IMP — A WHILE-language and two semantics

Heiko Loetzbeyer and Robert Sandner
January 18, 2026

Abstract

The formalization of the denotational and operational semantics of a simple while-
language together with an equivalence proof between the two semantics. The whole
development essentially formalizes/transcribes chapters 2 and 5 of [1]. A much extended
version of this development is found in HOL/IMP of the Isabelle distribution.

Contents

1 Arithmetic expressions, boolean expressions, commands 1
1.1 Arithmetic expressions 1
1.2 Boolean expressionso 2
1.3 Commands 3
1.4 Misclemmas L 4

2 Denotational semantics of expressions and commands 4
2.1 Definitionso 4
2.2 Misclemmas e e 5

3 Equivalence 5
3.1 Main theorem e 7

1 Arithmetic expressions, boolean expressions, commands

theory Com imports ZF begin

1.1 Arithmetic expressions
consts

Joc :: 1

aexp :: 1

datatype C "univ(loc U (mat -> nat) U ((nat X nat) -> nat))"
aexp = N ("n € nat")

I X ("x € loc")
| Op1 ("f € nat -> nat", "a € aexp")
| Op2 ("f € (nat X nat) -> nat", "a0 € aexp", "al € aexp")

consts evala :: i
abbreviation
evala_syntax :: "[i, i] = o" (infix]l <-a->> 50)
where "p -a-> n = (p,n) € evala"
inductive
domains "evala" C "(aexp X (loc -> nat)) X nat"
intros
N: "[n € nat; sigma € loc->nat] = <N(n),sigma> -a-> n"
X: "[x € loc; sigma € loc->nat] = <X(x),sigma> -a-> sigma‘x"

Opi: "[(e,sigma) -a-> n; f € nat -> nat] = <0Op1(f,e),sigma> -a-> f‘n"
Op2: "[(e0,sigma) -a-> n0; (el,sigma) -a-> nl; f € (natxnat) -> nat]
—> <0p2(f,e0,el),sigma> -a-> £‘(n0,n1)"
type__intros aexp.intros apply_funtype
1.2 Boolean expressions

consts bexp :: i

datatype C "univ(aexp U ((nat X nat)->bool))"

bexp = true
| false
| ROp ("f € (nat X nat)->bool", "a0 € aexp", "al € aexp")
| noti ("b € bexp")
| andi ("bO € bexp", "bl € bexp") (infixl <andi> 60)
| ori ("bO € bexp", "bl € bexp") (infix] <ori> 60)
consts evalb :: i
abbreviation
evalb_syntax :: "[i,i] = o" (infix] <-b->> 50)

where "p -b-> b = (p,b) € evalb"

inductive

domains "evalb" C "(bexp x (loc -> nat)) X bool"

intros
true: "[sigma € loc -> nat] = (true,sigma) -b-> 1"
false: "[sigma € loc -> nat] — (false,sigma) -b-> O"
ROp: "[(a0,sigma) -a-> n0; (al,sigma) -a-> nl; f € (nat*nat)->bool]

—> <ROp(f,a0,al),sigma> -b-> f‘(n0,n1) "

noti: "[(b,sigma) -b-> w] = <noti(b),sigma> -b-> not(w)"

andi: "[(b0,sigma) -b-> wO; (bl,sigma) —-b-> wl]
= <b0 andi bl,sigma> -b-> (w0 and wi)"

ori: "[(b0,sigma) -b-> wO; (bl,sigma) -b-> wi]
—> <b0 ori bil,sigma> -b-> (w0 or wi)"
type__intros bexp.intros

type__elims

apply_funtype and_type or_type bool_1I bool_OI not_type
evala.dom_subset [THEN subsetD, elim_format]

