Examples of Inductive and Coinductive Definitions
in ZF

Lawrence C Paulson and others

January 18, 2026

Contents
1 Sample datatype definitions 2
1.1 A type with four constructors . . . . . .. .. ... ... ... 3
1.2 Example of a big enumeration type . . . . . . ... ... ... 3
2 Binary trees 4
2.1 Datatype definition . . . . . . .. ... ... L. 4
2.2 Number of nodes, with an example of tail-recursion . . . . . . 5
2.3 Number of leaves . . . . . . . .. .. .. .. .. 5
2.4 Reflecting trees . . . . . . ..o Lo 6
3 Terms over an alphabet 6
4 Datatype definition n-ary branching trees 11
5 Trees and forests, a mutually recursive type definition 14
5.1 Datatype definition . . . . . . . . ... ... .. ... 14
5.2 Operations . . . . .. ... ... . . e 16
6 Infinite branching datatype definitions 19
6.1 The Brouwer ordinals . . . . ... ... ... ... ...... 19
6.2 The Martin-Lof wellordering type . . . . . . .. .. .. .. .. 19
7 The Mutilated Chess Board Problem, formalized inductively 20
7.1 Basic properties of evnodd . . . . . . . ... 21
7.2 Dominoes . . . . . . . ... 21
7.3 Tilings . . . . . . .o 21
7.4 The Operator setsum . . . . . . . . .. ... ... ... .... 28



8 The accessible part of a relation

8.1 Properties of the original "restrict" from ZF.thy . . . . .. ..
8.2 Multiset Orderings . . . . . . . . .. .. .o
8.3 Toward the proof of well-foundedness of multirell . . . . . . .
8.4 Ordinal Multisets . . . . . . . .. .. .o oL

9 An operator to “map” a relation over a list

10 Meta-theory of propositional logic

10.1 The datatype of propositions . . . . .. ... ... .. ....
10.2 The proof system . . . . . . . .. ... ... ... .. ...,
10.3 The semantics . . . . . . . . . . . . . i v
10.3.1 Semantics of propositional logic. . . . ... ... ...
10.3.2 Logical consequence . . . . .. .. .. ... ... ...
10.4 Proof theory of propositional logic . . . . .. ... ... ...
10.4.1 Weakening, left and right . . . . ... ... ... ...
10.4.2 The deduction theorem . . . . ... ... ... ....
10.4.3 Thecutrule .. .. .. ... ... .. ... ......
10.4.4 Soundness of the rules wrt truth-table semantics
10.5 Completeness . . . . . . . . . . ..
10.5.1 Towards the completeness proof. . . . . . . . .. . ..
10.5.2 Completeness — lemmas for reducing the set of as-
sumptions . . . ... ...
10.5.3 Completeness theorem . . . . . . .. ... ... ....

11 Lists of n elements

12 Combinatory Logic example: the Church-Rosser Theorem

12.1 Definitions . . . . . . . . . . ...
12.2 Transitive closure preserves the Church-Rosser property . . .
12.3 Results about Contraction . . . . . . ... . ... ... ....
12.4 Non-contraction results . . . . .. ... ... .. ... ....
12.5 Results about Parallel Contraction . . . . .. ... ... ...
12.6 Basic properties of parallel contraction . . . . . .. ... ...

13 Primitive Recursive Functions: the inductive definition

13.1 Basic definitions . . . . . . . . ...
13.2 Inductive definition of the PR functions . . . . . ... .. ..
13.3 Ackermann’s function cases . . . . . . . ... ... ... ...
13.4 Mainresult . . . . . .. . . . .. ... .. ...

1 Sample datatype definitions

theory Datatypes imports ZF begin



1.1 A type with four constructors

It has four contructors, of arities 0-3, and two parameters A and B.

consts
data :: [i, 1] = 1

datatype data(A, B) =
Con0
| Conl (a € A)
| Con2 (a € A, b € B)
| Con3 (a € A, b € B, d € data(A, B))

lemma data-unfold: data(A, B) = ({0} + A) + (A x B+ A x B x data(A, B))
by (fast intro!: data.intros [unfolded data.con-defs]
elim: data.cases [unfolded data.con-defs])

Lemmas to justify using data in other recursive type definitions.

lemma data-mono: [A C C; B C D] = data(A, B) C data(C, D)
unfolding data.defs
apply (rule lfp-mono)
apply (rule data.bnd-mono)+
apply (rule univ-mono Un-mono basic-monos | assumption)+
done

lemma data-univ: data(univ(A), univ(A)) C univ(A)
unfolding data.defs data.con-defs
apply (rule lfp-lowerbound)
apply (rule-tac [2] subset-trans [OF A-subset-univ Un-upperl, THEN univ-mono))
apply (fast introl: zero-in-univ Inl-in-univ Inr-in-univ Pair-in-univ)
done

lemma data-subset-univ:
[A C univ(C); B C univ(C)] = data(A, B) C univ(C)
by (rule subset-trans [OF data-mono data-univ])

1.2 Example of a big enumeration type

Can go up to at least 100 constructors, but it takes nearly 7 minutes ...
(back in 1994 that is).

consts
enum :: 1

datatype enum =
Co0 | Co1 | Co2 | C03 | Co4 | CO5 | Co6 | COT | CO8 | CO9
| C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 | C18 | C19
| C20 | C21 | C22 | C23| C24 | C25 | C26 | C27 | C28 | C29
| C30 | C31 | C32 | C33| C34 | C35 | C36 | C37 | C38 | C39
| C40 | C41 | €42 | €43 | C44 | C45 | C46 | C47 | C48 | C49



| C50 | C51 | C52 | C53 | C54 | C55 | C56 | C57 | C58 | C59

end

2 Binary trees

theory Binary-Trees imports ZF begin

2.1 Datatype definition

consts
bt i =1

datatype bt(A) =
Lf | Br (a € A, t1 € bt(A), t2 € bt(4))

declare bt.intros [simp]

lemma Br-neg-left: | € bt(A) = Br(z, I, r) # 1
by (induct arbitrary: x r set: bt) auto

lemma Br-iff: Br(a, l, r) = Br(a’, I/, 1) +—a=a Nl=UANr=71'
— Proving a freeness theorem.
by (fast elim!: bt.free-elims)

inductive-cases BrE: Br(a, I, r) € bt(A)
— An elimination rule, for type-checking.

Lemmas to justify using bt in other recursive type definitions.

lemma bt-mono: A C B = bt(A) C bt(B)
unfolding bt.defs
apply (rule lfp-mono)
apply (rule bt.bnd-mono)+
apply (rule univ-mono basic-monos | assumption)+
done

lemma bt-univ: bt(univ(A)) C univ(A)
unfolding bt.defs bt.con-defs
apply (rule lfp-lowerbound)
apply (rule-tac [2] A-subset-univ [THEN univ-mono))
apply (fast introl: zero-in-univ Inl-in-univ Inr-in-univ Pair-in-univ)
done

lemma bt-subset-univ: A C univ(B) = bt(A) C univ(B)
apply (rule subset-trans)
apply (erule bt-mono)
apply (rule bt-univ)
done



lemma bt-rec-type:
[t € bt(A);
c € C(Lf);
Neyzrs. [ze A; yebt(A);, z€ bt(A); re Cy); se€ C()] =
h(z, y, z, r, s) € C(Br(z, y, 2))
] = bt-rec(e, h, t) € C(t)
— Type checking for recursor — example only; not really needed.
apply (induct-tac t)
apply simp-all
done

2.2 Number of nodes, with an example of tail-recursion

consts n-nodes :: i = i
primrec
n-nodes(Lf) = 0
n-nodes(Br(a, I, ) = succ(n-nodes(l) #+ n-nodes(r))

lemma n-nodes-type [simp]: t € bt(A) = n-nodes(t) € nat
by (induct set: bt) auto

consts n-nodes-quzr :: 1 = ¢
primrec
n-nodes-auz(Lf) = (\k € nat. k)
n-nodes-auz(Br(a, I, 7)) =
(Ak € nat. n-nodes-auz(r) ¢ (n-nodes-auz(l) © succ(k)))

lemma n-nodes-auz-eq:
t € bt(A) = k € nat = n-nodes-auz(t) ‘k = n-nodes(t) #+ k
apply (induct arbitrary: k set: bt)
apply simp
apply (atomize, simp)
done

definition
n-nodes-tail :: i = 7 where
n-nodes-tail(t) = n-nodes-aux(t) < 0

lemma ¢ € bt(A) = n-nodes-tail(t) = n-nodes(t)
by (simp add: n-nodes-tail-def n-nodes-auz-eq)

2.3 Number of leaves

consts
n-leqves i1 § = ¢
primrec
n-leaves(Lf) = 1
n-leaves(Br(a, I, )) = n-leaves(l) #+ n-leaves(r)



lemma n-leaves-type [simp]: t € bi(A) = n-leaves(t) € nat
by (induct set: bt) auto

2.4 Reflecting trees

consts
bt-reflect :: i = 1
primrec
bt-reflect(Lf) = Lf
bt-reflect(Br(a, I, r)) = Br(a, bt-reflect(r), bt-reflect(l))

lemma bt-reflect-type [simp]: t € bt(A) = bt-reflect(t) € bt(A)
by (induct set: bt) auto

Theorems about n-leqves.
lemma n-leqves-reflect: t € bt(A) = n-leaves(bt-reflect(t)) = n-leaves(t)
by (induct set: bt) (simp-all add: add-commute)

lemma n-leaves-nodes: t € bt(A) = n-leaves(t) = succ(n-nodes(t))
by (induct set: bt) simp-all

Theorems about bt-reflect.
lemma bt-reflect-bt-reflect-ident: t € bt(A) = bt-reflect(bt-reflect(t)) = t
by (induct set: bt) simp-all

end

3 Terms over an alphabet
theory Term imports ZF begin

Mlustrates the list functor (essentially the same type as in Trees-Forest).

consts
term 11 = 1

datatype term(A) = Apply (a € A, | € list(term(A)))
monos list-mono
type-elims list-univ [THEN subsetD, elim-format]

declare Apply [TC]

definition
term-rec :: [i, [4, i, i] = i] = i where
term-rec(t,d) =
Viree(t, At g. term-case(Ax zs. d(z, zs, map(Az. gz, 28)), t))

definition
term-map :: [i = i, i) = i where



term-map(f,t) = term-rec(t, Az zs rs. Apply(f(x), rs))

definition
term-size :: i = ¢ where
term-size(t) = term-rec(t, Az zs rs. succ(list-add(rs)))

definition
reflect :: 1 = i where
reflect(t) = term-rec(t, Az zs rs. Apply(z, rev(rs)))

definition
preorder :: i = i where
preorder(t) = term-rec(t, Az zs rs. Cons(z, flat(rs)))

definition
postorder :: i = i where
postorder(t) = term-rec(t, Az zs rs. flat(rs) Q [z])

lemma term-unfold: term(A) = A x list(term(A))
by (fast intro!: term.intros [unfolded term.con-defs]
elim: term.cases [unfolded term.con-defs])

lemma term-induct2:
[t € term(A);
Nz. [z € A] = P(Apply(z,Nil));
Nz z zs. [z € A; z € term(A); zs: list(term(A)); P(Apply(z,zs))
] = P(Apply(z, Cons(z,z2s)))
| = P(t)
— Induction on term(A) followed by induction on list.
apply (induct-tac t)
apply (erule list.induct)
apply (auto dest: list-CollectD)
done

lemma term-induct-eqn [consumes 1, case-names Apply|:
[t € term(A);
Nz zs. [x € A; zs: list(term(A)); map(f,zs) = map(g,23)] =
f(Apply(z,zs)) = g(Apply(z,2s))
| = (1) = g(2)
— Induction on term(A) to prove an equation.
apply (induct-tac t)
apply (auto dest: map-list-Collect list-CollectD)
done

Lemmas to justify using term in other recursive type definitions.

lemma term-mono: A C B = term(A) C term(B)
unfolding term.defs

apply (rule lfp-mono)
apply (rule term.bnd-mono)+



apply (rule univ-mono basic-monos| assumption)+
done

lemma term-univ: term(univ(A4)) C univ(4)
— Easily provable by induction also
unfolding term.defs term.con-defs
apply (rule lfp-lowerbound)
apply (rule-tac [2] A-subset-univ [THEN univ-monol)
apply safe
apply (assumption | rule Pair-in-univ list-univ [THEN subsetD])+
done

lemma term-subset-univ: A C univ(B) = term(A) C univ(B)
apply (rule subset-trans)
apply (erule term-mono)
apply (rule term-univ)
done

lemma term-into-univ: [t € term(4); A C univ(B)] = t € univ(B)
by (rule term-subset-univ [THEN subsetD])

term-rec — by Vset recursion.

lemma map-lemma: [l € list(A); Ord(i); rank(l)<i]
= map(rz. (A\z € Vset(i).h(z)) ‘2z, 1) = map(h,l)
— map works correctly on the underlying list of terms.
apply (induct set: list)
apply simp
apply (subgoal-tac rank (a) <i A rank (1) < 7)
apply (simp add: rank-of-Ord)
apply (simp add: list.con-defs)
apply (blast dest: rank-rls [THEN lt-trans])
done

lemma term-rec [simp)]: ts € list(A) =
term-rec(Apply(a,ts), d) = d(a, ts, map (Az. term-rec(z,d), ts))
— Typing premise is necessary to invoke map-lemma.
apply (rule term-rec-def [THEN def-Vrec, THEN trans])
unfolding term.con-defs
apply (simp add: rank-pair2 map-lemma)
done

lemma term-rec-type:

assumes t: ¢t € term(A)

and a: Az zs r. [z € A; zs: list(term(A));

r e list(Jt € term(4). C(t))]
= d(=, zs, r): C(Apply(z,2s))

shows term-rec(t,d) € C(t)
— Slightly odd typing condition on r in the second premise!
using ¢



apply induct

apply (frule list-CollectD)
apply (subst term-rec)

apply (assumption | rule a)+
apply (erule list.induct)
apply auto

done

lemma def-term-rec:
[At. j(t)=term-rec(t,d); ts: list(A)] =
J(Apply(a,ts)) = d(a, ts, map(AZ. j(Z), ts))
apply (simp only:)
apply (erule term-rec)
done

lemma term-rec-simple-type [TC:
[t € term(A);
Nz zs r. [z € A; zs: list(term(A)); r € list(C)]
= d(z, zs, r): C
] = term-rec(t,d) € C
apply (erule term-rec-type)
apply (drule subset-refl [THEN UN-least, THEN list-mono, THEN subsetD))
apply simp
done

term-map.

lemma term-map [simp]:
ts € list(A) =
term-map(f, Apply(a, ts)) = Apply(f(a), map(term-map(f), ts))
by (rule term-map-def [THEN def-term-rec])

lemma term-map-type [TC):
[t € term(A); Az. z € A = f(z): B] = term-map(f,t) € term(B)
unfolding term-map-def
apply (erule term-rec-simple-type)
apply fast
done

lemma term-map-type2 [TC:
t € term(A) = term-map(f,t) € term({f(u). u € A})
apply (erule term-map-type)
apply (erule RepFunl)
done

term-size.

lemma term-size [simp]:
ts € list(A) = term-size(Apply(a, ts)) = succ(list-add(map(term-size, ts)))
by (rule term-size-def [THEN def-term-rec])



lemma term-size-type [TC]: t € term(A) = term-size(t) € nat
by (auto simp add: term-size-def)

reflect.

lemma reflect [simp):
ts € list(A) = reflect(Apply(a, ts)) = Apply(a, rev(map(reflect, ts)))
by (rule reflect-def [THEN def-term-rec])

lemma reflect-type [TC]: t € term(A) = reflect(t) € term(A)
by (auto simp add: reflect-def)

preorder.

lemma preorder [simp):
ts € list(A) = preorder(Apply(a, ts)) = Cons(a, flat(map(preorder, ts)))
by (rule preorder-def |[THEN def-term-rec])

lemma preorder-type [TC]: t € term(A) = preorder(t) € list(A)
by (simp add: preorder-def)

postorder.

lemma postorder [simp):
ts € list(A) = postorder(Apply(a, ts)) = flat(map(postorder, ts)) Q [a]
by (rule postorder-def [THEN def-term-rec])

lemma postorder-type [TC]: t € term(A) = postorder(t) € list(A)
by (simp add: postorder-def)

Theorems about term-map.
declare map-compose [simp)

lemma term-map-ident: t € term(A) = term-map(Au. u, t) =t
by (induct rule: term-induct-eqn) simp

lemma term-map-compose:
t € term(A) = term-map(f, term-map(g,t)) = term-map(Au. f(g(u)), t)
by (induct rule: term-induct-eqn) simp

lemma term-map-reflect:
t € term(A) = term-map(f, reflect(t)) = reflect(term-map(f,t))
by (induct rule: term-induct-eqn) (simp add: rev-map-distrib [symmetric])

Theorems about term-size.

lemma term-size-term-map: t € term(A) = term-size(term-map(f,t)) = term-size(t)
by (induct rule: term-induct-eqn) simp

10



lemma term-size-reflect: t € term(A) = term-size(reflect(t)) = term-size(t)
by (induct rule: term-induct-eqn) (simp add: rev-map-distrib [symmetric] list-add-rev)

lemma term-size-length: t € term(A) = term-size(t) = length(preorder(t))
by (induct rule: term-induct-eqn) (simp add: length-flat)

Theorems about refiect.

lemma reflect-reflect-ident: t € term(A) = reflect(reflect(t)) = ¢
by (induct rule: term-induct-eqn) (simp add: rev-map-distrib)

Theorems about preorder.

lemma preorder-term-map:
t € term(A) = preorder(term-map(f,t)) = map(f, preorder(t))
by (induct rule: term-induct-eqn) (simp add: map-flat)

lemma preorder-refiect-eq-rev-postorder:
t € term(A) = preorder(reflect(t)) = rev(postorder(t))
by (induct rule: term-induct-eqn)
(simp add: rev-app-distrib rev-flat rev-map-distrib [symmetric])

end

4 Datatype definition n-ary branching trees
theory Ntree imports ZF begin

Demonstrates a simple use of function space in a datatype definition. Based
upon theory Term.

