carrier R"
    shows "normalize (map h (R.poly_add p q)) = poly_add (map h p) (map
h q)"
proof -
    have set_map: "set (map h s) \subseteq carrier S" if "set s \subseteq carrier R" for
s
        using that by auto
    have "coeff (normalize (map h (R.poly_add p q))) = coeff (map h (R.poly_add
p q))"
        using S.normalize_coeff by auto
    also have " ... = (\lambdai. h ((R.coeff p i) }\oplus(R.coeff q i)))"
        using coeff_hom'[OF R.poly_add_in_carrier[OF assms]] R.poly_add_coeff[OF
assms] by simp
    also have " ...= ( \lambdai. (coeff (map h p) i) }\mp@subsup{\oplus}{S}{\prime}(\operatorname{coeff (map h q) i))"
        using assms[THEN R.coeff_in_carrier] assms[THEN coeff_hom'] by simp
    also have " ... = (\lambdai. coeff (poly_add (map h p) (map h q)) i)"
        using S.poly_add_coeff[OF assms[THEN set_map]] by simp
    finally have "coeff (normalize (map h (R.poly_add p q))) = (\lambdai. coeff
(poly_add (map h p) (map h q)) i)" .
    thus ?thesis
        unfolding coeff_iff_polynomial_cond[OF
                normalize_gives_polynomial[OF set_map[OF R.poly_add_in_carrier[OF
assms]]]
        poly_add_is_polynomial[OF carrier_is_subring assms[THEN
set_map]]] .
qed
lemma (in ring_hom_ring) poly_mult_hom':
```

```
    assumes "set p \subseteq carrier R" and "set q \subseteq carrier R"
    shows "normalize (map h (R.poly_mult p q)) = poly_mult (map h p) (map
h q)"
    using assms(1)
proof (induct p, simp)
    case (Cons a p)
    have set_map: "set (map h s) \subseteq carrier S" if "set s \subseteq carrier R" for
S
        using that by auto
    let ?q_a = "(map ((\otimes) a) q) @ (replicate (length p) 0)"
    have set_q_a: "set ?q_a \subseteq carrier R"
        using assms(2) Cons(2) by (induct q) (auto)
    have q_a_simp: "map h ?q_a = (map (( }\mp@subsup{\otimes}{S}{
(length (map h p)) 0}\mp@subsup{0}{\textrm{S}}{}\mathrm{ )"
        using assms(2) Cons(2) by (induct q) (auto)
    have "S.normalize (map h (R.poly_mult (a # p) q)) =
            S.normalize (map h (R.poly_add ?q_a (R.poly_mult p q)))"
        by simp
    also have " ... = S.poly_add (map h ?q_a) (map h (R.poly_mult p q))"
        using poly_add_hom'[OF set_q_a R.poly_mult_in_carrier[OF _ assms(2)]]
Cons by simp
    also have " ... = S.poly_add (map h ?q_a) (S.normalize (map h (R.poly_mult
p q)))"
        using poly_add_normalize(2) [OF set_map[OF set_q_a] set_map[OF R.poly_mult_in_carrier[OF
    _ assms(2)]l] Cons by simp
    also have " ... = S.poly_add (map h ?q_a) (S.poly_mult (map h p) (map
h q))"
        using Cons by simp
    also have " ... = S.poly_mult (map h (a # p)) (map h q)"
        unfolding q_a_simp by simp
    finally show ?case .
qed
```


43.12 The X Variable

```
definition var :: "_ # 'a list" ("X\imath")
```

definition var :: "_ \# 'a list" ("X\imath")
where "X}\mp@subsup{X}{R}{}=[\mp@subsup{1}{R}{},\mp@subsup{0}{R}{}]
where "X}\mp@subsup{X}{R}{}=[\mp@subsup{1}{R}{},\mp@subsup{0}{R}{}]
lemma (in ring) eval_var:
lemma (in ring) eval_var:
assumes "x \in carrier R" shows "eval X x = x"
assumes "x \in carrier R" shows "eval X x = x"
using assms unfolding var_def by auto
using assms unfolding var_def by auto
lemma (in domain) var_closed:
lemma (in domain) var_closed:
assumes "subring K R" shows "X \in carrier (K[X])" and "polynomial K
assumes "subring K R" shows "X \in carrier (K[X])" and "polynomial K
X"
X"
using subringE(2-3) [OF assms]
using subringE(2-3) [OF assms]
by (auto simp add: var_def univ_poly_def polynomial_def)

```
    by (auto simp add: var_def univ_poly_def polynomial_def)
```

```
lemma (in domain) poly_mult_var':
    assumes "set p\subseteqcarrier R"
    shows "poly_mult X p = normalize (p @ [ 0 ])"
        and "poly_mult p X = normalize (p @ [ 0 ])"
proof -
    from <set p \subseteq carrier R> have "poly_mult [ 1 ] p = normalize p"
        using poly_mult_one' by simp
    thus "poly_mult X p = normalize (p @ [ 0 ])"
        using poly_mult_append_zero[OF _ assms, of "[ 1 ]"] normalize_idem
        unfolding var_def by (auto simp del: poly_mult.simps)
    thus "poly_mult p X = normalize (p @ [ 0 ])"
        using poly_mult_comm[OF assms] unfolding var_def by simp
qed
lemma (in domain) poly_mult_var:
    assumes "subring K R" "p \in carrier (K[X])"
    shows "p }\mp@subsup{\otimes}{K[X] X = (if p = [] then [] else p @ [ 0 ])"}{
proof -
    have is_poly: "polynomial K p"
        using assms(2) unfolding univ_poly_def by simp
    hence "polynomial K (p @ [ 0 ])" if "p f []"
        using that subringE(2) [OF assms(1)] unfolding polynomial_def by auto
    thus ?thesis
        using poly_mult_var'(2) [OF polynomial_in_carrier[OF assms(1) is_poly]]
                        normalize_polynomial[of K "p @ [ 0 ]"]
        by (auto simp add: univ_poly_mult[of R K])
qed
lemma (in domain) var_pow_closed:
    assumes "subring K R" shows "X [^] K[X] (n :: nat) \in carrier (K [X])"
    using monoid.nat_pow_closed[OF univ_poly_is_monoid[OF assms] var_closed(1) [OF
assms]] .
lemma (in domain) unitary_monom_eq_var_pow:
    assumes "subring K R" shows "monom 1 n = X [^] K[X] n"
    using poly_mult_var[OF assms var_pow_closed[OF assms]] unfolding nat_pow_def
monom_def
    by (induct n) (auto simp add: univ_poly_one, metis append_Cons replicate_append_same)
lemma (in domain) monom_eq_var_pow:
    assumes "subring K R" "a \in carrier R - { 0 }"
    shows "monom a n = [ a ] 的 K[X] (X [^] K[X] n)"
proof -
    have "monom a n = map ((\otimes) a) (monom 1 n)"
        unfolding monom_def using assms(2) by (induct n) (auto)
    also have " ... = poly_mult [ a ] (monom 1 n)"
            using poly_mult_const(1)[OF _ monom_is_polynomial assms(2)] carrier_is_subring
by simp
```

```
    also have " ... = [ a ] 目 (X] (X [^`] K[x] n)"
    unfolding unitary_monom_eq_var_pow[0F assms(1)] univ_poly_mult[of
R K] by simp
    finally show ?thesis .
qed
lemma (in domain) eval_rewrite:
    assumes "subring K R" and "p \in carrier (K[X])"
    shows "p = (ring.eval (K[X])) (map poly_of_const p) X"
proof -
    let ?map_norm = "\lambdap. map poly_of_const p"
    interpret UP: domain "K[X]"
        using univ_poly_is_domain[OF assms(1)] .
    { fix l assume "set l\subseteq K"
        hence "poly_of_const a \in carrier (K[X])" if "a \in set l" for a
            using that normalize_gives_polynomial[of "[ a ]" K]
            unfolding univ_poly_carrier poly_of_const_def by auto
            hence "set (?map_norm l) \subseteq carrier (K[X])"
                by auto }
    note aux_lemma1 = this
    { fix q l assume set_l: "set l \subseteq K" and q: "q \in carrier (K[X])"
        from set_l have "UP.eval (?map_norm l) q = UP.eval (?map_norm ((replicate
n 0) @ l)) q" for n
        proof (induct n, simp)
            case (Suc n)
            from <set l \subseteq K> have set_replicate: "set ((replicate n 0) @ l)
\subseteqK"
                using subringE(2) [OF assms(1)] by (induct n) (auto)
            have step: "UP.eval (?map_norm l') q = UP.eval (?map_norm (0 # l'))
q" if "set l' \subseteq K" for l'
                using UP.eval_in_carrier[OF aux_lemma1[OF that]] q unfolding poly_of_const_def
                by (simp, simp add: sym[OF univ_poly_zero[of R K]])
        have "UP.eval (?map_norm l) q = UP.eval (?map_norm ((replicate n
0) @ l)) q"
                using Suc by simp
            also have " ... = UP.eval (map poly_of_const ((replicate (Suc n)
0) @ l)) q"
                using step[OF set_replicate] by simp
            finally show ?case .
        qed }
    note aux_lemma2 = this
    { fix q l assume "set l \subseteq K" and q: "q \in carrier (K[X])"
        from <set l \subseteqK> have set_norm: "set (normalize l) \subseteq K"
            by (induct l) (auto)
        have "UP.eval (?map_norm l) q = UP.eval (?map_norm (normalize l))
```

using aux_lemma2[0F set_norm q, of "length l- length (local.normalize
1)"
unfolding sym[OF normalize_trick[of l]] .. \}
note aux_lemma3 = this
from <p carrier (K[X]) > show ?thesis
proof (induct "length p" arbitrary: p rule: less_induct)
case less thus ?case
proof (cases p, simp add: univ_poly_zero)
case (Cons a l)
hence a: "a \in carrier $R-\{0\} "$ and set_l: "set $1 \subseteq$ carrier R " "set $1 \subseteq K$ "
using less(2) subringE(1) [OF assms(1)] unfolding sym[OF univ_poly_carrier]
polynomial_def by auto
have "a \# l = poly_add (monom a (length l)) l"
using poly_add_monom[0F set_l(1) a] ..
also have " ... = poly_add (monom a (length l)) (normalize l)" using poly_add_normalize(2) [OF monom_in_carrier[of a] set_l(1)]
a by simp
also have " ... = poly_add (monom a (length l)) (UP.eval (?map_norm
(normalize l)) X)"
using less(1) [of "normalize 1"] normalize_gives_polynomial[0F
set_l(2)] normalize_length_le[of l]
by (auto simp add: univ_poly_carrier Cons(1))
also have " ... = poly_add ([a] $\otimes_{\mathrm{K}[\mathrm{X}]}\left(\mathrm{X}\left[{ }^{\wedge}\right]_{\mathrm{K}[\mathrm{X}]}(\right.$ length l$\left.)\right)$)
(UP.eval (?map_norm l) X)"
unfolding monom_eq_var_pow[0F assms(1) a] aux_lemma3[0F set_l(2)
var_closed(1) [0F assms(1)]] ..
also have " ... = UP.eval (?map_norm (a \# l)) X" using a unfolding sym[OF univ_poly_add[of R K]] unfolding poly_of_const_def
by auto
finally show ?thesis
unfolding Cons(1).
qed
qed
qed
lemma (in ring) dense_repr_set_fst:
assumes "set $p \subseteq K$ " shows "fst ' (set (dense_repr p)) $\subseteq K-\{0\}$ " using assms by (induct p) (auto)
lemma (in ring) dense_repr_set_snd:
shows "snd ' (set (dense_repr p)) $\subseteq\{. .<$ length p\}"
by (induct p) (auto)
lemma (in domain) dense_repr_monom_closed:
assumes "subring K R" "set $p \subseteq K "$

```
    shows "t \in set (dense_repr p) \Longrightarrow monom (fst t) (snd t) \in carrier (K [X])"
    using dense_repr_set_fst[OF assms(2)] monom_is_polynomial[OF assms(1)]
    by (auto simp add: univ_poly_carrier)
lemma (in domain) monom_finsum_decomp:
    assumes "subring K R" "p \in carrier (K[X])"
    shows "p = ( }\mp@subsup{\bigoplus}{K[x] t \in set (dense_repr p). monom (fst t) (snd t))"}{
proof -
    interpret UP: domain "K[X]"
        using univ_poly_is_domain[OF assms(1)] .
    from <p \in carrier (K[X])> show ?thesis
    proof (induct "length p" arbitrary: p rule: less_induct)
        case less thus ?case
        proof (cases p)
            case Nil thus ?thesis
                using UP.finsum_empty univ_poly_zero[of R K] by simp
            next
                case (Cons a l)
                hence in_carrier:
                    "normalize l \in carrier (K[X])" "polynomial K (normalize l)" "polynomial
K (a # l)"
                    using normalize_gives_polynomial polynomial_incl[of K p] less(2)
                    unfolding univ_poly_carrier by auto
            have len_lt: "length (local.normalize l) < length p"
                    using normalize_length_le by (simp add: Cons le_imp_less_Suc)
            have a: "a \in K - { 0 }"
                    using less(2) subringE(1) [OF assms(1)] unfolding Cons univ_poly_def
polynomial_def by auto
        hence "p = (monom a (length l)) }\mp@subsup{\oplus}{\textrm{K}[\textrm{X}]}{}\mathrm{ (poly_of_dense (dense_repr
(normalize l)))"
            using monom_decomp[OF assms(1), of p] less(2) dense_repr_normalize
            unfolding univ_poly_add univ_poly_carrier Cons by (auto simp del:
poly_add.simps)
        also have " ... = (monom a (length l)) }\mp@subsup{\oplus}{\textrm{K}[\textrm{X}]}{(normalize l)"
            using monom_decomp[OF assms(1) in_carrier(2)] by simp
        finally have "p = monom a (length l) }\mp@subsup{\oplus}{\textrm{K}[\textrm{X}]}{
                            (}\mp@subsup{\bigoplus}{K[x] t \in set (dense_repr l). monom (fst t) (snd}{
t))"
            using less(1)[OF len_lt in_carrier(1)] dense_repr_normalize by
simp
        moreover have "(a, (length l)) # set (dense_repr l)"
            using dense_repr_set_snd[of l] by auto
        moreover have "monom a (length l) \in carrier (K[X])"
            using monom_is_polynomial[OF assms(1) a] unfolding univ_poly_carrier
by simp
```

```
    moreover have "\t. t \in set (dense_repr l) \Longrightarrow monom (fst t) (snd
t) \in carrier (K[X])"
            using dense_repr_monom_closed[OF assms(1)] polynomial_incl[OF
in_carrier(3)] by auto
            ultimately have "p = ( }\mp@subsup{\bigoplus}{K[x] t \in set (dense_repr (a # l)). monom}{l
(fst t) (snd t))"
                    using UP.add.finprod_insert a by auto
            thus ?thesis unfolding Cons.
        qed
    qed
qed
lemma (in domain) var_pow_finsum_decomp:
    assumes "subring K R" "p \in carrier (K[X])"
    shows "p = ( }\mp@subsup{\bigoplus}{K[X] t \in set (dense_repr p). [ fst t ] 目 K[X] (X [^] K[x]}{
(snd t)))"
proof -
    let ?f = "\lambdat. monom (fst t) (snd t)"
```



```
    interpret UP: domain "K[X]"
        using univ_poly_is_domain[OF assms(1)] .
    have set_p: "set p\subseteq K"
        using polynomial_incl assms(2) by (simp add: univ_poly_carrier)
    hence f: "?f \in set (dense_repr p) -> carrier (K[X])"
        using dense_repr_monom_closed[OF assms(1)] by auto
    moreover
    have "\t. t \in set (dense_repr p) \Longrightarrow fst t \in carrier R - { 0 }"
        using dense_repr_set_fst[OF set_p] subringE(1) [OF assms(1)] by auto
    hence " \t. t \in set (dense_repr p) \Longrightarrow monom (fst t) (snd t) = [ fst
t ] }\mp@subsup{\otimes}{\textrm{K}[\textrm{X}]}{}(\textrm{X}[\mp@subsup{}{}{[}\mp@subsup{]}{\textrm{K}[\textrm{X}]}{(snd t))"
        using monom_eq_var_pow[OF assms(1)] by auto
    ultimately show ?thesis
        using UP.add.finprod_cong[of _ _ ?f ?g] monom_finsum_decomp[OF assms]
by auto
qed
corollary (in domain) hom_var_pow_finsum:
    assumes "subring K R" and "p \in carrier (K[X])" "ring_hom_ring (K[X])
A h"
```



```
(snd t)))"
proof -
```



```
    let ?g = "\lambdat. h [ fst t ] \otimes \otimesA (h X [^] ]
```

```
    interpret UP: domain "K[X]" + A: ring A
    using univ_poly_is_domain[OF assms(1)] ring_hom_ring.axioms(2) [OF
assms(3)] by simp+
    have const_in_carrier:
        "\t. t \in set (dense_repr p) \Longrightarrow [ fst t ] \in carrier (K[X])"
        using dense_repr_set_fst[OF polynomial_incl, of K p] assms(2) const_is_polynomial[of
    _ K]
        by (auto simp add: univ_poly_carrier)
    hence f: "?f: set (dense_repr p) -> carrier (K[X])"
        using UP.m_closed[OF _ var_pow_closed[OF assms(1)]] by auto
    hence h: "h o ?f: set (dense_repr p) -> carrier A"
        using ring_hom_memE(1) [OF ring_hom_ring.homh[OF assms(3)]] by (auto
simp add: Pi_def)
    have hp: "h p = ( }\mp@subsup{|}{A}{A}t\in\operatorname{set (dense_repr p). (h o ?f) t)"
        using ring_hom_ring.hom_finsum[OF assms(3) f] var_pow_finsum_decomp[OF
assms(1-2)]
        by (auto, meson o_apply)
    have eq: "\t. t \in set (dense_repr p) \Longrightarrow h [ fst t ] \otimesA (h X [^] A
(snd t)) = (h o ?f) t"
        using ring_hom_memE(2) [OF ring_hom_ring.homh[OF assms(3)]
                const_in_carrier var_pow_closed[0F assms(1)]]
            ring_hom_ring.hom_nat_pow[OF assms(3) var_closed(1)[OF assms(1)]]
by auto
    show ?thesis
        using A.add.finprod_cong'[OF _ h eq] hp by simp
qed
corollary (in domain) determination_of_hom:
    assumes "subring K R"
        and "ring_hom_ring (K[X]) A h" "ring_hom_ring (K[X]) A g"
        and "\k. k G K Ch [k ] = g [ k ]" and "h X = g X"
    shows "\p. p \in carrier (K[X]) \Longrightarrow h p = g p"
proof -
    interpret A: ring A
        using ring_hom_ring.axioms(2)[0F assms(2)] by simp
    fix p assume p: "p \in carrier (K[X])"
    hence
        "\t. t \in set (dense_repr p) \Longrightarrow [ fst t ] \in carrier (K[X])"
        using dense_repr_set_fst[OF polynomial_incl, of K p] const_is_polynomial[of
_ K]
            by (auto simp add: univ_poly_carrier)
```



```
p) }->\mathrm{ carrier A"
    using ring_hom_memE(1) [OF ring_hom_ring.homh[OF assms(2)]] var_closed(1)[OF
assms(1)]
                    A.m_closed[OF _ A.nat_pow_closed]
```

```
    by auto
    have eq: "\t. t \in set (dense_repr p) \Longrightarrow
    g [ fst t ] }\mp@subsup{\otimes}{\textrm{A}}{(g X [^] ]
t))"
    using dense_repr_set_fst[OF polynomial_incl, of K p] p assms(4-5)
    by (auto simp add: univ_poly_carrier)
    show "h p = g p"
    unfolding assms(2-3)[THEN hom_var_pow_finsum[OF assms(1) p]]
    using A.add.finprod_cong'[OF _ f eq] by simp
qed
corollary (in domain) eval_as_unique_hom:
    assumes "subring K R" "x \in carrier R"
        and "ring_hom_ring (K[X]) R h"
        and "^k. k \in K Ch [ k ] = k" and "h X = x"
    shows "\p. p \in carrier (K[X]) \Longrightarrow h p = eval p x"
    using determination_of_hom[OF assms(1,3) eval_ring_hom[OF assms(1-2)]]
        eval_var[OF assms(2)] assms(4-5) subringE(1) [OF assms(1)]
    by fastforce
```


43.13 The Constant Term

```
definition (in ring) const_term :: "'a list # 'a"
    where "const_term p = eval p 0"
lemma (in ring) const_term_eq_last:
    assumes "set p \subseteq carrier R" and "a \in carrier R"
    shows "const_term (p @ [ a ]) = a"
    using assms by (induct p) (auto simp add: const_term_def)
lemma (in ring) const_term_not_zero:
    assumes "const_term p = 0" shows "p \not= []"
    using assms by (auto simp add: const_term_def)
lemma (in ring) const_term_explicit:
    assumes "set p\subseteq carrier R" "p f []" and "const_term p = a"
    obtains p' where "set p' \subseteq carrier R" and "p = p' @ [ a ]"
proof -
    obtain a' p' where p: "p = p' @ [ a' ]"
        using assms(2) rev_exhaust by blast
    have p': "set p' \subseteq carrier R" and a: "a = a'"
        using assms const_term_eq_last[of p' a'] unfolding p by auto
    show thesis
        using p p' that unfolding a by blast
qed
lemma (in ring) const_term_zero:
    assumes "subring K R" "polynomial K p" "p \not= []" and "const_term p
```

```
= 0"
    obtains p' where "polynomial K p'" "p' f []" and "p = p' @ [ 0 ]"
proof -
    obtain p' where p': "p = p' @ [ 0 ]"
        using const_term_explicit[OF polynomial_in_carrier[OF assms(1-2)]
assms(3-4)] by auto
    have "polynomial K p'" "p' = []"
            using assms(2) unfolding p' polynomial_def by auto
    thus thesis using p'..
qed
lemma (in cring) const_term_simprules:
    shows "\p. set p \subseteq carrier R\Longrightarrow const_term p \in carrier R"
        and "\p q. \llbracket set p \subseteq carrier R; set q \subseteq carrier R\rrbracket\Longrightarrow
                        const_term (poly_mult p q) = const_term p \otimes const_term
q"
        and "\p q. \llbracket set p \subseteq carrier R; set q \subseteq carrier R \rrbracket\Longrightarrow
                                const_term (poly_add p q) = const_term p \oplus const_term
q"
    using eval_poly_mult eval_poly_add eval_in_carrier zero_closed
    unfolding const_term_def by auto
lemma (in domain) const_term_simprules_shell:
    assumes "subring K R"
    shows "\p. p \in carrier (K[X]) \Longrightarrow const_term p G K"
            and "\p q. \llbracket p \in carrier (K[X]); q \in carrier (K[X])\rrbracket\Longrightarrow
                                    const_term (p }\mp@subsup{\otimes}{\textrm{K}[\textrm{X}]}{}\mathbf{q})= const_term p \otimes const_term q"
            and "\p q. \llbracket p \in carrier (K[X]); q \in carrier (K[X])\rrbracket\Longrightarrow
                                    const_term (p }\mp@subsup{\oplus}{\textrm{K}[\textrm{x}] q) = const_term p \oplus const_term q"}{
            and "^p. p \in carrier (K [X]) \Longrightarrow const_term ( }\mp@subsup{\ominus}{\textrm{K}[\textrm{X}] p) = \ominus (const_term}{
p)"
    using eval_is_hom[0F assms(1) zero_closed]
    unfolding ring_hom_def const_term_def
proof (auto)
    fix p assume p: "p \in carrier (K[X])"
    hence "set p\subseteq carrier R"
        using polynomial_in_carrier[OF assms(1)] by (auto simp add: univ_poly_def)
    thus "eval ( }\mp@subsup{\ominus}{K [x] p) 0 = \ominus local.eval p 0"}{0
        unfolding univ_poly_a_inv_def'[0F assms(1) p]
        by (induct p) (auto simp add: eval_in_carrier l_minus local.minus_add)
    have "set p\subseteqK"
        using p by (auto simp add: univ_poly_def polynomial_def)
    thus "eval p 0 G K"
        using subringE(1-2,6-7) [OF assms]
        by (induct p) (auto, metis assms nat_pow_0 nat_pow_zero subringE(3))
qed
```


43.14 The Canonical Embedding of K in $\mathrm{K}[\mathrm{X}]$

```
lemma (in ring) poly_of_const_consistent:
    assumes "subring K R" shows "ring.poly_of_const (R | carrier := K |)
= poly_of_const"
    unfolding ring.poly_of_const_def[OF subring_is_ring[OF assms]]
                            normalize_consistent[OF assms] poly_of_const_def ..
lemma (in domain) canonical_embedding_is_hom:
    assumes "subring K R" shows "poly_of_const \in ring_hom (R | carrier
:= K D) (K[X])"
    using subringE(1) [OF assms] unfolding subset_iff poly_of_const_def
    by (auto intro!: ring_hom_memI simp add: univ_poly_def)
lemma (in domain) canonical_embedding_ring_hom:
    assumes "subring K R" shows "ring_hom_ring (R \ carrier := K D) (K[X])
poly_of_const"
    using canonical_embedding_is_hom[OF assms] unfolding symmetric[OF ring_hom_ring_axioms_de
    by (rule ring_hom_ring.intro[OF subring_is_ring[OF assms] univ_poly_is_ring[OF
assms]])
lemma (in field) poly_of_const_over_carrier:
    shows "poly_of_const ' (carrier R) = { p \in carrier ((carrier R)[X]).
degree p = 0 }"
proof -
    have "poly_of_const ' (carrier R) = insert [] { [ k ] | k. k \in carrier
R - { 0 } }"
            unfolding poly_of_const_def by auto
    also have " ... = { p \in carrier ((carrier R)[X]). degree p = 0 }"
            unfolding univ_poly_def polynomial_def
            by (auto, metis le_Suc_eq le_zero_eq length_0_conv length_Suc_conv
list.sel(1) list.set_sel(1) subsetCE)
    finally show ?thesis .
qed
```

lemma (in ring) poly_of_const_over_subfield:
assumes "subfield K R" shows "poly_of_const ' $K=\{p \in \operatorname{carrier~(K[X]).~}$
degree $p=0$ "
using field.poly_of_const_over_carrier[0F subfield_iff(2) [OF assms]]
poly_of_const_consistent[0F subfieldE(1) [OF assms]]
univ_poly_consistent[OF subfieldE(1) [OF assms]] by simp
lemma (in field) univ_poly_carrier_subfield_of_consts:
"subfield (poly_of_const ' (carrier R)) ((carrier R)[X])"
proof -
have ring_hom: "ring_hom_ring R ((carrier R) [X]) poly_of_const"
using canonical_embedding_ring_hom[0F carrier_is_subring] by simp
thus ?thesis
using ring_hom_ring.img_is_subfield(2) [OF ring_hom carrier_is_subfield]
unfolding univ_poly_def by auto
qed

```
proposition (in ring) univ_poly_subfield_of_consts:
    assumes "subfield K R" shows "subfield (poly_of_const ' K) (K[X])"
    using field.univ_poly_carrier_subfield_of_consts[OF subfield_iff(2)[0F
assms]]
    unfolding poly_of_const_consistent[OF subfieldE(1) [OF assms]]
                univ_poly_consistent[OF subfieldE(1) [OF assms]] by simp
```

end
theory Polynomial_Divisibility
imports Polynomials Embedded_Algebras "HOL-Library.Multiset"
begin

44 Divisibility of Polynomials

44.1 Definitions

abbreviation poly_ring :: "_ \Rightarrow ('a list) ring" where "poly_ring $R \equiv$ univ_poly R (carrier R)"
abbreviation pirreducible :: "_ \Rightarrow 'a set \Rightarrow 'a list \Rightarrow bool" ("pirreducible 2 ") where "pirreducible ${ }_{R} \mathrm{~K} p \equiv$ ring_irreducible (univ_poly R K) p"
abbreviation pprime : : "_ \Rightarrow 'a set \Rightarrow 'a list \Rightarrow bool" ("pprime $2 ")$

definition pdivides : : "_ \Rightarrow 'a list \Rightarrow 'a list \Rightarrow bool" (infix "pdivides $\imath "$ 65)
where "p pdivides ${ }_{R} q=p$ divides (univ_poly $R($ carrier $R)$) q "
definition rupture : : "_ \Rightarrow 'a set \Rightarrow 'a list \Rightarrow (('a list) set) ring"
("Ruptっ")
where "Rupt $_{R} K \mathrm{p}=\left(\mathrm{K}[\mathrm{X}]_{\mathrm{R}}\right)$ Quot $\left(\mathrm{PIdl}_{\mathrm{K}[\mathrm{X}]_{R}} \mathrm{p}\right)$ "
abbreviation (in ring) rupture_surj : : "'a set \Rightarrow 'a list \Rightarrow 'a list \Rightarrow
('a list) set"

44.2 Basic Properties

lemma (in ring) carrier_polynomial_shell [intro]:
assumes "subring K R" and "p \in carrier ($\mathrm{K}[\mathrm{X}]$)" shows "p \in carrier (poly_ring R)"
using carrier_polynomial[0F assms(1), of p] assms(2) unfolding sym[0F univ_poly_carrier] by simp

```
lemma (in domain) pdivides_zero:
    assumes "subring K R" and "p \in carrier (K[X])" shows "p pdivides []"
    using ring.divides_zero[OF univ_poly_is_ring[OF carrier_is_subring]
        carrier_polynomial_shell[OF assms]]
    unfolding univ_poly_zero pdivides_def .
lemma (in domain) zero_pdivides_zero: "[] pdivides []"
    using pdivides_zero[OF carrier_is_subring] univ_poly_carrier by blast
lemma (in domain) zero_pdivides:
    shows "[] pdivides p < \longleftrightarrow p = []"
    using ring.zero_divides[OF univ_poly_is_ring[OF carrier_is_subring]]
    unfolding univ_poly_zero pdivides_def .
lemma (in domain) pprime_iff_pirreducible:
    assumes "subfield K R" and "p \in carrier (K[X])"
    shows "pprime K p \longleftrightarrow pirreducible K p"
    using principal_domain.primeness_condition[OF univ_poly_is_principal]
assms by simp
lemma (in domain) pirreducibleE:
    assumes "subring K R" "p \in carrier (K[X])" "pirreducible K p"
    shows "p f []" "p \not\in Units (K[X])"
        and "\q r. \llbracket q \in carrier (K[X]); r \in carrier (K[X])\rrbracket\Longrightarrow
```



```
    using domain.ring_irreducibleE[OF univ_poly_is_domain[OF assms(1)]
assms(3)] assms(2)
    by (auto simp add: univ_poly_zero)
lemma (in domain) pirreducibleI:
    assumes "subring K R" "p \in carrier (K[X])" "p # []" "p & Units (K[X])"
        and "\q r. \llbracketq q carrier (K[X]); r \in carrier (K[X])\rrbracket\Longrightarrow
                            p = q * K[X] r # q G Units (K[X]) V r G Units (K[X])"
    shows "pirreducible K p"
    using domain.ring_irreducibleI[OF univ_poly_is_domain[OF assms(1)] _
assms(4)] assms(2-3,5)
    by (auto simp add: univ_poly_zero)
lemma (in domain) univ_poly_carrier_units_incl:
    shows "Units ((carrier R) [X]) \subseteq{ [k] | k. k \in carrier R - { 0 }
}"
proof
    fix p assume "p \in Units ((carrier R) [X])"
    then obtain q
        where p: "polynomial (carrier R) p" and q: "polynomial (carrier R)
q" and pq: "poly_mult p q = [ 1 ]"
            unfolding Units_def univ_poly_def by auto
    hence not_nil: "p f []" and "q # []"
```

using poly_mult_integral[OF carrier_is_subring p q] poly_mult_zero[0F polynomial_incl[0F p]] by auto
hence "degree $p=0$ "
using poly_mult_degree_eq[0F carrier_is_subring p q] unfolding pq by simp
hence "length $\mathrm{p}=1$ "
using not_nil by (metis One_nat_def Suc_pred length_greater_0_conv)
then obtain k where k : " $p=[k] "$
by (metis One_nat_def length_O_conv length_Suc_conv)
hence " $k \in$ carrier $R-\{0\}$ "
using p unfolding polynomial_def by auto
thus " $\mathrm{p} \in\{[\mathrm{k}] \mid \mathrm{k} . \mathrm{k} \in$ carrier $\mathrm{R}-\{0\}\}$ "
unfolding k by blast
qed
lemma (in field) univ_poly_carrier_units:
"Units ((carrier R) [X]) $=\{[k] \mid k . k \in \operatorname{carrier~R~-~\{ ~} 0\}\}$ \}" proof
show "Units ((carrier R$)[\mathrm{X}]) \subseteq\{[\mathrm{k}]$ | k. k \in carrier $\mathrm{R}-\{0$ \} \}"
using univ_poly_carrier_units_incl by simp
next
show "\{ [k] | k. k \in carrier $R-\{0\}\} \subseteq$ Units ((carrier R) [X])"
proof (auto)
fix k assume $k: ~ " k \in$ carrier $R " ~ " k \neq 0 "$
hence inv_k: "inv $k \in$ carrier $R "$ "inv $k \neq 0 "$ and $k \otimes$ inv $k=1 "$
"inv k $\otimes \mathrm{k}=1 "$
using subfield_m_inv[OF carrier_is_subfield, of k] by auto
hence "poly_mult [k] [inv k] = [1]" and "poly_mult [inv k
] [k] = [1]"
by (auto simp add: k)
moreover have "polynomial (carrier R) [k]" and "polynomial (carrier
R) [inv k]"
using const_is_polynomial k inv_k by auto
ultimately show " $[\mathrm{k}] \in \operatorname{Units}(\overline{\text { (carrier R }}$) [X])"
unfolding Units_def univ_poly_def by (auto simp del: poly_mult.simps)
qed
qed
lemma (in domain) univ_poly_units_incl:
assumes "subring K R" shows "Units $(K[X]) \subseteq\{[k] \mid k . k \in K-\{$
0 \} \}"
using domain.univ_poly_carrier_units_incl[0F subring_is_domain[0F assms]]
univ_poly_consistent [OF assms] by auto
lemma (in ring) univ_poly_units:
assumes "subfield K R" shows "Units $(K[X])=\{[k] \mid k . k \in K-\{$
0 \} \}" using field.univ_poly_carrier_units[0F subfield_iff(2) [OF assms]]
univ_poly_consistent[OF subfieldE(1) [OF assms]] by auto
lemma (in domain) univ_poly_units':
assumes "subfield K R" shows " $p \in$ Units ($K[X]$) $\longleftrightarrow p \in \operatorname{carrier~(K[X])~}$
$\wedge p \neq[] \wedge$ degree $p=0 "$
unfolding univ_poly_units[0F assms] sym[OF univ_poly_carrier] polynomial_def
by (auto, metis hd_in_set le_0_eq le_Suc_eq length_0_conv length_Suc_conv
list.sel(1) subsetD)
corollary (in domain) rupture_one_not_zero:
assumes "subfield K R" and "p \in carrier ($K[X]$)" and "degree p > 0"
shows $"_{\text {Rupt K }} \neq 0_{\text {Rupt K p }}$ "
proof (rule ccontr)
interpret UP: principal_domain "K[X]"
using univ_poly_is_principal[0F assms(1)].
assume " $\neg 1_{\text {Rupt }} \mathrm{p} \neq \mathbf{0}_{\text {Rupt }} \mathrm{K} p$ "
then have "PIdl $_{\mathrm{K}[\mathrm{X}]} \mathrm{p}+>_{\mathrm{K}[\mathrm{X}]} 1_{\mathrm{K}[\mathrm{X}]}=\mathrm{PIdl}_{\mathrm{K}[\mathrm{X}]} \mathrm{p}$ "
unfolding rupture_def FactRing_def by simp
hence $" 1_{K[X]} \in \operatorname{PIdl}_{\mathrm{K}[\mathrm{X}]} \mathrm{p}$ "
using ideal.rcos_const_imp_mem[0F UP.cgenideal_ideal[OF assms(2)]]
by auto
then obtain q where $" q \in \operatorname{carrier}(K[X]) "$ and $" 1_{K[X]}=q \otimes_{K[X]} p$ "
using assms(2) unfolding cgenideal_def by auto
hence " $p \in$ Units ($K[X]$)"
unfolding Units_def using assms(2) UP.m_comm by auto
hence "degree p = 0"
unfolding univ_poly_units[0F assms(1)] by auto
with <degree p > 0> show False
by simp
qed
corollary (in ring) pirreducible_degree:
assumes "subfield K R" "p \in carrier (K[X])" "pirreducible K p"
shows "degree $p \geq 1$ "
proof (rule ccontr)
assume " \neg degree $p \geq 1 "$ then have "length $p \leq 1 "$
by simp
moreover have " $p \neq[] "$ and "p \notin Units (K[X])"
using assms(3) by (auto simp add: ring_irreducible_def irreducible_def
univ_poly_zero)
ultimately obtain k where k : " $p=[k] "$
by (metis append_butlast_last_id butlast_take diff_is_0_eq le_refl
self_append_conv2 take0 take_all)
hence " $k \in K$ " and " $k \neq 0 "$
using assms(2) by (auto simp add: polynomial_def univ_poly_def)
hence " $p \in$ Units (K[X])"
using univ_poly_units[0F assms(1)] unfolding k by auto
from $\langle p \in$ Units ($K[X]$) > and $\langle p \notin$ Units ($K[X]$) > show False by simp
qed
corollary (in domain) univ_poly_not_field:
assumes "subring K R" shows "ᄀ field (K[X])"
proof -
have "X $\operatorname{carrier~}(\mathrm{K}[\mathrm{X}])-\left\{\mathbf{0}_{(\mathrm{K}[\mathrm{X}])}\right\}$ " and $\mathrm{XX} \notin\{[\mathrm{k}] \mid \mathrm{k} . \mathrm{k} \in \mathrm{K}$

- \{ 0 \} \}"
using var_closed(1) [OF assms] unfolding univ_poly_zero var_def by auto
thus ?thesis
using field.field_Units[of "K[X]"] univ_poly_units_incl[OF assms]
by blast
qed
lemma (in domain) rupture_is_field_iff_pirreducible:
assumes "subfield K R" and "p \in carrier (K [X])"
shows "field (Rupt K p) \longleftrightarrow pirreducible K p"
proof
assume "pirreducible K p" thus "field (Rupt K p)"
using principal_domain.field_iff_prime[OF univ_poly_is_principal[0F
assms(1)]] assms(2)
pprime_iff_pirreducible[OF assms] pirreducibleE(1) [OF subfieldE(1) [OF
assms(1)]]
by (simp add: univ_poly_zero rupture_def)
next
interpret UP: principal_domain "K[X]"
using univ_poly_is_principal[0F assms(1)] .
assume field: "field (Rupt K p)"
have " $p \neq[]$ "
proof (rule ccontr)
assume " $\neg \mathrm{p} \neq[]$ " then have $\mathrm{p}: ~ " \mathrm{p}=[] "$
by simp
hence "Rupt $K \mathrm{p} \simeq(\mathrm{K}[\mathrm{X}])$ "
using UP.FactRing_zeroideal(1) UP.genideal_zero
UP.cgenideal_eq_genideal[OF UP.zero_closed]
by (simp add: rupture_def univ_poly_zero)
then obtain h where h : "h \in ring_iso (Rupt K p) ($K[X]$)" unfolding is_ring_iso_def by blast
moreover have "ring (Rupt K p)"
using field by (simp add: cring_def domain_def field_def)
ultimately interpret R : ring_hom_ring "Rupt K p" "K[X]" h unfolding ring_hom_ring_def ring_hom_ring_axioms_def ring_iso_def using UP.ring_axioms by simp
have "field (K[X])"
using field.ring_iso_imp_img_field[0F field h] by simp
thus False
using univ_poly_not_field[OF subfieldE(1) [OF assms(1)]] by simp
qed

