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Abstract

Gödel’s proof of the relative consistency of the axiom of choice [1] is
one of the most important results in the foundations of mathematics.
It bears on Hilbert’s first problem, namely the continuum hypothesis,
and indeed Gödel also proved the relative consistency of the continuum
hypothesis. Just as important, Gödel’s proof introduced the inner
model method of proving relative consistency, and it introduced the
concept of constructible set. Kunen [2] gives an excellent description
of this body of work.

This Isabelle/ZF formalization demonstrates Gödel’s claim that his
proof can be undertaken without using metamathematical arguments,
for example arguments based on the general syntactic structure of a for-
mula. Isabelle’s automation replaces the metamathematics, although
it does not eliminate the requirement at least to state many tedious
results that would otherwise be unnecessary.

This formalization [4] is by far the deepest result in set theory
proved in any automated theorem prover. It rests on a previous formal
development of the reflection theorem [3].
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1 First-Order Formulas and the Definition of the
Class L

theory Formula imports ZF begin

1.1 Internalized formulas of FOL

De Bruijn representation. Unbound variables get their denotations from an
environment.
consts formula :: i
datatype

"formula" = Member ("x ∈ nat", "y ∈ nat")
| Equal ("x ∈ nat", "y ∈ nat")
| Nand ("p ∈ formula", "q ∈ formula")
| Forall ("p ∈ formula")

declare formula.intros [TC]

definition
Neg :: "i⇒i" where
"Neg(p) ≡ Nand(p,p)"

definition
And :: "[i,i]⇒i" where
"And(p,q) ≡ Neg(Nand(p,q))"

definition
Or :: "[i,i]⇒i" where
"Or(p,q) ≡ Nand(Neg(p),Neg(q))"

definition
Implies :: "[i,i]⇒i" where
"Implies(p,q) ≡ Nand(p,Neg(q))"

definition
Iff :: "[i,i]⇒i" where
"Iff(p,q) ≡ And(Implies(p,q), Implies(q,p))"

definition
Exists :: "i⇒i" where
"Exists(p) ≡ Neg(Forall(Neg(p)))"

lemma Neg_type [TC]: "p ∈ formula =⇒ Neg(p) ∈ formula"
〈proof 〉

lemma And_type [TC]: " [[p ∈ formula; q ∈ formula ]] =⇒ And(p,q) ∈ formula"
〈proof 〉
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lemma Or_type [TC]: " [[p ∈ formula; q ∈ formula ]] =⇒ Or(p,q) ∈ formula"
〈proof 〉

lemma Implies_type [TC]:
" [[p ∈ formula; q ∈ formula ]] =⇒ Implies(p,q) ∈ formula"

〈proof 〉

lemma Iff_type [TC]:
" [[p ∈ formula; q ∈ formula ]] =⇒ Iff(p,q) ∈ formula"

〈proof 〉

lemma Exists_type [TC]: "p ∈ formula =⇒ Exists(p) ∈ formula"
〈proof 〉

consts satisfies :: "[i,i]⇒i"
primrec

"satisfies(A,Member(x,y)) =
(λenv ∈ list(A). bool_of_o (nth(x,env) ∈ nth(y,env)))"

"satisfies(A,Equal(x,y)) =
(λenv ∈ list(A). bool_of_o (nth(x,env) = nth(y,env)))"

"satisfies(A,Nand(p,q)) =
(λenv ∈ list(A). not ((satisfies(A,p)‘env) and (satisfies(A,q)‘env)))"

"satisfies(A,Forall(p)) =
(λenv ∈ list(A). bool_of_o (∀ x∈A. satisfies(A,p) ‘ (Cons(x,env))

= 1))"

lemma satisfies_type: "p ∈ formula =⇒ satisfies(A,p) ∈ list(A) -> bool"
〈proof 〉

abbreviation
sats :: "[i,i,i] ⇒ o" where
"sats(A,p,env) ≡ satisfies(A,p)‘env = 1"

lemma sats_Member_iff [simp]:
"env ∈ list(A) =⇒ sats(A, Member(x,y), env) ←→ nth(x,env) ∈ nth(y,env)"

〈proof 〉

lemma sats_Equal_iff [simp]:
"env ∈ list(A) =⇒ sats(A, Equal(x,y), env) ←→ nth(x,env) = nth(y,env)"

〈proof 〉

lemma sats_Nand_iff [simp]:
"env ∈ list(A)
=⇒ (sats(A, Nand(p,q), env)) ←→ ¬ (sats(A,p,env) ∧ sats(A,q,env))"
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〈proof 〉

lemma sats_Forall_iff [simp]:
"env ∈ list(A)
=⇒ sats(A, Forall(p), env) ←→ (∀ x∈A. sats(A, p, Cons(x,env)))"

〈proof 〉

declare satisfies.simps [simp del]

1.2 Dividing line between primitive and derived connectives
lemma sats_Neg_iff [simp]:

"env ∈ list(A)
=⇒ sats(A, Neg(p), env) ←→ ¬ sats(A,p,env)"

〈proof 〉

lemma sats_And_iff [simp]:
"env ∈ list(A)
=⇒ (sats(A, And(p,q), env)) ←→ sats(A,p,env) ∧ sats(A,q,env)"

〈proof 〉

lemma sats_Or_iff [simp]:
"env ∈ list(A)
=⇒ (sats(A, Or(p,q), env)) ←→ sats(A,p,env) | sats(A,q,env)"

〈proof 〉

lemma sats_Implies_iff [simp]:
"env ∈ list(A)
=⇒ (sats(A, Implies(p,q), env)) ←→ (sats(A,p,env) −→ sats(A,q,env))"

〈proof 〉

lemma sats_Iff_iff [simp]:
"env ∈ list(A)
=⇒ (sats(A, Iff(p,q), env)) ←→ (sats(A,p,env) ←→ sats(A,q,env))"

〈proof 〉

lemma sats_Exists_iff [simp]:
"env ∈ list(A)
=⇒ sats(A, Exists(p), env) ←→ (∃ x∈A. sats(A, p, Cons(x,env)))"

〈proof 〉

1.2.1 Derived rules to help build up formulas
lemma mem_iff_sats:

" [[nth(i,env) = x; nth(j,env) = y; env ∈ list(A)]]
=⇒ (x∈y) ←→ sats(A, Member(i,j), env)"

〈proof 〉

lemma equal_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; env ∈ list(A)]]
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=⇒ (x=y) ←→ sats(A, Equal(i,j), env)"
〈proof 〉

lemma not_iff_sats:
" [[P ←→ sats(A,p,env); env ∈ list(A)]]
=⇒ (¬P) ←→ sats(A, Neg(p), env)"

〈proof 〉

lemma conj_iff_sats:
" [[P ←→ sats(A,p,env); Q ←→ sats(A,q,env); env ∈ list(A)]]
=⇒ (P ∧ Q) ←→ sats(A, And(p,q), env)"

〈proof 〉

lemma disj_iff_sats:
" [[P ←→ sats(A,p,env); Q ←→ sats(A,q,env); env ∈ list(A)]]
=⇒ (P | Q) ←→ sats(A, Or(p,q), env)"

〈proof 〉

lemma iff_iff_sats:
" [[P ←→ sats(A,p,env); Q ←→ sats(A,q,env); env ∈ list(A)]]
=⇒ (P ←→ Q) ←→ sats(A, Iff(p,q), env)"

〈proof 〉

lemma imp_iff_sats:
" [[P ←→ sats(A,p,env); Q ←→ sats(A,q,env); env ∈ list(A)]]
=⇒ (P −→ Q) ←→ sats(A, Implies(p,q), env)"

〈proof 〉

lemma ball_iff_sats:
" [[

∧
x. x∈A =⇒ P(x) ←→ sats(A, p, Cons(x, env)); env ∈ list(A)]]

=⇒ (∀ x∈A. P(x)) ←→ sats(A, Forall(p), env)"
〈proof 〉

lemma bex_iff_sats:
" [[

∧
x. x∈A =⇒ P(x) ←→ sats(A, p, Cons(x, env)); env ∈ list(A)]]

=⇒ (∃ x∈A. P(x)) ←→ sats(A, Exists(p), env)"
〈proof 〉

lemmas FOL_iff_sats =
mem_iff_sats equal_iff_sats not_iff_sats conj_iff_sats
disj_iff_sats imp_iff_sats iff_iff_sats imp_iff_sats ball_iff_sats
bex_iff_sats

1.3 Arity of a Formula: Maximum Free de Bruijn Index
consts arity :: "i⇒i"
primrec

"arity(Member(x,y)) = succ(x) ∪ succ(y)"
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"arity(Equal(x,y)) = succ(x) ∪ succ(y)"

"arity(Nand(p,q)) = arity(p) ∪ arity(q)"

"arity(Forall(p)) = Arith.pred(arity(p))"

lemma arity_type [TC]: "p ∈ formula =⇒ arity(p) ∈ nat"
〈proof 〉

lemma arity_Neg [simp]: "arity(Neg(p)) = arity(p)"
〈proof 〉

lemma arity_And [simp]: "arity(And(p,q)) = arity(p) ∪ arity(q)"
〈proof 〉

lemma arity_Or [simp]: "arity(Or(p,q)) = arity(p) ∪ arity(q)"
〈proof 〉

lemma arity_Implies [simp]: "arity(Implies(p,q)) = arity(p) ∪ arity(q)"
〈proof 〉

lemma arity_Iff [simp]: "arity(Iff(p,q)) = arity(p) ∪ arity(q)"
〈proof 〉

lemma arity_Exists [simp]: "arity(Exists(p)) = Arith.pred(arity(p))"
〈proof 〉

lemma arity_sats_iff [rule_format]:
" [[p ∈ formula; extra ∈ list(A)]]
=⇒ ∀ env ∈ list(A).

arity(p) ≤ length(env) −→
sats(A, p, env @ extra) ←→ sats(A, p, env)"

〈proof 〉

lemma arity_sats1_iff:
" [[arity(p) ≤ succ(length(env)); p ∈ formula; x ∈ A; env ∈ list(A);

extra ∈ list(A)]]
=⇒ sats(A, p, Cons(x, env @ extra)) ←→ sats(A, p, Cons(x, env))"

〈proof 〉

1.4 Renaming Some de Bruijn Variables
definition

incr_var :: "[i,i]⇒i" where
"incr_var(x,nq) ≡ if x<nq then x else succ(x)"

lemma incr_var_lt: "x<nq =⇒ incr_var(x,nq) = x"
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〈proof 〉

lemma incr_var_le: "nq≤x =⇒ incr_var(x,nq) = succ(x)"
〈proof 〉

consts incr_bv :: "i⇒i"
primrec

"incr_bv(Member(x,y)) =
(λnq ∈ nat. Member (incr_var(x,nq), incr_var(y,nq)))"

"incr_bv(Equal(x,y)) =
(λnq ∈ nat. Equal (incr_var(x,nq), incr_var(y,nq)))"

"incr_bv(Nand(p,q)) =
(λnq ∈ nat. Nand (incr_bv(p)‘nq, incr_bv(q)‘nq))"

"incr_bv(Forall(p)) =
(λnq ∈ nat. Forall (incr_bv(p) ‘ succ(nq)))"

lemma [TC]: "x ∈ nat =⇒ incr_var(x,nq) ∈ nat"
〈proof 〉

lemma incr_bv_type [TC]: "p ∈ formula =⇒ incr_bv(p) ∈ nat -> formula"
〈proof 〉

Obviously, DPow is closed under complements and finite intersections and
unions. Needs an inductive lemma to allow two lists of parameters to be
combined.
lemma sats_incr_bv_iff [rule_format]:

" [[p ∈ formula; env ∈ list(A); x ∈ A ]]
=⇒ ∀ bvs ∈ list(A).

sats(A, incr_bv(p) ‘ length(bvs), bvs @ Cons(x,env)) ←→
sats(A, p, bvs@env)"

〈proof 〉

lemma incr_var_lemma:
" [[x ∈ nat; y ∈ nat; nq ≤ x ]]
=⇒ succ(x) ∪ incr_var(y,nq) = succ(x ∪ y)"

〈proof 〉

lemma incr_And_lemma:
"y < x =⇒ y ∪ succ(x) = succ(x ∪ y)"

〈proof 〉

lemma arity_incr_bv_lemma [rule_format]:
"p ∈ formula
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=⇒ ∀ n ∈ nat. arity (incr_bv(p) ‘ n) =
(if n < arity(p) then succ(arity(p)) else arity(p))"

〈proof 〉

1.5 Renaming all but the First de Bruijn Variable
definition

incr_bv1 :: "i ⇒ i" where
"incr_bv1(p) ≡ incr_bv(p)‘1"

lemma incr_bv1_type [TC]: "p ∈ formula =⇒ incr_bv1(p) ∈ formula"
〈proof 〉

lemma sats_incr_bv1_iff:
" [[p ∈ formula; env ∈ list(A); x ∈ A; y ∈ A ]]
=⇒ sats(A, incr_bv1(p), Cons(x, Cons(y, env))) ←→

sats(A, p, Cons(x,env))"
〈proof 〉

lemma formula_add_params1 [rule_format]:
" [[p ∈ formula; n ∈ nat; x ∈ A ]]
=⇒ ∀ bvs ∈ list(A). ∀ env ∈ list(A).

length(bvs) = n −→
sats(A, iterates(incr_bv1, n, p), Cons(x, bvs@env)) ←→
sats(A, p, Cons(x,env))"

〈proof 〉

lemma arity_incr_bv1_eq:
"p ∈ formula
=⇒ arity(incr_bv1(p)) =

(if 1 < arity(p) then succ(arity(p)) else arity(p))"
〈proof 〉

lemma arity_iterates_incr_bv1_eq:
" [[p ∈ formula; n ∈ nat ]]
=⇒ arity(incr_bv1^n(p)) =

(if 1 < arity(p) then n #+ arity(p) else arity(p))"
〈proof 〉

1.6 Definable Powerset

The definable powerset operation: Kunen’s definition VI 1.1, page 165.
definition

DPow :: "i ⇒ i" where
"DPow(A) ≡ {X ∈ Pow(A).

∃ env ∈ list(A). ∃ p ∈ formula.
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arity(p) ≤ succ(length(env)) ∧
X = {x∈A. sats(A, p, Cons(x,env))}}"

lemma DPowI:
" [[env ∈ list(A); p ∈ formula; arity(p) ≤ succ(length(env))]]
=⇒ {x∈A. sats(A, p, Cons(x,env))} ∈ DPow(A)"

〈proof 〉

With this rule we can specify p later.
lemma DPowI2 [rule_format]:

" [[∀ x∈A. P(x) ←→ sats(A, p, Cons(x,env));
env ∈ list(A); p ∈ formula; arity(p) ≤ succ(length(env))]]

=⇒ {x∈A. P(x)} ∈ DPow(A)"
〈proof 〉

lemma DPowD:
"X ∈ DPow(A)
=⇒ X ⊆ A ∧

(∃ env ∈ list(A).
∃ p ∈ formula. arity(p) ≤ succ(length(env)) ∧

X = {x∈A. sats(A, p, Cons(x,env))})"
〈proof 〉

lemmas DPow_imp_subset = DPowD [THEN conjunct1]

lemma " [[p ∈ formula; env ∈ list(A); arity(p) ≤ succ(length(env))]]
=⇒ {x∈A. sats(A, p, Cons(x,env))} ∈ DPow(A)"

〈proof 〉

lemma DPow_subset_Pow: "DPow(A) ⊆ Pow(A)"
〈proof 〉

lemma empty_in_DPow: "0 ∈ DPow(A)"
〈proof 〉

lemma Compl_in_DPow: "X ∈ DPow(A) =⇒ (A-X) ∈ DPow(A)"
〈proof 〉

lemma Int_in_DPow: " [[X ∈ DPow(A); Y ∈ DPow(A)]] =⇒ X ∩ Y ∈ DPow(A)"
〈proof 〉

lemma Un_in_DPow: " [[X ∈ DPow(A); Y ∈ DPow(A)]] =⇒ X ∪ Y ∈ DPow(A)"
〈proof 〉

lemma singleton_in_DPow: "a ∈ A =⇒ {a} ∈ DPow(A)"
〈proof 〉

lemma cons_in_DPow: " [[a ∈ A; X ∈ DPow(A)]] =⇒ cons(a,X) ∈ DPow(A)"
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〈proof 〉

lemma Fin_into_DPow: "X ∈ Fin(A) =⇒ X ∈ DPow(A)"
〈proof 〉

DPow is not monotonic. For example, let A be some non-constructible set of
natural numbers, and let B be nat. Then A ⊆ B and obviously A ∈ DPow(A)
but A /∈ DPow(B).
lemma Finite_Pow_subset_Pow: "Finite(A) =⇒ Pow(A) ⊆ DPow(A)"
〈proof 〉

lemma Finite_DPow_eq_Pow: "Finite(A) =⇒ DPow(A) = Pow(A)"
〈proof 〉

1.7 Internalized Formulas for the Ordinals

The sats theorems below differ from the usual form in that they include
an element of absoluteness. That is, they relate internalized formulas to
real concepts such as the subset relation, rather than to the relativized
concepts defined in theory Relative. This lets us prove the theorem as
Ords_in_DPow without first having to instantiate the locale M_trivial. Note
that the present theory does not even take Relative as a parent.

1.7.1 The subset relation
definition

subset_fm :: "[i,i]⇒i" where
"subset_fm(x,y) ≡ Forall(Implies(Member(0,succ(x)), Member(0,succ(y))))"

lemma subset_type [TC]: " [[x ∈ nat; y ∈ nat ]] =⇒ subset_fm(x,y) ∈ formula"
〈proof 〉

lemma arity_subset_fm [simp]:
" [[x ∈ nat; y ∈ nat ]] =⇒ arity(subset_fm(x,y)) = succ(x) ∪ succ(y)"

〈proof 〉

lemma sats_subset_fm [simp]:
" [[x < length(env); y ∈ nat; env ∈ list(A); Transset(A)]]
=⇒ sats(A, subset_fm(x,y), env) ←→ nth(x,env) ⊆ nth(y,env)"

〈proof 〉

1.7.2 Transitive sets
definition

transset_fm :: "i⇒i" where
"transset_fm(x) ≡ Forall(Implies(Member(0,succ(x)), subset_fm(0,succ(x))))"
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lemma transset_type [TC]: "x ∈ nat =⇒ transset_fm(x) ∈ formula"
〈proof 〉

lemma arity_transset_fm [simp]:
"x ∈ nat =⇒ arity(transset_fm(x)) = succ(x)"

〈proof 〉

lemma sats_transset_fm [simp]:
" [[x < length(env); env ∈ list(A); Transset(A)]]
=⇒ sats(A, transset_fm(x), env) ←→ Transset(nth(x,env))"

〈proof 〉

1.7.3 Ordinals
definition

ordinal_fm :: "i⇒i" where
"ordinal_fm(x) ≡

And(transset_fm(x), Forall(Implies(Member(0,succ(x)), transset_fm(0))))"

lemma ordinal_type [TC]: "x ∈ nat =⇒ ordinal_fm(x) ∈ formula"
〈proof 〉

lemma arity_ordinal_fm [simp]:
"x ∈ nat =⇒ arity(ordinal_fm(x)) = succ(x)"

〈proof 〉

lemma sats_ordinal_fm:
" [[x < length(env); env ∈ list(A); Transset(A)]]
=⇒ sats(A, ordinal_fm(x), env) ←→ Ord(nth(x,env))"

〈proof 〉

The subset consisting of the ordinals is definable. Essential lemma for
Ord_in_Lset. This result is the objective of the present subsection.
theorem Ords_in_DPow: "Transset(A) =⇒ {x ∈ A. Ord(x)} ∈ DPow(A)"
〈proof 〉

1.8 Constant Lset: Levels of the Constructible Universe
definition

Lset :: "i⇒i" where
"Lset(i) ≡ transrec(i, λx f.

⋃
y∈x. DPow(f‘y))"

definition
L :: "i⇒o" where — Kunen’s definition VI 1.5, page 167
"L(x) ≡ ∃ i. Ord(i) ∧ x ∈ Lset(i)"

NOT SUITABLE FOR REWRITING – RECURSIVE!
lemma Lset: "Lset(i) = (

⋃
j∈i. DPow(Lset(j)))"

〈proof 〉
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lemma LsetI: " [[y∈x; A ∈ DPow(Lset(y))]] =⇒ A ∈ Lset(x)"
〈proof 〉

lemma LsetD: "A ∈ Lset(x) =⇒ ∃ y∈x. A ∈ DPow(Lset(y))"
〈proof 〉

1.8.1 Transitivity
lemma elem_subset_in_DPow: " [[X ∈ A; X ⊆ A ]] =⇒ X ∈ DPow(A)"
〈proof 〉

lemma Transset_subset_DPow: "Transset(A) =⇒ A ⊆ DPow(A)"
〈proof 〉

lemma Transset_DPow: "Transset(A) =⇒ Transset(DPow(A))"
〈proof 〉

Kunen’s VI 1.6 (a)
lemma Transset_Lset: "Transset(Lset(i))"
〈proof 〉

lemma mem_Lset_imp_subset_Lset: "a ∈ Lset(i) =⇒ a ⊆ Lset(i)"
〈proof 〉

1.8.2 Monotonicity

Kunen’s VI 1.6 (b)
lemma Lset_mono [rule_format]:

"∀ j. i<=j −→ Lset(i) ⊆ Lset(j)"
〈proof 〉

This version lets us remove the premise Ord(i) sometimes.
lemma Lset_mono_mem [rule_format]:

"∀ j. i ∈ j −→ Lset(i) ⊆ Lset(j)"
〈proof 〉

Useful with Reflection to bump up the ordinal
lemma subset_Lset_ltD: " [[A ⊆ Lset(i); i < j ]] =⇒ A ⊆ Lset(j)"
〈proof 〉

1.8.3 0, successor and limit equations for Lset
lemma Lset_0 [simp]: "Lset(0) = 0"
〈proof 〉

lemma Lset_succ_subset1: "DPow(Lset(i)) ⊆ Lset(succ(i))"
〈proof 〉
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lemma Lset_succ_subset2: "Lset(succ(i)) ⊆ DPow(Lset(i))"
〈proof 〉

lemma Lset_succ: "Lset(succ(i)) = DPow(Lset(i))"
〈proof 〉

lemma Lset_Union [simp]: "Lset(
⋃

(X)) = (
⋃

y∈X. Lset(y))"
〈proof 〉

1.8.4 Lset applied to Limit ordinals
lemma Limit_Lset_eq:

"Limit(i) =⇒ Lset(i) = (
⋃

y∈i. Lset(y))"
〈proof 〉

lemma lt_LsetI: " [[a ∈ Lset(j); j<i ]] =⇒ a ∈ Lset(i)"
〈proof 〉

lemma Limit_LsetE:
" [[a ∈ Lset(i); ¬R =⇒ Limit(i);∧

x. [[x<i; a ∈ Lset(x)]] =⇒ R
]] =⇒ R"
〈proof 〉

1.8.5 Basic closure properties
lemma zero_in_Lset: "y ∈ x =⇒ 0 ∈ Lset(x)"
〈proof 〉

lemma notin_Lset: "x /∈ Lset(x)"
〈proof 〉

1.9 Constructible Ordinals: Kunen’s VI 1.9 (b)
lemma Ords_of_Lset_eq: "Ord(i) =⇒ {x∈Lset(i). Ord(x)} = i"
〈proof 〉

lemma Ord_subset_Lset: "Ord(i) =⇒ i ⊆ Lset(i)"
〈proof 〉

lemma Ord_in_Lset: "Ord(i) =⇒ i ∈ Lset(succ(i))"
〈proof 〉

lemma Ord_in_L: "Ord(i) =⇒ L(i)"
〈proof 〉
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1.9.1 Unions
lemma Union_in_Lset:

"X ∈ Lset(i) =⇒
⋃

(X) ∈ Lset(succ(i))"
〈proof 〉

theorem Union_in_L: "L(X) =⇒ L(
⋃

(X))"
〈proof 〉

1.9.2 Finite sets and ordered pairs
lemma singleton_in_Lset: "a ∈ Lset(i) =⇒ {a} ∈ Lset(succ(i))"
〈proof 〉

lemma doubleton_in_Lset:
" [[a ∈ Lset(i); b ∈ Lset(i)]] =⇒ {a,b} ∈ Lset(succ(i))"

〈proof 〉

lemma Pair_in_Lset:
" [[a ∈ Lset(i); b ∈ Lset(i); Ord(i)]] =⇒ 〈a,b〉 ∈ Lset(succ(succ(i)))"

〈proof 〉

lemmas Lset_UnI1 = Un_upper1 [THEN Lset_mono [THEN subsetD]]
lemmas Lset_UnI2 = Un_upper2 [THEN Lset_mono [THEN subsetD]]

Hard work is finding a single j ∈ i such that {a, b} ⊆ Lset(j)

lemma doubleton_in_LLimit:
" [[a ∈ Lset(i); b ∈ Lset(i); Limit(i)]] =⇒ {a,b} ∈ Lset(i)"

〈proof 〉

theorem doubleton_in_L: " [[L(a); L(b)]] =⇒ L({a, b})"
〈proof 〉

lemma Pair_in_LLimit:
" [[a ∈ Lset(i); b ∈ Lset(i); Limit(i)]] =⇒ 〈a,b〉 ∈ Lset(i)"

Infer that a, b occur at ordinals x,xa < i.

〈proof 〉
The rank function for the constructible universe
definition

lrank :: "i⇒i" where — Kunen’s definition VI 1.7
"lrank(x) ≡ µ i. x ∈ Lset(succ(i))"

lemma L_I: " [[x ∈ Lset(i); Ord(i)]] =⇒ L(x)"
〈proof 〉

lemma L_D: "L(x) =⇒ ∃ i. Ord(i) ∧ x ∈ Lset(i)"
〈proof 〉
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lemma Ord_lrank [simp]: "Ord(lrank(a))"
〈proof 〉

lemma Lset_lrank_lt [rule_format]: "Ord(i) =⇒ x ∈ Lset(i) −→ lrank(x)
< i"
〈proof 〉

Kunen’s VI 1.8. The proof is much harder than the text would suggest. For
a start, it needs the previous lemma, which is proved by induction.
lemma Lset_iff_lrank_lt: "Ord(i) =⇒ x ∈ Lset(i) ←→ L(x) ∧ lrank(x)
< i"
〈proof 〉

lemma Lset_succ_lrank_iff [simp]: "x ∈ Lset(succ(lrank(x))) ←→ L(x)"
〈proof 〉

Kunen’s VI 1.9 (a)
lemma lrank_of_Ord: "Ord(i) =⇒ lrank(i) = i"
〈proof 〉

This is lrank(lrank(a)) = lrank(a)
declare Ord_lrank [THEN lrank_of_Ord, simp]

Kunen’s VI 1.10
lemma Lset_in_Lset_succ: "Lset(i) ∈ Lset(succ(i))"
〈proof 〉

lemma lrank_Lset: "Ord(i) =⇒ lrank(Lset(i)) = i"
〈proof 〉

Kunen’s VI 1.11
lemma Lset_subset_Vset: "Ord(i) =⇒ Lset(i) ⊆ Vset(i)"
〈proof 〉

Kunen’s VI 1.12
lemma Lset_subset_Vset’: "i ∈ nat =⇒ Lset(i) = Vset(i)"
〈proof 〉

Every set of constructible sets is included in some Lset

lemma subset_Lset:
"(∀ x∈A. L(x)) =⇒ ∃ i. Ord(i) ∧ A ⊆ Lset(i)"

〈proof 〉

lemma subset_LsetE:
" [[∀ x∈A. L(x);∧

i. [[Ord(i); A ⊆ Lset(i)]] =⇒ P ]]
=⇒ P"

〈proof 〉
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1.9.3 For L to satisfy the Powerset axiom
lemma LPow_env_typing:

" [[y ∈ Lset(i); Ord(i); y ⊆ X ]]
=⇒ ∃ z ∈ Pow(X). y ∈ Lset(succ(lrank(z)))"

〈proof 〉

lemma LPow_in_Lset:
" [[X ∈ Lset(i); Ord(i)]] =⇒ ∃ j. Ord(j) ∧ {y ∈ Pow(X). L(y)} ∈ Lset(j)"

〈proof 〉

theorem LPow_in_L: "L(X) =⇒ L({y ∈ Pow(X). L(y)})"
〈proof 〉

1.10 Eliminating arity from the Definition of Lset

lemma nth_zero_eq_0: "n ∈ nat =⇒ nth(n,[0]) = 0"
〈proof 〉

lemma sats_app_0_iff [rule_format]:
" [[p ∈ formula; 0 ∈ A ]]
=⇒ ∀ env ∈ list(A). sats(A,p, env@[0]) ←→ sats(A,p,env)"

〈proof 〉

lemma sats_app_zeroes_iff:
" [[p ∈ formula; 0 ∈ A; env ∈ list(A); n ∈ nat ]]
=⇒ sats(A,p,env @ repeat(0,n)) ←→ sats(A,p,env)"

〈proof 〉

lemma exists_bigger_env:
" [[p ∈ formula; 0 ∈ A; env ∈ list(A)]]
=⇒ ∃ env’ ∈ list(A). arity(p) ≤ succ(length(env’)) ∧

(∀ a∈A. sats(A,p,Cons(a,env’)) ←→ sats(A,p,Cons(a,env)))"
〈proof 〉

A simpler version of DPow : no arity check!
definition

DPow’ :: "i ⇒ i" where
"DPow’(A) ≡ {X ∈ Pow(A).

∃ env ∈ list(A). ∃ p ∈ formula.
X = {x∈A. sats(A, p, Cons(x,env))}}"

lemma DPow_subset_DPow’: "DPow(A) ⊆ DPow’(A)"
〈proof 〉

lemma DPow’_0: "DPow’(0) = {0}"
〈proof 〉

lemma DPow’_subset_DPow: "0 ∈ A =⇒ DPow’(A) ⊆ DPow(A)"
〈proof 〉
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lemma DPow_eq_DPow’: "Transset(A) =⇒ DPow(A) = DPow’(A)"
〈proof 〉

And thus we can relativize Lset without bothering with arity and length

lemma Lset_eq_transrec_DPow’: "Lset(i) = transrec(i, λx f.
⋃

y∈x. DPow’(f‘y))"
〈proof 〉

With this rule we can specify p later and don’t worry about arities at all!
lemma DPow_LsetI [rule_format]:

" [[∀ x∈Lset(i). P(x) ←→ sats(Lset(i), p, Cons(x,env));
env ∈ list(Lset(i)); p ∈ formula ]]

=⇒ {x∈Lset(i). P(x)} ∈ DPow(Lset(i))"
〈proof 〉

end

2 Relativization and Absoluteness
theory Relative imports ZF begin

2.1 Relativized versions of standard set-theoretic concepts
definition

empty :: "[i⇒o,i] ⇒ o" where
"empty(M,z) ≡ ∀ x[M]. x /∈ z"

definition
subset :: "[i⇒o,i,i] ⇒ o" where

"subset(M,A,B) ≡ ∀ x[M]. x∈A −→ x ∈ B"

definition
upair :: "[i⇒o,i,i,i] ⇒ o" where

"upair(M,a,b,z) ≡ a ∈ z ∧ b ∈ z ∧ (∀ x[M]. x∈z −→ x = a ∨ x =
b)"

definition
pair :: "[i⇒o,i,i,i] ⇒ o" where

"pair(M,a,b,z) ≡ ∃ x[M]. upair(M,a,a,x) ∧
(∃ y[M]. upair(M,a,b,y) ∧ upair(M,x,y,z))"

definition
union :: "[i⇒o,i,i,i] ⇒ o" where

"union(M,a,b,z) ≡ ∀ x[M]. x ∈ z ←→ x ∈ a ∨ x ∈ b"

definition
is_cons :: "[i⇒o,i,i,i] ⇒ o" where
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"is_cons(M,a,b,z) ≡ ∃ x[M]. upair(M,a,a,x) ∧ union(M,x,b,z)"

definition
successor :: "[i⇒o,i,i] ⇒ o" where

"successor(M,a,z) ≡ is_cons(M,a,a,z)"

definition
number1 :: "[i⇒o,i] ⇒ o" where

"number1(M,a) ≡ ∃ x[M]. empty(M,x) ∧ successor(M,x,a)"

definition
number2 :: "[i⇒o,i] ⇒ o" where

"number2(M,a) ≡ ∃ x[M]. number1(M,x) ∧ successor(M,x,a)"

definition
number3 :: "[i⇒o,i] ⇒ o" where

"number3(M,a) ≡ ∃ x[M]. number2(M,x) ∧ successor(M,x,a)"

definition
powerset :: "[i⇒o,i,i] ⇒ o" where

"powerset(M,A,z) ≡ ∀ x[M]. x ∈ z ←→ subset(M,x,A)"

definition
is_Collect :: "[i⇒o,i,i⇒o,i] ⇒ o" where

"is_Collect(M,A,P,z) ≡ ∀ x[M]. x ∈ z ←→ x ∈ A ∧ P(x)"

definition
is_Replace :: "[i⇒o,i,[i,i]⇒o,i] ⇒ o" where

"is_Replace(M,A,P,z) ≡ ∀ u[M]. u ∈ z ←→ (∃ x[M]. x∈A ∧ P(x,u))"

definition
inter :: "[i⇒o,i,i,i] ⇒ o" where

"inter(M,a,b,z) ≡ ∀ x[M]. x ∈ z ←→ x ∈ a ∧ x ∈ b"

definition
setdiff :: "[i⇒o,i,i,i] ⇒ o" where

"setdiff(M,a,b,z) ≡ ∀ x[M]. x ∈ z ←→ x ∈ a ∧ x /∈ b"

definition
big_union :: "[i⇒o,i,i] ⇒ o" where

"big_union(M,A,z) ≡ ∀ x[M]. x ∈ z ←→ (∃ y[M]. y∈A ∧ x ∈ y)"

definition
big_inter :: "[i⇒o,i,i] ⇒ o" where

"big_inter(M,A,z) ≡
(A=0 −→ z=0) ∧
(A 6=0 −→ (∀ x[M]. x ∈ z ←→ (∀ y[M]. y∈A −→ x ∈ y)))"

definition
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cartprod :: "[i⇒o,i,i,i] ⇒ o" where
"cartprod(M,A,B,z) ≡

∀ u[M]. u ∈ z ←→ (∃ x[M]. x∈A ∧ (∃ y[M]. y∈B ∧ pair(M,x,y,u)))"

definition
is_sum :: "[i⇒o,i,i,i] ⇒ o" where

"is_sum(M,A,B,Z) ≡
∃ A0[M]. ∃ n1[M]. ∃ s1[M]. ∃ B1[M].
number1(M,n1) ∧ cartprod(M,n1,A,A0) ∧ upair(M,n1,n1,s1) ∧
cartprod(M,s1,B,B1) ∧ union(M,A0,B1,Z)"

definition
is_Inl :: "[i⇒o,i,i] ⇒ o" where

"is_Inl(M,a,z) ≡ ∃ zero[M]. empty(M,zero) ∧ pair(M,zero,a,z)"

definition
is_Inr :: "[i⇒o,i,i] ⇒ o" where

"is_Inr(M,a,z) ≡ ∃ n1[M]. number1(M,n1) ∧ pair(M,n1,a,z)"

definition
is_converse :: "[i⇒o,i,i] ⇒ o" where

"is_converse(M,r,z) ≡
∀ x[M]. x ∈ z ←→

(∃ w[M]. w∈r ∧ (∃ u[M]. ∃ v[M]. pair(M,u,v,w) ∧ pair(M,v,u,x)))"

definition
pre_image :: "[i⇒o,i,i,i] ⇒ o" where

"pre_image(M,r,A,z) ≡
∀ x[M]. x ∈ z ←→ (∃ w[M]. w∈r ∧ (∃ y[M]. y∈A ∧ pair(M,x,y,w)))"

definition
is_domain :: "[i⇒o,i,i] ⇒ o" where

"is_domain(M,r,z) ≡
∀ x[M]. x ∈ z ←→ (∃ w[M]. w∈r ∧ (∃ y[M]. pair(M,x,y,w)))"

definition
image :: "[i⇒o,i,i,i] ⇒ o" where

"image(M,r,A,z) ≡
∀ y[M]. y ∈ z ←→ (∃ w[M]. w∈r ∧ (∃ x[M]. x∈A ∧ pair(M,x,y,w)))"

definition
is_range :: "[i⇒o,i,i] ⇒ o" where

— the cleaner ∃ r’[M]. is_converse(M, r, r’) ∧ is_domain(M, r’, z)
unfortunately needs an instance of separation in order to prove M(converse(r)).

"is_range(M,r,z) ≡
∀ y[M]. y ∈ z ←→ (∃ w[M]. w∈r ∧ (∃ x[M]. pair(M,x,y,w)))"

definition
is_field :: "[i⇒o,i,i] ⇒ o" where
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"is_field(M,r,z) ≡
∃ dr[M]. ∃ rr[M]. is_domain(M,r,dr) ∧ is_range(M,r,rr) ∧

union(M,dr,rr,z)"

definition
is_relation :: "[i⇒o,i] ⇒ o" where

"is_relation(M,r) ≡
(∀ z[M]. z∈r −→ (∃ x[M]. ∃ y[M]. pair(M,x,y,z)))"

definition
is_function :: "[i⇒o,i] ⇒ o" where

"is_function(M,r) ≡
∀ x[M]. ∀ y[M]. ∀ y’[M]. ∀ p[M]. ∀ p’[M].

pair(M,x,y,p) −→ pair(M,x,y’,p’) −→ p∈r −→ p’∈r −→ y=y’"

definition
fun_apply :: "[i⇒o,i,i,i] ⇒ o" where

"fun_apply(M,f,x,y) ≡
(∃ xs[M]. ∃ fxs[M].
upair(M,x,x,xs) ∧ image(M,f,xs,fxs) ∧ big_union(M,fxs,y))"

definition
typed_function :: "[i⇒o,i,i,i] ⇒ o" where

"typed_function(M,A,B,r) ≡
is_function(M,r) ∧ is_relation(M,r) ∧ is_domain(M,r,A) ∧
(∀ u[M]. u∈r −→ (∀ x[M]. ∀ y[M]. pair(M,x,y,u) −→ y∈B))"

definition
is_funspace :: "[i⇒o,i,i,i] ⇒ o" where

"is_funspace(M,A,B,F) ≡
∀ f[M]. f ∈ F ←→ typed_function(M,A,B,f)"

definition
composition :: "[i⇒o,i,i,i] ⇒ o" where

"composition(M,r,s,t) ≡
∀ p[M]. p ∈ t ←→

(∃ x[M]. ∃ y[M]. ∃ z[M]. ∃ xy[M]. ∃ yz[M].
pair(M,x,z,p) ∧ pair(M,x,y,xy) ∧ pair(M,y,z,yz) ∧
xy ∈ s ∧ yz ∈ r)"

definition
injection :: "[i⇒o,i,i,i] ⇒ o" where

"injection(M,A,B,f) ≡
typed_function(M,A,B,f) ∧
(∀ x[M]. ∀ x’[M]. ∀ y[M]. ∀ p[M]. ∀ p’[M].

pair(M,x,y,p) −→ pair(M,x’,y,p’) −→ p∈f −→ p’∈f −→ x=x’)"

definition
surjection :: "[i⇒o,i,i,i] ⇒ o" where
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"surjection(M,A,B,f) ≡
typed_function(M,A,B,f) ∧
(∀ y[M]. y∈B −→ (∃ x[M]. x∈A ∧ fun_apply(M,f,x,y)))"

definition
bijection :: "[i⇒o,i,i,i] ⇒ o" where

"bijection(M,A,B,f) ≡ injection(M,A,B,f) ∧ surjection(M,A,B,f)"

definition
restriction :: "[i⇒o,i,i,i] ⇒ o" where

"restriction(M,r,A,z) ≡
∀ x[M]. x ∈ z ←→ (x ∈ r ∧ (∃ u[M]. u∈A ∧ (∃ v[M]. pair(M,u,v,x))))"

definition
transitive_set :: "[i⇒o,i] ⇒ o" where

"transitive_set(M,a) ≡ ∀ x[M]. x∈a −→ subset(M,x,a)"

definition
ordinal :: "[i⇒o,i] ⇒ o" where

— an ordinal is a transitive set of transitive sets
"ordinal(M,a) ≡ transitive_set(M,a) ∧ (∀ x[M]. x∈a −→ transitive_set(M,x))"

definition
limit_ordinal :: "[i⇒o,i] ⇒ o" where

— a limit ordinal is a non-empty, successor-closed ordinal
"limit_ordinal(M,a) ≡

ordinal(M,a) ∧ ¬ empty(M,a) ∧
(∀ x[M]. x∈a −→ (∃ y[M]. y∈a ∧ successor(M,x,y)))"

definition
successor_ordinal :: "[i⇒o,i] ⇒ o" where

— a successor ordinal is any ordinal that is neither empty nor limit
"successor_ordinal(M,a) ≡

ordinal(M,a) ∧ ¬ empty(M,a) ∧ ¬ limit_ordinal(M,a)"

definition
finite_ordinal :: "[i⇒o,i] ⇒ o" where

— an ordinal is finite if neither it nor any of its elements are limit
"finite_ordinal(M,a) ≡

ordinal(M,a) ∧ ¬ limit_ordinal(M,a) ∧
(∀ x[M]. x∈a −→ ¬ limit_ordinal(M,x))"

definition
omega :: "[i⇒o,i] ⇒ o" where

— omega is a limit ordinal none of whose elements are limit
"omega(M,a) ≡ limit_ordinal(M,a) ∧ (∀ x[M]. x∈a −→ ¬ limit_ordinal(M,x))"

definition
is_quasinat :: "[i⇒o,i] ⇒ o" where
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"is_quasinat(M,z) ≡ empty(M,z) ∨ (∃ m[M]. successor(M,m,z))"

definition
is_nat_case :: "[i⇒o, i, [i,i]⇒o, i, i] ⇒ o" where

"is_nat_case(M, a, is_b, k, z) ≡
(empty(M,k) −→ z=a) ∧
(∀ m[M]. successor(M,m,k) −→ is_b(m,z)) ∧
(is_quasinat(M,k) ∨ empty(M,z))"

definition
relation1 :: "[i⇒o, [i,i]⇒o, i⇒i] ⇒ o" where

"relation1(M,is_f,f) ≡ ∀ x[M]. ∀ y[M]. is_f(x,y) ←→ y = f(x)"

definition
Relation1 :: "[i⇒o, i, [i,i]⇒o, i⇒i] ⇒ o" where

— as above, but typed
"Relation1(M,A,is_f,f) ≡

∀ x[M]. ∀ y[M]. x∈A −→ is_f(x,y) ←→ y = f(x)"

definition
relation2 :: "[i⇒o, [i,i,i]⇒o, [i,i]⇒i] ⇒ o" where

"relation2(M,is_f,f) ≡ ∀ x[M]. ∀ y[M]. ∀ z[M]. is_f(x,y,z) ←→ z =
f(x,y)"

definition
Relation2 :: "[i⇒o, i, i, [i,i,i]⇒o, [i,i]⇒i] ⇒ o" where

"Relation2(M,A,B,is_f,f) ≡
∀ x[M]. ∀ y[M]. ∀ z[M]. x∈A −→ y∈B −→ is_f(x,y,z) ←→ z = f(x,y)"

definition
relation3 :: "[i⇒o, [i,i,i,i]⇒o, [i,i,i]⇒i] ⇒ o" where

"relation3(M,is_f,f) ≡
∀ x[M]. ∀ y[M]. ∀ z[M]. ∀ u[M]. is_f(x,y,z,u) ←→ u = f(x,y,z)"

definition
Relation3 :: "[i⇒o, i, i, i, [i,i,i,i]⇒o, [i,i,i]⇒i] ⇒ o" where

"Relation3(M,A,B,C,is_f,f) ≡
∀ x[M]. ∀ y[M]. ∀ z[M]. ∀ u[M].

x∈A −→ y∈B −→ z∈C −→ is_f(x,y,z,u) ←→ u = f(x,y,z)"

definition
relation4 :: "[i⇒o, [i,i,i,i,i]⇒o, [i,i,i,i]⇒i] ⇒ o" where

"relation4(M,is_f,f) ≡
∀ u[M]. ∀ x[M]. ∀ y[M]. ∀ z[M]. ∀ a[M]. is_f(u,x,y,z,a) ←→ a = f(u,x,y,z)"

Useful when absoluteness reasoning has replaced the predicates by terms
lemma triv_Relation1:

"Relation1(M, A, λx y. y = f(x), f)"
〈proof 〉
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lemma triv_Relation2:
"Relation2(M, A, B, λx y a. a = f(x,y), f)"

〈proof 〉

2.2 The relativized ZF axioms
definition

extensionality :: "(i⇒o) ⇒ o" where
"extensionality(M) ≡

∀ x[M]. ∀ y[M]. (∀ z[M]. z ∈ x ←→ z ∈ y) −→ x=y"

definition
separation :: "[i⇒o, i⇒o] ⇒ o" where

— The formula P should only involve parameters belonging to M and all its
quantifiers must be relativized to M. We do not have separation as a scheme; every
instance that we need must be assumed (and later proved) separately.

"separation(M,P) ≡
∀ z[M]. ∃ y[M]. ∀ x[M]. x ∈ y ←→ x ∈ z ∧ P(x)"

definition
upair_ax :: "(i⇒o) ⇒ o" where

"upair_ax(M) ≡ ∀ x[M]. ∀ y[M]. ∃ z[M]. upair(M,x,y,z)"

definition
Union_ax :: "(i⇒o) ⇒ o" where

"Union_ax(M) ≡ ∀ x[M]. ∃ z[M]. big_union(M,x,z)"

definition
power_ax :: "(i⇒o) ⇒ o" where

"power_ax(M) ≡ ∀ x[M]. ∃ z[M]. powerset(M,x,z)"

definition
univalent :: "[i⇒o, i, [i,i]⇒o] ⇒ o" where

"univalent(M,A,P) ≡
∀ x[M]. x∈A −→ (∀ y[M]. ∀ z[M]. P(x,y) ∧ P(x,z) −→ y=z)"

definition
replacement :: "[i⇒o, [i,i]⇒o] ⇒ o" where

"replacement(M,P) ≡
∀ A[M]. univalent(M,A,P) −→
(∃ Y[M]. ∀ b[M]. (∃ x[M]. x∈A ∧ P(x,b)) −→ b ∈ Y)"

definition
strong_replacement :: "[i⇒o, [i,i]⇒o] ⇒ o" where

"strong_replacement(M,P) ≡
∀ A[M]. univalent(M,A,P) −→
(∃ Y[M]. ∀ b[M]. b ∈ Y ←→ (∃ x[M]. x∈A ∧ P(x,b)))"
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definition
foundation_ax :: "(i⇒o) ⇒ o" where

"foundation_ax(M) ≡
∀ x[M]. (∃ y[M]. y∈x) −→ (∃ y[M]. y∈x ∧ ¬(∃ z[M]. z∈x ∧ z ∈

y))"

2.3 A trivial consistency proof for Vω

We prove that Vω (or univ in Isabelle) satisfies some ZF axioms. Kunen,
Theorem IV 3.13, page 123.
lemma univ0_downwards_mem: " [[y ∈ x; x ∈ univ(0)]] =⇒ y ∈ univ(0)"
〈proof 〉

lemma univ0_Ball_abs [simp]:
"A ∈ univ(0) =⇒ (∀ x∈A. x ∈ univ(0) −→ P(x)) ←→ (∀ x∈A. P(x))"

〈proof 〉

lemma univ0_Bex_abs [simp]:
"A ∈ univ(0) =⇒ (∃ x∈A. x ∈ univ(0) ∧ P(x)) ←→ (∃ x∈A. P(x))"

〈proof 〉

Congruence rule for separation: can assume the variable is in M

lemma separation_cong [cong]:
"(

∧
x. M(x) =⇒ P(x) ←→ P’(x))

=⇒ separation(M, λx. P(x)) ←→ separation(M, λx. P’(x))"
〈proof 〉

lemma univalent_cong [cong]:
" [[A=A’;

∧
x y. [[x∈A; M(x); M(y)]] =⇒ P(x,y) ←→ P’(x,y)]]

=⇒ univalent(M, A, λx y. P(x,y)) ←→ univalent(M, A’, λx y. P’(x,y))"
〈proof 〉

lemma univalent_triv [intro,simp]:
"univalent(M, A, λx y. y = f(x))"

〈proof 〉

lemma univalent_conjI2 [intro,simp]:
"univalent(M,A,Q) =⇒ univalent(M, A, λx y. P(x,y) ∧ Q(x,y))"

〈proof 〉

Congruence rule for replacement
lemma strong_replacement_cong [cong]:

" [[
∧

x y. [[M(x); M(y)]] =⇒ P(x,y) ←→ P’(x,y)]]
=⇒ strong_replacement(M, λx y. P(x,y)) ←→

strong_replacement(M, λx y. P’(x,y))"
〈proof 〉

The extensionality axiom
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lemma "extensionality(λx. x ∈ univ(0))"
〈proof 〉

The separation axiom requires some lemmas
lemma Collect_in_Vfrom:

" [[X ∈ Vfrom(A,j); Transset(A)]] =⇒ Collect(X,P) ∈ Vfrom(A, succ(j))"
〈proof 〉

lemma Collect_in_VLimit:
" [[X ∈ Vfrom(A,i); Limit(i); Transset(A)]]
=⇒ Collect(X,P) ∈ Vfrom(A,i)"

〈proof 〉

lemma Collect_in_univ:
" [[X ∈ univ(A); Transset(A)]] =⇒ Collect(X,P) ∈ univ(A)"

〈proof 〉

lemma "separation(λx. x ∈ univ(0), P)"
〈proof 〉

Unordered pairing axiom
lemma "upair_ax(λx. x ∈ univ(0))"
〈proof 〉

Union axiom
lemma "Union_ax(λx. x ∈ univ(0))"
〈proof 〉

Powerset axiom
lemma Pow_in_univ:

" [[X ∈ univ(A); Transset(A)]] =⇒ Pow(X) ∈ univ(A)"
〈proof 〉

lemma "power_ax(λx. x ∈ univ(0))"
〈proof 〉

Foundation axiom
lemma "foundation_ax(λx. x ∈ univ(0))"
〈proof 〉

lemma "replacement(λx. x ∈ univ(0), P)"
〈proof 〉

no idea: maybe prove by induction on the rank of A?

