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Abstract

Godel’s proof of the relative consistency of the axiom of choice [1] is
one of the most important results in the foundations of mathematics.
It bears on Hilbert’s first problem, namely the continuum hypothesis,
and indeed Gdédel also proved the relative consistency of the continuum
hypothesis. Just as important, Godel’s proof introduced the inner
model method of proving relative consistency, and it introduced the
concept of constructible set. Kunen [2] gives an excellent description
of this body of work.

This Isabelle/ZF formalization demonstrates Godel’s claim that his
proof can be undertaken without using metamathematical arguments,
for example arguments based on the general syntactic structure of a for-
mula. Isabelle’s automation replaces the metamathematics, although
it does not eliminate the requirement at least to state many tedious
results that would otherwise be unnecessary.

This formalization [4] is by far the deepest result in set theory
proved in any automated theorem prover. It rests on a previous formal
development of the reflection theorem [3].
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1 First-Order Formulas and the Definition of the
Class L

theory Formula imports ZF begin

1.1 Internalized formulas of FOL

De Bruijn representation. Unbound variables get their denotations from an
environment.

consts formula :: 1
datatype
"formula" = Member ("x € nat", "y € nat")
| Equal ("x € nat", "y € nat")
| Nand ("p € formula", "q € formula")
| Forall ("p € formula")

declare formula.intros [TC]

definition
Neg :: "i=1i" where
"Neg(p) = Nand(p,p)"

definition
And :: "[i,i]=i" where
"And(p,q) = Neg(Nand(p,q))"

definition
Or :: "[i,i]=i" where
"Or(p,q) = Nand(Neg(p),Neg(qg))"

definition
Implies :: "[i,i]=1i" where
"Implies(p,q) = Nand(p,Neg(g))"

definition
Iff :: "[i,i]=1i" where
"Iff(p,q) = And(Implies(p,q), Implies(q,p))"

definition
Exists :: "i=i" where

"Exists(p) = Neg(Forall(Neg(p)))"

lemma Neg_type [TC]: "p € formula = Neg(p) € formula"
by (simp add: Neg_def)

lemma And_type [TC]l: "[p € formula; q € formula] — And(p,q) € formula"
by (simp add: And_def)
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lemma Or_type [TC]: "[p € formula; q € formula] = Or(p,q) € formula"
by (simp add: Or_def)

lemma Implies_type [TC]:
"[p € formula; q € formula] —> Implies(p,q) € formula"
by (simp add: Implies_def)

lemma Iff type [TC]:
"[p € formula; q € formula] — Iff(p,q) € formula"
by (simp add: Iff_def)

lemma Exists_type [TC]: "p € formula = Exists(p) € formula"
by (simp add: Exists_def)

consts satisfies :: "[i,i]=i"
primrec
"satisfies (A,Member (x,y)) =
(Aenv € list(A). bool_of_o (nth(x,env) € nth(y,env)))"

"satisfies (A,Equal (x,y)) =
(Aenv € list(A). bool_of_o (nth(x,env) = nth(y,env)))"

"satisfies(A,Nand(p,q)) =
(Aenv € list(A). not ((satisfies(A,p)‘env) and (satisfies(4,q) ‘env)))"

"satisfies(4,Forall(p)) =
(Aenv € list(A). bool_of_o (Vx€A. satisfies(A,p) ¢ (Cons(x,env))
=1)"

lemma satisfies_type: "p € formula —> satisfies(A,p) € list(A) -> bool"
by (induct set: formula) simp_all

abbreviation
sats :: "[i,i,i] = o" where
"sats(A,p,env) = satisfies(A,p) ‘env = 1"

lemma sats_Member_iff [simp]:
"env € list(A) —> sats(A, Member(x,y), env) <— nth(x,env) € nth(y,env)"
by simp

lemma sats_Equal_iff [simp]:
"env € list(A) —> sats(4, Equal(x,y), env) <— nth(x,env) = nth(y,env)"
by simp

lemma sats_Nand_iff [simp]:

"env € list(A)
—> (sats(4, Nand(p,q), env)) <— — (sats(A,p,env) A sats(4,q,env))"
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by (simp add: Bool.and_def Bool.not_def cond_def)

lemma sats_Forall_iff [simp]:

"env € list(4)

—> sats (A, Forall(p), env) <— (Vx€A. sats(A, p, Cons(x,env)))"
by simp

declare satisfies.simps [simp del]

1.2 Dividing line between primitive and derived connectives

lemma sats_Neg_iff [simp]:

"env € list(4)

—> sats(4, Neg(p), env) <— — sats(A,p,env)"
by (simp add: Neg def)

lemma sats_And_iff [simp]:

"env € list(4)

— (sats(4, And(p,q), env)) <— sats(4,p,env) A sats(4,q,env)"
by (simp add: And_def)

lemma sats_Or_iff [simp]:

"env € list(4)

— (sats(4, Or(p,q), env)) <— sats(A,p,env) | sats(4,q,env)"
by (simp add: Or_def)

lemma sats_Implies_iff [simp]:

"env € list(A)

— (sats (4, Implies(p,q), env)) <— (sats(4,p,env) — sats(4,q,env))"
by (simp add: Implies_def, blast)

lemma sats_Iff_iff [simp]:

"env € list(A)

— (sats(4, Iff(p,q), env)) <— (sats(4,p,env) <— sats(4,q,env))"
by (simp add: Iff_def, blast)

lemma sats_Exists_iff [simp]:

"env € list(A)

— sats(A, Exists(p), env) <+— (dx€A. sats(4, p, Cons(x,env)))"
by (simp add: Exists_def)

1.2.1 Derived rules to help build up formulas

lemma mem_iff_sats:
"[nth(i,env) = x; nth(j,env) = y; env € list(4)]
= (x€y) <— sats(4, Member(i,j), env)"

by (simp add: satisfies.simps)

lemma equal_iff_sats:
"[nth(i,env) = x; nth(j,env) = y; env € list(4)]
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= (x=y) <— sats(4, Equal(i,j), env)"
by (simp add: satisfies.simps)

lemma not_iff_sats:
"[P «— sats(A,p,env); env € list(A)]
= (—P) <+— sats(A, Neg(p), env)"
by simp

lemma conj_iff_sats:
"[P «— sats(4,p,env); Q@ +— sats(d,q,env); env € list(4)]
= (P AN Q) <— sats(4, And(p,q), env)"

by (simp)

lemma disj_iff_sats:
"[P «— sats(4,p,env); Q@ +— sats(d,q,env); env € list(4)]
= (P | Q) +— sats(4, 0r(p,q), env)"

by (simp)

lemma iff iff_sats:
"[P +— sats(4,p,env); Q@ +— sats(4,q,env); env € list(4)]
= (P +— Q) <— sats(4, Iff(p,q), env)"

by (simp)

lemma imp_iff_sats:
"[P +— sats(4,p,env); Q@ +— sats(4,q,env); env € list(4)]
= (P — Q) <— sats(A, Implies(p,q), env)"

by (simp)

lemma ball_iff_sats:
"[Ax. x€A = P(x) +— sats(4, p, Cons(x, env)); env € list(4)]
— (Vx€A. P(x)) +— sats(4A, Forall(p), env)"

by (simp)

lemma bex_iff_sats:
"[Ax. x€A = P(x) +— sats(4, p, Cons(x, env)); env € list(4)]
= (dxe€A. P(x)) +— sats(A, Exists(p), env)"

by (simp)

lemmas FOL_iff_sats =
mem_iff_sats equal_iff_sats not_iff_sats conj_iff_sats
disj_iff_sats imp_iff_sats iff_iff sats imp_iff_sats ball_iff_sats
bex_iff_ sats

1.3 Arity of a Formula: Maximum Free de Bruijn Index

consts arity :: "i=i"
primrec
"arity(Member(x,y)) = succ(x) U succ(y)"
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"arity(Equal(x,y)) = succ(x) U succ(y)"

"arity(Nand(p,q)) = arity(p) U arity(q)"

"arity(Forall(p)) = Arith.pred(arity(p))"

lemma arity_type [TC]: "p € formula = arity(p) € nat"
by (induct_tac p, simp_all)

lemma arity_Neg [simp]: "arity(Neg(p)) = arity(p)"
by (simp add: Neg_ def)

lemma arity_And [simp]: "arity(And(p,q)) = arity(p) U arity(q)"
by (simp add: And_def)

lemma arity_Or [simp]: "arity(Or(p,q)) = arity(p) U arity(q)"
by (simp add: Or_def)

lemma arity_Implies [simp]: "arity(Implies(p,q)) = arity(p) U arity(q)"
by (simp add: Implies_def)

lemma arity_Iff [simp]: "arity(Iff(p,q)) = arity(p) U arity(q)"
by (simp add: Iff_def, blast)

lemma arity_Exists [simp]: "arity(Exists(p)) = Arith.pred(arity(p))"
by (simp add: Exists_def)

lemma arity_sats_iff [rule_format]:
"[p € formula; extra € list(4)]
—> Venv € list(4).
arity(p) < length(env) —
sats(4, p, env @ extra) <— sats(4, p, env)"
apply (induct_tac p)
apply (simp_all add: Arith.pred_def nth_append Un_least_lt_iff nat_imp_quasinat
split: split_nat_case, auto)
done

lemma arity_satsl_iff:
"larity(p) < succ(length(env)); p € formula; x € A; env € list(4);
extra € list(A)]
— sats(4, p, Cons(x, env @ extra)) <— sats(A, p, Cons(x, env))"
apply (insert arity_sats_iff [of p extra A "Cons(x,env)"])
apply simp
done
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1.4 Renaming Some de Bruijn Variables

definition
incr_var :: "[i,i]=i" where
"incr_var(x,nq) = if x<nq then x else succ(x)"

lemma incr var_lt: "x<nq = incr_var(x,nq) = x"

by (simp add: incr_var_def)

lemma incr_var_le: "nq<x =—> incr_var(x,nq) = succ(x)"
apply (simp add: incr_var_def)

apply (blast dest: 1t_trans1)

done

consts incr_bv :: "i=i"
primrec
"incr_bv(Member (x,y)) =
(Anq € nat. Member (incr_var(x,nq), incr_var(y,ng)))"

"incr_bv(Equal(x,y)) =
(Ang € nat. Equal (incr_var(x,nq), incr_var(y,ng)))"

"incr_bv(Nand(p,q)) =
(Ang € nat. Nand (incr_bv(p) ‘nq, incr_bv(q) ‘ng))"

"incr_bv(Forall(p)) =
(Ang € nat. Forall (incr_bv(p) ¢ succ(ng)))"

lemma [TC]: "x € nat = incr_var(x,nq) € nat"

by (simp add: incr_var_def)

lemma incr_bv_type [TC]: "p € formula = incr_bv(p) € nat -> formula"
by (induct_tac p, simp_all)

Obviously, DPow is closed under complements and finite intersections and
unions. Needs an inductive lemma to allow two lists of parameters to be
combined.

lemma sats_incr_bv_iff [rule_format]:
"[p € formula; env € list(4); x € A]
= Vbvs € list(4).
sats(A, incr_bv(p) ¢ length(bvs), bvs @ Cons(x,env)) <—
sats (4, p, bvs@env)"
apply (induct_tac p)
apply (simp_all add: incr_var_def nth_append succ_lt_iff length_type)
apply (auto simp add: diff_succ not_lt_iff_le)
done
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lemma incr_var_lemma:
"[x € nat; y € nat; nq < x|
= succ(x) U incr_var(y,nq) = succ(x U y)"
apply (simp add: incr_var_def Ord_Un_if, auto)
apply (blast intro: lel)
apply (simp add: not_lt_iff_le)
apply (blast intro: le_anti_sym)
apply (blast dest: 1t_trans2)
done

lemma incr_And_lemma:
"y < x = y U succ(x) = succ(x U y)"
apply (simp add: Ord_Un_if 1t_Ord 1t_0Ord2 succ_lt_iff)
apply (blast dest: 1t_asym)
done

lemma arity_incr_bv_lemma [rule_format]:
"p € formula
= Vn € nat. arity (incr_bv(p) ¢ n) =
(if n < arity(p) then succ(arity(p)) else arity(p))"
apply (induct_tac p)
apply (simp_all add: imp_disj not_lt_iff_le Un_least_lt_iff 1t_Un_iff
le Un_iff
succ_Un_distrib [symmetric] incr_var_lt incr_var_le
Un_commute incr_var_lemma Arith.pred_def nat_imp_quasinat
split: split_nat_case)

the Forall case reduces to linear arithmetic

prefer 2
apply clarify
apply (blast dest: 1t_transl)

left with the And case

apply safe

apply (blast intro: incr_And_lemma 1t_transl1)
apply (subst incr_And_lemma)

apply (blast intro: 1t_transl)

apply (simp add: Un_commute)

done

1.5 Renaming all but the First de Bruijn Variable

definition
incr_bvl :: "i = i" where
"incr_bvl(p) = incr_bv(p) ‘1"

lemma incr_bvi_type [TC]: "p € formula = incr_bvl(p) € formula"
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by (simp add: incr_bvl_def)

lemma sats_incr_bvl_iff:
"[p € formula; env € list(4); x € A; y € 4]
—> sats(4, incr_bv1(p), Cons(x, Cons(y, env))) <—
sats(4, p, Cons(x,env))"
apply (insert sats_incr_bv_iff [of p env A y "Cons(x,Nil)"])
apply (simp add: incr_bvi1_def)
done

lemma formula_add_paramsl [rule_format]:
"[p € formula; n € nat; x € A]
= Vbvs € list(A). Venv € list(4).
length(bvs) = n —
sats (A, iterates(incr_bvl, n, p), Cons(x, bvs@env)) <+—
sats(4, p, Cons(x,env))"
apply (induct_tac n, simp, clarify)
apply (erule list.cases)
apply (simp_all add: sats_incr_bv1_iff)
done

lemma arity_incr_bvl_eq:
"p € formula
= arity(incr_bvi(p)) =
(if 1 < arity(p) then succ(arity(p)) else arity(p))"
apply (insert arity_incr_bv_lemma [of p 1])
apply (simp add: incr_bvl_def)
done

lemma arity_iterates_incr_bvl_eq:

"[p € formula; n € nat]

= arity(incr_bvi~n(p)) =

(if 1 < arity(p) then n #+ arity(p) else arity(p))"

apply (induct_tac n)
apply (simp_all add: arity_incr_bvl_eq)
apply (simp add: not_lt_iff_le)
apply (blast intro: le_trans add_le_self2 arity_type)
done

1.6 Definable Powerset

The definable powerset operation: Kunen’s definition VI 1.1, page 165.

definition
DPow :: "i = i" where
"DPow(A) = {X € Pow(4).

Jenv € list(A). Ip € formula.
arity(p) < succ(length(env)) A
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X = {xe€A. sats(A, p, Cons(x,env))}}"

lemma DPowI:
"[env € 1ist(4); p € formula; arity(p) < succ(length(env))]
=— {x€A. sats(4, p, Cons(x,env))} € DPow(A)"

by (simp add: DPow_def, blast)

With this rule we can specify p later.

lemma DPowI2 [rule_format]:
"[VxeA. P(x) +— sats(4d, p, Cons(x,env));
env € list(A); p € formula; arity(p) < succ(length(env))]
= {x€A. P(x)} € DPow(A)"
by (simp add: DPow_def, blast)

lemma DPowD:
"X € DPow(A)
— X C A A
(Jenv € list(4).
dp € formula. arity(p) < succ(length(env)) A
X = {xe€A. sats(A, p, Cons(x,env))})"
by (simp add: DPow_def)

lemmas DPow_imp_subset = DPowD [THEN conjunct1]

lemma "[p € formula; env € list(A); arity(p) < succ(length(env))]
= {x€A. sats(4, p, Cons(x,env))} € DPow(A)"
by (blast intro: DPowI)

lemma DPow_subset_Pow: "DPow(A) C Pow(A)"
by (simp add: DPow_def, blast)

lemma empty_in_DPow: "O € DPow(A)"

apply (simp add: DPow_def)

apply (rule_tac x=Nil in bexI)

apply (rule_tac x="Neg(Equal(0,0))" in bexI)
apply (auto simp add: Un_least_lt_iff)

done

lemma Compl_in_DPow: "X € DPow(A) —> (A-X) € DPow(A)"
apply (simp add: DPow_def, clarify, auto)
apply (rule bexI)
apply (rule_tac x="Neg(p)" in bexI)
apply auto
done

lemma Int_in_DPow: "[X € DPow(A); Y € DPow(A)] = X N Y € DPow(A)"

apply (simp add: DPow_def, auto)
apply (rename_tac envp p envq q)
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apply (rule_tac x="envp@envq" in bexI)

apply (rule_tac x="And(p, iterates(incr_bvl,length(envp),q))" in bexI)
apply typecheck

apply (rule conjI)

apply (simp add: arity_iterates_incr_bvl_eq Un_least_lt_iff)
apply (force intro: add_le_self le_trans)

apply (simp add: arity_satsl_iff formula_add_paramsl, blast)
done

lemma Un_in_DPow: "[X € DPow(A); Y € DPow(A)] = X U Y € DPow(A)"
apply (subgoal_tac "X U Y = A - ((A-X) N (A-Y))")

apply (simp add: Int_in_DPow Compl_in_DPow)

apply (simp add: DPow_def, blast)

done

lemma singleton_in_DPow: "a € A = {a} € DPow(A)"
apply (simp add: DPow_def)
apply (rule_tac x="Cons(a,Nil)" in bexI)

apply (rule_tac x="Equal(0,1)" in bexI)

apply typecheck
apply (force simp add: succ_Un_distrib [symmetric])
done

lemma cons_in_DPow: "[a € A; X € DPow(A)] = cons(a,X) € DPow(A)"
apply (rule cons_eq [THEN subst])

apply (blast intro: singleton_in_DPow Un_in_DPow)

done

lemma Fin_into_DPow: "X € Fin(A) = X € DPow(A)"
apply (erule Fin.induct)

apply (rule empty_in_DPow)

apply (blast intro: cons_in_DPow)

done

DPow is not monotonic. For example, let 4 be some non-constructible set of
natural numbers, and let B be nat. Then 4 C B and obviously A € DPow(4)
but 4 ¢ DPow(B).

lemma Finite_Pow_subset_Pow: "Finite(A) — Pow(A) C DPow(A)"
by (blast intro: Fin_into_DPow Finite_into_Fin Fin_subset)

lemma Finite_DPow_eq_Pow: "Finite(A) = DPow(A) = Pow(A)"
apply (rule equalityI)

apply (rule DPow_subset_Pow)

apply (erule Finite_Pow_subset_Pow)

done
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1.7 Internalized Formulas for the Ordinals

The sats theorems below differ from the usual form in that they include
an element of absoluteness. That is, they relate internalized formulas to
real concepts such as the subset relation, rather than to the relativized
concepts defined in theory Relative. This lets us prove the theorem as
Ords_in_DPow without first having to instantiate the locale M_trivial. Note
that the present theory does not even take Relative as a parent.

1.7.1 The subset relation

definition
subset_fm :: "[i,i]=i" where
"subset_fm(x,y) = Forall(Implies(Member (0,succ(x)), Member(0,succ(y))))"

lemma subset_type [TC]: "[x € nat; y € nat] — subset_fm(x,y) € formula"
by (simp add: subset_fm_def)

lemma arity_subset_fm [simp]:
"[x € nat; y € nat] = arity(subset_fm(x,y)) = succ(x) U succ(y)"
by (simp add: subset_fm_def succ_Un_distrib [symmetric])

lemma sats_subset_fm [simp]:
"[x < length(env); y € nat; env € list(A); Transset(A)]
—> sats(4, subset_fm(x,y), env) <— nth(x,env) C nth(y,env)"
apply (frule 1t_length_in_nat, assumption)
apply (simp add: subset_fm_def Transset_def)
apply (blast intro: nth_type)
done

1.7.2 Transitive sets

definition
transset_fm :: "i=i" where
"transset_fm(x) = Forall(Implies(Member (0,succ(x)), subset_fm(0,succ(x))))"

lemma transset_type [TC]: "x € nat = transset_fm(x) € formula"
by (simp add: transset_fm_def)

lemma arity_transset_fm [simp]:
"X € nat = arity(transset_fm(x)) = succ(x)"
by (simp add: transset_fm_def succ_Un_distrib [symmetric])

lemma sats_transset_fm [simp]:
"[x < length(env); env € 1list(A); Transset (4)]
— sats(4, transset_fm(x), env) <+— Transset(nth(x,env))"
apply (frule 1t_nat_in_nat, erule length_type)
apply (simp add: transset_fm_def Transset_def)
apply (blast intro: nth_type)
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done

1.7.3 Ordinals

definition
ordinal_fm :: "i=i" where
"ordinal_fm(x) =
And (transset_fm(x), Forall(Implies(Member (0,succ(x)), transset_fm(0))))"

lemma ordinal_type [TC]: "x € nat = ordinal_fm(x) € formula"
by (simp add: ordinal_fm_def)

lemma arity_ordinal_fm [simp]:
"x € nat = arity(ordinal_fm(x)) = succ(x)"
by (simp add: ordinal_fm_def succ_Un_distrib [symmetric])

lemma sats_ordinal_fm:

"[x < length(env); env € 1list(A); Transset(4)]

— sats(4, ordinal_fm(x), env) <— Ord(nth(x,env))"
apply (frule 1t_nat_in_nat, erule length_type)
apply (simp add: ordinal_fm_def Ord_def Transset_def)
apply (blast intro: nth_type)
done

The subset consisting of the ordinals is definable. Essential lemma for
Ord_in_Lset. This result is the objective of the present subsection.

theorem Ords_in_DPow: "Transset(A) —> {x € A. Ord(x)} € DPow(A)"
apply (simp add: DPow_def Collect_subset)

apply (rule_tac x=Nil in bexI)

apply (rule_tac x="ordinal_fm(0)" in bexI)

apply (simp_all add: sats_ordinal_fm)

done

1.8 Constant Lset: Levels of the Constructible Universe

definition
Lset :: "i=1i" where
"Lset (i) = transrec(i, Ax f. |Jy€x. DPow(f‘y))"

definition
L :: "i=o0" where — Kunen’s definition VI 1.5, page 167
"L(x) = di. Ord(i) N x € Lset(i)"

NOT SUITABLE FOR REWRITING - RECURSIVE!

lemma Lset: "Lset(i) = (|Jj€i. DPow(Lset (j)))"
by (subst Lset_def [THEN def_transrec], simp)

lemma LsetI: "[y€x; A € DPow(Lset(y))] = A € Lset(x)"
by (subst Lset, blast)
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lemma LsetD: "A € Lset(x) = dyecx. A € DPow(Lset(y))"
apply (insert Lset [of x])

apply (blast intro: elim: equalityE)

done

1.8.1 Transitivity

lemma elem_subset_in_DPow: "[X € A; X C A] = X € DPow(A)"
apply (simp add: Transset_def DPow_def)
apply (rule_tac x="[X]" in bexI)
apply (rule_tac x="Member(0,1)" in bexI)
apply (auto simp add: Un_least_lt_iff)
done

lemma Transset_subset_DPow: "Transset(A) —> A C DPow(4)"
apply clarify

apply (simp add: Transset_def)

apply (blast intro: elem_subset_in_DPow)

done

lemma Transset_DPow: "Transset(A) — Transset (DPow(A))"
apply (simp add: Transset_def)

apply (blast intro: elem_subset_in_DPow dest: DPowD)
done

Kunen’s VI 1.6 (a)

lemma Transset_Lset: "Transset(Lset(i))"

apply (rule_tac a=i in eps_induct)

apply (subst Lset)

apply (blast intro!: Transset_Union_family Transset_Un Transset_DPow)
done

lemma mem_Lset_imp_subset_Lset: "a € Lset(i) —> a C Lset(i)"
apply (insert Transset_Lset)

apply (simp add: Transset_def)

done

1.8.2 Monotonicity

Kunen’s VI 1.6 (b)

lemma Lset_mono [rule_format]:
"Vj. i<=j — Lset(i) C Lset(j)"
proof (induct i rule: eps_induct, intro alll impI)

fix x j
assume "Vyex. Vj. y C j — Lset(y) C Lset(j)"
and "x g jn

thus "Lset(x) C Lset(j)"
by (force simp add: Lset [of x] Lset [of jl)
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qed

This version lets us remove the premise 0rd (i) sometimes.

lemma Lset_mono_mem [rule_format]:
"Vj. i € j — Lset(i) C Lset(j)"
proof (induct i rule: eps_induct, intro alll impI)

fix x j
assume "Vyex. Vj. y € j — Lset(y) C Lset(j)"
and "x € j"

thus "Lset(x) C Lset(j)"
by (force simp add: Lset [of j]
intro!: bexI intro: elem_subset_in_DPow dest: LsetD DPowD)
qed

Useful with Reflection to bump up the ordinal

lemma subset_Lset_ltD: "[A C Lset(i); i < j] = A C Lset(j)"
by (blast dest: 1tD [THEN Lset_mono_mem])

1.8.3 0, successor and limit equations for Lset

lemma Lset_0 [simp]: "Lset(0) = 0"
by (subst Lset, blast)

lemma Lset_succ_subsetl: "DPow(Lset(i)) C Lset(succ(i))"
by (subst Lset, rule succIl [THEN RepFunI, THEN Union_upper])

lemma Lset_succ_subset2: "Lset(succ(i)) C DPow(Lset(i))"
apply (subst Lset, rule UN_least)

apply (erule succE)

apply blast

apply clarify

apply (rule elem_subset_in_DPow)

apply (subst Lset)

apply blast

apply (blast intro: dest: DPowD Lset_mono_mem)

done

lemma Lset_succ: "Lset(succ(i)) = DPow(Lset(i))"
by (intro equalityI Lset_succ_subsetl Lset_succ_subset2)

lemma Lset_Union [simp]: "Lset(J (X)) = ((Jy€X. Lset(y))"
apply (subst Lset)
apply (rule equalityI)

first inclusion

apply (rule UN_least)

apply (erule UnionE)

apply (rule subset_trans)

apply (erule_tac [2] UN_upper, subst Lset, erule UN_upper)
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opposite inclusion

apply (rule UN_least)
apply (subst Lset, blast)
done

1.8.4 Lset applied to Limit ordinals

lemma Limit_Lset_eq:
"Limit (i) = Lset(i) = (Jy€i. Lset(y))"
by (simp add: Lset_Union [symmetric] Limit_Union_eq)

lemma 1t_LsetI: "[a € Lset(j); j<i] = a € Lset(i)"
by (blast dest: Lset_mono [OF le_imp_subset [OF leIll)

lemma Limit_LsetE:

"la € Lset(i); —R = Limit(i);

Nx. [x<i; a € Lset(x)] = R
] = R"
apply (rule classical)
apply (rule Limit_Lset_eq [THEN equalityD1, THEN subsetD, THEN UN_E])
prefer 2 apply assumption

apply blast
apply (blast intro: 1tI Limit_is_0Ord)
done

1.8.5 Basic closure properties
lemma zero_in_Lset: "y € x = 0 € Lset(x)"

by (subst Lset, blast intro: empty_in_DPow)

lemma notin_Lset: "x ¢ Lset(x)"
apply (rule_tac a=x in eps_induct)
apply (subst Lset)

apply (blast dest: DPowD)

done

1.9 Constructible Ordinals: Kunen’s VI 1.9 (b)

lemma Ords_of_Lset_eq: "Ord(i) — {x€Lset(i). Ord(x)} = i"
apply (erule trans_induct3)
apply (simp_all add: Lset_succ Limit_Lset_eq Limit_Union_eq)

The successor case remains.
apply (rule equalityI)
First inclusion

apply clarify
apply (erule Ord_linear_ 1t, assumption)
apply (blast dest: DPow_imp_subset 1tD notE [OF notin_Lset])
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apply blast
apply (blast dest: 1tD)

Opposite inclusion, succ(x) C DPow(Lset(x)) N ON

apply auto

Key case:

apply (erule subst, rule Ords_in_DPow [OF Transset_Lset])

apply (blast intro: elem_subset_in_DPow dest: OrdmemD elim: equalityE)
apply (blast intro: Ord_in_Ord)
done

lemma Ord_subset_Lset: "Ord(i) —> i C Lset(i)"
by (subst Ords_of_Lset_eq [symmetric], assumption, fast)

lemma Ord_in_Lset: "Ord(i) — i € Lset(succ(i))"

apply (simp add: Lset_succ)

apply (subst Ords_of_Lset_eq [symmetric], assumption,
rule Ords_in_DPow [OF Transset_Lset])

done

lemma Ord_in_L: "Ord(i) = L(i)"
by (simp add: L_def, blast intro: Ord_in_Lset)

1.9.1 Unions

lemma Union_in_Lset:

"X € Lset(i) = |J (X) € Lset(succ(i))"
apply (insert Transset_Lset)
apply (rule LsetI [OF succIl])
apply (simp add: Transset_def DPow_def)
apply (intro conjI, blast)

Now to create the formula 3y. y € X A x € y

apply (rule_tac x="Cons(X,Nil)" in bexI)

apply (rule_tac x="Exists(And(Member(0,2), Member(1,0)))" in bexI)
apply typecheck

apply (simp add: succ_Un_distrib [symmetric], blast)

done

theorem Union_in_L: "L(X) = L({J (X))"
by (simp add: L_def, blast dest: Union_in_Lset)

1.9.2 Finite sets and ordered pairs

lemma singleton_in_Lset: "a € Lset(i) = {a} € Lset(succ(i))"
by (simp add: Lset_succ singleton_in_DPow)
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lemma doubleton_in_Lset:
"la € Lset(i); b € Lset(i)] = {a,b} € Lset(succ(i))"
by (simp add: Lset_succ empty_in_DPow cons_in_DPow)

lemma Pair_in_Lset:
"la € Lset(i); b € Lset(i); 0Ord(i)] = (a,b) € Lset(succ(succ(i)))"
unfolding Pair_def
apply (blast intro: doubleton_in_Lset)
done

Un_upperl [THEN Lset_mono [THEN subsetD]]
Un_upper2 [THEN Lset_mono [THEN subsetD]]

lemmas Lset_UnIl
lemmas Lset_UnI2

Hard work is finding a single j € i such that {a, b} C Lset(j)

lemma doubleton_in_LLimit:
"la € Lset(i); b € Lset(i); Limit(i)] = {a,b} € Lset(i)"
apply (erule Limit_LsetE, assumption)
apply (erule Limit_LsetE, assumption)
apply (blast intro: 1t_LsetI [OF doubleton_in_Lset]
Lset_UnIl Lset_UnI2 Limit_has_succ Un_least_1t)
done

theorem doubleton_in_L: "[L(a); L(b)] = L({a, b})"

apply (simp add: L_def, clarify)

apply (drule Ord2_imp_greater_ Limit, assumption)

apply (blast intro: 1t_LsetI doubleton_in_LLimit Limit_is_Ord)
done

lemma Pair_in_ LLimit:
"la € Lset(i); b € Lset(i); Limit(i)] = (a,b) € Lset(i)"

Infer that a, b occur at ordinals x,xa < i.

apply (erule Limit_LsetE, assumption)
apply (erule Limit_LsetE, assumption)

Infer that succ(succ(x U xa)) < i

apply (blast intro: 1t_Ord 1t_LsetI [OF Pair_in_Lset]
Lset_UnI1 Lset_UnI2 Limit_has_succ Un_least_1t)
done

The rank function for the constructible universe

definition
lrank :: "i=i" where — Kunen’s definition VI 1.7
"lrank(x) = p i. x € Lset(succ(i))"

lemma L_I: "[x € Lset(i); Ord(i)] = L(x)"
by (simp add: L_def, blast)

lemma L_D: "L(x) = di. Ord(i) N x € Lset(i)"
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by (simp add: L_def)

lemma Ord_lrank [simp]: "Ord(lrank(a))"
by (simp add: lrank_def)

lemma Lset_lrank_1t [rule_format]: "Ord(i) — x € Lset(i) — lrank(x)
< i"
apply (erule trans_induct3)
apply simp
apply (simp only: lrank_def)
apply (blast intro: Least_le)
apply (simp_all add: Limit_Lset_eq)
apply (blast intro: 1tI Limit_is_Ord lt_trans)
done

Kunen’s VI 1.8. The proof is much harder than the text would suggest. For
a start, it needs the previous lemma, which is proved by induction.

lemma Lset_iff_lrank_lt: "Ord(i) = x € Lset(i) <— L(x) A lrank(x)
< i"
apply (simp add: L_def, auto)
apply (blast intro: Lset_lrank_lt)
unfolding lrank_def
apply (drule succIl [THEN Lset_mono_mem, THEN subsetD])
apply (drule_tac P="\i. x € Lset(succ(i))" in LeastI, assumption)
apply (blast intro!: le_imp_subset Lset_mono [THEN subsetD])
done

lemma Lset_succ_lrank_iff [simp]: "x € Lset(succ(lrank(x))) <— L(x)"
by (simp add: Lset_iff_lrank_1t)

Kunen’s VI 1.9 (a)

lemma lrank_of_Ord: "Ord(i) — lrank(i) = i"
unfolding lrank_def
apply (rule Least_equality)
apply (erule Ord_in_Lset)
apply assumption
apply (insert notin_Lset [of i])
apply (blast intro!: le_imp_subset Lset_mono [THEN subsetD])
done

This is Irank(lrank(a)) = lrank(a)

declare Ord_lrank [THEN lrank_of_Ord, simp]

Kunen’s VI 1.10

lemma Lset_in_Lset_succ: "Lset(i) € Lset(succ(i))"
apply (simp add: Lset_succ DPow_def)

apply (rule_tac x=Nil in bexI)

apply (rule_tac x="Equal(0,0)" in bexI)
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apply auto
done

lemma lrank Lset: "Ord(i) = lrank(Lset(i)) = i"
unfolding Ilrank_def
apply (rule Least_equality)
apply (rule Lset_in_Lset_succ)
apply assumption
apply clarify
apply (subgoal_tac "Lset (succ(ia)) C Lset(i)")
apply (blast dest: mem_irrefl)
apply (blast intro!: le_imp_subset Lset_mono)
done

Kunen’s VI 1.11

lemma Lset_subset_Vset: "Ord(i) —> Lset(i) C Vset(i)"
apply (erule trans_induct)

apply (subst Lset)

apply (subst Vset)

apply (rule UN_mono [OF subset_refl])

apply (rule subset_trans [OF DPow_subset_Pow])

apply (rule Pow_mono, blast)

done

Kunen’s VI 1.12

lemma Lset_subset_Vset’: "i € nat — Lset(i) = Vset(i)"

apply (erule nat_induct)

apply (simp add: Vfrom_0)

apply (simp add: Lset_succ Vset_succ Finite_Vset Finite_DPow_eq_Pow)
done

Every set of constructible sets is included in some Lset

lemma subset_Lset:
"Wx€elA. L(x)) — di. 0Ord(i) N A C Lset(i)"
by (rule_tac x = "|Jx€A. succ(lrank(x))" in exI, force)

lemma subset_LsetE:

"[VxeA. L(x);
Ni. [0rd(i); A C Lset(i)] = P]
— pr

by (blast dest: subset_Lset)

1.9.3 For L to satisfy the Powerset axiom

lemma LPow_env_typing:

"ly € Lset(i); Ord(i); y C X]

—> Jdz € Pow(X). y € Lset(succ(lrank(z)))"
by (auto intro: L_I iff: Lset_succ_lrank_iff)
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lemma LPow_in_Lset:
"[X € Lset(i); Ord(i)] = 3j. 0rd(j) A {y € Pow(X). L(y)} € Lset(j)"
apply (rule_tac x="succ(Jy € Pow(X). succ(lrank(y)))" in exI)
apply simp
apply (rule LsetI [OF succI1])
apply (simp add: DPow_def)
apply (intro conjI, clarify)
apply (rule_tac a=x in UN_I, simp+)

Now to create the formula y C X

apply (rule_tac x="Cons(X,Nil)" in bexI)
apply (rule_tac x="subset_fm(0,1)" in bexI)
apply typecheck
apply (rule conjI)
apply (simp add: succ_Un_distrib [symmetric])
apply (rule equality_ iffI)
apply (simp add: Transset_UN [OF Transset_Lset] LPow_env_typing)
apply (auto intro: L_I iff: Lset_succ_lrank_iff)
done

theorem LPow_in_L: "L(X) =—> L({y € Pow(X). L(y)})"
by (blast intro: L_I dest: L_D LPow_in_Lset)

1.10 Eliminating arity from the Definition of Lset

lemma nth_zero_eq_0: "n € nat —> nth(u, [0]) = 0"
by (induct_tac n, auto)

lemma sats_app_0_iff [rule_format]:
"[p € formula; 0 € A]
= Venv € list(4). sats(4,p, env@[0]) <+— sats(A,p,env)"
apply (induct_tac p)
apply (simp_all del: app_Cons add: app_Cons [symmetric]
add: nth_zero_eq_O nth_append not_lt_iff_le nth_eq_0)
done

lemma sats_app_zeroes_iff:
"[p € formula; 0 € A; env € list(A); n € nat]
— sats(A,p,env @ repeat(0,n)) <— sats(A,p,env)"
apply (induct_tac n, simp)
apply (simp del: repeat.simps
add: repeat_succ_app sats_app_O_iff app_assoc [symmetric])
done

lemma exists_bigger_env:
"[p € formula; O € A; env € list(4)]
= Jenv’ € list(4). arity(p) < succ(length(env’)) A
(WVacA. sats(A,p,Cons(a,env’)) <— sats(A,p,Cons(a,env)))"
apply (rule_tac x="env @ repeat(0,arity(p))" in bexI)
apply (simp del: app_Cons add: app_Cons [symmetric]
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add: length_repeat sats_app_zeroes_iff, typecheck)
done

A simpler version of DPow: no arity check!

definition
DPow’ :: "i = i" where
"DPow’(A) = {X € Pow(4).

Jenv € list(A). Jp € formula.
X = {x€A. sats(A, p, Cons(x,env))}}"

lemma DPow_subset_DPow’: "DPow(A) C DPow’ (A)"
by (simp add: DPow_def DPow’_def, blast)

lemma DPow’_0: "DPow’(0) = {0}"
by (auto simp add: DPow’_def)

lemma DPow’_subset_DPow: "0 € A — DPow’(A) C DPow(A)"
apply (auto simp add: DPow’_def DPow_def)

apply (frule exists_bigger_env, assumption+, force)

done

lemma DPow_eq_DPow’: "Transset(A) == DPow(A) = DPow’ (A)"
apply (drule Transset_0_disj)

apply (erule disjE)

apply (simp add: DPow’_0 Finite_DPow_eq_Pow)

apply (rule equalityI)

apply (rule DPow_subset_DPow’)

apply (erule DPow’_subset_DPow)

done

And thus we can relativize Lset without bothering with arity and length

lemma Lset_eq_transrec_DPow’: "Lset(i) = tramsrec(i, Ax f. |Jy€x. DPow’ (f‘y))"
apply (rule_tac a=i in eps_induct)

apply (subst Lset)

apply (subst transrec)

apply (simp only: DPow_eq_DPow’ [OF Transset_Lset], simp)

done

With this rule we can specify p later and don’t worry about arities at all!

lemma DPow_LsetI [rule_format]:
"[Vxe€Lset(i). P(x) +— sats(Lset(i), p, Comns(x,env));
env € list(Lset(i)); p € formula]
— {x€Lset(i). P(x)} € DPow(Lset(i))"
by (simp add: DPow_eq_DPow’ [OF Transset_Lset] DPow’_def, blast)

end
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2 Relativization and Absoluteness

theory Relative imports ZF begin

2.1 Relativized versions of standard set-theoretic concepts

definition
empty :: "[i=>0,i] = o" where
"empty(M,z) = Vx[M]. x ¢ z"

definition
subset :: "[i=o0,i,i] = o" where
"subset (M,A,B) = Vx[M]. x€A — x € B"

definition
upair :: "[i=o0,1,i,i] = o" where
"upair(M,a,b,z) = a € z AN b € z N (Vx[M]. x€z — x=a V x =
b) n
definition
pair :: "[i=o0,i,i,i] = o" where
"pair(M,a,b,z) = dx[M]. upair(M,a,a,x) A
(3y[M]. upair(M,a,b,y) A upair(M,x,y,z))"
definition
union :: "[i=o0,i,i,i] = o" where
"union(M,a,b,z) = Vx[M]. x € z < x € a V x € b"
definition
is_cons :: "[i=o0,i,i,i] = o" where
"is_cons(M,a,b,z) = Ix[M]. upair(M,a,a,x) A union(M,x,b,z)"
definition
successor :: "[i=o0,i,i] = o" where
"successor(M,a,z) = is_cons(M,a,a,z)"
definition
numberl :: "[i=o0,i] = o" where
"numberl(M,a) = Jx[M]. empty(M,x) A successor(M,x,a)"
definition
number2 :: "[i=o0,i] = o" where
"number2(M,a) = dx[M]. numberl(M,x) N successor(M,x,a)"
definition
number3 :: "[i=0,i] = o" where
"number3(M,a) = dx[M]. number2(M,x) A successor(M,x,a)"
definition
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powerset :: "[i=o0,1i,i] = o" where
"powerset (M,A,z) = Vx[M]. x € z <— subset(M,x,A)"

definition
is_Collect :: "[i=o0,i,i=o0,i] = o" where
"is_Collect(M,A,P,z) = Vx[M]. x € z +<— x € A N P(x)"

definition
is_Replace :: "[i=o0,i,[i,i]=0,i] = o" where
"is_Replace(M,A,P,z) = Vul[M]. u € z +— (Jx[M]. x€A N P(x,u))"

definition
inter :: "[i=o0,i,i,i] = o" where
"inter(M,a,b,z) = Vx[M]. x € z +—> x € a A x € b"

definition
setdiff :: "[i=o0,i,i,i] = o" where
"setdiff(M,a,b,z) = Vx[M]. x € z +—> x € a AN x ¢ b"

definition
big_union :: "[i=0,1,i] = o" where
"big_union(M,A,z) = Vx[M]. x € z +— (Qy[M]. yeA N x € y)"

definition
big_inter :: "[i=0,i,i] = o" where
"big_inter(M,A,z) =
(A=0 — z=0) A
(A#£0 — (Vx[M]. x € z +— (y[M]. yeA — x € y)))"

definition
cartprod :: "[i=o0,i,i,i] = o" where
"cartprod(M,A,B,z) =

VulM]. u € z +<— (@x[M]. x€A N (Jy[M]. yeB A pair(M,x,y,u)))"

definition
is_sum :: "[i=o0,i,i,i] = o" where
"is_sum(M,A,B,Z) =
JAO[M]. dni1[M]. ds1[M]. dAB1[M].
numberl(M,n1) A cartprod(M,n1,A,A0) A upair(M,nl,ni,s1) A
cartprod(M,s1,B,B1) A union(M,A0,B1,Z)"

definition
is_Inl :: "[i=o0,i,i] = o" where
"is_Inl(M,a,z) = dzero[M]. empty(M,zero) A pair(M,zero,a,z)"

definition

is_Inr :: "[i=o0,i,i] = o" where
"is_Inr(M,a,z) = dn1[M]. numberl(M,nl) A pair(M,nl,a,z)"
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definition
is_converse :: "[i=0,i,i] = o" where
"is_converse(M,r,z) =
Vx[M]. x € z +—
GwlM]. wer AN Qu[M]. 3v[M]. pair(M,u,v,w) A pair(M,v,u,x)))"

definition
pre_image :: "[i=>o0,i,i,i] = o" where
"pre_image (M,r,A,z) =
Vx[M]. x € z «— Qw[M]. wer N 3y[M]. yeA A pair(M,x,y,w)))"

definition
is_domain :: "[i=o0,1i,i] = o" where
"is_domain(M,r,z) =
Vx[M]. x € z «— @Qw[M]. wer A Gy[M]. pair(M,x,y,w)))"

definition
image :: "[i=0,1,i,i] = o" where
"image(M,r,A,z) =

VyMl. vy € z «— (Gw[M]. wer AN (3x[M]. x€A A pair(M,x,y,w)))"

definition
is_range :: "[i=o0,1,i] = o" where
— the cleaner 3r’[M]. is_converse(M, r, r’) A is_domain(M, r’, z)
unfortunately needs an instance of separation in order to prove M(converse(r)).
"is_range(M,r,z) =
Vy[M]. y € z <— @w[M]. wer A (3x[M]. pair(M,x,y,w)))"

definition
is_field :: "[i=0,1i,i] = o" where
"is_field(M,r,z) =
ddr[M]. Jrr[M]. is_domain(M,r,dr) A is_range(M,r,rr) A
union(M,dr,rr,z)"

definition
is_relation :: "[i=o0,i] = o" where
"is_relation(M,r) =
~Vz[M. zer — @x[M]. Jy[M]. pair(M,x,y,z)))"

definition
is_function :: "[i=0,i] = o" where
"is_function(M,r) =
Vx[M]. Vy[M]. Yy’[M]. Vp[M]. Vp’[M].
pair(M,x,y,p) — pair(M,x,y’,p’) — p€r — p’cr — y=y’"

definition
fun_apply :: "[i=o0,i,i,i] = o" where
"fun_apply(M,f,x,y) =
(dxs[M]. dfxs[M].
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upair(M,x,x,xs) A image(M,f,xs,fxs) A big_union(M,fxs,y))"

definition
typed_function :: "[i=o0,1,i,i] = o" where
"typed_function(M,A,B,r) =
is_function(M,r) A is_relation(M,r) A is_domain(M,r,A) A
VulM]. uver — (Vx[M]. VYy[M]. pair(M,x,y,u) — y€EB))"

definition
is_funspace :: "[i=>o0,i,i,i] = o" where
"is_funspace(M,A,B,F) =
Vf[M]. f € F «<— typed_function(M,A,B,f)"

definition
composition :: "[i=0,i,i,i] = o" where
"composition(M,r,s,t) =
Vp[M]. p € t +—
Ax[M]. Jy[M]. F=z[M]. Ixy[M]. Jy=z[M].
pair(M,x,z,p) N pair(M,x,y,xy) N pair(M,y,z,yz) A
Xy € s ANyz € r)"

definition
injection :: "[i=>o0,i,i,i] = o" where
"injection(M,A,B,f) =

typed_function(M,A,B,f) A
Vx[M]. Vx’[M]. Vy[M]. Vp[M]. Vp’[M].
pair(M,x,y,p) — pair(M,x’,y,p’) — pEf — p’cf — x=x’)"

definition
surjection :: "[i=o0,i,i,i] = o" where
"surjection(M,A,B,f) =

typed_function(M,A,B,f) A
~Vyl[M]. yeB — (Qx[M]. x€A A fun_apply(M,f,x,y)))"

definition
bijection :: "[i=o0,i,i,i] = o" where
"bijection(M,A,B,f) = injection(M,A,B,f) N surjection(M,A,B,f)"

definition
restriction :: "[i=o0,i,i,i] = o" where
"restriction(M,r,A,z) =
Vx[M]. x € z <— (x € r AN (Ju[M]. uecA N (Qv[M]. pair(M,u,v,x))))"

definition
transitive_set :: "[i=>0,i] = 0" where

"transitive_set(M,a) = Vx[M]. x€a —> subset(M,x,a)"

definition
ordinal :: "[i=o0,i] = o" where
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— an ordinal is a transitive set of transitive sets
"ordinal (M,a) = transitive_set(M,a) N (Vx[M]. x€a — transitive_set(M,x))"

definition
limit_ordinal :: "[i=o0,i] = o" where
— a limit ordinal is a non-empty, successor-closed ordinal
"limit_ordinal(M,a) =
ordinal (M,a) N — empty(M,a) A
Vx[M]. xca — (Q@y[M]. y€a A successor(M,x,y)))"

definition
successor_ordinal :: "[i=o0,i] = o" where
— a successor ordinal is any ordinal that is neither empty nor limit
"successor_ordinal (M,a) =
ordinal(M,a) A — empty(M,a) A — limit_ordinal(M,a)"

definition
finite_ordinal :: "[i=-0,i] = o" where
— an ordinal is finite if neither it nor any of its elements are limit
"finite_ordinal(M,a) =
ordinal (M,a) A — limit_ordinal(M,a) A
Vx[M]. x€éa — — 1limit_ordinal(M,x))"

definition
omega :: "[i=o0,i] = o" where
— omega is a limit ordinal none of whose elements are limit
"omega(M,a) = limit_ordinal(M,a) AN (Vx[M]. x€a — — limit_ordinal(M,x))"

definition
is_quasinat :: "[i=o0,i] = o" where
"is_quasinat (M,z) = empty(M,z) V (Im[M]. successor(M,m,z))"

definition
is_nat_case :: "[i=o, i, [i,i]=o0, i, i] = o" where
"is_nat_case(M, a, is_b, k, z) =
(empty (M,k) — z=a) A
(Wm[M]. successor(M,m,k) — is_b(m,z)) A
(is_quasinat(M,k) V empty(M,z))"

definition
relationl :: "[i=o, [i,i]=o0, i=i] = o" where
"relationl(M,is_f,f) = Vx[M]. Vy[M]. is_f(x,y) «— y = £(x)"

definition
Relationl :: "[i=o0, i, [i,i]=o0, i=i] = o" where
— as above, but typed
"Relationl1(M,A,is_f,f) =
Vx[M]. Vy[M]. x€A — is_f(x,y) <— y = f(x)"
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definition
relation2 :: "[i=o, [i,i,i]=o0, [i,i]=i] = o" where
"relation2(M,is_f,f) = Vx[M]. Vy[M]. Vz[M]. is_f(x,y,z) +— z =
flx,y)"

definition
Relation2 :: "[i=o, i, i, [i,i,i]=o0, [i,i]=i] = o" where
"Relation2(M,A,B,is_f,f) =
Vx[M]. Vy[M]. Vz[M]. x€éA — y€EB — is_f(x,y,z) <— z = f(x,y)"

definition
relation3 :: "[i=o, [i,i,i,i]=o0, [i,i,i]=1i] = o" where
"relation3(M,is_f,f) =
Vx[M]. Vy[M]. VYz[M]. YulM]. is_f(x,y,z,u) «— u = f(x,y,z)"

definition
Relation3 :: "[i=o, i, i, i, [i,i,i,i]=o0, [i,i,i]=i] = o" where
"Relation3(M,A,B,C,is_f,f) =
Vx[M]. Vy[M]. VYz[M]. VYulM].
x€A — y€B — zeC — is_f(x,y,z,u) +— u = f(x,y,z)"

definition
relation4 :: "[i=o, [i,i,i,i,i]=o0, [i,i,i,i]=i] = o" where
"relation4(M,is_f,f) =
VulM]. Vx[M]. Vy[M]. Vz[M]. Va[M]. is_f(u,x,y,z,a) <— a = f(u,x,y,z)"

Useful when absoluteness reasoning has replaced the predicates by terms

lemma triv_Relationl:
"Relationl(M, A, \x y. y = f(x), £)"
by (simp add: Relationl_def)

lemma triv_Relation2:

"Relation2(M, A, B, \x y a. a = f(x,y), £)"
by (simp add: Relation2_def)

2.2 The relativized ZF axioms

definition
extensionality :: "(i=>0) = o" where
"extensionality (M) =

Vx[M]. Vy[M]. (Wz[M]. z € x <— z € y) — x=y"

definition
separation :: "[i=o0, i=o0] = o" where
— The formula P should only involve parameters belonging to M and all its
quantifiers must be relativized to M. We do not have separation as a scheme; every
instance that we need must be assumed (and later proved) separately.
"separation(M,P) =
Vz[M]. dy[M]. Vx[M]. x € y ¢<— x € z N P(x)"

36



definition
upair_ax :: "(i=o0) = o" where
"upair_ax(M) = Vx[M]. Vy[M]. 3z[M]. uvpair(M,x,y,z)"

definition
Union_ax :: "(i=o0) = o" where
"Union_ax(M) = Vx[M]. 3z[M]. big union(M,x,z)"

definition
power_ax :: "(i=o0) = o" where
"power_ax(M) = Vx[M]. Iz[M]. powerset(M,x,z)"

definition
univalent :: "[i=o, i, [i,i]=0] = o" where
"univalent (M,A,P) =

Vx[M]. xeA — y[M]. Vz[M]. P(x,y) A P(x,z) — y=z)"

definition
replacement :: "[i=>o, [i,i]=0] = o" where
"replacement (M,P) =

VA[M]. univalent(M,A,P) —
Av[M]. Vb[M]. (Ix[M]. x€A A P(x,b)) — b € V)"

definition
strong_replacement :: "[i=>o, [i,i]=0] = o" where
"strong_replacement (M,P) =
VA[M]. univalent(M,A,P) —
3Y[M]. Vb[M]. b € Y +— (Ix[M]. x€A A P(x,b)))"

definition
foundation_ax :: "(i=o0) = o" where
"foundation_ax (M) =
Vx[M]. QyMl. yex) — Q@y[M]. yex N =(3z[M]. zéx N z €
"

2.3 A trivial consistency proof for V,

We prove that V, (or univ in Isabelle) satisfies some ZF axioms. Kunen,
Theorem IV 3.13, page 123.

lemma univO_downwards_mem: "[y € x; x € univ(0)] = y € univ(0)"
apply (insert Transset_univ [OF Transset_0])

apply (simp add: Transset_def, blast)

done

lemma univO_Ball_abs [simp]:

"A € univ(0) — (Vx€A. x € univ(0) — P(x)) +— (Vx€A. P(x))"
by (blast intro: univO_downwards_mem)
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lemma univ0_Bex_abs [simp]:
"A € univ(0) = (dx€A. x € univ(0) A P(x)) +— (Ix€A. P(x))"
by (blast intro: univO_downwards_mem)

Congruence rule for separation: can assume the variable is in M

lemma separation_cong [cong]:

"(Ax. M(x) = P(x) +— P’(x))

—> separation(M, Ax. P(x)) <— separation(M, Ax. P’(x))"
by (simp add: separation_def)

lemma univalent_cong [cong]:

"[A=A’; Ax y. [x€A; M(x); M(y)] = P(x,y) <— P’(x,y)]

—> univalent(M, A, M\x y. P(x,y)) <— univalent(M, A’, Ax y. P’ (x,y))"
by (simp add: univalent_def)

lemma univalent_triv [intro,simp]:
"univalent(M, A, A\x y. y = £(x))"
by (simp add: univalent_def)

lemma univalent_conjI2 [intro,simp]:
"univalent (M,A,§) = univalent(M, A, Ax y. P(x,y) N Q(x,y))"
by (simp add: univalent_def, blast)

Congruence rule for replacement

lemma strong_replacement_cong [cong]:
"IAx y. [Mx); M(y)] = P(x,y) «— P’(x,y)]
= strong_replacement (M, A\x y. P(x,y)) <—
strong_replacement(M, Ax y. P’(x,y))"
by (simp add: strong_replacement_def)

The extensionality axiom

lemma "extensionality(Ax. x € univ(0))"
apply (simp add: extensionality_def)
apply (blast intro: univO_downwards_mem)
done

The separation axiom requires some lemmas

lemma Collect_in_Vfrom:
"[X € Vfrom(A,j); Transset(A)] = Collect(X,P) € Vfrom(A, succ(j))"
apply (drule Transset_Vfrom)
apply (rule subset_mem_Vfrom)
apply (unfold Transset_def, blast)
done

lemma Collect_in_VLimit:
"[X € Vfrom(A,i); Limit(i); Transset(4)]
— Collect(X,P) € Vfrom(A,i)"

apply (rule Limit_VfromE, assumption+)
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apply (blast intro: Limit_has_succ VfromI Collect_in_Vfrom)
done

lemma Collect_in_univ:
"[X € univ(4); Transset(A)] — Collect(X,P) € univ(4)"
by (simp add: univ_def Collect_in_VLimit)

lemma "separation(Ax. x € univ(0), P)"

apply (simp add: separation_def, clarify)

apply (rule_tac x = "Collect(z,P)" in bexI)
apply (blast intro: Collect_in_univ Transset_0)+
done

Unordered pairing axiom

lemma "upair ax(Ax. x € univ(0))"
apply (simp add: upair_ax_def upair_def)
apply (blast intro: doubleton_in_univ)
done

Union axiom

lemma "Union_ax(Ax. x € univ(0))"

apply (simp add: Union_ax_def big union_def, clarify)
apply (rule_tac x="|Jx" in bexI)

apply (blast intro: univO_downwards_mem)

apply (blast intro: Union_in_univ Transset_O0)

done

Powerset axiom

lemma Pow_in_univ:

"[X € univ(4); Transset(A)] = Pow(X) € univ(4)"
apply (simp add: univ_def Pow_in_VLimit)
done

lemma "power_ax(Ax. x € univ(0))"

apply (simp add: power_ax_def powerset_def subset_def, clarify)
apply (rule_tac x="Pow(x)" in bexI)

apply (blast intro: univO_downwards_mem)

apply (blast intro: Pow_in_univ Transset_0)

done

Foundation axiom

lemma "foundation_ax(Ax. x € univ(0))"
apply (simp add: foundation_ax_def, clarify)
apply (cut_tac A=x in foundation)

apply (blast intro: univ0O_downwards_mem)
done

lemma "replacement(A\x. x € univ(0), P)"
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apply (simp add: replacement_def, clarify)
oops

no idea: maybe prove by induction on the rank of A?