```
    thus "pirreducible K p"
    using UP.field_iff_prime pprime_iff_pirreducible[OF assms] assms(2)
field
    by (simp add: univ_poly_zero rupture_def)
qed
lemma (in domain) rupture_surj_hom:
    assumes "subring K R" and "p \in carrier (K[X])"
    shows "(rupture_surj K p) \in ring_hom (K[X]) (Rupt K p)"
        and "ring_hom_ring (K[X]) (Rupt K p) (rupture_surj K p)"
proof -
    interpret UP: domain "K[X]"
        using univ_poly_is_domain[OF assms(1)] .
    interpret I: ideal "PIdl }\mp@subsup{\textrm{K}}{[\textrm{X}]}{\textrm{p}
        using UP.cgenideal_ideal[OF assms(2)] .
    show "(rupture_surj K p) \in ring_hom (K[X]) (Rupt K p)"
    and "ring_hom_ring (K[X]) (Rupt K p) (rupture_surj K p)"
        using ring_hom_ring.intro[OF UP.ring_axioms I.quotient_is_ring] I.rcos_ring_hom
        unfolding symmetric[OF ring_hom_ring_axioms_def] rupture_def by auto
qed
```

corollary (in domain) rupture_surj_norm_is_hom:
assumes "subring K R" and "p \in carrier ($K[X]$)"
shows " ((rupture_surj K p) o poly_of_const) \in ring_hom (R (carrier
:= K D) (Rupt K p)"
using ring_hom_trans[OF canonical_embedding_is_hom[OF assms(1)] rupture_surj_hom(1) [OF
assms]] .
lemma (in domain) norm_map_in_poly_ring_carrier:
assumes "p carrier (poly_ring R)" and " \wedge a. a $\in \operatorname{carrier~} R \Longrightarrow f$ a
\in carrier (poly_ring R)"
shows "ring.normalize (poly_ring R) (map f p) \in carrier (poly_ring
(poly_ring R))"
proof -
have "set $p \subseteq$ carrier R"
using assms(1) unfolding sym[OF univ_poly_carrier] polynomial_def
by auto
hence "set (map f p) \subseteq carrier (poly_ring R)"
using assms(2) by auto
thus ?thesis
using ring.normalize_gives_polynomial [OF univ_poly_is_ring[OF carrier_is_subring]]
unfolding univ_poly_carrier by simp
qed
lemma (in domain) map_in_poly_ring_carrier:
assumes "p carrier (poly_ring R)" and " \wedge a. $a \in \operatorname{carrier~} R \Longrightarrow f a$
\in carrier (poly_ring R)"
and " \bigwedge a. $a \neq 0 \Longrightarrow f a \neq[] "$
shows "map f p \in carrier (poly_ring (poly_ring R))"
proof -
interpret UP: ring "poly_ring R"
using univ_poly_is_ring[0F carrier_is_subring] .
have "lead_coeff $p \neq 0$ " if " $p \neq[] "$
using that assms(1) unfolding sym[OF univ_poly_carrier] polynomial_def
by auto
hence "ring.normalize (poly_ring R) (map f p) = map f p"
by (cases p) (simp_all add: assms(3) univ_poly_zero)
thus ?thesis
using norm_map_in_poly_ring_carrier[of p f] assms(1-2) by simp
qed
lemma (in domain) map_norm_in_poly_ring_carrier:
assumes "subring K R" and "p carrier (K[X])"
shows "map poly_of_const $p \in \operatorname{carrier~(poly_ ring~(K[X]))"~}$
using domain.map_in_poly_ring_carrier[0F subring_is_domain[0F assms(1)]]
proof -
have " $\bigwedge a . a \in K \Longrightarrow$ poly_of_const $a \in \operatorname{carrier~(K[X])"~}$
and " \bigwedge a. a $\neq 0 \Longrightarrow$ poly_of_const $a \neq[] "$
using ring_hom_memE(1) [OF canonical_embedding_is_hom[0F assms(1)]]
by (auto simp: poly_of_const_def)
thus ?thesis
using domain.map_in_poly_ring_carrier[0F subring_is_domain[OF assms(1)]]
assms (2)
unfolding univ_poly_consistent[0F assms(1)] by simp
qed
lemma (in domain) polynomial_rupture:
assumes "subring K R" and "p carrier ($K[X]$)"
shows " (ring.eval (Rupt K p)) (map ((rupture_surj K p) o poly_of_const)
p) (rupture_surj K p X) $=\mathbf{0}_{\text {Rupt }} \mathrm{K}$ p"
proof -
let ?surj = "rupture_surj K p"
interpret UP: domain "K[X]"
using univ_poly_is_domain[0F assms(1)] .
interpret Hom: ring_hom_ring "K[X]" "Rupt K p" ?surj using rupture_surj_hom(2) [0F assms] .
have "(Hom.S.eval) (map (?surj o poly_of_const) p) (?surj X) = ?surj
((UP.eval) (map poly_of_const p) X)"
using Hom.eval_hom[OF UP.carrier_is_subring var_closed(1) [OF assms(1)]
map_norm_in_poly_ring_carrier[0F assms]] by simp
also have " ... = ?surj p"
unfolding sym[0F eval_rewrite[0F assms]] ..
also have " ... = $0_{\text {Rupt }} \mathrm{K} \mathrm{p"}$
using UP.a_rcos_zero[OF UP.cgenideal_ideal[OF assms(2)] UP.cgenideal_self [OF
assms(2)]]
unfolding rupture_def FactRing_def by simp
finally show ?thesis .
qed

44.3 Division

```
definition (in ring) long_divides :: "'a list }=>\mathrm{ ' 'a list }=>\mathrm{ ('a list }
'a list) # bool"
    where "long_divides p q t \longleftrightarrow
        -i (t \in carrier (poly_ring R) x carrier (poly_ring R))
^
    _ii (p = (q \otimes poly_ring R (fst t)) \opluspoly_ring R (snd t)) ^
    - iii (snd t = [] V degree (snd t) < degree q)"
definition (in ring) long_division :: "'a list }=>\mathrm{ ' 'a list }=>\mathrm{ ('a list }
'a list)"
    where "long_division p q = (THE t. long_divides p q t)"
definition (in ring) pdiv :: "'a list }=>\mathrm{ 'a list }=>\mathrm{ ' 'a list" (infixl "pdiv"
65)
    where "p pdiv q = (if q = [] then [] else fst (long_division p q))"
definition (in ring) pmod :: "'a list }=>\mathrm{ ' 'a list }=>\mathrm{ ' 'a list" (infixl "pmod"
65)
    where "p pmod q = (if q = [] then p else snd (long_division p q))"
lemma (in ring) long_dividesI:
    assumes "b \in carrier (poly_ring R)" and "r \in carrier (poly_ring R)"
        and "p = (q \otimes |oly_ring R b) }\mp@subsup{\oplus}{\mathrm{ poly_ring R r" and "r = [] V degree}}{
r < degree q"
            shows "long_divides p q (b, r)"
    using assms unfolding long_divides_def by auto
lemma (in domain) exists_long_division:
    assumes "subfield K R" and "p \in carrier (K[X])" and "q \in carrier (K[X])"
"q = []"
    obtains b r where "b \in carrier (K[X])" and "r f carrier (K[X])" and
"long_divides p q (b, r)"
    using subfield_long_division_theorem_shell[OF assms(1-3)] assms(4)
                carrier_polynomial_shell[OF subfieldE(1)[OF assms(1)]]
    unfolding long_divides_def univ_poly_zero univ_poly_add univ_poly_mult
by auto
lemma (in domain) exists_unique_long_division:
    assumes "subfield K R" and "p \in carrier (K[X])" and "q \in carrier (K[X])"
"q = []"
    shows "\exists!t. long_divides p q t"
proof -
    let ?padd = "\lambdaa b. a }\mp@subsup{\oplus}{\mathrm{ poly_ring R b"}}{\mathrm{ b }
```

```
    let ?pmult = "\lambdaa b. a }\mp@subsup{\otimes}{\mathrm{ poly_ring R b"}}{\mathrm{ b }
    let ?pminus = "\lambdaa b. a }\mp@subsup{\ominus}{\mathrm{ poly_ring R b"}}{
    interpret UP: domain "poly_ring R"
    using univ_poly_is_domain[OF carrier_is_subring] .
    obtain b r where ldiv: "long_divides p q (b, r)"
        using exists_long_division[OF assms] by metis
    moreover have "(b, r) = (b', r')" if "long_divides p q (b', r')" for
b' r'
    proof -
        have q: "q \in carrier (poly_ring R)" "q # []"
            using assms(3-4) carrier_polynomial[OF subfieldE(1)[OF assms(1)]]
            unfolding univ_poly_carrier by auto
        hence in_carrier: "q \in carrier (poly_ring R)"
            "b \in carrier (poly_ring R)" "r \in carrier (poly_ring R)"
            "b' \in carrier (poly_ring R)" "r' \in carrier (poly_ring R)"
            using assms(3) that ldiv unfolding long_divides_def by auto
        have "?pminus (?padd (?pmult q b) r) r' = ?pminus (?padd (?pmult q
b') r') r'"
            using ldiv and that unfolding long_divides_def by auto
        hence eq: "?padd (?pmult q (?pminus b b')) (?pminus r r') = 0
            using in_carrier by algebra
    have "b = b'"
    proof (rule ccontr)
        assume "b f= b'"
        hence pminus: "?pminus b b' }=\mp@subsup{0}{\mathrm{ poly_ring R" "?pminus b b' }\in carrier}{
(poly_ring R)"
            using in_carrier(2,4) by (metis UP.add.inv_closed UP.l_neg UP.minus_eq
UP.minus_unique, algebra)
            hence degree_ge: "degree (?pmult q (?pminus b b')) \geq degree q"
            using poly_mult_degree_eq[OF carrier_is_subring, of q "?pminus
b b'"] q
            unfolding univ_poly_zero univ_poly_carrier univ_poly_mult by simp
            have "?pminus b b' = 0 0poly_ring R" if "?pminus r r' = 0 0poly_ring R"
            using eq pminus(2) q UP.integral univ_poly_zero unfolding that
by auto
    hence "?pminus r r' }\not=[]
        using pminus(1) unfolding univ_poly_zero by blast
    moreover have "?pminus r r' = []" if "r = []" and "r' = []"
        using univ_poly_a_inv_def'[OF carrier_is_subring UP.zero_closed]
that
            unfolding a_minus_def univ_poly_add univ_poly_zero by auto
    ultimately have "r # [] \vee r' 
                by blast
    hence "max (degree r) (degree r') < degree q"
                using ldiv and that unfolding long_divides_def by auto
```

```
    moreover have "degree (?pminus r r') \leq max (degree r) (degree
r')"
            using poly_add_degree[of r "map (a_inv R) r'"]
            unfolding a_minus_def univ_poly_add univ_poly_a_inv_def'[OF carrier_is_subring
in_carrier(5)]
            by auto
    ultimately have degree_lt: "degree (?pminus r r') < degree q"
            by linarith
    have is_poly: "polynomial (carrier R) (?pmult q (?pminus b b'))"
"polynomial (carrier R) (?pminus r r')"
            using in_carrier pminus(2) unfolding univ_poly_carrier by algebra+
    have "degree (?padd (?pmult q (?pminus b b')) (?pminus r r')) =
degree (?pmult q (?pminus b b'))"
            using poly_add_degree_eq[OF carrier_is_subring is_poly] degree_ge
degree_lt
            unfolding univ_poly_carrier sym[OF univ_poly_add[of R "carrier
R"]] max_def by simp
            hence "degree (?padd (?pmult q (?pminus b b')) (?pminus r r')) >
0"
            using degree_ge degree_lt by simp
            moreover have "degree (?padd (?pmult q (?pminus b b')) (?pminus
r r')) = 0"
            using eq unfolding univ_poly_zero by simp
            ultimately show False by simp
    qed
    hence "?pminus r r' = 0 0
        using in_carrier eq by algebra
    hence "r = r'"
            using in_carrier by (metis UP.add.inv_closed UP.add.right_cancel
UP.minus_eq UP.r_neg)
            with <b = b'> show ?thesis
            by simp
    qed
    ultimately show ?thesis
        by auto
qed
lemma (in domain) long_divisionE:
    assumes "subfield K R" and "p \in carrier (K[X])" and "q \in carrier (K[X])"
"q = []"
    shows "long_divides p q (p pdiv q, p pmod q)"
    using theI'[OF exists_unique_long_division[OF assms]] assms(4)
    unfolding pmod_def pdiv_def long_division_def by auto
lemma (in domain) long_divisionI:
    assumes "subfield K R" and "p \in carrier (K[X])" and "q \in carrier (K[X])"
"q = []"
```

```
    shows "long_divides p q (b, r) \Longrightarrow (b, r) = (p pdiv q, p pmod q)"
    using exists_unique_long_division[OF assms] long_divisionE[OF assms]
by metis
lemma (in domain) long_division_closed:
    assumes "subfield K R" and "p \in carrier (K[X])" "q\in carrier (K[X])"
    shows "p pdiv q \in carrier (K[X])" and "p pmod q \in carrier (K[X])"
proof -
    have "p pdiv q \in carrier (K[X]) ^ p pmod q \in carrier (K[X])"
        using assms univ_poly_zero_closed[of R] long_divisionI[of K] exists_long_division[OF
assms]
            by (cases "q = []") (simp add: pdiv_def pmod_def, metis Pair_inject)+
    thus "p pdiv q \in carrier (K[X])" and "p pmod q \in carrier (K[X])"
            by auto
qed
```

lemma (in domain) pdiv_pmod:

shows $" \mathrm{p}=\left(\mathrm{q} \otimes_{\mathrm{K}[\mathrm{X}]}(\mathrm{p}\right.$ pdiv $\left.q)\right) \oplus_{\mathrm{K}[\mathrm{X}]}(\mathrm{p} \operatorname{pmod} \mathrm{q})$ "
proof (cases)
interpret UP: ring "K[X]"
using univ_poly_is_ring[0F subfieldE(1) [OF assms(1)]].
assume " $q=[]$ " thus ?thesis
using assms(2) unfolding pdiv_def pmod_def sym[OF univ_poly_zero[of
R K]] by simp
next
assume " $\mathrm{q} \neq[]$ " thus ?thesis
using long_divisionE[0F assms] unfolding long_divides_def univ_poly_mult
univ_poly_add by simp
qed
lemma (in domain) pmod_degree:
assumes "subfield K R" and "p $\in \operatorname{carrier~(K[X])"~and~"q~} \in \operatorname{carrier~(K[X])"~}$
" $q \neq[]$ "
shows "p pmod $q=[] \vee$ degree (p pmod q) < degree q"
using long_divisionE[OF assms] unfolding long_divides_def by auto
lemma (in domain) pmod_const:
assumes "subfield K R" and "p carrier (K[X])" "q $\in \operatorname{carrier~(K[X])"~}$
and "degree q > degree p "
shows "p pdiv $q=[] "$ and $" p$ pmod $q=p$ "
proof -
have " p pdiv $\mathrm{q}=[] \wedge \mathrm{p}$ pmod $\mathrm{q}=\mathrm{p}$ "
proof (cases)
interpret UP: ring "K[X]"
using univ_poly_is_ring[0F subfieldE(1) [OF assms(1)]] .
assume " $q \neq[]$ "
have "p $=\left(\mathrm{q} \otimes_{\mathrm{K}[\mathrm{X}]}[]\right) \oplus_{\mathrm{K}[\mathrm{X}]} \mathrm{p} "$
using assms(2-3) unfolding sym[OF univ_poly_zero[of R K]] by simp
moreover have " ([], p) \in carrier (poly_ring R) \times carrier (poly_ring R)"
using carrier_polynomial_shell[OF subfieldE(1) [OF assms(1)] assms(2)]
by auto
ultimately have "long_divides p q ([], p)"
using assms(4) unfolding long_divides_def univ_poly_mult univ_poly_add
by auto
with < $q \neq[]$ > show ?thesis using long_divisionI[OF assms(1-3)] by auto
qed (simp add: pmod_def pdiv_def)
thus "p pdiv $q=[] "$ and $" p$ pmod $q=p$ "
by auto
qed
lemma (in domain) long_division_zero:
assumes "subfield K R" and "q \in carrier (K[X])" shows " [] pdiv q = []" and "[] pmod q = []"
proof -
interpret UP: ring "poly_ring R"
using univ_poly_is_ring[0F carrier_is_subring] .
have "[] pdiv q = [] $\wedge[] \operatorname{pmod} q=[] "$
proof (cases)
assume "q $\neq[]$ "
have "q \in carrier (poly_ring R)" using carrier_polynomial_shell[OF subfieldE(1) [OF assms(1)] assms(2)]
hence "long_divides [] q ([], [])" unfolding long_divides_def sym[OF univ_poly_zero[of R "carrier R"]]
by auto
with <q $\neq[]$ show ?thesis using long_divisionI[OF assms(1) univ_poly_zero_closed assms(2)]
by simp
qed (simp add: pmod_def pdiv_def)
thus "[] pdiv q = []" and "[] pmod q = []"
by auto
qed
lemma (in domain) long_division_a_inv:
assumes "subfield K R" and "p $\in \operatorname{carrier~(K[X])"~"q~} \in \operatorname{carrier~(K[X])"~}$
shows " $\left(\ominus_{\mathrm{K}}[\mathrm{X}] \mathrm{p}\right)$ pdiv $\left.q\right)=\ominus_{\mathrm{K}}[\mathrm{X}] \quad(\mathrm{p}$ pdiv $q)$ " (is "?pdiv")
and $"\left(\left(\ominus_{\mathrm{K}}[\mathrm{x}] \mathrm{p}\right)\right.$ pmod $\left.q\right)=\ominus_{\mathrm{K}[\mathrm{X}]}(\mathrm{p} \operatorname{pmod} q)$ " (is "?pmod")
proof -
interpret UP: ring "K[X]"
using univ_poly_is_ring[OF subfieldE(1)[OF assms(1)]] .
have "?pdiv \wedge ?pmod"
proof (cases)

```
    assume "q = []" thus ?thesis
            unfolding pmod_def pdiv_def sym[OF univ_poly_zero[of R K]] by simp
    next
    assume not_nil: "q # []"
```



```
        using pdiv_pmod[OF assms] by simp
```



```
q))"
            using assms(2-3) long_division_closed[OF assms] by algebra
    moreover have "}\mp@subsup{\ominus}{K[X] (p pdiv q) \in carrier (K[X])" " }{ \ K[X] (p pmod
q) \in carrier (K[X])"
            using long_division_closed[OF assms] by algebra+
    hence " (}\mp@subsup{\ominus}{\textrm{K}[\textrm{X}]}{}(\textrm{p pdiv q), }\mp@subsup{\ominus}{\textrm{K}[\textrm{X}]}{}(\textrm{p pmod q)) \in carrier (poly_ring
R) > carrier (poly_ring R)"
            using carrier_polynomial_shell[OF subfieldE(1)[OF assms(1)]] by
auto
    moreover have "}\mp@subsup{\ominus}{K[x]}{}(p\mathrm{ pmod q) = [] V degree (}\mp@subsup{\ominus}{K[X] (p pmod q))}{
< degree q"
            using univ_poly_a_inv_length[OF subfieldE(1) [OF assms(1)]
                long_division_closed(2) [OF assms]] pmod_degree[OF assms not_nil]
            by auto
    ultimately have "long_divides ( }\mp@subsup{\ominus}{\textrm{K}[\textrm{X}]}{}\textrm{p})\textrm{q}(\mp@subsup{\ominus}{\textrm{K}}{[X]
(p pmod q))"
            unfolding long_divides_def univ_poly_mult univ_poly_add by simp
            thus ?thesis
                using long_divisionI[OF assms(1) UP.a_inv_closed[OF assms(2)] assms(3)
not_nil] by simp
    qed
    thus ?pdiv and ?pmod
        by auto
qed
lemma (in domain) long_division_add:
    assumes "subfield K R" and "a \in carrier (K[X])" "b \in carrier (K[X])"
"q \in carrier (K[X])"
    shows "(a }\mp@subsup{\oplus}{K}{K}[\textrm{X}] b) pdiv q = (a pdiv q) 蛕[X] (b pdiv q)" (is "?pdiv"
            and "(a }\mp@subsup{\oplus}{\textrm{K}[\textrm{X}]}{\textrm{b}})\textrm{pmod}q=(a\operatorname{pmod}q) \mp@subsup{\oplus}{\textrm{K}}{[X]}(\textrm{b
proof -
    let ?pdiv_add = "(a pdiv q) }\mp@subsup{\oplus}{\textrm{K}[\textrm{X}]}{(b pdiv q)"
    let ?pmod_add = "(a pmod q) }\mp@subsup{\oplus}{\textrm{K}[\textrm{X}]}{(b pmod q)"
    interpret UP: ring "K[X]"
        using univ_poly_is_ring[OF subfieldE(1)[OF assms(1)]] .
    have "?pdiv ^ ?pmod"
    proof (cases)
        assume "q = []" thus ?thesis
        using assms(2-3) unfolding pmod_def pdiv_def sym[OF univ_poly_zero[of
R K]] by simp
```

```
    next
    note in_carrier = long_division_closed[OF assms(1,2,4)]
                                    long_division_closed[OF assms(1,3,4)]
    assume "q # []"
    have "a }\mp@subsup{\oplus}{\textrm{K}[\textrm{X}]}{\textrm{b}}=((\textrm{q}\mp@subsup{\otimes}{\textrm{K}[\textrm{X}]}{}(\textrm{a pdiv q)) }\mp@subsup{\oplus}{\textrm{K}[\textrm{X}]}{}(\textrm{a}\operatorname{pmod q})) \mp@subsup{\oplus}{\textrm{K}[\textrm{X}}{
                        ((q & \otimes K[X] (b pdiv q)) }\mp@subsup{\oplus}{\textrm{K}[\textrm{X}]}{(b pmod q))"
        using assms(2-3)[THEN pdiv_pmod[OF assms(1) _ assms(4)]] by simp
    hence "a }\mp@subsup{\oplus}{\textrm{K}[\textrm{X}]}{\textrm{b}}=(\textrm{q}\mp@subsup{\otimes}{\textrm{K}[\textrm{X}]}{}\mathrm{ ?pdiv_add) }\mp@subsup{\oplus}{\textrm{K}[\textrm{X}]}{}\mathrm{ ?pmod_add"
        using assms(4) in_carrier by algebra
    moreover have "(?pdiv_add, ?pmod_add) \in carrier (poly_ring R) ×
carrier (poly_ring R)"
        using in_carrier carrier_polynomial_shell[OF subfieldE(1)[OF assms(1)]]
by auto
    moreover have "?pmod_add = [] V degree ?pmod_add < degree q"
    proof (cases)
        assume "?pmod_add # []"
        hence "a pmod q }\not=[]\vee b pmod q \not= []"
            using in_carrier(2,4) unfolding sym[OF univ_poly_zero[of R K]]
by auto
        moreover from <q # [] >
        have "a pmod q = [] V degree (a pmod q) < degree q" and "b pmod
q = [] V degree (b pmod q) < degree q"
        using assms(2-3)[THEN pmod_degree[OF assms(1) _ assms(4)]] by
auto
    ultimately have "max (degree (a pmod q)) (degree (b pmod q)) < degree
q"
        by auto
        thus ?thesis
            using poly_add_degree le_less_trans unfolding univ_poly_add by
blast
    qed simp
    ultimately have "long_divides (a }\mp@subsup{\oplus}{\textrm{K}[\textrm{X}]}{\textrm{b}) q (?pdiv_add, ?pmod_add)"
        unfolding long_divides_def univ_poly_mult univ_poly_add by simp
    with <q \not= []> show ?thesis
        using long_divisionI[OF assms(1) UP.a_closed[OF assms(2-3)] assms(4)]
by simp
    qed
    thus ?pdiv and ?pmod
        by auto
qed
lemma (in domain) long_division_add_iff:
    assumes "subfield K R"
        and "a \in carrier (K[X])" "b \in carrier (K[X])" "c \in carrier (K[X])"
"q \in carrier (K[X])"
    shows "a pmod q = b pmod q \longleftrightarrow (a }\mp@subsup{\oplus}{\textrm{K}[\textrm{X}]}{\textrm{c}
q"
proof -
```

```
    interpret UP: ring "K[X]"
    using univ_poly_is_ring[OF subfieldE(1)[OF assms(1)]] .
    show ?thesis
        using assms(2-4)[THEN long_division_closed(2)[0F assms(1) _ assms(5)]]
        unfolding assms(2-3)[THEN long_division_add(2) [OF assms(1) _ assms(4-5)]]
by auto
qed
lemma (in domain) pdivides_iff:
    assumes "subfield K R" and "polynomial K p" "polynomial K q"
    shows "p pdivides q \longleftrightarrow p divides
proof
    show "p divides
        using carrier_polynomial[OF subfieldE(1) [OF assms(1)]]
        unfolding pdivides_def factor_def univ_poly_mult univ_poly_carrier
by auto
next
    interpret UP: ring "poly_ring R"
        using univ_poly_is_ring[OF carrier_is_subring] .
    have in_carrier: "p \in carrier (poly_ring R)" "q \in carrier (poly_ring
R)"
            using carrier_polynomial[OF subfieldE(1)[OF assms(1)]] assms
            unfolding univ_poly_carrier by auto
    assume "p pdivides q"
    then obtain b where "b \in carrier (poly_ring R)" and "q = p \otimespoly_ring R
b"
            unfolding pdivides_def factor_def by blast
    show "p divides
    proof (cases)
        assume "p = []"
        with <b \in carrier (poly_ring R) > and <q = p \otimes poly_ring R b> have
"q = []"
            unfolding univ_poly_mult sym[OF univ_poly_carrier]
            using poly_mult_zero(1)[OF polynomial_incl] by simp
            with <p = []> show ?thesis
                using poly_mult_zero(2)[of "[]"]
            unfolding factor_def univ_poly_mult by auto
    next
            interpret UP: ring "poly_ring R"
            using univ_poly_is_ring[OF carrier_is_subring] .
            assume "p f []"
            from <p pdivides q> obtain b where "b \in carrier (poly_ring R)" and
"q = p \otimes poly_ring R b"
            unfolding pdivides_def factor_def by blast
    moreover have "p \in carrier (poly_ring R)" and "q \in carrier (poly_ring
R)"
```

using assms carrier_polynomial[0F subfieldE(1) [OF assms(1)]] unfolding univ_poly_carrier by auto
ultimately have "q = ($\mathrm{p} \otimes_{\text {poly_ring R }} \mathrm{b}$) $\oplus_{\text {poly_ring R }} 0_{\text {poly_ring R" }}$ by algebra
with <b \in carrier (poly_ring R) > have "long_divides q p (b, [])" unfolding long_divides_def univ_poly_zero by auto
with <p $\neq[]$ > have " $b \in$ carrier ($K[X]$)"
using long_divisionI[of K q p b] long_division_closed[of K q p]
assms
unfolding univ_poly_carrier by auto
with <q = p $\otimes_{\text {poly_ring } R}$ b show ?thesis unfolding factor_def univ_poly_mult by blast
qed
qed
lemma (in domain) pdivides_iff_shell:
assumes "subfield K R" and "p $\in \operatorname{carrier~(K[X])"~"q~} \in \operatorname{carrier~(K[X])"~}$
shows "p pdivides $q \longleftrightarrow p$ divides $_{K}[\mathrm{X}] \mathrm{q} "$
using pdivides_iff assms by (simp add: univ_poly_carrier)
lemma (in domain) pmod_zero_iff_pdivides:
assumes "subfield K R" and "p $\in \operatorname{carrier~(K[X])"~"q~} \in \operatorname{carrier~(K[X])"~}$
shows $" \mathrm{p}$ pmod $\mathrm{q}=[] \longleftrightarrow \mathrm{q}$ pdivides p "
proof -
interpret UP: domain "K[X]"
using univ_poly_is_domain[OF subfieldE(1)[0F assms(1)]].
show ?thesis
proof
assume pmod: "p pmod q = []"
have "p pdiv $q \in \operatorname{carrier~(K[X])"~and~"p~pmod~q~} \in \operatorname{carrier~(K[X])"~}$ using long_division_closed[0F assms] by auto
hence $" p=q \otimes_{K[X]}(p \operatorname{pdiv} q) "$
using pdiv_pmod [OF assms] assms(3) unfolding pmod sym[OF univ_poly_zero[of
R K]] by algebra
with <p pdiv $q \in$ carrier ($K[X]$) > show "q pdivides p "
unfolding pdivides_iff_shell[0F assms(1,3,2)] factor_def by blast
next
assume "q pdivides p " show "p pmod q = []"
proof (cases)
assume "q = []" with <q pdivides p> show ?thesis
using zero_pdivides unfolding pmod_def by simp
next
assume "q $=$ []"
from <q pdivides p > obtain r where " $r \in \operatorname{carrier~(K[X])"~and~"p~}$
$=q \otimes_{K[X]} r^{\prime \prime}$
unfolding pdivides_iff_shell[0F assms $(1,3,2)]$ factor_def by blast
hence "p $=\left(q \otimes_{K[X]} r\right) \oplus_{K[X]}[]$ "
using assms(2) unfolding sym[0F univ_poly_zero[of R K]] by simp
moreover from $\langle r \in$ carrier ($K[X]$) > have " $r \in$ carrier (poly_ring R) " using carrier_polynomial_shell[OF subfieldE(1) [OF assms(1)]] by auto
ultimately have "long_divides p q (r, [])"
unfolding long_divides_def univ_poly_mult univ_poly_add by auto with <q \neq [] > show ?thesis
using long_divisionI[OF assms] by simp
qed
qed
qed
lemma (in domain) same_pmod_iff_pdivides:
assumes "subfield K R" and "a \in carrier (K[X])" "b $\in \operatorname{carrier~(K[X])"~}$
"q \in carrier (K[X])"
shows "a pmod $q=b$ pmod $q \longleftrightarrow q$ pdivides $\left(a \ominus_{K}[\mathrm{X}]\right.$ b)"
proof -
interpret UP: domain "K[X]"
using univ_poly_is_domain[OF subfieldE(1) [OF assms(1)]].
have "a pmod $\mathrm{q}=\mathrm{b} \operatorname{pmod} \mathrm{q} \longleftrightarrow\left(\mathrm{a} \oplus_{\mathrm{K}}[\mathrm{X}]\left(\ominus_{\mathrm{K}[\mathrm{X}]} \mathrm{b}\right)\right)$ pmod $\mathrm{q}=\left(\mathrm{b} \oplus_{\mathrm{K}}[\mathrm{X}]\right.$ ($\left.\ominus_{\mathrm{K}[\mathrm{X}]} \mathrm{b}\right)$) pmod $\mathrm{q}^{\prime \prime}$
using long_division_add_iff[0F assms(1-3) UP.a_inv_closed[OF assms(3)] assms(4)] .
also have " $\ldots \longleftrightarrow\left(\mathrm{a} \ominus_{\mathrm{K}[\mathrm{X}]} \mathrm{b}\right) \mathrm{pmod} \mathrm{q}=0_{\mathrm{K}[\mathrm{X}]} \mathrm{pmod} \mathrm{q} "$ using assms(2-3) by algebra
also have " $\ldots \longleftrightarrow$ q pdivides $\left(\mathrm{a} \ominus_{\mathrm{K}[\mathrm{x}]} \mathrm{b}\right)$ "
using pmod_zero_iff_pdivides[OF assms(1) UP.minus_closed[OF assms(2-3)]
assms (4)]
unfolding univ_poly_zero long_division_zero(2) [0F assms(1,4)] .
finally show ?thesis.
qed
lemma (in domain) pdivides_imp_degree_le:
assumes "subring K R" and "p $\in \operatorname{carrier~(K[X])"~"q~} \in \operatorname{carrier~(K[X])"~}$
" $q \neq[]$ "
shows "p pdivides $q \Longrightarrow$ degree $p \leq$ degree q "
proof -
assume "p pdivides q"
then obtain r where r : "polynomial (carrier R) r " " $q=p o l y _m u l t p$ r"
unfolding pdivides_def factor_def univ_poly_mult univ_poly_carrier
by blast
moreover have p: "polynomial (carrier R) p"
using assms(2) carrier_polynomial[0F assms(1)] unfolding univ_poly_carrier by auto
moreover have " $p \neq[] "$ and "r $\neq[] "$
using poly_mult_zero(2) [OF polynomial_incl[0F p]] r(2) assms(4) by auto

```
    ultimately show "degree p \leq degree q"
    using poly_mult_degree_eq[OF carrier_is_subring, of p r] by auto
qed
lemma (in domain) pprimeE:
    assumes "subfield K R" "p \in carrier (K[X])" "pprime K p"
    shows "p f []" "p & Units (K[X])"
        and "\qqr.\llbracketq & carrier (K[X]); r \in carrier (K[X])\rrbracket\Longrightarrow
            p pdivides (q }\mp@subsup{\otimes}{\textrm{K}[\textrm{X}]}{}\textrm{r})\Longrightarrow\textrm{p}\mathrm{ pdivides q }\vee\textrm{p}\mathrm{ pdivides
r"
    using assms(2-3) poly_mult_closed[OF subfieldE(1)[OF assms(1)]] pdivides_iff[OF
assms(1)]
    unfolding ring_prime_def prime_def
    by (auto simp add: univ_poly_mult univ_poly_carrier univ_poly_zero)
lemma (in domain) pprimeI:
    assumes "subfield K R" "p \in carrier (K[X])" "p f []" "p # Units (K[X])"
        and "\q r. \llbracketq ( carrier (K[X]); r \in carrier (K[X])\rrbracket \Longrightarrow
                                p pdivides (q }\mp@subsup{\otimes}{\textrm{K}[\textrm{X}]}{\textrm{r}})\Longrightarrow\textrm{p}\mathrm{ pdivides q }\vee\textrm{p}\mathrm{ pdivides
r"
    shows "pprime K p"
    using assms(2-5) poly_mult_closed[OF subfieldE(1) [OF assms(1)]] pdivides_iff[OF
assms(1)]
    unfolding ring_prime_def prime_def
    by (auto simp add: univ_poly_mult univ_poly_carrier univ_poly_zero)
lemma (in domain) associated_polynomials_iff:
    assumes "subfield K R" and "p \in carrier (K[X])" "q \in carrier (K[X])"
```



```
    using domain.ring_associated_iff[OF univ_poly_is_domain[OF subfieldE(1) [OF
assms(1)]] assms(2-3)]
    unfolding univ_poly_units[OF assms(1)] by auto
corollary (in domain) associated_polynomials_imp_same_length:
    assumes "subring K R" and "p \in carrier (K[X])" and "q \in carrier (K[X])"
    shows "p }\mp@subsup{~}{K[x] q # length p = length q"}{~
proof -
    { fix p q
        assume p: "p \in carrier (K[X])" and q: "q \in carrier (K[X])" and "p
~
            have "length p \leq length q"
            proof (cases "q = []")
                case True with <p ~
                    unfolding associated_def True factor_def univ_poly_def by auto
                    thus ?thesis
                    using True by simp
        next
                case False
                from <p ~ N[X] q> have "p divides
```

```
            unfolding associated_def by simp
            hence "p dividespoly_ring R q"
            using carrier_polynomial[OF assms(1)]
            unfolding factor_def univ_poly_carrier univ_poly_mult by auto
            with <q F []> have "degree p \leq degree q"
            using pdivides_imp_degree_le[0F assms(1) p q] unfolding pdivides_def
by simp
            with <q # []> show ?thesis
            by (cases "p = []", auto simp add: Suc_leI le_diff_iff)
        qed
    } note aux_lemma = this
    interpret UP: domain "K[X]"
        using univ_poly_is_domain[OF assms(1)] .
    assume "p ~}\mp@subsup{~}{K[X] q" thus ?thesis}{
        using aux_lemma[OF assms(2-3)] aux_lemma[OF assms(3,2) UP.associated_sym]
by simp
qed
lemma (in ring) divides_pirreducible_condition:
    assumes "pirreducible K q" and "p \in carrier (K[X])"
    shows "p divides
    using divides_irreducible_condition[of "K[X]" q p] assms
    unfolding ring_irreducible_def by auto
```


44.4 Polynomial Power

lemma (in domain) polynomial_pow_not_zero:
assumes "p \in carrier (poly_ring R)" and "p $\neq[]$ "
shows "p [^] poly_ring R (n: nat) $\neq[]$ "
proof -
interpret UP: domain "poly_ring R"
using univ_poly_is_domain [OF carrier_is_subring] .
from assms UP.integral show ?thesis
unfolding sym[0F univ_poly_zero[of R "carrier R"]]
by (induction n, auto)
qed
lemma (in domain) subring_polynomial_pow_not_zero:
assumes "subring K R" and "p $\in \operatorname{carrier~(K[X])"~and~"p~} \neq[]$ "
shows "p [^] ${ }_{K[X]}$ (n: :nat) $\neq[]$ "
using domain.polynomial_pow_not_zero[0F subring_is_domain, of K p n]
assms
unfolding univ_poly_consistent[0F assms(1)] by simp
lemma (in domain) polynomial_pow_degree:
assumes "p \in carrier (poly_ring R)"

```
    shows "degree (p [^] poly_ring R n) = n * degree p"
proof -
    interpret UP: domain "poly_ring R"
            using univ_poly_is_domain[OF carrier_is_subring] .
    show ?thesis
    proof (induction n)
        case 0 thus ?case
            using UP.nat_pow_0 unfolding univ_poly_one by auto
    next
        let ?ppow = "\lambdan. p [^] poly_ring R n"
        case (Suc n) thus ?case
        proof (cases "p = []")
            case True thus ?thesis
            using univ_poly_zero[of R "carrier R"] UP.r_null assms by auto
        next
            case False
            hence "?ppow n \in carrier (poly_ring R)" and "?ppow n f []" and
"p f []"
            using polynomial_pow_not_zero[of p n] assms by (auto simp add:
univ_poly_one)
            thus ?thesis
                using poly_mult_degree_eq[OF carrier_is_subring, of "?ppow n"
p] Suc assms
                    unfolding univ_poly_carrier univ_poly_zero
                by (auto simp add: add.commute univ_poly_mult)
        qed
    qed
qed
lemma (in domain) subring_polynomial_pow_degree:
    assumes "subring K R" and "p \in carrier (K[X])"
    shows "degree (p [^]
    using domain.polynomial_pow_degree[OF subring_is_domain, of K p n] assms
    unfolding univ_poly_consistent[OF assms(1)] by simp
lemma (in domain) polynomial_pow_division:
    assumes "p \in carrier (poly_ring R)" and "(n::nat) \leq m"
    shows "(p [^] poly_ring R n) pdivides (p [^] poly_ring R m)"
proof -
    interpret UP: domain "poly_ring R"
        using univ_poly_is_domain[OF carrier_is_subring] .
    let ?ppow = "\lambdan. p [^] poly_ring R n"
    have "?ppow n \otimespoly_ring R ?ppow k = ?ppow (n + k)" for k
        using assms(1) by (simp add: UP.nat_pow_mult)
    thus ?thesis
        using dividesI[of "?ppow (m - n)" "poly_ring R" "?ppow m" "?ppow n"]
```

