Examples of Inductive and Coinductive Definitions
in ZF

Lawrence C Paulson and others

January 18, 2026

Contents
1 Sample datatype definitions 2
1.1 A type with four constructors 3
1.2 Example of a big enumeration type 3
2 Binary trees 3
2.1 Datatype definition L. 4
2.2 Number of nodes, with an example of tail-recursion 4
2.3 Numberofleaves 5
2.4 Reflecting treeso Lo 5
3 Terms over an alphabet 6
4 Datatype definition n-ary branching trees 10
5 Trees and forests, a mutually recursive type definition 12
5.1 Datatype definition 12
5.2 Operations 14
6 Infinite branching datatype definitions 16
6.1 The Brouwer ordinals 16
6.2 The Martin-Lof wellordering type 16
7 The Mutilated Chess Board Problem, formalized inductively 17
7.1 Basic properties of evnoddo 18
7.2 Dominoes 18
7.3 Tilingso 18
7.4 The Operator setsum 22

8 The accessible part of a relation

8.1 Properties of the original "restrict" from ZF.thy
8.2 Multiset Orderingso
8.3 Toward the proof of well-foundedness of multirell
8.4 Ordinal Multisetso oL

9 An operator to “map” a relation over a list

10 Meta-theory of propositional logic

10.1 The datatype of propositions
10.2 The proof system,
10.3 The semantics i v
10.3.1 Semantics of propositional logic.
10.3.2 Logical consequence
10.4 Proof theory of propositional logic
10.4.1 Weakening, left and right
10.4.2 The deduction theorem
10.4.3 Thecutrule
10.4.4 Soundness of the rules wrt truth-table semantics
10.5 Completeness
10.5.1 Towards the completeness proof.
10.5.2 Completeness — lemmas for reducing the set of as-
sumptions
10.5.3 Completeness theorem

11 Lists of n elements

12 Combinatory Logic example: the Church-Rosser Theorem

12.1 Definitions
12.2 Transitive closure preserves the Church-Rosser property . . .
12.3 Results about Contraction
12.4 Non-contraction results
12.5 Results about Parallel Contraction
12.6 Basic properties of parallel contraction

13 Primitive Recursive Functions: the inductive definition

13.1 Basic definitions
13.2 Inductive definition of the PR functions

13.3 Ackermann’s function cases
13.4 Main result

1 Sample datatype definitions

theory Datatypes imports ZF begin

1.1 A type with four constructors

It has four contructors, of arities 0-3, and two parameters A and B.

consts
data :: [, 1] = 4

datatype data(A, B) =
Con0
| Cont (a € A)
| Con2 (a € A, b € B)
| Con3 (a € A, b € B, d € data(A, B))

lemma data-unfold: data(A, B) = ({0} + A) + (A x B+ A x B x data(A, B))
{proof)

Lemmas to justify using data in other recursive type definitions.

lemma data-mono: [A C C; B C D] = data(A, B) C data(C, D)
(proof)

lemma data-univ: data(univ(A), univ(A)) C univ(A)

(proof)

lemma data-subset-univ:
[A C univ(C); B C univ(C)] = data(A, B) C univ(C)
(proof)

1.2 Example of a big enumeration type

Can go up to at least 100 constructors, but it takes nearly 7 minutes ...
(back in 1994 that is).

consts
enum :: 1

datatype enum =
C00 | Co1 | C02 | C03 | CO4 | CO5 | CO6 | COT | CO8 | CO9
| C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 | C18 | C19
| C20 | C21 | C22 | C23 | C24 | C25 | C26 | C27 | C28 | C29
| C30 | C31 | C32 | C33 | C34 | C35 | C36 | C37 | C38 | C39
| C40 | C41 | Ch2 | C43 | C44 | C45 | C46 | C47 | C48 | C49
| C50 | C51 | C52 | C53 | C54 | C55 | C56 | C57 | C58 | C59

end

2 Binary trees

theory Binary-Trees imports ZF begin

2.1 Datatype definition

consts
bt i =1

datatype bt(A) =
Lf | Br (a € A, t1 € bt(A), t2 € bt(4))

declare bt.intros [simp]

lemma Br-neg-left: | € bt(A) = Br(z, I, r) # 1
(proof)

lemma Br-iff: Br(a, l, r) = Br(a’, I/, 1) +—a=a Nl=UANr=71'
— Proving a freeness theorem.
(proof)

inductive-cases BrE: Br(a, I, r) € bt(A)
— An elimination rule, for type-checking.

Lemmas to justify using bt in other recursive type definitions.

lemma bt-mono: A C B = bt(A) C bt(B)
(proof)

lemma bt-univ: bt(univ(A)) C univ(A)
(proof)

lemma bt-subset-univ: A C univ(B) = bt(A) C univ(B)
(proof)

lemma bt-rec-type:
[t € bt(A);
c € C(Lf);
Neyzrs. [ze A; yebt(A);, z€ bt(A); re Cy); se€ C(r)] =
h(z, y, z, r, s) € C(Br(z, y, 2))
| = bt-rec(e, h, t) € C(¥)
— Type checking for recursor — example only; not really needed.

(proof)

2.2 Number of nodes, with an example of tail-recursion

consts n-nodes :: ¢ = 1§
primrec
n-nodes(Lf) = 0
n-nodes(Br(a, I,)) = succ(n-nodes(l) #+ n-nodes(r))

lemma n-nodes-type [simp]: t € bt(A) = n-nodes(t) € nat
{proof)

consts n-nodes-auz :: i = 1
primrec
n-nodes-auz(Lf) = (A\k € nat. k)
n-nodes-auz(Br(a, I, 1)) =
(Ak € nat. n-nodes-auz(r) ¢ (n-nodes-auz(l) < succ(k)))

lemma n-nodes-auz-eq:
t € bt(A) = k € nat = n-nodes-aux(t) 'k = n-nodes(t) #+ k
{proof)

definition
n-nodes-tail :: i = i where
n-nodes-tail(t) = n-nodes-auz(t) ‘0

lemma ¢ € bt(A) = n-nodes-tail(t) = n-nodes(t)
{proof)

2.3 Number of leaves

consts
n-leqves i1 = ¢
primrec
n-leaves(Lf) = 1
n-leaves(Br(a, I,)) = n-leaves(l) #+ n-leaves(r)

lemma n-leaves-type [simp]: t € bt(A) => n-leaves(t) € nat
{proof)

2.4 Reflecting trees

consts
bt-reflect :: i = 1
primrec
bt-reflect(Lf) = Lf
bt-reflect(Br(a, I, r)) = Br(a, bt-reflect(r), bt-reflect(l))

lemma bt-reflect-type [simp]: t € bt(A) = bt-reflect(t) € bt(A)
(proof)

Theorems about n-leqves.

lemma n-leqves-reflect: t € bt(A) = n-leaves(bt-reflect(t)) = n-leaves(t)
{proof)

lemma n-leaves-nodes: t € bt(A) = n-leaves(t) = succ(n-nodes(t))
{proof)

Theorems about bt-reflect.

lemma bt-reflect-bt-reflect-ident: t € bt(A) = bt-reflect(bt-reflect(t)) =t
{proof)

end

3 Terms over an alphabet
theory Term imports ZF begin

Mlustrates the list functor (essentially the same type as in Trees-Forest).

consts
term 11 = 1

datatype term(A) = Apply (a € A, | € list(term(A)))
monos list-mono
type-elims list-univ [THEN subsetD, elim-format]

declare Apply [TC]

definition
term-rec :: [4, [4, i, i] = i] = i where
term-rec(t,d) =
Viree(t, At g. term-case(Ax zs. d(z, zs, map(Az. gz, 2s)), t))

definition
term-map :: [i = 4, i] = ¢ where
term-map(f,t) = term-rec(t, Az zs rs. Apply(f(x), rs))

definition
term-size :: i = ¢ where
term-size(t) = term-rec(t, Az zs rs. succ(list-add(rs)))

definition
reflect :: 1 = i where
reflect(t) = term-rec(t, Az zs rs. Apply(z, rev(rs)))

definition
preorder :: i = i where
preorder(t) = term-rec(t, Az zs rs. Cons(z, flat(rs)))

definition
postorder :: i = i where
postorder(t) = term-rec(t, Az zs rs. flat(rs) @ [z])

lemma term-unfold: term(A) = A x list(term(A))
{proof)

lemma term-induct2:
[t € term(A);
Az. [z € A] = P(Apply(z,Nil));
Nz z zs. [x € A; z € term(A); zs: list(term(A)); P(Apply(z,zs))

] = P(Apply(z, Cons(z,z2s)))

| = P()
— Induction on term(A) followed by induction on list.
{proof)

lemma term-induct-eqn [consumes 1, case-names Apply]:
[t € term(A);
Nz zs. [z € A; zs: list(term(A)); map(f,zs) = map(g,2s5)] =
f(Apply(z,zs)) = g(Apply(,2s))
[= 7(t) = 9(%)
— Induction on term(A) to prove an equation.
{proof)

Lemmas to justify using term in other recursive type definitions.

lemma term-mono: A C B = term(A) C term(B)

(proof)

lemma term-univ: term(univ(A)) C univ(A)
— Easily provable by induction also

(proof)

lemma term-subset-univ: A C univ(B) = term(A) C univ(B)
{proof)

lemma term-into-univ: [t € term(A); A C univ(B)] = t € univ(B)
{proof)

term-rec — by Vset recursion.

lemma map-lemma: [l € list(4); Ord(i); rank(l)<i]
= map(rz. (A\z € Vset(i).h(z)) ‘2z, 1) = map(h,l)
— map works correctly on the underlying list of terms.
(proof)

lemma term-rec [simp]: ts € list(A) =
term-rec(Apply(a,ts), d) = d(a, ts, map (Az. term-rec(z,d), ts))
— Typing premise is necessary to invoke map-lemma.
(proof)

lemma term-rec-type:

assumes t: ¢t € term(A)

and a: Az zs r. [z € A; zs: list(term(A));

r e list({Jt € term(A). C(t))]
= d(z, zs, r): C(Apply(z,zs))

shows term-rec(t,d) € C(t)
— Slightly odd typing condition on r in the second premise!
(proof)

lemma def-term-rec:

[Nt j(O)=term-rec(t,d); ts: list(A)] =
<j(A?§>ly(a,t8)) = d(a, ts, map(\Z. j(Z), ts))
proo

lemma term-rec-simple-type [TC:
[t € term(A);
Nz zs r. [z € A; zs: list(term(A)); r € list(C)]
= d(z, zs, r): C
| = term-rec(t,d) € C
(proof)

term-map.
lemma term-map [simp]:
ts € list(A) =
term-map(f, Apply(a, ts)) = Apply(f(a), map(term-map(f), ts))
(proof)

lemma term-map-type [TC):
[t € term(A4); Az. z € A = f(z): B] = term-map(f,t) € term(B)
(proof)

lemma term-map-type2 [TC:
t € term(A) = term-map(f,t) € term({f(u). u € A})
{proof)

term-size.
lemma term-size [simpl:
ts € list(A) = term-size(Apply(a, ts)) = succ(list-add(map(term-size, ts)))
{proof)

lemma term-size-type [TC]: t € term(A) = term-size(t) € nat
(proof)

reflect.
lemma reflect [simp):
ts € list(A) = reflect(Apply(a, ts)) = Apply(a, rev(map(reflect, ts)))
(proof)

lemma reflect-type [TC]: t € term(A) = reflect(t) € term(A)
{proof)

preorder.