Still missing: Replacement, Choice

2.4 Lemmas Needed to Reduce Some Set Constructions to
Instances of Separation

lemma image iff_Collect: "r ‘“ A ={y € |JU (x)). Iper. Ix€A. p=(x,y)}"
apply (rule equalityI, auto)

apply (simp add: Pair_def, blast)

done

lemma vimage iff_Collect:
"r - A=4x e JWMU(@®). Iper. Jych. p=(x,y)}"
apply (rule equalityI, auto)
apply (simp add: Pair_def, blast)
done

These two lemmas lets us prove domain_closed and range_closed without
new instances of separation

lemma domain_eq_vimage: "domain(r) = r -‘° Union(Union(r))"
apply (rule equalityI, auto)

apply (rule vimageI, assumption)

apply (simp add: Pair_def, blast)

done

lemma range_eq_image: "range(r) = r ‘¢ Union(Union(r))"
apply (rule equalityI, auto)

apply (rule imageI, assumption)

apply (simp add: Pair_def, blast)

done

lemma replacementD:

"[replacement (M,P); M(A); wunivalent(M,A,P)]

= JY[M]. (Vb[M]. ((@x[M]. x€A N P(x,b)) — b € Y))"
by (simp add: replacement_def)

lemma strong replacementD:

"[strong_replacement (M,P); M(A); univalent(M,A,P)]

= JY[M]. (Vb[M]. (b € Y <— (Ix[M]. x€A A P(x,b))))"
by (simp add: strong_replacement_def)

lemma separationD:
"[separation(M,P); M(z)] = Jy[M]. Vx[M]. x € y «— x € z A P(x)"
by (simp add: separation_def)

More constants, for order types
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definition
order_isomorphism :: "[i=o0,i,i,i,i,i] = o" where
"order_isomorphism(M,A,r,B,s,f) =
bijection(M,A,B,f) A
Vx[M]. x€éA — (Vy[M]. yeA —
(~Vp[M]. VEix[M]. VEy[M]. VqlM].
pair(M,x,y,p) — fun_apply(M,f,x,fx) — fun_apply(M,f,y,fy)

—
pair(M,fx,fy,q) — (p€r <— q€s))))"

definition

pred_set :: "[i=o0,1,i,i,i] = o" where

"pred_set (M,A,x,r,B) =
Vy[M]. y € B <— (@plM]. pecr Ny € A A pair(M,y,x,p))"

definition

membership :: "[i=o0,i,i] = o" where — membership relation

"membership(M,A,r) =
VpIM]. p € r «— (Ax[M]. x€A N @y[M]. yeA N x€y A pair(M,x,y,p)))"

2.5 Introducing a Transitive Class Model

The class M is assumed to be transitive and inhabited

locale M_trans =
fixes M
assumes transM: "[yex; M(x)] = M(y)"
and M_inhabited: "dx . M(x)"

lemma (in M_trans) nonempty [simp]: "M(0)"
proof -
have "M(x) — M(0)" for x
proof (rule_tac P="Aw. M(w) — M(0)" in eps_induct)
{
fix x
assume "Vyecx. M(y) — M(0)" "M(x)"
consider (a) "dy. yex" | (b) "x=0" by auto
then
have "M(x) — M(0)"
proof cases
case a
then show ?thesis using <Vyex._> <M(x)> transM by auto
next
case b
then show ?thesis by simp
qed
}
then show "M(x) — M(0)" if "Vyex. M(y) — M(0)" for x
using that by auto
qed
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with M_inhabited
show "M(0)" using M_inhabited by blast
qed

The class M is assumed to be transitive and to satisfy some relativized ZF
axioms

locale M_trivial = M_trans +
assumes upair_ax: "upair_ax(M)"
and Union_ax: "Union_ax(M)"

lemma (in M_trans) rall_abs [simp]:
"M(4) — (Vx[M]. xéA — P(x)) +— (Vx€A. P(x))"
by (blast intro: transM)

lemma (in M_trans) rex_abs [simp]:
"M(4) = (Ix[M]. x€A AN P(x)) <— (dx€A. P(x))"
by (blast intro: transM)

lemma (in M_trans) ball_iff_equiv:
"M(A) = (Vx[M]. (x€A +— P(x))) +—
(Vxed. P(x)) N (WVx. P(x) — M(x) — x€hA)"
by (blast intro: transM)

Simplifies proofs of equalities when there’s an iff-equality available for rewrit-
ing, universally quantified over M. But it’s not the only way to prove such
equalities: its premises M(4) and M(B) can be too strong.

lemma (in M_trans) M_equalityI:
"[Ax. M(x) = x€A +— x€B; M(A); M(B)] = A=B"
by (blast dest: transM)

2.5.1 Trivial Absoluteness Proofs: Empty Set, Pairs, etc.

lemma (in M_trans) empty_abs [simp]:
"M(z) = empty(M,z) <— z=0"

apply (simp add: empty_def)

apply (blast intro: transM)

done

lemma (in M_trans) subset_abs [simp]:
"M(A) — subset(M,A,B) +— A C B"

apply (simp add: subset_def)

apply (blast intro: transM)

done

lemma (in M_trans) upair_abs [simp]:
"M(z) = upair(M,a,b,z) <— z={a,b}"

apply (simp add: upair_def)

apply (blast intro: transM)

done
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lemma (in M_trivial) upair_in_MI [intro!]:
" M(a) A M(b) = M({a,b})"
by (insert upair_ax, simp add: upair_ax_def)

lemma (in M_trans) upair_in_MD [dest!]:
"M({a,b}) = M(a) N M(b)"
by (blast intro: transM)

lemma (in M_trivial) upair_in_M_iff [simp]:
"M({a,b}) <— M(a) A M(b)"
by blast

lemma (in M_trivial) singleton_in_MI [intro!]:
"M(a) = M{Hal)"
by (insert upair_in_M iff [of a a], simp)

lemma (in M_trans) singleton_in_MD [dest!]:
"M({a}) = M(a)"
by (insert upair_in_MD [of a al, simp)

lemma (in M_trivial) singleton_in_M_iff [simp]:
"M({a}) +— M(a)"
by blast

lemma (in M_trans) pair_abs [simp]:
"M(z) = pair(M,a,b,z) +— z=(a,b)"

apply (simp add: pair_def Pair_def)

apply (blast intro: transM)

done

lemma (in M_trans) pair_in_MD [dest!]:
"M((a,b)) = M(a) A M(b)"
by (simp add: Pair_def, blast intro: transM)

lemma (in M_trivial) pair_in_MI [intro!]:
"M(a) A M(b) = M((a,b))"
by (simp add: Pair_def)

lemma (in M_trivial) pair_in_M_iff [simp]:
"M({a,b)) <— M(a) A M(b)"
by blast

lemma (in M_trans) pair_components_in_M:
"x,y) € 4; M(A)] = M) A MG)"
by (blast dest: transM)

lemma (in M_trivial) cartprod_abs [simp]:
"[M(A); M(B); M(z)] = cartprod(M,A,B,z) <— z = A*B"
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apply (simp add: cartprod_def)

apply (rule iffI)

apply (blast intro!: equalityI intro: transM dest!: rspec)
apply (blast dest: transM)

done

2.5.2 Absoluteness for Unions and Intersections

lemma (in M_trans) union_abs [simp]:

"[M(a); M(b); M(z)] = union(M,a,b,z) < z = a U b"
unfolding union_def
by (blast intro: transM )
lemma (in M_trans) inter_abs [simp]:
"[M(a); M(b); M(z)] = inter(M,a,b,z) <— z = a N b"

unfolding inter_def
by (blast intro: transM)

lemma (in M_trans) setdiff_abs [simp]:
"[M(a); M(b); M(z)] = setdiff(M,a,b,z) +— z = a-b"
unfolding setdiff_def
by (blast intro: transM)

lemma (in M_trans) Union_abs [simp]:
"[M(4); M(z)] = big_union(M,A,z) «— z = |J A"
unfolding big_union_def
by (blast dest: transM)

lemma (in M_trivial) Union_closed [intro,simp]:
"M(A) = M (W)

by (insert Union_ax, simp add: Union_ax_def)

lemma (in M_trivial) Un_closed [intro,simp]:
"[M(A); M(B)] = M(A U B)"
by (simp only: Un_eq Union, blast)

lemma (in M_trivial) cons_closed [intro,simp]:
"[M(a); M(A)] = M(cons(a,A))"
by (subst cons_eq [symmetric], blast)

lemma (in M_trivial) cons_abs [simp]:

"[M(b); M(z)] = is_cons(M,a,b,z) <— z = cons(a,b)"
by (simp add: is_cons_def, blast intro: transM)
lemma (in M_trivial) successor_abs [simp]:

"[M(a); M(z)] = successor(M,a,z) +— z = succ(a)"

by (simp add: successor_def, blast)

lemma (in M_trans) succ_in_MD [dest!]:
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"M(succ(a)) = M(a)"
unfolding succ_def
by (blast intro: transM)

lemma (in M_trivial) succ_in_MI [intro!]:
"M(a) = M(succ(a))"
unfolding succ_def
by (blast intro: transM)

lemma (in M_trivial) succ_in_M _iff [simp]:
"M(succ(a)) +— M(a)"
by blast

2.5.3 Absoluteness for Separation and Replacement

lemma (in M_trans) separation_closed [intro,simp]:
"[separation(M,P); M(A)] = M(Collect(A,P))"

apply (insert separation, simp add: separation_def)

apply (drule rspec, assumption, clarify)

apply (subgoal_tac "y = Collect(A,P)", blast)

apply (blast dest: transM)

done

lemma separation_iff:
"separation(M,P) <— (Vz[M]. Jy[M]. is_Collect(M,z,P,y))"
by (simp add: separation_def is_Collect_def)

lemma (in M_trans) Collect_abs [simp]:
”[[M(A); M(z)]] — is_Collect(M,A,P,z) <— z = Collect(A,P)"
unfolding is_Collect_def
by (blast dest: transM)

2.5.4 The Operator is_Replace

lemma is_Replace_cong [cong]:
”[[A=A’,‘
Nx y. [Mx); M(y)] = P(x,y) <— P’(x,y);
z=z’]
—> is_Replace(M, A, \x y. P(x,y), z) +—
is_Replace(M, A’, Ax y. P’(x,y), z’)"
by (simp add: is_Replace_def)

lemma (in M_trans) univalent_Replace_iff:
"[M(A); univalent(M,A,P);
Ax y. [x€4; P(x,y)] = M@)]
=—> u € Replace(4,P) +— (dx. x€A N P(x,u))"
unfolding Replace_iff univalent_def
by (blast dest: transM)
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lemma (in M_trans) strong _replacement_closed [intro,simp]:
"[strong_replacement (M,P); M(A); univalent(M,A,P);
Nx y. [x€4; P(x,y)] = M(y)] = M(Replace(4,P))"
apply (simp add: strong replacement_def)
apply (drule_tac x=A in rspec, safe)
apply (subgoal_tac "Replace(A,P) =Y")
apply simp
apply (rule equality_ iffI)
apply (simp add: univalent_Replace_iff)
apply (blast dest: transM)
done

lemma (in M_trans) Replace_abs:

"[M(A); M(z); univalent(M,A,P);

Nx y. [x€A; P(x,y)] = M(y)]

—> is_Replace(M,A,P,z) <— z = Replace(A,P)"
apply (simp add: is_Replace_def)
apply (rule iffI)
apply (rule equality_ iffI)
apply (simp_all add: univalent_Replace_iff)
apply (blast dest: transM)+
done

lemma (in M_trans) RepFun_closed:
"[strong_replacement(M, Ax y. y = £(x)); M(A); Vxe€A. M(f(x))]
—> M(RepFun(A,f))"

apply (simp add: RepFun_def)

done

lemma Replace_conj_eq: "{y . x € A, x€A N y=f(x)} = {y . x€A, y=f(x)}"
by simp

Better than RepFun_closed when having the formula x € 4 makes relativiza-
tion easier.

lemma (in M_trans) RepFun_closed2:
"[strong_replacement (M, Ax y. x€A Ny = f(x)); M(A); VxeA. M(£(x))]
—> M(RepFun(4, Ax. £(x)))"

apply (simp add: RepFun_def)

apply (frule strong_replacement_closed, assumption)

apply (auto dest: transM simp add: Replace_conj_eq univalent_def)

done

2.5.5 Absoluteness for Lambda

definition
is_lambda :: "[i=o0, i, [i,i]=0, i] = o" where
"is_lambda(M, A, is_b, z) =
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Vp[M]. p € z +—
(Ju[M]. Fv[M]. ucA A pair(M,u,v,p) A is_b(u,v))"

lemma (in M_trivial) lam_closed:
"[strong_replacement(M, Ax y. y = <x,b(x)>); M(A); VxeA. M(b(x))]
= M(Ax€d. b(x))"

by (simp add: lam_def, blast intro: RepFun_closed dest: transM)

Better than lam_closed: has the formula x € 4

lemma (in M_trivial) lam_closed2:
"[strong_replacement (M, Ax y. x€A A y = (x, b(x)));
M(A); Ym[M]. meA — M(b(m))] = M(Lambda(A,b))"
apply (simp add: lam_def)
apply (blast intro: RepFun_closed2 dest: transM)
done

lemma (in M_trivial) lambda_abs2:
"[Relationl (M,A,is_b,b); M(A); Vm[M]. meA — M(bm)); M(z)]
— is_lambda(M,A,is_b,z) <— z = Lambda(A,b)"

apply (simp add: Relationl_def is_lambda_def)

apply (rule iffI)

prefer 2 apply (simp add: lam_def)

apply (rule equality iffI)

apply (simp add: lam_def)

apply (rule iffI)

apply (blast dest: transM)

apply (auto simp add: transM [of _ Al)

done

lemma is_lambda_cong [cong]:
"[A=A’; z=z’;
Ax y. [x€4; M(x); M(y)] = is_b(x,y) +— is_b’(x,y)]
—> is_lambda(M, A, Ax y. is_b(x,y), z) <—
is_lambda(M, A’, Ax y. is_b’(x,y), z’)"
by (simp add: is_lambda_def)

lemma (in M_trans) image_abs [simp]:

"[M(r); M(A); M(z)] = image(M,r,A,z) < z = r ‘A"
apply (simp add: image_def)
apply (rule iffI)
apply (blast intro!: equalityI dest: transM, blast)
done

2.5.6 Relativization of Powerset

What about Pow_abs? Powerset is NOT absolute! This result is one direction
of absoluteness.

lemma (in M_trans) powerset_Pow:
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"powerset (M, x, Pow(x))"
by (simp add: powerset_def)

But we can’t prove that the powerset in M includes the real powerset.

lemma (in M_trans) powerset_imp_subset_Pow:
"[powerset (M,x,y); M(y)] = y C Pow(x)"

apply (simp add: powerset_def)

apply (blast dest: transM)

done

lemma (in M_trans) powerset_abs:
assumes
IVM(y) n
shows
"powerset (M,x,y) +— y = {a€Pow(x) . M(a)}"
proof (intro iffI equalityI)

assume '"powerset(M,x,y)"
with <M(y)>
show "y C {a€Pow(x) . M(a)}"
using powerset_imp_subset_Pow transM by blast
from <powerset(M,x,y)>
show "{a€Pow(x) . M(a)} C y"
using transM unfolding powerset_def by auto
next
assume
"y = {a € Pow(x) . M(a)}"
then
show "powerset(M, x, y)"
unfolding powerset_def subset_def using transM by blast
qed

2.5.7 Absoluteness for the Natural Numbers

lemma (in M_trivial) nat_into_M [intro]:
"n € nat = M()"
by (induct n rule: nat_induct, simp_all)

lemma (in M_trans) nat_case_closed [intro,simp]:
"[M(k); M(a); Vm[M]. M(b(m))] = M(nat_case(a,b,k))"

apply (case_tac "k=0", simp)

apply (case_tac "dm. k = succ(m)", force)

apply (simp add: nat_case_def)

done

lemma (in M_trivial) quasinat_abs [simp]:

"M(z) = is_quasinat(M,z) <— quasinat(z)"
by (auto simp add: is_quasinat_def quasinat_def)
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lemma (in M_trivial) nat_case_abs [simp]:
"[relationl(M,is_b,b); M(k); M(z)]
— is_nat_case(M,a,is_b,k,z) +— z = nat_case(a,b,k)"
apply (case_tac "quasinat(k)")
prefer 2
apply (simp add: is_nat_case_def non_nat_case)
apply (force simp add: quasinat_def)
apply (simp add: quasinat_def is_nat_case_def)
apply (elim disjE exE)
apply (simp_all add: relationl_def)
done

lemma is_nat_case_cong:
"la = a’; k =k’; z=2z’; M(2Z’);
Ax y. [M(x); M(y)] = is_b(x,y) «— is_b’(x,y)]
— is_nat_case(M, a, is_b, k, z) +— is_nat_case(M, a’, is_b’,
kl’ z))ll
by (simp add: is_nat_case_def)

2.6 Absoluteness for Ordinals

These results constitute Theorem IV 5.1 of Kunen (page 126).

lemma (in M_trans) 1t_closed:
"y<i; M@G)] = MG
by (blast dest: 1tD intro: transM)

lemma (in M_trans) transitive_set_abs [simp]:
"M(a) — transitive_set(M,a) <— Transset(a)"
by (simp add: transitive_set_def Transset_def)

lemma (in M_trans) ordinal_abs [simp]:
"M(a) —> ordinal(M,a) <— Ord(a)"
by (simp add: ordinal_def Ord_def)

lemma (in M_trivial) limit_ordinal_abs [simp]:
"M(a) — limit_ordinal (M,a) <— Limit(a)"
unfolding Limit_def limit_ordinal_def
apply (simp add: Ord_O_lt_iff)
apply (simp add: 1t_def, blast)
done

lemma (in M_trivial) successor_ordinal_abs [simp]:
"M(a) = successor_ordinal(M,a) <— Ord(a) N (3b[M]. a = succ(b))"
apply (simp add: successor_ordinal_def, safe)
apply (drule Ord_cases_disj, auto)
done

lemma finite_Ord_is_nat:
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"[0rd(a); — Limit(a); Vx€a. — Limit(x)] = a € nat"
by (induct a rule: trans_induct3, simp_all)

lemma (in M_trivial) finite_ordinal_abs [simp]:
"M(a) —> finite_ordinal(M,a) <— a € nat"
apply (simp add: finite_ordinal_def)
apply (blast intro: finite_Ord_is_nat intro: nat_into_Ord
dest: Ord_trans naturals_not_limit)
done

lemma Limit_non_Limit_implies_nat:
"[Limit(a); Vx€a. - Limit(x)] = a = nat"
apply (rule le_anti_sym)
apply (rule all_lt_imp_le, blast, blast intro: Limit_is_Ord)
apply (simp add: 1t_def)
apply (blast intro: Ord_in_Ord Ord_trans finite_Ord_is_nat)
apply (erule nat_le_Limit)
done

lemma (in M_trivial) omega_abs [simp]:
"M(a) = omega(M,a) <— a = nat"
apply (simp add: omega_def)
apply (blast intro: Limit_non_Limit_implies_nat dest: naturals_not_limit)
done

lemma (in M_trivial) numberl_abs [simp]:
"M(a) —> numberl(M,a) +— a = 1"
by (simp add: numberl_def)

lemma (in M_trivial) number2_abs [simp]:
"M(a) —> number2(M,a) <— a = succ(1)"
by (simp add: number2 def)

lemma (in M_trivial) number3_abs [simp]:
"M(a) —> number3(M,a) <— a = succ(succ(1))"
by (simp add: number3_def)

Kunen continued to 20...

2.7 Some instances of separation and strong replacement

locale M_basic = M_trivial +
assumes Inter separation:
"M(A) = separation(M, Ax. Vy[M]. yEA — x€y)"
and Diff_separation:
"M(B) — separation(M, Ax. x ¢ B)"
and cartprod_separation:
"[MCA); M(B)]
—> separation(M, Az. Ix[M]. x€A N (3y[M]. yeB A pair(M,x,y,z)))"
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and image_separation:

"[MC4); M(D)]

= separation(M, Ay. dp[M]. per AN (3x[M]. x€A A pair(M,x,y,p)))"
and converse_separation:

"M(r) = separation(M,

Az. dp[M]. per A 3x([M]. y[M]. pair(M,x,y,p) A pair(M,y,x,z)))"

and restrict_separation:

"M(A) = separation(M, Az. Ix[M]. x€A N (Jy[M]. pair(M,x,y,z)))"
and comp_separation:

"[M(x); M(s)]

—> separation(M, Axz. Jx[M]. y[M]. Iz[M]. Ixy[M]. Tyz[M].

pair(M,x,z,xz) A pair(M,x,y,xy) A pair(M,y,z,yz) A
XyE€s A yz€r)"

and pred_separation:

"[M(r); M(x)] = separation(M, Ay. Ip[M]. peEr A pair(M,y,x,p))"
and Memrel_separation:

"separation(M, Az. dx[M]. Jy[M]. pair(M,x,y,z) N x € y)"
and funspace_succ_replacement:

"M(n) =

strong_replacement(M, Ap z. If[M]. Ib[M]. Inb[M]. Jcnbf[M].

pair(M,f,b,p) A pair(M,n,b,nb) A is_cons(M,nb,f,cnbf)

upair (M, cnbf,cnbf,z))"
and is_recfun_separation:

— for well-founded recursion: used to prove is_recfun_equal

"[M(x); M(£); M(g); M(a); M(b)]

— separation(M,

Ax. dxa[M]. dxb[M].

pair(M,x,a,xa) AN xa € r A pair(M,x,b,xb) A xb € r A
(Ffx[M]. Jgx[M]. fun_apply(M,f,x,fx) A fun_apply(M,g,x,gx)

fx # gx))"

and power_ax: "power_ax(M)"

lemma (in M_trivial) cartprod_iff_lemma:
"[M(C); VulM]. u € C «— (Ixe€A. IyeB. u = {{x}, 1{x,y}});
powerset (M, A U B, pl); powerset(M, pl, p2); M(p2)]
= C={u € p2 . dx€A. JyeB. u = {{x}, {x,y}}}"
apply (simp add: powerset_def)
apply (rule equalityI, clarify, simp)
apply (frule transM, assumption)
apply (frule transM, assumption, simp (no_asm_simp))
apply blast
apply clarify
apply (frule transM, assumption, force)
done

lemma (in M_basic) cartprod_iff:
"[M(A); M(B); M(O)]
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— cartprod(M,A,B,C) <—
(3p1[M]. Ip2[M]. powerset(M,A U B,pl) A powerset(M,pl,p2) A
C={z € p2. 3x€A. IyeB. z = (x,y)P"
apply (simp add: Pair_def cartprod_def, safe)
defer 1
apply (simp add: powerset_def)
apply blast

Final, difficult case: the left-to-right direction of the theorem.

apply (insert power_ax, simp add: power_ax_def)

apply (frule_tac x="A U B" and P=")\x. rex(M,Q(x))" for § in rspec)
apply (blast, clarify)

apply (drule_tac x=z and P="\x. rex(M,Q(x))" for @ in rspec)
apply assumption

apply (blast intro: cartprod_iff_lemma)

done

lemma (in M_basic) cartprod_closed_lemma:
"[M(4); M(B)] = 3IC[M]. cartprod(M,A,B,C)"
apply (simp del: cartprod_abs add: cartprod_iff)
apply (insert power_ax, simp add: power_ax_def)
apply (frule_tac x="A U B" and P=")\x. rex(M,Q(x))" for § in rspec)
apply (blast, clarify)
apply (drule_tac x=z and P="\x. rex(M,Q(x))" for Q in rspec, auto)
apply (intro rexI conjI, simp+)
apply (insert cartprod_separation [of A B], simp)
done

All the lemmas above are necessary because Powerset is not absolute. I
should have used Replacement instead!

lemma (in M_basic) cartprod_closed [intro,simp]:
"[M(A); M(B)] = M(A*B)"
by (frule cartprod_closed_lemma, assumption, force)

lemma (in M_basic) sum_closed [intro,simp]:
"[M(A); M(B)] = M(A+B)"
by (simp add: sum_def)

lemma (in M_basic) sum_abs [simp]:
”[[M(A); M(B); M(Z)]] = is_sum(M,A,B,Z) <— (Z = A+B)"
by (simp add: is_sum_def sum_def singleton_O nat_into_M)

lemma (in M_trivial) Inl_in M _iff [iff]:
"M(Inl(a)) <— M(a)"
by (simp add: Inl_def)

lemma (in M_trivial) Inl_abs [simp]:

"M(Z) — is_Inl(M,a,Z) +— (Z = Inl(a))"
by (simp add: is_Inl_def Inl_def)
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lemma (in M_trivial) Inr_in M _iff [iff]:
"M(Inr(a)) <— M(a)"
by (simp add: Inr_def)

lemma (in M_trivial) Inr_abs [simp]:
"M(Z) — is_Inr(M,a,Z) +— (Z = Inr(a))"
by (simp add: is_Inr_def Inr_def)

2.7.1 converse of a relation

lemma (in M_basic) M_converse_iff:

"M(r) =

converse(r) =

{zeJU@) U @).

dper. Ix[M]. FyM]. p = (x,y) N z = (y,x)}"

apply (rule equalityI)
prefer 2 apply (blast dest: transM, clarify, simp)
apply (simp add: Pair_def)
apply (blast dest: transM)
done

lemma (in M_basic) converse_closed [intro,simp]:
"M(r) = M(converse(r))"

apply (simp add: M_converse_iff)

apply (insert converse_separation [of r], simp)

done

lemma (in M_basic) converse_abs [simp]:
"[M(r); M(z)] = is_converse(M,r,z) +— z = converse(r)"

apply (simp add: is_converse_def)
apply (rule iffI)

prefer 2 apply blast
apply (rule M_equalityI)

apply simp

apply (blast dest: transM)+
done

2.7.2 image, preimage, domain, range

lemma (in M_basic) image_closed [intro,simp]:
"[MCA); M(r)] = M ‘A"

apply (simp add: image_iff_Collect)

apply (insert image_separation [of A r], simp)

done

lemma (in M_basic) vimage_abs [simp]:

"[M(r); M(A); M(z)] = pre_image(M,r,A,z) <— z = r=‘‘A"
apply (simp add: pre_image_def)
apply (rule iffI)
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apply (blast intro!: equalityI dest: transM, blast)
done

lemma (in M_basic) vimage_closed [intro,simp]:
"[MA); M(r)] = M(x-‘‘A)"
by (simp add: vimage_def)

2.7.3 Domain, range and field

lemma (in M_trans) domain_abs [simp]:
"[M(r); M(z)] = is_domain(M,r,z) <— z = domain(r)"
apply (simp add: is_domain_def)
apply (blast intro!: equalityl dest: transM)
done

lemma (in M_basic) domain_closed [intro,simp]:
"M(r) = M(domain(r))"

apply (simp add: domain_eq_vimage)

done

lemma (in M_trans) range_abs [simp]:
"[M(r); M(z)] = is_range(M,r,z) <— z = range(r)"
apply (simp add: is_range_def)
apply (blast intro!: equalityl dest: transM)
done

lemma (in M_basic) range_closed [intro,simp]:
"M(r) = M(range(z))"

apply (simp add: range_eq_image)

done

lemma (in M_basic) field_abs [simp]:
"[M(x); M(z)] = is_field(M,r,z) +— z = field(r)"
by (simp add: is_field_def field_def)

lemma (in M_basic) field_closed [intro,simp]:
"M(r) — M(field(xr))"
by (simp add: field_def)

2.7.4 Relations, functions and application

lemma (in M_trans) relation_abs [simp]:

"M(r) = is_relation(M,r) <— relation(r)"
apply (simp add: is_relation_def relation_def)
apply (blast dest!: bspec dest: pair_components_in_M)+
done

lemma (in M_trivial) function_abs [simp]:

"M(r) = is_function(M,r) <— function(r)"
apply (simp add: is_function_def function_def, safe)
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apply (frule transM, assumption)
apply (blast dest: pair_components_in_M)+
done

lemma (in M_basic) apply_closed [intro,simp]:
"[M(£); M(a)] = M(f‘a)"
by (simp add: apply_def)

lemma (in M_basic) apply_abs [simp]:

"[M(£); M(x); M(y)] = fun_apply(M,f,x,y) «— f‘x = y"
apply (simp add: fun_apply_def apply_def, blast)
done

lemma (in M_trivial) typed_function_abs [simp]:

"[M(4); M(f)] = typed_function(M,A,B,f) +— f € A -> B"
apply (auto simp add: typed_function_def relation_def Pi_iff)
apply (blast dest: pair_ components_in_M)+
done

lemma (in M_basic) injection_abs [simp]:
"[M(4); M(f)] = injection(M,A,B,f) +— f € inj(A,B)"
apply (simp add: injection_def apply_iff inj_def)
apply (blast dest: transM [of _ A])
done

lemma (in M_basic) surjection_abs [simp]:
"[M(A); M(B); M(f)] = surjection(M,A,B,f) +— f € surj(4,B)"
by (simp add: surjection_def surj_def)

lemma (in M_basic) bijection_abs [simp]:
"[M(A); M(B); M(f)] = bijection(M,A,B,f) +— f € bij(4,B)"
by (simp add: bijection_def bij_def)

2.7.5 Composition of relations

lemma (in M_basic) M_comp_iff:

"[M(r); M(s)]

= r 0s =

{xz € domain(s) * range(r).
dx[M]. Jy[M]. 3z[M]. xz = (x,2) A\ (x,y) € s A (y,z) € r}"

apply (simp add: comp_def)
apply (rule equalityI)
apply clarify

apply simp
apply (blast dest: transM)+
done

lemma (in M_basic) comp_closed [intro,simp]:
"[M(r); M(s)] = M(r 0 s)"
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apply (simp add: M_comp_iff)
apply (insert comp_separation [of r s], simp)
done

lemma (in M_basic) composition_abs [simp]:
"[M(r); M(s); M(t)] = composition(M,r,s,t) +— t =r 0 s"
apply safe

Proving composition(M, r, s, r 0 s)

prefer 2
apply (simp add: composition_def comp_def)
apply (blast dest: transM)

Opposite implication

apply (rule M_equalityI)
apply (simp add: composition_def comp_def)
apply (blast del: allE dest: transM)+
done

no longer needed

lemma (in M_basic) restriction_is_function:
"[restriction(M,f,A,z); function(f); M(f); M(A); M(2)]
= function(z)"

apply (simp add: restriction_def ball_iff_equiv)

apply (unfold function_def, blast)

done

lemma (in M_trans) restriction_abs [simp]:
"[MCE); MCA); M(2)]
—> restriction(M,f,A,z) <— z = restrict(f,A)"
apply (simp add: ball_iff_equiv restriction_def restrict_def)
apply (blast intro!: equalityI dest: transM)
done

lemma (in M_trans) M_restrict_iff:
"M(r) = restrict(r,A) = {z € r . Ix€A. Fy[M]. z = (x, y)}"
by (simp add: restrict_def, blast dest: transM)

lemma (in M_basic) restrict_closed [intro,simp]:
"[M(4); M(r)] = M(restrict(zr,A))"

apply (simp add: M_restrict_iff)

apply (insert restrict_separation [of A], simp)

done

lemma (in M_trans) Inter_abs [simp]:

"[M(4); M(z)] = big_inter(M,A,z) «— z = [ (A"
apply (simp add: big_inter_def Inter_def)
apply (blast intro!: equalityl dest: transM)
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done

lemma (in M_basic) Inter_closed [intro,simp]:
"M(A) = M) ()"

by (insert Inter_separation, simp add: Inter_def)

lemma (in M_basic) Int_closed [intro,simp]:
"[M(A); M(B)] = M(A N B)"

apply (subgoal_tac "M({A,B})")

apply (frule Inter_closed, force+)

done

lemma (in M_basic) Diff_closed [intro,simp]:
"[M(A); M(B)] = M(A-B)"
by (insert Diff_separation, simp add: Diff_def)

2.7.6 Some Facts About Separation Axioms

lemma (in M_basic) separation_conj:
"[separation(M,P); separation(M,Q)] = separation(M, Az. P(z) A
Qz))"
by (simp del: separation_closed
add: separation_iff Collect_Int_Collect_eq [symmetric])

lemma Collect_Un_Collect_eq:
"Collect(A,P) U Collect(A,Q) = Collect(A, Ax. P(x) V Q(x))"
by blast

lemma Diff_Collect_eq:
"A - Collect(A,P) = Collect(4, Ax. — P(x))"
by blast

lemma (in M_trans) Collect_rall_eq:
"M(Y) = Collect(4, Xx. Vy[M]. yeY — P(x,y)) =
(if Y=0 then A else ((ly € Y. {x € A. P(x,y)}P))"
by (simp,blast dest: transM)

lemma (in M_basic) separation_disj:
"[separation(M,P); separation(M,Q)] = separation(M, Az. P(z) V
Qz))"
by (simp del: separation_closed
add: separation_iff Collect_Un_Collect_eq [symmetric])

lemma (in M_basic) separation_neg:
"separation(M,P) — separation(M, Az. —P(z))"
by (simp del: separation_closed
add: separation_iff Diff_Collect_eq [symmetric])
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lemma (in M_basic) separation_imp:
"[separation(M,P); separation(M,Q)]
= separation(M, Az. P(z) — Q(z))"
by (simp add: separation_neg separation_disj not_disj_iff_ imp [symmetric])

This result is a hint of how little can be done without the Reflection The-
orem. The quantifier has to be bounded by a set. We also need another
instance of Separation!

lemma (in M_basic) separation_rall:
"[M(Y); Vy[M]. separation(M, Mx. P(x,y));
Vz[M]. strong replacement(M, A\x y. y = {u € z . P(u,x)})]
= separation(M, A\x. Vy[M]. yeY — P(x,y))"
apply (simp del: separation_closed rall_abs
add: separation_iff Collect_rall_eq)
apply (blast intro!: RepFun_closed dest: transM)
done

2.7.7 Functions and function space

The assumption M(A — B) is unusual, but essential: in all but trivial cases,
A->B cannot be expected to belong to M.

lemma (in M_trivial) is_funspace_abs [simp]:
"[M(A); M(B); M(F); M(A->B)] — is_funspace(M,A,B,F) +— F = A->B"

apply (simp add: is_funspace_def)
apply (rule iffI)

prefer 2 apply blast
apply (rule M_equalityI)

apply simp_all
done

lemma (in M_basic) succ_fun_eq2:
"[M(B); M(n->B)] =
succ(n) -> B =
U{z. p € (@->B)*B, 3f[M]. Ib[M]. p = (f,b) A z = {cons((n,b),
£33
apply (simp add: succ_fun_eq)
apply (blast dest: transM)
done

lemma (in M_basic) funspace_succ:

"[M(n); M(B); M(n->B)] = M(succ(n) -> B)"
apply (insert funspace_succ_replacement [of n], simp)
apply (force simp add: succ_fun_eq2 univalent_def)
done

M contains all finite function spaces. Needed to prove the absoluteness of
transitive closure. See the definition of rtrancl_alt in in WF_absolute. thy.
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lemma (in M_basic) finite_funspace_closed [intro,simp]:
"[n€nat; M(B)] = M(n->B)"

apply (induct_tac n, simp)

apply (simp add: funspace_succ nat_into_M)

done

2.8 Relativization and Absoluteness for Boolean Operators

definition
is_bool_of o :: "[i=o0, o0, i] = o" where
"is_bool_of_o(M,P,z) = (P A numberi(M,z)) V (=P A empty(M,z))"

definition
is_not :: "[i=o0, i, i] = o" where
"is_not(M,a,z) = (numberl(M,a) A empty(M,z)) |
(—numberi1(M,a) A numberl(M,z))"

definition
is_and :: "[i=o0, i, i, i] = o" where
"is_and(M,a,b,z) = (numberl(M,a) A z=b) |
(—number1(M,a) A empty(M,z))"

definition
is_or :: "[i=o

, i, i, i] = o" where
"is_or(M,a,b,z) =

(number1(M,a) A numberl(M,z)) |
(—number1(M,a) N z=b)"

lemma (in M_trivial) bool_of_o_abs [simp]:
"M(z) — is_bool_of_o(M,P,z) <— z = bool_of_o(P)"
by (simp add: is_bool_of_o_def bool_of_o_def)

lemma (in M_trivial) not_abs [simp]:
"[M(a); M(z)] = is_not(M,a,z) +— z = not(a)"
by (simp add: Bool.not_def cond_def is_not_def)

lemma (in M_trivial) and_abs [simp]:
"[M(a); M(b); M(z)] = is_and(M,a,b,z) < z = a and b"
by (simp add: Bool.and_def cond_def is_and_def)

lemma (in M_trivial) or_abs [simp]:
"[M(a); M(b); M(z)] = is_or(M,a,b,z) < z = a or b"
by (simp add: Bool.or_def cond_def is_or_def)

lemma (in M_trivial) bool_of_o_closed [intro,simp]:
"M(bool _of_o(P))"
by (simp add: bool_of_o_def)
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lemma (in M_trivial) and_closed [intro,simp]:
"[Mp); M(@)] = M(p and q)"
by (simp add: and_def cond_def)

lemma (in M_trivial) or_closed [intro,simp]:
"[M(p); M(@)] = M(p or )"
by (simp add: or_def cond_def)

lemma (in M_trivial) not_closed [intro,simp]:
"M(p) = M(not(p))"
by (simp add: Bool.not_def cond_def)

2.9 Relativization and Absoluteness for List Operators

definition
is_Nil :: "[i=o0, i] = o" where
— because [] = Inl1(0)
"is_Nil(M,xs) = dzero[M]. empty(M,zero) A is_Inl(M,zero,xs)"

definition
is_Cons :: "[i=o0,i,i,i] = o" where
— because Cons(a, 1) = Inr({a, 1))
"is_Cons(M,a,1,Z) = dp[M]. pair(M,a,l,p) N is_Inr(M,p,Z)"

lemma (in M_trivial) Nil_in_M [intro,simp]: "M(Nil)"
by (simp add: Nil_def)

lemma (in M_trivial) Nil_abs [simpl: "M(Z) — is_Nil(M,Z) <— (Z =
Nil)"
by (simp add: is_Nil_def Nil_def)

lemma (in M_trivial) Cons_in_M_iff [iff]: "M(Cons(a,1)) +— M(a) A M(1)"
by (simp add: Cons_def)

lemma (in M_trivial) Cons_abs [simp]:
"[M(a); M(1); M(Z)] = is_Cons(M,a,1,Z) <— (Z = Cons(a,l))"
by (simp add: is_Cons_def Cons_def)

definition
quasilist :: "i = o" where
"quasilist(xs) = xs=Nil V (dx 1. xs = Cons(x,1))"

definition
is_quasilist :: "[i=0,i] = 0" where

"is_quasilist(M,z) = is_Nil(M,z) V (3dx[M]. J1[M]. is_Cons(M,x,1,z))"

definition
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list_case’ :: "[i, [i,i]=i, i] = i" where
— A version of 1ist_case that’s always defined.
"list_case’(a,b,xs) =
if quasilist(xs) then list_case(a,b,xs) else 0"

definition
is_list_case :: "[i=o, i, [i,i,i]l=o0, i, i] = o" where
— Returns 0 for non-lists
"is_list_case(M, a, is_b, xs, z) =
(is_Nil(M,xs) — z=a) A
~x[M]. V1[M]. is_Cons(M,x,1,xs) — is_b(x,1,z)) A
(is_quasilist(M,xs) V empty(M,z))"

definition
hd’ :: "i = i" where
— A version of hd that’s always defined.
"hd’(xs) = if quasilist(xs) then hd(xs) else 0"

definition
tl’ :: "i = i" where
— A version of t1 that’s always defined.
"t1’(xs) = if quasilist(xs) then tl(xs) else 0"

definition
is_hd :: "[i=o0,i,i] = o" where
— hd([]) = 0 no constraints if not a list. Avoiding implication prevents the
simplifier’s looping.
"is_hd(M,xs,H) =
(is_Nil(M,xs) — empty(M,H)) A
~x[M]. V1[M]. - is_Cons(M,x,1,xs) V H=x) A
(is_quasilist(M,xs) V empty(M,H))"

definition
is_tl :: "[i=o0,i,i] = o" where
— t1([]) = [J; see comments about is_hd
"is t1(M,xs,T) =
(is_Nil(M,xs) — T=xs) A
~x[M]. V1[M]. — is_Cons(M,x,1,xs) V T=1) A
(is_quasilist(M,xs) V empty(M,T))"

2.9.1 quasilist: For Case-Splitting with list_case’

lemma [iff]: "quasilist(Nil)"
by (simp add: quasilist_def)

lemma [iff]: "quasilist(Cons(x,1))"
by (simp add: quasilist_def)

lemma list_imp_quasilist: "1 € list(A) = quasilist(1)"
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by (erule list.cases, simp_all)

2.9.2 1list_case’, the Modified Version of 1ist_case

lemma list_case’_Nil [simp]: "list_case’(a,b,Nil) = a"
by (simp add: list_case’_def quasilist_def)

lemma list_case’_Cons [simp]: "list_case’(a,b,Cons(x,1)) = b(x,1)"
by (simp add: list_case’_def quasilist_def)

lemma non_list_case: "- quasilist(x) — list_case’(a,b,x) = 0"
by (simp add: quasilist_def list_case’_def)

lemma list_case’_eq_list_case [simp]:
"xs € list(A) —1list_case’(a,b,xs) = list_case(a,b,xs)"
by (erule list.cases, simp_all)

lemma (in M_basic) list_case’_closed [intro,simp]:
"[Mk); M(a); Vx[M]. Vy[M]. M(b(x,y))] = M(1ist_case’(a,b,k))"
apply (case_tac "quasilist(k)")
apply (simp add: quasilist_def, force)
apply (simp add: non_list_case)
done

lemma (in M_trivial) quasilist_abs [simp]:
"M(z) = is_quasilist(M,z) <— quasilist(z)"
by (auto simp add: is_quasilist_def quasilist_def)

lemma (in M_trivial) list_case_abs [simp]:
"[relation2(M,is_b,b); M(k); M(z)]
— is_list_case(M,a,is_b,k,z) +— z = list_case’(a,b,k)"
apply (case_tac '"quasilist(k)")
prefer 2
apply (simp add: is_list_case_def non_list_case)
apply (force simp add: quasilist_def)
apply (simp add: quasilist_def is_list_case_def)
apply (elim disjE exE)
apply (simp_all add: relation2_def)
done

2.9.3 The Modified Operators hd’ and t1’

lemma (in M_trivial) is_hd_Nil: "is_hd(M,[],Z) <— empty(M,Z)"
by (simp add: is_hd_def)

lemma (in M_trivial) is_hd_Cons:
"[M(a); M(1)] = is_hd(M,Cons(a,1),Z) <— Z = a"
by (force simp add: is_hd_def)

lemma (in M_trivial) hd_abs [simp]:
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"[M(x); M(y)] = is_hd(M,x,y) <— y = hd’(x)"
apply (simp add: hd’_def)
apply (intro impI conjI)
prefer 2 apply (force simp add: is_hd_def)
apply (simp add: quasilist_def is_hd_def)
apply (elim disjE exE, auto)
done

lemma (in M_trivial) is_tl _Nil: "is_t1(M,[],Z) <— Z = []"
by (simp add: is_tl_def)

lemma (in M_trivial) is_tl_Cons:
"[M(a); M(1)] = is_t1(M,Cons(a,1),Z) < Z = 1"
by (force simp add: is_tl_def)

lemma (in M_trivial) tl_abs [simp]:
"Mx); M(y)] = is_tl(M,x,y) <— y = t17(x)"
apply (simp add: t1’_def)
apply (intro impI conjI)
prefer 2 apply (force simp add: is_tl_def)
apply (simp add: quasilist_def is_tl_def)
apply (elim disjE exE, auto)
done

lemma (in M_trivial) relationl_tl: "relationl(M, is_t1(M), t1’)"
by (simp add: relationl_def)

lemma hd’_Nil: "hd’([]) = O"
by (simp add: hd’_def)

lemma hd’_Cons: "hd’(Cons(a,l)) = a"
by (simp add: hd’_def)

lemma t1’_Nil: "t1°([]) = []"

by (simp add: t1’_def)

lemma tl1’_Cons: "tl1’(Cons(a,1)) = 1"

by (simp add: tl’_def)

lemma iterates_tl_Nil: "m € nat —> t1’"n ([]) = []"
apply (induct_tac n)

apply (simp_all add: t1’_Nil)

done

lemma (in M_basic) tl’_closed: "M(x) = M(tl’(x))"
apply (simp add: t1’_def)

apply (force simp add: quasilist_def)

done
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end

3 Relativized Wellorderings

theory Wellorderings imports Relative begin

We define functions analogous to ordermap ordertype but without using
recursion. Instead, there is a direct appeal to Replacement. This will be the
basis for a version relativized to some class M. The main result is Theorem I
7.6 in Kunen, page 17.