```
assms
    unfolding pdivides_def by auto
qed
lemma (in domain) subring_polynomial_pow_division:
    assumes "subring K R" and "p \in carrier (K[X])" and "(n::nat) \leq m"
    shows "(p [^`]}\mp@subsup{]}{[X] n) divides}{K[X] (p [^] K[X] m)"
    using domain.polynomial_pow_division[OF subring_is_domain, of K p n
m] assms
    unfolding univ_poly_consistent[OF assms(1)] pdivides_def by simp
lemma (in domain) pirreducible_pow_pdivides_iff:
    assumes "subfield K R" "p \in carrier (K[X])" "q \in carrier (K[X])" "r
\epsilon carrier (K[X])"
            and "pirreducible K p" and "\neg (p pdivides q)"
    shows "(p [^] [K[X] (n :: nat)) pdivides (q * * K[X] r) \longleftrightarrow (p [^] K[X] n)
pdivides r"
proof -
    interpret UP: principal_domain "K[X]"
            using univ_poly_is_principal[OF assms(1)] .
    show ?thesis
    proof (cases "r = []")
        case True with <q \in carrier (K[X])> have "q \otimes | [X] r = []" and "r
= []"
            unfolding sym[OF univ_poly_zero[of R K]] by auto
            thus ?thesis
            using pdivides_zero[OF subfieldE(1),of K] assms by auto
    next
            case False then have not_zero: "p f []" "q 升 []" "r f []" "q & | [X]
r f []"
            using subfieldE(1) pdivides_zero[OF _ assms(2)] assms(1-2,5-6) pirreducibleE(1)
                UP.integral_iff[OF assms(3-4)] univ_poly_zero[of R K] by auto
            from <p # []>
            have ppow: "p [^] K[x] (n :: nat) f []" "p [^] K[X] (n :: nat) f carrier
(K[X])"
            using subring_polynomial_pow_not_zero[OF subfieldE(1)] assms(1-2)
by auto
            have not_pdiv: "\neg (p dividesmult_of (K[x]) q)"
            using assms(6) pdivides_iff_shèll[0F assms(1-3)] unfolding pdivides_def
by auto
            have prime: "prime (mult_of (K[X])) p"
            using assms(5) pprime_iff_pirreducible[OF assms(1-2)]
            unfolding sym[OF UP.prime_eq_prime_mult[OF assms(2)]] ring_prime_def
by simp
            have "a pdivides b }\longleftrightarrow a divides mult_of (K[X]) b"
            if "a \in carrier (K[X])" "a f= 0
for a b
            using that UP.divides_imp_divides_mult[of a b] divides_mult_imp_divides[of
"K[X]" a b]
```

unfolding pdivides_iff_shell[0F assms(1) that(1,3)] by blast
thus ?thesis
using UP.mult_of.prime_pow_divides_iff[OF _ _ _ prime not_pdiv,
of r] ppow not_zero assms (2-4)
unfolding nat_pow_mult_of carrier_mult_of mult_mult_of sym[OF univ_poly_zero[of
R K]]
by (metis DiffI UP.m_closed singletonD)
qed
qed
lemma (in domain) subring_degree_one_imp_pirreducible:
assumes "subring K R" and "a \in Units (R (carrier := K))" and "b $\in K^{\prime \prime}$
shows "pirreducible K [a, b]"
proof (rule pirreducibleI[0F assms(1)])
have "a $\in K$ " and "a $\neq 0$ "
using assms(2) subringE(1) [OF assms(1)] unfolding Units_def by auto
thus " [a , b] \in carrier ($\mathrm{K}[\mathrm{X}]$)" and $"[\mathrm{a}, \mathrm{b}] \neq[] "$ and " $[\mathrm{a}, \mathrm{b}]$
\notin Units (K [X])"
using univ_poly_units_incl[0F assms(1)] assms(2-3)
unfolding sym[OF univ_poly_carrier] polynomial_def by auto
next
interpret UP: domain "K[X]"
using univ_poly_is_domain[0F assms(1)].
\{ fix q r
assume $q: ~ " q \in \operatorname{carrier~(K[X])"~and~} r: ~ " r \in \operatorname{carrier~(K[X])"~and~"[~}$
$\mathrm{a}, \mathrm{b}]=\mathrm{q} \otimes_{\mathrm{K}[\mathrm{X}]} \mathrm{r} "$
hence not_zero: "q $\neq[]$ " "r $\neq[]$ "
by (metis UP.integral_iff list.distinct(1) univ_poly_zero)+
have "degree ($q \otimes_{K[x]} r$) = degree $q+$ degree $r "$ using not_zero poly_mult_degree_eq[0F assms(1)] q r
by (simp add: univ_poly_carrier univ_poly_mult)
with $\operatorname{sym}\left[0 F<[\mathrm{a}, \mathrm{b}]=\mathrm{q} \otimes_{\mathrm{K}[\mathrm{X}]} \mathrm{r}>\right]$ have "degree $\mathrm{q}+$ degree $\mathrm{r}=1^{\prime \prime}$
and "q $\neq[]$ " "r $\neq[]$ "
using not_zero by auto
\} note aux_lemma1 = this
$\{$ fix q r
assume $q: ~ " q \in \operatorname{carrier~}(K[X]) " ~ " q \neq[] "$ and $r: ~ " r \in \operatorname{carrier~(K[X])"~}$
" $\mathrm{r} \neq[]$ "
and $"[\mathrm{a}, \mathrm{b}]=\mathrm{q} \otimes_{\mathrm{K}[\mathrm{x}]} \mathrm{r}$ " and "degree $\mathrm{q}=1$ " and "degree $\mathrm{r}=$
$0 "$
hence "length q = Suc (Suc 0)" and "length r = Suc 0"
by (linarith, metis add.right_neutral add_eq_if length_0_conv)
from <length $q=\operatorname{Suc}(\operatorname{Suc} 0)$ > obtain $c d$ where q_def: "q $=[c$, d]"
by (metis length_0_conv length_Cons list.exhaust nat.inject)
from <length $r=$ Suc 0 > obtain e where $r_{-} d e f: ~ " r ~=~[e] " ~$
by (metis length_0_conv length_Suc_conv)
from $\langle r=[\mathrm{e}]\rangle$ and $\langle\mathrm{q}=[\mathrm{c}, \mathrm{d}]\rangle$
have $c: ~ " c \in K " ~ " c \neq 0 "$ and $d: ~ " d \in K "$ and $e: ~ " e \in K " ~ " e \neq 0 "$
using r q subringE(1) [OF assms(1)] unfolding sym[OF univ_poly_carrier] polynomial_def by auto
with $\operatorname{sym}\left[0 F<[a, b]=q \otimes_{K[X]} r>\right]$ have $" a=c \otimes e "$
using poly_mult_lead_coeff[0F assms(1), of q r]
unfolding polynomial_def sym[OF univ_poly_mult[of R K]] r_def q_def
by auto
obtain inv_a where $a:$ " $\in K$ " and inv_a: "inv_a $\in K$ " "a \otimes inv_a
= 1" "inv_a $\otimes a=1 "$
using assms(2) unfolding Units_def by auto
hence "a $\neq 0$ " and "inv_a $\neq 0$ "
using subringE(1) [OF assms(1)] integral_iff by auto
with <c $\in K$, and $\langle c \neq 0$ 〉 have in_carrier: " $[c \otimes$ inv_a] \in carrier (K [X])"
using subringE (1,6) [OF assms(1)] inv_a integral
unfolding sym[0F univ_poly_carrier] polynomial_def by (auto, meson subsetD)
moreover have $"\left[c \otimes\right.$ inv_a $\left.^{\prime}\right] \otimes_{\mathrm{K}[\mathrm{X}]} \mathrm{r}=[1$]"
using <a $=c \otimes e$ > a inv_a c e subsetD[OF subringE(1) [OF assms (1)]]
unfolding r_def univ_poly_mult by (auto) (simp add: m_assoc m_lcomm
integral_iff)+
ultimately have " $r \in$ Units ($K[X]$)"
using r (1) UP.m_comm[OF in_carrier $r(1)]$ unfolding sym[OF univ_poly_one[of
R K]] Units_def by auto
\} note aux_lemma2 = this
fix q r
assume $q:$ " $q \in \operatorname{carrier~}(K[X])$ " and $r: ~ " r \in \operatorname{carrier~}(K[X]) "$ and $q r:$
" $[\mathrm{a}, \mathrm{b}]=\mathrm{q} \otimes_{\mathrm{K}[\mathrm{X}]} \mathrm{r} "$
thus "q \in Units ($K[X]$) $\vee r \in$ Units ($K[X]$)"
using aux_lemma1[0F q r qr] aux_lemma2[of q r] aux_lemma2[of r q]
UP.m_comm add_is_1 by auto
qed
lemma (in domain) degree_one_imp_pirreducible:
assumes "subfield K R" and "p $\in \operatorname{carrier~(K[X])"~and~"degree~} p=1 "$
shows "pirreducible K p"
proof -
from <degree $p=1$ > have "length $p=$ Suc (Suc 0)"
by simp
then obtain a b where p: "p = [a b b]"
by (metis length_0_conv length_Cons nat.inject neq_Nil_conv)
with $\langle\mathrm{p} \in$ carrier ($K[\mathrm{X}]$) > show ?thesis
using subring_degree_one_imp_pirreducible[OF subfieldE(1) [OF assms(1)],
of $a b]$
subfield.subfield_Units[0F assms(1)]
unfolding sym[OF univ_poly_carrier] polynomial_def by auto
qed
lemma (in ring) degree_oneE[elim]:
assumes "p \in carrier ($K[X]$)" and "degree $p=1 "$ and " $\wedge \mathrm{a} b . \llbracket \mathrm{a} \in \mathrm{K} ; \mathrm{a} \neq 0 ; \mathrm{b} \in \mathrm{K} ; \mathrm{p}=[\mathrm{a}, \mathrm{b}] \rrbracket \Longrightarrow \mathrm{P}$ "
shows P
proof -
from <degree $p=1$ > have "length $p=\operatorname{Suc}(\operatorname{Suc} 0)$ " by simp
then obtain $a \operatorname{b}$ where $" p=[a, b] "$
by (metis length_0_conv length_Cons nat.inject neq_Nil_conv)
with $\langle p \in \operatorname{carrier}(K[X])\rangle$ have " $a \in K$ " and "a $\neq 0$ " and "b $\in K$ " unfolding sym[OF univ_poly_carrier] polynomial_def by auto
with <p = [a, b] > show ?thesis
using assms(3) by simp
qed
lemma (in domain) subring_degree_one_associatedI:
assumes "subring K R" and " $a \in K$ " " a ' $\in K$ " and " $b \in K$ " and "a $\otimes a$,
= $1^{\prime \prime}$
shows "[a , b] $\sim_{K[x]}[1, a ’ \otimes b] "$
proof -
from <a $\otimes a^{\prime}=1$ > have not_zero: "a $\neq 0$ " "a' $\neq 0$ "
using subringE(1) [OF assms(1)] assms(2-3) by auto
hence " $[\mathrm{a}, \mathrm{b}]=[\mathrm{a}] \otimes_{\mathrm{K}}[\mathrm{x}][1, \mathrm{a}, \otimes \mathrm{b}] "$
using assms(2-4) [THEN subsetD[OF subringE(1) [OF assms(1)]] assms(5)
m_assoc
unfolding univ_poly_mult by fastforce
moreover have " [a , b] $\in \operatorname{carrier~(K[X])"~and~"[1,~a'~} \otimes \mathrm{b}] \in$ carrier (K[X])"
using subringE(1,3,6) [OF assms(1)] not_zero one_not_zero assms
unfolding sym[OF univ_poly_carrier] polynomial_def by auto
moreover have "[a] \in Units (K[X])"
proof -
from <a $\neq 0$ > and $\langle a$ ’ $\neq 0$ > have " $[a] \in \operatorname{carrier~}(K[X])$ " and "[
a'] \in carrier (K[X])"
using assms(2-3) unfolding sym[OF univ_poly_carrier] polynomial_def
by auto
moreover have " a ' $\otimes \mathrm{a}=1$ "
using subsetD[0F subringE(1) [OF assms(1)]] assms m_comm by simp
hence "[a] $\otimes_{\mathrm{K}[\mathrm{X}]}\left[\mathrm{a}\right.$] = [1]" and "[a'] $\otimes_{\mathrm{K}[\mathrm{X}]}[\mathrm{a}]=[1$
]"
using assms unfolding univ_poly_mult by auto
ultimately show ?thesis
unfolding sym[OF univ_poly_one[of R K]] Units_def by blast
qed
ultimately show ?thesis
using domain.ring_associated_iff[0F univ_poly_is_domain[0F assms(1)]]
by blast
qed
lemma (in domain) degree_one_associatedI:
assumes "subfield K R" and "p \in carrier ($K[X]$)" and "degree $p=1 "$
shows " $\mathrm{p} \sim_{K[X]}[1$, inv (lead_coeff p) \otimes (const_term p)]"
proof -
from $\langle\mathrm{p} \in$ carrier ($\mathrm{K}[\mathrm{X}]$) > and <degree $\mathrm{p}=1$ >
obtain $a \mathrm{~b}$ where $\mathrm{p}=[\mathrm{a}, \mathrm{b}] "$ and $\mathrm{a} \in \mathrm{K}$ " "a $\neq 0$ " and "b $\in \mathrm{K} "$ by auto
thus ?thesis
using subring_degree_one_associatedI[OF subfieldE(1) [OF assms(1)]] subfield_m_inv[0F assms(1)] subsetD[OF subfieldE(3)[0F assms(1)]]
unfolding const_term_def
by auto
qed

44.5 Ideals

lemma (in domain) exists_unique_gen:
assumes "subfield K R" "ideal I (K[X])" "I $\neq\{[]$ \}"
shows $" \exists!p \in \operatorname{carrier}(K[X])$. lead_coeff $p=1 \wedge I=\operatorname{PIdl}_{K[X]} p "$ (is " \exists !p. ?generator p ")
proof -
interpret UP: principal_domain "K[X]" using univ_poly_is_principal[0F assms(1)] .
obtain q where $q: ~ " q \in \operatorname{carrier}(K[X]) "$ "I $=P_{I d l_{K}[x]} q "$ using UP.exists_gen[OF assms(2)] by blast
hence not_nil: "q $\neq[]$ "
using UP.genideal_zero UP.cgenideal_eq_genideal[OF UP.zero_closed]
assms(3)
by (auto simp add: univ_poly_zero)
hence "lead_coeff q $\in K-\{0\} "$
using $q(1)$ unfolding univ_poly_def polynomial_def by auto
hence inv_lc_q: "inv (lead_coeff q) $\in K$ - \{ 0 \}" "inv (lead_coeff q)
\otimes lead_coeff q = 1"
using subfield_m_inv[0F assms(1)] by auto
define p where " $p=[$ inv (lead_coeff q) $] \otimes_{K[X]} q$ "
have is_poly: "polynomial K [inv (lead_coeff q)]" "polynomial K q" using inv_lc_q(1) q(1) unfolding univ_poly_def polynomial_def by auto
hence in_carrier: "p \in carrier (K[X])"
using UP.m_closed unfolding univ_poly_carrier p_def by simp
have lc_p: "lead_coeff $p=1 "$
using poly_mult_lead_coeff[0F subfieldE(1) [OF assms(1)] is_poly _
not_nil] inv_lc_q(2)
unfolding p_def univ_poly_mult[of R K] by simp
moreover have PIdl_p: "I = $\mathrm{PIdl}_{\mathrm{K}[\mathrm{x}]} \mathrm{p} "$
using UP.associated_iff_same_ideal[0F in_carrier q(1)] q(2) inv_lc_q(1)

```
p_def
                associated_polynomials_iff[0F assms(1) in_carrier q(1)]
    by auto
    ultimately have "?generator p"
        using in_carrier by simp
    moreover
    have "\r. \llbracketr c carrier (K[X]); lead_coeff r = 1; I = PIdl_
r = p"
    proof -
        fix r assume r: "r f carrier (K[X])" "lead_coeff r = 1" "I = PIdl 
r"
        have "subring K R"
            by (simp add: <subfield K R> subfieldE(1))
        obtain k where k: "k \in K - { 0 }" "r = [ k ] \otimes | [x] p"
            using UP.associated_iff_same_ideal[OF r(1) in_carrier] PIdl_p r(3)
                    associated_polynomials_iff[OF assms(1) r(1) in_carrier]
        by auto
    hence "polynomial K [ k ]"
        unfolding polynomial_def by simp
    moreover have "p f []"
        using not_nil UP.associated_iff_same_ideal[OF in_carrier q(1)] q(2)
PIdl_p
                            associated_polynomials_imp_same_length[OF <subring K R> in_carrier
q(1)] by auto
    ultimately have "lead_coeff r = k \otimes (lead_coeff p)"
        using poly_mult_lead_coeff[OF subfieldE(1)[OF assms(1)]] in_carrier
k(2)
        unfolding univ_poly_def by (auto simp del: poly_mult.simps)
    hence "k = 1"
        using lc_p r(2) k(1) subfieldE(3) [OF assms(1)] by auto
    hence "r = map ((\otimes) 1) p"
        using poly_mult_const(1)[OF subfieldE(1)[OF assms(1)] _ k(1), of
p] in_carrier
        unfolding k(2) univ_poly_carrier[of R K] univ_poly_mult[of R K]
by auto
    moreover have "set p\subseteq carrier R"
        using polynomial_in_carrier[OF subfieldE(1)[OF assms(1)]]
            in_carrier univ_poly_carrier[of R K] by auto
        hence "map ((\otimes) 1) p = p"
        by (induct p) (auto)
    ultimately show "r = p" by simp
    qed
    ultimately show ?thesis by blast
qed
proposition (in domain) exists_unique_pirreducible_gen:
    assumes "subfield K R" "ring_hom_ring (K[X]) R h"
```

and "a_kernel ($\mathrm{K}[\mathrm{X}]$) $\mathrm{R} \mathrm{h} \neq\{[]$ \}" "a_kernel ($\mathrm{K}[\mathrm{X}]$) $\mathrm{R} \mathrm{h} \neq$ carrier (K[X])"
shows $" \exists!p \in$ carrier ($K[X]$). pirreducible $K p \wedge$ lead_coeff $p=1 \wedge$ a_kernel (K[X]) R h = $\mathrm{PIdl}_{\mathrm{K}[\mathrm{X}]} \mathrm{p}{ }^{\prime \prime}$
(is " \exists !p. ?generator p ")
proof -
interpret UP: principal_domain "K[X]" using univ_poly_is_principal[0F assms(1)] .
have "ideal (a_kernel (K[X]) R h) (K[X])"
using ring_hom_ring.kernel_is_ideal[0F assms(2)] .
then obtain p
where $p:$ " $p \in \operatorname{carrier~(K[X])"~"lead_ coeff~} p=1 "$ "a_kernel ($K[X]$)
R h $=\operatorname{PIdl}_{\mathrm{K}[\mathrm{X}]} \mathrm{p}^{\prime \prime}$
and unique:
" $\mathbb{L} q \in$ carrier ($K[X]$); lead_coeff $q=1$; a_kernel (K[X]) R
$\mathrm{h}=\mathrm{PIdl}_{\mathrm{K}[\mathrm{x}]} \mathrm{q} \rrbracket \Longrightarrow \mathrm{q}=\mathrm{p}{ }^{\prime}$
using exists_unique_gen[0F assms(1) _ assms(3)] by metis
have " $\mathrm{p} \in$ carrier ($\mathrm{K}[\mathrm{X}]$) - \{ [] \}"
using UP.genideal_zero UP.cgenideal_eq_genideal[OF UP.zero_closed]
assms(3) $\mathrm{p}(1,3)$
by (auto simp add: univ_poly_zero)
hence "pprime K p"
using ring_hom_ring.primeideal_vimage[0F assms(2) UP.is_cring zeroprimeideal] UP.primeideal_iff_prime[of p]
unfolding univ_poly_zero sym[0F p(3)] a_kernel_def' by simp
hence "pirreducible K p"
using pprime_iff_pirreducible[0F assms(1) p(1)] by simp
thus ?thesis
using p unique by metis
qed
lemma (in domain) cgenideal_pirreducible:
assumes "subfield K R" and "p carrier (K[X])" "pirreducible K p"
shows "【 pirreducible K q; $q \in \operatorname{PIdl}_{K[X]} p \rrbracket \Longrightarrow p \sim_{K[x]} q "$
proof -
interpret UP: principal_domain "K[X]"
using univ_poly_is_principal[0F assms(1)] .
assume q: "pirreducible K q" "q $\in \operatorname{PIdl}_{\mathrm{K}}[\mathrm{X}] \mathrm{p} "$
hence in_carrier: "q \in carrier (K[X])"
using additive_subgroup.a_subset[0F ideal.axioms(1) [OF UP.cgenideal_ideal[0F
assms(2)]]] by auto
hence "p divides ${ }_{K}[\mathrm{X}]$ q"
by (meson q assms(2) UP.cgenideal_ideal UP.cgenideal_minimal UP.to_contain_is_to_divide
then obtain r where $r: ~ " r \in \operatorname{carrier~}(K[X]) "$ " $q=p \otimes_{K[X]} r "$
by auto

```
    hence "r \in Units (K[X])"
    using pirreducibleE(3) [OF _ in_carrier q(1) assms(2) r(1)] subfieldE(1) [OF
assms(1)]
                pirreducibleE(2)[OF _ assms(2-3)] by auto
    thus "p ~
    using UP.ring_associated_iff[OF in_carrier assms(2)] r(2) UP.associated_sym
    unfolding UP.m_comm[OF assms(2) r(1)] by auto
qed
```


44.6 Roots and Multiplicity

```
definition (in ring) is_root : : "'a list \(\Rightarrow\) 'a \(\Rightarrow\) bool"
    where "is_root \(p x \longleftrightarrow(x \in \operatorname{carrier} R \wedge\) eval \(p x=0 \wedge p \neq[]) "\)
definition (in ring) alg_mult :: "'a list \(\Rightarrow\) 'a \(\Rightarrow\) nat"
    where "alg_mult p x =
        (if \(p=[]\) then 0 else
            (if \(\mathrm{x} \in\) carrier R then Greatest ( \(\lambda \mathrm{n}\). ([ 1, \(\ominus \mathrm{x}]\left[{ }^{\wedge}\right]_{\text {poly_ring }} \mathrm{R}\)
n) pdivides p ) else 0))"
definition (in ring) roots :: "'a list \(\Rightarrow\) 'a multiset"
    where "roots \(\mathrm{p}=\mathrm{Abs}\) _multiset (alg_mult p )"
definition (in ring) roots_on :: "'a set \(\Rightarrow\) 'a list \(\Rightarrow\) 'a multiset"
    where "roots_on \(K\) p = roots \(p\) П\# mset_set \(K\) "
definition (in ring) splitted :: "'a list \(\Rightarrow\) bool"
    where "splitted \(p \longleftrightarrow\) size (roots \(p\) ) = degree \(p\) "
definition (in ring) splitted_on :: "'a set \(\Rightarrow\) 'a list \(\Rightarrow\) bool"
    where "splitted_on \(\mathrm{K} p \longleftrightarrow\) size (roots_on K p) = degree p"
lemma (in domain) pdivides_imp_root_sharing:
    assumes "p \(\in\) carrier (poly_ring R)" "p pdivides q" and "a \(\in\) carrier
R"
    shows "eval p a = 0 \(\Longrightarrow\) eval q a = 0"
proof -
    from <p pdivides q> obtain r where r: "q = p \(\otimes_{\text {poly_ring R }} r\) " "r \(\in\)
carrier (poly_ring R)"
            unfolding pdivides_def factor_def by auto
    hence "eval q a = (eval p a) \(\otimes\) (eval ra)"
            using ring_hom_memE(2) [OF eval_is_hom[OF carrier_is_subring assms(3)]
assms(1) r(2)] by simp
    thus "eval pa=0 eval q a \(=0\) "
            using ring_hom_memE(1) [OF eval_is_hom[OF carrier_is_subring assms(3)]
\(r(2)]\) by auto
qed
lemma (in domain) degree_one_root:
```

```
    assumes "subfield K R" and "p \in carrier (K[X])" and "degree p = 1"
    shows "eval p ( }\ominus(\mathrm{ inv (lead_coeff p) Q (const_term p))) = 0"
        and "inv (lead_coeff p) \otimes (const_term p) \in K"
proof -
    from <degree p = 1> have "length p = Suc (Suc 0)"
        by simp
    then obtain a b where p: "p = [ a, b ]"
        by (metis (no_types, opaque_lifting) Suc_length_conv length_0_conv)
    hence "a \in K - { 0 }" "b \in K" and in_carrier: "a \in carrier R" "b
\epsilon carrier R"
        using assms(2) subfieldE(3) [OF assms(1)] unfolding sym[OF univ_poly_carrier]
polynomial_def by auto
    hence inv_a: "inv a \in carrier R" "a \otimes inv a = 1" and "inv a \in K"
        using subfield_m_inv(1-2) [OF assms(1), of a] subfieldE(3) [OF assms(1)]
by auto
    hence "eval p ( }\ominus(inv a \otimes b)) = a \otimes ( ( (inv a \otimes b)) \oplus b"
        using in_carrier unfolding p by simp
    also have " ... = \ominus (a \otimes (inv a \otimes b)) }\oplus\textrm{b}
        using inv_a in_carrier by (simp add: r_minus)
    also have " ... = 0"
        using in_carrier(2) unfolding sym[OF m_assoc[OF in_carrier(1) inv_a(1)
in_carrier(2)]] inv_a(2) by algebra
    finally have "eval p (\ominus (inv a }\otimes\textrm{b}))=0"
    moreover have ct: "const_term p = b"
        using in_carrier unfolding p const_term_def by auto
    ultimately show "eval p (\ominus (inv (lead_coeff p) \otimes (const_term p))) =
0"
        unfolding p by simp
    from <inv a }\inK> and <b GK>
    show "inv (lead_coeff p) \otimes (const_term p) \in K"
        using p subringE(6) [OF subfieldE(1) [OF assms(1)]] unfolding ct by
auto
qed
lemma (in domain) is_root_imp_pdivides:
    assumes "p \in carrier (poly_ring R)"
    shows "is_root p x C [ 1, \ominus x ] pdivides p"
proof -
    let ?b = "[ 1 , \ominus x ]"
    interpret UP: domain "poly_ring R"
        using univ_poly_is_domain[OF carrier_is_subring] .
    assume "is_root p x" hence x: "x \in carrier R" and is_root: "eval p
x = 0"
            unfolding is_root_def by auto
    hence b: "?b \in carrier (poly_ring R)"
            unfolding sym[OF univ_poly_carrier] polynomial_def by auto
    then obtain q r where q: "q \in carrier (poly_ring R)" and r: "r f carrier
(poly_ring R)"
```

```
    and long_divides: "p = (?b \otimes |poly_ring R q) }\mp@subsup{\oplus}{\mathrm{ poly_ring R r" "r = []}}{\mathrm{ [ }
V degree r < degree ?b"
    using long_division_theorem[OF carrier_is_subring, of p ?b] assms
by (auto simp add: univ_poly_carrier)
    show ?thesis
    proof (cases "r = []")
        case True then have "r = 0
            unfolding univ_poly_zero[of R "carrier R"] .
        thus ?thesis
            using long_divides(1) q r b dividesI[OF q, of p ?b] by (simp add:
pdivides_def)
    next
        case False then have "length r = Suc 0"
            using long_divides(2) le_SucE by fastforce
        then obtain a where "r = [ a ]" and a: "a \in carrier R" and "a f=
0"
            using r unfolding sym[OF univ_poly_carrier] polynomial_def
            by (metis False length_0_conv length_Suc_conv list.sel(1) list.set_sel(1)
subset_code(1))
    have "eval p x = ((eval ?b x) \otimes (eval q x)) \oplus (eval r x)"
            using long_divides(1) ring_hom_memE[OF eval_is_hom[OF carrier_is_subring
x]] by (simp add: b q r)
            also have " ... = eval r x"
                using ring_hom_memE[OF eval_is_hom[OF carrier_is_subring x]] x b
q r by (auto, algebra)
            finally have "a = 0"
                using a unfolding <r = [ a ]> is_root by simp
            with <a # 0> have False .. thus ?thesis ..
    qed
qed
lemma (in domain) pdivides_imp_is_root:
    assumes "p f []" and "x \in carrier R"
    shows "[ 1, \ominus x ] pdivides p \Longrightarrow is_root p x"
proof -
    assume "[ 1, \ominus x ] pdivides p"
    then obtain q where q: "q \in carrier (poly_ring R)" and pdiv: "p =
[ 1, \ominus x ] \otimespoly_ring R q"
            unfolding pdivides_def by auto
    moreover have "[ 1, \ominus x ] \in carrier (poly_ring R)"
        using assms(2) unfolding sym[OF univ_poly_carrier] polynomial_def
by simp
    ultimately have "eval p x = 0"
        using ring_hom_memE[OF eval_is_hom[OF carrier_is_subring, of x]] assms(2)
by (auto, algebra)
    with <p # []> and <x \in carrier R> show "is_root p x"
        unfolding is_root_def by simp
```

qed
lemma (in domain) associated_polynomials_imp_same_is_root:
assumes "p \in carrier (poly_ring R)" and "q \in carrier (poly_ring R)"
and "p $\sim_{\text {poly_ring } R ~}^{\text {q }}$ "
shows "is_root p x \longleftrightarrow is_root q x"
proof (cases "p = []")
case True with <p $\sim_{\text {poly_ring } R} q$ > have " $q=[]$ "
unfolding associated_def True factor_def univ_poly_def by auto
thus ?thesis
using True unfolding is_root_def by simp
next
case False
interpret UP: domain "poly_ring R"
using univ_poly_is_domain[OF carrier_is_subring] .
\{ fix p q
assume p: "p \in carrier (poly_ring R)" and q: "q \in carrier (poly_ring
R)" and pq: "p $\sim_{\text {poly_ring } R ~ q " ~}^{\text {" }}$
have "is_root p x \Longrightarrow is_root q x"
proof -
assume is_root: "is_root p x"
then have " [1, $\ominus \mathrm{x}]$ pdivides p " and $" \mathrm{p} \neq[] "$ and "x \in carrier
R"
using is_root_imp_pdivides [OF p] unfolding is_root_def by auto
moreover have "[1, \ominus x] \in carrier (poly_ring R)" using is_root unfolding is_root_def sym[0F univ_poly_carrier]
polynomial_def by simp
ultimately have "[1, \ominus x] pdivides q"
using UP.divides_cong_r[0F _ pq] unfolding pdivides_def by simp
with $\langle p \neq[]$ > and $\langle x \in$ carrier R 〉 show ?thesis
using associated_polynomials_imp_same_length[OF carrier_is_subring
p q pq]
pdivides_imp_is_root[of q x]
by fastforce
qed
\}
then show ?thesis
using assms UP.associated_sym [0F assms(3)] by blast
qed
lemma (in ring) monic_degree_one_root_condition:
assumes "a \in carrier R" shows "is_root [1, \ominus a] b \longleftrightarrow a = b"
using assms minus_equality r_neg[OF assms] unfolding is_root_def by
(auto, fastforce)
lemma (in field) degree_one_root_condition:
assumes "p \in carrier (poly_ring R)" and "degree p = 1"

```
    shows "is_root \(\mathrm{p} \mathrm{x} \longleftrightarrow \mathrm{x}=\ominus\) (inv (lead_coeff p\() \otimes\) (const_term p))"
```

proof -
interpret UP: domain "poly_ring R"
using univ_poly_is_domain[OF carrier_is_subring] .
from <degree $p=1$ 〉 have "length $\mathrm{p}=$ Suc (Suc 0)"
by simp
then obtain a b where p: "p = [a, b]"
by (metis length_0_conv length_Cons list.exhaust nat.inject)
hence $a: ~ " a \in \operatorname{carrier} R "$ " $a \neq 0$ " and $b: ~ " b \in \operatorname{carrier~R"~}$
using assms(1) unfolding sym[OF univ_poly_carrier] polynomial_def
by auto
hence inv_a: "inv a \in carrier R " "(inv a) $\otimes a=1 "$
using subfield_m_inv[OF carrier_is_subfield, of a] by auto
hence in_carrier: "[1, (inv a) $\otimes \mathrm{b}] \in \operatorname{carrier~(poly_ ring~R)"~}$
using b unfolding sym[OF univ_poly_carrier] polynomial_def by auto
have "p $\sim_{\text {poly_ring } R}[1$, (inv a) $\otimes \mathrm{b}]$ "
proof (rule UP.associatedI2'[OF _ _ in_carrier, of _ "[a]"])
have "p = [a] $\otimes_{\text {poly_ring } R}[1$, inv a $\otimes \mathrm{b}] "$
using a inv_a b m_assoc[of a "inv a" b] unfolding p univ_poly_mult
by (auto, algebra)
also have " $\ldots=[1$, inv $a \otimes b] \otimes_{\text {poly_ring } R[a] "}$
using UP.m_comm[OF in_carrier, of "[a]"] a
by (auto simp add: sym[0F univ_poly_carrier] polynomial_def)
finally show "p = [1, inv a $\otimes \mathrm{b}$] $\otimes_{\text {poly_ring } R[a] " . ~}^{\text {[}}$
next
from <a \in carrier R 〉 and $\langle a \neq 0$ 〉 show " $[a] \in$ Units (poly_ring
R)"
unfolding univ_poly_units[OF carrier_is_subfield] by simp
qed
moreover have " (inv a) $\otimes \mathrm{b}=\ominus$ (\ominus (inv (lead_coeff p) \otimes (const_term
p)))"
and "inv (lead_coeff p) \otimes (const_term p) \in carrier R"
using inv_a a b unfolding p const_term_def by auto
ultimately show ?thesis
using associated_polynomials_imp_same_is_root[OF assms(1) in_carrier]
monic_degree_one_root_condition
by (metis add.inv_closed)
qed
lemma (in domain) is_root_poly_mult_imp_is_root:
assumes "p \in carrier (poly_ring R)" and "q \in carrier (poly_ring R)"
shows "is_root ($p \otimes_{\text {poly_ring } R} q$) $x \Longrightarrow$ (is_root $p x$) V (is_root q x)"
proof -
interpret UP: domain "poly_ring R"
using univ_poly_is_domain[OF carrier_is_subring] .

```
    assume is_root: "is_root (p \otimes poly_ring R q) x"
    hence "p \not= []" and "q = []"
    unfolding is_root_def sym[OF univ_poly_zero[of R "carrier R"]]
    using UP.l_null[OF assms(2)] UP.r_null[OF assms(1)] by blast+
    moreover have x: "x \in carrier R" and "eval (p \otimes poly_ring R q) x = 0"
        using is_root unfolding is_root_def by simp+
    hence "eval p x = 0 \vee eval q x = 0"
    using ring_hom_memE[OF eval_is_hom[OF carrier_is_subring], of x] assms
integral by auto
    ultimately show "(is_root p x) V (is_root q x)"
        using x unfolding is_root_def by auto
qed
lemma (in domain) degree_zero_imp_not_is_root:
    assumes "p \in carrier (poly_ring R)" and "degree p = 0" shows "\neg is_root
p x"
proof (cases "p = []", simp add: is_root_def)
    case False with <degree p = 0> have "length p = Suc 0"
        using le_SucE by fastforce
    then obtain a where "p = [ a ]" and "a \in carrier R" and "a f= 0"
        using assms unfolding sym[OF univ_poly_carrier] polynomial_def
        by (metis False length_0_conv length_Suc_conv list.sel(1) list.set_sel(1)
subset_code(1))
    thus ?thesis
        unfolding is_root_def by auto
qed
lemma (in domain) finite_number_of_roots:
    assumes "p \in carrier (poly_ring R)" shows "finite { x. is_root p x
}"
    using assms
proof (induction "degree p" arbitrary: p)
    case 0 thus ?case
        by (simp add: degree_zero_imp_not_is_root)
next
    case (Suc n) show ?case
    proof (cases "{ x. is_root p x } = {}")
        case True thus ?thesis
            by (simp add: True)
    next
        interpret UP: domain "poly_ring R"
                using univ_poly_is_domain[OF carrier_is_subring] .
            case False
            then obtain a where is_root: "is_root p a"
                by blast
            hence a: "a \in carrier R" and eval: "eval p a = 0" and p_not_zero:
"p f []"
```

unfolding is_root_def by auto
hence in_carrier: "[1, Ө a] \in carrier (poly_ring R)"
unfolding sym[OF univ_poly_carrier] polynomial_def by auto
obtain q where $q: ~ " q \in \operatorname{carrier~(poly_ ring~R)"~and~p:~"p~=~[~1,~} \ominus$
a] $\otimes_{\text {poly_ring } R} q^{\prime \prime}$
using is_root_imp_pdivides [OF Suc(3) is_root] unfolding pdivides_def
by auto
with <p $\neq[]$ > have q_not_zero: "q $\neq[]$ "
using UP.r_null UP.integral in_carrier unfolding sym[OF univ_poly_zero[of
R "carrier R"]]
by metis
hence "degree $q=n$ "
using poly_mult_degree_eq[0F carrier_is_subring, of "[1, \ominus a]"
q]
in_carrier q p_not_zero p Suc(2)
unfolding univ_poly_carrier
by (metis One_nat_def Suc_eq_plus1 diff_Suc_1 list.distinct(1)
list.size(3-4) plus_1_eq_Suc univ_poly_mult)
hence "finite \{ x. is_root $q \times$ \}" using $\operatorname{Suc}(1)\left[0 F ~ _~ q\right] ~ b y ~ s i m p ~$
moreover have "\{ x. is_root p x \} \subseteq insert a $\{\mathrm{x}$. is_root q x \}" using is_root_poly_mult_imp_is_root[0F in_carrier q]
monic_degree_one_root_condition [OF a]
unfolding p by auto
ultimately show ?thesis using finite_subset by auto
qed
qed
lemma (in domain) alg_multE:
assumes "x $\in \operatorname{carrier~} R$ " and $" p \in \operatorname{carrier~(poly_ ring~R)"~and~"p~} \neq$ [] "
shows " ([1, \ominus x] [^] poly_ring R (alg_mult p x)) pdivides $\mathrm{p} "$
and " $\wedge \mathrm{n}$. ([1, $\ominus \mathrm{x}]\left[{ }^{\wedge}\right]_{\text {poly_ring }} \mathrm{R} \mathrm{n}$) pdivides $\mathrm{p} \Longrightarrow \mathrm{n} \leq$ alg_mult
p x"
proof -
interpret UP: domain "poly_ring R"
using univ_poly_is_domain[0F carrier_is_subring] .
let ?ppow $=$ " $\lambda \mathrm{n}$: : nat. $\left([1, \ominus \mathrm{x}]\left[{ }^{\wedge}\right]_{\text {poly_ring } R} \mathrm{n}\right)$ "
define S :: "nat set" where " $\mathrm{S}=\{\mathrm{n}$. ?ppow n pdivides p$\}$ "
have "?ppow $0=1_{\text {poly_ring }}$ "
using UP.nat_pow_o by simp
hence " $0 \in S$ "
using UP.one_divides[0F assms(2)] unfolding S_def pdivides_def by

```
simp
    hence "S f= {}"
        by auto
    moreover have "n \leq degree p" if "n }\inS\mathrm{ S" for n :: nat
    proof -
        have "[ 1, \ominus x ] \in carrier (poly_ring R)"
            using assms unfolding sym[OF univ_poly_carrier] polynomial_def by
auto
        hence "?ppow n \in carrier (poly_ring R)"
            using assms unfolding univ_poly_zero by auto
        with <n \in S> have "degree (?ppow n) \leq degree p"
            using pdivides_imp_degree_le[OF carrier_is_subring _ assms(2-3),
of "?ppow n"] by (simp add: S_def)
        with < [ 1, \ominus x ] \in carrier (poly_ring R)> show ?thesis
            using polynomial_pow_degree by simp
    qed
    hence "finite S"
        using finite_nat_set_iff_bounded_le by blast
    ultimately have MaxS: "\n. n \in S \Longrightarrow n \leq Max S" "Max S \in S"
        using Max_ge[of S] Max_in[of S] by auto
    with <x \in carrier R> have "alg_mult p x = Max S"
        using Greatest_equality[of "\lambdan. ?ppow n pdivides p" "Max S"] assms(3)
        unfolding S_def alg_mult_def by auto
    thus "([ 1, \ominus x ] [^] poly_ring R (alg_mult p x)) pdivides p"
        and " \n. ([ 1, \ominus x ] [^] poly_ring R n) pdivides p m n alg_mult
p x"
        using MaxS unfolding S_def by auto
qed
lemma (in domain) le_alg_mult_imp_pdivides:
    assumes "x \in carrier R" and "p \in carrier (poly_ring R)"
    shows "n \leq alg_mult p x \Longrightarrow ([ 1, \ominus x ] [^] poly_ring R n) pdivides
p"
proof -
    interpret UP: domain "poly_ring R"
        using univ_poly_is_domain[OF carrier_is_subring] .
    assume le_alg_mult: "n \leq alg_mult p x"
    have in_carrier: "[ 1, \ominus x ] \in carrier (poly_ring R)"
        using assms(1) unfolding sym[OF univ_poly_carrier] polynomial_def
by auto
    hence ppow_pdivides:
        "([ 1, \ominus x ] [^] poly_ring R n) pdivides
        ([ 1, \ominus x ] [^] poly_ring R (alg_mult p x))"
        using polynomial_pow_division[OF _ le_alg_mult] by simp
    show ?thesis
```

```
    proof (cases "p = []")
        case True thus ?thesis
            using in_carrier pdivides_zero[OF carrier_is_subring] by auto
    next
    case False thus ?thesis
        using ppow_pdivides UP.divides_trans UP.nat_pow_closed alg_multE(1) [OF
assms] in_carrier
            unfolding pdivides_def by meson
    qed
qed
lemma (in domain) alg_mult_gt_zero_iff_is_root:
    assumes "p \in carrier (poly_ring R)" shows "alg_mult p x > 0 \longleftrightarrow is_root
p x"
proof -
    interpret UP: domain "poly_ring R"
            using univ_poly_is_domain[OF carrier_is_subring] .
    show ?thesis
    proof
            assume is_root: "is_root p x" hence x: "x \in carrier R" and not_zero:
"p f []"
            unfolding is_root_def by auto
            have "[1, \ominus x] [^] poly_ring R (Suc 0) = [1, \ominus x]"
                using x unfolding univ_poly_def by auto
            thus "alg_mult p x > 0"
                using is_root_imp_pdivides[OF _ is_root] alg_multE(2)[OF x, of p
"Suc 0"] not_zero assms by auto
    next
            assume gt_zero: "alg_mult p x > 0"
            hence x: "x \in carrier R" and not_zero: "p \not= []"
                unfolding alg_mult_def by (cases "p = []", auto, cases "x \in carrier
R", auto)
            hence in_carrier: "[ 1, \ominus x ] \in carrier (poly_ring R)"
                unfolding sym[OF univ_poly_carrier] polynomial_def by auto
            with <x \in carrier R> have "[ 1, \ominus x ] pdivides p" and "eval [ 1,
\ominus x ] x = 0"
            using le_alg_mult_imp_pdivides[of x p "1::nat"] gt_zero assms by
(auto, algebra)
            thus "is_root p x"
                using pdivides_imp_root_sharing[OF in_carrier] not_zero x by (simp
add: is_root_def)
    qed
qed
lemma (in domain) alg_mult_eq_count_roots:
    assumes "p \in carrier (poly_ring R)" shows "alg_mult p = count (roots
p)"
    using finite_number_of_roots[OF assms]
    unfolding sym[OF alg_mult_gt_zero_iff_is_root[OF assms]]
```

```
    by (simp add: roots_def)
    lemma (in domain) roots_mem_iff_is_root:
    assumes "p \in carrier (poly_ring R)" shows "x \in# roots p \longleftrightarrow is_root
p x"
    using alg_mult_eq_count_roots[OF assms] count_greater_zero_iff
    unfolding roots_def sym[OF alg_mult_gt_zero_iff_is_root[OF assms]] by
metis
lemma (in domain) degree_zero_imp_empty_roots:
    assumes "p \in carrier (poly_ring R)" and "degree p = 0" shows "roots
p = {#}"
    using degree_zero_imp_not_is_root[of p] roots_mem_iff_is_root[of p]
assms by auto
lemma (in domain) degree_zero_imp_splitted:
    assumes "p \in carrier (poly_ring R)" and "degree p = 0" shows "splitted
p"
    unfolding splitted_def degree_zero_imp_empty_roots[OF assms] assms(2)
by simp
lemma (in domain) roots_inclI':
    assumes "p \in carrier (poly_ring R)" and "\a. \llbracket a \in carrier R; p f=
    [] | \Longrightarrow alg_mult p a \leq count m a"
    shows "roots p \subseteq# m"
proof (intro mset_subset_eqI)
    fix a show "count (roots p) a \leq count m a"
            using assms unfolding sym[OF alg_mult_eq_count_roots[OF assms(1)]]
alg_mult_def
            by (cases "p = []", simp, cases "a \in carrier R", auto)
qed
lemma (in domain) roots_inclI:
    assumes "p \in carrier (poly_ring R)" and "q \in carrier (poly_ring R)"
"q = []"
            and "^a.\llbracketa a carrier R; p = [] \rrbracket \Longrightarrow([ 1, \ominus a ] [^] poly_ring R
(alg_mult p a)) pdivides q"
    shows "roots p \subseteq# roots q"
    using roots_inclI'[OF assms(1), of "roots q"] assms alg_multE(2)[OF
assms(2-3)]
    unfolding sym[OF alg_mult_eq_count_roots[OF assms(2)]] by auto
lemma (in domain) pdivides_imp_roots_incl:
    assumes "p \in carrier (poly_ring R)" and "q \in carrier (poly_ring R)"
"q = []"
    shows "p pdivides q \Longrightarrow roots p \subseteq# roots q"
proof (rule roots_inclI[OF assms])
    interpret UP: domain "poly_ring R"
            using univ_poly_is_domain[OF carrier_is_subring] .
```

```
    fix a assume "p pdivides q" and a: "a \in carrier R"
    hence "[ 1 , \ominus a ] \in carrier (poly_ring R)"
        unfolding sym[OF univ_poly_carrier] polynomial_def by simp
    with <p pdivides q> show "([1, \ominus a] [^] poly_ring R (alg_mult p a))
pdivides q"
    using UP.divides_trans[of _p q] le_alg_mult_imp_pdivides[OF a assms(1)]
    by (auto simp add: pdivides_def)
qed
lemma (in domain) associated_polynomials_imp_same_roots:
    assumes "p \in carrier (poly_ring R)" and "q \in carrier (poly_ring R)"
and "p ~poly_ring R q"
    shows "roots p = roots q"
    using assms pdivides_imp_roots_incl zero_pdivides
    unfolding pdivides_def associated_def
    by (metis subset_mset.eq_iff)
lemma (in domain) monic_degree_one_roots:
    assumes "a \in carrier R" shows "roots [ 1 , \ominus a ] = {# a #}"
proof -
    let ?p = "[ 1 , \ominus a ]"
    interpret UP: domain "poly_ring R"
        using univ_poly_is_domain[OF carrier_is_subring] .
    from <a \in carrier R> have in_carrier: "?p \in carrier (poly_ring R)"
        unfolding sym[OF univ_poly_carrier] polynomial_def by simp
    show ?thesis
    proof (rule subset_mset.antisym)
        show "{# a #} \subseteq# roots ?p"
            using roots_mem_iff_is_root[OF in_carrier]
                    monic_degree_one_root_condition[OF assms]
            by simp
    next
        show "roots ?p \subseteq# {# a #}"
        proof (rule mset_subset_eqI, auto)
            fix b assume "a }=\textrm{b}\mathrm{ " thus "count (roots ?p) b = 0"
                    using alg_mult_gt_zero_iff_is_root[OF in_carrier]
                    monic_degree_one_root_condition[OF assms]
                    unfolding sym[OF alg_mult_eq_count_roots[OF in_carrier]]
                by fastforce
    next
            have "(?p [^] poly_ring R (alg_mult ?p a)) pdivides ?p"
                using le_alg_mult_imp_pdivides[OF assms in_carrier] by simp
            hence "degree (?p [^] poly_ring R (alg_mult ?p a)) \leq degree ?p"
                using pdivides_imp_degree_le[OF carrier_is_subring, of _ ?p] in_carrier
by auto
        thus "count (roots ?p) a \leq Suc 0"
```

```
                using polynomial_pow_degree[OF in_carrier]
                unfolding sym[OF alg_mult_eq_count_roots[OF in_carrier]]
                by auto
        qed
    qed
qed
```

lemma (in domain) degree_one_roots:
assumes "a \in carrier R" "a' \in carrier R" and "b \in carrier R" and "a
Q a' = 1"
shows "roots [a , b] = \{\# Ө (a' \otimes b) \#\}"
proof -
have "[a, b] \in carrier (poly_ring R)" and "[1, a' $\otimes \mathrm{b}] \in$ carrier (poly_ring R)"
using assms unfolding sym[OF univ_poly_carrier] polynomial_def by
auto
thus ?thesis
using subring_degree_one_associatedI [OF carrier_is_subring assms]
assms
monic_degree_one_roots associated_polynomials_imp_same_roots
by (metis add.inv_closed local.minus_minus m_closed)
qed
lemma (in field) degree_one_imp_singleton_roots:
assumes "p \in carrier (poly_ring R)" and "degree $p=1 "$
shows "roots $p=\left\{\# \ominus\left(i n v\left(l e a d _c o e f f ~ p\right) ~ \otimes\left(c o n s t _t e r m ~ p\right)\right) ~ \#\right\} " ~$
proof -
from $<p \in$ carrier (poly_ring R) > and <degree $p=1>$
obtain a b where "p = [a, b]" and "a \in carrier R" "a $\neq 0$ " and "b
\in carrier R"
by auto
thus ?thesis
using degree_one_roots[of a "inv a" b]
by (auto simp add: const_term_def field_Units)
qed
lemma (in field) degree_one_imp_splitted:
assumes "p \in carrier (poly_ring R)" and "degree p = 1" shows "splitted p"
using degree_one_imp_singleton_roots[0F assms] assms(2) unfolding splitted_def
by simp
lemma (in field) no_roots_imp_same_roots:
assumes "p \in carrier (poly_ring R)" "p $\neq[]$ " and "q \in carrier (poly_ring R) "
shows "roots $p=\{\#\} \Longrightarrow$ roots $\left(p \otimes_{\text {poly_ring } R ~} q\right.$) $=$ roots q "
proof -
interpret UP: domain "poly_ring R"
using univ_poly_is_domain[OF carrier_is_subring] .