lemma preorder [simp]:
ts € list(A) = preorder(Apply(a, ts)) = Cons(a, flat(map(preorder, ts)))
(proof)

lemma preorder-type [TC]: t € term(A) = preorder(t) € list(A)
{proof)

postorder.

lemma postorder [simp):
ts € list(A) = postorder(Apply(a, ts)) = flat(map(postorder, ts)) Q [a]
{proof)

lemma postorder-type [TC): t € term(A) = postorder(t) € list(A)
{proof)

Theorems about term-map.

declare map-compose [simp)

lemma term-map-ident: t € term(A) = term-map(Au. u, t) =t
{proof)

lemma term-map-compose:
t € term(A) = term-map(f, term-map(g,t)) = term-map(Au. f(g(u)), t)

{proof)

lemma term-map-reflect:
t € term(A) = term-map(f, reflect(t)) = reflect(term-map(f,t))
(proof)

Theorems about term-size.
lemma term-size-term-map: t € term(A) = term-size(term-map(f,t)) = term-size(t)

{proof)

lemma term-size-reflect: t € term(A) = term-size(reflect(t)) = term-size(t)
(proof)

lemma term-size-length: t € term(A) = term-size(t) = length(preorder(t))

(proof)

Theorems about refiect.

lemma reflect-reflect-ident: t € term(A) = reflect(reflect(t)) = ¢
(proof)

Theorems about preorder.

lemma preorder-term-map:
t € term(A) = preorder(term-map(f,t)) = map(f, preorder(t))

{proof)

lemma preorder-reflect-eq-rev-postorder:
t € term(A) = preorder(reflect(t)) = rev(postorder(t))

{proof)

end

4 Datatype definition n-ary branching trees
theory Ntree imports ZF begin

Demonstrates a simple use of function space in a datatype definition. Based
upon theory Term.

consts
ntree :: ¢ = 1
maptree 1 1 = 1
maptree2 :: [i, i) = i

datatype ntree(A) = Branch (a € A, h € (Un € nat. n —> ntree(A)))
monos UN-mono [OF subset-refl Pi-mono] — MUST have this form
type-intros nat-fun-univ [THEN subsetD)|
type-elims UN-FE

datatype maptree(A) = Sons (a € A, h € maptree(A) —||> maptree(A))
monos FiniteFun-monol — Use monotonicity in BOTH args
type-intros FiniteFun-univl [THEN subsetD]

datatype maptree2(A, B) = Sons2 (a € A, h € B —||> maptree2(A, B))
monos FiniteFun-mono [OF subset-refl]
type-intros FiniteFun-in-univ’

definition
ntree-rec :: [[4, i, i] = 14, i]| = ¢ where
ntree-rec(b) =
Virecursor(Apr. ntree-case(Ax h. b(z, h, \i € domain(h). pri(h))))

definition
ntree-copy :: 1 = ¢ where
ntree-copy(z) = ntree-rec(Axz h r. Branch(z,r), z)

ntree

lemma ntree-unfold: ntree(A) = A x (Jn € nat. n —> ntree(A))

{proof)

lemma niree-induct [consumes 1, case-names Branch, induct set: niree:
assumes t: ¢t € niree(A)
and step: Az n h. [x € A; n € nat; h € n —> ntree(A); Vi € n. P(h%)
] = P(Branch(z,h))
shows P(t)
— A nicer induction rule than the standard one.

{proof)

10

lemma niree-induct-eqn [consumes 1]:
assumes t: ¢t € niree(A)
and f: f € ntree(A)—>B
and g¢: g € ntree(A)—>B
and step: Az n h. [x € A; n € nat; h € n —> ntree(4); fOh =g O h] =
f ¢ Branch(z,h) = g ‘ Branch(x,h)
shows ft=g‘t
— Induction on ntree(A) to prove an equation
(proof)

Lemmas to justify using Ntree in other recursive type definitions.

lemma ntree-mono: A C B = ntree(A) C niree(B)
(proof)

lemma ntree-univ: ntree(univ(A)) C univ(A)
— Easily provable by induction also

(proof)

lemma niree-subset-univ: A C univ(B) = niree(A) C univ(B)
{proof)

ntree recursion.

lemma ntree-rec-Branch:
function(h) =
ntree-rec(b, Branch(z,h)) = b(z, h, i € domain(h). ntree-rec(b, h*i))
(proof)

lemma ntree-copy-Branch [simp):
function(h) =
niree-copy (Branch(zx, h)) = Branch(z, Ai € domain(h). ntree-copy (h%))
(proof)

lemma ntree-copy-is-ident: z € ntree(A) = niree-copy(z) = z
{proof)

maptree

lemma maptree-unfold: maptree(A) = A x (maptree(A) —||> maptree(A))
(proof)

lemma maptree-induct [consumes 1, induct set: maptree]:
assumes t: t € maptree(A)
and step: Az n h. [x € A; h € maptree(A) —||> maptree(A);
Yy € field(h). P(y)
] = P(Sons(z,h))
shows P(t)
— A nicer induction rule than the standard one.

11

{proof)

maptree2

lemma maptree2-unfold: maptree2(A, B) = A x (B —||> maptree2(A, B))
(proof)

lemma maptree2-induct [consumes 1, induct set: maptree2]:
assumes t: t € maptree2(A, B)
and step: Az n h. [x € A; h € B —||> maptree2(A,B); Vy € range(h). P(y)
] = P(Sons2(z,h))
shows P(t)
(proof)

end

5 Trees and forests, a mutually recursive type def-
inition
theory Tree-Forest imports ZF begin

5.1 Datatype definition

consts
tree ;1 1t = 1
forest i =i
tree-forest :: 1 = i

datatype tree(A) = Tcons (a € A, f € forest(A))
and forest(A) = Fnil | Fcons (t € tree(A), f € forest(A))

lemmas tree’induct =
tree-forest.mutual-induct [THEN conjunctl, THEN spec, THEN [2] rev-mp, of
concl: - t, consumes 1]
and forest’induct =
tree-forest.mutual-induct [THEN conjunct2, THEN spec, THEN [2] rev-mp, of
concl: - f, consumes 1]
for ¢ f

declare tree-forest.intros [simp, TC|

lemma tree-def: tree(A) = Part(tree-forest(A), Inl)
{proof)

lemma forest-def: forest(A) = Part(tree-forest(A), Inr)
(proof)

tree-forest(A) as the union of tree(A) and forest(A).

12

lemma tree-subset-TF: tree(A) C tree-forest(A)
(proof)

lemma treel [TC|: z € tree(A) = x € tree-forest(A)
(proof)

lemma forest-subset-TF: forest(A) C tree-forest(A)
(proof)

lemma treel’ [TC): © € forest(A) = x € tree-forest(A)
(proof)

lemma TF-equals-Un: tree(A) U forest(A) = tree-forest(A)
{proof)

lemma tree-forest-unfold:
tree-forest(A) = (A x forest(A)) + ({0} + tree(A) x forest(A))
— NOT useful, but interesting ...
(proof)

lemma tree-forest-unfold’:
tree-forest(A) =
A x Part(tree-forest(A), Aw. Inr(w)) +
{0} + Part(tree-forest(A), Aw. Inl(w)) * Part(tree-forest(A), Aw. Inr(w))

{proof)

lemma tree-unfold: tree(4) = {Ini(z). x € A x forest(A)}
(proof)

lemma forest-unfold: forest(A) = {Inr(z). z € {0} + tree(A)xforest(A)}
(proof)

Type checking for recursor: Not needed; possibly interesting?

lemma TF-rec-type:
[z € tree-forest(A);
Nxfr. [z e d; fe forest(A); re C(f)
] = b(af.r) € C(Teons(s,f);
c € C(Fnil);
At frir2. [t € tree(A); f € forest(A); r1 € C(t); r2 € C(f)
| = d(t,f,r1,r2) € C(Fcons(t,f))
| = tree-forest-rec(b,c,d,z) € C(z)
(proof)

lemma tree-forest-rec-type:
[Nz fr. [z e A; f e forest(A); r € D(f)
] = b(z,f,r) € C(Teons(x,f));
¢ € D(Fnil);
Nt frlr2. [t € tree(A); f € forest(A); r1 € C(t); r2 € D(f)
| = d(t.f,r1,r2) € D(Fcons(t.f))

13

] = (Vt € tree(A). tree-forest-rec(b,c,d,t) € C(t))
(Vf € forest(A). tree-forest-rec(b,c,d,f) € D(f)
— Mutually recursive version.

(proof)

A
)

5.2 Operations

consts
map :: [i = 0,4 =1
size i1 = 1
preorder 1 i = 1
list-of-TF :: i = 1§
of-list :: i = 1
reflect :: 1 = i

primrec
list-of-TF (Tcons(z,f)) = [Tcons(x,f)]
list-of-TF (Fnil) = []
list-of-TF (Fcons(t,tf)) = Cons (t, list-of-TF(tf))

primrec
of-list([]) = Fnil
of-list(Cons(t,1)) = Fcons(t, of-list(1))

primrec
map (h, Tcons(z,f)) = Tecons(h(z), map(h,f))
map (h, Fnil) = Fnil
map (h, Feons(t,tf)) = Fcons (map(h, t), map(h, tf))

primrec
size (Teons(z,f)) = succ(size(f))
size (Fnil) = 0
size (Feons(t,tf)) = size(t) #+ size(tf)

primrec
preorder (Tcons(z,f)) = Cons(z, preorder(f))
preorder (Fnil) = Nil
preorder (Fcons(t,tf)) = preorder(t) @Q preorder(tf)

primrec
reflect (Tcons(z,f)) = Tcons(z, reflect(f))
reflect (Fnil) = Fnil
reflect (Feons(t,tf)) =
of-list (list-of-TF (reflect(tf)) @ Cons(reflect(t), Nil))

list-of-TF and of-list.

lemma list-of-TF-type [TC]:
z € tree-forest(A) = list-of-TF(z) € list(tree(A))
{proof)

14

lemma of-list-type [TC|: | € list(tree(A)) = of-list(l) € forest(A)
{proof)

map.

lemma
assumes A\z. x € A = h(z): B
shows map-tree-type: t € tree(A) = map(h,t) € tree(B)
and map-forest-type: [€ forest(A) = map(h,f) € forest(B)
(proof)

size.