consts
niree :: 1 = 1
maptree 1 1 = 1
maptree2 :: [i, i] = 1

datatype ntree(A) = Branch (a € A, h € (Un € nat. n —> ntree(A)))
monos UN-mono [OF subset-refl Pi-mono] — MUST have this form
type-intros nat-fun-univ [THEN subsetD]
type-elims UN-FE

datatype maptree(A) = Sons (a € A, h € maptree(A) —||> maptree(4))
monos FiniteFun-monol — Use monotonicity in BOTH args
type-intros FiniteFun-univl [THEN subsetD)|

datatype maptree2(A, B) = Sons2 (a € A, h € B —||> maptree2(A, B))
monos FiniteFun-mono [OF subset-refi]

type-intros FiniteFun-in-univ’

definition

11



ntree-rec :: [[4, i, i] = 14, i]| = ¢ where

niree-rec(b) =
Vrecursor(Apr. ntree-case(Ax h. b(x, h, Ai € domain(h). pr{h4))))

definition
ntree-copy :: i = ¢ where
ntree-copy(z) = ntree-rec(Ax h r. Branch(z,r), z)

ntree

lemma ntree-unfold: ntree(A) = A x (Un € nat. n —> niree(A))
by (blast intro: ntree.intros [unfolded ntree.con-defs
elim: ntree.cases [unfolded ntree.con-defs])

lemma niree-induct [consumes 1, case-names Branch, induct set: niree]:

assumes t: ¢t € niree(A)

and step: Az n h. [t € A; n € nat; h € n —> niree(A); Vi € n. P(h%)

] = P(Branch(z,h))

shows P(t)

— A nicer induction rule than the standard one.

using ¢

apply induct

apply (erule UN-E)

apply (assumption | rule step)+

apply (fast elim: fun-weaken-type)

apply (fast dest: apply-type)

done

lemma ntree-induct-eqn [consumes 1]:
assumes t: ¢t € niree(A)
and f: f € ntree(A)—>B
and g¢: g € ntree(A)—>B
and step: Az n h. [t € A; n € nat; h € n —> niree(A); fOh =g 0h] =
f ¢ Branch(z,h) = g ‘ Branch(x,h)
shows ft=g‘t
— Induction on ntree(A) to prove an equation
using ¢
apply induct
apply (assumption | rule step)+
apply (insert f g)
apply (rule fun-extension)
apply (assumption | rule comp-fun)+
apply (simp add: comp-fun-apply)
done

Lemmas to justify using Niree in other recursive type definitions.

lemma ntree-mono: A C B = ntree(A) C ntree(B)
unfolding ntree.defs
apply (rule lfp-mono)

12



apply (rule niree.bnd-mono)+
apply (assumption | rule univ-mono basic-monos)+
done

lemma ntree-univ: ntree(univ(A)) C univ(A)
— Easily provable by induction also
unfolding ntree.defs ntree.con-defs
apply (rule lfp-lowerbound)
apply (rule-tac [2] A-subset-univ [THEN univ-mono))
apply (blast intro: Pair-in-univ nat-fun-univ [THEN subsetD))
done

lemma ntree-subset-univ: A C univ(B) = niree(A) C univ(B)
by (rule subset-trans [OF ntree-mono ntree-univl)

ntree recursion.

lemma ntree-rec-Branch:
function(h) =
ntree-rec(b, Branch(z,h)) = b(z, h, i € domain(h). ntree-rec(b, h*i))
apply (rule ntree-rec-def [THEN def-Vrecursor, THEN trans])
apply (simp add: ntree.con-defs rank-pair2 [THEN [2] lt-trans] rank-apply)
done

lemma ntree-copy-Branch [simp]:
function(h) =
ntree-copy (Branch(z, h)) = Branch(z, A\i € domain(h). ntree-copy (h7))
by (simp add: ntree-copy-def niree-rec-Branch)

lemma nitree-copy-is-ident: z € ntree(4) = niree-copy(z) = z
by (induct z set: ntree)
(auto simp add: domain-of-fun Pi-Collect-iff fun-is-function)

mapiree

lemma maptree-unfold: maptree(A) = A x (maptree(A) —||> maptree(A))
by (fast introl: maptree.intros [unfolded maptree.con-defs]
elim: maptree.cases [unfolded maptree.con-defs))

lemma maptree-induct [consumes 1, induct set: maptree]:
assumes t: t € maptree(A)
and step: Az n h. [z € A; h € maptree(A) —||> maptree(A);
Yy € field(h). P(y)
] = P(Sons(z,h))
shows P(t)
— A nicer induction rule than the standard one.
using ¢
apply induct
apply (assumption | rule step)+
apply (erule Collect-subset [THEN FiniteFun-monol, THEN subsetD])

13



apply (drule FiniteFun.dom-subset [THEN subsetD))
apply (drule Fin.dom-subset [THEN subsetD))

apply fast
done

maptree2

lemma maptree2-unfold: maptree2(A, B) = A x (B —||> maptree2(A, B))
by (fast introl: maptree2.intros [unfolded maptree2.con-defs]
elim: maptree2.cases [unfolded maptree2.con-defs])

lemma maptree2-induct [consumes 1, induct set: maptree2]:

assumes t: t € maptree2(A, B)

and step: Az n h. [x € A; h € B —||> maptree2(A,B); Vy € range(h). P(y)
] = P(Sons2(z,h))

shows P(t)

using ¢

apply induct

apply (assumption | rule step)+

apply (erule FiniteFun-mono [OF subset-refl Collect-subset, THEN subsetD))

apply (drule FiniteFun.dom-subset [THEN subsetD))

apply (drule Fin.dom-subset [THEN subsetD])

apply fast

done

end

5 Trees and forests, a mutually recursive type def-
inition
theory Tree-Forest imports ZF begin

5.1 Datatype definition

consts
tree :: 1 = 1
forest i =i
tree-forest ;1 1 = i

datatype tree(A) = Tcons (a € A, f € forest(A))
and forest(A) = Fnil | Fcons (t € tree(A), f € forest(A))

lemmas tree’induct =
tree-forest.mutual-induct [THEN conjunctl, THEN spec, THEN [2] rev-mp, of
concl: - t, consumes 1]
and forest’induct =
tree-forest.mutual-induct [THEN conjunct2, THEN spec, THEN [2] rev-mp, of
concl: - f, consumes 1]

14



for ¢ f
declare tree-forest.intros [simp, TC]

lemma tree-def: tree(A) = Part(tree-forest(A), Inl)
by (simp only: tree-forest.defs)

lemma forest-def: forest(A) = Part(tree-forest(A), Inr)
by (simp only: tree-forest.defs)

tree-forest(A) as the union of tree(A) and forest(A).

lemma tree-subset-TF: tree(A) C tree-forest(A)
unfolding tree-forest.defs
apply (rule Part-subset)
done

lemma treel [TC]: z € tree(A) = x € tree-forest(A)
by (rule tree-subset-TF [THEN subsetD))

lemma forest-subset-TF: forest(A) C tree-forest(A)
unfolding tree-forest.defs
apply (rule Part-subset)
done

lemma treel’ [TC): z € forest(A) = x € tree-forest(A)
by (rule forest-subset-TF [THEN subsetD])

lemma TF-equals-Un: tree(A) U forest(A) = tree-forest(A)
apply (insert tree-subset-TF forest-subset-TF)
apply (auto intro!: equalityl tree-forest.intros elim: tree-forest.cases)
done

lemma tree-forest-unfold:

tree-forest(A) = (A x forest(A)) + ({0} + tree(A) x forest(A))
— NOT useful, but interesting ...

supply rews = tree-forest.con-defs tree-def forest-def
unfolding tree-def forest-def

apply (fast intro!: tree-forest.intros [unfolded rews, THEN PartD1]
elim: tree-forest.cases [unfolded rews))

done

lemma tree-forest-unfold’:
tree-forest(A) =
A x Part(tree-forest(A), Aw. Inr(w)) +
{0} + Part(tree-forest(A), Aw. Inl(w)) * Part(tree-forest(A), Aw. Inr(w))
by (rule tree-forest-unfold [unfolded tree-def forest-def])

lemma tree-unfold: tree(A) = {Ini(z). x € A x forest(A)}
unfolding tree-def forest-def

15



apply (rule Part-Inl [THEN subst])
apply (rule tree-forest-unfold’ [THEN subst-context])
done

lemma forest-unfold: forest(A) = {Inr(z). © € {0} + tree(A)xforest(A)}
unfolding tree-def forest-def
apply (rule Part-Inr [THEN subst])
apply (rule tree-forest-unfold’ [THEN subst-context])
done

Type checking for recursor: Not needed; possibly interesting?

lemma TF-rec-type:
[z € tree-forest(A);
Nz fr. [z e A; f e forest(A); re C(f)
| = b(z.f,r) € C(Teons(z,f));
c € C(Fnil);
Nt frir2. [t € tree(A); f € forest(A); r1 € C(t); r2 € C(f)
| = d(t,f,r1,r2) € C(Fcons(t,f))
| = tree-forest-rec(b,c,d,z) € C(z)
by (induct-tac z) simp-all

lemma tree-forest-rec-type:
[Nz fr. [z e A; f e forest(A); r € D(f)
] = b(z,f,r) € C(Teons(x,f));
¢ € D(Fnil);
At frir2. [t € tree(A); f € forest(A); r1 € C(t); r2 € D(f)
| = d(t.f,r1,m2) € D(Fcons(t.f))
] = (Vt € tree(A).  tree-forest-rec(b,c,d,t) € C(t))
(Vf € forest(A). tree-forest-rec(b,c,d.f) € D(f)
— Mutually recursive version.
unfolding Ball-def
apply (rule tree-forest.mutual-induct)
apply simp-all
done

A
)

5.2 Operations

consts
map = [0 = 4, 1] = i
size i1 = 1
preorder :: i = 1
list-of-TF :: i = 1§
of-list :: i = 1
reflect :: 1 = i

primrec
list-of-TF (Tcons(x,f)) = [Tcons(x,f)]
list-of-TF (Fnil) = []
list-of-TF (Feons(t,tf)) = Cons (t, list-of-TF(if))

16



primrec
of-list([]) = Fnil
of-list(Cons(t,1)) = Fcons(t, of-list(l))

primrec
map (h, Tcons(z,f)) = Tecons(h(z), map(h,f))
map (h, Fnil) = Fnil
map (h, Feons(t,tf)) = Fcons (map(h, t), map(h, tf))

primrec
size (Tecons(z,f)) = succ(size(f))
size (Fnil) = 0
size (Feons(t,tf)) = size(t) #+ size(tf)

primrec
preorder (Tcons(z,f)) = Cons(z, preorder(f))
preorder (Fnil) = Nil
preorder (Fcons(t,tf)) = preorder(t) @ preorder(tf)

primrec
reflect (Tcons(z,f)) = Tcons(z, reflect(f))
reflect (Fnil) = Fnil
reflect (Feons(t,tf)) =
of-list (list-of-TF (reflect(tf)) @ Cons(reflect(t), Nil))

list-of-TF and of-list.

lemma list-of-TF-type [TC]:
z € tree-forest(A) = list-of-TF(z) € list(tree(A))
by (induct set: tree-forest) simp-all

lemma of-list-type [TC]: | € list(tree(A)) = of-list(l) € forest(A)
by (induct set: list) simp-all

map.

lemma
assumes Az. z € A = h(z): B
shows map-tree-type: t € tree(4) = map(h,t) € tree(B)
and map-forest-type: f € forest(A) = map(h,f) € forest(B)
using assms
by (induct rule: tree’induct forest’induct) simp-all

size.
lemma size-type [TC]: z € tree-forest(A) = size(z) € nat

by (induct set: tree-forest) simp-all

preorder.

17



lemma preorder-type [TC): z € tree-forest(A) = preorder(z) € list(A)
by (induct set: tree-forest) simp-all

Theorems about list-of-TF and of-list.

lemma forest-induct [consumes 1, case-names Fnil Fcons|:
[f € forest(A);
R(Fnil);
At f. [t € tree(A); f € forest(A); R(f)] = R(Fcons(t,f))
| = R(f)
— Essentially the same as list induction.
apply (erule tree-forest.mutual-induct
[THEN conjunct2, THEN spec, THEN [2] rev-mp))
apply (rule Truel)
apply simp
apply simp
done

lemma forest-iso: [ € forest(A) = of-list(list-of-TF(f)) = f
by (induct rule: forest-induct) simp-all

lemma tree-list-iso: ts: list(tree(A)) = list-of-TF (of-list(ts)) = ts
by (induct set: list) simp-all

Theorems about map.

lemma map-ident: z € tree-forest(A) = map(Au. u, z) = z

by (induct set: tree-forest) simp-all

lemma map-compose:
z € tree-forest(A) = map(h, map(j,2)) = map(Au. h(j(u)), 2)
by (induct set: tree-forest) simp-all

Theorems about size.
lemma size-map: z € tree-forest(A) = size(map(h,z)) = size(z)

by (induct set: tree-forest) simp-all

lemma size-length: z € tree-forest(A) = size(z) = length(preorder(z))
by (induct set: tree-forest) (simp-all add: length-app)

Theorems about preorder.

lemma preorder-map:
z € tree-forest(A) = preorder(map(h,z)) = List.map(h, preorder(z))
by (induct set: tree-forest) (simp-all add: map-app-distrib)

end

18



6 Infinite branching datatype definitions

theory Brouwer imports ZF(C begin

6.1 The Brouwer ordinals

consts
brouwer :: 1

datatype C Vfrom(0, csucc(nat))
brouvwer = Zero | Suc (b € brouwer) | Lim (h € nat —> brouwer)
monos Pi-mono
type-intros inf-datatype-intros

lemma brouwer-unfold: brouwer = {0} + brouwer + (nat —> brouwer)
by (fast intro!: brouwer.intros [unfolded brouwer.con-defs]
elim: brouwer.cases [unfolded brouwer.con-defs])

lemma brouwer-induct2 [consumes 1, case-names Zero Suc Lim]:
assumes b: b € brovwer
and cases:
P(Zero)
Nb. [b € brouwer; P(b)] = P(Suc(b))
Ah. [h € nat —> brouwer; Vi € nat. P(h%)] = P(Lim(h))
shows P(b)
— A nicer induction rule than the standard one.
using b
apply induct
apply (rule cases(1))
apply (erule (1) cases(2))
apply (rule cases(3))
apply (fast elim: fun-weaken-type)
apply (fast dest: apply-type)
done

6.2 The Martin-Lo6f wellordering type

consts
Well =: [i, i = i = i

datatype C Vfrom(A U (Uz € A. B(x)), csucc(nat U |Jz € A. B(x)]))
— The union with nat ensures that the cardinal is infinite.
Well(A, B) = Sup (a € A, f € B(a) —> Well(A, B))
monos Pi-mono
type-intros le-trans [OF UN-upper-cardinal le-nat- Un-cardinal] inf-datatype-intros

lemma Well-unfold: Well(A, B) = (> _z € A. B(z) —> Well(A, B))

by (fast intro!: Well.intros [unfolded Well.con-defs]
elim: Well.cases [unfolded Well.con-defs))

19



lemma Well-induct2 [consumes 1, case-names step:

assumes w: w € Well(A, B)

and step: Na f. [a € A; f € B(a) —> Well(A,B); Yy € B(a). P(fy)] =

P(Sup(a,f))

shows P(w)

— A nicer induction rule than the standard one.

using w

apply induct

apply (assumption | rule step)+

apply (fast elim: fun-weaken-type)

apply (fast dest: apply-type)

done

lemma Well-bool-unfold: Well(bool, Az. ) = 1 + (1 —> Well(bool, Az. x))
— In fact it’s isomorphic to nat, but we need a recursion operator
— for Well to prove this.
apply (rule Well-unfold [THEN trans])
apply (simp add: Sigma-bool succ-def)
done

end

7 The Mutilated Chess Board Problem, formal-
ized inductively

theory Mutil imports ZF begin

Originator is Max Black, according to J A Robinson. Popularized as the
Mutilated Checkerboard Problem by J McCarthy.

consts
domino :: i
tiling = i = 1

inductive
domains domino C Pow(nat X nat)
intros
horiz: [i € nat; j € nat] = {(i,j), <i,succ(j)>} € domino
vertl: [i € nat; j € nat] = {(4,f), <succ(i),j>} € domino
type-intros empty-subsetl cons-subset] Powl Sigmal nat-succl

inductive
domains tiling(4) C Pow(|J (4))
intros
empty: 0 € tiling(A)
Un: [a € A; t € tiling(A); ant=0] = aUte tiling(A)
type-intros empty-subset] Union-upper Un-least Powl
type-elims PowD [elim-format]

20



definition
evnodd :: [i, i = ¢ where
evnodd(A,b) = {z € A. Fij. z = (i,j) A (i #+ j) mod 2 = b}

7.1 Basic properties of evnodd

lemma evnodd-iff: (i,j): evnodd(A,b) +— (i,j): A A (i#£+j) mod 2 = b
by (unfold evnodd-def) blast

lemma evnodd-subset: evnodd(A, b) C A
by (unfold evnodd-def) blast

lemma Finite-evnodd: Finite(X) = Finite(evnodd(X,b))
by (rule lepoll-Finite, rule subset-imp-lepoll, rule evnodd-subset)

lemma evnodd-Un: evnodd(A U B, b) = evnodd(A,b) U evnodd(B,b)
by (simp add: evnodd-def Collect-Un)

lemma evnodd-Diff: evnodd(A — B, b) = evnodd(A,b) — evnodd(B,b)
by (simp add: evnodd-def Collect-Diff)

lemma evnodd-cons [simp]:
evnodd(cons((i,j),C), b) =
(if (i#+j) mod 2 = b then cons({i,j), evnodd(C,b)) else evnodd(C,b))
by (simp add: evnodd-def Collect-cons)

lemma evnodd-0 [simp]: evnodd(0, b) = 0
by (simp add: evnodd-def)

7.2 Dominoes
lemma domino-Finite: d € domino = Finite(d)

by (blast intro!: Finite-cons Finite-0 elim: domino.cases)

lemma domino-singleton:
[d € domino; b<2] = Fi’ j'. evnodd(d,b) = {<i’j">}
apply (erule domino.cases)
apply (rule-tac [2] kI = i#+j in mod2-cases [THEN disjE])
apply (rule-tac kI = i#+j in mod2-cases [THEN disjE])
apply (rule add-type | assumption)+

apply (auto simp add: mod-succ succ-neg-self dest: ItD)
done

7.3 Tilings

The union of two disjoint tilings is a tiling

lemma tiling-Unl:

21



t € tiling(A) = u € tiling(4d) = tNu= 0= t U u € tiling(A)
apply (induct set: tiling)
apply (simp add: tiling.intros)
apply (simp add: Un-assoc subset-empty-iff [THEN iff-sym])
apply (blast intro: tiling.intros)
done

lemma tiling-domino-Finite: t € tiling(domino) = Finite(t)
apply (induct set: tiling)
apply (rule Finite-0)
apply (blast intro!: Finite-Un intro: domino-Finite)
done

lemma tiling-domino-0-1: t € tiling(domino) = |evnodd(t,0)| = |evnodd(t,1)]
apply (induct set: tiling)
apply (simp add: evnodd-def)
apply (rule-tac b1 = 0 in domino-singleton [THEN ezE))
prefer 2
apply simp
apply assumption
apply (rule-tac b1 = 1 in domino-singleton [THEN ezE))
prefer 2
apply simp
apply assumption
apply safe
apply (subgoal-tac ¥V p b. p € evnodd (a,b) — péevnodd (t,b))
apply (simp add: evnodd-Un Un-cons tiling-domino-Finite
evnodd-subset [THEN subset-Finite] Finite-imp-cardinal-cons)
apply (blast dest!: evnodd-subset [THEN subsetD] elim: equalityE)
done

lemma dominoes-tile-row:
[¢ € nat; n € nat] = {i} * (n #+ n) € tiling(domino)
apply (induct-tac n)
apply (simp add: tiling.intros)
apply (simp add: Un-assoc [symmetric] Sigma-succ?2)
apply (rule tiling.intros)
prefer 2 apply assumption
apply (rename-tac n’)
apply (subgoal-tac
{i}x{succ (n'#+n') } U {i}x{n'#+n'} =
{<i,n'#4+n">, <i,succ (n'#+n’) >})
prefer 2 apply blast
apply (simp add: domino.horiz)
apply (blast elim: mem-irrefl mem-asym)
done

lemma dominoes-tile-matrix:
[m € nat; n € nat] = m * (n #+ n) € tiling(domino)

22



apply (induct-tac m)

apply (simp add: tiling.intros)

apply (simp add: Sigma-succl)

apply (blast intro: tiling-Unl dominoes-tile-row elim: mem-irrefl)
done

lemma eq-lt-E: [z=y; z<y] = P
by auto

theorem mutil-not-tiling: [m € nat; n € nat;
t = (suce(m)#+suce(m))x(succ(n)#+suce(n));
t'=1t— {(0,0)} — {<succ(m#+m), succ(n#+n)>}]
= t' ¢ tiling(domino)
apply (rule notl)
apply (drule tiling-domino-0-1)
apply (erule-tac © = |A| for A in eg-lt-F)
apply (subgoal-tac t € tiling (domino))
prefer 2
apply (simp only: nat-succl add-type dominoes-tile-matriz)
apply (simp add: evnodd-Diff mod2-add-self mod2-succ-succ
tiling-domino-0-1 [symmetric])
apply (rule lt-trans)
apply (rule Finite-imp-cardinal-Diff
simp add: tiling-domino-Finite Finite-evnodd Finite-Diff
simp add: evnodd-iff nat-0-le [THEN [tD] mod2-add-self )+
done

end

theory FoldSet imports ZF begin
consts fold-set :: [i, i, [i,i]=1, 7| = i

inductive
domains fold-set(A, B, f,e) C Fin(A)*B
intros
emptyl: e€B = (0, e)Efold-set(A, B, f,e)
consl: [z€A; x ¢C; (C,y) € fold-set(A, B,f,e); f(z,y):B]
= <cons(z,C), f(z,y)><fold-set(A, B, f, e)
type-intros Fin.intros

definition
fold :: [i, [i,d]=1, i, 7] = ¢ (<fold[-]'(-,-,-"))) where
fold[B](f,e, A) = THE z. (A, z)€fold-set(A, B, f,e)

definition

setsum :: [i=1i, i] = { where
setsum(g, C) = if Finite(C) then

23



fold[int)(Az y. g(z) $+ y, #0, C) else #0

inductive-cases empty-fold-setE: (0, x) € fold-set(A, B, f,e)
inductive-cases cons-fold-setE: <cons(z,C), y> € fold-set(A, B, f,e)

lemma cons-lemmal: [z¢C; ¢ B] = cons(z,B)=cons(z,C) +— B = C
by (auto elim: equalityFE)

lemma cons-lemma2: [cons(z, B)=cons(y, C); z#y; ©¢B; y¢ (]
= B —{y} = C—{z} N2zeC A yeB

apply (auto elim: equalityF)

done

lemma fold-set-mono-lemma:
(C, z) € fold-set(A, B, f, e)
= VD. A<=D — (C, z) € fold-set(D, B, f, e)
apply (erule fold-set.induct)
apply (auto intro: fold-set.intros)
done

lemma fold-set-mono: C<=A = fold-set(C, B, f, e) C fold-set(A, B, f, e)
apply clarify

apply (frule fold-set.dom-subset [THEN subsetD], clarify)

apply (auto dest: fold-set-mono-lemma)

done

lemma fold-set-lemma:

(C, z)efold-set(A, B, f, e) = (C, z)efold-set(C, B, f, e) N C<=A
apply (erule fold-set.induct)
apply (auto introl: fold-set.intros intro: fold-set-mono [THEN subsetD])
done

lemma Diff1-fold-set:
[<C—{z},y> € fold-set(A, B, f,e); zeC; z€A; f(z, y):B]
= <C, f(z, y)> € fold-set(A, B, f, e)
apply (frule fold-set.dom-subset [THEN subsetD))
apply (erule cons-Diff [THEN subst], rule fold-set.intros, auto)
done

locale fold-typing =
fixes A and B and ¢ and f
assumes ftype [intro,simp): [z € A; y € B] = f(z,y) € B

24



and etype [intro,simp]: e € B
and feomm: [z € A; y € A; z € B] = f(=, f(y, 2))=f(y, f(z, 2))

lemma (in fold-typing) Fin-imp-fold-set:
CeFin(A) = (Fz. (C, z) € fold-set(A, B, f,e))
apply (erule Fin-induct)
apply (auto dest: fold-set.dom-subset [THEN subsetD)
intro: fold-set.intros etype ftype)
done

lemma Diff-sing-imp:
[C —{b} =D - {a};a# b;be C)] = C = cons(b,D) — {a}
by (blast elim: equalityFE)

lemma (in fold-typing) fold-set-determ-lemma [rule-format]:
nenat
= VC. |Cl<n —

(Vz. (C, z) € fold-set(A, B, f,e)—

(Vy. (C, y) € fold-set(A, B, f,e) — y=x))

apply (erule nat-induct)
apply (auto simp add: le-iff)
apply (erule fold-set.cases)
apply (force elim!: empty-fold-setE)
apply (erule fold-set.cases)
apply (force elim!: empty-fold-setE, clarify)

apply (frule-tac a = Ca in fold-set.dom-subset [THEN subsetD, THEN SigmaD1])
apply (frule-tac a = Cb in fold-set.dom-subset [THEN subsetD, THEN SigmaD1])
apply (simp add: Fin-into-Finite [THEN Finite-imp-cardinal-cons))

apply (case-tac x=xb, auto)

apply (simp add: cons-lemmal, blast)

case ¢ # b

apply (drule cons-lemma2, safe)
apply (frule Diff-sing-imp, assumption+)

* LEVEL 17

apply (subgoal-tac |Ca| < |CH|)

prefer 2

apply (rule succ-le-imp-le)

apply (simp add: Fin-into-Finite Finite-imp-succ-cardinal-Diff
Fin-into-Finite [THEN Finite-imp-cardinal-cons])

apply (rule-tac C1 = Ca—{xb} in Fin-imp-fold-set [THEN exzE])

apply (blast intro: Diff-subset [THEN Fin-subset))

* LEVEL 24 *

apply (frule Diff1-fold-set, blast, blast)
apply (blast dest!: ftype fold-set.dom-subset [THEN subsetD])

25



apply (subgoal-tac ya = f(zb,za) )
prefer 2 apply (blast del: equalityCFE)
apply (subgoal-tac <Cb—{z}, za> € fold-set(A,B,f,e))
prefer 2 apply simp
apply (subgoal-tac yb = f (x, xa) )
apply (drule-tac [2] C = Cb in Diff1-fold-set, simp-all)
apply (blast intro: fcomm dest!: fold-set.dom-subset [THEN subsetD))
apply (blast intro: ftype dest!: fold-set.dom-subset [THEN subsetD), blast)
done

lemma (in fold-typing) fold-set-determ:

[(C, z)efold-set(A, B, f, e);

(C, y)efold-set(A, B, f, e)] = y=x

apply (frule fold-set.dom-subset [THEN subsetD], clarify)
apply (drule Fin-into-Finite)
apply (unfold Finite-def, clarify)
apply (rule-tac n = succ (n) in fold-set-determ-lemma)
apply (auto intro: egpoll-imp-lepoll [THEN lepoll-cardinal-le))
done

lemma (in fold-typing) fold-equality:
(C,y) € fold-set(A,B.f,e) = fold[B|(f,e,C) =y

unfolding fold-def
apply (frule fold-set.dom-subset [THEN subsetD], clarify)
apply (rule the-equality)

apply (rule-tac [2] A=C in fold-typing.fold-set-determ)
apply (force dest: fold-set-lemma)
apply (auto dest: fold-set-lemma)
apply (simp add: fold-typing-def, auto)
apply (auto dest: fold-set-lemma intro: ftype etype fcomm,)
done

lemma fold-0 [simp]: e € B => fold[B](f,e,0) = e
unfolding fold-def

apply (blast elim!: empty-fold-setE intro: fold-set.intros)

done

This result is the right-to-left direction of the subsequent result

lemma (in fold-typing) fold-set-imp-cons:
[(C, y) € fold-set(C, B, f, e); C € Fin(A); c € 4; ¢¢C]
= <cons(e, C), f(c,y)> € fold-set(cons(c, C), B, f, e)
apply (frule FinD [THEN fold-set-mono, THEN subsetD])
apply assumption
apply (frule fold-set.dom-subset [of A, THEN subsetD])
apply (blast intro!: fold-set.consI intro: fold-set-mono [THEN subsetD])
done

26



lemma (in fold-typing) fold-cons-lemma [rule-format]:
[C € Fin(A); c € 4; ¢¢C]
= <cons(c, C), v> € fold-set(cons(c, C), B, f, e) «—
(Jy. (C, y) € fold-set(C, B, f, ) A v = f(c, y))
apply auto
prefer 2 apply (blast intro: fold-set-imp-cons)
apply (frule-tac Fin.consl [of ¢, THEN FinD, THEN fold-set-mono, THEN sub-
setD], assumption+)
apply (frule-tac fold-set.dom-subset [of A, THEN subsetD))
apply (drule FinD)
apply (rule-tac A1 = cons(¢,C) and fI=f and B1=B and C1=C and el=c¢ in
fold-typing. Fin-imp-fold-set [THEN exE])
apply (blast intro: fold-typing.intro ftype etype fcomm)
apply (blast intro: Fin-subset [of - cons(c,C)| Finite-into-Fin
dest: Fin-into-Finite)
rule-tac x = x in exl)
auto intro: fold-set.intros)
drule-tac fold-set-lemma [of C], blast)
blast intro!: fold-set.consl
intro: fold-set-determ fold-set-mono [THEN subsetD]
dest: fold-set.dom-subset [THEN subsetD])

apply
apply
apply
apply

A~ N S

done

lemma (in fold-typing) fold-cons:
[CeFin(A); ceA; ¢¢C]
= fold[B](f, e, cons(e, C)) = f(e, fold[B](f, e, C))
unfolding fold-def
apply (simp add: fold-cons-lemma)
apply (rule the-equality, auto)
apply (subgoal-tac [2] (C, y) € fold-set(A, B, f, e))
apply (drule Fin-imp-fold-set)
apply (auto dest: fold-set-lemma simp add: fold-def [symmetric] fold-equality)
apply (blast intro: fold-set-mono [THEN subsetD] dest!: FinD)
done

lemma (in fold-typing) fold-type [simp, TC:
CeFin(A) = fold|B](f,e,C):B

apply (erule Fin-induct)

apply (simp-all add: fold-cons ftype etype)

done

lemma (in fold-typing) fold-commute [rule-format]:
[CeFin(A); ceA]
— (VyeB. f(c, foldBI(f, y, C)) = fold[B(f, f(c, v), C))
apply (erule Fin-induct)
apply (simp-all add: fold-typing.fold-cons [of A B - f]
fold-typing.fold-type [of A B - f]
fold-typing-def fcomm)
done

27



lemma (in fold-typing) fold-nest-Un-Int:
[CeFin(A); DeFin(A)]
—s Jold[B)(f, fold[B](f, ¢, D), C) =
fold[B](f, fold[B](f, e, (C N D)), C U D)
apply (erule Fin-induct, auto)
apply (simp add: Un-cons Int-cons-left fold-type fold-commute
fold-typing.fold-cons [of A - - f]
fold-typing-def fcomm cons-absord)
done

lemma (in fold-typing) fold-nest-Un-disjoint:

[CeFin(A); DeFin(A); C N D = 0]

= fold[B](f,e,C U D) = fold][B](f, fold[B](f,e,D), C)
by (simp add: fold-nest-Un-Int)

lemma Finite-cons-lemma: Finite(C) = Ce€Fin(cons(c, C))
apply (drule Finite-into-Fin)

apply (blast intro: Fin-mono [THEN subsetD))

done

7.4 The Operator setsum

lemma setsum-0 [simp]: setsum(g, 0) = #0
by (simp add: setsum-def)

lemma setsum-cons [simpl:

Finite(C') =

setsum(g, cons(c,C)) =

(if ¢ € C then setsum(g,C) else g(c) $+ setsum(g,C))

apply (auto simp add: setsum-def Finite-cons cons-absorb)
apply (rule-tac A = cons (¢, C) in fold-typing.fold-cons)
apply (auto intro: fold-typing.intro Finite-cons-lemma)
done

lemma setsum-K0: setsum((Ai. #0), C) = #0
apply (case-tac Finite (C) )

prefer 2 apply (simp add: setsum-def)
apply (erule Finite-induct, auto)

done

lemma setsum-Un-Int:
[Finite(C); Finite(D)]
= setsum(g, C U D) $+ setsum(g, C N D)
= setsum(g, C) $+ setsum(g, D)
apply (erule Finite-induct)
apply (simp-all add: Int-cons-right cons-absorb Un-cons Int-commute Finite-Un
Int-lower! [THEN subset-Finite])

28



done

lemma setsum-type [simp, TC): setsum(g, C):int
apply (case-tac Finite (C) )

prefer 2 apply (simp add: setsum-def)

apply (erule Finite-induct, auto)

done

lemma setsum-Un-disjoint:
[Finite(C); Finite(D); C N D = 0]
= setsum(g, C U D) = setsum(g, C) $+ setsum(g,D)
apply (subst setsum-Un-Int [symmetric])
apply (subgoal-tac [3] Finite (C U D) )
apply (auto intro: Finite-Un)
done

lemma Finite-RepFun [rule-format (no-asm)]:

Finite(I) = (Vi€l. Finite(C(7))) — Finite(RepFun(I, C))
apply (erule Finite-induct, auto)
done

lemma setsum-UN-disjoint [rule-format (no-asm)]:
Finite(I)
= (Viel. Finite(C(7))) —
(Viel. Vjel. i#j — C(i) N CG) = 0) —
setsum(f, \|Ji€l. C(i)) = setsum (\i. setsum(f, C(7)), I)
apply (erule Finite-induct, auto)
apply (subgoal-tac Vi€B. x # i)
prefer 2 apply blast
apply (subgoal-tac C (z) N (Ji€B. C (i)) = 0)
prefer 2 apply blast
apply (subgoal-tac Finite (|Ji€B. C (i)) A Finite (C (x)) A Finite (B) )
apply (simp (no-asm-simp) add: setsum-Un-disjoint)
apply (auto intro: Finite-Union Finite-RepFun)
done

lemma setsum-addf: setsum(Az. f(z) $+ g(z),C) = setsum(f, C) $+ setsum(g,
0)

apply (case-tac Finite (C) )

prefer 2 apply (simp add: setsum-def)

apply (erule Finite-induct, auto)

done

lemma fold-set-cong:
[A=A'; B=B’; e=e’; (Vaz€A'. VyeB'. f(z,y) = f'(z,y))]
= fold-set(A,B.f,e) = fold-set(A’,B’,f' e’

apply (simp add: fold-set-def)

29



apply (intro refl iff-refl ifp-cong Collect-cong disj-cong ex-cong, auto)
done

lemma fold-cong:

[B=B'; A=A'; e=e’
Az y. [z€A’s yeB'] = f(z,y) = f'(z,y)] =
Jold[B(f,e,4) = fold[B)(f", €', A"

apply (simp add: fold-def)

apply (subst fold-set-cong)

apply (rule-tac [5] refl, simp-all)

done

lemma setsum-cong:

[A=B; A\z. 26 B = f(z) = g(2)] =
setsum(f, A) = setsum(g, B)

by (simp add: setsum-def cong add: fold-cong)

lemma setsum-Un:
[Finite(A); Finite(B)]
= setsum(f, AU B) =
setsum(f, A) $+ setsum(f, B) $— setsum(f, A N B)
apply (subst setsum-Un-Int [symmetric], auto)
done

lemma setsum-zneg-or-0 [rule-format (no-asm)]:
Finite(A) = (Vz€A. g(z) $< #0) — setsum(g, A) $< #0
apply (erule Finite-induct)
apply (auto intro: zneg-or-0-add-zneg-or-0-imp-zneg-or-0)
done

lemma setsum-succD-lemma [rule-format]:
Finite(A)
= Vnenat. setsum(f,A) = $# succ(n) — (FacA. #0 $< f(a))
apply (erule Finite-induct)
apply (auto simp del: int-of-0 int-of-suce simp add: not-zless-iff-zle int-of-0 [symmetric])
apply (subgoal-tac setsum (f, B) $< #0)
apply simp-all
prefer 2 apply (blast intro: setsum-zneg-or-0)
apply (subgoal-tac $# 1 $< f (z) $+ setsum (f, B) )
apply (drule zdiff-zle-iff [THEN iffD2])
apply (subgoal-tac $# 1 $< $# 1 $— setsum (f,B) )
apply (drule-tac x = $# 1 in zle-trans)
apply (rule-tac [2] j = #1 in zless-zle-trans, auto)
done

lemma setsum-succD:

[setsum(f, A) = $# succ(n); nEnat]— Ja€A. #0 $< f(a)
apply (case-tac Finite (A) )

30



apply (blast intro: setsum-succD-lemma)
unfolding setsum-def
apply (auto simp del: int-of-0 int-of-succ simp add: int-succ-int-1 [symmetric]
int-of-0 [symmetric])
done

lemma g-zpos-imp-setsum-zpos [rule-format]:
Finite(A) = (Va€A. #0 $< g(x)) — #0 $< setsum(g, A)
apply (erule Finite-induct)
apply (simp (no-asm))
apply (auto intro: zpos-add-zpos-imp-zpos)
done

lemma g-zpos-imp-setsum-zpos2 [rule-format):
[Finite(A); V. #0 $< g(z)] = #0 $< setsum(yg, A4)
apply (erule Finite-induct)
apply (auto intro: zpos-add-zpos-imp-zpos)
done

lemma g-zspos-imp-setsum-zspos [rule-format]:
Finite(A)
= (VzeA. #0 $< g(z)) — A # 0 — (#0 $< setsum(g, A))
apply (erule Finite-induct)
apply (auto intro: zspos-add-zspos-imp-zspos)
done

lemma setsum-Diff [rule-format):
Finite(A) = Y a. M(a) = #0 — setsum(M, A) = setsum(M, A—{a})
apply (erule Finite-induct)
apply (simp-all add: Diff-cons-eq Finite-Diff)
done

end

8 The accessible part of a relation
theory Acc imports ZF begin

Inductive definition of acc(r); see [3].

consts
acc i1 =1

inductive
domains acc(r) C field(r)
intros
vimage: [r—‘{a}: Pow(ace(r)); a € field(r)] = a € acc(r)
monos Pow-mono

The introduction rule must require a € field(r), otherwise acc(r) would be

31



a proper class!