```
    assume no_roots: "roots p = {#}" show "roots (p \otimespoly_ring R q) = roots
q"
    proof (intro subset_mset.antisym)
        have pdiv: "q pdivides (p \otimespoly_ring R q)"
            using UP.divides_prod_l assms unfolding pdivides_def by blast
            show "roots q \subseteq# roots (p \otimespoly_ring R q)"
                using pdivides_imp_roots_incl[0F _ _ _ pdiv] assms
                    degree_zero_imp_empty_roots[0F assms(3)]
                by (cases "q = []", auto, metis UP.l_null UP.m_rcancel UP.zero_closed
univ_poly_zero)
    next
            show "roots (p \otimespoly_ring R q) \subseteq# roots q"
            proof (cases "p \otimes poly_ring R q = []")
                case True thus ?thesis
                    using degree_zero_imp_empty_roots[OF UP.m_closed[OF assms(1,3)]]
by simp
    next
        case False with <p f []> have q_not_zero: "q f= []"
                by (metis UP.r_null assms(1) univ_poly_zero)
        show ?thesis
        proof (rule roots_inclI[OF UP.m_closed[OF assms(1,3)] assms(3) q_not_zero])
            fix a assume a: "a \in carrier R"
            hence "\neg ([ 1, \ominus a ] pdivides p)"
                            using assms(1-2) no_roots pdivides_imp_is_root roots_mem_iff_is_root[of
p] by auto
            moreover have in_carrier: "[ 1, \ominus a ] \in carrier (poly_ring R)"
                        using a unfolding sym[OF univ_poly_carrier] polynomial_def by
auto
            hence "pirreducible (carrier R) [ 1, \ominus a ]"
                            using degree_one_imp_pirreducible[OF carrier_is_subfield] by
simp
            moreover
            have "([ 1, \ominus a ] [^] poly_ring R (alg_mult (p \otimespoly_ring R q) a))
pdivides (p \otimespoly_ring R q)"
            using le_alg_mult_imp_pdivides[OF a UP.m_closed, of p q] assms
by simp
            ultimately show "([ 1, \ominus a ] [^`] poly_ring R (alg_mult (p \otimespoly_ring R
q) a)) pdivides q"
                    using pirreducible_pow_pdivides_iff[OF carrier_is_subfield in_carrier]
assms by auto
            qed
        qed
    qed
qed
lemma (in field) poly_mult_degree_one_monic_imp_same_roots:
    assumes "a \in carrier R" and "p \in carrier (poly_ring R)" "p \not= []"
    shows "roots ([ 1, \ominus a ] \otimes poly_ring R p) = add_mset a (roots p)"
```

```
proof -
```

 interpret UP: domain "poly_ring R"
 using univ_poly_is_domain[OF carrier_is_subring] .
 from <a \(\in\) carrier \(R\) > have in_carrier: "[1, \(\ominus\) a] \(\in\) carrier (poly_ring
 R)"
unfolding sym[OF univ_poly_carrier] polynomial_def by simp
show ?thesis
proof (intro subset_mset.antisym[0F roots_inclI' mset_subset_eqI])
show " ([1, \ominus a $] \otimes_{\text {poly_ring }} \mathrm{p}$) \in carrier (poly_ring R)"
using in_carrier assms(2) by simp
next
fix b assume b: "b $\in \operatorname{carrier~} R "$ and $"[1, \ominus a] \otimes_{\text {poly_ring } R ~} p \neq$
[] "
hence not_zero: "p $\neq[]$ "
unfolding univ_poly_def by auto
from <b \in carrier R > have in_carrier': "[1, $\ominus \mathrm{b}] \in$ carrier (poly_ring
R) "
unfolding sym[OF univ_poly_carrier] polynomial_def by simp
show "alg_mult ([1, \ominus a] $\otimes_{\text {poly_ring } R} \mathrm{p}$) $\mathrm{b} \leq$ count (add_mset a
(roots p)) b"
proof (cases "a = b")
case False
hence " $\neg ~[1, ~ \ominus ~ b ~] ~ p d i v i d e s ~[~ 1, ~ \ominus ~ a ~] " ~ " ~$
using assms(1) b monic_degree_one_root_condition pdivides_imp_is_root
by blast
moreover have "pirreducible (carrier R) [1, $\ominus \mathrm{b}$]"
using degree_one_imp_pirreducible[OF carrier_is_subfield in_carrier']
by simp
ultimately

p) b) pdivides p"
using le_alg_mult_imp_pdivides [OF b UP.m_closed, of _ p] assms(2)
in_carrier
pirreducible_pow_pdivides_iff[0F carrier_is_subfield in_carrier'
in_carrier, of $p]$
by auto
with <a $\neq \mathrm{b}$ > show ?thesis
using alg_mult_eq_count_roots[OF assms(2)] alg_multE(2) [OF b assms(2)
not_zero] by auto
next
case True
have " [1, \ominus a] pdivides ($[1, \ominus$ a $] \otimes_{\text {poly_ring } R ~}$)"
using dividesI[0F assms(2)] unfolding pdivides_def by auto
with < [1, \ominus a] $\otimes_{\text {poly_ring } R} \mathrm{p} \neq[]$ >
have "alg_mult ($[1, \ominus$ a $] \otimes_{\text {poly_ring } R}$ p) a \geq Suc 0"
using alg_multE(2) [of a _ "Suc 0"] in_carrier assms by auto
then obtain m where m: "alg_mult ($[1, \ominus$ a $] \otimes_{\text {poly_ring } R} \mathrm{p}$) a

```
= Suc m"
            using Suc_le_D by blast
            hence "([ 1, \ominus a ] \otimes poly_ring R ([ 1, \ominus a ] [^] poly_ring R m)) pdivides
                    ([ 1, \ominus a ] \otimes poly_ring R p)"
            using le_alg_mult_imp_pdivides[OF _ UP.m_closed, of a _ p]
                    in_carrier assms UP.nat_pow_Suc2 by force
            hence "([ 1, \ominus a ] [^] poly_ring R m) pdivides p"
            using UP.mult_divides in_carrier assms(2)
            unfolding univ_poly_zero pdivides_def factor_def
            by (simp add: UP.m_assoc UP.m_lcancel univ_poly_zero)
            with <a = b> show ?thesis
            using alg_mult_eq_count_roots assms in_carrier UP.nat_pow_Suc2
                    alg_multE(2)[OF assms(1) _ not_zero] m
            by auto
        qed
    next
        fix b
    have not_zero: "[ 1, \ominus a ] \otimes poly_ring R p f= []"
            using assms in_carrier univ_poly_zero[of R] UP.integral by auto
    show "count (add_mset a (roots p)) b \leq count (roots ([1, \ominus a] \otimespoly_ring R
p)) b"
    proof (cases "a = b")
        case True
        have "([ 1, \ominus a ] \otimes poly_ring R ([ 1, \ominus a ] [^] poly_ring R (alg_mult
p a))) pdivides
            ([ 1, \ominus a ] \otimespoly_ring R p)"
            using UP.divides_mult[0F _ in_carrier] le_alg_mult_imp_pdivides[OF
assms(1,2)] in_carrier assms
            by (auto simp add: pdivides_def)
        with <a = b> show ?thesis
            using alg_mult_eq_count_roots assms in_carrier UP.nat_pow_Suc2
                    alg_multE(2) [OF assms(1) _ not_zero]
            by auto
    next
        case False
        have "p pdivides ([ 1, \ominus a ] \otimes poly_ring R p)"
            using dividesI[OF in_carrier] UP.m_comm in_carrier assms unfold-
ing pdivides_def by auto
            thus ?thesis
            using False pdivides_imp_roots_incl assms in_carrier not_zero
            by (simp add: subseteq_mset_def)
        qed
    qed
qed
lemma (in domain) not_empty_rootsE[elim]:
```

```
    assumes "p \in carrier (poly_ring R)" and "roots p f= {#}"
        and "\a. | a \in carrier R; a \in# roots p;
            [ 1, \ominus a ] \in carrier (poly_ring R); [ 1, \ominus a ] pdivides
p \ \Longrightarrow P'
    shows P
proof -
    from <roots p # {#}> obtain a where "a \in# roots p"
        by blast
    with < p \in carrier (poly_ring R)> have "[ 1, \ominus a ] pdivides p"
        and "[ 1, \ominus a ] \in carrier (poly_ring R)" and "a \in carrier R"
        using is_root_imp_pdivides[of p] roots_mem_iff_is_root[of p] is_root_def[of
p a]
        unfolding sym[OF univ_poly_carrier] polynomial_def by auto
        with <a \in# roots p> show ?thesis
        using assms(3)[of a] by auto
qed
lemma (in field) associated_polynomials_imp_same_roots:
    assumes "p \in carrier (poly_ring R)" "p \not= []" and "q \in carrier (poly_ring
R)" "q = []"
    shows "roots (p \otimes poly_ring R q) = roots p + roots q"
proof -
    interpret UP: domain "poly_ring R"
        using univ_poly_is_domain[OF carrier_is_subring] .
    from assms show ?thesis
    proof (induction "degree p" arbitrary: p rule: less_induct)
        case less show ?case
        proof (cases "roots p = {#}")
            case True thus ?thesis
                        using no_roots_imp_same_roots[of p q] less by simp
        next
            case False with < p \in carrier (poly_ring R)>
            obtain a where a: "a \in carrier R" and "a \in# roots p" and pdiv:
"[ 1, \ominus a ] pdivides p"
                    and in_carrier: "[ 1, \ominus a ] \in carrier (poly_ring R)"
                by blast
        show ?thesis
        proof (cases "degree p = 1")
            case True with <p \in carrier (poly_ring R)>
            obtain b c where p: "p = [ b, c ]" and b: "b \in carrier R" "b
\not=0" and c: "c \in carrier R"
                    by auto
                            with <a \in# roots p> have roots: "roots p = {# a #}" and a: "\ominus
a = inv b & c" "a \in carrier R"
                and lead: "lead_coeff p = b" and const: "const_term p = c"
                using degree_one_imp_singleton_roots[of p] less(2) field_Units
                unfolding const_term_def by auto
            hence "(p \otimes poly_ring R q) ~ poly_ring R ([ 1, \ominus a ] \otimes |poly_ring R
q)"
```

using UP.mult_cong_1[0F degree_one_associatedI[OF carrier_is_subfield
_ True]] less $(2,4)$
by (auto simp add: a lead const)
hence $"$ roots ($p \otimes_{\text {poly_ring } R} q$) $=\operatorname{roots}\left([1, \ominus\right.$ a $] \otimes_{\text {poly_ring } R}$
q) "
using associated_polynomials_imp_same_roots in_carrier less (2,4)
unfolding a by simp
thus ?thesis
unfolding poly_mult_degree_one_monic_imp_same_roots[OF a(2)
less $(4,5)]$ roots by simp
next
case False
from < [1, \ominus a] pdivides p >
obtain r where $p: " p=[1, \ominus a] \otimes_{\text {poly_ring } R} r$ " and $r: ~ " r \in$ carrier (poly_ring R)"
unfolding pdivides_def by auto
with <p $\neq[]$ > have not_zero: "r $\neq[] "$
using in_carrier univ_poly_zero[of R "carrier R"] UP.integral_iff
by auto
with $<\mathrm{p}=[1, \ominus \mathrm{a}] \otimes_{\text {poly_ring } R} \mathrm{r}>$ have deg: "degree $\mathrm{p}=$ Suc (degree r)"
using poly_mult_degree_eq[OF carrier_is_subring, of _ r] in_carrier r
unfolding univ_poly_carrier sym[OF univ_poly_mult[of R "carrier
R"]] by auto
with <r $\neq[]$ 〉 and < $q \neq[]$ > have $" r \otimes_{\text {poly_ring } R ~} q \neq[] "$ using in_carrier univ_poly_zero[of R "carrier R"] UP.integral
less(4) r by auto
hence "roots ($\mathrm{p} \otimes_{\text {poly_ring } R} \mathrm{q}$) = add_mset a (roots ($\mathrm{r} \otimes_{\text {poly_ring } R}$
q))"
using poly_mult_degree_one_monic_imp_same_roots[OF a UP.m_closed[OF r less(4)]]

UP.m_assoc[0F in_carrier r less(4)] p by auto
also have " ... = add_mset a (roots r + roots q)"
using less(1) [0F _ r not_zero less(4-5)] deg by simp
also have " ... = (add_mset a (roots r)) + roots q " by simp
also have " . . = roots p + roots q"
using poly_mult_degree_one_monic_imp_same_roots[OF a r not_zero]
p by simp
finally show ?thesis .
qed
qed
qed
qed
lemma (in field) size_roots_le_degree:
assumes "p \in carrier (poly_ring R)" shows "size (roots p) \leq degree
p"

```
    using assms
proof (induction "degree p" arbitrary: p rule: less_induct)
    case less show ?case
    proof (cases "roots p = {#}", simp)
        interpret UP: domain "poly_ring R"
            using univ_poly_is_domain[OF carrier_is_subring] .
            case False with < p \in carrier (poly_ring R)>
            obtain a where a: "a \in carrier R" and "a \in# roots p" and "[ 1, \ominus
a ] pdivides p"
            and in_carrier: "[ 1, \ominus a ] \in carrier (poly_ring R)"
            by blast
            then obtain q where p: "p = [ 1, \ominus a ] \otimes poly_ring R q" and q: "q
\epsilon carrier (poly_ring R)"
            unfolding pdivides_def by auto
    with <a \in# roots p> have "p f []"
        using degree_zero_imp_empty_roots[OF less(2)] by auto
    hence not_zero: "q # []"
        using in_carrier univ_poly_zero[of R "carrier R"] UP.integral_iff
p by auto
    hence "degree p = Suc (degree q)"
        using poly_mult_degree_eq[OF carrier_is_subring, of _ q] in_carrier
p q
        unfolding univ_poly_carrier sym[OF univ_poly_mult[of R "carrier
R"]] by auto
    with <q # [] > show ?thesis
        using poly_mult_degree_one_monic_imp_same_roots[OF a q] p less(1)[OF
    _ q]
        by (metis Suc_le_mono lessI size_add_mset)
    qed
qed
lemma (in domain) pirreducible_roots:
    assumes "p \in carrier (poly_ring R)" and "pirreducible (carrier R) p"
and "degree p f=1"
    shows "roots p = {#}"
proof (rule ccontr)
    assume "roots p f {#}" with <p \in carrier (poly_ring R)>
    obtain a where a: "a \in carrier R" and "a \in# roots p" and "[ 1, \ominus
a ] pdivides p"
            and in_carrier: "[ 1, \ominus a ] \in carrier (poly_ring R)"
            by blast
    hence "[ 1, \ominus a ] ~ poly_ring R p"
        using divides_pirreducible_condition[OF assms(2) in_carrier]
                univ_poly_units_incl[OF carrier_is_subring]
            unfolding pdivides_def by auto
    hence "degree p = 1"
        using associated_polynomials_imp_same_length[OF carrier_is_subring
in_carrier assms(1)] by auto
```

```
    with <degree p f= 1> show False ..
qed
lemma (in field) pirreducible_imp_not_splitted:
    assumes "p \in carrier (poly_ring R)" and "pirreducible (carrier R) p"
and "degree p f= 1"
    shows "\neg splitted p"
    using pirreducible_roots[of p] pirreducible_degree[OF carrier_is_subfield,
of p] assms
    by (simp add: splitted_def)
lemma (in field)
    assumes "p \in carrier (poly_ring R)" and "q \in carrier (poly_ring R)"
        and "pirreducible (carrier R) p" and "degree p f=1"
    shows "roots (p \otimespoly_ring R q) = roots q"
    using no_roots_imp_same_roots[of p q] pirreducible_roots[of p] assms
    unfolding ring_irreducible_def univ_poly_zero by auto
lemma (in field) trivial_factors_imp_splitted:
    assumes "p \in carrier (poly_ring R)"
        and "\q. \llbracket q \in carrier (poly_ring R); pirreducible (carrier R) q;
q pdivides p \ \Longrightarrow degree q \leq 1"
    shows "splitted p"
    using assms
proof (induction "degree p" arbitrary: p rule: less_induct)
    interpret UP: principal_domain "poly_ring R"
        using univ_poly_is_principal[OF carrier_is_subfield] .
    case less show ?case
    proof (cases "degree p = 0", simp add: degree_zero_imp_splitted[OF less(2)])
        case False show ?thesis
        proof (cases "roots p = {#}")
            case True
            from <degree p f= 0> have "p & Units (poly_ring R)" and "p \in carrier
(poly_ring R) - { [] }"
                using univ_poly_units'[OF carrier_is_subfield, of p] less(2) by
auto
            then obtain q where "q \in carrier (poly_ring R)" "pirreducible (carrier
R) q" and "q pdivides p"
            using UP.exists_irreducible_divisor[of p] unfolding univ_poly_zero
pdivides_def by auto
            with <degree p = 0> have "roots p f={#}"
                using degree_one_imp_singleton_roots[OF _ , of q] less(3)[of q]
                    pdivides_imp_roots_incl[OF _ less(2), of q]
                    pirreducible_degree[OF carrier_is_subfield, of q]
                by force
            from <roots p = {#}> and <roots p f= {#}> have False
                by simp
            thus ?thesis ..
    next
```

```
    case False with <p \in carrier (poly_ring R)>
    obtain a where a: "a \in carrier R" and "a \in# roots p" and "[ 1,
\ominus a ] pdivides p"
            and in_carrier: "[ 1, \ominus a ] \in carrier (poly_ring R)"
            by blast
                            then obtain q where p: "p = [ 1, \ominus a ] \otimes poly_ring R q" and q:
"q \in carrier (poly_ring R)"
            unfolding pdivides_def by blast
    with <degree p \not=0> have "p \not= []"
        by auto
    with <p = [ 1, \ominus a ] \otimespoly_ring R q> have "q f= []"
        using in_carrier q unfolding sym[OF univ_poly_zero[of R "carrier
R"]] by auto
    with <p = [ 1, \ominus a ] \otimes poly_ring R q> and <p f []> have "degree
p = Suc (degree q)"
        using poly_mult_degree_eq[OF carrier_is_subring] in_carrier q
        unfolding univ_poly_carrier sym[OF univ_poly_mult[of R "carrier
R"]] by auto
            moreover have "q pdivides p"
                using p dividesI[OF in_carrier] UP.m_comm[OF in_carrier q] by
(auto simp add: pdivides_def)
            hence "degree r = 1" if "r \in carrier (poly_ring R)" and "pirreducible
(carrier R) r"
            and "r pdivides q" for r
            using less(3)[OF that(1-2)] UP.divides_trans[OF _ _ that(1), of
q p] that(3)
                                    pirreducible_degree[OF carrier_is_subfield that(1-2)]
                by (auto simp add: pdivides_def)
            ultimately have "splitted q"
                using less(1) [OF _ q] by auto
            with <degree p = Suc (degree q) > and <q # [] > show ?thesis
                using poly_mult_degree_one_monic_imp_same_roots[OF a q]
                unfolding sym[OF p] splitted_def
                by simp
        qed
    qed
qed
lemma (in field) pdivides_imp_splitted:
    assumes "p \in carrier (poly_ring R)" and "q \in carrier (poly_ring R)"
"q f []" and "splitted q"
    shows "p pdivides q \Longrightarrow splitted p"
proof (cases "p = []")
    case True thus ?thesis
            using degree_zero_imp_splitted[OF assms(1)] by simp
next
    interpret UP: principal_domain "poly_ring R"
        using univ_poly_is_principal[OF carrier_is_subfield] .
```

```
    case False
    assume "p pdivides q"
    then obtain b where b: "b \in carrier (poly_ring R)" and q: "q = p \otimes poly_ring R
b"
            unfolding pdivides_def by auto
    with <q F []> have "p f []" and "b f []"
        using assms UP.integral_iff[of p b] unfolding sym[OF univ_poly_zero[of
R "carrier R"]] by auto
    hence "degree p + degree b = size (roots p) + size (roots b)"
        using associated_polynomials_imp_same_roots[of p b] assms b q splitted_def
                poly_mult_degree_eq[OF carrier_is_subring,of p b]
        unfolding univ_poly_carrier sym[OF univ_poly_mult[of R "carrier R"]]
        by auto
    moreover have "size (roots p) \leq degree p" and "size (roots b) \leq degree
b"
            using size_roots_le_degree assms(1) b by auto
    ultimately show ?thesis
        unfolding splitted_def by linarith
qed
lemma (in field) splitted_imp_trivial_factors:
    assumes "p \in carrier (poly_ring R)" "p \not= []" and "splitted p"
    shows "\q. \llbracket q \in carrier (poly_ring R); pirreducible (carrier R) q;
q pdivides p \ \Longrightarrow degree q = 1"
    using pdivides_imp_splitted[OF _ assms] pirreducible_imp_not_splitted
    by auto
```


44.7 Link between pmod and rupture_surj

lemma (in domain) rupture_surj_composed_with_pmod:
assumes "subfield K R" and " $p \in \operatorname{carrier~(K[X])"~and~"q~} \in \operatorname{carrier~(K[X])"~}$
shows "rupture_surj K p q = rupture_surj K p (q pmod p)"
proof -
interpret UP: principal_domain "K[X]"
using univ_poly_is_principal[0F assms(1)] .
interpret Rupt: ring "Rupt K p"
using assms by (simp add: UP.cgenideal_ideal ideal.quotient_is_ring
rupture_def)
let $? \mathrm{~h}=$ "rupture_surj K p"

and "?h (q pdiv p) \in carrier (Rupt K p)" "?h (q pmod p) \in carrier
(Rupt K p)"
using pdiv_pmod [OF assms $(1,3,2)]$ long_division_closed[OF assms $(1,3,2)]$
assms UP.m_closed
ring_hom_memE[0F rupture_surj_hom(1) [OF subfieldE(1) [OF assms(1)]
assms(2)]]
by metis+

```
    moreover have "?h p = PIdl
        using assms by (simp add: UP.a_rcos_zero UP.cgenideal_ideal UP.cgenideal_self)
    hence "?h p = 0 Rupt K p"
    unfolding rupture_def FactRing_def by simp
    ultimately show ?thesis
    by simp
qed
corollary (in domain) rupture_carrier_as_pmod_image:
    assumes "subfield K R" and "p \in carrier (K[X])"
    shows "(rupture_surj K p) ' ((\lambdaq. q pmod p) ' (carrier (K[X]))) = carrier
(Rupt K p)"
    (is "?lhs = ?rhs")
proof
    have "(\lambdaq. q pmod p) ' carrier (K[X]) \subseteq carrier (K[X])"
        using long_division_closed(2)[OF assms(1) _ assms(2)] by auto
    thus "?lhs \subseteq ?rhs"
        using ring_hom_memE(1) [OF rupture_surj_hom(1) [OF subfieldE(1) [OF assms(1)]
assms(2)]] by auto
next
    show "?rhs \subseteq ?lhs"
    proof
        fix a assume "a \in carrier (Rupt K p)"
        then obtain q where "q \in carrier (K[X])" and "a = rupture_surj K
p q"
            unfolding rupture_def FactRing_def A_RCOSETS_def' by auto
        thus "a \in ?lhs"
                using rupture_surj_composed_with_pmod[OF assms] by auto
    qed
qed
lemma (in domain) rupture_surj_inj_on:
    assumes "subfield K R" and "p \in carrier (K[X])"
    shows "inj_on (rupture_surj K p) ((\lambdaq. q pmod p) ' (carrier (K[X])))"
proof (intro inj_onI)
    interpret UP: principal_domain "K[X]"
        using univ_poly_is_principal[OF assms(1)] .
    fix a b
    assume "a \in (\lambdaq. q pmod p) ' carrier (K[X])"
        and "b \in (\lambdaq. q pmod p) ' carrier (K[X])"
    then obtain q s
        where q: "q \in carrier (K[X])" "a = q pmod p"
            and s: "s \in carrier (K[X])" "b = s pmod p"
        by auto
    moreover assume "rupture_surj K p a = rupture_surj K p b"
    ultimately have "q }\mp@subsup{\ominus}{K[x] s }{c}(\mp@subsup{P}{(PIdl}{K[x] p)"
        using UP.quotient_eq_iff_same_a_r_cos[OF UP.cgenideal_ideal[OF assms(2)],
of q s]
```

```
            rupture_surj_composed_with_pmod[OF assms] by auto
    hence "p pdivides (q }\mp@subsup{\ominus}{\textrm{K}[\textrm{X}]}{}\textrm{s})
        using assms q(1) s(1) UP.to_contain_is_to_divide pdivides_iff_shell
        by (meson UP.cgenideal_ideal UP.cgenideal_minimal UP.minus_closed)
    thus "a = b"
        unfolding q s same_pmod_iff_pdivides[OF assms(1) q(1) s(1) assms(2)]
qed
```


44.8 Dimension

definition (in ring) exp_base : : "'a \Rightarrow nat \Rightarrow 'a list"
where "exp_base x $\mathrm{n}=\operatorname{map}(\lambda i . \operatorname{x}[\wedge]$ i) (rev [0.. $<\mathrm{n}])$ "
lemma (in ring) exp_base_closed:
assumes "x \in carrier R" shows "set (exp_base x n) \subseteq carrier R"
using assms by (induct n) (auto simp add: exp_base_def)
lemma (in ring) exp_base_append:
shows "exp_base $x(n+m)=(\operatorname{map}(\lambda i . x[\wedge] i)(r e v[n . .<n+m])$
@ exp_base x n"
unfolding exp_base_def by (metis map_append rev_append upt_add_eq_append
zero_le)
lemma (in ring) drop_exp_base:
shows "drop $n\left(e x p_{1}\right.$ base $\left.\times \mathrm{m}\right)=\exp$ base $\mathrm{x}(\mathrm{m}-\mathrm{n})$ "
proof -
have ?thesis if "n > m"
using that by (simp add: exp_base_def)
moreover have ?thesis if " $\mathrm{n} \leq \mathrm{m}$ "
using exp_base_append [of x "m - n" n] that by auto
ultimately show ?thesis
by linarith
qed
lemma (in ring) combine_eq_eval:
shows "combine Ks (exp_base x (length Ks)) = eval Ks x"
unfolding exp_base_def by (induct Ks) (auto)
lemma (in domain) pmod_image_characterization:
assumes "subfield K R" and " $p \in \operatorname{carrier~(K[X])"~and~"p~} \neq[]$ "
shows " ($\lambda \mathrm{q} . \mathrm{q}$ pmod p)' carrier $(\mathrm{K}[\mathrm{X}])=\{\mathrm{q} \in \operatorname{carrier~(K[X])\text {.length}}$
$\mathrm{q} \leq$ degree p$\}$ "
proof -
interpret UP: principal_domain "K[X]"
using univ_poly_is_principal[0F assms(1)] .
show ?thesis
proof (intro no_atp(10)[0F subsetI subsetI])

```
    fix q assume "q \in {q G carrier (K[X]). length q}\leq\mathrm{ degree p }"
    then have "q \in carrier (K[X])" and "length q \leq degree p"
        by simp+
    show "q \in (\lambdaq. q pmod p) ' carrier (K[X])"
    proof (cases "q = []")
        case True
        have "p pmod p = q"
            unfolding True pmod_zero_iff_pdivides[OF assms(1,2,2)]
            using assms(1-2) pdivides_iff_shell by auto
        thus ?thesis
            using assms(2) by blast
        next
            case False
            with <length q \leq degree p> have "degree q < degree p"
                using le_eq_less_or_eq by fastforce
            with <q \in carrier (K[X])> show ?thesis
                using pmod_const(2)[0F assms(1) _ assms(2), of q] by (metis imageI)
    qed
    next
    fix q assume "q \in ( \lambdaq. q pmod p)' carrier (K[X])"
    then obtain q' where "q' \in carrier (K[X])" and "q = q' pmod p"
        by auto
    thus "q \in { q \in carrier (K[X]). length q \leq degree p }"
        using long_division_closed(2) [OF assms(1) _ assms(2), of q']
            pmod_degree[OF assms(1) _ assms(2-3), of q']
        by auto
    qed
qed
lemma (in domain) Span_var_pow_base:
    assumes "subfield K R"
    shows "ring.Span (K[X]) (poly_of_const ' K) (ring.exp_base (K[X]) X
n) =
            { q \in carrier (K[X]). length q \leq n }" (is "?lhs = ?rhs")
proof -
    note subring = subfieldE(1)[OF assms]
    note subfield = univ_poly_subfield_of_consts[OF assms]
    interpret UP: domain "K[X]"
        using univ_poly_is_domain[OF subring] .
    show ?thesis
    proof (intro no_atp(10) [OF subsetI subsetI])
        fix q assume "q \in{ q \in carrier (K[X]). length q \leq n }"
        then have q: "q \in carrier (K[X])" "length q \leq n"
            by simp+
```

```
    let ?repl = "replicate (n - length q) 0}\mp@subsup{\mathbf{K}}{\textrm{K}[\textrm{X}]}{
    let ?map = "map poly_of_const q"
    let ?comb = "UP.combine"
    define Ks where "Ks = ?repl @ ?map"
    have "q = ?comb ?map (UP.exp_base X (length q))"
        using q eval_rewrite[OF subring q(1)] unfolding sym[OF UP.combine_eq_eval]
by auto
    moreover from <length q \leq n>
    have "?comb (?repl @ Ks) (UP.exp_base X n) = ?comb Ks (UP.exp_base
X (length q))"
        if "set Ks \subseteq carrier (K[X])" for Ks
        using UP.combine_prepend_replicate[OF that UP.exp_base_closed[OF
var_closed(1)[OF subring]]]
        unfolding UP.drop_exp_base by auto
    moreover have "set ?map \subseteq carrier (K[X])"
        using map_norm_in_poly_ring_carrier[0F subring q(1)]
        unfolding sym[OF univ_poly_carrier] polynomial_def by auto
    moreover have "?repl = map poly_of_const (replicate (n - length q)
0)"
            unfolding poly_of_const_def univ_poly_zero by (induct "n - length
q") (auto)
    hence "set ?repl \subseteq poly_of_const ' K"
        using subringE(2) [OF subring] by auto
    moreover from <q \in carrier (K[X])> have "set q \subseteq K"
        unfolding sym[OF univ_poly_carrier] polynomial_def by auto
    hence "set ?map \subseteq poly_of_const ' K"
        by auto
    ultimately have "q = ?comb Ks (UP.exp_base X n)" and "set Ks \subseteq poly_of_const
' K"
        by (simp add: Ks_def)+
        thus "q \in UP.Span (poly_of_const ' K) (UP.exp_base X n)"
            using UP.Span_eq_combine_set[OF subfield UP.exp_base_closed[OF var_closed(1) [OF
subring]]] by auto
    next
        fix q assume "q G UP.Span (poly_of_const ' K) (UP.exp_base X n)"
    thus "q}\in{q|\operatorname{carrier (K[X]). length q \leq n }"
    proof (induction n arbitrary: q)
                case 0 thus ?case
            unfolding UP.exp_base_def by (auto simp add: univ_poly_zero)
    next
        case (Suc n)
            then obtain k p where k: "k G K" and p: "p \in UP.Span (poly_of_const
' K) (UP.exp_base X n)"
            and q: "q = ((poly_of_const k) \otimes | [x] (X [^] K[x] n)) }\mp@subsup{\oplus}{\textrm{K}}{[x] p"
            unfolding UP.exp_base_def using UP.line_extension_mem_iff by auto
```

```
    have p_in_carrier: "p \in carrier (K[X])" and "length p \leq n"
    using Suc(1)[0F p] by simp+
    moreover from <k G K> have "poly_of_const k \in carrier (K[X])"
        unfolding poly_of_const_def sym[OF univ_poly_carrier] polynomial_def
by auto
    ultimately have "q \in carrier (K[X])"
        unfolding q using var_pow_closed[OF subring, of n] by algebra
    moreover have "poly_of_const k = 0}\mp@subsup{0}{\textrm{K}[\textrm{X}]}{
        unfolding poly_of_const_def that univ_poly_zero by simp
    with <p \in carrier (K[X])> have "q = p" if "k = 0"
        unfolding q using var_pow_closed[OF subring, of n] that by algebra
    with <length p \leq n> have "length q \leq Suc n" if "k=0"
        using that by simp
    moreover have "poly_of_const k = [ k ]" if "k f= 0"
        unfolding poly_of_const_def using that by simp
    hence monom: "monom k n = (poly_of_const k) 目 [X] (X [^] K[x] n)"
if "k f=0"
        using that monom_eq_var_pow[OF subring] subfieldE(3)[OF assms]
k by auto
    with <p \in carrier (K[X])> and <k G K> and <length p \leqn>
    have "length q = Suc n" if "k f= 0"
        using that poly_add_length_eq[OF subring monom_is_polynomial[OF
subring, of k n], of p]
        unfolding univ_poly_carrier monom_def univ_poly_add sym[OF monom[OF
that]] q by auto
            ultimately show ?case
                by (cases "k = 0", auto)
        qed
    qed
qed
lemma (in domain) var_pow_base_independent:
    assumes "subfield K R"
    shows "ring.independent (K[X]) (poly_of_const ' K) (ring.exp_base (K[X])
X n)"
proof -
    note subring = subfieldE(1)[OF assms]
    interpret UP: domain "K[X]"
        using univ_poly_is_domain[OF subring] .
    show ?thesis
    proof (induction n, simp add: UP.exp_base_def)
        case (Suc n)
        have "X [^] K[x] n & UP.Span (poly_of_const ' K) (ring.exp_base (K[X])
X n)"
        unfolding sym[OF unitary_monom_eq_var_pow[OF subring]] monom_def
                        Span_var_pow_base[OF assms] by auto
```


n)"

moreover have "X $\left[^{\wedge}\right]_{\mathrm{K}}[\mathrm{X}]$ n \# UP.exp_base X n = UP. exp_base X (Suc
unfolding UP.exp_base_def by simp
ultimately show ?case using UP.li_Cons[OF var_pow_closed[OF subring, of n] _Suc] by simp
qed
qed
lemma (in domain) bounded_degree_dimension:
assumes "subfield K R"
shows "ring. dimension (K[X]) n (poly_of_const ' K) $\{q \in \operatorname{carrier~(K[X]).~}$
length $\mathrm{q} \leq \mathrm{n}\}$ "
proof -
interpret UP: domain "K[X]"
using univ_poly_is_domain[0F subfieldE(1) [OF assms]] .
have "length (UP.exp_base $X \mathrm{n}$) = n"
unfolding UP.exp_base_def by simp
thus ?thesis
using UP.dimension_independent [OF var_pow_base_independent[0F assms],
of $n]$
unfolding Span_var_pow_base[OF assms] by simp
qed
corollary (in domain) univ_poly_infinite_dimension:
assumes "subfield K R" shows "ring.infinite_dimension (K[X]) (poly_of_const
' K) (carrier (K[X]))"
proof (rule ccontr)
interpret UP: domain "K[X]"
using univ_poly_is_domain[OF subfieldE(1)[0F assms]] .
assume " \neg UP.infinite_dimension (poly_of_const ' K) (carrier (K[X]))"
then obtain n where n : "UP.dimension n (poly_of_const ' K) (carrier
(K[X]))"
by blast
show False
using UP.independent_length_le_dimension[OF univ_poly_subfield_of_consts[OF assms] n
var_pow_base_independent[0F assms, of "Suc n"]
UP.exp_base_closed[OF var_closed(1) [OF subfieldE(1) [OF assms]]]]
unfolding UP.exp_base_def by simp
qed
corollary (in domain) rupture_dimension:
assumes "subfield K R" and "p \in carrier (K[X])" and "degree p > 0"
shows "ring.dimension (Rupt K p) (degree p) ((rupture_surj K p) ' poly_of_const
' K) (carrier (Rupt K p))"
proof -
interpret UP: domain "K[X]"
using univ_poly_is_domain[OF subfieldE(1)[OF assms(1)]] .

