
IMP — A WHILE-language and two semantics
Heiko Loetzbeyer and Robert Sandner

January 18, 2026

Abstract
The formalization of the denotational and operational semantics of a simple while-
language together with an equivalence proof between the two semantics. The whole
development essentially formalizes/transcribes chapters 2 and 5 of [1]. A much extended
version of this development is found in HOL/IMP of the Isabelle distribution.

Contents
1 Arithmetic expressions, boolean expressions, commands 1

1.1 Arithmetic expressions . 1
1.2 Boolean expressions . 2
1.3 Commands . 3
1.4 Misc lemmas . 4

2 Denotational semantics of expressions and commands 4
2.1 Definitions . 4
2.2 Misc lemmas . 5

3 Equivalence 5
3.1 Main theorem . 7

1 Arithmetic expressions, boolean expressions, commands
theory Com imports ZF begin

1.1 Arithmetic expressions
consts

loc :: i
aexp :: i

datatype ⊆ "univ(loc ∪ (nat -> nat) ∪ ((nat × nat) -> nat))"
aexp = N ("n ∈ nat")

1

| X ("x ∈ loc")
| Op1 ("f ∈ nat -> nat", "a ∈ aexp")
| Op2 ("f ∈ (nat × nat) -> nat", "a0 ∈ aexp", "a1 ∈ aexp")

consts evala :: i

abbreviation
evala_syntax :: "[i, i] ⇒ o" (infixl ‹-a->› 50)
where "p -a-> n ≡ 〈p,n〉 ∈ evala"

inductive
domains "evala" ⊆ "(aexp × (loc -> nat)) × nat"
intros

N: " [[n ∈ nat; sigma ∈ loc->nat]] =⇒ <N(n),sigma> -a-> n"
X: " [[x ∈ loc; sigma ∈ loc->nat]] =⇒ <X(x),sigma> -a-> sigma‘x"
Op1: " [[〈e,sigma〉 -a-> n; f ∈ nat -> nat]] =⇒ <Op1(f,e),sigma> -a-> f‘n"
Op2: " [[〈e0,sigma〉 -a-> n0; 〈e1,sigma〉 -a-> n1; f ∈ (nat×nat) -> nat]]

=⇒ <Op2(f,e0,e1),sigma> -a-> f‘〈n0,n1〉"
type_intros aexp.intros apply_funtype

1.2 Boolean expressions
consts bexp :: i

datatype ⊆ "univ(aexp ∪ ((nat × nat)->bool))"
bexp = true

| false
| ROp ("f ∈ (nat × nat)->bool", "a0 ∈ aexp", "a1 ∈ aexp")
| noti ("b ∈ bexp")
| andi ("b0 ∈ bexp", "b1 ∈ bexp") (infixl ‹andi› 60)
| ori ("b0 ∈ bexp", "b1 ∈ bexp") (infixl ‹ori› 60)

consts evalb :: i

abbreviation
evalb_syntax :: "[i,i] ⇒ o" (infixl ‹-b->› 50)
where "p -b-> b ≡ 〈p,b〉 ∈ evalb"

inductive
domains "evalb" ⊆ "(bexp × (loc -> nat)) × bool"
intros

true: " [[sigma ∈ loc -> nat]] =⇒ 〈true,sigma〉 -b-> 1"
false: " [[sigma ∈ loc -> nat]] =⇒ 〈false,sigma〉 -b-> 0"
ROp: " [[〈a0,sigma〉 -a-> n0; 〈a1,sigma〉 -a-> n1; f ∈ (nat*nat)->bool]]

=⇒ <ROp(f,a0,a1),sigma> -b-> f‘〈n0,n1〉 "
noti: " [[〈b,sigma〉 -b-> w]] =⇒ <noti(b),sigma> -b-> not(w)"
andi: " [[〈b0,sigma〉 -b-> w0; 〈b1,sigma〉 -b-> w1]]

=⇒ <b0 andi b1,sigma> -b-> (w0 and w1)"

2

ori: " [[〈b0,sigma〉 -b-> w0; 〈b1,sigma〉 -b-> w1]]
=⇒ <b0 ori b1,sigma> -b-> (w0 or w1)"

type_intros bexp.intros
apply_funtype and_type or_type bool_1I bool_0I not_type

type_elims evala.dom_subset [THEN subsetD, elim_format]