The intended introduction rule:

lemma accl: [A\b. (b,a):r = b € acc(r); a € field(r)] = a € ace(r)
by (blast intro: acc.intros)

lemma acc-downward: [b € acc(r); (a,b): r] = a € ace(r)
by (erule acc.cases) blast

lemma acc-induct [consumes 1, case-names vimage, induct set: acc|:
[a € ace(r);
Az. [z € ace(r); Vy. (y,x):r — P(y)] = P(z)
] = Pla)
by (erule acc.induct) (blast intro: acc.intros)

lemma wf-on-ace: wf[ace(r)](r)
apply (rule wf-onl2)
apply (erule acc-induct)

apply fast
done

lemma acc-wfl: field(r) C acc(r) = wf(r)
by (erule wf-on-acc [THEN wf-on-subset-A, THEN wf-on-field-imp-wf])

lemma acc-wfD: wf(r) = field(r) C acc(r)
apply (rule subsetl)
apply (erule wf-induct2, assumption)
apply (blast intro: accl)+
done

lemma wf-acc-iff: wf(r) <+— field(r) C acc(r)
by (rule iffI, erule acc-wfD, erule acc-wfl)

end
theory Multiset
imports FoldSet Acc
begin
abbreviation (input)
— Short cut for multiset space
Mult :: i=1 where
Mult(A) = A —||> nat—{0}
definition
funrestrict :: [i,i] = i where

funrestrict(f,A) = Az € A. f

32



definition

multiset :: i = o where
multiset(M) = 3A. M € A —> nat—{0} A Finite(A)

definition
mset-of :: i=i where
mset-of (M) = domain(M)

definition
munion  :: [i, i] = ¢ (infix] <+#> 65) where
M +# N = Az € mset-of (M) U mset-of (N).
if © € mset-of (M) N mset-of (N) then (M‘z) #+ (N‘z)
else (if © € mset-of (M) then M‘x else N‘x)

definition

normalize :: 1 = 1 where

normalize(f) =
if (3A. f € A—> nat A Finite(A)) then

funrestrict(f, {x € mset-of (f). 0 < fz})
else 0

definition
mdiff :: [4, 7 = i (infixl <—#> 65) where
M —# N = normalize(Ax € mset-of (M).
if x € mset-of(N) then M‘x #— Nz else M‘r)

definition

msingle :: ¢ = ¢ (<(<open-block notation=<mizfix multiset>)»{#-#})>) where

{#a#} = {{a, 1)}

definition
MCollect :: [i, i=0] = i where
MCollect(M, P) = funrestrict(M, {x € mset-of(M). P(z)})

definition

meount :: [, i| = ¢ where
meount(M, a) = if a € mset-of (M) then M‘a else 0

definition
msize :: 1 = { where
msize(M) = setsum(Aa. $# mcount(M,a), mset-of (M))

abbreviation
melem :: [i,i] = o («(<notation=<infix :#>-/ # -)» [50, 51] 50) where

33



a:# M = a € mset-of (M)

syntax
-MColl :: [pttrn, i, o] = i («(<indent=1 notation=<mizfix multiset comprehen-
sionn{# - € -./ -#}))
syntax-consts
-MColl = MCollect
translations
{#x € M. P#} == CONST MCollect(M, \z. P)

definition

multirell :: [i,i|={ where
multirell (A, ) =
{{M, N) € Mult(A)*«Mult(A).
Ja € A. IMO € Mult(A). IK € Mult(A).
N=MO +# {#a#} N M=M0 +# K A (Vb € mset-of (K). (b,a) € r)}

definition
multirel :: [i, i = { where
multirel(A, r) = multirell (A, r) "+

definition
omultiset :: i = o where

omultiset(M) = 3i. Ord(i) N M € Mult(field(Memrel(7)))

definition
mless :: [i, 7] = o (infix]l «<<#> 50) where
M <# N = 34 0rd(i) A (M, N) € multirel(field(Memrel(¢)), Memrel(7))

definition
mle :: [4, 7 = o (infixl «<#=) 50) where
M <#= N = (omultiset(M) NM = N) | M <# N

8.1 Properties of the original "restrict" from ZF.thy
lemma funrestrict-subset: [f € Pi(C,B); ACC| = funrestrict(f,A) C f
by (auto simp add: funrestrict-def lam-def intro: apply-Pair)

lemma funrestrict-type:
[Nz. 2 € A = fz € B(z)] = funrestrict(f,A) € Pi(A,B)
by (simp add: funrestrict-def lam-type)

lemma funrestrict-type2: [f € Pi(C,B); ACC| = funrestrict(f,A) € Pi(A,B)
by (blast intro: apply-type funrestrict-type)

34



lemma funrestrict [simp]: a € A = funrestrict(f,A) ‘a = f‘a
by (simp add: funrestrict-def)

lemma funrestrict-empty [simp): funrestrict(f,0) = 0
by (simp add: funrestrict-def)

lemma domain-funrestrict [simpl: domain(funrestrict(f,C)) = C
by (auto simp add: funrestrict-def lam-def)

lemma fun-cons-funrestrict-eq:

f € cons(a, b) —> B = f = cons(<a, [ ‘ a>, funrestrict(f, b))
apply (rule equalityl)
prefer 2 apply (blast intro: apply-Pair funrestrict-subset [THEN subsetD))
apply (auto dest!: Pi-memberD simp add: funrestrict-def lam-def)
done

declare domain-of-fun [simp]
declare domainE [rule del]

A useful simplification rule

lemma multiset-fun-iff:
(f € A—>nat—{0}) «— f € A—>natA(Na € A. f'a € nat A 0 < f‘a)

apply safe

apply (rule-tac [4] B1 = range (f) in Pi-mono [THEN subsetD))

apply (auto introl: Ord-0-lt
dest: apply-type Diff-subset [THEN Pi-mono, THEN subsetD)
simp add: range-of-fun apply-iff)

done

lemma multiset-into-Mult: [multiset(M); mset-of (M)CA] = M € Mult(A)

apply (simp add: multiset-def)

apply (auto simp add: multiset-fun-iff mset-of-def)

apply (rule-tac B1 = nat—{0} in FiniteFun-mono [THEN subsetD], simp-all)

apply (rule Finite-into-Fin [THEN [2] Fin-mono [THEN subsetD]|, THEN fun-FiniteFunl])
apply (simp-all (no-asm-simp) add: multiset-fun-iff)

done

lemma Mult-into-multiset: M € Mult(A) = multiset(M) N mset-of (M)C A
apply (simp add: multiset-def mset-of-def)

apply (frule FiniteFun-is-fun)

apply (drule FiniteFun-domain-Fin)

apply (frule FinD, clarify)

apply (rule-tac x = domain (M) in exl)

apply (blast intro: Fin-into-Finite)

done

lemma Mult-iff-multiset: M € Mult(A) «— multiset(M) A mset-of (M)CA

35



by (blast dest: Mult-into-multiset intro: multiset-into-Mult)

lemma multiset-iff-Mult-mset-of: multiset(M) <— M € Mult(mset-of (M))
by (auto simp add: Mult-iff-multiset)

The multiset operator

lemma multiset-0 [simp]: multiset(0)

by (auto intro: FiniteFun.intros simp add: multiset-iff-Mult-mset-of)

The mset-of operator

lemma multiset-set-of-Finite [simp]: multiset(M) = Finite(mset-of (M))

by (simp add: multiset-def mset-of-def, auto)

lemma mset-of-0 [iff]: mset-of (0) = 0
by (simp add: mset-of-def)

lemma mset-is-0-iff: multiset(M) = mset-of (M)=0 <— M=0
by (auto simp add: multiset-def mset-of-def)

lemma mset-of-single [iff]: mset-of ({#a#}) = {a}
by (simp add: msingle-def mset-of-def)

lemma mset-of-union [iff]: mset-of (M +# N) = mset-of (M) U mset-of (N)
by (simp add: mset-of-def munion-def)

lemma mset-of-diff [simp]: mset-of (M)CA = mset-of (M —# N) C A
by (auto simp add: mdiff-def multiset-def normalize-def mset-of-def)

lemma msingle-not-0 [iff]: {#a#} # 0 N 0 # {F#a#}
by (simp add: msingle-def)

lemma msingle-eq-iff [iff]: ({#a#} = {#b#}) +— (a = b)
by (simp add: msingle-def)

lemma msingle-multiset [iff,TC]: multiset({#a#})
apply (simp add: multiset-def msingle-def)

apply (rule-tac z = {a} in exl)

apply (auto intro: Finite-cons Finite-0 fun-extend3)
done

lemmas Collect-Finite = Collect-subset [THEN subset-Finite]
lemma normalize-idem [simp]: normalize(normalize(f)) = normalize(f)

apply (simp add: normalize-def funrestrict-def mset-of-def)
apply (case-tac FA. f € A —> nat A Finite (A) )

36



apply clarify

apply (drule-tac x = {z € domain (f) . 0 < f ‘ z} in spec)
apply auto

apply (auto intro!: lam-type simp add: Collect-Finite)
done

lemma normalize-multiset [simp]: multiset(M) = normalize(M) = M
by (auto simp add: multiset-def normalize-def mset-of-def funrestrict-def multi-

set-fun-iff)

lemma multiset-normalize [simp]: multiset(normalize(f))

apply (simp add: normalize-def)

apply (simp add: normalize-def mset-of-def multiset-def, auto)

apply (rule-tac z = {z € A . 0<fz} in exl)

apply (auto intro: Collect-subset [THEN subset-Finite] funrestrict-type)
done

lemma munion-multiset [simp]: [multiset(M); multiset(N)] = multiset(M +#
N)

apply (unfold multiset-def munion-def mset-of-def, auto)

apply (rule-tac x = A U Aa in exl)

apply (auto introl: lam-type intro: Finite-Un simp add: multiset-fun-iff zero-less-add)
done

lemma mdiff-multiset [simp]: multiset(M —# N)
by (simp add: mdiff-def)

lemma munion-0 [simp]: multiset(M) = M +# 0 = M AN 0 +# M = M
apply (simp add: multiset-def)

apply (auto simp add: munion-def mset-of-def)

done

lemma munion-commute: M +# N = N +# M
by (auto intro!: lam-cong simp add: munion-def)

lemma munion-assoc: (M +# N) +# K = M +# (N +# K)
unfolding munion-def mset-of-def

apply (rule lam-cong, auto)

done

37



lemma munion-lcommute: M +# (N +# K) = N +# (M +# K)
unfolding munion-def mset-of-def

apply (rule lam-cong, auto)

done

lemmas munion-ac = munion-commute munion-assoc munion-lcommute

lemma mdiff-self-eq-0 [simp]: M —# M = 0
by (simp add: mdiff-def normalize-def mset-of-def)

lemma mdiff-0 [simp]: 0 —# M = 0
by (simp add: mdiff-def normalize-def)

lemma mdiff-0-right [simp]: multiset(M) = M —# 0 = M
by (auto simp add: multiset-def mdiff-def normalize-def multiset-fun-iff mset-of-def
Junrestrict-def)

lemma mdiff-union-inverse2 [simp|: multiset(M) = M +# {#a#} —# {F#a#}
=M
unfolding multiset-def munion-def mdiff-def msingle-def normalize-def mset-of-def
apply (auto cong add: if-cong simp add: tD multiset-fun-iff funrestrict-def sub-
set-Un-iff2 [THEN iffD1])
prefer 2 apply (force introl: lam-type)
apply (subgoal-tac [2] {r € AU {a} .2 #a Nz A} = A)
apply (rule fun-extension, auto)
apply (drule-tac x = A U {a} in spec)
apply (simp add: Finite-Un)
apply (force intro!: lam-type)
done

lemma mcount-type [simp, TC]: multiset(M) = mcount(M, a) € nat
by (auto simp add: multiset-def mcount-def mset-of-def multiset-fun-iff)

lemma mcount-0 [simp]: mecount(0, a) = 0
by (simp add: mcount-def)

lemma mcount-single [simp]: mcount({#b#}, a) = (if a=b then 1 else 0)
by (simp add: mcount-def mset-of-def msingle-def)

lemma mcount-union [simp|: [multiset(M); multiset(N)]

= mcount(M +# N, a) = mcount(M, a) #+ mcount (N, a)
apply (auto simp add: multiset-def multiset-fun-iff mecount-def munion-def mset-of-def)
done

38



lemma mcount-diff [simp):

multiset(M) = mcount(M —# N, a) = mcount(M, a) #— mcount(N, a)
apply (simp add: multiset-def)
apply (auto dest!: not-lt-imp-le

simp add: mdiff-def multiset-fun-iff mcount-def normalize-def mset-of-def)
apply (force intro!: lam-type)
apply (force intro!: lam-type)
done

lemma mcount-elem: [multiset(M); a € mset-of (M)] = 0 < mcount(M, a)
apply (simp add: multiset-def, clarify)

apply (simp add: mcount-def mset-of-def)

apply (simp add: multiset-fun-iff)

done

lemma msize-0 [simp]: msize(0) = #0
by (simp add: msize-def)

lemma msize-single [simp]: msize({#a#}) = #1
by (simp add: msize-def)

lemma msize-type [simp, TC): msize(M) € int
by (simp add: msize-def)

lemma msize-zpositive: multiset(M)=— #0 $< msize(M)
by (auto simp add: msize-def intro: g-zpos-imp-setsum-zpos)

lemma msize-int-of-nat: multiset(M) = In € nat. msize(M)= $# n

apply (rule not-zneg-int-of)

apply (simp-all (no-asm-simp) add: msize-type [THEN znegative-iff-zless-0] not-zless-iff-zle
msize-zpositive)

done

lemma not-empty-multiset-imp-exist:

[M#£0; multiset(M)] = Ja € mset-of (M). 0 < mcount(M, a)
apply (simp add: multiset-def)
apply (erule not-emptyFE)
apply (auto simp add: mset-of-def mcount-def multiset-fun-iff)
apply (blast dest!: fun-is-rel)
done

lemma msize-eq-0-iff: multiset(M) = msize(M)=#0 +— M=0
apply (simp add: msize-def, auto)

apply (rule-tac P = setsum (u,v) # #0 for u v in swap)

apply blast

apply (drule not-empty-multiset-imp-exist, assumption, clarify)
apply (subgoal-tac Finite (mset-of (M) — {a}))

39



prefer 2 apply (simp add: Finite-Diff)

apply (subgoal-tac setsum (Az. $# mcount (M, ), cons (a, mset-of (M) —{a}))=#70)
prefer 2 apply (simp add: cons-Diff, simp)

apply (subgoal-tac #0 $< setsum (Az. $# mcount (M, z), mset-of (M) — {a}) )
apply (rule-tac [2] g-zpos-imp-setsum-zpos)

apply (auto simp add: Finite-Diff not-zless-iff-zle [THEN iff-sym] znegative-iff-zless-0
[THEN iff-sym])

apply (rule not-zneg-int-of [THEN bezE])

apply (auto simp del: int-of-0 simp add: int-of-add [symmetric] int-of-0 [symmetric])
done

lemma setsum-mcount-Int:
Finite(A) = setsum(Aa. $# mcount(N, a), A N mset-of (N))
= setsum(Aa. $# mcount(N, a), A)
apply (induct rule: Finite-induct)
apply auto
apply (subgoal-tac Finite (B N mset-of (N)))
prefer 2 apply (blast intro: subset-Finite)
apply (auto simp add: mcount-def Int-cons-left)
done

lemma msize-union [simp]:

[multiset(M); multiset(N)] = msize(M +# N) = msize(M) $4+ msize(N)
apply (simp add: msize-def setsum-Un setsum-addf int-of-add setsum-mcount-Int)
apply (subst Int-commute)
apply (simp add: setsum-mcount-Int)
done

lemma msize-eq-succ-imp-elem: [msize(M)= $# succ(n); n € nat] = Ja. a €
mset-of (M)
unfolding msize-def
apply (blast dest: setsum-succD)
done

lemma equality-lemma:
[multiset(M); multiset(N); ¥V a. meount(M, a)=mcount(N, a)]
= mset-of (M)=mset-of (N)

apply (simp add: multiset-def)

apply (rule sym, rule equalityl)

apply (auto simp add: multiset-fun-iff mecount-def mset-of-def)

apply (drule-tac [!] z=z in spec)

apply (case-tac [2] x € Aa, case-tac x € A, auto)

done

lemma multiset-equality:

[multiset(M); multiset(N)]— M=N<+—(¥ a. mcount(M, a)=mcount(N, a))
apply auto

40



apply (subgoal-tac mset-of (M) = mset-of (N))
prefer 2 apply (blast intro: equality-lemma)
apply (simp add: multiset-def mset-of-def)
apply (auto simp add: multiset-fun-iff)

apply (rule fun-extension)

apply (blast, blast)

apply (drule-tac z = z in spec)

apply (auto simp add: mcount-def mset-of-def)
done

lemma munion-eq-0-iff [simp]: [multiset(M); multiset(N)|=(M +# N =0) +—
(M=0 N N=0)
by (auto simp add: multiset-equality)

lemma empty-eq-munion-iff [simp]: [multiset(M); multiset(N)]=(0=M +4# N)
> (M=0 N N=0)

apply (rule iffI, drule sym)

apply (simp-all add: multiset-equality)

done

lemma munion-right-cancel [simpl:
[multiset(M); multiset(N); multiset(K)]=(M +# K = N +# K)«—(M=N)
by (auto simp add: multiset-equality)

lemma munion-left-cancel [simp]:

[multiset(K); multiset(M); multiset(N)] =(K +# M = K +# N) +— (M =
N)
by (auto simp add: multiset-equality)

lemma nat-add-eq-1-cases: [m € nat; n € nat] = (m #+ n = 1) «— (m=1 A
n=0) | (m=0 A n=1)
by (induct-tac n) auto

lemma munion-is-single:

[multiset(M); multiset(N)]

= (M +# N = {#a#}) «— (M={#a#} AN N=0) | (M = 0 AN

(#a#)
apply (simp (no-asm-simp) add: multiset-equality)
apply safe
apply simp-all
apply (case-tac aa=a)
apply (drule-tac [2] x = aa in spec)
apply (drule-tac z = a in spec)
apply (simp add: nat-add-eq-1-cases, simp)
apply (case-tac aaa=aa, simp)
(
(

apply (drule-tac © = aa in spec)
apply (simp add: nat-add-eq-1-cases)