```
    interpret Hom: ring_hom_ring "K[X]" "Rupt K p" "rupture_surj K p"
    using rupture_surj_hom(2) [OF subfieldE(1) [OF assms(1)] assms(2)].
    have not_nil: "p f []"
    using assms(3) by auto
    show ?thesis
    using Hom.inj_hom_dimension[OF univ_poly_subfield_of_consts rupture_one_not_zero
                rupture_surj_inj_on] bounded_degree_dimension assms
    unfolding sym[OF rupture_carrier_as_pmod_image[OF assms(1-2)]]
                pmod_image_characterization[OF assms(1-2) not_nil]
    by simp
qed
end
```

theory Indexed_Polynomials
imports Weak_Morphisms "HOL-Library.Multiset" Polynomial_Divisibility
begin

45 Indexed Polynomials

In this theory, we build a basic framework to the study of polynomials on letters indexed by a set. The main interest is to then apply these concepts to the construction of the algebraic closure of a field.

45.1 Definitions

We formalize indexed monomials as multisets with its support a subset of the index set. On top of those, we build indexed polynomials which are simply functions mapping a monomial to its coefficient.

```
definition (in ring) indexed_const : : "'a \(\Rightarrow\) ('c multiset \(\Rightarrow\) 'a)"
    where "indexed_const \(k=(\lambda m\). if \(m=\{\#\}\) then \(k\) else 0 )"
definition (in ring) indexed_pmult : : "('c multiset \(\Rightarrow\) 'a) \(\Rightarrow\) ' \(c \Rightarrow\) ('c
multiset \(\Rightarrow\) 'a)" (infixl " \(\otimes\) " 65)
    where "indexed_pmult \(P\) i \(=(\lambda m\). if \(i \in \# m\) then \(P\) ( \(m-\{\#\) i \#\}) else
0)"
definition (in ring) indexed_padd : : "_ \(\Rightarrow{ }_{2} \Rightarrow\) ('c multiset \(\Rightarrow\) 'a)" (infixl
" \(\bigoplus\) " 65)
    where "indexed_padd P Q = ( \(\lambda \mathrm{m} .(\mathrm{P} \mathrm{m}) \oplus(\mathrm{Q} m)\) )"
definition (in ring) indexed_var : : "'c \(\Rightarrow\) ('c multiset \(\Rightarrow\) 'a)" (" \(\mathcal{X}\) 々")
    where "indexed_var \(i=\left(i n d e x e d \_c o n s t 1\right) ~ \otimes i "\)
```

```
definition (in ring) index_free :: "('c multiset }=>\mathrm{ ' 'a) }=>\mathrm{ ' 'c = bool"
    where "index_free P i \longleftrightarrow < ( }\textrm{m}.\textrm{i
definition (in ring) carrier_coeff :: "('c multiset => 'a) = bool"
    where "carrier_coeff P \longleftrightarrow ( }\forall\textrm{m}.\textrm{P m G carrier R)"
inductive_set (in ring) indexed_pset :: "'c set }=>\mathrm{ ' 'a set }=>\mathrm{ ('c multiset
=> 'a) set" ("_ [\mathcal{X `]" 80)}
    for I and K where
        indexed_const: "k G K \Longrightarrow indexed_const k \in (K[\mathcal{X}
    | indexed_padd: "\llbracketP P (K[\mathcal{X}}
    | indexed_pmult: "\llbracketP P (K[\mathcal{X}}
fun (in ring) indexed_eval_aux :: "('c multiset }=>\mathrm{ ''a) list = 'c = ('c
multiset }=>\mathrm{ 'a)"
    where "indexed_eval_aux Ps i = foldr ( }\lambda\mathrm{ P Q. (Q 囚 i) అ P) Ps (indexed_const
0)"
fun (in ring) indexed_eval :: "('c multiset }=>\mathrm{ ' 'a) list }=>\mathrm{ ' 'c }=>\mathrm{ ('c multiset
=> 'a)"
    where "indexed_eval Ps i = indexed_eval_aux (rev Ps) i"
```


45.2 Basic Properties

lemma (in ring) carrier_coeffE:
assumes "carrier_coeff P" shows "P m \in carrier R"
using assms unfolding carrier_coeff_def by simp
lemma (in ring) indexed_zero_def: "indexed_const $0=\left(\lambda_{-} .0\right) "$ unfolding indexed_const_def by simp
lemma (in ring) indexed_const_index_free: "index_free (indexed_const k) i" unfolding index_free_def indexed_const_def by auto
lemma (in domain) indexed_var_not_index_free: " ${ }^{\text {index_free }} \mathcal{X}_{i}$ i"
proof -
have $" \mathcal{X}_{i}$ \{\# i \#\} = 1"
unfolding indexed_var_def indexed_pmult_def indexed_const_def by simp
thus ?thesis
using one_not_zero unfolding index_free_def by fastforce
qed
lemma (in ring) indexed_pmult_zero [simp]:
shows "indexed_pmult (indexed_const 0) i = indexed_const 0" unfolding indexed_zero_def indexed_pmult_def by auto
lemma (in ring) indexed_padd_zero:
assumes "carrier_coeff P" shows "P \bigoplus (indexed_const 0) = P" and "(indexed_const 0) $\bigoplus P=P^{\prime \prime}$ using assms unfolding carrier_coeff_def indexed_zero_def indexed_padd_def by auto
lemma (in ring) indexed_padd_const:
shows "(indexed_const k1) \bigoplus (indexed_const k2) = indexed_const (k1
© k2)"
unfolding indexed_padd_def indexed_const_def by auto
lemma (in ring) indexed_const_in_carrier:
assumes "K \subseteq carrier $\bar{R} "$ and $" k \in K "$ shows " $\bigwedge m$. (indexed_const k)
m \in carrier $\mathrm{R}^{\prime \prime}$
using assms unfolding indexed_const_def by auto
lemma (in ring) indexed_padd_in_carrier:
assumes "carrier_coeff P" and "carrier_coeff Q" shows "carrier_coeff
(indexed_padd P Q)"
using assms unfolding carrier_coeff_def indexed_padd_def by simp
lemma (in ring) indexed_pmult_in_carrier:
assumes "carrier_coeff P" shows "carrier_coeff ($\mathrm{P} \otimes$ i)"
using assms unfolding carrier_coeff_def indexed_pmult_def by simp
lemma (in ring) indexed_eval_aux_in_carrier:
assumes "list_all carrier_coeff Ps" shows "carrier_coeff (indexed_eval_aux
Ps i)"
using assms unfolding carrier_coeff_def
by (induct Ps) (auto simp add: indexed_zero_def indexed_padd_def indexed_pmult_def)
lemma (in ring) indexed_eval_in_carrier:
assumes "list_all carrier_coeff Ps" shows "carrier_coeff (indexed_eval
Ps i)"
using assms indexed_eval_aux_in_carrier[of "rev Ps"] by auto
lemma (in ring) indexed_pset_in_carrier:
assumes "K \subseteq carrier R " and " $\mathrm{P} \in\left(\mathrm{K}\left[\mathcal{X}_{\mathrm{I}}\right]\right)$ " shows "carrier_coeff P "
using assms $(2,1)$ indexed_const_in_carrier unfolding carrier_coeff_def
by (induction) (auto simp add: indexed_zero_def indexed_padd_def indexed_pmult_def)

45.3 Indexed Eval

lemma (in ring) exists_indexed_eval_aux_monomial:
assumes "carrier_coeff P" and "list_all carrier_coeff Qs" and "count n i $=\mathrm{k}$ " and " $\mathrm{P} \mathrm{n} \neq 0$ " and "list_all ($\lambda \mathrm{Q}$. index_free
Q i) Qs"
obtains m where "count m i = length Qs + k" and "(indexed_eval_aux
(Qs @ [P]) i) m $=\mathbf{0 "}^{\prime \prime}$
proof -

```
    from assms \((2,5)\) have \(" \exists \mathrm{~m}\). count m i \(=\) length \(\mathrm{Qs}+\mathrm{k} \wedge\) (indexed_eval_aux
(Qs @ [ P ] ) i) \(m \neq 0^{\prime \prime}\)
    proof (induct Qs)
        case Nil thus ?case
                using indexed_padd_zero(2) [0F assms(1)] assms(3-4) by auto
    next
        case (Cons Q Qs)
        then obtain \(m\) where \(m\) : "count \(m i=\) length \(Q s+k "\) " (indexed_eval_aux
(Qs © [ P ] ) i) m \(\neq \mathbf{0 "}^{\prime \prime}\)
            by auto
        define m' where "m' = m + \{\# i \#\}"
        hence " Q m' = 0 "
            using Cons(3) unfolding index_free_def by simp
        moreover have "(indexed_eval_aux (Qs @ [ P ]) i) m \(\in\) carrier R"
        using indexed_eval_aux_in_carrier[of "Qs @ [ P ]" i] Cons(2) assms(1)
carrier_coeffe by auto
    hence "((indexed_eval_aux (Qs @ [ P ]) i) \(\otimes\) i) m' \(\in\) carrier R -
\{ 0 \}"
            using m unfolding indexed_pmult_def m'_def by simp
        ultimately have " (indexed_eval_aux (Q \# (Qs @ [ P ] ) i) m' \(\neq 0\) "
                by (auto simp add: indexed_padd_def)
    moreover from <count m i = length Qs + k> have "count m' i = length
(Q \# Qs) + k"
        unfolding m'_def by simp
    ultimately show ?case
        by auto
    qed
    thus thesis
        using that by blast
qed
lemma (in ring) indexed_eval_aux_monomial_degree_le:
    assumes "list_all carrier_coeff Ps" and "list_all ( \(\lambda\) P. index_free P
i) Ps"
            and "(indexed_eval_aux Ps i) m \(\neq 0\) " shows "count m i \(\leq\) length Ps
- 1 "
    using assms(1-3)
proof (induct Ps arbitrary: m, simp add: indexed_zero_def)
    case (Cons P Ps) show ?case
    proof (cases "count mi=0", simp)
        assume "count m i \(\neq 0\) "
        hence "P m = 0"
            using Cons(3) unfolding index_free_def by simp
        moreover have "(indexed_eval_aux Ps i) m \(\in\) carrier R"
            using carrier_coeffe[ \(\overline{\mathrm{F}}\) indexed_eval_aux_in_carrier [of Ps i] \(]\) Cons(2)
by simp
            ultimately have " ((indexed_eval_aux Ps i) \(\otimes\) i) m \(\neq 0\) "
                using Cons(4) by (auto simp add: indexed_padd_def)
    with <count m i \(\neq 0\) > have "(indexed_eval_aux Ps i) (m - \{\# i \#\})
```

```
# 0"
            unfolding indexed_pmult_def by (auto simp del: indexed_eval_aux.simps)
            hence "count m i - 1 \leq length Ps - 1"
            using Cons(1)[of "m - {# i #}"] Cons(2-3) by auto
    moreover from <(indexed_eval_aux Ps i) (m - {# i #}) f= 0> have
"length Ps > 0"
            by (auto simp add: indexed_zero_def)
        moreover from <count m i f= 0> have "count m i > 0"
            by simp
        ultimately show ?thesis
            by (simp add: Suc_leI le_diff_iff)
    qed
qed
lemma (in ring) indexed_eval_aux_is_inj:
    assumes "list_all carrier_coeff Ps" and "list_all ( }\lambdaP
i) Ps"
            and "list_all carrier_coeff Qs" and "list_all (\lambdaQ. index_free Q
i) Qs"
            and "indexed_eval_aux Ps i = indexed_eval_aux Qs i" and "length Ps
= length Qs"
    shows "Ps = Qs"
    using assms
proof (induct Ps arbitrary: Qs, simp)
    case (Cons P Ps)
    from <length (P # Ps) = length Qs> obtain Q' Qs' where Qs: "Qs = Q'
# Qs'" and "length Ps = length Qs'"
        by (metis Suc_length_conv)
    have in_carrier:
        "((indexed_eval_aux Ps i) @ i) m \in carrier R" "P m \in carrier R"
        "((indexed_eval_aux Qs' i) 囚 i) m \in carrier R" "Q' m \in carrier R"
for m
        using indexed_eval_aux_in_carrier[of Ps i]
            indexed_eval_aux_in_carrier[of Qs' i] Cons(2,4) carrier_coeffE
        unfolding Qs indexed_pmult_def by auto
    have "(indexed_eval_aux (P # Ps) i) m = (indexed_eval_aux (Q' # Qs')
i) m" for m
        using Cons(6) unfolding Qs by simp
    hence eq: "((indexed_eval_aux Ps i) 囚 i) m }\oplus\mathrm{ P m = ((indexed_eval_aux
Qs' i) @ i) m \oplus Q' m" for m
        by (simp add: indexed_padd_def)
    have "P m = Q' m" if "i \in# m" for m
        using that Cons(3,5) unfolding index_free_def Qs by auto
    moreover have "P m = Q' m" if "i \not\in# m" for m
        using in_carrier(2,4) eq[of m] that by (auto simp add: indexed_pmult_def)
    ultimately have "P = Q'"
```

by auto
hence " (indexed_eval_aux Ps i) m = (indexed_eval_aux Qs' i) m" for m using eq[of "m + \{\# i \#\}"] in_carrier[of "m + \{\# i \#\}"] unfolding indexed_pmult_def by auto
with <length Ps = length Qs'> have "Ps = Qs'"
using Cons(1) [of Qs'] Cons(2-5) unfolding Qs by auto
with < $=$ Q' > show ?case
unfolding Qs by simp
qed
lemma (in ring) indexed_eval_aux_is_inj':
assumes "list_all carrier_coeff Ps" and "list_all (λ P. index_free P
i) Ps"
and "list_all carrier_coeff Qs" and "list_all (λ Q. index_free Q
i) Qs"
and "carrier_coeff P" and "index_free P i" "P \neq indexed_const 0"
and "carrier_coeff Q " and "index_free Q i" "Q \neq indexed_const 0" and "indexed_eval_aux (Ps @ [P]) i = indexed_eval_aux (Qs @ [Q
]) i"
shows "Ps = Qs" and "P = Q"
proof -
obtain $\mathrm{m} n$ where " $\mathrm{Pm} \neq 0$ " and " $\mathrm{Q} \mathrm{n} \neq 0$ "
using assms $(7,10)$ unfolding indexed_zero_def by blast
hence "count m i = 0" and "count n i = 0"
using assms $(6,9)$ unfolding index_free_def by (meson count_inI)+
with < $\mathrm{Pm} \neq 0$ 〉 and $\langle\mathrm{Q} \mathrm{n} \neq 0$ 〉 obtain m' n '
where m': "count m' i = length Ps" "(indexed_eval_aux (Ps @ [P])
i) $\mathrm{m}^{\prime} \neq 0{ }^{\prime \prime}$
and n': "count n' i = length Qs" "(indexed_eval_aux (Qs @ [Q])
i) $n^{\prime} \neq 0^{\prime \prime}$
using exists_indexed_eval_aux_monomial[of P Ps m i 0]
exists_indexed_eval_aux_monomial[of Q Qs n i 0] assms(1-5,8)
by (metis (no_types, lifting) add.right_neutral)
have "(indexed_eval_aux (Qs @ [Q]) i) m' $\neq 0$ "
using m'(2) assms(11) by simp
with <count m' i = length Ps> have "length Ps \leq length Qs"
using indexed_eval_aux_monomial_degree_le[of "Qs @ [Q]" i m’] assms(3-4,8-9)
by auto
moreover have "(indexed_eval_aux (Ps @ [P]) i) n' $\neq 0$ "
using n '(2) assms(11) by simp
with <count n' i = length Qs> have "length Qs \leq length Ps"
using indexed_eval_aux_monomial_degree_le[of "Ps @ [P]" i n'] assms(1-2,5-6)
by auto
ultimately have same_len: "length (Ps @ [P]) = length (Qs @ [Q])"
by simp
thus "Ps = Qs" and "P = Q"
using indexed_eval_aux_is_inj[of "Ps @ [P]" i "Qs @ [Q]"] assms(1-6,8-9,11)
by auto
qed
lemma (in ring) exists_indexed_eval_monomial:
assumes "carrier_coeff P" and "list_all carrier_coeff Qs"
and "P n $\neq 0$ " and "list_all (λ Q. index_free Q i) Qs"
obtains m where "count m i = length Qs + (count n i)" and "(indexed_eval
(P \# Qs) i) $\mathrm{m} \neq \mathbf{0}^{\prime \prime}$
using exists_indexed_eval_aux_monomial [OF assms(1) _ _ assms(3), of
"rev Qs"] assms $(2,4)$ by auto
corollary (in ring) exists_indexed_eval_monomial':
assumes "carrier_coeff P" and "list_all carrier_coeff Qs"
and "P \neq indexed_const 0 " and "list_all (λ Q. index_free Q i) Qs"
obtains m where "count mi \geq length Qs" and "(indexed_eval (P \# Qs)
i) $m \neq 0 "$
proof -
from < $\mathrm{P} \neq$ indexed_const 0 > obtain n where " $\mathrm{n} \neq 0$ "
unfolding indexed_const_def by auto
then obtain m where "count mi=length Qs + (count n i)" and "(indexed_eval
(P \# Qs) i) m $\neq 0$ " using exists_indexed_eval_monomial [0F assms(1-2) _ assms(4)] by auto
thus thesis
using that by force
qed
lemma (in ring) indexed_eval_monomial_degree_le:
assumes "list_all carrier_coeff Ps" and "list_all (λ P. index_free P
i) Ps"
and "(indexed_eval Ps i) m $\neq 0$ " shows "count $m i \leq l e n g t h$ Ps - 1"
using indexed_eval_aux_monomial_degree_le[of "rev Ps"] assms by auto
lemma (in ring) indexed_eval_is_inj:
assumes "list_all carrier_coeff Ps" and "list_all (λ P. index_free P
i) Ps"
and "list_all carrier_coeff Qs" and "list_all (λ Q. index_free Q
i) Qs"
and "carrier_coeff P" and "index_free P i" "P \neq indexed_const 0"
and "carrier_coeff Q" and "index_free Q i" "Q \neq indexed_const 0"
and "indexed_eval (P \# Ps) i = indexed_eval (Q \# Qs) i"
shows "Ps = Qs" and "P = Q"
proof -
have rev_cond:
"list_all carrier_coeff (rev Ps)" "list_all (λ P. index_free P i) (rev
Ps)"
"list_all carrier_coeff (rev Qs)" "list_all (λ Q. index_free Q i) (rev
Qs)"
using assms(1-4) by auto
show "Ps = Qs" and "P = Q"
using indexed_eval_aux_is_inj'[0F rev_cond assms(5-10)] assms(11)
by auto
qed
lemma（in ring）indexed＿eval＿inj＿on＿carrier：
assumes＂$\ \mathrm{P} . \mathrm{P} \in$ carrier $\mathrm{L} \Longrightarrow$ carrier＿coeff P ＂and＂$\ \mathrm{P} . \mathrm{P} \in$ carrier
$\mathrm{L} \Longrightarrow$ index＿free P i＂and＂ $0_{\mathrm{L}}=$ indexed＿const 0 ＂
shows＂inj＿on（ λ Ps．indexed＿eval Ps i）（carrier（poly＿ring L））＂
proof－
\｛ fix Ps
assume＂Ps \in carrier（poly＿ring L）＂and＂indexed＿eval Ps i＝indexed＿const
$0 "$
have＂Ps＝［］＂
proof（rule ccontr）
assume＂Ps $\neq[]$＂
then obtain P＇Ps＇where Ps：＂Ps＝P＇\＃Ps＇＂
using list．exhaust by blast
with＜Ps \in carrier（poly＿ring L）＞
have＂P，\neq indexed＿const 0 ＂and＂list＿all carrier＿coeff Ps＂and ＂list＿all（ λ P．index＿free P i）Ps＂
using assms unfolding sym［OF univ＿poly＿carrier［of L＂carrier L＂］］
polynomial＿def
by（simp add：list．pred＿set subset＿code（1））＋
then obtain m where＂（indexed＿eval Ps i）m $\neq 0$＂
using exists＿indexed＿eval＿monomial＇［of P^{\prime} Ps＇］unfolding Ps by
auto
hence＂indexed＿eval Ps i \neq indexed＿const 0＂ unfolding indexed＿const＿def by auto
with＜indexed＿eval Ps i＝indexed＿const 0＞show False by simp qed $\}$ note aux＿lemma $=$ this
show ？thesis
proof（rule inj＿onI）
fix Ps Qs
assume＂Ps \in carrier（poly＿ring L）＂and＂Qs \in carrier（poly＿ring
L）＂
show＂indexed＿eval Ps i＝indexed＿eval Qs i $\Longrightarrow P s=Q s "$
proof（cases）
assume＂Qs＝［］＂and＂indexed＿eval Ps i＝indexed＿eval Qs i＂
with＜Ps \in carrier（poly＿ring L）＞show＂Ps＝Qs＂
using aux＿lemma by simp
next
assume＂Qs $\neq[] "$ and eq：＂indexed＿eval Ps i＝indexed＿eval Qs
i＂
with＜Qs \in carrier（poly＿ring L）＞have＂Ps $\neq[]$＂ using aux＿lemma by auto
from 〈Ps $\neq[]$ 〉 and 〈Qs $\neq[]$ 〉 obtain $P^{\prime} P s$＇Q＇Qs＇where Ps：
＂Ps＝P＇\＃Ps＇＂and Qs：＂Qs＝Q＇\＃Qs＇＂
using list．exhaust by metis

```
    from <Ps \in carrier (poly_ring L)> and <Ps = P' # Ps'>
    have "carrier_coeff P'" and "index_free P' i" "P' # indexed_const
0"
    and "list_all carrier_coeff Ps'" and "list_all ( }\lambda\mathrm{ P. index_free
P i) Ps'"
            using assms unfolding sym[OF univ_poly_carrier[of L "carrier L"]]
polynomial_def
            by (simp add: list.pred_set subset_code(1))+
        moreover
        from <Qs \in carrier (poly_ring L)> and <Qs = Q' # Qs'>
        have "carrier_coeff Q'" and "index_free Q' i" "Q' f indexed_const
0"
            and "list_all carrier_coeff Qs'" and "list_all ( }\lambdaP
P i) Qs'"
            using assms unfolding sym[OF univ_poly_carrier[of L "carrier L"]]
polynomial_def
            by (simp add: list.pred_set subset_code(1))+
            ultimately show ?thesis
            using indexed_eval_is_inj[of Ps' i Qs' P' Q'] eq unfolding Ps
Qs by auto
            qed
    qed
qed
```


45.4 Link with Weak Morphisms

We study some elements of the contradiction needed in the algebraic closure existence proof.

```
context ring
begin
lemma (in ring) indexed_padd_index_free:
    assumes "index_free P i" and "index_free Q i" shows "index_free (P
Ө Q) i"
    using assms unfolding indexed_padd_def index_free_def by auto
lemma (in ring) indexed_pmult_index_free:
    assumes "index_free P j" and "i \not= j" shows "index_free (P \otimes i) j"
    using assms unfolding index_free_def indexed_pmult_def
    by (metis insert_DiffM insert_noteq_member)
lemma (in ring) indexed_eval_index_free:
    assumes "list_all ( }\lambda\mathrm{ P. index_free P j) Ps" and "i f j" shows "index_free
(indexed_eval Ps i) j"
proof -
    { fix Ps assume "list_all ( }\lambda\mathrm{ P. index_free P j) Ps" hence "index_free
(indexed_eval_aux Ps i) j"
        using indexed_padd_index_free[OF indexed_pmult_index_free[OF _ assms(2)]]
        by (induct Ps) (auto simp add: indexed_zero_def index_free_def)
```

```
}
    thus ?thesis
    using assms(1) by auto
qed
context
    fixes L :: "(('c multiset) => 'a) ring" and i :: 'c
    assumes hyps:
        _i "field L"
        _ ii "\bigwedgeP. P c carrier L \Longrightarrow carrier_coeff P"
        _ iii "^P. P \in carrier L \Longrightarrow index_free P i"
        _iv "0
begin
interpretation L: field L
    using <field L> .
interpretation UP: principal_domain "poly_ring L"
    using L.univ_poly_is_principal[OF L.carrier_is_subfield] .
abbreviation eval_pmod
    where "eval_pmod q \equiv ( }\lambda\textrm{p}\mathrm{ . indexed_eval (L.pmod p q) i)"
abbreviation image_poly
    where "image_poly q \equiv image_ring (eval_pmod q) (poly_ring L)"
lemma indexed_eval_is_weak_ring_morphism:
    assumes "q \in carrier (poly_ring L)" shows "weak_ring_morphism (eval_pmod
q) (PIdlpoly_ring L q) (poly_ring L)"
proof (rule weak_ring_morphismI)
    show "ideal (PIdlpoly_ring L q) (poly_ring L)"
            using UP.cgenideal_ideal[OF assms] .
next
    fix a b assume in_carrier: "a \in carrier (poly_ring L)" "b \in carrier
(poly_ring L)"
    note ldiv_closed = in_carrier[THEN L.long_division_closed(2) [OF L.carrier_is_subfield
    assms]]
    have "(eval_pmod q) a = (eval_pmod q) b \longleftrightarrow L.pmod a q = L.pmod b q"
        using inj_onD[OF indexed_eval_inj_on_carrier[OF hyps(2-4)] _ ldiv_closed]
by fastforce
    also have " ... \longleftrightarrow q pdivides_ (a Өpoly_ring L b)"
        unfolding L.same_pmod_iff_pdivides[OF L.carrier_is_subfield in_carrier
assms] ..
    also have " ... \longleftrightarrow PIdlloly_ring L (a }\mp@subsup{\ominus}{\mathrm{ poly_ring L b) }\subseteq PIdl poly_ring L}{l
q"
        unfolding UP.to_contain_is_to_divide[OF assms UP.minus_closed[OF in_carrier]]
```

```
pdivides_def ..
    also have " ... \longleftrightarrow a Өpoly_ring l b \in PIdlopoly_ring l q"
        unfolding UP.cgenideal_eq_genideal[OF assms] UP.cgenideal_eq_genideal[OF
UP.minus_closed[OF in_carrier]]
                UP.Idl_subset_ideal'[OF UP.minus_closed[OF in_carrier] assms]
    finally show "(eval_pmod q) a = (eval_pmod q) b \longleftrightarrow a Өpoly_ring L b
\in PIdlpoly_ring L q" .
qed
lemma eval_norm_eq_id:
    assumes "q \in carrier (poly_ring L)" and "degree q > 0" and "a \in carrier
L"
    shows "((eval_pmod q) o (ring.poly_of_const L)) a = a"
proof (cases)
    assume "a = 0 L" thus ?thesis
        using L.long_division_zero(2) [OF L.carrier_is_subfield assms(1)] hyps(4)
        unfolding ring.poly_of_const_def[OF L.ring_axioms] by auto
next
    assume "a }=\mp@subsup{0}{\textrm{L}}{}\mathrm{ " then have in_carrier: "[ a ] G carrier (poly_ring
L) "
    using assms(3) unfolding sym[0F univ_poly_carrier[of L "carrier L"]]
polynomial_def by simp
    from <a }\not=\mp@subsup{0}{\textrm{L}}{}>\mathrm{ show ?thesis
        using L.pmod_const(2) [OF L.carrier_is_subfield in_carrier assms(1)]
assms(2)
            indexed_padd_zero(2)[OF hyps(2) [OF assms(3)]]
        unfolding ring.poly_of_const_def[OF L.ring_axioms] by auto
qed
lemma image_poly_iso_incl:
    assumes "q \in carrier (poly_ring L)" and "degree q > 0" shows "id \in
ring_hom L (image_poly q)"
proof -
    have "((eval_pmod q) ○ L.poly_of_const) \in ring_hom L (image_poly q)"
        using ring_hom_trans[OF L.canonical_embedding_is_hom[OF L.carrier_is_subring]
            UP.weak_ring_morphism_is_hom[OF indexed_eval_is_weak_ring_morphism[0F
assms(1)]]]
        by simp
    thus ?thesis
        using eval_norm_eq_id[OF assms(1-2)] L.ring_hom_restrict[of _ "image_poly
q" id] by auto
qed
lemma image_poly_is_field:
    assumes "q \in carrier (poly_ring L)" and "pirreduciblele (carrier L)
q" shows "field (image_poly q)"
    using UP.image_ring_is_field[OF indexed_eval_is_weak_ring_morphism[OF
assms(1)]] assms(2)
```

unfolding sym[0F L.rupture_is_field_iff_pirreducible[0F L.carrier_is_subfield assms(1)]] rupture_def
by simp
lemma image_poly_index_free:
assumes "q \in carrier (poly_ring L)" and "P \in carrier (image_poly q)"
and " \neg index_free P j" "i $\neq j$ "
obtains Q where $" Q \in$ carrier $L "$ and " \neg index_free $Q j "$
proof -
from < $\mathrm{P} \in$ carrier (image_poly q) > obtain p where $p: ~ " p \in$ carrier (poly_ring
L)" and P: "P = (eval_pmod q) p"
unfolding image_ring_carrier by blast
from < \neg index_free $P j$ > have " \neg list_all (λ P. index_free P j) (L.pmod p q)"
using indexed_eval_index_free[0F _ assms(4), of "L.pmod p q"] un-
folding sym[0F P] by auto
then obtain Q where $" Q \in \operatorname{set}(L . p m o d p q) "$ and " ${ }^{\text {index_free } Q} \mathbf{j}$ " unfolding list_all_iff by auto
thus ?thesis
using L.long_division_closed(2) [0F L.carrier_is_subfield p assms(1)]
that
unfolding sym[OF univ_poly_carrier[of L "carrier L"]] polynomial_def by auto
qed
lemma eval_pmod_var:
assumes "indexed_const \in ring_hom R L" and "q \in carrier (poly_ring
L)" and "degree q > 1"
shows " (eval_pmod q) $X_{\mathrm{L}}=\mathcal{X}_{\mathrm{i}}$ " and " $\mathcal{X}_{\mathrm{i}} \in \operatorname{carrier~(image_ poly~q)"~}$
proof -
have $\mathrm{X}_{\mathrm{L}}=\left[\right.$ indexed_const 1, indexed_const 0]" and " $\mathrm{X}_{\mathrm{L}} \in$ carrier (poly_ring L)"
using ring_hom_one [OF assms(1)] hyps(4) L.var_closed(1) L.carrier_is_subring unfolding var_def by auto
thus " (eval_pmod q) $\mathrm{X}_{\mathrm{L}}=\mathcal{X}_{\mathrm{i}}$ "
using L.pmod_const(2) [OF L.carrier_is_subfield _ assms(2), of " X_{L} "] assms(3)
by (auto simp add: indexed_pmult_def indexed_padd_def indexed_const_def indexed_var_def)
with $\left\langle\mathrm{X}_{\mathrm{L}} \in\right.$ carrier (poly_ring L) > show " $\mathcal{X}_{\mathrm{i}} \in$ carrier (image_poly q) "
using image_iff unfolding image_ring_carrier by fastforce
qed
lemma image_poly_eval_indexed_var:
assumes "indexed_const \in ring_hom R L"
and " $q \in$ carrier (poly_ring L)" and "degree q > 1" and "pirreducible e_{L} (carrier L) q"
shows "(ring.eval (image_poly q)) q $\mathcal{X}_{i}=\mathbf{0}_{\text {image_poly }}$ q"

```
proof -
    let ?surj = "L.rupture_surj (carrier L) q"
    let ?Rupt = "Rupt
    let ?f = "eval_pmod q"
    interpret UP: ring "poly_ring L"
        using L.univ_poly_is_ring[OF L.carrier_is_subring] .
    from <pirreducible}\mp@subsup{L}{L}{\prime}(carrier L) q> interpret Rupt: field ?Rupt
        using L.rupture_is_field_iff_pirreducible[OF L.carrier_is_subfield
assms(2)] by simp
    have weak_morphism: "weak_ring_morphism ?f (PIdlpoly_ring L q) (poly_ring
L)"
            using indexed_eval_is_weak_ring_morphism[OF assms(2)] .
    then interpret I: ideal "PIdlpoly_ring L q" "poly_ring L"
        using weak_ring_morphism.axioms(1) by auto
    interpret Hom: ring_hom_ring ?Rupt "image_poly q" "\lambdax. the_elem (?f
x)"
            using ring_hom_ring.intro[OF I.quotient_is_ring UP.image_ring_is_ring[OF
weak_morphism]]
                UP.weak_ring_morphism_is_iso[OF weak_morphism]
        unfolding ring_iso_def symmetric[OF ring_hom_ring_axioms_def] rupture_def
        by auto
    have "set q \subseteq carrier L" and lc: "q # [] \Longrightarrow lead_coeff q \in carrier
L - { 00L }"
            using assms(2) unfolding sym[OF univ_poly_carrier] polynomial_def
by auto
    have map_surj: "set (map (?surj ○ L.poly_of_const) q) \subseteq carrier ?Rupt"
    proof -
        have "L.poly_of_const a \in carrier (poly_ring L)" if "a \in carrier L"
for a
            using that L.normalize_gives_polynomial[of "[ a ]"]
            unfolding univ_poly_carrier ring.poly_of_const_def [OF L.ring_axioms]
by simp
            hence "(?surj ○ L.poly_of_const) a \in carrier ?Rupt" if "a \in carrier
L" for a
            using ring_hom_memE(1) [OF L.rupture_surj_hom(1) [OF L.carrier_is_subring
assms(2)]] that by simp
            with <set q \subseteq carrier L> show ?thesis
            by (induct q) (auto)
    qed
    have "?surj X X \in carrier ?Rupt"
            using ring_hom_memE(1) [OF L.rupture_surj_hom(1)[OF _ assms(2)] L.var_closed(1)]
L.carrier_is_subring by simp
    moreover have "map ( }\lambda\textrm{x}
q) = q"
```

```
    proof -
    define g where "g = (?surj ○ L.poly_of_const)"
    define f where "f = ( }\lambda\textrm{x}\mathrm{ . the_elem (?f ' x))"
    have "the_elem (?f ' ((?surj o L.poly_of_const) a)) = ((eval_pmod
q) o L.poly_of_const) a"
        if "a \in carrier L" for a
        using that L.normalize_gives_polynomial[of "[ a ]"] UP.weak_ring_morphism_range[0F
weak_morphism]
        unfolding univ_poly_carrier ring.poly_of_const_def[OF L.ring_axioms]
by auto
    hence "the_elem (?f ' ((?surj o L.poly_of_const) a)) = a" if "a \in
carrier L" for a
        using eval_norm_eq_id[OF assms(2)] that assms(3) by simp
    hence "f (g a) = a" if "a \in carrier L" for a
        using that unfolding f_def g_def by simp
    with <set q \subseteq carrier L> have "map f (map g q) = q"
        by (induct q) (auto)
    thus ?thesis
        unfolding f_def g_def by simp
    qed
    moreover have "( }\lambda\textrm{x}.0\mathrm{ the_elem (?f ' x)) (?surj X X ) = 婞"
    using UP.weak_ring_morphism_range[OF weak_morphism L.var_closed(1) [OF
L.carrier_is_subring]]
    unfolding eval_pmod_var(1) [0F assms(1-3)] by simp
    ultimately have "Hom.S.eval q \mathcal{X}
(map (?surj o L.poly_of_const) q) (?surj X X ))"
    using Hom.eval_hom'[OF _ map_surj] by auto
    moreover have "0}\mp@subsup{0}{\mathrm{ ?Rupt }}{}=\mathrm{ ?surj 0 0oly_ring L"
    unfolding rupture_def FactRing_def by (simp add: I.a_rcos_const)
    hence "the_elem (?f ' 0}\mp@subsup{0}{\mathrm{ ?Rupt }}{}\mathrm{ ) = 0 0image_poly q"
        using UP.weak_ring_morphism_range[OF weak_morphism UP.zero_closed]
        unfolding image_ring_zero by simp
    hence "(\lambdax. the_elem (?f ' x)) (Rupt.eval (map (?surj o L.poly_of_const)
q) (?surj }\mp@subsup{X}{L}{}))=\mp@subsup{0}{\mathrm{ image_poly q"}}{
            using L.polynomial_rupture[OF L.carrier_is_subring assms(2)] by simp
    ultimately show ?thesis
        by simp
qed
end
end
end
theory Finite_Extensions
    imports Embedded_Algebras Polynomials Polynomial_Divisibility
```

begin

46 Finite Extensions

46.1 Definitions

```
definition (in ring) transcendental :: "'a set }=>\mathrm{ 'a = bool"
```



```
abbreviation (in ring) algebraic :: "'a set }=>\mathrm{ ' 'a }=>\mathrm{ bool"
    where "algebraic K x \equiv ᄀ transcendental K x"
definition (in ring) Irr :: "'a set }=>\mathrm{ 'a a 'a list"
    where "Irr K x = (THE p. p \in carrier (K[X]) ^ pirreducible K p ^ eval
p x = 0 ^ lead_coeff p = 1)"
inductive__set (in ring) simple_extension :: "'a set => 'a # 'a set"
    for K and x where
        zero [simp, intro]: "0 \in simple_extension K x" |
        lin: "\llbracketk1 \in simple_extension K x; k2 \in K \ \Longrightarrow (k1 \otimes x) \oplus k2 \in
simple_extension K x"
fun (in ring) finite_extension :: "'a set }=>\mathrm{ ' 'a list }=>\mathrm{ ' 'a set"
    where "finite_extension K xs = foldr (\lambdax K'. simple_extension K' x)
xs K"
```


46.2 Basic Properties

```
lemma (in ring) transcendental_consistent:
    assumes "subring K R" shows "transcendental = ring.transcendental (R
( carrier := K D)"
    unfolding transcendental_def ring.transcendental_def[OF subring_is_ring[OF
assms]]
            univ_poly_consistent[OF assms] eval_consistent[OF assms] ..
lemma (in ring) algebraic_consistent:
    assumes "subring K R" shows "algebraic = ring.algebraic (R | carrier
:= K D)"
    unfolding over_def transcendental_consistent[OF assms] ..
lemma (in ring) eval_transcendental:
    assumes "(transcendental over K) x" "p \in carrier (K[X])" "eval p x
= 0" shows "p = []"
proof -
    have "[] \in carrier (K[X])" and "eval [] x = 0"
            by (auto simp add: univ_poly_def)
    thus ?thesis
            using assms unfolding over_def transcendental_def inj_on_def by auto
```

qed
lemma (in ring) transcendental_imp_trivial_ker:
shows " (transcendental over K) $x \Longrightarrow$ a_kernel (K[X]) R (λ p. eval p
x) = \{ [] \}"
using eval_transcendental unfolding a_kernel_def' by (auto simp add: univ_poly_def)
lemma (in ring) non_trivial_ker_imp_algebraic:
shows "a_kernel (K[X]) R (λ p. eval p x) $\neq\{[]\} \Longrightarrow$ (algebraic over
K) $\mathrm{x} "$
using transcendental_imp_trivial_ker unfolding over_def by auto
lemma (in domain) trivial_ker_imp_transcendental:
assumes "subring $K R$ " and "x carrier R"
shows "a_kernel (K[X]) R (λ p. eval p x) $=\{[]\} \Longrightarrow$ (transcendental
over K) x"
using ring_hom_ring.trivial_ker_imp_inj[0F eval_ring_hom[0F assms]]
unfolding transcendental_def over_def by (simp add: univ_poly_zero)
lemma (in domain) algebraic_imp_non_trivial_ker:
assumes "subring K R" and "x \in carrier R"
shows "(algebraic over K) $x \Longrightarrow$ a_kernel ($K[X]$) $R(\lambda p$. eval $p x$) \neq
\{ [] \}"
using trivial_ker_imp_transcendental[0F assms] unfolding over_def by auto
lemma (in domain) algebraicE:
assumes "subring K R" and "x carrier R" "(algebraic over K) x"
obtains p where $" p \in \operatorname{carrier}(K[X]) "$ " $p \neq[] "$ "eval $p x=0 "$
proof -
have " [] \in a_kernel (K[X]) R ($\lambda \mathrm{p}$. eval p x)"
unfolding a_kernel_def' univ_poly_def by auto
then obtain p where $" p \in \operatorname{carrier~(K[X])"~"p~} \neq[] "$ "eval $p x=0 "$ using algebraic_imp_non_trivial_ker[0F assms] unfolding a_kernel_def,
by blast
thus thesis using that by auto
qed
lemma (in ring) algebraicI:
assumes "p \in carrier $(K[X]) "$ " $p \neq[] "$ and "eval $p x=0 "$ shows "(algebraic over K) x"
using assms non_trivial_ker_imp_algebraic unfolding a_kernel_def' by auto
lemma (in ring) transcendental_mono:
assumes "K \subseteq K'" "(transcendental over K') x" shows "(transcendental
over K) x"
proof -