1.3 Commands

consts com :: 1
datatype com =
skip (<skip> [1)
| assignment ("x € loc", "a € aexp") (infixl <:=> 60)
| semicolon ("cO € com", "cl € com") (<_; _> [60, 60] 10)
| while ("b € bexp", "c € com") (<while _ do _> 60)
| "if" ("b € bexp", "cO € com", "c1 € com") (<if _ then _ else _> 60)
consts evalc :: i
abbreviation
evalc_syntax :: "[i, i] = o" (infixl <-c->> 50)
where "p -c-> s = (p,s) € evalc"
inductive
domains "evalc" C "(com X (loc -> nat)) X (loc -> nat)"
intros
skip: "[sigma € loc -> nat] = <skip,sigma> -c-> sigma"
assign: "[m € nat; x € loc; (a,sigma) -a-> m|
= <x := a,sigma> -c-> sigma(x:=m)"
semi: "[{c0,sigma) -c-> sigma2; (cl,sigma2) -c-> sigmal]
— <c0,; c1, sigma> -c-> sigmal"
ifl: "[[b € bexp; cl1 € com; sigma € loc—>nat;
(b,sigma) -b-> 1; (c0,sigma) -c-> sigmal]
= <if b then cO else c1, sigma> -c-> sigmal"
if0: ”[[b € bexp; cO0 € com; sigma € loc—>nat;
(b,sigma) -b-> 0; (c1,sigma) -c-> sigmal]
—> <if b then cO else c1, sigma> -c-> sigmal"
whileO: "[c € com; (b, sigma) -b-> 0]
= <while b do c,sigma> -c-> sigma"
whilel: "[c¢ € com; (b,sigma) -b-> 1; (c,sigma) -c-> sigma2;

<while b do ¢, sigma2> -c-> sigmal]
—> <while b do ¢, sigma> -c-> sigmal”

type__intros com.intros update_type

type_elims evala.dom_subset [THEN subsetD, elim_format]
evalb.dom_subset [THEN subsetD, elim_format]

1.4 Misc lemmas

lemmas evala_1 [simp] = evala.dom_subset [THEN subsetD, THEN SigmaD1, THEN SigmaD1]
and evala_2 [simp] = evala.dom_subset [THEN subsetD, THEN SigmaD1, THEN SigmaD2]
and evala_3 [simp] = evala.dom_subset [THEN subsetD, THEN SigmaD2]

lemmas evalb_1 [simp] = evalb.dom_subset [THEN subsetD, THEN SigmaD1, THEN SigmaD1]
and evalb_2 [simp] = evalb.dom_subset [THEN subsetD, THEN SigmaD1, THEN SigmaD2]
and evalb_3 [simp] = evalb.dom_subset [THEN subsetD, THEN SigmaD2]

lemmas evalc_1 [simp] = evalc.dom_subset [THEN subsetD, THEN SigmaD1, THEN SigmaD1]
and evalc_2 [simp] = evalc.dom_subset [THEN subsetD, THEN SigmaD1, THEN SigmaD2]
and evalc_3 [simp] evalc.dom_subset [THEN subsetD, THEN SigmaD2]

inductive__cases
evala_N_E [elim!]: "<N(m),sigma> -a-> i"
and evala_X_E [elim!]: "<X(x),sigma> -a-> i"
and evala_Opl_E [elim!]: "<Opl(f,e),sigma> -a-> i"
and evala_Op2 E [elim!]: "<0Op2(f,al,a2),sigma> -a-> i"

end

2 Denotational semantics of expressions and commands

theory Denotation imports Com begin

2.1 Definitions

consts

i=1i"
i = 1i"
i”
definition
Gamma :: "[i,i,i] = i" (<I'>) where
"T"(b,cden) =
(Aphi. {io € (phi O cden). B(b,fst(io))=1} U
{io € id(loc->nat). B(b,fst(io))=0})"

primrec
"A(N(n), sigma)
"A(X(x), sigma) = sigma‘x"
"A(Op1(f,a), sigma) = f‘A(a,sigma)"
"A(Op2(f,a0,al), sigma) = f‘<A(a0,sigma),A(al,sigma)>"

n"

primrec

"B(true, sigma) = 1"

"B(false, sigma) = 0"

"B(ROp(f,a0,al), sigma) = f‘<A(a0,sigma),A(al,sigma)>"
"B(noti(b), sigma) = not(B(b,sigma))"