Still missing: Replacement, Choice
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2.4 Lemmas Needed to Reduce Some Set Constructions to
Instances of Separation

lemma image_iff_Collect: "r ‘‘ A = {y ∈
⋃

(
⋃

(r)). ∃ p∈r. ∃ x∈A. p=〈x,y〉}"
〈proof 〉

lemma vimage_iff_Collect:
"r -‘‘ A = {x ∈

⋃
(
⋃

(r)). ∃ p∈r. ∃ y∈A. p=〈x,y〉}"
〈proof 〉

These two lemmas lets us prove domain_closed and range_closed without
new instances of separation
lemma domain_eq_vimage: "domain(r) = r -‘‘ Union(Union(r))"
〈proof 〉

lemma range_eq_image: "range(r) = r ‘‘ Union(Union(r))"
〈proof 〉

lemma replacementD:
" [[replacement(M,P); M(A); univalent(M,A,P)]]
=⇒ ∃ Y[M]. (∀ b[M]. ((∃ x[M]. x∈A ∧ P(x,b)) −→ b ∈ Y))"

〈proof 〉

lemma strong_replacementD:
" [[strong_replacement(M,P); M(A); univalent(M,A,P)]]
=⇒ ∃ Y[M]. (∀ b[M]. (b ∈ Y ←→ (∃ x[M]. x∈A ∧ P(x,b))))"

〈proof 〉

lemma separationD:
" [[separation(M,P); M(z)]] =⇒ ∃ y[M]. ∀ x[M]. x ∈ y ←→ x ∈ z ∧ P(x)"

〈proof 〉

More constants, for order types
definition

order_isomorphism :: "[i⇒o,i,i,i,i,i] ⇒ o" where
"order_isomorphism(M,A,r,B,s,f) ≡

bijection(M,A,B,f) ∧
(∀ x[M]. x∈A −→ (∀ y[M]. y∈A −→

(∀ p[M]. ∀ fx[M]. ∀ fy[M]. ∀ q[M].
pair(M,x,y,p) −→ fun_apply(M,f,x,fx) −→ fun_apply(M,f,y,fy)

−→
pair(M,fx,fy,q) −→ (p∈r ←→ q∈s))))"

definition
pred_set :: "[i⇒o,i,i,i,i] ⇒ o" where

"pred_set(M,A,x,r,B) ≡
∀ y[M]. y ∈ B ←→ (∃ p[M]. p∈r ∧ y ∈ A ∧ pair(M,y,x,p))"

definition
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membership :: "[i⇒o,i,i] ⇒ o" where — membership relation
"membership(M,A,r) ≡

∀ p[M]. p ∈ r ←→ (∃ x[M]. x∈A ∧ (∃ y[M]. y∈A ∧ x∈y ∧ pair(M,x,y,p)))"

2.5 Introducing a Transitive Class Model

The class M is assumed to be transitive and inhabited
locale M_trans =

fixes M
assumes transM: " [[y∈x; M(x)]] =⇒ M(y)"

and M_inhabited: "∃ x . M(x)"

lemma (in M_trans) nonempty [simp]: "M(0)"
〈proof 〉

The class M is assumed to be transitive and to satisfy some relativized ZF
axioms
locale M_trivial = M_trans +

assumes upair_ax: "upair_ax(M)"
and Union_ax: "Union_ax(M)"

lemma (in M_trans) rall_abs [simp]:
"M(A) =⇒ (∀ x[M]. x∈A −→ P(x)) ←→ (∀ x∈A. P(x))"

〈proof 〉

lemma (in M_trans) rex_abs [simp]:
"M(A) =⇒ (∃ x[M]. x∈A ∧ P(x)) ←→ (∃ x∈A. P(x))"

〈proof 〉

lemma (in M_trans) ball_iff_equiv:
"M(A) =⇒ (∀ x[M]. (x∈A ←→ P(x))) ←→

(∀ x∈A. P(x)) ∧ (∀ x. P(x) −→ M(x) −→ x∈A)"
〈proof 〉

Simplifies proofs of equalities when there’s an iff-equality available for rewrit-
ing, universally quantified over M. But it’s not the only way to prove such
equalities: its premises M(A) and M(B) can be too strong.
lemma (in M_trans) M_equalityI:

" [[
∧

x. M(x) =⇒ x∈A ←→ x∈B; M(A); M(B)]] =⇒ A=B"
〈proof 〉

2.5.1 Trivial Absoluteness Proofs: Empty Set, Pairs, etc.
lemma (in M_trans) empty_abs [simp]:

"M(z) =⇒ empty(M,z) ←→ z=0"
〈proof 〉

lemma (in M_trans) subset_abs [simp]:
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"M(A) =⇒ subset(M,A,B) ←→ A ⊆ B"
〈proof 〉

lemma (in M_trans) upair_abs [simp]:
"M(z) =⇒ upair(M,a,b,z) ←→ z={a,b}"

〈proof 〉

lemma (in M_trivial) upair_in_MI [intro!]:
" M(a) ∧ M(b) =⇒ M({a,b})"

〈proof 〉

lemma (in M_trans) upair_in_MD [dest!]:
"M({a,b}) =⇒ M(a) ∧ M(b)"

〈proof 〉

lemma (in M_trivial) upair_in_M_iff [simp]:
"M({a,b}) ←→ M(a) ∧ M(b)"
〈proof 〉

lemma (in M_trivial) singleton_in_MI [intro!]:
"M(a) =⇒ M({a})"

〈proof 〉

lemma (in M_trans) singleton_in_MD [dest!]:
"M({a}) =⇒ M(a)"

〈proof 〉

lemma (in M_trivial) singleton_in_M_iff [simp]:
"M({a}) ←→ M(a)"

〈proof 〉

lemma (in M_trans) pair_abs [simp]:
"M(z) =⇒ pair(M,a,b,z) ←→ z=〈a,b〉"

〈proof 〉

lemma (in M_trans) pair_in_MD [dest!]:
"M(〈a,b〉) =⇒ M(a) ∧ M(b)"

〈proof 〉

lemma (in M_trivial) pair_in_MI [intro!]:
"M(a) ∧ M(b) =⇒ M(〈a,b〉)"

〈proof 〉

lemma (in M_trivial) pair_in_M_iff [simp]:
"M(〈a,b〉) ←→ M(a) ∧ M(b)"

〈proof 〉

lemma (in M_trans) pair_components_in_M:
" [[〈x,y〉 ∈ A; M(A)]] =⇒ M(x) ∧ M(y)"
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〈proof 〉

lemma (in M_trivial) cartprod_abs [simp]:
" [[M(A); M(B); M(z)]] =⇒ cartprod(M,A,B,z) ←→ z = A*B"

〈proof 〉

2.5.2 Absoluteness for Unions and Intersections
lemma (in M_trans) union_abs [simp]:

" [[M(a); M(b); M(z)]] =⇒ union(M,a,b,z) ←→ z = a ∪ b"
〈proof 〉

lemma (in M_trans) inter_abs [simp]:
" [[M(a); M(b); M(z)]] =⇒ inter(M,a,b,z) ←→ z = a ∩ b"

〈proof 〉

lemma (in M_trans) setdiff_abs [simp]:
" [[M(a); M(b); M(z)]] =⇒ setdiff(M,a,b,z) ←→ z = a-b"

〈proof 〉

lemma (in M_trans) Union_abs [simp]:
" [[M(A); M(z)]] =⇒ big_union(M,A,z) ←→ z =

⋃
(A)"

〈proof 〉

lemma (in M_trivial) Union_closed [intro,simp]:
"M(A) =⇒ M(

⋃
(A))"

〈proof 〉

lemma (in M_trivial) Un_closed [intro,simp]:
" [[M(A); M(B)]] =⇒ M(A ∪ B)"

〈proof 〉

lemma (in M_trivial) cons_closed [intro,simp]:
" [[M(a); M(A)]] =⇒ M(cons(a,A))"

〈proof 〉

lemma (in M_trivial) cons_abs [simp]:
" [[M(b); M(z)]] =⇒ is_cons(M,a,b,z) ←→ z = cons(a,b)"

〈proof 〉

lemma (in M_trivial) successor_abs [simp]:
" [[M(a); M(z)]] =⇒ successor(M,a,z) ←→ z = succ(a)"

〈proof 〉

lemma (in M_trans) succ_in_MD [dest!]:
"M(succ(a)) =⇒ M(a)"

〈proof 〉

lemma (in M_trivial) succ_in_MI [intro!]:
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"M(a) =⇒ M(succ(a))"
〈proof 〉

lemma (in M_trivial) succ_in_M_iff [simp]:
"M(succ(a)) ←→ M(a)"

〈proof 〉

2.5.3 Absoluteness for Separation and Replacement
lemma (in M_trans) separation_closed [intro,simp]:

" [[separation(M,P); M(A)]] =⇒ M(Collect(A,P))"
〈proof 〉

lemma separation_iff:
"separation(M,P) ←→ (∀ z[M]. ∃ y[M]. is_Collect(M,z,P,y))"

〈proof 〉

lemma (in M_trans) Collect_abs [simp]:
" [[M(A); M(z)]] =⇒ is_Collect(M,A,P,z) ←→ z = Collect(A,P)"

〈proof 〉

2.5.4 The Operator is_Replace

lemma is_Replace_cong [cong]:
" [[A=A’;∧

x y. [[M(x); M(y)]] =⇒ P(x,y) ←→ P’(x,y);
z=z’]]

=⇒ is_Replace(M, A, λx y. P(x,y), z) ←→
is_Replace(M, A’, λx y. P’(x,y), z’)"

〈proof 〉

lemma (in M_trans) univalent_Replace_iff:
" [[M(A); univalent(M,A,P);∧

x y. [[x∈A; P(x,y)]] =⇒ M(y)]]
=⇒ u ∈ Replace(A,P) ←→ (∃ x. x∈A ∧ P(x,u))"

〈proof 〉

lemma (in M_trans) strong_replacement_closed [intro,simp]:
" [[strong_replacement(M,P); M(A); univalent(M,A,P);∧

x y. [[x∈A; P(x,y)]] =⇒ M(y)]] =⇒ M(Replace(A,P))"
〈proof 〉

lemma (in M_trans) Replace_abs:
" [[M(A); M(z); univalent(M,A,P);∧

x y. [[x∈A; P(x,y)]] =⇒ M(y)]]
=⇒ is_Replace(M,A,P,z) ←→ z = Replace(A,P)"

〈proof 〉
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lemma (in M_trans) RepFun_closed:
" [[strong_replacement(M, λx y. y = f(x)); M(A); ∀ x∈A. M(f(x))]]
=⇒ M(RepFun(A,f))"

〈proof 〉

lemma Replace_conj_eq: "{y . x ∈ A, x∈A ∧ y=f(x)} = {y . x∈A, y=f(x)}"
〈proof 〉

Better than RepFun_closed when having the formula x ∈ A makes relativiza-
tion easier.
lemma (in M_trans) RepFun_closed2:

" [[strong_replacement(M, λx y. x∈A ∧ y = f(x)); M(A); ∀ x∈A. M(f(x))]]
=⇒ M(RepFun(A, λx. f(x)))"

〈proof 〉

2.5.5 Absoluteness for Lambda

definition
is_lambda :: "[i⇒o, i, [i,i]⇒o, i] ⇒ o" where

"is_lambda(M, A, is_b, z) ≡
∀ p[M]. p ∈ z ←→
(∃ u[M]. ∃ v[M]. u∈A ∧ pair(M,u,v,p) ∧ is_b(u,v))"

lemma (in M_trivial) lam_closed:
" [[strong_replacement(M, λx y. y = <x,b(x)>); M(A); ∀ x∈A. M(b(x))]]
=⇒ M(λx∈A. b(x))"

〈proof 〉

Better than lam_closed : has the formula x ∈ A

lemma (in M_trivial) lam_closed2:
" [[strong_replacement(M, λx y. x∈A ∧ y = 〈x, b(x)〉);

M(A); ∀ m[M]. m∈A −→ M(b(m))]] =⇒ M(Lambda(A,b))"
〈proof 〉

lemma (in M_trivial) lambda_abs2:
" [[Relation1(M,A,is_b,b); M(A); ∀ m[M]. m∈A −→ M(b(m)); M(z)]]
=⇒ is_lambda(M,A,is_b,z) ←→ z = Lambda(A,b)"

〈proof 〉

lemma is_lambda_cong [cong]:
" [[A=A’; z=z’;∧

x y. [[x∈A; M(x); M(y)]] =⇒ is_b(x,y) ←→ is_b’(x,y)]]
=⇒ is_lambda(M, A, λx y. is_b(x,y), z) ←→

is_lambda(M, A’, λx y. is_b’(x,y), z’)"
〈proof 〉

lemma (in M_trans) image_abs [simp]:
" [[M(r); M(A); M(z)]] =⇒ image(M,r,A,z) ←→ z = r‘‘A"
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〈proof 〉

2.5.6 Relativization of Powerset

What about Pow_abs? Powerset is NOT absolute! This result is one direction
of absoluteness.
lemma (in M_trans) powerset_Pow:

"powerset(M, x, Pow(x))"
〈proof 〉

But we can’t prove that the powerset in M includes the real powerset.
lemma (in M_trans) powerset_imp_subset_Pow:

" [[powerset(M,x,y); M(y)]] =⇒ y ⊆ Pow(x)"
〈proof 〉

lemma (in M_trans) powerset_abs:
assumes

"M(y)"
shows

"powerset(M,x,y) ←→ y = {a∈Pow(x) . M(a)}"
〈proof 〉

2.5.7 Absoluteness for the Natural Numbers
lemma (in M_trivial) nat_into_M [intro]:

"n ∈ nat =⇒ M(n)"
〈proof 〉

lemma (in M_trans) nat_case_closed [intro,simp]:
" [[M(k); M(a); ∀ m[M]. M(b(m))]] =⇒ M(nat_case(a,b,k))"

〈proof 〉

lemma (in M_trivial) quasinat_abs [simp]:
"M(z) =⇒ is_quasinat(M,z) ←→ quasinat(z)"

〈proof 〉

lemma (in M_trivial) nat_case_abs [simp]:
" [[relation1(M,is_b,b); M(k); M(z)]]
=⇒ is_nat_case(M,a,is_b,k,z) ←→ z = nat_case(a,b,k)"

〈proof 〉

lemma is_nat_case_cong:
" [[a = a’; k = k’; z = z’; M(z’);∧

x y. [[M(x); M(y)]] =⇒ is_b(x,y) ←→ is_b’(x,y)]]
=⇒ is_nat_case(M, a, is_b, k, z) ←→ is_nat_case(M, a’, is_b’,

k’, z’)"
〈proof 〉
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2.6 Absoluteness for Ordinals

These results constitute Theorem IV 5.1 of Kunen (page 126).
lemma (in M_trans) lt_closed:

" [[j<i; M(i)]] =⇒ M(j)"
〈proof 〉

lemma (in M_trans) transitive_set_abs [simp]:
"M(a) =⇒ transitive_set(M,a) ←→ Transset(a)"

〈proof 〉

lemma (in M_trans) ordinal_abs [simp]:
"M(a) =⇒ ordinal(M,a) ←→ Ord(a)"

〈proof 〉

lemma (in M_trivial) limit_ordinal_abs [simp]:
"M(a) =⇒ limit_ordinal(M,a) ←→ Limit(a)"

〈proof 〉

lemma (in M_trivial) successor_ordinal_abs [simp]:
"M(a) =⇒ successor_ordinal(M,a) ←→ Ord(a) ∧ (∃ b[M]. a = succ(b))"

〈proof 〉

lemma finite_Ord_is_nat:
" [[Ord(a); ¬ Limit(a); ∀ x∈a. ¬ Limit(x)]] =⇒ a ∈ nat"

〈proof 〉

lemma (in M_trivial) finite_ordinal_abs [simp]:
"M(a) =⇒ finite_ordinal(M,a) ←→ a ∈ nat"

〈proof 〉

lemma Limit_non_Limit_implies_nat:
" [[Limit(a); ∀ x∈a. ¬ Limit(x)]] =⇒ a = nat"

〈proof 〉

lemma (in M_trivial) omega_abs [simp]:
"M(a) =⇒ omega(M,a) ←→ a = nat"

〈proof 〉

lemma (in M_trivial) number1_abs [simp]:
"M(a) =⇒ number1(M,a) ←→ a = 1"

〈proof 〉

lemma (in M_trivial) number2_abs [simp]:
"M(a) =⇒ number2(M,a) ←→ a = succ(1)"

〈proof 〉

lemma (in M_trivial) number3_abs [simp]:
"M(a) =⇒ number3(M,a) ←→ a = succ(succ(1))"
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〈proof 〉

Kunen continued to 20...

2.7 Some instances of separation and strong replacement
locale M_basic = M_trivial +
assumes Inter_separation:

"M(A) =⇒ separation(M, λx. ∀ y[M]. y∈A −→ x∈y)"
and Diff_separation:

"M(B) =⇒ separation(M, λx. x /∈ B)"
and cartprod_separation:

" [[M(A); M(B)]]
=⇒ separation(M, λz. ∃ x[M]. x∈A ∧ (∃ y[M]. y∈B ∧ pair(M,x,y,z)))"

and image_separation:
" [[M(A); M(r)]]
=⇒ separation(M, λy. ∃ p[M]. p∈r ∧ (∃ x[M]. x∈A ∧ pair(M,x,y,p)))"

and converse_separation:
"M(r) =⇒ separation(M,

λz. ∃ p[M]. p∈r ∧ (∃ x[M]. ∃ y[M]. pair(M,x,y,p) ∧ pair(M,y,x,z)))"
and restrict_separation:

"M(A) =⇒ separation(M, λz. ∃ x[M]. x∈A ∧ (∃ y[M]. pair(M,x,y,z)))"
and comp_separation:

" [[M(r); M(s)]]
=⇒ separation(M, λxz. ∃ x[M]. ∃ y[M]. ∃ z[M]. ∃ xy[M]. ∃ yz[M].

pair(M,x,z,xz) ∧ pair(M,x,y,xy) ∧ pair(M,y,z,yz) ∧
xy∈s ∧ yz∈r)"

and pred_separation:
" [[M(r); M(x)]] =⇒ separation(M, λy. ∃ p[M]. p∈r ∧ pair(M,y,x,p))"

and Memrel_separation:
"separation(M, λz. ∃ x[M]. ∃ y[M]. pair(M,x,y,z) ∧ x ∈ y)"

and funspace_succ_replacement:
"M(n) =⇒
strong_replacement(M, λp z. ∃ f[M]. ∃ b[M]. ∃ nb[M]. ∃ cnbf[M].

pair(M,f,b,p) ∧ pair(M,n,b,nb) ∧ is_cons(M,nb,f,cnbf)
∧

upair(M,cnbf,cnbf,z))"
and is_recfun_separation:

— for well-founded recursion: used to prove is_recfun_equal
" [[M(r); M(f); M(g); M(a); M(b)]]
=⇒ separation(M,

λx. ∃ xa[M]. ∃ xb[M].
pair(M,x,a,xa) ∧ xa ∈ r ∧ pair(M,x,b,xb) ∧ xb ∈ r ∧
(∃ fx[M]. ∃ gx[M]. fun_apply(M,f,x,fx) ∧ fun_apply(M,g,x,gx)

∧
fx 6= gx))"

and power_ax: "power_ax(M)"

lemma (in M_trivial) cartprod_iff_lemma:
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" [[M(C); ∀ u[M]. u ∈ C ←→ (∃ x∈A. ∃ y∈B. u = {{x}, {x,y}});
powerset(M, A ∪ B, p1); powerset(M, p1, p2); M(p2)]]

=⇒ C = {u ∈ p2 . ∃ x∈A. ∃ y∈B. u = {{x}, {x,y}}}"
〈proof 〉

lemma (in M_basic) cartprod_iff:
" [[M(A); M(B); M(C)]]
=⇒ cartprod(M,A,B,C) ←→

(∃ p1[M]. ∃ p2[M]. powerset(M,A ∪ B,p1) ∧ powerset(M,p1,p2) ∧
C = {z ∈ p2. ∃ x∈A. ∃ y∈B. z = 〈x,y〉})"

〈proof 〉

lemma (in M_basic) cartprod_closed_lemma:
" [[M(A); M(B)]] =⇒ ∃ C[M]. cartprod(M,A,B,C)"

〈proof 〉

All the lemmas above are necessary because Powerset is not absolute. I
should have used Replacement instead!
lemma (in M_basic) cartprod_closed [intro,simp]:

" [[M(A); M(B)]] =⇒ M(A*B)"
〈proof 〉

lemma (in M_basic) sum_closed [intro,simp]:
" [[M(A); M(B)]] =⇒ M(A+B)"

〈proof 〉

lemma (in M_basic) sum_abs [simp]:
" [[M(A); M(B); M(Z)]] =⇒ is_sum(M,A,B,Z) ←→ (Z = A+B)"

〈proof 〉

lemma (in M_trivial) Inl_in_M_iff [iff]:
"M(Inl(a)) ←→ M(a)"

〈proof 〉

lemma (in M_trivial) Inl_abs [simp]:
"M(Z) =⇒ is_Inl(M,a,Z) ←→ (Z = Inl(a))"

〈proof 〉

lemma (in M_trivial) Inr_in_M_iff [iff]:
"M(Inr(a)) ←→ M(a)"

〈proof 〉

lemma (in M_trivial) Inr_abs [simp]:
"M(Z) =⇒ is_Inr(M,a,Z) ←→ (Z = Inr(a))"

〈proof 〉

2.7.1 converse of a relation
lemma (in M_basic) M_converse_iff:
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"M(r) =⇒
converse(r) =
{z ∈

⋃
(
⋃

(r)) *
⋃

(
⋃

(r)).
∃ p∈r. ∃ x[M]. ∃ y[M]. p = 〈x,y〉 ∧ z = 〈y,x〉}"

〈proof 〉

lemma (in M_basic) converse_closed [intro,simp]:
"M(r) =⇒ M(converse(r))"

〈proof 〉

lemma (in M_basic) converse_abs [simp]:
" [[M(r); M(z)]] =⇒ is_converse(M,r,z) ←→ z = converse(r)"

〈proof 〉

2.7.2 image, preimage, domain, range
lemma (in M_basic) image_closed [intro,simp]:

" [[M(A); M(r)]] =⇒ M(r‘‘A)"
〈proof 〉

lemma (in M_basic) vimage_abs [simp]:
" [[M(r); M(A); M(z)]] =⇒ pre_image(M,r,A,z) ←→ z = r-‘‘A"

〈proof 〉

lemma (in M_basic) vimage_closed [intro,simp]:
" [[M(A); M(r)]] =⇒ M(r-‘‘A)"

〈proof 〉

2.7.3 Domain, range and field
lemma (in M_trans) domain_abs [simp]:

" [[M(r); M(z)]] =⇒ is_domain(M,r,z) ←→ z = domain(r)"
〈proof 〉

lemma (in M_basic) domain_closed [intro,simp]:
"M(r) =⇒ M(domain(r))"

〈proof 〉

lemma (in M_trans) range_abs [simp]:
" [[M(r); M(z)]] =⇒ is_range(M,r,z) ←→ z = range(r)"

〈proof 〉

lemma (in M_basic) range_closed [intro,simp]:
"M(r) =⇒ M(range(r))"

〈proof 〉

lemma (in M_basic) field_abs [simp]:
" [[M(r); M(z)]] =⇒ is_field(M,r,z) ←→ z = field(r)"

〈proof 〉

44



lemma (in M_basic) field_closed [intro,simp]:
"M(r) =⇒ M(field(r))"

〈proof 〉

2.7.4 Relations, functions and application
lemma (in M_trans) relation_abs [simp]:

"M(r) =⇒ is_relation(M,r) ←→ relation(r)"
〈proof 〉

lemma (in M_trivial) function_abs [simp]:
"M(r) =⇒ is_function(M,r) ←→ function(r)"

〈proof 〉

lemma (in M_basic) apply_closed [intro,simp]:
" [[M(f); M(a)]] =⇒ M(f‘a)"

〈proof 〉

lemma (in M_basic) apply_abs [simp]:
" [[M(f); M(x); M(y)]] =⇒ fun_apply(M,f,x,y) ←→ f‘x = y"

〈proof 〉

lemma (in M_trivial) typed_function_abs [simp]:
" [[M(A); M(f)]] =⇒ typed_function(M,A,B,f) ←→ f ∈ A -> B"

〈proof 〉

lemma (in M_basic) injection_abs [simp]:
" [[M(A); M(f)]] =⇒ injection(M,A,B,f) ←→ f ∈ inj(A,B)"

〈proof 〉

lemma (in M_basic) surjection_abs [simp]:
" [[M(A); M(B); M(f)]] =⇒ surjection(M,A,B,f) ←→ f ∈ surj(A,B)"

〈proof 〉

lemma (in M_basic) bijection_abs [simp]:
" [[M(A); M(B); M(f)]] =⇒ bijection(M,A,B,f) ←→ f ∈ bij(A,B)"

〈proof 〉

2.7.5 Composition of relations
lemma (in M_basic) M_comp_iff:

" [[M(r); M(s)]]
=⇒ r O s =

{xz ∈ domain(s) * range(r).
∃ x[M]. ∃ y[M]. ∃ z[M]. xz = 〈x,z〉 ∧ 〈x,y〉 ∈ s ∧ 〈y,z〉 ∈ r}"

〈proof 〉

lemma (in M_basic) comp_closed [intro,simp]:
" [[M(r); M(s)]] =⇒ M(r O s)"

〈proof 〉
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lemma (in M_basic) composition_abs [simp]:
" [[M(r); M(s); M(t)]] =⇒ composition(M,r,s,t) ←→ t = r O s"

〈proof 〉

no longer needed
lemma (in M_basic) restriction_is_function:

" [[restriction(M,f,A,z); function(f); M(f); M(A); M(z)]]
=⇒ function(z)"

〈proof 〉

lemma (in M_trans) restriction_abs [simp]:
" [[M(f); M(A); M(z)]]
=⇒ restriction(M,f,A,z) ←→ z = restrict(f,A)"

〈proof 〉

lemma (in M_trans) M_restrict_iff:
"M(r) =⇒ restrict(r,A) = {z ∈ r . ∃ x∈A. ∃ y[M]. z = 〈x, y〉}"

〈proof 〉

lemma (in M_basic) restrict_closed [intro,simp]:
" [[M(A); M(r)]] =⇒ M(restrict(r,A))"

〈proof 〉

lemma (in M_trans) Inter_abs [simp]:
" [[M(A); M(z)]] =⇒ big_inter(M,A,z) ←→ z =

⋂
(A)"

〈proof 〉

lemma (in M_basic) Inter_closed [intro,simp]:
"M(A) =⇒ M(

⋂
(A))"

〈proof 〉

lemma (in M_basic) Int_closed [intro,simp]:
" [[M(A); M(B)]] =⇒ M(A ∩ B)"

〈proof 〉

lemma (in M_basic) Diff_closed [intro,simp]:
" [[M(A); M(B)]] =⇒ M(A-B)"

〈proof 〉

2.7.6 Some Facts About Separation Axioms
lemma (in M_basic) separation_conj:

" [[separation(M,P); separation(M,Q)]] =⇒ separation(M, λz. P(z) ∧
Q(z))"
〈proof 〉
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lemma Collect_Un_Collect_eq:
"Collect(A,P) ∪ Collect(A,Q) = Collect(A, λx. P(x) ∨ Q(x))"

〈proof 〉

lemma Diff_Collect_eq:
"A - Collect(A,P) = Collect(A, λx. ¬ P(x))"

〈proof 〉

lemma (in M_trans) Collect_rall_eq:
"M(Y) =⇒ Collect(A, λx. ∀ y[M]. y∈Y −→ P(x,y)) =

(if Y=0 then A else (
⋂

y ∈ Y. {x ∈ A. P(x,y)}))"
〈proof 〉

lemma (in M_basic) separation_disj:
" [[separation(M,P); separation(M,Q)]] =⇒ separation(M, λz. P(z) ∨

Q(z))"
〈proof 〉

lemma (in M_basic) separation_neg:
"separation(M,P) =⇒ separation(M, λz. ¬P(z))"

〈proof 〉

lemma (in M_basic) separation_imp:
" [[separation(M,P); separation(M,Q)]]
=⇒ separation(M, λz. P(z) −→ Q(z))"

〈proof 〉

This result is a hint of how little can be done without the Reflection The-
orem. The quantifier has to be bounded by a set. We also need another
instance of Separation!
lemma (in M_basic) separation_rall:

" [[M(Y); ∀ y[M]. separation(M, λx. P(x,y));
∀ z[M]. strong_replacement(M, λx y. y = {u ∈ z . P(u,x)})]]

=⇒ separation(M, λx. ∀ y[M]. y∈Y −→ P(x,y))"
〈proof 〉

2.7.7 Functions and function space

The assumption M(A → B) is unusual, but essential: in all but trivial cases,
A->B cannot be expected to belong to M.
lemma (in M_trivial) is_funspace_abs [simp]:

" [[M(A); M(B); M(F); M(A->B)]] =⇒ is_funspace(M,A,B,F) ←→ F = A->B"
〈proof 〉

lemma (in M_basic) succ_fun_eq2:
" [[M(B); M(n->B)]] =⇒
succ(n) -> B =
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⋃
{z. p ∈ (n->B)*B, ∃ f[M]. ∃ b[M]. p = 〈f,b〉 ∧ z = {cons(〈n,b〉,

f)}}"
〈proof 〉

lemma (in M_basic) funspace_succ:
" [[M(n); M(B); M(n->B)]] =⇒ M(succ(n) -> B)"

〈proof 〉

M contains all finite function spaces. Needed to prove the absoluteness of
transitive closure. See the definition of rtrancl_alt in in WF_absolute.thy.
lemma (in M_basic) finite_funspace_closed [intro,simp]:

" [[n∈nat; M(B)]] =⇒ M(n->B)"
〈proof 〉

2.8 Relativization and Absoluteness for Boolean Operators
definition

is_bool_of_o :: "[i⇒o, o, i] ⇒ o" where
"is_bool_of_o(M,P,z) ≡ (P ∧ number1(M,z)) ∨ (¬P ∧ empty(M,z))"

definition
is_not :: "[i⇒o, i, i] ⇒ o" where
"is_not(M,a,z) ≡ (number1(M,a) ∧ empty(M,z)) |

(¬number1(M,a) ∧ number1(M,z))"

definition
is_and :: "[i⇒o, i, i, i] ⇒ o" where
"is_and(M,a,b,z) ≡ (number1(M,a) ∧ z=b) |

(¬number1(M,a) ∧ empty(M,z))"

definition
is_or :: "[i⇒o, i, i, i] ⇒ o" where
"is_or(M,a,b,z) ≡ (number1(M,a) ∧ number1(M,z)) |

(¬number1(M,a) ∧ z=b)"

lemma (in M_trivial) bool_of_o_abs [simp]:
"M(z) =⇒ is_bool_of_o(M,P,z) ←→ z = bool_of_o(P)"

〈proof 〉

lemma (in M_trivial) not_abs [simp]:
" [[M(a); M(z)]] =⇒ is_not(M,a,z) ←→ z = not(a)"

〈proof 〉

lemma (in M_trivial) and_abs [simp]:
" [[M(a); M(b); M(z)]] =⇒ is_and(M,a,b,z) ←→ z = a and b"

〈proof 〉

lemma (in M_trivial) or_abs [simp]:
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" [[M(a); M(b); M(z)]] =⇒ is_or(M,a,b,z) ←→ z = a or b"
〈proof 〉

lemma (in M_trivial) bool_of_o_closed [intro,simp]:
"M(bool_of_o(P))"

〈proof 〉

lemma (in M_trivial) and_closed [intro,simp]:
" [[M(p); M(q)]] =⇒ M(p and q)"

〈proof 〉

lemma (in M_trivial) or_closed [intro,simp]:
" [[M(p); M(q)]] =⇒ M(p or q)"

〈proof 〉

lemma (in M_trivial) not_closed [intro,simp]:
"M(p) =⇒ M(not(p))"

〈proof 〉

2.9 Relativization and Absoluteness for List Operators
definition

is_Nil :: "[i⇒o, i] ⇒ o" where
— because [] ≡ Inl(0)

"is_Nil(M,xs) ≡ ∃ zero[M]. empty(M,zero) ∧ is_Inl(M,zero,xs)"

definition
is_Cons :: "[i⇒o,i,i,i] ⇒ o" where

— because Cons(a, l) ≡ Inr(〈a, l〉)
"is_Cons(M,a,l,Z) ≡ ∃ p[M]. pair(M,a,l,p) ∧ is_Inr(M,p,Z)"

lemma (in M_trivial) Nil_in_M [intro,simp]: "M(Nil)"
〈proof 〉

lemma (in M_trivial) Nil_abs [simp]: "M(Z) =⇒ is_Nil(M,Z) ←→ (Z =
Nil)"
〈proof 〉

lemma (in M_trivial) Cons_in_M_iff [iff]: "M(Cons(a,l)) ←→ M(a) ∧ M(l)"
〈proof 〉

lemma (in M_trivial) Cons_abs [simp]:
" [[M(a); M(l); M(Z)]] =⇒ is_Cons(M,a,l,Z) ←→ (Z = Cons(a,l))"

〈proof 〉

definition
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quasilist :: "i ⇒ o" where
"quasilist(xs) ≡ xs=Nil ∨ (∃ x l. xs = Cons(x,l))"

definition
is_quasilist :: "[i⇒o,i] ⇒ o" where

"is_quasilist(M,z) ≡ is_Nil(M,z) ∨ (∃ x[M]. ∃ l[M]. is_Cons(M,x,l,z))"

definition
list_case’ :: "[i, [i,i]⇒i, i] ⇒ i" where

— A version of list_case that’s always defined.
"list_case’(a,b,xs) ≡

if quasilist(xs) then list_case(a,b,xs) else 0"

definition
is_list_case :: "[i⇒o, i, [i,i,i]⇒o, i, i] ⇒ o" where

— Returns 0 for non-lists
"is_list_case(M, a, is_b, xs, z) ≡

(is_Nil(M,xs) −→ z=a) ∧
(∀ x[M]. ∀ l[M]. is_Cons(M,x,l,xs) −→ is_b(x,l,z)) ∧
(is_quasilist(M,xs) ∨ empty(M,z))"

definition
hd’ :: "i ⇒ i" where

— A version of hd that’s always defined.
"hd’(xs) ≡ if quasilist(xs) then hd(xs) else 0"

definition
tl’ :: "i ⇒ i" where

— A version of tl that’s always defined.
"tl’(xs) ≡ if quasilist(xs) then tl(xs) else 0"

definition
is_hd :: "[i⇒o,i,i] ⇒ o" where

— hd([]) = 0 no constraints if not a list. Avoiding implication prevents the
simplifier’s looping.

"is_hd(M,xs,H) ≡
(is_Nil(M,xs) −→ empty(M,H)) ∧
(∀ x[M]. ∀ l[M]. ¬ is_Cons(M,x,l,xs) ∨ H=x) ∧
(is_quasilist(M,xs) ∨ empty(M,H))"

definition
is_tl :: "[i⇒o,i,i] ⇒ o" where

— tl([]) = []; see comments about is_hd
"is_tl(M,xs,T) ≡

(is_Nil(M,xs) −→ T=xs) ∧
(∀ x[M]. ∀ l[M]. ¬ is_Cons(M,x,l,xs) ∨ T=l) ∧
(is_quasilist(M,xs) ∨ empty(M,T))"
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2.9.1 quasilist : For Case-Splitting with list_case’

lemma [iff]: "quasilist(Nil)"
〈proof 〉

lemma [iff]: "quasilist(Cons(x,l))"
〈proof 〉

lemma list_imp_quasilist: "l ∈ list(A) =⇒ quasilist(l)"
〈proof 〉

2.9.2 list_case’, the Modified Version of list_case

lemma list_case’_Nil [simp]: "list_case’(a,b,Nil) = a"
〈proof 〉

lemma list_case’_Cons [simp]: "list_case’(a,b,Cons(x,l)) = b(x,l)"
〈proof 〉

lemma non_list_case: "¬ quasilist(x) =⇒ list_case’(a,b,x) = 0"
〈proof 〉

lemma list_case’_eq_list_case [simp]:
"xs ∈ list(A) =⇒list_case’(a,b,xs) = list_case(a,b,xs)"

〈proof 〉

lemma (in M_basic) list_case’_closed [intro,simp]:
" [[M(k); M(a); ∀ x[M]. ∀ y[M]. M(b(x,y))]] =⇒ M(list_case’(a,b,k))"

〈proof 〉

lemma (in M_trivial) quasilist_abs [simp]:
"M(z) =⇒ is_quasilist(M,z) ←→ quasilist(z)"

〈proof 〉

lemma (in M_trivial) list_case_abs [simp]:
" [[relation2(M,is_b,b); M(k); M(z)]]
=⇒ is_list_case(M,a,is_b,k,z) ←→ z = list_case’(a,b,k)"

〈proof 〉

2.9.3 The Modified Operators hd’ and tl’

lemma (in M_trivial) is_hd_Nil: "is_hd(M,[],Z) ←→ empty(M,Z)"
〈proof 〉

lemma (in M_trivial) is_hd_Cons:
" [[M(a); M(l)]] =⇒ is_hd(M,Cons(a,l),Z) ←→ Z = a"

〈proof 〉

lemma (in M_trivial) hd_abs [simp]:
" [[M(x); M(y)]] =⇒ is_hd(M,x,y) ←→ y = hd’(x)"
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〈proof 〉

lemma (in M_trivial) is_tl_Nil: "is_tl(M,[],Z) ←→ Z = []"
〈proof 〉

lemma (in M_trivial) is_tl_Cons:
" [[M(a); M(l)]] =⇒ is_tl(M,Cons(a,l),Z) ←→ Z = l"

〈proof 〉

lemma (in M_trivial) tl_abs [simp]:
" [[M(x); M(y)]] =⇒ is_tl(M,x,y) ←→ y = tl’(x)"

〈proof 〉

lemma (in M_trivial) relation1_tl: "relation1(M, is_tl(M), tl’)"
〈proof 〉

lemma hd’_Nil: "hd’([]) = 0"
〈proof 〉

lemma hd’_Cons: "hd’(Cons(a,l)) = a"
〈proof 〉

lemma tl’_Nil: "tl’([]) = []"
〈proof 〉

lemma tl’_Cons: "tl’(Cons(a,l)) = l"
〈proof 〉

lemma iterates_tl_Nil: "n ∈ nat =⇒ tl’^n ([]) = []"
〈proof 〉

lemma (in M_basic) tl’_closed: "M(x) =⇒ M(tl’(x))"
〈proof 〉

end

3 Relativized Wellorderings
theory Wellorderings imports Relative begin

We define functions analogous to ordermap ordertype but without using
recursion. Instead, there is a direct appeal to Replacement. This will be the
basis for a version relativized to some class M. The main result is Theorem I
7.6 in Kunen, page 17.

3.1 Wellorderings
definition
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irreflexive :: "[i⇒o,i,i]⇒o" where
"irreflexive(M,A,r) ≡ ∀ x[M]. x∈A −→ 〈x,x〉 /∈ r"

definition
transitive_rel :: "[i⇒o,i,i]⇒o" where

"transitive_rel(M,A,r) ≡
∀ x[M]. x∈A −→ (∀ y[M]. y∈A −→ (∀ z[M]. z∈A −→

〈x,y〉∈r −→ 〈y,z〉∈r −→ 〈x,z〉∈r))"

definition
linear_rel :: "[i⇒o,i,i]⇒o" where

"linear_rel(M,A,r) ≡
∀ x[M]. x∈A −→ (∀ y[M]. y∈A −→ 〈x,y〉∈r | x=y | 〈y,x〉∈r)"

definition
wellfounded :: "[i⇒o,i]⇒o" where

— EVERY non-empty set has an r -minimal element
"wellfounded(M,r) ≡

∀ x[M]. x 6=0 −→ (∃ y[M]. y∈x ∧ ¬(∃ z[M]. z∈x ∧ 〈z,y〉 ∈ r))"
definition

wellfounded_on :: "[i⇒o,i,i]⇒o" where
— every non-empty SUBSET OF A has an r -minimal element
"wellfounded_on(M,A,r) ≡

∀ x[M]. x 6=0 −→ x⊆A −→ (∃ y[M]. y∈x ∧ ¬(∃ z[M]. z∈x ∧ 〈z,y〉
∈ r))"

definition
wellordered :: "[i⇒o,i,i]⇒o" where

— linear and wellfounded on A
"wellordered(M,A,r) ≡

transitive_rel(M,A,r) ∧ linear_rel(M,A,r) ∧ wellfounded_on(M,A,r)"

3.1.1 Trivial absoluteness proofs
lemma (in M_basic) irreflexive_abs [simp]:

"M(A) =⇒ irreflexive(M,A,r) ←→ irrefl(A,r)"
〈proof 〉

lemma (in M_basic) transitive_rel_abs [simp]:
"M(A) =⇒ transitive_rel(M,A,r) ←→ trans[A](r)"

〈proof 〉

lemma (in M_basic) linear_rel_abs [simp]:
"M(A) =⇒ linear_rel(M,A,r) ←→ linear(A,r)"

〈proof 〉

lemma (in M_basic) wellordered_is_trans_on:
" [[wellordered(M,A,r); M(A)]] =⇒ trans[A](r)"

〈proof 〉
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lemma (in M_basic) wellordered_is_linear:
" [[wellordered(M,A,r); M(A)]] =⇒ linear(A,r)"

〈proof 〉

lemma (in M_basic) wellordered_is_wellfounded_on:
" [[wellordered(M,A,r); M(A)]] =⇒ wellfounded_on(M,A,r)"

〈proof 〉

lemma (in M_basic) wellfounded_imp_wellfounded_on:
" [[wellfounded(M,r); M(A)]] =⇒ wellfounded_on(M,A,r)"

〈proof 〉

lemma (in M_basic) wellfounded_on_subset_A:
" [[wellfounded_on(M,A,r); B<=A ]] =⇒ wellfounded_on(M,B,r)"

〈proof 〉

3.1.2 Well-founded relations
lemma (in M_basic) wellfounded_on_iff_wellfounded:

"wellfounded_on(M,A,r) ←→ wellfounded(M, r ∩ A*A)"
〈proof 〉

lemma (in M_basic) wellfounded_on_imp_wellfounded:
" [[wellfounded_on(M,A,r); r ⊆ A*A ]] =⇒ wellfounded(M,r)"

〈proof 〉

lemma (in M_basic) wellfounded_on_field_imp_wellfounded:
"wellfounded_on(M, field(r), r) =⇒ wellfounded(M,r)"

〈proof 〉

lemma (in M_basic) wellfounded_iff_wellfounded_on_field:
"M(r) =⇒ wellfounded(M,r) ←→ wellfounded_on(M, field(r), r)"

〈proof 〉

lemma (in M_basic) wellfounded_induct:
" [[wellfounded(M,r); M(a); M(r); separation(M, λx. ¬P(x));

∀ x. M(x) ∧ (∀ y. 〈y,x〉 ∈ r −→ P(y)) −→ P(x)]]
=⇒ P(a)"

〈proof 〉

lemma (in M_basic) wellfounded_on_induct:
" [[a∈A; wellfounded_on(M,A,r); M(A);

separation(M, λx. x∈A −→ ¬P(x));
∀ x∈A. M(x) ∧ (∀ y∈A. 〈y,x〉 ∈ r −→ P(y)) −→ P(x)]]

=⇒ P(a)"
〈proof 〉
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3.1.3 Kunen’s lemma IV 3.14, page 123
lemma (in M_basic) linear_imp_relativized:

"linear(A,r) =⇒ linear_rel(M,A,r)"
〈proof 〉

lemma (in M_basic) trans_on_imp_relativized:
"trans[A](r) =⇒ transitive_rel(M,A,r)"

〈proof 〉

lemma (in M_basic) wf_on_imp_relativized:
"wf[A](r) =⇒ wellfounded_on(M,A,r)"

〈proof 〉

lemma (in M_basic) wf_imp_relativized:
"wf(r) =⇒ wellfounded(M,r)"

〈proof 〉

lemma (in M_basic) well_ord_imp_relativized:
"well_ord(A,r) =⇒ wellordered(M,A,r)"

〈proof 〉

The property being well founded (and hence of being well ordered) is not
absolute: the set that doesn’t contain a minimal element may not exist in
the class M. However, every set that is well founded in a transitive model
M is well founded (page 124).