```
    have "carrier (K[X]) \subseteq carrier (K'[X])"
        using assms(1) unfolding univ_poly_def polynomial_def by auto
    thus ?thesis
    using assms unfolding over_def transcendental_def by (metis inj_on_subset)
qed
corollary (in ring) algebraic_mono:
    assumes "K \subseteq K'" "(algebraic over K) x" shows "(algebraic over K')
x"
    using transcendental_mono[OF assms(1)] assms(2) unfolding over_def by
blast
lemma (in domain) zero_is_algebraic:
    assumes "subring K R" shows "(algebraic over K) 0"
    using algebraicI[OF var_closed(1) [OF assms]] unfolding var_def by auto
lemma (in domain) algebraic_self:
    assumes "subring K R" and "k \in K" shows "(algebraic over K) k"
proof (rule algebraicI[of "[ 1, \ominus k ]"])
    show "[ 1, \ominus k ] \in carrier (K [X])" and "[ 1, \ominus k ] \not= []"
        using subringE(2-3,5) [OF assms(1)] assms(2) unfolding univ_poly_def
polynomial_def by auto
    have "k \in carrier R"
        using subringE(1) [OF assms(1)] assms(2) by auto
    thus "eval [ 1, \ominus k ] k = 0"
        by (auto, algebra)
qed
lemma (in domain) ker_diff_carrier:
    assumes "subring K R"
    shows "a_kernel (K[X]) R ( }\lambda\textrm{p}.\mp@code{eval p x) \not= carrier (K [X])"
proof -
    have "eval [ 1 ] x = 0" and "[ 1 ] \in carrier (K[X])"
        using subringE(3)[OF assms] unfolding univ_poly_def polynomial_def
by auto
    thus ?thesis
        unfolding a_kernel_def' by blast
qed
```


46.3 Minimal Polynomial

```
lemma (in domain) minimal_polynomial_is_unique:
    assumes "subfield K R" and "x \in carrier R" "(algebraic over K) x"
    shows "\exists!p \in carrier (K[X]). pirreducible K p ^ eval p x = 0 ^ lead_coeff
p = 1"
        (is "\exists!p. ?minimal_poly p")
proof -
    interpret UP: principal_domain "K[X]"
        using univ_poly_is_principal[OF assms(1)] .
```

```
    let ?ker_gen = " \p. p \in carrier (K[X]) ^ pirreducible K p ^ lead_coeff
p = 1 ^
                    a_kernel (K[X]) R (\lambdap. eval p x) = PIdl K[x] p'
    obtain p where p: "?ker_gen p" and unique: "^q. ?ker_gen q \Longrightarrow q =
p"
            using exists_unique_pirreducible_gen[OF assms(1) eval_ring_hom[OF
    _ assms(2)]
                algebraic_imp_non_trivial_ker[OF _ assms(2-3)]
                ker_diff_carrier] subfieldE(1) [OF assms(1)] by auto
    hence "?minimal_poly p"
        using UP.cgenideal_self p unfolding a_kernel_def' by auto
    moreover have "\q. ?minimal_poly q \Longrightarrow q = p"
    proof -
        fix q assume q: "?minimal_poly q"
        then have "q \in PIdl_}\mp@subsup{M}{[X] p"}{
            using p unfolding a_kernel_def' by auto
    hence "p ~
            using cgenideal_pirreducible[OF assms(1)] p q by simp
    hence "a_kernel (K[X]) R ( }\lambda\textrm{p}\mathrm{ . eval p x) = PIdl}\mp@subsup{\textrm{K}}{[X]}{\prime}\mp@subsup{q}{"}{\prime
                using UP.associated_iff_same_ideal q p by simp
    thus "q = p"
                using unique q by simp
    qed
    ultimately show ?thesis by blast
qed
lemma (in domain) IrrE:
    assumes "subfield K R" and "x \in carrier R" "(algebraic over K) x"
    shows "Irr K x \in carrier (K[X])" and "pirreducible K (Irr K x)"
        and "lead_coeff (Irr K x) = 1" and "eval (Irr K x) x = 0"
    using theI'[OF minimal_polynomial_is_unique[OF assms]] unfolding Irr_def
by auto
lemma (in domain) Irr_generates_ker:
    assumes "subfield K R" and "x \in carrier R" "(algebraic over K) x"
    shows "a_kernel (K[X]) R ( \lambdap. eval p x) = PIdl_LX] (Irr K x)"
proof -
    obtain q
        where q: "q \in carrier (K[X])" "pirreducible K q"
            and ker: "a_kernel (K[X]) R (\lambdap. eval p x) = PIdl K[x] q"
        using exists_unique_pirreducible_gen[OF assms(1) eval_ring_hom[OF
    assms(2)]
                    algebraic_imp_non_trivial_ker[OF _ assms(2-3)]
                    ker_diff_carrier] subfieldE(1) [OF assms(1)] by auto
    have "Irr K x \in PIdl 
        using IrrE(1,4)[OF assms] ker unfolding a_kernel_def' by auto
    thus ?thesis
```

using cgenideal_pirreducible[OF assms(1) q(1-2) $\operatorname{IrrE}(2)$ [OF assms]]
q(1) $\operatorname{IrrE}(1)$ [OF assms]
cring.associated_iff_same_ideal[0F univ_poly_is_cring [OF subfieldE(1) [OF
assms(1)]]
unfolding ker
by simp
qed
lemma (in domain) Irr_minimal:
assumes "subfield K R" and "x \in carrier R" "(algebraic over K) x" and "p \in carrier ($K[X]$)" "eval $p x=0 "$ shows "(Irr K x) pdivides
p"
proof -
interpret UP: principal_domain "K [X]"
using univ_poly_is_principal[0F assms(1)].
have " $\mathrm{p} \in \mathrm{PIdl}_{\mathrm{K}[\mathrm{X}]}(\operatorname{Irr} \mathrm{K} \mathrm{x})$ "
using Irr_generates_ker[0F assms(1-3)] assms(4-5) unfolding a_kernel_def'
by auto
hence "(Irr K x) divides ${ }_{K}[\mathrm{X}] \mathrm{p}$ "
using UP.to_contain_is_to_divide $\operatorname{IrrE}(1)$ [OF assms(1-3)]
by (meson UP.cgenideal_ideal UP.cgenideal_minimal assms(4))
thus ?thesis
unfolding pdivides_iff_shell[OF assms(1) $\operatorname{IrrE}(1)[0 F \operatorname{assms}(1-3)]$ assms(4)]
qed
lemma (in domain) rupture_of_Irr:
assumes "subfield K R" and "x \in carrier R" "(algebraic over K) x" shows "field (Rupt K (Irr K x))"
using rupture_is_field_iff_pirreducible[0F assms(1)] IrrE(1-2) [OF assms]
by simp

46.4 Simple Extensions

lemma (in ring) simple_extension_consistent:
assumes "subring K R" shows "ring.simple_extension (R | carrier :=
K D) = simple_extension"
proof -
interpret K : ring " R (carrier := K |)"
using subring_is_ring[0F assms] .
have " $\bigwedge K^{\prime} \mathrm{x} . \mathrm{K} . \operatorname{simple_ extension~} \mathrm{K}$ ' $\mathrm{x} \subseteq$ simple_extension K' x"
proof
fix K^{\prime} x a show "a \in K.simple_extension $K^{\prime} x \Longrightarrow a \in$ simple_extension
K' x "
by (induction rule: K.simple_extension.induct) (auto simp add: simple_extension.lin)
qed
moreover

```
    have "\K' x. simple_extension K' x \subseteq K.simple_extension K' x"
    proof
        fix K' x a assume a: "a \in simple_extension K' x" thus "a \in K.simple_extension
        K' x"
            using K.simple_extension.zero K.simple_extension.lin
            by (induction rule: simple_extension.induct) (simp)+
    qed
    ultimately show ?thesis by blast
qed
lemma (in ring) mono_simple_extension:
    assumes "K \subseteq K'" shows "simple_extension K x \subseteq simple_extension K'
x"
proof
    fix a assume "a \in simple_extension K x" thus "a \in simple_extension
K' x"
    proof (induct a rule: simple_extension.induct, simp)
        case lin thus ?case using simple_extension.lin assms by blast
    qed
qed
lemma (in ring) simple_extension_incl:
    assumes "K \subseteq carrier R" and "x \in carrier R" shows "K \subseteq simple_extension
K x"
proof
    fix k assume "k \in K" thus "k \in simple_extension K x"
        using simple_extension.lin[OF simple_extension.zero, of k K x] assms
by auto
qed
lemma (in ring) simple_extension_mem:
    assumes "subring K R" and "x \in carrier R" shows "x \in simple_extension
K x"
proof -
    have "1 \in simple_extension K x"
        using simple_extension_incl[OF _ assms(2)] subringE(1,3)[OF assms(1)]
by auto
    thus ?thesis
            using simple_extension.lin[OF _ subringE(2)[OF assms(1)], of 1 x]
assms(2) by auto
qed
lemma (in ring) simple_extension_carrier:
    assumes "x \in carrier R" shows "simple_extension (carrier R) x = carrier
R"
proof
    show "carrier R \subseteq simple_extension (carrier R) x"
        using simple_extension_incl[OF _ assms] by auto
next
```

```
    show "simple_extension (carrier R) x \subseteq carrier R"
    proof
        fix a assume "a \in simple_extension (carrier R) x" thus "a \in carrier
R"
        by (induct a rule: simple_extension.induct) (auto simp add: assms)
    qed
qed
lemma (in ring) simple_extension_in_carrier:
    assumes "K \subseteq carrier R" and "x \in carrier R" shows "simple_extension
K x \subseteq carrier R"
    using mono_simple_extension[OF assms(1), of x] simple_extension_carrier [OF
assms(2)] by auto
lemma (in ring) simple_extension_subring_incl:
    assumes "subring K' R" and "K \subseteq K'" "x G K'" shows "simple_extension
K x \subseteq K'"
    using ring.simple_extension_in_carrier[OF subring_is_ring[OF assms(1)]]
assms(2-3)
    unfolding simple_extension_consistent[OF assms(1)] by simp
lemma (in ring) simple_extension_as_eval_img:
    assumes "K \subseteq carrier R" "x \in carrier R"
    shows "simple_extension K x = (\lambdap. eval p x) ' carrier (K[X])"
proof
    show "simple_extension K x \subseteq ( }\lambda\textrm{p}\mathrm{ . eval p x) ' carrier (K[X])"
    proof
        fix a assume "a \in simple_extension K x" thus "a \in ( }\lambda\textrm{p}. eval p x)
' carrier (K[X])"
        proof (induction rule: simple_extension.induct)
            case zero
            have "polynomial K []" and "eval [] x = 0"
                    unfolding polynomial_def by simp+
            thus ?case
                    unfolding univ_poly_carrier by force
        next
            case (lin k1 k2)
            then obtain p where p: "p \in carrier (K[X])" "polynomial K p" "eval
p x = k1"
            by (auto simp add: univ_poly_carrier)
            hence "set p\subseteq carrier R" and "k2 \in carrier R"
                using assms(1) lin(2) unfolding polynomial_def by auto
            hence "eval (normalize (p @ [ k2 ])) x = k1 \otimes x \oplus k2"
                using eval_append_aux[of p k2 x] eval_normalize[of "p @ [ k2 ]"
x] assms(2) p(3) by auto
            moreover have "set (p @ [k2]) \subseteq K"
                using polynomial_incl[OF p(2)] <k2 \in K> by auto
            then have "local.normalize (p @ [k2]) \in carrier (K [X])"
                using normalize_gives_polynomial univ_poly_carrier by blast
```

```
            ultimately show ?case
                    unfolding univ_poly_carrier by force
        qed
    qed
next
    show "(\lambdap. eval p x) ' carrier (K [X]) \subseteq simple_extension K x"
    proof
        fix a assume "a \in (\lambdap. eval p x) ' carrier (K[X])"
        then obtain p where p: "set p \subseteqK" "eval p x = a"
            using polynomial_incl unfolding univ_poly_def by auto
        thus "a \in simple_extension K x"
        proof (induct "length p" arbitrary: p a)
            case 0 thus ?case
            using simple_extension.zero by simp
        next
            case (Suc n)
            obtain p' k where p: "p = p' @ [ k ]"
                using Suc(2) by (metis list.size(3) nat.simps(3) rev_exhaust)
            hence "a = (eval p' x) \otimes x }\oplus\textrm{k}
                    using eval_append_aux[of p' k x] Suc(3-4) assms unfolding p by
auto
            moreover have "eval p' x \in simple_extension K x"
                    using Suc(1-3) unfolding p by auto
            ultimately show ?case
                using simple_extension.lin Suc(3) unfolding p by auto
            qed
    qed
qed
corollary (in domain) simple_extension_is_subring:
    assumes "subring K R" "x \in carrier R" shows "subring (simple_extension
K x) R"
    using ring_hom_ring.img_is_subring[OF eval_ring_hom[OF assms]
                ring.carrier_is_subring[OF univ_poly_is_ring[OF assms(1)]]]
                simple_extension_as_eval_img[OF subringE(1)[OF assms(1)] assms(2)]
    by simp
corollary (in domain) simple_extension_minimal:
    assumes "subring K R" "x \in carrier R"
    shows "simple_extension K x = \bigcap { K'. subring K' R ^ K\subseteq K' ^ x \in
K' }"
    using simple_extension_is_subring[OF assms] simple_extension_mem[OF
assms]
            simple_extension_incl[OF subringE(1)[OF assms(1)] assms(2)] simple_extension_subrin
    by blast
corollary (in domain) simple_extension_isomorphism:
    assumes "subring K R" "x \in carrier R"
    shows "(K[X]) Quot (a_kernel (K[X]) R (\lambdap. eval p x)) \simeq R | carrier
```

```
:= simple_extension K x |)"
    using ring_hom_ring.FactRing_iso_set_aux[OF eval_ring_hom[OF assms]]
            simple_extension_as_eval_img[OF subringE(1) [OF assms(1)] assms(2)]
    unfolding is_ring_iso_def by auto
corollary (in domain) simple_extension_of_algebraic:
    assumes "subfield K R" and "x \in carrier R" "(algebraic over K) x"
    shows "Rupt K (Irr K x) \simeq R ( carrier := simple_extension K x |)"
    using simple_extension_isomorphism[OF subfieldE(1)[OF assms(1)] assms(2)]
    unfolding Irr_generates_ker[OF assms] rupture_def by simp
corollary (in domain) simple_extension_of_transcendental:
    assumes "subring K R" and "x \in carrier R" "(transcendental over K)
x"
    shows "K[X] \simeq R ( carrier := simple_extension K x |"
    using simple_extension_isomorphism[OF _ assms(2), of K] assms(1)
            ring_iso_trans[OF ring.FactRing_zeroideal(2) [OF univ_poly_is_ring]]
    unfolding transcendental_imp_trivial_ker[OF assms(3)] univ_poly_zero
    by auto
proposition (in domain) simple_extension_subfield_imp_algebraic:
    assumes "subring K R" "x \in carrier R"
    shows "subfield (simple_extension K x) R \Longrightarrow (algebraic over K) x"
proof -
    assume simple_ext: "subfield (simple_extension K x) R" show "(algebraic
over K) x"
    proof (rule ccontr)
            assume "\neg(algebraic over K) x" then have "(transcendental over
K) x"
            unfolding over_def by simp
            then obtain h where h: "h \in ring_iso (R | carrier := simple_extension
K x \) (K[X])"
            using ring_iso_sym[OF univ_poly_is_ring simple_extension_of_transcendental]
assms
            unfolding is_ring_iso_def by blast
            then interpret Hom: ring_hom_ring "R | carrier := simple_extension
K x |)" "K[X]" h
            using subring_is_ring[OF simple_extension_is_subring[OF assms]]
                    univ_poly_is_ring[OF assms(1)] assms h
            by (auto simp add: ring_hom_ring_def ring_hom_ring_axioms_def ring_iso_def)
    have "field (K[X])"
            using field.ring_iso_imp_img_field[OF subfield_iff(2)[OF simple_ext]
h]
            unfolding Hom.hom_one Hom.hom_zero by simp
            moreover have "\neg field (K[X])"
            using univ_poly_not_field[OF assms(1)].
            ultimately show False by simp
        qed
qed
```

```
proposition (in domain) simple_extension_is_subfield:
    assumes "subfield K R" "x \in carrier R"
    shows "subfield (simple_extension K x) R \longleftrightarrow (algebraic over K) x"
proof
    assume alg: "(algebraic over K) x"
    then obtain h where h: "h \in ring_iso (Rupt K (Irr K x)) (R | carrier
:= simple_extension K x |)"
        using simple_extension_of_algebraic[OF assms] unfolding is_ring_iso_def
by blast
    have rupt_field: "field (Rupt K (Irr K x))" and "ring (R ( carrier
:= simple_extension K x |)"
        using subring_is_ring[OF simple_extension_is_subring[OF subfieldE(1)]]
            rupture_of_Irr[OF assms alg] assms by simp+
    then interpret Hom: ring_hom_ring "Rupt K (Irr K x)" "R | carrier :=
simple_extension K x D" h
        using h cring.axioms(1) [OF domain.axioms(1)[OF field.axioms(1)]]
        by (auto simp add: ring_hom_ring_def ring_hom_ring_axioms_def ring_iso_def)
    show "subfield (simple_extension K x) R"
        using field.ring_iso_imp_img_field[OF rupt_field h] subfield_iff(1)[0F
simple_extension_in_carrier[OF subfieldE(3)[OF assms(1)] assms(2)]]
        by simp
next
    assume simple_ext: "subfield (simple_extension K x) R" thus "(algebraic
over K) x"
        using simple_extension_subfield_imp_algebraic[OF subfieldE(1)[OF assms(1)]
assms(2)] by simp
qed
```


46.5 Link between dimension of K-algebras and algebraic extensions

lemma (in domain) exp_base_independent:
assumes "subfield K R" "x \in carrier R" "(algebraic over K) x"
shows "independent K (exp_base x (degree (Irr K x)))"
proof -
have " $\wedge \mathrm{n} . \mathrm{n} \leq$ degree $(\operatorname{Irr} \mathrm{K} \mathrm{x}) \Longrightarrow$ independent $\mathrm{K}(\exp$ base x n$)$ "
proof -
fix n show $" n \leq$ degree ($\operatorname{Irr} \mathrm{K} x$) \Longrightarrow independent K (exp_base x) "
proof (induct n , simp add: exp_base_def)
case (Suc n)
have "x [^] n $\notin \operatorname{Span} K(\exp$ base x n)"
proof (rule ccontr)

then obtain a Ks
where Ks: "a $\in K-\{0$ \}" "set $K s \subseteq K "$ "length $K s=n "$ "combine
(a \# Ks) (exp_base x (Suc n)) = 0"
using Span_mem_imp_non_trivial_combine[0F assms(1) exp_base_closed[0F

```
assms(2), of n]]
            by (auto simp add: exp_base_def)
            hence "eval (a # Ks) x = 0"
                using combine_eq_eval by (auto simp add: exp_base_def)
            moreover have "(a # Ks) \in carrier (K[X]) - { [] }"
            unfolding univ_poly_def polynomial_def using Ks(1-2) by auto
            ultimately have "degree (Irr K x) \leq n"
            using pdivides_imp_degree_le[OF subfieldE(1) [OF assms(1)]
                IrrE(1)[OF assms] _ _ Irr_minimal[OF assms, of "a # Ks"]]
Ks(3) by auto
            from <Suc n \leq degree (Irr K x) > and this show False by simp
            qed
            thus ?case
                            using independent.li_Cons assms(2) Suc by (auto simp add: exp_base_def)
        qed
    qed
    thus ?thesis
        by simp
qed
lemma (in ring) Span_eq_eval_img:
    assumes "subfield K R" "x \in carrier R"
    shows "Span K (exp_base x n) = ( \lambdap. eval p x) ' { p f carrier (K[X]).
length p \leq n }"
        (is "?Span = ?eval_img")
proof
    show "?Span \subseteq ?eval_img"
    proof
            fix u assume "u \in Span K (exp_base x n)"
            then obtain Ks where Ks: "set Ks \subseteq K" "length Ks = n" "u = combine
Ks (exp_base x n)"
            using Span_eq_combine_set_length_version[OF assms(1) exp_base_closed[0F
assms(2)]]
                by (auto simp add: exp_base_def)
            hence "u = eval (normalize Ks) x"
                using combine_eq_eval eval_normalize[OF _ assms(2)] subfieldE(3)[OF
assms(1)] by auto
            moreover have "normalize Ks \in carrier (K[X])"
                using normalize_gives_polynomial[OF Ks(1)] unfolding univ_poly_def
by auto
            moreover have "length (normalize Ks) \leq n"
                using normalize_length_le[of Ks] Ks(2) by auto
            ultimately show "u \in ?eval_img" by auto
    qed
next
    show "?eval_img \subseteq ?Span"
    proof
        fix u assume "u \in ?eval_img"
        then obtain p where p: "p \in carrier (K[X])" "length p \leq n" "u =
```

```
eval p x"
        by blast
    hence "combine p (exp_base x (length p)) = u"
        using combine_eq_eval by auto
    moreover have set_p: "set p \subseteqK"
        using polynomial_incl[of K p] p(1) unfolding univ_poly_carrier by
auto
    hence "set p\subseteq carrier R"
        using subfieldE(3) [OF assms(1)] by auto
    moreover have "drop (n - length p) (exp_base x n) = exp_base x (length
p)"
        using p(2) drop_exp_base by auto
    ultimately have "combine ((replicate (n - length p) 0) @ p) (exp_base
x n) = u"
        using combine_prepend_replicate[OF _ exp_base_closed[OF assms(2),
of n]] by auto
    moreover have "set ((replicate (n - length p) 0) @ p) \subseteq K"
        using subringE(2) [OF subfieldE(1) [OF assms(1)]] set_p by auto
    ultimately show "u \in ?Span"
        using Span_eq_combine_set[OF assms(1) exp_base_closed[OF assms(2),
of n]] by blast
    qed
qed
lemma (in domain) Span_exp_base:
    assumes "subfield K R" "x \in carrier R" "(algebraic over K) x"
    shows "Span K (exp_base x (degree (Irr K x))) = simple_extension K x"
    unfolding simple_extension_as_eval_img[OF subfieldE(3)[OF assms(1)]
assms(2)]
                    Span_eq_eval_img[OF assms(1-2)]
proof (auto)
    interpret UP: principal_domain "K[X]"
            using univ_poly_is_principal[OF assms(1)] .
    note hom_simps = ring_hom_memE[OF eval_is_hom[OF subfieldE(1)[OF assms(1)]
assms(2)]]
    fix p assume p: "p \in carrier (K[X])"
    have Irr: "Irr K x \in carrier (K[X])" "Irr K x \not= []"
        using IrrE(1-2)[OF assms] unfolding ring_irreducible_def univ_poly_zero
by auto
    then obtain q r
        where q: "q \in carrier (K[X])" and r: "r f carrier (K[X])"
                and dvd: "p = Irr K x * 有 [x] q }\mp@subsup{\oplus}{K [x] r" "r = [] V degree r < degree}{
(Irr K x)"
    using subfield_long_division_theorem_shell[OF assms(1) p Irr(1)] un-
folding univ_poly_zero by auto
    hence "eval p x = (eval (Irr K x) x) \otimes (eval q x) }\oplus(eval r x)"
    using hom_simps(2-3) Irr(1) by simp
    hence "eval p x = eval r x"
```

using hom_simps(1) q r unfolding $\operatorname{IrrE}(4)$ [OF assms] by simp
moreover have "length r < length (Irr K x)"
using dvd(2) $\operatorname{Irr}(2)$ by auto
ultimately
show "eval $p \mathrm{x} \in(\lambda \mathrm{p}$. local.eval $\mathrm{p} x$) ' \{ $\mathrm{p} \in \operatorname{carrier~(K~[X]).~length~}$
$\mathrm{p} \leq$ length (Irr K x) - Suc 0 \}"
using r by auto
qed
corollary (in domain) dimension_simple_extension:
assumes "subfield K R" "x \in carrier R" "(algebraic over K) x"
shows "dimension (degree (Irr K x)) K (simple_extension K x)"
using dimension_independent[OF exp_base_independent[OF assms]] Span_exp_base[OF
assms]
by (simp add: exp_base_def)
lemma (in ring) finite_dimension_imp_algebraic:
assumes "subfield K R" "subring F R" and "finite_dimension K F"
shows $" x \in F \Longrightarrow$ (algebraic over K) x "
proof -
let ?Us $=$ " λ n. map $(\lambda i . x[\wedge] i)(r e v[0 . .<$ Suc n])"
assume $\mathrm{x}: ~ " \mathrm{x} \in \mathrm{F}$ " then have in_carrier: " $\mathrm{x} \in$ carrier R " using subringE[OF assms(2)] by auto
obtain n where n : "dimension n K F"
using assms(3) by auto
have set_Us: "set (?Us n) \subseteq F"
using x subringE $(3,6)$ [OF assms (2)] by (induct n) (auto)
hence "set (?Us n) \subseteq carrier R"
using subringE (1) [OF assms (2)] by auto
moreover have "dependent K (?Us n)"
using independent_length_le_dimension[OF assms(1) n _ set_Us] by auto
ultimately
obtain Ks where Ks: "length Ks = Suc n" "combine Ks (?Us n) = 0" "set
$\mathrm{Ks} \subseteq \mathrm{K}$ " "set $\mathrm{Ks} \neq\{0$ \}"
using dependent_imp_non_trivial_combine[0F assms(1), of "?Us n"] by
auto
have "set Ks \subseteq carrier R"
using subring_props(1) [OF assms(1)] Ks(3) by auto
hence "eval (normalize Ks) $\mathrm{x}=0$ "
using combine_eq_eval[of Ks] eval_normalize[0F _ in_carrier] Ks(1-2)
by (simp add: exp_base_def)
moreover have "normalize $\mathrm{Ks}=[] \Longrightarrow$ set $\mathrm{Ks} \subseteq\{0$ \}"
by (induct Ks) (auto, meson list.discI, metis all_not_in_conv list.discI list.sel(3) singletonD
subset_singletonD)
hence "normalize Ks $\neq[]$ "
using Ks(1,4) by (metis list.size(3) nat.distinct(1) set_empty subset_singleton_iff)
moreover have "normalize Ks \in carrier (K[X])"

```
    using normalize_gives_polynomial[OF Ks(3)] unfolding univ_poly_def
by auto
    ultimately show ?thesis
        using algebraicI by auto
qed
corollary (in domain) simple_extension_dim:
    assumes "subfield K R" "x \in carrier R" "(algebraic over K) x"
    shows "(dim over K) (simple_extension K x) = degree (Irr K x)"
    using dimI[OF assms(1) dimension_simple_extension[OF assms]] .
corollary (in domain) finite_dimension_simple_extension:
    assumes "subfield K R" "x \in carrier R"
    shows "finite_dimension K (simple_extension K x) \longleftrightarrow (algebraic over
K) x"
    using finite_dimensionI[OF dimension_simple_extension[OF assms]]
        finite_dimension_imp_algebraic[OF _ simple_extension_is_subring[OF
subfieldE(1)]]
        simple_extension_mem[OF subfieldE(1)] assms
    by auto
```


46.6 Finite Extensions

```
lemma (in ring) finite_extension_consistent:
    assumes "subring K R" shows "ring.finite_extension (R | carrier :=
K D) = finite_extension"
proof -
    have "\K' xs. ring.finite_extension (R | carrier := K D) K' xs = finite_extension
K' xs"
    proof -
            fix K' xs show "ring.finite_extension (R | carrier := K |) K' xs =
finite_extension K' xs"
            using ring.finite_extension.simps[OF subring_is_ring[OF assms]]
                simple_extension_consistent [OF assms] by (induct xs) (auto)
    qed
    thus ?thesis by blast
qed
lemma (in ring) mono_finite_extension:
    assumes "K \subseteq K'" shows "finite_extension K xs \subseteq finite_extension K'
xs"
    using mono_simple_extension assms by (induct xs) (auto)
lemma (in ring) finite_extension_carrier:
    assumes "set xs \subseteqcarrier R" shows "finite_extension (carrier R) xs
= carrier R"
    using assms simple_extension_carrier by (induct xs) (auto)
lemma (in ring) finite_extension_in_carrier:
```

assumes " $K \subseteq$ carrier R" and "set xs \subseteq carrier R" shows "finite_extension K xs \subseteq carrier R"
using assms simple_extension_in_carrier by (induct xs) (auto)
lemma (in ring) finite_extension_subring_incl:
assumes "subring K' R" and "K \subseteq K'" "set xs \subseteq K'" shows "finite_extension K xs $\subseteq K$ K"
using ring.finite_extension_in_carrier[0F subring_is_ring[0F assms(1)]] assms (2-3)
unfolding finite_extension_consistent[0F assms(1)] by simp
lemma (in ring) finite_extension_incl_aux:
assumes "K \subseteq carrier R " and "x carrier R" "set xs \subseteq carrier R"
shows "finite_extension K xs \subseteq finite_extension K (x \# xs)"
using simple_extension_incl[OF finite_extension_in_carrier[0F assms $(1,3)]$
assms(2)] by simp
lemma (in ring) finite_extension_incl:
assumes "K \subseteq carrier R " and "set xs \subseteq carrier R " shows " $K \subseteq$ finite_extension
K xs"
using finite_extension_incl_aux[0F assms(1)] assms(2) by (induct xs)
(auto)
lemma (in ring) finite_extension_as_eval_img:
assumes " $K \subseteq$ carrier R " and "x \in carrier R " "set $x s \subseteq$ carrier R"
shows "finite_extension $K(x \quad \#$ xs) $=(\lambda p$. eval p x) ' carrier ((finite_extension
K xs) [X])"
using simple_extension_as_eval_img[OF finite_extension_in_carrier [OF
assms(1,3)] assms(2)] by simp
lemma (in domain) finite_extension_is_subring:
assumes "subring K R" "set xs \subseteq carrier R" shows "subring (finite_extension
K xs) R"
using assms simple_extension_is_subring by (induct xs) (auto)
corollary (in domain) finite_extension_mem:
assumes subring: "subring K R"
shows "set xs \subseteq carrier $R \Longrightarrow$ set xs \subseteq finite_extension K xs"
proof (induct xs)
case Nil
then show ?case by simp
next
case (Cons a xs)
from Cons(2) have a: "a \in carrier R" and xs: "set xs \subseteq carrier R"
by auto
show ?case
proof
fix x assume " $x \in$ set (a \# xs)"
then consider " $\mathrm{x}=\mathrm{a}$ " | "x set xs " by auto

```
        then show "x f finite_extension K (a # xs)"
        proof cases
            case 1
            with a have "x \in carrier R" by simp
            with xs have "x \in finite_extension K (x # xs)"
                using simple_extension_mem[OF finite_extension_is_subring[OF subring]]
by simp
            with 1 show ?thesis by simp
        next
            case 2
            with Cons have *: "x \in finite_extension K xs" by auto
            from a xs have "finite_extension K xs \subseteq finite_extension K (a #
xs)"
            by (rule finite_extension_incl_aux[OF subringE(1) [OF subring]])
        with * show ?thesis by auto
        qed
    qed
qed
corollary (in domain) finite_extension_minimal:
    assumes "subring K R" "set xs \subseteq carrier R"
    shows "finite_extension K xs = \bigcap { K'. subring K' R ^ K \subseteq K' ^ set
xs \subseteq K' }"
    using finite_extension_is_subring[OF assms] finite_extension_mem[OF
assms]
            finite_extension_incl[OF subringE(1) [OF assms(1)] assms(2)] finite_extension_subrin
    by blast
corollary (in domain) finite_extension_same_set:
    assumes "subring K R" "set xs \subseteqcarrier R" "set xs = set ys"
    shows "finite_extension K xs = finite_extension K ys"
    using finite_extension_minimal[OF assms(1)] assms(2-3) by auto
```

The reciprocal is also true, but it is more subtle.

```
proposition (in domain) finite_extension_is_subfield:
    assumes "subfield K R" "set xs \subseteq carrier R"
    shows "(\x. x \in set xs \Longrightarrow (algebraic over K) x) \Longrightarrow subfield (finite_extension
K xs) R"
    using simple_extension_is_subfield algebraic_mono assms
    by (induct xs) (auto, metis finite_extension.simps finite_extension_incl
subring_props(1))
proposition (in domain) finite_extension_finite_dimension:
    assumes "subfield K R" "set xs \subseteq carrier R"
    shows "(\bigwedgex. x \in set xs \Longrightarrow (algebraic over K) x) \Longrightarrow finite_dimension
K (finite_extension K xs)"
    and "finite_dimension K (finite_extension K xs) \Longrightarrow (\x. x \in set
xs \Longrightarrow (algebraic over K) x)"
proof -
```

```
    show "finite_dimension K (finite_extension K xs) \Longrightarrow(\bigwedgex. x f set
xs \Longrightarrow (algebraic over K) x)"
    using finite_dimension_imp_algebraic[OF assms(1)
        finite_extension_is_subring[OF subfieldE(1)[OF assms(1)] assms(2)]]
        finite_extension_mem[OF subfieldE(1)[OF assms(1)] assms(2)]
by auto
next
    show "(\bigwedgex. x < set xs \Longrightarrow (algebraic over K) x) \Longrightarrow finite_dimension
K (finite_extension K xs)"
            using assms(2)
    proof (induct xs, simp add: finite_dimensionI[OF dimension_one[OF assms(1)]])
            case (Cons x xs)
            hence "finite_dimension K (finite_extension K xs)"
                by auto
            moreover have "(algebraic over (finite_extension K xs)) x"
                using algebraic_mono[OF finite_extension_incl[OF subfieldE(3)[OF
assms(1)]]] Cons(2-3) by auto
            moreover have "subfield (finite_extension K xs) R"
                using finite_extension_is_subfield[OF assms(1)] Cons(2-3) by auto
            ultimately show ?case
                using telescopic_base_dim(1) [OF assms(1) _ _
                        finite_dimensionI[OF dimension_simple_extension, of _ x]]
Cons(3) by auto
    qed
qed
corollary (in domain) finite_extesion_mem_imp_algebraic:
    assumes "subfield K R" "set xs \subseteq carrier R" and "\x. x \in set xs \Longrightarrow
(algebraic over K) x"
    shows "y \in finite_extension K xs \Longrightarrow (algebraic over K) y"
    using finite_dimension_imp_algebraic[0F assms(1)
        finite_extension_is_subring[OF subfieldE(1)[OF assms(1)] assms(2)]]
        finite_extension_finite_dimension(1) [OF assms(1-2)] assms(3) by
auto
corollary (in domain) simple_extesion_mem_imp_algebraic:
    assumes "subfield K R" "x \in carrier R" "(algebraic over K) x"
    shows "y \in simple_extension K x \Longrightarrow (algebraic over K) y"
    using finite_extesion_mem_imp_algebraic[OF assms(1), of "[ x ] "] assms(2-3)
by auto
```


46.7 Arithmetic of algebraic numbers

```
We show that the set of algebraic numbers of a field over a subfield \(K\) is a subfield itself.
lemma (in field) subfield_of_algebraics:
assumes "subfield K R" shows "subfield \(\{x \in\) carrier R. (algebraic
over K) x \} R"
proof -
```

```
    let ?set_of_algebraics = "{ x \in carrier R. (algebraic over K) x }"
    show ?thesis
    proof (rule subfieldI'[OF subringI])
        show "?set_of_algebraics \subseteq carrier R" and "1 \in ?set_of_algebraics"
        using algebraic_self[OF _ subringE(3)] subfieldE(1)[OF assms(1)]
by auto
    next
        fix x y assume x: "x \in ?set_of_algebraics" and y: "y \in ?set_of_algebraics"
        have " }\ominus\textrm{x}\in\mathrm{ simple_extension K x"
            using subringE(5) [OF simple_extension_is_subring[OF subfieldE(1)]]
                    simple_extension_mem[OF subfieldE(1)] assms(1) x by auto
        thus "\ominus x \in ?set_of_algebraics"
            using simple_extesion_mem_imp_algebraic[OF assms] x by auto
        have "x \oplus y f finite_extension K [ x, y ]" and "x \otimes y f finite_extension
K [ x, y ]"
            using subringE(6-7)[OF finite_extension_is_subring[OF subfieldE(1) [OF
assms(1)]], of "[ x, y ]"]
                            finite_extension_mem[OF subfieldE(1)[OF assms(1)], of "[ x,
y ]"] x y by auto
    thus "x \oplus y \in ?set_of_algebraics" and "x \otimes y \in ?set_of_algebraics"
        using finite_extesion_mem_imp_algebraic[OF assms, of "[ x, y ]"]
x y by auto
    next
    fix z assume z: "z \in ?set_of_algebraics - { 0 }"
    have "inv z \in simple_extension K z"
        using subfield_m_inv(1)[of "simple_extension K z"]
                        simple_extension_is_subfield[OF assms, of z]
                        simple_extension_mem[OF subfieldE(1)] assms(1) z by auto
            thus "inv z G ?set_of_algebraics"
        using simple_extesion_mem_imp_algebraic[OF assms] field_Units z
by auto
    qed
qed
end
theory Algebraic_Closure
    imports Indexed_Polynomials Polynomial_Divisibility Finite_Extensions
begin
```


47 Algebraic Closure

47.1 Definitions

```
inductive iso_incl :: "'a ring => 'a ring = bool" (infixl "§" 65) for A
B
    where iso_inclI [intro]: "id \in ring_hom A B \Longrightarrow iso_incl A B"
definition law_restrict :: "('a, 'b) ring_scheme # 'a ring"
    where "law_restrict R \equiv (ring.truncate R)
                            | mult := ( }\lambda\textrm{a}\in\mathrm{ carrier R. }\lambda\textrm{b}\in\mathrm{ carrier R. a }\mp@subsup{\otimes}{\textrm{R}}{} b)
                        add := ( }\lambda\textrm{a}\in\mathrm{ carrier R. }\lambda\textrm{b}\in\mathrm{ carrier R. a }\mp@subsup{\oplus}{\textrm{R}}{}\textrm{b})|
definition (in ring) \sigma :: "'a list = ((('a list x nat) multiset) => 'a)
list"
    where "\sigma P = map indexed_const P"
definition (in ring) extensions :: "((('a list }\times\mathrm{ nat) multiset) # 'a)
ring set"
    where "extensions \equiv { L - such that.
                                    — i (field L) ^
                                    - ii (indexed_const \in ring_hom R L) ^
                                    - iii ( }\forall\mathcal{P}\in\mathrm{ carrier L. carrier_coeff }\mathcal{P})
                                    - iv ( }\forall\mathcal{P}\in\mathrm{ carrier L. }\forall\textrm{P}\in\mathrm{ carrier (poly_ring R). }\forall\textrm{i}
                                     index_free \mathcal{P (P, i) }\longrightarrow
                                    \mathcal{X}
= 0}\mp@subsup{0}{L}{})\mp@subsup{}}{}{\prime\prime
```

abbreviation (in ring) restrict_extensions : : "(('a list \times nat) multiset)
\Rightarrow 'a) ring set" (" \mathcal{S} ")
where " $\mathcal{S} \equiv$ law_restrict ' extensions"

47.2 Basic Properties

```
lemma law_restrict_carrier: "carrier (law_restrict R) = carrier R"
    by (simp add: law_restrict_def ring.defs)
lemma law_restrict_one: "one (law_restrict R) = one R"
    by (simp add: law_restrict_def ring.defs)
lemma law_restrict_zero: "zero (law_restrict R) = zero R"
    by (simp add: law_restrict_def ring.defs)
lemma law_restrict_mult: "monoid.mult (law_restrict R) = (\lambdaa \in carrier
R. \lambdab \in carrier R. a }\mp@subsup{\otimes}{R}{}\mathrm{ b)"
    by (simp add: law_restrict_def ring.defs)
lemma law_restrict_add: "add (law_restrict R) = (\lambdaa \in carrier R. \lambdab
\epsilon carrier R. a }\mp@subsup{\oplus}{\textrm{R}}{}\textrm{b})
    by (simp add: law_restrict_def ring.defs)
```

```
lemma (in ring) law_restrict_is_ring: "ring (law_restrict R)"
    by (unfold_locales) (auto simp add: law_restrict_def Units_def ring.defs,
        simp_all add: a_assoc a_comm m_assoc l_distr r_distr a_lcomm)
lemma (in field) law_restrict_is_field: "field (law_restrict R)"
proof -
    have "comm_monoid_axioms (law_restrict R)"
        using m_comm unfolding comm_monoid_axioms_def law_restrict_carrier
law_restrict_mult by auto
    then interpret L: cring "law_restrict R"
        using cring.intro law_restrict_is_ring comm_monoid.intro ring.is_monoid
by auto
    have "Units R = Units (law_restrict R)"
        unfolding Units_def law_restrict_carrier law_restrict_mult law_restrict_one
by auto
    thus ?thesis
        using L.cring_fieldI unfolding field_Units law_restrict_carrier law_restrict_zero
by simp
qed
lemma law_restrict_iso_imp_eq:
    assumes "id \in ring_iso (law_restrict A) (law_restrict B)" and "ring
A" and "ring B"
    shows "law_restrict A = law_restrict B"
proof -
    have "carrier A = carrier B"
        using ring_iso_memE(5)[OF assms(1)] unfolding bij_betw_def law_restrict_def
by (simp add: ring.defs)
    hence mult: "a \otimeslaw_restrict A b = a \otimeslaw_restrict B b"
        and add: "a \oplus law_restrict A b = a \opluslaw_restrict B b" for a b
        using ring_iso_memE(2-3)[OF assms(1)] unfolding law_restrict_def by
(auto simp add: ring.defs)
    have "monoid.mult (law_restrict A) = monoid.mult (law_restrict B)"
        using mult by auto
    moreover have "add (law_restrict A) = add (law_restrict B)"
        using add by auto
    moreover from <carrier A = carrier B> have "carrier (law_restrict
A) = carrier (law_restrict B)"
        unfolding law_restrict_def by (simp add: ring.defs)
    moreover have "0}\mp@subsup{0}{\mathrm{ law_restrict A }}{}=\mp@subsup{0}{law_restrict B"}{
        using ring_hom_zero[OF _ assms(2-3)[THEN ring.law_restrict_is_ring]]
assms(1)
        unfolding ring_iso_def by auto
    moreover have "1 law_restrict A = 1 law_restrict B"
        using ring_iso_memE(4)[OF assms(1)] by simp
    ultimately show ?thesis by simp
qed
```