lemma size-type [TC]: z € tree-forest(A) = size(z) € nat
(proof)

preorder.
lemma preorder-type [TC): z € tree-forest(A) = preorder(z) € list(A)
{proof)

Theorems about list-of-TF and of-list.

lemma forest-induct [consumes 1, case-names Fnil Fcons]:
[f € forest(A);

R(Fnil);
At f. [t € tree(A); f € forest(A); R(f)] = R(Fcons(t,f))
| = R(f)
— Essentially the same as list induction.
(proof)

lemma forest-iso: f € forest(A) = of-list(list-of-TF(f)) = f
(proof)

lemma tree-list-iso: ts: list(tree(A)) = list-of-TF (of-list(ts)) = ts
{proof)

Theorems about map.
lemma map-ident: z € tree-forest(A) = map(Au. u, z) = z

{proof)

lemma map-compose:
z € tree-forest(A) = map(h, map(j,z)) = map(Au. h(j(u)), 2)
(proof)

Theorems about size.

lemma size-map: z € tree-forest(A) = size(map(h,z)) = size(z)
{proof)

15

lemma size-length: z € tree-forest(A) = size(z) = length(preorder(z))
{proof)

Theorems about preorder.

lemma preorder-map:
z € tree-forest(A) = preorder(map(h,z)) = List.map(h, preorder(z))
(proof)

end

6 Infinite branching datatype definitions

theory Brouwer imports ZF(C begin

6.1 The Brouwer ordinals

consts
brouwer :: 1

datatype C Vfrom(0, csucc(nat))
brovwer = Zero | Suc (b € brouwer) | Lim (h € nat —> brouwer)
monos Pi-mono
type-intros inf-datatype-intros

lemma brouwer-unfold: brouwer = {0} + brouwer + (nat —> brouwer)
{proof)

lemma brouwer-induct? [consumes 1, case-names Zero Suc Lim):
assumes b: b € brouwer
and cases:
P(Zero)
Ab. [b € brouwer; P(b)] = P(Suc(b))
Ah. [h € nat —> brouwer; Vi € nat. P(h%)] = P(Lim(h))
shows P(b)
— A nicer induction rule than the standard one.

{proof)

6.2 The Martin-Lof wellordering type

consts
Well :: [i, i = i]| = i

datatype C Vfrom(A U (Jz € A. B(x)), csucc(nat U |Jz € A. B(z)]))
— The union with nat ensures that the cardinal is infinite.
Well(A, B) = Sup (a € A, f € B(a) —> Well(A, B))
monos Pi-mono
type-intros le-trans [OF UN-upper-cardinal le-nat- Un-cardinal] inf-datatype-intros

16

lemma Well-unfold: Well(A, B) = (>_x € A. B(z) —> Well(A, B))
{proof)

lemma Well-induct2 [consumes 1, case-names step):
assumes w: w € Well(A, B)
and step: Na f. [a € A; f € B(a) —> Well(A,B); Vy € B(a). P(fy)] =
P(Sup(a.f))
shows P(w)
— A nicer induction rule than the standard one.

{proof)

lemma Well-bool-unfold: Well(bool, Az. z) = 1 + (1 —> Well(bool, Az. x))
— In fact it’s isomorphic to nat, but we need a recursion operator
— for Well to prove this.

(proof)

end

7 The Mutilated Chess Board Problem, formal-
ized inductively

theory Mutil imports ZF begin

Originator is Max Black, according to J A Robinson. Popularized as the
Mutilated Checkerboard Problem by J McCarthy.

consts
domino :: 1
tiling :: i = 1

inductive
domains domino C Pow(nat x nat)
intros
horiz: [i € nat; j € nat] = {(i,j), <i,succ(j)>} € domino
vertl: [i € nat; j € nat] = {(i.f), <succ(i),j>} € domino
type-intros empty-subsetl cons-subsetl Powl Sigmal nat-succl

inductive
domains tiling(4) C Pow(|J (4))
intros
empty: 0 € tiling(A)
Un: Ja € A; t e tiing(A); ant=0]= aUtEc tiling(4)
type-intros empty-subset] Union-upper Un-least Powl
type-elims PowD [elim-format]

definition
evnodd :: [i, 9| = ¢ where

17

evnodd(A,b) = {z € A. 3ij. z = (i,j) N (i #+ j) mod 2 = b}

7.1 Basic properties of evnodd
lemma evnodd-iff: {i,j): evnodd(A,b) <+— (i,j): A A (i#+j) mod 2 = b
(proof)

lemma evnodd-subset: evnodd(A, b) C A
{proof)

lemma Finite-evnodd: Finite(X) = Finite(evnodd(X,b))
{proof)

lemma evnodd-Un: evnodd(A U B, b) = evnodd(A,b) U evnodd(B,b)
(proof)

lemma evnodd-Diff: evnodd(A — B, b) = evnodd(A,b) — evnodd(B,b)
{proof)

lemma evnodd-cons [simp]:
evnodd(cons((i,j),C), b) =
(if (i#+j) mod 2 = b then cons((i,j), evnodd(C,b)) else evnodd(C,b))
{proof)

lemma evnodd-0 [simp]: evnodd(0, b) = 0
(proof)

7.2 Dominoes

lemma domino-Finite: d € domino = Finite(d)
{proof)

lemma domino-singleton:
[d € domino; b<2] = Ji’ j'. evnodd(d,b) = {<i’j">}
(proof)

7.3 Tilings

The union of two disjoint tilings is a tiling

lemma tiling-Unl:
t € tiling(A) = u € tiling(A) = tNu= 0=t U u € tiling(A)

(proof)

lemma tiling-domino-Finite: t € tiling(domino) = Finite(t)
{proof)

lemma tiling-domino-0-1: t € tiling(domino) = |evnodd(t,0)| = |evnodd(t,1)]
{proof)

18

lemma dominoes-tile-row:
[i € nat; n € nat] = {i} * (n #+ n) € tiling(domino)
{proof)

lemma dominoes-tile-matrix:
[m € nat; n € nat] = m * (n #+ n) € tiling(domino)
(proof)

lemma eg-lt-E: [z=y; 2<y] = P
(proof)

theorem mutil-not-tiling: [m € nat; n € nat;
t = (succ(m)#+succ(m))*(succ(n)#+suce(n));
t'=1t— {(0,0)} — {<succ(m#+m), succ(n#+n)>}]
= t’ ¢ tiling(domino)
(proof)

end

theory FoldSet imports ZF begin
consts fold-set :: [i, i, [i,i]=1, 1] = @

inductive
domains fold-set(A, B, f,e) C Fin(A)*B
intros
emptyl: eeB = (0, e)cfold-set(A, B, f,e)
consl: [z€A; x ¢C; (C,y) € fold-set(A, B,f,e); f(z,y):B]
= <cons(z,C), f(z,y)>€fold-set(A, B, f, e)
type-intros Fin.intros

definition
fold = [i, [i,i]=1, 4, i = @ (<fold[-]'(-,-,-")») where
fold[B](f,e, A) = THE z. (A, z)efold-set(A, B, f,e)
definition
setsum :: [i=1, i] = { where
setsum(g, C) = if Finite(C) then
fold[int](Az y. g(z) $+ y, #0, C) else #0

inductive-cases empty-fold-setE: (0, x) € fold-set(A, B, f,e)
inductive-cases cons-fold-setE: <cons(z,C), y> € fold-set(A, B, f,e)

lemma cons-lemmal: [z¢ C; ¢ B] = cons(z,B)=cons(z,C) «— B = C

19

(proof)

lemma cons-lemma2: [cons(z, B)=cons(y, C); z#y; ¢B; y¢C]
= B —{y} = C—{z} NzeC A yeB
(proof)

lemma fold-set-mono-lemma:

(C, z) € fold-set(A, B, f, e)

— VD. A<=D — (C, z) € fold-set(D, B, f, e)
(proof)

lemma fold-set-mono: C<=A = fold-set(C, B, f, e) C fold-set(A, B, f, e)
(proof)

lemma fold-set-lemma:
(C, z)efold-set(A, B, f, e) = (C, z)efold-set(C, B, f, e) N C<=A
(proof)

lemma Diff1-fold-set:
[<C—{z},y> € fold-set(A, B, f,e); z€C; z€A; f(z, y):B]
= <C, f(z, y)> € fold-set(A, B, f, e)

(proof)

locale fold-typing =
fixes A and B and e and f
assumes ftype [intro,simp]: [z € A; y € B] = f(z,y) € B
and etype [intro,simp]: e € B
and feomm: [z € A; y € A; z € Bl = f(=z, f(y, 2))=f(y, f(z, 2))

lemma (in fold-typing) Fin-imp-fold-set:
CeFin(A) = (Fz. (C, z) € fold-set(A, B, f,e))
(proof)

lemma Diff-sing-imp:
[C—{b} =D —{a};a#b;be C] = C = cons(b,D) — {a}
(proof)

lemma (in fold-typing) fold-set-determ-lemma [rule-format]:
nenat
= VC. |Cl<n —
(Vz. (C, z) € fold-set(A, B, f,e)—
(Vy. (C, y) € fold-set(A, B, f,e) — y=z))
(proof)

lemma (in fold-typing) fold-set-determ:

20

[({C, z)efold-set(A, B, f, e);
(C, y)efold-set(A, B, f, e)] = y=x
(proof)

lemma (in fold-typing) fold-equality:
(C,y) € fold-set(A,B.f,e) = fold|B|(f,e,C) =y
(proof)

lemma fold-0 [simp]: e € B = fold|B](f,e,0) = e
{proof)

This result is the right-to-left direction of the subsequent result

lemma (in fold-typing) fold-set-imp-cons:
[{C, y) € fold-set(C, B, f, €); C € Fin(A); c € A; c¢C]
= <cons(c, C), f(c,y)> € fold-set(cons(c, C), B, f, e)
(proof)

lemma (in fold-typing) fold-cons-lemma [rule-format]:
[C € Fin(A); c € A; ¢¢C]
= <cons(c, C), v> € fold-set(cons(c, C), B, f, e) +—
(Jy. (C, y) € fold-set(C, B, f, e) A v = f(c, y))
(proof)

lemma (in fold-typing) fold-cons:
[CeFin(A); ceA; ¢¢C]
= fold[B](f, e, cons(e, C)) = f(e, fold[B](f, e, C))
(proof)

lemma (in fold-typing) fold-type [simp, TC]:
CeFin(A) = fold|B|(f,e,C):B
(proof)

lemma (in fold-typing) fold-commute [rule-format):
[CeFin(A); ceA]
= (YyeB. f(c, fold[B](f, y, C)) = fold[B|(f, f(¢, y), C))
(proof)

lemma (in fold-typing) fold-nest-Un-Int:
[CeFin(A); DeFin(A)]
= fold[B|(f, fold[B](f, e, D), C) =
fold[B](f, fold[B|(f, e, (C N D)), C U D)
{proof)

lemma (in fold-typing) fold-nest-Un-disjoint:

[CeFin(A); DeFin(A); C N D = 0]

= fold[B](f,e,C U D) = fold][B](f, fold|B](f,e,D), C)
(proof)

21

lemma Finite-cons-lemma: Finite(C) = C€Fin(cons(c, C))
(proof)

7.4 The Operator setsum

lemma setsum-0 [simp]: setsum(g, 0) = #0

(proof)

lemma setsum-cons [simp]:
Finite(C) =
setsum(g, cons(c,C)) =
(if ¢ € C then setsum(g,C) else g(c) $+ setsum(g,C))
(proof)

lemma setsum-K0: setsum((Ai. #0), C) = #0
(proof)

lemma setsum-Un-Int:
[Finite(C); Finite(D)]
= setsum(g, C U D) $+ setsum(g, C N D)
= setsum(yg, C) $+ setsum(yg, D)
(proof)

lemma setsum-type [simp, TC]: setsum(g, C):int

(proof)

lemma setsum-Un-disjoint:

[Finite(C); Finite(D); C N D = 0]

= setsum(g, C U D) = setsum(g, C) $+ setsum(g,D)
(proof)

lemma Finite-RepFun [rule-format (no-asm)]:
Finite(I) = (Vi€l. Finite(C(7))) — Finite(RepFun(I, C))
(proof)

lemma setsum-UN-disjoint [rule-format (no-asm)]:
Finite(I)
— (Vi€l. Finite(C(7))) —
(Viel. Vjel. i#j — CG) N C() = 0) —
setsum(f, |Ji€l. C(i)) = setsum (Ai. setsum(f, C (7)), I)
(proof)

lemma setsum-addf: setsum(Az. f(z) $+ g(z),C) = setsum(f, C) $+ setsum(g,
)
(proof)

22

lemma fold-set-cong:
[A=A"; B=B'; e=e’; (Vaz€A’. YyeB'. f(z,y) = f'(z,y))]
= fold-set(A,B,f,e) = fold-set(A’,B’,f'e’)

{proof)

lemma fold-cong:

[B=B'; A=A'; e=e’;
Az y. [z€A’s yeB'| = [f(zy) = ['(zy)] =
fold[B](f,e,A) = fold[B'|(f', ', A"

(proof)

lemma setsum-cong:

[A=B; A\z. 26 B = f(z) = g(2)] =
setsum(f, A) = setsum(g, B)

(proof)

lemma setsum-Un:
[Finite(A); Finite(B)]
= setsum(f, AU B) =
setsum(f, A) $+ setsum(f, B) $— setsum(f, A N B)

(proof)

lemma setsum-zneg-or-0 [rule-format (no-asm)]:
Finite(A) = (Vz€A. g(z) $< #0) — setsum(g, A) $< #0
(proof)

lemma setsum-succD-lemma [rule-format]:

Finite(A)

= Vnenat. setsum(f,A) = $# succ(n) — (Fac€A. #0 $< f(a))
(proof)

lemma setsum-succD:
[setsum(f, A) = $# succ(n); n€nat]=— FacA. #0 $< f(a)
(proof)

lemma g-zpos-imp-setsum-zpos [rule-format):
Finite(A) = (Vz€A. #0 $< g(z)) — #0 $< setsum(g, A)
(proof)

lemma g-zpos-imp-setsum-zpos2 [rule-format]:
[Finite(A); Vz. #0 $< g(z)] = #0 $< setsum(g, A)
(proof)

lemma g-zspos-imp-setsum-zspos |rule-format]:

Finite(A)

= (Vz€A. #0 $< g(z)) — A # 0 — (#0 $< setsum(g, A))
(proof)

23

lemma setsum-Diff [rule-format]:
Finite(A) = Va. M(a) = #0 — setsum(M, A) = setsum(M, A—{a})
(proof)

end

8 The accessible part of a relation
theory Acc imports ZF begin

Inductive definition of ace(r); see [3].

consts
acc i1 =1

inductive
domains acc(r) C field(r)
intros
vimage: [r—‘{a}: Pow(acc(r)); a € field(r)] = a € acc(r)
monos Pow-mono

The introduction rule must require a € field(r), otherwise acc(r) would be
a proper class!

The intended introduction rule:

lemma accl: [Ab. (b,a):r = b € acc(r); a € field(r)] = a € ace(r)
{proof)

lemma acc-downward: [b € ace(r); (a,b): r] = a € ace(r)
{proof)

lemma acc-induct [consumes 1, case-names vimage, induct set: acc):
[a € ace(r);
Nz. [z € ace(r); Vy. (y,z):r — P(y)] = P(x)
] = P(a)
{proof)

lemma wf-on-acc: wflace(r)](r)
(proof)

lemma acc-wfl: field(r) C acc(r) = wf(r)
(proof)

lemma acc-wfD: wf(r) = field(r) C acc(r)
{proof)

lemma wf-acc-iff: wf(r) «— field(r) C acc(r)
(proof)

24

end

theory Multiset
imports FoldSet Acc
begin

abbreviation (input)
— Short cut for multiset space
Mult :: i=17 where
Mult(A) = A —||> nat—{0}

definition

funrestrict :: [i,i]] = i where
funrestrict(f,A) = Az € A. fx

definition
multiset :: 1 = o where
multiset(M) = 3A. M € A —> nat—{0} N Finite(A)

definition
mset-of :: i=1 where
mset-of (M) = domain(M)

definition
munion : [i, i] = ¢ (infix] <+#> 65) where
M +# N = Az € mset-of (M) U mset-of (N).
if x € mset-of (M) N mset-of (N) then (M‘) #+ (N‘z)
else (if x € mset-of (M) then M‘z else N‘r)

definition

normalize :: i = i where
normalize(f) =
if (3A.fe€ A—> nat A Finite(A)) then
funrestrict(f, {x € mset-of (f). 0 < fz})
else 0

definition
mdiff :: [4, 9 = i (infixl <—#> 65) where
M —# N = normalize(Ax € mset-of (M).
if x € mset-of(N) then M‘c #— Nz else M‘r)

definition

msingle :: i = 1 (<(<open-block notation=<mizfix multiset>>{#-#})>) where

25

{#a#} = {{a, 1)}

definition
MCollect :: [i, i=0] = i where
MCollect(M, P) = funrestrict(M, {x € mset-of(M). P(z)})

definition

meount :: [, i| = ¢ where
meount(M, a) = if a € mset-of (M) then M‘a else 0

definition
msize :: 1 = { where
msize(M) = setsum(ha. $# mcount(M,a), mset-of (M))

abbreviation
melem :: [i,i] = o («(<notation=<infix :#>-/ # -)» [50, 51] 50) where
a:# M = a € mset-of (M)

syntax
-MColl :: [pttrn, i, o] = i («(<indent=1 notation=<mizfix multiset comprehen-
sionn{# - € -/ #}))
syntax-consts
-MColl = MCollect
translations
{#z € M. P#} == CONST MCollect(M, \z. P)

definition

multirell :: [i,i|={ where
multirell (A, r) =
{{M, N) € Mult(A)xMult(A).
Ja € A IMO € Mult(A). 3K € Mult(A).
N=MO +# {#a#} N M=M0 +# K N (Vb € mset-of (K). (b,a) €)}

definition
multirel :: [i, i = { where
multirel(A, r) = multirell (A, 7)™+

definition
omultiset :: i = o where
omultiset(M) = 3i. Ord(i) N M € Mult(field(Memrel(7)))

definition
mless :: [i, i] = o (infix]l «<#> 50) where

26

M <# N = 34 0rd(i) A (M, N) € multirel(field(Memrel(¢)), Memrel(7))

definition
mle :: [4, 79 = o (infix] «<<#=) 50) where
M <#= N = (omultiset(M) NM = N) | M <# N

8.1 Properties of the original "restrict" from ZF.thy

lemma funrestrict-subset: [f € Pi(C,B); ACC| = funrestrict(f,A) C f
(proof)

lemma funrestrict-type:
[Nz. 2 € A = fz € B(z)] = funrestrict(f,A) € Pi(A,B)
(proof)

lemma funrestrict-type2: [f € Pi(C,B); ACC| = funrestrict(f,A) € Pi(A,B)
(proof)

lemma funrestrict [simp]: a € A = funrestrict(f,A) ‘a = f‘a

(proof)

lemma funrestrict-empty [simp): funrestrict(f,0) = 0
(proof)

lemma domain-funrestrict [simpl: domain(funrestrict(f,C)) = C

(proof)

lemma fun-cons-funrestrict-eq:
f € cons(a, b) —> B = [= cons(<a, f ‘ a>, funrestrict(f, b))

(proof)

declare domain-of-fun [simp]
declare domainE [rule del]

A useful simplification rule

lemma multiset-fun-iff:
(f € A—>nat—{0}) +— f € A—>natA(VNa € A. f'a € nat A 0 < f‘a)
(proof)

lemma multiset-into-Mult: [multiset(M); mset-of (M)CA] = M € Mult(A)
(proof)

lemma Mult-into-multiset: M € Mult(A) = multiset(M) N mset-of (M)CA
(proof)

lemma Mult-iff-multiset: M € Mult(A) «— multiset(M) A mset-of (M)CA
(proof)

27

lemma multiset-iff- Mult-mset-of : multiset(M) +— M € Mult(mset-of (M))
(proof)

The multiset operator

lemma multiset-0 [simp]: multiset(0)

(proof)

The mset-of operator

lemma multiset-set-of-Finite [simp]: multiset(M) = Finite(mset-of (M))

(proof)

lemma mset-of-0 [iff]: mset-of (0) = 0
(proof)

lemma mset-is-0-iff: multiset(M) = mset-of (M)=0 +— M=0

(proof)

lemma mset-of-single [iff]: mset-of ({#a#}) = {a}
(proof)

lemma mset-of-union [iff]: mset-of (M +# N) = mset-of (M) U mset-of (N)
(proof)

lemma mset-of-diff [simp]: mset-of (M)CA = mset-of (M —# N) C A
(proof)

lemma msingle-not-0 [iff]: {#a#} # 0 N 0 # {#at#}
(proof)

lemma msingle-eq-iff [iff]: ({#a#} = {#b#}) «— (a =)
(proof)

lemma msingle-multiset [iff, TC): multiset({#a#})
(proof)

lemmas Collect-Finite = Collect-subset [THEN subset-Finite]

lemma normalize-idem [simp]: normalize(normalize(f)) = normalize(f)

(proof)

lemma normalize-multiset [simpl: multiset(M) = normalize(M) = M

(proof)

lemma multiset-normalize [simp]: multiset(normalize(f))
(proof)