3.2 Relativized versions of order-isomorphisms and order
types

lemma (in M_basic) order_isomorphism_abs [simp]:
" [[M(A); M(B); M(f)]]
=⇒ order_isomorphism(M,A,r,B,s,f) ←→ f ∈ ord_iso(A,r,B,s)"

〈proof 〉

lemma (in M_trans) pred_set_abs [simp]:
" [[M(r); M(B)]] =⇒ pred_set(M,A,x,r,B) ←→ B = Order.pred(A,x,r)"

〈proof 〉

lemma (in M_basic) pred_closed [intro,simp]:
" [[M(A); M(r); M(x)]] =⇒ M(Order.pred(A, x, r))"
〈proof 〉

lemma (in M_basic) membership_abs [simp]:
" [[M(r); M(A)]] =⇒ membership(M,A,r) ←→ r = Memrel(A)"

〈proof 〉

lemma (in M_basic) M_Memrel_iff:
"M(A) =⇒ Memrel(A) = {z ∈ A*A. ∃ x[M]. ∃ y[M]. z = 〈x,y〉 ∧ x ∈ y}"
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〈proof 〉

lemma (in M_basic) Memrel_closed [intro,simp]:
"M(A) =⇒ M(Memrel(A))"

〈proof 〉

3.3 Main results of Kunen, Chapter 1 section 6

Subset properties– proved outside the locale
lemma linear_rel_subset:

" [[linear_rel(M, A, r); B ⊆ A ]] =⇒ linear_rel(M, B, r)"
〈proof 〉

lemma transitive_rel_subset:
" [[transitive_rel(M, A, r); B ⊆ A ]] =⇒ transitive_rel(M, B, r)"

〈proof 〉

lemma wellfounded_on_subset:
" [[wellfounded_on(M, A, r); B ⊆ A ]] =⇒ wellfounded_on(M, B, r)"

〈proof 〉

lemma wellordered_subset:
" [[wellordered(M, A, r); B ⊆ A ]] =⇒ wellordered(M, B, r)"

〈proof 〉

lemma (in M_basic) wellfounded_on_asym:
" [[wellfounded_on(M,A,r); 〈a,x〉∈r; a∈A; x∈A; M(A)]] =⇒ 〈x,a〉/∈r"

〈proof 〉

lemma (in M_basic) wellordered_asym:
" [[wellordered(M,A,r); 〈a,x〉∈r; a∈A; x∈A; M(A)]] =⇒ 〈x,a〉/∈r"

〈proof 〉

end

4 Relativized Well-Founded Recursion
theory WFrec imports Wellorderings begin

4.1 General Lemmas
lemma apply_recfun2:

" [[is_recfun(r,a,H,f); 〈x,i〉:f ]] =⇒ i = H(x, restrict(f,r-‘‘{x}))"
〈proof 〉

Expresses is_recfun as a recursion equation
lemma is_recfun_iff_equation:

"is_recfun(r,a,H,f) ←→
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f ∈ r -‘‘ {a} → range(f) ∧
(∀ x ∈ r-‘‘{a}. f‘x = H(x, restrict(f, r-‘‘{x})))"

〈proof 〉

lemma is_recfun_imp_in_r: " [[is_recfun(r,a,H,f); 〈x,i〉 ∈ f ]] =⇒ 〈x, a〉
∈ r"
〈proof 〉

lemma trans_Int_eq:
" [[trans(r); 〈y,x〉 ∈ r ]] =⇒ r -‘‘ {x} ∩ r -‘‘ {y} = r -‘‘ {y}"

〈proof 〉

lemma is_recfun_restrict_idem:
"is_recfun(r,a,H,f) =⇒ restrict(f, r -‘‘ {a}) = f"

〈proof 〉

lemma is_recfun_cong_lemma:
" [[is_recfun(r,a,H,f); r = r’; a = a’; f = f’;∧

x g. [[<x,a’> ∈ r’; relation(g); domain(g) ⊆ r’ -‘‘{x}]]
=⇒ H(x,g) = H’(x,g)]]

=⇒ is_recfun(r’,a’,H’,f’)"
〈proof 〉

For is_recfun we need only pay attention to functions whose domains are
initial segments of r.
lemma is_recfun_cong:

" [[r = r’; a = a’; f = f’;∧
x g. [[<x,a’> ∈ r’; relation(g); domain(g) ⊆ r’ -‘‘{x}]]

=⇒ H(x,g) = H’(x,g)]]
=⇒ is_recfun(r,a,H,f) ←→ is_recfun(r’,a’,H’,f’)"

〈proof 〉

4.2 Reworking of the Recursion Theory Within M

lemma (in M_basic) is_recfun_separation’:
" [[f ∈ r -‘‘ {a} → range(f); g ∈ r -‘‘ {b} → range(g);

M(r); M(f); M(g); M(a); M(b)]]
=⇒ separation(M, λx. ¬ (〈x, a〉 ∈ r −→ 〈x, b〉 ∈ r −→ f ‘ x = g

‘ x))"
〈proof 〉

Stated using trans(r) rather than transitive_rel(M, A, r) because the
latter rewrites to the former anyway, by transitive_rel_abs. As always,
theorems should be expressed in simplified form. The last three M-premises
are redundant because of M(r), but without them we’d have to undertake
more work to set up the induction formula.
lemma (in M_basic) is_recfun_equal [rule_format]:

" [[is_recfun(r,a,H,f); is_recfun(r,b,H,g);
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wellfounded(M,r); trans(r);
M(f); M(g); M(r); M(x); M(a); M(b)]]

=⇒ 〈x,a〉 ∈ r −→ 〈x,b〉 ∈ r −→ f‘x=g‘x"
〈proof 〉

lemma (in M_basic) is_recfun_cut:
" [[is_recfun(r,a,H,f); is_recfun(r,b,H,g);

wellfounded(M,r); trans(r);
M(f); M(g); M(r); 〈b,a〉 ∈ r ]]

=⇒ restrict(f, r-‘‘{b}) = g"
〈proof 〉

lemma (in M_basic) is_recfun_functional:
" [[is_recfun(r,a,H,f); is_recfun(r,a,H,g);

wellfounded(M,r); trans(r); M(f); M(g); M(r)]] =⇒ f=g"
〈proof 〉

Tells us that is_recfun can (in principle) be relativized.
lemma (in M_basic) is_recfun_relativize:

" [[M(r); M(f); ∀ x[M]. ∀ g[M]. function(g) −→ M(H(x,g))]]
=⇒ is_recfun(r,a,H,f) ←→

(∀ z[M]. z ∈ f ←→
(∃ x[M]. 〈x,a〉 ∈ r ∧ z = <x, H(x, restrict(f, r-‘‘{x}))>))"

〈proof 〉

lemma (in M_basic) is_recfun_restrict:
" [[wellfounded(M,r); trans(r); is_recfun(r,x,H,f); 〈y,x〉 ∈ r;

M(r); M(f);
∀ x[M]. ∀ g[M]. function(g) −→ M(H(x,g))]]
=⇒ is_recfun(r, y, H, restrict(f, r -‘‘ {y}))"

〈proof 〉

lemma (in M_basic) restrict_Y_lemma:
" [[wellfounded(M,r); trans(r); M(r);

∀ x[M]. ∀ g[M]. function(g) −→ M(H(x,g)); M(Y);
∀ b[M].

b ∈ Y ←→
(∃ x[M]. 〈x,a1〉 ∈ r ∧
(∃ y[M]. b = 〈x,y〉 ∧ (∃ g[M]. is_recfun(r,x,H,g) ∧ y = H(x,g))));

〈x,a1〉 ∈ r; is_recfun(r,x,H,f); M(f)]]
=⇒ restrict(Y, r -‘‘ {x}) = f"

〈proof 〉

For typical applications of Replacement for recursive definitions
lemma (in M_basic) univalent_is_recfun:

" [[wellfounded(M,r); trans(r); M(r)]]
=⇒ univalent (M, A, λx p.

∃ y[M]. p = 〈x,y〉 ∧ (∃ f[M]. is_recfun(r,x,H,f) ∧ y = H(x,f)))"
〈proof 〉

58



Proof of the inductive step for exists_is_recfun, since we must prove two
versions.
lemma (in M_basic) exists_is_recfun_indstep:

" [[∀ y. 〈y, a1〉 ∈ r −→ (∃ f[M]. is_recfun(r, y, H, f));
wellfounded(M,r); trans(r); M(r); M(a1);
strong_replacement(M, λx z.

∃ y[M]. ∃ g[M]. pair(M,x,y,z) ∧ is_recfun(r,x,H,g) ∧ y =
H(x,g));

∀ x[M]. ∀ g[M]. function(g) −→ M(H(x,g))]]
=⇒ ∃ f[M]. is_recfun(r,a1,H,f)"

〈proof 〉

Relativized version, when we have the (currently weaker) premise wellfounded(M,
r)

lemma (in M_basic) wellfounded_exists_is_recfun:
" [[wellfounded(M,r); trans(r);

separation(M, λx. ¬ (∃ f[M]. is_recfun(r, x, H, f)));
strong_replacement(M, λx z.
∃ y[M]. ∃ g[M]. pair(M,x,y,z) ∧ is_recfun(r,x,H,g) ∧ y = H(x,g));

M(r); M(a);
∀ x[M]. ∀ g[M]. function(g) −→ M(H(x,g))]]

=⇒ ∃ f[M]. is_recfun(r,a,H,f)"
〈proof 〉

lemma (in M_basic) wf_exists_is_recfun [rule_format]:
" [[wf(r); trans(r); M(r);

strong_replacement(M, λx z.
∃ y[M]. ∃ g[M]. pair(M,x,y,z) ∧ is_recfun(r,x,H,g) ∧ y = H(x,g));

∀ x[M]. ∀ g[M]. function(g) −→ M(H(x,g))]]
=⇒ M(a) −→ (∃ f[M]. is_recfun(r,a,H,f))"

〈proof 〉

4.3 Relativization of the ZF Predicate is_recfun

definition
M_is_recfun :: "[i⇒o, [i,i,i]⇒o, i, i, i] ⇒ o" where
"M_is_recfun(M,MH,r,a,f) ≡
∀ z[M]. z ∈ f ←→

(∃ x[M]. ∃ y[M]. ∃ xa[M]. ∃ sx[M]. ∃ r_sx[M]. ∃ f_r_sx[M].
pair(M,x,y,z) ∧ pair(M,x,a,xa) ∧ upair(M,x,x,sx) ∧
pre_image(M,r,sx,r_sx) ∧ restriction(M,f,r_sx,f_r_sx) ∧
xa ∈ r ∧ MH(x, f_r_sx, y))"

definition
is_wfrec :: "[i⇒o, [i,i,i]⇒o, i, i, i] ⇒ o" where
"is_wfrec(M,MH,r,a,z) ≡
∃ f[M]. M_is_recfun(M,MH,r,a,f) ∧ MH(a,f,z)"
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definition
wfrec_replacement :: "[i⇒o, [i,i,i]⇒o, i] ⇒ o" where
"wfrec_replacement(M,MH,r) ≡

strong_replacement(M,
λx z. ∃ y[M]. pair(M,x,y,z) ∧ is_wfrec(M,MH,r,x,y))"

lemma (in M_basic) is_recfun_abs:
" [[∀ x[M]. ∀ g[M]. function(g) −→ M(H(x,g)); M(r); M(a); M(f);

relation2(M,MH,H)]]
=⇒ M_is_recfun(M,MH,r,a,f) ←→ is_recfun(r,a,H,f)"

〈proof 〉

lemma M_is_recfun_cong [cong]:
" [[r = r’; a = a’; f = f’;∧

x g y. [[M(x); M(g); M(y)]] =⇒ MH(x,g,y) ←→ MH’(x,g,y)]]
=⇒ M_is_recfun(M,MH,r,a,f) ←→ M_is_recfun(M,MH’,r’,a’,f’)"

〈proof 〉

lemma (in M_basic) is_wfrec_abs:
" [[∀ x[M]. ∀ g[M]. function(g) −→ M(H(x,g));

relation2(M,MH,H); M(r); M(a); M(z)]]
=⇒ is_wfrec(M,MH,r,a,z) ←→

(∃ g[M]. is_recfun(r,a,H,g) ∧ z = H(a,g))"
〈proof 〉

Relating wfrec_replacement to native constructs
lemma (in M_basic) wfrec_replacement’:

" [[wfrec_replacement(M,MH,r);
∀ x[M]. ∀ g[M]. function(g) −→ M(H(x,g));
relation2(M,MH,H); M(r)]]

=⇒ strong_replacement(M, λx z. ∃ y[M].
pair(M,x,y,z) ∧ (∃ g[M]. is_recfun(r,x,H,g) ∧ y = H(x,g)))"

〈proof 〉

lemma wfrec_replacement_cong [cong]:
" [[

∧
x y z. [[M(x); M(y); M(z)]] =⇒ MH(x,y,z) ←→ MH’(x,y,z);
r=r’]]

=⇒ wfrec_replacement(M, λx y. MH(x,y), r) ←→
wfrec_replacement(M, λx y. MH’(x,y), r’)"

〈proof 〉

end

5 Absoluteness of Well-Founded Recursion
theory WF_absolute imports WFrec begin
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5.1 Transitive closure without fixedpoints
definition

rtrancl_alt :: "[i,i]⇒i" where
"rtrancl_alt(A,r) ≡

{p ∈ A*A. ∃ n∈nat. ∃ f ∈ succ(n) -> A.
(∃ x y. p = 〈x,y〉 ∧ f‘0 = x ∧ f‘n = y) ∧

(∀ i∈n. <f‘i, f‘succ(i)> ∈ r)}"

lemma alt_rtrancl_lemma1 [rule_format]:
"n ∈ nat
=⇒ ∀ f ∈ succ(n) -> field(r).

(∀ i∈n. 〈f‘i, f ‘ succ(i)〉 ∈ r) −→ 〈f‘0, f‘n〉 ∈ r^*"
〈proof 〉

lemma rtrancl_alt_subset_rtrancl: "rtrancl_alt(field(r),r) ⊆ r^*"
〈proof 〉

lemma rtrancl_subset_rtrancl_alt: "r^* ⊆ rtrancl_alt(field(r),r)"
〈proof 〉

lemma rtrancl_alt_eq_rtrancl: "rtrancl_alt(field(r),r) = r^*"
〈proof 〉

definition
rtran_closure_mem :: "[i⇒o,i,i,i] ⇒ o" where

— The property of belonging to rtran_closure(r)
"rtran_closure_mem(M,A,r,p) ≡

∃ nnat[M]. ∃ n[M]. ∃ n’[M].
omega(M,nnat) ∧ n∈nnat ∧ successor(M,n,n’) ∧
(∃ f[M]. typed_function(M,n’,A,f) ∧
(∃ x[M]. ∃ y[M]. ∃ zero[M]. pair(M,x,y,p) ∧ empty(M,zero)

∧
fun_apply(M,f,zero,x) ∧ fun_apply(M,f,n,y)) ∧
(∀ j[M]. j∈n −→

(∃ fj[M]. ∃ sj[M]. ∃ fsj[M]. ∃ ffp[M].
fun_apply(M,f,j,fj) ∧ successor(M,j,sj) ∧
fun_apply(M,f,sj,fsj) ∧ pair(M,fj,fsj,ffp) ∧ ffp

∈ r)))"

definition
rtran_closure :: "[i⇒o,i,i] ⇒ o" where

"rtran_closure(M,r,s) ≡
∀ A[M]. is_field(M,r,A) −→
(∀ p[M]. p ∈ s ←→ rtran_closure_mem(M,A,r,p))"

definition
tran_closure :: "[i⇒o,i,i] ⇒ o" where

"tran_closure(M,r,t) ≡
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∃ s[M]. rtran_closure(M,r,s) ∧ composition(M,r,s,t)"

locale M_trancl = M_basic +
assumes rtrancl_separation:

" [[M(r); M(A)]] =⇒ separation (M, rtran_closure_mem(M,A,r))"
and wellfounded_trancl_separation:

" [[M(r); M(Z)]] =⇒
separation (M, λx.

∃ w[M]. ∃ wx[M]. ∃ rp[M].
w ∈ Z ∧ pair(M,w,x,wx) ∧ tran_closure(M,r,rp) ∧ wx ∈

rp)"
and M_nat [iff] : "M(nat)"

lemma (in M_trancl) rtran_closure_mem_iff:
" [[M(A); M(r); M(p)]]
=⇒ rtran_closure_mem(M,A,r,p) ←→

(∃ n[M]. n∈nat ∧
(∃ f[M]. f ∈ succ(n) -> A ∧
(∃ x[M]. ∃ y[M]. p = 〈x,y〉 ∧ f‘0 = x ∧ f‘n = y) ∧

(∀ i∈n. <f‘i, f‘succ(i)> ∈ r)))"
〈proof 〉

lemma (in M_trancl) rtran_closure_rtrancl:
"M(r) =⇒ rtran_closure(M,r,rtrancl(r))"

〈proof 〉

lemma (in M_trancl) rtrancl_closed [intro,simp]:
"M(r) =⇒ M(rtrancl(r))"

〈proof 〉

lemma (in M_trancl) rtrancl_abs [simp]:
" [[M(r); M(z)]] =⇒ rtran_closure(M,r,z) ←→ z = rtrancl(r)"

〈proof 〉

lemma (in M_trancl) trancl_closed [intro,simp]:
"M(r) =⇒ M(trancl(r))"

〈proof 〉

lemma (in M_trancl) trancl_abs [simp]:
" [[M(r); M(z)]] =⇒ tran_closure(M,r,z) ←→ z = trancl(r)"

〈proof 〉

lemma (in M_trancl) wellfounded_trancl_separation’:
" [[M(r); M(Z)]] =⇒ separation (M, λx. ∃ w[M]. w ∈ Z ∧ 〈w,x〉 ∈ r^+)"

〈proof 〉

Alternative proof of wf_on_trancl ; inspiration for the relativized version.
Original version is on theory WF.
lemma " [[wf[A](r); r-‘‘A ⊆ A ]] =⇒ wf[A](r^+)"
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〈proof 〉

lemma (in M_trancl) wellfounded_on_trancl:
" [[wellfounded_on(M,A,r); r-‘‘A ⊆ A; M(r); M(A)]]
=⇒ wellfounded_on(M,A,r^+)"

〈proof 〉

lemma (in M_trancl) wellfounded_trancl:
" [[wellfounded(M,r); M(r)]] =⇒ wellfounded(M,r^+)"

〈proof 〉

Absoluteness for wfrec-defined functions.
lemma (in M_trancl) wfrec_relativize:

" [[wf(r); M(a); M(r);
strong_replacement(M, λx z. ∃ y[M]. ∃ g[M].

pair(M,x,y,z) ∧
is_recfun(r^+, x, λx f. H(x, restrict(f, r -‘‘ {x})), g) ∧
y = H(x, restrict(g, r -‘‘ {x})));

∀ x[M]. ∀ g[M]. function(g) −→ M(H(x,g))]]
=⇒ wfrec(r,a,H) = z ←→

(∃ f[M]. is_recfun(r^+, a, λx f. H(x, restrict(f, r -‘‘ {x})), f)
∧

z = H(a,restrict(f,r-‘‘{a})))"
〈proof 〉

Assuming r is transitive simplifies the occurrences of H. The premise relation(r)
is necessary before we can replace r^+ by r.
theorem (in M_trancl) trans_wfrec_relativize:

" [[wf(r); trans(r); relation(r); M(r); M(a);
wfrec_replacement(M,MH,r); relation2(M,MH,H);
∀ x[M]. ∀ g[M]. function(g) −→ M(H(x,g))]]

=⇒ wfrec(r,a,H) = z ←→ (∃ f[M]. is_recfun(r,a,H,f) ∧ z = H(a,f))"

〈proof 〉

theorem (in M_trancl) trans_wfrec_abs:
" [[wf(r); trans(r); relation(r); M(r); M(a); M(z);

wfrec_replacement(M,MH,r); relation2(M,MH,H);
∀ x[M]. ∀ g[M]. function(g) −→ M(H(x,g))]]

=⇒ is_wfrec(M,MH,r,a,z) ←→ z=wfrec(r,a,H)"
〈proof 〉

lemma (in M_trancl) trans_eq_pair_wfrec_iff:
" [[wf(r); trans(r); relation(r); M(r); M(y);

wfrec_replacement(M,MH,r); relation2(M,MH,H);
∀ x[M]. ∀ g[M]. function(g) −→ M(H(x,g))]]

=⇒ y = <x, wfrec(r, x, H)> ←→
(∃ f[M]. is_recfun(r,x,H,f) ∧ y = <x, H(x,f)>)"
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〈proof 〉

5.2 M is closed under well-founded recursion

Lemma with the awkward premise mentioning wfrec.
lemma (in M_trancl) wfrec_closed_lemma [rule_format]:

" [[wf(r); M(r);
strong_replacement(M, λx y. y = 〈x, wfrec(r, x, H)〉);
∀ x[M]. ∀ g[M]. function(g) −→ M(H(x,g))]]

=⇒ M(a) −→ M(wfrec(r,a,H))"
〈proof 〉

Eliminates one instance of replacement.
lemma (in M_trancl) wfrec_replacement_iff:

"strong_replacement(M, λx z.
∃ y[M]. pair(M,x,y,z) ∧ (∃ g[M]. is_recfun(r,x,H,g) ∧ y = H(x,g)))

←→
strong_replacement(M,

λx y. ∃ f[M]. is_recfun(r,x,H,f) ∧ y = <x, H(x,f)>)"
〈proof 〉

Useful version for transitive relations
theorem (in M_trancl) trans_wfrec_closed:

" [[wf(r); trans(r); relation(r); M(r); M(a);
wfrec_replacement(M,MH,r); relation2(M,MH,H);
∀ x[M]. ∀ g[M]. function(g) −→ M(H(x,g))]]

=⇒ M(wfrec(r,a,H))"
〈proof 〉

5.3 Absoluteness without assuming transitivity
lemma (in M_trancl) eq_pair_wfrec_iff:

" [[wf(r); M(r); M(y);
strong_replacement(M, λx z. ∃ y[M]. ∃ g[M].

pair(M,x,y,z) ∧
is_recfun(r^+, x, λx f. H(x, restrict(f, r -‘‘ {x})), g) ∧
y = H(x, restrict(g, r -‘‘ {x})));

∀ x[M]. ∀ g[M]. function(g) −→ M(H(x,g))]]
=⇒ y = <x, wfrec(r, x, H)> ←→

(∃ f[M]. is_recfun(r^+, x, λx f. H(x, restrict(f, r -‘‘ {x})), f)
∧

y = <x, H(x,restrict(f,r-‘‘{x}))>)"
〈proof 〉

Full version not assuming transitivity, but maybe not very useful.
theorem (in M_trancl) wfrec_closed:

" [[wf(r); M(r); M(a);
wfrec_replacement(M,MH,r^+);
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relation2(M,MH, λx f. H(x, restrict(f, r -‘‘ {x})));
∀ x[M]. ∀ g[M]. function(g) −→ M(H(x,g))]]

=⇒ M(wfrec(r,a,H))"
〈proof 〉

end

6 Absoluteness Properties for Recursive Datatypes
theory Datatype_absolute imports Formula WF_absolute begin

6.1 The lfp of a continuous function can be expressed as a
union

definition
directed :: "i⇒o" where
"directed(A) ≡ A 6=0 ∧ (∀ x∈A. ∀ y∈A. x ∪ y ∈ A)"

definition
contin :: "(i⇒i) ⇒ o" where
"contin(h) ≡ (∀ A. directed(A) −→ h(

⋃
A) = (

⋃
X∈A. h(X)))"

lemma bnd_mono_iterates_subset: " [[bnd_mono(D, h); n ∈ nat ]] =⇒ h^n (0)
⊆ D"
〈proof 〉

lemma bnd_mono_increasing [rule_format]:
" [[i ∈ nat; j ∈ nat; bnd_mono(D,h)]] =⇒ i ≤ j −→ h^i(0) ⊆ h^j(0)"

〈proof 〉

lemma directed_iterates: "bnd_mono(D,h) =⇒ directed({h^n (0). n∈nat})"
〈proof 〉

lemma contin_iterates_eq:
" [[bnd_mono(D, h); contin(h)]]
=⇒ h(

⋃
n∈nat. h^n (0)) = (

⋃
n∈nat. h^n (0))"

〈proof 〉

lemma lfp_subset_Union:
" [[bnd_mono(D, h); contin(h)]] =⇒ lfp(D,h) ⊆ (

⋃
n∈nat. h^n(0))"

〈proof 〉

lemma Union_subset_lfp:
"bnd_mono(D,h) =⇒ (

⋃
n∈nat. h^n(0)) ⊆ lfp(D,h)"

〈proof 〉

lemma lfp_eq_Union:
" [[bnd_mono(D, h); contin(h)]] =⇒ lfp(D,h) = (

⋃
n∈nat. h^n(0))"
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〈proof 〉

6.1.1 Some Standard Datatype Constructions Preserve Continu-
ity

lemma contin_imp_mono: " [[X⊆Y; contin(F)]] =⇒ F(X) ⊆ F(Y)"
〈proof 〉

lemma sum_contin: " [[contin(F); contin(G)]] =⇒ contin(λX. F(X) + G(X))"
〈proof 〉

lemma prod_contin: " [[contin(F); contin(G)]] =⇒ contin(λX. F(X) * G(X))"

〈proof 〉

lemma const_contin: "contin(λX. A)"
〈proof 〉

lemma id_contin: "contin(λX. X)"
〈proof 〉

6.2 Absoluteness for "Iterates"
definition

iterates_MH :: "[i⇒o, [i,i]⇒o, i, i, i, i] ⇒ o" where
"iterates_MH(M,isF,v,n,g,z) ≡

is_nat_case(M, v, λm u. ∃ gm[M]. fun_apply(M,g,m,gm) ∧ isF(gm,u),
n, z)"

definition
is_iterates :: "[i⇒o, [i,i]⇒o, i, i, i] ⇒ o" where

"is_iterates(M,isF,v,n,Z) ≡
∃ sn[M]. ∃ msn[M]. successor(M,n,sn) ∧ membership(M,sn,msn) ∧

is_wfrec(M, iterates_MH(M,isF,v), msn, n, Z)"

definition
iterates_replacement :: "[i⇒o, [i,i]⇒o, i] ⇒ o" where
"iterates_replacement(M,isF,v) ≡
∀ n[M]. n∈nat −→

wfrec_replacement(M, iterates_MH(M,isF,v), Memrel(succ(n)))"

lemma (in M_basic) iterates_MH_abs:
" [[relation1(M,isF,F); M(n); M(g); M(z)]]
=⇒ iterates_MH(M,isF,v,n,g,z) ←→ z = nat_case(v, λm. F(g‘m), n)"

〈proof 〉

lemma (in M_trancl) iterates_imp_wfrec_replacement:
" [[relation1(M,isF,F); n ∈ nat; iterates_replacement(M,isF,v)]]
=⇒ wfrec_replacement(M, λn f z. z = nat_case(v, λm. F(f‘m), n),

Memrel(succ(n)))"
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〈proof 〉

theorem (in M_trancl) iterates_abs:
" [[iterates_replacement(M,isF,v); relation1(M,isF,F);

n ∈ nat; M(v); M(z); ∀ x[M]. M(F(x))]]
=⇒ is_iterates(M,isF,v,n,z) ←→ z = iterates(F,n,v)"

〈proof 〉

lemma (in M_trancl) iterates_closed [intro,simp]:
" [[iterates_replacement(M,isF,v); relation1(M,isF,F);

n ∈ nat; M(v); ∀ x[M]. M(F(x))]]
=⇒ M(iterates(F,n,v))"

〈proof 〉

6.3 lists without univ
lemmas datatype_univs = Inl_in_univ Inr_in_univ

Pair_in_univ nat_into_univ A_into_univ

lemma list_fun_bnd_mono: "bnd_mono(univ(A), λX. {0} + A*X)"
〈proof 〉

lemma list_fun_contin: "contin(λX. {0} + A*X)"
〈proof 〉

Re-expresses lists using sum and product
lemma list_eq_lfp2: "list(A) = lfp(univ(A), λX. {0} + A*X)"
〈proof 〉

Re-expresses lists using "iterates", no univ.
lemma list_eq_Union:

"list(A) = (
⋃

n∈nat. (λX. {0} + A*X) ^ n (0))"
〈proof 〉

definition
is_list_functor :: "[i⇒o,i,i,i] ⇒ o" where

"is_list_functor(M,A,X,Z) ≡
∃ n1[M]. ∃ AX[M].
number1(M,n1) ∧ cartprod(M,A,X,AX) ∧ is_sum(M,n1,AX,Z)"

lemma (in M_basic) list_functor_abs [simp]:
" [[M(A); M(X); M(Z)]] =⇒ is_list_functor(M,A,X,Z) ←→ (Z = {0} + A*X)"

〈proof 〉

6.4 formulas without univ
lemma formula_fun_bnd_mono:
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"bnd_mono(univ(0), λX. ((nat*nat) + (nat*nat)) + (X*X + X))"
〈proof 〉

lemma formula_fun_contin:
"contin(λX. ((nat*nat) + (nat*nat)) + (X*X + X))"

〈proof 〉

Re-expresses formulas using sum and product
lemma formula_eq_lfp2:

"formula = lfp(univ(0), λX. ((nat*nat) + (nat*nat)) + (X*X + X))"
〈proof 〉

Re-expresses formulas using "iterates", no univ.
lemma formula_eq_Union:

"formula =
(
⋃

n∈nat. (λX. ((nat*nat) + (nat*nat)) + (X*X + X)) ^ n (0))"
〈proof 〉

definition
is_formula_functor :: "[i⇒o,i,i] ⇒ o" where

"is_formula_functor(M,X,Z) ≡
∃ nat’[M]. ∃ natnat[M]. ∃ natnatsum[M]. ∃ XX[M]. ∃ X3[M].

omega(M,nat’) ∧ cartprod(M,nat’,nat’,natnat) ∧
is_sum(M,natnat,natnat,natnatsum) ∧
cartprod(M,X,X,XX) ∧ is_sum(M,XX,X,X3) ∧
is_sum(M,natnatsum,X3,Z)"

lemma (in M_trancl) formula_functor_abs [simp]:
" [[M(X); M(Z)]]
=⇒ is_formula_functor(M,X,Z) ←→

Z = ((nat*nat) + (nat*nat)) + (X*X + X)"
〈proof 〉

6.5 M Contains the List and Formula Datatypes
definition

list_N :: "[i,i] ⇒ i" where
"list_N(A,n) ≡ (λX. {0} + A * X)^n (0)"

lemma Nil_in_list_N [simp]: "[] ∈ list_N(A,succ(n))"
〈proof 〉

lemma Cons_in_list_N [simp]:
"Cons(a,l) ∈ list_N(A,succ(n)) ←→ a∈A ∧ l ∈ list_N(A,n)"

〈proof 〉

These two aren’t simprules because they reveal the underlying list represen-
tation.
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lemma list_N_0: "list_N(A,0) = 0"
〈proof 〉

lemma list_N_succ: "list_N(A,succ(n)) = {0} + A * (list_N(A,n))"
〈proof 〉

lemma list_N_imp_list:
" [[l ∈ list_N(A,n); n ∈ nat ]] =⇒ l ∈ list(A)"

〈proof 〉

lemma list_N_imp_length_lt [rule_format]:
"n ∈ nat =⇒ ∀ l ∈ list_N(A,n). length(l) < n"

〈proof 〉

lemma list_imp_list_N [rule_format]:
"l ∈ list(A) =⇒ ∀ n∈nat. length(l) < n −→ l ∈ list_N(A, n)"

〈proof 〉

lemma list_N_imp_eq_length:
" [[n ∈ nat; l /∈ list_N(A, n); l ∈ list_N(A, succ(n))]]
=⇒ n = length(l)"

〈proof 〉

Express list_rec without using rank or Vset, neither of which is absolute.
lemma (in M_trivial) list_rec_eq:

"l ∈ list(A) =⇒
list_rec(a,g,l) =
transrec (succ(length(l)),

λx h. Lambda (list(A),
list_case’ (a,

λa l. g(a, l, h ‘ succ(length(l)) ‘ l)))) ‘
l"
〈proof 〉

definition
is_list_N :: "[i⇒o,i,i,i] ⇒ o" where

"is_list_N(M,A,n,Z) ≡
∃ zero[M]. empty(M,zero) ∧

is_iterates(M, is_list_functor(M,A), zero, n, Z)"

definition
mem_list :: "[i⇒o,i,i] ⇒ o" where

"mem_list(M,A,l) ≡
∃ n[M]. ∃ listn[M].
finite_ordinal(M,n) ∧ is_list_N(M,A,n,listn) ∧ l ∈ listn"

definition
is_list :: "[i⇒o,i,i] ⇒ o" where

"is_list(M,A,Z) ≡ ∀ l[M]. l ∈ Z ←→ mem_list(M,A,l)"
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6.5.1 Towards Absoluteness of formula_rec

consts depth :: "i⇒i"
primrec

"depth(Member(x,y)) = 0"
"depth(Equal(x,y)) = 0"
"depth(Nand(p,q)) = succ(depth(p) ∪ depth(q))"
"depth(Forall(p)) = succ(depth(p))"

lemma depth_type [TC]: "p ∈ formula =⇒ depth(p) ∈ nat"
〈proof 〉

definition
formula_N :: "i ⇒ i" where

"formula_N(n) ≡ (λX. ((nat*nat) + (nat*nat)) + (X*X + X)) ^ n (0)"

lemma Member_in_formula_N [simp]:
"Member(x,y) ∈ formula_N(succ(n)) ←→ x ∈ nat ∧ y ∈ nat"

〈proof 〉

lemma Equal_in_formula_N [simp]:
"Equal(x,y) ∈ formula_N(succ(n)) ←→ x ∈ nat ∧ y ∈ nat"

〈proof 〉

lemma Nand_in_formula_N [simp]:
"Nand(x,y) ∈ formula_N(succ(n)) ←→ x ∈ formula_N(n) ∧ y ∈ formula_N(n)"

〈proof 〉

lemma Forall_in_formula_N [simp]:
"Forall(x) ∈ formula_N(succ(n)) ←→ x ∈ formula_N(n)"

〈proof 〉

These two aren’t simprules because they reveal the underlying formula rep-
resentation.
lemma formula_N_0: "formula_N(0) = 0"
〈proof 〉

lemma formula_N_succ:
"formula_N(succ(n)) =
((nat*nat) + (nat*nat)) + (formula_N(n) * formula_N(n) + formula_N(n))"

〈proof 〉

lemma formula_N_imp_formula:
" [[p ∈ formula_N(n); n ∈ nat ]] =⇒ p ∈ formula"

〈proof 〉

lemma formula_N_imp_depth_lt [rule_format]:
"n ∈ nat =⇒ ∀ p ∈ formula_N(n). depth(p) < n"

〈proof 〉
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lemma formula_imp_formula_N [rule_format]:
"p ∈ formula =⇒ ∀ n∈nat. depth(p) < n −→ p ∈ formula_N(n)"

〈proof 〉

lemma formula_N_imp_eq_depth:
" [[n ∈ nat; p /∈ formula_N(n); p ∈ formula_N(succ(n))]]
=⇒ n = depth(p)"

〈proof 〉

This result and the next are unused.
lemma formula_N_mono [rule_format]:

" [[m ∈ nat; n ∈ nat ]] =⇒ m≤n −→ formula_N(m) ⊆ formula_N(n)"
〈proof 〉

lemma formula_N_distrib:
" [[m ∈ nat; n ∈ nat ]] =⇒ formula_N(m ∪ n) = formula_N(m) ∪ formula_N(n)"

〈proof 〉

definition
is_formula_N :: "[i⇒o,i,i] ⇒ o" where

"is_formula_N(M,n,Z) ≡
∃ zero[M]. empty(M,zero) ∧

is_iterates(M, is_formula_functor(M), zero, n, Z)"

definition
mem_formula :: "[i⇒o,i] ⇒ o" where

"mem_formula(M,p) ≡
∃ n[M]. ∃ formn[M].
finite_ordinal(M,n) ∧ is_formula_N(M,n,formn) ∧ p ∈ formn"

definition
is_formula :: "[i⇒o,i] ⇒ o" where

"is_formula(M,Z) ≡ ∀ p[M]. p ∈ Z ←→ mem_formula(M,p)"

locale M_datatypes = M_trancl +
assumes list_replacement1:

"M(A) =⇒ iterates_replacement(M, is_list_functor(M,A), 0)"
and list_replacement2:
"M(A) =⇒ strong_replacement(M,

λn y. n∈nat ∧ is_iterates(M, is_list_functor(M,A), 0, n, y))"
and formula_replacement1:
"iterates_replacement(M, is_formula_functor(M), 0)"

and formula_replacement2:
"strong_replacement(M,

λn y. n∈nat ∧ is_iterates(M, is_formula_functor(M), 0, n, y))"
and nth_replacement:
"M(l) =⇒ iterates_replacement(M, λl t. is_tl(M,l,t), l)"
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6.5.2 Absoluteness of the List Construction
lemma (in M_datatypes) list_replacement2’:

"M(A) =⇒ strong_replacement(M, λn y. n∈nat ∧ y = (λX. {0} + A * X)^n
(0))"
〈proof 〉

lemma (in M_datatypes) list_closed [intro,simp]:
"M(A) =⇒ M(list(A))"

〈proof 〉

WARNING: use only with dest: or with variables fixed!
lemmas (in M_datatypes) list_into_M = transM [OF _ list_closed]

lemma (in M_datatypes) list_N_abs [simp]:
" [[M(A); n∈nat; M(Z)]]
=⇒ is_list_N(M,A,n,Z) ←→ Z = list_N(A,n)"

〈proof 〉

lemma (in M_datatypes) list_N_closed [intro,simp]:
" [[M(A); n∈nat ]] =⇒ M(list_N(A,n))"

〈proof 〉

lemma (in M_datatypes) mem_list_abs [simp]:
"M(A) =⇒ mem_list(M,A,l) ←→ l ∈ list(A)"

〈proof 〉

lemma (in M_datatypes) list_abs [simp]:
" [[M(A); M(Z)]] =⇒ is_list(M,A,Z) ←→ Z = list(A)"

〈proof 〉

6.5.3 Absoluteness of Formulas
lemma (in M_datatypes) formula_replacement2’:

"strong_replacement(M, λn y. n∈nat ∧ y = (λX. ((nat*nat) + (nat*nat))
+ (X*X + X))^n (0))"
〈proof 〉

lemma (in M_datatypes) formula_closed [intro,simp]:
"M(formula)"

〈proof 〉

lemmas (in M_datatypes) formula_into_M = transM [OF _ formula_closed]

lemma (in M_datatypes) formula_N_abs [simp]:
" [[n∈nat; M(Z)]]
=⇒ is_formula_N(M,n,Z) ←→ Z = formula_N(n)"

〈proof 〉

lemma (in M_datatypes) formula_N_closed [intro,simp]:
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"n∈nat =⇒ M(formula_N(n))"
〈proof 〉

lemma (in M_datatypes) mem_formula_abs [simp]:
"mem_formula(M,l) ←→ l ∈ formula"

〈proof 〉

lemma (in M_datatypes) formula_abs [simp]:
" [[M(Z)]] =⇒ is_formula(M,Z) ←→ Z = formula"

〈proof 〉

6.6 Absoluteness for ε-Closure: the eclose Operator

Re-expresses eclose using "iterates"
lemma eclose_eq_Union:

"eclose(A) = (
⋃

n∈nat. Union^n (A))"
〈proof 〉

definition
is_eclose_n :: "[i⇒o,i,i,i] ⇒ o" where

"is_eclose_n(M,A,n,Z) ≡ is_iterates(M, big_union(M), A, n, Z)"

definition
mem_eclose :: "[i⇒o,i,i] ⇒ o" where

"mem_eclose(M,A,l) ≡
∃ n[M]. ∃ eclosen[M].
finite_ordinal(M,n) ∧ is_eclose_n(M,A,n,eclosen) ∧ l ∈ eclosen"

definition
is_eclose :: "[i⇒o,i,i] ⇒ o" where

"is_eclose(M,A,Z) ≡ ∀ u[M]. u ∈ Z ←→ mem_eclose(M,A,u)"

locale M_eclose = M_datatypes +
assumes eclose_replacement1:

"M(A) =⇒ iterates_replacement(M, big_union(M), A)"
and eclose_replacement2:
"M(A) =⇒ strong_replacement(M,

λn y. n∈nat ∧ is_iterates(M, big_union(M), A, n, y))"

lemma (in M_eclose) eclose_replacement2’:
"M(A) =⇒ strong_replacement(M, λn y. n∈nat ∧ y = Union^n (A))"

〈proof 〉

lemma (in M_eclose) eclose_closed [intro,simp]:
"M(A) =⇒ M(eclose(A))"

〈proof 〉

lemma (in M_eclose) is_eclose_n_abs [simp]:
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" [[M(A); n∈nat; M(Z)]] =⇒ is_eclose_n(M,A,n,Z) ←→ Z = Union^n (A)"
〈proof 〉

lemma (in M_eclose) mem_eclose_abs [simp]:
"M(A) =⇒ mem_eclose(M,A,l) ←→ l ∈ eclose(A)"

〈proof 〉

lemma (in M_eclose) eclose_abs [simp]:
" [[M(A); M(Z)]] =⇒ is_eclose(M,A,Z) ←→ Z = eclose(A)"

〈proof 〉

6.7 Absoluteness for transrec

transrec(a, H) ≡ wfrec(Memrel(eclose({a})), a, H)

definition
is_transrec :: "[i⇒o, [i,i,i]⇒o, i, i] ⇒ o" where
"is_transrec(M,MH,a,z) ≡
∃ sa[M]. ∃ esa[M]. ∃ mesa[M].
upair(M,a,a,sa) ∧ is_eclose(M,sa,esa) ∧ membership(M,esa,mesa)

∧
is_wfrec(M,MH,mesa,a,z)"

definition
transrec_replacement :: "[i⇒o, [i,i,i]⇒o, i] ⇒ o" where
"transrec_replacement(M,MH,a) ≡
∃ sa[M]. ∃ esa[M]. ∃ mesa[M].
upair(M,a,a,sa) ∧ is_eclose(M,sa,esa) ∧ membership(M,esa,mesa)

∧
wfrec_replacement(M,MH,mesa)"

The condition Ord(i) lets us use the simpler trans_wfrec_abs rather than
trans_wfrec_abs, which I haven’t even proved yet.
theorem (in M_eclose) transrec_abs:

" [[transrec_replacement(M,MH,i); relation2(M,MH,H);
Ord(i); M(i); M(z);
∀ x[M]. ∀ g[M]. function(g) −→ M(H(x,g))]]

=⇒ is_transrec(M,MH,i,z) ←→ z = transrec(i,H)"
〈proof 〉

theorem (in M_eclose) transrec_closed:
" [[transrec_replacement(M,MH,i); relation2(M,MH,H);

Ord(i); M(i);
∀ x[M]. ∀ g[M]. function(g) −→ M(H(x,g))]]

=⇒ M(transrec(i,H))"
〈proof 〉

Helps to prove instances of transrec_replacement
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lemma (in M_eclose) transrec_replacementI:
" [[M(a);

strong_replacement (M,
λx z. ∃ y[M]. pair(M, x, y, z) ∧

is_wfrec(M,MH,Memrel(eclose({a})),x,y))]]
=⇒ transrec_replacement(M,MH,a)"

〈proof 〉

6.8 Absoluteness for the List Operator length

But it is never used.
definition

is_length :: "[i⇒o,i,i,i] ⇒ o" where
"is_length(M,A,l,n) ≡
∃ sn[M]. ∃ list_n[M]. ∃ list_sn[M].
is_list_N(M,A,n,list_n) ∧ l /∈ list_n ∧
successor(M,n,sn) ∧ is_list_N(M,A,sn,list_sn) ∧ l ∈ list_sn"

lemma (in M_datatypes) length_abs [simp]:
" [[M(A); l ∈ list(A); n ∈ nat ]] =⇒ is_length(M,A,l,n) ←→ n = length(l)"

〈proof 〉

Proof is trivial since length returns natural numbers.
lemma (in M_trivial) length_closed [intro,simp]:

"l ∈ list(A) =⇒ M(length(l))"
〈proof 〉

6.9 Absoluteness for the List Operator nth

lemma nth_eq_hd_iterates_tl [rule_format]:
"xs ∈ list(A) =⇒ ∀ n ∈ nat. nth(n,xs) = hd’ (tl’^n (xs))"

〈proof 〉

lemma (in M_basic) iterates_tl’_closed:
" [[n ∈ nat; M(x)]] =⇒ M(tl’^n (x))"

〈proof 〉

Immediate by type-checking
lemma (in M_datatypes) nth_closed [intro,simp]:

" [[xs ∈ list(A); n ∈ nat; M(A)]] =⇒ M(nth(n,xs))"
〈proof 〉

definition
is_nth :: "[i⇒o,i,i,i] ⇒ o" where

"is_nth(M,n,l,Z) ≡
∃ X[M]. is_iterates(M, is_tl(M), l, n, X) ∧ is_hd(M,X,Z)"
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lemma (in M_datatypes) nth_abs [simp]:
" [[M(A); n ∈ nat; l ∈ list(A); M(Z)]]
=⇒ is_nth(M,n,l,Z) ←→ Z = nth(n,l)"

〈proof 〉

6.10 Relativization and Absoluteness for the formula Con-
structors

definition
is_Member :: "[i⇒o,i,i,i] ⇒ o" where

— because Member(x, y) ≡ Inl(Inl(〈x, y〉))
"is_Member(M,x,y,Z) ≡

∃ p[M]. ∃ u[M]. pair(M,x,y,p) ∧ is_Inl(M,p,u) ∧ is_Inl(M,u,Z)"

lemma (in M_trivial) Member_abs [simp]:
" [[M(x); M(y); M(Z)]] =⇒ is_Member(M,x,y,Z) ←→ (Z = Member(x,y))"

〈proof 〉

lemma (in M_trivial) Member_in_M_iff [iff]:
"M(Member(x,y)) ←→ M(x) ∧ M(y)"

〈proof 〉

definition
is_Equal :: "[i⇒o,i,i,i] ⇒ o" where

— because Equal(x, y) ≡ Inl(Inr(〈x, y〉))
"is_Equal(M,x,y,Z) ≡

∃ p[M]. ∃ u[M]. pair(M,x,y,p) ∧ is_Inr(M,p,u) ∧ is_Inl(M,u,Z)"

lemma (in M_trivial) Equal_abs [simp]:
" [[M(x); M(y); M(Z)]] =⇒ is_Equal(M,x,y,Z) ←→ (Z = Equal(x,y))"

〈proof 〉

lemma (in M_trivial) Equal_in_M_iff [iff]: "M(Equal(x,y)) ←→ M(x) ∧
M(y)"
〈proof 〉

definition
is_Nand :: "[i⇒o,i,i,i] ⇒ o" where

— because Nand(x, y) ≡ Inr(Inl(〈x, y〉))
"is_Nand(M,x,y,Z) ≡

∃ p[M]. ∃ u[M]. pair(M,x,y,p) ∧ is_Inl(M,p,u) ∧ is_Inr(M,u,Z)"

lemma (in M_trivial) Nand_abs [simp]:
" [[M(x); M(y); M(Z)]] =⇒ is_Nand(M,x,y,Z) ←→ (Z = Nand(x,y))"

〈proof 〉

lemma (in M_trivial) Nand_in_M_iff [iff]: "M(Nand(x,y)) ←→ M(x) ∧ M(y)"
〈proof 〉
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definition
is_Forall :: "[i⇒o,i,i] ⇒ o" where

— because Forall(x) ≡ Inr(Inr(p))
"is_Forall(M,p,Z) ≡ ∃ u[M]. is_Inr(M,p,u) ∧ is_Inr(M,u,Z)"

lemma (in M_trivial) Forall_abs [simp]:
" [[M(x); M(Z)]] =⇒ is_Forall(M,x,Z) ←→ (Z = Forall(x))"

〈proof 〉

lemma (in M_trivial) Forall_in_M_iff [iff]: "M(Forall(x)) ←→ M(x)"
〈proof 〉

6.11 Absoluteness for formula_rec

definition
formula_rec_case :: "[[i,i]⇒i, [i,i]⇒i, [i,i,i,i]⇒i, [i,i]⇒i, i,

i] ⇒ i" where
— the instance of formula_case in formula_rec

"formula_rec_case(a,b,c,d,h) ≡
formula_case (a, b,

λu v. c(u, v, h ‘ succ(depth(u)) ‘ u,
h ‘ succ(depth(v)) ‘ v),

λu. d(u, h ‘ succ(depth(u)) ‘ u))"

Unfold formula_rec to formula_rec_case. Express formula_rec without us-
ing rank or Vset, neither of which is absolute.
lemma (in M_trivial) formula_rec_eq:

"p ∈ formula =⇒
formula_rec(a,b,c,d,p) =
transrec (succ(depth(p)),

λx h. Lambda (formula, formula_rec_case(a,b,c,d,h))) ‘ p"
〈proof 〉

6.11.1 Absoluteness for the Formula Operator depth

definition
is_depth :: "[i⇒o,i,i] ⇒ o" where

"is_depth(M,p,n) ≡
∃ sn[M]. ∃ formula_n[M]. ∃ formula_sn[M].
is_formula_N(M,n,formula_n) ∧ p /∈ formula_n ∧
successor(M,n,sn) ∧ is_formula_N(M,sn,formula_sn) ∧ p ∈ formula_sn"

lemma (in M_datatypes) depth_abs [simp]:
" [[p ∈ formula; n ∈ nat ]] =⇒ is_depth(M,p,n) ←→ n = depth(p)"

〈proof 〉

Proof is trivial since depth returns natural numbers.
lemma (in M_trivial) depth_closed [intro,simp]:
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"p ∈ formula =⇒ M(depth(p))"
〈proof 〉

6.11.2 is_formula_case : relativization of formula_case

definition
is_formula_case ::

"[i⇒o, [i,i,i]⇒o, [i,i,i]⇒o, [i,i,i]⇒o, [i,i]⇒o, i, i] ⇒ o"
where

— no constraint on non-formulas
"is_formula_case(M, is_a, is_b, is_c, is_d, p, z) ≡

(∀ x[M]. ∀ y[M]. finite_ordinal(M,x) −→ finite_ordinal(M,y) −→
is_Member(M,x,y,p) −→ is_a(x,y,z)) ∧

(∀ x[M]. ∀ y[M]. finite_ordinal(M,x) −→ finite_ordinal(M,y) −→
is_Equal(M,x,y,p) −→ is_b(x,y,z)) ∧

(∀ x[M]. ∀ y[M]. mem_formula(M,x) −→ mem_formula(M,y) −→
is_Nand(M,x,y,p) −→ is_c(x,y,z)) ∧

(∀ x[M]. mem_formula(M,x) −→ is_Forall(M,x,p) −→ is_d(x,z))"

lemma (in M_datatypes) formula_case_abs [simp]:
" [[Relation2(M,nat,nat,is_a,a); Relation2(M,nat,nat,is_b,b);

Relation2(M,formula,formula,is_c,c); Relation1(M,formula,is_d,d);
p ∈ formula; M(z)]]

=⇒ is_formula_case(M,is_a,is_b,is_c,is_d,p,z) ←→
z = formula_case(a,b,c,d,p)"

〈proof 〉

lemma (in M_datatypes) formula_case_closed [intro,simp]:
" [[p ∈ formula;
∀ x[M]. ∀ y[M]. x∈nat −→ y∈nat −→ M(a(x,y));
∀ x[M]. ∀ y[M]. x∈nat −→ y∈nat −→ M(b(x,y));
∀ x[M]. ∀ y[M]. x∈formula −→ y∈formula −→ M(c(x,y));
∀ x[M]. x∈formula −→ M(d(x))]] =⇒ M(formula_case(a,b,c,d,p))"

〈proof 〉

6.11.3 Absoluteness for formula_rec : Final Results
definition

is_formula_rec :: "[i⇒o, [i,i,i]⇒o, i, i] ⇒ o" where
— predicate to relativize the functional formula_rec

"is_formula_rec(M,MH,p,z) ≡
∃ dp[M]. ∃ i[M]. ∃ f[M]. finite_ordinal(M,dp) ∧ is_depth(M,p,dp) ∧

successor(M,dp,i) ∧ fun_apply(M,f,p,z) ∧ is_transrec(M,MH,i,f)"

Sufficient conditions to relativize the instance of formula_case in formula_rec

lemma (in M_datatypes) Relation1_formula_rec_case:
" [[Relation2(M, nat, nat, is_a, a);

Relation2(M, nat, nat, is_b, b);
Relation2 (M, formula, formula,

is_c, λu v. c(u, v, h‘succ(depth(u))‘u, h‘succ(depth(v))‘v));
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Relation1(M, formula,
is_d, λu. d(u, h ‘ succ(depth(u)) ‘ u));

M(h)]]
=⇒ Relation1(M, formula,

is_formula_case (M, is_a, is_b, is_c, is_d),
formula_rec_case(a, b, c, d, h))"

〈proof 〉

This locale packages the premises of the following theorems, which is the
normal purpose of locales. It doesn’t accumulate constraints on the class M,
as in most of this development.
locale Formula_Rec = M_eclose +

fixes a and is_a and b and is_b and c and is_c and d and is_d and
MH

defines
"MH(u::i,f,z) ≡
∀ fml[M]. is_formula(M,fml) −→

is_lambda
(M, fml, is_formula_case (M, is_a, is_b, is_c(f), is_d(f)), z)"

assumes a_closed: " [[x∈nat; y∈nat ]] =⇒ M(a(x,y))"
and a_rel: "Relation2(M, nat, nat, is_a, a)"
and b_closed: " [[x∈nat; y∈nat ]] =⇒ M(b(x,y))"
and b_rel: "Relation2(M, nat, nat, is_b, b)"
and c_closed: " [[x ∈ formula; y ∈ formula; M(gx); M(gy)]]

=⇒ M(c(x, y, gx, gy))"
and c_rel:

"M(f) =⇒
Relation2 (M, formula, formula, is_c(f),

λu v. c(u, v, f ‘ succ(depth(u)) ‘ u, f ‘ succ(depth(v))
‘ v))"

and d_closed: " [[x ∈ formula; M(gx)]] =⇒ M(d(x, gx))"
and d_rel:

"M(f) =⇒
Relation1(M, formula, is_d(f), λu. d(u, f ‘ succ(depth(u)) ‘

u))"
and fr_replace: "n ∈ nat =⇒ transrec_replacement(M,MH,n)"
and fr_lam_replace:

"M(g) =⇒
strong_replacement

(M, λx y. x ∈ formula ∧
y = 〈x, formula_rec_case(a,b,c,d,g,x)〉)"

lemma (in Formula_Rec) formula_rec_case_closed:
" [[M(g); p ∈ formula ]] =⇒ M(formula_rec_case(a, b, c, d, g, p))"

〈proof 〉

lemma (in Formula_Rec) formula_rec_lam_closed:
"M(g) =⇒ M(Lambda (formula, formula_rec_case(a,b,c,d,g)))"
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〈proof 〉

lemma (in Formula_Rec) MH_rel2:
"relation2 (M, MH,

λx h. Lambda (formula, formula_rec_case(a,b,c,d,h)))"
〈proof 〉

lemma (in Formula_Rec) fr_transrec_closed:
"n ∈ nat
=⇒ M(transrec

(n, λx h. Lambda(formula, formula_rec_case(a, b, c, d, h))))"
〈proof 〉

The main two results: formula_rec is absolute for M.
theorem (in Formula_Rec) formula_rec_closed:

"p ∈ formula =⇒ M(formula_rec(a,b,c,d,p))"
〈proof 〉

theorem (in Formula_Rec) formula_rec_abs:
" [[p ∈ formula; M(z)]]
=⇒ is_formula_rec(M,MH,p,z) ←→ z = formula_rec(a,b,c,d,p)"

〈proof 〉

end

7 Closed Unbounded Classes and Normal Func-
tions

theory Normal imports ZF begin

One source is the book
Frank R. Drake. Set Theory: An Introduction to Large Cardinals. North-
Holland, 1974.