41



apply (case-tac aaa=a)

apply (drule-tac [4] z = aa in spec)
apply (drule-tac [3] z = a in spec)
apply (drule-tac [2] = aaa in spec)
apply (drule-tac © = aa in spec)

apply (simp-all add: nat-add-eq-1-cases)
done

lemma msingle-is-union: [multiset(M); multiset(N)]
— ({(#a#t} = M +4 N) ¢ ({(#aft} = M A N=0 | M = 0 A {#a#} = N)
apply (subgoal-tac ({#a#} = M +# N) «— (M +# N = {#a#}))
apply (simp (no-asm-simp) add: munion-is-single)
apply blast
apply (blast dest: sym)
done

lemma setsum-decr:
Finite(A)
= (VM. multiset(M) —
(Va € mset-of (M). setsum(Az. $# meount(M(a:=M‘a #— 1), z), A) =
(if a € A then setsum(Az. $# mcount(M, z), A) $— #1
else setsum(Nz. $# mcount(M, z), A))))
unfolding multiset-def
apply (erule Finite-induct)
apply (auto simp add: multiset-fun-iff)
unfolding mset-of-def mcount-def
apply (case-tac z € A, auto)
apply (subgoal-tac $# M “x $+ #—1 = $# M ‘z $— $# 1)
apply (erule ssubst)
apply (rule int-of-diff, auto)
done

lemma setsum-decr2:
Finite(A)
= V M. multiset(M) — (VY a € mset-of (M).
setsum(Az. $# mcount(funrestrict(M, mset-of (M)—{a}), ), A) =
(if a € A then setsum(Az. $# mcount(M, z), A) $— $# M‘a
else setsum(Azx. $# mcount(M, ), A)))
apply (simp add: multiset-def)
apply (erule Finite-induct)
apply (auto simp add: multiset-fun-iff mcount-def mset-of-def)
done

lemma setsum-decr3: [Finite(A); multiset(M); a € mset-of (M)]
= setsum(Az. $# mcount(funrestrict(M, mset-of (M)—{a}), z), A — {a})

(if a € A then setsum(Az. $# mcount(M, z), A) $— $# M‘a

42



else setsum(Az. $# mcount(M, ), A))
apply (subgoal-tac setsum (Az. $# mcount (funrestrict (M, mset-of (M) —{a}),z),A—{a})
= setsum (Az. $# mcount (funrestrict (M, mset-of (M) —{a}),x),A) )
apply (rule-tac [2] setsum-Diff [symmetric])
apply (rule sym, rule ssubst, blast)
apply (rule sym, drule setsum-decr2, auto)
apply (simp add: mcount-def mset-of-def)
done

lemma nat-le-1-cases: n € nat = n < 1 +— (n=0 | n=1)
by (auto elim: natE)

lemma succ-pred-eg-self: [0<n; n € nat] = succ(n #— 1) =n
apply (subgoal-tac 1 < n)

apply (drule add-diff-inverse2, auto)

done

Specialized for use in the proof below.

lemma multiset-funrestict:
[VacA. M ‘a € nat AN 0 < M * a; Finite(A)]
= multiset(funrestrict(M, A — {a}))
apply (simp add: multiset-def multiset-fun-iff)
apply (rule-tac x=A—{a} in exl)
apply (auto intro: Finite-Diff funrestrict-type)
done

lemma multiset-induct-auz:

assumes preml: AM a. [multiset(M); a¢mset-of(M); P(M)] = P(cons({a,
1), M)

and prem2: AM b. [multiset(M); b € mset-of(M); P(M)] = P(M(b:= M'b

44 1)

shows

[n € nat; P(0)]

= (VM. multiset(M)—

(setsum(Ax. $# mcount(M, z), {x € mset-of (M). 0 < M‘z}) = $# n) — P(M))
apply (erule nat-induct, clarify)
apply (frule msize-eq-0-iff)
apply (auto simp add: mset-of-def multiset-def multiset-fun-iff msize-def)
apply (subgoal-tac setsum (Az. $# mcount (M, x), A) =3# succ () )
apply (drule setsum-succD, auto)
apply (case-tac 1 <M‘a)
apply (drule-tac [2] not-lt-imp-le)
apply (simp-all add: nat-le-1-cases)
apply (subgoal-tac M= (M (a:=M‘a #— 1)) (a:= (M (a:=M‘a #— 1))‘a #+ 1)
)
apply (rule-tac [2] A = A and B = Az. nat and D = Az. nat in fun-extension)
apply (rule-tac [3] update-type)+
apply (simp-all (no-asm-simp))

apply (rule-tac [2] impI)

43



apply (rule-tac [2] succ-pred-eg-self [symmetric])
apply (simp-all (no-asm-simp))
apply (rule subst, rule sym, blast, rule prem2)
apply (simp (no-asm) add: multiset-def multiset-fun-iff)
apply (rule-tac z = A in exl)
apply (force intro: update-type)
apply (simp (no-asm-simp) add: mset-of-def mcount-def)
apply (drule-tac z = M (a:= M ‘a #— 1) in spec)
apply (drule mp, drule-tac [2] mp, simp-all)
apply (rule-tac z = A in exl)
apply (auto intro: update-type)
apply (subgoal-tac Finite ({z € cons (a, A) . z2a—0<M‘z}) )
prefer 2 apply (blast intro: Collect-subset [THEN subset-Finite] Finite-cons)
apply (drule-tac A = {z € cons (a, A) . z2a—0<M‘c} in setsum-decr)
apply (drule-tac x = M in spec)
apply (subgoal-tac multiset (M) )
prefer 2
apply (simp add: multiset-def multiset-fun-iff)
apply (rule-tac z = A in ezl, force)
apply (simp-all add: mset-of-def)
apply (drule-tac psi =V € A. u(x) for u in asm-rl)
apply (drule-tac z = a in bspec)
apply (simp (no-asm-simp))
apply (subgoal-tac cons (a, A) = A)
prefer 2 apply blast
apply simp
apply (subgoal-tac M=cons (<a, M‘a>, funrestrict (M, A—{a})))
prefer 2
apply (rule fun-cons-funrestrict-eq)
apply (subgoal-tac cons (a, A—{a}) = A)
apply force
apply force
apply (rule-tac a = cons ({a, 1), funrestrict (M, A — {a})) in ssubst)
apply simp
apply (frule multiset-funrestict, assumption)
apply (rule prem1, assumption)
apply (simp add: mset-of-def)
apply (drule-tac © = funrestrict (M, A—{a}) in spec)
apply (drule mp)
apply (rule-tac x = A—{a} in exl)
apply (auto intro: Finite-Diff funrestrict-type simp add: funrestrict)
apply (frule-tac A = Aand M = M and a = a in setsum-decr3)
apply (simp (no-asm-simp) add: multiset-def multiset-fun-iff)
apply blast
apply (simp (no-asm-simp) add: mset-of-def)
apply (drule-tac b = if u then v else w for u v w in sym, simp-all)
apply (subgoal-tac {x € A — {a} . 0 < funrestrict (M, A — {a}) ‘z} = A — {a})
apply (auto intro!: setsum-cong simp add: zdiff-eq-iff zadd-commute multiset-def
multiset-fun-iff mset-of-def)

44



done

lemma multiset-induct2:
[multiset(M); P(0);
(AM a. [multiset(M); a¢mset-of(M); P(M)] = P(cons({a, 1), M)));
(AM b. [multiset(M); b € mset-of(M); P(M)] = P(M(b:= MD #+ 1)))]
= P(M)
apply (subgoal-tac In € nat. setsum (Ax. $# mcount (M, z), {z € mset-of (M)
0 < M fz}) = $# n)
apply (rule-tac [2] not-zneg-int-of)
apply (simp-all (no-asm-simp) add: znegative-iff-zless-0 not-zless-iff-zle)
apply (rule-tac [2] g-zpos-imp-setsum-zpos)
prefer 2 apply (blast intro: multiset-set-of-Finite Collect-subset [THEN sub-
set-Finite])
prefer 2 apply (simp add: multiset-def multiset-fun-iff, clarify)
apply (rule multiset-induct-auz [rule-format], auto)
done

lemma munion-single-casel:
[multiset(M); a ¢mset-of (M)] = M +# {#a#} = cons({a, 1), M)
apply (simp add: multiset-def msingle-def)
apply (auto simp add: munion-def)
apply (unfold mset-of-def, simp)
apply (rule fun-extension, rule lam-type, simp-all)
apply (auto simp add: multiset-fun-iff fun-extend-apply)
apply (drule-tac ¢ = a and b = 1 in fun-extend?3)
apply (auto simp add: cons-eq Un-commute [of - {a}])
done

lemma munion-single-case2:
[multiset(M); a € mset-of (M)] = M ++# {#a#} = M(a:=M‘a #+ 1)
apply (simp add: multiset-def)
apply (auto simp add: munion-def multiset-fun-iff msingle-def)
apply (unfold mset-of-def, simp)
apply (subgoal-tac A U {a} = A)
apply (rule fun-extension)
apply (auto dest: domain-type intro: lam-type update-type)
done

lemma multiset-induct:
assumes M: multiset(M)
and P0: P(0)
and step: AM a. [multiset(M); P(M)] = P(M +# {#a#})
shows P(M)
apply (rule multiset-induct2 [OF M])
apply (simp-all add: PO)
apply (frule-tac [2] a = b in munion-single-case2 [symmetric])

45



apply (frule-tac a = a in munion-single-casel [symmetric])
apply (auto intro: step)
done

lemma MCollect-multiset [simp):
multiset(M) = multiset({# = € M. P(z)#})
apply (simp add: MCollect-def multiset-def mset-of-def, clarify)
apply (rule-tac z = {x € A. P (x) } in exl)
apply (auto dest: CollectD1 [THEN [2] apply-type]
intro: Collect-subset [THEN subset-Finite] funrestrict-type)
done

lemma mset-of-MCollect [simp]:
multiset(M) = mset-of ({# x € M. P(z) #}) C mset-of (M)
by (auto simp add: mset-of-def MCollect-def multiset-def funrestrict-def)

lemma MCollect-mem-iff [iff]:
x € mset-of {#x € M. P(x)#}) «— z € mset-of (M) A P(z)
by (simp add: MCollect-def mset-of-def)

lemma mcount-MCollect [simp]:
meount({# = € M. P(z) #}, a) = (if P(a) then mcount(M,a) else 0)
by (simp add: mcount-def MCollect-def mset-of-def)

lemma multiset-partition: multiset(M) = M = {# x € M. P(z) #} +# {# =
€ M. - P(z) #}
by (simp add: multiset-equality)

lemma natify-elem-is-self [simp):
[multiset(M); a € mset-of (M)] = natify(M‘a) = M‘a
by (auto simp add: multiset-def mset-of-def multiset-fun-iff)

lemma munion-eq-conv-diff: [multiset(M); multiset(N)]
= (M +# {#a#t} = N +# {#b#}) «— (M =N ANa=b|
M = N —# {#a#t} +# {#b#} A N = M —# {#b#} +# {#o#})
apply (simp del: mcount-single add: multiset-equality)
apply (rule iffI, erule-tac [2] disjE, erule-tac [3] conjE)
apply (case-tac a=b, auto)
apply (drule-tac z = a in spec)
apply (drule-tac [2] x = b in spec)
apply (drule-tac [3] = aa in spec)
apply (drule-tac [/] x = a in spec, auto)
apply (subgoal-tac [\] mcount (N,a) :nat)
apply (erule-tac [3] natE, erule natE, auto)
done

46



lemma melem-diff-single:
multiset(M) =

k € mset-of (M —# {#a#}) «— (k=a N 1 < mcount(M,a)) | (k# a N k €
mset-of (M))
apply (simp add: multiset-def)
apply (simp add: normalize-def mset-of-def msingle-def mdiff-def mcount-def)
apply (auto dest: domain-type intro: zero-less-diff [THEN iffD1]

simp add: multiset-fun-iff apply-iff)

apply (force intro!: lam-type)
apply (force intro!: lam-type)
apply (force intro!: lam-type)
done

lemma munion-eq-conv-exist:
[M € Mult(A); N € Mult(A)]
— (M +4# {#a#} = N +# {#b#}) +—
(M=N A a=b| (3K € Mult(A). M= K +# {#b#} N N=K +# {#a#}))
by (auto simp add: Mult-iff-multiset melem-diff-single munion-eq-conv-diff’)

8.2 Multiset Orderings

lemma multirell-type: multirell (A, r) C Mult(A)*Mult(A)
by (auto simp add: multirell-def)

lemma multirel1-0 [simp|: multirell (0, r) =0
by (auto simp add: multirell-def)

lemma multirel1-iff:
(N, M) € multirell (A, r) «—

(Ja.a€ AN

(3M0. MO € Mult(A) A BK. K € Mult(A) A

M=M0 +# {#a#} N N=MO +# K N (Vb € mset-of (K). (b,a) € 1))))
by (auto simp add: multirell-def Mult-iff-multiset Bex-def)

Monotonicity of multirell

lemma multirell-monol: ACB = multirell (A, r)Cmultirell (B, r)
apply (auto simp add: multirell-def)

apply (auto simp add: Un-subset-iff Mult-iff-multiset)

apply (rule-tac = a in bezl)

apply (rule-tac x = MO in bexI, simp)

apply (rule-tac x = K in bexl)

apply (auto simp add: Mult-iff-multiset)

done

lemma multirell-mono2: rCs = multirell (A,r)Cmultirell (A, s)
apply (simp add: multirell-def, auto)

apply (rule-tac © = a in bexl)

apply (rule-tac x = MO in bexl)

47



apply (simp-all add: Mult-iff-multiset)
apply (rule-tac z = K in bexl)

apply (simp-all add: Mult-iff-multiset, auto)
done

lemma multirel1-mono:
[ACB; rCs] = multirell (A, r) C multirell (B, s)
apply (rule subset-trans)
apply (rule multirell-monol)
apply (rule-tac [2] multirell-mono2, auto)
done

8.3 Toward the proof of well-foundedness of multirell

lemma not-less-0 [iff]: (M,0) ¢ multirell (A, r)
by (auto simp add: multirell-def Mult-iff-multiset)

lemma less-munion: [<N, MO +# {#a#}> € multirell (A, r); M0 € Mult(A)]
_—

(IM. (M, M0) € multirel1 (A, r) N N = M +# {#a#}) |

(3K. K € Mult(A) A (Vb € mset-of (K). (b, a) € 7) N N = M0 +# K)
apply (frule multirell-type [THEN subsetD))
apply (simp add: multirel1-iff)
apply (auto simp add: munion-eq-conv-exist)
apply (rule-tac z=Ka +# K in exl, auto, simp add: Mult-iff-multiset)
apply (simp (no-asm-simp) add: munion-left-cancel munion-assoc)
apply (auto simp add: munion-commute)
done

lemma multirell-base: [M € Mult(A); a € A] = <M, M +# {#a#}> € mul-
tirell (A, r)

apply (auto simp add: multirel1-iff)

apply (simp add: Mult-iff-multiset)

apply (rule-tac x = a in exl, clarify)

apply (rule-tac x = M in exl, simp)

apply (rule-tac z = 0 in ezl, auto)

done

lemma acc-0: acc(0)=0
by (auto introl: equalityl dest: acc.dom-subset [THEN subsetD)])

lemma lemmal: [Vb € A. (b,a) € r —
(VM € acc(multirell (A, r)). M +# {F#b#}:acc(multirell (A, 1)));
MO € acc(multirell (A, 1)); a € A;
VM. (M,M0) € multirell (A, r) — M +# {#a#} € acc(multirell (4, 1))]
= MO +# {#a#} € acc(multirell (A, 7))
apply (subgoal-tac M0 € Mult(A) )
prefer 2
apply (erule acc.cases)

48



apply (erule fieldF)

apply (auto dest: multirell-type [THEN subsetD))

apply (rule accl)

apply (rename-tac N)

apply (drule less-munion, blast)

apply (auto simp add: Mult-iff-multiset)

apply (erule-tac P =V x € mset-of (K) . (z, a) € r in rev-mp)
apply (erule-tac P = mset-of (K) CA in rev-mp)

apply (erule-tac M = K in multiset-induct)

apply (simp (no-asm-simp))

apply (simp add: Ball-def Un-subset-iff, clarify)
apply (drule-tac x = aa in spec, simp)
apply (subgoal-tac aa € A)
prefer 2 apply blast
apply (drule-tac x = M0 +# M and P =
Az. © € acc(multirell (A, r)) — Q(z) for @ in spec)
apply (simp add: munion-assoc [symmetric])

apply (auto introl: multirell-base [THEN fieldI2] simp add: Mult-iff-multiset)
done

lemma lemma2: [Vb € A. (b,a) € r
— (VM € acc(multirell (A, r)). M +3# {#b#} racc(multirell (4, 1)));
M € acc(multirell (A, r)); a € A] = M +# {#a#} € acc(multirell (A,
r))

apply (erule acc-induct)
apply (blast intro: lemmal)
done

lemma lemma3: [wf[A](r); a € A]
= VM € acc(multirell (A, r)). M +# {#a#} € acc(multirell (A, 1))
apply (erule-tac a = a in wf-on-induct, blast)
apply (blast intro: lemmaZ2)
done

lemma lemma4: multiset(M) = mset-of(M)CA —
wf[A](r) — M € field(multirell (A, r)) — M € acc(multirell (A, r))
apply (erule multiset-induct)

apply clarify
apply (rule accl, force)
apply (simp add: multirell-def)

apply clarify

apply simp
apply (subgoal-tac mset-of (M) CA)

49



prefer 2 apply blast

apply clarify

apply (drule-tac a = a in lemma3, blast)
apply (subgoal-tac M € field (multirell (A,r)))
apply blast

apply (rule multirell-base [THEN fieldl1])
apply (auto simp add: Mult-iff-multiset)

done

lemma all-accessible: Jwf[A](r); M € Mult(A); A # 0] = M € acc(multirell (4,
7))

apply (erule not-emptyE)

apply (rule lemmaj [THEN mp, THEN mp, THEN mp))

apply (rule-tac [4] multirell-base [THEN fieldl1])

apply (auto simp add: Mult-iff-multiset)

done

lemma wf-on-multirell : wf[A](r) = wf[A—]||>nat—{0}](multirell (A, r))
apply (case-tac A=0)

apply (simp (no-asm-simp))

apply (rule wf-imp-wf-on)

apply (rule wf-on-field-imp-wf)

apply (simp (no-asm-simp) add: wf-on-0)

apply (rule-tac A = acc (multirell (A,r)) in wf-on-subset-A)

apply (rule wf-on-acc)

apply (blast intro: all-accessible)

done

lemma wf-multirell: wf(r) = wf (multirell (field(r), 7))

apply (simp (no-asm-use) add: wf-iff-wf-on-field)

apply (drule wf-on-multirell)

apply (rule-tac A = field (r) —||> nat — {0} in wf-on-subset-A)
apply (simp (no-asm-simp))

apply (rule field-rel-subset)

apply (rule multirel1-type)

done

lemma multirel-type: multirel(A, r) C Mult(A)xMult(A)
apply (simp add: multirel-def)

apply (rule trancl-type [THEN subset-trans])

apply (auto dest: multirell-type [THEN subsetD])

done

lemma multirel-mono:
[ACB; rCs] = multirel(A, r)Cmultirel(B,s)
apply (simp add: multirel-def)