3.1 Wellorderings

definition
irreflexive :: "[i=o0,i,i]=0" where
"irreflexive(M,A,r) = Vx[M]. x€A — (x,x) ¢ r"

definition
transitive_rel :: "[i=>0,i,i]=0" where
"transitive_rel(M,A,r) =
Vx[M]. xéeA — (Vy[M]. yeA — (Vz[M]. zeA —
(x,y)er — (y,z)er — (x,z)€r))"

definition
linear rel :: "[i=o0,i,i]=0" where
"linear_rel(M,A,r) =
Vx[M]. xeA — (Vy[M]. yeA — (x,y)eér | x=y | {y,x)er)"

definition
wellfounded :: "[i=o0,i]=0" where
— EVERY non-empty set has an r-minimal element
"wellfounded (M,r) =

Vx[M]. x40 — @Qyl[M]. yex A =~ (3z[M]. zex A (z,y) € )"
definition
wellfounded_on :: "[i=r0,i,i]=0" where
— every non-empty SUBSET OF 4 has an r-minimal element
"wellfounded_on(M,A,r) =
Vx[Ml. x£A0 — xCA — QyM]. yex A =(3z[M]. zex A (z,y)
€ r))"

definition
wellordered :: "[i=>o0,i,i]=0" where
— linear and wellfounded on A
"wellordered(M,A,r) =
transitive_rel(M,A,r) N linear rel(M,A,r) A wellfounded_on(M,A,r)"
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3.1.1 Trivial absoluteness proofs

lemma (in M_basic) irreflexive_abs [simp]:
"M(4A) — irreflexive(M,A,r) <— irrefl(A,r)"
by (simp add: irreflexive_def irrefl_def)

lemma (in M_basic) transitive_rel_abs [simp]:
"M(A) — transitive_rel(M,A,r) <— trans[A](r)"
by (simp add: transitive_rel_def trans_on_def)

lemma (in M_basic) linear_rel_abs [simp]:
"M(A) — linear_rel(M,A,r) <— linear(A,r)"
by (simp add: linear_rel_def linear_def)

lemma (in M_basic) wellordered_is_trans_on:
"[wellordered(M,A,r); M(A)] = trans[A]l(r)"
by (auto simp add: wellordered_def)

lemma (in M_basic) wellordered_is_linear:
"[wellordered(M,A,r); M(A)] = linear(4,r)"
by (auto simp add: wellordered_def)

lemma (in M_basic) wellordered_is_wellfounded_on:
"[wellordered (M,A,r); M(A)] = wellfounded_on(M,A,r)"
by (auto simp add: wellordered_def)

lemma (in M_basic) wellfounded_imp_wellfounded_on:
"[wellfounded (M,r); M(A)] — wellfounded_on(M,A,r)"
by (auto simp add: wellfounded_def wellfounded_on_def)

lemma (in M_basic) wellfounded_on_subset_A:
"[wellfounded_on(M,A,r); B<=A] —> wellfounded_on(M,B,r)"
by (simp add: wellfounded_on_def, blast)

3.1.2 Well-founded relations

lemma (in M_basic) wellfounded_on_iff_wellfounded:
"wellfounded_on(M,A,r) <— wellfounded(M, r N A*A)"

apply (simp add: wellfounded_on_def wellfounded_def, safe)

apply force

apply (drule_tac x=x in rspec, assumption, blast)

done

lemma (in M_basic) wellfounded_on_imp_wellfounded:
"[wellfounded_on(M,A,r); r C A*A] — wellfounded(M,r)"
by (simp add: wellfounded_on_iff_wellfounded subset_Int_iff)

lemma (in M_basic) wellfounded_on_field_imp_wellfounded:

"wellfounded_on(M, field(r), r) —> wellfounded(M,r)"
by (simp add: wellfounded_def wellfounded_on_iff_wellfounded, fast)
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lemma (in M_basic) wellfounded_iff_wellfounded_on_field:
"M(r) = wellfounded(M,r) +— wellfounded_on(M, field(r), r)"
by (blast intro: wellfounded_imp_wellfounded_on
wellfounded_on_field_imp_wellfounded)

lemma (in M_basic) wellfounded_induct:
"[wellfounded(M,r); M(a); M(r); separation(M, Ax. —P(x));
Vx. Mx) N Vy. (y,x) € r — P(y)) — P)]
= P(a)"
apply (simp (no_asm_use) add: wellfounded_def)
apply (drule_tac x="{z € domain(r). —P(z)}" in rspec)
apply (blast dest: transM)+
done

lemma (in M_basic) wellfounded_on_induct:
"la€A; wellfounded_on(M,A,r); M(A);
separation(M, Ax. x€A — —-P(x));
Vxed. M(x) N (Vy€A. (y,x) € r — P(y)) — P)]
= P(a)"
apply (simp (no_asm_use) add: wellfounded_on_def)
apply (drule_tac x="{z€A. z€A — —P(z)}" in rspec)
apply (blast intro: transM)+
done

3.1.3 Kunen’s lemma IV 3.14, page 123

lemma (in M_basic) linear_imp_relativized:
"linear(A,r) — linear_rel(M,A,r)"
by (simp add: linear_def linear_rel_def)

lemma (in M_basic) trans_on_imp_relativized:
"trans[A] (r) — transitive_rel(M,A,r)"
by (unfold transitive_rel_def trans_on_def, blast)

lemma (in M_basic) wf_on_imp_relativized:
"wf[A] (r) —> wellfounded_on(M,A,r)"
apply (clarsimp simp: wellfounded_on_def wf_def wf_on_def)
apply (drule_tac x=x in spec, blast)
done

lemma (in M_basic) wf_imp_relativized:
"wf(r) —> wellfounded(M,r)"
apply (simp add: wellfounded_def wf_def, clarify)
apply (drule_tac x=x in spec, blast)
done

lemma (in M_basic) well_ord_imp_relativized:
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"well ord(A,r) —> wellordered(M,A,r)"
by (simp add: wellordered_def well_ord_def tot_ord_def part_ord_def
linear_imp_relativized trans_on_imp_relativized wf_on_imp_relativized)

The property being well founded (and hence of being well ordered) is not
absolute: the set that doesn’t contain a minimal element may not exist in
the class M. However, every set that is well founded in a transitive model
M is well founded (page 124).

3.2 Relativized versions of order-isomorphisms and order
types

lemma (in M_basic) order_isomorphism_abs [simp]:

"[MCA); M(B); M(£)]

—> order_isomorphism(M,A,r,B,s,f) «<— f € ord_iso(A,r,B,s)"
by (simp add: order_isomorphism_def ord_iso_def)

lemma (in M_trans) pred_set_abs [simp]:
"[M(x); M(B)] = pred_set(M,A,x,r,B) «— B = Order.pred(A,x,r)"
apply (simp add: pred_set_def Order.pred_def)
apply (blast dest: transM)
done

lemma (in M_basic) pred_closed [intro,simp]:
"[M(4); M(r); M(x)] = M(Order.pred(4, x, r))"
using pred_separation [of r x] by (simp add: Order.pred_def)

lemma (in M_basic) membership_abs [simp]:
"[M(r); M(A)] = membership(M,A,r) <— r = Memrel(A)"
apply (simp add: membership_def Memrel_def, safe)
apply (rule equalityI)
apply clarify
apply (frule transM, assumption)
apply blast
apply clarify
apply (subgoal_tac "M({xb,ya))", blast)
apply (blast dest: transM)
apply auto
done

lemma (in M_basic) M_Memrel iff:
"M(A) = Memrel(A) = {z € A*A. Ix[M]. y[M]. z = (x,y) A x € y}"
unfolding Memrel_def by (blast dest: transM)

lemma (in M_basic) Memrel_closed [intro,simp]:

"M(A) —> M(Memrel(A))"
using Memrel_separation by (simp add: M_Memrel_iff)
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3.3 Main results of Kunen, Chapter 1 section 6

Subset properties— proved outside the locale

lemma linear rel_subset:
"[linear_rel(M, A, r); B C A] = linear_rel(M, B, r)"
by (unfold linear_rel_def, blast)

lemma transitive_rel_subset:
"[transitive_rel(M, A, r); B C A] = transitive_rel(M, B, r)"
by (unfold transitive_rel_def, blast)

lemma wellfounded_on_subset:
"[wellfounded_on(M, A, r); B C A] = wellfounded_on(M, B, r)"
by (unfold wellfounded_on_def subset_def, blast)

lemma wellordered_subset:
"[wellordered(M, A, r); B C A] — wellordered(M, B, r)"
unfolding wellordered_def
apply (blast intro: linear_rel_subset transitive_rel_subset
wellfounded_on_subset)
done

lemma (in M_basic) wellfounded_on_asym:
"[wellfounded_on(M,A,r); (a,x)er; ach; x€d; MA)] = (x,a)¢r"
apply (simp add: wellfounded_on_def)
apply (drule_tac x="{x,a}" in rspec)
apply (blast dest: transM)+
done

lemma (in M_basic) wellordered_asym:
"[wellordered(M,A,r); (a,x)€r; achA; x€d; MMA)] = (x,a)¢r"
by (simp add: wellordered_def, blast dest: wellfounded_on_asym)

end

4 Relativized Well-Founded Recursion

theory WFrec imports Wellorderings begin

4.1 General Lemmas

lemma apply_recfun2:

"[is_recfun(r,a,H,f); (x,i):f] = i = H(x, restrict(f,r-‘‘{x}))"
apply (frule apply_recfun)
apply (blast dest: is_recfun_type fun_is_rel)
apply (simp add: function_apply_equality [OF _ is_recfun_imp_function])
done

Expresses is_recfun as a recursion equation
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lemma is_recfun_iff_equation:
"is_recfun(r,a,H,f) <—>
f e€er - {a} — range(f) A
Vx € r-““{a}. f‘x = H(x, restrict(f, r-“‘{x})))"
apply (rule iffI)
apply (simp add: is_recfun_type apply_recfun Ball_def vimage_singleton_iff,

clarify)
apply (simp add: is_recfun_def)
apply (rule fun_extension)
apply assumption
apply (fast intro: lam_type, simp)
done

lemma is_recfun_imp_in_r: "[is_recfun(r,a,H,f); (x,i) € f] = (x, a)
E r”
by (blast dest: is_recfun_type fun_is_rel)

lemma trans_Int_eq:
"[trans(r); (y,x) € r] = r -““ {x} Nr -““ {y} =r - {y}"
by (blast intro: transD)

lemma is_recfun_restrict_idem:
"is_recfun(r,a,H,f) = restrict(f, r -“¢ {a}) = £"
apply (drule is_recfun_type)
apply (auto simp add: Pi_iff subset_Sigma_imp_relation restrict_idem)

done

lemma is_recfun_cong_lemma:

"[is_recfun(r,a,H,f); r =r’; a=a’; f = f’;

NAx g. [<x,a’> € r’; relation(g); domain(g) C r’ -‘‘{x}]
= H(x,g) = H’ (x,8)]

— is_recfun(r’,a’,H’,f’)"
apply (simp add: is_recfun_def)
apply (erule trans)
apply (rule lam_cong)
apply (simp_all add: vimage_singleton_iff Int_lower2)
done

For is_recfun we need only pay attention to functions whose domains are
initial segments of r.

lemma is_recfun_cong:
"[r =r’; a=a’; f=1f£;
Ax g. [<x,a’> € r’; relation(g); domain(g) C r’ -‘‘{x}]
= H(x,g) = H (x,8)]
— is_recfun(r,a,H,f) <— is_recfun(r’,a’,H’,f’)"
apply (rule iffI)

Messy: fast and blast don’t work for some reason
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apply (erule is_recfun_cong_lemma, auto)
apply (erule is_recfun_cong_lemma)
apply (blast intro: sym)+

done

4.2 Reworking of the Recursion Theory Within u

lemma (in M_basic) is_recfun_separation’:

"[f € r -°° {a} — range(f); g € r -‘ {b} — range(g);

M(z); M(£); M(g); M(a); M(b)]

— separation(M, A\x. - ({(x, a) € r — (x, b) €r — f ‘x =g
¢ X))N
apply (insert is_recfun_separation [of r f g a b])
apply (simp add: vimage_singleton_iff)
done

Stated using trans(r) rather than transitive_rel(M, A, r) because the
latter rewrites to the former anyway, by transitive_rel_abs. As always,
theorems should be expressed in simplified form. The last three M-premises
are redundant because of M(r), but without them we’d have to undertake
more work to set up the induction formula.

lemma (in M_basic) is_recfun_equal [rule_format]:
"[is_recfun(r,a,H,f); is_recfun(r,b,H,g);
wellfounded(M,r); trans(r);
M(£); M(g); M(x); M(x); M(a); M(b)]
= (x,a) € r — (x,b) € r — f‘x=g‘x"
apply (frule_tac f=f in is_recfun_type)
apply (frule_tac f=g in is_recfun_type)
apply (simp add: is_recfun_def)
apply (erule_tac a=x in wellfounded_induct, assumption+)

Separation to justify the induction

apply (blast intro: is_recfun_separation’)

Now the inductive argument itself

apply clarify

apply (erule ssubst)+

apply (simp (no_asm_simp) add: vimage_singleton_iff restrict_def)
apply (rename_tac x1)

apply (rule_tac t="Az. H(x1,z)" in subst_context)

apply (subgoal_tac "Vy € r-‘‘{x1}. Vz. (y,z)ef «— (y,z)eg")
apply (blast intro: transD)

apply (simp add: apply_iff)

apply (blast intro: transD sym)

done

lemma (in M_basic) is_recfun_cut:

"lis_recfun(r,a,H,f); is_recfun(r,b,H,g);
wellfounded(M,r); trans(r);
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M(£); M(g); M(r); (b,a) € r]
—> restrict(f, r-‘‘{b}) = g"

apply (frule_tac f=f in is_recfun_type)

apply (rule fun_extension)

apply (blast intro: transD restrict_type2)

apply (erule is_recfun_type, simp)

apply (blast intro: is_recfun_equal transD dest: transM)

done

lemma (in M_basic) is_recfun_functional:
"[is_recfun(r,a,H,f); is_recfun(r,a,H,g);
wellfounded(M,r); trans(r); M(£); M(g); M(x)] = f=g"
apply (rule fun_extension)
apply (erule is_recfun_type)+
apply (blast intro!: is_recfun_equal dest: transM)
done

Tells us that is_recfun can (in principle) be relativized.

lemma (in M_basic) is_recfun_relativize:
"[M(x); M(£f); Vx[M]. Vg[M]. function(g) — M(H(x,g))]
— is_recfun(r,a,H,f) +—
~Vz[M. z € £ +—
(Ax[M]. (x,a) € r N z = <x, H(x, restrict(f, r-“‘{x}))>))"
apply (simp add: is_recfun_def lam_def)
apply (safe intro!: equalityI)
apply (drule equalityD1 [THEN subsetD], assumption)
apply (blast dest: pair_components_in_M)
apply (blast elim!: equalityE dest: pair_components_in_M)
apply (frule transM, assumption)
apply simp
apply blast
apply (subgoal_tac "is_function(M,f)")

We use is_function rather than function because the subgoal’s easier to prove
with relativized quantifiers!

prefer 2 apply (simp add: is_function_def)

apply (frule pair_components_in_M, assumption)

apply (simp add: is_recfun_imp_function function_restrictI)
done

lemma (in M_basic) is_recfun_restrict:
"[wellfounded(M,r); trans(r); is_recfun(r,x,H,f); (y,x) € r;
M(r); M(£);
Vx[M]. Vg[M]. function(g) — M(H(x,g))]
— is_recfun(r, y, H, restrict(f, r -“¢ {y}))"
apply (frule pair components_in_M, assumption, clarify)
apply (simp (no_asm_simp) add: is_recfun_relativize restrict_iff
trans_Int_eq)
apply safe
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apply (simp_all add: vimage_singleton_iff is_recfun_type [THEN apply_iff])

apply (frule_tac x=xa in pair_components_in_M, assumption)
apply (frule_tac x=xa in apply_recfun, blast intro: transD)
apply (simp add: is_recfun_type [THEN apply_iff]
is_recfun_imp_function function_restrictI)
apply (blast intro: apply_recfun dest: transD)
done

lemma (in M_basic) restrict_Y_lemma:
"[wellfounded(M,r); trans(r); M(r);
Vx[M]. Vg[M]. function(g) — M(H(x,g)); M(Y);
Vb[M].
beVY «+—
Ax[M]. (x,al) € r A
QyMl. b = (x,y) N 3glMl. is_recfun(r,x,H,g) Ny = H(x,8))));
(x,a1) € r; is_recfun(r,x,H,f); M(£)]
= restrict(Y, r -“¢ {x}) = f"
apply (subgoal_tac "Vy € r-‘‘{x}. Vz. (y,z):Y <— (y,z):f")
apply (simp (no_asm_simp) add: restrict_def)
apply (thin_tac "rall(M,P)" for P)+ — essential for efficiency
apply (frule is_recfun_type [THEN fun_is_rel], blast)
apply (frule pair components_in_M, assumption, clarify)
apply (rule iffI)
apply (frule_tac y="(y,z)" in transM, assumption)
apply (clarsimp simp add: vimage_singleton_iff is_recfun_type [THEN apply iff]
apply_recfun is_recfun_cut)

Opposite inclusion: something in f, show in Y

apply (frule_tac y="(y,z)" in transM, assumption)
apply (simp add: vimage_singleton_iff)
apply (rule conjI)
apply (blast dest: transD)
apply (rule_tac x="restrict(f, r -‘¢ {y})" in rexI)
apply (simp_all add: is_recfun_restrict
apply_recfun is_recfun_type [THEN apply_iff])
done

For typical applications of Replacement for recursive definitions

lemma (in M_basic) univalent_is_recfun:
"[wellfounded (M,r); trans(r); M(r)]
—> univalent (M, A, Ax p.
JyMl. p = (x,y) N (3f[M]. is_recfun(r,x,H,f) Ny = H(x,£)))"
apply (simp add: univalent_def)
apply (blast dest: is_recfun_functional)
done

Proof of the inductive step for exists_is_recfun, since we must prove two
versions.
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lemma (in M_basic) exists_is_recfun_indstep:
"IVy. (y, a1y € r — (Gf[M]. is_recfun(r, y, H, £));
wellfounded(M,r); trans(r); M(r); M(al);
strong_replacement (M, \x z.
dyM]. 3gM]. pair(M,x,y,z) A is_recfun(r,x,H,g) Ny =
H(x,g));
Vx[M]. Vg[M]. function(g) — M(H(x,g))]
— df[M]. is_recfun(r,al,H,f)"
apply (drule_tac A="r-‘‘{al}" in strong replacementD)
apply blast

Discharge the "univalent" obligation of Replacement

apply (simp add: univalent_is_recfun)

Show that the constructed object satisfies is_recfun

apply clarify
apply (rule_tac x=Y in rexI)

Unfold only the top-level occurrence of is_recfun

apply (simp (no_asm_simp) add: is_recfun_relativize [of concl: _ all)

The big iff-formula defining Y is now redundant

apply safe
apply (simp add: vimage_singleton_iff restrict_Y_lemma [of r H _ al])

one more case

apply (simp (no_asm_simp) add: Bex_def vimage_singleton_iff)
apply (drule_tac x1=x in spec [THEN mp], assumption, clarify)
apply (rename_tac f)

apply (rule_tac x=f in rexI)

apply (simp_all add: restrict_Y_lemma [of r H])

FIXME: should not be needed!

apply (subst restrict_Y lemma [of r H])
apply (simp add: vimage_singleton_iff)+
apply blast+

done

Relativized version, when we have the (currently weaker) premise wellfounded (M,
r)

lemma (in M_basic) wellfounded_exists_is_recfun:
"[wellfounded(M,r); trans(r);
separation(M, A\x. — (If[M]. is_recfun(r, x, H, £)));
strong replacement (M, Ax z.
dy[M]. Jg[M]. pair(M,x,y,z) A is_recfun(r,x,H,g) Ny = H(x,8));

M(r); Ma);
Vx[M]. Vg[M]. function(g) — M(H(x,g))]
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— df[M]. is_recfun(r,a,H,f)"
apply (rule wellfounded_induct, assumption+, clarify)
apply (rule exists_is_recfun_indstep, assumption+)
done

lemma (in M_basic) wf_exists_is_recfun [rule_format]:
"[wf(r); trans(r); M(z);
strong replacement (M, \x z.
JyM]. 3gM]. pair(M,x,y,z) A is_recfun(r,x,H,g) Ny = H(x,g8));

Vx[M]. Vg[M]. function(g) — M(H(x,g))]
— M(a) — @Af[M]. is_recfun(r,a,H,f))"
apply (rule wf_induct, assumption+)
apply (frule wf_imp_relativized)
apply (intro impI)
apply (rule exists_is_recfun_indstep)
apply (blast dest: transM del: rev_rallE, assumption+)
done

4.3 Relativization of the ZF Predicate is_recfun

definition
M _is_recfun :: "[i=o, [i,i,i]=o0, i, i, i] = o" where
"M _is_recfun(M,MH,r,a,f) =
Vz[M]. z € f <

(Ax[M]. Jy[M]. Fxa[M]. Isx[M]. Ir_sx[M]. If r_sx[M].
pair(M,x,y,z) A pair(M,x,a,xa) A upair(M,x,x,sx) A
pre_image(M,r,sx,r_sx) N restriction(M,f,r_sx,f_r_sx) A
xa € r N MH(x, f_r_sx, y))"

definition
is_wfrec :: "[i=o, [i,i,i]=o0, i, i, i] = o" where
"is_wfrec(M,MH,r,a,z) =
df[M]. M_is_recfun(M,MH,r,a,f) N MH(a,f,z)"

definition
wfrec_replacement :: "[i=o, [i,i,i]=0, i] = o" where
"wfrec_replacement (M,MH,r) =
strong_replacement (M,
Ax z. dy[M]. pair(M,x,y,z) A is_wfrec(M,MH,r,x,y))"

lemma (in M_basic) is_recfun_abs:
"[Vx[M]. Vg[M]. function(g) — M(H(x,g)); M(r); M(a); M(£);
relation2(M,MH,H)]
— M_is_recfun(M,MH,r,a,f) +— is_recfun(r,a,H,f)"
apply (simp add: M_is_recfun_def relation2 def is_recfun_relativize)
apply (rule rall_cong)
apply (blast dest: transM)
done
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lemma M_is_recfun_cong [cong]:
"l[r =r’; a=a’; f="°£;
ANx g y. [M&); M(g); M(y)] = MH(x,g,y) +— MH’(x,g,7)]
— M_is_recfun(M,MH,r,a,f) <— M _is_recfun(M,MH’,r’,a’,f’)"
by (simp add: M_is_recfun_def)

lemma (in M_basic) is_wfrec_abs:
"[Vx[M]. Vg[M]. function(g) — M(H(x,8));
relation2(M,MH,H); M(r); M(a); M(z2)]
— is_wfrec(M,MH,r,a,z) <—
(3glM]. is_recfun(r,a,H,g) N z = H(a,g))"
by (simp add: is_wfrec_def relation2 def is_recfun_abs)

Relating wfrec_replacement to native constructs

lemma (in M_basic) wfrec_replacement’:
"[wfrec_replacement (M,MH,r) ;
Vx[M]. Yg[M]. function(g) — M(H(x,g));
relation2(M,MH,H); M(r)]
—> strong_replacement (M, Ax z. Jy[M].
pair(M,x,y,z) N (3glM]. is_recfun(r,x,H,g) Ny = H(x,g)))"
by (simp add: wfrec_replacement_def is_wfrec_abs)

lemma wfrec_replacement_cong [cong]:
"Ax v z. [M(x); M(y); M(2)] = MH(x,y,z) +— MH’(x,y,2);
r=r’]
= wfrec_replacement(M, Ax y. MH(x,y), r) <—
wfrec_replacement (M, A\x y. MH’(x,y), r’)"
by (simp add: is_wfrec_def wfrec_replacement_def)

end

5 Absoluteness of Well-Founded Recursion

theory WF_absolute imports WFrec begin

5.1 Transitive closure without fixedpoints

definition
rtrancl_alt :: "[i,i]=1i" where
"rtrancl_alt(A,r) =
{p € A*¥A. dné€nat. If € succ(n) -> A.
Axy. p={(x,y) A £f0=x A f‘n=y) A
(Vi€n. <f‘i, f‘succ(i)> € r)}"

lemma alt_rtrancl_lemmal [rule_format]:

"n € nat
— Vf € succ(n) -> field(r).
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(Vi€n. (f‘i, £ ¢ succ(i)) € r) — (£°0, f‘n) € r™*"
apply (induct_tac n)
apply (simp_all add: apply_funtype rtrancl_refl, clarify)
apply (rename_tac n f)
apply (rule rtrancl_into_rtrancl)
prefer 2 apply assumption
apply (drule_tac x="restrict(f,succ(n))" in bspec)
apply (blast intro: restrict_type2)
apply (simp add: Ord_succ_mem_iff nat_O_le [THEN 1tD] leI [THEN 1tD] 1tI)
done

lemma rtrancl_alt_subset_rtrancl: "rtrancl_alt(field(r),r) C r~x"
apply (simp add: rtrancl_alt_def)

apply (blast intro: alt_rtrancl_lemmal)

done

lemma rtrancl_subset_rtrancl_alt: "r"* C rtrancl_alt(field(r),r)"
apply (simp add: rtrancl_alt_def, clarify)

apply (frule rtrancl_type [THEN subsetD], clarify, simp)

apply (erule rtrancl_induct)

Base case, trivial

apply (rule_tac x=0 in bexI)
apply (rule_tac x="Ax€l. xa" in bexI)
apply simp_all

Inductive step

apply clarify
apply (rename_tac n f)
apply (rule_tac x="succ(n)" in bexI)
apply (rule_tac x=")Ai€succ(succ(n)). if i=succ(n) then z else f‘i" in
bexI)
apply (simp add: Ord_succ_mem_iff nat_O_le [THEN 1tD] leI [THEN 1tD]
1tI)
apply (blast intro: mem_asym)
apply typecheck
apply auto
done

lemma rtrancl_alt_eq _rtrancl: "rtrancl_alt(field(r),r) = r™*"
by (blast del: subsetI
intro: rtrancl_alt_subset_rtrancl rtrancl_subset_rtrancl_alt)

definition
rtran_closure_mem :: "[i=0,i,i,i] = o" where
— The property of belonging to rtran_closure(r)
"rtran_closure_mem(M,A,r,p) =

dnnat[M]. dn[M]. In’[M].
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omega(M,nnat) A n€nnat A successor(M,n,n’) A
(3f[M]. typed_function(M,n’,A,f) A
(3x[M]. Fy[M]. Fzero[M]. pair(M,x,y,p) N empty(M,zero)

A\
fun_apply (M, f,zero,x) A fun_apply(M,f,n,y)) A
~VjM. jen —
(3fjM]. Isj[M]. Ifsj[M]. ffp[M].
fun_apply(M,f,j,fj) N successor(M,j,sj) A
fun_apply(M,f,sj,fsj) A pair(M,fj,fsj,ffp) A ffp
€ r)))"
definition
rtran_closure :: "[i=o0,i,i] = o" where
"rtran_closure(M,r,s) =
VA[M]. is_field(M,r,A) —
(Vp[M]. p € s <— rtran_closure_mem(M,A,r,p))"
definition

tran_closure :: "[i=o0,i,i] = o" where
"tran_closure(M,r,t) =
ds[M]. rtran_closure(M,r,s) A composition(M,r,s,t)"

locale M_trancl = M_basic +
assumes rtrancl_separation:
"[M(r); M(A)] = separation (M, rtran_closure_mem(M,A,r))"
and wellfounded_trancl_separation:
"M(); M(Z)] =
separation (M, Ax.
Jw[M]. Jwx[M]. Frp[M].
w € Z A pair(M,w,x,wx) A tran_closure(M,r,rp) N wx €
rp)"
and M_nat [iff] : "M(nat)"

lemma (in M_trancl) rtran_closure_mem_iff:
"[MCA); M(r); M(P)]
—> rtran_closure_mem(M,A,r,p) +—
(dn[M]. n€nat A
Af[M]. £ € succ(n) -> A A
@Ax[M]. JyM]. p ={x,y) N f0=x A f‘n=y) A
(Vien. <f‘i, fsucc(i)> € r)))"
apply (simp add: rtran_closure_mem_def Ord_succ_mem_iff nat_O_le [THEN
1tD])
done

lemma (in M_trancl) rtran_closure_rtrancl:
"M(r) = rtran_closure(M,r,rtrancl(r))"
apply (simp add: rtran_closure_def rtran_closure_mem_iff
rtrancl_alt_eq_rtrancl [symmetric] rtrancl_alt_def)
apply (auto simp add: nat_O_le [THEN 1tD] apply_funtype)
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done

lemma (in M_trancl) rtrancl_closed [intro,simp]:
"M(r) = M(rtrancl(r))"
apply (insert rtrancl_separation [of r "field(r)"])
apply (simp add: rtrancl_alt_eq_rtrancl [symmetric]
rtrancl_alt_def rtran_closure_mem_iff)
done

lemma (in M_trancl) rtrancl_abs [simp]:
"[M(r); M(z)] = rtran_closure(M,r,z) <— z = rtrancl(r)"
apply (rule iffI)

Proving the right-to-left implication

prefer 2 apply (blast intro: rtran_closure_rtrancl)

apply (rule M_equalityI)

apply (simp add: rtran_closure_def rtrancl_alt_eq_rtrancl [symmetric]
rtrancl_alt_def rtran_closure_mem_iff)

apply (auto simp add: nat_O_le [THEN 1tD] apply_funtype)

done

lemma (in M_trancl) trancl_closed [intro,simp]:
"M(r) = M(trancl(r))"
by (simp add: trancl_def)

lemma (in M_trancl) trancl_abs [simp]:
"[M(x); M(z)] = tran_closure(M,r,z) <— z = trancl(z)"
by (simp add: tran_closure_def trancl_def)

lemma (in M_trancl) wellfounded_trancl_separation’:
"[M(r); M(Z)] = separation (M, Ax. Jw[M]. w € Z A (w,x) € r™+)"
by (insert wellfounded_trancl_separation [of r Z], simp)

Alternative proof of wf_on_trancl; inspiration for the relativized version.
Original version is on theory WF.

lemma "[wf[A](zr); r-‘‘A C A] = wfl[A]l(x™+)"

apply (simp add: wf_on_def wf_def)

apply (safe)

apply (drule_tac x = "{x€A. Jw. (w,x) € r"™+ A w € Z}" in spec)
apply (blast elim: tranclE)

done

lemma (in M_trancl) wellfounded_on_trancl:
"[wellfounded_on(M,A,r); r-“‘A C A; M(x); M(A]
— wellfounded_on(M,A,r +)"

apply (simp add: wellfounded_on_def)

apply (safe intro!: equalityI)

apply (rename_tac Z x)

apply (subgoal_tac "M({x€A. Jw[M]. w € Z A (w,x) € T™+F)")

78



prefer 2
apply (blast intro: wellfounded_trancl_separation’)
apply (drule_tac x = "{x€A. Jw[M]. w € Z A (w,x) € r~+}" in rspec, safe)
apply (blast dest: transM, simp)
apply (rename_tac y w)
apply (drule_tac x=w in bspec, assumption, clarify)
apply (erule tranclE)
apply (blast dest: transM)
apply blast
done

lemma (in M_trancl) wellfounded_trancl:
"[wellfounded (M,r); M(r)] = wellfounded(M,r +)"
apply (simp add: wellfounded_iff_wellfounded_on_field)
apply (rule wellfounded_on_subset_A, erule wellfounded_on_trancl)
apply blast
apply (simp_all add: trancl_type [THEN field_rel_subset])
done

Absoluteness for wirec-defined functions.

lemma (in M_trancl) wfrec_relativize:
"wt(r); M(a); M(r);
strong_replacement(M, Ax z. dy[M]. dgl[M].
pair(M,x,y,z) A
is_recfun(r™+, x, Ax f. H(x, restrict(f, r -“‘ {x})), g) A
y = H(x, restrict(g, r -““ {x})));
Vx[M]. Vg[M]. function(g) — M(H(x,g))]
— wfrec(r,a,H) = z +—
(3df[M]. is_recfun(r”™+, a, A\x f. H(x, restrict(f, r -“¢ {x})), f)
A
z = H(a,restrict(f,r-“‘{a})))"
apply (frule wf_trancl)
apply (simp add: wftrec_def wfrec_def, safe)
apply (frule wf_exists_is_recfun
[of concl: "r~+" a "Ax f. H(x, restrict(f, r -“¢ {x}))"])

apply (simp_all add: trans_trancl function_restrictl trancl_subset_times)
apply (clarify, rule_tac x=x in rexI)
apply (simp_all add: the_recfun_eq trans_trancl trancl_subset_times)
done

Assuming r is transitive simplifies the occurrences of H. The premise relation (r)
is necessary before we can replace r~+ by r.

theorem (in M_trancl) trans_wfrec_relativize:
"[wf(r); trans(r); relation(r); M(r); M(a);
wfrec_replacement (M,MH,r); relation2(M,MH,H);
Vx[M]. Vg[M]. function(g) — M(H(x,g))]
— wfrec(r,a,H) = z +— (Af[M]. is_recfun(r,a,H,f) AN z = H(a,f))"
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apply (frule wfrec_replacement’, assumption+)
apply (simp cong: is_recfun_cong
add: wfrec_relativize trancl_eq_r
is_recfun_restrict_idem domain_restrict_idem)
done

theorem (in M_trancl) trans_wfrec_abs:
"[wf(r); trans(r); relation(r); M(r); M(a); M(z);
wfrec_replacement (M,MH,r); relation2(M,MH,H);
Vx[M]. Vg[M]. function(g) — M(H(x,g))]
— is_wfrec(M,MH,r,a,z) <— z=wfrec(r,a,H)"
by (simp add: trans_wfrec_relativize [THEN iff_sym] is_wfrec_abs, blast)

lemma (in M_trancl) trans_eq_pair_wfrec_iff:
"[wf(r); trans(r); relation(r); M(r); M(y);
wfrec_replacement (M,MH,r); relation2(M,MH,H);
Vx[M]. Vg[M]. function(g) — M(H(x,g))]
= y = <x, wfrec(r, x, H)> +—
(3f[M]. is_recfun(r,x,H,f) Ny = <x, H(x,f)>)"
apply safe
apply (simp add: trans_wfrec_relativize [THEN iff_sym, of concl: _ x])

converse direction

apply (rule sym)
apply (simp add: trans_wfrec_relativize, blast)
done

5.2 M is closed under well-founded recursion

Lemma with the awkward premise mentioning wfrec.

lemma (in M_trancl) wfrec_closed_lemma [rule_format]:
"wt(r); M(x);
strong_replacement(M, Ax y. y = (x, wfrec(r, x, H)));
Vx[M]. Vg[M]. function(g) — M(H(x,g))]
= M(a) — M(wfrec(r,a,H))"
apply (rule_tac a=a in wf_induct, assumption+)
apply (subst wfrec, assumption, clarify)
apply (drule_tac x1=x and x="Ax€r -‘¢ {x}. wfrec(r, x, H)"
in rspec [THEN rspec])
apply (simp_all add: function_lam)
apply (blast intro: lam_closed dest: pair_components_in_M)
done

Eliminates one instance of replacement.

lemma (in M_trancl) wfrec_replacement_iff:
"strong_replacement (M, A\x z.
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JyM]. pair(M,x,y,z) N (3glM]. is_recfun(r,x,H,g) Ny = H(x,g)))

strong_replacement (M,
Ax y. 3f[M]. is_recfun(r,x,H,f) Ny = <x, H(x,f)>)"
apply simp
apply (rule strong_replacement_cong, blast)
done

Useful version for transitive relations

theorem (in M_trancl) trans_wfrec_closed:
"lwf(r); trans(r); relation(zr); M(r); M(a);
wfrec_replacement (M,MH,r); relation2(M,MH,H);
Vx[M]. Vg[M]. function(g) — M(H(x,g))]
= M(wfrec(r,a,H))"
apply (frule wfrec_replacement’, assumption+)
apply (frule wfrec_replacement_iff [THEN iffD1])
apply (rule wfrec_closed_lemma, assumption+)
apply (simp_all add: wfrec_replacement_iff trans_eq_pair_wfrec_iff)
done

5.3 Absoluteness without assuming transitivity

lemma (in M_trancl) eq pair_wfrec_iff:
"wf(x); M(@); M(»y);
strong_replacement(M, Ax z. dy[M]. dg[M].
pair(M,x,y,z) A
is_recfun(r™+, x, Ax f. H(x, restrict(f, r -“‘ {x})), g) A
y = H(x, restrict(g, r -“° {x})));
Vx[M]. Vg[M]. function(g) — M(H(x,g))]
— y = <x, wfrec(r, x, H)> +—
(Af[M]. is_recfun(r™+, x, A\x f. H(x, restrict(f, r -“¢ {x})), f)
A
y = <x, H(x,restrict(f,r-“‘{x}))>)"
apply safe
apply (simp add: wfrec_relativize [THEN iff_sym, of concl: _ x])

converse direction

apply (rule sym)
apply (simp add: wfrec_relativize, blast)
done

Full version not assuming transitivity, but maybe not very useful.

theorem (in M_trancl) wfrec_closed:
"wt(r); M(x); M(a);
wfrec_replacement (M,MH,r"+);
relation2(M,MH, Ax f. H(x, restrict(f, r -“° {x})));
Vx[M]. Vg[M]. function(g) — M(H(x,g))]
—> M(wfrec(r,a,H))"
apply (frule wfrec_replacement’
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[of MH "r~+" "Ax f. H(x, restrict(f, r - {x}))"])
prefer 4
apply (frule wfrec_replacement_iff [THEN iffD1])
apply (rule wfrec_closed_lemma, assumption+)
apply (simp_all add: eq_pair_wfrec_iff func.function_restrictI)
done

end

6 Absoluteness Properties for Recursive Datatypes

theory Datatype_absolute imports Formula WF_absolute begin

6.1 The Ifp of a continuous function can be expressed as a

union
definition
directed :: "i=o" where
"directed(4) = A#0 N (Vx€A. Vyed. x Uy € A)"
definition
contin :: "(i=i) = o" where

"contin(h) = (VA. directed(4d) — h(J4A) = (JX€A. h(X)))"

lemma bnd_mono_iterates_subset: "[bnd_mono(D, h); n € nat] = h"n (0)
g DIV

apply (induct_tac n)

apply (simp_all add: bnd_mono_def, blast)

done

lemma bnd_mono_increasing [rule_format]:
"[i € nat; j € nat; bnd_mono(D,h)] = i < j — h7i(0) C h~j(0)"
apply (rule_tac m=i and n=j in diff_induct, simp_all)
apply (blast del: subsetI
intro: bnd_mono_iterates_subset bnd_monoD2 [of concl: h])

done

lemma directed_iterates: "bnd_mono(D,h) —> directed({h"n (0). n€nat})"

apply (simp add: directed_def, clarify)

apply (rename_tac i j)

apply (rule_tac x="i U j" in bexI)

apply (rule_tac i = i and j = j in Ord_linear_le)

apply (simp_all add: subset_Un_iff [THEN iffD1] le_imp_subset
subset_Un_iff2 [THEN iffD1])

apply (simp_all add: subset_Un_iff [THEN iff_sym] bnd_mono_increasing
subset_Un_iff2 [THEN iff_sym])

done
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lemma contin_iterates_eq:
"[bnd_mono (D, h); contin(h)]
= h(n€nat. b™n (0)) = (Un€nat. h™n (0))"
apply (simp add: contin_def directed_iterates)
apply (rule trans)
apply (rule equalityI)
apply (simp_all add: UN_subset_iff)
apply safe
apply (erule_tac [2] natE)
apply (rule_tac a="succ(x)" in UN_I)
apply simp_all
apply blast
done

lemma 1fp_subset_Union:

"[bnd_mono (D, h); contin(h)] = 1fp(D,h) C (Jn€nat. h™n(0))"
apply (rule 1fp_lowerbound)
apply (simp add: contin_iterates_eq)
apply (simp add: contin_def bnd_mono_iterates_subset UN_subset_iff)
done

lemma Union_subset_lfp:
"bnd_mono (D,h) — (|Jn€nat. h"n(0)) C 1fp(D,h)"
apply (simp add: UN_subset_iff)
apply (rule balll)
apply (induct_tac n, simp_all)
apply (rule subset_trans [of _ "h(1fp(D,h))"])

apply (blast dest: bnd_monoD2 [OF _ _ 1fp_subset])
apply (erule 1fp_lemma2)
done

lemma 1fp_eq_Union:
"[bnd_mono (D, h); comntin(h)] = 1fp(D,h) = (Jn€nat. h™n(0))"
by (blast del: subsetI
intro: 1fp_subset_Union Union_subset_lfp)

6.1.1 Some Standard Datatype Constructions Preserve Continu-
ity

lemma contin_imp_mono: "[XCY; contin(F)] = F(X) C F(Y)"

apply (simp add: contin_def)

apply (drule_tac x="{X,Y}" in spec)

apply (simp add: directed_def subset_Un_iff2 Un_commute)

done

lemma sum_contin: "[contin(F); contin(G)] = contin(AX. F(X) + G(X))"
by (simp add: contin_def, blast)
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lemma prod_contin: "[contin(F); contin(G)] = contin(AX. F(X) * G(X))"

apply (subgoal_tac "VB C. F(B) C F(B U C)")

prefer 2 apply (simp add: Un_upperl contin_imp_mono)
apply (subgoal_tac "VB C. G(C) C G(B U C)")

prefer 2 apply (simp add: Un_upper2 contin_imp_mono)
apply (simp add: contin_def, clarify)

apply (rule equalityI)

prefer 2 apply blast

apply clarify

apply (rename_tac B C)

apply (rule_tac a="B U C" in UN_I)

apply (simp add: directed_def, blast)

done

lemma const_contin: "contin(AX. A)"
by (simp add: contin_def directed_def)

lemma id_contin: "contin(AX. X)"
by (simp add: contin_def)

6.2 Absoluteness for "Iterates"

definition
iterates_ MH :: "[i=o, [i,i]=0, i, i, i, i] = o" where
"iterates_MH(M,isF,v,n,g,z) =
is_nat_case(M, v, Am u. Jgm[M]. fun_apply(M,g,m,gm) A isF(gm,u),
n, z)"

definition
is_iterates :: "[i=o, [i,i]=o0, i, i, i] = o" where
"is_iterates(M,isF,v,n,Z) =
dsn[M]. dmsn[M]. successor(M,n,sn) A membership(M,sn,msn) A
is_wfrec(M, iterates_MH(M,isF,v), msn, n, Z)"

definition
iterates_replacement :: "[i=o, [i,i]=r0, i] = o" where
"iterates_replacement (M,isF,v) =
Vn[M]. n€Enat —
wfrec_replacement (M, iterates_MH(M,isF,v), Memrel(succ(n)))"

lemma (in M_basic) iterates_MH_abs:
"[relationl (M,isF,F); M(n); M(g); M(z)]
—> iterates_MH(M,isF,v,n,g,z) <— z = nat_case(v, Am. F(g‘m), n)"
by (simp add: nat_case_abs [of _ "Am. F(g ‘ m)"]
relationl_def iterates_MH_def)

lemma (in M_trancl) iterates_imp_wfrec_replacement:
"[relationl (M,isF,F); n € nat; iterates_replacement (M,isF,v)]
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— wfrec_replacement(M, An f z. z = nat_case(v, Am. F(f‘m), n),
Memrel (succ(n)))"
by (simp add: iterates_replacement_def iterates_MH_abs)

theorem (in M_trancl) iterates_abs:
"[iterates_replacement (M,isF,v); relationi(M,isF,F);
n € nat; M(v); M(z); Vx[M]. M(F(x))]

— is_iterates(M,isF,v,n,z) +— z = iterates(F,n,v)"
apply (frule iterates_imp_wfrec_replacement, assumption+)
apply (simp add: wf_Memrel trans_Memrel relation_Memrel

is_iterates_def relation2 def iterates_MH_abs
iterates_nat_def recursor_def transrec_def
eclose_sing Ord_eq nat_into_M
trans_wfrec_abs [of _ _ _ _ "An g. nat_case(v, Am. F(g‘m), n)"])
done

lemma (in M_trancl) iterates_closed [intro,simp]:
"[iterates_replacement (M,isF,v); relationl(M,isF,F);
n € nat; M(v); Vx[M]. M(F(x))]
— M(iterates(F,n,v))"
apply (frule iterates_imp_wfrec_replacement, assumption+)
apply (simp add: wf_Memrel trans_Memrel relation_Memrel
relation2 def iterates_MH_abs
iterates_nat_def recursor_def transrec_def
eclose_sing Ord_eq nat_into_M
trans_wfrec_closed [of _ _ _ "An g. nat_case(v, Am. F(g‘m), n)"])
done

6.3 lists without univ

lemmas datatype_univs = Inl_in_univ Inr_in_univ
Pair_in_univ nat_into_univ A_into_univ

lemma list_fun_bnd_mono: "bnd_mono(univ(A), AX. {0} + A*X)"

apply (rule bnd_monoI)

apply (intro subset_refl zero_subset_univ A_subset_univ
sum_subset_univ Sigma_subset_univ)

apply (rule subset_refl sum_mono Sigma_mono | assumption)+

done

lemma list_fun_contin: "contin(AX. {0} + A*X)"
by (intro sum_contin prod_contin id_contin const_contin)

Re-expresses lists using sum and product

lemma list_eq 1fp2: "list(A) = 1lfp(univ(4), AX. {0} + A*X)"
apply (simp add: list_def)

apply (rule equalityI)

apply (rule 1fp_lowerbound)
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prefer 2 apply (rule 1fp_subset)

apply (clarify, subst 1fp_unfold [OF list_fun_bnd_mono])
apply (simp add: Nil_def Cons_def)

apply blast

Opposite inclusion

apply (rule 1fp_lowerbound)
prefer 2 apply (rule 1fp_subset)
apply (clarify, subst 1fp_unfold [OF list.bnd_mono])
apply (simp add: Nil_def Cons_def)
apply (blast intro: datatype_univs
dest: 1fp_subset [THEN subsetD])
done

Re-expresses lists using "iterates", no univ.

lemma list_eq_Union:
"list(A) = ((Un€nat. (AX. {0} + A*X) ~n (0))"
by (simp add: list_eq_lfp2 1fp_eq Union list_fun_bnd_mono list_fun_contin)

definition
is_list_functor :: "[i=0,i,i,i] = o" where
"is_list_functor(M,A,X,Z) =
dni1[M]. JAX[M].
numberl(M,n1) A cartprod(M,A,X,AX) A is_sum(M,nl1,AX,Z)"

lemma (in M_basic) list_functor_abs [simp]:
"[MCA); M(X); M(Z)] = is_list_functor(M,A,X,Z) +— (Z = {0} + A*X)"
by (simp add: is_list_functor_def singleton_0 nat_into_M)

6.4 formulas without univ

lemma formula_fun_bnd_mono:
"bnd_mono (univ(0), AX. ((nat*nat) + (nat*nat)) + (X*¥X + X))"
apply (rule bnd_monoI)
apply (intro subset_refl zero_subset_univ A_subset_univ
sum_subset_univ Sigma_subset_univ nat_subset_univ)
apply (rule subset_refl sum_mono Sigma_mono | assumption)+
done

lemma formula_fun_contin:
"contin(AX. ((nat*nat) + (nat*nat)) + (X*X + X))"
by (intro sum_contin prod_contin id_contin const_contin)

Re-expresses formulas using sum and product

lemma formula_eq_ lfp2:

"formula = 1fp(univ(0), AX. ((nat#*nat) + (nat*nat)) + (X*X + X))"
apply (simp add: formula_def)
apply (rule equalityI)
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apply (rule 1fp_lowerbound)

prefer 2 apply (rule 1fp_subset)

apply (clarify, subst 1fp_unfold [OF formula_fun_bnd_mono])
apply (simp add: Member_def Equal_def Nand_def Forall_def)
apply blast

Opposite inclusion

apply (rule 1fp_lowerbound)

prefer 2 apply (rule 1fp_subset, clarify)

apply (subst 1fp_unfold [OF formula.bnd_mono, simplified])

apply (simp add: Member_def Equal_def Nand_def Forall_def)

apply (elim sumE SigmaE, simp_all)

apply (blast intro: datatype_univs dest: 1fp_subset [THEN subsetD])+
done

Re-expresses formulas using "iterates", no univ.

lemma formula_eq Union:
"formula =
(Un€nat. (AX. ((nat*nat) + (nat*nat)) + (X*X + X)) ~n (0))"
by (simp add: formula_eq 1fp2 1fp_eq Union formula_fun_bnd_mono
formula_fun_contin)

definition
is_formula_functor :: "[i=r0,i,i] = o" where
"is_formula_functor(M,X,Z) =
dnat’[M]. dnatnat[M]. dnatnatsum[M]. IXX[M]. IX3[M].
omega(M,nat’) A cartprod(M,nat’,nat’,natnat) A
is_sum(M,natnat,natnat,natnatsum) A
cartprod(M,X,X,XX) N is_sum(M,XX,X,X3) A
is_sum(M,natnatsum,X3,Z)"

lemma (in M_trancl) formula_functor_abs [simp]:
"M ; M(2)]
= is_formula_functor (M,X,Z) +—
Z = ((nat#*nat) + (nat*nat)) + (X*X + X)"
by (simp add: is_formula_functor_def)

6.5 M Contains the List and Formula Datatypes

definition
list_ N :: "[i,i] = i" where
"list_N(A,n) = (M\X. {0} + A * X)"n (0)"

lemma Nil_in_list_N [simp]: "[] € list_N(A,succ(n))"
by (simp add: list_N_def Nil_def)

lemma Cons_in_list_N [simp]:
"Cons(a,l) € list_N(A,succ(n)) +— a€A N 1 € list_N(4,n)"
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by (simp add: list_N_def Cons_def)

These two aren’t simprules because they reveal the underlying list represen-
tation.

lemma list_N_0: "list_N(A,0) = 0"
by (simp add: list_N_def)

lemma list_N_succ: "list_N(A,succ(n)) = {0} + A * (list_N(A,n))"
by (simp add: list_N_def)

lemma list_N_imp_list:
"[1 € list_N(A,n); n € nat] = 1 € list(A)"
by (force simp add: list_eq_Union list_N_def)

lemma list_N_imp_length_lt [rule_format]:
"n € nat = V1 € list_N(A,n). length(l) < n"
apply (induct_tac n)
apply (auto simp add: list_N_O0 list_N_succ
Nil_def [symmetric] Cons_def [symmetric])
done

lemma list_imp_list_N [rule_format]:
"l € list(A) = Vné€nat. length(l) <n — 1 € 1list_N(4A, n)"
apply (induct_tac 1)
apply (force elim: natE)+
done

lemma 1list_N_imp_eq_length:
"[n € nat; 1 ¢ 1list_N(A, n); 1 € 1list_N(4, succ(n))]
= n = length(1)"

apply (rule le_anti_sym)

prefer 2 apply (simp add: list_N_imp_length_1lt)

apply (frule list_N_imp_list, simp)

apply (simp add: not_lt_iff_le [symmetric])

apply (blast intro: list_imp_list_N)

done

Express 1ist_rec without using rank or Vset, neither of which is absolute.

lemma (in M_trivial) list_rec_eq:
"1 € list(4d) =
list_rec(a,g,1) =
transrec (succ(length(1)),
Ax h. Lambda (1list(4),
list_case’ (a,
Aa 1. g(a, 1, h © succ(length(1)) “ 1)))) ¢
lH
apply (induct_tac 1)
apply (subst transrec, simp)
apply (subst transrec)
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apply (simp add: list_imp_list_N)

done
definition
is_list N :: "[i=o0,i,i,i] = o" where
"is_list_N(M,A,n,Z) =
Jzero[M]. empty(M,zero) A
is_iterates(M, is_list_functor(M,A), zero, n, Z)"
definition
mem_list :: "[i=o0,i,i] = o" where
"mem_list(M,A,1) =
dn[M]. J1listn[M].
finite_ordinal (M,n) A is_list_N(M,A,n,listn) A 1 € listn"
definition
is_list :: "[i=o0,i,i] = o" where

"is_list(M,A,Z) = V1[M]. 1 € Z <— mem_list(M,A,1)"

6.5.1 Towards Absoluteness of formula rec

consts depth :: "i=i"
primrec
"depth (Member (x,y)) = 0"
"depth(Equal (x,y)) = 0"
"depth (Nand (p,q)) succ(depth(p) U depth(g))"
"depth (Forall(p)) succ(depth(p))"

lemma depth_type [TC]: "p € formula = depth(p) € nat"
by (induct_tac p, simp_all)

definition
formula N :: "

i = i" where
"formula_N(n) =

(M\X. ((nat*nat) + (nat*nat)) + (X*X + X)) ~n (0)"

lemma Member_in_formula_N [simp]:
"Member (x,y) € formula_N(succ(n)) <— x € nat A y € nat"
by (simp add: formula_N_def Member_def)

lemma Equal_in_formula_N [simp]:
"Equal(x,y) € formula_N(succ(n)) <— x € nat A y € nat"
by (simp add: formula_N_def Equal_def)
lemma Nand_in_formula_N [simp]:
"Nand(x,y) € formula_N(succ(n)) <— x € formula_N(n) A y € formula_N(n)"
by (simp add: formula_N_def Nand_def)

lemma Forall_in_formula_N [simp]:
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"Forall(x) € formula_N(succ(n)) <— x € formula_N(n)"
by (simp add: formula_N_def Forall_def)

These two aren’t simprules because they reveal the underlying formula rep-
resentation.

lemma formula_N_0: "formula_N(0) = 0"
by (simp add: formula_N_def)

lemma formula_N_succ:

"formula_N(succ(n)) =

((nat*nat) + (nat*nat)) + (formula_N(n) * formula_N(n) + formula_N(n))"
by (simp add: formula_N_def)

lemma formula_N_imp_formula:
"[p € formula_N(n); n € nat] = p € formula"
by (force simp add: formula_eq Union formula_N_def)

lemma formula_N_imp_depth_lt [rule_format]:
"n € nat = Vp € formula_N(n). depth(p) < n"

apply (induct_tac n)

apply (auto simp add: formula_N_0 formula_N_succ
depth_type formula_N_imp_formula Un_least_1t_iff
Member_def [symmetric] Equal_def [symmetric]
Nand_def [symmetric] Forall_def [symmetric])

done

lemma formula_imp_formula_N [rule_format]:
"p € formula =—> Vn€nat. depth(p) < n — p € formula_N(n)"
apply (induct_tac p)
apply (simp_all add: succ_Un_distrib Un_least_lt_iff)
apply (force elim: natE)+
done

lemma formula_N_imp_eq_depth:
"[n € nat; p ¢ formula_N(n); p € formula_N(succ(n))]
=—> n = depth(p)"

apply (rule le_anti_sym)

prefer 2 apply (simp add: formula_N_imp_depth_1t)

apply (frule formula_N_imp_formula, simp)

apply (simp add: not_lt_iff_le [symmetric])

apply (blast intro: formula_imp_formula_N)

done

This result and the next are unused.

