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Abstract

The formalization of the denotational and operational semantics of a simple while-
language together with an equivalence proof between the two semantics. The whole
development essentially formalizes/transcribes chapters 2 and 5 of [1]. A much extended
version of this development is found in HOL/IMP of the Isabelle distribution.
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1 Arithmetic expressions, boolean expressions, commands

theory Com imports ZF begin

1.1 Arithmetic expressions
consts

Joc :: 1

aexp :: 1

datatype C "univ(loc U (mat -> nat) U ((nat X nat) -> nat))"
aexp = N ("n € nat")



I X ("x € loc")
| Op1 ("f € nat -> nat", "a € aexp")
| Op2 ("f € (nat X nat) -> nat", "a0 € aexp", "al € aexp")

consts evala :: i
abbreviation
evala_syntax :: "[i, i] = o" (infix]l <-a->> 50)
where "p -a-> n = (p,n) € evala"
inductive
domains "evala" C "(aexp X (loc -> nat)) X nat"
intros
N: "[n € nat; sigma € loc->nat] = <N(n),sigma> -a-> n"
X: "[x € loc; sigma € loc->nat] = <X(x),sigma> -a-> sigma‘x"

Opi: "[(e,sigma) -a-> n; f € nat -> nat] = <0Op1(f,e),sigma> -a-> f‘n"
Op2: "[(e0,sigma) -a-> n0; (el,sigma) -a-> nl; f € (natxnat) -> nat]
—> <0p2(f,e0,el),sigma> -a-> £‘(n0,n1)"
type__intros aexp.intros apply_funtype
1.2 Boolean expressions

consts bexp :: i

datatype C "univ(aexp U ((nat X nat)->bool))"

bexp = true
| false
| ROp ("f € (nat X nat)->bool", "a0 € aexp", "al € aexp")
| noti ("b € bexp")
| andi ("bO € bexp", "bl € bexp") (infixl <andi> 60)
| ori ("bO € bexp", "bl € bexp") (infix] <ori> 60)
consts evalb :: i
abbreviation
evalb_syntax :: "[i,i] = o" (infix] <-b->> 50)

where "p -b-> b = (p,b) € evalb"

inductive

domains "evalb" C "(bexp x (loc -> nat)) X bool"

intros
true: "[sigma € loc -> nat] = (true,sigma) -b-> 1"
false: "[sigma € loc -> nat] — (false,sigma) -b-> O"
ROp:  "[(a0,sigma) -a-> n0; (al,sigma) -a-> nl; f € (nat*nat)->bool]

—> <ROp(f,a0,al),sigma> -b-> f‘(n0,n1) "

noti: "[(b,sigma) -b-> w] = <noti(b),sigma> -b-> not(w)"

andi: "[(b0,sigma) -b-> wO; (bl,sigma) —-b-> wl]
= <b0 andi bl,sigma> -b-> (w0 and wi)"



ori:  "[(b0,sigma) -b-> wO; (bl,sigma) -b-> wi]
—> <b0 ori bil,sigma> -b-> (w0 or wi)"
type__intros bexp.intros

type__elims

apply_funtype and_type or_type bool_1I bool_OI not_type
evala.dom_subset [THEN subsetD, elim_format]