7.1 Closed and Unbounded (c.u.) Classes of Ordinals
definition

Closed :: "(i⇒o) ⇒ o" where
"Closed(P) ≡ ∀ I. I 6= 0 −→ (∀ i∈I. Ord(i) ∧ P(i)) −→ P(

⋃
(I))"

definition
Unbounded :: "(i⇒o) ⇒ o" where

"Unbounded(P) ≡ ∀ i. Ord(i) −→ (∃ j. i<j ∧ P(j))"

definition
Closed_Unbounded :: "(i⇒o) ⇒ o" where

"Closed_Unbounded(P) ≡ Closed(P) ∧ Unbounded(P)"
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7.1.1 Simple facts about c.u. classes
lemma ClosedI:

" [[
∧

I. [[I 6= 0; ∀ i∈I. Ord(i) ∧ P(i)]] =⇒ P(
⋃

(I))]]
=⇒ Closed(P)"

〈proof 〉

lemma ClosedD:
" [[Closed(P); I 6= 0;

∧
i. i∈I =⇒ Ord(i);

∧
i. i∈I =⇒ P(i)]]

=⇒ P(
⋃

(I))"
〈proof 〉

lemma UnboundedD:
" [[Unbounded(P); Ord(i)]] =⇒ ∃ j. i<j ∧ P(j)"
〈proof 〉

lemma Closed_Unbounded_imp_Unbounded: "Closed_Unbounded(C) =⇒ Unbounded(C)"
〈proof 〉

The universal class, V, is closed and unbounded. A bit odd, since C. U.
concerns only ordinals, but it’s used below!
theorem Closed_Unbounded_V [simp]: "Closed_Unbounded(λx. True)"
〈proof 〉

The class of ordinals, Ord, is closed and unbounded.
theorem Closed_Unbounded_Ord [simp]: "Closed_Unbounded(Ord)"
〈proof 〉

The class of limit ordinals, Limit, is closed and unbounded.
theorem Closed_Unbounded_Limit [simp]: "Closed_Unbounded(Limit)"
〈proof 〉

The class of cardinals, Card, is closed and unbounded.
theorem Closed_Unbounded_Card [simp]: "Closed_Unbounded(Card)"
〈proof 〉

7.1.2 The intersection of any set-indexed family of c.u. classes is
c.u.

The constructions below come from Kunen, Set Theory, page 78.
locale cub_family =

fixes P and A
fixes next_greater — the next ordinal satisfying class A
fixes sup_greater — sup of those ordinals over all A
assumes closed: "a∈A =⇒ Closed(P(a))"

and unbounded: "a∈A =⇒ Unbounded(P(a))"
and A_non0: "A 6=0"

defines "next_greater(a,x) ≡ µ y. x<y ∧ P(a,y)"
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and "sup_greater(x) ≡
⋃

a∈A. next_greater(a,x)"

begin

Trivial that the intersection is closed.
lemma Closed_INT: "Closed(λx. ∀ i∈A. P(i,x))"
〈proof 〉

All remaining effort goes to show that the intersection is unbounded.
lemma Ord_sup_greater:

"Ord(sup_greater(x))"
〈proof 〉

lemma Ord_next_greater:
"Ord(next_greater(a,x))"
〈proof 〉

next_greater works as expected: it returns a larger value and one that be-
longs to class P(a).
lemma

assumes "Ord(x)" "a∈A"
shows next_greater_in_P: "P(a, next_greater(a,x))"

and next_greater_gt: "x < next_greater(a,x)"
〈proof 〉

lemma sup_greater_gt:
"Ord(x) =⇒ x < sup_greater(x)"
〈proof 〉

lemma next_greater_le_sup_greater:
"a∈A =⇒ next_greater(a,x) ≤ sup_greater(x)"
〈proof 〉

lemma omega_sup_greater_eq_UN:
assumes "Ord(x)" "a∈A"
shows "sup_greater^ω (x) =

(
⋃

n∈nat. next_greater(a, sup_greater^n (x)))"
〈proof 〉

lemma P_omega_sup_greater:
" [[Ord(x); a∈A ]] =⇒ P(a, sup_greater^ω (x))"
〈proof 〉

lemma omega_sup_greater_gt:
"Ord(x) =⇒ x < sup_greater^ω (x)"
〈proof 〉

lemma Unbounded_INT: "Unbounded(λx. ∀ a∈A. P(a,x))"
〈proof 〉
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lemma Closed_Unbounded_INT:
"Closed_Unbounded(λx. ∀ a∈A. P(a,x))"
〈proof 〉

end

theorem Closed_Unbounded_INT:
assumes "

∧
a. a∈A =⇒ Closed_Unbounded(P(a))"

shows "Closed_Unbounded(λx. ∀ a∈A. P(a, x))"
〈proof 〉

lemma Int_iff_INT2:
"P(x) ∧ Q(x) ←→ (∀ i∈2. (i=0 −→ P(x)) ∧ (i=1 −→ Q(x)))"
〈proof 〉

theorem Closed_Unbounded_Int:
" [[Closed_Unbounded(P); Closed_Unbounded(Q)]]

=⇒ Closed_Unbounded(λx. P(x) ∧ Q(x))"
〈proof 〉

7.2 Normal Functions
definition

mono_le_subset :: "(i⇒i) ⇒ o" where
"mono_le_subset(M) ≡ ∀ i j. i≤j −→ M(i) ⊆ M(j)"

definition
mono_Ord :: "(i⇒i) ⇒ o" where

"mono_Ord(F) ≡ ∀ i j. i<j −→ F(i) < F(j)"

definition
cont_Ord :: "(i⇒i) ⇒ o" where

"cont_Ord(F) ≡ ∀ l. Limit(l) −→ F(l) = (
⋃

i<l. F(i))"

definition
Normal :: "(i⇒i) ⇒ o" where

"Normal(F) ≡ mono_Ord(F) ∧ cont_Ord(F)"

7.2.1 Immediate properties of the definitions
lemma NormalI:

" [[
∧

i j. i<j =⇒ F(i) < F(j);
∧

l. Limit(l) =⇒ F(l) = (
⋃

i<l. F(i))]]
=⇒ Normal(F)"

〈proof 〉

lemma mono_Ord_imp_Ord: " [[Ord(i); mono_Ord(F)]] =⇒ Ord(F(i))"
〈proof 〉
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lemma mono_Ord_imp_mono: " [[i<j; mono_Ord(F)]] =⇒ F(i) < F(j)"
〈proof 〉

lemma Normal_imp_Ord [simp]: " [[Normal(F); Ord(i)]] =⇒ Ord(F(i))"
〈proof 〉

lemma Normal_imp_cont: " [[Normal(F); Limit(l)]] =⇒ F(l) = (
⋃

i<l. F(i))"
〈proof 〉

lemma Normal_imp_mono: " [[i<j; Normal(F)]] =⇒ F(i) < F(j)"
〈proof 〉

lemma Normal_increasing:
assumes i: "Ord(i)" and F: "Normal(F)" shows"i ≤ F(i)"

〈proof 〉

7.2.2 The class of fixedpoints is closed and unbounded

The proof is from Drake, pages 113–114.
lemma mono_Ord_imp_le_subset: "mono_Ord(F) =⇒ mono_le_subset(F)"
〈proof 〉

The following equation is taken for granted in any set theory text.
lemma cont_Ord_Union:

" [[cont_Ord(F); mono_le_subset(F); X=0 −→ F(0)=0; ∀ x∈X. Ord(x)]]
=⇒ F(

⋃
(X)) = (

⋃
y∈X. F(y))"

〈proof 〉

lemma Normal_Union:
" [[X 6=0; ∀ x∈X. Ord(x); Normal(F)]] =⇒ F(

⋃
(X)) = (

⋃
y∈X. F(y))"

〈proof 〉

lemma Normal_imp_fp_Closed: "Normal(F) =⇒ Closed(λi. F(i) = i)"
〈proof 〉

lemma iterates_Normal_increasing:
" [[n∈nat; x < F(x); Normal(F)]]

=⇒ F^n (x) < F^(succ(n)) (x)"
〈proof 〉

lemma Ord_iterates_Normal:
" [[n∈nat; Normal(F); Ord(x)]] =⇒ Ord(F^n (x))"

〈proof 〉

THIS RESULT IS UNUSED
lemma iterates_omega_Limit:
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" [[Normal(F); x < F(x)]] =⇒ Limit(F^ω (x))"
〈proof 〉

lemma iterates_omega_fixedpoint:
" [[Normal(F); Ord(a)]] =⇒ F(F^ω (a)) = F^ω (a)"

〈proof 〉

lemma iterates_omega_increasing:
" [[Normal(F); Ord(a)]] =⇒ a ≤ F^ω (a)"

〈proof 〉

lemma Normal_imp_fp_Unbounded: "Normal(F) =⇒ Unbounded(λi. F(i) = i)"
〈proof 〉

theorem Normal_imp_fp_Closed_Unbounded:
"Normal(F) =⇒ Closed_Unbounded(λi. F(i) = i)"

〈proof 〉

7.2.3 Function normalize

Function normalize maps a function F to a normal function that bounds
it above. The result is normal if and only if F is continuous: succ is not
bounded above by any normal function, by Normal_imp_fp_Unbounded.
definition

normalize :: "[i⇒i, i] ⇒ i" where
"normalize(F,a) ≡ transrec2(a, F(0), λx r. F(succ(x)) ∪ succ(r))"

lemma Ord_normalize [simp, intro]:
" [[Ord(a);

∧
x. Ord(x) =⇒ Ord(F(x))]] =⇒ Ord(normalize(F, a))"

〈proof 〉

lemma normalize_increasing:
assumes ab: "a < b" and F: "

∧
x. Ord(x) =⇒ Ord(F(x))"

shows "normalize(F,a) < normalize(F,b)"
〈proof 〉

theorem Normal_normalize:
assumes "

∧
x. Ord(x) =⇒ Ord(F(x))" shows "Normal(normalize(F))"

〈proof 〉

theorem le_normalize:
assumes a: "Ord(a)" and coF: "cont_Ord(F)" and F: "

∧
x. Ord(x) =⇒

Ord(F(x))"
shows "F(a) ≤ normalize(F,a)"

〈proof 〉
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7.3 The Alephs

This is the well-known transfinite enumeration of the cardinal numbers.
definition

Aleph :: "i ⇒ i" (‹(‹open_block notation=‹prefix ℵ››ℵ_)› [90] 90)
where

"ℵa ≡ transrec2(a, nat, λx r. csucc(r))"

lemma Card_Aleph [simp, intro]:
"Ord(a) =⇒ Card(Aleph(a))"
〈proof 〉

lemma Aleph_increasing:
assumes ab: "a < b" shows "Aleph(a) < Aleph(b)"

〈proof 〉

theorem Normal_Aleph: "Normal(Aleph)"
〈proof 〉

end

8 The Reflection Theorem
theory Reflection imports Normal begin

lemma all_iff_not_ex_not: "(∀ x. P(x)) ←→ (¬ (∃ x. ¬ P(x)))"
〈proof 〉

lemma ball_iff_not_bex_not: "(∀ x∈A. P(x)) ←→ (¬ (∃ x∈A. ¬ P(x)))"
〈proof 〉

From the notes of A. S. Kechris, page 6, and from Andrzej Mostowski,
Constructible Sets with Applications, North-Holland, 1969, page 23.

8.1 Basic Definitions

First part: the cumulative hierarchy defining the class M. To avoid han-
dling multiple arguments, we assume that Mset(l) is closed under ordered
pairing provided l is limit. Possibly this could be avoided: the induc-
tion hypothesis Cl_reflects (in locale ex_reflection) could be weakened
to ∀ y∈Mset(a). ∀ z∈Mset(a). P(〈y, z〉) ←→ Q(a, 〈y, z〉), removing most
uses of Pair_in_Mset. But there isn’t much point in doing so, since ultimately
the ex_reflection proof is packaged up using the predicate Reflects.
locale reflection =

fixes Mset and M and Reflects
assumes Mset_mono_le : "mono_le_subset(Mset)"

and Mset_cont : "cont_Ord(Mset)"
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and Pair_in_Mset : " [[x ∈ Mset(a); y ∈ Mset(a); Limit(a)]]
=⇒ 〈x,y〉 ∈ Mset(a)"

defines "M(x) ≡ ∃ a. Ord(a) ∧ x ∈ Mset(a)"
and "Reflects(Cl,P,Q) ≡ Closed_Unbounded(Cl) ∧

(∀ a. Cl(a) −→ (∀ x∈Mset(a). P(x) ←→ Q(a,x)))"
fixes F0 — ordinal for a specific value y
fixes FF — sup over the whole level, y ∈ Mset(a)
fixes ClEx — Reflecting ordinals for the formula ∃ z. P
defines "F0(P,y) ≡ µ b. (∃ z. M(z) ∧ P(〈y,z〉)) −→

(∃ z∈Mset(b). P(〈y,z〉))"
and "FF(P) ≡ λa.

⋃
y∈Mset(a). F0(P,y)"

and "ClEx(P,a) ≡ Limit(a) ∧ normalize(FF(P),a) = a"

begin

lemma Mset_mono: "i≤j =⇒ Mset(i) ⊆ Mset(j)"
〈proof 〉

Awkward: we need a version of ClEx_def as an equality at the level of classes,
which do not really exist
lemma ClEx_eq:

"ClEx(P) ≡ λa. Limit(a) ∧ normalize(FF(P),a) = a"
〈proof 〉

8.2 Easy Cases of the Reflection Theorem
theorem Triv_reflection [intro]:

"Reflects(Ord, P, λa x. P(x))"
〈proof 〉

theorem Not_reflection [intro]:
"Reflects(Cl,P,Q) =⇒ Reflects(Cl, λx. ¬P(x), λa x. ¬Q(a,x))"
〈proof 〉

theorem And_reflection [intro]:
" [[Reflects(Cl,P,Q); Reflects(C’,P’,Q’)]]

=⇒ Reflects(λa. Cl(a) ∧ C’(a), λx. P(x) ∧ P’(x),
λa x. Q(a,x) ∧ Q’(a,x))"

〈proof 〉

theorem Or_reflection [intro]:
" [[Reflects(Cl,P,Q); Reflects(C’,P’,Q’)]]
=⇒ Reflects(λa. Cl(a) ∧ C’(a), λx. P(x) ∨ P’(x),

λa x. Q(a,x) ∨ Q’(a,x))"
〈proof 〉

theorem Imp_reflection [intro]:
" [[Reflects(Cl,P,Q); Reflects(C’,P’,Q’)]]
=⇒ Reflects(λa. Cl(a) ∧ C’(a),
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λx. P(x) −→ P’(x),
λa x. Q(a,x) −→ Q’(a,x))"

〈proof 〉

theorem Iff_reflection [intro]:
" [[Reflects(Cl,P,Q); Reflects(C’,P’,Q’)]]
=⇒ Reflects(λa. Cl(a) ∧ C’(a),

λx. P(x) ←→ P’(x),
λa x. Q(a,x) ←→ Q’(a,x))"

〈proof 〉

8.3 Reflection for Existential Quantifiers
lemma F0_works:

" [[y∈Mset(a); Ord(a); M(z); P(〈y,z〉)]] =⇒ ∃ z∈Mset(F0(P,y)). P(〈y,z〉)"
〈proof 〉

lemma Ord_F0 [intro,simp]: "Ord(F0(P,y))"
〈proof 〉

lemma Ord_FF [intro,simp]: "Ord(FF(P,y))"
〈proof 〉

lemma cont_Ord_FF: "cont_Ord(FF(P))"
〈proof 〉

Recall that F0 depends upon y ∈ Mset(a), while FF depends only upon a.
lemma FF_works:

" [[M(z); y∈Mset(a); P(〈y,z〉); Ord(a)]] =⇒ ∃ z∈Mset(FF(P,a)). P(〈y,z〉)"
〈proof 〉

lemma FFN_works:
" [[M(z); y∈Mset(a); P(〈y,z〉); Ord(a)]]
=⇒ ∃ z∈Mset(normalize(FF(P),a)). P(〈y,z〉)"

〈proof 〉

end

Locale for the induction hypothesis
locale ex_reflection = reflection +

fixes P — the original formula
fixes Q — the reflected formula
fixes Cl — the class of reflecting ordinals
assumes Cl_reflects: " [[Cl(a); Ord(a)]] =⇒ ∀ x∈Mset(a). P(x) ←→ Q(a,x)"

begin

lemma ClEx_downward:
" [[M(z); y∈Mset(a); P(〈y,z〉); Cl(a); ClEx(P,a)]]
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=⇒ ∃ z∈Mset(a). Q(a,〈y,z〉)"
〈proof 〉

lemma ClEx_upward:
" [[z∈Mset(a); y∈Mset(a); Q(a,〈y,z〉); Cl(a); ClEx(P,a)]]
=⇒ ∃ z. M(z) ∧ P(〈y,z〉)"

〈proof 〉

Class ClEx indeed consists of reflecting ordinals...
lemma ZF_ClEx_iff:

" [[y∈Mset(a); Cl(a); ClEx(P,a)]]
=⇒ (∃ z. M(z) ∧ P(〈y,z〉)) ←→ (∃ z∈Mset(a). Q(a,〈y,z〉))"

〈proof 〉

...and it is closed and unbounded
lemma ZF_Closed_Unbounded_ClEx:

"Closed_Unbounded(ClEx(P))"
〈proof 〉

end

The same two theorems, exported to locale reflection.
context reflection
begin

Class ClEx indeed consists of reflecting ordinals...
lemma ClEx_iff:

" [[y∈Mset(a); Cl(a); ClEx(P,a);∧
a. [[Cl(a); Ord(a)]] =⇒ ∀ x∈Mset(a). P(x) ←→ Q(a,x)]]

=⇒ (∃ z. M(z) ∧ P(〈y,z〉)) ←→ (∃ z∈Mset(a). Q(a,〈y,z〉))"
〈proof 〉

lemma Closed_Unbounded_ClEx:
"(

∧
a. [[Cl(a); Ord(a)]] =⇒ ∀ x∈Mset(a). P(x) ←→ Q(a,x))

=⇒ Closed_Unbounded(ClEx(P))"
〈proof 〉

8.4 Packaging the Quantifier Reflection Rules
lemma Ex_reflection_0:

"Reflects(Cl,P0,Q0)
=⇒ Reflects(λa. Cl(a) ∧ ClEx(P0,a),

λx. ∃ z. M(z) ∧ P0(〈x,z〉),
λa x. ∃ z∈Mset(a). Q0(a,〈x,z〉))"

〈proof 〉

lemma All_reflection_0:
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"Reflects(Cl,P0,Q0)
=⇒ Reflects(λa. Cl(a) ∧ ClEx(λx.¬P0(x), a),

λx. ∀ z. M(z) −→ P0(〈x,z〉),
λa x. ∀ z∈Mset(a). Q0(a,〈x,z〉))"

〈proof 〉

theorem Ex_reflection [intro]:
"Reflects(Cl, λx. P(fst(x),snd(x)), λa x. Q(a,fst(x),snd(x)))
=⇒ Reflects(λa. Cl(a) ∧ ClEx(λx. P(fst(x),snd(x)), a),

λx. ∃ z. M(z) ∧ P(x,z),
λa x. ∃ z∈Mset(a). Q(a,x,z))"

〈proof 〉

theorem All_reflection [intro]:
"Reflects(Cl, λx. P(fst(x),snd(x)), λa x. Q(a,fst(x),snd(x)))
=⇒ Reflects(λa. Cl(a) ∧ ClEx(λx. ¬P(fst(x),snd(x)), a),

λx. ∀ z. M(z) −→ P(x,z),
λa x. ∀ z∈Mset(a). Q(a,x,z))"

〈proof 〉

And again, this time using class-bounded quantifiers
theorem Rex_reflection [intro]:

"Reflects(Cl, λx. P(fst(x),snd(x)), λa x. Q(a,fst(x),snd(x)))
=⇒ Reflects(λa. Cl(a) ∧ ClEx(λx. P(fst(x),snd(x)), a),

λx. ∃ z[M]. P(x,z),
λa x. ∃ z∈Mset(a). Q(a,x,z))"

〈proof 〉

theorem Rall_reflection [intro]:
"Reflects(Cl, λx. P(fst(x),snd(x)), λa x. Q(a,fst(x),snd(x)))
=⇒ Reflects(λa. Cl(a) ∧ ClEx(λx. ¬P(fst(x),snd(x)), a),

λx. ∀ z[M]. P(x,z),
λa x. ∀ z∈Mset(a). Q(a,x,z))"

〈proof 〉

No point considering bounded quantifiers, where reflection is trivial.

8.5 Simple Examples of Reflection

Example 1: reflecting a simple formula. The reflecting class is first given as
the variable ?Cl and later retrieved from the final proof state.
schematic_goal

"Reflects(?Cl,
λx. ∃ y. M(y) ∧ x ∈ y,
λa x. ∃ y∈Mset(a). x ∈ y)"

〈proof 〉

Problem here: there needs to be a conjunction (class intersection) in the
class of reflecting ordinals. The Ord(a) is redundant, though harmless.
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lemma
"Reflects(λa. Ord(a) ∧ ClEx(λx. fst(x) ∈ snd(x), a),

λx. ∃ y. M(y) ∧ x ∈ y,
λa x. ∃ y∈Mset(a). x ∈ y)"

〈proof 〉

Example 2
schematic_goal

"Reflects(?Cl,
λx. ∃ y. M(y) ∧ (∀ z. M(z) −→ z ⊆ x −→ z ∈ y),
λa x. ∃ y∈Mset(a). ∀ z∈Mset(a). z ⊆ x −→ z ∈ y)"

〈proof 〉

Example 2’. We give the reflecting class explicitly.
lemma

"Reflects
(λa. (Ord(a) ∧

ClEx(λx. ¬ (snd(x) ⊆ fst(fst(x)) −→ snd(x) ∈ snd(fst(x))),
a)) ∧

ClEx(λx. ∀ z. M(z) −→ z ⊆ fst(x) −→ z ∈ snd(x), a),
λx. ∃ y. M(y) ∧ (∀ z. M(z) −→ z ⊆ x −→ z ∈ y),
λa x. ∃ y∈Mset(a). ∀ z∈Mset(a). z ⊆ x −→ z ∈ y)"

〈proof 〉

Example 2”. We expand the subset relation.
schematic_goal

"Reflects(?Cl,
λx. ∃ y. M(y) ∧ (∀ z. M(z) −→ (∀ w. M(w) −→ w∈z −→ w∈x) −→

z∈y),
λa x. ∃ y∈Mset(a). ∀ z∈Mset(a). (∀ w∈Mset(a). w∈z −→ w∈x) −→

z∈y)"
〈proof 〉

Example 2”’. Single-step version, to reveal the reflecting class.
schematic_goal

"Reflects(?Cl,
λx. ∃ y. M(y) ∧ (∀ z. M(z) −→ z ⊆ x −→ z ∈ y),
λa x. ∃ y∈Mset(a). ∀ z∈Mset(a). z ⊆ x −→ z ∈ y)"

〈proof 〉

Example 3. Warning: the following examples make sense only if P is quantifier-
free, since it is not being relativized.
schematic_goal

"Reflects(?Cl,
λx. ∃ y. M(y) ∧ (∀ z. M(z) −→ z ∈ y ←→ z ∈ x ∧ P(z)),
λa x. ∃ y∈Mset(a). ∀ z∈Mset(a). z ∈ y ←→ z ∈ x ∧ P(z))"

〈proof 〉

Example 3’
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schematic_goal
"Reflects(?Cl,

λx. ∃ y. M(y) ∧ y = Collect(x,P),
λa x. ∃ y∈Mset(a). y = Collect(x,P))"

〈proof 〉

Example 3”
schematic_goal

"Reflects(?Cl,
λx. ∃ y. M(y) ∧ y = Replace(x,P),
λa x. ∃ y∈Mset(a). y = Replace(x,P))"

〈proof 〉

Example 4: Axiom of Choice. Possibly wrong, since Π needs to be relativized.
schematic_goal

"Reflects(?Cl,
λA. 0 /∈A −→ (∃ f. M(f) ∧ f ∈ (

∏
X ∈ A. X)),

λa A. 0 /∈A −→ (∃ f∈Mset(a). f ∈ (
∏

X ∈ A. X)))"
〈proof 〉

end

end

9 The meta-existential quantifier
theory MetaExists imports ZF begin

Allows quantification over any term. Used to quantify over classes. Yields
a proposition rather than a FOL formula.
definition

ex :: "((’a::{}) ⇒ prop) ⇒ prop" (binder ‹
∨

› 0) where
"ex(P) ≡ (

∧
Q. (

∧
x. PROP P(x) =⇒ PROP Q) =⇒ PROP Q)"

lemma meta_exI: "PROP P(x) =⇒ (
∨

x. PROP P(x))"
〈proof 〉

lemma meta_exE: " [[
∨

x. PROP P(x);
∧

x. PROP P(x) =⇒ PROP R ]] =⇒ PROP
R"
〈proof 〉

end

10 The ZF Axioms (Except Separation) in L
theory L_axioms imports Formula Relative Reflection MetaExists begin

The class L satisfies the premises of locale M_trivial

92



lemma transL: " [[y∈x; L(x)]] =⇒ L(y)"
〈proof 〉

lemma nonempty: "L(0)"
〈proof 〉

theorem upair_ax: "upair_ax(L)"
〈proof 〉

theorem Union_ax: "Union_ax(L)"
〈proof 〉

theorem power_ax: "power_ax(L)"
〈proof 〉

We don’t actually need L to satisfy the foundation axiom.
theorem foundation_ax: "foundation_ax(L)"
〈proof 〉

10.1 For L to satisfy Replacement
lemma LReplace_in_Lset:

" [[X ∈ Lset(i); univalent(L,X,Q); Ord(i)]]
=⇒ ∃ j. Ord(j) ∧ Replace(X, λx y. Q(x,y) ∧ L(y)) ⊆ Lset(j)"

〈proof 〉

lemma LReplace_in_L:
" [[L(X); univalent(L,X,Q)]]
=⇒ ∃ Y. L(Y) ∧ Replace(X, λx y. Q(x,y) ∧ L(y)) ⊆ Y"

〈proof 〉

theorem replacement: "replacement(L,P)"
〈proof 〉

lemma strong_replacementI [rule_format]:
" [[∀ B[L]. separation(L, λu. ∃ x[L]. x∈B ∧ P(x,u))]]
=⇒ strong_replacement(L,P)"

〈proof 〉

10.2 Instantiating the locale M_trivial

No instances of Separation yet.
lemma Lset_mono_le: "mono_le_subset(Lset)"
〈proof 〉

lemma Lset_cont: "cont_Ord(Lset)"
〈proof 〉

lemmas L_nat = Ord_in_L [OF Ord_nat]
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theorem M_trivial_L: "M_trivial(L)"
〈proof 〉

interpretation L: M_trivial L 〈proof 〉

10.3 Instantiation of the locale reflection

instances of locale constants
definition

L_F0 :: "[i⇒o,i] ⇒ i" where
"L_F0(P,y) ≡ µ b. (∃ z. L(z) ∧ P(〈y,z〉)) −→ (∃ z∈Lset(b). P(〈y,z〉))"

definition
L_FF :: "[i⇒o,i] ⇒ i" where

"L_FF(P) ≡ λa.
⋃

y∈Lset(a). L_F0(P,y)"

definition
L_ClEx :: "[i⇒o,i] ⇒ o" where

"L_ClEx(P) ≡ λa. Limit(a) ∧ normalize(L_FF(P),a) = a"

We must use the meta-existential quantifier; otherwise the reflection terms
become enormous!
definition

L_Reflects :: "[i⇒o,[i,i]⇒o] ⇒ prop" (‹(3REFLECTS/ [_,/ _])›) where
"REFLECTS[P,Q] ≡ (

∨
Cl. Closed_Unbounded(Cl) ∧

(∀ a. Cl(a) −→ (∀ x ∈ Lset(a). P(x) ←→ Q(a,x))))"

theorem Triv_reflection:
"REFLECTS[P, λa x. P(x)]"

〈proof 〉

theorem Not_reflection:
"REFLECTS[P,Q] =⇒ REFLECTS[λx. ¬P(x), λa x. ¬Q(a,x)]"

〈proof 〉

theorem And_reflection:
" [[REFLECTS[P,Q]; REFLECTS[P’,Q’]]]
=⇒ REFLECTS[λx. P(x) ∧ P’(x), λa x. Q(a,x) ∧ Q’(a,x)]"

〈proof 〉

theorem Or_reflection:
" [[REFLECTS[P,Q]; REFLECTS[P’,Q’]]]
=⇒ REFLECTS[λx. P(x) ∨ P’(x), λa x. Q(a,x) ∨ Q’(a,x)]"

〈proof 〉

theorem Imp_reflection:

94



" [[REFLECTS[P,Q]; REFLECTS[P’,Q’]]]
=⇒ REFLECTS[λx. P(x) −→ P’(x), λa x. Q(a,x) −→ Q’(a,x)]"

〈proof 〉

theorem Iff_reflection:
" [[REFLECTS[P,Q]; REFLECTS[P’,Q’]]]
=⇒ REFLECTS[λx. P(x) ←→ P’(x), λa x. Q(a,x) ←→ Q’(a,x)]"

〈proof 〉

lemma reflection_Lset: "reflection(Lset)"
〈proof 〉

theorem Ex_reflection:
"REFLECTS[λx. P(fst(x),snd(x)), λa x. Q(a,fst(x),snd(x))]
=⇒ REFLECTS[λx. ∃ z. L(z) ∧ P(x,z), λa x. ∃ z∈Lset(a). Q(a,x,z)]"

〈proof 〉

theorem All_reflection:
"REFLECTS[λx. P(fst(x),snd(x)), λa x. Q(a,fst(x),snd(x))]
=⇒ REFLECTS[λx. ∀ z. L(z) −→ P(x,z), λa x. ∀ z∈Lset(a). Q(a,x,z)]"

〈proof 〉

theorem Rex_reflection:
"REFLECTS[ λx. P(fst(x),snd(x)), λa x. Q(a,fst(x),snd(x))]
=⇒ REFLECTS[λx. ∃ z[L]. P(x,z), λa x. ∃ z∈Lset(a). Q(a,x,z)]"

〈proof 〉

theorem Rall_reflection:
"REFLECTS[λx. P(fst(x),snd(x)), λa x. Q(a,fst(x),snd(x))]
=⇒ REFLECTS[λx. ∀ z[L]. P(x,z), λa x. ∀ z∈Lset(a). Q(a,x,z)]"

〈proof 〉

This version handles an alternative form of the bounded quantifier in the
second argument of REFLECTS.
theorem Rex_reflection’:

"REFLECTS[λx. P(fst(x),snd(x)), λa x. Q(a,fst(x),snd(x))]
=⇒ REFLECTS[λx. ∃ z[L]. P(x,z), λa x. ∃ z[##Lset(a)]. Q(a,x,z)]"

〈proof 〉

As above.
theorem Rall_reflection’:

"REFLECTS[λx. P(fst(x),snd(x)), λa x. Q(a,fst(x),snd(x))]
=⇒ REFLECTS[λx. ∀ z[L]. P(x,z), λa x. ∀ z[##Lset(a)]. Q(a,x,z)]"

〈proof 〉

lemmas FOL_reflections =
Triv_reflection Not_reflection And_reflection Or_reflection
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Imp_reflection Iff_reflection Ex_reflection All_reflection
Rex_reflection Rall_reflection Rex_reflection’ Rall_reflection’

lemma ReflectsD:
" [[REFLECTS[P,Q]; Ord(i)]]
=⇒ ∃ j. i<j ∧ (∀ x ∈ Lset(j). P(x) ←→ Q(j,x))"

〈proof 〉

lemma ReflectsE:
" [[REFLECTS[P,Q]; Ord(i);∧

j. [[i<j; ∀ x ∈ Lset(j). P(x) ←→ Q(j,x)]] =⇒ R ]]
=⇒ R"

〈proof 〉

lemma Collect_mem_eq: "{x∈A. x∈B} = A ∩ B"
〈proof 〉

10.4 Internalized Formulas for some Set-Theoretic Concepts
10.4.1 Some numbers to help write de Bruijn indices
abbreviation

digit3 :: i (‹3›) where "3 ≡ succ(2)"

abbreviation
digit4 :: i (‹4›) where "4 ≡ succ(3)"

abbreviation
digit5 :: i (‹5›) where "5 ≡ succ(4)"

abbreviation
digit6 :: i (‹6›) where "6 ≡ succ(5)"

abbreviation
digit7 :: i (‹7›) where "7 ≡ succ(6)"

abbreviation
digit8 :: i (‹8›) where "8 ≡ succ(7)"

abbreviation
digit9 :: i (‹9›) where "9 ≡ succ(8)"

10.4.2 The Empty Set, Internalized
definition

empty_fm :: "i⇒i" where
"empty_fm(x) ≡ Forall(Neg(Member(0,succ(x))))"

lemma empty_type [TC]:
"x ∈ nat =⇒ empty_fm(x) ∈ formula"
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〈proof 〉

lemma sats_empty_fm [simp]:
" [[x ∈ nat; env ∈ list(A)]]
=⇒ sats(A, empty_fm(x), env) ←→ empty(##A, nth(x,env))"

〈proof 〉

lemma empty_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; env ∈ list(A)]]
=⇒ empty(##A, x) ←→ sats(A, empty_fm(i), env)"

〈proof 〉

theorem empty_reflection:
"REFLECTS[λx. empty(L,f(x)),

λi x. empty(##Lset(i),f(x))]"
〈proof 〉

Not used. But maybe useful?
lemma Transset_sats_empty_fm_eq_0:

" [[n ∈ nat; env ∈ list(A); Transset(A)]]
=⇒ sats(A, empty_fm(n), env) ←→ nth(n,env) = 0"

〈proof 〉

10.4.3 Unordered Pairs, Internalized
definition

upair_fm :: "[i,i,i]⇒i" where
"upair_fm(x,y,z) ≡

And(Member(x,z),
And(Member(y,z),

Forall(Implies(Member(0,succ(z)),
Or(Equal(0,succ(x)), Equal(0,succ(y)))))))"

lemma upair_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ upair_fm(x,y,z) ∈ formula"

〈proof 〉

lemma sats_upair_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, upair_fm(x,y,z), env) ←→

upair(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma upair_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ upair(##A, x, y, z) ←→ sats(A, upair_fm(i,j,k), env)"

〈proof 〉
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Useful? At least it refers to "real" unordered pairs
lemma sats_upair_fm2 [simp]:

" [[x ∈ nat; y ∈ nat; z < length(env); env ∈ list(A); Transset(A)]]
=⇒ sats(A, upair_fm(x,y,z), env) ←→

nth(z,env) = {nth(x,env), nth(y,env)}"
〈proof 〉

theorem upair_reflection:
"REFLECTS[λx. upair(L,f(x),g(x),h(x)),

λi x. upair(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉

10.4.4 Ordered pairs, Internalized
definition

pair_fm :: "[i,i,i]⇒i" where
"pair_fm(x,y,z) ≡

Exists(And(upair_fm(succ(x),succ(x),0),
Exists(And(upair_fm(succ(succ(x)),succ(succ(y)),0),

upair_fm(1,0,succ(succ(z)))))))"

lemma pair_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ pair_fm(x,y,z) ∈ formula"

〈proof 〉

lemma sats_pair_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, pair_fm(x,y,z), env) ←→

pair(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma pair_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ pair(##A, x, y, z) ←→ sats(A, pair_fm(i,j,k), env)"

〈proof 〉

theorem pair_reflection:
"REFLECTS[λx. pair(L,f(x),g(x),h(x)),

λi x. pair(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉

10.4.5 Binary Unions, Internalized
definition

union_fm :: "[i,i,i]⇒i" where
"union_fm(x,y,z) ≡

Forall(Iff(Member(0,succ(z)),
Or(Member(0,succ(x)),Member(0,succ(y)))))"
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lemma union_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ union_fm(x,y,z) ∈ formula"

〈proof 〉

lemma sats_union_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, union_fm(x,y,z), env) ←→

union(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma union_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ union(##A, x, y, z) ←→ sats(A, union_fm(i,j,k), env)"

〈proof 〉

theorem union_reflection:
"REFLECTS[λx. union(L,f(x),g(x),h(x)),

λi x. union(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉

10.4.6 Set “Cons,” Internalized
definition

cons_fm :: "[i,i,i]⇒i" where
"cons_fm(x,y,z) ≡

Exists(And(upair_fm(succ(x),succ(x),0),
union_fm(0,succ(y),succ(z))))"

lemma cons_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ cons_fm(x,y,z) ∈ formula"

〈proof 〉

lemma sats_cons_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, cons_fm(x,y,z), env) ←→

is_cons(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma cons_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ is_cons(##A, x, y, z) ←→ sats(A, cons_fm(i,j,k), env)"

〈proof 〉

theorem cons_reflection:
"REFLECTS[λx. is_cons(L,f(x),g(x),h(x)),
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λi x. is_cons(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉

10.4.7 Successor Function, Internalized
definition

succ_fm :: "[i,i]⇒i" where
"succ_fm(x,y) ≡ cons_fm(x,x,y)"

lemma succ_type [TC]:
" [[x ∈ nat; y ∈ nat ]] =⇒ succ_fm(x,y) ∈ formula"

〈proof 〉

lemma sats_succ_fm [simp]:
" [[x ∈ nat; y ∈ nat; env ∈ list(A)]]
=⇒ sats(A, succ_fm(x,y), env) ←→

successor(##A, nth(x,env), nth(y,env))"
〈proof 〉

lemma successor_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; j ∈ nat; env ∈ list(A)]]
=⇒ successor(##A, x, y) ←→ sats(A, succ_fm(i,j), env)"

〈proof 〉

theorem successor_reflection:
"REFLECTS[λx. successor(L,f(x),g(x)),

λi x. successor(##Lset(i),f(x),g(x))]"
〈proof 〉

10.4.8 The Number 1, Internalized
definition

number1_fm :: "i⇒i" where
"number1_fm(a) ≡ Exists(And(empty_fm(0), succ_fm(0,succ(a))))"

lemma number1_type [TC]:
"x ∈ nat =⇒ number1_fm(x) ∈ formula"

〈proof 〉

lemma sats_number1_fm [simp]:
" [[x ∈ nat; env ∈ list(A)]]
=⇒ sats(A, number1_fm(x), env) ←→ number1(##A, nth(x,env))"

〈proof 〉

lemma number1_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; env ∈ list(A)]]
=⇒ number1(##A, x) ←→ sats(A, number1_fm(i), env)"

〈proof 〉
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theorem number1_reflection:
"REFLECTS[λx. number1(L,f(x)),

λi x. number1(##Lset(i),f(x))]"
〈proof 〉

10.4.9 Big Union, Internalized
definition

big_union_fm :: "[i,i]⇒i" where
"big_union_fm(A,z) ≡

Forall(Iff(Member(0,succ(z)),
Exists(And(Member(0,succ(succ(A))), Member(1,0)))))"

lemma big_union_type [TC]:
" [[x ∈ nat; y ∈ nat ]] =⇒ big_union_fm(x,y) ∈ formula"

〈proof 〉

lemma sats_big_union_fm [simp]:
" [[x ∈ nat; y ∈ nat; env ∈ list(A)]]
=⇒ sats(A, big_union_fm(x,y), env) ←→

big_union(##A, nth(x,env), nth(y,env))"
〈proof 〉

lemma big_union_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; j ∈ nat; env ∈ list(A)]]
=⇒ big_union(##A, x, y) ←→ sats(A, big_union_fm(i,j), env)"

〈proof 〉

theorem big_union_reflection:
"REFLECTS[λx. big_union(L,f(x),g(x)),

λi x. big_union(##Lset(i),f(x),g(x))]"
〈proof 〉

10.4.10 Variants of Satisfaction Definitions for Ordinals, etc.

The sats theorems below are standard versions of the ones proved in theory
Formula. They relate elements of type formula to relativized concepts such
as subset or ordinal rather than to real concepts such as Ord. Now that
we have instantiated the locale M_trivial, we no longer require the earlier
versions.
lemma sats_subset_fm’:

" [[x ∈ nat; y ∈ nat; env ∈ list(A)]]
=⇒ sats(A, subset_fm(x,y), env) ←→ subset(##A, nth(x,env), nth(y,env))"

〈proof 〉

theorem subset_reflection:
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"REFLECTS[λx. subset(L,f(x),g(x)),
λi x. subset(##Lset(i),f(x),g(x))]"

〈proof 〉

lemma sats_transset_fm’:
" [[x ∈ nat; env ∈ list(A)]]
=⇒ sats(A, transset_fm(x), env) ←→ transitive_set(##A, nth(x,env))"

〈proof 〉

theorem transitive_set_reflection:
"REFLECTS[λx. transitive_set(L,f(x)),

λi x. transitive_set(##Lset(i),f(x))]"
〈proof 〉

lemma sats_ordinal_fm’:
" [[x ∈ nat; env ∈ list(A)]]
=⇒ sats(A, ordinal_fm(x), env) ←→ ordinal(##A,nth(x,env))"

〈proof 〉

lemma ordinal_iff_sats:
" [[nth(i,env) = x; i ∈ nat; env ∈ list(A)]]
=⇒ ordinal(##A, x) ←→ sats(A, ordinal_fm(i), env)"

〈proof 〉

theorem ordinal_reflection:
"REFLECTS[λx. ordinal(L,f(x)), λi x. ordinal(##Lset(i),f(x))]"

〈proof 〉

10.4.11 Membership Relation, Internalized
definition

Memrel_fm :: "[i,i]⇒i" where
"Memrel_fm(A,r) ≡

Forall(Iff(Member(0,succ(r)),
Exists(And(Member(0,succ(succ(A))),

Exists(And(Member(0,succ(succ(succ(A)))),
And(Member(1,0),

pair_fm(1,0,2))))))))"

lemma Memrel_type [TC]:
" [[x ∈ nat; y ∈ nat ]] =⇒ Memrel_fm(x,y) ∈ formula"

〈proof 〉

lemma sats_Memrel_fm [simp]:
" [[x ∈ nat; y ∈ nat; env ∈ list(A)]]
=⇒ sats(A, Memrel_fm(x,y), env) ←→

membership(##A, nth(x,env), nth(y,env))"
〈proof 〉
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lemma Memrel_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; j ∈ nat; env ∈ list(A)]]
=⇒ membership(##A, x, y) ←→ sats(A, Memrel_fm(i,j), env)"

〈proof 〉

theorem membership_reflection:
"REFLECTS[λx. membership(L,f(x),g(x)),

λi x. membership(##Lset(i),f(x),g(x))]"
〈proof 〉

10.4.12 Predecessor Set, Internalized
definition

pred_set_fm :: "[i,i,i,i]⇒i" where
"pred_set_fm(A,x,r,B) ≡

Forall(Iff(Member(0,succ(B)),
Exists(And(Member(0,succ(succ(r))),

And(Member(1,succ(succ(A))),
pair_fm(1,succ(succ(x)),0))))))"

lemma pred_set_type [TC]:
" [[A ∈ nat; x ∈ nat; r ∈ nat; B ∈ nat ]]
=⇒ pred_set_fm(A,x,r,B) ∈ formula"

〈proof 〉

lemma sats_pred_set_fm [simp]:
" [[U ∈ nat; x ∈ nat; r ∈ nat; B ∈ nat; env ∈ list(A)]]
=⇒ sats(A, pred_set_fm(U,x,r,B), env) ←→

pred_set(##A, nth(U,env), nth(x,env), nth(r,env), nth(B,env))"
〈proof 〉

lemma pred_set_iff_sats:
" [[nth(i,env) = U; nth(j,env) = x; nth(k,env) = r; nth(l,env) = B;

i ∈ nat; j ∈ nat; k ∈ nat; l ∈ nat; env ∈ list(A)]]
=⇒ pred_set(##A,U,x,r,B) ←→ sats(A, pred_set_fm(i,j,k,l), env)"