lemma formula_N_mono [rule_format]:
"[m € nat; n € nat] = m<n — formula_N(m) C formula_N(n)"
apply (rule_tac m = m and n = n in diff_induct)
apply (simp_all add: formula_N_O formula_N_succ, blast)
done
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lemma formula_N_distrib:

"[m € nat; n € nat] = formula_N(m U n) = formula_N(m) U formula_N(n)"
apply (rule_tac i = m and j = n in Ord_linear_le, auto)
apply (simp_all add: subset_Un_iff [THEN iffD1] subset_Un_iff2 [THEN iffD1]

le_imp_subset formula_N_mono)
done

definition
is_formula N :: "[i=o0,i,i] = o" where
"is_formula_N(M,n,Z) =
Jzero[M]. empty(M,zero) A
is_iterates(M, is_formula_functor(M), zero, n, Z)"

definition
mem_formula :: "[i=r0,i] = o" where
"mem_formula(M,p) =
dn[M]. dformn[M].
finite_ordinal(M,n) A is_formula_N(M,n,formn) N p € formn"

definition
is_formula :: "[i=o0,i] = o" where
"is_formula(M,Z) = Vp[M]. p € Z <— mem_formula(M,p)"

locale M_datatypes = M_trancl +
assumes list_replacementl:
"M(A) —> iterates_replacement (M, is_list_functor(M,A), 0)"
and list_replacement2:
"M(A) = strong_replacement (M,
An y. n€nat A is_iterates(M, is_list_functor(M,A), 0, n, y))"
and formula_replacementl:
"iterates_replacement (M, is_formula_functor(M), 0)"
and formula_replacement2:
"strong_replacement (M,
An y. n€nat A is_iterates(M, is_formula_functor(M), 0, n, y))"
and nth_replacement:
"M(1) —> iterates_replacement(M, A1 t. is_t1(M,1,t), 1)"

6.5.2 Absoluteness of the List Construction

lemma (in M_datatypes) list_replacement2’:

"M(A) = strong_replacement(M, An y. n€nat A y = (AX. {0} + A * X)"n
)"
apply (insert list_replacement2 [of A])
apply (rule strong_replacement_cong [THEN iffD1])
apply (rule conj_cong [OF iff_refl iterates_abs [of "is_list_functor(M,A)"]1])
apply (simp_all add: list_replacementl relationl_def)
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done

lemma (in M_datatypes) list_closed [intro,simp]:
"M(A) = M(1ist(A))"
apply (insert list_replacementl)
by (simp add: RepFun_closed2 list_eq_Union
list_replacement2’ relationl_def
iterates_closed [of "is_list_functor(M,A)"])

WARNING: use only with dest: or with variables fixed!

lemmas (in M_datatypes) list_into_M = transM [OF _ list_closed]

lemma (in M_datatypes) list_N_abs [simp]:
"[M(A); né€nat; M(2)]
— is_list_N(M,A,n,Z) <— Z = list_N(A,n)"
apply (insert list_replacementl)
apply (simp add: is_list_N_def list_N_def relationl_def nat_into_M
iterates_abs [of "is_list_functor(M,A)" _ "XX. {0} +
A*X"])
done

lemma (in M_datatypes) list_N_closed [intro,simp]:
"[M(A); n€nat] = M(1list_N(A,n))"
apply (insert list_replacementl)
apply (simp add: is_list_N_def list_N_def relationl_def nat_into_ M
iterates_closed [of "is_list_functor(M,A)"])
done

lemma (in M_datatypes) mem_list_abs [simp]:
"M(A) = mem_list(M,A,1) +— 1 € list(4)"
apply (insert list_replacementl)
apply (simp add: mem_list_def list_N_def relationl_def list_eq_Union
iterates_closed [of "is_list_functor(M,A)"])
done

lemma (in M_datatypes) list_abs [simp]:
"[M(A); M(Z)] = is_list(M,A,Z) <— Z = list(A)"
apply (simp add: is_list_def, safe)
apply (rule M_equalityI, simp_all)
done

6.5.3 Absoluteness of Formulas

lemma (in M_datatypes) formula_replacement2’:
"strong replacement(M, An y. n€nat A y = (AX. ((nat*nat) + (nat*nat))
+ (X*X + X))"n (0))"
apply (insert formula_replacement2)
apply (rule strong_replacement_cong [THEN iffD1])
apply (rule conj_cong [OF iff_refl iterates_abs [of "is_formula_functor(M)"]])
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apply (simp_all add: formula_replacementl relationl_def)
done

lemma (in M_datatypes) formula_closed [intro,simp]:
"M(formula)"
apply (insert formula_replacementl)
apply (simp add: RepFun_closed2 formula_eq_Union
formula_replacement2’ relationl_def
iterates_closed [of "is_formula_functor(M)"])
done

lemmas (in M_datatypes) formula_into_M = transM [0OF _ formula_closed]

lemma (in M_datatypes) formula_N_abs [simp]:

"[n€nat; M(2)]

— is_formula N(M,n,Z) <— Z = formula_N(n)"
apply (insert formula_replacementl)
apply (simp add: is_formula_N_def formula_N_def relationl_def nat_into_M

iterates_abs [of "is_formula_functor(M)" _
"MX. ((nat*nat) + (nat#*nat)) + (X*X

+ X)"1)

done

lemma (in M_datatypes) formula_N_closed [intro,simp]:
"n€nat = M(formula_N(n))"
apply (insert formula_replacementl)
apply (simp add: is_formula_N_def formula_N_def relationl_def nat_into_M
iterates_closed [of "is_formula_functor(M)"])
done

lemma (in M_datatypes) mem_formula_abs [simp]:
"mem_formula(M,1) <— 1 € formula"
apply (insert formula_replacementl)
apply (simp add: mem_formula_def relationl_def formula_eq Union formula_N_def
iterates_closed [of "is_formula_functor(M)"])
done

lemma (in M_datatypes) formula_abs [simp]:
"[M(Z)] = is_formula(M,Z) <— Z = formula"

apply (simp add: is_formula_def, safe)

apply (rule M_equalityI, simp_all)

done

6.6 Absoluteness for «-Closure: the eciose Operator

Re-expresses eclose using "iterates"

lemma eclose_eq_Union:
"eclose(4) = (|n€nat. Union™n (A))"
apply (simp add: eclose_def)
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apply (rule UN_cong)

apply (rule refl)

apply (induct_tac n)

apply (simp add: nat_rec_0)
apply (simp add: nat_rec_succ)
done

definition
is_eclose_n :: "[i=o0,i,i,i] = o" where
"is_eclose_n(M,A,n,Z) = is_iterates(M, big_union(M), A, n, Z)"

definition
mem_eclose :: "[i=o0,i,i] = o" where
"mem_eclose(M,A,1) =
dn[M]. Jdeclosen[M].
finite_ordinal (M,n) A is_eclose_n(M,A,n,eclosen) N 1 € eclosen"

definition
is_eclose :: "[i=0,1i,i] = o" where
"is_eclose(M,A,Z) = Yul[M]. u € Z +<— mem_eclose(M,A,u)"

locale M_eclose = M_datatypes +
assumes eclose_replacementl:
"M(A) = iterates_replacement (M, big_union(M), A)"
and eclose_replacement2:
"M(A) = strong_replacement (M,
An y. n€nat A is_iterates(M, big union(M), A, n, y))"

lemma (in M_eclose) eclose_replacement2’:

"M(A) = strong_replacement(M, An y. n€nat A y = Union"n (4))"
apply (insert eclose_replacement2 [of A])
apply (rule strong_replacement_cong [THEN iffD1])
apply (rule conj_cong [OF iff_refl iterates_abs [of "big_union(M)"]])
apply (simp_all add: eclose_replacementl relationl_def)
done

lemma (in M_eclose) eclose_closed [intro,simp]:
"M(A) —> M(eclose(A))"
apply (insert eclose_replacementl)
by (simp add: RepFun_closed2 eclose_eq_Union
eclose_replacement2’ relationl_def
iterates_closed [of "big_union(M)"])

lemma (in M_eclose) is_eclose_n_abs [simp]:
"[M(4A); n€nat; M(Z)] = is_eclose_n(M,A,n,Z) <— Z = Union"n (A)"
apply (insert eclose_replacementl)
apply (simp add: is_eclose_n_def relationl_def nat_into_M
iterates_abs [of "big union(M)" _ "Union"])
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done

lemma (in M_eclose) mem_eclose_abs [simp]:
"M(4A) — mem_eclose(M,A,1) <— 1 € eclose(A)"
apply (insert eclose_replacementl)
apply (simp add: mem_eclose_def relationl_def eclose_eq_Union
iterates_closed [of "big_union(M)"])
done

lemma (in M_eclose) eclose_abs [simp]:
"[M(A); M(Z)] = is_eclose(M,A,Z) <— Z = eclose(A)"
apply (simp add: is_eclose_def, safe)
apply (rule M_equalityI, simp_all)
done

6.7 Absoluteness for transrec

transrec(a, H) = wfrec(Memrel(eclose({a})), a, H)

definition
is_transrec :: "[i=o, [i,i,i]=o0, i, i] = o" where
"is_transrec(M,MH,a,z) =
dsa[M]. desa[M]. dmesal[M].
upair(M,a,a,sa) N is_eclose(M,sa,esa) A membership(M,esa,mesa)

A\

is_wfrec(M,MH,mesa,a,z)"
definition

transrec_replacement :: "[i=o, [i,i,i]=0, i] = o" where
"transrec_replacement (M,MH,a) =
dsa[M]. desa[M]. dmesal[M].

upair(M,a,a,sa) N is_eclose(M,sa,esa) N\ membership(M,esa,mesa)

A

wfrec_replacement (M,MH,mesa)"

The condition 0rd(i) lets us use the simpler trans_wfrec_abs rather than
trans_wfrec_abs, which I haven’t even proved yet.

theorem (in M_eclose) transrec_abs:
"[transrec_replacement (M,MH,i); relation2(M,MH,H);
Ord(i); M(i); M(z);
Vx[M]. Vg[M]. function(g) — M(H(x,g))]
— is_transrec(M,MH,i,z) <+— z = transrec(i,H)"
by (simp add: trans_wfrec_abs transrec_replacement_def is_transrec_def
transrec_def eclose_sing_Ord_eq wf_Memrel trans_Memrel relation_Memrel)

theorem (in M_eclose) transrec_closed:
"[transrec_replacement (M,MH,i); relation2(M,MH,H);
Ord(i); M(i);
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Vx[M]. Vg[M]. function(g) — M(H(x,g))]
= M(transrec(i,H))"
by (simp add: trans_wfrec_closed transrec_replacement_def is_transrec_def
transrec_def eclose_sing_Ord_eq wf_Memrel trans_Memrel relation_Memrel)

Helps to prove instances of transrec_replacement

lemma (in M_eclose) transrec_replacementI:
"M(a);
strong_replacement (M,
Ax z. dy[M]. pair(M, x, y, z) A
is_wfrec (M,MH,Memrel (eclose({a})),x,y))]
= transrec_replacement (M,MH,a)"
by (simp add: transrec_replacement_def wfrec_replacement_def)

6.8 Absoluteness for the List Operator length

But it is never used.

definition
is_length :: "[i=>0,i,i,i] = o" where
"is_length(M,A,1,n) =
dsn[M]. d1list_n[M]. dlist_sn[M].
is_list_N(M,A,n,list_n) A 1 ¢ list_n A
successor(M,n,sn) A is_list_N(M,A,sn,list_sn) A 1 € list_sn"

lemma (in M_datatypes) length_abs [simp]:

"[M(A); 1 € 1list(A); n € nat] — is_length(M,A,1,n) +— n = length(1)"
apply (subgoal_tac "M(1) A M(n)")
prefer 2 apply (blast dest: transM)
apply (simp add: is_length_def)
apply (blast intro: list_imp_list_N nat_into_Ord list_N_imp_eq_length

dest: list_N_imp_length_1t)

done

Proof is trivial since length returns natural numbers.

lemma (in M_trivial) length_closed [intro,simp]:
"l € 1list(A) = M(length(1))"
by (simp add: nat_into_M)

6.9 Absoluteness for the List Operator nth

lemma nth_eq_hd_iterates_tl [rule_format]:
"xs € list(A) — Vn € nat. nth(n,xs) = hd’ (t1°"n (xs))"
apply (induct_tac xs)
apply (simp add: iterates_tl_Nil hd’_Nil, clarify)
apply (erule natE)
apply (simp add: hd’_Cons)
apply (simp add: tl1’_Cons iterates_commute)
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done

lemma (in M_basic) iterates_tl’_closed:
"[n € nat; M(x)] = M(t1’"n (x))"

apply (induct_tac n, simp)

apply (simp add: tl1’_Cons tl’_closed)

done

Immediate by type-checking

lemma (in M_datatypes) nth_closed [intro,simp]:
"lxs € 1ist(A); n € nat; M(A)] = M(ath(n,xs))"
apply (case_tac "n < length(xs)")
apply (blast intro: nth_type transM)
apply (simp add: not_lt_iff_le nth_eq_0)
done

definition
is_nth :: "[i=o0,i,i,i] = o" where
"is_nth(M,n,1,Z) =
3X[M]. is_iterates(M, is_tl(M), 1, n, X) A is_hd(M,X,Z)"

lemma (in M_datatypes) nth_abs [simp]:
"[M(A); n € nat; 1 € list(4); M(2)]
— is_nth(M,n,1,Z) <— Z = nth(n,1)"
apply (subgoal_tac "M(1)")
prefer 2 apply (blast intro: transM)
apply (simp add: is_nth_def nth_eq_hd_iterates_tl nat_into_M
tl’_closed iterates_tl’_closed
iterates_abs [OF _ relationl_tl] nth_replacement)
done

6.10 Relativization and Absoluteness for the formuia Con-

structors
definition
is_Member :: "[i=o0,1i,i,i] = o" where

— because Member (x, y) = Inl(Inl({x, y)))
"is_Member (M,x,y,Z) =
dplM]. JulM]. pair(M,x,y,p) A is_Inl(M,p,u) A is_Inl(M,u,Z)"

lemma (in M_trivial) Member_abs [simp]:
"[Mx); M(y); M(2Z)] = is_Member(M,x,y,Z) «— (Z = Member(x,y))"
by (simp add: is_Member_def Member_def)
lemma (in M_trivial) Member_in_M_iff [iff]:
"M(Member (x,y)) +— M(x) A M(y)"
by (simp add: Member_def)

definition
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is_Equal :: "[i=o0,1,i,i] = o" where
— because Equal(x, y) = Inl(Inr({(x, y)))
"is_Equal (M,x,y,Z) =
dp[M]. JulM]. pair(M,x,y,p) A is_Inr(M,p,u) A is_Inl(M,u,Z)"

lemma (in M_trivial) Equal_abs [simp]:
"[M(x); M(y); M(Z)] = is_Equal(M,x,y,Z) <— (Z = Equal(x,y))"
by (simp add: is_Equal_def Equal_def)

lemma (in M_trivial) Equal_in_M_iff [iff]: "M(Equal(x,y)) <— M(x) A
M(Y) n
by (simp add: Equal_def)

definition
is_Nand :: "[i=o0,i,i,i] = o" where
— because Nand(x, y) = Inr(Inl({x, y)))
"is_Nand(M,x,y,Z) =
dp[M]. JulM]. pair(M,x,y,p) A is_Inl(M,p,u) A is_Inr(M,u,Z)"

lemma (in M_trivial) Nand_abs [simp]:
"[M(x); M(y); M(Z)] = is_Nand(M,x,y,Z) +— (Z = Nand(x,y))"
by (simp add: is_Nand_def Nand_def)

lemma (in M_trivial) Nand_in_M_iff [iff]: "M(Nand(x,y)) <— M(x) A M(y)"
by (simp add: Nand_def)

definition
is_Forall :: "[i=o0,i,i] = o" where
— because Forall(x) = Inr(Inr(p))
"is_Forall(M,p,Z) = Ju[M]. is_Inr(M,p,u) A is_Inr(M,u,Z)"

lemma (in M_trivial) Forall_abs [simp]:
"[M(x); M(Z)] = is_Forall(M,x,Z) <— (Z = Forall(x))"
by (simp add: is_Forall_def Forall_def)

lemma (in M_trivial) Forall _in M_iff [iff]: "M(Forall(x)) <— M(x)"
by (simp add: Forall_def)

6.11 Absoluteness for formula rec

definition
formula_rec_case :: "[[i,i]l=i, [i,i]=i, [i,i,i,i]=1i, [i,i]=1i, i,
i] = i" where
— the instance of formula_case in formula_rec
"formula_rec_case(a,b,c,d,h) =
formula_case (a, b,
Au v. c(u, v, h ¢ succ(depth(u)) ¢ u,
h ¢ succ(depth(v)) ‘ v),
Au. d(u, h ¢ succ(depth(u)) ¢ u))"
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Unfold formula_rec to formula_rec_case. Express formula_rec without us-
ing rank or Vset, neither of which is absolute.

lemma (in M_trivial) formula_rec_eq:
"p € formula =
formula_rec(a,b,c,d,p) =
transrec (succ(depth(p)),
Ax h. Lambda (formula, formula_rec_case(a,b,c,d,h)))
apply (simp add: formula_rec_case_def)
apply (induct_tac p)

(4

p”

Base case for Member

apply (subst transrec, simp add: formula.intros)

Base case for Equal

apply (subst transrec, simp add: formula.intros)

Inductive step for Nand

apply (subst transrec)
apply (simp add: succ_Un_distrib formula.intros)

Inductive step for Forall

apply (subst transrec)
apply (simp add: formula_imp_formula_N formula.intros)
done

6.11.1 Absoluteness for the Formula Operator depth

definition
is_depth :: "[i=o0,i,i] = o" where
"is_depth(M,p,n) =
dsn[M]. dformula_n[M]. dformula_sn[M].
is_formula_N(M,n,formula_n) A p ¢ formula_n A
successor(M,n,sn) A is_formula_N(M,sn,formula_sn) A p € formula_sn"

lemma (in M_datatypes) depth_abs [simp]:
"[p € formula; n € nat] — is_depth(M,p,n) <— n = depth(p)"

apply (subgoal_tac "M(p) A M(m)")

prefer 2 apply (blast dest: transM)

apply (simp add: is_depth_def)

apply (blast intro: formula_imp_formula_N nat_into_Ord formula_N_imp_eq_depth
dest: formula_N_imp_depth_1t)

done

Proof is trivial since depth returns natural numbers.

lemma (in M_trivial) depth_closed [intro,simp]:
"p € formula = M(depth(p))"
by (simp add: nat_into_M)
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6.11.2 is_formula_case: relativization of formula_case

definition
is_formula_case ::
"[i=o, [i,i,i]=o0, [i,i,i]=o0, [i,i,i]=o0, [i,i]=0, i, i] = o"
where
— no constraint on non-formulas
"is_formula_case(M, is_a, is_b, is_c, is_d, p, z) =
~Vx[M]. Yy[M]. finite_ordinal(M,x) — finite_ordinal(M,y) —
is_Member (M,x,y,p) — is_a(x,y,z)) A
(Vx[M]. Vy[M]. finite_ordinal(M,x) — finite_ordinal(M,y) —
is_Equal(M,x,y,p) — is_b(x,y,z)) A
(Vx[M]. Vy[M]. mem_formula(M,x) — mem_formula(M,y) —
is_Nand(M,x,y,p) — is_c(x,y,z)) A
(Vx[M]. mem_formula(M,x) — is_Forall(M,x,p) — is_d(x,z))"

lemma (in M_datatypes) formula_case_abs [simp]:
"[Relation2(M,nat,nat,is_a,a); Relation2(M,nat,nat,is_b,b);
Relation2(M,formula,formula,is_c,c); Relationl(M,formula,is_d,d);
p € formula; M(z)]
— is_formula_case(M,is_a,is_b,is_c,is_d,p,z) —
z = formula_case(a,b,c,d,p)"
apply (simp add: formula_into_M is_formula_case_def)
apply (erule formula.cases)

apply (simp_all add: Relationl_def Relation2_def)
done

lemma (in M_datatypes) formula_case_closed [intro,simp]:
"[p € formula;
Vx[M]. Vy[M]. x€énat — y€nat — M(a(x,y));
Vx[M]. Vy[M]. x€énat — y€nat — M(b(x,y));
Vx[M]. Vy[M]. x€formula — y€&formula — M(c(x,y));
Vx[M]. x€formula — M(d(x))] = M(formula_case(a,b,c,d,p))"
by (erule formula.cases, simp_all)

6.11.3 Absoluteness for formula_rec: Final Results

definition
is_formula_rec :: "[i=o, [i,i,i]=o0, i, i] = o" where
— predicate to relativize the functional formula_rec
"is_formula_rec(M,MH,p,z) =
Jdp[M]. 3i[M]. If[M]. finite_ordinal (M,dp) A is_depth(M,p,dp) A
successor(M,dp,i) A fun_apply(M,f,p,z) A is_transrec(M,MH,i,f)"

Sufficient conditions to relativize the instance of formula_case in formula_rec

lemma (in M_datatypes) Relationl_formula_rec_case:
"[Relation2(M, nat, nat, is_a, a);
Relation2(M, nat, nat, is_b, b);
Relation2 (M, formula, formula,
is_c, Au v. c(u, v, h‘succ(depth(u)) ‘u, h‘succ(depth(v)) ‘v));
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Relationl (M, formula,
is_d, Au. d(u, h ¢ succ(depth(uw)) ° w));
M()]
— Relationl1(M, formula,
is_formula_case (M, is_a, is_b, is_c, is_d),
formula_rec_case(a, b, c, d, h))"
apply (simp (no_asm) add: formula_rec_case_def Relationl_def)
apply (simp)
done

This locale packages the premises of the following theorems, which is the
normal purpose of locales. It doesn’t accumulate constraints on the class M,
as in most of this development.

locale Formula_Rec = M_eclose +
fixes a and is_a and b and is_b and ¢ and is_c and d and is_d and
MH
defines
"MH(u::i,f,z) =
Vfml[M]. is_formula(M,fml) —
is_lambda
(M, fml, is_formula_case (M, is_a, is_b, is_c(f), is_d(f)), z)"

assumes a_closed: "[xE€nat; yE€nat] = M(a(x,y))"

and a_rel: "Relation2(M, nat, nat, is_a, a)"
and b_closed: "[x€nat; y€nat] = M(b(x,y))"
and b_rel: "Relation2(M, nat, nat, is_b, b)"

and c_closed: "[x € formula; y € formula; M(gx); M(gy)]
= M(c(x, y, gx, gy))"
and c_rel:
"M(f) =
Relation2 (M, formula, formula, is_c(f),
Au v. c(u, v, £ ¢ succ(depth(u)) “ u, £ ¢ succ(depth(v))

¢ V))H
and d_closed: "[x € formula; M(gx)] = M(d(x, gx))"
and d_rel:
"M(f) =
Relationl (M, formula, is_d(f), Au. d(u, f ¢ succ(depth(u)) ¢
w)"

and fr_replace: "n € nat —> transrec_replacement(M,MH,n)"
and fr_lam_replace:
IIM(g) —
strong_replacement
M, \x y. x € formula A
y = (x, formula_rec_case(a,b,c,d,g,x)))"

lemma (in Formula_Rec) formula_rec_case_closed:

"[M(g); p € formula] = M(formula_rec_case(a, b, c, d, g, p))"
by (simp add: formula_rec_case_def a_closed b_closed c_closed d_closed)
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lemma (in Formula_Rec) formula_rec_lam_closed:
"M(g) —> M(Lambda (formula, formula_rec_case(a,b,c,d,g)))"
by (simp add: lam_closed2 fr_lam_replace formula_rec_case_closed)

lemma (in Formula_Rec) MH_rel2:

"relation2 (M, MH,

Ax h. Lambda (formula, formula_rec_case(a,b,c,d,h)))"

apply (simp add: relation2 def MH_def, clarify)
apply (rule lambda_abs2)
apply (rule Relationl_formula_rec_case)
apply (simp_all add: a_rel b_rel c_rel d_rel formula_rec_case_closed)
done

lemma (in Formula_Rec) fr_transrec_closed:
"n € nat
— M(transrec
(n, A\x h. Lambda(formula, formula_rec_case(a, b, ¢, d, h))))"
by (simp add: transrec_closed [OF fr_replace MH_rel2]
nat_into_M formula_rec_lam_closed)

The main two results: formula_rec is absolute for M.

theorem (in Formula_Rec) formula_rec_closed:
"p € formula —> M(formula_rec(a,b,c,d,p))"
by (simp add: formula_rec_eq fr_transrec_closed
transM [OF _ formula_closed])

theorem (in Formula_Rec) formula_rec_abs:
"[p € formula; M(z)]
— is_formula_rec(M,MH,p,z) <— z = formula_rec(a,b,c,d,p)"
by (simp add: is_formula_rec_def formula_rec_eq transM [0OF _ formula_closed]
transrec_abs [OF fr_replace MH_rel2] depth_type
fr_transrec_closed formula_rec_lam_closed eq_commute)

end

7 Closed Unbounded Classes and Normal Func-
tions

theory Normal imports ZF begin

One source is the book

Frank R. Drake. Set Theory: An Introduction to Large Cardinals. North-
Holland, 1974.

7.1 Closed and Unbounded (c.u.) Classes of Ordinals

definition
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Closed :: "(i=0) = o" where
"Closed(P) = VI. I 75 0 — (WieI. 0rd(i) A P(i)) — P(U )"

definition
Unbounded :: "(i=0) = o" where
"Unbounded(P) = Vi. Ord(i) — (3j. i<j AN P(G)"

definition
Closed_Unbounded :: "(i=o0) = o" where
"Closed_Unbounded (P) = Closed(P) A Unbounded(P)"

7.1.1 Simple facts about c.u. classes

lemma ClosedI:
"IAI. [I # 0; Vi€I. 0rd(i) A P(i)] = P (D)]
= Closed(P)"
by (simp add: Closed_def)

lemma ClosedD:
"[Closed(P); I # 0; N\i. i€l = 0rd(i); N\i. i€l = P(i)]
= P @N"
by (simp add: Closed_def)

lemma UnboundedD:
"[Unbounded (P); 0rd(i)] = 3j. i<j A P()"
by (simp add: Unbounded_def)

lemma Closed_Unbounded_imp_Unbounded: "Closed_Unbounded(C) = Unbounded (C)"
by (simp add: Closed_Unbounded_def)

The universal class, V, is closed and unbounded. A bit odd, since C. U.
concerns only ordinals, but it’s used below!

theorem Closed_Unbounded_V [simp]: "Closed_Unbounded(Ax. True)"
by (unfold Closed_Unbounded_def Closed_def Unbounded_def, blast)

The class of ordinals, 0Ord, is closed and unbounded.

theorem Closed_Unbounded_0Ord [simp]: "Closed_Unbounded (0Ord)"
by (unfold Closed_Unbounded_def Closed_def Unbounded_def, blast)

The class of limit ordinals, Limit, is closed and unbounded.

theorem Closed_Unbounded_Limit [simp]: "Closed_Unbounded(Limit)"
proof -
have "3j. i < j A Limit(j)" if "Ord(i)" for i
apply (rule_tac x="i++nat" in exI)
apply (blast intro: oadd_lt_self oadd_LimitI Limit_has_O that)
done
then show ?thesis
by (auto simp: Closed_Unbounded_def Closed_def Unbounded_def Limit_Union)
qed
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The class of cardinals, Card, is closed and unbounded.

theorem Closed_Unbounded_Card [simp]: "Closed_Unbounded(Card)"
proof -
have "Vi. 0Ord(i) — (3j. i < j A Card(j))"
by (blast intro: 1t_csucc Card_csucc)
then show ?thesis
by (simp add: Closed_Unbounded_def Closed_def Unbounded_def)

qed

7.1.2 The intersection of any set-indexed family of c.u. classes is

c.u.

The constructions below come from Kunen, Set Theory, page 78.

locale cub_family =
fixes P and A
fixes next_greater — the next ordinal satisfying class A
fixes sup_greater — sup of those ordinals over all A
assumes closed: "acA = Closed(P(a))"
and unbounded: "a€A = Unbounded(P(a))"
and A_nonO: "A#0"
defines "next_greater(a,x)
and "sup_greater(x) =

=puy. x<y A P(a,y)"
|Ja€A. next_greater(a,x)"

begin

Trivial that the intersection is closed.

lemma Closed_INT: "Closed(Ax. Vi€A. P(i,x))"
by (blast intro: ClosedI ClosedD [OF closed])

All remaining effort goes to show that the intersection is unbounded.

lemma Ord_sup_greater:
"Ord (sup_greater (x))"
by (simp add: sup_greater_def next_greater_def)

lemma Ord_next_greater:
"Ord(next_greater(a,x))"
by (simp add: next_greater_def)

next_greater works as expected: it returns a larger value and one that be-

longs to class P(a).

lemma
assumes "Ord(x)" "a€cA"
shows next_greater_in_P: "P(a, next_greater(a,x))"
and next_greater_gt: "x < next_greater(a,x)"
proof -
obtain y where "x < y" "P(a,y)"
using assms UnboundedD [OF unbounded] by blast
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then have "P(a, next_greater(a,x)) N x < next_greater(a,x)"
unfolding next_greater_def
by (blast intro: LeastI2 1t_0rd2)
then show "P(a, next_greater(a,x))" "x < next_greater(a,x)"
by auto
qed

lemma sup_greater_gt:
"Ord(x) = x < sup_greater(x)"
using A_non0 unfolding sup_greater_def
by (blast intro: UN_upper_lt next_greater_gt Ord_next_greater)

lemma next_greater_le_sup_greater:
"a€A = next_greater(a,x) < sup_greater(x)"
unfolding sup_greater_def
by (force intro: UN_upper_le Ord_next_greater)

lemma omega_sup_greater_eq UN:
assumes "Ord(x)" "acA"
shows "sup_greater”w (x) =
(Un€nat. next_greater(a, sup_greater™n (x)))"
proof (rule le_anti_sym)
show "sup_greater w (x) < (|Jn€nat. next_greater(a, sup_greater™n
(x)))"
using assms
unfolding iterates_omega_def
by (blast intro: leI le_implies_UN_le_UN next_greater_gt Ord_iterates
Ord_sup_greater)
next
have "Ord(|Jn€nat. sup_greater™n (x))"
by (blast intro: Ord_iterates Ord_sup_greater assms)
moreover have "next_greater(a, sup_greater™n (x)) <
(Un€nat. sup_greater™n (x))" if "n € nat" for n
proof (rule UN_upper_le)
show '"next_greater(a, sup_greater™n (x)) < sup_greater succ(n) (x)"
using assms by (simp add: next_greater_le_sup_greater)
show "Ord(|Jxa€nat. sup_greater™xa (x))"
using assms by (blast intro: Ord_iterates Ord_sup_greater)
qged (use that in auto)
ultimately
show "(|JnE€nat. next_greater(a, sup_greater™n (x))) < sup_greater w
(x)"

using assms unfolding iterates_omega_def by (blast intro: UN_least_le)
qed
lemma P_omega_sup_greater:

"[0rd(x); acA] = P(a, sup_greater™w (x))"
apply (simp add: omega_sup_greater_eq_UN)
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apply (rule ClosedD [OF closed])

apply (blast intro: 1tD, auto)
apply (blast intro: Ord_iterates Ord_next_greater Ord_sup_greater)
apply (blast intro: next_greater_in_P Ord_iterates Ord_sup_greater)
done

lemma omega_sup_greater_gt:
"Ord(x) = x < sup_greater w (x)"
apply (simp add: iterates_omega_def)
apply (rule UN_upper_1t [of 1], simp_all)
apply (blast intro: sup_greater_gt)
apply (blast intro: Ord_iterates Ord_sup_greater)
done

lemma Unbounded_INT: "Unbounded(A\x. Va€cA. P(a,x))"
unfolding Unbounded_def
by (blast intro!: omega_sup_greater_gt P_omega_sup_greater)

lemma Closed_Unbounded_INT:
"Closed_Unbounded (A\x. Va€A. P(a,x))"
by (simp add: Closed_Unbounded_def Closed_INT Unbounded_INT)

end

theorem Closed_Unbounded_INT:

assumes "/\a. acA = Closed_Unbounded(P(a))"

shows "Closed_Unbounded (A\x. Va€A. P(a, x))"
proof (cases "A=0")

case False

with assms [unfolded Closed_Unbounded_def] show ?7thesis

by (intro cub_family.Closed_Unbounded_INT [OF cub_family.intro]) auto

qed auto

lemma Int_iff_ INT2:
"P(x) N Q(x) «— (Vi€2. (i=0 — P(x)) A (i=1 — Q(x)))"
by auto

theorem Closed_Unbounded_Int:
"[Closed_Unbounded (P); Closed_Unbounded(Q)]
— Closed_Unbounded(A\x. P(x) A Q(x))"
unfolding Int_iff_ INT2
by (rule Closed_Unbounded_INT, auto)

7.2 Normal Functions

definition
mono_le_subset :: "(i=i) = o" where
"mono_le_subset(M) = Vi j. i<j — M(@i) C M@G)"
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definition
mono_0Ord :: "(i=i) = o" where
"mono_Ord(F) = Vi j. i<j — F(i) < F(j)"

definition
cont_0Ord :: "(i=1i) = o" where
"cont_Ord(F) = V1. Limit(1) — F(1) = (|Ji<1. F(@i))"

definition
Normal :: "(i=i) = o" where
"Normal (F) = mono_0rd(F) A cont_Ord(F)"

7.2.1 Immediate properties of the definitions

lemma Normall:
"N j. i<j = F(i) < F(j); Al. Limit(1) = F(1) = (Ji<l. F(i))]
=—> Normal(F)"
by (simp add: Normal_def mono_Ord_def cont_Ord_def)

lemma mono_0Ord_imp_Ord: "[0rd(i); mono_0Ord(F)] —> Ord(F(i))"
apply (auto simp add: mono_Ord_def)
apply (blast intro: 1t_0Ord)
done

lemma mono_Ord_imp_mono: "[i<j; mono_Ord(F)] — F(i) < F(j)"
by (simp add: mono_Ord_def)

lemma Normal_imp_Ord [simp]: "[Normal(F); Ord(i)] = Ord(F(i))"
by (simp add: Normal_def mono_Ord_imp_Ord)

lemma Normal_imp_cont: "[Normal(F); Limit(1)] = F(1) = ({(Ji<1. F(@i))"
by (simp add: Normal_def cont_0Ord_def)

lemma Normal_imp_mono: "[i<j; Normal(F)] = F(i) < F(j)"
by (simp add: Normal_def mono_Ord_def)

lemma Normal_increasing:
assumes i: "Ord(i)" and F: "Normal(F)" shows"i < F(i)"
using i
proof (induct i rule: trans_induct3)
case 0 thus 7case by (simp add: subset_imp_le F)
next
case (succ i)
hence "F(i) < F(succ(i))" using F
by (simp add: Normal_def mono_Ord_def)
thus 7case using succ.hyps
by (blast intro: 1lt_transl)
next
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case (limit 1)

hence "1 = (Jy<1. y)"
by (simp add: Limit_OUN_eq)

also have "... < (Uy<l. F(y))" using limit
by (blast intro: 1tD le_implies_OUN_le_OUN)

finally have "1 < ((Uy<1. F(y))" .

moreover have "(|Jy<l. F(y)) < F(1)" using limit F
by (simp add: Normal_imp_cont 1t_0Ord)

ultimately show ?case
by (blast intro: le_trans)

qed

7.2.2 The class of fixedpoints is closed and unbounded

The proof is from Drake, pages 113-114.

lemma mono_0Ord_imp_le_subset: "mono_Ord(F) —> mono_le_subset (F)"
apply (simp add: mono_le_subset_def, clarify)
apply (subgoal_tac "F(i)<F(j)", blast dest: le_imp_subset)
apply (simp add: le_iff)
apply (blast intro: 1t_0rd2 mono_Ord_imp_Ord mono_Ord_imp_mono)
done

The following equation is taken for granted in any set theory text.

lemma cont_0Ord_Union:
"[cont_0Ord(F); mono_le_subset(F); X=0 — F(0)=0; Vx€X. 0rd(x)]
= F(U X)) = Uyex. F(y))"
apply (frule Ord_set_cases)
apply (erule disjE, force)
apply (thin_tac "X=0 — Q" for Q, auto)

The trival case of [ JX € X

apply (rule equalitylI, blast intro: Ord_Union_eq_succD)
apply (simp add: mono_le_subset_def UN_subset_iff le_subset_iff)
apply (blast elim: equalityE)

The limit case, Limit (| X):

1. [cont_0rd(F); mono_le_subset(F); VxeX. 0rd(x); UX ¢ X;
Limit (\JX)]
= F(UX) = Uyex. F(y))

apply (simp add: OUN_Union_eq cont_Ord_def)
apply (rule equalityI)
First inclusion:

apply (rule UN_least [OF OUN_least])
apply (simp add: mono_le_subset_def, blast intro: leI)

Second inclusion:
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apply (rule UN_least)

apply (frule Union_upper_le, blast, blast)
apply (erule leE, drule 1tD, elim UnionE)
apply (simp add: OUnion_def)

apply blast+

done

lemma Normal_Union:
"[X#£0; Vx€X. Ord(x); Normal(F)] = F(J (X)) = (Uy€X. F(y))"
unfolding Normal_def
by (blast intro: mono_Ord_imp_le_subset cont_Ord_Union)

lemma Normal_imp_fp_Closed: "Normal(F) —> Closed(Ai. F(i) = i)"
apply (simp add: Closed_def ball_conj_distrib, clarify)
apply (frule Ord_set_cases)
apply (auto simp add: Normal_Union)
done

lemma iterates_Normal_increasing:
"[n€nat; x < F(x); Normal(F)]
= F™n (x) < F~(succ(n)) (x)"
by (induct n rule: nat_induct) (simp_all add: Normal_imp_mono)

lemma Ord_iterates_Normal:
"[n€nat; Normal(F); O0Ord(x)] = 0rd(F™n (x))"
by (simp)

THIS RESULT IS UNUSED

lemma iterates_omega_Limit:

"[Normal(F); x < F(x)] = Limit(Fw (x))"

apply (frule 1t_Ord)

apply (simp add: iterates_omega_def)

apply (rule increasing_LimitI)

— this lemma is [0 < 1; Vx€l. Jy€l. x < y|] = Limit (1)

apply (blast intro: UN_upper_lt [of "1"]  Normal_imp_Ord
Ord_iterates 1t_imp_0_1t
iterates_Normal_increasing, clarify)

apply (rule bexI)

apply (blast intro: Ord_in_Ord [OF Ord_iterates_Normall])

apply (rule UN_I, erule nat_succl)

apply (blast intro: iterates_Normal_increasing Ord_iterates_Normal
1tD [OF 1t_trans1, OF succ_lelI, OF 1tI])

done

lemma iterates_omega_fixedpoint:

"[Normal(F); Ord(a)] = F(Fw (a)) = Fw (a)"
apply (frule Normal_increasing, assumption)
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apply (erule leE)

apply (simp_all add: iterates_omega_triv [OF sym])
apply (simp add: iterates_omega_def Normal_Union)
apply (rule equalityI, force simp add: nat_succl)

Opposite inclusion:

1. [Normal(F); Ord(a); a < F(a)]
= (Uné€nat. Fn (a)) C ((Ux€nat. F(Fx (a)))

apply clarify

apply (rule UN_I, assumption)

apply (frule iterates_Normal_increasing, assumption, assumption, simp)
apply (blast intro: Ord_trans 1tD Ord_iterates_Normal Normal_imp_Ord [of
FI)

done

lemma iterates_omega_increasing:
"[Normal(F); Ord(a)] = a < Fw (a)"
by (simp add: iterates_omega_def UN_upper_le [of 0])

lemma Normal_imp_fp_Unbounded: "Normal(F) —> Unbounded(\i. F(i) = i)"
apply (unfold Unbounded_def, clarify)

apply (rule_tac x="F~w (succ(i))" in exI)

apply (simp add: iterates_omega_fixedpoint)

apply (blast intro: lt_trans2 [OF _ iterates_omega_increasing])

done

theorem Normal_imp_fp_Closed_Unbounded:
"Normal (F) — Closed_Unbounded(Ai. F(i) = i)"
by (simp add: Closed_Unbounded_def Normal_imp_fp_Closed Normal_imp_fp_Unbounded)

7.2.3 Function normalize

Function normalize maps a function F to a normal function that bounds
it above. The result is normal if and only if F is continuous: succ is not
bounded above by any normal function, by Normal_imp_fp_Unbounded.

definition
normalize :: "[i=i, i] = i" where
"normalize(F,a) = transrec2(a, F(0), Ax r. F(succ(x)) U succ(r))"

lemma Ord_normalize [simp, intro]:

"[0rd(a); Ax. Ord(x) = 0rd(F(x))] = Ord(normalize(F, a))"
proof (induct a rule: trans_induct3)
qed (simp_all add: 1tD def_transrec2 [OF normalize_def])

lemma normalize_increasing:
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assumes ab: "a < b" and F: "Ax. Ord(x) = 0Ord(F(x))"
shows "normalize(F,a) < normalize(F,b)"
proof -
have "Ord(b)" using ab by (blast intro: 1t_0rd2)
hence "x < b =— normalize(F,x) < normalize(F,b)" for x
proof (induct b arbitrary: x rule: trans_induct3)
case 0 thus 7case by simp
next
case (succ b)
thus 7case
by (auto simp add: le_iff def_transrec2 [OF normalize_def] intro:
Un_upper2_1t F)
next
case (limit 1)
hence sc: "succ(x) < 1"
by (blast intro: Limit_has_succ)
hence "normalize(F,x) < normalize(F,succ(x))"
by (blast intro: limit elim: 1tE)
hence "normalize(F,x) < (|Jj<1. normalize(F,j))"
by (blast intro: OUN_upper_lt 1t_Ord F sc)
thus ?case using limit
by (simp add: def_transrec2 [OF normalize_def])
qed
thus 7thesis using ab .
qed

theorem Normal_normalize:
assumes "Ax. Ord(x) = 0rd(F(x))" shows "Normal(normalize(F))"
proof (rule Normall)
show "Ai j. i < j = normalize(F,i) < normalize(F,j)"
using assms by (blast intro!: normalize_increasing)
show "AIl. Limit(1) = normalize(F, 1) = (|Ji<l. normalize(F,i))"
by (simp add: def_transrec2 [OF normalize_def])
qed

theorem le_normalize:

assumes a: "Ord(a)" and coF: "cont_0Ord(F)" and F: "Ax. Ord(x) =
Ord(F(x))"

shows "F(a) < normalize(F,a)"
using a
proof (induct a rule: trans_induct3)

case 0 thus ?case by (simp add: F def_transrec2 [OF normalize_def])
next

case (succ a)

thus 7case

by (simp add: def_transrec2 [OF normalize_def] Un_upperl_le F )

next

case (limit 1)

thus 7case using F coF [unfolded cont_0Ord_def]
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by (simp add: def_transrec2 [OF normalize_def] le_implies_0OUN_le_OUN
1tD)
qed

7.3 The Alephs

This is the well-known transfinite enumeration of the cardinal numbers.

definition
Aleph :: "i = 1i" (<(<open_block notation=<prefix N>>N_)> [90] 90)
where
"N\a = transrec2(a, nat, Ax r. csucc(r))"

lemma Card_Aleph [simp, intro]:
"Ord(a) = Card(Aleph(a))"
apply (erule trans_induct3)
apply (simp_all add: Card_csucc Card_nat Card_is_0Ord
def_transrec2 [OF Aleph_def])
done

lemma Aleph_increasing:
assumes ab: "a < b" shows "Aleph(a) < Aleph(b)"
proof -
have "Ord(b)" using ab by (blast intro: 1t_0rd2)
hence "x < b = Aleph(x) < Aleph(b)" for x
proof (induct b arbitrary: x rule: trans_induct3)
case 0 thus ?case by simp
next
case (succ b)
thus 7case
by (force simp add: le_iff def_transrec2 [OF Aleph_def]
intro: 1t_trans 1t_csucc Card_is_Ord)
next
case (limit 1)
hence sc: "succ(x) < 1"
by (blast intro: Limit_has_succ)
hence "Rx < (|Jj<I. Nj)" using limit
by (blast intro: OUN_upper_lt Card_is_Ord 1tD 1t_0Ord)
thus ?7case using limit
by (simp add: def_transrec2 [OF Aleph_def])
qed
thus ?thesis using ab .
qed

theorem Normal_Aleph: "Normal(Aleph)"
proof (rule Normall)
show "i < j = Ni < Rj" for i j
by (blast intro!: Aleph_increasing)
show "Limit(1) = N1 = (|Ji<l. Ni)" for 1
by (simp add: def_transrec2 [OF Aleph_def])
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qed

end

8 The Reflection Theorem

theory Reflection imports Normal begin

lemma all_iff _not_ex_not: "(Wx. P(x)) +— (- (dx. = P(x)))"
by blast

lemma ball_iff_not_bex_not: "(Vx€A. P(x)) +— (= (dx€hd. = P(x)))"
by blast

From the notes of A. S. Kechris, page 6, and from Andrzej Mostowski,
Constructible Sets with Applications, North-Holland, 1969, page 23.

8.1 Basic Definitions

First part: the cumulative hierarchy defining the class M. To avoid han-
dling multiple arguments, we assume that Mset (1) is closed under ordered
pairing provided 1 is limit. Possibly this could be avoided: the induc-
tion hypothesis C1_reflects (in locale ex_reflection) could be weakened
toVyeMset(a). VzeMset(a). Py, z)) «— Q(a, (y, z)), removing most
uses of Pair_in_Mset. But there isn’t much point in doing so, since ultimately
the ex_reflection proof is packaged up using the predicate Reflects.

locale reflection =
fixes Mset and M and Reflects

assumes Mset_mono_le : "mono_le_subset (Mset)"
and Mset_cont : "cont_Ord(Mset)"
and Pair_in_Mset : "[x € Mset(a); y € Mset(a); Limit(a)]

= (x,y) € Mset(a)"
defines "M(x) = Ja. Ord(a) A x € Mset(a)"
and "Reflects(C1,P,Q) = Closed_Unbounded(Cl) A
Va. Cl(a) — (VxeMset(a). P(x) +— Q(a,x)))"
fixes FO — ordinal for a specific value y
fixes FF — sup over the whole level, y € Mset(a)
fixes C1Ex — Reflecting ordinals for the formula 3z. P
defines "FO(P,y) = p b. (3z. M(z) A P{y,z))) —
(3zeMset (b). P((y,z)))"
Aa. |Jy€Mset(a). FO(P,y)"
= Limit(a) A normalize(FF(P),a) = a"

and "FF(P) =
and "ClEx(P,a)

begin

lemma Mset_mono: "i<j = Mset(i) C Mset(j)"
using Mset_mono_le by (simp add: mono_le_subset_def leI)

113



Awkward: we need a version of C1Ex_def as an equality at the level of classes,
which do not really exist

lemma CIlEx_eq:
"ClEx(P) = Ma. Limit(a) A normalize(FF(P),a) = a"
by (simp add: ClEx_def [symmetric])

8.2 Easy Cases of the Reflection Theorem

theorem Triv_reflection [intro]:
"Reflects(Ord, P, la x. P(x))"
by (simp add: Reflects_def)

theorem Not_reflection [intro]:
"Reflects(C1l,P,) —> Reflects(Cl, Ax. —P(x), la x. —Q(a,x))"
by (simp add: Reflects_def)

theorem And_reflection [intro]:
"[Reflects(C1,P,Q); Reflects(C’,P’,Q’)]
— Reflects(la. Cl(a) A C’(a), Xx. P(x) N P’(x),
Aa x. Q(a,x) N Q’(a,x))"
by (simp add: Reflects_def Closed_Unbounded_Int, blast)

theorem Or_reflection [intro]:
”[[Reflects(Cl,P,Q); Reflects(C’,P’,Q’)]]
= Reflects(la. Cl(a) A C’(a), Xx. P(x) V P’(x),
Aa x. Q(a,x) V Q’(a,x))"
by (simp add: Reflects_def Closed_Unbounded_Int, blast)

theorem Imp_reflection [intro]:
"[Reflects(C1l,P,Q); Reflects(C’,P’,Q’)]
= Reflects(la. Cl(a) A C’(a),
Ax. P(x) — P’ (x),
Aa x. Q(a,x) — Q’(a,x))"
by (simp add: Reflects_def Closed_Unbounded_Int, blast)

theorem Iff_reflection [intro]:
"[Reflects(C1l,P,Q); Reflects(C’,P’,Q’)]
— Reflects(la. Cl(a) A C’(a),
Ax. P(x) +— P’(x),
Aa x. Q(a,x) <— Q’(a,x))"
by (simp add: Reflects_def Closed_Unbounded_Int, blast)

8.3 Reflection for Existential Quantifiers

lemma FO_works:
"[y€Mset (a); Ord(a); M(z); P({y,z))] = Jz€Mset(FO(P,y)). P({y,z))"
unfolding FO_def M_def
apply clarify
apply (rule LeastI2)
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apply (blast intro: Mset_mono [THEN subsetD])
apply (blast intro: 1t_Ord2, blast)
done

lemma Ord_FO [intro,simp]: "Ord(FO(P,y))"
by (simp add: FO_def)

lemma Ord_FF [intro,simp]: "Ord(FF(P,y))"
by (simp add: FF_def)

lemma cont_Ord_FF: "cont_Ord(FF(P))"
using Mset_cont by (simp add: cont_Ord_def FF_def, blast)

Recall that FO depends upon y € Mset(a), while FF depends only upon a.

lemma FF_works:
"[M(z); yeMset(a); P((y,z)); Ord(a)] = Jze€Mset(FF(P,a)). P((y,z))"
apply (simp add: FF_def)
apply (simp_all add: cont_Ord_Union [of concl: Mset]
Mset_cont Mset_mono_le not_emptyI)
apply (blast intro: FO_works)
done

lemma FFN_works:
"[M(z); yeMset(a); P((y,z)); Ord(a)]
= JzcMset(normalize (FF(P),a)). P((y,z))"
apply (drule FF_works [of concl: P], assumption+)
apply (blast intro: cont_Ord_FF le_normalize [THEN Mset_mono, THEN subsetD])
done

end

Locale for the induction hypothesis

locale ex_reflection = reflection +
fixes P — the original formula
fixes @ — the reflected formula
fixes C1 — the class of reflecting ordinals
assumes Cl_reflects: "[Cl(a); Ord(a)] = Vx€Mset(a). P(x) +— Q(a,x)"

begin

lemma ClEx_downward:
"[M(z); ye€Mset(a); P((y,z)); Cl(a); ClEx(P,a)]
= dzeMset(a). Q(a,(y,z))"
apply (simp add: ClEx_def, clarify)
apply (frule Limit_is_Ord)
apply (frule FFN_works [of concl: P], assumption+)
apply (drule Cl_reflects, assumption+)
apply (auto simp add: Limit_is_Ord Pair_in_Mset)
done
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lemma CIlEx_upward:
"[zeMset (a); yeMset(a); Q(a,{(y,z)); Cl(a); ClEx(P,a)]
= Jz. M(z) AN P{y,z))"
apply (simp add: ClEx_def M_def)
apply (blast dest: Cl_reflects
intro: Limit_is_Ord Pair_in_Mset)
done

Class C1Ex indeed consists of reflecting ordinals...

lemma ZF ClEx_iff:

"[y€Mset (a); Cl(a); ClEx(P,a)]

= (Hz. M@) AN P{y,z))) +— (FzeMset(a). Q(a,{y,z)))"
by (blast intro: dest: ClEx_downward ClEx_upward)

...and it is closed and unbounded

lemma ZF_Closed_Unbounded_ClEx:
"Closed_Unbounded (C1Ex(P))"
apply (simp add: ClEx_eq)
apply (fast intro: Closed_Unbounded_Int Normal_imp_fp_Closed_Unbounded
Closed_Unbounded_Limit Normal_normalize)
done

end

The same two theorems, exported to locale reflection.

context reflection
begin

Class C1Ex indeed consists of reflecting ordinals...

lemma CIlEx_iff:
"[yeMset (a); Cl(a); ClEx(P,a);
Na. [C1(a); Ord(a)] = VxeMset(a). P(x) +— Q(a,x)]
= (Jz. M) A P{y,z))) <— (FzeMset(a). Q(a,(y,z)))"
unfolding ClEx_def FF_def FO_def M_def
apply (rule ex_reflection.ZF_ClEx_iff
[OF ex_reflection.intro, OF reflection.intro ex_reflection_axioms.intro,
of Mset C1])
apply (simp_all add: Mset_mono_le Mset_cont Pair_in_Mset)
done

lemma Closed_Unbounded_ClEx:
"(Aa. [Cl(a); Ord(a)] = Vx€Mset(a). P(x) «— Q(a,x))
— Closed_Unbounded (C1Ex(P))"
unfolding ClEx_eq FF_def FO_def M_def
apply (rule ex_reflection.ZF_Closed_Unbounded_ClEx [of Mset _ _ C1])
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apply (rule ex_reflection.intro, rule reflection_axioms)
apply (blast intro: ex_reflection_axioms.intro)
done

8.4 Packaging the Quantifier Reflection Rules

lemma Ex_reflection_O:
"Reflects(C1,PO0,Q0)
— Reflects(la. Cl(a) A ClEx(P0,a),
Ax. Jz. M(z) N PO((x,z)),
Aa x. JzeMset(a). QO0(a,{x,z)))"
apply (simp add: Reflects_def)
apply (intro conjI Closed_Unbounded_Int)
apply blast
apply (rule Closed_Unbounded_ClEx [of C1 PO (0], blast, clarify)
apply (rule_tac C1=Cl in ClEx_iff, assumption+, blast)
done

lemma All_reflection_O:
"Reflects (C1,PO0,Q0)
— Reflects(la. Cl(a) A ClEx(\x.—P0(x), a),
Ax. Vz. M(z) — PO((x,z)),
Aa x. Vz€eMset(a). Q0(a,{x,z)))"
apply (simp only: all_iff not_ex_not ball_iff_not_bex_not)
apply (rule Not_reflection, drule Not_reflection, simp)
apply (erule Ex_reflection_O0)
done

theorem Ex_reflection [intro]:
"Reflects(Cl, Ax. P(fst(x),snd(x)), la x. Q(a,fst(x),snd(x)))
— Reflects(la. Cl(a) A ClEx(\x. P(fst(x),snd(x)), a),
Ax. dz. M(z) AN P(x,z),
Aa x. JzeMset(a). Q(a,x,z))"
by (rule Ex_reflection_0 [of _ " Ax. P(fst(x),snd(x))"
"Aa x. Q(a,fst(x),snd(x))", simplified])

theorem All_reflection [intro]:
"Reflects(Cl, Mx. P(fst(x),snd(x)), la x. Q(a,fst(x),snd(x)))
= Reflects(la. Cl(a) A ClEx(\x. —P(fst(x),snd(x)), a),
Mx. Vz. M(z) — P(x,z),
Aa x. VzeMset(a). Q(a,x,z))"
by (rule All_reflection_O [of _ "MAx. P(fst(x),snd(x))"
"Aa x. Q(a,fst(x),snd(x))", simplified])

And again, this time using class-bounded quantifiers

theorem Rex_reflection [intro]:
"Reflects(Cl, Ax. P(fst(x),snd(x)), Mla x. Q(a,fst(x),snd(x)))
— Reflects(la. Cl(a) A ClEx(\x. P(fst(x),snd(x)), a),
Ax. dz[M]. P(x,z),
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Aa x. dzeMset(a). Q(a,x,z))"
by (unfold rex_def, blast)

theorem Rall _reflection [intro]:
"Reflects(Cl, Mx. P(fst(x),snd(x)), Ma x. Q(a,fst(x),snd(x)))
— Reflects(la. Cl(a) A ClEx(\x. —P(fst(x),snd(x)), a),
Ax. Vz[M]. P(x,z),
Aa x. VzeMset(a). Q(a,x,z))"
by (unfold rall_def, blast)

No point considering bounded quantifiers, where reflection is trivial.