1.3 Commands

consts com :: 1
datatype com =
skip (<skip> [1)
| assignment ("x € loc", "a € aexp") (infixl <:=> 60)
| semicolon ("cO € com", "cl € com") (<_; _> [60, 60] 10)
| while ("b € bexp", "c € com") (<while _ do _> 60)
| "if" ("b € bexp", "cO € com", "c1 € com") (<if _ then _ else _> 60)
consts evalc :: i
abbreviation
evalc_syntax :: "[i, i] = o" (infixl <-c->> 50)
where "p -c-> s = (p,s) € evalc"
inductive
domains "evalc" C "(com X (loc -> nat)) X (loc -> nat)"
intros
skip: "[sigma € loc -> nat] = <skip,sigma> -c-> sigma"
assign: "[m € nat; x € loc; (a,sigma) -a-> m|
= <x := a,sigma> -c-> sigma(x:=m)"
semi: "[{c0,sigma) -c-> sigma2; (cl,sigma2) -c-> sigmal]
— <c0,; c1, sigma> -c-> sigmal"
ifl: "[[b € bexp; cl1 € com; sigma € loc—>nat;
(b,sigma) -b-> 1; (c0,sigma) -c-> sigmal]
= <if b then cO else c1, sigma> -c-> sigmal"
if0: ”[[b € bexp; cO0 € com; sigma € loc—>nat;
(b,sigma) -b-> 0; (c1,sigma) -c-> sigmal]
—> <if b then cO else c1, sigma> -c-> sigmal"
whileO: "[c € com; (b, sigma) -b-> 0]
= <while b do c,sigma> -c-> sigma"
whilel: "[c¢ € com; (b,sigma) -b-> 1; (c,sigma) -c-> sigma2;

<while b do ¢, sigma2> -c-> sigmal]
—> <while b do ¢, sigma> -c-> sigmal”

type__intros com.intros update_type



type_elims evala.dom_subset [THEN subsetD, elim_format]
evalb.dom_subset [THEN subsetD, elim_format]

1.4 Misc lemmas

lemmas evala_1 [simp] = evala.dom_subset [THEN subsetD, THEN SigmaD1, THEN SigmaD1]
and evala_2 [simp] = evala.dom_subset [THEN subsetD, THEN SigmaD1, THEN SigmaD2]
and evala_3 [simp] = evala.dom_subset [THEN subsetD, THEN SigmaD2]

lemmas evalb_1 [simp] = evalb.dom_subset [THEN subsetD, THEN SigmaD1, THEN SigmaD1]
and evalb_2 [simp] = evalb.dom_subset [THEN subsetD, THEN SigmaD1, THEN SigmaD2]
and evalb_3 [simp] = evalb.dom_subset [THEN subsetD, THEN SigmaD2]

lemmas evalc_1 [simp] = evalc.dom_subset [THEN subsetD, THEN SigmaD1, THEN SigmaD1]
and evalc_2 [simp] = evalc.dom_subset [THEN subsetD, THEN SigmaD1, THEN SigmaD2]
and evalc_3 [simp] evalc.dom_subset [THEN subsetD, THEN SigmaD2]

inductive__cases
evala_N_E [elim!]: "<N(m),sigma> -a-> i"
and evala_X_E [elim!]: "<X(x),sigma> -a-> i"
and evala_Opl_E [elim!]: "<Opl(f,e),sigma> -a-> i"
and evala_Op2 E [elim!]: "<0Op2(f,al,a2),sigma> -a-> i"

end

2 Denotational semantics of expressions and commands

theory Denotation imports Com begin

2.1 Definitions

consts

i=1i"
i = 1i"
i”
definition
Gamma :: "[i,i,i] = i" (<I'>) where
"T"(b,cden) =
(Aphi. {io € (phi O cden). B(b,fst(io))=1} U
{io € id(loc->nat). B(b,fst(io))=0})"

primrec
"A(N(n), sigma)
"A(X(x), sigma) = sigma‘x"
"A(Op1(f,a), sigma) = f‘A(a,sigma)"
"A(Op2(f,a0,al), sigma) = f‘<A(a0,sigma),A(al,sigma)>"

n"

primrec



"B(true, sigma) = 1"

"B(false, sigma) = 0"

"B(ROp(f,a0,al), sigma) = f‘<A(a0,sigma),A(al,sigma)>"
"B(noti(b), sigma) = not(B(b,sigma))"