〈proof 〉

theorem pred_set_reflection:
"REFLECTS[λx. pred_set(L,f(x),g(x),h(x),b(x)),

λi x. pred_set(##Lset(i),f(x),g(x),h(x),b(x))]"
〈proof 〉

10.4.13 Domain of a Relation, Internalized
definition

domain_fm :: "[i,i]⇒i" where
"domain_fm(r,z) ≡

Forall(Iff(Member(0,succ(z)),
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Exists(And(Member(0,succ(succ(r))),
Exists(pair_fm(2,0,1))))))"

lemma domain_type [TC]:
" [[x ∈ nat; y ∈ nat ]] =⇒ domain_fm(x,y) ∈ formula"

〈proof 〉

lemma sats_domain_fm [simp]:
" [[x ∈ nat; y ∈ nat; env ∈ list(A)]]
=⇒ sats(A, domain_fm(x,y), env) ←→

is_domain(##A, nth(x,env), nth(y,env))"
〈proof 〉

lemma domain_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; j ∈ nat; env ∈ list(A)]]
=⇒ is_domain(##A, x, y) ←→ sats(A, domain_fm(i,j), env)"

〈proof 〉

theorem domain_reflection:
"REFLECTS[λx. is_domain(L,f(x),g(x)),

λi x. is_domain(##Lset(i),f(x),g(x))]"
〈proof 〉

10.4.14 Range of a Relation, Internalized
definition

range_fm :: "[i,i]⇒i" where
"range_fm(r,z) ≡

Forall(Iff(Member(0,succ(z)),
Exists(And(Member(0,succ(succ(r))),

Exists(pair_fm(0,2,1))))))"

lemma range_type [TC]:
" [[x ∈ nat; y ∈ nat ]] =⇒ range_fm(x,y) ∈ formula"

〈proof 〉

lemma sats_range_fm [simp]:
" [[x ∈ nat; y ∈ nat; env ∈ list(A)]]
=⇒ sats(A, range_fm(x,y), env) ←→

is_range(##A, nth(x,env), nth(y,env))"
〈proof 〉

lemma range_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; j ∈ nat; env ∈ list(A)]]
=⇒ is_range(##A, x, y) ←→ sats(A, range_fm(i,j), env)"

〈proof 〉
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theorem range_reflection:
"REFLECTS[λx. is_range(L,f(x),g(x)),

λi x. is_range(##Lset(i),f(x),g(x))]"
〈proof 〉

10.4.15 Field of a Relation, Internalized
definition

field_fm :: "[i,i]⇒i" where
"field_fm(r,z) ≡

Exists(And(domain_fm(succ(r),0),
Exists(And(range_fm(succ(succ(r)),0),

union_fm(1,0,succ(succ(z)))))))"

lemma field_type [TC]:
" [[x ∈ nat; y ∈ nat ]] =⇒ field_fm(x,y) ∈ formula"

〈proof 〉

lemma sats_field_fm [simp]:
" [[x ∈ nat; y ∈ nat; env ∈ list(A)]]
=⇒ sats(A, field_fm(x,y), env) ←→

is_field(##A, nth(x,env), nth(y,env))"
〈proof 〉

lemma field_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; j ∈ nat; env ∈ list(A)]]
=⇒ is_field(##A, x, y) ←→ sats(A, field_fm(i,j), env)"

〈proof 〉

theorem field_reflection:
"REFLECTS[λx. is_field(L,f(x),g(x)),

λi x. is_field(##Lset(i),f(x),g(x))]"
〈proof 〉

10.4.16 Image under a Relation, Internalized
definition

image_fm :: "[i,i,i]⇒i" where
"image_fm(r,A,z) ≡

Forall(Iff(Member(0,succ(z)),
Exists(And(Member(0,succ(succ(r))),

Exists(And(Member(0,succ(succ(succ(A)))),
pair_fm(0,2,1)))))))"

lemma image_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ image_fm(x,y,z) ∈ formula"

〈proof 〉

lemma sats_image_fm [simp]:
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" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, image_fm(x,y,z), env) ←→

image(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma image_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ image(##A, x, y, z) ←→ sats(A, image_fm(i,j,k), env)"

〈proof 〉

theorem image_reflection:
"REFLECTS[λx. image(L,f(x),g(x),h(x)),

λi x. image(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉

10.4.17 Pre-Image under a Relation, Internalized
definition

pre_image_fm :: "[i,i,i]⇒i" where
"pre_image_fm(r,A,z) ≡

Forall(Iff(Member(0,succ(z)),
Exists(And(Member(0,succ(succ(r))),

Exists(And(Member(0,succ(succ(succ(A)))),
pair_fm(2,0,1)))))))"

lemma pre_image_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ pre_image_fm(x,y,z) ∈ formula"

〈proof 〉

lemma sats_pre_image_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, pre_image_fm(x,y,z), env) ←→

pre_image(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma pre_image_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ pre_image(##A, x, y, z) ←→ sats(A, pre_image_fm(i,j,k), env)"

〈proof 〉

theorem pre_image_reflection:
"REFLECTS[λx. pre_image(L,f(x),g(x),h(x)),

λi x. pre_image(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉

10.4.18 Function Application, Internalized
definition
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fun_apply_fm :: "[i,i,i]⇒i" where
"fun_apply_fm(f,x,y) ≡

Exists(Exists(And(upair_fm(succ(succ(x)), succ(succ(x)), 1),
And(image_fm(succ(succ(f)), 1, 0),

big_union_fm(0,succ(succ(y)))))))"

lemma fun_apply_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ fun_apply_fm(x,y,z) ∈ formula"

〈proof 〉

lemma sats_fun_apply_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, fun_apply_fm(x,y,z), env) ←→

fun_apply(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma fun_apply_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ fun_apply(##A, x, y, z) ←→ sats(A, fun_apply_fm(i,j,k), env)"

〈proof 〉

theorem fun_apply_reflection:
"REFLECTS[λx. fun_apply(L,f(x),g(x),h(x)),

λi x. fun_apply(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉

10.4.19 The Concept of Relation, Internalized
definition

relation_fm :: "i⇒i" where
"relation_fm(r) ≡

Forall(Implies(Member(0,succ(r)), Exists(Exists(pair_fm(1,0,2)))))"

lemma relation_type [TC]:
" [[x ∈ nat ]] =⇒ relation_fm(x) ∈ formula"

〈proof 〉

lemma sats_relation_fm [simp]:
" [[x ∈ nat; env ∈ list(A)]]
=⇒ sats(A, relation_fm(x), env) ←→ is_relation(##A, nth(x,env))"

〈proof 〉

lemma relation_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; env ∈ list(A)]]
=⇒ is_relation(##A, x) ←→ sats(A, relation_fm(i), env)"

〈proof 〉
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theorem is_relation_reflection:
"REFLECTS[λx. is_relation(L,f(x)),

λi x. is_relation(##Lset(i),f(x))]"
〈proof 〉

10.4.20 The Concept of Function, Internalized
definition

function_fm :: "i⇒i" where
"function_fm(r) ≡

Forall(Forall(Forall(Forall(Forall(
Implies(pair_fm(4,3,1),

Implies(pair_fm(4,2,0),
Implies(Member(1,r#+5),

Implies(Member(0,r#+5), Equal(3,2))))))))))"

lemma function_type [TC]:
" [[x ∈ nat ]] =⇒ function_fm(x) ∈ formula"

〈proof 〉

lemma sats_function_fm [simp]:
" [[x ∈ nat; env ∈ list(A)]]
=⇒ sats(A, function_fm(x), env) ←→ is_function(##A, nth(x,env))"

〈proof 〉

lemma is_function_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; env ∈ list(A)]]
=⇒ is_function(##A, x) ←→ sats(A, function_fm(i), env)"

〈proof 〉

theorem is_function_reflection:
"REFLECTS[λx. is_function(L,f(x)),

λi x. is_function(##Lset(i),f(x))]"
〈proof 〉

10.4.21 Typed Functions, Internalized
definition

typed_function_fm :: "[i,i,i]⇒i" where
"typed_function_fm(A,B,r) ≡

And(function_fm(r),
And(relation_fm(r),

And(domain_fm(r,A),
Forall(Implies(Member(0,succ(r)),

Forall(Forall(Implies(pair_fm(1,0,2),Member(0,B#+3)))))))))"

lemma typed_function_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ typed_function_fm(x,y,z) ∈ formula"

〈proof 〉
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lemma sats_typed_function_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, typed_function_fm(x,y,z), env) ←→

typed_function(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma typed_function_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ typed_function(##A, x, y, z) ←→ sats(A, typed_function_fm(i,j,k),

env)"
〈proof 〉

lemmas function_reflections =
empty_reflection number1_reflection
upair_reflection pair_reflection union_reflection
big_union_reflection cons_reflection successor_reflection
fun_apply_reflection subset_reflection
transitive_set_reflection membership_reflection
pred_set_reflection domain_reflection range_reflection field_reflection
image_reflection pre_image_reflection
is_relation_reflection is_function_reflection

lemmas function_iff_sats =
empty_iff_sats number1_iff_sats
upair_iff_sats pair_iff_sats union_iff_sats
big_union_iff_sats cons_iff_sats successor_iff_sats
fun_apply_iff_sats Memrel_iff_sats
pred_set_iff_sats domain_iff_sats range_iff_sats field_iff_sats
image_iff_sats pre_image_iff_sats
relation_iff_sats is_function_iff_sats

theorem typed_function_reflection:
"REFLECTS[λx. typed_function(L,f(x),g(x),h(x)),

λi x. typed_function(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉

10.4.22 Composition of Relations, Internalized
definition

composition_fm :: "[i,i,i]⇒i" where
"composition_fm(r,s,t) ≡

Forall(Iff(Member(0,succ(t)),
Exists(Exists(Exists(Exists(Exists(
And(pair_fm(4,2,5),
And(pair_fm(4,3,1),
And(pair_fm(3,2,0),
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And(Member(1,s#+6), Member(0,r#+6))))))))))))"

lemma composition_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ composition_fm(x,y,z) ∈ formula"

〈proof 〉

lemma sats_composition_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, composition_fm(x,y,z), env) ←→

composition(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma composition_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ composition(##A, x, y, z) ←→ sats(A, composition_fm(i,j,k),

env)"
〈proof 〉

theorem composition_reflection:
"REFLECTS[λx. composition(L,f(x),g(x),h(x)),

λi x. composition(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉

10.4.23 Injections, Internalized
definition

injection_fm :: "[i,i,i]⇒i" where
"injection_fm(A,B,f) ≡

And(typed_function_fm(A,B,f),
Forall(Forall(Forall(Forall(Forall(

Implies(pair_fm(4,2,1),
Implies(pair_fm(3,2,0),

Implies(Member(1,f#+5),
Implies(Member(0,f#+5), Equal(4,3)))))))))))"

lemma injection_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ injection_fm(x,y,z) ∈ formula"

〈proof 〉

lemma sats_injection_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, injection_fm(x,y,z), env) ←→

injection(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma injection_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
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i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ injection(##A, x, y, z) ←→ sats(A, injection_fm(i,j,k), env)"

〈proof 〉

theorem injection_reflection:
"REFLECTS[λx. injection(L,f(x),g(x),h(x)),

λi x. injection(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉

10.4.24 Surjections, Internalized
definition

surjection_fm :: "[i,i,i]⇒i" where
"surjection_fm(A,B,f) ≡

And(typed_function_fm(A,B,f),
Forall(Implies(Member(0,succ(B)),

Exists(And(Member(0,succ(succ(A))),
fun_apply_fm(succ(succ(f)),0,1))))))"

lemma surjection_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ surjection_fm(x,y,z) ∈ formula"

〈proof 〉

lemma sats_surjection_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, surjection_fm(x,y,z), env) ←→

surjection(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma surjection_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ surjection(##A, x, y, z) ←→ sats(A, surjection_fm(i,j,k), env)"

〈proof 〉

theorem surjection_reflection:
"REFLECTS[λx. surjection(L,f(x),g(x),h(x)),

λi x. surjection(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉

10.4.25 Bijections, Internalized
definition

bijection_fm :: "[i,i,i]⇒i" where
"bijection_fm(A,B,f) ≡ And(injection_fm(A,B,f), surjection_fm(A,B,f))"

lemma bijection_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ bijection_fm(x,y,z) ∈ formula"

〈proof 〉
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lemma sats_bijection_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, bijection_fm(x,y,z), env) ←→

bijection(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma bijection_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ bijection(##A, x, y, z) ←→ sats(A, bijection_fm(i,j,k), env)"

〈proof 〉

theorem bijection_reflection:
"REFLECTS[λx. bijection(L,f(x),g(x),h(x)),

λi x. bijection(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉

10.4.26 Restriction of a Relation, Internalized
definition

restriction_fm :: "[i,i,i]⇒i" where
"restriction_fm(r,A,z) ≡

Forall(Iff(Member(0,succ(z)),
And(Member(0,succ(r)),

Exists(And(Member(0,succ(succ(A))),
Exists(pair_fm(1,0,2)))))))"

lemma restriction_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ restriction_fm(x,y,z) ∈ formula"

〈proof 〉

lemma sats_restriction_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, restriction_fm(x,y,z), env) ←→

restriction(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma restriction_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ restriction(##A, x, y, z) ←→ sats(A, restriction_fm(i,j,k),

env)"
〈proof 〉

theorem restriction_reflection:
"REFLECTS[λx. restriction(L,f(x),g(x),h(x)),

λi x. restriction(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉
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10.4.27 Order-Isomorphisms, Internalized
definition

order_isomorphism_fm :: "[i,i,i,i,i]⇒i" where
"order_isomorphism_fm(A,r,B,s,f) ≡

And(bijection_fm(A,B,f),
Forall(Implies(Member(0,succ(A)),

Forall(Implies(Member(0,succ(succ(A))),
Forall(Forall(Forall(Forall(

Implies(pair_fm(5,4,3),
Implies(fun_apply_fm(f#+6,5,2),

Implies(fun_apply_fm(f#+6,4,1),
Implies(pair_fm(2,1,0),

Iff(Member(3,r#+6), Member(0,s#+6)))))))))))))))"

lemma order_isomorphism_type [TC]:
" [[A ∈ nat; r ∈ nat; B ∈ nat; s ∈ nat; f ∈ nat ]]
=⇒ order_isomorphism_fm(A,r,B,s,f) ∈ formula"

〈proof 〉

lemma sats_order_isomorphism_fm [simp]:
" [[U ∈ nat; r ∈ nat; B ∈ nat; s ∈ nat; f ∈ nat; env ∈ list(A)]]
=⇒ sats(A, order_isomorphism_fm(U,r,B,s,f), env) ←→

order_isomorphism(##A, nth(U,env), nth(r,env), nth(B,env),
nth(s,env), nth(f,env))"

〈proof 〉

lemma order_isomorphism_iff_sats:
" [[nth(i,env) = U; nth(j,env) = r; nth(k,env) = B; nth(j’,env) = s;

nth(k’,env) = f;
i ∈ nat; j ∈ nat; k ∈ nat; j’ ∈ nat; k’ ∈ nat; env ∈ list(A)]]

=⇒ order_isomorphism(##A,U,r,B,s,f) ←→
sats(A, order_isomorphism_fm(i,j,k,j’,k’), env)"

〈proof 〉

theorem order_isomorphism_reflection:
"REFLECTS[λx. order_isomorphism(L,f(x),g(x),h(x),g’(x),h’(x)),

λi x. order_isomorphism(##Lset(i),f(x),g(x),h(x),g’(x),h’(x))]"
〈proof 〉

10.4.28 Limit Ordinals, Internalized

A limit ordinal is a non-empty, successor-closed ordinal
definition

limit_ordinal_fm :: "i⇒i" where
"limit_ordinal_fm(x) ≡

And(ordinal_fm(x),
And(Neg(empty_fm(x)),

Forall(Implies(Member(0,succ(x)),
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Exists(And(Member(0,succ(succ(x))),
succ_fm(1,0)))))))"

lemma limit_ordinal_type [TC]:
"x ∈ nat =⇒ limit_ordinal_fm(x) ∈ formula"

〈proof 〉

lemma sats_limit_ordinal_fm [simp]:
" [[x ∈ nat; env ∈ list(A)]]
=⇒ sats(A, limit_ordinal_fm(x), env) ←→ limit_ordinal(##A, nth(x,env))"

〈proof 〉

lemma limit_ordinal_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; env ∈ list(A)]]
=⇒ limit_ordinal(##A, x) ←→ sats(A, limit_ordinal_fm(i), env)"

〈proof 〉

theorem limit_ordinal_reflection:
"REFLECTS[λx. limit_ordinal(L,f(x)),

λi x. limit_ordinal(##Lset(i),f(x))]"
〈proof 〉

10.4.29 Finite Ordinals: The Predicate “Is A Natural Number”
definition

finite_ordinal_fm :: "i⇒i" where
"finite_ordinal_fm(x) ≡

And(ordinal_fm(x),
And(Neg(limit_ordinal_fm(x)),
Forall(Implies(Member(0,succ(x)),

Neg(limit_ordinal_fm(0))))))"

lemma finite_ordinal_type [TC]:
"x ∈ nat =⇒ finite_ordinal_fm(x) ∈ formula"

〈proof 〉

lemma sats_finite_ordinal_fm [simp]:
" [[x ∈ nat; env ∈ list(A)]]
=⇒ sats(A, finite_ordinal_fm(x), env) ←→ finite_ordinal(##A, nth(x,env))"

〈proof 〉

lemma finite_ordinal_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; env ∈ list(A)]]
=⇒ finite_ordinal(##A, x) ←→ sats(A, finite_ordinal_fm(i), env)"

〈proof 〉

theorem finite_ordinal_reflection:
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"REFLECTS[λx. finite_ordinal(L,f(x)),
λi x. finite_ordinal(##Lset(i),f(x))]"

〈proof 〉

10.4.30 Omega: The Set of Natural Numbers
definition

omega_fm :: "i⇒i" where
"omega_fm(x) ≡

And(limit_ordinal_fm(x),
Forall(Implies(Member(0,succ(x)),

Neg(limit_ordinal_fm(0)))))"

lemma omega_type [TC]:
"x ∈ nat =⇒ omega_fm(x) ∈ formula"

〈proof 〉

lemma sats_omega_fm [simp]:
" [[x ∈ nat; env ∈ list(A)]]
=⇒ sats(A, omega_fm(x), env) ←→ omega(##A, nth(x,env))"

〈proof 〉

lemma omega_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; env ∈ list(A)]]
=⇒ omega(##A, x) ←→ sats(A, omega_fm(i), env)"

〈proof 〉

theorem omega_reflection:
"REFLECTS[λx. omega(L,f(x)),

λi x. omega(##Lset(i),f(x))]"
〈proof 〉

lemmas fun_plus_reflections =
typed_function_reflection composition_reflection
injection_reflection surjection_reflection
bijection_reflection restriction_reflection
order_isomorphism_reflection finite_ordinal_reflection
ordinal_reflection limit_ordinal_reflection omega_reflection

lemmas fun_plus_iff_sats =
typed_function_iff_sats composition_iff_sats
injection_iff_sats surjection_iff_sats
bijection_iff_sats restriction_iff_sats
order_isomorphism_iff_sats finite_ordinal_iff_sats
ordinal_iff_sats limit_ordinal_iff_sats omega_iff_sats

end
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11 Early Instances of Separation and Strong Re-
placement

theory Separation imports L_axioms WF_absolute begin

This theory proves all instances needed for locale M_basic

Helps us solve for de Bruijn indices!
lemma nth_ConsI: " [[nth(n,l) = x; n ∈ nat ]] =⇒ nth(succ(n), Cons(a,l))
= x"
〈proof 〉

lemmas nth_rules = nth_0 nth_ConsI nat_0I nat_succI
lemmas sep_rules = nth_0 nth_ConsI FOL_iff_sats function_iff_sats

fun_plus_iff_sats

lemma Collect_conj_in_DPow:
" [[{x∈A. P(x)} ∈ DPow(A); {x∈A. Q(x)} ∈ DPow(A)]]
=⇒ {x∈A. P(x) ∧ Q(x)} ∈ DPow(A)"

〈proof 〉

lemma Collect_conj_in_DPow_Lset:
" [[z ∈ Lset(j); {x ∈ Lset(j). P(x)} ∈ DPow(Lset(j))]]
=⇒ {x ∈ Lset(j). x ∈ z ∧ P(x)} ∈ DPow(Lset(j))"

〈proof 〉

lemma separation_CollectI:
"(

∧
z. L(z) =⇒ L({x ∈ z . P(x)})) =⇒ separation(L, λx. P(x))"

〈proof 〉

Reduces the original comprehension to the reflected one
lemma reflection_imp_L_separation:

" [[∀ x∈Lset(j). P(x) ←→ Q(x);
{x ∈ Lset(j) . Q(x)} ∈ DPow(Lset(j));
Ord(j); z ∈ Lset(j)]] =⇒ L({x ∈ z . P(x)})"

〈proof 〉

Encapsulates the standard proof script for proving instances of Separation.
lemma gen_separation:
assumes reflection: "REFLECTS [P,Q]"

and Lu: "L(u)"
and collI: "

∧
j. u ∈ Lset(j)

=⇒ Collect(Lset(j), Q(j)) ∈ DPow(Lset(j))"
shows "separation(L,P)"
〈proof 〉

As above, but typically u is a finite enumeration such as {a, b}; thus the new
subgoal gets the assumption {a, b} ⊆ Lset(i), which is logically equivalent
to a ∈ Lset(i) and b ∈ Lset(i).
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lemma gen_separation_multi:
assumes reflection: "REFLECTS [P,Q]"

and Lu: "L(u)"
and collI: "

∧
j. u ⊆ Lset(j)

=⇒ Collect(Lset(j), Q(j)) ∈ DPow(Lset(j))"
shows "separation(L,P)"
〈proof 〉

11.1 Separation for Intersection
lemma Inter_Reflects:

"REFLECTS[λx. ∀ y[L]. y∈A −→ x ∈ y,
λi x. ∀ y∈Lset(i). y∈A −→ x ∈ y]"

〈proof 〉

lemma Inter_separation:
"L(A) =⇒ separation(L, λx. ∀ y[L]. y∈A −→ x∈y)"

〈proof 〉

11.2 Separation for Set Difference
lemma Diff_Reflects:

"REFLECTS[λx. x /∈ B, λi x. x /∈ B]"
〈proof 〉

lemma Diff_separation:
"L(B) =⇒ separation(L, λx. x /∈ B)"

〈proof 〉

11.3 Separation for Cartesian Product
lemma cartprod_Reflects:

"REFLECTS[λz. ∃ x[L]. x∈A ∧ (∃ y[L]. y∈B ∧ pair(L,x,y,z)),
λi z. ∃ x∈Lset(i). x∈A ∧ (∃ y∈Lset(i). y∈B ∧

pair(##Lset(i),x,y,z))]"
〈proof 〉

lemma cartprod_separation:
" [[L(A); L(B)]]
=⇒ separation(L, λz. ∃ x[L]. x∈A ∧ (∃ y[L]. y∈B ∧ pair(L,x,y,z)))"

〈proof 〉

11.4 Separation for Image
lemma image_Reflects:

"REFLECTS[λy. ∃ p[L]. p∈r ∧ (∃ x[L]. x∈A ∧ pair(L,x,y,p)),
λi y. ∃ p∈Lset(i). p∈r ∧ (∃ x∈Lset(i). x∈A ∧ pair(##Lset(i),x,y,p))]"

〈proof 〉

lemma image_separation:
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" [[L(A); L(r)]]
=⇒ separation(L, λy. ∃ p[L]. p∈r ∧ (∃ x[L]. x∈A ∧ pair(L,x,y,p)))"

〈proof 〉

11.5 Separation for Converse
lemma converse_Reflects:

"REFLECTS[λz. ∃ p[L]. p∈r ∧ (∃ x[L]. ∃ y[L]. pair(L,x,y,p) ∧ pair(L,y,x,z)),
λi z. ∃ p∈Lset(i). p∈r ∧ (∃ x∈Lset(i). ∃ y∈Lset(i).

pair(##Lset(i),x,y,p) ∧ pair(##Lset(i),y,x,z))]"
〈proof 〉

lemma converse_separation:
"L(r) =⇒ separation(L,

λz. ∃ p[L]. p∈r ∧ (∃ x[L]. ∃ y[L]. pair(L,x,y,p) ∧ pair(L,y,x,z)))"
〈proof 〉

11.6 Separation for Restriction
lemma restrict_Reflects:

"REFLECTS[λz. ∃ x[L]. x∈A ∧ (∃ y[L]. pair(L,x,y,z)),
λi z. ∃ x∈Lset(i). x∈A ∧ (∃ y∈Lset(i). pair(##Lset(i),x,y,z))]"

〈proof 〉

lemma restrict_separation:
"L(A) =⇒ separation(L, λz. ∃ x[L]. x∈A ∧ (∃ y[L]. pair(L,x,y,z)))"

〈proof 〉

11.7 Separation for Composition
lemma comp_Reflects:

"REFLECTS[λxz. ∃ x[L]. ∃ y[L]. ∃ z[L]. ∃ xy[L]. ∃ yz[L].
pair(L,x,z,xz) ∧ pair(L,x,y,xy) ∧ pair(L,y,z,yz) ∧
xy∈s ∧ yz∈r,

λi xz. ∃ x∈Lset(i). ∃ y∈Lset(i). ∃ z∈Lset(i). ∃ xy∈Lset(i). ∃ yz∈Lset(i).
pair(##Lset(i),x,z,xz) ∧ pair(##Lset(i),x,y,xy) ∧
pair(##Lset(i),y,z,yz) ∧ xy∈s ∧ yz∈r]"

〈proof 〉

lemma comp_separation:
" [[L(r); L(s)]]
=⇒ separation(L, λxz. ∃ x[L]. ∃ y[L]. ∃ z[L]. ∃ xy[L]. ∃ yz[L].

pair(L,x,z,xz) ∧ pair(L,x,y,xy) ∧ pair(L,y,z,yz) ∧
xy∈s ∧ yz∈r)"

〈proof 〉

11.8 Separation for Predecessors in an Order
lemma pred_Reflects:

"REFLECTS[λy. ∃ p[L]. p∈r ∧ pair(L,y,x,p),
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λi y. ∃ p ∈ Lset(i). p∈r ∧ pair(##Lset(i),y,x,p)]"
〈proof 〉

lemma pred_separation:
" [[L(r); L(x)]] =⇒ separation(L, λy. ∃ p[L]. p∈r ∧ pair(L,y,x,p))"

〈proof 〉

11.9 Separation for the Membership Relation
lemma Memrel_Reflects:

"REFLECTS[λz. ∃ x[L]. ∃ y[L]. pair(L,x,y,z) ∧ x ∈ y,
λi z. ∃ x ∈ Lset(i). ∃ y ∈ Lset(i). pair(##Lset(i),x,y,z)

∧ x ∈ y]"
〈proof 〉

lemma Memrel_separation:
"separation(L, λz. ∃ x[L]. ∃ y[L]. pair(L,x,y,z) ∧ x ∈ y)"

〈proof 〉

11.10 Replacement for FunSpace
lemma funspace_succ_Reflects:
"REFLECTS[λz. ∃ p[L]. p∈A ∧ (∃ f[L]. ∃ b[L]. ∃ nb[L]. ∃ cnbf[L].

pair(L,f,b,p) ∧ pair(L,n,b,nb) ∧ is_cons(L,nb,f,cnbf) ∧
upair(L,cnbf,cnbf,z)),

λi z. ∃ p ∈ Lset(i). p∈A ∧ (∃ f ∈ Lset(i). ∃ b ∈ Lset(i).
∃ nb ∈ Lset(i). ∃ cnbf ∈ Lset(i).

pair(##Lset(i),f,b,p) ∧ pair(##Lset(i),n,b,nb) ∧
is_cons(##Lset(i),nb,f,cnbf) ∧ upair(##Lset(i),cnbf,cnbf,z))]"

〈proof 〉

lemma funspace_succ_replacement:
"L(n) =⇒
strong_replacement(L, λp z. ∃ f[L]. ∃ b[L]. ∃ nb[L]. ∃ cnbf[L].

pair(L,f,b,p) ∧ pair(L,n,b,nb) ∧ is_cons(L,nb,f,cnbf)
∧

upair(L,cnbf,cnbf,z))"
〈proof 〉

11.11 Separation for a Theorem about is_recfun

lemma is_recfun_reflects:
"REFLECTS[λx. ∃ xa[L]. ∃ xb[L].

pair(L,x,a,xa) ∧ xa ∈ r ∧ pair(L,x,b,xb) ∧ xb ∈ r ∧
(∃ fx[L]. ∃ gx[L]. fun_apply(L,f,x,fx) ∧ fun_apply(L,g,x,gx)

∧
fx 6= gx),

λi x. ∃ xa ∈ Lset(i). ∃ xb ∈ Lset(i).
pair(##Lset(i),x,a,xa) ∧ xa ∈ r ∧ pair(##Lset(i),x,b,xb) ∧

xb ∈ r ∧
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(∃ fx ∈ Lset(i). ∃ gx ∈ Lset(i). fun_apply(##Lset(i),f,x,fx)
∧

fun_apply(##Lset(i),g,x,gx) ∧ fx 6= gx)]"
〈proof 〉

lemma is_recfun_separation:
— for well-founded recursion
" [[L(r); L(f); L(g); L(a); L(b)]]
=⇒ separation(L,

λx. ∃ xa[L]. ∃ xb[L].
pair(L,x,a,xa) ∧ xa ∈ r ∧ pair(L,x,b,xb) ∧ xb ∈ r ∧
(∃ fx[L]. ∃ gx[L]. fun_apply(L,f,x,fx) ∧ fun_apply(L,g,x,gx)

∧
fx 6= gx))"

〈proof 〉

11.12 Instantiating the locale M_basic

Separation (and Strong Replacement) for basic set-theoretic constructions
such as intersection, Cartesian Product and image.
lemma M_basic_axioms_L: "M_basic_axioms(L)"
〈proof 〉

theorem M_basic_L: " M_basic(L)"
〈proof 〉

interpretation L: M_basic L 〈proof 〉

end

theory Internalize imports L_axioms Datatype_absolute begin

11.13 Internalized Forms of Data Structuring Operators
11.13.1 The Formula is_Inl, Internalized
definition

Inl_fm :: "[i,i]⇒i" where
"Inl_fm(a,z) ≡ Exists(And(empty_fm(0), pair_fm(0,succ(a),succ(z))))"

lemma Inl_type [TC]:
" [[x ∈ nat; z ∈ nat ]] =⇒ Inl_fm(x,z) ∈ formula"

〈proof 〉

lemma sats_Inl_fm [simp]:
" [[x ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, Inl_fm(x,z), env) ←→ is_Inl(##A, nth(x,env), nth(z,env))"
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〈proof 〉

lemma Inl_iff_sats:
" [[nth(i,env) = x; nth(k,env) = z;

i ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ is_Inl(##A, x, z) ←→ sats(A, Inl_fm(i,k), env)"

〈proof 〉

theorem Inl_reflection:
"REFLECTS[λx. is_Inl(L,f(x),h(x)),

λi x. is_Inl(##Lset(i),f(x),h(x))]"
〈proof 〉

11.13.2 The Formula is_Inr, Internalized
definition

Inr_fm :: "[i,i]⇒i" where
"Inr_fm(a,z) ≡ Exists(And(number1_fm(0), pair_fm(0,succ(a),succ(z))))"

lemma Inr_type [TC]:
" [[x ∈ nat; z ∈ nat ]] =⇒ Inr_fm(x,z) ∈ formula"

〈proof 〉

lemma sats_Inr_fm [simp]:
" [[x ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, Inr_fm(x,z), env) ←→ is_Inr(##A, nth(x,env), nth(z,env))"

〈proof 〉

lemma Inr_iff_sats:
" [[nth(i,env) = x; nth(k,env) = z;

i ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ is_Inr(##A, x, z) ←→ sats(A, Inr_fm(i,k), env)"

〈proof 〉

theorem Inr_reflection:
"REFLECTS[λx. is_Inr(L,f(x),h(x)),

λi x. is_Inr(##Lset(i),f(x),h(x))]"
〈proof 〉

11.13.3 The Formula is_Nil, Internalized
definition

Nil_fm :: "i⇒i" where
"Nil_fm(x) ≡ Exists(And(empty_fm(0), Inl_fm(0,succ(x))))"

lemma Nil_type [TC]: "x ∈ nat =⇒ Nil_fm(x) ∈ formula"
〈proof 〉

lemma sats_Nil_fm [simp]:
" [[x ∈ nat; env ∈ list(A)]]
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=⇒ sats(A, Nil_fm(x), env) ←→ is_Nil(##A, nth(x,env))"
〈proof 〉

lemma Nil_iff_sats:
" [[nth(i,env) = x; i ∈ nat; env ∈ list(A)]]
=⇒ is_Nil(##A, x) ←→ sats(A, Nil_fm(i), env)"

〈proof 〉

theorem Nil_reflection:
"REFLECTS[λx. is_Nil(L,f(x)),

λi x. is_Nil(##Lset(i),f(x))]"
〈proof 〉

11.13.4 The Formula is_Cons, Internalized
definition

Cons_fm :: "[i,i,i]⇒i" where
"Cons_fm(a,l,Z) ≡

Exists(And(pair_fm(succ(a),succ(l),0), Inr_fm(0,succ(Z))))"

lemma Cons_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ Cons_fm(x,y,z) ∈ formula"

〈proof 〉

lemma sats_Cons_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, Cons_fm(x,y,z), env) ←→

is_Cons(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma Cons_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒is_Cons(##A, x, y, z) ←→ sats(A, Cons_fm(i,j,k), env)"

〈proof 〉

theorem Cons_reflection:
"REFLECTS[λx. is_Cons(L,f(x),g(x),h(x)),

λi x. is_Cons(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉

11.13.5 The Formula is_quasilist, Internalized
definition

quasilist_fm :: "i⇒i" where
"quasilist_fm(x) ≡

Or(Nil_fm(x), Exists(Exists(Cons_fm(1,0,succ(succ(x))))))"

lemma quasilist_type [TC]: "x ∈ nat =⇒ quasilist_fm(x) ∈ formula"
〈proof 〉
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lemma sats_quasilist_fm [simp]:
" [[x ∈ nat; env ∈ list(A)]]
=⇒ sats(A, quasilist_fm(x), env) ←→ is_quasilist(##A, nth(x,env))"

〈proof 〉

lemma quasilist_iff_sats:
" [[nth(i,env) = x; i ∈ nat; env ∈ list(A)]]
=⇒ is_quasilist(##A, x) ←→ sats(A, quasilist_fm(i), env)"

〈proof 〉

theorem quasilist_reflection:
"REFLECTS[λx. is_quasilist(L,f(x)),

λi x. is_quasilist(##Lset(i),f(x))]"
〈proof 〉

11.14 Absoluteness for the Function nth

11.14.1 The Formula is_hd, Internalized
definition

hd_fm :: "[i,i]⇒i" where
"hd_fm(xs,H) ≡

And(Implies(Nil_fm(xs), empty_fm(H)),
And(Forall(Forall(Or(Neg(Cons_fm(1,0,xs#+2)), Equal(H#+2,1)))),

Or(quasilist_fm(xs), empty_fm(H))))"

lemma hd_type [TC]:
" [[x ∈ nat; y ∈ nat ]] =⇒ hd_fm(x,y) ∈ formula"

〈proof 〉

lemma sats_hd_fm [simp]:
" [[x ∈ nat; y ∈ nat; env ∈ list(A)]]
=⇒ sats(A, hd_fm(x,y), env) ←→ is_hd(##A, nth(x,env), nth(y,env))"

〈proof 〉

lemma hd_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; j ∈ nat; env ∈ list(A)]]
=⇒ is_hd(##A, x, y) ←→ sats(A, hd_fm(i,j), env)"

〈proof 〉

theorem hd_reflection:
"REFLECTS[λx. is_hd(L,f(x),g(x)),

λi x. is_hd(##Lset(i),f(x),g(x))]"
〈proof 〉

11.14.2 The Formula is_tl, Internalized
definition
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tl_fm :: "[i,i]⇒i" where
"tl_fm(xs,T) ≡

And(Implies(Nil_fm(xs), Equal(T,xs)),
And(Forall(Forall(Or(Neg(Cons_fm(1,0,xs#+2)), Equal(T#+2,0)))),

Or(quasilist_fm(xs), empty_fm(T))))"

lemma tl_type [TC]:
" [[x ∈ nat; y ∈ nat ]] =⇒ tl_fm(x,y) ∈ formula"

〈proof 〉

lemma sats_tl_fm [simp]:
" [[x ∈ nat; y ∈ nat; env ∈ list(A)]]
=⇒ sats(A, tl_fm(x,y), env) ←→ is_tl(##A, nth(x,env), nth(y,env))"

〈proof 〉

lemma tl_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; j ∈ nat; env ∈ list(A)]]
=⇒ is_tl(##A, x, y) ←→ sats(A, tl_fm(i,j), env)"

〈proof 〉

theorem tl_reflection:
"REFLECTS[λx. is_tl(L,f(x),g(x)),

λi x. is_tl(##Lset(i),f(x),g(x))]"
〈proof 〉

11.14.3 The Operator is_bool_of_o

The formula p has no free variables.
definition

bool_of_o_fm :: "[i, i]⇒i" where
"bool_of_o_fm(p,z) ≡

Or(And(p,number1_fm(z)),
And(Neg(p),empty_fm(z)))"

lemma is_bool_of_o_type [TC]:
" [[p ∈ formula; z ∈ nat ]] =⇒ bool_of_o_fm(p,z) ∈ formula"

〈proof 〉

lemma sats_bool_of_o_fm:
assumes p_iff_sats: "P ←→ sats(A, p, env)"
shows

" [[z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, bool_of_o_fm(p,z), env) ←→

is_bool_of_o(##A, P, nth(z,env))"
〈proof 〉

lemma is_bool_of_o_iff_sats:
" [[P ←→ sats(A, p, env); nth(k,env) = z; k ∈ nat; env ∈ list(A)]]
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=⇒ is_bool_of_o(##A, P, z) ←→ sats(A, bool_of_o_fm(p,k), env)"
〈proof 〉

theorem bool_of_o_reflection:
"REFLECTS [P(L), λi. P(##Lset(i))] =⇒
REFLECTS[λx. is_bool_of_o(L, P(L,x), f(x)),

λi x. is_bool_of_o(##Lset(i), P(##Lset(i),x), f(x))]"
〈proof 〉

11.15 More Internalizations
11.15.1 The Operator is_lambda

The two arguments of p are always 1, 0. Remember that p will be enclosed
by three quantifiers.
definition

lambda_fm :: "[i, i, i]⇒i" where
"lambda_fm(p,A,z) ≡

Forall(Iff(Member(0,succ(z)),
Exists(Exists(And(Member(1,A#+3),

And(pair_fm(1,0,2), p))))))"

We call p with arguments x, y by equating them with the corresponding
quantified variables with de Bruijn indices 1, 0.
lemma is_lambda_type [TC]:

" [[p ∈ formula; x ∈ nat; y ∈ nat ]]
=⇒ lambda_fm(p,x,y) ∈ formula"

〈proof 〉

lemma sats_lambda_fm:
assumes is_b_iff_sats:

"
∧

a0 a1 a2.
[[a0∈A; a1∈A; a2∈A ]]
=⇒ is_b(a1, a0) ←→ sats(A, p, Cons(a0,Cons(a1,Cons(a2,env))))"

shows
" [[x ∈ nat; y ∈ nat; env ∈ list(A)]]
=⇒ sats(A, lambda_fm(p,x,y), env) ←→

is_lambda(##A, nth(x,env), is_b, nth(y,env))"
〈proof 〉

theorem is_lambda_reflection:
assumes is_b_reflection:

"
∧

f g h. REFLECTS[λx. is_b(L, f(x), g(x), h(x)),
λi x. is_b(##Lset(i), f(x), g(x), h(x))]"

shows "REFLECTS[λx. is_lambda(L, A(x), is_b(L,x), f(x)),
λi x. is_lambda(##Lset(i), A(x), is_b(##Lset(i),x), f(x))]"

〈proof 〉
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11.15.2 The Operator is_Member, Internalized
definition

Member_fm :: "[i,i,i]⇒i" where
"Member_fm(x,y,Z) ≡

Exists(Exists(And(pair_fm(x#+2,y#+2,1),
And(Inl_fm(1,0), Inl_fm(0,Z#+2)))))"

lemma is_Member_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ Member_fm(x,y,z) ∈ formula"

〈proof 〉

lemma sats_Member_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, Member_fm(x,y,z), env) ←→

is_Member(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma Member_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ is_Member(##A, x, y, z) ←→ sats(A, Member_fm(i,j,k), env)"

〈proof 〉

theorem Member_reflection:
"REFLECTS[λx. is_Member(L,f(x),g(x),h(x)),

λi x. is_Member(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉

11.15.3 The Operator is_Equal, Internalized
definition

Equal_fm :: "[i,i,i]⇒i" where
"Equal_fm(x,y,Z) ≡

Exists(Exists(And(pair_fm(x#+2,y#+2,1),
And(Inr_fm(1,0), Inl_fm(0,Z#+2)))))"

lemma is_Equal_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ Equal_fm(x,y,z) ∈ formula"

〈proof 〉

lemma sats_Equal_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, Equal_fm(x,y,z), env) ←→

is_Equal(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma Equal_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
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=⇒ is_Equal(##A, x, y, z) ←→ sats(A, Equal_fm(i,j,k), env)"
〈proof 〉

theorem Equal_reflection:
"REFLECTS[λx. is_Equal(L,f(x),g(x),h(x)),

λi x. is_Equal(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉

11.15.4 The Operator is_Nand, Internalized
definition

Nand_fm :: "[i,i,i]⇒i" where
"Nand_fm(x,y,Z) ≡

Exists(Exists(And(pair_fm(x#+2,y#+2,1),
And(Inl_fm(1,0), Inr_fm(0,Z#+2)))))"

lemma is_Nand_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ Nand_fm(x,y,z) ∈ formula"

〈proof 〉

lemma sats_Nand_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, Nand_fm(x,y,z), env) ←→

is_Nand(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma Nand_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ is_Nand(##A, x, y, z) ←→ sats(A, Nand_fm(i,j,k), env)"

〈proof 〉

theorem Nand_reflection:
"REFLECTS[λx. is_Nand(L,f(x),g(x),h(x)),

λi x. is_Nand(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉

11.15.5 The Operator is_Forall, Internalized
definition

Forall_fm :: "[i,i]⇒i" where
"Forall_fm(x,Z) ≡

Exists(And(Inr_fm(succ(x),0), Inr_fm(0,succ(Z))))"

lemma is_Forall_type [TC]:
" [[x ∈ nat; y ∈ nat ]] =⇒ Forall_fm(x,y) ∈ formula"

〈proof 〉

lemma sats_Forall_fm [simp]:
" [[x ∈ nat; y ∈ nat; env ∈ list(A)]]
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=⇒ sats(A, Forall_fm(x,y), env) ←→
is_Forall(##A, nth(x,env), nth(y,env))"

〈proof 〉

lemma Forall_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; j ∈ nat; env ∈ list(A)]]
=⇒ is_Forall(##A, x, y) ←→ sats(A, Forall_fm(i,j), env)"

〈proof 〉

theorem Forall_reflection:
"REFLECTS[λx. is_Forall(L,f(x),g(x)),

λi x. is_Forall(##Lset(i),f(x),g(x))]"
〈proof 〉

11.15.6 The Operator is_and, Internalized
definition

and_fm :: "[i,i,i]⇒i" where
"and_fm(a,b,z) ≡

Or(And(number1_fm(a), Equal(z,b)),
And(Neg(number1_fm(a)),empty_fm(z)))"

lemma is_and_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ and_fm(x,y,z) ∈ formula"

〈proof 〉

lemma sats_and_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, and_fm(x,y,z), env) ←→

is_and(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma is_and_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ is_and(##A, x, y, z) ←→ sats(A, and_fm(i,j,k), env)"

〈proof 〉

theorem is_and_reflection:
"REFLECTS[λx. is_and(L,f(x),g(x),h(x)),

λi x. is_and(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉

11.15.7 The Operator is_or, Internalized
definition

or_fm :: "[i,i,i]⇒i" where
"or_fm(a,b,z) ≡

Or(And(number1_fm(a), number1_fm(z)),
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And(Neg(number1_fm(a)), Equal(z,b)))"

lemma is_or_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ or_fm(x,y,z) ∈ formula"

〈proof 〉

lemma sats_or_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, or_fm(x,y,z), env) ←→

is_or(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma is_or_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ is_or(##A, x, y, z) ←→ sats(A, or_fm(i,j,k), env)"

〈proof 〉

theorem is_or_reflection:
"REFLECTS[λx. is_or(L,f(x),g(x),h(x)),

λi x. is_or(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉

11.15.8 The Operator is_not, Internalized
definition

not_fm :: "[i,i]⇒i" where
"not_fm(a,z) ≡

Or(And(number1_fm(a), empty_fm(z)),
And(Neg(number1_fm(a)), number1_fm(z)))"

lemma is_not_type [TC]:
" [[x ∈ nat; z ∈ nat ]] =⇒ not_fm(x,z) ∈ formula"

〈proof 〉

lemma sats_is_not_fm [simp]:
" [[x ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, not_fm(x,z), env) ←→ is_not(##A, nth(x,env), nth(z,env))"

〈proof 〉

lemma is_not_iff_sats:
" [[nth(i,env) = x; nth(k,env) = z;

i ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ is_not(##A, x, z) ←→ sats(A, not_fm(i,k), env)"

〈proof 〉

theorem is_not_reflection:
"REFLECTS[λx. is_not(L,f(x),g(x)),

λi x. is_not(##Lset(i),f(x),g(x))]"
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〈proof 〉

lemmas extra_reflections =
Inl_reflection Inr_reflection Nil_reflection Cons_reflection
quasilist_reflection hd_reflection tl_reflection bool_of_o_reflection
is_lambda_reflection Member_reflection Equal_reflection Nand_reflection
Forall_reflection is_and_reflection is_or_reflection is_not_reflection

11.16 Well-Founded Recursion!
11.16.1 The Operator M_is_recfun

Alternative definition, minimizing nesting of quantifiers around MH
lemma M_is_recfun_iff:

"M_is_recfun(M,MH,r,a,f) ←→
(∀ z[M]. z ∈ f ←→
(∃ x[M]. ∃ f_r_sx[M]. ∃ y[M].

MH(x, f_r_sx, y) ∧ pair(M,x,y,z) ∧
(∃ xa[M]. ∃ sx[M]. ∃ r_sx[M].

pair(M,x,a,xa) ∧ upair(M,x,x,sx) ∧
pre_image(M,r,sx,r_sx) ∧ restriction(M,f,r_sx,f_r_sx) ∧
xa ∈ r)))"

〈proof 〉

The three arguments of p are always 2, 1, 0 and z
definition

is_recfun_fm :: "[i, i, i, i]⇒i" where
"is_recfun_fm(p,r,a,f) ≡
Forall(Iff(Member(0,succ(f)),
Exists(Exists(Exists(
And(p,
And(pair_fm(2,0,3),
Exists(Exists(Exists(
And(pair_fm(5,a#+7,2),
And(upair_fm(5,5,1),
And(pre_image_fm(r#+7,1,0),
And(restriction_fm(f#+7,0,4), Member(2,r#+7)))))))))))))))"

lemma is_recfun_type [TC]:
" [[p ∈ formula; x ∈ nat; y ∈ nat; z ∈ nat ]]
=⇒ is_recfun_fm(p,x,y,z) ∈ formula"

〈proof 〉

lemma sats_is_recfun_fm:
assumes MH_iff_sats:

"
∧

a0 a1 a2 a3.
[[a0∈A; a1∈A; a2∈A; a3∈A ]]
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=⇒ MH(a2, a1, a0) ←→ sats(A, p, Cons(a0,Cons(a1,Cons(a2,Cons(a3,env)))))"
shows

" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, is_recfun_fm(p,x,y,z), env) ←→

M_is_recfun(##A, MH, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma is_recfun_iff_sats:
assumes MH_iff_sats:

"
∧

a0 a1 a2 a3.
[[a0∈A; a1∈A; a2∈A; a3∈A ]]
=⇒ MH(a2, a1, a0) ←→ sats(A, p, Cons(a0,Cons(a1,Cons(a2,Cons(a3,env)))))"

shows
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ M_is_recfun(##A, MH, x, y, z) ←→ sats(A, is_recfun_fm(p,i,j,k),

env)"
〈proof 〉

The additional variable in the premise, namely f’, is essential. It lets MH
depend upon x, which seems often necessary. The same thing occurs in
is_wfrec_reflection.
theorem is_recfun_reflection:

assumes MH_reflection:
"
∧

f’ f g h. REFLECTS[λx. MH(L, f’(x), f(x), g(x), h(x)),
λi x. MH(##Lset(i), f’(x), f(x), g(x), h(x))]"

shows "REFLECTS[λx. M_is_recfun(L, MH(L,x), f(x), g(x), h(x)),
λi x. M_is_recfun(##Lset(i), MH(##Lset(i),x), f(x), g(x),

h(x))]"
〈proof 〉

11.16.2 The Operator is_wfrec

The three arguments of p are always 2, 1, 0; p is enclosed by 5 quantifiers.
definition

is_wfrec_fm :: "[i, i, i, i]⇒i" where
"is_wfrec_fm(p,r,a,z) ≡

Exists(And(is_recfun_fm(p, succ(r), succ(a), 0),
Exists(Exists(Exists(Exists(

And(Equal(2,a#+5), And(Equal(1,4), And(Equal(0,z#+5), p)))))))))"

We call p with arguments a, f, z by equating them with the corresponding
quantified variables with de Bruijn indices 2, 1, 0.