8.5 Simple Examples of Reflection

Example 1: reflecting a simple formula. The reflecting class is first given as
the variable 7C1 and later retrieved from the final proof state.

schematic__goal
"Reflects(?C1,
Ax. dy. M(y) AN x € y,
Aa x. dyeMset(a). x € y)"
by fast

Problem here: there needs to be a conjunction (class intersection) in the
class of reflecting ordinals. The 0rd(a) is redundant, though harmless.

lemma
"Reflects(Aa. Ord(a) A ClEx(\x. fst(x) € snd(x), a),
Ax. dy. M(y) N x € y,
Aa x. dy€Mset(a). x € y)"
by fast

Example 2

schematic__goal
"Reflects(?C1,
Ax. Jy. My) N Vz. M(z) — z Cx — z € y),
Aa x. Jy€Mset(a). VzeMset(a). z C x — z € y)"
by fast

Example 2°. We give the reflecting class explicitly.

lemma
"Reflects
(Aa. (Ord(a) A
ClEx(A\x. — (snd(x) C fst(fst(x)) — snd(x) € snd(fst(x))),

a)) A
ClEx(M\x. Vz. M(z) — z C fst(x) — z € snd(x), a),
Ax. dy. M) AN (Vz. M(z) — z C x — z € y),
Aa x. Jy€Mset(a). VzeMset(a). z C x — z € y)"
by fast
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Example 2”. We expand the subset relation.

schematic__goal
"Reflects(?7C1,
Ax. dy. M) N Vz. M(z) — (Vw. M(w) — wEz — weEx) —
z€y),
Aa x. JyeMset(a). VzeMset(a). (VweMset(a). wEz — weEx) —
zey)"
by fast

Example 2”’. Single-step version, to reveal the reflecting class.

schematic__goal
"Reflects(?C1,
Ax. Jy. My) N Vz. M(z) — z Cx — z € y),
Aa x. JyeMset(a). VzeMset(a). z C x — z € y)"
apply (rule Ex_reflection)

TERM Ma. 7Cl4(a) A
ClEx(M\x. Vz. M(z) — z C fst(x) — z € snd(x),
a) &&&
Reflects
(\a. ?7Cl4(a) A
ClEx(A\x. Vz. M(z) — z C fst(x) — z € snd(x), a),
Ax. dy. M(y) N (Vz. M(z) — z Cx — z € y),
Aa x. JyeMset(a). VzeMset(a). z C x — z € y)
1. Reflects
(7C14, MAx. Vz. M(z) — z C fst(x) — z € snd(x),
Aa x. VzeMset(a). z C fst(x) — z € snd(x))

apply (rule All_reflection)

TERM Ma. (?7Cl6(a) A
ClEx(Ax. — (snd(x) C fst(fst(x)) —
snd(x) € snd(fst(x))),
a)) A
ClEx(\x. Vz. M(z) — z C fst(x) — z € snd(x),
a) &&&
Reflects
(Aa. (7C16(a) A
ClEx(A\x. — (snd(x) C fst(fst(x)) —
snd(x) € snd(fst(x))),
a)) A
ClEx(A\x. Vz. M(z) — z C fst(x) — z € snd(x), a),
Ax. dy. M) AN (Vz. M(z) — z C x — z € y),
Aa x. dyeMset(a). VzeMset(a). z C x — z € y)
1. Reflects
(7C16,
Ax. snd(x) C fst(fst(x)) — snd(x) € snd(fst(x)),

Aa x. snd(x) C fst(fst(x)) — snd(x) € snd(fst(x)))
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apply (rule Triv_reflection)

TERM Mla. (Ord(a) A
ClEx(\x. — (snd(x) C fst(fst(x)) —
snd(x) € snd(fst(x))),
a)) A
ClEx(A\x. Vz. M(z) — z C fst(x) — z € snd(x),
a) &&&
Reflects
(\a. (Ord(a) A
ClEx(A\x. = (snd(x) C fst(fst(x)) —
snd(x) € snd(fst(x))),
a)) A
ClEx(\x. Vz. M(z) — z C fst(x) — z € snd(x), a),
Ax. dy. M(y) N (Vz. M(z) — z C x — z € y),
Aa x. JyeMset(a). VzeMset(a). z C x — z € y)
No subgoals!

done

Example 3. Warning: the following examples make sense only if P is quantifier-
free, since it is not being relativized.

schematic__goal
"Reflects(7C1,
Ax. Jy. My) N (Vz. M(z) — z € y «— z € x A P(2)),
Aa x. Jy€eMset(a). VzeMset(a). z € y «— z € x AN P(z2))"
by fast

Example 3’

schematic__goal
"Reflects(?C1,
Ax. Jy. M(y) N y = Collect(x,P),
Aa x. Jy€Mset(a). y = Collect(x,P))"
by fast

Example 3”

schematic__goal
"Reflects(?7C1,
Ax. dy. M(y) A y = Replace(x,P),
Aa x. Jy€Mset(a). y = Replace(x,P))"
by fast

Example 4: Axiom of Choice. Possibly wrong, since IT needs to be relativized.

schematic__goal
"Reflects (?7C1,
M. 0¢A — @Gf. M(f) AN f € (J[X € A. X)),
Aa A. 0¢A — (IfecMset(a). £ € (J[X € A. X))
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by fast
end

end

9 The meta-existential quantifier
theory MetaExists imports ZF begin

Allows quantification over any term. Used to quantify over classes. Yields
a proposition rather than a FOL formula.

definition
ex :: "((’a::{}) = prop) = prop" (binder <\/> 0) where
"ex(P) = (AQ. (Ax. PROP P(x) —> PROP Q) —> PROP Q)"

lemma meta_exI: "PROP P(x) = (\/x. PROP P(x))"
proof (unfold ex_def)

assume P: "PROP P(x)"

fix @

assume PQ: "/\X. PROP P(x) = PROP Q"

from P show "PROP Q" by (rule PQ)
qed

lemma meta_exE: "[\/x. PROP P(x); Nx. PROP P(x) = PROP R] = PROP
Rll
proof (unfold ex_def)
assume QPQ: "AQ. (Ax. PROP P(x) —> PROP () —> PROP Q"
assume PR: "Ax. PROP P(x) —> PROP R"
from PR show "PROP R" by (rule QPQ)
qed

end

10 The ZF Axioms (Except Separation) in L

theory L_axioms imports Formula Relative Reflection MetaExists begin

The class L satisfies the premises of locale M_trivial

lemma transL: "[ye€x; L(x)] = L(y)"
apply (insert Transset_Lset)

apply (simp add: Transset_def L_def, blast)
done

lemma nonempty: "L(0)"

apply (simp add: L_def)

apply (blast intro: zero_in_Lset)
done

121



theorem upair_ax: "upair_ax(L)"

apply (simp add: upair_ax_def upair_def, clarify)
apply (rule_tac x="{x,y}" in rexI)

apply (simp_all add: doubleton_in_L)

done

theorem Union_ax: "Union_ax(L)"

apply (simp add: Union_ax_def big union_def, clarify)
apply (rule_tac x="{J (x)" in rexI)

apply (simp_all add: Union_in_L, auto)

apply (blast intro: transL)

done

theorem power_ax: "power_ax(L)"

apply (simp add: power_ax_def powerset_def Relative.subset_def, clarify)
apply (rule_tac x="{y € Pow(x). L(y)}" in rexI)

apply (simp_all add: LPow_in_L, auto)

apply (blast intro: transL)

done

We don’t actually need L to satisfy the foundation axiom.

theorem foundation_ax: "foundation_ax(L)"
apply (simp add: foundation_ax_def)

apply (rule ralll)

apply (cut_tac A=x in foundation)

apply (blast intro: transL)

done

10.1 For L to satisfy Replacement

lemma LReplace_in_Lset:
"[X € Lset(i); univalent(L,X,Q); Ord(i)]
= Jj. 0rd(j) A Replace(X, Ax y. Q(x,y) A L(y)) C Lset(j)"
apply (rule_tac x="\Jy € Replace(X, X\x y. Q(x,y) N L(y)). succ(lrank(y))"
in exI)
apply simp
apply clarify
apply (rule_tac a=x in UN_I)
apply (simp_all add: Replace_iff univalent_def)
apply (blast dest: transL L_I)
done

lemma LReplace_in_L:
"[L(X); univalent(L,X,Q)]
= Y. L(Y) A Replace(X, M\x y. Q(x,y) N L(y)) C v"
apply (drule L_D, clarify)
apply (drule LReplace_in_Lset, assumption+)
apply (blast intro: L_I Lset_in_Lset_succ)
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done

theorem replacement: "replacement(L,P)"

apply (simp add: replacement_def, clarify)

apply (frule LReplace_in_L, assumption+, clarify)
apply (rule_tac x=Y in rexI)

apply (simp_all add: Replace_iff univalent_def, blast)
done

lemma strong_replacementI [rule_format]:
"[VBIL]. separation(L, Au. Ix[L]. x€B A P(x,u))]
= strong_replacement(L,P)"
apply (simp add: strong replacement_def, clarify)
apply (frule replacementD [OF replacement], assumption, clarify)
apply (drule_tac x=A in rspec, clarify)
apply (drule_tac z=Y in separationD, assumption, clarify)
apply (rule_tac x=y in rexI, force, assumption)
done

10.2 Instantiating the locale M_trivial

No instances of Separation yet.

lemma Lset_mono_le: "mono_le_subset(Lset)"
by (simp add: mono_le_subset_def le_imp_subset Lset_mono)

lemma Lset_cont: "cont_0Ord(Lset)"
by (simp add: cont_Ord_def Limit_Lset_eq OUnion_def Limit_is_Ord)

lemmas L_nat = Ord_in_L [OF Ord_nat]

theorem M_trivial L: "M_trivial(L)"
apply (rule M_trivial.intro)
apply (rule M_trans.intro)
apply (erule (1) transL)

apply (rule exI,rule nonempty)

apply (rule M_trivial_axioms.intro)
apply (rule upair_ax)

apply (rule Union_ax)

done

interpretation L: M _trivial L by (rule M_trivial_L)

10.3 Instantiation of the locale reflection

instances of locale constants

definition
L_FO :: "[i=o0,i] = i" where
"L_FO(P,y) = u b. (3z. L(z) AN P({y,z))) — (Fz€Lset(b). P{y,z)))"
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definition

L FF :: "[i=o0,i] = i" where
"L_FF(P) = Xa. Jy€Lset(a). L_FO(P,y)"
definition
L_ClEx :: "[i=o0,i] = o" where

"L_ClEx(P) = Aa. Limit(a) A normalize(L_FF(P),a) = a"

We must use the meta-existential quantifier; otherwise the reflection terms
become enormous!

definition
L_Reflects :: "[i=>o0,[i,i]=0] = prop" (<(3REFLECTS/ [_,/ _1)>) where
"REFLECTS[P,Q] = (\/Cl. Closed_Unbounded (C1) A
(Ma. Cl(a) — (Vx € Lset(a). P(x) <— Q(a,x))))"

theorem Triv_reflection:
"REFLECTS[P, Aa x. P(x)]"

apply (simp add: L_Reflects_def)

apply (rule meta_exI)

apply (rule Closed_Unbounded_Ord)

done

theorem Not_reflection:
"REFLECTS[P,Q] = REFLECTS[\x. —P(x), )a x. —Q(a,x)]"
unfolding L_Reflects_def
apply (erule meta_exE)
apply (rule_tac x=Cl in meta_exI, simp)
done

theorem And_reflection:
"[REFLECTS[P,Q]; REFLECTS[P’,Q’]]
= REFLECTS[M\x. P(x) AN P’(x), Xa x. Q(a,x) AN Q’(a,x)]"
unfolding L_Reflects_def
apply (elim meta_exE)
apply (rule_tac x="MAa. Cl(a) A Cla(a)" in meta_exI)
apply (simp add: Closed_Unbounded_Int, blast)
done

theorem Or_reflection:
"[REFLECTS[P,Q]; REFLECTS[P’,Q’]]
— REFLECTS[Mx. P(x) V P’(x), la x. Q(a,x) V Q’(a,x)]"
unfolding L_Reflects_def
apply (elim meta_exE)
apply (rule_tac x="MAa. Cl(a) A Cla(a)" in meta_exI)
apply (simp add: Closed_Unbounded_Int, blast)
done
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theorem Imp_reflection:
"[REFLECTS[P,Q]; REFLECTS[P’,Q’]]
= REFLECTS[Mx. P(x) — P’(x), Xa x. Q(a,x) — Q’(a,x)]"
unfolding L_Reflects_def
apply (elim meta_exE)
apply (rule_tac x=")Aa. Cl(a) A Cla(a)" in meta_exI)
apply (simp add: Closed_Unbounded_Int, blast)
done

theorem Iff_ reflection:
"[REFLECTS[P,Q]; REFLECTS[P’,Q’]]
— REFLECTS[Ax. P(x) <+— P’(x), Aa x. Q(a,x) «<— Q’(a,x)]"
unfolding L_Reflects_def
apply (elim meta_exE)
apply (rule_tac x="Xa. Cl(a) A Cla(a)" in meta_exI)
apply (simp add: Closed_Unbounded_Int, blast)
done

lemma reflection_Lset: "reflection(Lset)"
by (blast intro: reflection.intro Lset_mono_le Lset_cont
Formula.Pair_in_LLimit)+

theorem Ex_reflection:
"REFLECTS [Ax. P(fst(x),snd(x)), la x. Q(a,fst(x),snd(x))]
— REFLECTS[Mx. dz. L(z) AN P(x,z), Ma x. dz€Lset(a). Q(a,x,z)]"
unfolding L_Reflects_def L_ClEx_def L_FF _def L_FO_def L_def
apply (elim meta_exE)
apply (rule meta_exI)
apply (erule reflection.Ex_reflection [OF reflection_Lset])
done

theorem All_reflection:
"REFLECTS [Ax. P(fst(x),snd(x)), la x. Q(a,fst(x),snd(x))]
—> REFLECTS[Ax. Vz. L(z) — P(x,z), Ma x. Vz€Lset(a). Q(a,x,z)]"
unfolding L_Reflects_def L_ClEx_def L_FF_def L_FO_def L_def
apply (elim meta_exE)
apply (rule meta_exI)
apply (erule reflection.All_reflection [OF reflection_Lset])
done

theorem Rex_reflection:
"REFLECTS[ Ax. P(fst(x),snd(x)), la x. Q(a,fst(x),snd(x))]
— REFLECTS[Ax. dz[L]. P(x,z), Ma x. dz€Lset(a). Q(a,x,z)]"
unfolding rex_def
apply (intro And_reflection Ex_reflection, assumption)
done
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theorem Rall_reflection:
"REFLECTS[Ax. P(fst(x),snd(x)), la x. Q(a,fst(x),snd(x))]
— REFLECTS[Ax. Vz[L]. P(x,z), Aa x. Vz€Lset(a). Q(a,x,z)]"
unfolding rall_def
apply (intro Imp_reflection All_reflection, assumption)
done

This version handles an alternative form of the bounded quantifier in the
second argument of REFLECTS.

theorem Rex_reflection’:
"REFLECTS[Ax. P(fst(x),snd(x)), Aa x. Q(a,fst(x),snd(x))]
— REFLECTS[Ax. d=z[L]. P(x,z), Ma x. dz[##Lset(a)]. Q(a,x,z)]"
unfolding setclass_def rex_def
apply (erule Rex_reflection [unfolded rex_def Bex_def])
done

As above.

theorem Rall_reflection’:
"REFLECTS[Ax. P(fst(x),snd(x)), Aa x. Q(a,fst(x),snd(x))]
— REFLECTS[Ax. Vz[L]. P(x,z), Ma x. Vz[##Lset(a)]. Q(a,x,z)]"
unfolding setclass_def rall_def
apply (erule Rall_reflection [unfolded rall_def Ball_def])
done

lemmas FOL_reflections =
Triv_reflection Not_reflection And_reflection Or_reflection
Imp_reflection Iff_reflection Ex_reflection All_reflection
Rex_reflection Rall_reflection Rex_reflection’ Rall_reflection’

lemma ReflectsD:
"[REFLECTS[P,Q]; Ord(i)]
= dj. i<j N (Vx € Lset(j). P(x) +— Q(,x))"
unfolding L_Reflects_def Closed_Unbounded_def
apply (elim meta_exE, clarify)
apply (blast dest!: UnboundedD)
done

lemma ReflectsE:
”HREFLECTS[P,Q]; Ord(i);
Aj. [i<j; Vzx € Lset(j). P(x) «— Q(j,x)] = R]
= R"
by (drule ReflectsD, assumption, blast)

lemma Collect_mem_eq: "{x€A. x€B} = A N B"
by blast
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10.4 Internalized Formulas for some Set-Theoretic Concepts

10.4.1 Some numbers to help write de Bruijn indices
abbreviation
digit3 ::

] (<3>) where "3 = succ(2)"
abbreviation
digit4 :: i (<4>) where "4 = succ(3)"
abbreviation
digits :: i (<5>) where "5 = succ(4)"
abbreviation
digit6 :: i  (<6>) where "6 = succ(5)"
abbreviation
digit7 :: 1 (<7>) where "7 = succ(6)"
abbreviation
digit8 :: i (<8>) where "8 = succ(7)"
abbreviation
digit9 :: i (<9>) where "9 = succ(8)"
10.4.2 The Empty Set, Internalized
definition
empty_fm :: "i

i=i" where
"empty_fm(x)

= Forall (Neg(Member (0,succ(x))))"
lemma empty_type [TC]:

"x € nat = empty_fm(x) € formula"
by (simp add: empty_fm_def)

lemma sats_empty_fm [simp]:

"[x € nat; env € list(4)]
— sats(A, empty_fm(x), env) <— empty(##A, nth(x,env))"
by (simp add: empty_fm_def empty_def)

lemma empty_iff_sats:
"[nth(i,env)

x; nth(j,env) = y;

i € nat; env € list(A)]
— empty (##A, x) <— sats(A, empty_fm(i), env)"
by simp

theorem empty_reflection:

"REFLECTS[Ax. empty(L,f(x)),

Ai x. empty(##Lset(i),f(x))]"
apply (simp only: empty_def)
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apply (intro FOL_reflections)
done

Not used. But maybe useful?

lemma Transset_sats_empty_fm_eq_O:

"[n € nat; env € list(A); Transset(4)]

—> sats (4, empty_fm(n), env) <— nth(n,env) = 0"
apply (simp add: empty_fm_def empty_def Transset_def, auto)
apply (case_tac "n < length(env)")
apply (frule nth_type, assumption+, blast)
apply (simp_all add: not_lt_iff_le nth_eq_0)
done

10.4.3 Unordered Pairs, Internalized

definition
upair_fm :: "[i,i,i]=1i" where
"upair_fm(x,y,z) =
And (Member (x,z),
And (Member (y,z),
Forall (Implies(Member (0,succ(z)),
Or (Equal(0,succ(x)), Equal(0,succ(y)))))))"

lemma upair_type [TC]:
"[x € nat; y € nat; z € nat] — upair_fm(x,y,z) € formula"
by (simp add: upair_fm_def)

lemma sats_upair_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
—> sats(4, upair_fm(x,y,z), env) <—
upair (##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: upair_fm_def upair_def)

lemma upair_iff_sats:
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
—> upair(##A, x, y, z) +— sats(A, upair_fm(i,j,k), env)"
by (simp)

Useful? At least it refers to "real" unordered pairs

lemma sats_upair_fm2 [simp]:
"[x € nat; y € nat; z < length(env); env € 1list(A); Transset(4)]
—> sats(4, upair_fm(x,y,z), env) <—
nth(z,env) = {nth(x,env), nth(y,env)}"
apply (frule 1t_length_in_nat, assumption)
apply (simp add: upair_fm_def Transset_def, auto)
apply (blast intro: nth_type)
done
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theorem upair_reflection:
"REFLECTS[Ax. upair(L,f(x),g(x),h(x)),
Al x. upair(##Lset(i),f(x),g(x),h(x))]"
apply (simp add: upair_def)
apply (intro FOL_reflections)
done

10.4.4 Ordered pairs, Internalized

definition
pair_fm :: "[i,i,i]=1" where
"pair_fm(x,y,z) =
Exists(And (upair_fm(succ(x),succ(x),0),
Exists(And (upair_fm(succ(succ(x)),succ(succ(y)),0),
upair_fm(1,0,succ(succ(z)))))))"

lemma pair_type [TC]:
"[x € nat; y € mnat; z € nat] = pair fm(x,y,z) € formula"
by (simp add: pair_fm_def)

lemma sats_pair_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
—> sats(4, pair_fm(x,y,z), env) <—
pair(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: pair_fm_def pair_def)

lemma pair iff_sats:
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
= pair(##A, x, y, z) <— sats(4, pair_fm(i,j,k), env)"
by (simp)

theorem pair reflection:
"REFLECTS[A\x. pair(L,f(x),g(x),h(x)),
Al x. pair(##Lset(i),f(x),g(x),h(x))]"
apply (simp only: pair_def)
apply (intro FOL_reflections upair_reflection)
done

10.4.5 Binary Unions, Internalized

definition
union_fm :: "[i,i,i]=i" where
"union_fm(x,y,z) =
Forall (Iff (Member (0,succ(z)),
Or (Member (0, succ (x)) ,Member (0, succ(y)))))"

lemma union_type [TC]:

"[x € nat; y € nat; z € nat] — union_fm(x,y,z) € formula"
by (simp add: union_fm_def)
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lemma sats_union_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
— sats(A, union_fm(x,y,z), env) <+—
union (##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: union_fm_def union_def)

lemma union_iff_sats:
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
—> union(##A, x, y, z) <— sats(A, union_fm(i,j,k), env)"
by (simp)

theorem union_reflection:
"REFLECTS[Ax. union(L,f(x),g(x),h(x)),
Ai x. union(##Lset(i),f(x),g(x),h(x))]"
apply (simp only: union_def)
apply (intro FOL_reflections)
done

10.4.6 Set “Cons,” Internalized

definition
cons_fm :: "[i,i,i]=i" where
"cons_fm(x,y,z) =
Exists(And (upair_fm(succ(x),succ(x),0),
union_fm(0,succ(y),succ(z))))"

lemma cons_type [TC]:
”[[x € nat; y € nat; z € nat]] = cons_fm(x,y,z) € formula"
by (simp add: cons_fm_def)

lemma sats_cons_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
— sats(4, cons_fm(x,y,z), env) <—
is_cons (##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: cons_fm_def is_cons_def)

lemma cons_iff_sats:
"[[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
—> is_cons (##A, x, y, z) <— sats(A, cons_fm(i,j,k), env)"
by simp

theorem cons_reflection:
"REFLECTS[A\x. is_cons(L,f(x),g(x),h(x)),
Ai x. is_cons(##Lset(i),f(x),g(x),h(x))]"
apply (simp only: is_cons_def)
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apply (intro FOL_reflections upair_reflection union_reflection)
done

10.4.7 Successor Function, Internalized

definition
succ_fm :: "[i,i]=i" where
"succ_fm(x,y) = cons_fm(x,x,y)"

lemma succ_type [TC]:
"[x € nat; y € nat] = succ_fm(x,y) € formula"
by (simp add: succ_fm_def)

lemma sats_succ_fm [simp]:
"[x € nat; y € nat; env € list(4)]
—> sats(4, succ_fm(x,y), env) <—
successor (##A, nth(x,env), nth(y,env))"
by (simp add: succ_fm_def successor_der)

lemma successor_iff_sats:
"[nth(i,env) = x; nth(j,env) = y;
i € nat; j € nat; env € list(4)]
—> successor (##A, x, y) <— sats(A, succ_fm(i,j), env)"
by simp

theorem successor_reflection:
"REFLECTS[Ax. successor(L,f(x),g(x)),
Al x. successor (##Lset(i),f(x),g(x))]"
apply (simp only: successor_def)
apply (intro cons_reflection)
done

10.4.8 The Number 1, Internalized

definition
numberl_fm :: "

i=i" where
"numberl_fm(a) =

Exists(And(empty_fm(0), succ_fm(0,succ(a))))"

lemma numberl_type [TC]:
"x € nat = numberl_fm(x) € formula"
by (simp add: numberl_fm_def)

lemma sats_numberl_fm [simp]:

"[x € nat; env € list(4)]

— sats(A, numberl_fm(x), env) <— numberl(##A, nth(x,env))"
by (simp add: numberl_fm_def numberl_def)

lemma numberi_iff_sats:

"[nth(i,env) = x; nth(j,env) = y;
i € nat; env € list(4)]
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— numberl (##A, x) <— sats(A, numberl_fm(i), env)"
by simp

theorem numberl_reflection:
"REFLECTS [Ax. numberl(L,f(x)),
Ai x. numberl (##Lset(i),f(x))]"
apply (simp only: numberl_def)
apply (intro FOL_reflections empty_reflection successor_reflection)
done

10.4.9 Big Union, Internalized

definition
big union_fm :: "[i,i]=i" where
"big_union_fm(A,z) =
Forall (Iff (Member (0,succ(z)),
Exists (And (Member (0, succ(succ(A))), Member(1,0)))))"

lemma big union_type [TC]:
"[x € nat; y € nat] = big_union_fm(x,y) € formula"
by (simp add: big_union_fm_def)

lemma sats_big_union_fm [simp]:
"[x € nat; y € nat; env € list(4)]
—> sats(A, big union_fm(x,y), env) <—
big union(##A, nth(x,env), nth(y,env))"
by (simp add: big_union_fm_def big union_def)

lemma big union_iff_sats:
"[nth(i,env) = x; nth(j,env) = y;
i € nat; j € nat; env € list(4)]
—> big_union(##A, x, y) <— sats(A, big_union_fm(i,j), env)"
by simp

theorem big union_reflection:
"REFLECTS[Mx. big union(L,f(x),g(x)),
Ai x. big union(##Lset(i),f(x),g(x))]1"
apply (simp only: big_union_def)
apply (intro FOL_reflections)
done

10.4.10 Variants of Satisfaction Definitions for Ordinals, etc.

The sats theorems below are standard versions of the ones proved in theory
Formula. They relate elements of type formula to relativized concepts such
as subset or ordinal rather than to real concepts such as Ord. Now that
we have instantiated the locale M_trivial, we no longer require the earlier
versions.

lemma sats_subset_fm’:
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"[x € nat; y € nat; env € list(4)]
—> sats(A, subset_fm(x,y), env) <—> subset (##A, nth(x,env), nth(y,env))"
by (simp add: subset_fm_def Relative.subset_def)

theorem subset_reflection:
"REFLECTS[Ax. subset(L,f(x),g(x)),
Al x. subset (##Lset(i),f(x),g(x))]"
apply (simp only: Relative.subset_def)
apply (intro FOL_reflections)
done

lemma sats_transset_fm’:

"[x € nat; env € list(4)]

— sats(4, transset_fm(x), env) <— transitive_set (##A, nth(x,env))"
by (simp add: sats_subset_fm’ transset_fm_def transitive_set_def)

theorem transitive_set_reflection:
"REFLECTS[A\x. transitive_set(L,f(x)),
Ai x. transitive_set (##Lset(i),f(x))]"
apply (simp only: transitive_set_def)
apply (intro FOL_reflections subset_reflection)
done

lemma sats_ordinal_fm’:

"[x € nat; env € list(4)]

— sats(4, ordinal_fm(x), env) <— ordinal (##A,nth(x,env))"
by (simp add: sats_transset_fm’ ordinal_fm_def ordinal_def)

lemma ordinal_iff_sats:

"[nth(i,env) = x; 1 € nat; env € list(A)]

— ordinal (##A, x) <— sats(4, ordinal_fm(i), env)"
by (simp add: sats_ordinal_fm’)

theorem ordinal_reflection:
"REFLECTS [Ax. ordinal(L,f(x)), Ai x. ordinal (##Lset(i),f(x))]"
apply (simp only: ordinal_def)
apply (intro FOL_reflections transitive_set_reflection)
done

10.4.11 Membership Relation, Internalized

definition
Memrel_fm :: "[i,i]=-i" where
"Memrel_fm(A,r) =
Forall (Iff (Member (0,succ(r)),
Exists (And (Member (0, succ(succ(4))),
Exists (And (Member (0, succ (succ(succ(4)))),
And (Member(1,0),
pair_fm(1,0,2))))))))"
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lemma Memrel_type [TC]:
"[x € nat; y € nat] = Memrel_fm(x,y) € formula"
by (simp add: Memrel_fm_def)

lemma sats_Memrel_fm [simp]:
"[x € nat; y € nat; env € list(4)]
—> sats(4, Memrel_fm(x,y), env) <—
membership (##A, nth(x,env), nth(y,env))"
by (simp add: Memrel_fm_def membership_def)

lemma Memrel_ iff_sats:
"[nth(i,env) = x; nth(j,env) = y;
i € nat; j € nat; env € list(4)]
— membership (##A, x, y) <— sats(A, Memrel_fm(i,j), env)"
by simp

theorem membership_reflection:
"REFLECTS [Ax. membership(L,f(x),g(x)),
Ai x. membership(##Lset(i),f(x),g(x))]"
apply (simp only: membership_def)
apply (intro FOL_reflections pair_reflection)
done

10.4.12 Predecessor Set, Internalized

definition
pred_set_fm :: "[i,i,i,i]J=i" where
"pred_set_fm(A,x,r,B) =
Forall (Iff (Member (0,succ(B)),
Exists (And (Member (0, succ(succ(r))),
And (Member (1,succ(succ(4))),
pair_fm(1,succ(succ(x)),0))))))"

lemma pred_set_type [TC]:
"[A € nat; x € nat; r € nat; B € nat]
— pred_set_fm(A,x,r,B) € formula"
by (simp add: pred_set_fm_def)

lemma sats_pred_set_fm [simp]:
"[U € nat; x € nat; r € nat; B € nat; env € list(4)]
—> sats(A, pred_set_fm(U,x,r,B), env) <—
pred_set (##A, nth(U,env), nth(x,env), nth(r,env), nth(B,env))"
by (simp add: pred_set_fm_def pred_set_def)

lemma pred_set_iff_sats:

"[nth(i,env) = U; nth(j,env) = x; nth(k,env) = r; nth(l,env) = B;
i € nat; j € nat; k € nat; 1 € nat; env € list(4)]
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— pred_set (##A,U,x,r,B) <— sats(4A, pred_set_fm(i,j,k,1), env)"
by (simp)

theorem pred_set_reflection:
"REFLECTS [Ax. pred_set(L,f(x),g(x),h(x),b(x)),
A x. pred_set (##Lset(i),f(x),g(x),h(x),b(x))]"
apply (simp only: pred_set_def)
apply (intro FOL_reflections pair_reflection)
done

10.4.13 Domain of a Relation, Internalized

definition
domain_fm :: "[i,i]=1i" where
"domain_fm(r,z) =
Forall (Iff (Member (0,succ(z)),
Exists (And (Member (0, succ (succ(r))),
Exists(pair_fm(2,0,1))))))"

lemma domain_type [TC]:
"[x € nat; y € nat] = domain_fm(x,y) € formula"
by (simp add: domain_fm_def)

lemma sats_domain_fm [simp]:
"[x € nat; y € nat; env € list(4)]
—> sats (4, domain_fm(x,y), env) <—
is_domain (##A, nth(x,env), nth(y,env))"
by (simp add: domain_fm_def is_domain_def)

lemma domain_iff_ sats:
"[nth(i,env) = x; nth(j,env) = y;
i € nat; j € nat; env € list(4)]
—> is_domain(##A, x, y) <— sats(A, domain_fm(i,j), env)"
by simp

theorem domain_reflection:
"REFLECTS[Ax. is_domain(L,f(x),g(x)),
Ai x. is_domain(##Lset(i),f(x),g(x))]"
apply (simp only: is_domain_def)
apply (intro FOL_reflections pair_reflection)
done

10.4.14 Range of a Relation, Internalized

definition
range_fm :: "[i,i]=i" where
"range_fm(r,z) =
Forall (Iff (Member(0,succ(z)),
Exists (And (Member (0, succ (succ(r))),
Exists(pair_fm(0,2,1))))))"
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lemma range_type [TC]:
"[x € nat; y € nat] = range_fm(x,y) € formula"
by (simp add: range_fm_def)

lemma sats_range_fm [simp]:
"[x € nat; y € nat; env € list(4)]
—> sats(A, range_fm(x,y), env) <—
is_range (##A, nth(x,env), nth(y,env))"
by (simp add: range_fm_def is_range_def)

lemma range_iff_sats:
"[nth(i,env) = x; nth(j,env) = y;
i € nat; j € nat; env € list(4)]
—> is_range(##A, x, y) +— sats(4, range_fm(i,j), env)"
by simp

theorem range_reflection:
"REFLECTS[M\x. is_range(L,f(x),g(x)),
Ai x. is_range (##Lset(i),f(x),g(x))]"
apply (simp only: is_range_def)
apply (intro FOL_reflections pair_reflection)
done

10.4.15 Field of a Relation, Internalized

definition
field_fm :: "[i,i]=1i" where
"field_fm(r,z) =
Exists(And(domain_fm(succ(r),0),
Exists(And(range_fm(succ(succ(r)),0),
union_fm(1,0,succ(succ(z)))))))"

lemma field_type [TC]:
"[x € nat; y € nat] = field_fm(x,y) € formula"
by (simp add: field_fm_def)

lemma sats_field_fm [simp]:
"[x € nat; y € nat; env € list(4)]
— sats(A, field_fm(x,y), env) <—
is_field(##A, nth(x,env), nth(y,env))"
by (simp add: field_fm_def is_field_def)

lemma field_iff_sats:
"[nth(i,env) = x; nth(j,env) = y;
i € nat; j € nat; env € list(4)]
— is_field(##A, x, y) <— sats(A, field_fm(i,j), env)"
by simp
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theorem field_reflection:
"REFLECTS[Ax. is_field(L,f(x),g(x)),
A x. is_field(##Lset(i),f(x),g(x))]"
apply (simp only: is_field_def)
apply (intro FOL_reflections domain_reflection range_reflection
union_reflection)
done

10.4.16 Image under a Relation, Internalized

definition
image_fm :: "[i,i,i]=1i" where
"image_fm(r,A,z) =
Forall (Iff (Member (0,succ(z)),
Exists (And (Member (0, succ(succ(r))),
Exists (And (Member (0, succ (succ(succ(4)))),
pair_fm(0,2,1)))))))"

lemma image_type [TC]:
"[x € nat; y € nat; z € nat] — image_fm(x,y,z) € formula"
by (simp add: image_fm_def)

lemma sats_image_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
— sats(A, image_fm(x,y,z), env) <—
image (##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: image_fm_def Relative.image_def)

lemma image_iff_sats:
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
—> image (##A, x, y, z) <— sats(A, image_fm(i,j,k), env)"
by (simp)

theorem image_reflection:
"REFLECTS[Ax. image(L,f(x),g(x),h(x)),
A x. image (##Lset(i),f(x),g(x),h(x))]"
apply (simp only: Relative.image_def)
apply (intro FOL_reflections pair_reflection)
done

10.4.17 Pre-Image under a Relation, Internalized

definition
pre_image_fm :: "[i,i,i]=1i" where
"pre_image_fm(r,A,z) =
Forall (Iff (Member (0,succ(z)),
Exists (And (Member (0, succ (succ(r))),
Exists (And (Member (0, succ (succ(succ(4)))),
pair_fm(2,0,1)))))))"
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lemma pre_image_type [TC]:
"[x € nat; y € nat; z € nat] = pre_image_fm(x,y,z) € formula"
by (simp add: pre_image_fm_def)

lemma sats_pre_image_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
—> sats(A, pre_image_fm(x,y,z), env) <—
pre_image (##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: pre_image_fm_def Relative.pre_image_def)

lemma pre_image_iff_sats:
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
—> pre_image (##A, x, y, z) <— sats(A, pre_image_fm(i,j,k), env)"
by (simp)

theorem pre_image_reflection:
"REFLECTS[M\x. pre_image(L,f(x),g(x),h(x)),
Al x. pre_image (##Lset(i),f(x),g(x),h(x))]"
apply (simp only: Relative.pre_image_def)
apply (intro FOL_reflections pair_reflection)
done

10.4.18 Function Application, Internalized

definition
fun_apply_fm :: "[i,i,i]=1i" where
"fun_apply_fm(f,x,y) =
Exists(Exists(And (upair_fm(succ(succ(x)), succ(succ(x)), 1),
And (image_fm(succ(succ(f)), 1, 0),
big_union_fm(0, succ(succ(y)))))))"

lemma fun_apply_type [TC]:
"[x € nat; y € nat; z € nat] = fun_apply_fm(x,y,z) € formula"
by (simp add: fun_apply_fm_def)

lemma sats_fun_apply_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
— sats(A, fun_apply fm(x,y,z), env) <—
fun_apply (##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: fun_apply_fm_def fun_apply_def)

lemma fun_apply_iff_sats:
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
—> fun_apply (##4, x, y, z) <— sats(A, fun_apply fm(i,j,k), env)"
by simp
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theorem fun_apply_reflection:
"REFLECTS[Ax. fun_apply(L,f(x),g(x),h(x)),
Ai x. fun_apply (##Lset (i),f(x),g(x),h(x))]"
apply (simp only: fun_apply_def)
apply (intro FOL_reflections upair_reflection image_reflection
big_union_reflection)
done

10.4.19 The Concept of Relation, Internalized

definition
relation_fm :: "i=-i" where
"relation_fm(r) =
Forall(Implies(Member(0,succ(r)), Exists(Exists(pair_fm(1,0,2)))))"

lemma relation_type [TC]:
"[x € nat] = relation_fm(x) € formula"
by (simp add: relation_fm_def)

lemma sats_relation_fm [simp]:

"[x € nat; env € list(A)]

— sats(4, relation_fm(x), env) <+— is_relation(##A, nth(x,env))"
by (simp add: relation_fm_def is_relation_def)

lemma relation_iff_sats:
"[nth(i,env) = x; nth(j,env) = y;
i € nat; env € list(4)]
— is_relation(##A, x) <— sats(A, relation_fm(i), env)"
by simp

theorem is_relation_reflection:
"REFLECTS[M\x. is_relation(L,f(x)),
Ai x. is_relation(##Lset(i),f(x))]"
apply (simp only: is_relation_def)
apply (intro FOL_reflections pair_reflection)
done

10.4.20 The Concept of Function, Internalized

definition
function_fm :: "i=i" where
"function_fm(r) =
Forall(Forall (Forall (Forall (Forall(
Implies(pair_fm(4,3,1),
Implies(pair_fm(4,2,0),
Implies (Member (1,r#+5),
Implies (Member (0,r#+5), Equal(3,2))))))))))"

lemma function_type [TC]:
"[x € nat] = function_fm(x) € formula"
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by (simp add: function_fm_def)

lemma sats_function_fm [simp]:

"[x € nat; env € list(A)]

— sats(4, function_fm(x), env) <— is_function(##A, nth(x,env))"
by (simp add: function_fm_def is_function_def)

lemma is_function_iff_sats:
"[nth(i,env) = x; nth(j,env) = y;
i € nat; env € list(A)]
— is_function(##A, x) <— sats(A, function_fm(i), env)"
by simp

theorem is_function_reflection:
"REFLECTS[Ax. is_function(L,f(x)),
Ai x. is_function(##Lset(i),f(x))]"
apply (simp only: is_function_def)
apply (intro FOL_reflections pair_reflection)
done

10.4.21 Typed Functions, Internalized

definition
typed_function_fm :: "[i,i,i]=1" where
"typed_function_fm(A,B,r) =
And (function_fm(r),
And(relation_fm(r),
And (domain_fm(r,A),
Forall (Implies (Member (0,succ(r)),
Forall (Forall (Implies(pair_fm(1,0,2),Member(0,B#+3)))))))))"

lemma typed_function_type [TC]:
"[x € nat; y € nat; z € nat] — typed_function_fm(x,y,z) € formula"
by (simp add: typed_function_fm_def)

lemma sats_typed_function_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
—> sats(A, typed_function_fm(x,y,z), env) <—
typed_function (##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: typed_function_fm_def typed_function_def)

lemma typed_function_iff_sats:
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
—> typed_function(##A, x, y, z) +— sats(A, typed_function_fm(i,j,k),
env)"
by simp

lemmas function_reflections =
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empty_reflection numberl_reflection

upair_reflection pair_reflection union_reflection

big union_reflection cons_reflection successor_reflection
fun_apply_reflection subset_reflection

transitive_set_reflection membership_reflection

pred_set_reflection domain_reflection range_reflection field_reflection
image_reflection pre_image_reflection

is_relation_reflection is_function_reflection

lemmas function_iff_sats =
empty_iff_sats numberl_iff_sats
upair_iff_sats pair_iff_sats union_iff_sats
big union_iff_sats cons_iff_sats successor_iff_sats
fun_apply_iff_sats Memrel_ iff_sats
pred_set_iff_sats domain_iff_sats range_iff_sats field_iff_sats
image_iff_sats pre_image_iff_sats
relation_iff sats is_function_iff sats

theorem typed_function_reflection:
"REFLECTS[Ax. typed_function(L,f(x),g(x),h(x)),
A x. typed_function(##Lset(i),f(x),g(x),h(x))]"
apply (simp only: typed_function_def)
apply (intro FOL_reflections function_reflections)
done

10.4.22 Composition of Relations, Internalized

definition
composition_fm :: "[i,i,i]=1i" where
"composition_fm(r,s,t) =
Forall (Iff (Member (0,succ(t)),
Exists(Exists(Exists(Exists(Exists(
And(pair_fm(4,2,5),
And(pair_fm(4,3,1),
And(pair_fm(3,2,0),
And (Member (1,s#+6), Member (0,r#+6))))))))))))"

lemma composition_type [TC]:
"[x € nat; y € nat; z € nat] —> composition_fm(x,y,z) € formula"
by (simp add: composition_fm_def)

lemma sats_composition_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
—> sats(A, composition_fm(x,y,z), env) <—
composition(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: composition_fm_def composition_def)

lemma composition_iff_sats:
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"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
—> composition(##A, x, y, z) <— sats(A, composition_fm(i,j,k),
env)"
by simp

theorem composition_reflection:
"REFLECTS[Ax. composition(L,f(x),g(x),h(x)),
Ai x. composition(##Lset(i),f(x),g(x),h(x))]"
apply (simp only: composition_def)
apply (intro FOL_reflections pair_reflection)
done

10.4.23 Injections, Internalized

definition
injection_fm :: "[i,i,i]=i" where
"injection_fm(A,B,f) =
And (typed_function_fm(A,B,f),
Forall (Forall (Forall (Forall (Forall(
Implies(pair_fm(4,2,1),
Implies(pair_fm(3,2,0),
Implies (Member (1,f#+5),
Implies(Member (0,f#+5), Equal(4,3)))))))))))"

lemma injection_type [TC]:
"[x € nat; y € nat; z € nat] — injection_fm(x,y,z) € formula"
by (simp add: injection_fm_def)

lemma sats_injection_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
—> sats(A, injection_fm(x,y,z), env) <—
injection(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: injection_fm_def injection_def)

lemma injection_iff_sats:
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
—> injection(##A, x, y, z) <— sats(A, injection_fm(i,j,k), env)"
by simp

theorem injection_reflection:
"REFLECTS[Ax. injection(L,f(x),g(x),h(x)),
Ai x. injection(##Lset(i),f(x),g(x),h(x))]"
apply (simp only: injection_def)
apply (intro FOL_reflections function_reflections typed_function_reflection)
done
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10.4.24 Surjections, Internalized

definition
surjection_fm :: "[i,i,i]J=1i" where
"surjection_fm(A,B,f) =
And (typed_function_fm(A,B,f),
Forall (Implies(Member (0,succ(B)),
Exists (And (Member (0, succ(succ(4))),
fun_apply_fm(succ(succ(f)),0,1))))))"

lemma surjection_type [TC]:
"[[X € nat; y € nat; z € nat]] —> surjection_fm(x,y,z) € formula"
by (simp add: surjection_fm_def)

lemma sats_surjection_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
—> sats(4, surjection_fm(x,y,z), env) <—
surjection(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: surjection_fm_def surjection_def)

lemma surjection_iff_sats:
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
—> surjection(##A, x, y, z) <— sats(4, surjection_fm(i,j,k), env)"
by simp

theorem surjection_reflection:
"REFLECTS[A\x. surjection(L,f(x),g(x),h(x)),
Ai x. surjection(##Lset(i),f(x),g(x),h(x))]"
apply (simp only: surjection_def)
apply (intro FOL_reflections function_reflections typed_function_reflection)
done

10.4.25 Bijections, Internalized

definition
bijection_fm :: "[i,i,i]=1i" where
"bijection_fm(A,B,f) = And(injection_fm(A,B,f), surjection_fm(A,B,f))"

lemma bijection_type [TC]:
”[[x € nat; y € nat; z € nat]] —> bijection_fm(x,y,z) € formula"
by (simp add: bijection_fm_def)

lemma sats_bijection_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
— sats(A, bijection_fm(x,y,z), env) <—
bijection(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: bijection_fm_def bijection_def)

lemma bijection_iff_sats:
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"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
—> bijection(##A, x, y, z) <— sats(A, bijection_fm(i,j,k), env)"
by simp

theorem bijection_reflection:
"REFLECTS[M\x. bijection(L,f(x),g(x),h(x)),
Ai x. bijection(##Lset(i),f(x),g(x),h(x))]"
apply (simp only: bijection_def)
apply (intro And_reflection injection_reflection surjection_reflection)
done

10.4.26 Restriction of a Relation, Internalized

definition
restriction_fm :: "[i,i,i]=i" where
"restriction_fm(r,A,z) =
Forall (Iff (Member (0,succ(z)),
And (Member (0, succ(r)),
Exists (And (Member (0, succ(succ(4))),
Exists(pair_fm(1,0,2)))))))"

lemma restriction_type [TC]:
"[x € nat; y € nat; z € nat] = restriction_fm(x,y,z) € formula"
by (simp add: restriction_fm_def)

lemma sats_restriction_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
—> sats(A, restriction_fm(x,y,z), env) <+—
restriction(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: restriction_fm_def restriction_def)

lemma restriction_iff_sats:
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
—> restriction(##A, x, y, z) <— sats(4, restriction_fm(i,j,k),
env)"
by simp

theorem restriction_reflection:
"REFLECTS[Ax. restriction(L,f(x),g(x),h(x)),
Ai x. restriction(##Lset(i),f(x),g(x),h(x))]"
apply (simp only: restriction_def)
apply (intro FOL_reflections pair_reflection)
done

10.4.27 Order-Isomorphisms, Internalized

definition
order_isomorphism_fm :: "[i,i,i,i,i]=1i" where
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"order_isomorphism_fm(A,r,B,s,f) =
And(bijection_fm(A,B,f),
Forall (Implies(Member (0,succ(4)),
Forall (Implies(Member (0,succ(succ(4))),
Forall (Forall(Forall (Forall(
Implies(pair_fm(5,4,3),
Implies(fun_apply_fm(f#+6,5,2),
Implies(fun_apply_ fm(f#+6,4,1),
Implies(pair_fm(2,1,0),
Iff (Member (3,r#+6), Member (0,s#+6)))))))))))))))"

lemma order_isomorphism_type [TC]:
"[A € nat; r € nat; B € nat; s € nat; f € nat]
—> order_isomorphism_fm(A,r,B,s,f) € formula"
by (simp add: order_isomorphism_fm_def)

lemma sats_order_ isomorphism_fm [simp]:
"[U € nat; r € nat; B € nat; s € nat; £ € nat; env € list(4)]
— sats(A, order_isomorphism_fm(U,r,B,s,f), env) <—
order_isomorphism(##A, nth(U,env), nth(r,env), nth(B,env),
nth(s,env), nth(f,env))"
by (simp add: order_isomorphism_fm_def order_isomorphism_def)

lemma order_isomorphism_iff_sats:
"[nth(i,env) = U; nth(j,env) = r; nth(k,env) = B; nth(j’,env) = s;
nth(k’,env) = f;
i € nat; j € nat; k € nat; j’ € nat; k’ € nat; env € list(4)]
—> order_isomorphism(##A,U,r,B,s,f) <—
sats (A, order_isomorphism_fm(i,j,k,j’,k’), env)"
by simp

theorem order_isomorphism_reflection:
"REFLECTS[A\x. order_isomorphism(L,f(x),g(x),h(x),g’(x),h’(x)),
Ai x. order_isomorphism(##Lset(i),f(x),g(x),h(x),g’ (x),h’(x))]"
apply (simp only: order_isomorphism_def)
apply (intro FOL_reflections function_reflections bijection_reflection)
done