"B(b0 andi b1, sigma) = B(b0,sigma) and B(bl,sigma)"
"B(bO ori bl, sigma) = B(bO,sigma) or B(bl,sigma)"

primrec
"C(skip) = id(loc->nat)"
"C(x := a) =
{io € (loc->nat) X (loc->nat). snd(io) = fst(io)(x := A(a,fst(io)))}"
"C(cO; c1) = C(c1) 0 C(co)"
"C(if b then cO else c1) =
{io € C(c0). B(b,fst(io)) = 1} U {io € C(c1). B(b,fst(io)) = O}"
"C(while b do ¢) = 1fp((loc->nat) X (loc->nat), I'(b,C(c)))"

2.2 Misc lemmas

lemma A_type [TC]: "[a € aexp; sigma € loc->nat] — A(a,sigma) € nat"
by (erule aexp.induct) simp_all

lemma B_type [TC]: "[b € bexp; sigma € loc->nat] = B(b,sigma) € bool"
by (erule bexp.induct, simp_all)

lemma C_subset: "¢ € com = C(c) C (loc->nat) X (loc->nat)"
apply (erule com.induct)
apply simp_all
apply (blast dest: 1fp_subset [THEN subsetD])+
done

lemma C_type_D [dest]:
"[{x,y) € C(c); ¢ € com] = x € loc->nat A y € loc->nat"
by (blast dest: C_subset [THEN subsetD])

lemma C_type_fst [dest]: "[x € C(c); ¢ € com] = fst(x) € loc->nat"
by (auto dest!: C_subset [THEN subsetD])

lemma Gamma_bnd_mono:
"cden C (loc->nat) X (loc—>nat)
— bnd_mono ((loc->nat) X (loc->nat), I'(b,cden))"
by (unfold bnd_mono_def Gamma_def) blast

end

3 Equivalence

theory Equiv imports Denotation Com begin

lemma aexp_iff [rule_format]:



"la € aexp; sigma: loc -> nat]

= Vn. (a,sigma) -a-> n +— A(a,sigma) = n"
apply (erule aexp.induct)

apply (force intro!: evala.intros)+
done

declare aexp_iff [THEN iffD1, simp]
aexp_iff [THEN iffD2, intro!]

inductive__cases [elim!]:
"(true,sigma) -b-> x"
"(false,sigma) -b-> x"
"<ROp(f,a0,al),sigma> -b-> x"
"<noti(b),sigma> -b-> x"
"<b0 andi bl,sigma> -b-> x"
"<b0 ori bl,sigma> -b-> x"

lemma bexp_iff [rule_format]:
"[b € bexp; sigma: loc -> nat]
= Vw. (b,sigma) -b-> w <— B(b,sigma) = w"
apply (erule bexp.induct)
apply (auto intro!: evalb.intros)
done

declare bexp_iff [THEN iffD1, simp]
bexp_iff [THEN iffD2, intro!]

lemma coml: "(c,sigma) -c-> sigma’ —> <sigma,sigma’> € C(c)"
apply (erule evalc.induct)
apply (simp_all (no_asm_simp))

assign

apply (simp add: update_type)
comp

apply fast
while

apply (erule Gamma_bnd_mono [THEN 1fp_unfold, THEN ssubst, OF C_subset])
apply (simp add: Gamma_def)

recursive case of while

apply (erule Gamma_bnd_mono [THEN 1fp_unfold, THEN ssubst, OF C_subset])
apply (auto simp add: Gamma_def)
done

declare B_type [intro!] A_type [intro!]
declare evalc.intros [intro]



lemma com2 [rule_format]: "c € com = Vx € C(c). <c,fst(x)> -c-> snd(x)"
apply (erule com.induct)

skip
apply force
assign
apply force
comp
apply force
while

apply safe

apply simp_all

apply (frule Gamma_bnd_mono [OF C_subset], erule Fixedpt.induct, assumption)
unfolding Gamma_def

apply force

if

apply auto
done

3.1 Main theorem

theorem com_equivalence:
"¢ € com = C(c) = {io € (loc->nat) X (loc->nat). <c,fst(io)> -c-> snd(io)}"
by (force intro: C_subset [THEN subsetD] elim: com2 dest: coml)

end
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