50



apply (rule trancl-mono)
apply (rule multirel1-mono, auto)
done

lemma add-diff-eq: k € nat = 0 <k — n#+ k#— 1 =n#+ (kK #— 1)
by (erule nat-induct, auto)

lemma mdiff-union-single-conv: [a € mset-of (J); multiset(I); multiset(J)]
T T —# {fad) = [ +# (J—# {#ah])

apply (simp (no-asm-simp) add: multiset-equality)

apply (case-tac a ¢ mset-of (I))

apply (auto simp add: mcount-def mset-of-def multiset-def multiset-fun-iff)

apply (auto dest: domain-type simp add: add-diff-eq)

done

lemma diff-add-commute: [n < m; m € nat; n € nat; k € nat] = m #— n #+
k=m#+k #—n
by (auto simp add: le-iff less-iff-succ-add)

lemma multirel-implies-one-step:
(M,N) € multirel(A, r) =
trans[A](r) —
(3IJK.
I € Mult(A) A J € Mult(A) A K € Mult(A) A
N=I+4+#JANM=I4+#KANJ#0A
(Vk € mset-of (K). 35 € mset-of (J). (k,j) € 1))
apply (simp add: multirel-def Ball-def Bex-def)
apply (erule converse-trancl-induct)
apply (simp-all add: multirel1-iff Mult-iff-multiset)

apply clarify
apply (rule-tac x = MO in exl, force)

apply clarify

apply hypsubst-thin

apply (case-tac a € mset-of (Ka) )

apply (rule-tac x = I in exl, simp (no-asm-simp))

apply (rule-tac z = J in exl, simp (no-asm-simp))

apply (rule-tac x = (Ka —# {#a#}) +# K in exl, simp (no-asm-simp))
apply (simp-all add: Un-subset-iff)

apply (simp (no-asm-simp) add: munion-assoc [symmetric])

apply (drule-tac t = AM. M—#{#a#} in subst-context)

apply (simp add: mdiff-union-single-conv melem-diff-single, clarify)
apply (erule disjE, simp)

NN N N N S N

o1



apply (erule disjE, simp)

apply (drule-tac z = a and P = Az. z :# Ka — Q(z) for @ in spec)
apply clarify

apply (rule-tac x = za in exl)

apply (simp (no-asm-simp))

apply (blast dest: trans-onD)

apply (subgoal-tac a :# I)

apply (rule-tac x = I—#{#a#} in exl, simp (no-asm-simp))
apply (rule-tac x = J+#{#a#} in exl)

apply (simp (no-asm-simp) add: Un-subset-iff)

apply (rule-tac © = Ka +# K in exl)

apply (simp (no-asm-simp) add: Un-subset-iff)

apply (rule conjI)

apply (simp (no-asm-simp) add: multiset-equality meount-elem [THEN succ-pred-eq-self])
apply (rule conjI)

apply (drule-tac t = AM. M—#{#a#} in subst-context)
apply (simp add: mdiff-union-inverse2)

apply (simp-all (no-asm-simp) add: multiset-equality)

apply (rule diff-add-commute [symmetric])

apply (auto intro: mcount-elem)

apply (subgoal-tac a € mset-of (I +# Ka) )

apply (drule-tac [2] sym, auto)

done

lemma melem-imp-eq-diff-union [simpl: [a € mset-of (M); multiset(M)] —= M

—# {#a#} +# {#a#} = M
by (simp add: multiset-equality mcount-elem [THEN succ-pred-eq-self])

lemma msize-eq-succ-imp-eq-union:
[msize(M)=3%4# succ(n); M € Mult(A); n € nat]
= JdaN. M =N +# {#a#} NN € Mult(A) ha € A
apply (drule msize-eq-succ-imp-elem, auto)
apply (rule-tac = a in ezl)
apply (rule-tac x = M —# {#a#} in exl)
apply (frule Mult-into-multiset)
apply (simp (no-asm-simp))
apply (auto simp add: Mult-iff-multiset)
done

lemma one-step-implies-multirel-lemma [rule-format (no-asm)l:
n € nat =
(VIJK.
[ € Mult(A) A J € Mult(A) A K € Mult(A) A
(msize(J) =$# n AN J #0 N (VEk € mset-of (K). 3j € mset-of (J). (k, j) € 1))
— <I +# K, I +# J> € multirel(A, 1))
apply (simp add: Mult-iff-multiset)

52



apply (erule nat-induct, clarify)
apply (drule-tac M = J in msize-eq-0-iff , auto)

apply (subgoal-tac msize (J) =$# succ (x) )

prefer 2 apply simp

apply (frule-tac A = A in msize-eq-succ-imp-eq-union)
apply (simp-all add: Mult-iff-multiset, clarify)

apply (rename-tac J', simp)

apply (case-tac J' = 0)

apply (simp add: multirel-def)

apply (rule r-into-trancl, clarify)

apply (simp add: multirell-iff Mult-iff-multiset, force)

NN N N N

apply (drule sym, rotate-tac —1, simp)

apply (erule-tac V = $# x = msize (J') in thin-rl)

apply (frule-tac M = K and P = Az. (z,a) € r in multiset-partition)
apply (erule-tac P = Vk € mset-of (K) . P(k) for P in rev-mp)

apply (erule ssubst)

apply (simp add: Ball-def, auto)

apply (subgoal-tac < (I +# {# = € K. (x, a) € r#}) +# {# z € K. (z, a) ¢
r#}, (I +# {# ¢ € K. (z, a) € r#}) +# J'> € multirel(A4, r) )

prefer 2

apply (drule-tac z = I +4# {# z € K. (z, a) € r#} in spec)

apply (rotate-tac —1)

apply (drule-tac x = J’ in spec)

apply (rotate-tac —1)

apply (drule-tac x = {# x € K. (z, a) ¢ r#} in spec, simp) apply blast
apply (simp add: munion-assoc [symmetric] multirel-def)

apply (rule-tac b = I +# {# x € K. (z, a) € r#} +# J' in trancl-trans, blast)
apply (rule r-into-trancl)

apply (simp add: multirel1-iff Mult-iff-multiset)

apply (rule-tac z = a in ezxl)

apply (simp (no-asm-simp))

apply (rule-tac x = I +# J' in exl)

apply (auto simp add: munion-ac Un-subset-iff)

done

lemma one-step-implies-multirel:
[J # 0; Yk € mset-of (K). 3j € mset-of (J). (k,j) € r;
I € Mult(A); J € Mult(A); K € Mult(A)]
= <I+#K, I+#J> € multirel(A, r)
apply (subgoal-tac multiset (J) )
prefer 2 apply (simp add: Mult-iff-multiset)
apply (frule-tac M = J in msize-int-of-nat)
apply (auto intro: one-step-implies-multirel-lemma)
done

93



lemma multirel-irrefi-lemmas:
Finite(A) = part-ord(A, r) — (Vz € A. Jy € A. (x,y) € r) —A=0
apply (erule Finite-induct)
apply (auto dest: subset-consI [THEN [2] part-ord-subset])
apply (auto simp add: part-ord-def irrefl-def)
apply (drule-tac z = za in bspec)
apply (drule-tac [2] a = za and b = z in trans-onD, auto)
done

lemma irrefi-on-multirel:

part-ord(A, r) = irrefl( Mult(A), multirel(A, 1))
apply (simp add: irrefl-def)
apply (subgoal-tac trans[A](r) )
prefer 2 apply (simp add: part-ord-def, clarify)
apply (drule multirel-implies-one-step, clarify)
apply (simp add: Mult-iff-multiset, clarify)
apply (subgoal-tac Finite (mset-of (K)))
apply (frule-tac r = r in multirel-irrefl-lemma)
apply (frule-tac B = mset-of (K) in part-ord-subset)
apply simp-all
apply (auto simp add: multiset-def mset-of-def)
done

lemma trans-on-multirel: trans|Mult(A)](multirel(A, r))
apply (simp add: multirel-def trans-on-def)

apply (blast intro: trancl-trans)

done

lemma multirel-trans:

[(M, N) € multirel(A, r); (N, K) € multirel(4, r)] = (M, K) € multirel(A,r)
apply (simp add: multirel-def)

apply (blast intro: trancl-trans)

done

lemma trans-multirel: trans(multirel(A,r))
apply (simp add: multirel-def)

apply (rule trans-trancl)

done

lemma part-ord-multirel: part-ord(A,r) = part-ord(Mult(A), multirel(A, r))
apply (simp (no-asm) add: part-ord-def)

apply (blast intro: irrefl-on-multirel trans-on-multirel)
done

lemma munion-multirell-mono:

54



[(M,N) € multirell (A, r); K € Mult(A)] = <K +# M, K +# N> € mul-
tirell (A, r)

apply (frule multirell-type [THEN subsetD))

apply (auto simp add: multirell-iff Mult-iff-multiset)
apply (rule-tac z = a in exl)

apply (simp (no-asm-simp))

apply (rule-tac © = K+#M0 in exl)

apply (simp (no-asm-simp) add: Un-subset-iff)
apply (rule-tac z = Ka in exl)

apply (simp (no-asm-simp) add: munion-assoc)
done

lemma munion-multirel-mono2:

(M, N) € multirel( 4, r); K € Mult(A)][=<K +# M, K +# N> € multirel(A,
r)

apply (frule multirel-type [THEN subsetD])

apply (simp (no-asm-use) add: multirel-def)

apply clarify

apply (drule-tac psi = (M,N) € multirell (A, r) "+ in asm-1{)

apply (erule rev-mp)

apply (erule rev-mp)

apply (erule rev-mp)

apply (erule trancl-induct, clarify)

apply (blast intro: munion-multirell-mono r-into-trancl, clarify)

apply (subgoal-tac y € Mult(A) )

prefer 2

apply (blast dest: multirel-type [unfolded multirel-def, THEN subsetD])
apply (subgoal-tac <K +# y, K +# 2> € multirell (A, r) )

prefer 2 apply (blast intro: munion-multirel1-mono)

apply (blast intro: r-into-trancl trancl-trans)

done

lemma munion-multirel-monol :
[(M, N) € multirel(A, r); K € Mult(A)] = <M +# K, N +# K> €
multirel(A, r)
apply (frule multirel-type [THEN subsetD))
apply (rule-tac P = Ax. (z,u) € multirel(A4, r) for u in munion-commute [THEN
subst])
apply (subst munion-commute [of NJ)
apply (rule munion-multirel-mono?2)
apply (auto simp add: Mult-iff-multiset)
done

lemma munion-multirel-mono:
[(M,K) € multirel(A, r); (N,L) € multirel(A, r)]
= <M +# N, K +# L> € multirel(A, r)
apply (subgoal-tac M € Mult(A) AN N € Mult(A) N K € Mult(A) A L € Mult(A)

prefer 2 apply (blast dest: multirel-type [THEN subsetD))

95



apply (blast intro: munion-multirel-monol multirel-trans munion-multirel-mono?2)
done

8.4 Ordinal Multisets

lemmas field-Memrel-mono = Memrel-mono [THEN field-mono]

lemmas multirel-Memrel-mono = multirel-mono [OF field-Memrel-mono Mem-
rel-mono]

lemma omultiset-is-multiset [simp]: omultiset(M) = multiset(M)
apply (simp add: omultiset-def)

apply (auto simp add: Mult-iff-multiset)

done

lemma munion-omultiset [simpl: [omultiset(M); omultiset(N)] = omultiset(M
+# N)

apply (simp add: omultiset-def, clarify)

apply (rule-tac = i U da in exl)

apply (simp add: Mult-iff-multiset Ord-Un Un-subset-iff)

apply (blast intro: field-Memrel-mono)

done

lemma mdiff-omultiset [simp]: omultiset(M) = omultiset(M —# N)
apply (simp add: omultiset-def, clarify)

apply (simp add: Mult-iff-multiset)

apply (rule-tac x = i in exl)

apply (simp (no-asm-simp))

done

lemma irrefl-Memrel: Ord(i) = irrefl(field(Memrel(7)), Memrel(1))
apply (rule irrefll, clarify)

apply (subgoal-tac Ord (x) )

prefer 2 apply (blast intro: Ord-in-Ord)

apply (drule-tac i = x in ItI [THEN lt-irrefl], auto)

done

lemma trans-iff-trans-on: trans(r) <— trans|field(r)](r)
by (simp add: trans-on-def trans-def, auto)

lemma part-ord-Memrel: Ord(i) = part-ord(field(Memrel(i)), Memrel(t))
apply (simp add: part-ord-def)

apply (simp (no-asm) add: trans-iff-trans-on [THEN iff-sym])

apply (blast intro: trans-Memrel irrefl-Memrel)

done

o6



lemmas part-ord-mless = part-ord-Memrel [THEN part-ord-multirel)

lemma mless-not-refl: =(M <# M)
apply (simp add: mless-def, clarify)
apply (frule multirel-type [THEN subsetD])
apply (drule part-ord-miless)

apply (simp add: part-ord-def irrefl-def)
done

lemmas mless-irrefl = mless-not-refl [THEN notE, elim!]

lemma mless-trans: [K <# M; M <# N] = K <# N
apply (simp add: mless-def, clarify)
apply (rule-tac z = i U ia in exl)
apply (blast dest: multirel-Memrel-mono [OF Un-upper! Un-upperl, THEN sub-
setD)
multirel-Memrel-mono [OF Un-upper2 Un-upper2, THEN subsetD)]
intro: multirel-trans Ord-Un)
done

lemma mless-not-sym: M <# N —> - N <# M

apply clarify

apply (rule mless-not-refl [THEN notE])
apply (erule mless-trans, assumption)
done

lemma mless-asym: [M <# N; =P = N <# M] = P
by (blast dest: mless-not-sym)

lemma mle-refl [simp]: omultiset(M) = M <#= M
by (simp add: mle-def)

lemma mle-antisym:
[M <#=N; N<#=M]= M =N
apply (simp add: mle-def)
apply (blast dest: mless-not-sym)
done

lemma mle-trans: [K <#= M; M <#= N] = K <#= N

o7



apply (simp add: mle-def)
apply (blast intro: mless-trans)
done

lemma mless-le-iff: M <# N <— (M <#= N AN M # N)
by (simp add: mle-def, auto)

lemma munion-less-mono2: [M <# N; omultiset(K)] = K +# M <# K +#
N

apply (simp add: mless-def omultiset-def, clarify)

apply (rule-tac = i U da in exl)

apply (simp add: Mult-iff-multiset Ord-Un Un-subset-iff)

apply (rule munion-multirel-mono2)

apply (blast intro: multirel-Memrel-mono [THEN subsetD])

apply (simp add: Mult-iff-multiset)

apply (blast intro: field-Memrel-mono [THEN subsetD])

done

lemma munion-less-monol: [M <# N; omultiset(K)] = M +# K <# N +#
K
by (force dest: munion-less-mono2 simp add: munion-commaute)

lemma mless-imp-omultiset: M <# N = omultiset(M) A omultiset(N)
by (auto simp add: mless-def omultiset-def dest: multirel-type [THEN subsetD])

lemma munion-less-mono: [M <# K; N <# L] = M +# N <# K +# L
apply (frule-tac M = M in mless-imp-omultiset)

apply (frule-tac M = N in mless-imp-omultiset)

apply (blast intro: munion-less-monol munion-less-mono2 mless-trans)

done

lemma mle-imp-omultiset: M <#= N = omultiset(M) N omultiset(N)
by (auto simp add: mle-def mless-imp-omultiset)

lemma mle-mono: [M <#= K; N <#=1L] = M +# N <#=K +# L
apply (frule-tac M = M in mle-imp-omultiset)

apply (frule-tac M = N in mle-imp-omultiset)

apply (auto simp add: mle-def intro: munion-less-monol munion-less-mono2 mu-
nion-less-mono)

done

lemma omultiset-0 [iff]: omultiset(0)
by (auto simp add: omultiset-def Mult-iff-multiset)

lemma empty-lel [simp]: omultiset(M) = 0 <#= M

o8



apply (simp add: mle-def mless-def)

apply (subgoal-tac 3i. Ord (i) N M € Mult(field(Memrel(7))) )

prefer 2 apply (simp add: omultiset-def)

apply (case-tac M=0, simp-all, clarify)

apply (subgoal-tac <0 +# 0, 0 +# M> € multirel(field (Memrel(7)), Memrel(7)))
apply (rule-tac [2] one-step- zmplzes multirel)

apply (auto simp add: Mult-iff-multiset)

done

lemma munion-upperl: Jomultiset(M); omultiset(N)] = M <#= M +# N
apply (subgoal-tac M +# 0 <#= M +# N)

apply (rule-tac [2] mle-mono, auto)

done

end

9 An operator to “map” a relation over a list

theory Rmap imports ZF begin

consts
rmap :: i=>1

inductive
domains rmap(r) C list(domain(r)) x list(range(r))
intros
Nill: (Nil,Nil) € rmap(r)

Consl: [(z,y): r; (ws,ys) € rmap(r)]
= <Cons(z,xs), Cons(y,ys)> € rmap(r)

type-intros domainl rangel list.intros

lemma rmap-mono: v C s => rmap(r) C rmap(s)
unfolding rmap.defs
apply (rule lfp-mono)
apply (rule rmap.bnd-mono)+
apply (assumption | rule Sigma-mono list-mono domain-mono range-mono ba-
sic-monos)—+
done

inductive-cases
Nil-rmap-case [elim!]: (Nil,zs) € rmap(r)
and Cons-rmap-case [elim!]: <Cons(z,xs),zs> € rmap(r)

declare rmap.intros [intro)

lemma rmap-rel-type: 1 C A x B = rmap(r) C list(A) x list(B)
apply (rule rmap.dom-subset [THEN subset-trans])

99



apply (assumption |
rule domain-rel-subset range-rel-subset Sigma-mono list-mono)+
done

lemma rmap-total: A C domain(r) = list(4) C domain(rmap(r))
apply (rule subsetl)
apply (erule list.induct)
apply blast+
done

lemma rmap-functional: function(r) = function(rmap(r))
unfolding function-def
apply (rule impl [THEN alll, THEN alll))
apply (erule rmap.induct)
apply blast+
done

If f is a function then rmap(f) behaves as expected.
lemma rmap-fun-type: f € A—>B = rmap(f): list(A)—>list(B)

by (simp add: Pi-iff rmap-rel-type rmap-functional rmap-total)

lemma rmap-Nil: rmap(f) ‘Nil = Nil
by (unfold apply-def) blast

lemma rmap-Cons: [f € A—>B; x € A; as: list(A)]
= rmap(f) ¢ Cons(z,xs) = Cons(fz, rmap(f) ‘xs)
by (blast intro: apply-equality apply-Pair rmap-fun-type rmap.intros)

end

10 Meta-theory of propositional logic
theory PropLog imports ZF begin

Datatype definition of propositional logic formulae and inductive definition
of the propositional tautologies.