10.4.28 Limit Ordinals, Internalized

A limit ordinal is a non-empty, successor-closed ordinal

definition
limit_ordinal_fm :: "i=1i" where
"limit_ordinal_fm(x) =
And (ordinal_fm(x),
And (Neg (empty_fm(x)),
Forall (Implies(Member(0,succ(x)),
Exists (And (Member (0, succ (succ(x))),
succ_fm(1,0)))))))"
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lemma limit_ordinal_type [TC]:
"x € nat = limit_ordinal_fm(x) € formula"
by (simp add: limit_ordinal_fm_def)

lemma sats_limit_ordinal_fm [simp]:

"[x € nat; env € list(4)]

— sats(4, limit_ordinal_fm(x), env) <— limit_ordinal (##A, nth(x,env))"
by (simp add: limit_ordinal_fm_def limit_ordinal_def sats_ordinal_fm’)

lemma limit_ordinal_iff_sats:
"[nth(i,env) = x; nth(j,env) = y;
i € nat; env € list(4)]
= limit_ordinal (##A, x) +— sats(A, limit_ordinal_fm(i), env)"
by simp

theorem limit_ordinal_reflection:
"REFLECTS[Ax. limit_ordinal(L,f(x)),
Ai x. limit_ordinal (##Lset(i),f(x))]"
apply (simp only: limit_ordinal_def)
apply (intro FOL_reflections ordinal_reflection
empty_reflection successor_reflection)
done

10.4.29 Finite Ordinals: The Predicate “Is A Natural Number”

definition
finite_ordinal_fm :: "i=i" where
"finite_ordinal_fm(x) =
And (ordinal_fm(x),
And (Neg(1limit_ordinal_fm(x)),
Forall (Implies(Member (0,succ(x)),
Neg(limit_ordinal_£fm(0))))))"

lemma finite_ordinal_type [TC]:
"x € nat = finite_ordinal_fm(x) € formula"
by (simp add: finite_ordinal_fm_def)

lemma sats_finite_ordinal_fm [simp]:

"[x € nat; env € list(4)]

— sats(A, finite_ordinal_fm(x), env) <— finite_ordinal (##A, nth(x,env))"
by (simp add: finite_ordinal_fm_def sats_ordinal_fm’ finite_ordinal_def)

lemma finite_ordinal_iff_sats:
"[nth(i,env) = x; nth(j,env) = y;
i € nat; env € list(A)]
— finite_ordinal (##A, x) +— sats(A, finite_ordinal_fm(i), env)"
by simp
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theorem finite_ordinal_reflection:
"REFLECTS[A\x. finite_ordinal(L,f(x)),
Ai x. finite_ordinal (##Lset(i),f(x))]"
apply (simp only: finite_ordinal_def)
apply (intro FOL_reflections ordinal_reflection limit_ordinal_reflection)
done

10.4.30 Omega: The Set of Natural Numbers

definition
omega_fm :: "i=1i" where
"omega_fm(x) =
And(limit_ordinal_fm(x),
Forall (Implies(Member(0,succ(x)),
Neg(limit_ordinal_fm(0)))))"

lemma omega_type [TC]:
"X € nat = omega_fm(x) € formula"
by (simp add: omega_fm_def)

lemma sats_omega_fm [simp]:

"[x € nat; env € list(4)]

—> sats(A, omega_fm(x), env) <—> omega(##A, nth(x,env))"
by (simp add: omega_fm_def omega_def)

lemma omega_iff_sats:
"[nth(i,env) = x; nth(j,env) = y;
i € nat; env € list(4)]
—> omega (##A, x) <— sats(A, omega_fm(i), env)"
by simp

theorem omega_reflection:
"REFLECTS[)\x. omega(L,f(x)),
Ai x. omega(##Lset(i),f(x))]"
apply (simp only: omega_def)
apply (intro FOL_reflections limit_ordinal_reflection)
done

lemmas fun_plus_reflections =
typed_function_reflection composition_reflection
injection_reflection surjection_reflection
bijection_reflection restriction_reflection
order_isomorphism_reflection finite_ordinal_reflection
ordinal_reflection 1imit_ordinal_reflection omega_reflection

lemmas fun_plus_iff_sats =

typed_function_iff_sats composition_iff_sats
injection_iff_sats surjection_iff_sats
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bijection_iff_sats restriction_iff_sats
order_isomorphism_iff_sats finite_ordinal_iff_sats
ordinal_iff_sats limit_ordinal_iff_sats omega_iff_sats

end

11 Early Instances of Separation and Strong Re-
placement

theory Separation imports L_axioms WF_absolute begin
This theory proves all instances needed for locale M_basic

Helps us solve for de Bruijn indices!

lemma nth_ConsI: "[nth(n,1) = x; n € nat] = nth(succ(n), Cons(a,1))
= x"

by simp

lemmas nth_rules
lemmas sep_rules

nth_0 nth_ConsI nat_O0I nat_succl
nth_O nth_ConsI FOL_iff_sats function_iff_sats
fun_plus_iff_sats

lemma Collect_conj_in_DPow:
"[{x€A. P(x)} € DPow(A); {xc€A. Q(x)} € DPow(A)]
= {x€A. P(x) N Q(x)} € DPow(A)"
by (simp add: Int_in_DPow Collect_Int_Collect_eq [symmetric])

lemma Collect_conj_in_DPow_Lset:
"lz € Lset(j); {x € Lset(j). P(x)} € DPow(Lset(j))]
= {x € Lset(j). x € z N P(x)} € DPow(Lset(j))"
apply (frule mem_Lset_imp_subset_Lset)
apply (simp add: Collect_conj_in_DPow Collect_mem_eq
subset_Int_iff2 elem_subset_in_DPow)
done

lemma separation_CollectI:
"(Az. L(z) = L({x € z . P(x)})) = separation(L, Ax. P(x))"
apply (unfold separation_def, clarify)
apply (rule_tac x="{x€z. P(x)}" in rexI)
apply simp_all
done

Reduces the original comprehension to the reflected one

lemma reflection_imp_L_separation:
"[Vx€eLset(j). P(x) +— Q(x);
{x € Lset(j) . Q(x)} € DPow(Lset(j));
0rd(j); =z € Lset(j)] = L({x € z . P(X)P"
apply (rule_tac i = "succ(j)" in L_I)
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prefer 2 apply simp

apply (subgoal_tac "{x € z. P(x)} = {x € Lset(j). x € z AN (Qx))}")
prefer 2

apply (blast dest: mem_Lset_imp_subset_Lset)

apply (simp add: Lset_succ Collect_conj_in_DPow_Lset)

done

Encapsulates the standard proof script for proving instances of Separation.

lemma gen_separation:
assumes reflection: "REFLECTS [P,Q]"
and Lu: "L(u)"
and collI: "Aj. u € Lset(j)
= Collect(Lset(j), Q(j)) € DPow(Lset(j))"
shows "separation(L,P)"
apply (rule separation_CollectI)
apply (rule_tac A="{u,z}" in subset_LsetE, blast intro: Lu)
apply (rule ReflectsE [OF reflection], assumption)
apply (drule subset_Lset_1tD, assumption)
apply (erule reflection_imp_L_separation)
apply (simp_all add: 1t_0Ord2, clarify)
apply (rule colll, assumption)
done

As above, but typically u is a finite enumeration such as {a, b}; thus the new
subgoal gets the assumption {a, b} C Lset (i), which is logically equivalent
toa € Lset(i) and b € Lset(i).

lemma gen_separation_multi:
assumes reflection: "REFLECTS [P,Q]"

and Lu: "L(u)"

and collI: "Aj. u C Lset(j)

—> Collect(Lset(j), Q(j)) € DPow(Lset(j))"

shows "separation(L,P)"
apply (rule gen_separation [OF reflection Lul)
apply (drule mem_Lset_imp_subset_Lset)
apply (erule colll)
done

11.1 Separation for Intersection

lemma Inter_Reflects:
"REFLECTS[Mx. Vy[L]. yeA — x € y,
Ai x. Vy€Lset(i). yeA — x € yl"
by (intro FOL_reflections)

lemma Inter_separation:

"L(A) = separation(L, Ax. Vy[L]. yeA — xecy)"
apply (rule gen_separation [OF Inter_Reflects], simp)
apply (rule DPow_LsetI)
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I leave this one example of a manual proof. The tedium of manually instantiating
i, j and env is obvious.

apply (rule ball_iff_sats)

apply (rule imp_iff_sats)

apply (rule_tac [2] i=1 and j=0 and env="[y,x,A]" in mem_iff_sats)
apply (rule_tac i=0 and j=2 in mem_iff_sats)

apply (simp_all add: succ_Un_distrib [symmetric])

done

11.2 Separation for Set Difference

lemma Diff_Reflects:
"REFLECTS[Mx. x ¢ B, Ai x. x ¢ B]"
by (intro FOL_reflections)

lemma Diff_separation:
"L(B) = separation(L, Ax. x ¢ B)"
apply (rule gen_separation [OF Diff_Reflects], simp)
apply (rule_tac env="[B]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done

11.3 Separation for Cartesian Product

lemma cartprod_Reflects:
"REFLECTS[Az. 3x[L]. x€A N (3yl[L]. y€B A pair(L,x,y,z)),
Ai z. Jx€lset(i). x€A AN (Jy€Llset(i). y€B A
pair (##Lset(i),x,y,z))]1"
by (intro FOL_reflections function_reflections)

lemma cartprod_separation:

"[L(A); L(B)]

—> separation(L, Az. dx[L]. x€A N (3yl[L]. yeB A pair(L,x,y,z)))"
apply (rule gen_separation_multi [OF cartprod_Reflects, of "{A,B}"], auto)
apply (rule_tac env="[A,B]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done

11.4 Separation for Image

lemma image_Reflects:
"REFLECTS[Ay. 3p[L]. per N (Ax[L]. x€A A pair(L,x,y,p)),
Al y. dp€lset(i). per N (Ix€lset(i). x€A A pair(##Lset(i),x,y,p))]"
by (intro FOL_reflections function_reflections)

lemma image_separation:

"[L(A); L(r)]

= separation(L, Ay. dp[L]. per N (3x[L]. x€A A pair(L,x,y,p)))"
apply (rule gen_separation_multi [OF image_Reflects, of "{A,r}"], auto)
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apply (rule_tac env="[A,r]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done

11.5 Separation for Converse

lemma converse_Reflects:
"REFLECTS[Az. Jp[L]. per AN (3x[L]. 3yl[L]. pair(L,x,y,p) N pair(L,y,x,z)),
Ai z. dp€lset(i). per A (Ix€Lset(i). Jy€cLset(i).
pair (##Lset (i) ,x,y,p) A pair(##Lset(i),y,x,z))]"
by (intro FOL_reflections function_reflections)

lemma converse_separation:
"L(r) = separation(L,
Az. dpl[L]. per AN (3x[L]. 3y[L]. pair(L,x,y,p) A pair(L,y,x,z)))"
apply (rule gen_separation [OF converse_Reflects], simp)
apply (rule_tac env="[r]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done

11.6 Separation for Restriction

lemma restrict_Reflects:
"REFLECTS[Mz. Ix[L]. x€A AN (AylL]. pair(L,x,y,z)),
Ai z. dx€Llset(i). x€A N (Qy€lset(i). pair(##Lset(i),x,y,z))]"
by (intro FOL_reflections function_reflections)

lemma restrict_separation:
"L(A) —> separation(L, Az. Ix[L]. x€A N (FylL]. pair(L,x,y,z)))"
apply (rule gen_separation [OF restrict_Reflects], simp)
apply (rule_tac env="[A]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done

11.7 Separation for Composition

lemma comp_Reflects:
"REFLECTS[Axz. dx[L]. dy[L]. Iz[L]. Ixy[L]. dyz[L].
pair(L,x,z,xz) A pair(L,x,y,xy) A pair(L,y,z,yz) A
xyes N yzer,
Ai xz. dx€Lset(i). Jy€Llset(i). Jz€Lset(i). Ixy€lset(i). Jyz€Lset(i).

pair(##Lset (i) ,x,z,xz) A pair(##Lset(i),x,y,xy) A
pair(##Lset (i),y,z,yz) N xy€s A yzer]"

by (intro FOL_reflections function_reflections)

lemma comp_separation:
"[L(r); L(s)]
— separation(L, Axz. Jx[L]. Fy[L]. F=z[L]. Ixy[L]. Jy=z[L].
pair(L,x,z,xz) A pair(L,x,y,xy) A pair(L,y,z,yz) A
Xy€s A yz€r)"
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apply (rule gen_separation_multi [OF comp_Reflects, of "{r,s}"], auto)

Subgoals after applying general “separation” rule:

1. Aj. [L(x); L(s); r € Lset(j); s € Lset(j)]
= {xz € Lset(j)
JxeLlset(j).
JyeLlset(j).
Jzelset(j).
pair (##Lset (j), x, z, xz) N
(Axy€eLlset (j).
pair(##Lset(j), x, y, xy) A
(AyzeLlset(j).
pair(##Lset(j), y, z, yz) A
Xy € s ANyz € r))} €
DPow (Lset (j))

apply (rule_tac env="[r,s]" in DPow_LsetI)

Subgoals ready for automatic synthesis of a formula:

1. Nj x. [L(x); L(s); r € Lset(j); s € Lset(j); x € Lset(j)]
— (dxa€Lset(j).
Jy€Llset(j).
JzeLlset(j).
pair(##Lset(j), xa, z, x) A
(IxyecLset(j).
pair(##Lset(j), xa, y, xy) A
(Fyze€Lset(j).
pair (##Lset(j), y, z, yz) A
Xy € 8 ANyz € r)))
sats(Lset (j), 7p23(j), [x, r, s])
2. Nj. [L(@); L(s); r € Lset(j); s € Lset(j)]
= [r, s] € list(Lset(j))
3. Nj- [L(@); L(s); r € Lset(j); s € Lset(j)]
= ?p23(j) € formula

apply (rule sep_rules | simp)+
done

11.8 Separation for Predecessors in an Order

lemma pred_Reflects:
"REFLECTS[M\y. dpl[L]. p€r A pair(L,y,x,p),
A y. dp € Lset(i). pE€r A pair(##Lset(i),y,x,p)]1"
by (intro FOL_reflections function_reflections)

lemma pred_separation:

"[L(r); L(x)] = separation(L, Ay. 3p[L]. per A pair(L,y,x,p))"
apply (rule gen_separation_multi [OF pred_Reflects, of "{r,x}"], auto)
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apply (rule_tac env="[r,x]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done

11.9 Separation for the Membership Relation

lemma Memrel Reflects:
"REFLECTS[Az. 3x[L]. y[L]. pair(L,x,y,z) N x € y,
Ai z. Jx € Lset(i). dy € Lset(i). pair(##Lset(i),x,y,z)
ANx eyl
by (intro FOL_reflections function_reflections)

lemma Memrel_separation:

"separation(L, Az. Ix[L]. Jy[L]. pair(L,x,y,z) AN x € y)"
apply (rule gen_separation [OF Memrel_Reflects nonempty])
apply (rule_tac env="[]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done

11.10 Replacement for FunSpace

lemma funspace_succ_Reflects:
"REFLECTS[Az. dp[L]. peA N (If[L]. Ib[L]. Fnb[L]. Jcnbf[L].
pair(L,f,b,p) A pair(L,n,b,nb) A is_cons(L,nb,f,cnbf) A
upair (L, cnbf,cnbf,z)),
Ai z. dp € Lset(i). peA N (Af € Lset(i). db € Lset(i).
dnb € Lset(i). dcnbf € Lset(i).
pair (##Lset (i) ,f,b,p) A pair(##Lset(i),n,b,nb) A
is_cons (##Lset (i) ,nb,f,cnbf) A upair(##Lset(i),cnbf,cnbf,z))]"
by (intro FOL_reflections function_reflections)

lemma funspace_succ_replacement:
"L(n) —
strong replacement(L, Ap z. If[L]. Ab[L]. Inb[L]. Fcnbf[L].
pair(L,f,b,p) A pair(L,n,b,nb) A is_cons(L,nb,f,cnbf)
A
upair (L, cnbf,cnbf,z))"
apply (rule strong_replacementI)
apply (rule_tac u="{n,B}" in gen_separation_multi [OF funspace_succ_Reflects],

auto)
apply (rule_tac env="[n,B]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done

11.11 Separation for a Theorem about is_recfun

lemma is_recfun_reflects:
"REFLECTS[Ax. dxal[L]. dxb[L].
pair(L,x,a,xa) AN xa € r A pair(L,x,b,xb) A xb € r A

153



(Ifx([L]. Fgx[L]. fun_apply(L,f,x,fx) A fun_apply(L,g,x,gx)

fx # gx),
Al x. dxa € Lset(i). dxb € Lset(i).
pair(##Lset(i),x,a,xa) N xa € r A pair(##Lset(i),x,b,xb) A
xb € r A
(Ifx € Lset(i). dgx € Lset(i). fun_apply (##Lset(i),f,x,fx)
N
fun_apply (##Lset (i),g,x,8x) N fx # gx)]"
by (intro FOL_reflections function_reflections fun_plus_reflections)

lemma is_recfun_separation:
— for well-founded recursion
"[L(x); L(£); L(g); L(a); L(b)]
—> separation(L,
Ax. dxalL]. dxb[L].
pair(L,x,a,xa) A xa € r A pair(L,x,b,xb) A xb € r A
(Ifx([L]. gx[L]. fun_apply(L,f,x,fx) A fun_apply(L,g,x,gx)
A\
fx # gx))"
apply (rule gen_separation_multi [OF is_recfun_reflects, of "{r,f,g,a,b}"],

auto)
apply (rule_tac env="[r,f,g,a,b]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done

11.12 Instantiating the locale M_basic

Separation (and Strong Replacement) for basic set-theoretic constructions
such as intersection, Cartesian Product and image.

lemma M _basic_axioms_L: "M _basic_axioms(L)"
apply (rule M_basic_axioms.intro)
apply (assumption | rule

Inter_separation Diff_separation cartprod_separation image_separation
converse_separation restrict_separation
comp_separation pred_separation Memrel_separation
funspace_succ_replacement is_recfun_separation power_ax)+

done

theorem M_basic_L: " M_basic(L)"
by (rule M_basic.intro [OF M_trivial L M_basic_axioms_L])

interpretation L: M _basic L by (rule M_basic_L)

end
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theory Internalize imports L_axioms Datatype_absolute begin

11.13 Internalized Forms of Data Structuring Operators

11.13.1 The Formula is_Inl, Internalized

definition
Inl_fm :: "[i,i]=i" where
"Inl_fm(a,z) = Exists(And(empty_fm(0), pair_fm(0,succ(a),succ(z))))"

lemma Inl_type [TC]:
"[x € nat; z € nat] = Inl_fm(x,z) € formula"
by (simp add: Inl_fm_def)

lemma sats_Inl_fm [simp]:

"[x € nat; z € nat; env € list(4)]

— sats(4, Inl_fm(x,z), env) <+— is_Inl(##A, nth(x,env), nth(z,env))"
by (simp add: Inl_fm_def is_Inl_def)

lemma Inl_iff_sats:
"[nth(i,env) = x; nth(k,env) = z;
i € nat; k € nat; env € list(4)]
— is_Inl(##A, x, z) <— sats(A, Inl_fm(i,k), env)"
by simp

theorem Inl_reflection:
"REFLECTS [Ax. is_Inl(L,f(x),h(x)),
Ai x. is_Inl(##Lset(i),f(x),h(x))]"
apply (simp only: is_Inl_def)
apply (intro FOL_reflections function_reflections)
done

11.13.2 The Formula is_Inr, Internalized

definition
Inr fm :: "[i,i]=1i" where
"Inr_fm(a,z) = Exists(And(numberl_fm(0), pair_fm(0,succ(a),succ(z))))"

lemma Inr_ type [TC]:
"[x € nat; z € nat] = Inr_fm(x,z) € formula"
by (simp add: Inr_fm_def)

lemma sats_Inr_fm [simp]:

"[x € nat; z € nat; env € list(4)]

— sats(4, Inr_fm(x,z), env) <— is_Inr(##A, nth(x,env), nth(z,env))"
by (simp add: Inr_ fm_def is_Inr_def)

lemma Inr_iff_sats:

"[nth(i,env) = x; nth(k,env) = z;
i € nat; k € nat; env € list(4)]
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— is_Inr(##A, x, z) <— sats(A, Inr_fm(i,k), env)"
by simp

theorem Inr_reflection:
"REFLECTS[A\x. is_Inr(L,f(x),h(x)),
M x. is_Inr(##Lset(i),f(x),h(x))]"
apply (simp only: is_Inr_def)
apply (intro FOL_reflections function_reflections)
done

11.13.3 The Formula is_nNil, Internalized

definition
Nil fm :: "i=i" where
"Nil_fm(x) = Exists(And(empty_fm(0), Inl_fm(0,succ(x))))"

lemma Nil_type [TC]: "x € nat = Nil_fm(x) € formula"
by (simp add: Nil_fm_def)

lemma sats_Nil_fm [simp]:

"[x € nat; env € list(A)]

— sats(4, Nil_fm(x), env) <— is_Nil (##A, nth(x,env))"
by (simp add: Nil_fm_def is_Nil_def)

lemma Nil_iff_sats:

"[nth(i,env) = x; i € nat; env € list(4)]

— is_Nil(##A, x) <— sats(4, Nil_fm(i), env)"
by simp

theorem Nil reflection:
"REFLECTS [Ax. is Nil(L,f(x)),
Ai x. is_Nil(##Lset(i),f(x))]"
apply (simp only: is_Nil_def)
apply (intro FOL_reflections function_reflections Inl_reflection)
done

11.13.4 The Formula is_Cons, Internalized

definition
Cons_fm :: "[i,i,i]=1i" where
"Cons_fm(a,l,Z) =
Exists(And (pair_fm(succ(a),succ(1),0), Inr_fm(0,succ(Z))))"

lemma Cons_type [TC]:
"[x € nat; y € nat; z € nat] = Cons_fm(x,y,z) € formula"
by (simp add: Cons_fm_def)

lemma sats_Cons_fm [simp]:

"[x € nat; y € nat; z € nat; env € list(4)]
— sats(4, Cons_fm(x,y,z), env) <—
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is_Cons (##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: Cons_fm_def is_Cons_def)

lemma Cons_iff_sats:
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
—>is_Cons(##A, x, y, z) <— sats(A, Cons_fm(i,j,k), env)"
by simp

theorem Cons_reflection:
"REFLECTS[Ax. is_Cons(L,f(x),g(x),h(x)),
Ai x. is_Cons (##Lset(i),f(x),g(x),h(x))]"
apply (simp only: is_Cons_def)
apply (intro FOL_reflections pair_reflection Inr_reflection)
done

11.13.5 The Formula is_quasilist, Internalized

definition
quasilist_fm :: "i=i" where
"quasilist_fm(x) =
Or(Nil_fm(x), Exists(Exists(Cons_fm(1,0,succ(succ(x))))))"

lemma quasilist_type [TC]: "x € nat = quasilist_fm(x) € formula"
by (simp add: quasilist_fm_def)

lemma sats_quasilist_fm [simp]:

"[x € nat; env € list(4)]

— sats(A, quasilist_fm(x), env) <— is_quasilist(##A, nth(x,env))"
by (simp add: quasilist_fm_def is_quasilist_def)

lemma quasilist_iff_sats:

"[nth(i,env) = x; i € nat; env € list(4)]

—> is_quasilist(##A, x) <— sats(A, quasilist_fm(i), env)"
by simp

theorem quasilist_reflection:
"REFLECTS[M\x. is_quasilist(L,f(x)),
Ai x. is_quasilist (##Lset(i),f(x))]"
apply (simp only: is_quasilist_def)
apply (intro FOL_reflections Nil_reflection Cons_reflection)
done

11.14 Absoluteness for the Function nth

11.14.1 The Formula is_hd, Internalized

definition
hd_fm :: "[i,i]=i" where
"hd_fm(xs,H) =
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And (Implies(Nil_fm(xs), empty_fm(H)),
And (Forall (Forall (Or (Neg(Cons_fm(1,0,xs#+2)), Equal(H#+2,1)))),
Or(quasilist_fm(xs), empty_fm(H))))"

lemma hd_type [TC]:
"[x € nat; y € nat] = hd_fm(x,y) € formula"
by (simp add: hd_fm_def)

lemma sats_hd_fm [simp]:

"[x € nat; y € nat; env € list(4)]

—> sats(4, hd_fm(x,y), env) <— is_hd(##A, nth(x,env), nth(y,env))"
by (simp add: hd_fm_def is_hd_def)

lemma hd_iff_sats:
"[nth(i,env) = x; nth(j,env) = y;
i € nat; j € nat; env € list(4)]
—> is_hd(##4A, x, y) <— sats(4, hd_fm(i,j), env)"
by simp

theorem hd_reflection:
"REFLECTS[Ax. is_hd(L,f(x),g(x)),
A x. is_hd(##Lset(i),f(x),g(x))]"
apply (simp only: is_hd_def)
apply (intro FOL_reflections Nil_reflection Cons_reflection
quasilist_reflection empty_reflection)
done

11.14.2 The Formula is_t1, Internalized

definition
tl fm :: "[i,i]=i" where
"tl fm(xs,T) =
And (Implies(Nil_fm(xs), Equal(T,xs)),
And (Forall (Forall (Or (Neg(Cons_fm(1,0,xs#+2)), Equal(T#+2,0)))),
Or(quasilist_fm(xs), empty_fm(T))))"

lemma ti1_type [TC]:
"[x € nat; y € nat] = tl_fm(x,y) € formula"
by (simp add: tl_fm_def)

lemma sats_tl_fm [simp]:

"[x € nat; y € nat; env € list(4)]

— sats(4, tl_fm(x,y), env) <— is_tl(##A, nth(x,env), nth(y,env))"
by (simp add: tl_fm_def is_tl_def)

lemma tl_iff_sats:
"[nth(i,env) = x; nth(j,env) = y;
i € nat; j € nat; env € list(4)]
— is_tl1(##A, x, y) <— sats(4, tl_fm(i,j), env)"
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by simp

theorem tl_reflection:
"REFLECTS[A\x. is_t1(L,f(x),g(x)),
Ai x. is_tl(##Lset(i),f(x),g(x))]"
apply (simp only: is_tl_def)
apply (intro FOL_reflections Nil_reflection Cons_reflection
quasilist_reflection empty_reflection)
done

11.14.3 The Operator is_bool_of_o

The formula p has no free variables.

definition
bool_of_o_fm :: "[i, i]=i" where
"bool_of_o_fm(p,z) =
Or (And (p,numberl_fm(z)),
And (Neg(p) ,empty_fm(z)))"

lemma is_bool_of_o_type [TC]:
"[p € formula; z € nat] = bool_of_o_fm(p,z) € formula"
by (simp add: bool_of_o_fm_def)

lemma sats_bool_of_o_fm:
assumes p_iff_sats: "P <— sats(4, p, env)"
shows
"[z € nat; env € list(4)]
—> sats(4, bool_of_o_fm(p,z), env) <—
is_bool_of_o(##A, P, nth(z,env))"
by (simp add: bool_of_o_fm_def is_bool_of_o_def p_iff_sats [THEN iff_sym])

lemma is_bool_of_o_iff_sats:
"[P «— sats(A, p, env); nth(k,env) = z; k € nat; env € list(4)]
—> is_bool_of_o(##A, P, z) <— sats(4d, bool_of_o_fm(p,k), env)"
by (simp add: sats_bool_of_o_fm)

theorem bool_of_o_reflection:
"REFLECTS [P(L), Ai. P(##Lset(i))] =
REFLECTS[A\x. is_bool_of_o(L, P(L,x), f(x)),
Ai x. is_bool_of_o(##Lset (i), P(##Lset(i),x), f(x))]"
apply (simp (no_asm) only: is_bool_of_o_def)
apply (intro FOL_reflections function_reflections, assumption+)
done
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11.15 More Internalizations

11.15.1 The Operator is_lambda

The two arguments of p are always 1, 0. Remember that p will be enclosed
by three quantifiers.

definition
lambda_fm :: "[i, i, i]=i" where
"lambda_fm(p,A,z) =
Forall (Iff (Member (0,succ(z)),
Exists (Exists (And (Member (1,A#+3),
And (pair_fm(1,0,2), p))))))"

We call p with arguments x, y by equating them with the corresponding
quantified variables with de Bruijn indices 1, 0.

lemma is_lambda_type [TC]:
"[p € formula; x € nat; y € nat]
—> lambda_fm(p,x,y) € formula"
by (simp add: lambda_fm_def)

lemma sats_lambda_fm:
assumes is_b_iff_sats:
"Aa0 a1l a2.
[a0€4; al€A; a2€4]
— is_b(al, a0) +— sats(4, p, Cons(a0,Cons(al,Cons(a2,env))))"
shows
"[x € nat; y € nat; env € list(4)]
—> sats(A, lambda_fm(p,x,y), env) <—
is_lambda (##A, nth(x,env), is_b, nth(y,env))"
by (simp add: lambda_fm_def is_lambda_def is_b_iff_sats [THEN iff_sym])

theorem is_lambda_reflection:

assumes is_b_reflection:

"Af g h. REFLECTS[Xx. is_b(L, f(x), g(x), h(x)),
Ai x. is_b(##Lset(i), f(x), g(x), h(x))]"
shows "REFLECTS[Ax. is_lambda(L, A(x), is_b(L,x), f(x)),
Ai x. is_lambda (##Lset (i), A(x), is_b(##Lset(i),x), f(x))]"

apply (simp (no_asm_use) only: is_lambda_def)
apply (intro FOL_reflections is_b_reflection pair_reflection)
done

11.15.2 The Operator is_Member, Internalized

definition
Member_fm :: "[i,i,i]=-i" where
"Member_fm(x,y,Z) =
Exists(Exists(And (pair_fm(x#+2,y#+2,1),
And(Inl_fm(1,0), Inl_fm(0,Z#+2)))))"
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lemma is_Member_type [TC]:
"[x € nat; y € nat; z € nat] = Member_fm(x,y,z) € formula"
by (simp add: Member_fm_def)

lemma sats_Member_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
—> sats(A, Member_fm(x,y,z), env) <—
is_Member (##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: Member_fm_def is_Member_def)

lemma Member_iff_sats:
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
—> is_Member (##A, x, y, z) <— sats(A, Member_fm(i,j,k), env)"
by (simp)

theorem Member_reflection:
"REFLECTS[A\x. is_Member (L,f(x),g(x),h(x)),
Al x. is_Member (##Lset(i),f(x),g(x),h(x))]"
apply (simp only: is_Member_def)
apply (intro FOL_reflections pair_reflection Inl_reflection)
done

11.15.3 The Operator is_Equal, Internalized

definition
Equal_fm :: "[i,i,i]J=i" where
"Equal_fm(x,y,Z) =
Exists(Exists(And(pair_fm(x#+2,y#+2,1),
And(Inr_fm(1,0), Inl_fm(0,Z#+2)))))"

lemma is_Equal_type [TC]:
"lx € nat; y € nat; z € nat] = Equal_fm(x,y,z) € formula"
by (simp add: Equal_fm_def)

lemma sats_Equal_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
—> sats(4, Equal_fm(x,y,z), env) <—>
is_Equal (##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: Equal_fm_def is_Equal_def)

lemma Equal_iff_sats:
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
—> is_Equal (##A, x, y, z) +— sats(A, Equal_fm(i,j,k), env)"
by (simp)

theorem Equal_reflection:
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"REFLECTS[Mx. is_Equal(L,f(x),g(x),h(x)),
Ai x. is_Equal (##Lset(i),f(x),g(x),h(x))]"
apply (simp only: is_Equal_def)
apply (intro FOL_reflections pair_reflection Inl_reflection Inr_reflection)
done

11.15.4 The Operator is_Nand, Internalized

definition
Nand_fm :: "[i,i,i]=i" where
"Nand_fm(x,y,Z) =
Exists(Exists(And (pair_fm(x#+2,y#+2,1),
And (Inl_fm(1,0), Inr_fm(0,Z#+2)))))"

lemma is_Nand_type [TC]:
"[x € nat; y € nat; z € nat] = Nand_fm(x,y,z) € formula"
by (simp add: Nand_fm_def)

lemma sats_Nand_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
—> sats(4, Nand_fm(x,y,z), env) <—
is_Nand (##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: Nand_fm_def is_Nand_def)

lemma Nand_iff_sats:
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
—> is_Nand (##4, x, y, z) <— sats(4, Nand_fm(i,j,k), env)"
by (simp)

theorem Nand_reflection:
"REFLECTS[Mx. is_Nand(L,f(x),g(x),h(x)),
Ai x. is_Nand(##Lset(i),f(x),g(x),h(x))]"
apply (simp only: is_Nand_def)
apply (intro FOL_reflections pair_reflection Inl_reflection Inr_reflection)
done

11.15.5 The Operator is_Forall, Internalized

definition
Forall fm :: "[i,i]=i" where
"Forall_fm(x,Z) =
Exists(And (Inr_fm(succ(x),0), Inr_fm(0,succ(Z))))"

lemma is_Forall_type [TC]:
"[x € nat; y € nat] = Forall_fm(x,y) € formula"
by (simp add: Forall_fm_def)

lemma sats_Forall_fm [simp]:
"[x € nat; y € nat; env € list(4)]
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—> sats(A, Forall_fm(x,y), env) <—
is_Forall (##A, nth(x,env), nth(y,env))"
by (simp add: Forall_fm_def is_Forall_def)

lemma Forall iff_sats:
"[nth(i,env) = x; nth(j,env) = y;
i € nat; j € nat; env € list(4)]
—> is_Forall (##A, x, y) <— sats(A, Forall_fm(i,j), env)"
by (simp)

theorem Forall_reflection:
"REFLECTS [MAx. is_Forall(L,f(x),g(x)),
Ai x. is_Forall (##Lset(i),f(x),g(x))]"
apply (simp only: is_Forall_def)
apply (intro FOL_reflections pair_reflection Inr_reflection)
done

11.15.6 The Operator is_and, Internalized

definition
and_fm :: "[i,i,i]=i" where
"and_fm(a,b,z) =
Or (And (numberl_fm(a), Equal(z,b)),
And (Neg (number1_fm(a)),empty_fm(z)))"

lemma is_and_type [TC]:
"[x € nat; y € nat; z € nat] = and_fm(x,y,z) € formula"
by (simp add: and_fm_def)

lemma sats_and_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
— sats(4, and_fm(x,y,z), env) <—
is_and (##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: and_fm_def is_and_def)

lemma is_and_iff_sats:
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
—> is_and(##4, x, y, z) <— sats(A, and_fm(i,j,k), env)"
by simp

theorem is_and_reflection:
"REFLECTS[A\x. is_and(L,f(x),g(x),h(x)),
A x. is_and(##Lset(i),f(x),g(x),h(x))]"
apply (simp only: is_and_def)
apply (intro FOL_reflections function_reflections)
done
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11.15.7 The Operator is_or, Internalized

definition
or_fm :: "[i,i,i]=1i" where
"or_fm(a,b,z) =
Or (And (number1_fm(a), numberl_fm(z)),
And (Neg (number1_fm(a)), Equal(z,b)))"

lemma is_or_type [TC]:
"[x € nat; y € nat; z € nat] — or_fm(x,y,z) € formula"
by (simp add: or_fm_def)

lemma sats_or_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
— sats(4, or_fm(x,y,z), env) <+—
is_or(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: or_fm_def is_or_def)

lemma is_or_iff_sats:
"[[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
= is_or(##A, x, y, z) <— sats(4, or_fm(i,j,k), env)"
by simp

theorem is_or_reflection:
"REFLECTS[Ax. is_or(L,f(x),g(x),h(x)),
A x. is_or(##Lset(i),f(x),g(x),h(x))]"
apply (simp only: is_or_def)
apply (intro FOL_reflections function_reflections)
done

11.15.8 The Operator is_not, Internalized

definition
not_fm :: "[i,i]=1i" where
"not_fm(a,z) =
Or (And (number1_fm(a), empty_fm(z)),
And (Neg (number1_fm(a)), numberl_fm(z)))"

lemma is_not_type [TC]:
"[x € nat; z € nat] = not_fm(x,z) € formula"
by (simp add: not_fm_def)

lemma sats_is_not_fm [simp]:

"[x € nat; z € nat; env € list(4)]

— sats(4, not_fm(x,z), env) <— is_not(##A, nth(x,env), nth(z,env))"
by (simp add: not_fm_def is_not_def)

lemma is_not_iff_sats:
"[nth(i,env) = x; nth(k,env) = z;
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i € nat; k € nat; env € list(4)]
— is_not(##A, x, z) <— sats(A, not_fm(i,k), env)"
by simp

theorem is_not_reflection:
"REFLECTS[Mx. is_not(L,f(x),g(x)),
A x. is_not(##Lset(i),f(x),g(x))]"
apply (simp only: is_not_def)
apply (intro FOL_reflections function_reflections)
done

lemmas extra_reflections =
Inl reflection Inr_reflection Nil_reflection Cons_reflection
quasilist_reflection hd_reflection tl_reflection bool_of_o_reflection
is_lambda_reflection Member_reflection Equal_reflection Nand_reflection
Forall reflection is_and_reflection is_or_reflection is_not_reflection

11.16 Well-Founded Recursion!
11.16.1 The Operator M_is_recfun

Alternative definition, minimizing nesting of quantifiers around MH

lemma M _is_recfun_iff:
"M_is_recfun(M,MH,r,a,f) <—
Vz[M. z € f «—
(Ax[M]. 3f r_sx[M]. Iy[M].
MH(x, f_r_sx, y) A pair(M,x,y,z) A
(Axal[M]. dsx[M]. dr_sx[M].
pair(M,x,a,xa) A upair(M,x,x,sx) A
pre_image(M,r,sx,r_sx) A restriction(M,f,r_sx,f_r_sx) A
xa € r)))"
apply (simp add: M_is_recfun_def)
apply (rule rall_cong, blast)
done

The three arguments of p are always 2, 1, 0 and z

definition
is_recfun_fm :: "[i, i, i, i]=i" where
"is_recfun_fm(p,r,a,f) =
Forall (Iff (Member (0,succ(f)),
Exists(Exists(Exists(
And (p,
And (pair_fm(2,0,3),
Exists(Exists(Exists(
And (pair_fm(5,a#+7,2),
And (upair_fm(5,5,1),
And (pre_image_fm(r#+7,1,0),
And(restriction_fm(f#+7,0,4), Member (2,r#+7)))))))))))))))"
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lemma is_recfun_type [TC]:
"[p € formula; x € nat; y € nat; z € nat]
—> is_recfun_fm(p,x,y,z) € formula"

by (simp add: is_recfun_fm_def)

lemma sats_is_recfun_fm:
assumes MH_iff sats:
"Aa0 al a2 a3.
[a0€4; alch; a2€4; a3€cA]
—> MH(a2, al, a0) <— sats(4, p, Cons(a0,Cons(al,Cons(a2,Cons(a3,env)))))"
shows
"[x € nat; y € nat; z € nat; env € list(4)]
—> sats(A, is_recfun_fm(p,x,y,z), env) <—
M_is_recfun(##A, MH, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: is_recfun_fm_def M_is_recfun_iff MH_iff_sats [THEN iff_sym])

lemma is_recfun_iff_sats:
assumes MH_iff_sats:
"Aa0 a1l a2 a3.
[a0€4; alch; a2€4; a3cA]
—> MH(a2, al, a0) <— sats(4, p, Cons(a0,Cons(al,Cons(a2,Cons(a3,env)))))"
shows
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
=—> M_is_recfun(##A, MH, x, y, z) <— sats(4, is_recfun_fm(p,i,j,k),
env)"
by (simp add: sats_is_recfun_fm [OF MH_iff_sats])

The additional variable in the premise, namely f£’, is essential. It lets MH
depend upon x, which seems often necessary. The same thing occurs in
is_wfrec_reflection.

theorem is_recfun_reflection:
assumes MH reflection:
”/\f’ f g h. REFLECTS[A\x. MH(L, f’(x), f(x), g(x), h(x)),
Al x. MH(##Lset(i), £’ (x), f(x), g(x), h(x))]"
shows "REFLECTS[Ax. M_is_recfun(L, MH(L,x), f(x), g(x), h(x)),
Ai x. M_is_recfun(##Lset (i), MH(##Lset(i),x), f(x), g(x),
h(x))]"
apply (simp (no_asm_use) only: M_is_recfun_def)
apply (intro FOL_reflections function_reflections
restriction_reflection MH_reflection)
done

11.16.2 The Operator is_wfrec

The three arguments of p are always 2, 1, 0; p is enclosed by 5 quantifiers.

definition
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is_wfrec_fm :: "[i, i, i, i]=i" where
"is_wfrec_fm(p,r,a,z) =
Exists(And(is_recfun_fm(p, succ(r), succ(a), 0),
Exists(Exists(Exists(Exists(
And (Equal (2, a#+5), And(Equal(1,4), And(Equal(0,z#+5), p)))))))))"

We call p with arguments a, f, z by equating them with the corresponding
quantified variables with de Bruijn indices 2, 1, 0.

There’s an additional existential quantifier to ensure that the environments
in both calls to MH have the same length.

lemma is_wfrec_type [TC]:
"[p € formula; x € nat; y € nat; z € nat]
—> is_wfrec_fm(p,x,y,z) € formula"

by (simp add: is_wfrec_fm_def)

lemma sats_is_wfrec_fm:
assumes MH_iff sats:
"Aa0 al a2 a3 a4.
[a0€4; al€A; a2€4h; a3€A; aded]
— MH(a2, al, a0) <— sats(4, p, Cons(a0,Cons(al,Cons(a2,Cons(a3,Cons(a4,env))))))
shows
"[x € nat; y < length(env); z < length(env); env € list(A)]
—> sats(A, is_wfrec_fm(p,x,y,z), env) <—
is_wfrec(##A, MH, nth(x,env), nth(y,env), nth(z,env))"
apply (frule_tac x=z in 1t_length_in_nat, assumption)
apply (frule 1t_length_in_nat, assumption)
apply (simp add: is_wfrec_fm_def sats_is_recfun_fm is_wfrec_def MH_iff_sats
[THEN iff_sym], blast)
done

lemma is_wfrec_iff_sats:
assumes MH_iff sats:
"Aa0 al a2 a3 a4.
[a0€4; al€A; a2€4h; a3€A; aded]
— MH(a2, al, a0) <— sats(4, p, Cons(a0,Cons(al,Cons(a2,Cons(a3,Cons(a4,env))))))
shows
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j < length(env); k < length(env); env € list(4)]
— is_wfrec(##A, MH, x, y, z) <— sats(A, is_wfrec_fm(p,i,j,k), env)"

by (simp add: sats_is_wfrec_fm [OF MH_iff_sats])

theorem is_wfrec_reflection:
assumes MH reflection:
"Nf’ f g h. REFLECTS[Ax. MH(L, f’(x), f(x), g(x), h(x)),
Al x. MH(##Lset(i), f’(x), f(x), g(x), h(x))]1"
shows "REFLECTS[)x. is_wfrec(L, MH(L,x), f(x), g(x), h(x)),
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Ai x. is_wfrec(##Lset (i), MH(##Lset(i),x), f(x), g(x),
h(x))]"
apply (simp (no_asm_use) only: is_wfrec_def)
apply (intro FOL_reflections MH_reflection is_recfun_reflection)
done

11.17 For Datatypes
11.17.1 Binary Products, Internalized

definition
cartprod_fm :: "[i,i,i]=1i" where

"cartprod_fm(A,B,z) =
Forall (Iff (Member (0,succ(z)),
Exists (And (Member (0, succ(succ(4))),
Exists (And (Member (0, succ (succ(succ(B)))),
pair_fm(1,0,2)))))))"

lemma cartprod_type [TC]:
"[x € nat; y € nat; z € nat] = cartprod_fm(x,y,z) € formula"
by (simp add: cartprod_fm_def)

lemma sats_cartprod_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
— sats (A4, cartprod_fm(x,y,z), env) <—
cartprod (##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: cartprod_fm_def cartprod_def)

lemma cartprod_iff_sats:
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
= cartprod (##A, x, y, z) <— sats(A, cartprod_fm(i,j,k), env)"
by (simp)

theorem cartprod_reflection:
"REFLECTS[A\x. cartprod(L,f(x),g(x),h(x)),
Ai x. cartprod(##Lset (i), f(x),g(x),h(x))]"
apply (simp only: cartprod_def)
apply (intro FOL_reflections pair_reflection)
done

11.17.2 Binary Sums, Internalized

definition
sum_fm :: "[i,i,i]=i" where
"sum_fm(A,B,Z) =
Exists(Exists(Exists(Exists(
And (number1_fm(2),
And (cartprod_fm(2,A#+4,3),
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And (upair_fm(2,2,1),
And (cartprod_fm(1,B#+4,0), union_fm(3,0,Z#+4)))))))))"

lemma sum_type [TC]:
"[x € nat; y € nat; z € nat] — sum_fm(x,y,z) € formula"
by (simp add: sum_fm_def)

lemma sats_sum_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
—> sats(4, sum_fm(x,y,z), env) <—
is_sum(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: sum_fm_def is_sum_def)

lemma sum_iff_sats:
"[[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
— is_sum(##4, x, y, z) <— sats(A, sum_fm(i,j,k), env)"
by simp

theorem sum_reflection:
"REFLECTS [M\x. is_sum(L,f(x),g(x),h(x)),
Ai x. is_sum(##Lset(i),f(x),g(x),h(x))]"
apply (simp only: is_sum_def)
apply (intro FOL_reflections function_reflections cartprod_reflection)
done

11.17.3 The Operator quasinat

definition
quasinat_fm :: "

i=1i" where
"quasinat_fm(z) =

Or (empty_fm(z), Exists(succ_fm(0,succ(z))))"

lemma quasinat_type [TC]:
"X € nat = quasinat_fm(x) € formula"
by (simp add: quasinat_fm_def)

lemma sats_quasinat_fm [simp]:

"[x € nat; env € list(4)]

—> sats(A, quasinat_fm(x), env) ¢<— is_quasinat (##A, nth(x,env))"
by (simp add: quasinat_fm_def is_quasinat_def)

lemma quasinat_iff_sats:
"[nth(i,env) = x; nth(j,env) = y;
i € nat; env € list(4)]
—> is_quasinat (##A, x) <— sats(A, quasinat_fm(i), env)"
by simp

theorem quasinat_reflection:
"REFLECTS[Ax. is_quasinat(L,f(x)),
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Al x. is_quasinat (##Lset(i),f(x))]"
apply (simp only: is_quasinat_def)
apply (intro FOL_reflections function_reflections)
done

11.17.4 The Operator is_nat_case

I could not get it to work with the more natural assumption that is_b takes
two arguments. Instead it must be a formula where 1 and 0 stand for m and
b, respectively.