28

lemma munion-multiset [simp]: [multiset(M); multiset(N)] = multiset(M +#
N)
(proof)

lemma mdiff-multiset [simp]: multiset(M —# N)
(proof)

lemma munion-0 [simp]: multiset(M) = M +# 0 =M N0 +# M =M
(proof)

lemma munion-commute: M +# N = N +# M
(proof)

lemma munion-assoc: (M +# N) +# K = M +# (N +# K)
(proof)

lemma munion-lcommute: M +# (N +# K) = N +# (M +# K)
{proof)

lemmas munion-ac = munion-commute munion-assoc munion-lcommute

lemma mdiff-self-eq-0 [simp]: M —# M = 0
(proof)

lemma mdiff-0 [simp]: 0 —# M = 0
(proof)

lemma mdiff-0-right [simp]: multiset(M) = M —# 0 = M
(proof)

lemma mdiff-union-inverse2 [simp|: multiset(M) => M +# {#a#} —# {F#a#}
=M
{proof)

29

lemma mcount-type [simp, TC]: multiset(M) = mcount(M, a) € nat

(proof)

lemma mcount-0 [simp]: meount(0, a) = 0

(proof)

lemma mcount-single [simp]: mcount({#b#}, a) = (if a=b then 1 else 0)
(proof)

lemma mcount-union [simp|: [multiset(M); multiset(N)]
= mcount(M +# N, a) = mcount(M, a) #+ mcount (N, a)
(proof)

lemma mcount-diff [simp]:
multiset(M) = mcount(M —# N, a) = mcount(M, a) #— mcount(N, a)
(proof)

lemma mcount-elem: [multiset(M); a € mset-of (M)] = 0 < mcount(M, a)

(proof)

lemma msize-0 [simp]: msize(0) = #0

(proof)

lemma msize-single [simp]: msize({#a#}) = #1

(proof)

lemma msize-type [simp,TC|: msize(M) € int

(proof)

lemma msize-zpositive: multiset(M)=— #0 $< msize(M)

(proof)

lemma msize-int-of-nat: multiset(M) = I n € nat. msize(M)= $# n

(proof)

lemma not-empty-multiset-imp-exist:
[M#£0; multiset(M)] = Ja € mset-of (M). 0 < mcount(M, a)
(proof)

lemma msize-eq-0-iff: multiset(M) —> msize(M)=#0 +— M=0

(proof)

lemma setsum-mcount-Int:
Finite(A) = setsum(Xa. $# mcount(N, a), A N mset-of (N))
= setsum(Aa. $# mcount(N, a), A)
(proof)

30

lemma msize-union [simp]:
[multiset(M); multiset(N)] = msize(M +# N) = msize(M) $+ msize(N)
(proof)

lemma msize-eg-succ-imp-elem: [msize(M)= $# succ(n); n € nat] = Ja. a €
mset-of (M)
{proof)

lemma equality-lemma:
[multiset(M); multiset(N); ¥V a. meount(M, a)=mcount(N, a)]
= mset-of (M)=mset-of (N)

(proof)

lemma multiset-equality:
[multiset(M); multiset(N)]= M=N<+—(¥ a. mcount(M, a)=mcount(N, a))
(proof)

lemma munion-eq-0-iff [simp]: [multiset(M); multiset(N)]|=(M +# N =0) <—
(M=0 A N=0)
(proof)

lemma empty-eq-munion-iff [simp): [multiset(M); multiset(N)]—=(0=M +# N)
+—— (M=0 N N=0)
(proof)

lemma munion-right-cancel [simp]:
[multiset(M); multiset(N); multiset(K)|=—(M +# K = N +# K)+—(M=N)
(proof)

lemma munion-left-cancel [simpl:

[multiset(K); multiset(M); multiset(N)] = (K +# M = K +# N) +— (M =
N)
(proof)

lemma nat-add-eq-1-cases: [m € nat; n € nat] = (m #+ n=1) +— (m=1 A
n=0) | (m=0 A n=1)
(proof)

lemma munion-is-single:
[multiset(M); multiset(N)]
= (M +# N = {#a#}) «— (M={#a#} A N=0) | (M = 0 A N
{#a#})
(proof)

lemma msingle-is-union: [multiset(M); multiset(N)]

31

<:>f(>{#a#} =M +# N) «— ({#a#} =M ANN=0| M = 0 A {#a#} = N)
proo,

lemma setsum-decr:
Finite(A)
= (VM. multiset(M) —
(Va € mset-of (M). setsum(Az. $# meount(M(a:=M‘a #— 1), 2), A) =
(if a € A then setsum(Az. $# mcount(M, z), A) $— #1
else setsum(Az. $# mcount(M, z), A))))
(proof)

lemma setsum-decr2:
Finite(A)
= VM. multiset(M) — (Va € mset-of (M).
setsum(Az. $# meount(funrestrict(M, mset-of (M)—{a}), x), A) =
(if a € A then setsum(Az. $# mcount(M, z), A) $— $# M‘a
else setsum(Az. $# meount(M, z), A)))
(proof)

lemma setsum-decr3: [Finite(A); multiset(M); a € mset-of (M)]
= setsum(Az. $# mcount(funrestrict(M, mset-of (M)—{a}), z), A — {a})

(if a € A then setsum(Az. $# mcount(M, z), A) $— $# M‘a
else setsum(Az. $# mcount(M, z), A))
(proof)

lemma nat-le-1-cases: n € nat = n < 1 +— (n=0 | n=1)
(proof)

lemma succ-pred-eg-self: [0<n; n € nat] = succ(n #— 1) = n

(proof)

Specialized for use in the proof below.

lemma multiset-funrestict:
[VacA. M “a € nat AN 0 < M “ a; Finite(A)]
= multiset(funrestrict(M, A — {a}))

(proof)

lemma multiset-induct-aux:
assumes preml: AM a. [multiset(M); a¢mset-of (M); P(M)] = P(cons({a,
1), M)
and prem2: AM b. [multiset(M); b € mset-of(M); P(M)] = P(M(b:= M‘
44 1)
shows
[n € nat; P(0)]
= (VM. multiset(M)—
(setsum(Az. $# mcount(M, z), {z € mset-of (M). 0 < M‘z}) = $# n) — P(M))

32

(proof)

lemma multiset-induct2:
[multiset(M); P(0);
(AM a. [multiset(M); a¢mset-of(M); P(M)] = P(cons({a, 1), M)));
(AM b. [multiset(M); b € mset-of(M); P(M)] = P(M(b:= MD #+ 1)))]
= P(M)
(proof)

lemma munion-single-casel :
[multiset(M); a ¢mset-of (M)] = M +# {#a#} = cons({a, 1), M)
(proof)

lemma munion-single-case2:
[multiset(M); a € mset-of (M)] = M +# {#a#} = M(a:=M‘a #+ 1)
(proof)

lemma multiset-induct:
assumes M: multiset(M)
and P0: P(0)
and step: AM a. [multiset(M); P(M)] = P(M +# {#a#})
shows P(M)
(proof)

lemma MCollect-multiset [simp):
multiset(M) = multiset({# = € M. P(z)#})
(proof)

lemma mset-of-MCollect [simp]:
multiset(M) = mset-of ({# x € M. P(z) #}) C mset-of (M)
(proof)

lemma MCollect-mem-iff [iff]:
x € mset-of ({#x € M. P(z)#}) «— =z € mset-of (M) N P(x)

(proof)

lemma mcount-MCollect [simpl:
meount({# z € M. P(x) #}, a) = (if P(a) then mcount(M,a) else 0)
(proof)

lemma multiset-partition: multiset(M) = M = {# z € M. P(z) #} +# {# =
€ M. - P(z) #}
(proof)

lemma natify-elem-is-self [simp]:

33

[multiset(M); a € mset-of (M)] = natify(M‘a) = M‘a
(proof)

lemma munion-eq-conv-diff: [multiset(M); multiset(N)]

— (M {#adth = N+ {#08)) > (M=NAa=b|
: J;/I = N —# {#a#} +# {#0#} NN = M —# {#b#} +4 {#a#})
proof

lemma melem-diff-single:
multiset(M) =
k € mset-of (M —# {#a#}) «— (k=a N 1 < mcount(M,a)) | (k# a N k €
mset-of (M))
(proof)

lemma munion-eq-conv-exist:
[M € Mult(A); N € Mult(A)]

= (M +# {#a#} = N +4 {#b#}) «—
(M=N A a=b | (3K € Mult(A). M= K +# {#b#} N N=K +# {#a#}))

(proof)

8.2 Multiset Orderings

lemma multirell-type: multirell (A, r) C Mult(A)xMult(A)
(proof)

lemma multirel1-0 [simp|: multirell (0, r) =0

(proof)

lemma multirel1-iff:

(N, M) € multirell (A,) <—

(Ja.a€e AN

(3MO. M0 € Mult(A) A (3K. K € Mult(A) A

M=MO0 +# {#a#} N N=M0O +# K A (Vb € mset-of (K). (b,a) € 1))))
(proof)

Monotonicity of multirell
lemma multirell-monol: ACB = multirell (A, r)Cmultirell (B,)
(proof)

lemma multirell-mono2: rCs = multirell (A,r)Cmultirell (A, s)

(proof)

lemma multirel1-mono:
[ACB; rCs] = multirell (A, r) C multirell (B, s)

{(proof)

34

8.3 Toward the proof of well-foundedness of multirell

lemma not-less-0 [iff]: (M,0) ¢ multirell (A, r)
(proof)

lemma less-munion: [<N, MO +# {#a#}> € multirell (A, r); MO € Mult(A)]
.

(IM. (M, M0O) € multirell (A, r) AN N = M +# {#a#}) |

(3K. K € Mult(A) A (Vb € mset-of (K). (b, a) € 7) AN N = M0 +# K)
(proof)

lemma multirell-base: [M € Mult(A); a € A] = <M, M +# {#a#}> € mul-
tirell (A, r)
(proof)

lemma acc-0: acc(0)=0

(proof)

lemma lemmal: [Vb € A. (ba) € r —
(VM € acc(multirell (A, r)). M +# {#b#}:acc(multirell (A, 1)));
MO € acc(multirell (A, 1)); a € A;
VM. (M,M0) € multirell (A, r) — M +# {#a#} € acc(multirell (A, r))]
= MO +# {#a#} € acc(multirell (A, 1))
(proof)

lemma lemma2: [Vb € A. (b,a) € r
— (VM € acc(multirell (A, r)). M +3# {#b#} racc(multirell (4, 1)));
M € acc(multirell (A, 1)); a € A] = M +# {#a#} € acc(multirell (A,
7))

(proof)

lemma lemma3: [wf[A](r); a € A]
= VM € acc(multirell (A, r)). M +# {#a#} € acc(multirell (A, 1))
(proof)

lemma lemmas: multiset(M) = mset-of (M)CA —
wf[A](r) — M € field(multirell (A, r)) — M € acc(multirell (A, 7))
(proof)

lemma all-accessible: [wf[A](r); M € Mult(A); A # 0] = M € acc(multirell (4,

r))
(proof)

lemma wf-on-multirell : wf[A](r) = wf[A—]||>nat—{0}](multirell (A, r))
(proof)

lemma wf-multirell: wf(r) = wf(multirell (field(r), r))
(proof)