Inductive definition of propositional logic. Soundness and completeness
w.r.t. truth-tables.

Prove: If H |= p then G |= p where G € Fin(H)

10.1 The datatype of propositions

consts
propn :: 1

datatype propn =
Fis

60



| Var (n € nat) (- [100] 100)
| Imp (p € propn, q € propn)  (infixr = 90)

10.2 The proof system

consts thms nl= 1

abbreviation
thms-syntaz :: [i,i] = o  (infix]l ¢<|—> 50)
where H |— p = p € thms(H)

inductive
domains thms(H) C propn
intros
H: [pe H; pe€ propn] = H |- p
K: [p € propn; q € propn] = H |— p=q=p
S: [p € propn; q € propn; r € propn]
= H |- (p=q¢=1) = (p=q) = p=>r
DN: p € propn = H |— ((p=Fls) = Fls) = p
MP: [H |- p=q; H |- p; p € propn; q € propn] = H |— ¢
type-intros propn.intros

declare propn.intros [simp]

10.3 The semantics

10.3.1 Semantics of propositional logic.

consts
is-true-fun :: [4,i] = ¢
primrec
is-true-fun(Fls, t) = 0
is-true-fun(Var(v), t) = (if v € t then 1 else 0)
is-true-fun(p=-q, t) = (if is-true-fun(p,t) = 1 then is-true-fun(q,t) else 1)

definition
is-true :: [i,i] = o where
is-true(p,t) = is-true-fun(p,t) = 1
— this definition is required since predicates can’t be recursive

lemma is-true-Fls [simp]: is-true(Fls,t) «— False
by (simp add: is-true-def)

lemma is-true-Var [simp|: is-true(#v,t) «— v € t
by (simp add: is-true-def)

lemma is-true-Imp [simpl: is-true(p=>q,t) «— (is-true(p,t)— is-true(q,t))
by (simp add: is-true-def)

61



10.3.2 Logical consequence

For every valuation, if all elements of H are true then so is p.

definition
logcon :: [i,i] = o  (infixl ¢<|=> 50) where
H|=p=Vt (Vq € H. is-true(q,t)) — is-true(p,t)

A finite set of hypotheses from ¢ and the Vars in p.

consts
hyps :: [i,i] = i
primrec
hyps(Fls, t) = 0
hyps(Var(v), t) = (if v € t then {#v} else {#v=Fls})
hyps(p=q, t) = hyps(p,t) U hyps(q,t)

10.4 Proof theory of propositional logic

lemma thms-mono: G C H = thms(G) C thms(H)
unfolding thms.defs
apply (rule lfp-mono)
apply (rule thms.bnd-mono)+
apply (assumption | rule univ-mono basic-monos)+
done

lemmas thms-in-pl = thms.dom-subset [THEN subsetD]
inductive-cases ImpFE: p=-q € propn

lemma thms-MP: [H |— p=q; H |- p] = H |- ¢
— Stronger Modus Ponens rule: no typechecking!
apply (rule thms.MP)
apply (erule asm-rl thms-in-pl thms-in-pl [THEN ImpE)])+
done

lemma thms-I: p € propn = H |— p=p
— Rule is called I for Identity Combinator, not for Introduction.
apply (rule thms.S [THEN thms-MP, THEN thms-MP))
apply (rule-tac [5] thms.K)
apply (rule-tac [4] thms.K)
apply simp-all
done

10.4.1 Weakening, left and right

lemma weaken-left: [G C H; G|—p] = H|-p
— Order of premises is convenient with THEN
by (erule thms-mono [THEN subsetD))

lemma weaken-left-cons: H |— p = cons(a,H) |— p

62



by (erule subset-consI [THEN weaken-left])

lemmas weaken-left-Unl = Un-upper! [THEN weaken-left]
lemmas weaken-left-Un2 = Un-upper?2 [THEN weaken-left]

lemma weaken-right: [H |— ¢; p € propn] = H |— p=>q
by (simp-all add: thms.K [THEN thms-MP] thms-in-pl)

10.4.2 The deduction theorem

theorem deduction: [cons(p,H) |— q; p € propn] = H |— p=>¢
apply (erule thms.induct)
apply (blast intro: thms-I thms.H [THEN weaken-right))
apply (blast intro: thms.K [THEN weaken-right])
apply (blast intro: thms.S [THEN weaken-right])
apply (blast intro: thms.DN [THEN weaken-right])
apply (blast intro: thms.S [THEN thms-MP [THEN thms-MP]])

done

10.4.3 The cut rule

lemma cut: [H|—p; cons(p,H) |— ¢ = H |- ¢
apply (rule deduction [THEN thms-MP])
apply (simp-all add: thms-in-pl)
done

lemma thms-FIsE: [H |— Fls; p € propn] = H |— p
apply (rule thms.DN [THEN thms-MP))
apply (rule-tac [2] weaken-right)
apply (simp-all add: propn.intros)
done

lemma thms-notE: [H |— p=Fls; H |— p; q € propn] = H |— ¢
by (erule thms-MP [THEN thms-FIsE])

10.4.4 Soundness of the rules wrt truth-table semantics

theorem soundness: H |— p= H |=p
unfolding logcon-def
apply (induct set: thms)
apply auto
done

10.5 Completeness

10.5.1 Towards the completeness proof

lemma Flis-Imp: [H |— p=Fls; q € propn] = H |— p=>q
apply (frule thms-in-pl)
apply (rule deduction)

63



apply (rule weaken-left-cons [THEN thms-notE])
apply (blast intro: thms.H elim: ImpE)+
done

lemma Imp-Fls: [H |- p; H |— ¢=Fls] = H |- (p=q)=Fls
apply (frule thms-in-pl)
apply (frule thms-in-pl [of concl: q= Fls])
apply (rule deduction)
apply (erule weaken-left-cons [THEN thms-MP))
apply (rule consl! [THEN thms.H, THEN thms-MP])
apply (blast intro: weaken-left-cons elim: ImpE)+
done

lemma hyps-thms-if:
p € propn = hyps(p,t) |— (if is-true(p,t) then p else p=Fls)
— Typical example of strengthening the induction statement.
apply simp
apply (induct-tac p)
apply (simp-all add: thms-I thms.H)
apply (safe elim!: Fls-Imp [THEN weaken-left-Unl1] Fls-Imp [THEN weaken-left-Un2])
apply (blast intro: weaken-left-Unl1 weaken-left-Un2 weaken-right Imp-Fls)+
done

lemma logcon-thms-p: [p € propn; 0 |= p] = hyps(p,t) |— p
— Key lemma for completeness; yields a set of assumptions satisfying p
apply (drule hyps-thms-if)
apply (simp add: logcon-def)
done

For proving certain theorems in our new propositional logic.

lemmas propn-SIs = propn.intros deduction
and propn-Is = thms-in-pl thms.H thms.H [THEN thms-MP)

The excluded middle in the form of an elimination rule.

lemma thms-excluded-middle:
[p € propn; q € propn] = H |- (p=q) = ((p=Fls)=q) = ¢
apply (rule deduction [THEN deduction))
apply (rule thms.DN [THEN thms-MP))
apply (best introl: propn-Sls intro: propn-Is)+
done

lemma thms-excluded-middle-rule:
[cons(p,H) |— q; cons(p=Fls,H) |~ ¢; p € propn] = H |- q
— Hard to prove directly because it requires cuts
apply (rule thms-excluded-middle [THEN thms-MP, THEN thms-MP])
apply (blast intro!: propn-Sls intro: propn-Is)+
done

64



10.5.2 Completeness — lemmas for reducing the set of assump-
tions

For the case hyps(p, t) — cons(#v, Y) |— p we also have hyps(p, t) — {#v}
C hyps(p, t — {v}).
lemma hyps-Diff:

p € propn = hyps(p, t—{v}) C cons(#v=>Fls, hyps(p,t)—{#v})
by (induct set: propn) auto

For the case hyps(p, t) — cons(#v = Fls, Y) |— p we also have hyps(p, t)
— {#v = Fls} C hyps(p, cons(v, t)).

lemma hyps-cons:

p € propn = hyps(p, cons(v,t)) C cons(#v, hyps(p,t)—{#v=Fls})
by (induct set: propn) auto

Two lemmas for use with weaken-left

lemma cons-Diff-same: B—C C cons(a, B—cons(a,C))
by blast

lemma cons-Diff-subset2: cons(a, B—{c}) — D C cons(a, B—cons(c,D))
by blast

The set hyps(p, t) is finite, and elements have the form #v or #v = Fls;
could probably prove the stronger hyps(p, t) € Fin(hyps(p, 0) U hyps(p,
nat)).

lemma hyps-finite: p € propn = hyps(p,t) € Fin(Jv € nat. {#v, #v=Fls})
by (induct set: propn) auto

lemmas Diff-weaken-left = Diff-mono [OF - subset-refl, THEN weaken-left]

Induction on the finite set of assumptions hyps(p, t0). We may repeatedly
subtract assumptions until none are left!

lemma completeness-0-lemma [rule-format]:
[p € propn; 0 |= p] = Vt. hyps(p,t) — hyps(p,t0) |- p
apply (frule hyps-finite)
apply (erule Fin-induct)
apply (simp add: logcon-thms-p Diff-0)

inductive step
apply safe
Case hyps(p, t) — cons(#v, Y) |— p

apply (rule thms-excluded-middle-rule)
apply (erule-tac [3] propn.intros)
apply (blast intro: cons-Diff-same [THEN weaken-left])
apply (blast intro: cons-Diff-subset2 [THEN weaken-left]
hyps-Diff [THEN Diff-weaken-left])

65



Case hyps(p, t) — cons(#v = Fls, Y) |— p

apply (rule thms-excluded-middle-rule)
apply (erule-tac [3] propn.intros)
apply (blast intro: cons-Diff-subset2 [THEN weaken-left]
hyps-cons [THEN Diff-weaken-left])
apply (blast intro: cons-Diff-same [THEN weaken-left])
done

10.5.3 Completeness theorem

lemma completeness-0: [p € propn; 0 |=p] = 0 |— p
— The base case for completeness
apply (rule Diff-cancel [THEN subst])
apply (blast intro: completeness-0-lemma)
done

lemma logcon-Imp: [cons(p,H) |= q] = H |= p=¢q
— A semantic analogue of the Deduction Theorem
by (simp add: logcon-def)

lemma completeness:
H € Fin(propn) = p € propn — H |=p = H |- p
apply (induct arbitrary: p set: Fin)
apply (safe introl: completeness-0)
apply (rule weaken-left-cons [THEN thms-MP])
apply (blast intro!: logcon-Imp propn.intros)
apply (blast intro: propn-Is)
done

theorem thms-iff: H € Fin(propn) = H |— p +— H |= p A p € propn
by (blast intro: soundness completeness thms-in-pl)

end

11 Lists of n elements
theory ListN imports ZF begin

Inductive definition of lists of n elements; see [3].

consts listn 1 i=1
inductive
domains listn(A) C nat x list(A)
intros
Nill: {(0,Nil) € listn(A)
ConsI: [a € A; (n,l) € listn(A)] = <succ(n), Cons(a,l)> € listn(A)
type-intros nat-typechecks list.intros

66



lemma list-into-listn: | € list(A) = <length(l),l> € listn(A)
by (induct set: list) (simp-all add: listn.intros)

lemma listn-iff: (n,l) € listn(A) +— [ € list(A) A length(l)=n
apply (rule iffI)
apply (erule listn.induct)
apply auto
apply (blast intro: list-into-listn)
done

lemma listn-image-eq: listn(A)‘{n} = {l € list(A). length(l)=n}
apply (rule equality-iffI)
apply (simp add: listn-iff separation image-singleton-iff)
done

lemma listn-mono: A C B = listn(A) C listn(B)
unfolding listn.defs

apply (rule lfp-mono)
apply (rule listn.bnd-mono)+

apply (assumption | rule univ-mono Sigma-mono list-mono basic-monos)+
done

lemma listn-append:
[(n,0) € listn(A); <n’,l’> € listn(A)] = <n#-+n', Q"> € listn(A)
apply (erule listn.induct)
apply (frule listn.dom-subset [THEN subsetD])
apply (simp-all add: listn.intros)
done

inductive-cases
Nil-listn-case: (i,Nil) € listn(A)
and Cons-listn-case: <i,Cons(z,l)> € listn(A)

inductive-cases
zero-listn-case: (0,l) € listn(A)
and succ-listn-case: <succ(i),l> € listn(A)

end

12 Combinatory Logic example: the Church-Rosser
Theorem

theory Comb
imports ZF
begin

Curiously, combinators do not include free variables.

Example taken from [1].

67



12.1 Definitions

Datatype definition of combinators S and K.

consts comb :: ¢
datatype comb =
K
| S
| app (p € comb, ¢ € comb) (infixl <> 90)

Inductive definition of contractions, —! and (multi-step) reductions, —.

consts contract :: i@
abbreviation contract-syntax :: [i,i] = o (infixl (=1 50)
where p -1 q = (p,q) € contract

abbreviation contract-multi :: [i,i] = o (infixl <(—» 50)
where p — ¢ = (p,q) € contract™*

inductive

domains contract C comb X comb

intros
K: [p € comb; q € comb] = K-p-q = p
S: [p € comb; q € comb; r € comb] = S-p-q-r = (p-r)-(g-7)
Apl: [p—=tq; r € comb] = p-r —! ¢-r
Ap2: [p—tq; r € comb] = r-p = req

type-intros comb.intros

Inductive definition of parallel contractions, =! and (multi-step) parallel
reductions, =.

consts parcontract :: i

abbreviation parcontract-syntax :: [i,i] = o (infixl <=1 50)
where p =! ¢ = (p,q) € parcontract

abbreviation parcontract-multi :: [i,i] = o (infixl =) 50)
where p = ¢ = (p,q) € parcontract™+

inductive

domains parcontract C comb x comb

intros
refl: [p € comb] = p='p
K: [p € comb; q€ comb] = K-p-qg='p
S: [p € comb; q € comb; r € comb] = S-p-q-r 1 (p-1)-(g-7)
Ap: [p=tq r2's] = pr =2t ¢s

type-intros comb.intros

Misc definitions.

definition I :: ¢
where [ = S-K-K

68



definition diamond :: i = o
where diamond(r) =
Vzy. (zy)yer — Vy' <zy’>er — (Fz. (y,2)er A <y',z> € 1))

12.2 Transitive closure preserves the Church-Rosser prop-
erty

lemma diamond-strip-lemmaD [rule-format]:

[diamond(r); (z,y):r +] =

Vy' <zy>r — (Fz. <y';z>: "+ A (y,2): 1)
unfolding diamond-def

apply (erule trancl-induct)

apply (blast intro: r-into-trancl)

apply clarify

apply (drule spec [THEN mp], assumption)

apply (blast intro: r-into-trancl trans-trancl [THEN transD))

done

lemma diamond-trancl: diamond(r) = diamond(r™+)
apply (simp (no-asm-simp) add: diamond-def)
apply (rule impl [THEN alll, THEN alll))
apply (erule trancl-induct)
apply auto
apply (best intro: r-into-trancl trans-trancl [THEN transD]
dest: diamond-strip-lemmaD)+
done

inductive-cases Ap-F [elim!]: p-q € comb

12.3 Results about Contraction

For type checking: replaces a —' b by a, b € comb.

lemmas contract-combE2 = contract.dom-subset [THEN subsetD, THEN SigmaFE2]
and contract-combD1 = contract.dom-subset [THEN subsetD, THEN SigmaD1]
and contract-combD2 = contract.dom-subset [THEN subsetD, THEN SigmaD2)]

lemma field-contract-eq: field(contract) = comb
by (blast intro: contract. K elim!: contract-combE2)

lemmas reduction-refl =
field-contract-eq [THEN equalityD2, THEN subsetD, THEN rtrancl-refi)

lemmas rtrancl-into-rtrancl? =
r-into-rtrancl [THEN trans-rtrancl [THEN transD]]

declare reduction-refl [intro!] contract. K [introl] contract.S [introl]

lemmas reduction-rls =

69



contract. K [THEN rtrancl-into-rtrancl2]
contract.S [THEN rtrancl-into-rtrancl2)
contract.Apl [THEN rtrancl-into-rtrancl2]
contract. Ap2 [THEN rtrancl-into-rtrancl2)

lemma p € comb = I-p — p
— Example only: not used
unfolding I-def by (blast intro: reduction-rls)

lemma comb-1: I € comb
unfolding I-def by blast

12.4 Non-contraction results

Derive a case for each combinator constructor.

inductive-cases K-contractE [elim!]: K —' r
and S-contractE [elim!]: S —! r
and Ap-contractE [elim!]: p-q = r

lemma I-contract-E: I —' r = P
by (auto simp add: I-def)

lemma K1-contractD: K-p —' r = (3q. r = K-q A p ="' q)
by auto

lemma Ap-reducel: [p — ¢; r € comb] = p-r — q-r
apply (frule rtrancl-type [THEN subsetD, THEN SigmaD1])
apply (drule field-contract-eq [THEN equalityD1, THEN subsetD))
apply (erule rtrancl-induct)
apply (blast intro: reduction-rls)
apply (erule trans-rtrancl [THEN transD))
apply (blast intro: contract-combD2 reduction-rls)
done

lemma Ap-reduce2: [p — ¢; r € comb] = r-p — r-q
apply (frule rtrancl-type [THEN subsetD, THEN SigmaD1])
apply (drule field-contract-eq [THEN equalityD1, THEN subsetD))
apply (erule rtrancl-induct)
apply (blast intro: reduction-ris)
apply (blast intro: trans-rtrancl [THEN transD]
contract-combD2 reduction-rls)
done

Counterexample to the diamond property for —1.

lemma KIIl-contractl: K-I1-(I-I) = I
by (blast intro: comb-I)

lemma KIIl-contract2: K-1-(I-1) —' K-I-((K-I)-(K-I))
by (unfold I-def) (blast intro: contract.intros)