```
lemma law_restrict_hom: "h \in ring_hom A B \longleftrightarrow h \in ring_hom (law_restrict
A) (law restrict B)"
proof
    assume "h \in ring_hom A B" thus "h \in ring_hom (law_restrict A) (law_restrict
B)"
    by (auto intro!: ring_hom_memI dest: ring_hom_memE simp: law_restrict_def
ring.defs)
next
    assume h: "h \in ring_hom (law_restrict A) (law_restrict B)" show "h
\epsilon ring_hom A B"
    using ring_hom_memE[OF h] by (auto intro!: ring_hom_memI simp: law_restrict_def
ring.defs)
qed
lemma iso_incl_hom: "A \lesssim B \longleftrightarrow (law_restrict A) \lesssim (law_restrict B)"
    using law_restrict_hom iso_incl.simps by blast
```


47.3 Partial Order

lemma iso_incl_backwards:
assumes "A \lesssim B" shows "id \in ring_hom A B"
using assms by cases
lemma iso_incl_antisym_aux:
assumes "A $\lesssim \mathrm{B}$ " and " $\mathrm{B} \lesssim \mathrm{A}$ " shows "id \in ring_iso A B"
proof -
have hom: "id \in ring_hom A B" "id \in ring_hom B A"
using assms(1-2) [THEN iso_incl_backwards] by auto
thus ?thesis
using hom[THEN ring_hom_memE(1)] by (auto simp add: ring_iso_def bij_betw_def
inj_on_def)
qed
lemma iso_incl_refl: "A § A"
by (rule iso_inclI[OF ring_hom_memI], auto)
lemma iso_incl_trans:
assumes "A \lesssim B" and " $\mathrm{B} \lesssim \mathrm{C}$ " shows " $\mathrm{A} \lesssim \mathrm{C}$ "
using ring_hom_trans[OF assms[THEN iso_incl_backwards]] by auto
lemma (in ring) iso_incl_antisym:
assumes $\mathrm{A} \in \mathcal{S}$ " $\mathrm{B} \in \mathcal{S}$ " and $\mathrm{A} \lesssim \mathrm{B} " \mathrm{~B} \lesssim \mathrm{~A}$ " shows $\mathrm{A}=\mathrm{B} "$
proof -
obtain A' B' :: "(('a list \times nat) multiset \Rightarrow 'a) ring"
where A: "A = law_restrict A'" "ring A'" and B: "B = law_restrict
B'" "ring B'"
using assms(1-2) field.is_ring by (auto simp add: extensions_def)
thus ?thesis
using law_restrict_iso_imp_eq iso_incl_antisym_aux[0F assms(3-4)]
by simp
qed
lemma (in ring) iso_incl_partial_order: "partial_order_on \mathcal{S} (relation_of
(\lesssim) \mathcal{S} "
using iso_incl_refl iso_incl_trans iso_incl_antisym by (rule partial_order_on_relation_of
lemma iso_incle:
assumes "ring A" and "ring B" and "A \lesssim B" shows "ring_hom_ring A
B id"
using iso_incl_backwards [OF assms(3)] ring_hom_ring.intro[0F assms(1-2)]
unfolding symmetric[OF ring_hom_ring_axioms_def] by simp
lemma iso_incl_imp_same_eval:
assumes "ring A" and "ring $\mathrm{B} "$ and $" \mathrm{~A} \lesssim \mathrm{~B}$ " and "a \in carrier $\mathrm{A} "$ and
"set $\mathrm{p} \subseteq$ carrier A"
shows "(ring.eval A) p a = (ring.eval B) p a"
using ring_hom_ring.eval_hom'[OF iso_inclE[OF assms(1-3)] assms(4-5)]
by simp

47.4 Extensions Non Empty

```
lemma (in ring) indexed_const_is_inj: "inj indexed_const"
    unfolding indexed_const_def by (rule inj_onI, metis)
lemma (in ring) indexed_const_inj_on: "inj_on indexed_const (carrier
R)"
    unfolding indexed_const_def by (rule inj_onI, metis)
lemma (in field) extensions_non_empty: "S \not= {}"
proof -
    have "image_ring indexed_const R \in extensions"
    proof (auto simp add: extensions_def)
        show "field (image_ring indexed_const R)"
                using inj_imp_image_ring_is_field[OF indexed_const_inj_on] .
    next
        show "indexed_const \in ring_hom R (image_ring indexed_const R)"
            using inj_imp_image_ring_iso[OF indexed_const_inj_on] unfolding
ring_iso_def by auto
    next
        fix \mathcal{P :: "(('a list }\times nat) multiset) => 'a" and P and i
        assume "\mathcal{P}\in carrier (image_ring indexed_const R)"
        then obtain k where "k \in carrier R" and "\mathcal{P = indexed_const k"}
            unfolding image_ring_carrier by blast
        hence "index_free \mathcal{P (P, i)" for P i}
            unfolding index_free_def indexed_const_def by auto
        thus "\neg index_free \mathcal{P (P, i) \Longrightarrow \mathcal{X}}(\textrm{P}, i)}\in\mathrm{ carrier (image_ring indexed_const
R)"
        and "\neg index_free \mathcal{P (P, i) \Longrightarrow ring.eval (image_ring indexed_const}
```

```
R) (\sigma P) \mathcal{X}
        by auto
    from <k \in carrier R> and <\mathcal{P}= indexed_const k> show "carrier_coeff
P'
        unfolding indexed_const_def carrier_coeff_def by auto
    qed
    thus ?thesis
        by blast
qed
```


47.5 Chains

```
definition union_ring :: "(('a, 'c) ring_scheme) set \(\Rightarrow\) 'a ring" where "union_ring C =
( carrier = (U (carrier ' C)) , monoid.mult \(=\) ( \(\lambda \mathrm{a} \mathrm{b}\). (monoid.mult (SOME R. \(\mathrm{R} \in \mathrm{C} \wedge \mathrm{a} \in\) carrier
\(R \wedge b \in\) carrier \(R\) ) \(a b)\) ),
\[
\text { one }=\text { one }(\text { SOME } R . R \in C) \text {, }
\]
\[
\text { zero = zero (SOME R. R } \in C \text { ), }
\] add \(=\) ( \(\lambda \mathrm{a} \mathrm{b}\). (add (SOME R. \(\mathrm{R} \in \mathrm{C} \wedge \mathrm{a} \in\) carrier \(\mathrm{R} \wedge \mathrm{b}\) ( carrier R) a b)) D"
lemma union_ring_carrier: "carrier (union_ring C) = ( \(\bigcup\) (carrier ' C))" unfolding union_ring_def by simp
```


context

```
fixes C :: "'a ring set"
assumes field_chain: " \(\bigwedge R . R \in C \Longrightarrow\) field \(R "\) and chain: " \(\bigwedge R S\). \(\llbracket R\)
\(\in C ; S \in C \rrbracket \Longrightarrow R \lesssim S \vee S \lesssim R "\)
begin
lemma ring_chain: \(" R \in C \Longrightarrow\) ring \(R "\)
using field.is_ring[0F field_chain] by blast
lemma same_one_same_zero:
assumes \(" R \in C\) " shows "1 \(1_{\text {union_ring } C}=1_{R}\) " and " \(0_{\text {union_ring } C}=0_{R}\) "
proof -
have "1 \(1_{R}=1_{S}\) " if \(R \in C\) " and \(" S \in C\) " for \(R S\)
using ring_hom_one[of id] chain[OF that] unfolding iso_incl.simps
by auto
moreover have \(" 0_{R}=0_{S}\) " if " \(R \in C\) " and " \(S \in C\) " for \(R S\)
using chain [OF that] ring_hom_zero [OF _ ring_chain ring_chain] that
unfolding iso_incl.simps by auto
ultimately have "one (SOME \(R . R \in C\) ) \(=1_{R}\) " and "zero (SOME R. R \(\in C\) )
\(=0_{R}\) "
using assms by (metis (mono_tags) someI)+
thus \(" 1_{\text {union_ring } C}=1_{R}\) " and " \(0_{\text {union_ring } C}=0_{R}\) "
unfolding union_ring_def by auto
```

qed
lemma same_laws:
assumes " $R \in C$ " and "a \in carrier R " and "b \in carrier R "
shows "a $\otimes_{\text {union_ring }} \mathrm{C} b=\mathrm{a} \otimes_{\mathrm{R}} \mathrm{b}$ " and "a $\oplus_{\text {union_ring }} \mathrm{C} b=\mathrm{a} \oplus_{\mathrm{R}} \mathrm{b}$ "
proof -
have $" \mathrm{a} \otimes_{\mathrm{R}} \mathrm{b}=\mathrm{a} \otimes_{\mathrm{S}} \mathrm{b}$ "
if " $R \in C$ " "a \in carrier R " "b \in carrier R " and " $S \in C$ " "a \in carrier
S" "b \in carrier S " for R S
using ring_hom_memE(2) [of id R S] ring_hom_memE(2)[of id S R] that
chain [OF that $(1,4)$]
unfolding iso_incl.simps by auto
moreover have "a $\oplus_{R} b=a \oplus_{S} b "$
if " $R \in C$ " "a \in carrier R " "b \in carrier R " and $" S \in C$ " "a \in carrier
S" "b \in carrier S " for R S
using ring_hom_memE(3)[of id R S] ring_hom_memE(3)[of id S R] that
chain [OF that $(1,4)$]
unfolding iso_incl.simps by auto
ultimately
have "monoid.mult (SOME R. $R \in C \wedge a \in \operatorname{carrier~} R \wedge b \in$ carrier R)
$\mathrm{a} b=\mathrm{a} \otimes_{\mathrm{R}} \mathrm{b}^{\prime \prime}$
and \quad "add (SOME R. $R \in C \wedge a \in \operatorname{carrier~} R \wedge b \in$ carrier R)
$\mathrm{a} b=\mathrm{a} \oplus_{\mathrm{R}} \mathrm{b}{ }^{\prime \prime}$
using assms by (metis (mono_tags, lifting) someI)+
thus "a $\otimes_{\text {union_ring }} \mathrm{c} b=\mathrm{a} \otimes_{\mathrm{R}} \mathrm{b}$ " and "a $\oplus_{\text {union_ring }} \mathrm{C} \quad \mathrm{b}=\mathrm{a} \oplus_{\mathrm{R}} \mathrm{b}$ " unfolding union_ring_def by auto
qed
lemma exists_superset_carrier:
assumes "finite S " and " $S \neq\{ \} "$ and "S \subseteq carrier (union_ring C)"
shows $" \exists R \in C . S \subseteq$ carrier $R "$
using assms
proof (induction, simp)
case (insert s S)
obtain R where R : " $s \in$ carrier R " " $R \in C$ "
using insert(5) unfolding union_ring_def by auto
show ?case
proof (cases)
assume "S = \{\}" thus ?thesis
using R by blast
next
assume "S $\neq\{ \}$ "
then obtain T where $T: ~ " S \subseteq$ carrier T " "T $\in C$ " using insert $(3,5)$ by blast
have "carrier $R \subseteq$ carrier $T \vee$ carrier $T \subseteq$ carrier $R "$
using ring_hom_memE(1)[of id R] ring_hom_memE(1)[of id T] chain[OF $R(2) T(2)]$
unfolding iso_incl.simps by auto
thus ?thesis

```
        using R T by auto
    qed
qed
lemma union_ring_is_monoid:
    assumes "C }={{}" shows "comm_monoid (union_ring C)"
proof
    fix a b c
    assume "a \in carrier (union_ring C)" "b \in carrier (union_ring C)" "c
\epsilon carrier (union_ring C)"
    then obtain R where R: "R G C" "a \in carrier R" "b \in carrier R" "c
\epsilon carrier R"
            using exists_superset_carrier[of "{ a, b, c }"] by auto
    then interpret field R
            using field_chain by simp
    show "a \otimesunion_ring c b \in carrier (union_ring C)"
        using R(1-3) unfolding same_laws(1)[OF R(1-3)] unfolding union_ring_def
by auto
    show "(a \otimesunion_ring C b) \otimesunion_ring c c = a \otimes |nion_ring C (b }\mp@subsup{\otimes}{\mathrm{ union_ring C}}{\mathrm{ C }
c)"
    and "a \otimesunion_ring c b = b \otimesunion_ring c a"
    and "1 union_ring c }\mp@subsup{\otimes}{\mathrm{ union_ring c a = a"}}{\mathrm{ a }
    and "a * union_ring c 1 lunion_ring c = a"
        using same_one_same_zero[OF R(1)] same_laws(1) [OF R(1)] R(2-4) m_assoc
m_comm by auto
next
    show "1union_ring C \in carrier (union_ring C)"
        using ring.ring_simprules(6)[OF ring_chain] assms same_one_same_zero(1)
        unfolding union_ring_carrier by auto
qed
lemma union_ring_is_abelian_group:
    assumes "C \not= {}" shows "cring (union_ring C)"
proof (rule cringI[OF abelian_groupI union_ring_is_monoid[OF assms]])
    fix a b c
    assume "a \in carrier (union_ring C)" "b \in carrier (union_ring C)" "c
\epsilon carrier (union_ring C)"
    then obtain R where R: "R \in C" "a \in carrier R" "b \in carrier R" "c
\epsilon carrier R"
        using exists_superset_carrier[of "{ a, b, c }"] by auto
    then interpret field R
        using field_chain by simp
    show "a \oplus union_ring c b \in carrier (union_ring C)"
            using R(1-3) unfolding same_laws(2) [OF R(1-3)] unfolding union_ring_def
by auto
    show "(a @union_ring c b) \otimesunion_ring c c = (a \otimesunion_ring c c) \oplusunion_ring c
(b & union_ring c c)"
```



```
c)"
```



```
    and "0}0\mathrm{ union_ring c }\mp@subsup{\oplus}{\mathrm{ union_ring c a = a"}}{\mathrm{ a }
    using same_one_same_zero[OF R(1)] same_laws[OF R(1)] R(2-4) l_distr
a_assoc a_comm by auto
    have "\existsa' \in carrier R. a' \oplusunion_ring c a = 0union_ring C"
            using same_laws(2) [OF R(1)] R(2) same_one_same_zero[0F R(1)] by simp
    with <R C C> show " \existsy carrier (union_ring C). y \oplusunion_ring C a
= 0union_ring C"
    unfolding union_ring_carrier by auto
next
    show "0union_ring C G carrier (union_ring C)"
    using ring.ring_simprules(2) [OF ring_chain] assms same_one_same_zero(2)
    unfolding union_ring_carrier by auto
qed
lemma union_ring_is_field :
    assumes "C \not= {}" shows "field (union_ring C)"
proof (rule cring.cring_fieldI[OF union_ring_is_abelian_group[OF assms]])
    have "carrier (union_ring C) - { 0 union_ring C } \subseteq Units (union_ring
C)"
    proof
            fix a assume "a \in carrier (union_ring C) - { 0}\mp@subsup{0}{\mathrm{ union_ring C }"}}{\mathrm{ c }
            hence "a \in carrier (union_ring C)" and "a f= 0
                by auto
            then obtain R where R: "R G C" "a \in carrier R"
                using exists_superset_carrier[of "{ a }"] by auto
            then interpret field R
                using field_chain by simp
            from <a \in carrier R> and <a 吘union_ring C> have "a \in Units R"
                unfolding same_one_same_zero[OF R(1)] field_Units by auto
            hence " \existsa' \in carrier R. a' \otimesunion_ring c a = 1 union_ring c ^ a \otimesunion_ring C
a' = 1 1union_ring C"
            using same_laws[OF R(1)] same_one_same_zero[OF R(1)] R(2) unfold-
ing Units_def by auto
            with <R G C> and <a \in carrier (union_ring C) > show "a \in Units
(union_ring C)"
            unfolding Units_def union_ring_carrier by auto
    qed
    moreover have " }\mp@subsup{0}{\mathrm{ union_ring C }\not= Units (union_ring C)"}{
    proof (rule ccontr)
            assume "\neg 0}\mp@subsup{\mathbf{union_ring c }\not=\mathrm{ Units (union_ring C)"}}{}{\prime
            then obtain a where a: "a \in carrier (union_ring C)" "a \otimesunion_ring C
0
            unfolding Units_def by auto
            then obtain R where R: "R G C" "a \in carrier R"
                using exists_superset_carrier[of "{ a }"] by auto
```

```
        then interpret field R
            using field_chain by simp
    have "1}\mp@subsup{1}{R}{}=\mp@subsup{0}{R}{}
        using a R same_laws(1) [OF R(1)] same_one_same_zero[OF R(1)] by auto
        thus False
        using one_not_zero by simp
    qed
    hence "Units (union_ring C) \subseteq carrier (union_ring C) - { 0 union_ring C
}"
    unfolding Units_def by auto
    ultimately show "Units (union_ring C) = carrier (union_ring C) - { 0 union_ring C
}"
    by simp
qed
lemma union_ring_is_upper_bound:
    assumes "R \in C" shows "R \lesssim union_ring C"
    using ring_hom_memI[of R id "union_ring C"] same_laws[of R] same_one_same_zero[of
R] assms
    unfolding union_ring_carrier by auto
end
```


47.6 Zorn

lemma (in ring) exists_core_chain:
assumes "C \in Chains (relation_of (\lesssim) \mathcal{S})" obtains C' where "C' \subseteq extensions"
and "C = law_restrict (C'"
using Chains_relation_of [OF assms] by (meson subset_image_iff)
lemma (in ring) core_chain_is_chain:
assumes "law_restrict ' $C \in$ Chains (relation_of (\lesssim) \mathcal{S})" shows " $\wedge R$
$S . \llbracket R \in C ; S \in C \rrbracket \Longrightarrow R \lesssim S \vee S \lesssim R "$
proof -
fix $R S$ assume $" R \in C$ " and $" S \in C$ " thus $" R \lesssim S \vee S \lesssim R "$
using assms(1) unfolding iso_incl_hom[of R] iso_incl_hom[of S] Chains_def
relation_of_def
by auto
qed
lemma (in field) exists_maximal_extension:
shows $" \exists \mathrm{M} \in \mathcal{S} . \forall \mathrm{L} \in \mathcal{S} . \mathrm{M} \lesssim \mathrm{L} \longrightarrow \mathrm{L}=\mathrm{M} "$
proof (rule predicate_Zorn[0F iso_incl_partial_order])
fix C assume $C: ~ " C \in C h a i n s ~\left(r e l a t i o n _o f(\lesssim) S\right.$)"
show $" \exists \mathrm{~L} \in \mathcal{S} . \forall \mathrm{R} \in \mathrm{C} . \mathrm{R} \lesssim \mathrm{L} "$
proof (cases)
assume "C = \{\}" thus ?thesis
using extensions_non_empty by auto
next

```
    assume "C \not= {}"
    from <C C Chains (relation_of (\lesssim) S) >
    obtain C' where C': "C' \subseteq extensions" "C = law_restrict ' C'"
        using exists_core_chain by auto
    with <C \not= {}> obtain S where S: "S \inC'" and "C' }={{}
        by auto
    have core_chain: "\R. R G C'\Longrightarrow field R" "\R S. \llbracket R G C'; S \in C'
\rrbracket\LongrightarrowR\lesssimS V S \lesssim R"
    using core_chain_is_chain[of C'] C' C unfolding extensions_def by
auto
    from <C' \not= {}> interpret Union: field "union_ring C'"
        using union_ring_is_field[OF core_chain] C'(1) by blast
    have "union_ring C' \in extensions"
    proof (auto simp add: extensions_def)
        show "field (union_ring C')"
        using Union.field_axioms .
    next
        from <S \in C'> have "indexed_const \in ring_hom R S"
            using C'(1) unfolding extensions_def by auto
        thus "indexed_const \in ring_hom R (union_ring C')"
            using ring_hom_trans[of _ R S id] union_ring_is_upper_bound[OF
core_chain S]
            unfolding iso_incl.simps by auto
    next
        show "a \in carrier (union_ring C') \Longrightarrow carrier_coeff a" for a
            using C'(1) unfolding union_ring_carrier extensions_def by auto
    next
        fix P P i
        assume "\mathcal{P}\in carrier (union_ring C')"
            and P: "P \in carrier (poly_ring R)"
            and not_index_free: "\neg index_free \mathcal{P (P, i)"}
        from <\mathcal{P}\in carrier (union_ring C')> obtain T where T: "T \in C'"
"\mathcal{P}\in carrier T"
            using exists_superset_carrier[of C' "{ \mathcal{P }"] core_chain by auto}
    hence "\mathcal{X}
0
                and field: "field T" and hom: "indexed_const \in ring_hom R T"
                using P not_index_free C'(1) unfolding extensions_def by auto
    with <T \in C'> show " }\mp@subsup{\mathcal{X}}{(P, i) }{\mathrm{ ( }
            unfolding union_ring_carrier by auto
    have "set P\subseteq carrier R"
                using P unfolding sym[OF univ_poly_carrier] polynomial_def by
auto
    hence "set ( }\sigma\textrm{P}\mathrm{ ) }\subseteq\mathrm{ carrier T"
        using ring_hom_memE(1) [OF hom] unfolding \sigma_def by (induct P) (auto)
    with <\mathcal{X}
0}\mp@subsup{T}{}{\prime
```



```
        using iso_incl_imp_same_eval[OF field.is_ring[OF field] Union.is_ring
            union_ring_is_upper_bound[OF core_chain T(1)]] same_one_same_zero(2) [OF
core_chain T(1)]
        by auto
    qed
    moreover have "R \lesssim law_restrict (union_ring C')" if "R \in C" for R
        using that union_ring_is_upper_bound[OF core_chain] iso_incl_hom
unfolding C' by auto
    ultimately show ?thesis
        by blast
    qed
qed
```


47.7 Existence of roots

```
lemma polynomial_hom:
    assumes "h \in ring_hom R S" and "field R" and "field S"
    shows "p \in carrier (poly_ring R) \Longrightarrow (map h p) \in carrier (poly_ring
S)"
proof -
    assume "p \in carrier (poly_ring R)"
    interpret ring_hom_ring R S h
        using ring_hom_ringI2[OF assms(2-3) [THEN field.is_ring] assms(1)]
```

 from <p \(\in\) carrier (poly_ring \(R\)) > have "set \(p \subseteq\) carrier R" and lc:
 " $p \neq[] \Longrightarrow$ lead_coeff $p \neq 0_{R}$ "
unfolding sym[OF univ_poly_carrier] polynomial_def by auto
hence "set (map h p) \subseteq carrier $\mathrm{S} "$
by (induct p) (auto)
moreover have " $h a=0_{S} \Longrightarrow a=0_{R}$ " if "a \in carrier R " for a
using non_trivial_field_hom_is_inj[0F assms(1-3)] that unfolding inj_on_def
by simp
with <set $p \subseteq$ carrier R > have "lead_coeff (map h p) $\neq 0_{S}$ " if "p \neq
[]"
using lc [0F that] that by (cases p) (auto)
ultimately show ?thesis
unfolding sym[0F univ_poly_carrier] polynomial_def by auto
qed
lemma (in ring_hom_ring) subfield_polynomial_hom:
assumes "subfield K R" and " $1_{\mathrm{S}} \neq 0_{\mathrm{S}}$ "
shows $" p \in \operatorname{carrier}\left(K[X]_{R}\right) \Longrightarrow(\operatorname{map} h p) \in \operatorname{carrier}\left((h ' K)[X]_{S}\right) "$
proof -
assume "p \in carrier ($K[X]_{R}$)"
hence "p \in carrier (poly_ring (R (| carrier := K D))"
using R.univ_poly_consistent[OF subfieldE(1) [OF assms(1)]] by simp
moreover have "h \in ring_hom ($\mathrm{R} \mid$ carrier := K D) (S (carrier := h
(K ()) "
using hom_mult subfieldE(3) [OF assms (1)] unfolding ring_hom_def subset_iff by auto
moreover have "field (R (carrier $:=K$))" and "field (S (| carrier $:=(h$ ' K) D)"
using R.subfield_iff(2) [OF assms(1)] S.subfield_iff(2) [OF img_is_subfield(2) [OF assms]] by simp+
ultimately have " (map $h \mathrm{p}$) \in carrier (poly_ring (S (carrier := h ' K D))"
using polynomial_hom[of h "R (carrier := K |)" "S (| carrier := h '
K ()"] by auto
thus ?thesis
using S.univ_poly_consistent [OF subfieldE(1) [OF img_is_subfield(2) [OF assms]]] by simp
qed
lemma (in field) exists_root:
assumes "M extensions" and " $\wedge \mathrm{L} . \llbracket \mathrm{L} \in$ extensions; $\mathrm{M} \lesssim \mathrm{L} \rrbracket \Longrightarrow$ law_restrict
L = law_restrict M" and "P \in carrier (poly_ring R)"
shows "(ring.splitted M) ($\sigma \mathrm{P}$)"
proof (rule ccontr)
from $\langle M \in$ extensions $>$ interpret M : field $M+$ Hom: ring_hom_ring $R M$ "indexed_const"
using ring_hom_ringI2[OF ring_axioms field.is_ring] unfolding extensions_def
by auto
interpret UP: principal_domain "poly_ring M"
using M.univ_poly_is_principal[OF M.carrier_is_subfield] .
assume not_splitted: " \neg (ring.splitted M) (σ P)"
have " $(\sigma \mathrm{P}) \in$ carrier (poly_ring M)"
using polynomial_hom[OF Hom.homh field_axioms M.field_axioms assms (3)]
unfolding σ_{-}def by simp
then obtain Q
where $Q:$ " $\mathcal{A} \in$ carrier (poly_ring M)" "pirreduciblem (carrier M) Q"
"Q pdividesm (σ P) "
and degree_gt: "degree $Q>1 "$
using M.trivial_factors_imp_splitted[of " σ P"] not_splitted by force
from < (σ P) \in carrier (poly_ring M) > have " $\left(\begin{array}{l}\sigma \\ \mathrm{P})\end{array} \neq\right.$ []"
using M.degree_zero_imp_splitted[of " $\sigma \mathrm{P}$ "] not_splitted unfolding
$\sigma_{\text {_ }}$ def by auto

```
    have "\existsi. }\forall\mathcal{P}\in\mathrm{ carrier M. index_free }\mathcal{P}\mathrm{ (P, i)"
    proof (rule ccontr)
        assume "\not\existsi. }\forall\mathcal{P}\in\mathrm{ carrier M. index_free }\mathcal{P}\mathrm{ (P, i)"
        then have "\mathcal{X}
= 0}\mp@subsup{M}{M}{\prime\prime}\mathrm{ for i
```

using assms $(1,3)$ unfolding extensions_def by blast+
with < $(\sigma \mathrm{P}) \neq[]>$ have " $\left(\lambda_{\mathrm{i}}::\right.$ nat. $\left.\mathcal{X}_{(\mathrm{P}, \mathrm{i})}\right)$ ' UNIV) \subseteq \{ a. (ring.is_root
M) ($\sigma \mathrm{P}$) a $\}^{\prime \prime}$
unfolding M.is_root_def by auto
moreover have "inj ($\lambda_{i}::$ nat. $\left.\mathcal{X}_{(\mathrm{P}, \mathrm{i})}\right)$ "
unfolding indexed_var_def indexed_const_def indexed_pmult_def inj_def
by (metis (no_types, lifting) add_mset_eq_singleton_iff diff_single_eq_union multi_member_last prod.inject zero_not_one)
hence "infinite ($\lambda_{i}::$ nat. $\left.\mathcal{X}_{(\mathrm{P}, \mathrm{i})}\right)$ ' UNIV)"
unfolding infinite_iff_countable_subset by auto
ultimately have "infinite \{ a. (ring.is_root M) (σ P) a \}"
using finite_subset by auto
with < (σ P) \in carrier (poly_ring M) > show False
using M.finite_number_of_roots by simp
qed
then obtain i : : nat where $" \forall \mathcal{P} \in$ carrier M. index_free \mathcal{P} (P, i)" by blast
then have hyps:
—i "field M"
— ii " $\wedge \mathcal{P} . \mathcal{P} \in$ carrier $M \Longrightarrow$ carrier_coeff \mathcal{P} "
— iii " $\wedge \mathcal{P} . \mathcal{P} \in$ carrier $M \Longrightarrow$ index_free \mathcal{P} (P, i)"

- iv \quad $0_{\mathrm{M}}=$ indexed_const $0 "$
using assms $(1,3)$ unfolding extensions_def by auto
define image_poly where "image_poly = image_ring (eval_pmod M (P, i)
Q) (poly_ring M)"
with <degree Q > 1> have " $\mathrm{M} \lesssim$ image_poly"
using image_poly_iso_incl[0F hyps $Q(1)]$ by auto
moreover have is_field: "field image_poly"
using image_poly_is_field[0F hyps Q(1-2)] unfolding image_poly_def
by simp
moreover have "image_poly \in extensions"
proof (auto simp add: extensions_def is_field)
fix \mathcal{P} assume " $\mathcal{P} \in$ carrier image_poly"
then obtain R where \mathcal{P} : " $\mathcal{P}=$ eval_pmod $M(P, i) Q R "$ and $" R \in$ carrier
(poly_ring M)"
unfolding image_poly_def image_ring_carrier by auto
hence "M.pmod R Q \in carrier (poly_ring M)"
using M.long_division_closed(2) [OF M.carrier_is_subfield _ Q(1)]
by simp
hence "list_all carrier_coeff (M.pmod R Q)"
using hyps(2) unfolding sym[0F univ_poly_carrier] list_all_iff polynomial_def
by auto
thus "carrier_coeff \mathcal{P} "
using indexed_eval_in_carrier[of "M.pmod R Q"] unfolding \mathcal{P} by simp
next
from <M \lesssim image_poly> show "indexed_const \in ring_hom R image_poly" using ring_hom_trans[OF Hom.homh, of id] unfolding iso_incl.simps

```
by simp
    next
        from <M \lesssim image_poly> interpret Id: ring_hom_ring M image_poly id
            using iso_inclE[OF M.ring_axioms field.is_ring[OF is_field]] by
simp
    fix P S j
    assume A: "\mathcal{P }\in\mathrm{ carrier image_poly" "ᄀ index_free }\mathcal{P}(S,j)" "S \in
carrier (poly_ring R)"
    have "\mathcal{X}
    proof (cases)
        assume "(P, i) f= (S, j)"
        then obtain Q' where "Q' \in carrier M" and "\neg index_free Q' (S,
j)"
            using A(1) image_poly_index_free[OF hyps Q(1) _ A(2)] unfold-
ing image_poly_def by auto
    hence "\mathcal{X}
        using assms(1) A(3) unfolding extensions_def by auto
        moreover have "\sigma S \in carrier (poly_ring M)"
            using polynomial_hom[OF Hom.homh field_axioms M.field_axioms A(3)]
unfolding \sigma_def .
        ultimately show ?thesis
            using Id.eval_hom[OF M.carrier_is_subring] Id.hom_closed Id.hom_zero
by auto
    next
        assume "\neg(P, i) \not= (S, j)" hence S: "(P, i) = (S, j)"
            by simp
        have poly_hom: "R \in carrier (poly_ring image_poly)" if "R \in carrier
(poly_ring M)" for R
            using polynomial_hom[OF Id.homh M.field_axioms is_field that]
by simp
            have "\mathcal{X}(S, j) \in carrier image_poly"
            using eval_pmod_var(2) [OF hyps Hom.homh Q(1) degree_gt] unfold-
ing image_poly_def S by simp
    moreover have "Id.eval Q \mathcal{X}}(\textrm{S},\textrm{j})=0\mp@subsup{0}{\mathrm{ image_poly"}}{
            using image_poly_eval_indexed_var[OF hyps Hom.homh Q(1) degree_gt
Q(2)] unfolding image_poly_def S by simp
    moreover have "Q pdividesimage_poly ( }\sigma\mathrm{ S)"
    proof -
        obtain R where R: "R carrier (poly_ring M)" "\sigma S = Q \otimes poly_ring M
R"
                using Q(3) S unfolding pdivides_def by auto
            moreover have "set Q \subseteq carrier M" and "set R \subseteq carrier M"
                using Q(1) R(1) unfolding sym[OF univ_poly_carrier] polynomial_def
by auto
            ultimately have "Id.normalize ( }\sigma\textrm{S}\mathrm{ ) = Q Q @ poly_ring image_poly R"
                using Id.poly_mult_hom'[of Q R] unfolding univ_poly_mult by
simp
            moreover have "\sigma S \in carrier (poly_ring M)"
```

using polynomial_hom[0F Hom.homh field_axioms M.field_axioms A(3)] unfolding σ_{-}def .
hence " $\sigma \mathrm{S} \in$ carrier (poly_ring image_poly)"
using polynomial_hom[OF Id.homh M.field_axioms is_field] by
simp
hence "Id.normalize (σ S) = σ S"
using Id.normalize_polynomial unfolding sym[0F univ_poly_carrier]
by simp
ultimately show ?thesis
using poly_hom[OF Q(1)] poly_hom[OF R(1)]
unfolding pdivides_def factor_def univ_poly_mult by auto
qed
moreover have " $Q \in$ carrier (poly_ring (image_poly))"
using poly_hom[0F Q(1)] by simp
ultimately show ?thesis
using domain.pdivides_imp_root_sharing[0F field.axioms(1) [OF is_field],
of Q] by auto
qed
thus " $\mathcal{X}_{(S, j)} \in$ carrier image_poly" and "Id.eval $(\sigma S) \mathcal{X}_{(S, j)}=$
$0_{\text {image_poly" }}$ by auto
qed
ultimately have "law_restrict M = law_restrict image_poly"
using assms(2) by simp
hence "carrier M = carrier image_poly"
unfolding law_restrict_def by (simp add:ring.defs)
moreover have " $\mathcal{X}_{(\mathrm{P}, ~ i)} \in$ carrier image_poly"
using eval_pmod_var(2) [OF hyps Hom.homh Q(1) degree_gt] unfolding
image_poly_def by simp
moreover have " $\mathcal{X}_{(\mathrm{P}, ~ i)} \notin$ carrier M"
using indexed_var_not_index_free[of "(P, i)"] hyps(3) by blast
ultimately show False by simp
qed
lemma (in field) exists_extension_with_roots:
shows $" \exists \mathrm{~L} \in$ extensions. $\forall \mathrm{P} \in$ carrier (poly_ring R). (ring.splitted L) ($\sigma \mathrm{P}$)"
proof -
obtain M where " $M \in$ extensions" and " $\forall \mathrm{L} \in$ extensions. $M \lesssim L \longrightarrow$ law_restrict
L = law_restrict M"
using exists_maximal_extension iso_incl_hom by blast
thus ?thesis
using exists_root[of M] by auto
qed

47.8 Existence of Algebraic Closure

locale algebraic_closure = field L + subfield K L for L (structure) and K +

```
    assumes algebraic_extension: "x \in carrier L \Longrightarrow (algebraic over K)
x"
        and roots_over_subfield: "P \in carrier (K[X]) \Longrightarrow splitted P"
locale algebraically_closed = field L for L (structure) +
    assumes roots_over_carrier: "P \in carrier (poly_ring L) \Longrightarrow splitted
P"
definition (in field) alg_closure :: "(('a list }\times\mathrm{ nat) multiset => 'a)
ring"
    where "alg_closure = (SOME L - such that.
                            -i algebraic_closure L (indexed_const ' (carrier R)) ^
                            - ii indexed_const \in ring_hom R L)"
lemma algebraic_hom:
    assumes "h \in ring_hom R S" and "field R" and "field S" and "subfield
K R" and "x \in carrier R"
    shows "((ring.algebraic R) over K) x \Longrightarrow ((ring.algebraic S) over (h
' K)) (h x)"
proof -
    interpret Hom: ring_hom_ring R S h
        using ring_hom_ringI2[OF assms(2-3)[THEN field.is_ring] assms(1)]
    assume "(Hom.R.algebraic over K) x"
    then obtain p where p: "p \in carrier ( }\textrm{K}[\textrm{X}\mp@subsup{]}{R}{})"\mathrm{ " and "p # []" and eval:
"Hom.R.eval p x = 0 R"
        using domain.algebraicE[OF field.axioms(1) subfieldE(1), of R K x]
assms(2,4-5) by auto
    hence "(map h p) \in carrier ((h ' K) [X]S)" and "(map h p) f []"
            using Hom.subfield_polynomial_hom[OF assms(4) one_not_zero[OF assms(3)]]
by auto
    moreover have "Hom.S.eval (map h p) (h x) = 0S"
            using Hom.eval_hom[OF subfieldE(1)[OF assms(4)] assms(5) p] unfold-
ing eval by simp
    ultimately show ?thesis
        using Hom.S.non_trivial_ker_imp_algebraic[of "h ' K" "h x"] unfold-
ing a_kernel_def' by auto
qed
lemma (in field) exists_closure:
    obtains L :: "((('a list }\times\mathrm{ nat) multiset) # 'a) ring"
    where "algebraic_closure L (indexed_const ' (carrier R))" and "indexed_const
\epsilon ring_hom R L"
proof -
    obtain L where "L \in extensions"
        and roots: "\P. P \in carrier (poly_ring R) \Longrightarrow(ring.splitted L) (\sigma
P)"
    using exists_extension_with_roots by auto
```

```
    let ?K = "indexed_const ' (carrier R)"
    let ?set_of_algs = "{ x \in carrier L. ((ring.algebraic L) over ?K) x
}"
    let ?M = "L ( carrier := ?set_of_algs |"
    from <L \in extensions>
    have L: "field L" and hom: "ring_hom_ring R L indexed_const"
        using ring_hom_ringI2[OF ring_axioms field.is_ring] unfolding extensions_def
by auto
    have "subfield ?K L"
        using ring_hom_ring.img_is_subfield(2) [OF hom carrier_is_subfield
                domain.one_not_zero[OF field.axioms(1)[OF L]]] by auto
    hence set_of_algs: "subfield ?set_of_algs L"
        using field.subfield_of_algebraics[OF L, of ?K] by simp
    have M: "field ?M"
        using ring.subfield_iff(2)[OF field.is_ring[OF L] set_of_algs] by
simp
    interpret Id: ring_hom_ring ?M L id
        using ring_hom_ringI[OF field.is_ring[OF M] field.is_ring[OF L]] by
auto
    have is_subfield: "subfield ?K ?M"
    proof (intro ring.subfield_iff(1) [OF field.is_ring[OF M]])
        have "L ( carrier := ?K ) = ?M ( carrier := ?K )"
        by simp
        moreover from <subfield ?K L> have "field (L ( carrier := ?K |)"
        using ring.subfield_iff(2)[OF field.is_ring[OF L]] by simp
        ultimately show "field (?M (| carrier := ?K D)"
        by simp
    next
        show "?K \subseteq carrier ?M"
        proof
            fix x :: "(('a list x nat) multiset) => 'a"
            assume "x \in ?K"
            hence "x \in carrier L"
                    using ring_hom_memE(1) [OF ring_hom_ring.homh[OF hom]] by auto
            moreover from <subfield ?K L> and <x \in ?K> have "(Id.S.algebraic
over ?K) x"
                    using domain.algebraic_self[OF field.axioms(1)[OF L] subfieldE(1)]
by auto
            ultimately show "x carrier ?M"
                by auto
    qed
    qed
    have "algebraic_closure ?M ?K"
    proof (intro algebraic_closure.intro[OF M is_subfield])
        have "(Id.R.algebraic over ?K) x" if "x \in carrier ?M" for x
```

using that Id.S.algebraic_consistent[0F subfieldE(1)[OF set_of_algs]]
by simp
moreover have "Id.R.splitted P " if " $P \in$ carrier (?K $[X] ? M$)" for P proof -
from < $\mathrm{P} \in$ carrier (?K[X]?M) > have "P \in carrier (poly_ring ?M)"
using Id.R.carrier_polynomial_shell[OF subfieldE(1) [OF is_subfield]]
by simp
show ?thesis
proof (cases "degree P = 0")
case True with <P \in carrier (poly_ring ?M) > show ?thesis
using domain.degree_zero_imp_splitted[0F field.axioms(1) [OF
M]]
by fastforce
next
case False then have "degree P > 0"
by simp
from < $\mathrm{P} \in$ carrier (? $\mathrm{K}[\mathrm{X}]_{? \mathrm{M}}$) > have " $\mathrm{P} \in$ carrier (?K $[\mathrm{X}]_{\mathrm{L}}$)" unfolding Id.S.univ_poly_consistent[0F subfieldE(1) [OF set_of_algs]]
hence "set $\mathrm{P} \subseteq$? K "
unfolding sym[OF univ_poly_carrier] polynomial_def by auto
hence " $\exists \mathrm{Q}$. set $\mathrm{Q} \subseteq$ carrier $\mathrm{R} \wedge \mathrm{P}=\sigma \mathrm{Q}$ "
proof (induct P, simp add: σ_{-}def)
case (Cons p P)
then obtain $q Q$ where " $q \in$ carrier R " "set $Q \subseteq$ carrier $R "$
and $" \sigma Q=P$ " "indexed_const $q=p "$
unfolding σ_{-}def by auto
hence "set $(q \# Q) \subseteq$ carrier $R "$ and $" \sigma(q \# Q)=(p \# P) "$ unfolding σ_{-}def by auto
thus ?case
by metis
qed
then obtain Q where "set $\mathrm{Q} \subseteq$ carrier R " and " $\sigma \mathrm{Q}=\mathrm{P}$ "
by auto
moreover have "lead_coeff $Q \neq 0$ "
proof (rule ccontr)
assume " \neg lead_coeff $Q \neq 0$ " then have "lead_coeff $Q=0$ " by simp
with $\langle\sigma \mathrm{Q}=\mathrm{P}$ > and <degree $\mathrm{P}>0$ > have "lead_coeff $\mathrm{P}=$ indexed_const
unfolding σ_{-}def by (metis diff_0_eq_0 length_map less_irrefl_nat
list.map_sel(1) list.size(3))
hence "lead_coeff $P=0_{\mathrm{L}}$ " using ring_hom_zero [OF ring_hom_ring.homh ring_hom_ring.axioms(1-2)]
hom by auto
with <degree $\mathrm{P}>0$ > have " $\neg \mathrm{P} \in$ carrier (?K X$]$?M)"
unfolding sym[OF univ_poly_carrier] polynomial_def by auto
with < $\mathrm{P} \in$ carrier (?K $[\mathrm{X}]_{? \mathrm{M}}$) > show False by simp