35

lemma multirel-type: multirel(A, r) C Mult(A)xMult(A)
(proof)

lemma multirel-mono:
[ACB; rCs] = multirel(A, r)Cmultirel(B,s)
(proof)

lemma add-diff-eq: k € nat = 0 <k — n#+ k#— 1 =n#+ (kK #— 1)
(proof)

lemma mdiff-union-single-conv: [a € mset-of (J); multiset(I); multiset(J)]
= I +# J —# {#a#} = I +# (J—# {#a#})
(proof)

lemma diff-add-commute: [n < m; m € nat; n € nat; k € nat] = m #— n #+
k=m#+ k #—n
(proof)

lemma multirel-implies-one-step:
(M,N) € multirel(A, r) =
trans[A](r) —
3IJK.
I € Mult(A) N J € Mult(A) N K € Mult(A) A
N=I+#JANM=I+#KANJF#0A
(Vk € mset-of (K). 35 € mset-of (J). (k,j) € 1))
(proof)

lemma melem-imp-eq-diff-union [simp]: [a € mset-of (M); multiset(M)] = M
—# {#a#} +# {#a#} = M
(proof)

lemma msize-eq-succ-imp-eq-union:

[msize(M)=84# succ(n); M € Mult(A); n € nat]

= Ja N. M =N +# {#a#} NN € Mult(A) Na € A
(proof)

lemma one-step-implies-multirel-lemma [rule-format (no-asm)]:
n € nat —
(VIJK.
I € Mult(A) A J € Mult(A) A K € Mult(A) A
(msize(J) =$# n AN J #£0 N (Vk € mset-of (K). Ij € mset-of (J). (k, j) € 1))

36

— <I +# K, I +4# J> € multirel(A, 1))
(proof)

lemma one-step-implies-multirel:
[J # 0; Yk € mset-of (K). 3j € mset-of (J). (k,j) € r;
I € Mult(A); J € Mult(A); K € Mult(A)]
= <I+#K, I+#J> € multirel(A, r)
(proof)

lemma multirel-irrefi-lemmas:
Finite(A) = part-ord(A, r) — (Vz € A. Jy € A (x,y) € r) —A=0
(proof)

lemma irrefl-on-multirel:
part-ord(A, r) = irrefl(Mult(A), multirel(A, 1))
(proof)

lemma trans-on-multirel: trans[Mult(A)](multirel(A, 1))
(proof)

lemma multirel-trans:
[(M, N) € multirel(A, r); (N, K) € multirel(4, r)] = (M, K) € multirel(A,r)
(proof)

lemma trans-multirel: trans(multirel(A,r))
(proof)

lemma part-ord-multirel: part-ord(A,r) = part-ord(Mult(A), multirel(A, 1))
(proof)

lemma munion-multirel1-mono:

[{(M,N) € multirell (A, r); K € Mult(A)] = <K +# M, K +# N> € mul-
tirell (A, r)

(proof)

lemma munion-multirel-mono2:

[(M, N) € multirel(A, r); K € Mult(A)][=<K +# M, K +# N> € multirel(A,
r)

(proof)

lemma munion-multirel-monol:

[{M, N) € multirel(A, r); K € Mult(A)] = <M +# K, N +# K> €
multirel(A4,)

37

(proof)

lemma munion-multirel-mono:
[{M,K) € multirel(A, r); (N,L) € multirel(A, r)]
= <M +# N, K +# L> € multirel(A, r)
(proof)

8.4 Ordinal Multisets

lemmas field-Memrel-mono = Memrel-mono [THEN field-mono]

lemmas multirel-Memrel-mono = multirel-mono [OF field-Memrel-mono Mem-
rel-monol

lemma omultiset-is-multiset [simp]: omultiset(M) = multiset(M)

(proof)

lemma munion-omultiset [simpl: [omultiset(M); omultiset(N)] = omultiset(M
+# N)
(proof)

lemma mdiff-omultiset [simpl: omultiset(M) = omultiset(M —# N)

(proof)

lemma irrefl-Memerel: Ord(i) = irrefl(field(Memrel(i)), Memrel(t))
(proof)

lemma trans-iff-trans-on: trans(r) <— trans|field(r)](r)
(proof)

lemma part-ord-Memrel: Ord(i) = part-ord(field(Memrel(i)), Memrel(t))
(proof)

lemmas part-ord-mless = part-ord-Memrel [THEN part-ord-multirel)

lemma mless-not-refl: =(M <# M)

(proof)

lemmas mless-irrefl = mless-not-refl [THEN notE, elim!]

38

lemma mless-trans: [K <# M; M <# N] = K <# N
(proof)

lemma mless-not-sym: M <# N —> - N <# M
(proof)

lemma mless-asym: [M <# N; -P = N <# M) = P
(proof)

lemma mle-refl [simp]: omultiset(M) = M <#= M
(proof)

lemma mle-antisym:
[M <#=N; N<#=M]= M =N
(proof)

lemma mle-trans: [K <#= M; M <#= N] = K <#=N
(proof)

lemma mless-le-iff: M <# N <— (M <#= N AN M # N)
(proof)

lemma munion-less-mono2: [M <# N; omultiset(K)] = K +# M <# K +#
N

{(proof)

lemma munion-less-monol: [M <# N; omultiset(K)] = M +# K <# N +#
K

(proof)

lemma mless-imp-omultiset: M <# N = omultiset(M) A omultiset(N)

(proof)

lemma munion-less-mono: [M <# K; N <# L] = M +# N <# K +# L
(proof)

lemma mle-imp-omultiset: M <#= N = omultiset(M) N omultiset(N)

(proof)

lemma mle-mono: [M <#= K; N <#=L] = M +# N <#=K +# L
(proof)

39

lemma omultiset-0 [iff]: omultiset(0)
(proof)

lemma empty-lel [simp]: omultiset(M) = 0 <#= M
(proof)

lemma munion-upperl: Jomultiset(M); omultiset(N)] = M <#= M +# N
(proof)

end

9 An operator to “map” a relation over a list

theory Rmap imports ZF begin

consts
rmap : 1=1

inductive
domains rmap(r) C list(domain(r)) x list(range(r))
intros

NilI: (Nil,Nily € rmap(r)

ConsI: [(x,y): r; (xs,ys) € rmap(r)]
= <Cons(z,zs), Cons(y,ys)> € rmap(r)

type-intros domainl rangel list.intros

lemma rmap-mono: r C s = rmap(r) C rmap(s)

(proof)
inductive-cases
Nil-rmap-case [elim!]: (Nil,zs) € rmap(r)
and Cons-rmap-case [elim!]: <Cons(z,zs),2zs> € rmap(r)

declare rmap.intros [intro)

lemma rmap-rel-type: 1 C A x B = rmap(r) C list(A) x list(B)
{proof)

lemma rmap-total: A C domain(r) = list(4) C domain(rmap(r))
(proof)

lemma rmap-functional: function(r) = function(rmap(r))

(proof)

If f is a function then rmap(f) behaves as expected.

40

lemma rmap-fun-type: f € A—>B = rmap(f): list(4)—>list(B)
{proof)

lemma rmap-Nil: rmap(f) ‘Nil = Nil
(proof)

lemma rmap-Cons: [f € A—>B; x € A; zs: list(A)]
= rmap(f) ¢ Cons(z,xs) = Cons(fz, rmap(f) ‘xs)
{proof)

end

10 Meta-theory of propositional logic
theory PropLog imports ZF begin

Datatype definition of propositional logic formulae and inductive definition
of the propositional tautologies.

Inductive definition of propositional logic. Soundness and completeness
w.r.t. truth-tables.

Prove: If H |= p then G |= p where G € Fin(H)

10.1 The datatype of propositions

consts
propn :: 1

datatype propn =
Fis
| Var (n € nat) (<~ [100] 100)
| Imp (p € propn, q € propn) (infixr «(=> 90)

10.2 The proof system

consts thms =g
abbreviation
thms-syntaz :: [i,i] = o (infixl (—> 50)

where H |— p = p € thms(H)

inductive

domains thms(H) C propn

intros
H: [pe H; pe€propn] = H |—p
K: [p € propn; q € propn] = H |— p=q=p
S: [p € propn; q € propn; r € propn]

= H |- (p=q¢=r) = (p=q) = p=r

DN: p € propn = H |— ((p=Fls) = Fls) = p

41

MP: [H |- p=q; H |- p; p € propn; q € propn] = H |— ¢
type-intros propn.intros

declare propn.intros [simp]

10.3 The semantics

10.3.1 Semantics of propositional logic.

consts
is-true-fun :: [4,i] = ¢
primrec
is-true-fun(Fls, t) = 0
is-true-fun(Var(v), t) = (if v € t then 1 else 0)
is-true-fun(p=-q, t) = (if is-true-fun(p,t) = 1 then is-true-fun(q,t) else 1)

definition
is-true :: [i,i] = o where
is-true(p,t) = is-true-fun(p,t) = 1
— this definition is required since predicates can’t be recursive

lemma is-true-Fls [simpl: is-true(Fls,t) «— False
{proof)

lemma is-true-Var [simp|: is-true(#v,t) «— v € t
{proof)

lemma is-true-Imp [simpl: is-true(p=>q,t) «— (is-true(p,t)— is-true(q,t))
(proof)

10.3.2 Logical consequence

For every valuation, if all elements of H are true then so is p.

definition
logeon :: [i,i] = o (infixl <|=» 50) where
H|=p=Vt (Vqe H. is-true(q,t)) — is-true(p,t)

A finite set of hypotheses from ¢ and the Vars in p.

consts
hyps :: [i,d] = @
primrec
hyps(Fls, t) = 0
hyps(Var(v), t) = (if v € t then {#v} else {#v=Fls})
hyps(p=-q, t) = hyps(p,t) U hyps(q,t)

10.4 Proof theory of propositional logic

lemma thms-mono: G C H = thms(G) C thms(H)

(proof)

42

lemmas thms-in-pl = thms.dom-subset [THEN subsetD]
inductive-cases ImpFE: p=-q € propn

lemma thms-MP: [H |- p=q; H |- p] = H |- ¢
— Stronger Modus Ponens rule: no typechecking!
(proof)

lemma thms-I: p € propn = H |— p=p
— Rule is called I for Identity Combinator, not for Introduction.
(proof)

10.4.1 Weakening, left and right

lemma weaken-left: [G C H; G|—p] = H|—p
— Order of premises is convenient with THEN
(proof)

lemma weaken-left-cons: H |— p = cons(a,H) |— p
{proof)

lemmas weaken-left-Unl = Un-upperl [THEN weaken-left]
lemmas weaken-left-Un2 = Un-upper?2 [THEN weaken-left]

lemma weaken-right: [H |— ¢; p € propn] = H |— p=>q
(proof)

10.4.2 The deduction theorem

theorem deduction: [cons(p,H) |— q; p € propn] = H |— p=>q
(proof)