70



lemma KIIl-contract3: K-I1-((K-1)-(K-I)) = I
by (blast intro: comb-I)

lemma not-diamond-contract: = diamond(contract)
unfolding diamond-def
apply (blast intro: KIII-contractl KIII-contract?2 KIII-contract3
elim!: I-contract-F)
done

12.5 Results about Parallel Contraction

For type checking: replaces a =' b by a, b € comb

lemmas parcontract-combE2 = parcontract.dom-subset [THEN subsetD, THEN
SigmaE2)

and parcontract-combD1 = parcontract.dom-subset [THEN subsetD, THEN Sig-
maD1]

and parcontract-combD2 = parcontract.dom-subset [THEN subsetD, THEN Sig-
maD2]

lemma field-parcontract-eq: field(parcontract) = comb
by (blast intro: parcontract.K elim!: parcontract-combE2)

Derive a case for each combinator constructor.

inductive-cases
K-parcontractE [elim!]: K = r
and S-parcontractE [elim!]: S = r
and Ap-parcontractE [elim!]: p-q = r

declare parcontract.intros [intro)

12.6 Basic properties of parallel contraction

lemma K1-parcontractD [dest!]:
Kp='r= (3p.r=Kp' Ap='p)
by auto

lemma S1-parcontractD [dest!]:
Sp=2tr= 3p.r=8p Ap=2!p)
by auto

lemma S2-parcontractD [dest!]:
Spg=tr= 3p' ¢ r=8p"dAp>'p' Aqg="q)
by auto

lemma diamond-parcontract: diamond(parcontract)
— Church-Rosser property for parallel contraction
unfolding diamond-def
apply (rule impI [THEN alll, THEN alll))

71



apply (erule parcontract.induct)
apply (blast elim!: comb.free-elims intro: parcontract-combD2)+
done

Equivalence of p — g and p = ¢.

lemma contract-imp-parcontract: p—>1q - p%lq
by (induct set: contract) auto

lemma reduce-imp-parreduce: p—q =—> p=gq
apply (frule rtrancl-type [THEN subsetD, THEN SigmaD1])
apply (drule field-contract-eq [THEN equalityD1, THEN subsetD))
apply (erule rtrancl-induct)
apply (blast intro: r-into-trancl)
apply (blast intro: contract-imp-parcontract r-into-trancl

trans-trancl [THEN transD])

done

lemma parcontract-imp-reduce: p=>'q = p—q
apply (induct set: parcontract)
apply (blast intro: reduction-ris)
apply (blast intro: reduction-ris)
apply (blast intro: reduction-rls)
apply (blast intro: trans-rtrancl [THEN transD]
Ap-reducel Ap-reduce2 parcontract-combD1 parcontract-combD2)
done

lemma parreduce-imp-reduce: p=q = p—q
apply (frule trancl-type [THEN subsetD, THEN SigmaD1])
apply (drule field-parcontract-eq [THEN equalityD1, THEN subsetD])
apply (erule trancl-induct, erule parcontract-imp-reduce)
apply (erule trans-rtrancl [THEN transD))
apply (erule parcontract-imp-reduce)
done

lemma parreduce-iff-reduce: p=q <— p—q
by (blast intro: parreduce-imp-reduce reduce-imp-parreduce)

end

13 Primitive Recursive Functions: the inductive
definition

theory Primrec imports ZF begin

Proof adopted from [4].
See also [2, page 250, exercise 11].

72



13.1 Basic definitions

definition
SC :: i where
SC = Ml € list(nat). list-case(0, Az zs. succ(z), 1)

definition
CONSTANT :: i=1i where
CONSTANT (k) = M € list(nat). k

definition
PROJ :: i=i where
PROJ(i) = Al € list(nat). list-case(0, Az xs. x, drop(i,l))

definition
COMP :: [i,i]=i where
COMP(g,fs) = Al € list(nat). g “ map(Af. f, fs)

definition
PREC :: [i,i]=% where
PREC(f,9) =
Al € list(nat). list-case(0,
Az zs. rec(z, fas, Ay r. g ¢ Cons(r, Cons(y, xs))), 1)
— Note that g is applied first to PREC(f, g) ¢y and then to y!

consts
ACK :: i=1
primrec
ACK(0) = SC
ACK (succ(i)) = PREC (CONSTANT (ACK(3) ‘[1]), COMP(ACK (%), [PROJ(0)]))

abbreviation

ack :: [i,i|=1 where
ack(z,y) = ACK(z) ‘ [y]

Useful special cases of evaluation.

lemma SC: [z € nat; [ € list(nat)] = SC * (Cons(z,l)) = succ(x)
by (simp add: SC-def)

lemma CONSTANT: | € list(nat) = CONSTANT (k) ‘1 =k
by (simp add: CONSTANT-def)

lemma PROJ-0: [z € nat; | € list(nat)] = PROJ(0) ‘ (Cons(z,l)) = z
by (simp add: PROJ-def)

lemma COMP-1: | € list(nat) = COMP(g,[f]) ‘1= g°[f]
by (simp add: COMP-def)

lemma PREC-0: 1 € list(nat) = PREC(f,g) ‘ (Cons(0,l)) = f

73



by (simp add: PREC-def)

lemma PREC-succ:
[z € nat; 1 € list(nat)]
= PREC(f,g9) ‘ (Cons(succ(z),l)) =
g “ Cons(PREC(f,g) (Cons(x,l)), Cons(z,l))
by (simp add: PREC-def)

13.2 Inductive definition of the PR functions

consts
prim-rec :: %

inductive
domains prim-rec C list(nat)—>nat
intros
SC € prim-rec
k € nat = CONSTANT (k) € prim-rec
i € nat = PROJ(i) € prim-rec
lg € prim-rec; fs€list(prim-rec)] = COMP(g,fs) € prim-rec
[f € prim-rec; g € prim-rec] = PREC(f,g) € prim-rec
monos list-mono
con-defs SC-def CONSTANT-def PROJ-def COMP-def PREC-def
type-intros nat-typechecks list.intros
lam-type list-case-type drop-type map-type
apply-type rec-type

lemma prim-rec-into-fun [TC]: ¢ € prim-rec = ¢ € list(nat) —> nat
by (erule subsetD [OF prim-rec.dom-subset))

lemmas [TC] = apply-type [OF prim-rec-into-fun)

declare prim-rec.intros [TC]

declare nat-into-Ord [TC]

declare rec-type [TC]

lemma ACK-in-prim-rec [TC]: i € nat = ACK(i) € prim-rec
by (induct set: nat) simp-all

lemma ack-type [TC): [i € nat; j € nat] = ack(i,j) € nat
by auto

13.3 Ackermann’s function cases

lemma ack-0: j € nat = ack(0,j) = succ(j)
— PROPERTY A 1
by (simp add: SC)

lemma ack-suce-0: ack(succ(i), 0) = ack(i,1)

74



— PROPERTY A 2
by (simp add: CONSTANT PREC-0)

lemma ack-succ-succ:
[i€nat; jenat] = ack(succ(), suce(f)) = ack(i, ack(suce(), j))
— PROPERTY A 3
by (simp add: CONSTANT PREC-succ COMP-1 PROJ-0)

lemmas [simp] = ack-0 ack-succ-0 ack-suce-suce ack-type
and [simp del] = ACK .simps

lemma lt-ack2: i € nat = j € nat = j < ack(i,j)
— PROPERTY A 4
apply (induct i arbitrary: j set: nat)
apply simp
apply (induct-tac j)
apply (erule-tac [2] succ-lel [THEN lt-trans1])
apply (rule nat-0I [THEN nat-0-le, THEN lt-trans])
apply auto
done

lemma ack-lt-ack-succ2: [i€nat; jenat] = ack(i,j) < ack(i, succ(j))
— PROPERTY A 5-, the single-step lemma
by (induct set: nat) (simp-all add: lt-ack2)

lemma ack-lt-mono2: [j<k; i € nat; k € nat] = ack(i,j) < ack(i,k)
— PROPERTY A 5, monotonicity for <
apply (frule lt-nat-in-nat, assumption)
apply (erule succ-lt-induct)
apply assumption
apply (rule-tac [2] lt-trans)
apply (auto intro: ack-lt-ack-succ2)
done

lemma ack-le-mono2: [j<k; i€nat; kenat] = ack(i,j) < ack(i,k)
— PROPERTY A 5’, monotonicity for <
apply (rule-tac f = Nj. ack (i,j) in Ord-lt-mono-imp-le-mono)
apply (assumption | rule ack-lt-mono2 ack-type [THEN nat-into-Ord])+
done

lemma ack2-le-ackl:
[ienat; jenat] = ack(i, succ(j)) < ack(succ(i), j)
— PROPERTY A 6
apply (induct-tac j)
apply simp-all
apply (rule ack-le-mono2)
apply (rule lt-ack2 [THEN succ-leI, THEN le-trans])

apply auto

75



done

lemma ack-lt-ack-succl: [i € nat; j € nat] = ack(i,j) < ack(succ(i),5)
— PROPERTY A 7-, the single-step lemma
apply (rule ack-lt-mono2 [THEN lt-trans2))
apply (rule-tac [4] ack2-le-ackl)
apply auto
done

lemma ack-lt-monol: [i<j; j € nat; k € nat] = ack(i,k) < ack(j,k)
— PROPERTY A 7, monotonicity for <
apply (frule lt-nat-in-nat, assumption)
apply (erule succ-lt-induct)
apply assumption
apply (rule-tac [2] lt-trans)
apply (auto intro: ack-lt-ack-succl)
done

lemma ack-le-monol: [i<j; j € nat; k € nat] = ack(i,k) < ack(4,k)
— PROPERTY A 7’, monotonicity for <
apply (rule-tac f = Nj. ack (j,k) in Ord-lt-mono-imp-le-mono)
apply (assumption | rule ack-lt-monol ack-type [THEN nat-into-Ord])+
done

lemma ack-1: j € nat = ack(1,j) = succ(succ(j))
— PROPERTY A 8
by (induct set: nat) simp-all

lemma ack-2: j € nat = ack(succ(1),j) = succ(succ(succ(j#+j5)))
— PROPERTY A 9
by (induct set: nat) (simp-all add: ack-1)

lemma ack-nest-bound:

[i1 € nat; i2 € nat; j € nat]

= ack(il, ack(i2,7)) < ack(succ(succ(il #+1i2)), 7)
— PROPERTY A 10
apply (rule lt-trans2 [OF - ack2-le-ackl1])

apply simp

apply (rule add-le-self [THEN ack-le-monol, THEN lt-trans1])

apply auto

apply (force intro: add-le-self2 [THEN ack-lt-monol, THEN ack-lt-mono?2))
done

lemma ack-add-bound:
[¢1 € nat; i2 € nat; j € nat]
= ack(il,j) #+ ack(i2,j) < ack(succ(succ(succ(succ(il #+i2)))), j)
— PROPERTY A 11
apply (rule-tac j = ack (succ (1), ack (il #+ i2, j)) in lt-trans)
apply (simp add: ack-2)

76



apply (rule-tac [2] ack-nest-bound [THEN lt-trans2])
apply (rule add-le-mono [THEN lel, THEN lel])
apply (auto intro: add-le-self add-le-self2 ack-le-monol)
done

lemma ack-add-bound?2:

[¢ < ack(k,j); j € nat; k € nat]

= i#+j < ack(succ(succ(suce(suce(k)))), J)
— PROPERTY A 12.
— Article uses existential quantifier but the ALF proof used k #+ #4.
— Quantified version must be nested 3k’ Vi,j ....
apply (rule-tac j = ack (k,j) #+ ack (0,5) in lt-trans)
apply (rule-tac [2] ack-add-bound [THEN lt-trans2])

apply (rule add-lt-mono)

apply auto

done

13.4 Main result
declare list-add-type [simp]

lemma SC-case: | € list(nat) = SC ‘| < ack(1, list-add(l))
unfolding SC-def
apply (erule list.cases)
apply (simp add: succ-iff)
apply (simp add: ack-1 add-le-self)
done

lemma lt-ackl: [i € nat; j € nat] = @ < ack(i,j)

— PROPERTY A 4’7 Extra lemma needed for CONSTANT case, constant func-
tions.

apply (induct-tac )

apply (simp add: nat-0-le)

apply (erule lt-transl [OF succ-lel ack-lt-ack-succl))

apply auto

done

lemma CONSTANT-case:
[l € list(nat); k € nat] = CONSTANT(k) ‘1 < ack(k, list-add(l))
by (simp add: CONSTANT-def lt-ackl)

lemma PROJ-case [rule-format]:

l € list(nat) = Vi € nat. PROJ (i) ‘1 < ack(0, list-add(l))
unfolding PROJ-def

apply simp

apply (erule list.induct)

apply (simp add: nat-0-le)

apply simp

apply (rule balll)

77



apply (erule-tac n = i in natE)

apply (simp add: add-le-self)

apply simp

apply (erule bspec [THEN lt-trans2))

apply (rule-tac [2] add-le-self2 [THEN succ-lel])
apply auto

done

COMP case.

lemma COMP-map-lemma:
fs € list({f € prim-rec. Ikf € nat. V1 € list(nat). f1 < ack(kf, list-add(l))})
= 3k € nat. VI € list(nat).
list-add(map(\f. f ‘1, fs)) < ack(k, list-add(l))
apply (induct set: list)
apply (rule-tac = 0 in bezl)
apply (simp-all add: lt-ackl nat-0-le)
apply clarify
apply (rule balll [THEN bexI])
apply (rule add-lt-mono [THEN lt-trans))
apply (rule-tac [5] ack-add-bound)
apply blast
apply auto
done

lemma COMP-case:
[kgenat;
V1 € list(nat). g1 < ack(kg, list-add(l));
fs € list({f € prim-rec .
Ikf € nat. V1 € list(nat).
fl < ack(kf, list-add(1))})]
= 3k € nat. VI € list(nat). COMP(g,fs)l < ack(k, list-add(l))
apply (simp add: COMP-def)
apply (frule list-CollectD)
apply (erule COMP-map-lemma [THEN bezE))
apply (rule balll [THEN bexl))
apply (erule bspec [THEN lt-trans))
apply (rule-tac [2] lt-trans)
apply (rule-tac [3] ack-nest-bound)
apply (erule-tac [2] bspec [THEN ack-lt-mono2])
apply auto
done

PREC case.

lemma PREC-case-lemma:

Vi € list(nat). f9 #+ list-add(l) < ack(kf, list-add(1));
V1 € list(nat). g1 #+ list-add(l) < ack(kg, list-add(1));
f € prim-rec; kfenat;
g € prim-rec; kgE€nat;

78



I € list(nat)]

= PREC(f,9) 1 #+ list-add(l) < ack(succ(kf#+kg), list-add(l))
unfolding PREC-def

apply (erule list.cases)

apply (simp add: lt-trans [OF nat-le-refl lt-ack2])

apply simp

apply (erule ssubst) — get rid of the needless assumption

apply (induct-tac a)

apply simp-all

base case

apply (rule lt-trans, erule bspec, assumption)
apply (simp add: add-le-self [THEN ack-lt-monol])

ind step

apply (rule succ-lel [THEN lt-trans1])
apply (rule-tac j = g ‘ ll #+ mm for [l mm in lt-trans1)
apply (erule-tac [2] bspec)
apply (rule nat-le-refl [THEN add-le-mono))
apply typecheck
apply (simp add: add-le-self2)

final part of the simplification

apply simp

apply (rule add-le-self2 [THEN ack-le-monol, THEN lt-trans1])
apply (erule-tac [4] ack-lt-mono2)
apply auto

done

lemma PREC-case:
[f € prim-rec; kfe€nat;
g € prim-rec; kg€nat;
V1 € list(nat). f1 < ack(kf, list-add(l));
V1 € list(nat). g1 < ack(kg, list-add(1))]
= 3k € nat. VI € list(nat). PREC(f,g) l< ack(k, list-add(l))
apply (rule balll [THEN bexl))
apply (rule lt-transl [OF add-le-self PREC-case-lemmal)
apply typecheck
apply (blast intro: ack-add-bound2 list-add-type)+
done

lemma ack-bounds-prim-rec:
f € prim-rec = 3k € nat. V1 € list(nat). f9 < ack(k, list-add(l))
apply (induct set: prim-rec)
apply (auto intro: SC-case CONSTANT-case PROJ-case COMP-case PREC-case)
done

theorem ack-not-prim-rec:
(Al € list(nat). list-case(0, Az xs. ack(z,x), 1)) ¢ prim-rec

79



apply (rule notI)
apply (drule ack-bounds-prim-rec)

apply force
done

end

References

[1] J. Camilleri and T. F. Melham. Reasoning with inductively defined
relations in the HOL theorem prover. Technical Report 265, Computer
Laboratory, University of Cambridge, Aug. 1992.

[2] E. Mendelson. Introduction to Mathematical Logic. Chapman & Hall,
fourth edition, 1997.

[3] C. Paulin-Mohring. Inductive definitions in the system Coq: Rules and
properties. In M. Bezem and J. Groote, editors, Typed Lambda Calculi
and Applications, LNCS 664, pages 328-345. Springer, 1993.

[4] N. Szasz. A machine checked proof that Ackermann’s function is not
primitive recursive. In G. Huet and G. Plotkin, editors, Logical Environ-
ments, pages 317-338. Cambridge University Press, 1993.

80



	Sample datatype definitions
	A type with four constructors
	Example of a big enumeration type

	Binary trees
	Datatype definition
	Number of nodes, with an example of tail-recursion
	Number of leaves
	Reflecting trees

	Terms over an alphabet
	Datatype definition n-ary branching trees
	Trees and forests, a mutually recursive type definition
	Datatype definition
	Operations

	Infinite branching datatype definitions
	The Brouwer ordinals
	The Martin-Löf wellordering type

	The Mutilated Chess Board Problem, formalized inductively
	Basic properties of evnodd
	Dominoes
	Tilings
	The Operator 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 setsum

	The accessible part of a relation
	Properties of the original "restrict" from ZF.thy
	Multiset Orderings
	Toward the proof of well-foundedness of multirel1
	Ordinal Multisets

	An operator to ``map'' a relation over a list
	Meta-theory of propositional logic
	The datatype of propositions
	The proof system
	The semantics
	Semantics of propositional logic.
	Logical consequence

	Proof theory of propositional logic
	Weakening, left and right
	The deduction theorem
	The cut rule
	Soundness of the rules wrt truth-table semantics

	Completeness
	Towards the completeness proof
	Completeness – lemmas for reducing the set of assumptions
	Completeness theorem


	Lists of n elements
	Combinatory Logic example: the Church-Rosser Theorem
	Definitions
	Transitive closure preserves the Church-Rosser property
	Results about Contraction
	Non-contraction results
	Results about Parallel Contraction
	Basic properties of parallel contraction

	Primitive Recursive Functions: the inductive definition
	Basic definitions
	Inductive definition of the PR functions
	Ackermann's function cases
	Main result