"B(b0 andi b1, sigma) = B(b0,sigma) and B(bl,sigma)"
"B(bO ori bl, sigma) = B(bO,sigma) or B(bl,sigma)"

primrec
"C(skip) = id(loc->nat)"
"C(x := a) =
{io € (loc->nat) X (loc->nat). snd(io) = fst(io)(x := A(a,fst(io)))}"
"C(cO; c1) = C(c1) 0 C(co)"
"C(if b then cO else c1) =
{io € C(c0). B(b,fst(io)) = 1} U {io € C(c1). B(b,fst(io)) = O}"
"C(while b do ¢) = 1fp((loc->nat) X (loc->nat), I'(b,C(c)))"

2.2 Misc lemmas

lemma A_type [TC]: "[a € aexp; sigma € loc->nat] — A(a,sigma) € nat"
by (erule aexp.induct) simp_all

lemma B_type [TC]: "[b € bexp; sigma € loc->nat] = B(b,sigma) € bool"
by (erule bexp.induct, simp_all)

lemma C_subset: "¢ € com = C(c) C (loc->nat) X (loc->nat)"
apply (erule com.induct)
apply simp_all
apply (blast dest: 1fp_subset [THEN subsetD])+
done

lemma C_type_D [dest]:
"[{x,y) € C(c); ¢ € com] = x € loc->nat A y € loc->nat"
by (blast dest: C_subset [THEN subsetD])

lemma C_type_fst [dest]: "[x € C(c); ¢ € com] = fst(x) € loc->nat"
by (auto dest!: C_subset [THEN subsetD])

lemma Gamma_bnd_mono:
"cden C (loc->nat) X (loc—>nat)
— bnd_mono ((loc->nat) X (loc->nat), I'(b,cden))"
by (unfold bnd_mono_def Gamma_def) blast

end

3 Equivalence

theory Equiv imports Denotation Com begin

lemma aexp_iff [rule_format]:

"la € aexp; sigma: loc -> nat]

= Vn. (a,sigma) -a-> n +— A(a,sigma) = n"
apply (erule aexp.induct)

apply (force intro!: evala.intros)+
done

declare aexp_iff [THEN iffD1, simp]
aexp_iff [THEN iffD2, intro!]

inductive__cases [elim!]:
"(true,sigma) -b-> x"
"(false,sigma) -b-> x"
"<ROp(f,a0,al),sigma> -b-> x"
"<noti(b),sigma> -b-> x"
"<b0 andi bl,sigma> -b-> x"
"<b0 ori bl,sigma> -b-> x"

lemma bexp_iff [rule_format]:
"[b € bexp; sigma: loc -> nat]
= Vw. (b,sigma) -b-> w <— B(b,sigma) = w"
apply (erule bexp.induct)
apply (auto intro!: evalb.intros)
done

declare bexp_iff [THEN iffD1, simp]
bexp_iff [THEN iffD2, intro!]

lemma coml: "(c,sigma) -c-> sigma’ —> <sigma,sigma’> € C(c)"
apply (erule evalc.induct)
apply (simp_all (no_asm_simp))

assign

apply (simp add: update_type)
comp

apply fast
while

apply (erule Gamma_bnd_mono [THEN 1fp_unfold, THEN ssubst, OF C_subset])
apply (simp add: Gamma_def)

recursive case of while

apply (erule Gamma_bnd_mono [THEN 1fp_unfold, THEN ssubst, OF C_subset])
apply (auto simp add: Gamma_def)
done

declare B_type [intro!] A_type [intro!]
declare evalc.intros [intro]

lemma com2 [rule_format]: "c € com = Vx € C(c). <c,fst(x)> -c-> snd(x)"
apply (erule com.induct)

skip
apply force
assign
apply force
comp
apply force
while

apply safe

apply simp_all

apply (frule Gamma_bnd_mono [OF C_subset], erule Fixedpt.induct, assumption)
unfolding Gamma_def

apply force

if

apply auto
done

3.1 Main theorem

theorem com_equivalence:
"¢ € com = C(c) = {io € (loc->nat) X (loc->nat). <c,fst(io)> -c-> snd(io)}"
by (force intro: C_subset [THEN subsetD] elim: com2 dest: coml)

end

References

[1] Glynn Winskel. The Formal Semantics of Programming Languages. 1993.

	Arithmetic expressions, boolean expressions, commands
	Arithmetic expressions
	Boolean expressions
	Commands
	Misc lemmas

	Denotational semantics of expressions and commands
	Definitions
	Misc lemmas

	Equivalence
	Main theorem