1.3 Commands
consts com :: i
datatype com =

skip (‹skip› [])
| assignment ("x ∈ loc", "a ∈ aexp") (infixl ‹:=› 60)
| semicolon ("c0 ∈ com", "c1 ∈ com") (‹_; _› [60, 60] 10)
| while ("b ∈ bexp", "c ∈ com") (‹while _ do _› 60)
| "if" ("b ∈ bexp", "c0 ∈ com", "c1 ∈ com") (‹if _ then _ else _› 60)

consts evalc :: i

abbreviation
evalc_syntax :: "[i, i] ⇒ o" (infixl ‹-c->› 50)
where "p -c-> s ≡ 〈p,s〉 ∈ evalc"

inductive
domains "evalc" ⊆ "(com × (loc -> nat)) × (loc -> nat)"
intros

skip: " [[sigma ∈ loc -> nat]] =⇒ <skip,sigma> -c-> sigma"

assign: " [[m ∈ nat; x ∈ loc; 〈a,sigma〉 -a-> m]]
=⇒ <x := a,sigma> -c-> sigma(x:=m)"

semi: " [[〈c0,sigma〉 -c-> sigma2; 〈c1,sigma2〉 -c-> sigma1]]
=⇒ <c0; c1, sigma> -c-> sigma1"

if1: " [[b ∈ bexp; c1 ∈ com; sigma ∈ loc->nat;
〈b,sigma〉 -b-> 1; 〈c0,sigma〉 -c-> sigma1]]

=⇒ <if b then c0 else c1, sigma> -c-> sigma1"

if0: " [[b ∈ bexp; c0 ∈ com; sigma ∈ loc->nat;
〈b,sigma〉 -b-> 0; 〈c1,sigma〉 -c-> sigma1]]

=⇒ <if b then c0 else c1, sigma> -c-> sigma1"

while0: " [[c ∈ com; 〈b, sigma〉 -b-> 0]]
=⇒ <while b do c,sigma> -c-> sigma"

while1: " [[c ∈ com; 〈b,sigma〉 -b-> 1; 〈c,sigma〉 -c-> sigma2;
<while b do c, sigma2> -c-> sigma1]]

=⇒ <while b do c, sigma> -c-> sigma1"

type_intros com.intros update_type

3

type_elims evala.dom_subset [THEN subsetD, elim_format]
evalb.dom_subset [THEN subsetD, elim_format]

1.4 Misc lemmas
lemmas evala_1 [simp] = evala.dom_subset [THEN subsetD, THEN SigmaD1, THEN SigmaD1]

and evala_2 [simp] = evala.dom_subset [THEN subsetD, THEN SigmaD1, THEN SigmaD2]
and evala_3 [simp] = evala.dom_subset [THEN subsetD, THEN SigmaD2]

lemmas evalb_1 [simp] = evalb.dom_subset [THEN subsetD, THEN SigmaD1, THEN SigmaD1]
and evalb_2 [simp] = evalb.dom_subset [THEN subsetD, THEN SigmaD1, THEN SigmaD2]
and evalb_3 [simp] = evalb.dom_subset [THEN subsetD, THEN SigmaD2]

lemmas evalc_1 [simp] = evalc.dom_subset [THEN subsetD, THEN SigmaD1, THEN SigmaD1]
and evalc_2 [simp] = evalc.dom_subset [THEN subsetD, THEN SigmaD1, THEN SigmaD2]
and evalc_3 [simp] = evalc.dom_subset [THEN subsetD, THEN SigmaD2]

inductive_cases
evala_N_E [elim!]: "<N(n),sigma> -a-> i"

and evala_X_E [elim!]: "<X(x),sigma> -a-> i"
and evala_Op1_E [elim!]: "<Op1(f,e),sigma> -a-> i"
and evala_Op2_E [elim!]: "<Op2(f,a1,a2),sigma> -a-> i"

end

2 Denotational semantics of expressions and commands
theory Denotation imports Com begin

2.1 Definitions
consts

A :: "i ⇒ i ⇒ i"
B :: "i ⇒ i ⇒ i"
C :: "i ⇒ i"

definition
Gamma :: "[i,i,i] ⇒ i" (‹Γ›) where
"Γ(b,cden) ≡

(λphi. {io ∈ (phi O cden). B(b,fst(io))=1} ∪
{io ∈ id(loc->nat). B(b,fst(io))=0})"

primrec
"A(N(n), sigma) = n"
"A(X(x), sigma) = sigma‘x"
"A(Op1(f,a), sigma) = f‘A(a,sigma)"
"A(Op2(f,a0,a1), sigma) = f‘<A(a0,sigma),A(a1,sigma)>"

primrec

4

"B(true, sigma) = 1"
"B(false, sigma) = 0"
"B(ROp(f,a0,a1), sigma) = f‘<A(a0,sigma),A(a1,sigma)>"
"B(noti(b), sigma) = not(B(b,sigma))"
"B(b0 andi b1, sigma) = B(b0,sigma) and B(b1,sigma)"
"B(b0 ori b1, sigma) = B(b0,sigma) or B(b1,sigma)"

primrec
"C(skip) = id(loc->nat)"
"C(x := a) =

{io ∈ (loc->nat) × (loc->nat). snd(io) = fst(io)(x := A(a,fst(io)))}"
"C(c0; c1) = C(c1) O C(c0)"
"C(if b then c0 else c1) =