There’s an additional existential quantifier to ensure that the environments
in both calls to MH have the same length.
lemma is_wfrec_type [TC]:

" [[p ∈ formula; x ∈ nat; y ∈ nat; z ∈ nat ]]
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=⇒ is_wfrec_fm(p,x,y,z) ∈ formula"
〈proof 〉

lemma sats_is_wfrec_fm:
assumes MH_iff_sats:

"
∧

a0 a1 a2 a3 a4.
[[a0∈A; a1∈A; a2∈A; a3∈A; a4∈A ]]
=⇒ MH(a2, a1, a0) ←→ sats(A, p, Cons(a0,Cons(a1,Cons(a2,Cons(a3,Cons(a4,env))))))"

shows
" [[x ∈ nat; y < length(env); z < length(env); env ∈ list(A)]]
=⇒ sats(A, is_wfrec_fm(p,x,y,z), env) ←→

is_wfrec(##A, MH, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma is_wfrec_iff_sats:
assumes MH_iff_sats:

"
∧

a0 a1 a2 a3 a4.
[[a0∈A; a1∈A; a2∈A; a3∈A; a4∈A ]]
=⇒ MH(a2, a1, a0) ←→ sats(A, p, Cons(a0,Cons(a1,Cons(a2,Cons(a3,Cons(a4,env))))))"

shows
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j < length(env); k < length(env); env ∈ list(A)]]
=⇒ is_wfrec(##A, MH, x, y, z) ←→ sats(A, is_wfrec_fm(p,i,j,k), env)"

〈proof 〉

theorem is_wfrec_reflection:
assumes MH_reflection:

"
∧

f’ f g h. REFLECTS[λx. MH(L, f’(x), f(x), g(x), h(x)),
λi x. MH(##Lset(i), f’(x), f(x), g(x), h(x))]"

shows "REFLECTS[λx. is_wfrec(L, MH(L,x), f(x), g(x), h(x)),
λi x. is_wfrec(##Lset(i), MH(##Lset(i),x), f(x), g(x),

h(x))]"
〈proof 〉

11.17 For Datatypes
11.17.1 Binary Products, Internalized
definition

cartprod_fm :: "[i,i,i]⇒i" where

"cartprod_fm(A,B,z) ≡
Forall(Iff(Member(0,succ(z)),

Exists(And(Member(0,succ(succ(A))),
Exists(And(Member(0,succ(succ(succ(B)))),

pair_fm(1,0,2)))))))"

lemma cartprod_type [TC]:
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" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ cartprod_fm(x,y,z) ∈ formula"
〈proof 〉

lemma sats_cartprod_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, cartprod_fm(x,y,z), env) ←→

cartprod(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma cartprod_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ cartprod(##A, x, y, z) ←→ sats(A, cartprod_fm(i,j,k), env)"

〈proof 〉

theorem cartprod_reflection:
"REFLECTS[λx. cartprod(L,f(x),g(x),h(x)),

λi x. cartprod(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉

11.17.2 Binary Sums, Internalized
definition

sum_fm :: "[i,i,i]⇒i" where
"sum_fm(A,B,Z) ≡

Exists(Exists(Exists(Exists(
And(number1_fm(2),

And(cartprod_fm(2,A#+4,3),
And(upair_fm(2,2,1),

And(cartprod_fm(1,B#+4,0), union_fm(3,0,Z#+4)))))))))"

lemma sum_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ sum_fm(x,y,z) ∈ formula"

〈proof 〉

lemma sats_sum_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, sum_fm(x,y,z), env) ←→

is_sum(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma sum_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ is_sum(##A, x, y, z) ←→ sats(A, sum_fm(i,j,k), env)"

〈proof 〉

theorem sum_reflection:
"REFLECTS[λx. is_sum(L,f(x),g(x),h(x)),
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λi x. is_sum(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉

11.17.3 The Operator quasinat

definition
quasinat_fm :: "i⇒i" where

"quasinat_fm(z) ≡ Or(empty_fm(z), Exists(succ_fm(0,succ(z))))"

lemma quasinat_type [TC]:
"x ∈ nat =⇒ quasinat_fm(x) ∈ formula"

〈proof 〉

lemma sats_quasinat_fm [simp]:
" [[x ∈ nat; env ∈ list(A)]]
=⇒ sats(A, quasinat_fm(x), env) ←→ is_quasinat(##A, nth(x,env))"

〈proof 〉

lemma quasinat_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; env ∈ list(A)]]
=⇒ is_quasinat(##A, x) ←→ sats(A, quasinat_fm(i), env)"

〈proof 〉

theorem quasinat_reflection:
"REFLECTS[λx. is_quasinat(L,f(x)),

λi x. is_quasinat(##Lset(i),f(x))]"
〈proof 〉

11.17.4 The Operator is_nat_case

I could not get it to work with the more natural assumption that is_b takes
two arguments. Instead it must be a formula where 1 and 0 stand for m and
b, respectively.

The formula is_b has free variables 1 and 0.
definition

is_nat_case_fm :: "[i, i, i, i]⇒i" where
"is_nat_case_fm(a,is_b,k,z) ≡

And(Implies(empty_fm(k), Equal(z,a)),
And(Forall(Implies(succ_fm(0,succ(k)),

Forall(Implies(Equal(0,succ(succ(z))), is_b)))),
Or(quasinat_fm(k), empty_fm(z))))"

lemma is_nat_case_type [TC]:
" [[is_b ∈ formula;

x ∈ nat; y ∈ nat; z ∈ nat ]]
=⇒ is_nat_case_fm(x,is_b,y,z) ∈ formula"

〈proof 〉
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lemma sats_is_nat_case_fm:
assumes is_b_iff_sats:

"
∧

a. a ∈ A =⇒ is_b(a,nth(z, env)) ←→
sats(A, p, Cons(nth(z,env), Cons(a, env)))"

shows
" [[x ∈ nat; y ∈ nat; z < length(env); env ∈ list(A)]]
=⇒ sats(A, is_nat_case_fm(x,p,y,z), env) ←→

is_nat_case(##A, nth(x,env), is_b, nth(y,env), nth(z,env))"
〈proof 〉

lemma is_nat_case_iff_sats:
" [[(

∧
a. a ∈ A =⇒ is_b(a,z) ←→

sats(A, p, Cons(z, Cons(a,env))));
nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i ∈ nat; j ∈ nat; k < length(env); env ∈ list(A)]]

=⇒ is_nat_case(##A, x, is_b, y, z) ←→ sats(A, is_nat_case_fm(i,p,j,k),
env)"
〈proof 〉

The second argument of is_b gives it direct access to x, which is essential for
handling free variable references. Without this argument, we cannot prove
reflection for iterates_MH.
theorem is_nat_case_reflection:

assumes is_b_reflection:
"
∧

h f g. REFLECTS[λx. is_b(L, h(x), f(x), g(x)),
λi x. is_b(##Lset(i), h(x), f(x), g(x))]"

shows "REFLECTS[λx. is_nat_case(L, f(x), is_b(L,x), g(x), h(x)),
λi x. is_nat_case(##Lset(i), f(x), is_b(##Lset(i), x),

g(x), h(x))]"
〈proof 〉

11.18 The Operator iterates_MH, Needed for Iteration
definition

iterates_MH_fm :: "[i, i, i, i, i]⇒i" where
"iterates_MH_fm(isF,v,n,g,z) ≡

is_nat_case_fm(v,
Exists(And(fun_apply_fm(succ(succ(succ(g))),2,0),

Forall(Implies(Equal(0,2), isF)))),
n, z)"

lemma iterates_MH_type [TC]:
" [[p ∈ formula;

v ∈ nat; x ∈ nat; y ∈ nat; z ∈ nat ]]
=⇒ iterates_MH_fm(p,v,x,y,z) ∈ formula"

〈proof 〉

lemma sats_iterates_MH_fm:
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assumes is_F_iff_sats:
"
∧

a b c d. [[a ∈ A; b ∈ A; c ∈ A; d ∈ A ]]
=⇒ is_F(a,b) ←→

sats(A, p, Cons(b, Cons(a, Cons(c, Cons(d,env)))))"
shows

" [[v ∈ nat; x ∈ nat; y ∈ nat; z < length(env); env ∈ list(A)]]
=⇒ sats(A, iterates_MH_fm(p,v,x,y,z), env) ←→

iterates_MH(##A, is_F, nth(v,env), nth(x,env), nth(y,env),
nth(z,env))"
〈proof 〉

lemma iterates_MH_iff_sats:
assumes is_F_iff_sats:

"
∧

a b c d. [[a ∈ A; b ∈ A; c ∈ A; d ∈ A ]]
=⇒ is_F(a,b) ←→

sats(A, p, Cons(b, Cons(a, Cons(c, Cons(d,env)))))"
shows
" [[nth(i’,env) = v; nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i’ ∈ nat; i ∈ nat; j ∈ nat; k < length(env); env ∈ list(A)]]
=⇒ iterates_MH(##A, is_F, v, x, y, z) ←→

sats(A, iterates_MH_fm(p,i’,i,j,k), env)"
〈proof 〉

The second argument of p gives it direct access to x, which is essential for
handling free variable references. Without this argument, we cannot prove
reflection for list_N.
theorem iterates_MH_reflection:

assumes p_reflection:
"
∧

f g h. REFLECTS[λx. p(L, h(x), f(x), g(x)),
λi x. p(##Lset(i), h(x), f(x), g(x))]"

shows "REFLECTS[λx. iterates_MH(L, p(L,x), e(x), f(x), g(x), h(x)),
λi x. iterates_MH(##Lset(i), p(##Lset(i),x), e(x), f(x),

g(x), h(x))]"
〈proof 〉

11.18.1 The Operator is_iterates

The three arguments of p are always 2, 1, 0; p is enclosed by 9 (??) quanti-
fiers.
definition

is_iterates_fm :: "[i, i, i, i]⇒i" where
"is_iterates_fm(p,v,n,Z) ≡

Exists(Exists(
And(succ_fm(n#+2,1),
And(Memrel_fm(1,0),

is_wfrec_fm(iterates_MH_fm(p, v#+7, 2, 1, 0),
0, n#+2, Z#+2)))))"
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We call p with arguments a, f, z by equating them with the corresponding
quantified variables with de Bruijn indices 2, 1, 0.
lemma is_iterates_type [TC]:

" [[p ∈ formula; x ∈ nat; y ∈ nat; z ∈ nat ]]
=⇒ is_iterates_fm(p,x,y,z) ∈ formula"

〈proof 〉

lemma sats_is_iterates_fm:
assumes is_F_iff_sats:

"
∧

a b c d e f g h i j k.
[[a ∈ A; b ∈ A; c ∈ A; d ∈ A; e ∈ A; f ∈ A;

g ∈ A; h ∈ A; i ∈ A; j ∈ A; k ∈ A ]]
=⇒ is_F(a,b) ←→

sats(A, p, Cons(b, Cons(a, Cons(c, Cons(d, Cons(e, Cons(f,

Cons(g, Cons(h, Cons(i, Cons(j, Cons(k, env))))))))))))"
shows

" [[x ∈ nat; y < length(env); z < length(env); env ∈ list(A)]]
=⇒ sats(A, is_iterates_fm(p,x,y,z), env) ←→

is_iterates(##A, is_F, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma is_iterates_iff_sats:
assumes is_F_iff_sats:

"
∧

a b c d e f g h i j k.
[[a ∈ A; b ∈ A; c ∈ A; d ∈ A; e ∈ A; f ∈ A;

g ∈ A; h ∈ A; i ∈ A; j ∈ A; k ∈ A ]]
=⇒ is_F(a,b) ←→

sats(A, p, Cons(b, Cons(a, Cons(c, Cons(d, Cons(e, Cons(f,

Cons(g, Cons(h, Cons(i, Cons(j, Cons(k, env))))))))))))"
shows
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j < length(env); k < length(env); env ∈ list(A)]]
=⇒ is_iterates(##A, is_F, x, y, z) ←→

sats(A, is_iterates_fm(p,i,j,k), env)"
〈proof 〉

The second argument of p gives it direct access to x, which is essential for
handling free variable references. Without this argument, we cannot prove
reflection for list_N.
theorem is_iterates_reflection:

assumes p_reflection:
"
∧

f g h. REFLECTS[λx. p(L, h(x), f(x), g(x)),
λi x. p(##Lset(i), h(x), f(x), g(x))]"

shows "REFLECTS[λx. is_iterates(L, p(L,x), f(x), g(x), h(x)),
λi x. is_iterates(##Lset(i), p(##Lset(i),x), f(x), g(x),

h(x))]"
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〈proof 〉

11.18.2 The Formula is_eclose_n, Internalized
definition

eclose_n_fm :: "[i,i,i]⇒i" where
"eclose_n_fm(A,n,Z) ≡ is_iterates_fm(big_union_fm(1,0), A, n, Z)"

lemma eclose_n_fm_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ eclose_n_fm(x,y,z) ∈ formula"
〈proof 〉

lemma sats_eclose_n_fm [simp]:
" [[x ∈ nat; y < length(env); z < length(env); env ∈ list(A)]]
=⇒ sats(A, eclose_n_fm(x,y,z), env) ←→

is_eclose_n(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma eclose_n_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j < length(env); k < length(env); env ∈ list(A)]]
=⇒ is_eclose_n(##A, x, y, z) ←→ sats(A, eclose_n_fm(i,j,k), env)"

〈proof 〉

theorem eclose_n_reflection:
"REFLECTS[λx. is_eclose_n(L, f(x), g(x), h(x)),

λi x. is_eclose_n(##Lset(i), f(x), g(x), h(x))]"
〈proof 〉

11.18.3 Membership in eclose(A)

definition
mem_eclose_fm :: "[i,i]⇒i" where

"mem_eclose_fm(x,y) ≡
Exists(Exists(

And(finite_ordinal_fm(1),
And(eclose_n_fm(x#+2,1,0), Member(y#+2,0)))))"

lemma mem_eclose_type [TC]:
" [[x ∈ nat; y ∈ nat ]] =⇒ mem_eclose_fm(x,y) ∈ formula"

〈proof 〉

lemma sats_mem_eclose_fm [simp]:
" [[x ∈ nat; y ∈ nat; env ∈ list(A)]]
=⇒ sats(A, mem_eclose_fm(x,y), env) ←→ mem_eclose(##A, nth(x,env),

nth(y,env))"
〈proof 〉

lemma mem_eclose_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;
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i ∈ nat; j ∈ nat; env ∈ list(A)]]
=⇒ mem_eclose(##A, x, y) ←→ sats(A, mem_eclose_fm(i,j), env)"

〈proof 〉

theorem mem_eclose_reflection:
"REFLECTS[λx. mem_eclose(L,f(x),g(x)),

λi x. mem_eclose(##Lset(i),f(x),g(x))]"
〈proof 〉

11.18.4 The Predicate “Is eclose(A)”
definition

is_eclose_fm :: "[i,i]⇒i" where
"is_eclose_fm(A,Z) ≡

Forall(Iff(Member(0,succ(Z)), mem_eclose_fm(succ(A),0)))"

lemma is_eclose_type [TC]:
" [[x ∈ nat; y ∈ nat ]] =⇒ is_eclose_fm(x,y) ∈ formula"

〈proof 〉

lemma sats_is_eclose_fm [simp]:
" [[x ∈ nat; y ∈ nat; env ∈ list(A)]]
=⇒ sats(A, is_eclose_fm(x,y), env) ←→ is_eclose(##A, nth(x,env),

nth(y,env))"
〈proof 〉

lemma is_eclose_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; j ∈ nat; env ∈ list(A)]]
=⇒ is_eclose(##A, x, y) ←→ sats(A, is_eclose_fm(i,j), env)"

〈proof 〉

theorem is_eclose_reflection:
"REFLECTS[λx. is_eclose(L,f(x),g(x)),

λi x. is_eclose(##Lset(i),f(x),g(x))]"
〈proof 〉

11.18.5 The List Functor, Internalized
definition

list_functor_fm :: "[i,i,i]⇒i" where

"list_functor_fm(A,X,Z) ≡
Exists(Exists(
And(number1_fm(1),

And(cartprod_fm(A#+2,X#+2,0), sum_fm(1,0,Z#+2)))))"

lemma list_functor_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ list_functor_fm(x,y,z) ∈ formula"

〈proof 〉
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lemma sats_list_functor_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, list_functor_fm(x,y,z), env) ←→

is_list_functor(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma list_functor_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ is_list_functor(##A, x, y, z) ←→ sats(A, list_functor_fm(i,j,k),

env)"
〈proof 〉

theorem list_functor_reflection:
"REFLECTS[λx. is_list_functor(L,f(x),g(x),h(x)),

λi x. is_list_functor(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉

11.18.6 The Formula is_list_N, Internalized
definition

list_N_fm :: "[i,i,i]⇒i" where
"list_N_fm(A,n,Z) ≡

Exists(
And(empty_fm(0),

is_iterates_fm(list_functor_fm(A#+9#+3,1,0), 0, n#+1, Z#+1)))"

lemma list_N_fm_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ list_N_fm(x,y,z) ∈ formula"
〈proof 〉

lemma sats_list_N_fm [simp]:
" [[x ∈ nat; y < length(env); z < length(env); env ∈ list(A)]]
=⇒ sats(A, list_N_fm(x,y,z), env) ←→

is_list_N(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma list_N_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j < length(env); k < length(env); env ∈ list(A)]]
=⇒ is_list_N(##A, x, y, z) ←→ sats(A, list_N_fm(i,j,k), env)"

〈proof 〉

theorem list_N_reflection:
"REFLECTS[λx. is_list_N(L, f(x), g(x), h(x)),

λi x. is_list_N(##Lset(i), f(x), g(x), h(x))]"
〈proof 〉
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11.18.7 The Predicate “Is A List”
definition

mem_list_fm :: "[i,i]⇒i" where
"mem_list_fm(x,y) ≡

Exists(Exists(
And(finite_ordinal_fm(1),

And(list_N_fm(x#+2,1,0), Member(y#+2,0)))))"

lemma mem_list_type [TC]:
" [[x ∈ nat; y ∈ nat ]] =⇒ mem_list_fm(x,y) ∈ formula"

〈proof 〉

lemma sats_mem_list_fm [simp]:
" [[x ∈ nat; y ∈ nat; env ∈ list(A)]]
=⇒ sats(A, mem_list_fm(x,y), env) ←→ mem_list(##A, nth(x,env), nth(y,env))"

〈proof 〉

lemma mem_list_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; j ∈ nat; env ∈ list(A)]]
=⇒ mem_list(##A, x, y) ←→ sats(A, mem_list_fm(i,j), env)"

〈proof 〉

theorem mem_list_reflection:
"REFLECTS[λx. mem_list(L,f(x),g(x)),

λi x. mem_list(##Lset(i),f(x),g(x))]"
〈proof 〉

11.18.8 The Predicate “Is list(A)”
definition

is_list_fm :: "[i,i]⇒i" where
"is_list_fm(A,Z) ≡

Forall(Iff(Member(0,succ(Z)), mem_list_fm(succ(A),0)))"

lemma is_list_type [TC]:
" [[x ∈ nat; y ∈ nat ]] =⇒ is_list_fm(x,y) ∈ formula"

〈proof 〉

lemma sats_is_list_fm [simp]:
" [[x ∈ nat; y ∈ nat; env ∈ list(A)]]
=⇒ sats(A, is_list_fm(x,y), env) ←→ is_list(##A, nth(x,env), nth(y,env))"

〈proof 〉

lemma is_list_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; j ∈ nat; env ∈ list(A)]]
=⇒ is_list(##A, x, y) ←→ sats(A, is_list_fm(i,j), env)"

〈proof 〉
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theorem is_list_reflection:
"REFLECTS[λx. is_list(L,f(x),g(x)),

λi x. is_list(##Lset(i),f(x),g(x))]"
〈proof 〉

11.18.9 The Formula Functor, Internalized
definition formula_functor_fm :: "[i,i]⇒i" where

"formula_functor_fm(X,Z) ≡
Exists(Exists(Exists(Exists(Exists(
And(omega_fm(4),
And(cartprod_fm(4,4,3),
And(sum_fm(3,3,2),
And(cartprod_fm(X#+5,X#+5,1),
And(sum_fm(1,X#+5,0), sum_fm(2,0,Z#+5)))))))))))"

lemma formula_functor_type [TC]:
" [[x ∈ nat; y ∈ nat ]] =⇒ formula_functor_fm(x,y) ∈ formula"

〈proof 〉

lemma sats_formula_functor_fm [simp]:
" [[x ∈ nat; y ∈ nat; env ∈ list(A)]]
=⇒ sats(A, formula_functor_fm(x,y), env) ←→

is_formula_functor(##A, nth(x,env), nth(y,env))"
〈proof 〉

lemma formula_functor_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; j ∈ nat; env ∈ list(A)]]
=⇒ is_formula_functor(##A, x, y) ←→ sats(A, formula_functor_fm(i,j),

env)"
〈proof 〉

theorem formula_functor_reflection:
"REFLECTS[λx. is_formula_functor(L,f(x),g(x)),

λi x. is_formula_functor(##Lset(i),f(x),g(x))]"
〈proof 〉

11.18.10 The Formula is_formula_N, Internalized
definition

formula_N_fm :: "[i,i]⇒i" where
"formula_N_fm(n,Z) ≡

Exists(
And(empty_fm(0),

is_iterates_fm(formula_functor_fm(1,0), 0, n#+1, Z#+1)))"

lemma formula_N_fm_type [TC]:

142



" [[x ∈ nat; y ∈ nat ]] =⇒ formula_N_fm(x,y) ∈ formula"
〈proof 〉

lemma sats_formula_N_fm [simp]:
" [[x < length(env); y < length(env); env ∈ list(A)]]
=⇒ sats(A, formula_N_fm(x,y), env) ←→

is_formula_N(##A, nth(x,env), nth(y,env))"
〈proof 〉

lemma formula_N_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i < length(env); j < length(env); env ∈ list(A)]]
=⇒ is_formula_N(##A, x, y) ←→ sats(A, formula_N_fm(i,j), env)"

〈proof 〉

theorem formula_N_reflection:
"REFLECTS[λx. is_formula_N(L, f(x), g(x)),

λi x. is_formula_N(##Lset(i), f(x), g(x))]"
〈proof 〉

11.18.11 The Predicate “Is A Formula”
definition

mem_formula_fm :: "i⇒i" where
"mem_formula_fm(x) ≡

Exists(Exists(
And(finite_ordinal_fm(1),

And(formula_N_fm(1,0), Member(x#+2,0)))))"

lemma mem_formula_type [TC]:
"x ∈ nat =⇒ mem_formula_fm(x) ∈ formula"

〈proof 〉

lemma sats_mem_formula_fm [simp]:
" [[x ∈ nat; env ∈ list(A)]]
=⇒ sats(A, mem_formula_fm(x), env) ←→ mem_formula(##A, nth(x,env))"

〈proof 〉

lemma mem_formula_iff_sats:
" [[nth(i,env) = x; i ∈ nat; env ∈ list(A)]]
=⇒ mem_formula(##A, x) ←→ sats(A, mem_formula_fm(i), env)"

〈proof 〉

theorem mem_formula_reflection:
"REFLECTS[λx. mem_formula(L,f(x)),

λi x. mem_formula(##Lset(i),f(x))]"
〈proof 〉
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11.18.12 The Predicate “Is formula”
definition

is_formula_fm :: "i⇒i" where
"is_formula_fm(Z) ≡ Forall(Iff(Member(0,succ(Z)), mem_formula_fm(0)))"

lemma is_formula_type [TC]:
"x ∈ nat =⇒ is_formula_fm(x) ∈ formula"

〈proof 〉

lemma sats_is_formula_fm [simp]:
" [[x ∈ nat; env ∈ list(A)]]
=⇒ sats(A, is_formula_fm(x), env) ←→ is_formula(##A, nth(x,env))"

〈proof 〉

lemma is_formula_iff_sats:
" [[nth(i,env) = x; i ∈ nat; env ∈ list(A)]]
=⇒ is_formula(##A, x) ←→ sats(A, is_formula_fm(i), env)"

〈proof 〉

theorem is_formula_reflection:
"REFLECTS[λx. is_formula(L,f(x)),

λi x. is_formula(##Lset(i),f(x))]"
〈proof 〉

11.18.13 The Operator is_transrec

The three arguments of p are always 2, 1, 0. It is buried within eight
quantifiers! We call p with arguments a, f, z by equating them with the
corresponding quantified variables with de Bruijn indices 2, 1, 0.
definition

is_transrec_fm :: "[i, i, i]⇒i" where
"is_transrec_fm(p,a,z) ≡

Exists(Exists(Exists(
And(upair_fm(a#+3,a#+3,2),
And(is_eclose_fm(2,1),
And(Memrel_fm(1,0), is_wfrec_fm(p,0,a#+3,z#+3)))))))"

lemma is_transrec_type [TC]:
" [[p ∈ formula; x ∈ nat; z ∈ nat ]]
=⇒ is_transrec_fm(p,x,z) ∈ formula"

〈proof 〉

lemma sats_is_transrec_fm:
assumes MH_iff_sats:

"
∧

a0 a1 a2 a3 a4 a5 a6 a7.
[[a0∈A; a1∈A; a2∈A; a3∈A; a4∈A; a5∈A; a6∈A; a7∈A ]]
=⇒ MH(a2, a1, a0) ←→
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sats(A, p, Cons(a0,Cons(a1,Cons(a2,Cons(a3,
Cons(a4,Cons(a5,Cons(a6,Cons(a7,env)))))))))"

shows
" [[x < length(env); z < length(env); env ∈ list(A)]]
=⇒ sats(A, is_transrec_fm(p,x,z), env) ←→

is_transrec(##A, MH, nth(x,env), nth(z,env))"
〈proof 〉

lemma is_transrec_iff_sats:
assumes MH_iff_sats:

"
∧

a0 a1 a2 a3 a4 a5 a6 a7.
[[a0∈A; a1∈A; a2∈A; a3∈A; a4∈A; a5∈A; a6∈A; a7∈A ]]
=⇒ MH(a2, a1, a0) ←→

sats(A, p, Cons(a0,Cons(a1,Cons(a2,Cons(a3,
Cons(a4,Cons(a5,Cons(a6,Cons(a7,env)))))))))"

shows
" [[nth(i,env) = x; nth(k,env) = z;

i < length(env); k < length(env); env ∈ list(A)]]
=⇒ is_transrec(##A, MH, x, z) ←→ sats(A, is_transrec_fm(p,i,k), env)"

〈proof 〉

theorem is_transrec_reflection:
assumes MH_reflection:

"
∧

f’ f g h. REFLECTS[λx. MH(L, f’(x), f(x), g(x), h(x)),
λi x. MH(##Lset(i), f’(x), f(x), g(x), h(x))]"

shows "REFLECTS[λx. is_transrec(L, MH(L,x), f(x), h(x)),
λi x. is_transrec(##Lset(i), MH(##Lset(i),x), f(x), h(x))]"

〈proof 〉

end

12 Separation for Facts About Recursion
theory Rec_Separation imports Separation Internalize begin

This theory proves all instances needed for locales M_trancl and M_datatypes

lemma eq_succ_imp_lt: " [[i = succ(j); Ord(i)]] =⇒ j<i"
〈proof 〉

12.1 The Locale M_trancl

12.1.1 Separation for Reflexive/Transitive Closure

First, The Defining Formula
definition

rtran_closure_mem_fm :: "[i,i,i]⇒i" where

145



"rtran_closure_mem_fm(A,r,p) ≡
Exists(Exists(Exists(
And(omega_fm(2),
And(Member(1,2),
And(succ_fm(1,0),
Exists(And(typed_function_fm(1, A#+4, 0),
And(Exists(Exists(Exists(

And(pair_fm(2,1,p#+7),
And(empty_fm(0),
And(fun_apply_fm(3,0,2), fun_apply_fm(3,5,1))))))),

Forall(Implies(Member(0,3),
Exists(Exists(Exists(Exists(
And(fun_apply_fm(5,4,3),
And(succ_fm(4,2),
And(fun_apply_fm(5,2,1),
And(pair_fm(3,1,0), Member(0,r#+9))))))))))))))))))))"

lemma rtran_closure_mem_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ rtran_closure_mem_fm(x,y,z) ∈ formula"
〈proof 〉

lemma sats_rtran_closure_mem_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, rtran_closure_mem_fm(x,y,z), env) ←→

rtran_closure_mem(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma rtran_closure_mem_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ rtran_closure_mem(##A, x, y, z) ←→ sats(A, rtran_closure_mem_fm(i,j,k),

env)"
〈proof 〉

lemma rtran_closure_mem_reflection:
"REFLECTS[λx. rtran_closure_mem(L,f(x),g(x),h(x)),

λi x. rtran_closure_mem(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉

Separation for r^*.
lemma rtrancl_separation:

" [[L(r); L(A)]] =⇒ separation (L, rtran_closure_mem(L,A,r))"
〈proof 〉

12.1.2 Reflexive/Transitive Closure, Internalized
definition

rtran_closure_fm :: "[i,i]⇒i" where
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"rtran_closure_fm(r,s) ≡
Forall(Implies(field_fm(succ(r),0),

Forall(Iff(Member(0,succ(succ(s))),
rtran_closure_mem_fm(1,succ(succ(r)),0)))))"

lemma rtran_closure_type [TC]:
" [[x ∈ nat; y ∈ nat ]] =⇒ rtran_closure_fm(x,y) ∈ formula"

〈proof 〉

lemma sats_rtran_closure_fm [simp]:
" [[x ∈ nat; y ∈ nat; env ∈ list(A)]]
=⇒ sats(A, rtran_closure_fm(x,y), env) ←→

rtran_closure(##A, nth(x,env), nth(y,env))"
〈proof 〉

lemma rtran_closure_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; j ∈ nat; env ∈ list(A)]]
=⇒ rtran_closure(##A, x, y) ←→ sats(A, rtran_closure_fm(i,j),

env)"
〈proof 〉

theorem rtran_closure_reflection:
"REFLECTS[λx. rtran_closure(L,f(x),g(x)),

λi x. rtran_closure(##Lset(i),f(x),g(x))]"
〈proof 〉

12.1.3 Transitive Closure of a Relation, Internalized
definition

tran_closure_fm :: "[i,i]⇒i" where
"tran_closure_fm(r,s) ≡
Exists(And(rtran_closure_fm(succ(r),0), composition_fm(succ(r),0,succ(s))))"

lemma tran_closure_type [TC]:
" [[x ∈ nat; y ∈ nat ]] =⇒ tran_closure_fm(x,y) ∈ formula"

〈proof 〉

lemma sats_tran_closure_fm [simp]:
" [[x ∈ nat; y ∈ nat; env ∈ list(A)]]
=⇒ sats(A, tran_closure_fm(x,y), env) ←→

tran_closure(##A, nth(x,env), nth(y,env))"
〈proof 〉

lemma tran_closure_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; j ∈ nat; env ∈ list(A)]]
=⇒ tran_closure(##A, x, y) ←→ sats(A, tran_closure_fm(i,j), env)"

〈proof 〉
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theorem tran_closure_reflection:
"REFLECTS[λx. tran_closure(L,f(x),g(x)),

λi x. tran_closure(##Lset(i),f(x),g(x))]"
〈proof 〉

12.1.4 Separation for the Proof of wellfounded_on_trancl

lemma wellfounded_trancl_reflects:
"REFLECTS[λx. ∃ w[L]. ∃ wx[L]. ∃ rp[L].

w ∈ Z ∧ pair(L,w,x,wx) ∧ tran_closure(L,r,rp) ∧ wx ∈
rp,

λi x. ∃ w ∈ Lset(i). ∃ wx ∈ Lset(i). ∃ rp ∈ Lset(i).
w ∈ Z ∧ pair(##Lset(i),w,x,wx) ∧ tran_closure(##Lset(i),r,rp)

∧
wx ∈ rp]"

〈proof 〉

lemma wellfounded_trancl_separation:
" [[L(r); L(Z)]] =⇒
separation (L, λx.

∃ w[L]. ∃ wx[L]. ∃ rp[L].
w ∈ Z ∧ pair(L,w,x,wx) ∧ tran_closure(L,r,rp) ∧ wx ∈

rp)"
〈proof 〉

12.1.5 Instantiating the locale M_trancl

lemma M_trancl_axioms_L: "M_trancl_axioms(L)"
〈proof 〉

theorem M_trancl_L: "M_trancl(L)"
〈proof 〉

interpretation L: M_trancl L 〈proof 〉

12.2 L is Closed Under the Operator list

12.2.1 Instances of Replacement for Lists
lemma list_replacement1_Reflects:
"REFLECTS

[λx. ∃ u[L]. u ∈ B ∧ (∃ y[L]. pair(L,u,y,x) ∧
is_wfrec(L, iterates_MH(L, is_list_functor(L,A), 0), memsn, u,

y)),
λi x. ∃ u ∈ Lset(i). u ∈ B ∧ (∃ y ∈ Lset(i). pair(##Lset(i), u, y,

x) ∧
is_wfrec(##Lset(i),

iterates_MH(##Lset(i),
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is_list_functor(##Lset(i), A), 0), memsn, u,
y))]"
〈proof 〉

lemma list_replacement1:
"L(A) =⇒ iterates_replacement(L, is_list_functor(L,A), 0)"

〈proof 〉

lemma list_replacement2_Reflects:
"REFLECTS

[λx. ∃ u[L]. u ∈ B ∧ u ∈ nat ∧
is_iterates(L, is_list_functor(L, A), 0, u, x),

λi x. ∃ u ∈ Lset(i). u ∈ B ∧ u ∈ nat ∧
is_iterates(##Lset(i), is_list_functor(##Lset(i), A), 0,

u, x)]"
〈proof 〉

lemma list_replacement2:
"L(A) =⇒ strong_replacement(L,

λn y. n∈nat ∧ is_iterates(L, is_list_functor(L,A), 0, n, y))"
〈proof 〉

12.3 L is Closed Under the Operator formula

12.3.1 Instances of Replacement for Formulas
lemma formula_replacement1_Reflects:
"REFLECTS

[λx. ∃ u[L]. u ∈ B ∧ (∃ y[L]. pair(L,u,y,x) ∧
is_wfrec(L, iterates_MH(L, is_formula_functor(L), 0), memsn,

u, y)),
λi x. ∃ u ∈ Lset(i). u ∈ B ∧ (∃ y ∈ Lset(i). pair(##Lset(i), u, y,

x) ∧
is_wfrec(##Lset(i),

iterates_MH(##Lset(i),
is_formula_functor(##Lset(i)), 0), memsn, u,

y))]"
〈proof 〉

lemma formula_replacement1:
"iterates_replacement(L, is_formula_functor(L), 0)"

〈proof 〉

lemma formula_replacement2_Reflects:
"REFLECTS

[λx. ∃ u[L]. u ∈ B ∧ u ∈ nat ∧
is_iterates(L, is_formula_functor(L), 0, u, x),

λi x. ∃ u ∈ Lset(i). u ∈ B ∧ u ∈ nat ∧
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is_iterates(##Lset(i), is_formula_functor(##Lset(i)), 0,
u, x)]"
〈proof 〉

lemma formula_replacement2:
"strong_replacement(L,

λn y. n∈nat ∧ is_iterates(L, is_formula_functor(L), 0, n, y))"
〈proof 〉

NB The proofs for type formula are virtually identical to those for list(A).
It was a cut-and-paste job!

12.3.2 The Formula is_nth, Internalized
definition

nth_fm :: "[i,i,i]⇒i" where
"nth_fm(n,l,Z) ≡

Exists(And(is_iterates_fm(tl_fm(1,0), succ(l), succ(n), 0),
hd_fm(0,succ(Z))))"

lemma nth_fm_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ nth_fm(x,y,z) ∈ formula"
〈proof 〉

lemma sats_nth_fm [simp]:
" [[x < length(env); y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, nth_fm(x,y,z), env) ←→

is_nth(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma nth_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i < length(env); j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ is_nth(##A, x, y, z) ←→ sats(A, nth_fm(i,j,k), env)"

〈proof 〉

theorem nth_reflection:
"REFLECTS[λx. is_nth(L, f(x), g(x), h(x)),

λi x. is_nth(##Lset(i), f(x), g(x), h(x))]"
〈proof 〉

12.3.3 An Instance of Replacement for nth

lemma nth_replacement_Reflects:
"REFLECTS

[λx. ∃ u[L]. u ∈ B ∧ (∃ y[L]. pair(L,u,y,x) ∧
is_wfrec(L, iterates_MH(L, is_tl(L), z), memsn, u, y)),

λi x. ∃ u ∈ Lset(i). u ∈ B ∧ (∃ y ∈ Lset(i). pair(##Lset(i), u, y,
x) ∧
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is_wfrec(##Lset(i),
iterates_MH(##Lset(i),

is_tl(##Lset(i)), z), memsn, u, y))]"
〈proof 〉

lemma nth_replacement:
"L(w) =⇒ iterates_replacement(L, is_tl(L), w)"

〈proof 〉

12.3.4 Instantiating the locale M_datatypes

lemma M_datatypes_axioms_L: "M_datatypes_axioms(L)"
〈proof 〉

theorem M_datatypes_L: "M_datatypes(L)"
〈proof 〉

interpretation L: M_datatypes L 〈proof 〉

12.4 L is Closed Under the Operator eclose

12.4.1 Instances of Replacement for eclose

lemma eclose_replacement1_Reflects:
"REFLECTS

[λx. ∃ u[L]. u ∈ B ∧ (∃ y[L]. pair(L,u,y,x) ∧
is_wfrec(L, iterates_MH(L, big_union(L), A), memsn, u, y)),

λi x. ∃ u ∈ Lset(i). u ∈ B ∧ (∃ y ∈ Lset(i). pair(##Lset(i), u, y,
x) ∧

is_wfrec(##Lset(i),
iterates_MH(##Lset(i), big_union(##Lset(i)), A),
memsn, u, y))]"

〈proof 〉

lemma eclose_replacement1:
"L(A) =⇒ iterates_replacement(L, big_union(L), A)"

〈proof 〉

lemma eclose_replacement2_Reflects:
"REFLECTS

[λx. ∃ u[L]. u ∈ B ∧ u ∈ nat ∧
is_iterates(L, big_union(L), A, u, x),

λi x. ∃ u ∈ Lset(i). u ∈ B ∧ u ∈ nat ∧
is_iterates(##Lset(i), big_union(##Lset(i)), A, u, x)]"

〈proof 〉

lemma eclose_replacement2:
"L(A) =⇒ strong_replacement(L,

λn y. n∈nat ∧ is_iterates(L, big_union(L), A, n, y))"
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〈proof 〉

12.4.2 Instantiating the locale M_eclose

lemma M_eclose_axioms_L: "M_eclose_axioms(L)"
〈proof 〉

theorem M_eclose_L: "M_eclose(L)"
〈proof 〉

interpretation L: M_eclose L 〈proof 〉

end

13 Absoluteness for the Satisfies Relation on For-
mulas

theory Satisfies_absolute imports Datatype_absolute Rec_Separation be-
gin

13.1 More Internalization
13.1.1 The Formula is_depth, Internalized
definition

depth_fm :: "[i,i]⇒i" where
"depth_fm(p,n) ≡

Exists(Exists(Exists(
And(formula_N_fm(n#+3,1),

And(Neg(Member(p#+3,1)),
And(succ_fm(n#+3,2),
And(formula_N_fm(2,0), Member(p#+3,0))))))))"

lemma depth_fm_type [TC]:
" [[x ∈ nat; y ∈ nat ]] =⇒ depth_fm(x,y) ∈ formula"
〈proof 〉

lemma sats_depth_fm [simp]:
" [[x ∈ nat; y < length(env); env ∈ list(A)]]
=⇒ sats(A, depth_fm(x,y), env) ←→

is_depth(##A, nth(x,env), nth(y,env))"
〈proof 〉

lemma depth_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; j < length(env); env ∈ list(A)]]
=⇒ is_depth(##A, x, y) ←→ sats(A, depth_fm(i,j), env)"

〈proof 〉
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theorem depth_reflection:
"REFLECTS[λx. is_depth(L, f(x), g(x)),

λi x. is_depth(##Lset(i), f(x), g(x))]"
〈proof 〉

13.1.2 The Operator is_formula_case

The arguments of is_a are always 2, 1, 0, and the formula will be enclosed
by three quantifiers.
definition

formula_case_fm :: "[i, i, i, i, i, i]⇒i" where
"formula_case_fm(is_a, is_b, is_c, is_d, v, z) ≡

And(Forall(Forall(Implies(finite_ordinal_fm(1),
Implies(finite_ordinal_fm(0),
Implies(Member_fm(1,0,v#+2),
Forall(Implies(Equal(0,z#+3), is_a))))))),

And(Forall(Forall(Implies(finite_ordinal_fm(1),
Implies(finite_ordinal_fm(0),
Implies(Equal_fm(1,0,v#+2),
Forall(Implies(Equal(0,z#+3), is_b))))))),

And(Forall(Forall(Implies(mem_formula_fm(1),
Implies(mem_formula_fm(0),
Implies(Nand_fm(1,0,v#+2),
Forall(Implies(Equal(0,z#+3), is_c))))))),

Forall(Implies(mem_formula_fm(0),
Implies(Forall_fm(0,succ(v)),

Forall(Implies(Equal(0,z#+2), is_d))))))))"

lemma is_formula_case_type [TC]:
" [[is_a ∈ formula; is_b ∈ formula; is_c ∈ formula; is_d ∈ formula;

x ∈ nat; y ∈ nat ]]
=⇒ formula_case_fm(is_a, is_b, is_c, is_d, x, y) ∈ formula"

〈proof 〉

lemma sats_formula_case_fm:
assumes is_a_iff_sats:

"
∧

a0 a1 a2.
[[a0∈A; a1∈A; a2∈A ]]
=⇒ ISA(a2, a1, a0) ←→ sats(A, is_a, Cons(a0,Cons(a1,Cons(a2,env))))"

and is_b_iff_sats:
"
∧

a0 a1 a2.
[[a0∈A; a1∈A; a2∈A ]]
=⇒ ISB(a2, a1, a0) ←→ sats(A, is_b, Cons(a0,Cons(a1,Cons(a2,env))))"

and is_c_iff_sats:
"
∧

a0 a1 a2.
[[a0∈A; a1∈A; a2∈A ]]
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=⇒ ISC(a2, a1, a0) ←→ sats(A, is_c, Cons(a0,Cons(a1,Cons(a2,env))))"
and is_d_iff_sats:

"
∧

a0 a1.
[[a0∈A; a1∈A ]]
=⇒ ISD(a1, a0) ←→ sats(A, is_d, Cons(a0,Cons(a1,env)))"

shows
" [[x ∈ nat; y < length(env); env ∈ list(A)]]
=⇒ sats(A, formula_case_fm(is_a,is_b,is_c,is_d,x,y), env) ←→

is_formula_case(##A, ISA, ISB, ISC, ISD, nth(x,env), nth(y,env))"
〈proof 〉

lemma formula_case_iff_sats:
assumes is_a_iff_sats:

"
∧

a0 a1 a2.
[[a0∈A; a1∈A; a2∈A ]]
=⇒ ISA(a2, a1, a0) ←→ sats(A, is_a, Cons(a0,Cons(a1,Cons(a2,env))))"

and is_b_iff_sats:
"
∧

a0 a1 a2.
[[a0∈A; a1∈A; a2∈A ]]
=⇒ ISB(a2, a1, a0) ←→ sats(A, is_b, Cons(a0,Cons(a1,Cons(a2,env))))"

and is_c_iff_sats:
"
∧

a0 a1 a2.
[[a0∈A; a1∈A; a2∈A ]]
=⇒ ISC(a2, a1, a0) ←→ sats(A, is_c, Cons(a0,Cons(a1,Cons(a2,env))))"

and is_d_iff_sats:
"
∧

a0 a1.
[[a0∈A; a1∈A ]]
=⇒ ISD(a1, a0) ←→ sats(A, is_d, Cons(a0,Cons(a1,env)))"

shows
" [[nth(i,env) = x; nth(j,env) = y;
i ∈ nat; j < length(env); env ∈ list(A)]]
=⇒ is_formula_case(##A, ISA, ISB, ISC, ISD, x, y) ←→

sats(A, formula_case_fm(is_a,is_b,is_c,is_d,i,j), env)"
〈proof 〉

The second argument of is_a gives it direct access to x, which is essen-
tial for handling free variable references. Treatment is based on that of
is_nat_case_reflection.
theorem is_formula_case_reflection:

assumes is_a_reflection:
"
∧

h f g g’. REFLECTS[λx. is_a(L, h(x), f(x), g(x), g’(x)),
λi x. is_a(##Lset(i), h(x), f(x), g(x), g’(x))]"

and is_b_reflection:
"
∧

h f g g’. REFLECTS[λx. is_b(L, h(x), f(x), g(x), g’(x)),
λi x. is_b(##Lset(i), h(x), f(x), g(x), g’(x))]"

and is_c_reflection:
"
∧

h f g g’. REFLECTS[λx. is_c(L, h(x), f(x), g(x), g’(x)),
λi x. is_c(##Lset(i), h(x), f(x), g(x), g’(x))]"

and is_d_reflection:
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"
∧

h f g g’. REFLECTS[λx. is_d(L, h(x), f(x), g(x)),
λi x. is_d(##Lset(i), h(x), f(x), g(x))]"

shows "REFLECTS[λx. is_formula_case(L, is_a(L,x), is_b(L,x), is_c(L,x),
is_d(L,x), g(x), h(x)),

λi x. is_formula_case(##Lset(i), is_a(##Lset(i), x), is_b(##Lset(i),
x), is_c(##Lset(i), x), is_d(##Lset(i), x), g(x), h(x))]"
〈proof 〉

13.2 Absoluteness for the Function satisfies

definition
is_depth_apply :: "[i⇒o,i,i,i] ⇒ o" where
— Merely a useful abbreviation for the sequel.

"is_depth_apply(M,h,p,z) ≡
∃ dp[M]. ∃ sdp[M]. ∃ hsdp[M].

finite_ordinal(M,dp) ∧ is_depth(M,p,dp) ∧ successor(M,dp,sdp)
∧

fun_apply(M,h,sdp,hsdp) ∧ fun_apply(M,hsdp,p,z)"

lemma (in M_datatypes) is_depth_apply_abs [simp]:
" [[M(h); p ∈ formula; M(z)]]
=⇒ is_depth_apply(M,h,p,z) ←→ z = h ‘ succ(depth(p)) ‘ p"

〈proof 〉

There is at present some redundancy between the relativizations in e.g.
satisfies_is_a and those in e.g. Member_replacement.