10.4.3 The cut rule

lemma cut: [H|—p; cons(p,H) |- ¢ = H |- ¢
(proof)

lemma thms-FIsE: [H |- Fls; p € propn] = H |- p
{proof)

lemma thms-notE: [H |— p=Fls; H |- p; q € propn] = H |— ¢
(proof)

10.4.4 Soundness of the rules wrt truth-table semantics

theorem soundness: H |— p = H |=p
(proof)

43

10.5 Completeness

10.5.1 Towards the completeness proof

lemma Fls-Imp: [H |— p="Fls; q € propn] = H |— p=q
(proof)

lemma Imp-Fls: [H |— p; H |- q=Fls] = H |— (p=>q)=Fls
(proof)

lemma hyps-thms-if:
p € propn = hyps(p,t) |— (if is-true(p,t) then p else p=Fls)
— Typical example of strengthening the induction statement.
(proof)

lemma logcon-thms-p: [p € propn; 0 |= p] = hyps(p,t) |— p
— Key lemma for completeness; yields a set of assumptions satisfying p
(proof)

For proving certain theorems in our new propositional logic.

lemmas propn-SIs = propn.intros deduction
and propn-Is = thms-in-pl thms.H thms.H [THEN thms-MP]

The excluded middle in the form of an elimination rule.

lemma thms-excluded-middle:
[p € propn; q € propn] = H |- (p=q) = ((p=Fls)=q) = ¢
(proof)

lemma thms-excluded-middle-rule:
[cons(p,H) |— ¢; cons(p=Fls,H) |— q; p € propn] = H |— ¢
— Hard to prove directly because it requires cuts
(proof)

10.5.2 Completeness — lemmas for reducing the set of assump-
tions

For the case hyps(p, t) — cons(#v, Y) |— p we also have hyps(p, t) — {#v}
C hyps(p, t — {v}).
lemma hyps-Diff:
p € propn => hyps(p, t—{v}) C cons(#v=Fls, hyps(p,t)—{#v})
(proof)

For the case hyps(p, t) — cons(#v = Fls, Y) |— p we also have hyps(p, t)
— {#v = Fls} C hyps(p, cons(v, t)).

lemma hyps-cons:
p € propn = hyps(p, cons(v,t)) C cons(#v, hyps(p,t)—{#v=Fls})
(proof)

Two lemmas for use with weaken-left

44

lemma cons-Diff-same: B—C C cons(a, B—cons(a,C))
{proof)

lemma cons-Diff-subset2: cons(a, B—{c}) — D C cons(a, B—cons(c,D))
{proof)
The set hyps(p, t) is finite, and elements have the form #v or #v = Fls;

could probably prove the stronger hyps(p, t) € Fin(hyps(p, 0) U hyps(p,
nat)).

lemma hyps-finite: p € propn = hyps(p,t) € Fin(|Jv € nat. {#v, #v="Fls})
(proof)

lemmas Diff-weaken-left = Diff-mono [OF - subset-refl, THEN weaken-left]

Induction on the finite set of assumptions hyps(p, t0). We may repeatedly

subtract assumptions until none are left!

lemma completeness-0-lemma [rule-format]:
[p € propn; 0 |= pl = V. hyps(p,t) — hyps(p,t0) |— p
{proof)

10.5.3 Completeness theorem

lemma completeness-0: [p € propn; 0 |=p] = 0 |- p
— The base case for completeness
(proof)

lemma logcon-Imp: [cons(p,H) |= q] = H |= p=¢q
— A semantic analogue of the Deduction Theorem
(proof)

lemma completeness:
H € Fin(propn) = p € propn = H |=p = H |— p
(proof)

theorem thms-iff: H € Fin(propn) = H |— p +— H |= p A p € propn
(proof)

end

11 Lists of n elements
theory ListN imports ZF begin

Inductive definition of lists of n elements; see [3].

consts listn :: i=1

inductive
domains listn(A) C nat x list(A)
intros

45

Nill: (0,Nil) € listn(A)
Consl: [a € A; (n,l) € lisin(A)] = <succ(n), Cons(a,l)> € listn(A)
type-intros nat-typechecks list.intros

lemma list-into-listn: | € list(A) = <length(l),l> € listn(A)
(proof)

lemma listn-iff: (n,l) € listn(A) <+— 1 € list(A) A length(l)=n
{proof)

lemma listn-image-eq: listn(A) ‘“{n} = {l € list(A). length(l)=n}
{proof)

lemma listn-mono: A C B = listn(A) C listn(B)

(proof)

lemma listn-append:
[(n,0) € listn(A); <n’,l"> € listn(A)] = <n#-+n', Q"> € listn(A)
(proof)

inductive-cases
Nil-listn-case: (i,Nil) € listn(A)
and Cons-listn-case: <i,Cons(z,l)> € listn(A)

inductive-cases
zero-listn-case: (0,l) € listn(A)
and succ-listn-case: <succ(t),l> € listn(A)

end

12 Combinatory Logic example: the Church-Rosser
Theorem

theory Comb
imports ZF
begin

Curiously, combinators do not include free variables.

Example taken from [1].

12.1 Definitions

Datatype definition of combinators S and K.

consts comb :: ¢
datatype comb =
K

46

| S
| app (p € comb, ¢ € comb) (infixl <> 90)

Inductive definition of contractions, —! and (multi-step) reductions, —.

consts contract :: 1
abbreviation contract-syntaz :: [i,i] = o (infixl <=1 50)
where p —! ¢ = (p,q) € contract

abbreviation contract-multi :: [i,i] = o (infixl <—» 50)
where p — ¢ = (p,q) € contract *

inductive

domains contract C comb X comb

intros
K: [p € comb; q € comb] = K-p-q = p
S: [p € comb; q € comb; T € comb] = S-p-q-r = (p-r)-(q-7)
Apl: [p—tq; r € comb] = p-r =t ¢-r
Ap2: [p—tq; r € comb] = r-p —! req

type-intros comb.intros

Inductive definition of parallel contractions, =! and (multi-step) parallel
reductions, =.

consts parcontract :: 1

abbreviation parcontract-syntazx :: [i,i] = o (infixl <=1 50)
where p =' ¢ = (p,q) € parcontract

abbreviation parcontract-multi :: [i,i] = o (infixl =) 50)
where p = ¢ = (p,q) € parcontract ™+

inductive

domains parcontract C comb x comb

intros
refl: [p € comb] = p =t p
K: [p € comb; q € comb] = K-p-qg='p
S: [p € comb; q € comb; 1 € comb] => S-p-q-r = (p-r)-(g-7)
Ap: [p=tq r=2's] = pr =2 s

type-intros comb.intros

Misc definitions.
definition I :: ¢
where [= S-K-K

definition diamond :: i = o
where diamond(r) =
Vzy. (z,yyer — Vy'. <zy’>er — (Fz. (y,2)€r A <y',z> € 1))

47

12.2 Transitive closure preserves the Church-Rosser prop-
erty

lemma diamond-strip-lemmaD [rule-format]:
[diamond(r); (z,y):r +] =
Vy' <zy’>r — Fz. <y’ z> 7+ A {y,2): 1)

(proof)

lemma diamond-trancl: diamond(r) = diamond(r™+)
{proof)

inductive-cases Ap-FE [elim!]: p-q € comb

12.3 Results about Contraction

For type checking: replaces a —' b by a, b € comb.

lemmas contract-combE2 = contract.dom-subset [THEN subsetD, THEN SigmaE2]
and contract-combD1 = contract.dom-subset [THEN subsetD, THEN SigmaD1]
and contract-combD2 = contract.dom-subset [THEN subsetD, THEN SigmaD2)]

lemma field-contract-eq: field(contract) = comb
(proof)

lemmas reduction-refl =
field-contract-eq [THEN equalityD2, THEN subsetD, THEN rtrancl-refl]

lemmas rtrancl-into-rtrancl? =
r-into-rtrancl [THEN trans-rtrancl [THEN transD]]

declare reduction-refl [intro!] contract. K [introl] contract.S [introl]

lemmas reduction-rls =
contract. K [THEN rtrancl-into-rtrancl2]
contract.S [THEN rtrancl-into-rtrancl2)
contract.Apl [THEN rtrancl-into-rtrancl2)
contract. Ap2 [THEN rtrancl-into-rtrancl2]

lemma p € comb = I-p = p
— Example only: not used

{proof)

lemma comb-I: I € comb
(proof)

12.4 Non-contraction results

Derive a case for each combinator constructor.

inductive-cases K-contractE [elim!]: K —' r

48

and S-contractE [elim!]: S =1 r
and Ap-contractE [elim!]: p-qg —' r

lemma I-contract-E: [—»' r = P
(proof)

lemma K1-contractD: K-p —' r = (3q. r = K-q A p = q)
(proof)

lemma Ap-reducel: [p — ¢; r € comb] = p-r — q-r
(proof)

lemma Ap-reduce2: [p — q; r € comb] = r-p — rq
(proof)

Counterexample to the diamond property for —1.

lemma KIIl-contractl: K-I1-(I-I) = I
(proof)

lemma KIII-contract2: K-1-(I-I) =' K-I-((K-I)-(K-I))
{proof)

lemma KIIl-contract3: K-1-((K-I)-(K-I1)) =!I
(proof)

lemma not-diamond-contract: = diamond(contract)

(proof)

12.5 Results about Parallel Contraction

For type checking: replaces a =' b by a, b € comb

lemmas parcontract-combE2 = parcontract.dom-subset [THEN subsetD, THEN
SigmaE?2)

and parcontract-combD1 = parcontract.dom-subset [THEN subsetD, THEN Sig-
maD1]

and parcontract-combD2 = parcontract.dom-subset [THEN subsetD, THEN Sig-
maD2)]

lemma field-parcontract-eq: field(parcontract) = comb

{proof)

Derive a case for each combinator constructor.

inductive-cases
K-parcontractE [elim!]: K = r
and S-parcontractE [elim!]: S = r
and Ap-parcontractE [elim!]: p-q = r

declare parcontract.intros [intro)

49

12.6 Basic properties of parallel contraction

lemma KI-parcontractD [dest!]:
Kp=2tr= 3p.r=Kp Ap=2'p)
(proof)

lemma S1-parcontractD [dest!]:
Septr= 3p.r=Sp Ap=!p)
{proof)

lemma S2-parcontractD [dest!]:
Spa=tr= 3p ¢ r=5p"¢Ap3'p'Agtq)
{proof)

lemma diamond-parcontract: diamond(parcontract)
— Church-Rosser property for parallel contraction

(proof)

Equivalence of p — g and p = ¢.

lemma contract-imp-parcontract: p—tq = p=1q
(proof)

lemma reduce-imp-parreduce: p—q —> p=gq
{proof)

lemma parcontract-imp-reduce: p=>'q = p—q
(proof)

lemma parreduce-imp-reduce: p=q = p—q
{proof)

lemma parreduce-iff-reduce: p=q +— p—q
(proof)

end

13 Primitive Recursive Functions: the inductive
definition

theory Primrec imports ZF begin

Proof adopted from [4].
See also [2, page 250, exercise 11].