{io ∈ C(c0). B(b,fst(io)) = 1} ∪ {io ∈ C(c1). B(b,fst(io)) = 0}"
"C(while b do c) = lfp((loc->nat) × (loc->nat), Γ(b,C(c)))"

2.2 Misc lemmas
lemma A_type [TC]: " [[a ∈ aexp; sigma ∈ loc->nat]] =⇒ A(a,sigma) ∈ nat"

by (erule aexp.induct) simp_all

lemma B_type [TC]: " [[b ∈ bexp; sigma ∈ loc->nat]] =⇒ B(b,sigma) ∈ bool"
by (erule bexp.induct, simp_all)

lemma C_subset: "c ∈ com =⇒ C(c) ⊆ (loc->nat) × (loc->nat)"
apply (erule com.induct)

apply simp_all
apply (blast dest: lfp_subset [THEN subsetD])+

done

lemma C_type_D [dest]:
" [[〈x,y〉 ∈ C(c); c ∈ com]] =⇒ x ∈ loc->nat ∧ y ∈ loc->nat"

by (blast dest: C_subset [THEN subsetD])

lemma C_type_fst [dest]: " [[x ∈ C(c); c ∈ com]] =⇒ fst(x) ∈ loc->nat"
by (auto dest!: C_subset [THEN subsetD])

lemma Gamma_bnd_mono:
"cden ⊆ (loc->nat) × (loc->nat)

=⇒ bnd_mono ((loc->nat) × (loc->nat), Γ(b,cden))"
by (unfold bnd_mono_def Gamma_def) blast

end

3 Equivalence
theory Equiv imports Denotation Com begin

lemma aexp_iff [rule_format]:

5

" [[a ∈ aexp; sigma: loc -> nat]]
=⇒ ∀ n. 〈a,sigma〉 -a-> n ←→ A(a,sigma) = n"

apply (erule aexp.induct)
apply (force intro!: evala.intros)+

done

declare aexp_iff [THEN iffD1, simp]
aexp_iff [THEN iffD2, intro!]

inductive_cases [elim!]:
"〈true,sigma〉 -b-> x"
"〈false,sigma〉 -b-> x"
"<ROp(f,a0,a1),sigma> -b-> x"
"<noti(b),sigma> -b-> x"
"<b0 andi b1,sigma> -b-> x"
"<b0 ori b1,sigma> -b-> x"

lemma bexp_iff [rule_format]:
" [[b ∈ bexp; sigma: loc -> nat]]

=⇒ ∀ w. 〈b,sigma〉 -b-> w ←→ B(b,sigma) = w"
apply (erule bexp.induct)
apply (auto intro!: evalb.intros)
done

declare bexp_iff [THEN iffD1, simp]
bexp_iff [THEN iffD2, intro!]

lemma com1: "〈c,sigma〉 -c-> sigma’ =⇒ <sigma,sigma’> ∈ C(c)"
apply (erule evalc.induct)

apply (simp_all (no_asm_simp))

assign

apply (simp add: update_type)

comp

apply fast

while

apply (erule Gamma_bnd_mono [THEN lfp_unfold, THEN ssubst, OF C_subset])
apply (simp add: Gamma_def)

recursive case of while

apply (erule Gamma_bnd_mono [THEN lfp_unfold, THEN ssubst, OF C_subset])
apply (auto simp add: Gamma_def)
done

declare B_type [intro!] A_type [intro!]
declare evalc.intros [intro]

6

lemma com2 [rule_format]: "c ∈ com =⇒ ∀ x ∈ C(c). <c,fst(x)> -c-> snd(x)"
apply (erule com.induct)

skip

apply force

assign

apply force

comp

apply force

while

apply safe
apply simp_all
apply (frule Gamma_bnd_mono [OF C_subset], erule Fixedpt.induct, assumption)

unfolding Gamma_def
apply force

if

apply auto
done

3.1 Main theorem
theorem com_equivalence:

"c ∈ com =⇒ C(c) = {io ∈ (loc->nat) × (loc->nat). <c,fst(io)> -c-> snd(io)}"
by (force intro: C_subset [THEN subsetD] elim: com2 dest: com1)

end

References
[1] Glynn Winskel. The Formal Semantics of Programming Languages. 1993.

7

	Arithmetic expressions, boolean expressions, commands
	Arithmetic expressions
	Boolean expressions
	Commands
	Misc lemmas

	Denotational semantics of expressions and commands
	Definitions
	Misc lemmas

	Equivalence
	Main theorem