These constants let us instantiate the parameters a, b, c, d, etc., of the locale
Formula_Rec.
definition

satisfies_a :: "[i,i,i]⇒i" where
"satisfies_a(A) ≡
λx y. λenv ∈ list(A). bool_of_o (nth(x,env) ∈ nth(y,env))"

definition
satisfies_is_a :: "[i⇒o,i,i,i,i]⇒o" where
"satisfies_is_a(M,A) ≡
λx y zz. ∀ lA[M]. is_list(M,A,lA) −→

is_lambda(M, lA,
λenv z. is_bool_of_o(M,

∃ nx[M]. ∃ ny[M].
is_nth(M,x,env,nx) ∧ is_nth(M,y,env,ny) ∧ nx ∈

ny, z),
zz)"

definition
satisfies_b :: "[i,i,i]⇒i" where
"satisfies_b(A) ≡
λx y. λenv ∈ list(A). bool_of_o (nth(x,env) = nth(y,env))"
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definition
satisfies_is_b :: "[i⇒o,i,i,i,i]⇒o" where
— We simplify the formula to have just nx rather than introducing ny with nx

= ny
"satisfies_is_b(M,A) ≡

λx y zz. ∀ lA[M]. is_list(M,A,lA) −→
is_lambda(M, lA,

λenv z. is_bool_of_o(M,
∃ nx[M]. is_nth(M,x,env,nx) ∧ is_nth(M,y,env,nx),

z),
zz)"

definition
satisfies_c :: "[i,i,i,i,i]⇒i" where
"satisfies_c(A) ≡ λp q rp rq. λenv ∈ list(A). not(rp ‘ env and rq

‘ env)"

definition
satisfies_is_c :: "[i⇒o,i,i,i,i,i]⇒o" where
"satisfies_is_c(M,A,h) ≡
λp q zz. ∀ lA[M]. is_list(M,A,lA) −→

is_lambda(M, lA, λenv z. ∃ hp[M]. ∃ hq[M].
(∃ rp[M]. is_depth_apply(M,h,p,rp) ∧ fun_apply(M,rp,env,hp))

∧
(∃ rq[M]. is_depth_apply(M,h,q,rq) ∧ fun_apply(M,rq,env,hq))

∧
(∃ pq[M]. is_and(M,hp,hq,pq) ∧ is_not(M,pq,z)),

zz)"

definition
satisfies_d :: "[i,i,i]⇒i" where
"satisfies_d(A)
≡ λp rp. λenv ∈ list(A). bool_of_o (∀ x∈A. rp ‘ (Cons(x,env)) = 1)"

definition
satisfies_is_d :: "[i⇒o,i,i,i,i]⇒o" where
"satisfies_is_d(M,A,h) ≡
λp zz. ∀ lA[M]. is_list(M,A,lA) −→

is_lambda(M, lA,
λenv z. ∃ rp[M]. is_depth_apply(M,h,p,rp) ∧

is_bool_of_o(M,
∀ x[M]. ∀ xenv[M]. ∀ hp[M].

x∈A −→ is_Cons(M,x,env,xenv) −→
fun_apply(M,rp,xenv,hp) −→ number1(M,hp),

z),
zz)"

definition
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satisfies_MH :: "[i⇒o,i,i,i,i]⇒o" where
— The variable u is unused, but gives satisfies_MH the correct arity.

"satisfies_MH ≡
λM A u f z.

∀ fml[M]. is_formula(M,fml) −→
is_lambda (M, fml,

is_formula_case (M, satisfies_is_a(M,A),
satisfies_is_b(M,A),
satisfies_is_c(M,A,f), satisfies_is_d(M,A,f)),

z)"

definition
is_satisfies :: "[i⇒o,i,i,i]⇒o" where
"is_satisfies(M,A) ≡ is_formula_rec (M, satisfies_MH(M,A))"

This lemma relates the fragments defined above to the original primitive
recursion in satisfies. Induction is not required: the definitions are directly
equal!
lemma satisfies_eq:

"satisfies(A,p) =
formula_rec (satisfies_a(A), satisfies_b(A),

satisfies_c(A), satisfies_d(A), p)"
〈proof 〉

Further constraints on the class M in order to prove absoluteness for the con-
stants defined above. The ultimate goal is the absoluteness of the function
satisfies.
locale M_satisfies = M_eclose +
assumes

Member_replacement:
" [[M(A); x ∈ nat; y ∈ nat ]]
=⇒ strong_replacement

(M, λenv z. ∃ bo[M]. ∃ nx[M]. ∃ ny[M].
env ∈ list(A) ∧ is_nth(M,x,env,nx) ∧ is_nth(M,y,env,ny)

∧
is_bool_of_o(M, nx ∈ ny, bo) ∧
pair(M, env, bo, z))"

and
Equal_replacement:
" [[M(A); x ∈ nat; y ∈ nat ]]
=⇒ strong_replacement

(M, λenv z. ∃ bo[M]. ∃ nx[M]. ∃ ny[M].
env ∈ list(A) ∧ is_nth(M,x,env,nx) ∧ is_nth(M,y,env,ny)

∧
is_bool_of_o(M, nx = ny, bo) ∧
pair(M, env, bo, z))"

and
Nand_replacement:
" [[M(A); M(rp); M(rq)]]
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=⇒ strong_replacement
(M, λenv z. ∃ rpe[M]. ∃ rqe[M]. ∃ andpq[M]. ∃ notpq[M].

fun_apply(M,rp,env,rpe) ∧ fun_apply(M,rq,env,rqe) ∧
is_and(M,rpe,rqe,andpq) ∧ is_not(M,andpq,notpq) ∧
env ∈ list(A) ∧ pair(M, env, notpq, z))"

and
Forall_replacement:
" [[M(A); M(rp)]]
=⇒ strong_replacement

(M, λenv z. ∃ bo[M].
env ∈ list(A) ∧
is_bool_of_o (M,

∀ a[M]. ∀ co[M]. ∀ rpco[M].
a∈A −→ is_Cons(M,a,env,co) −→
fun_apply(M,rp,co,rpco) −→ number1(M,

rpco),
bo) ∧

pair(M,env,bo,z))"
and
formula_rec_replacement:

— For the transrec
" [[n ∈ nat; M(A)]] =⇒ transrec_replacement(M, satisfies_MH(M,A), n)"

and
formula_rec_lambda_replacement:

— For the λ-abstraction in the transrec body
" [[M(g); M(A)]] =⇒
strong_replacement (M,

λx y. mem_formula(M,x) ∧
(∃ c[M]. is_formula_case(M, satisfies_is_a(M,A),

satisfies_is_b(M,A),
satisfies_is_c(M,A,g),
satisfies_is_d(M,A,g), x, c) ∧

pair(M, x, c, y)))"

lemma (in M_satisfies) Member_replacement’:
" [[M(A); x ∈ nat; y ∈ nat ]]
=⇒ strong_replacement

(M, λenv z. env ∈ list(A) ∧
z = 〈env, bool_of_o(nth(x, env) ∈ nth(y, env))〉)"

〈proof 〉

lemma (in M_satisfies) Equal_replacement’:
" [[M(A); x ∈ nat; y ∈ nat ]]
=⇒ strong_replacement

(M, λenv z. env ∈ list(A) ∧
z = 〈env, bool_of_o(nth(x, env) = nth(y, env))〉)"

〈proof 〉
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lemma (in M_satisfies) Nand_replacement’:
" [[M(A); M(rp); M(rq)]]
=⇒ strong_replacement

(M, λenv z. env ∈ list(A) ∧ z = 〈env, not(rp‘env and rq‘env)〉)"
〈proof 〉

lemma (in M_satisfies) Forall_replacement’:
" [[M(A); M(rp)]]
=⇒ strong_replacement

(M, λenv z.
env ∈ list(A) ∧
z = 〈env, bool_of_o (∀ a∈A. rp ‘ Cons(a,env) = 1)〉)"

〈proof 〉

lemma (in M_satisfies) a_closed:
" [[M(A); x∈nat; y∈nat ]] =⇒ M(satisfies_a(A,x,y))"

〈proof 〉

lemma (in M_satisfies) a_rel:
"M(A) =⇒ Relation2(M, nat, nat, satisfies_is_a(M,A), satisfies_a(A))"

〈proof 〉

lemma (in M_satisfies) b_closed:
" [[M(A); x∈nat; y∈nat ]] =⇒ M(satisfies_b(A,x,y))"

〈proof 〉

lemma (in M_satisfies) b_rel:
"M(A) =⇒ Relation2(M, nat, nat, satisfies_is_b(M,A), satisfies_b(A))"

〈proof 〉

lemma (in M_satisfies) c_closed:
" [[M(A); x ∈ formula; y ∈ formula; M(rx); M(ry)]]
=⇒ M(satisfies_c(A,x,y,rx,ry))"

〈proof 〉

lemma (in M_satisfies) c_rel:
" [[M(A); M(f)]] =⇒
Relation2 (M, formula, formula,

satisfies_is_c(M,A,f),
λu v. satisfies_c(A, u, v, f ‘ succ(depth(u)) ‘ u,

f ‘ succ(depth(v)) ‘ v))"
〈proof 〉

lemma (in M_satisfies) d_closed:
" [[M(A); x ∈ formula; M(rx)]] =⇒ M(satisfies_d(A,x,rx))"

〈proof 〉

lemma (in M_satisfies) d_rel:
" [[M(A); M(f)]] =⇒

159



Relation1(M, formula, satisfies_is_d(M,A,f),
λu. satisfies_d(A, u, f ‘ succ(depth(u)) ‘ u))"

〈proof 〉

lemma (in M_satisfies) fr_replace:
" [[n ∈ nat; M(A)]] =⇒ transrec_replacement(M,satisfies_MH(M,A),n)"

〈proof 〉

lemma (in M_satisfies) formula_case_satisfies_closed:
" [[M(g); M(A); x ∈ formula ]] =⇒
M(formula_case (satisfies_a(A), satisfies_b(A),

λu v. satisfies_c(A, u, v,
g ‘ succ(depth(u)) ‘ u, g ‘ succ(depth(v)) ‘

v),
λu. satisfies_d (A, u, g ‘ succ(depth(u)) ‘ u),
x))"

〈proof 〉

lemma (in M_satisfies) fr_lam_replace:
" [[M(g); M(A)]] =⇒
strong_replacement (M, λx y. x ∈ formula ∧

y = 〈x,
formula_rec_case(satisfies_a(A),

satisfies_b(A),
satisfies_c(A),
satisfies_d(A), g, x)〉)"

〈proof 〉

Instantiate locale Formula_Rec for the Function satisfies

lemma (in M_satisfies) Formula_Rec_axioms_M:
"M(A) =⇒
Formula_Rec_axioms(M, satisfies_a(A), satisfies_is_a(M,A),

satisfies_b(A), satisfies_is_b(M,A),
satisfies_c(A), satisfies_is_c(M,A),
satisfies_d(A), satisfies_is_d(M,A))"

〈proof 〉

theorem (in M_satisfies) Formula_Rec_M:
"M(A) =⇒
Formula_Rec(M, satisfies_a(A), satisfies_is_a(M,A),

satisfies_b(A), satisfies_is_b(M,A),
satisfies_c(A), satisfies_is_c(M,A),
satisfies_d(A), satisfies_is_d(M,A))"

〈proof 〉

lemmas (in M_satisfies)
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satisfies_closed’ = Formula_Rec.formula_rec_closed [OF Formula_Rec_M]
and satisfies_abs’ = Formula_Rec.formula_rec_abs [OF Formula_Rec_M]

lemma (in M_satisfies) satisfies_closed:
" [[M(A); p ∈ formula ]] =⇒ M(satisfies(A,p))"

〈proof 〉

lemma (in M_satisfies) satisfies_abs:
" [[M(A); M(z); p ∈ formula ]]
=⇒ is_satisfies(M,A,p,z) ←→ z = satisfies(A,p)"

〈proof 〉

13.3 Internalizations Needed to Instantiate M_satisfies

13.3.1 The Operator is_depth_apply, Internalized
definition

depth_apply_fm :: "[i,i,i]⇒i" where
"depth_apply_fm(h,p,z) ≡

Exists(Exists(Exists(
And(finite_ordinal_fm(2),
And(depth_fm(p#+3,2),
And(succ_fm(2,1),
And(fun_apply_fm(h#+3,1,0), fun_apply_fm(0,p#+3,z#+3))))))))"

lemma depth_apply_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ depth_apply_fm(x,y,z) ∈ formula"

〈proof 〉

lemma sats_depth_apply_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, depth_apply_fm(x,y,z), env) ←→

is_depth_apply(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma depth_apply_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ is_depth_apply(##A, x, y, z) ←→ sats(A, depth_apply_fm(i,j,k),

env)"
〈proof 〉

lemma depth_apply_reflection:
"REFLECTS[λx. is_depth_apply(L,f(x),g(x),h(x)),

λi x. is_depth_apply(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉
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13.3.2 The Operator satisfies_is_a, Internalized
definition

satisfies_is_a_fm :: "[i,i,i,i]⇒i" where
"satisfies_is_a_fm(A,x,y,z) ≡
Forall(

Implies(is_list_fm(succ(A),0),
lambda_fm(

bool_of_o_fm(Exists(
Exists(And(nth_fm(x#+6,3,1),

And(nth_fm(y#+6,3,0),
Member(1,0))))), 0),

0, succ(z))))"

lemma satisfies_is_a_type [TC]:
" [[A ∈ nat; x ∈ nat; y ∈ nat; z ∈ nat ]]
=⇒ satisfies_is_a_fm(A,x,y,z) ∈ formula"

〈proof 〉

lemma sats_satisfies_is_a_fm [simp]:
" [[u ∈ nat; x < length(env); y < length(env); z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, satisfies_is_a_fm(u,x,y,z), env) ←→

satisfies_is_a(##A, nth(u,env), nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma satisfies_is_a_iff_sats:
" [[nth(u,env) = nu; nth(x,env) = nx; nth(y,env) = ny; nth(z,env) = nz;

u ∈ nat; x < length(env); y < length(env); z ∈ nat; env ∈ list(A)]]
=⇒ satisfies_is_a(##A,nu,nx,ny,nz) ←→

sats(A, satisfies_is_a_fm(u,x,y,z), env)"
〈proof 〉

theorem satisfies_is_a_reflection:
"REFLECTS[λx. satisfies_is_a(L,f(x),g(x),h(x),g’(x)),

λi x. satisfies_is_a(##Lset(i),f(x),g(x),h(x),g’(x))]"
〈proof 〉

13.3.3 The Operator satisfies_is_b, Internalized
definition

satisfies_is_b_fm :: "[i,i,i,i]⇒i" where
"satisfies_is_b_fm(A,x,y,z) ≡

Forall(
Implies(is_list_fm(succ(A),0),

lambda_fm(
bool_of_o_fm(Exists(And(nth_fm(x#+5,2,0), nth_fm(y#+5,2,0))),

0),
0, succ(z))))"

lemma satisfies_is_b_type [TC]:
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" [[A ∈ nat; x ∈ nat; y ∈ nat; z ∈ nat ]]
=⇒ satisfies_is_b_fm(A,x,y,z) ∈ formula"

〈proof 〉

lemma sats_satisfies_is_b_fm [simp]:
" [[u ∈ nat; x < length(env); y < length(env); z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, satisfies_is_b_fm(u,x,y,z), env) ←→

satisfies_is_b(##A, nth(u,env), nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma satisfies_is_b_iff_sats:
" [[nth(u,env) = nu; nth(x,env) = nx; nth(y,env) = ny; nth(z,env) = nz;

u ∈ nat; x < length(env); y < length(env); z ∈ nat; env ∈ list(A)]]
=⇒ satisfies_is_b(##A,nu,nx,ny,nz) ←→

sats(A, satisfies_is_b_fm(u,x,y,z), env)"
〈proof 〉

theorem satisfies_is_b_reflection:
"REFLECTS[λx. satisfies_is_b(L,f(x),g(x),h(x),g’(x)),

λi x. satisfies_is_b(##Lset(i),f(x),g(x),h(x),g’(x))]"
〈proof 〉

13.3.4 The Operator satisfies_is_c, Internalized
definition

satisfies_is_c_fm :: "[i,i,i,i,i]⇒i" where
"satisfies_is_c_fm(A,h,p,q,zz) ≡

Forall(
Implies(is_list_fm(succ(A),0),

lambda_fm(
Exists(Exists(
And(Exists(And(depth_apply_fm(h#+7,p#+7,0), fun_apply_fm(0,4,2))),
And(Exists(And(depth_apply_fm(h#+7,q#+7,0), fun_apply_fm(0,4,1))),

Exists(And(and_fm(2,1,0), not_fm(0,3))))))),
0, succ(zz))))"

lemma satisfies_is_c_type [TC]:
" [[A ∈ nat; h ∈ nat; x ∈ nat; y ∈ nat; z ∈ nat ]]
=⇒ satisfies_is_c_fm(A,h,x,y,z) ∈ formula"

〈proof 〉

lemma sats_satisfies_is_c_fm [simp]:
" [[u ∈ nat; v ∈ nat; x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, satisfies_is_c_fm(u,v,x,y,z), env) ←→

satisfies_is_c(##A, nth(u,env), nth(v,env), nth(x,env),
nth(y,env), nth(z,env))"

〈proof 〉

lemma satisfies_is_c_iff_sats:
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" [[nth(u,env) = nu; nth(v,env) = nv; nth(x,env) = nx; nth(y,env) = ny;

nth(z,env) = nz;
u ∈ nat; v ∈ nat; x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]

=⇒ satisfies_is_c(##A,nu,nv,nx,ny,nz) ←→
sats(A, satisfies_is_c_fm(u,v,x,y,z), env)"

〈proof 〉

theorem satisfies_is_c_reflection:
"REFLECTS[λx. satisfies_is_c(L,f(x),g(x),h(x),g’(x),h’(x)),

λi x. satisfies_is_c(##Lset(i),f(x),g(x),h(x),g’(x),h’(x))]"
〈proof 〉

13.3.5 The Operator satisfies_is_d, Internalized
definition

satisfies_is_d_fm :: "[i,i,i,i]⇒i" where
"satisfies_is_d_fm(A,h,p,zz) ≡

Forall(
Implies(is_list_fm(succ(A),0),

lambda_fm(
Exists(

And(depth_apply_fm(h#+5,p#+5,0),
bool_of_o_fm(
Forall(Forall(Forall(
Implies(Member(2,A#+8),
Implies(Cons_fm(2,5,1),
Implies(fun_apply_fm(3,1,0), number1_fm(0))))))), 1))),

0, succ(zz))))"

lemma satisfies_is_d_type [TC]:
" [[A ∈ nat; h ∈ nat; x ∈ nat; z ∈ nat ]]
=⇒ satisfies_is_d_fm(A,h,x,z) ∈ formula"

〈proof 〉

lemma sats_satisfies_is_d_fm [simp]:
" [[u ∈ nat; x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, satisfies_is_d_fm(u,x,y,z), env) ←→

satisfies_is_d(##A, nth(u,env), nth(x,env), nth(y,env), nth(z,env))"

〈proof 〉

lemma satisfies_is_d_iff_sats:
" [[nth(u,env) = nu; nth(x,env) = nx; nth(y,env) = ny; nth(z,env) = nz;

u ∈ nat; x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ satisfies_is_d(##A,nu,nx,ny,nz) ←→

sats(A, satisfies_is_d_fm(u,x,y,z), env)"
〈proof 〉
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theorem satisfies_is_d_reflection:
"REFLECTS[λx. satisfies_is_d(L,f(x),g(x),h(x),g’(x)),

λi x. satisfies_is_d(##Lset(i),f(x),g(x),h(x),g’(x))]"
〈proof 〉

13.3.6 The Operator satisfies_MH, Internalized
definition

satisfies_MH_fm :: "[i,i,i,i]⇒i" where
"satisfies_MH_fm(A,u,f,zz) ≡

Forall(
Implies(is_formula_fm(0),

lambda_fm(
formula_case_fm(satisfies_is_a_fm(A#+7,2,1,0),

satisfies_is_b_fm(A#+7,2,1,0),
satisfies_is_c_fm(A#+7,f#+7,2,1,0),
satisfies_is_d_fm(A#+6,f#+6,1,0),
1, 0),

0, succ(zz))))"

lemma satisfies_MH_type [TC]:
" [[A ∈ nat; u ∈ nat; x ∈ nat; z ∈ nat ]]
=⇒ satisfies_MH_fm(A,u,x,z) ∈ formula"

〈proof 〉

lemma sats_satisfies_MH_fm [simp]:
" [[u ∈ nat; x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, satisfies_MH_fm(u,x,y,z), env) ←→

satisfies_MH(##A, nth(u,env), nth(x,env), nth(y,env), nth(z,env))"

〈proof 〉

lemma satisfies_MH_iff_sats:
" [[nth(u,env) = nu; nth(x,env) = nx; nth(y,env) = ny; nth(z,env) = nz;

u ∈ nat; x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ satisfies_MH(##A,nu,nx,ny,nz) ←→

sats(A, satisfies_MH_fm(u,x,y,z), env)"
〈proof 〉

lemmas satisfies_reflections =
is_lambda_reflection is_formula_reflection
is_formula_case_reflection
satisfies_is_a_reflection satisfies_is_b_reflection
satisfies_is_c_reflection satisfies_is_d_reflection

theorem satisfies_MH_reflection:
"REFLECTS[λx. satisfies_MH(L,f(x),g(x),h(x),g’(x)),

λi x. satisfies_MH(##Lset(i),f(x),g(x),h(x),g’(x))]"
〈proof 〉
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13.4 Lemmas for Instantiating the Locale M_satisfies

13.4.1 The Member Case
lemma Member_Reflects:
"REFLECTS[λu. ∃ v[L]. v ∈ B ∧ (∃ bo[L]. ∃ nx[L]. ∃ ny[L].

v ∈ lstA ∧ is_nth(L,x,v,nx) ∧ is_nth(L,y,v,ny) ∧
is_bool_of_o(L, nx ∈ ny, bo) ∧ pair(L,v,bo,u)),

λi u. ∃ v ∈ Lset(i). v ∈ B ∧ (∃ bo ∈ Lset(i). ∃ nx ∈ Lset(i). ∃ ny
∈ Lset(i).

v ∈ lstA ∧ is_nth(##Lset(i), x, v, nx) ∧
is_nth(##Lset(i), y, v, ny) ∧

is_bool_of_o(##Lset(i), nx ∈ ny, bo) ∧ pair(##Lset(i), v, bo,
u))]"
〈proof 〉

lemma Member_replacement:
" [[L(A); x ∈ nat; y ∈ nat ]]
=⇒ strong_replacement

(L, λenv z. ∃ bo[L]. ∃ nx[L]. ∃ ny[L].
env ∈ list(A) ∧ is_nth(L,x,env,nx) ∧ is_nth(L,y,env,ny)

∧
is_bool_of_o(L, nx ∈ ny, bo) ∧
pair(L, env, bo, z))"

〈proof 〉

13.4.2 The Equal Case
lemma Equal_Reflects:
"REFLECTS[λu. ∃ v[L]. v ∈ B ∧ (∃ bo[L]. ∃ nx[L]. ∃ ny[L].

v ∈ lstA ∧ is_nth(L, x, v, nx) ∧ is_nth(L, y, v, ny) ∧
is_bool_of_o(L, nx = ny, bo) ∧ pair(L, v, bo, u)),

λi u. ∃ v ∈ Lset(i). v ∈ B ∧ (∃ bo ∈ Lset(i). ∃ nx ∈ Lset(i). ∃ ny
∈ Lset(i).

v ∈ lstA ∧ is_nth(##Lset(i), x, v, nx) ∧
is_nth(##Lset(i), y, v, ny) ∧

is_bool_of_o(##Lset(i), nx = ny, bo) ∧ pair(##Lset(i), v, bo,
u))]"
〈proof 〉

lemma Equal_replacement:
" [[L(A); x ∈ nat; y ∈ nat ]]
=⇒ strong_replacement

(L, λenv z. ∃ bo[L]. ∃ nx[L]. ∃ ny[L].
env ∈ list(A) ∧ is_nth(L,x,env,nx) ∧ is_nth(L,y,env,ny)

∧
is_bool_of_o(L, nx = ny, bo) ∧
pair(L, env, bo, z))"
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〈proof 〉

13.4.3 The Nand Case
lemma Nand_Reflects:

"REFLECTS [λx. ∃ u[L]. u ∈ B ∧
(∃ rpe[L]. ∃ rqe[L]. ∃ andpq[L]. ∃ notpq[L].

fun_apply(L, rp, u, rpe) ∧ fun_apply(L, rq, u, rqe) ∧
is_and(L, rpe, rqe, andpq) ∧ is_not(L, andpq, notpq)

∧
u ∈ list(A) ∧ pair(L, u, notpq, x)),

λi x. ∃ u ∈ Lset(i). u ∈ B ∧
(∃ rpe ∈ Lset(i). ∃ rqe ∈ Lset(i). ∃ andpq ∈ Lset(i). ∃ notpq ∈ Lset(i).

fun_apply(##Lset(i), rp, u, rpe) ∧ fun_apply(##Lset(i), rq, u,
rqe) ∧

is_and(##Lset(i), rpe, rqe, andpq) ∧ is_not(##Lset(i), andpq, notpq)
∧

u ∈ list(A) ∧ pair(##Lset(i), u, notpq, x))]"
〈proof 〉

lemma Nand_replacement:
" [[L(A); L(rp); L(rq)]]
=⇒ strong_replacement

(L, λenv z. ∃ rpe[L]. ∃ rqe[L]. ∃ andpq[L]. ∃ notpq[L].
fun_apply(L,rp,env,rpe) ∧ fun_apply(L,rq,env,rqe) ∧
is_and(L,rpe,rqe,andpq) ∧ is_not(L,andpq,notpq) ∧
env ∈ list(A) ∧ pair(L, env, notpq, z))"

〈proof 〉

13.4.4 The Forall Case
lemma Forall_Reflects:
"REFLECTS [λx. ∃ u[L]. u ∈ B ∧ (∃ bo[L]. u ∈ list(A) ∧

is_bool_of_o (L,
∀ a[L]. ∀ co[L]. ∀ rpco[L]. a ∈ A −→

is_Cons(L,a,u,co) −→ fun_apply(L,rp,co,rpco) −→
number1(L,rpco),

bo) ∧ pair(L,u,bo,x)),
λi x. ∃ u ∈ Lset(i). u ∈ B ∧ (∃ bo ∈ Lset(i). u ∈ list(A) ∧

is_bool_of_o (##Lset(i),
∀ a ∈ Lset(i). ∀ co ∈ Lset(i). ∀ rpco ∈ Lset(i). a ∈ A −→

is_Cons(##Lset(i),a,u,co) −→ fun_apply(##Lset(i),rp,co,rpco)
−→

number1(##Lset(i),rpco),
bo) ∧ pair(##Lset(i),u,bo,x))]"

〈proof 〉

lemma Forall_replacement:
" [[L(A); L(rp)]]
=⇒ strong_replacement
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(L, λenv z. ∃ bo[L].
env ∈ list(A) ∧
is_bool_of_o (L,

∀ a[L]. ∀ co[L]. ∀ rpco[L].
a∈A −→ is_Cons(L,a,env,co) −→
fun_apply(L,rp,co,rpco) −→ number1(L,

rpco),
bo) ∧

pair(L,env,bo,z))"
〈proof 〉

13.4.5 The transrec_replacement Case
lemma formula_rec_replacement_Reflects:
"REFLECTS [λx. ∃ u[L]. u ∈ B ∧ (∃ y[L]. pair(L, u, y, x) ∧

is_wfrec (L, satisfies_MH(L,A), mesa, u, y)),
λi x. ∃ u ∈ Lset(i). u ∈ B ∧ (∃ y ∈ Lset(i). pair(##Lset(i), u, y,

x) ∧
is_wfrec (##Lset(i), satisfies_MH(##Lset(i),A), mesa, u,

y))]"
〈proof 〉

lemma formula_rec_replacement:
— For the transrec

" [[n ∈ nat; L(A)]] =⇒ transrec_replacement(L, satisfies_MH(L,A), n)"
〈proof 〉

13.4.6 The Lambda Replacement Case
lemma formula_rec_lambda_replacement_Reflects:
"REFLECTS [λx. ∃ u[L]. u ∈ B ∧

mem_formula(L,u) ∧
(∃ c[L].

is_formula_case
(L, satisfies_is_a(L,A), satisfies_is_b(L,A),
satisfies_is_c(L,A,g), satisfies_is_d(L,A,g),
u, c) ∧

pair(L,u,c,x)),
λi x. ∃ u ∈ Lset(i). u ∈ B ∧ mem_formula(##Lset(i),u) ∧

(∃ c ∈ Lset(i).
is_formula_case
(##Lset(i), satisfies_is_a(##Lset(i),A), satisfies_is_b(##Lset(i),A),
satisfies_is_c(##Lset(i),A,g), satisfies_is_d(##Lset(i),A,g),
u, c) ∧

pair(##Lset(i),u,c,x))]"
〈proof 〉

lemma formula_rec_lambda_replacement:
— For the transrec

" [[L(g); L(A)]] =⇒
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strong_replacement (L,
λx y. mem_formula(L,x) ∧

(∃ c[L]. is_formula_case(L, satisfies_is_a(L,A),
satisfies_is_b(L,A),
satisfies_is_c(L,A,g),
satisfies_is_d(L,A,g), x, c) ∧

pair(L, x, c, y)))"
〈proof 〉

13.5 Instantiating M_satisfies

lemma M_satisfies_axioms_L: "M_satisfies_axioms(L)"
〈proof 〉

theorem M_satisfies_L: "M_satisfies(L)"
〈proof 〉

Finally: the point of the whole theory!
lemmas satisfies_closed = M_satisfies.satisfies_closed [OF M_satisfies_L]

and satisfies_abs = M_satisfies.satisfies_abs [OF M_satisfies_L]

end

14 Absoluteness for the Definable Powerset Func-
tion

theory DPow_absolute imports Satisfies_absolute begin

14.1 Preliminary Internalizations
14.1.1 The Operator is_formula_rec

The three arguments of p are always 2, 1, 0. It is buried within 11 quantifiers!
definition

formula_rec_fm :: "[i, i, i]⇒i" where
"formula_rec_fm(mh,p,z) ≡

Exists(Exists(Exists(
And(finite_ordinal_fm(2),
And(depth_fm(p#+3,2),
And(succ_fm(2,1),

And(fun_apply_fm(0,p#+3,z#+3), is_transrec_fm(mh,1,0))))))))"

lemma is_formula_rec_type [TC]:
" [[p ∈ formula; x ∈ nat; z ∈ nat ]]
=⇒ formula_rec_fm(p,x,z) ∈ formula"

〈proof 〉

lemma sats_formula_rec_fm:
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assumes MH_iff_sats:
"
∧

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10.
[[a0∈A; a1∈A; a2∈A; a3∈A; a4∈A; a5∈A; a6∈A; a7∈A; a8∈A; a9∈A;

a10∈A ]]
=⇒ MH(a2, a1, a0) ←→

sats(A, p, Cons(a0,Cons(a1,Cons(a2,Cons(a3,
Cons(a4,Cons(a5,Cons(a6,Cons(a7,

Cons(a8,Cons(a9,Cons(a10,env))))))))))))"
shows

" [[x ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, formula_rec_fm(p,x,z), env) ←→

is_formula_rec(##A, MH, nth(x,env), nth(z,env))"
〈proof 〉

lemma formula_rec_iff_sats:
assumes MH_iff_sats:

"
∧

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10.
[[a0∈A; a1∈A; a2∈A; a3∈A; a4∈A; a5∈A; a6∈A; a7∈A; a8∈A; a9∈A;

a10∈A ]]
=⇒ MH(a2, a1, a0) ←→

sats(A, p, Cons(a0,Cons(a1,Cons(a2,Cons(a3,
Cons(a4,Cons(a5,Cons(a6,Cons(a7,

Cons(a8,Cons(a9,Cons(a10,env))))))))))))"
shows
" [[nth(i,env) = x; nth(k,env) = z;

i ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ is_formula_rec(##A, MH, x, z) ←→ sats(A, formula_rec_fm(p,i,k),

env)"
〈proof 〉

theorem formula_rec_reflection:
assumes MH_reflection:

"
∧

f’ f g h. REFLECTS[λx. MH(L, f’(x), f(x), g(x), h(x)),
λi x. MH(##Lset(i), f’(x), f(x), g(x), h(x))]"

shows "REFLECTS[λx. is_formula_rec(L, MH(L,x), f(x), h(x)),
λi x. is_formula_rec(##Lset(i), MH(##Lset(i),x), f(x),

h(x))]"
〈proof 〉

14.1.2 The Operator is_satisfies

definition
satisfies_fm :: "[i,i,i]⇒i" where

"satisfies_fm(x) ≡ formula_rec_fm (satisfies_MH_fm(x#+5#+6, 2, 1,
0))"

lemma is_satisfies_type [TC]:
" [[x ∈ nat; y ∈ nat; z ∈ nat ]] =⇒ satisfies_fm(x,y,z) ∈ formula"

〈proof 〉
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lemma sats_satisfies_fm [simp]:
" [[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, satisfies_fm(x,y,z), env) ←→

is_satisfies(##A, nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma satisfies_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ is_satisfies(##A, x, y, z) ←→ sats(A, satisfies_fm(i,j,k),

env)"
〈proof 〉

theorem satisfies_reflection:
"REFLECTS[λx. is_satisfies(L,f(x),g(x),h(x)),

λi x. is_satisfies(##Lset(i),f(x),g(x),h(x))]"
〈proof 〉

14.2 Relativization of the Operator DPow’

lemma DPow’_eq:
"DPow’(A) = {z . ep ∈ list(A) * formula,

∃ env ∈ list(A). ∃ p ∈ formula.
ep = 〈env,p〉 ∧ z = {x∈A. sats(A, p, Cons(x,env))}}"

〈proof 〉

Relativize the use of λA p env. sats(A, p, env) within DPow’ (the compre-
hension).
definition

is_DPow_sats :: "[i⇒o,i,i,i,i] ⇒ o" where
"is_DPow_sats(M,A,env,p,x) ≡
∀ n1[M]. ∀ e[M]. ∀ sp[M].

is_satisfies(M,A,p,sp) −→ is_Cons(M,x,env,e) −→
fun_apply(M, sp, e, n1) −→ number1(M, n1)"

lemma (in M_satisfies) DPow_sats_abs:
" [[M(A); env ∈ list(A); p ∈ formula; M(x)]]
=⇒ is_DPow_sats(M,A,env,p,x) ←→ sats(A, p, Cons(x,env))"

〈proof 〉

lemma (in M_satisfies) Collect_DPow_sats_abs:
" [[M(A); env ∈ list(A); p ∈ formula ]]
=⇒ Collect(A, is_DPow_sats(M,A,env,p)) =

{x ∈ A. sats(A, p, Cons(x,env))}"
〈proof 〉

14.2.1 The Operator is_DPow_sats, Internalized
definition
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DPow_sats_fm :: "[i,i,i,i]⇒i" where
"DPow_sats_fm(A,env,p,x) ≡
Forall(Forall(Forall(

Implies(satisfies_fm(A#+3,p#+3,0),
Implies(Cons_fm(x#+3,env#+3,1),

Implies(fun_apply_fm(0,1,2), number1_fm(2)))))))"

lemma is_DPow_sats_type [TC]:
" [[A ∈ nat; x ∈ nat; y ∈ nat; z ∈ nat ]]
=⇒ DPow_sats_fm(A,x,y,z) ∈ formula"

〈proof 〉

lemma sats_DPow_sats_fm [simp]:
" [[u ∈ nat; x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, DPow_sats_fm(u,x,y,z), env) ←→

is_DPow_sats(##A, nth(u,env), nth(x,env), nth(y,env), nth(z,env))"
〈proof 〉

lemma DPow_sats_iff_sats:
" [[nth(u,env) = nu; nth(x,env) = nx; nth(y,env) = ny; nth(z,env) = nz;

u ∈ nat; x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ is_DPow_sats(##A,nu,nx,ny,nz) ←→

sats(A, DPow_sats_fm(u,x,y,z), env)"
〈proof 〉

theorem DPow_sats_reflection:
"REFLECTS[λx. is_DPow_sats(L,f(x),g(x),h(x),g’(x)),

λi x. is_DPow_sats(##Lset(i),f(x),g(x),h(x),g’(x))]"
〈proof 〉

14.3 A Locale for Relativizing the Operator DPow’

locale M_DPow = M_satisfies +
assumes sep:

" [[M(A); env ∈ list(A); p ∈ formula ]]
=⇒ separation(M, λx. is_DPow_sats(M,A,env,p,x))"

and rep:
"M(A)
=⇒ strong_replacement (M,

λep z. ∃ env[M]. ∃ p[M]. mem_formula(M,p) ∧ mem_list(M,A,env)
∧

pair(M,env,p,ep) ∧
is_Collect(M, A, λx. is_DPow_sats(M,A,env,p,x), z))"

lemma (in M_DPow) sep’:
" [[M(A); env ∈ list(A); p ∈ formula ]]
=⇒ separation(M, λx. sats(A, p, Cons(x,env)))"

〈proof 〉
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lemma (in M_DPow) rep’:
"M(A)
=⇒ strong_replacement (M,

λep z. ∃ env∈list(A). ∃ p∈formula.
ep = 〈env,p〉 ∧ z = {x ∈ A . sats(A, p, Cons(x, env))})"

〈proof 〉

lemma univalent_pair_eq:
"univalent (M, A, λxy z. ∃ x∈B. ∃ y∈C. xy = 〈x,y〉 ∧ z = f(x,y))"

〈proof 〉

lemma (in M_DPow) DPow’_closed: "M(A) =⇒ M(DPow’(A))"
〈proof 〉

Relativization of the Operator DPow’

definition
is_DPow’ :: "[i⇒o,i,i] ⇒ o" where

"is_DPow’(M,A,Z) ≡
∀ X[M]. X ∈ Z ←→

subset(M,X,A) ∧
(∃ env[M]. ∃ p[M]. mem_formula(M,p) ∧ mem_list(M,A,env) ∧

is_Collect(M, A, is_DPow_sats(M,A,env,p), X))"

lemma (in M_DPow) DPow’_abs:
" [[M(A); M(Z)]] =⇒ is_DPow’(M,A,Z) ←→ Z = DPow’(A)"

〈proof 〉

14.4 Instantiating the Locale M_DPow

14.4.1 The Instance of Separation
lemma DPow_separation:

" [[L(A); env ∈ list(A); p ∈ formula ]]
=⇒ separation(L, λx. is_DPow_sats(L,A,env,p,x))"

〈proof 〉

14.4.2 The Instance of Replacement
lemma DPow_replacement_Reflects:
"REFLECTS [λx. ∃ u[L]. u ∈ B ∧

(∃ env[L]. ∃ p[L].
mem_formula(L,p) ∧ mem_list(L,A,env) ∧ pair(L,env,p,u)

∧
is_Collect (L, A, is_DPow_sats(L,A,env,p), x)),

λi x. ∃ u ∈ Lset(i). u ∈ B ∧
(∃ env ∈ Lset(i). ∃ p ∈ Lset(i).

mem_formula(##Lset(i),p) ∧ mem_list(##Lset(i),A,env) ∧
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pair(##Lset(i),env,p,u) ∧
is_Collect (##Lset(i), A, is_DPow_sats(##Lset(i),A,env,p),

x))]"
〈proof 〉

lemma DPow_replacement:
"L(A)
=⇒ strong_replacement (L,

λep z. ∃ env[L]. ∃ p[L]. mem_formula(L,p) ∧ mem_list(L,A,env)
∧

pair(L,env,p,ep) ∧
is_Collect(L, A, λx. is_DPow_sats(L,A,env,p,x), z))"

〈proof 〉

14.4.3 Actually Instantiating the Locale
lemma M_DPow_axioms_L: "M_DPow_axioms(L)"
〈proof 〉

theorem M_DPow_L: "M_DPow(L)"
〈proof 〉

lemmas DPow’_closed [intro, simp] = M_DPow.DPow’_closed [OF M_DPow_L]
and DPow’_abs [intro, simp] = M_DPow.DPow’_abs [OF M_DPow_L]

14.4.4 The Operator is_Collect

The formula is_P has one free variable, 0, and it is enclosed within a single
quantifier.
definition

Collect_fm :: "[i, i, i]⇒i" where
"Collect_fm(A,is_P,z) ≡

Forall(Iff(Member(0,succ(z)),
And(Member(0,succ(A)), is_P)))"

lemma is_Collect_type [TC]:
" [[is_P ∈ formula; x ∈ nat; y ∈ nat ]]
=⇒ Collect_fm(x,is_P,y) ∈ formula"

〈proof 〉

lemma sats_Collect_fm:
assumes is_P_iff_sats:

"
∧

a. a ∈ A =⇒ is_P(a) ←→ sats(A, p, Cons(a, env))"
shows

" [[x ∈ nat; y ∈ nat; env ∈ list(A)]]
=⇒ sats(A, Collect_fm(x,p,y), env) ←→

is_Collect(##A, nth(x,env), is_P, nth(y,env))"
〈proof 〉
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lemma Collect_iff_sats:
assumes is_P_iff_sats:

"
∧

a. a ∈ A =⇒ is_P(a) ←→ sats(A, p, Cons(a, env))"
shows
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; j ∈ nat; env ∈ list(A)]]
=⇒ is_Collect(##A, x, is_P, y) ←→ sats(A, Collect_fm(i,p,j), env)"

〈proof 〉

The second argument of is_P gives it direct access to x, which is essential
for handling free variable references.
theorem Collect_reflection:

assumes is_P_reflection:
"
∧

h f g. REFLECTS[λx. is_P(L, f(x), g(x)),
λi x. is_P(##Lset(i), f(x), g(x))]"

shows "REFLECTS[λx. is_Collect(L, f(x), is_P(L,x), g(x)),
λi x. is_Collect(##Lset(i), f(x), is_P(##Lset(i), x), g(x))]"

〈proof 〉

14.4.5 The Operator is_Replace

BEWARE! The formula is_P has free variables 0, 1 and not the usual 1, 0!
It is enclosed within two quantifiers.
definition

Replace_fm :: "[i, i, i]⇒i" where
"Replace_fm(A,is_P,z) ≡

Forall(Iff(Member(0,succ(z)),
Exists(And(Member(0,A#+2), is_P))))"

lemma is_Replace_type [TC]:
" [[is_P ∈ formula; x ∈ nat; y ∈ nat ]]
=⇒ Replace_fm(x,is_P,y) ∈ formula"

〈proof 〉

lemma sats_Replace_fm:
assumes is_P_iff_sats:

"
∧

a b. [[a ∈ A; b ∈ A ]]
=⇒ is_P(a,b) ←→ sats(A, p, Cons(a,Cons(b,env)))"

shows
" [[x ∈ nat; y ∈ nat; env ∈ list(A)]]
=⇒ sats(A, Replace_fm(x,p,y), env) ←→

is_Replace(##A, nth(x,env), is_P, nth(y,env))"
〈proof 〉

lemma Replace_iff_sats:
assumes is_P_iff_sats:

"
∧

a b. [[a ∈ A; b ∈ A ]]
=⇒ is_P(a,b) ←→ sats(A, p, Cons(a,Cons(b,env)))"
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shows
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; j ∈ nat; env ∈ list(A)]]
=⇒ is_Replace(##A, x, is_P, y) ←→ sats(A, Replace_fm(i,p,j), env)"

〈proof 〉

The second argument of is_P gives it direct access to x, which is essential
for handling free variable references.
theorem Replace_reflection:

assumes is_P_reflection:
"
∧

h f g. REFLECTS[λx. is_P(L, f(x), g(x), h(x)),
λi x. is_P(##Lset(i), f(x), g(x), h(x))]"

shows "REFLECTS[λx. is_Replace(L, f(x), is_P(L,x), g(x)),
λi x. is_Replace(##Lset(i), f(x), is_P(##Lset(i), x), g(x))]"

〈proof 〉

14.4.6 The Operator is_DPow’, Internalized
definition

DPow’_fm :: "[i,i]⇒i" where
"DPow’_fm(A,Z) ≡

Forall(
Iff(Member(0,succ(Z)),
And(subset_fm(0,succ(A)),
Exists(Exists(
And(mem_formula_fm(0),
And(mem_list_fm(A#+3,1),
Collect_fm(A#+3,

DPow_sats_fm(A#+4, 2, 1, 0), 2))))))))"

lemma is_DPow’_type [TC]:
" [[x ∈ nat; y ∈ nat ]] =⇒ DPow’_fm(x,y) ∈ formula"

〈proof 〉

lemma sats_DPow’_fm [simp]:
" [[x ∈ nat; y ∈ nat; env ∈ list(A)]]
=⇒ sats(A, DPow’_fm(x,y), env) ←→

is_DPow’(##A, nth(x,env), nth(y,env))"
〈proof 〉

lemma DPow’_iff_sats:
" [[nth(i,env) = x; nth(j,env) = y;

i ∈ nat; j ∈ nat; env ∈ list(A)]]
=⇒ is_DPow’(##A, x, y) ←→ sats(A, DPow’_fm(i,j), env)"

〈proof 〉

theorem DPow’_reflection:
"REFLECTS[λx. is_DPow’(L,f(x),g(x)),

λi x. is_DPow’(##Lset(i),f(x),g(x))]"
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〈proof 〉

14.5 A Locale for Relativizing the Operator Lset

definition
transrec_body :: "[i⇒o,i,i,i,i] ⇒ o" where

"transrec_body(M,g,x) ≡
λy z. ∃ gy[M]. y ∈ x ∧ fun_apply(M,g,y,gy) ∧ is_DPow’(M,gy,z)"

lemma (in M_DPow) transrec_body_abs:
" [[M(x); M(g); M(z)]]

=⇒ transrec_body(M,g,x,y,z) ←→ y ∈ x ∧ z = DPow’(g‘y)"
〈proof 〉

locale M_Lset = M_DPow +
assumes strong_rep:

" [[M(x); M(g)]] =⇒ strong_replacement(M, λy z. transrec_body(M,g,x,y,z))"
and transrec_rep:

"M(i) =⇒ transrec_replacement(M, λx f u.
∃ r[M]. is_Replace(M, x, transrec_body(M,f,x), r) ∧

big_union(M, r, u), i)"

lemma (in M_Lset) strong_rep’:
" [[M(x); M(g)]]
=⇒ strong_replacement(M, λy z. y ∈ x ∧ z = DPow’(g‘y))"

〈proof 〉

lemma (in M_Lset) DPow_apply_closed:
" [[M(f); M(x); y∈x ]] =⇒ M(DPow’(f‘y))"

〈proof 〉

lemma (in M_Lset) RepFun_DPow_apply_closed:
" [[M(f); M(x)]] =⇒ M({DPow’(f‘y). y∈x})"

〈proof 〉

lemma (in M_Lset) RepFun_DPow_abs:
" [[M(x); M(f); M(r)]]
=⇒ is_Replace(M, x, λy z. transrec_body(M,f,x,y,z), r) ←→

r = {DPow’(f‘y). y∈x}"
〈proof 〉

lemma (in M_Lset) transrec_rep’:
"M(i) =⇒ transrec_replacement(M, λx f u. u = (

⋃
y∈x. DPow’(f ‘ y)),

i)"
〈proof 〉

Relativization of the Operator Lset

definition

177



is_Lset :: "[i⇒o, i, i] ⇒ o" where
— We can use the term language below because is_Lset will not have to be

internalized: it isn’t used in any instance of separation.
"is_Lset(M,a,z) ≡ is_transrec(M, λx f u. u = (

⋃
y∈x. DPow’(f‘y)),

a, z)"

lemma (in M_Lset) Lset_abs:
" [[Ord(i); M(i); M(z)]]
=⇒ is_Lset(M,i,z) ←→ z = Lset(i)"

〈proof 〉

lemma (in M_Lset) Lset_closed:
" [[Ord(i); M(i)]] =⇒ M(Lset(i))"

〈proof 〉

14.6 Instantiating the Locale M_Lset

14.6.1 The First Instance of Replacement
lemma strong_rep_Reflects:
"REFLECTS [λu. ∃ v[L]. v ∈ B ∧ (∃ gy[L].

v ∈ x ∧ fun_apply(L,g,v,gy) ∧ is_DPow’(L,gy,u)),
λi u. ∃ v ∈ Lset(i). v ∈ B ∧ (∃ gy ∈ Lset(i).

v ∈ x ∧ fun_apply(##Lset(i),g,v,gy) ∧ is_DPow’(##Lset(i),gy,u))]"
〈proof 〉

lemma strong_rep:
" [[L(x); L(g)]] =⇒ strong_replacement(L, λy z. transrec_body(L,g,x,y,z))"
〈proof 〉

14.6.2 The Second Instance of Replacement
lemma transrec_rep_Reflects:
"REFLECTS [λx. ∃ v[L]. v ∈ B ∧

(∃ y[L]. pair(L,v,y,x) ∧
is_wfrec (L, λx f u. ∃ r[L].

is_Replace (L, x, λy z.
∃ gy[L]. y ∈ x ∧ fun_apply(L,f,y,gy) ∧
is_DPow’(L,gy,z), r) ∧ big_union(L,r,u), mr, v,

y)),
λi x. ∃ v ∈ Lset(i). v ∈ B ∧

(∃ y ∈ Lset(i). pair(##Lset(i),v,y,x) ∧
is_wfrec (##Lset(i), λx f u. ∃ r ∈ Lset(i).

is_Replace (##Lset(i), x, λy z.
∃ gy ∈ Lset(i). y ∈ x ∧ fun_apply(##Lset(i),f,y,gy)

∧
is_DPow’(##Lset(i),gy,z), r) ∧
big_union(##Lset(i),r,u), mr, v, y))]"

〈proof 〉
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lemma transrec_rep:
" [[L(j)]]
=⇒ transrec_replacement(L, λx f u.