```
qed
ultimately have "Q \(\in\) carrier (poly_ring R)"
```

unfolding sym[OF univ_poly_carrier] polynomial_def by auto with $\langle\sigma \mathrm{Q}=\mathrm{P}\rangle$ have "Id.S.splitted P "
using roots [of Q] by simp

```
from <P \in carrier (poly_ring ?M) > show ?thesis
proof (rule field.trivial_factors_imp_splitted[OF M])
    fix R
    assume R: "R \in carrier (poly_ring ?M)" "pirreducible?M (carrier
```

?M) R" and "R pdivides?M P"
from $\langle\mathrm{P} \in$ carrier (poly_ring $? \mathrm{M}$) > and $\langle\mathrm{R} \in$ carrier (poly_ring
?M) >

unfolding Id.S.univ_poly_consistent[OF subfieldE(1) [OF set_of_algs]]
by auto
hence in_carrier: "P \in carrier (poly_ring L)" " $R \in$ carrier
(poly_ring L)"
using Id.S.carrier_polynomial_shell[OF subfieldE(1) [OF set_of_algs]]
by auto
from <R pdivides?M P > have "R divides ((?set_of_algs) $\left.[X]_{L}\right) P$ "
unfolding pdivides_def Id.S.univ_poly_consistent[OF subfieldE(1)[0F
set_of_algs]]
by simp
with < $\mathrm{P} \in$ carrier ((?set_of_algs) $[\mathrm{X}]_{\mathrm{L}}$) > and $\left\langle\mathrm{R} \in\right.$ carrier ((?set_of_algs) $[\mathrm{X}]_{\mathrm{L}}$) >
have "R pdivides ${ }_{L}$ P"
using domain.pdivides_iff_shell[OF field.axioms(1) [OF L] set_of_algs,
of R P] by simp
with <Id.S.splitted P> and <degree $P \neq 0$ > have "Id.S.splitted
R"
using field.pdivides_imp_splitted[OF L in_carrier(2,1)] by
fastforce
show "degree $R \leq 1$ "
proof (cases "Id.S.roots $R=\{\#\}$ ")
case True with <Id.S.splitted R> show ?thesis
unfolding Id.S.splitted_def by simp
next
case False with < $\mathrm{R} \in$ carrier (poly_ring L) >
obtain a where "a \in carrier L" and "a $\in \#$ Id.S.roots R"
and " $\left[1_{\mathrm{L}}, \ominus_{\mathrm{L}} \mathrm{a}\right] \in$ carrier (poly_ring L)" and pdiv: "[
$\left.1_{\mathrm{L}}, \ominus_{\mathrm{L}} \mathrm{a}\right]$ pdivides $_{\mathrm{L}} \mathrm{R}^{\prime \prime}$
using domain.not_empty_rootsE[OF field.axioms(1) [OF L],
of R] by blast
from $\left\langle\mathrm{P} \in\right.$ carrier $\left(? \mathrm{~K}[\mathrm{X}]_{\mathrm{L}}\right)$ >
have "(Id.S.algebraic over ?K) a"
proof (rule Id.S.algebraicI)

```
    from <degree P f 0> show "P \not= []"
                        by auto
    next
    from <a \in# Id.S.roots R> and <R \in carrier (poly_ring L)>
    have "Id.S.eval R a = 0
        using domain.roots_mem_iff_is_root[OF field.axioms(1) [OF
L]]
                            unfolding Id.S.is_root_def by auto
                            with <R pdividesL P> and <a \in carrier L> show "Id.S.eval
Pa = 00L'
                using domain.pdivides_imp_root_sharing[OF field.axioms(1) [OF
L] in_carrier(2)] by simp
    qed
    with <a \in carrier L> have "a \in ?set_of_algs"
        by simp
    hence "[ 1 1 L, ӨL a ] \in carrier ((?set_of_algs)[X]
        using subringE(3,5)[of ?set_of_algs L] subfieldE(1,6)[OF
set_of_algs]
            unfolding sym[OF univ_poly_carrier] polynomial_def by simp
    hence "[ 1 1 L, ӨL a ] \in carrier (poly_ring ?M)"
        unfolding Id.S.univ_poly_consistent[OF subfieldE(1)[OF set_of_algs]]
by simp
    from < [ 1 1 L, ӨL a ] \in carrier ((?set_of_algs)[X] L) >
    and <R \in carrier ((?set_of_algs) [X] L) >
    have "[ 11L, ӨL a ] divides(?set_of_algs)[X] L R"
        using pdiv domain.pdivides_iff_shell[OF field.axioms(1) [OF
L] set_of_algs] by simp
    hence "[ 1 1 L, ӨL a ] dividespoly_ring ?M R"
        unfolding pdivides_def Id.S.univ_poly_consistent[OF subfieldE(1)[OF
set_of_algs]]
        by simp
    have "[ 1 1 L, ӨL a ] & Units (poly_ring ?M)"
        using Id.R.univ_poly_units[OF field.carrier_is_subfield[OF
M]] by force
    with < [ 1 1 , ӨL a ] \in carrier (poly_ring ?M) > and <R \in carrier
(poly_ring ?M) >
    and < [ 1 1 L, ӨL a ] dividespoly_ring ?M R>
    have "[ 1 1 L, ӨL a ] ~ poly_ring ?M R"
        using Id.R.divides_pirreducible_condition[OF R(2)] by auto
    with < [ 1 L , ӨL a ] \in carrier (poly_ring ?M) > and <R \in carrier
(poly_ring ?M) >
    have "degree R = 1"
        using domain.associated_polynomials_imp_same_length[OF field.axioms(1) [OF
M]
                                Id.R.carrier_is_subring, of "[ 1 1 , }\mp@subsup{\ominus}{L}{} a ]" R] b
force
    thus ?thesis
```

```
                by simp
                    qed
                qed
        qed
    qed
    ultimately show "algebraic_closure_axioms ?M ?K"
        unfolding algebraic_closure_axioms_def by auto
    qed
    moreover have "indexed_const \in ring_hom R ?M"
        using ring_hom_ring.homh[OF hom] subfieldE(3)[OF is_subfield]
        unfolding subset_iff ring_hom_def by auto
    ultimately show thesis
    using that by auto
qed
lemma (in field) alg_closureE:
    shows "algebraic_closure alg_closure (indexed_const ' (carrier R))"
        and "indexed_const \in ring_hom R alg_closure"
    using exists_closure unfolding alg_closure_def
    by (metis (mono_tags, lifting) someI2)+
lemma (in field) algebraically_closedI':
    assumes "\p.\llbracketp < carrier (poly_ring R); degree p > 1\rrbracket\Longrightarrow splitted
p"
    shows "algebraically_closed R"
proof
    fix p assume "p \in carrier (poly_ring R)" show "splitted p"
    proof (cases "degree p\leq1")
        case True with <p \in carrier (poly_ring R)> show ?thesis
            using degree_zero_imp_splitted degree_one_imp_splitted by fastforce
    next
        case False with < p \in carrier (poly_ring R) > show ?thesis
            using assms by fastforce
    qed
qed
lemma (in field) algebraically_closedI:
    assumes "\p. \llbracketp < carrier (poly_ring R); degree p > 1\rrbracket \Longrightarrow \existsx 
carrier R. eval p x = 0"
    shows "algebraically_closed R"
proof
    fix p assume "p \in carrier (poly_ring R)" thus "splitted p"
    proof (induction "degree p" arbitrary: p rule: less_induct)
        case less show ?case
        proof (cases "degree p \leq 1")
            case True with <p \in carrier (poly_ring R) > show ?thesis
                using degree_zero_imp_splitted degree_one_imp_splitted by fastforce
        next
            case False then have "degree p > 1"
```

```
        by simp
    with < p \in carrier (poly_ring R) > have "roots p f= {#}"
        using assms[of p] roots_mem_iff_is_root[of p] unfolding is_root_def
        by force
            then obtain a where a: "a \in carrier R" "a \in# roots p"
            and pdiv: "[ 1, \ominus a ] pdivides p" and in_carrier: "[ 1, \ominus a
] \in carrier (poly_ring R)"
            using less(2) by blast
    then obtain q where q: "q \in carrier (poly_ring R)" and p: "p =
[ 1, \ominus a ] \otimespoly_ring R q"
            unfolding pdivides_def by blast
    with <degree p > 1> have not_zero: "q f []" and "p f []"
            using domain.integral_iff[OF univ_poly_is_domain[OF carrier_is_subring]
in_carrier, of q]
            by (auto simp add: univ_poly_zero[of R "carrier R"])
    hence deg: "degree p = Suc (degree q)"
            using poly_mult_degree_eq[OF carrier_is_subring] in_carrier q
p
            unfolding univ_poly_carrier sym[OF univ_poly_mult[of R "carrier
R"]] by auto
            hence "splitted q"
                using less(1)[0F _ q] by simp
    moreover have "roots p = add_mset a (roots q)"
            using poly_mult_degree_one_monic_imp_same_roots[OF a(1) q not_zero]
        p by simp
            ultimately show ?thesis
                unfolding splitted_def deg by simp
            qed
    qed
qed
sublocale algebraic_closure \subseteq algebraically_closed
proof (rule algebraically_closedI')
    fix P assume in_carrier: "P \in carrier (poly_ring L)" and gt_one: "degree
P > 1"
    then have gt_zero: "degree P > 0"
        by simp
    define A where "A = finite_extension K P"
    from < P \in carrier (poly_ring L) > have "set P \subseteq carrier L"
        by (simp add: polynomial_incl univ_poly_carrier)
    hence A: "subfield A L" and P: "P G carrier (A[X])"
        using finite_extension_mem[OF subfieldE(1)[OF subfield_axioms], of
P] in_carrier
                algebraic_extension finite_extension_is_subfield[OF subfield_axioms,
of P]
    unfolding sym[OF A_def] sym[OF univ_poly_carrier] polynomial_def by
auto
```

from <set $\mathrm{P} \subseteq$ carrier L > have incl: "K \subseteq A"
using finite_extension_incl[0F subfieldE(3) [OF subfield_axioms]] unfolding A_def by simp
interpret UP_K: domain "K[X]"
using univ_poly_is_domain[OF subfieldE(1) [OF subfield_axioms]] .
interpret UP_A: domain "A[X]"
using univ_poly_is_domain[OF subfieldE(1) [OF A]] .
interpret Rupt: ring "Rupt A P"
unfolding rupture_def using ideal.quotient_is_ring[OF UP_A.cgenideal_ideal[OF
P]] .
interpret Hom: ring_hom_ring "L (carrier := A ()" "Rupt A P" "rupture_surj
A P ○ poly_of_const"
using ring_hom_ringI2[0F subring_is_ring[OF subfieldE(1)] Rupt.ring_axioms
rupture_surj_norm_is_hom[OF subfieldE(1) P]] A by simp
let ?h = "rupture_surj A P o poly_of_const"
have h_simp: "rupture_surj A P ' poly_of_const ' $E=? h$ ' E " for E by auto
hence aux_lemmas:
"subfield (rupture_surj A P ' poly_of_const ' K) (Rupt A P)"
"subfield (rupture_surj A P ' poly_of_const ' A) (Rupt A P)"
using Hom.img_is_subfield(2) [OF _ rupture_one_not_zero[OF A P gt_zero]]
ring. subfield_iff(1) [OF subring_is_ring[OF subfieldE(1) [OF A]]]
subfield_iff(2) [OF subfield_axioms] subfield_iff(2) [OF A] incl
by auto
have "carrier ($\mathrm{K}[\mathrm{X}]$) \subseteq carrier ($\mathrm{A}[\mathrm{X}]$)"
using subsetI[of "carrier (K[X])" "carrier (A[X])"] incl
unfolding sym[OF univ_poly_carrier] polynomial_def by auto
hence "id \in ring_hom ($\mathrm{K}[\mathrm{X}]$) (A[X])"
unfolding ring_hom_def unfolding univ_poly_mult univ_poly_add univ_poly_one
by (simp add: subsetD)
hence "rupture_surj A P \in ring_hom ($K[X]$) (Rupt A P)"
using ring_hom_trans[OF _ rupture_surj_hom(1) [OF subfieldE(1) [OF A]
P], of id] by simp
then interpret Hom': ring_hom_ring "K[X]" "Rupt A P" "rupture_surj A P"
using ring_hom_ringI2[OF UP_K.ring_axioms Rupt.ring_axioms] by simp
from <id \in ring_hom ($K[X]$) ($A[X]$) > have Id: "ring_hom_ring ($K[X]$) (A[X]) id"
using ring_hom_ringI2[OF UP_K.ring_axioms UP_A.ring_axioms] by simp
hence "subalgebra (poly_of_const ' K) (carrier (K[X])) (A[X])"
using ring_hom_ring.img_is_subalgebra[OF Id _ UP_K.carrier_is_subalgebra[OF subfieldE(3)]]
univ_poly_subfield_of_consts[0F subfield_axioms] by auto
moreover from <carrier $(K[X]) \subseteq$ carrier (A[X]) > have "poly_of_const

```
' K \subseteq carrier (A[X])"
    using subfieldE(3)[OF univ_poly_subfield_of_consts[OF subfield_axioms]]
by simp
    ultimately
    have "subalgebra (rupture_surj A P ' poly_of_const ` K) (rupture_surj
A P ' carrier (K[X])) (Rupt A P)"
    using ring_hom_ring.img_is_subalgebra[OF rupture_surj_hom(2) [OF subfieldE(1) [OF
A] P]] by simp
    moreover have "Rupt.finite_dimension (rupture_surj A P ' poly_of_const
K) (carrier (Rupt A P))"
    proof (intro Rupt.telescopic_base_dim(1)[where
        ?K = "rupture_surj A P ' poly_of_const ' K" and
        ?F = "rupture_surj A P ' poly_of_const ' A" and
        ?E = "carrier (Rupt A P)", OF aux_lemmas])
    show "Rupt.finite_dimension (rupture_surj A P ' poly_of_const ' A)
(carrier (Rupt A P))"
            using Rupt.finite_dimensionI[OF rupture_dimension[OF A P gt_zero]]
    next
            let ?h = "rupture_surj A P ○ poly_of_const"
            from <set P \subseteq carrier L> have "finite_dimension K A"
            using finite_extension_finite_dimension(1) [OF subfield_axioms, of
P] algebraic_extension
            unfolding A_def by auto
            then obtain Us where Us: "set Us \subseteq carrier L" "A = Span K Us"
            using exists_base subfield_axioms by blast
    hence "?h ' A = Rupt.Span (?h ' K) (map ?h Us)"
        using Hom.Span_hom[of K Us] incl Span_base_incl[OF subfield_axioms,
of Us]
            unfolding Span_consistent[OF subfieldE(1) [OF A]] by simp
    moreover have "set (map ?h Us) \subseteq carrier (Rupt A P)"
            using Span_base_incl[OF subfield_axioms Us(1)] ring_hom_memE(1) [OF
Hom.homh]
            unfolding sym[OF Us(2)] by auto
            ultimately
            show "Rupt.finite_dimension (rupture_surj A P ' poly_of_const ' K)
(rupture_surj A P ' poly_of_const ' A)"
            using Rupt.Span_finite_dimension[OF aux_lemmas(1)] unfolding h_simp
by simp
    qed
    moreover have "rupture_surj A P ' carrier (A [X]) = carrier (Rupt A
P) "
            unfolding rupture_def FactRing_def A_RCOSETS_def' by auto
    with <carrier (K[X]) \subseteq carrier (A[X])> have "rupture_surj A P ' carrier
(K[X]) \subseteq carrier (Rupt A P)"
```

by auto
ultimately
have "Rupt.finite_dimension (rupture_surj A P ' poly_of_const ' K) (rupture_surj A P ' carrier (K[X]))"
using Rupt.subalbegra_incl_imp_finite_dimension[0F aux_lemmas(1)]
by simp
hence " \neg inj_on (rupture_surj A P) (carrier (K[X]))"
using Hom'.infinite_dimension_hom[0F _ rupture_one_not_zero[OF A P gt_zero] _

UP_K.carrier_is_subalgebra[OF subfieldE(3)] univ_poly_infinite_dimension[OF
subfield_axioms]]

```
                        univ_poly_subfield_of_consts[OF subfield_axioms]
```

by auto
then obtain Q where $Q:$ " $Q \in$ carrier $(K[X]) "$ " $Q \neq[] "$ and "rupture_surj
A P Q $=0_{\text {Rupt A }}{ }^{\prime \prime}$
using Hom'.trivial_ker_imp_inj Hom'.hom_zero unfolding a_kernel_def'
univ_poly_zero by blast
with <carrier $(K[X]) \subseteq$ carrier $(A[X])$ > have $" Q \in \operatorname{PIdl}_{A[X]} P$ "
using ideal.rcos_const_imp_mem[OF UP_A.cgenideal_ideal[0F P]]
unfolding rupture_def FactRing_def by auto
then obtain R where " $R \in$ carrier ($A[X]$)" and " $Q=R \otimes_{A[X]} P$ "
unfolding cgenideal_def by blast
with < $\mathrm{P} \in$ carrier ($\mathrm{A}[\mathrm{X}]$) > have " P pdivides Q "
using dividesI[of _ "A[X]"] UP_A.m_comm pdivides_iff_shell[OF A] by simp
thus "splitted P"
using pdivides_imp_splitted[0F in_carrier
carrier_polynomial_shell[OF subfieldE(1) [OF subfield_axioms]
$Q(1)] \quad Q(2)$
roots_over_subfield[0F $Q(1)]]$ Q
by simp
qed
end
theory Left_Coset
imports Coset
begin
definition
LCOSETS :: "[_, 'a set] \Rightarrow ('a set)set" ("lcosets 乙 _" [81] 80)
where " $^{\operatorname{cosets}_{G}} \mathrm{H}=\left(\bigcup \mathrm{a}\right.$ carrier $\left.\mathrm{G} .\left\{\mathrm{a}<\#_{\mathrm{G}} \mathrm{H}\right\}\right)$ "

definition

LFactGroup :: "[('a,'b) monoid_scheme, 'a set] \Rightarrow ('a set) monoid" (infixl
"LMod" 65)

- Actually defined for groups rather than monoids
where "LFactGroup $G H=$ (carrier $=\operatorname{lcosets}_{G} H$, mult $=$ set_mult G, one $=H() "$
lemma (in group) lcos_self: "[| $x \in \operatorname{carrier~} G$; $\operatorname{subgroup} H G \mid]==>x$ $\in \mathrm{x}$ <\# H"
by (simp add: group_l_invI subgroup.lcos_module_rev subgroup.one_closed)
Elements of a left coset are in the carrier
lemma (in subgroup) elemlcos_carrier:
assumes "group G" "a \in carrier G" "a' $\in a<\# H "$
shows "a' \in carrier G"
by (meson assms group.l_coset_carrier subgroup_axioms)
Step one for lemma rcos_module
lemma (in subgroup) lcos_module_imp:
assumes "group G"
assumes xcarr: "x \in carrier G "
and x 'cos: " x ' \in x $<\#$ H"
shows "(inv $\left.x \otimes x^{\prime}\right) \in H^{\prime \prime}$
proof -
interpret group G by fact
obtain h
where $h H: ~ " h \in H "$ and x ': "x' $=x \otimes h$ " and hcarr: "h carrier
G"
using assms by (auto simp: l_coset_def)
have " (inv $x) \otimes x^{\prime}=(i n v x) \otimes(x \otimes h) "$
by (simp add: x')
have "... $=(x \otimes$ inv $x) \otimes h "$ by (metis hcarr inv_closed inv_inv l_inv m_assoc xcarr)
also have "... = h" by (simp add: hcarr xcarr)
finally have " (inv x) $\otimes \mathrm{x}^{\prime}=\mathrm{h}^{\prime \prime}$ using x ' by metis
then show " (inv x) $\otimes x^{\prime} \in H^{\prime \prime}$ using hH by force
qed
Left cosets are subsets of the carrier.

```
lemma (in subgroup) lcosets_carrier:
    assumes "group G"
    assumes XH: "X \in lcosets H"
    shows "X \subseteq carrier G"
proof -
    interpret group G by fact
    show "X \subseteq carrier G"
        using XH l_coset_subset_G subset by (auto simp: LCOSETS_def)
qed
```

```
lemma (in group) lcosets_part_G:
    assumes "subgroup H G"
    shows "U(lcosets H) = carrier G"
proof -
    interpret subgroup H G by fact
    show ?thesis
    proof
        show "U (lcosets H) \subseteq carrier G"
            by (force simp add: LCOSETS_def l_coset_def)
        show "carrier G \subseteq U (lcosets H)"
            by (auto simp add: LCOSETS_def intro: lcos_self assms)
    qed
qed
lemma (in group) lcosets_subset_PowG:
            "subgroup H G \Longrightarrow lcosets H \subseteq Pow(carrier G)"
    using lcosets_part_G subset_Pow_Union by blast
lemma (in group) lcos_disjoint:
    assumes "subgroup H G"
    assumes p: "a \in lcosets H" "b \in lcosets H" "a\not=b"
    shows "a \cap b = {}"
proof -
    interpret subgroup H G by fact
    show ?thesis
        using p l_repr_independence subgroup_axioms unfolding LCOSETS_def
disjoint_iff
        by blast
qed
The next two lemmas support the proof of card_cosets_equal.
lemma (in group) inj_on_f':
    "\llbracketH \subseteq carrier G; a \in carrier G\rrbracket \Longrightarrow inj_on ( \lambday. y \otimes inv a) (a <#
H)"
    by (simp add: inj_on_g l_coset_subset_G)
lemma (in group) inj_on_f'':
    "\llbracketH \subseteq carrier G; a \in carrier G\rrbracket \Longrightarrow inj_on ( \lambday. inv a \otimes y) (a <#
H)"
    by (meson inj_on_cmult inv_closed l_coset_subset_G subset_inj_on)
lemma (in group) inj_on_g':
            "\llbracketH\subseteq carrier G; a \in carrier G\rrbracket\Longrightarrow inj_on ( \lambday. a \otimes y) H"
    using inj_on_cmult inj_on_subset by blast
lemma (in group) l_card_cosets_equal:
    assumes "c \in lcosets H" and H: "H \subseteq carrier G" and fin: "finite(carrier
G)"
```

```
    shows "card H = card c"
proof -
    obtain x where x: "x carrier G" and c: "c = x <# H"
        using assms by (auto simp add: LCOSETS_def)
    have "inj_on ((\otimes) x) H"
        by (simp add: H group.inj_on_g' x)
    moreover
    have "(\otimes) x ' H \subseteq x <# H"
        by (force simp add: m_assoc subsetD l_coset_def)
    moreover
    have "inj_on ((\otimes) (inv x)) (x <# H)"
        by (simp add: H group.inj_on_f'' x)
    moreover
    have " \h. h \in H \Longrightarrow inv x \otimes (x \otimes h) \in H"
        by (metis H in_mono inv_solve_left m_closed x)
    then have "(\otimes) (inv x) ' (x <# H) \subseteq H"
        by (auto simp: l_coset_def)
    ultimately show ?thesis
        by (metis H fin c card_bij_eq finite_imageD finite_subset)
qed
theorem (in group) l_lagrange:
    assumes "finite(carrier G)" "subgroup H G"
    shows "card(lcosets H) * card(H) = order(G)"
proof -
    have "card H * card (lcosets H) = card (U (lcosets H))"
        using card_partition
        by (metis (no_types, lifting) assms finite_UnionD l_card_cosets_equal
lcos_disjoint lcosets_part_G subgroup.subset)
    then show ?thesis
        by (simp add: assms(2) lcosets_part_G mult.commute order_def)
qed
end
theory SimpleGroups
imports Coset "HOL-Computational_Algebra.Primes"
begin
```


48 Simple Groups

```
locale simple_group = group +
```

locale simple_group = group +
assumes order_gt_one: "order G > 1"
assumes order_gt_one: "order G > 1"
assumes no_real_normal_subgroup: "\H. H \triangleleft G \Longrightarrow (H = carrier G V H
assumes no_real_normal_subgroup: "\H. H \triangleleft G \Longrightarrow (H = carrier G V H
= {1})"
= {1})"
lemma (in simple_group) is_simple_group: "simple_group G"
by (rule simple_group_axioms)

```

Simple groups are non-trivial.
```

lemma (in simple_group) simple_not_triv: "carrier G f= {1}"
using order_gt_one unfolding order_def by auto
Every group of prime order is simple

```
```

lemma (in group) prime_order_simple:

```
lemma (in group) prime_order_simple:
    assumes prime: "prime (order G)"
    assumes prime: "prime (order G)"
    shows "simple_group G"
    shows "simple_group G"
proof
proof
    from prime show "1 < order G"
    from prime show "1 < order G"
        unfolding prime_nat_iff by auto
        unfolding prime_nat_iff by auto
next
next
    fix H
    fix H
    assume "H \triangleleftG"
    assume "H \triangleleftG"
    hence HG: "subgroup H G" unfolding normal_def by simp
    hence HG: "subgroup H G" unfolding normal_def by simp
    hence "card H dvd order G"
    hence "card H dvd order G"
        by (metis dvd_triv_right lagrange)
        by (metis dvd_triv_right lagrange)
    with prime have "card H = 1 V card H = order G"
    with prime have "card H = 1 V card H = order G"
        unfolding prime_nat_iff by simp
        unfolding prime_nat_iff by simp
    thus "H = carrier G V H = {1}"
    thus "H = carrier G V H = {1}"
    proof
    proof
        assume "card H = 1"
        assume "card H = 1"
        moreover from HG have "1 \in H" by (metis subgroup.one_closed)
        moreover from HG have "1 \in H" by (metis subgroup.one_closed)
        ultimately show ?thesis by (auto simp: card_Suc_eq)
        ultimately show ?thesis by (auto simp: card_Suc_eq)
    next
    next
        assume "card H = order G"
        assume "card H = order G"
        moreover from HG have "H \subseteq carrier G" unfolding subgroup_def by
        moreover from HG have "H \subseteq carrier G" unfolding subgroup_def by
simp
simp
        moreover from prime have "finite (carrier G)"
        moreover from prime have "finite (carrier G)"
            using order_gt_0_iff_finite by force
            using order_gt_0_iff_finite by force
        ultimately show ?thesis
        ultimately show ?thesis
            unfolding order_def by (metis card_subset_eq)
            unfolding order_def by (metis card_subset_eq)
        qed
        qed
qed
```

qed

```

Being simple is a property that is preserved by isomorphisms.
```

lemma (in simple_group) iso_simple:
assumes H: "group H"
assumes iso: "\varphi\in iso G H"
shows "simple_group H"
unfolding simple_group_def simple_group_axioms_def
proof (intro conjI strip H)
from iso have "order G = order H" unfolding iso_def order_def using
bij_betw_same_card by auto
with order_gt_one show "1 < order H" by simp
next
have inv_iso: "(inv_into (carrier G) \varphi) \in iso H G" using iso
by (simp add: iso_set_sym)
fix N

```
```

 assume NH: "N \triangleleft H"
 then interpret Nnormal: normal N H by simp
 define M where "M = (inv_into (carrier G) \varphi) ' N"
 hence MG: "M \triangleleft G"
 using inv_iso NH H by (metis is_group iso_normal_subgroup)
 have surj: " }\varphi\mathrm{ ' carrier G = carrier H"
 using iso unfolding iso_def bij_betw_def by simp
 hence MN: " }\varphi\mathrm{ ' M = N"
 unfolding M_def using Nnormal.subset image_inv_into_cancel by metis
 then have "N = {1_H}" if "M = {1}"
using Nnormal.subgroup_axioms subgroup.one_closed that by force
then show "N = carrier H V N = {1_H}"
by (metis MG MN no_real_normal_subgroup surj)
qed

```

As a corollary of this: Factorizing a group by itself does not result in a simple group!
```

lemma (in group) self_factor_not_simple: "\neg simple_group (G Mod (carrier
G))"
proof
assume assm: "simple_group (G Mod (carrier G))"
with self_factor_iso simple_group.iso_simple have "simple_group (G(carrier
:= {1}|)"
using subgroup_imp_group triv_subgroup by blast
thus False
using simple_group.simple_not_triv by force
qed
end
theory SndIsomorphismGrp
imports Coset
begin

```

\section*{49 The Second Isomorphism Theorem for Groups}

This theory provides a proof of the second isomorphism theorems for groups. The theorems consist of several facts about normal subgroups.

The first lemma states that whenever we have a subgroup S and a normal subgroup H of a group G, their intersection is normal in G
```

locale second_isomorphism_grp = normal +
fixes S:: "'a set"
assumes subgrpS: "subgroup S G"
context second_isomorphism_grp
begin

```
```

interpretation groupS: group "G(carrier := S)"
using subgrpS
by (metis subgroup_imp_group)
lemma normal_subgrp_intersection_normal:
shows "S $\cap \mathrm{H} \triangleleft(\mathrm{G}($ carrier $:=\mathrm{S}))$)"
proof (auto simp: groupS.normal_inv_iff)
from subgrpS is_subgroup have " $\bigwedge \mathrm{x} . \mathrm{x} \in\{\mathrm{S}, \mathrm{H}\} \Longrightarrow$ subgroup x G" by
auto
hence "subgroup ($\bigcap\{S, H\}$) G" using subgroups_Inter by blast
hence "subgroup ($\mathrm{S} \cap \mathrm{H}$) G" by auto
moreover have " $\mathrm{S} \cap \mathrm{H} \subseteq \mathrm{S}$ " by simp
ultimately show "subgroup ($\mathrm{S} \cap \mathrm{H}$) (G(carrier := S|))"
by (simp add: subgroup_incl subgrpS)
next
fix $g h$
assume $\mathrm{g}: ~ " \mathrm{~g} \in \mathrm{~S}$ " and $\mathrm{hH}: ~ \mathrm{~h} \in \mathrm{H}$ " and $\mathrm{hS}: ~ " \mathrm{~h} \in \mathrm{~S} "$
from $g h H$ subgrpS show $\left." g \otimes h \otimes \operatorname{inv}_{G(\text { carrier }}:=S\right) g \in H "$
by (metis inv_op_closed2 subgroup.mem_carrier m_inv_consistent)
from $g h S$ subgrpS show $\left." g \otimes h \otimes \operatorname{inv}_{G(\text { carrier }}:=S\right) g \in S "$
by (metis subgroup.m_closed subgroup.m_inv_closed m_inv_consistent)
qed
lemma normal_set_mult_subgroup:
shows "subgroup (H <\#> S) G"
proof (rule subgroupI)
show "H <\#> S \subseteq carrier G"
by (metis setmult_subset_G subgroup.subset subgrpS subset)
next
have "1 $\in \mathrm{H}$ " "1 $\in \mathrm{S} "$
using is_subgroup subgrpS subgroup.one_closed by auto
hence " $1 \otimes 1 \in \mathrm{H}<\#>\mathrm{S}$ "
unfolding set_mult_def by blast
thus "H <\#> S $\neq\{ \}$ " by auto
next
fix g
assume g: "g $\in \mathrm{H}$ <\#> S"
then obtain h s where $\mathrm{h}: \mathrm{h} \in \mathrm{H}$ " and $\mathrm{s}: \mathrm{s} \in \mathrm{S}$ " and ghs: "g = $\mathrm{h} \otimes$
s" unfolding set_mult_def
by auto
hence "s \in carrier G " by (metis subgroup.mem_carrier subgrpS)
with h ghs obtain h ' where h ': " h ' $\in H^{\prime \prime}$ and "g $=s \otimes h$ '"
using coset_eq unfolding $r_{-} \operatorname{coset}$ def $l_{-} \operatorname{coset}$ _def by auto
with s have "inv $g=(i n v h \prime) \otimes(i n v s) "$
by (metis inv_mult_group mem_carrier subgroup.mem_carrier subgrpS)
moreover from h ' s subgrpS have "inv h ' $\in H$ " "inv $s \in S "$
using subgroup.m_inv_closed m_inv_closed by auto
ultimately show "inv $g \in H<\#>S "$

```
```

 unfolding set_mult_def by auto
 next
fix g g'
assume g: "g \in H <\#> S" and h: "g' \in H <\#> S"
then obtain h h' s s' where hh'ss': "h \in H" "h' \in H" "s \in S" "s' \in
S" and "g = h \otimes s" and "g' = h' \otimes s'"
unfolding set_mult_def by auto
hence "g \otimes g' = (h \otimes s) \otimes (h' \otimes s')" by metis
also from hh'ss' have inG: "h \in carrier G" "h' \in carrier G" "s \in carrier
G" "s' \in carrier G"
using subgrpS mem_carrier subgroup.mem_carrier by force+
hence "(h \otimes s) \otimes (h' \otimes s') = h \otimes (s \otimes h') \otimes s'"
using m_assoc by auto
also from hh'ss' inG obtain h'' where h'': "h'' }\in\mp@subsup{h}{}{\prime\prime}\mathrm{ " and "s \& h'=
h'' \otimes s"
using coset_eq unfolding r_coset_def l_coset_def
by fastforce
hence "h \otimes (s \otimes h') \otimes s' = h \otimes (h'' \otimes s) \otimes s'"
by simp
also from h'' inG have "... = (h \otimes h'') \otimes (s \otimes s')"
using m_assoc mem_carrier by auto
finally have "g \otimes g' = h \otimes h'' \otimes (s \otimes s')".
moreover have "... \in H <\#> S"
unfolding set_mult_def using h'' hh'ss' subgrpS subgroup.m_closed
by fastforce
ultimately show "g \otimes g' \in H <\#> S"
by simp
qed
lemma H_contained_in_set_mult:
shows "H \subseteq H <\#> S"
proof
fix x
assume x: "x \in H"
have "x \otimes 1 \in H <\#> S" unfolding set_mult_def
using second_isomorphism_grp.subgrpS second_isomorphism_grp_axioms
subgroup.one_closed x by force
with x show "x \in H <\#> S" by (metis mem_carrier r_one)
qed
lemma S_contained_in_set_mult:
shows "S \subseteq H <\#> S"
proof
fix s
assume s: "s \in S"
then have "1 \otimes s \in H <\#> S" unfolding set_mult_def by force
with s show "s \in H <\#> S" using subgrpS subgroup.mem_carrier l_one
by force
qed

```
```

lemma normal_intersection_hom:
shows "group_hom (G(carrier := S|) ((G|carrier := H <\#> S|)) Mod H) (\lambdag.
H \#> g)"
proof -
have "group ((G(carrier := H <\#> S|) Mod H)"
by (simp add: H_contained_in_set_mult normal.factorgroup_is_group
normal_axioms
normal_restrict_supergroup normal_set_mult_subgroup)
moreover
{ fix g
assume g: "g \in S"
with g have "g \in H <\#> S"
using S_contained_in_set_mult by blast
hence "H \#> g G carrier ((G(carrier := H <\#> S)) Mod H)"
unfolding FactGroup_def RCOSETS_def r_coset_def by auto }
moreover
have "^x y. \llbracketx G S; y \in S\rrbracket\Longrightarrow H \#> x \otimes y = H \#> x <\#> (H \#> y)"
using normal.rcos_sum normal_axioms subgroup.mem_carrier subgrpS by
fastforce
ultimately show ?thesis
by (auto simp: group_hom_def group_hom_axioms_def hom_def)
qed
lemma normal_intersection_hom_kernel:
shows "kernel (G(carrier := S|) ((G|carrier := H <\#> S|) Mod H) (\lambdag.
H \#> g) = H \cap S"
proof -
have "kernel (G(carrier := S|) ((G|carrier := H <\#> S|)) Mod H) (\lambdag.
H \#> g)
= {g G S. H \#> g = 1 (G(carrier := H <\#> S)) Mod H
unfolding kernel_def by auto
also have "... = {g \in S. H \#> g = H}"
unfolding FactGroup_def by auto
also have "... = {g \in S. g \in H}"
by (meson coset_join1 is_group rcos_const subgroupE(1) subgroup_axioms
subgrpS subset_eq)
also have "... = H \cap S" by auto
finally show ?thesis.
qed
lemma normal_intersection_hom_surj:
shows "(\lambdag. H \#> g) ' carrier (G(carrier := S)) = carrier ((G(carrier
:= H <\#> S()) Mod H)"
proof auto
fix g
assume "g \in S"
hence "g \in H <\#> S"
using S_contained_in_set_mult by auto

```
```

 thus "H #> g \in carrier ((G(carrier := H <#> S|)) Mod H)"
 unfolding FactGroup_def RCOSETS_def r_coset_def by auto
 next
fix x
assume "x \in carrier (G(carrier := H <\#> S|) Mod H)"
then obtain h s where h: "h \in H" and s: "s \in S" and "x = H \#> (h
\otimes s)"
unfolding FactGroup_def RCOSETS_def r_coset_def set_mult_def by auto
hence "x = (H \#> h) \#> s"
by (metis h s coset_mult_assoc mem_carrier subgroup.mem_carrier subgrpS
subset)
also have "... = H \#> s"
by (metis h is_group rcos_const)
finally have "x = H \#> s".
with s show "x \in (\#>) H ' S"
by simp
qed

```

Finally we can prove the actual isomorphism theorem:
theorem normal_intersection_quotient_isom:
shows " ( \(\lambda \mathrm{X}\). the_elem ( \((\lambda \mathrm{g}\). H \#> g) ' X\()\) ) \(\in\) iso ( \((\mathrm{G}(\) carrier \(:=\mathrm{S} \mid)\) ) Mod
\((H \cap S))(((G(\) carrier \(:=H<\#>S \mid)))\) Mod H)"
using normal_intersection_hom_kernel[symmetric] normal_intersection_hom
normal_intersection_hom_surj
by (metis group_hom.FactGroup_iso_set)
end
```

corollary (in group) normal_subgroup_set_mult_closed:
assumes "M $\triangleleft \mathrm{G}$ " and "N $\triangleleft \mathrm{G}$ "
shows "M <\#> N \triangleleft G"
proof (rule normall)
from assms show "subgroup (M <\#> N) G"
using second_isomorphism_grp.normal_set_mult_subgroup normal_imp_subgroup
unfolding second_isomorphism_grp_def second_isomorphism_grp_axioms_def
by force
next
show $\forall \forall \mathrm{x} \in \mathrm{carrier}$ G. M <\#> N \#> $\mathrm{x}=\mathrm{x}$ <\# ($\mathrm{M}\langle \#>\mathrm{N}$)"
proof
fix x
assume x: "x \in carrier G"
have "M <\#> N \#> x = M <\#> (N \#> x)"
by (metis assms normal_inv_iff setmult_rcos_assoc subgroup. subset
x)
also have "... = M <\#> (x <\# N)"
by (metis assms(2) normal.coset_eq x)
also have "... = (M \#> x) <\#> N"
by (metis assms normal_imp_subgroup rcos_assoc_lcos subgroup.subset

```
```

x)
also have "... = x <\# (M <\#> N)"
by (simp add: assms normal.coset_eq normal_imp_subgroup setmult_lcos_assoc
subgroup.subset x)
finally show "M <\#> N \#> x = x <\# (M <\#> N)" .
qed
qed
end
theory Algebra
imports Sylow Chinese_Remainder Zassenhaus Galois_Connection Generated_Fields
Free_Abelian_Groups
Divisibility Embedded_Algebras IntRing Sym_Groups Exact_Sequence
Polynomials Algebraic_Closure
Left_Coset SimpleGroups SndIsomorphismGrp
begin
end

```

\section*{References}
[1] C. Ballarin. Computer Algebra and Theorem Proving. PhD thesis, University of Cambridge, 1999. Also Computer Laboratory Technical Report number 473.
[2] K. Conrad. Cyclicity of \((Z /(p))^{x}\). Expository paper from the author's website. http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/ cyclicFp.pdf.
[3] N. Jacobson. Basic Algebra I. Freeman, 1985.
[4] F. Kammüller and L. C. Paulson. A formal proof of sylow's theorem: An experiment in abstract algebra with Isabelle HOL. J. Automated Reasoning, 23:235-264, 1999.```