The formula is_b has free variables 1 and 0.

definition
is_nat_case_fm :: "[i, i, i, i]=1" where
"is_nat_case_fm(a,is_b,k,z) =
And (Implies (empty_fm(k), Equal(z,a)),
And (Forall (Implies (succ_fm(0,succ(k)),
Forall (Implies(Equal (0, succ(succ(z))), is_b)))),
Or(quasinat_fm(k), empty_fm(z))))"

lemma is_nat_case_type [TC]:
"[is_b € formula;
X € nat; y € nat; z € nat]
—> is_nat_case_fm(x,is_b,y,z) € formula"
by (simp add: is_nat_case_fm_def)

lemma sats_is_nat_case_fm:
assumes is_b_iff_sats:
"ANa. a € A = is_b(a,nth(z, env)) +—
sats(A, p, Cons(nth(z,env), Cons(a, env)))"
shows
"[x € nat; y € nat; z < length(env); env € list(4)]
—> sats(A, is_nat_case_fm(x,p,y,z), env) <—
is_nat_case (##A, nth(x,env), is_b, nth(y,env), nth(z,env))"
apply (frule 1t_length_in_nat, assumption)
apply (simp add: is_nat_case_fm_def is_nat_case_def is_b_iff_sats [THEN
iff_sym])
done

lemma is_nat_case_iff_sats:
"[(Aa. a € A = is_b(a,z) +—
sats(A, p, Cons(z, Cons(a,env))));
nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k < length(env); env € list(4)]
—> is_nat_case(##A, x, is_b, y, z) <— sats(4, is_nat_case_fm(i,p,j,k),
env)"
by (simp add: sats_is_nat_case_fm [of A is_b])

The second argument of is_b gives it direct access to x, which is essential for
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handling free variable references. Without this argument, we cannot prove
reflection for iterates_MH

theorem is_nat_case_reflection:

assumes is_b_reflection:

"Ah f g. REFLECTS[Xx. is_b(L, h(x), f(x), g(x)),
Ai x. is_b(##Lset(i), h(x), f(x), g(x))]"
shows "REFLECTS[Ax. is_nat_case(L, f(x), is_b(L,x), g(x), h(x)),
A\i x. is_nat_case(##Lset (i), f(x), is_b(##Lset(i), x),

gx), h(x))]"
apply (simp (no_asm_use) only: is_nat_case_def)
apply (intro FOL_reflections function_reflections

restriction_reflection is_b_reflection quasinat_reflection)
done

11.18 The Operator iterates_MH, Needed for Iteration

definition
iterates_MH_fm :: "[i, i, i, i, i]=i" where
"iterates_MH_fm(isF,v,n,g,z) =
is_nat_case_fm(v,
Exists(And (fun_apply_fm(succ (succ(succ(g))),2,0),
Forall(Implies(Equal(0,2), isF)))),
n, z)"

lemma iterates_MH_type [TC]:
”[[_p € formula;
V € nat; x € nat; y € nat; z € nat]]
—> iterates_MH_fm(p,v,x,y,z) € formula"
by (simp add: iterates_MH_fm_def)

lemma sats_iterates_MH_fm:
assumes is_F_iff_sats:
"ANabcd [a€A4; bel; ceh;dcei]
—> is_F(a,b) +—
sats(A, p, Cons(b, Cons(a, Cons(c, Cons(d,env)))))"
shows
"[[v € nat; x € nat; y € nat; z < length(env); env € list(A)]]
—> sats(A, iterates_MH_fm(p,v,x,y,z), env) <—
iterates_MH(##A, is_F, nth(v,env), nth(x,env), nth(y,env),
nth(z,env))"
apply (frule 1t_length_in_nat, assumption)
apply (simp add: iterates_MH_fm_def iterates_MH_def sats_is_nat_case_fm

is_F_iff_sats [symmetric])
apply (rule is_nat_case_cong)
apply (simp_all add: setclass_def)

done

lemma iterates_MH_iff_sats:
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assumes is_F_iff_sats:

"ANabcd [a€A; b€ A; c€A;de i

— is_F(a,b) +—
sats(4, p, Cons(b, Cons(a, Cons(c, Cons(d,env)))))"

shows
"[nth(i’,env) = v; nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;

i’ € nat; i € nat; j € nat; k < length(env); env € list(4)]
—> iterates_MH(##A, is_F, v, x, y, z) +—

sats (A, iterates_MH_fm(p,i’,i,j,k), env)"

by (simp add: sats_iterates_MH_fm [OF is_F_iff_sats])

The second argument of p gives it direct access to x, which is essential for
handling free variable references. Without this argument, we cannot prove
reflection for 1ist_N.

theorem iterates_MH reflection:
assumes p_reflection:
"Af g h. REFLECTS[Xx. p(L, h(x), f(x), g(x)),
Ai x. p(##Lset (i), h(x), f(x), g(x))]"
shows "REFLECTS[Ax. iterates_MH(L, p(L,x), e(x), f(x), g(x), h(x)),
Ai x. iterates_MH(##Lset (i), p(##Lset(i),x), e(x), f(x),
gx), h(x))]"
apply (simp (no_asm_use) only: iterates_MH_def)
apply (intro FOL_reflections function_reflections is_nat_case_reflection
restriction_reflection p_reflection)

done

11.18.1 The Operator is_iterates

The three arguments of p are always 2, 1, 0; p is enclosed by 9 (7?7) quanti-
fiers.

definition
is_iterates_fm :: "[i, i, i, i]=1" where
"is_iterates_fm(p,v,n,Z) =
Exists(Exists(

And (succ_fm(n#+2,1),
And (Memrel_fm(1,0),
is_wfrec_fm(iterates_MH_fm(p, v#+7, 2, 1, 0),
0, n#+2, Z#+2)))))"

We call p with arguments a, f, z by equating them with the corresponding
quantified variables with de Bruijn indices 2, 1, 0.

lemma is_iterates_type [TC]:
"[p € formula; x € nat; y € nat; z € nat]
— is_iterates_fm(p,x,y,z) € formula"
by (simp add: is_iterates_fm_def)

lemma sats_is_iterates_fm:
assumes is_F_iff_sats:
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"NAabcdefghdiijk.
[a € A; b € A; c € A; d € A; e € A; £ € A;
g EA; h € A; 1 € A; j € A; ke A]
— is_F(a,b) +—
sats(A, p, Cons(b, Cons(a, Cons(c, Cons(d, Cons(e, Cons(f,

Cons(g, Cons(h, Cons(i, Cons(j, Cons(k, env))))))))))))"
shows
"[x € nat; y < length(env); z < length(env); env € list(A)]
—> sats(A, is_iterates_fm(p,x,y,z), env) <—
is_iterates (##A, is_F, nth(x,env), nth(y,env), nth(z,env))"

apply (frule_tac x=z in 1t_length_in_nat, assumption)
apply (frule 1t_length_in_nat, assumption)
apply (simp add: is_iterates_fm_def is_iterates_def sats_is_nat_case_fm

is_F_iff_sats [symmetric] sats_is_wfrec_fm sats_iterates_MH_fm)
done

lemma is_iterates_iff_sats:
assumes is_F_iff_sats:
"NAabcdefghdijk.
[a2 € 4; b € 4; ¢ € A; d € A; e € A; T € A;
g EA; h € A; 1 € A; j€A; ke Ad]
—> is_F(a,b) +—
sats(A, p, Cons(b, Cons(a, Cons(c, Cons(d, Cons(e, Cons(f,

Cons(g, Cons(h, Cons(i, Cons(j, Cons(k, env))))))))))))"
shows

"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j < length(env); k < length(env); env € list(A)]
—> is_iterates(##A, is_F, x, y, z) +—
sats(A, is_iterates_fm(p,i,j,k), env)"
by (simp add: sats_is_iterates_fm [OF is_F_iff_sats])

The second argument of p gives it direct access to x, which is essential for
handling free variable references. Without this argument, we cannot prove
reflection for 1ist_N.

theorem is_iterates_reflection:
assumes p_reflection:
"Af g h. REFLECTS[Xx. p(L, h(x), f(x), g(x)),
A x. p(##Lset(i), h(x), f(x), g(x))]"
shows "REFLECTS[A\x. is_iterates(L, p(L,x), f(x), g(x), h(x)),
Ai x. is_iterates(##Lset (i), p(##Lset(i),x), £(x), g(x),
h(x))1"
apply (simp (no_asm_use) only: is_iterates_def)
apply (intro FOL_reflections function_reflections p_reflection

is_wfrec_reflection iterates_MH_reflection)
done

173



11.18.2 The Formula is_eclose_n, Internalized

definition
eclose_n_fm :: "[i,i,i]=1i" where
"eclose_n_fm(A,n,Z) = is_iterates_fm(big union_fm(1,0), A, n, Z)"

lemma eclose_n_fm_type [TC]:
"[x € nat; y € nat; z € nat] = eclose_n_fm(x,y,z) € formula"
by (simp add: eclose_n_fm_def)

lemma sats_eclose_n_fm [simp]:
"[x € nat; y < length(env); z < length(env); env € list(4)]
—> sats(4, eclose_n_fm(x,y,z), env) +—
is_eclose_n(##A, nth(x,env), nth(y,env), nth(z,env))"
apply (frule_tac x=z in 1t_length_in_nat, assumption)
apply (frule_tac x=y in 1t_length_in_nat, assumption)
apply (simp add: eclose_n_fm_def is_eclose_n_def
sats_is_iterates_fm)
done

lemma eclose_n_iff_sats:
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j < length(env); k < length(env); env € list(4)]
—> is_eclose_n(##A, x, y, z) +— sats(A, eclose_n_fm(i,j,k), env)"
by (simp)

theorem eclose_n_reflection:
"REFLECTS[A\x. is_eclose_n(L, f(x), g(x), h(x)),
Al x. is_eclose_n(##Lset(i), f(x), g(x), h(x))]"
apply (simp only: is_eclose_n_def)
apply (intro FOL_reflections function_reflections is_iterates_reflection)

done

11.18.3 Membership in eclose(4)

definition
mem_eclose_fm :: "[i,i]=i" where
"mem_eclose_fm(x,y) =
Exists(Exists(
And(finite_ordinal_fm(1),
And(eclose_n_fm(x#+2,1,0), Member (y#+2,0)))))"

lemma mem_eclose_type [TC]:
"[x € nat; y € nat] = mem_eclose_fm(x,y) € formula"
by (simp add: mem_eclose_fm_def)

lemma sats_mem_eclose_fm [simp]:

"[x € nat; y € nat; env € list(4)]
—> sats(4, mem_eclose_fm(x,y), env) <—> mem_eclose(##A, nth(x,env),
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nth(y,env))"
by (simp add: mem_eclose_fm_def mem_eclose_def)

lemma mem_eclose_iff_sats:
"[nth(i,env) = x; nth(j,env) = y;
i € nat; j € nat; env € list(4)]
—> mem_eclose (##A, x, y) <— sats(A, mem_eclose_fm(i,j), env)"
by simp

theorem mem_eclose_reflection:
"REFLECTS [Ax. mem_eclose(L,f(x),g(x)),
Al x. mem_eclose(##Lset (i),f(x),g(x))]"
apply (simp only: mem_eclose_def)
apply (intro FOL_reflections finite_ordinal_reflection eclose_n_reflection)
done

11.18.4 The Predicate “Is eclose(4)”

definition
is_eclose_fm :: "[i,i]=i" where
"is_eclose_fm(A,Z) =
Forall (Iff (Member (0,succ(Z)), mem_eclose_fm(succ(A),0)))"

lemma is_eclose_type [TC]:
”[[x € nat; y € nat]] —> is_eclose_fm(x,y) € formula"
by (simp add: is_eclose_fm_def)

lemma sats_is_eclose_fm [simp]:

"[x € nat; y € nat; env € list(4)]

— sats(A4, is_eclose_fm(x,y), env) +— is_eclose(##A, nth(x,env),
nth(y,env))"
by (simp add: is_eclose_fm_def is_eclose_def)

lemma is_eclose_iff_sats:
"[nth(i,env) = x; nth(j,env) = y;
i € nat; j € nat; env € list(4)]
—> is_eclose(##A, x, y) <— sats(A, is_eclose_fm(i,j), env)"
by simp

theorem is_eclose_reflection:
"REFLECTS[Ax. is_eclose(L,f(x),g(x)),
Ai x. is_eclose(##Lset(i),f(x),g(x))]"
apply (simp only: is_eclose_def)
apply (intro FOL_reflections mem_eclose_reflection)
done

11.18.5 The List Functor, Internalized

definition
list_functor_fm :: "[i,i,i]=i" where
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"list_functor_fm(A,X,Z) =
Exists(Exists(
And (number1_fm(1),
And (cartprod_fm(A#+2,X#+2,0), sum_fm(1,0,Z#+2)))))"

lemma list_functor_type [TC]:
"[x € nat; y € nat; z € nat] = list_functor_fm(x,y,z) € formula"
by (simp add: list_functor_fm_def)

lemma sats_list_functor_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
—> sats(4, list_functor_fm(x,y,z), env) <—
is_list_functor (##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: list_functor_fm_def is_list_functor_def)

lemma list_functor_iff_sats:
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
—> is_list_functor(##A, x, y, z) <— sats(A, list_functor_fm(i,j,k),
env)"
by simp

theorem list_functor_reflection:
"REFLECTS[Ax. is_list_functor(L,f(x),g(x),h(x)),
Ai x. is_list_functor (##Lset(i),f(x),g(x),h(x))]"
apply (simp only: is_list_functor_def)
apply (intro FOL_reflections numberl_reflection
cartprod_reflection sum_reflection)
done

11.18.6 The Formula is_list_N, Internalized

definition
list_ N _fm :: "[i,i,i]=1i" where
"list_N_fm(A,n,Z) =
Exists(

And (empty_£m(0),
is_iterates_fm(list_functor_fm(A#+9#+3,1,0), 0, n#+1, Z#+1)))"

lemma 1list_N_fm_type [TC]:
"[x € nat; y € nat; z € nat] — list_N_fm(x,y,z) € formula"
by (simp add: list_N_fm_def)

lemma sats_list_N_fm [simp]:
"[x € nat; y < length(env); z < length(env); env € list(4)]
—> sats(4, list_N_fm(x,y,z), env) <—
is_list_N(##A, nth(x,env), nth(y,env), nth(z,env))"
apply (frule_tac x=z in 1t_length_in_nat, assumption)
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apply (frule_tac x=y in 1t_length_in_nat, assumption)
apply (simp add: list_N_fm_def is_list_N_def sats_is_iterates_fm)
done

lemma list_N_iff_ sats:
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j < length(env); k < length(env); env € list(4)]
— is_list_N(##A, x, y, z) <— sats(A, list_N_fm(i,j,k), env)"
by (simp)

theorem list_N_reflection:
"REFLECTS[Ax. is_list_N(L, f(x), g(x), h(x)),
Ai x. is_list_N(##Lset(i), f(x), g(x), h(x))]"
apply (simp only: is_list_N_def)
apply (intro FOL_reflections function_reflections
is_iterates_reflection list_functor_reflection)
done

11.18.7 The Predicate “Is A List”

definition
mem_list_fm :: "[i,i]=i" where
"mem_list_fm(x,y) =
Exists(Exists(
And(finite_ordinal_fm(1),
And(list_N_fm(x#+2,1,0), Member (y#+2,0)))))"

lemma mem_list_type [TC]:
"[x € nat; y € nat] = mem_list_fm(x,y) € formula"
by (simp add: mem_list_fm_def)

lemma sats_mem_list_fm [simp]:

"[x € nat; y € nat; env € list(4)]

—> sats(A, mem_list_fm(x,y), env) <—> mem_list (##A, nth(x,env), nth(y,env))"
by (simp add: mem_list_fm_def mem_list_def)

lemma mem_list_iff_sats:
"[nth(i,env) = x; nth(j,env) = y;
i € nat; j € nat; env € list(4)]
— mem_list (##A, x, y) +— sats(A, mem_list_fm(i,j), env)"
by simp

theorem mem_list_reflection:
"REFLECTS [Ax. mem_list(L,f(x),g(x)),
A x. mem_list(##Lset(i),f(x),g(x))]"
apply (simp only: mem_list_def)
apply (intro FOL_reflections finite_ordinal_reflection list_N_reflection)
done
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11.18.8 The Predicate “Is 1ist(4)”

definition
is_list_fm :: "[i,i]=i" where
"is_ list_fm(A,Z) =
Forall (Iff (Member (0,succ(Z)), mem_list_fm(succ(4),0)))"

lemma is_list_type [TC]:
"[x € nat; y € nat] = is_list_fm(x,y) € formula"
by (simp add: is_list_fm_def)

lemma sats_is_list_fm [simp]:

"[x € nat; y € nat; env € list(4)]

— sats(4, is_list_fm(x,y), env) <— is_list(##A, nth(x,env), nth(y,env))"
by (simp add: is_list_fm_def is_list_def)

lemma is_list_iff_sats:
"[nth(i,env) = x; nth(j,env) = y;
i € nat; j € nat; env € list(4)]
— is_list(##A, x, y) <— sats(4, is_list_fm(i,j), env)"
by simp

theorem is_list_reflection:
"REFLECTS[Ax. is_list(L,f(x),g(x)),
A x. is_list(##Lset(i),f(x),g(x))]"
apply (simp only: is_list_def)
apply (intro FOL_reflections mem_list_reflection)
done

11.18.9 The Formula Functor, Internalized

definition formula_functor fm :: "[i,i]=i" where

"formula_functor_fm(X,Z) =
Exists(Exists(Exists(Exists(Exists(
And (omega_fm(4),
And(cartprod_fm(4,4,3),
And (sum_fm(3,3,2),
And (cartprod_fm (X#+5,X#+5,1),
And (sum_fm(1,X#+5,0), sum_fm(2,0,Z#+5)))))))))))"

lemma formula_functor_type [TC]:
"[x € nat; y € nat] = formula_functor_fm(x,y) € formula"
by (simp add: formula_functor_fm_def)

lemma sats_formula_functor_fm [simp]:
"[x € nat; y € nat; env € list(4)]
— sats(A, formula_functor_fm(x,y), env) <—
is_formula_functor (##A, nth(x,env), nth(y,env))"
by (simp add: formula_functor_fm_def is_formula_functor_def)
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lemma formula_functor_iff_sats:
"[nth(i,env) = x; nth(j,env) = y;
i € nat; j € nat; env € list(4)]
—> is_formula_functor (##A, x, y) <— sats(A, formula_functor_fm(i,j),
env)"
by simp

theorem formula_functor_reflection:
"REFLECTS[Ax. is_formula_functor(L,f(x),g(x)),
A x. is_formula_functor (##Lset(i),f(x),g(x))]"
apply (simp only: is_formula_functor_def)
apply (intro FOL_reflections omega_reflection
cartprod_reflection sum_reflection)
done

11.18.10 The Formula is_formula_N, Internalized

definition
formula_N fm :: "[i,i]=i" where
"formula_N_fm(n,Z) =
Exists(

And (empty_fm(0),
is_iterates_fm(formula_functor_fm(1,0), 0, n#+1, Z#+1)))"

lemma formula_N_fm_type [TC]:
"[x € nat; y € nat] = formula_N_fm(x,y) € formula"
by (simp add: formula_N_fm_def)

lemma sats_formula_N_fm [simp]:
"[x < length(env); y < length(env); env € list(A)]
— sats(A, formula_N_fm(x,y), env) <«—
is_formula_N(##A, nth(x,env), nth(y,env))"
apply (frule_tac x=y in 1t_length_in_nat, assumption)
apply (frule 1t_length_in_nat, assumption)
apply (simp add: formula_N_fm_def is_formula_N_def sats_is_iterates_fm)

done

lemma formula_N_iff_sats:
"[nth(i,env) = x; nth(j,env) = y;
i < length(env); j < length(env); env € list(4)]
— is_formula_N(##A, x, y) <— sats(4A, formula_N_fm(i,j), env)"
by (simp)

theorem formula N _reflection:
"REFLECTS[Ax. is_formula_N(L, f(x), g(x)),
Ai x. is_formula_N(##Lset (i), f(x), g(x))]"
apply (simp only: is_formula_N_def)
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apply (intro FOL_reflections function_reflections
done

is_iterates_reflection formula_functor_reflection)

11.18.11 The Predicate “Is A Formula”
definition

mem_formula_fm "i=1i" where
"mem_formula_fm(x) =
Exists(Exists(
And(finite_ordinal_fm(1),

And(formula_N_fm(1,0), Member (x#+2,0)))))"
lemma mem_formula_type [TC]:

"x € nat —> mem_formula_fm(x) € formula"
by (simp add: mem_formula_fm_def)

lemma sats_mem_formula_fm [simp]:
"[x € nat; env € list(4)]

—> sats(A, mem_formula_fm(x), env) <— mem_formula(##A, nth(x,env))"
by (simp add: mem_formula_fm_def mem_formula_def)
lemma mem_formula_iff_sats:

"[nth(i,env) = x; i € nat; env € list(4)]
—> mem_formula (##4A, x) <— sats(A, mem_formula_fm(i), env)"
by simp
theorem mem_formula_reflection:
"REFLECTS [Ax. mem_formula(L,f(x)),
Al x. mem_formula(##Lset (i), f(x))]"
apply (simp only: mem_formula_def)
apply (intro FOL_reflections finite_ordinal_reflection formula_N_reflection)
done

11.18.12 The Predicate “Is formula”
definition

is_formula_fm "

=i" where

i
)

"is_formula_fm(Z) = Forall(Iff(Member (0,succ(Z)), mem_formula_fm(0)))"
lemma is_formula_type [TC]:
"x € nat —> is_formula_fm(x) € formula"

by (simp add: is_formula_fm_def)

lemma sats_is_formula_fm [simp]:
"[x € nat; env € list(A)]

— sats(4, is_formula_fm(x), env) <— is_formula(##A, nth(x,env))"
by (simp add: is_formula_fm_def is_formula_def)

lemma is_formula_iff_sats:
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"[nth(i,env) = x; i € nat; env € list(4)]
= is_formula(##A, x) <— sats(A, is_formula_fm(i), env)"
by simp

theorem is_formula_reflection:
"REFLECTS[A\x. is_formula(L,f(x)),
Ai x. is_formula(##Lset(i),f(x))]"
apply (simp only: is_formula_def)
apply (intro FOL_reflections mem_formula_reflection)
done

11.18.13 The Operator is_transrec

The three arguments of p are always 2, 1, 0. It is buried within eight
quantifiers! We call p with arguments a, f, z by equating them with the
corresponding quantified variables with de Bruijn indices 2, 1, 0.

definition
is_transrec_fm :: "[i, i, i]=i" where
"is_transrec_fm(p,a,z) =
Exists(Exists(Exists(
And (upair_fm(a#+3,a#+3,2),
And(is_eclose_fm(2,1),
And (Memrel_fm(1,0), is_wfrec_fm(p,0,a#+3,z#+3)))))))"

lemma is_transrec_type [TC]:
"[p € formula; x € nat; z € nat]
—> is_transrec_fm(p,x,z) € formula"
by (simp add: is_transrec_fm_def)

lemma sats_is_transrec_fm:
assumes MH_iff_sats:
"Aa0 al a2 a3 a4 a5 a6 a7.
[a0€4; al€A; a2€A; a3€A; ad€h; abcA; abe€A; a7cd]
— MH(a2, al, a0) <—
sats (4, p, Cons(a0,Cons(al,Cons(a2,Cons (a3,
Cons (a4, Cons (a5, Cons (a6, Cons(a7,env)))))))))"
shows
"[x < length(env); z < length(env); env € list(4)]
—> sats(A, is_transrec_fm(p,x,z), env) <+—
is_transrec (##A, MH, nth(x,env), nth(z,env))"
apply (frule_tac x=z in 1t_length_in_nat, assumption)
apply (frule_tac x=x in 1t_length_in_nat, assumption)
apply (simp add: is_transrec_fm_def sats_is_wfrec_fm is_transrec_def MH_iff_sats
[THEN iff_sym])
done

lemma is_transrec_iff_sats:
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assumes MH_iff sats:
"Aa0 al a2 a3 a4 a5 a6 a7.
[a0€4; al€A; a2€A; a3€A; ad€h; abcA; abe€h; a7cd]
— MH(a2, al, a0) <—
sats(A, p, Cons(a0,Cons(al,Cons(a2,Cons (a3,
Cons (a4, Cons (ab,Cons (a6,Cons(a7,env)))))))))"
shows
"[nth(i,env) = x; nth(k,env) = z;
i < length(env); k < length(env); env € list(4)]
—> is_transrec (##A, MH, x, z) <— sats(A, is_transrec_fm(p,i,k), env)"

by (simp add: sats_is_transrec_fm [OF MH_iff_sats])

theorem is_transrec_reflection:

assumes MH _reflection:

"Af’ f g h. REFLECTS[A\x. MH(L, f’(x), f(x), g(x), h(x)),
Ai x. MH(##Lset(i), f’(x), f(x), g(x), h(x))]"
shows "REFLECTS[Ax. is_transrec(L, MH(L,x), f(x), h(x)),
Ai x. is_transrec(##Lset (i), MH(##Lset(i),x), f(x), h(x))I1"
apply (simp (no_asm_use) only: is_transrec_def)
apply (intro FOL_reflections function_reflections MH reflection
is_wfrec_reflection is_eclose_reflection)

done

end

12 Separation for Facts About Recursion
theory Rec_Separation imports Separation Internalize begin

This theory proves all instances needed for locales M_trancl and M_datatypes

lemma eq_succ_imp_lt: "[i = succ(j); 0rd(i)] = j<i"
by simp

12.1 The Locale M_trancl

12.1.1 Separation for Reflexive/Transitive Closure

First, The Defining Formula

definition
rtran_closure_mem_fm :: "[i,i,i]=i" where
"rtran_closure_mem_fm(A,r,p) =
Exists(Exists(Exists(
And (omega_fm(2),
And (Member(1,2),
And (succ_fm(1,0),
Exists(And(typed_function_fm(1, A#+4, 0),
And (Exists(Exists (Exists(
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And (pair_fm(2,1,p#+7),
And (empty_fm(0),
And (fun_apply_fm(3,0,2), fun_apply_fm(3,5,1))))))),
Forall(Implies(Member(0,3),
Exists(Exists(Exists(Exists(
And (fun_apply_fm(5,4,3),
And (succ_fm(4,2),
And (fun_apply_fm(5,2,1),
And (pair_fm(3,1,0), Member(0,r#+9))))))))))))))))))))"

lemma rtran_closure_mem_type [TC]:
"[x € nat; y € nat; z € nat|] = rtran_closure_mem_fm(x,y,z) € formula"
by (simp add: rtran_closure_mem_fm_def)

lemma sats_rtran_closure_mem_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
—> sats(A, rtran_closure_mem_fm(x,y,z), env) <—
rtran_closure_mem(##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: rtran_closure_mem_fm_def rtran_closure_mem_def)

lemma rtran_closure_mem_iff_sats:
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
= rtran_closure_mem(##A, x, y, z) <— sats(4A, rtran_closure_mem_fm(i,j,k),
env)"
by (simp)

lemma rtran_closure_mem_reflection:
"REFLECTS[M\x. rtran_closure_mem(L,f(x),g(x),h(x)),
Ai x. rtran_closure_mem(##Lset(i),f(x),g(x),h(x))]"
apply (simp only: rtran_closure_mem_def)
apply (intro FOL_reflections function_reflections fun_plus_reflections)
done

Separation for r~*.

lemma rtrancl_separation:

"[L(r); L(A)] = separation (L, rtran_closure_mem(L,A,r))"
apply (rule gen_separation_multi [OF rtran_closure_mem_reflection, of
"{r,A}"],

auto)
apply (rule_tac env="[r,A]" in DPow_LsetI)
apply (rule rtran_closure_mem_iff_sats sep_rules | simp)+
done

12.1.2 Reflexive/Transitive Closure, Internalized

definition
rtran_closure_fm :: "[i,i]=i" where
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"rtran_closure_fm(r,s) =
Forall (Implies(field_fm(succ(r),0),
Forall (Iff (Member (0,succ(succ(s))),
rtran_closure_mem_fm(1,succ(succ(r)),0)))))"

lemma rtran_closure_type [TC]:
"[x € nat; y € nat] = rtran_closure_fm(x,y) € formula"
by (simp add: rtran_closure_fm_def)

lemma sats_rtran_closure_fm [simp]:
"[x € nat; y € nat; env € list(4)]
—> sats(A, rtran_closure_fm(x,y), env) <—
rtran_closure (##A, nth(x,env), nth(y,env))"
by (simp add: rtran_closure_fm_def rtran_closure_def)

lemma rtran_closure_iff_sats:
"[nth(i,env) = x; nth(j,env) = y;
i € nat; j € nat; env € list(4)]
—> rtran_closure(##A, x, y) <— sats(A, rtran_closure_fm(i,j),
env)"
by simp

theorem rtran_closure_reflection:
"REFLECTS[Mx. rtran_closure(L,f(x),g(x)),
Ai x. rtran_closure(##Lset(i),f(x),g(x))]"
apply (simp only: rtran_closure_def)
apply (intro FOL_reflections function_reflections rtran_closure_mem_reflection)
done

12.1.3 Transitive Closure of a Relation, Internalized

definition
tran_closure_fm :: "[i,i]=i" where
"tran_closure_fm(r,s) =
Exists(And(rtran_closure_fm(succ(r),0), composition_fm(succ(r),0,succ(s))))"

lemma tran_closure_type [TC]:
"[x € nat; y € nat] = tran_closure_fm(x,y) € formula"
by (simp add: tran_closure_fm_def)

lemma sats_tran_closure_fm [simp]:
"[x € nat; y € nat; env € list(4)]
—> sats(4, tran_closure_fm(x,y), env) <—
tran_closure (##A, nth(x,env), nth(y,env))"
by (simp add: tran_closure_fm_def tran_closure_def)

lemma tran_closure_iff_sats:

"[nth(i,env) = x; nth(j,env) = y;
i € nat; j € nat; env € list(4)]
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—> tran_closure (##A, x, y) <— sats(A, tran_closure_fm(i,j), env)"
by simp

theorem tran_closure_reflection:
"REFLECTS[Ax. tran_closure(L,f(x),g(x)),
A x. tran_closure(##Lset(i),f(x),g(x))]"
apply (simp only: tran_closure_def)
apply (intro FOL_reflections function_reflections
rtran_closure_reflection composition_reflection)
done

12.1.4 Separation for the Proof of wellfounded_on_trancl

lemma wellfounded_trancl_reflects:
"REFLECTS[Ax. dw([L]. Jwx[L]. Jrp[L].
w € Z A pair(L,w,x,wx) A tran_closure(L,r,rp) N wx €
rp,
Ai x. Jw € Lset(i). Jwx € Lset(i). Jrp € Lset(i).
w € Z A pair(##Lset(i),w,x,wx) A tran_closure (##Lset(i),r,rp)
A
wx € rp]"
by (intro FOL_reflections function_reflections fun_plus_reflections
tran_closure_reflection)

lemma wellfounded_trancl_separation:
"[L(r); L(2)] =
separation (L, Ax.
dw[L]. Jwx[L]. Frpl[L].
w € Z A pair(L,w,x,wx) A tran_closure(L,r,rp) N wx €
rp)"
apply (rule gen_separation_multi [OF wellfounded_trancl_reflects, of "{r,Z}"],
auto)
apply (rule_tac env="[r,Z]" in DPow_LsetI)
apply (rule sep_rules tran_closure_iff_sats | simp)+
done

12.1.5 Instantiating the locale M_trancl

lemma M_trancl_axioms_L: "M_trancl_axioms(L)"

apply (rule M_trancl_axioms.intro)

apply (assumption | rule rtrancl_separation wellfounded_trancl_separation
L_nat)+

done

theorem M _trancl_L: "M_trancl(L)"
by (rule M_trancl.intro [OF M_basic_L M_trancl_axioms_L])

interpretation L: M_trancl L by (rule M_trancl_L)
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12.2 L is Closed Under the Operator 1ist

12.2.1 Instances of Replacement for Lists

lemma list_replacementl_Reflects:
"REFLECTS
[Ax. Jull]. u € B AN (Qyl[L]. pair(L,u,y,x) A
is_wfrec(L, iterates_MH(L, is_list_functor(L,A), 0), memsn, u,
y)),
Ai x. Ju € Lset(i). u € B A (3y € Lset(i). pair(##Lset(i), u, y,
x) A
is_wfrec(##Lset (i),
iterates_MH (##Lset (i),
is_list_functor (##Lset(i), A), 0), memsn, u,
y))l"
by (intro FOL_reflections function_reflections is_wfrec_reflection
iterates_MH_reflection list_functor_reflection)

lemma list_replacementl:
"L(A) —> iterates_replacement (L, is_list_functor(L,A), 0)"
apply (unfold iterates_replacement_def wfrec_replacement_def, clarify)
apply (rule strong_replacementI)
apply (rule_tac u="{B,A,n,0,Memrel (succ(n))}"
in gen_separation_multi [OF list_replacementl_Reflects],
auto)
apply (rule_tac env="[B,A,n,0,Memrel(succ(n))]" in DPow_LsetI)
apply (rule sep_rules is_nat_case_iff_sats list_functor_iff_sats
is_wfrec_iff_sats iterates_MH_iff_sats quasinat_iff_sats |
simp)+
done

lemma list_replacement2_Reflects:
"REFLECTS
[Ax. Jul[L]. u € B AN u € nat A
is_iterates(L, is_list_functor(L, A), 0, u, x),
Ai x. du € Lset(i). u € B A u € nat A
is_iterates (##Lset (i), is_list_functor (##Lset(i), A), O,
u, x)]"
by (intro FOL_reflections
is_iterates_reflection list_functor_reflection)

lemma list_replacement2:
"L(A) = strong_replacement (L,
An y. n€nat A is_iterates(L, is_list_functor(L,A), 0, n, y))"
apply (rule strong_replacementI)
apply (rule_tac u="{A,B,0,nat}"
in gen_separation_multi [OF list_replacement2_Reflects],
auto)
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apply (rule_tac env="[A,B,0O,nat]" in DPow_LsetI)
apply (rule sep_rules list_functor_iff sats is_iterates_iff_sats | simp)+
done

12.3 L is Closed Under the Operator formula

12.3.1 Instances of Replacement for Formulas

lemma formula_replacementl_Reflects:
"REFLECTS
[Ax. JulLl]. u € B A (@yl[L]. pair(L,u,y,x) A
is_wfrec(L, iterates_MH(L, is_formula_functor(L), 0), memsn,
u, y)),
Ai x. Ju € Lset(i). u € B A (3y € Lset(i). pair(##Lset(i), u, y,
x) A
is_wfrec (##Lset (i),
iterates_MH(##Lset (i),
is_formula_functor (##Lset(i)), 0), memsn, u,
y))1"
by (intro FOL_reflections function_reflections is_wfrec_reflection
iterates_MH _reflection formula_functor_reflection)

lemma formula_replacementl:
"iterates_replacement (L, is_formula_functor(L), 0)"
apply (unfold iterates_replacement_def wfrec_replacement_def, clarify)
apply (rule strong_replacementI)
apply (rule_tac u="{B,n,0,Memrel (succ(n))}"
in gen_separation_multi [OF formula_replacementl_Reflects],
auto)
apply (rule_tac env="[n,B,0,Memrel (succ(n))]" in DPow_LsetI)
apply (rule sep_rules is_nat_case_iff_sats formula_functor_iff_sats
is_wfrec_iff_sats iterates_MH_iff_sats quasinat_iff_sats |
simp)+
done

lemma formula_replacement2_ Reflects:
"REFLECTS
[Ax. Jul[L]. u € B AN u € nat A
is_iterates(L, is_formula_functor(L), 0, u, x),
Ai x. Ju € Lset(i). u € B A u € nat A
is_iterates (##Lset (i), is_formula_functor (##Lset(i)), O,
u, x)]"
by (intro FOL_reflections
is_iterates_reflection formula_functor_reflection)

lemma formula_replacement2:
"strong_replacement (L,
An y. n€nat A is_iterates(L, is_formula_functor(L), O, n, y))"
apply (rule strong_replacementI)
apply (rule_tac u="{B,0,nat}"
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in gen_separation_multi [OF formula_replacement2_Reflects],
auto)
apply (rule_tac env="[B,0,nat]" in DPow_LsetI)
apply (rule sep_rules formula_functor_iff_sats is_iterates_iff_sats |
simp)+
done

NB The proofs for type formula are virtually identical to those for 1ist (4).
It was a cut-and-paste job!

12.3.2 The Formula is_nth, Internalized

definition
nth_fm :: "[i,i,i]=1i" where
"nth_fm(n,1,Z) =
Exists(And(is_iterates_fm(tl_fm(1,0), succ(l), succ(n), 0),
hd_fm(0,succ(Z))))"

lemma nth_fm_type [TC]:
"[x € nat; y € nat; z € nat] = nth_fm(x,y,z) € formula"
by (simp add: nth_fm_def)

lemma sats_nth_fm [simp]:
"[x < length(env); y € nat; z € nat; env € list(4)]
— sats(4, nth_fm(x,y,z), env) <—
is_nth(##A, nth(x,env), nth(y,env), nth(z,env))"
apply (frule 1t_length_in_nat, assumption)
apply (simp add: nth_fm_def is_nth_def sats_is_iterates_fm)
done

lemma nth_iff_sats:
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i < length(env); j € nat; k € nat; env € list(4)]
—> is_nth(##4, x, y, z) <— sats(A, nth_fm(i,j,k), env)"
by (simp)

theorem nth_reflection:
"REFLECTS[A\x. is_nth(L, f(x), g(x), h(x)),
Ai x. is_nth(##Lset(i), f(x), g(x), h(x))]1"
apply (simp only: is_nth_def)
apply (intro FOL_reflections is_iterates_reflection
hd_reflection tl_reflection)
done

12.3.3 An Instance of Replacement for nth

lemma nth_replacement_Reflects:
"REFLECTS
[Ax. Jul[L]. u € B AN 3yl[L]. pair(L,u,y,x) A
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is_wfrec(L, iterates_MH(L, is_t1(L), z), memsn, u, y)),
Ai x. Ju € Lset(i). u € B A (3y € Lset(i). pair(##Lset(i), u, y,

x) A

is_wfrec (##Lset (i),

iterates_MH(##Lset (i),
is_tl(##Lset(i)), z), memsn, u, y))]"

by (intro FOL_reflections function_reflections is_wfrec_reflection

iterates_MH_reflection tl_reflection)

lemma nth_replacement:
"L(w) —> iterates_replacement(L, is_t1(L), w)"
apply (unfold iterates_replacement_def wfrec_replacement_def, clarify)
apply (rule strong replacementI)
apply (rule_tac u="{B,w,Memrel (succ(n))}"
in gen_separation_multi [OF nth_replacement_Reflects],
auto)

apply (rule_tac env="[B,w,Memrel (succ(n))]" in DPow_LsetI)
apply (rule sep_rules is_nat_case_iff_sats tl_iff_sats

is_wfrec_iff_sats iterates_MH_iff_sats quasinat_iff_sats |
simp)+
done

12.3.4 Instantiating the locale M_datatypes

lemma M_datatypes_axioms_L: "M_datatypes_axioms(L)"
apply (rule M_datatypes_axioms.intro)
apply (assumption | rule
list_replacementl list_replacement?2
formula_replacementl formula_replacement2
nth_replacement)+
done

theorem M _datatypes_L: "M_datatypes(L)"
apply (rule M_datatypes.intro)
apply (rule M_trancl_L)
apply (rule M_datatypes_axioms_L)
done

interpretation L: M_datatypes L by (rule M_datatypes_L)

12.4 L is Closed Under the Operator eclose

12.4.1 Instances of Replacement for eclose

lemma eclose_replacementl_Reflects:
"REFLECTS
[Ax. Jull]. u € B A (Qyl[L]. pair(L,u,y,x) A
is_wfrec(L, iterates_MH(L, big_union(L), A), memsn, u, y)),
Ai x. Ju € Lset(i). u € B A (3y € Lset(i). pair(##Lset(i), u, y,
x) A
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is_wfrec (##Lset (i),
iterates_MH(##Lset (i), big union(##Lset(i)), A),
memsn, u, y))]"
by (intro FOL_reflections function_reflections is_wfrec_reflection
iterates_MH reflection)

lemma eclose_replacementl:
"L(A) —> iterates_replacement(L, big_union(L), A)"
apply (unfold iterates_replacement_def wfrec_replacement_def, clarify)
apply (rule strong_replacementI)
apply (rule_tac u="{B,A,n,Memrel(succ(n))}"
in gen_separation_multi [OF eclose_replacementl_Reflects], auto)
apply (rule_tac env="[B,A,n,Memrel (succ(n))]" in DPow_LsetI)
apply (rule sep_rules iterates_MH_iff_sats is_nat_case_iff_sats
is_wfrec_iff_sats big_union_iff_sats quasinat_iff_sats |
simp)+
done

lemma eclose_replacement2_Reflects:
"REFLECTS
[Ax. Jul[L]. u € B A u € nat A
is_iterates(L, big_union(L), A, u, x),
Ai x. dJu € Lset(i). u € B A u € nat A
is_iterates (##Lset (i), big union(##Lset(i)), A, u, x)]"
by (intro FOL_reflections function_reflections is_iterates_reflection)

lemma eclose_replacement2:
"L(A) = strong_replacement (L,
An y. n€nat A is_iterates(L, big_union(L), A, n, y))"
apply (rule strong_replacementI)
apply (rule_tac u="{A,B,nat}"
in gen_separation_multi [OF eclose_replacement2_Reflects],
auto)
apply (rule_tac env="[A,B,nat]" in DPow_LsetI)
apply (rule sep_rules is_iterates_iff_sats big_union_iff_sats | simp)+
done

12.4.2 Instantiating the locale M_eclose

lemma M_eclose_axioms_L: "M_eclose_axioms(L)"
apply (rule M_eclose_axioms.intro)
apply (assumption | rule eclose_replacementl eclose_replacement2)+
done

theorem M _eclose_L: "M_eclose(L)"
apply (rule M_eclose.intro)
apply (rule M_datatypes_L)
apply (rule M_eclose_axioms_L)
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done

interpretation L: M_eclose L by (rule M_eclose_L)

end

13 Absoluteness for the Satisfies Relation on For-
mulas

theory Satisfies_absolute imports Datatype_absolute Rec_Separation be-
gin

13.1 More Internalization

13.1.1 The Formula is_depth, Internalized

definition
depth_fm :: "[i,i]=1i" where
"depth_fm(p,n) =
Exists(Exists(Exists(
And (formula_N_fm(n#+3,1),
And (Neg (Member (p#+3,1) ),
And (succ_fm(n#+3,2),
And (formula_N_fm(2,0), Member (p#+3,0))))))))"

lemma depth_fm_type [TC]:
"[x € nat; y € nat] = depth_fm(x,y) € formula"
by (simp add: depth_fm_def)

lemma sats_depth_fm [simp]:
"[x € nat; y < length(env); env € list(A)]
—> sats(4, depth_fm(x,y), env) <«—
is_depth(##A, nth(x,env), nth(y,env))"
apply (frule_tac x=y in 1t_length_in_nat, assumption)
apply (simp add: depth_fm_def is_depth_def)
done

lemma depth_iff_sats:
"[nth(i,env) = x; nth(j,env) = y;
i € nat; j < length(env); env € list(A)]
—> is_depth(##A, x, y) +— sats(4, depth_fm(i,j), env)"
by (simp)

theorem depth_reflection:
"REFLECTS[Ax. is_depth(L, f(x), g(x)),
Ai x. is_depth(##Lset(i), f(x), g(x))]"
apply (simp only: is_depth_def)
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apply (intro FOL_reflections function_reflections formula_N_reflection)

done

13.1.2 The Operator is_formula_case

The arguments of is_a are always 2, 1, 0, and the formula will be enclosed
by three quantifiers.

definition
formula_case_fm :: "[i, i, i, i, i, i]=1i" where
"formula_case_fm(is_a, is_b, is_c, is_d, v, z) =
And (Forall (Forall (Implies(finite_ordinal_fm(1),
Implies(finite_ordinal_fm(0),
Implies (Member_fm(1,0,v#+2),
Forall(Implies(Equal(0,z#+3), is_a))))))),
And (Forall (Forall (Implies(finite_ordinal_fm(1),
Implies(finite_ordinal_fm(0),
Implies(Equal_fm(1,0,v#+2),
Forall (Implies(Equal(0,z#+3), is_b))))))),
And (Forall (Forall (Implies (mem_formula_fm(1),
Implies (mem_formula_fm(0),
Implies(Nand_fm(1,0,v#+2),
Forall(Implies(Equal(0,z#+3), is_c))))))),
Forall (Implies(mem_formula_fm(0),
Implies(Forall_fm(0,succ(v)),
Forall(Implies(Equal(0,z#+2), is_d))))))))"

lemma is_formula_case_type [TC]:
"[[is_a € formula; 1is_b € formula; is_c € formula; is_d € formula;

X € nat; y € nat]
—> formula_case_fm(is_a, is_b, is_c, is_d, x, y) € formula"
by (simp add: formula_case_fm_def)

lemma sats_formula_case_fm:
assumes is_a_iff_sats:
"Aa0 a1l a2.
[a0€A; alch; a2€A4]
— ISA(a2, al, a0) <— sats(A, is_a, Cons(a0,Cons(al,Cons(a2,env))))"
and is_b_iff_sats:
"Aa0 al a2.
[a0€4; al€h; a2€A4]
— ISB(a2, al, a0) <— sats(4, is_b, Cons(a0,Cons(al,Cons(a2,env))))"
and is_c_iff_sats:
"Aa0 a1l a2.
[a0€4; alch; a2€4]
= ISC(a2, al, a0) <— sats(4, is_c, Cons(a0,Cons(al,Cons(a2,env))))"
and is_d_iff_sats:
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"Aa0 al.
[a0c4; a1€4]
— ISD(al, a0) +— sats(4, is_d, Cons(a0,Cons(al,env)))"
shows
"[x € nat; y < length(env); env € list(A)]
—> sats(A, formula_case_fm(is_a,is_b,is_c,is_d,x,y), env) <—
is_formula_case (##A, ISA, ISB, ISC, ISD, nth(x,env), nth(y,env))"
apply (frule_tac x=y in 1t_length_in_nat, assumption)
apply (simp add: formula_case_fm_def is_formula_case_def
is_a_iff_sats [THEN iff_sym] is_b_iff_sats [THEN iff_sym]
is_c_iff_sats [THEN iff_sym] is_d_iff_sats [THEN iff_sym])
done

lemma formula_case_iff_sats:
assumes is_a_iff_sats:
"Aa0 a1l a2.
[a0€4; alch; a2€4]

= ISA(a2, al, a0) <— sats(4, is_a, Cons(a0,Cons(al,Cons(a2,env))))"

and is_b_iff_sats:
"Aa0 al a2.
[a0€4; al€h; a2€4]

—> ISB(a2, al, a0) <+— sats(A, is_b, Cons(a0,Cons(al,Cons(a2,env))))"

and is_c_iff_sats:
"Aa0 al a2.
[a0€4; al€h; a2€A4]

— IS8C(a2, al, a0) <— sats(A, is_c, Cons(a0,Cons(al,Cons(a2,env))))"

and is_d_iff_sats:
"Aa0 al.
[a0€4; al€4]
— ISD(al, a0) +— sats(4, is_d, Cons(a0,Cons(al,env)))"
shows
"[nth(i,env) = x; nth(j,env) = y;
i € nat; j < length(env); env € list(4)]
—> is_formula_case (##A, ISA, ISB, ISC, ISD, x, y) <—
sats (A, formula_case_fm(is_a,is_b,is_c,is_d,i,j), env)"
by (simp add: sats_formula_case_fm [OF is_a_iff_sats is_b_iff_sats
is_c_iff_sats is_d_iff_sats])

The second argument of is_a gives it direct access to x, which is essen-
tial for handling free variable references. Treatment is based on that of
is_nat_case_reflection.

theorem is_formula_case_reflection:
assumes is_a_reflection:
"Ah f g g’. REFLECTS[Ax. is_a(L, h(x), f(x), g(x), g’(x)),
Al x. is_a(##Llset (i), h(x), f(x), g(x), g’ (x))]"
and is_b_reflection:
"Ah f g g’. REFLECTS[Mx. is_b(L, h(x), f(x), g(x), g’(x)),
Ai x. is_b(##Lset(i), h(x), f(x), g(x), g’ (x))]"
and is_c_reflection:
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"Ah f g g’. REFLECTS[Mx. is_c(L, h(x), f(x), g(x), g’(x)),
Ai x. is_c(##Lset (i), h(x), f(x), g(x), g’ (x))I1"
and is_d_reflection:
"Ah f g g’. REFLECTS[A\x. is_d(L, h(x), f(x), g(x)),
Ai x. is_d(##Lset (i), h(x), f(x), g(x))]"
shows "REFLECTS[Ax. is_formula_case(L, is_a(L,x), is_b(L,x), is_c(L,x),
is_d(L,x), g(x), h(x)),
Ai x. is_formula_case (##Lset (i), is_a(##Lset(i), x), is_b(##Lset(i),
x), is_c(##Lset (i), x), is_d(##Lset(i), x), g(x), h(x))]"
apply (simp (no_asm_use) only: is_formula_case_def)
apply (intro FOL_reflections function_reflections finite_ordinal_reflection
mem_formula_reflection
Member_reflection Equal_reflection Nand_reflection Forall_reflection
is_a_reflection is_b_reflection is_c_reflection is_d_reflection)
done

13.2 Absoluteness for the Function satisfies

definition
is_depth_apply :: "[i=0,1,1,i] = o" where
— Merely a useful abbreviation for the sequel.
"is_depth_apply(M,h,p,z) =
ddp[M]. dsdp[M]. Jhsdp[M].
finite_ordinal(M,dp) A is_depth(M,p,dp) A successor(M,dp,sdp)

fun_apply(M,h,sdp,hsdp) A fun_apply(M,hsdp,p,z)"

lemma (in M_datatypes) is_depth_apply_abs [simp]:
"[M(); p € formula; M(z)]
—> is_depth_apply (M,h,p,z) <— z = h ‘ succ(depth(p)) ¢ p"
by (simp add: is_depth_apply_def formula_into_M depth_type eq_commute)

There is at present some redundancy between the relativizations in e.g.
satisfies_is_a and those in e.g. Member_ replacement.