∃ r[L]. is_Replace(L, x, transrec_body(L,f,x), r) ∧
big_union(L, r, u), j)"

〈proof 〉

14.6.3 Actually Instantiating M_Lset

lemma M_Lset_axioms_L: "M_Lset_axioms(L)"
〈proof 〉

theorem M_Lset_L: "M_Lset(L)"
〈proof 〉

Finally: the point of the whole theory!
lemmas Lset_closed = M_Lset.Lset_closed [OF M_Lset_L]

and Lset_abs = M_Lset.Lset_abs [OF M_Lset_L]

14.7 The Notion of Constructible Set
definition

constructible :: "[i⇒o,i] ⇒ o" where
"constructible(M,x) ≡
∃ i[M]. ∃ Li[M]. ordinal(M,i) ∧ is_Lset(M,i,Li) ∧ x ∈ Li"

theorem V_equals_L_in_L:
"L(x) ←→ constructible(L,x)"

〈proof 〉

end

15 The Axiom of Choice Holds in L!
theory AC_in_L imports Formula Separation begin

15.1 Extending a Wellordering over a List – Lexicographic
Power

This could be moved into a library.
consts

rlist :: "[i,i]⇒i"

inductive
domains "rlist(A,r)" ⊆ "list(A) * list(A)"
intros

shorterI:
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" [[length(l’) < length(l); l’ ∈ list(A); l ∈ list(A)]]
=⇒ <l’, l> ∈ rlist(A,r)"

sameI:
" [[<l’,l> ∈ rlist(A,r); a ∈ A ]]
=⇒ <Cons(a,l’), Cons(a,l)> ∈ rlist(A,r)"

diffI:
" [[length(l’) = length(l); <a’,a> ∈ r;

l’ ∈ list(A); l ∈ list(A); a’ ∈ A; a ∈ A ]]
=⇒ <Cons(a’,l’), Cons(a,l)> ∈ rlist(A,r)"

type_intros list.intros

15.1.1 Type checking
lemmas rlist_type = rlist.dom_subset

lemmas field_rlist = rlist_type [THEN field_rel_subset]

15.1.2 Linearity
lemma rlist_Nil_Cons [intro]:

" [[a ∈ A; l ∈ list(A)]] =⇒ <[], Cons(a,l)> ∈ rlist(A, r)"
〈proof 〉

lemma linear_rlist:
assumes r: "linear(A,r)" shows "linear(list(A),rlist(A,r))"

〈proof 〉

15.1.3 Well-foundedness

Nothing preceeds Nil in this ordering.
inductive_cases rlist_NilE: " <l,[]> ∈ rlist(A,r)"

inductive_cases rlist_ConsE: " <l’, Cons(x,l)> ∈ rlist(A,r)"

lemma not_rlist_Nil [simp]: " <l,[]> /∈ rlist(A,r)"
〈proof 〉

lemma rlist_imp_length_le: "<l’,l> ∈ rlist(A,r) =⇒ length(l’) ≤ length(l)"
〈proof 〉

lemma wf_on_rlist_n:
" [[n ∈ nat; wf[A](r)]] =⇒ wf[{l ∈ list(A). length(l) = n}](rlist(A,r))"

〈proof 〉

lemma list_eq_UN_length: "list(A) = (
⋃

n∈nat. {l ∈ list(A). length(l)
= n})"
〈proof 〉
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lemma wf_on_rlist: "wf[A](r) =⇒ wf[list(A)](rlist(A,r))"
〈proof 〉

lemma wf_rlist: "wf(r) =⇒ wf(rlist(field(r),r))"
〈proof 〉

lemma well_ord_rlist:
"well_ord(A,r) =⇒ well_ord(list(A), rlist(A,r))"

〈proof 〉

15.2 An Injection from Formulas into the Natural Numbers

There is a well-known bijection between nat × nat and nat given by the
expression f(m,n) = triangle(m+n) + m, where triangle(k) enumerates the
triangular numbers and can be defined by triangle(0)=0, triangle(succ(k))
= succ(k + triangle(k)). Some small amount of effort is needed to show that
f is a bijection. We already know that such a bijection exists by the theorem
well_ord_InfCard_square_eq :

[[well_ord(A, r); InfCard(|A|)]] =⇒ A × A ≈ A

However, this result merely states that there is a bijection between the
two sets. It provides no means of naming a specific bijection. Therefore,
we conduct the proofs under the assumption that a bijection exists. The
simplest way to organize this is to use a locale.

Locale for any arbitrary injection between nat × nat and nat

locale Nat_Times_Nat =
fixes fn
assumes fn_inj: "fn ∈ inj(nat*nat, nat)"

consts enum :: "[i,i]⇒i"
primrec

"enum(f, Member(x,y)) = f ‘ <0, f ‘ 〈x,y〉>"
"enum(f, Equal(x,y)) = f ‘ <1, f ‘ 〈x,y〉>"
"enum(f, Nand(p,q)) = f ‘ <2, f ‘ <enum(f,p), enum(f,q)>>"
"enum(f, Forall(p)) = f ‘ <succ(2), enum(f,p)>"

lemma (in Nat_Times_Nat) fn_type [TC,simp]:
" [[x ∈ nat; y ∈ nat ]] =⇒ fn‘〈x,y〉 ∈ nat"

〈proof 〉

lemma (in Nat_Times_Nat) fn_iff:
" [[x ∈ nat; y ∈ nat; u ∈ nat; v ∈ nat ]]
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=⇒ (fn‘〈x,y〉 = fn‘〈u,v〉) ←→ (x=u ∧ y=v)"
〈proof 〉

lemma (in Nat_Times_Nat) enum_type [TC,simp]:
"p ∈ formula =⇒ enum(fn,p) ∈ nat"

〈proof 〉

lemma (in Nat_Times_Nat) enum_inject [rule_format]:
"p ∈ formula =⇒ ∀ q∈formula. enum(fn,p) = enum(fn,q) −→ p=q"

〈proof 〉

lemma (in Nat_Times_Nat) inj_formula_nat:
"(λp ∈ formula. enum(fn,p)) ∈ inj(formula, nat)"

〈proof 〉

lemma (in Nat_Times_Nat) well_ord_formula:
"well_ord(formula, measure(formula, enum(fn)))"

〈proof 〉

lemmas nat_times_nat_lepoll_nat =
InfCard_nat [THEN InfCard_square_eqpoll, THEN eqpoll_imp_lepoll]

Not needed–but interesting?
theorem formula_lepoll_nat: "formula . nat"
〈proof 〉

15.3 Defining the Wellordering on DPow(A)

The objective is to build a wellordering on DPow(A) from a given one on
A. We first introduce wellorderings for environments, which are lists built
over A. We combine it with the enumeration of formulas. The order type of
the resulting wellordering gives us a map from (environment, formula) pairs
into the ordinals. For each member of DPow(A), we take the minimum such
ordinal.
definition

env_form_r :: "[i,i,i]⇒i" where
— wellordering on (environment, formula) pairs

"env_form_r(f,r,A) ≡
rmult(list(A), rlist(A, r),

formula, measure(formula, enum(f)))"

definition
env_form_map :: "[i,i,i,i]⇒i" where

— map from (environment, formula) pairs to ordinals
"env_form_map(f,r,A,z)
≡ ordermap(list(A) * formula, env_form_r(f,r,A)) ‘ z"

definition
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DPow_ord :: "[i,i,i,i,i]⇒o" where
— predicate that holds if k is a valid index for X

"DPow_ord(f,r,A,X,k) ≡
∃ env ∈ list(A). ∃ p ∈ formula.

arity(p) ≤ succ(length(env)) ∧
X = {x∈A. sats(A, p, Cons(x,env))} ∧
env_form_map(f,r,A,〈env,p〉) = k"

definition
DPow_least :: "[i,i,i,i]⇒i" where

— function yielding the smallest index for X
"DPow_least(f,r,A,X) ≡ µ k. DPow_ord(f,r,A,X,k)"

definition
DPow_r :: "[i,i,i]⇒i" where

— a wellordering on DPow(A)
"DPow_r(f,r,A) ≡ measure(DPow(A), DPow_least(f,r,A))"

lemma (in Nat_Times_Nat) well_ord_env_form_r:
"well_ord(A,r)
=⇒ well_ord(list(A) * formula, env_form_r(fn,r,A))"

〈proof 〉

lemma (in Nat_Times_Nat) Ord_env_form_map:
" [[well_ord(A,r); z ∈ list(A) * formula ]]
=⇒ Ord(env_form_map(fn,r,A,z))"

〈proof 〉

lemma DPow_imp_ex_DPow_ord:
"X ∈ DPow(A) =⇒ ∃ k. DPow_ord(fn,r,A,X,k)"

〈proof 〉

lemma (in Nat_Times_Nat) DPow_ord_imp_Ord:
" [[DPow_ord(fn,r,A,X,k); well_ord(A,r)]] =⇒ Ord(k)"

〈proof 〉

lemma (in Nat_Times_Nat) DPow_imp_DPow_least:
" [[X ∈ DPow(A); well_ord(A,r)]]
=⇒ DPow_ord(fn, r, A, X, DPow_least(fn,r,A,X))"

〈proof 〉

lemma (in Nat_Times_Nat) env_form_map_inject:
" [[env_form_map(fn,r,A,u) = env_form_map(fn,r,A,v); well_ord(A,r);

u ∈ list(A) * formula; v ∈ list(A) * formula ]]
=⇒ u=v"

〈proof 〉

lemma (in Nat_Times_Nat) DPow_ord_unique:
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" [[DPow_ord(fn,r,A,X,k); DPow_ord(fn,r,A,Y,k); well_ord(A,r)]]
=⇒ X=Y"

〈proof 〉

lemma (in Nat_Times_Nat) well_ord_DPow_r:
"well_ord(A,r) =⇒ well_ord(DPow(A), DPow_r(fn,r,A))"

〈proof 〉

lemma (in Nat_Times_Nat) DPow_r_type:
"DPow_r(fn,r,A) ⊆ DPow(A) * DPow(A)"

〈proof 〉

15.4 Limit Construction for Well-Orderings

Now we work towards the transfinite definition of wellorderings for Lset(i).
We assume as an inductive hypothesis that there is a family of wellorderings
for smaller ordinals.
definition

rlimit :: "[i,i⇒i]⇒i" where
— Expresses the wellordering at limit ordinals. The conditional lets us remove

the premise Limit(i) from some theorems.
"rlimit(i,r) ≡

if Limit(i) then
{z: Lset(i) * Lset(i).
∃ x’ x. z = <x’,x> ∧

(lrank(x’) < lrank(x) |
(lrank(x’) = lrank(x) ∧ <x’,x> ∈ r(succ(lrank(x)))))}

else 0"

definition
Lset_new :: "i⇒i" where
— This constant denotes the set of elements introduced at level succ(i)

"Lset_new(i) ≡ {x ∈ Lset(succ(i)). lrank(x) = i}"

lemma Limit_Lset_eq2:
"Limit(i) =⇒ Lset(i) = (

⋃
j∈i. Lset_new(j))"

〈proof 〉

lemma wf_on_Lset:
"wf[Lset(succ(j))](r(succ(j))) =⇒ wf[Lset_new(j)](rlimit(i,r))"

〈proof 〉

lemma wf_on_rlimit:
"(∀ j<i. wf[Lset(j)](r(j))) =⇒ wf[Lset(i)](rlimit(i,r))"

〈proof 〉

lemma linear_rlimit:
" [[Limit(i); ∀ j<i. linear(Lset(j), r(j))]]
=⇒ linear(Lset(i), rlimit(i,r))"
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〈proof 〉

lemma well_ord_rlimit:
" [[Limit(i); ∀ j<i. well_ord(Lset(j), r(j))]]
=⇒ well_ord(Lset(i), rlimit(i,r))"

〈proof 〉

lemma rlimit_cong:
"(

∧
j. j<i =⇒ r’(j) = r(j)) =⇒ rlimit(i,r) = rlimit(i,r’)"

〈proof 〉

15.5 Transfinite Definition of the Wellordering on L

definition
L_r :: "[i, i] ⇒ i" where
"L_r(f) ≡ λi.

transrec3(i, 0, λx r. DPow_r(f, r, Lset(x)),
λx r. rlimit(x, λy. r‘y))"

15.5.1 The Corresponding Recursion Equations
lemma [simp]: "L_r(f,0) = 0"
〈proof 〉

lemma [simp]: "L_r(f, succ(i)) = DPow_r(f, L_r(f,i), Lset(i))"
〈proof 〉

The limit case is non-trivial because of the distinction between object-level
and meta-level abstraction.
lemma [simp]: "Limit(i) =⇒ L_r(f,i) = rlimit(i, L_r(f))"
〈proof 〉

lemma (in Nat_Times_Nat) L_r_type:
"Ord(i) =⇒ L_r(fn,i) ⊆ Lset(i) * Lset(i)"

〈proof 〉

lemma (in Nat_Times_Nat) well_ord_L_r:
"Ord(i) =⇒ well_ord(Lset(i), L_r(fn,i))"

〈proof 〉

lemma well_ord_L_r:
"Ord(i) =⇒ ∃ r. well_ord(Lset(i), r)"

〈proof 〉

Every constructible set is well-ordered! Therefore the Wellordering Theorem
and the Axiom of Choice hold in L !
theorem L_implies_AC: assumes x: "L(x)" shows "∃ r. well_ord(x,r)"
〈proof 〉
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interpretation L: M_basic L 〈proof 〉

theorem "∀ x[L]. ∃ r. wellordered(L,x,r)"
〈proof 〉

In order to prove ∃ r[L]. wellordered(L, x, r), it’s necessary to know that
r is actually constructible. It follows from the assumption “V equals L’’,
but this reasoning doesn’t appear to work in Isabelle.
end

16 Absoluteness for Order Types, Rank Functions
and Well-Founded Relations

theory Rank imports WF_absolute begin

16.1 Order Types: A Direct Construction by Replacement
locale M_ordertype = M_basic +
assumes well_ord_iso_separation:

" [[M(A); M(f); M(r)]]
=⇒ separation (M, λx. x∈A −→ (∃ y[M]. (∃ p[M].

fun_apply(M,f,x,y) ∧ pair(M,y,x,p) ∧ p ∈ r)))"
and obase_separation:

— part of the order type formalization
" [[M(A); M(r)]]
=⇒ separation(M, λa. ∃ x[M]. ∃ g[M]. ∃ mx[M]. ∃ par[M].

ordinal(M,x) ∧ membership(M,x,mx) ∧ pred_set(M,A,a,r,par)
∧

order_isomorphism(M,par,r,x,mx,g))"
and obase_equals_separation:

" [[M(A); M(r)]]
=⇒ separation (M, λx. x∈A −→ ¬(∃ y[M]. ∃ g[M].

ordinal(M,y) ∧ (∃ my[M]. ∃ pxr[M].
membership(M,y,my) ∧ pred_set(M,A,x,r,pxr)

∧
order_isomorphism(M,pxr,r,y,my,g))))"

and omap_replacement:
" [[M(A); M(r)]]
=⇒ strong_replacement(M,

λa z. ∃ x[M]. ∃ g[M]. ∃ mx[M]. ∃ par[M].
ordinal(M,x) ∧ pair(M,a,x,z) ∧ membership(M,x,mx) ∧
pred_set(M,A,a,r,par) ∧ order_isomorphism(M,par,r,x,mx,g))"

Inductive argument for Kunen’s Lemma I 6.1, etc. Simple proof from Hal-
mos, page 72
lemma (in M_ordertype) wellordered_iso_subset_lemma:

" [[wellordered(M,A,r); f ∈ ord_iso(A,r, A’,r); A’<= A; y ∈ A;
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M(A); M(f); M(r)]] =⇒ ¬ <f‘y, y> ∈ r"
〈proof 〉

Kunen’s Lemma I 6.1, page 14: there’s no order-isomorphism to an initial
segment of a well-ordering
lemma (in M_ordertype) wellordered_iso_predD:

" [[wellordered(M,A,r); f ∈ ord_iso(A, r, Order.pred(A,x,r), r);
M(A); M(f); M(r)]] =⇒ x /∈ A"

〈proof 〉

lemma (in M_ordertype) wellordered_iso_pred_eq_lemma:
" [[f ∈ 〈Order.pred(A,y,r), r〉 ∼= 〈Order.pred(A,x,r), r〉;

wellordered(M,A,r); x∈A; y∈A; M(A); M(f); M(r)]] =⇒ 〈x,y〉 /∈ r"
〈proof 〉

Simple consequence of Lemma 6.1
lemma (in M_ordertype) wellordered_iso_pred_eq:

" [[wellordered(M,A,r);
f ∈ ord_iso(Order.pred(A,a,r), r, Order.pred(A,c,r), r);
M(A); M(f); M(r); a∈A; c∈A ]] =⇒ a=c"

〈proof 〉

Following Kunen’s Theorem I 7.6, page 17. Note that this material is not
required elsewhere.

Can’t use well_ord_iso_preserving because it needs the strong premise
well_ord(A, r)

lemma (in M_ordertype) ord_iso_pred_imp_lt:
" [[f ∈ ord_iso(Order.pred(A,x,r), r, i, Memrel(i));

g ∈ ord_iso(Order.pred(A,y,r), r, j, Memrel(j));
wellordered(M,A,r); x ∈ A; y ∈ A; M(A); M(r); M(f); M(g);

M(j);
Ord(i); Ord(j); 〈x,y〉 ∈ r ]]

=⇒ i < j"
〈proof 〉

lemma ord_iso_converse1:
" [[f: ord_iso(A,r,B,s); <b, f‘a>: s; a:A; b:B ]]
=⇒ <converse(f) ‘ b, a> ∈ r"

〈proof 〉

definition
obase :: "[i⇒o,i,i] ⇒ i" where

— the domain of om, eventually shown to equal A
"obase(M,A,r) ≡ {a∈A. ∃ x[M]. ∃ g[M]. Ord(x) ∧

g ∈ ord_iso(Order.pred(A,a,r),r,x,Memrel(x))}"
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definition
omap :: "[i⇒o,i,i,i] ⇒ o" where

— the function that maps wosets to order types
"omap(M,A,r,f) ≡

∀ z[M].
z ∈ f ←→ (∃ a∈A. ∃ x[M]. ∃ g[M]. z = 〈a,x〉 ∧ Ord(x) ∧

g ∈ ord_iso(Order.pred(A,a,r),r,x,Memrel(x)))"

definition
otype :: "[i⇒o,i,i,i] ⇒ o" where — the order types themselves
"otype(M,A,r,i) ≡ ∃ f[M]. omap(M,A,r,f) ∧ is_range(M,f,i)"

Can also be proved with the premise M(z) instead of M(f), but that version
is less useful. This lemma is also more useful than the definition, omap_def.
lemma (in M_ordertype) omap_iff:

" [[omap(M,A,r,f); M(A); M(f)]]
=⇒ z ∈ f ←→

(∃ a∈A. ∃ x[M]. ∃ g[M]. z = 〈a,x〉 ∧ Ord(x) ∧
g ∈ ord_iso(Order.pred(A,a,r),r,x,Memrel(x)))"

〈proof 〉

lemma (in M_ordertype) omap_unique:
" [[omap(M,A,r,f); omap(M,A,r,f’); M(A); M(r); M(f); M(f’)]] =⇒ f’

= f"
〈proof 〉

lemma (in M_ordertype) omap_yields_Ord:
" [[omap(M,A,r,f); 〈a,x〉 ∈ f; M(a); M(x)]] =⇒ Ord(x)"

〈proof 〉

lemma (in M_ordertype) otype_iff:
" [[otype(M,A,r,i); M(A); M(r); M(i)]]
=⇒ x ∈ i ←→

(M(x) ∧ Ord(x) ∧
(∃ a∈A. ∃ g[M]. g ∈ ord_iso(Order.pred(A,a,r),r,x,Memrel(x))))"

〈proof 〉

lemma (in M_ordertype) otype_eq_range:
" [[omap(M,A,r,f); otype(M,A,r,i); M(A); M(r); M(f); M(i)]]
=⇒ i = range(f)"

〈proof 〉

lemma (in M_ordertype) Ord_otype:
" [[otype(M,A,r,i); trans[A](r); M(A); M(r); M(i)]] =⇒ Ord(i)"

〈proof 〉

lemma (in M_ordertype) domain_omap:
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" [[omap(M,A,r,f); M(A); M(r); M(B); M(f)]]
=⇒ domain(f) = obase(M,A,r)"

〈proof 〉

lemma (in M_ordertype) omap_subset:
" [[omap(M,A,r,f); otype(M,A,r,i);

M(A); M(r); M(f); M(B); M(i)]] =⇒ f ⊆ obase(M,A,r) * i"
〈proof 〉

lemma (in M_ordertype) omap_funtype:
" [[omap(M,A,r,f); otype(M,A,r,i);

M(A); M(r); M(f); M(i)]] =⇒ f ∈ obase(M,A,r) -> i"
〈proof 〉

lemma (in M_ordertype) wellordered_omap_bij:
" [[wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i);

M(A); M(r); M(f); M(i)]] =⇒ f ∈ bij(obase(M,A,r),i)"
〈proof 〉

This is not the final result: we must show oB(A, r) = A

lemma (in M_ordertype) omap_ord_iso:
" [[wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i);

M(A); M(r); M(f); M(i)]] =⇒ f ∈ ord_iso(obase(M,A,r),r,i,Memrel(i))"
〈proof 〉

lemma (in M_ordertype) Ord_omap_image_pred:
" [[wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i);

M(A); M(r); M(f); M(i); b ∈ A ]] =⇒ Ord(f ‘‘ Order.pred(A,b,r))"
〈proof 〉

lemma (in M_ordertype) restrict_omap_ord_iso:
" [[wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i);

D ⊆ obase(M,A,r); M(A); M(r); M(f); M(i)]]
=⇒ restrict(f,D) ∈ (〈D,r〉 ∼= 〈f‘‘D, Memrel(f‘‘D)〉)"

〈proof 〉

lemma (in M_ordertype) obase_equals:
" [[wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i);

M(A); M(r); M(f); M(i)]] =⇒ obase(M,A,r) = A"
〈proof 〉

Main result: om gives the order-isomorphism 〈A, r〉 ∼= 〈i, Memrel(i)〉

theorem (in M_ordertype) omap_ord_iso_otype:
" [[wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i);

M(A); M(r); M(f); M(i)]] =⇒ f ∈ ord_iso(A, r, i, Memrel(i))"
〈proof 〉

lemma (in M_ordertype) obase_exists:
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" [[M(A); M(r)]] =⇒ M(obase(M,A,r))"
〈proof 〉

lemma (in M_ordertype) omap_exists:
" [[M(A); M(r)]] =⇒ ∃ z[M]. omap(M,A,r,z)"

〈proof 〉

lemma (in M_ordertype) otype_exists:
" [[wellordered(M,A,r); M(A); M(r)]] =⇒ ∃ i[M]. otype(M,A,r,i)"

〈proof 〉

lemma (in M_ordertype) ordertype_exists:
" [[wellordered(M,A,r); M(A); M(r)]]
=⇒ ∃ f[M]. (∃ i[M]. Ord(i) ∧ f ∈ ord_iso(A, r, i, Memrel(i)))"

〈proof 〉

lemma (in M_ordertype) relativized_imp_well_ord:
" [[wellordered(M,A,r); M(A); M(r)]] =⇒ well_ord(A,r)"

〈proof 〉

16.2 Kunen’s theorem 5.4, page 127

(a) The notion of Wellordering is absolute
theorem (in M_ordertype) well_ord_abs [simp]:

" [[M(A); M(r)]] =⇒ wellordered(M,A,r) ←→ well_ord(A,r)"
〈proof 〉

(b) Order types are absolute
theorem (in M_ordertype) ordertypes_are_absolute:

" [[wellordered(M,A,r); f ∈ ord_iso(A, r, i, Memrel(i));
M(A); M(r); M(f); M(i); Ord(i)]] =⇒ i = ordertype(A,r)"

〈proof 〉

16.3 Ordinal Arithmetic: Two Examples of Recursion

Note: the remainder of this theory is not needed elsewhere.

16.3.1 Ordinal Addition
definition

is_oadd_fun :: "[i⇒o,i,i,i,i] ⇒ o" where
"is_oadd_fun(M,i,j,x,f) ≡

(∀ sj msj. M(sj) −→ M(msj) −→
successor(M,j,sj) −→ membership(M,sj,msj) −→
M_is_recfun(M,

λx g y. ∃ gx[M]. image(M,g,x,gx) ∧ union(M,i,gx,y),
msj, x, f))"
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definition
is_oadd :: "[i⇒o,i,i,i] ⇒ o" where

"is_oadd(M,i,j,k) ≡
(¬ ordinal(M,i) ∧ ¬ ordinal(M,j) ∧ k=0) |
(¬ ordinal(M,i) ∧ ordinal(M,j) ∧ k=j) |
(ordinal(M,i) ∧ ¬ ordinal(M,j) ∧ k=i) |
(ordinal(M,i) ∧ ordinal(M,j) ∧
(∃ f fj sj. M(f) ∧ M(fj) ∧ M(sj) ∧

successor(M,j,sj) ∧ is_oadd_fun(M,i,sj,sj,f) ∧
fun_apply(M,f,j,fj) ∧ fj = k))"

definition

omult_eqns :: "[i,i,i,i] ⇒ o" where
"omult_eqns(i,x,g,z) ≡

Ord(x) ∧
(x=0 −→ z=0) ∧
(∀ j. x = succ(j) −→ z = g‘j ++ i) ∧
(Limit(x) −→ z =

⋃
(g‘‘x))"

definition
is_omult_fun :: "[i⇒o,i,i,i] ⇒ o" where

"is_omult_fun(M,i,j,f) ≡
(∃ df. M(df) ∧ is_function(M,f) ∧

is_domain(M,f,df) ∧ subset(M, j, df)) ∧
(∀ x∈j. omult_eqns(i,x,f,f‘x))"

definition
is_omult :: "[i⇒o,i,i,i] ⇒ o" where

"is_omult(M,i,j,k) ≡
∃ f fj sj. M(f) ∧ M(fj) ∧ M(sj) ∧

successor(M,j,sj) ∧ is_omult_fun(M,i,sj,f) ∧
fun_apply(M,f,j,fj) ∧ fj = k"

locale M_ord_arith = M_ordertype +
assumes oadd_strong_replacement:
" [[M(i); M(j)]] =⇒
strong_replacement(M,

λx z. ∃ y[M]. pair(M,x,y,z) ∧
(∃ f[M]. ∃ fx[M]. is_oadd_fun(M,i,j,x,f) ∧

image(M,f,x,fx) ∧ y = i ∪ fx))"

and omult_strong_replacement’:
" [[M(i); M(j)]] =⇒
strong_replacement(M,

λx z. ∃ y[M]. z = 〈x,y〉 ∧
(∃ g[M]. is_recfun(Memrel(succ(j)),x,λx g. THE z. omult_eqns(i,x,g,z),g)
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∧
y = (THE z. omult_eqns(i, x, g, z))))"

is_oadd_fun : Relating the pure "language of set theory" to Isabelle/ZF
lemma (in M_ord_arith) is_oadd_fun_iff:

" [[a≤j; M(i); M(j); M(a); M(f)]]
=⇒ is_oadd_fun(M,i,j,a,f) ←→

f ∈ a → range(f) ∧ (∀ x. M(x) −→ x < a −→ f‘x = i ∪ f‘‘x)"
〈proof 〉

lemma (in M_ord_arith) oadd_strong_replacement’:
" [[M(i); M(j)]] =⇒
strong_replacement(M,

λx z. ∃ y[M]. z = 〈x,y〉 ∧
(∃ g[M]. is_recfun(Memrel(succ(j)),x,λx g. i ∪ g‘‘x,g)

∧
y = i ∪ g‘‘x))"

〈proof 〉

lemma (in M_ord_arith) exists_oadd:
" [[Ord(j); M(i); M(j)]]
=⇒ ∃ f[M]. is_recfun(Memrel(succ(j)), j, λx g. i ∪ g‘‘x, f)"

〈proof 〉

lemma (in M_ord_arith) exists_oadd_fun:
" [[Ord(j); M(i); M(j)]] =⇒ ∃ f[M]. is_oadd_fun(M,i,succ(j),succ(j),f)"

〈proof 〉

lemma (in M_ord_arith) is_oadd_fun_apply:
" [[x < j; M(i); M(j); M(f); is_oadd_fun(M,i,j,j,f)]]
=⇒ f‘x = i ∪ (

⋃
k∈x. {f ‘ k})"

〈proof 〉

lemma (in M_ord_arith) is_oadd_fun_iff_oadd [rule_format]:
" [[is_oadd_fun(M,i,J,J,f); M(i); M(J); M(f); Ord(i); Ord(j)]]
=⇒ j<J −→ f‘j = i++j"

〈proof 〉

lemma (in M_ord_arith) Ord_oadd_abs:
" [[M(i); M(j); M(k); Ord(i); Ord(j)]] =⇒ is_oadd(M,i,j,k) ←→ k = i++j"

〈proof 〉

lemma (in M_ord_arith) oadd_abs:
" [[M(i); M(j); M(k)]] =⇒ is_oadd(M,i,j,k) ←→ k = i++j"

〈proof 〉

lemma (in M_ord_arith) oadd_closed [intro,simp]:

192



" [[M(i); M(j)]] =⇒ M(i++j)"
〈proof 〉

16.3.2 Ordinal Multiplication
lemma omult_eqns_unique:

" [[omult_eqns(i,x,g,z); omult_eqns(i,x,g,z’)]] =⇒ z=z’"
〈proof 〉

lemma omult_eqns_0: "omult_eqns(i,0,g,z) ←→ z=0"
〈proof 〉

lemma the_omult_eqns_0: "(THE z. omult_eqns(i,0,g,z)) = 0"
〈proof 〉

lemma omult_eqns_succ: "omult_eqns(i,succ(j),g,z) ←→ Ord(j) ∧ z = g‘j
++ i"
〈proof 〉

lemma the_omult_eqns_succ:
"Ord(j) =⇒ (THE z. omult_eqns(i,succ(j),g,z)) = g‘j ++ i"

〈proof 〉

lemma omult_eqns_Limit:
"Limit(x) =⇒ omult_eqns(i,x,g,z) ←→ z =

⋃
(g‘‘x)"

〈proof 〉

lemma the_omult_eqns_Limit:
"Limit(x) =⇒ (THE z. omult_eqns(i,x,g,z)) =

⋃
(g‘‘x)"

〈proof 〉

lemma omult_eqns_Not: "¬ Ord(x) =⇒ ¬ omult_eqns(i,x,g,z)"
〈proof 〉

lemma (in M_ord_arith) the_omult_eqns_closed:
" [[M(i); M(x); M(g); function(g)]]
=⇒ M(THE z. omult_eqns(i, x, g, z))"

〈proof 〉

lemma (in M_ord_arith) exists_omult:
" [[Ord(j); M(i); M(j)]]
=⇒ ∃ f[M]. is_recfun(Memrel(succ(j)), j, λx g. THE z. omult_eqns(i,x,g,z),

f)"
〈proof 〉

lemma (in M_ord_arith) exists_omult_fun:
" [[Ord(j); M(i); M(j)]] =⇒ ∃ f[M]. is_omult_fun(M,i,succ(j),f)"

〈proof 〉
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lemma (in M_ord_arith) is_omult_fun_apply_0:
" [[0 < j; is_omult_fun(M,i,j,f)]] =⇒ f‘0 = 0"

〈proof 〉

lemma (in M_ord_arith) is_omult_fun_apply_succ:
" [[succ(x) < j; is_omult_fun(M,i,j,f)]] =⇒ f‘succ(x) = f‘x ++ i"

〈proof 〉

lemma (in M_ord_arith) is_omult_fun_apply_Limit:
" [[x < j; Limit(x); M(j); M(f); is_omult_fun(M,i,j,f)]]
=⇒ f ‘ x = (

⋃
y∈x. f‘y)"

〈proof 〉

lemma (in M_ord_arith) is_omult_fun_eq_omult:
" [[is_omult_fun(M,i,J,f); M(J); M(f); Ord(i); Ord(j)]]
=⇒ j<J −→ f‘j = i**j"

〈proof 〉

lemma (in M_ord_arith) omult_abs:
" [[M(i); M(j); M(k); Ord(i); Ord(j)]] =⇒ is_omult(M,i,j,k) ←→ k =

i**j"
〈proof 〉

16.4 Absoluteness of Well-Founded Relations

Relativized to M : Every well-founded relation is a subset of some inverse
image of an ordinal. Key step is the construction (in M) of a rank function.
locale M_wfrank = M_trancl +

assumes wfrank_separation:
"M(r) =⇒
separation (M, λx.
∀ rplus[M]. tran_closure(M,r,rplus) −→
¬ (∃ f[M]. M_is_recfun(M, λx f y. is_range(M,f,y), rplus, x,

f)))"
and wfrank_strong_replacement:

"M(r) =⇒
strong_replacement(M, λx z.
∀ rplus[M]. tran_closure(M,r,rplus) −→
(∃ y[M]. ∃ f[M]. pair(M,x,y,z) ∧

M_is_recfun(M, λx f y. is_range(M,f,y), rplus,
x, f) ∧

is_range(M,f,y)))"
and Ord_wfrank_separation:

"M(r) =⇒
separation (M, λx.
∀ rplus[M]. tran_closure(M,r,rplus) −→
¬ (∀ f[M]. ∀ rangef[M].

is_range(M,f,rangef) −→
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M_is_recfun(M, λx f y. is_range(M,f,y), rplus, x, f) −→
ordinal(M,rangef)))"

Proving that the relativized instances of Separation or Replacement agree
with the "real" ones.
lemma (in M_wfrank) wfrank_separation’:

"M(r) =⇒
separation

(M, λx. ¬ (∃ f[M]. is_recfun(r^+, x, λx f. range(f), f)))"
〈proof 〉

lemma (in M_wfrank) wfrank_strong_replacement’:
"M(r) =⇒
strong_replacement(M, λx z. ∃ y[M]. ∃ f[M].

pair(M,x,y,z) ∧ is_recfun(r^+, x, λx f. range(f), f)
∧

y = range(f))"
〈proof 〉

lemma (in M_wfrank) Ord_wfrank_separation’:
"M(r) =⇒
separation (M, λx.
¬ (∀ f[M]. is_recfun(r^+, x, λx. range, f) −→ Ord(range(f))))"

〈proof 〉

This function, defined using replacement, is a rank function for well-founded
relations within the class M.
definition

wellfoundedrank :: "[i⇒o,i,i] ⇒ i" where
"wellfoundedrank(M,r,A) ≡

{p. x∈A, ∃ y[M]. ∃ f[M].
p = 〈x,y〉 ∧ is_recfun(r^+, x, λx f. range(f), f)

∧
y = range(f)}"

lemma (in M_wfrank) exists_wfrank:
" [[wellfounded(M,r); M(a); M(r)]]
=⇒ ∃ f[M]. is_recfun(r^+, a, λx f. range(f), f)"

〈proof 〉

lemma (in M_wfrank) M_wellfoundedrank:
" [[wellfounded(M,r); M(r); M(A)]] =⇒ M(wellfoundedrank(M,r,A))"

〈proof 〉

lemma (in M_wfrank) Ord_wfrank_range [rule_format]:
" [[wellfounded(M,r); a∈A; M(r); M(A)]]
=⇒ ∀ f[M]. is_recfun(r^+, a, λx f. range(f), f) −→ Ord(range(f))"

〈proof 〉
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lemma (in M_wfrank) Ord_range_wellfoundedrank:
" [[wellfounded(M,r); r ⊆ A*A; M(r); M(A)]]
=⇒ Ord (range(wellfoundedrank(M,r,A)))"

〈proof 〉

lemma (in M_wfrank) function_wellfoundedrank:
" [[wellfounded(M,r); M(r); M(A)]]
=⇒ function(wellfoundedrank(M,r,A))"

〈proof 〉

lemma (in M_wfrank) domain_wellfoundedrank:
" [[wellfounded(M,r); M(r); M(A)]]
=⇒ domain(wellfoundedrank(M,r,A)) = A"

〈proof 〉

lemma (in M_wfrank) wellfoundedrank_type:
" [[wellfounded(M,r); M(r); M(A)]]
=⇒ wellfoundedrank(M,r,A) ∈ A -> range(wellfoundedrank(M,r,A))"

〈proof 〉

lemma (in M_wfrank) Ord_wellfoundedrank:
" [[wellfounded(M,r); a ∈ A; r ⊆ A*A; M(r); M(A)]]
=⇒ Ord(wellfoundedrank(M,r,A) ‘ a)"

〈proof 〉

lemma (in M_wfrank) wellfoundedrank_eq:
" [[is_recfun(r^+, a, λx. range, f);

wellfounded(M,r); a ∈ A; M(f); M(r); M(A)]]
=⇒ wellfoundedrank(M,r,A) ‘ a = range(f)"

〈proof 〉

lemma (in M_wfrank) wellfoundedrank_lt:
" [[〈a,b〉 ∈ r;

wellfounded(M,r); r ⊆ A*A; M(r); M(A)]]
=⇒ wellfoundedrank(M,r,A) ‘ a < wellfoundedrank(M,r,A) ‘ b"

〈proof 〉

lemma (in M_wfrank) wellfounded_imp_subset_rvimage:
" [[wellfounded(M,r); r ⊆ A*A; M(r); M(A)]]
=⇒ ∃ i f. Ord(i) ∧ r ⊆ rvimage(A, f, Memrel(i))"

〈proof 〉

lemma (in M_wfrank) wellfounded_imp_wf:
" [[wellfounded(M,r); relation(r); M(r)]] =⇒ wf(r)"

〈proof 〉
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lemma (in M_wfrank) wellfounded_on_imp_wf_on:
" [[wellfounded_on(M,A,r); relation(r); M(r); M(A)]] =⇒ wf[A](r)"

〈proof 〉

theorem (in M_wfrank) wf_abs:
" [[relation(r); M(r)]] =⇒ wellfounded(M,r) ←→ wf(r)"

〈proof 〉

theorem (in M_wfrank) wf_on_abs:
" [[relation(r); M(r); M(A)]] =⇒ wellfounded_on(M,A,r) ←→ wf[A](r)"

〈proof 〉

end

17 Separation for Facts About Order Types, Rank
Functions and Well-Founded Relations

theory Rank_Separation imports Rank Rec_Separation begin

This theory proves all instances needed for locales M_ordertype and M_wfrank.
But the material is not needed for proving the relative consistency of AC.

17.1 The Locale M_ordertype

17.1.1 Separation for Order-Isomorphisms
lemma well_ord_iso_Reflects:

"REFLECTS[λx. x∈A −→
(∃ y[L]. ∃ p[L]. fun_apply(L,f,x,y) ∧ pair(L,y,x,p) ∧ p

∈ r),
λi x. x∈A −→ (∃ y ∈ Lset(i). ∃ p ∈ Lset(i).

fun_apply(##Lset(i),f,x,y) ∧ pair(##Lset(i),y,x,p) ∧ p
∈ r)]"
〈proof 〉

lemma well_ord_iso_separation:
" [[L(A); L(f); L(r)]]
=⇒ separation (L, λx. x∈A −→ (∃ y[L]. (∃ p[L].

fun_apply(L,f,x,y) ∧ pair(L,y,x,p) ∧ p ∈ r)))"
〈proof 〉

17.1.2 Separation for obase

lemma obase_reflects:
"REFLECTS[λa. ∃ x[L]. ∃ g[L]. ∃ mx[L]. ∃ par[L].

ordinal(L,x) ∧ membership(L,x,mx) ∧ pred_set(L,A,a,r,par)
∧

order_isomorphism(L,par,r,x,mx,g),

197



λi a. ∃ x ∈ Lset(i). ∃ g ∈ Lset(i). ∃ mx ∈ Lset(i). ∃ par ∈ Lset(i).
ordinal(##Lset(i),x) ∧ membership(##Lset(i),x,mx) ∧ pred_set(##Lset(i),A,a,r,par)

∧
order_isomorphism(##Lset(i),par,r,x,mx,g)]"

〈proof 〉

lemma obase_separation:
— part of the order type formalization
" [[L(A); L(r)]]
=⇒ separation(L, λa. ∃ x[L]. ∃ g[L]. ∃ mx[L]. ∃ par[L].

ordinal(L,x) ∧ membership(L,x,mx) ∧ pred_set(L,A,a,r,par)
∧

order_isomorphism(L,par,r,x,mx,g))"
〈proof 〉

17.1.3 Separation for a Theorem about obase

lemma obase_equals_reflects:
"REFLECTS[λx. x∈A −→ ¬(∃ y[L]. ∃ g[L].

ordinal(L,y) ∧ (∃ my[L]. ∃ pxr[L].
membership(L,y,my) ∧ pred_set(L,A,x,r,pxr) ∧
order_isomorphism(L,pxr,r,y,my,g))),

λi x. x∈A −→ ¬(∃ y ∈ Lset(i). ∃ g ∈ Lset(i).
ordinal(##Lset(i),y) ∧ (∃ my ∈ Lset(i). ∃ pxr ∈ Lset(i).
membership(##Lset(i),y,my) ∧ pred_set(##Lset(i),A,x,r,pxr)

∧
order_isomorphism(##Lset(i),pxr,r,y,my,g)))]"

〈proof 〉

lemma obase_equals_separation:
" [[L(A); L(r)]]
=⇒ separation (L, λx. x∈A −→ ¬(∃ y[L]. ∃ g[L].

ordinal(L,y) ∧ (∃ my[L]. ∃ pxr[L].
membership(L,y,my) ∧ pred_set(L,A,x,r,pxr)

∧
order_isomorphism(L,pxr,r,y,my,g))))"

〈proof 〉

17.1.4 Replacement for omap

lemma omap_reflects:
"REFLECTS[λz. ∃ a[L]. a∈B ∧ (∃ x[L]. ∃ g[L]. ∃ mx[L]. ∃ par[L].

ordinal(L,x) ∧ pair(L,a,x,z) ∧ membership(L,x,mx) ∧
pred_set(L,A,a,r,par) ∧ order_isomorphism(L,par,r,x,mx,g)),

λi z. ∃ a ∈ Lset(i). a∈B ∧ (∃ x ∈ Lset(i). ∃ g ∈ Lset(i). ∃ mx ∈ Lset(i).
∃ par ∈ Lset(i).
ordinal(##Lset(i),x) ∧ pair(##Lset(i),a,x,z) ∧
membership(##Lset(i),x,mx) ∧ pred_set(##Lset(i),A,a,r,par) ∧
order_isomorphism(##Lset(i),par,r,x,mx,g))]"

〈proof 〉
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lemma omap_replacement:
" [[L(A); L(r)]]
=⇒ strong_replacement(L,

λa z. ∃ x[L]. ∃ g[L]. ∃ mx[L]. ∃ par[L].
ordinal(L,x) ∧ pair(L,a,x,z) ∧ membership(L,x,mx) ∧
pred_set(L,A,a,r,par) ∧ order_isomorphism(L,par,r,x,mx,g))"

〈proof 〉

17.2 Instantiating the locale M_ordertype

Separation (and Strong Replacement) for basic set-theoretic constructions
such as intersection, Cartesian Product and image.
lemma M_ordertype_axioms_L: "M_ordertype_axioms(L)"
〈proof 〉

theorem M_ordertype_L: "M_ordertype(L)"
〈proof 〉

17.3 The Locale M_wfrank

17.3.1 Separation for wfrank

lemma wfrank_Reflects:
"REFLECTS[λx. ∀ rplus[L]. tran_closure(L,r,rplus) −→

¬ (∃ f[L]. M_is_recfun(L, λx f y. is_range(L,f,y), rplus,
x, f)),

λi x. ∀ rplus ∈ Lset(i). tran_closure(##Lset(i),r,rplus) −→
¬ (∃ f ∈ Lset(i).

M_is_recfun(##Lset(i), λx f y. is_range(##Lset(i),f,y),
rplus, x, f))]"

〈proof 〉

lemma wfrank_separation:
"L(r) =⇒
separation (L, λx. ∀ rplus[L]. tran_closure(L,r,rplus) −→
¬ (∃ f[L]. M_is_recfun(L, λx f y. is_range(L,f,y), rplus, x,

f)))"
〈proof 〉

17.3.2 Replacement for wfrank

lemma wfrank_replacement_Reflects:
"REFLECTS[λz. ∃ x[L]. x ∈ A ∧

(∀ rplus[L]. tran_closure(L,r,rplus) −→
(∃ y[L]. ∃ f[L]. pair(L,x,y,z) ∧

M_is_recfun(L, λx f y. is_range(L,f,y), rplus,
x, f) ∧

is_range(L,f,y))),
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λi z. ∃ x ∈ Lset(i). x ∈ A ∧
(∀ rplus ∈ Lset(i). tran_closure(##Lset(i),r,rplus) −→
(∃ y ∈ Lset(i). ∃ f ∈ Lset(i). pair(##Lset(i),x,y,z) ∧

M_is_recfun(##Lset(i), λx f y. is_range(##Lset(i),f,y), rplus,
x, f) ∧

is_range(##Lset(i),f,y)))]"
〈proof 〉

lemma wfrank_strong_replacement:
"L(r) =⇒
strong_replacement(L, λx z.
∀ rplus[L]. tran_closure(L,r,rplus) −→
(∃ y[L]. ∃ f[L]. pair(L,x,y,z) ∧

M_is_recfun(L, λx f y. is_range(L,f,y), rplus,
x, f) ∧

is_range(L,f,y)))"
〈proof 〉

17.3.3 Separation for Proving Ord_wfrank_range

lemma Ord_wfrank_Reflects:
"REFLECTS[λx. ∀ rplus[L]. tran_closure(L,r,rplus) −→

¬ (∀ f[L]. ∀ rangef[L].
is_range(L,f,rangef) −→
M_is_recfun(L, λx f y. is_range(L,f,y), rplus, x, f) −→
ordinal(L,rangef)),

λi x. ∀ rplus ∈ Lset(i). tran_closure(##Lset(i),r,rplus) −→
¬ (∀ f ∈ Lset(i). ∀ rangef ∈ Lset(i).

is_range(##Lset(i),f,rangef) −→
M_is_recfun(##Lset(i), λx f y. is_range(##Lset(i),f,y),

rplus, x, f) −→
ordinal(##Lset(i),rangef))]"

〈proof 〉

lemma Ord_wfrank_separation:
"L(r) =⇒
separation (L, λx.
∀ rplus[L]. tran_closure(L,r,rplus) −→
¬ (∀ f[L]. ∀ rangef[L].

is_range(L,f,rangef) −→
M_is_recfun(L, λx f y. is_range(L,f,y), rplus, x, f) −→
ordinal(L,rangef)))"

〈proof 〉

17.3.4 Instantiating the locale M_wfrank

lemma M_wfrank_axioms_L: "M_wfrank_axioms(L)"
〈proof 〉

theorem M_wfrank_L: "M_wfrank(L)"
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〈proof 〉

lemmas exists_wfrank = M_wfrank.exists_wfrank [OF M_wfrank_L]
and M_wellfoundedrank = M_wfrank.M_wellfoundedrank [OF M_wfrank_L]
and Ord_wfrank_range = M_wfrank.Ord_wfrank_range [OF M_wfrank_L]
and Ord_range_wellfoundedrank = M_wfrank.Ord_range_wellfoundedrank [OF

M_wfrank_L]
and function_wellfoundedrank = M_wfrank.function_wellfoundedrank [OF

M_wfrank_L]
and domain_wellfoundedrank = M_wfrank.domain_wellfoundedrank [OF M_wfrank_L]
and wellfoundedrank_type = M_wfrank.wellfoundedrank_type [OF M_wfrank_L]
and Ord_wellfoundedrank = M_wfrank.Ord_wellfoundedrank [OF M_wfrank_L]
and wellfoundedrank_eq = M_wfrank.wellfoundedrank_eq [OF M_wfrank_L]
and wellfoundedrank_lt = M_wfrank.wellfoundedrank_lt [OF M_wfrank_L]
and wellfounded_imp_subset_rvimage = M_wfrank.wellfounded_imp_subset_rvimage

[OF M_wfrank_L]
and wellfounded_imp_wf = M_wfrank.wellfounded_imp_wf [OF M_wfrank_L]
and wellfounded_on_imp_wf_on = M_wfrank.wellfounded_on_imp_wf_on [OF

M_wfrank_L]
and wf_abs = M_wfrank.wf_abs [OF M_wfrank_L]
and wf_on_abs = M_wfrank.wf_on_abs [OF M_wfrank_L]

end
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