13.1 Basic definitions

definition
SC :: i where

50

SC = Ml € list(nat). list-case(0, Az zs. succ(z), 1)

definition
CONSTANT :: i=1i where
CONSTANT(k) = M € list(nat). k

definition
PROJ :: i=1i where
PROJ(i) = Al € list(nat). list-case(0, Az xs. x, drop(i,l))

definition
COMP :: [i,i]=i where
COMP(g,fs) = Al € list(nat). g “ map(Af. f, fs)

definition
PREC :: [i,i]=1 where
PREC(f,9) =
Al € list(nat). list-case(0,
Az zs. rec(x, fas, Ay r. g * Cons(r, Cons(y, xs))), 1)
— Note that g is applied first to PREC(f, g) ‘ y and then to y!

consts
ACK :: i=1
primrec
ACK(0) = SC
ACK (succ(i)) = PREC (CONSTANT (ACK(%) ‘[1]), COMP(ACK (%), [PROJ(0)]))

abbreviation
ack :: [i,i]=1{ where
ack(z,y) = ACK(z) ‘[y]

Useful special cases of evaluation.

lemma SC: [z € nat; [€ list(nat)] = SC * (Cons(z,l)) = succ(x)
{proof)

lemma CONSTANT: | € list(nat) => CONSTANT(k) ‘1 =k
(proof)

lemma PROJ-0: [z € nat; | € list(nat)] = PROJ(0) ‘ (Cons(xz,l)) = z
(proof)

lemma COMP-1: 1 € list(nat) = COMP(g,[f]) ‘1 = g‘[f]
{proof)

lemma PREC-0: 1 € list(nat) = PREC(f,g) ‘ (Cons(0,l)) = f
{proof)

lemma PREC-succ:
[z € nat; 1 € list(nat)]

o1

= PREC(f,g9) ‘(Cons(succ(z),l)) =
< g]‘t>Cons(PREC(f,g) (Cons(z,l)), Cons(x,l))
Proo

13.2 Inductive definition of the PR functions

consts
prim-rec :: 1

inductive
domains prim-rec C list(nat)—>nat
intros
SC € prim-rec
k € nat = CONSTANT (k) € prim-rec
i € nat => PROJ(i) € prim-rec
lg € prim-rec; fs€list(prim-rec)] = COMP(g,fs) € prim-rec
[f € prim-rec; g € prim-rec] = PREC(f,g) € prim-rec
monos [list-mono
con-defs SC-def CONSTANT-def PROJ-def COMP-def PREC-def
type-intros nat-typechecks list.intros
lam-type list-case-type drop-type map-type
apply-type rec-type

lemma prim-rec-into-fun [TC]: ¢ € prim-rec = ¢ € list(nat) —> nat
{proof)

lemmas [TC] = apply-type [OF prim-rec-into-fun)

declare prim-rec.intros [TC]
declare nat-into-Ord [TC]
declare rec-type [TC]

lemma ACK-in-prim-rec [TC]: i € nat = ACK(i) € prim-rec
{proof)

lemma ack-type [TC): [i € nat; j € nat] = ack(i,j) € nat

{proof)

13.3 Ackermann’s function cases

lemma ack-0: j € nat = ack(0,j) = succ(j)
— PROPERTY A 1

(proof)

lemma ack-succ-0: ack(succ(i), 0) = ack(i,1)
— PROPERTY A 2
(proof)

lemma ack-succ-succ:

52

[ienat; jenat] = ack(succ(i), suce(f)) = ack(i, ack(succ(), j))
— PROPERTY A 3
{proof)

lemmas [simp] = ack-0 ack-succ-0 ack-succ-succ ack-type
and [simp del] = ACK .simps

lemma lt-ack2: i € nat = j € nat = j < ack(i,j)
— PROPERTY A 4

(proof)

lemma ack-lt-ack-succ?2: [i€nat; jenat] = ack(i,j) < ack(i, succ(j))
— PROPERTY A 5-, the single-step lemma
{proof)

lemma ack-lt-mono2: [j<k; i € nat; k € nat] = ack(i,j) < ack(i,k)
— PROPERTY A 5, monotonicity for <
{proof)

lemma ack-le-mono2: [j<k; i€nat; kenat] = ack(i,j) < ack(i,k)
— PROPERTY A 5’, monotonicity for <
{proof)

lemma ack2-le-ackl:
[ienat; jenat] = ack(i, succ(j)) < ack(succ(i), 7)
— PROPERTY A 6
{proof)

lemma ack-lt-ack-succl: [i € nat; j € nat] = ack(i,j) < ack(succ(4),5)
— PROPERTY A 7-, the single-step lemma
(proof)

lemma ack-lt-monol: [i<j; j € nat; k € nat] = ack(i,k) < ack(j,k)
— PROPERTY A 7, monotonicity for <
(proof)

lemma ack-le-monol: [i<j; j € nat; k € nat] = ack(i,k) < ack(j,k)
— PROPERTY A 7’, monotonicity for <
{proof)

lemma ack-1: j € nat = ack(1,j) = succ(succ(j))
— PROPERTY A 8

{proof)

lemma ack-2: j € nat = ack(succ(1),j) = succ(succ(succ(j#+j5)))
— PROPERTY A 9

(proof)

93

lemma ack-nest-bound:
[i1 € nat; i2 € nat; j € nat]
= ack(il, ack(i2,7)) < ack(succ(succ(il #+1i2)), 7)
— PROPERTY A 10
(proof)

lemma ack-add-bound:
[i1 € nat; i2 € nat; j € nat]
= ack(il,j) #+ ack(i2,j) < ack(succ(succ(succ(succ(il #+1i2)))), 7)
— PROPERTY A 11
(proof)

lemma ack-add-bound?2:
[i < ack(k,j); j € nat; k € nat]
= (#+j < ack(succ(suce(succ(suce(k)))), 7)
— PROPERTY A 12.
— Article uses existential quantifier but the ALF proof used k #+ #4.
— Quantified version must be nested 3%k’ Vi,j

{proof)

13.4 Main result
declare list-add-type [simp)

lemma SC-case: | € list(nat) = SC ‘1 < ack(1, list-add(l))
(proof)

lemma lt-ackl: [i € nat; j € nat] = @ < ack(i,j)

— PROPERTY A 4’7 Extra lemma needed for CONSTANT case, constant func-
tions.

(proof)

lemma CONSTANT-case:
[l € list(nat); k € nat] = CONSTANT(k) ‘1 < ack(k, list-add(l))

(proof)

lemma PROJ-case [rule-format]:
l € list(nat) = Vi € nat. PROJ (i) ‘1 < ack(0, list-add(l))
(proof)

COMP case.

lemma COMP-map-lemma:
fs € list({f € prim-rec. Ikf € nat. V1 € list(nat). f1 < ack(kf, list-add(l))})
= 3k € nat. VI € list(nat).
list-add(map(\f. f <1, fs)) < ack(k, list-add(l))
(proof)

lemma COMP-case:
[kgEnat;

54

V1 e list(nat). g < ack(kg, list-add(l));
fs € list({f € prim-rec .
Jkf € nat. V1 € list(nat).
1 < ack(kf, list-add(1))})]
= 3k € nat. VI € list(nat). COMP(g,fs)‘l < ack(k, list-add(l))
(proof)

PREC case.

lemma PRFEC-case-lemma:

Vi € list(nat). f9 #+ list-add(l) < ack(kf, list-add(1));
V1 € list(nat). g #+ list-add(l) < ack(kg, list-add(1));
f € prim-rec; kféenat;
g € prim-rec; kg€nat;
I € list(nat)]

= PREC(f,9)‘l #+ list-add(l) < ack(succ(kf#+kg), list-add(l))
(proof)

lemma PREC-case:
[f € prim-rec; kfenat;
g € prim-rec; kg€nat;
V1 e list(nat). f1 < ack(kf, list-add(l));
V1 € list(nat). g1 < ack(kg, list-add(1))]
= 3k € nat. VI € list(nat). PREC(f,g) 1< ack(k, list-add(l))
(proof)

lemma ack-bounds-prim-rec:
f € prim-rec = 3k € nat. V1 € list(nat). f1 < ack(k, list-add(l))
(proof)

theorem ack-not-prim-rec:
(Al € list(nat). list-case(0, Az xs. ack(z,z), 1)) ¢ prim-rec
{proof)

end

References

[1] J. Camilleri and T. F. Melham. Reasoning with inductively defined
relations in the HOL theorem prover. Technical Report 265, Computer
Laboratory, University of Cambridge, Aug. 1992.

[2] E. Mendelson. Introduction to Mathematical Logic. Chapman & Hall,
fourth edition, 1997.

[3] C. Paulin-Mohring. Inductive definitions in the system Coq: Rules and
properties. In M. Bezem and J. Groote, editors, Typed Lambda Calculi
and Applications, LNCS 664, pages 328-345. Springer, 1993.

95

[4] N. Szasz. A machine checked proof that Ackermann’s function is not
primitive recursive. In G. Huet and G. Plotkin, editors, Logical Environ-
ments, pages 317-338. Cambridge University Press, 1993.

o6

	Sample datatype definitions
	A type with four constructors
	Example of a big enumeration type

	Binary trees
	Datatype definition
	Number of nodes, with an example of tail-recursion
	Number of leaves
	Reflecting trees

	Terms over an alphabet
	Datatype definition n-ary branching trees
	Trees and forests, a mutually recursive type definition
	Datatype definition
	Operations

	Infinite branching datatype definitions
	The Brouwer ordinals
	The Martin-Löf wellordering type

	The Mutilated Chess Board Problem, formalized inductively
	Basic properties of evnodd
	Dominoes
	Tilings
	The Operator 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 setsum

	The accessible part of a relation
	Properties of the original "restrict" from ZF.thy
	Multiset Orderings
	Toward the proof of well-foundedness of multirel1
	Ordinal Multisets

	An operator to ``map'' a relation over a list
	Meta-theory of propositional logic
	The datatype of propositions
	The proof system
	The semantics
	Semantics of propositional logic.
	Logical consequence

	Proof theory of propositional logic
	Weakening, left and right
	The deduction theorem
	The cut rule
	Soundness of the rules wrt truth-table semantics

	Completeness
	Towards the completeness proof
	Completeness – lemmas for reducing the set of assumptions
	Completeness theorem

	Lists of n elements
	Combinatory Logic example: the Church-Rosser Theorem
	Definitions
	Transitive closure preserves the Church-Rosser property
	Results about Contraction
	Non-contraction results
	Results about Parallel Contraction
	Basic properties of parallel contraction

	Primitive Recursive Functions: the inductive definition
	Basic definitions
	Inductive definition of the PR functions
	Ackermann's function cases
	Main result