These constants let us instantiate the parameters a, b, c, d, etc., of the locale
Formula_Rec.

definition
satisfies_a :: "[i,i,i]=i" where
"satisfies_a(A) =
Ax y. Aenv € list(A). bool_of_o (nth(x,env) € nth(y,env))"

definition
satisfies_is_a :: "[i=o0,i,i,i,i]=0" where
"satisfies_is_a(M,A) =
Ax y zz. V1A[M]. is_list(M,A,1A) —
is_lambda (M, 14,
Aenv z. is_bool_of_o(M,

Jnx[M]. dny[M].
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is_nth(M,x,env,nx) A is_nth(M,y,env,ny) N nx €

ny, z),
ZZ) n
definition
satisfies_b :: "[i,i,i]=i" where

"satisfies_b(A) =
Ax y. denv € list(A). bool_of_o (nth(x,env) = nth(y,env))"

definition
satisfies_is_b :: "[i=0,i,i,i,i]=0" where
— We simplify the formula to have just nx rather than introducing ny with nx

"satisfies_is_b(M,A) =
Ax y zz. V1A[M]. is_list(M,A,1A) —
is_lambda (M, 14,
Aenv z. is_bool_of_o(M,
Jdnx[M]. is_nth(M,x,env,nx) A is_nth(M,y,env,nx),

z),
ZZ) n
definition
satisfies_c¢ :: "[i,i,i,i,i]=1" where

"satisfies_c(A) = Ap q rp rq. denv € list(4). not(rp ¢ env and rq
¢ env)"
definition

satisfies_is_c :: "[i=o0,i,i,i,i,i]=0" where

"satisfies_is_c(M,A,h) =

Ap q zz. V1A[M]. is_list(M,A,1A) —

is_lambda(M, 1A, Aenv z. Jhp[M]. Fhq[M].
(3rp[M]. is_depth_apply (M,h,p,rp) A fun_apply(M,rp,env,hp))

N
(3rq[M]. is_depth_apply(M,h,q,rq) A fun_apply(M,rq,env,hq))
N
(dpq[M]. is_and(M,hp,hq,pq) A is_not(M,pq,z)),
ZZ) "
definition
satisfies_d :: "[i,i,i]=i" where
"satisfies_d(A)
= Ap rp. Xenv € list(A). bool_of_o (Vx€A. rp ¢ (Cons(x,env)) = 1)"
definition
satisfies_is_d :: "[i=o0,i,i,i,i]=0" where

"satisfies_is_d(M,A,h) =
Ap zz. V1A[M]. is_list(M,A,14) —
is_lambda (M, 1A,
Aenv z. Jrp[M]. is_depth_apply(M,h,p,rp) A
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is_bool_of_o(M,
Vx[M]. Vxenv[M]. Vhp[M].
x€EA — is_Cons(M,x,env,xenv) —
fun_apply(M,rp,xenv,hp) — numberl(M,hp),
z),

ZZ) "

definition
satisfies MH :: "[i=o0,i,i,i,i]=0" where
— The variable u is unused, but gives satisfies_MH the correct arity.
"satisfies_MH =
AM A u f z.
Vfml[M]. is_formula(M,fml) —
is_lambda (M, fml,
is_formula_case (M, satisfies_is_a(M,A),
satisfies_is_b(M,A),
satisfies_is_c(M,A,f), satisfies_is_d(M,A,f)),
z)"

definition
is_satisfies :: "[i=o0,i,i,i]=0" where
"is_satisfies(M,A) = is_formula_rec (M, satisfies_MH(M,A))"

This lemma relates the fragments defined above to the original primitive
recursion in satisfies. Induction is not required: the definitions are directly
equal!

lemma satisfies_eq:
"satisfies(A,p) =
formula_rec (satisfies_a(4A), satisfies_b(4),
satisfies_c(4A), satisfies_d(4), p)"
by (simp add: satisfies_formula_def satisfies_a_def satisfies_b_def
satisfies_c_def satisfies_d_def)

Further constraints on the class M in order to prove absoluteness for the con-
stants defined above. The ultimate goal is the absoluteness of the function
satisfies.

locale M_satisfies = M_eclose +
assumes
Member_replacement:
"[M(A); x € nat; y € nat]
— strong_replacement
(M, Xenv z. JIbo[M]. Fnx[M]. Iny[M].
env € list(A) A is_nth(M,x,env,nx) A is_nth(M,y,env,ny)

is_bool_of_o(M, nx € ny, bo) A
pair(M, env, bo, z))"
and
Equal_replacement:
"[M(A); x € nat; y € nat]
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— strong_replacement
(M, Xenv z. Ibo[M]. Fnx[M]. dny[M].
env € list(A) A is_nth(M,x,env,nx) A is_nth(M,y,env,ny)

A
is_bool_of_o(M, nx = ny, bo) A
pair(M, env, bo, z))"
and
Nand_replacement:
"[M(A); M(rp); M(rq)]
— strong_replacement
(M, Xenv z. Jrpe[M]. Jrqe[M]. Fandpq[M]. Inotpq[M].
fun_apply(M,rp,env,rpe) A fun_apply(M,rq,env,rqe) A
is_and(M,rpe,rqe,andpq) A is_not(M,andpq,notpg) A
env € list(A) A pair(M, env, notpg, z))"
and

Forall_replacement:
"[M(4); M(rp)]

— strong_replacement
(M, Menv z. dbo[M].

env € list(4) A

is_bool_of_o (M,

ValM]. Yco[M]. Vrpcol[M].
acd — is_Cons(M,a,env,co) —

fun_apply (M,rp,co,rpco) — numberl (M,
rpco),

bo) A
pair(M,env,bo,z))"
and
formula_rec_replacement:
— For the transrec

"[n € nat; M(A)] = transrec_replacement (M, satisfies_MH(M,A), n)"
and

formula_rec_lambda_replacement:
— For the A\-abstraction in the transrec body
"[Mlg); MA)] =
strong_replacement (M,
Ax y. mem_formula(M,x) A
(dc[M]. is_formula_case(M, satisfies_is_a(M,A),
satisfies_is_b(M,A),
satisfies_is_c(M,A,g),

satisfies_is_d(M,A,g), x, c) A
pair(M, x, c, y)))"

lemma (in M_satisfies) Member_replacement’:
"[M(4); x € nat; y € nat]
— strong_replacement
(M, MNenv z. env € list(A) A

z = (env, bool_of_o(nth(x, env) € nth(y, env))))"
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by (insert Member_ replacement, simp)

lemma (in M_satisfies) Equal_replacement’:
"[M(A); x € nat; y € nat]
— strong_replacement
(M, MAenv z. env € list(A) A
z = (env, bool_of_o(nth(x, env) = nth(y, env))))"
by (insert Equal_replacement, simp)

lemma (in M_satisfies) Nand_replacement’:
"[MCA); M(rp); M(rq)]
— strong_replacement
(M, Xenv z. env € 1list(A) A z = (env, not(rp‘env and rq‘env)))"
by (insert Nand_replacement, simp)

lemma (in M_satisfies) Forall_replacement’:
"[M(4); M(rp)]
— strong_replacement
M, denv z.
env € list(4) A
z = (env, bool_of_o (Va€A. rp ¢ Cons(a,env) = 1)))"
by (insert Forall_replacement, simp)

lemma (in M_satisfies) a_closed:

"[M(A); x€E€nat; yEnat] — M(satisfies_a(4,x,y))"
apply (simp add: satisfies_a_def)
apply (blast intro: lam_closed2 Member_replacement’)
done

lemma (in M_satisfies) a_rel:
"M(A) — Relation2(M, nat, nat, satisfies_is_a(M,A), satisfies_a(4))"
apply (simp add: Relation2 def satisfies_is_a_def satisfies_a_def)
apply (auto del: iffI intro!: lambda_abs2 simp add: Relationl_def)
done

lemma (in M_satisfies) b_closed:

"[M(A); x€nat; y€nat] — M(satisfies_b(4,x,y))"
apply (simp add: satisfies_b_def)
apply (blast intro: lam_closed2 Equal_replacement’)
done

lemma (in M_satisfies) b_rel:
"M(A) —> Relation2(M, nat, nat, satisfies_is_b(M,A), satisfies_b(A))"
apply (simp add: Relation2 def satisfies_is_b_def satisfies_b_def)
apply (auto del: iffI intro!: lambda_abs2 simp add: Relationl_def)
done

lemma (in M_satisfies) c_closed:
"[M(A); x € formula; y € formula; M(rx); M(ry)]
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—> M(satisfies_c(A,x,y,rx,ry))"
apply (simp add: satisfies_c_def)
apply (rule lam_closed2)
apply (rule Nand_replacement’)
apply (simp_all add: formula_into_M list_into_M [of _ Al)
done

lemma (in M_satisfies) c_rel:
M4 ; M) =
Relation2 (M, formula, formula,

satisfies_is_c(M,A,f),

Au v. satisfies_c(4, u, v, f ¢ succ(depth(uw)) ° u,

f ¢ succ(depth(v)) ¢ v))"
apply (simp add: Relation2_ def satisfies_is_c_def satisfies_c_def)
apply (auto del: iffI intro!: lambda_abs2
simp add: Relationl_def formula_into_M)

done

lemma (in M_satisfies) d_closed:

"[M(4); x € formula; M(rx)] = M(satisfies_d(4,x,rx))"
apply (simp add: satisfies_d_def)
apply (rule lam_closed2)
apply (rule Forall_replacement’)
apply (simp_all add: formula_into_M list_into_M [of _ AJ)
done

lemma (in M_satisfies) d_rel:
"M ; M(E)] =
Relationl(M, formula, satisfies_is_d(M,A,f),
Au. satisfies_d(A, u, f ¢ succ(depth(u)) ‘ w))"
apply (simp del: rall_abs
add: Relationl_def satisfies_is_d_def satisfies_d_def)
apply (auto del: iffI intro!: lambda_abs2 simp add: Relationl_def)
done

lemma (in M_satisfies) fr_replace:
"[n € nat; M(A)] = transrec_replacement (M,satisfies_MH(M,A),n)"

by (blast intro: formula_rec_replacement)

lemma (in M_satisfies) formula_case_satisfies_closed:
"[M(g); M(A); x € formula] —
M(formula_case (satisfies_a(A), satisfies_b(A),
Au v. satisfies_c(A, u, v,
g ¢ succ(depth(u)) ‘ u, g ¢ succ(depth(v)) ¢
v),
Au. satisfies_d (A, u, g ¢ succ(depth(u)) ¢ u),

X)) "
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by (blast intro: a_closed b_closed c_closed d_closed)

lemma (in M_satisfies) fr_lam_replace:
"M(g); MA)] =
strong_replacement (M, Ax y. x € formula A
y = (x,
formula_rec_case(satisfies_a(4),
satisfies_b(4),
satisfies_c(4),
satisfies_d(4), g, x)))"
apply (insert formula_rec_lambda_replacement)
apply (simp add: formula_rec_case_def formula_case_satisfies_closed
formula_case_abs [OF a_rel b_rel c_rel d_rell)
done

Instantiate locale Formula_Rec for the Function satisfies

lemma (in M_satisfies) Formula_Rec_axioms_M:
"M(A) =
Formula_Rec_axioms(M, satisfies_a(A), satisfies_is_a(M,A),
satisfies_b(A), satisfies_is_b(M,A),
satisfies_c(A), satisfies_is_c(M,4),
satisfies_d(A), satisfies_is_d(M,A))"
apply (rule Formula_Rec_axioms.intro)
apply (assumption |
rule a_closed a_rel b_closed b_rel c_closed c_rel d_closed d_rel
fr_replace [unfolded satisfies_MH_def]
fr_lam_replace) +
done

theorem (in M_satisfies) Formula_Rec_M:
"M(4) =
Formula_Rec (M, satisfies_a(A), satisfies_is_a(M,A),
satisfies_b(A), satisfies_is_b(M,A),
satisfies_c(A), satisfies_is_c(M,A),
satisfies_d(A), satisfies_is_d(M,A))"
apply (rule Formula_Rec.intro)
apply (rule M_satisfies.axioms, rule M_satisfies_axioms)
apply (erule Formula_Rec_axioms_M)
done

lemmas (in M_satisfies)
satisfies_closed’ = Formula_Rec.formula_rec_closed [OF Formula_Rec_M]
and satisfies_abs’ = Formula_Rec.formula_rec_abs [OF Formula_Rec_M]

lemma (in M_satisfies) satisfies_closed:
"[M(A); p € formula] —> M(satisfies(4,p))"
by (simp add: Formula_Rec.formula_rec_closed [OF Formula_Rec_M]
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satisfies_eq)

lemma (in M_satisfies) satisfies_abs:
"[M(4); M(z); p € formula]
—> is_satisfies(M,A,p,z) <— z = satisfies(4,p)"
by (simp only: Formula_Rec.formula_rec_abs [0OF Formula_Rec_M]
satisfies_eq is_satisfies_def satisfies_MH_def)

13.3 Internalizations Needed to Instantiate M_satisfies

13.3.1 The Operator is_depth_apply, Internalized

definition
depth_apply_fm :: "[i,i,i]=1i" where
"depth_apply_fm(h,p,z) =

Exists(Exists(Exists(

And(finite_ordinal_fm(2),
And (depth_fm(p#+3,2),
And (succ_fm(2,1),

And (fun_apply fm(h#+3,1,0), fun_apply_fm(0,p#+3,z#+3))))))))"

lemma depth_apply_type [TC]:
"[x € nat; y € nat; z € nat] = depth_apply_fm(x,y,z) € formula"
by (simp add: depth_apply_fm_def)

lemma sats_depth_apply_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
—> sats (4, depth_apply_fm(x,y,z), env) <«—
is_depth_apply (##A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: depth_apply_fm_def is_depth_apply_def)

lemma depth_apply_iff_sats:
"[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
—> is_depth_apply (##A, x, y, z) <— sats(A, depth_apply_fm(i,j,k),
env)"
by simp

lemma depth_apply_reflection:
"REFLECTS[A\x. is_depth_apply(L,f(x),g(x),h(x)),
Ai x. is_depth_apply (##Lset(i),f(x),g(x),h(x))]"
apply (simp only: is_depth_apply_def)
apply (intro FOL_reflections function_reflections depth_reflection
finite_ordinal_reflection)
done

13.3.2 The Operator satisfies_is_a, Internalized

definition
satisfies_is_a_fm :: "[i,i,i,i]=1i" where
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"satisfies_is_a_fm(A,x,y,z) =
Forall(
Implies(is_list_fm(succ(4),0),
lambda_fm(
bool_of_o_fm(Exists(
Exists(And (nth_fm(x#+6,3,1),
And (nth_fm(y#+6,3,0),
Member(1,0))))), 0),
0, succ(z))))"

lemma satisfies_is_a_type [TC]:
"[4 € nat; x € nat; y € nat; z € nat]
—> satisfies_is_a_fm(A,x,y,z) € formula"
by (simp add: satisfies_is_a_fm_def)

lemma sats_satisfies_is_a_fm [simp]:
"[u € nat; x < length(env); y < length(env); z € nat; env € list(4)]
—> sats(A, satisfies_is_a_fm(u,x,y,z), env) <—
satisfies_is_a(##A, nth(u,env), nth(x,env), nth(y,env), nth(z,env))"
apply (frule_tac x=x in 1t_length_in_nat, assumption)
apply (frule_tac x=y in 1t_length_in_nat, assumption)
apply (simp add: satisfies_is_a_fm_def satisfies_is_a_def sats_lambda_fm

sats_bool_of_o_fm)
done

lemma satisfies_is_a_iff_sats:
"[nth(u,env) = nu; nth(x,env) = nx; nth(y,env) = ny; nth(z,env) = nz;
u € nat; x < length(env); y < length(env); z € nat; env € list(4)]
—> satisfies_is_a(##A,nu,nx,ny,nz) <—
sats (A, satisfies_is_a_fm(u,x,y,z), env)"
by simp

theorem satisfies_is_a_reflection:
"REFLECTS[\x. satisfies_is_a(L,f(x),g(x),h(x),g’(x)),
Ai x. satisfies_is_a(##Lset(i),f(x),g(x),h(x),g’ (x))]"
unfolding satisfies_is_a_def
apply (intro FOL_reflections is_lambda_reflection bool_of_o_reflection

nth_reflection is_list_reflection)
done

13.3.3 The Operator satisfies_is_b, Internalized

definition

satisfies_is_b_fm :: "[i,i,i,i]=i" where
"satisfies_is_b_fm(A,x,y,z) =

Forall(

Implies(is_list_fm(succ(4),0),
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lambda_fm(
bool_of_o_fm(Exists(And (nth_fm(x#+5,2,0), nth_fm(y#+5,2,0))),
0),
0, succ(z))))"

lemma satisfies_is_b_type [TC]:
"[4 € nat; x € nat; y € nat; z € nat]
—> satisfies_is_b_fm(A,x,y,z) € formula"
by (simp add: satisfies_is_b_fm_def)

lemma sats_satisfies_is_b_fm [simp]:
"[u € nat; x < length(env); y < length(env); z € nat; env € list(4)]
—> sats(A, satisfies_is_b_fm(u,x,y,z), env) <—
satisfies_is_b(##A, nth(u,env), nth(x,env), nth(y,env), nth(z,env))"
apply (frule_tac x=x in 1t_length_in_nat, assumption)
apply (frule_tac x=y in 1t_length_in_nat, assumption)
apply (simp add: satisfies_is_b_fm_def satisfies_is_b_def sats_lambda_fm

sats_bool_of_o_fm)
done

lemma satisfies_is_b_iff_sats:
"[nth(u,env) = nu; nth(x,env) = nx; nth(y,env) = ny; nth(z,env) = nz;
u € nat; x < length(env); y < length(env); z € nat; env € list(4)]
—> satisfies_is_b(##A,nu,nx,ny,nz) <—
sats(A, satisfies_is_b_fm(u,x,y,z), env)"
by simp

theorem satisfies_is_b_reflection:
"REFLECTS[Ax. satisfies_is_b(L,f(x),g(x),h(x),g’(x)),
Ai x. satisfies_is_b(##Lset(i),f(x),g(x),h(x),g’ (x))]"
unfolding satisfies_is_b_def
apply (intro FOL_reflections is_lambda_reflection bool_of_o_reflection

nth_reflection is_list_reflection)
done

13.3.4 The Operator satisfies_is_c, Internalized

definition
satisfies_is_c_fm :: "[i,i,i,i,i]=1i" where
"satisfies_is_c_fm(A,h,p,q,zz) =
Forall(
Implies(is_list_fm(succ(4),0),
Jlambda_fm(
Exists(Exists(
And (Exists (And (depth_apply_fm(h#+7,p#+7,0), fun_apply_fm(0,4,2))),
And (Exists (And (depth_apply_fm(h#+7,q#+7,0), fun_apply_fm(0,4,1))),
Exists(And(and_fm(2,1,0), not_fm(0,3))))))),
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0, succ(zz))))"

lemma satisfies_is_c_type [TC]:
”[[A € nat; h € nat; x € nat; y € nat; z € nat]]
—> satisfies_is_c_fm(A,h,x,y,z) € formula"

by (simp add: satisfies_is_c_fm_def)

lemma sats_satisfies_is_c_fm [simp]:
"[u € nat; v € nat; x € nat; y € nat; z € nat; env € list(4)]
—> sats(A, satisfies_is_c_fm(u,v,x,y,z), env) <—
satisfies_is_c(##A, nth(u,env), nth(v,env), nth(x,env),
nth(y,env), nth(z,env))"
by (simp add: satisfies_is_c_fm_def satisfies_is_c_def sats_lambda_fm)

lemma satisfies_is_c_iff_sats:
"[nth(u,env) = nu; nth(v,env) = nv; nth(x,env) = nx; nth(y,env) = ny;

nth(z,env) = nz;
u € nat; v € nat; x € nat; y € nat; z € nat; env € list(4)]
— satisfies_is_c(##A,nu,nv,nx,ny,nz) <—
sats(A, satisfies_is_c_fm(u,v,x,y,z), env)"
by simp

theorem satisfies_is_c_reflection:
"REFLECTS[M\x. satisfies_is_c(L,f(x),g(x),h(x),g’(x),h’(x)),
M x. satisfies_is_c(##Lset(i),f(x),g(x),h(x),g’ (x),h’(x))]"
unfolding satisfies_is_c_def

apply (intro FOL_reflections function_reflections is_lambda_reflection
extra_reflections nth_reflection depth_apply_reflection
is_list_reflection)

done

13.3.5 The Operator satisfies_is_d, Internalized

definition
satisfies_is_d_fm :: "[i,i,i,i]=i" where
"satisfies_is_d_fm(A,h,p,zz) =
Forall(
Implies(is_list_fm(succ(4),0),
lambda_fm(
Exists(

And (depth_apply_fm(h#+5,p#+5,0),
bool_of_o_fm(
Forall (Forall(Forall(
Implies (Member (2,A#+8),
Implies(Cons_fm(2,5,1),
Implies (fun_apply_fm(3,1,0), numberl_£fm(0))))))), 1))),
0, succ(zz))))"
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lemma satisfies_is_d_type [TC]:
"[A € nat; h € nat; x € nat; z € nat]
— satisfies_is_d_fm(A,h,x,z) € formula"
by (simp add: satisfies_is_d_fm_def)

lemma sats_satisfies_is_d_fm [simp]:
"[u € nat; x € nat; y € nat; z € nat; env € list(4)]
—> sats(A, satisfies_is_d_fm(u,x,y,z), env) <—
satisfies_is_d(##A, nth(u,env), nth(x,env), nth(y,env), nth(z,env))"

by (simp add: satisfies_is_d_fm_def satisfies_is_d_def sats_lambda_fm
sats_bool_of_o_fm)

lemma satisfies_is_d_iff_sats:
"[nth(u,env) = nu; nth(x,env) = nx; nth(y,env) = ny; nth(z,env) = nz;
u € nat; x € nat; y € nat; z € nat; env € list(4)]
—> satisfies_is_d(##A,nu,nx,ny,nz) <—
sats (A, satisfies_is_d_fm(u,x,y,z), env)"
by simp

theorem satisfies_is_d_reflection:
"REFLECTS[M\x. satisfies_is_d(L,f(x),g(x),h(x),g’(x)),
A x. satisfies_is_d(##Lset(i),f(x),g(x),h(x),g’(x))]"
unfolding satisfies_is_d_def

apply (intro FOL_reflections function_reflections is_lambda_reflection
extra_reflections nth_reflection depth_apply_reflection
is_list_reflection)

done

13.3.6 The Operator satisfies_MH, Internalized

definition
satisfies_MH_fm :: "[i,i,i,i]=i" where
"satisfies_MH_fm(A,u,f,zz) =
Forall(
Implies(is_formula_fm(0),
lambda_fm(

formula_case_fm(satisfies_is_a_fm(A#+7,2,1,0),
satisfies_is_b_fm(A#+7,2,1,0),
satisfies_is_c_fm(A#+7,f#+7,2,1,0),
satisfies_is_d_fm(A#+6,f#+6,1,0),
1, 0),

0, succ(zz))))"

lemma satisfies_MH_type [TC]:
"[A € nat; u € nat; x € nat; z € nat]
— satisfies_MH fm(A,u,x,z) € formula"
by (simp add: satisfies_MH_fm_def)
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lemma sats_satisfies_MH fm [simp]:
"[u € nat; x € nat; y € nat; z € nat; env € list(4)]
— sats(A, satisfies_MH_fm(u,x,y,z), env) <—
satisfies_MH(##A, nth(u,env), nth(x,env), nth(y,env), nth(z,env))"

by (simp add: satisfies_MH_fm_def satisfies_MH_def sats_lambda_fm
sats_formula_case_fm)

lemma satisfies_MH_iff_sats:
"[nth(u,env) = nu; nth(x,env) = nx; nth(y,env) = ny; nth(z,env) = nz;
u € nat; x € nat; y € nat; z € nat; env € list(4)]
—> satisfies_MH(##A,nu,nx,ny,nz) <—
sats (A, satisfies_MH_fm(u,x,y,z), env)"
by simp

lemmas satisfies_reflections =
is_lambda_reflection is_formula_reflection
is_formula_case_reflection
satisfies_is_a_reflection satisfies_is_b_reflection
satisfies_is_c_reflection satisfies_is_d_reflection

theorem satisfies_MH reflection:
"REFLECTS[A\x. satisfies_MH(L,f(x),g(x),h(x),g’(x)),
Ai x. satisfies_MH(##Lset(i),f(x),g(x),h(x),g’(x))]"
unfolding satisfies_MH_def
apply (intro FOL_reflections satisfies_reflections)
done

13.4 Lemmas for Instantiating the Locale M_satisfies

13.4.1 The Member Case

lemma Member Reflects:
"REFLECTS[Au. 3v[L]. v € B A (3bo[L]. Inx[L]. Iny[L].
v € 1stA A is_nth(L,x,v,nx) A is_nth(L,y,v,ny) A
is_bool_of_o(L, nx € ny, bo) A pair(L,v,bo,u)),
Al u. dv € Lset(i). v € B A (3bo € Lset(i). Inx € Lset(i). dny
€ Lset(i).
v € 1stA A is_nth(##Lset(i), x, v, nx) A
is_nth(##Lset (i), y, v, ny) A
is_bool_of_o(##Lset(i), nx € ny, bo) A pair(##Lset(i), v, bo,
u))i"
by (intro FOL_reflections function_reflections nth_reflection
bool_of_o_reflection)

lemma Member_replacement:
"[L(A); x € nat; y € nat]
— strong_replacement
(L, Xenv z. Jbo[L]. Inx[L]. Iny[L].
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env € list(4) A is_nth(L,x,env,nx) A is_nth(L,y,env,ny)

is_bool_of_o(L, nx € ny, bo) A

pair(L, env, bo, z))"
apply (rule strong replacementI)
apply (rule_tac u="{list(4),B,x,y}"

in gen_separation_multi [OF Member_Reflects],
auto)

apply (rule_tac env="[list(A),B,x,yl" in DPow_LsetI)
apply (rule sep_rules nth_iff_sats is_bool_of_o_iff_sats | simp)+
done

13.4.2 The Equal Case

lemma Equal_Reflects:
"REFLECTS[Au. Jv[L]. v € B A (3bo[L]. Anx[L]. Iny[L].
v € 1stA A is_nth(L, x, v, nx) A is_nth(L, y, v, ny) A
is_bool_of_o(L, nx = ny, bo) A pair(L, v, bo, u)),
Al u. 3v € Lset(i). v € B A (3bo € Lset(i). Inx € Lset(i). dny
€ Lset(i).
v € 1stA A is_nth(##Lset(i), x, v, nx) A
is_nth(##Lset (i), y, v, ny) A
is_bool_of_o(##Lset(i), nx = ny, bo) A pair(##Lset (i), v, bo,
u))i"
by (intro FOL_reflections function_reflections nth_reflection
bool_of_o_reflection)

lemma Equal_replacement:
"[L(A); x € nat; y € nat]
— strong_replacement
(L, Xenv z. dbo[L]. Inx[L]. Fny[L].
env € list(4) A is_nth(L,x,env,nx) A is_nth(L,y,env,ny)

is_bool_of_o(L, nx = ny, bo) A

pair(L, env, bo, z))"
apply (rule strong_replacementI)
apply (rule_tac u="{list(4),B,x,y}"

in gen_separation_multi [OF Equal_Reflects],
auto)

apply (rule_tac env="[1ist(A),B,x,yl" in DPow_LsetI)
apply (rule sep_rules nth_iff_sats is_bool_of_o_iff_sats | simp)+
done

13.4.3 The Nand Case

lemma Nand_Reflects:
"REFLECTS [Ax. JulL]. u € B A
(rpelL]. FrqellL]. Fandpq[L]. FnotpqlL].
fun_apply(L, rp, u, rpe) A fun_apply(L, rq, u, rqe) A
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is_and(L, rpe, rqe, andpq) A is_not(L, andpq, notpq)

A
u € list(A) A pair(L, u, notpq, x)),
Ai x. Ju € Lset(i). u € B A
(3rpe € Lset(i). drqe € Lset(i). Jdandpq € Lset(i). dnotpq € Lset(i).

fun_apply (##Lset (i), rp, u, rpe) A fun_apply(##Lset(i), rq, u,
rge) A

is_and(##Lset (i), rpe, rqe, andpq) A is_not (##Lset(i), andpq, notpq)
N

u € list(A) A pair(##Lset(i), u, notpq, x))]"
unfolding is_and_def is_not_def
apply (intro FOL_reflections function_reflections)
done

lemma Nand_replacement:
"[L(A); L(rp); L(rq)]
— strong_replacement
(L, Xenv z. Jrpe[L]. drqgelL]. Jandpq[L]. Inotpql[L].
fun_apply(L,rp,env,rpe) A fun_apply(L,rq,env,rqe) A
is_and(L,rpe,rqe,andpq) A is_not(L,andpq,notpq) A
env € list(A) A pair(L, env, notpq, z))"
apply (rule strong_replacementI)
apply (rule_tac u="{list(4),B,rp,rq}t"
in gen_separation_multi [OF Nand_Reflects],
auto)
apply (rule_tac env="[list(A),B,rp,rq]" in DPow_LsetI)
apply (rule sep_rules is_and_iff_sats is_not_iff_sats | simp)+
done

13.4.4 The Forall Case

lemma Forall Reflects:
"REFLECTS [Ax. Jdu[L]. u € B A (dbo[L]. u € list(4) A
is_bool_of_o (L,
ValL]. Vco[L]. Vrpco[L]. a € A —
is_Cons(L,a,u,co) — fun_apply(L,rp,co,rpco) —
numberl (L, rpco),
bo) A pair(L,u,bo,x)),
Al x. Ju € Lset(i). u € B A (3bo € Lset(i). u € list(4) A
is_bool_of_o (##Lset(i),
Va € Lset(i). Vco € Lset(i). Vrpco € Lset(i). a € A —
is_Cons (##Lset (i) ,a,u,co) — fun_apply (##Lset (i),rp,co,rpco)
H
numberl (##Lset (i) ,rpco),
bo) A pair(##Lset(i),u,bo,x))]"
unfolding is_bool_of_o_def
apply (intro FOL_reflections function_reflections Cons_reflection)
done
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lemma Forall_replacement:
"[L(4); L(rp)]
— strong_replacement
(L, Menv z. dbo[L].
env € list(A) A
is_bool_of_o (L,
ValL]. Vcol[L]. Vrpco[L].
a€d — is_Cons(L,a,env,co) —
fun_apply(L,rp,co,rpco) — numberl(L,
rpco),
bo) A
pair(L,env,bo,z))"
apply (rule strong replacementI)
apply (rule_tac u="{A,list(A),B,rp}"
in gen_separation_multi [OF Forall_Reflects],
auto)
apply (rule_tac env="[A,list(A),B,rp]" in DPow_LsetI)
apply (rule sep_rules is_bool_of_o_iff_sats Cons_iff_sats | simp)+
done

13.4.5 The transrec_replacement Case

lemma formula_rec_replacement_Reflects:
"REFLECTS [Ax. Ju[L]. u € B A 3yl[L]. pair(L, u, y, x) A
is_wfrec (L, satisfies_MH(L,A), mesa, u, y)),
Ai x. Ju € Lset(i). u € B A (3y € Lset(i). pair(##Lset(i), u, y,
x) A
is_wfrec (##Lset(i), satisfies_MH(##Lset(i),A), mesa, u,
y))1"

by (intro FOL_reflections function_reflections satisfies_MH_reflection
is_wfrec_reflection)

lemma formula_rec_replacement:
— For the transrec
"[n € nat; L(A)] = transrec_replacement (L, satisfies_MH(L,A), n)"
apply (rule L.transrec_replacementI, simp add: L.nat_into_M)
apply (rule strong_replacementI)
apply (zrule_tac u="{B,A,n,Memrel(eclose({n}))}"
in gen_separation_multi [OF formula_rec_replacement_Reflects],
auto simp add: L.nat_into_M)
apply (rule_tac env="[B,A,n,Memrel(eclose({n}))]" in DPow_LsetI)
apply (rule sep_rules satisfies_MH_iff sats is_wfrec_iff_sats | simp)+
done

13.4.6 The Lambda Replacement Case

lemma formula_rec_lambda_replacement_Reflects:
"REFLECTS [Ax. Ju[L]. u € B A
mem_formula(L,u) A
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(FclL].
is_formula_case
(L, satisfies_is_a(L,A), satisfies_is_b(L,A),
satisfies_is_c(L,A,g), satisfies_is_d(L,A,g),
u, c) A
pair(L,u,c,x)),
Al x. Ju € Lset(i). u € B A mem_formula(##Lset(i),u) A
(dc € Lset(i).
is_formula_case
(##Lset (i), satisfies_is_a(##Lset(i),A), satisfies_is_b(##Lset(i),A),
satisfies_is_c (##Lset(i),A,g), satisfies_is_d(##Lset(i),A,g),
u, c) A
pair (##Lset(i),u,c,x))]"
by (intro FOL_reflections function_reflections mem_formula_reflection
is_formula_case_reflection satisfies_is_a_reflection
satisfies_is_b_reflection satisfies_is_c_reflection
satisfies_is_d_reflection)

lemma formula_rec_lambda_replacement:
— For the transrec
"[Lig); L] =
strong_replacement (L,
Ax y. mem_formula(L,x) A
(dcl[L]. is_formula_case(L, satisfies_is_a(L,A),
satisfies_is_b(L,A),
satisfies_is_c(L,A,g),
satisfies_is_d(L,A,g), x, c) A
pair(L, x, c, y)))"
apply (rule strong replacementI)
apply (rule_tac u="{B,A,g}"
in gen_separation_multi [OF formula_rec_lambda_replacement_Reflects],

auto)
apply (rule_tac env="[A,g,B]" in DPow_LsetI)
apply (rule sep_rules mem_formula_iff_sats
formula_case_iff_sats satisfies_is_a_iff_sats
satisfies_is_b_iff sats satisfies_is_c_iff_sats
satisfies_is_d_iff_sats | simp)+
done

13.5 Instantiating M_satisfies

lemma M _satisfies_axioms_L: "M _satisfies_axioms(L)"
apply (rule M_satisfies_axioms.intro)
apply (assumption | rule
Member_replacement Equal_replacement
Nand_replacement Forall_replacement
formula_rec_replacement formula_rec_lambda_replacement)+
done
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theorem M _satisfies_L: "M _satisfies(L)"
apply (rule M_satisfies.intro)
apply (rule M_eclose_L)
apply (rule M_satisfies_axioms_L)
done

Finally: the point of the whole theory!

lemmas satisfies_closed = M_satisfies.satisfies_closed [OF M_satisfies_L]
and satisfies_abs = M_satisfies.satisfies_abs [OF M_satisfies_L]

end

14 Absoluteness for the Definable Powerset Func-
tion

theory DPow_absolute imports Satisfies_absolute begin

14.1 Preliminary Internalizations

14.1.1 The Operator is_formula_rec

The three arguments of p are always 2, 1, 0. It is buried within 11 quantifiers!

definition
formula_rec_fm :: "[i, i, i]=i" where
"formula_rec_fm(mh,p,z) =
Exists(Exists(Exists(
And(finite_ordinal_fm(2),
And (depth_fm(p#+3,2),
And (succ_fm(2,1),
And (fun_apply_ fm(0,p#+3,z#+3), is_transrec_fm(mh,1,0))))))))"

lemma is_formula_rec_type [TC]:
"[p € formula; x € nat; z € nat]
— formula_rec_fm(p,x,z) € formula"
by (simp add: formula_rec_fm_def)

lemma sats_formula_rec_fm:
assumes MH_iff_sats:
"Aa0 al a2 a3 a4 a5 a6 a7 a8 a9 alo.
[[aOGA; alcA; a2cl; a3cA; a4cAh; abcA; ab6cAh; ar7ch; a8ch; agci;

a10€4]
— MH(a2, al, a0) <—
sats(A, p, Cons(a0,Cons(al,Cons(a2,Cons (a3,
Cons (a4, Cons (a5, Cons (a6, Cons (a7,
Cons (a8, Cons (a9,Cons (al10,env))))))))))))"
shows

"[x € nat; z € nat; env € list(4)]
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—> sats(A, formula_rec_fm(p,x,z), env) <—
is_formula_rec (##A, MH, nth(x,env), nth(z,env))"
by (simp add: formula_rec_fm_def sats_is_transrec_fm is_formula_rec_def

MH_iff_sats [THEN iff_sym])

lemma formula_rec_iff_sats:
assumes MH _iff_sats:
"Aa0 al a2 a3 a4 a5 a6 a7 a8 a9 al0.
[[aOEA; alel; a2€l; a3€A; a4cA; abcA; abcA; arcA; a8cA; a9€Ai;

al0€4]
— MH(a2, al, a0) <—
sats (A, p, Cons(a0,Cons(al,Cons(a2,Cons (a3,
Cons (a4,Cons (a5, Cons (a6,Cons (a7,
Cons (a8, Cons (a9,Cons (al10,env))))))))))))"
shows

"[nth(i,env) = x; nth(k,env) = z;
i € nat; k € nat; env € list(4)]
—> is_formula_rec(##A, MH, x, z) <— sats(A, formula_rec_fm(p,i,k),
env)"
by (simp add: sats_formula_rec_fm [OF MH_iff_sats])

theorem formula_rec_reflection:
assumes MH reflection:
"Af’ f g h. REFLECTS[Ax. MH(L, f’(x), f(x), g(x), h(x)),
Ai x. MH(##Lset(i), £’ (x), f(x), g(x), h(x))]"
shows "REFLECTS[Ax. is_formula_rec(L, MH(L,x), f(x), h(x)),
Ai x. is_formula_rec (##Lset (i), MH(##Lset(i),x), f(x),
h(x))]"
apply (simp (no_asm_use) only: is_formula_rec_def)
apply (intro FOL_reflections function_reflections fun_plus_reflections
depth_reflection is_transrec_reflection MH_reflection)
done

14.1.2 The Operator is_satisfies

definition
satisfies_fm :: "[i,i,i]=i" where
"satisfies_fm(x) = formula_rec_fm (satisfies_MH_fm(x#+5#+6, 2, 1,

O)) n

lemma is_satisfies_type [TC]:
"[x € nat; y € nat; z € nat] = satisfies_fm(x,y,z) € formula"
by (simp add: satisfies_fm_def)

lemma sats_satisfies_fm [simp]:
"[x € nat; y € nat; z € nat; env € list(4)]
—> sats (A, satisfies_fm(x,y,z), env) <—
is_satisfies(##A, nth(x,env), nth(y,env), nth(z,env))"
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by (simp add: satisfies_fm_def is_satisfies_def sats_formula_rec_fm)

lemma satisfies_iff_sats:
"[[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i € nat; j € nat; k € nat; env € list(4)]
—> is_satisfies(##A, x, y, z) <— sats(A, satisfies_fm(i,j,k),
env)"
by (simp)

theorem satisfies_reflection:
"REFLECTS[Ax. is_satisfies(L,f(x),g(x),h(x)),
Al x. is_satisfies(##Lset(i),f(x),g(x),h(x))]"
apply (simp only: is_satisfies_def)
apply (intro formula_rec_reflection satisfies_MH_reflection)
done

14.2 Relativization of the Operator Dpow’

lemma DPow’_eq:
"DPow’ (A) = {z . ep € 1list(A) * formula,
Jenv € list(A). Ip € formula.
ep = (env,p) N z = {x€A. sats(4, p, Cons(x,env))}}"
by (simp add: DPow’_def, blast)

Relativize the use of M4 p env. sats(4, p, env) within DPow’ (the compre-
hension).

definition
is_DPow_sats :: "[i=o0,i,i,i,i] = o" where
"is_DPow_sats(M,A,env,p,x) =
Vni[M]. Vel[M]. Vsp[M].
is_satisfies(M,A,p,sp) — is_Cons(M,x,env,e) —
fun_apply (M, sp, e, nl) — numberi(M, ni1)"

lemma (in M_satisfies) DPow_sats_abs:

"[M(4); env € list(4); p € formula; M(x)]

— is_DPow_sats(M,A,env,p,x) +— sats(4, p, Cons(x,env))"
apply (subgoal_tac "M(env)")
apply (simp add: is_DPow_sats_def satisfies_closed satisfies_abs)
apply (blast dest: transM)
done

lemma (in M_satisfies) Collect_DPow_sats_abs:
"[M(A); env € list(A); p € formula]
—> Collect(A, is_DPow_sats(M,A,env,p)) =
{x € A. sats(4, p, Cons(x,env))}"
by (simp add: DPow_sats_abs transM [of _ A])

14.2.1 The Operator is_DPow_sats, Internalized

definition
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DPow_sats_fm :: "[i,i,i,i]=i" where
"DPow_sats_fm(A,env,p,x) =
Forall(Forall (Forall(
Implies(satisfies_fm(A#+3,p#+3,0),
Implies(Cons_fm(x#+3,env#+3,1),
Implies(fun_apply_fm(0,1,2), numberl_fm(2)))))))"

lemma is_DPow_sats_type [TC]:
"[A € nat; x € nat; y € nat; z € nat]
—> DPow_sats_fm(A,x,y,z) € formula"
by (simp add: DPow_sats_fm_def)

lemma sats_DPow_sats_fm [simp]:
"[u € nat; x € nat; y € nat; z € nat; env € list(4)]
— sats(A, DPow_sats_fm(u,x,y,z), env) <—
is_DPow_sats (##A, nth(u,env), nth(x,env), nth(y,env), nth(z,env))"
by (simp add: DPow_sats_fm_def is_DPow_sats_def)

lemma DPow_sats_iff_sats:
"[[nth(u,env) = nu; nth(x,env) = nx; nth(y,env) = ny; nth(z,env) = nz;
u € nat; x € nat; y € nat; z € nat; env € list(4)]
—> is_DPow_sats (##A,nu,nx,ny,nz) <—
sats (A, DPow_sats_fm(u,x,y,z), env)"
by simp

theorem DPow_sats_reflection:
"REFLECTS[Ax. is_DPow_sats(L,f(x),g(x),h(x),g’(x)),
Ai x. is_DPow_sats (##Lset (i),f(x),g(x),h(x),g’(x))]"
unfolding is_DPow_sats_def
apply (intro FOL_reflections function_reflections extra_reflections
satisfies_reflection)
done

14.3 A Locale for Relativizing the Operator Dpow’

locale M_DPow = M_satisfies +
assumes sep:
"[M(4); env € list(4); p € formulal
— separation(M, Ax. is_DPow_sats(M,A,env,p,x))"
and rep:
"M(A)
= strong_replacement (M,
Aep z. denv[M]. Ip[M]. mem_formula(M,p) A mem_list(M,A,env)

pair(M,env,p,ep) A
is_Collect(M, A, Ax. is_DPow_sats(M,A,env,p,x), z))"

lemma (in M_DPow) sep’:
"[M(4); env € list(4); p € formulal
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—> separation(M, Ax. sats(4, p, Cons(x,env)))"
by (insert sep [of A env p], simp add: DPow_sats_abs)

lemma (in M_DPow) rep’:
HM(A)
—> strong_replacement (M,
Aep z. Jenvelist(4). dpe&formula.
ep = (env,p) A z = {x € A . sats(4, p, Cons(x, env))})"

by (insert rep [of A], simp add: Collect_DPow_sats_abs)

lemma univalent_pair_eq:
"univalent (M, A, Axy z. 3x€B. JyeC. xy = (x,y) N z = f(x,y))"
by (simp add: univalent_def, blast)

lemma (in M_DPow) DPow’_closed: "M(A) = M(DPow’ (A))"
apply (simp add: DPow’_eq)

apply (fast intro: rep’ sep’ univalent_pair_eq)

done

Relativization of the Operator DPow’

definition
is_DPow’ :: "[i=o0,i,i] = o" where
"is_DPow’(M,A,Z) =
VX[M]. X € Z <
subset (M,X,A) A
(Fenv[M]. Ip[M]. mem_formula(M,p) A mem_list(M,A,env) A
is_Collect(M, A, is_DPow_sats(M,A,env,p), X))"

lemma (in M_DPow) DPow’_abs:
"[M(A); M(Z)] = is_DPow’(M,A,Z) <— Z = DPow’(A)"
apply (rule iffI)
prefer 2 apply (simp add: is_DPow’_def DPow’_def Collect_DPow_sats_abs)

apply (rule M_equalityI)

apply (simp add: is_DPow’_def DPow’_def Collect_DPow_sats_abs, assumption)
apply (erule DPow’_closed)

done

14.4 Instantiating the Locale M_DPow

14.4.1 The Instance of Separation

lemma DPow_separation:
"[L(A); env € list(A); p € formula]
—> separation(L, Ax. is_DPow_sats(L,A,env,p,x))"
apply (rule gen_separation_multi [OF DPow_sats_reflection, of "{A,env,p}"],

auto intro: transL)
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apply (rule_tac env="[A,env,p]" in DPow_LsetI)
apply (rule DPow_sats_iff_sats sep_rules | simp)+
done

14.4.2 The Instance of Replacement

lemma DPow_replacement_Reflects:
"REFLECTS [MAx. Jul[L]. u € B A
(denv[L]. Jpl[L].
mem_formula(L,p) A mem_list(L,A,env) A pair(L,env,p,u)

A
is_Collect (L, A, is_DPow_sats(L,A,env,p), x)),
Ai x. du € Lset(i). u € B A
(denv € Lset(i). dp € Lset(i).
mem_formula (##Lset (i),p) A mem_list (##Lset(i),A,env) A
pair (##Lset (i) ,env,p,u) A
is_Collect (##Lset(i), A, is_DPow_sats (##Lset(i),A,env,p),
x))1"

unfolding is_Collect_def
apply (intro FOL_reflections function_reflections mem_formula_reflection
mem_list_reflection DPow_sats_reflection)
done

lemma DPow_replacement:
"y, (A)
—> strong_replacement (L,
Aep z. Jenv[L]. Ip[L]. mem_formula(L,p) A mem_list(L,A,env)

pair(L,env,p,ep) A

is_Collect(L, A, Ax. is_DPow_sats(L,A,env,p,x), z))"
apply (rule strong_replacementI)
apply (rule_tac u="{A,B}"

in gen_separation_multi [OF DPow_replacement_Reflects],
auto)
unfolding is_Collect_def
apply (rule_tac env="[A,B]" in DPow_LsetI)
apply (rule sep_rules mem_formula_iff_sats mem_list_iff_sats
DPow_sats_iff_sats | simp)+

done

14.4.3 Actually Instantiating the Locale

lemma M_DPow_axioms_L: "M_DPow_axioms(L)"
apply (rule M_DPow_axioms.intro)
apply (assumption | rule DPow_separation DPow_replacement)+
done

theorem M _DPow_L: "M_DPow(L)"
apply (rule M_DPow.intro)
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apply (rule M_satisfies_L)
apply (rule M_DPow_axioms_L)
done

lemmas DPow’_closed [intro, simp] = M_DPow.DPow’_closed [OF M_DPow_L]
and DPow’_abs [intro, simp] = M_DPow.DPow’_abs [OF M_DPow_L]

14.4.4 The Operator is_Collect

The formula is_P has one free variable, 0, and it is enclosed within a single
quantifier.

definition
Collect_fm :: "[i, i, i]=i" where
"Collect_fm(A,is_P,z) =
Forall (Iff (Member (0,succ(z)),
And (Member (0,succ(A)), is_P)))"

lemma is_Collect_type [TC]:
"[is_P € formula; x € nat; y € nat]
—> Collect_fm(x,is_P,y) € formula"
by (simp add: Collect_fm_def)

lemma sats_Collect_fm:
assumes is_P_iff_sats:
"ANa. a € A = is_P(a) +— sats(4, p, Cons(a, env))"
shows
"[x € nat; y € nat; env € list(4)]
—> sats(4, Collect_fm(x,p,y), env) <—
is_Collect (##A, nth(x,env), is_P, nth(y,env))"
by (simp add: Collect_fm_def is_Collect_def is_P_iff_sats [THEN iff_sym])

lemma Collect_iff_sats:
assumes is_P _iff sats:
"Na. a € A = is_P(a) +— sats(4, p, Cons(a, env))"
shows
"[nth(i,env) = x; nth(j,env) = y;
i € nat; j € nat; env € list(4)]
—> is_Collect (##A, x, is_P, y) <— sats(4, Collect_fm(i,p,j), env)"
by (simp add: sats_Collect_fm [OF is_P_iff_sats])

The second argument of is_P gives it direct access to x, which is essential
for handling free variable references.

theorem Collect_reflection:
assumes is_P_reflection:
"Ah f g. REFLECTS[Ax. is_P(L, f(x), g(x)),
Ai x. is_P(##Lset (i), f(x), g(x))]"
shows "REFLECTS[Mx. is_Collect(L, f(x), is_P(L,x), g(x)),
Ai x. is_Collect (##Lset (i), f(x), is_P(##Lset(i), x), g(x))]"
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apply (simp (no_asm_use) only: is_Collect_def)
apply (intro FOL_reflections is_P_reflection)
done

14.4.5 The Operator is_Replace

BEWARE! The formula is_P has free variables 0, 1 and not the usual 1, 0!
It is enclosed within two quantifiers.

definition
Replace_fm :: "[i, i, i]=-1i" where
"Replace_fm(A,is_P,z) =
Forall (Iff (Member (0,succ(z)),
Exists(And (Member (0,A#+2), is_P))))"

lemma is_Replace_type [TC]:
"[is_P € formula; x € nat; y € nat]
— Replace_fm(x,is_P,y) € formula"
by (simp add: Replace_fm_def)

lemma sats_Replace_fm:
assumes is_P_iff_sats:
"Aa b. [a € 4; b € 4]
—> is_P(a,b) <— sats(4, p, Cons(a,Cons(b,env)))"
shows
"[x € nat; y € nat; env € list(4)]
—> sats(A, Replace_fm(x,p,y), env) <«—
is_Replace (##A, nth(x,env), is_P, nth(y,env))"
by (simp add: Replace_fm_def is_Replace_def is_P_iff sats [THEN iff_sym])

lemma Replace_iff_sats:
assumes is_P_iff_sats:
"Aa b. [a € 4; b € 4]
—> is_P(a,b) <— sats(4, p, Cons(a,Cons(b,env)))"
shows
"[nth(i,env) = x; nth(j,env) = y;
i € nat; j € nat; env € list(4)]
—> is_Replace(##A, x, is_P, y) <— sats(A, Replace_fm(i,p,j), env)"
by (simp add: sats_Replace_fm [OF is_P_iff_sats])

The second argument of is_P gives it direct access to x, which is essential
for handling free variable references.

theorem Replace_reflection:
assumes is_P_reflection:
"Ah f g. REFLECTS[Xx. is_P(L, f(x), g(x), h(x)),
Ai x. is_P(##Lset(i), f(x), g(x), h(x))]"
shows "REFLECTS[A\x. is_Replace(L, f(x), is_P(L,x), g(x)),
Ai x. is_Replace(##Lset (i), f(x), is_P(##Lset(i), x), g(x))]1"
apply (simp (no_asm_use) only: is_Replace_def)
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apply (intro FOL_reflections is_P_reflection)
done

14.4.6 The Operator is_DPow’, Internalized

definition
DPow’_fm :: "[i,i]=1i" where
"DPow’_fm(A,Z) =
Forall(

Iff (Member (0,succ(Z)),
And (subset_fm(0,succ(4)),
Exists(Exists(
And (mem_formula_fm(0),
And(mem_list_fm(A#+3,1),
Collect_fm(A#+3,
DPow_sats_fm(A#+4, 2, 1, 0), 2))))))))"

lemma is_DPow’_type [TC]:
"[x € nat; y € nat] = DPow’_fm(x,y) € formula"
by (simp add: DPow’_fm_def)

lemma sats_DPow’_fm [simp]:
"[x € nat; y € nat; env € list(4)]
— sats(A, DPow’_fm(x,y), env) <—
is_DPow’ (##A, nth(x,env), nth(y,env))"
by (simp add: DPow’_fm_def is_DPow’_def sats_subset_fm’ sats_Collect_fm)

lemma DPow’_iff_sats:
"[nth(i,env) = x; nth(j,env) = y;
i € nat; j € nat; env € list(4)]
—> is_DPow’ (##A, x, y) <— sats(A, DPow’_fm(i,j), env)"
by (simp)

theorem DPow’_reflection:
"REFLECTS[Ax. is_DPow’(L,f(x),g(x)),
A x. is_DPow’ (##Lset(i),f(x),g(x))]"
apply (simp only: is_DPow’_def)
apply (intro FOL_reflections function_reflections mem_formula_reflection
mem_list_reflection Collect_reflection DPow_sats_reflection)
done

14.5 A Locale for Relativizing the Operator Lset

definition
transrec_body :: "[i=o0,i,i,i,i] = o" where
"transrec_body(M,g,x) =
Ay z. dgy[M]l. y € x N fun_apply(M,g,y,gy) N is_DPow’(M,gy,z)"

lemma (in M_DPow) transrec_body_abs:

"Mx); M(g); M(2)]
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— transrec_body(M,g,x,y,z) <— y € x AN z = DPow’(g‘y)"
by (simp add: transrec_body_def DPow’_abs transM [of _ x])

locale M_Lset = M_DPow +
assumes strong_rep:
"[M(x); M(g)] = strong_replacement(M, Ay z. transrec_body(M,g,x,y,z))"
and transrec_rep:
"M(i) = transrec_replacement(M, Ax f u.
Jr[M]. is_Replace(M, x, transrec_body(M,f,x), r) A
big_union(M, r, u), i)"

lemma (in M_Lset) strong_rep’:

"Mx); M(g)]

— strong_replacement(M, Ay z. y € x A z = DPow’(g‘y))"
by (insert strong rep [of x g], simp add: transrec_body_abs)

lemma (in M_Lset) DPow_apply_closed:
"[M(£); M(x); yex] = M(DPow’ (£ y))"
by (blast intro: DPow’_closed dest: transM)

lemma (in M_Lset) RepFun_DPow_apply_closed:
"[M(£); M(x)] = M({DPow’ (f‘y). y€x})"
by (blast intro: DPow_apply_closed RepFun_closed2 strong _rep’)

lemma (in M_Lset) RepFun_DPow_abs:
"M ; M(£); M(r)]
—> is_Replace(M, x, Ay z. transrec_body(M,f,x,y,z), r) <—
r = {DPow’(f‘y). yex}"
apply (simp add: transrec_body_abs RepFun_def)
apply (rule iff_trans)
apply (rule Replace_abs)
apply (simp_all add: DPow_apply_closed strong_rep’)
done

lemma (in M_Lset) transrec_rep’:
"M(i) — transrec_replacement(M, Ax f u. u = ((Jy€x. DPow’(f ‘ y)),
)"
apply (insert transrec_rep [of i])
apply (simp add: RepFun_DPow_apply_closed RepFun_DPow_abs
transrec_replacement_def)
done

Relativization of the Operator Lset

definition
is_Lset :: "[i=o0, i, i] = o" where
— We can use the term language below because is_Lset will not have to be
internalized: it isn’t used in any instance of separation.
"is Lset(M,a,z) = is_transrec(M, A\x f u. u = (U yE€x. DPow’ (f‘y)),
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a, Z) "

lemma (in M_Lset) Lset_abs:
"[0rd(i); M(i); M(2)]
— is_Lset(M,i,z) <— z = Lset(i)"
apply (simp add: is_Lset_def Lset_eq_transrec_DPow’)
apply (rule transrec_abs)
apply (simp_all add: transrec_rep’ relation2_def RepFun_DPow_apply_closed)
done

lemma (in M_Lset) Lset_closed:
"lord(i); M(i)] = M(Lset(i))"
apply (simp add: Lset_eq_transrec_DPow’)
apply (rule transrec_closed [OF transrec_rep’])
apply (simp_all add: relation2_def RepFun_DPow_apply_closed)
done

14.6 Instantiating the Locale M_Lset

14.6.1 The First Instance of Replacement

lemma strong_rep_Reflects:
"REFLECTS [Mu. Jv[L]. v € B A (3gylL].
v € x A fun_apply(L,g,v,gy) A is_DPow’(L,gy,u)),
Ai u. Jv € Lset(i). v € B A (dgy € Lset(i).
v € x A fun_apply(##Lset(i),g,v,gy) A is_DPow’ (##Lset(i),gy,u))]"
by (intro FOL_reflections function_reflections DPow’_reflection)

lemma strong rep:
"[L(x); L(g)] = strong_replacement(L, \y z. transrec_body(L,g,x,y,z))"
unfolding transrec_body_def
apply (rule strong_replacementI)
apply (rule_tac u="{x,g,B}"
in gen_separation_multi [OF strong_rep_Reflects], auto)
apply (rule_tac env="[x,g,B]" in DPow_LsetI)
apply (rule sep_rules DPow’_iff_sats | simp)+
done

14.6.2 The Second Instance of Replacement

lemma transrec_rep_Reflects:
"REFLECTS [Mx. dv[L]. v € B A
Ayl[L]. pair(L,v,y,x) A
is_wfrec (L, Ax f u. dr[L].
is_Replace (L, x, Ay z.
JgylL]. y € x A fun_apply(L,f,y,gy) N
is_DPow’(L,gy,z), r) A big_union(L,r,u), mr, v,
y)),
Ai x. dv € Lset(i). v € B A
(3y € Lset(i). pair(##Lset(i),v,y,x) A
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is_wfrec (##Lset(i), Ax f u. dr € Lset(i).
is_Replace (##Lset(i), x, Ay z.
Jgy € Lset(i). y € x A fun_apply(##Lset(i),f,y,gy)

is_DPow’ (##Lset(i),gy,z), r) A
big_union(##Lset(i),r,u), mr, v, y))]"
apply (simp only: rex_setclass_is_bex [symmetric])
— Convert Jy€Lset (i) to Jy[##Lset (i)] within the body of the is_wfrec
application.
apply (intro FOL_reflections function_reflections
is_wfrec_reflection Replace_reflection DPow’_reflection)
done

lemma transrec_rep:
"[L (3l
— transrec_replacement(L, Ax f u.
Jdr[L]. is_Replace(L, x, transrec_body(L,f,x), r) A
big union(L, r, u), j)"
apply (rule L.transrec_replacementI, assumption)
unfolding transrec_body_def
apply (rule strong_replacementI)
apply (rule_tac u="{j,B,Memrel(eclose({j}))}"
in gen_separation_multi [OF transrec_rep_Reflects], auto)
apply (rule_tac env="[j,B,Memrel(eclose({j}))]" in DPow_LsetI)
apply (rule sep_rules is_wfrec_iff_sats Replace_iff_sats DPow’_iff_sats
/
simp)+
done

14.6.3 Actually Instantiating M_Lset

lemma M_Lset_axioms_L: "M_Lset_axioms(L)"
by (blast intro: M_Lset_axioms.intro strong rep transrec_rep)

theorem M _Lset_L: "M _Lset(L)"
by (blast intro: M_Lset.intro M_DPow_L M_Lset_axioms_L)

Finally: the point of the whole theory!

lemmas Lset_closed = M_Lset.Lset_closed [OF M_Lset_L]
and Lset_abs = M_Lset.Lset_abs [OF M_Lset_L]

14.7 The Notion of Constructible Set

definition
constructible :: "[i=o0,i] = o" where
"constructible(M,x) =
di[M]. dLi[M]. ordinal(M,i) A is_Lset(M,i,Li) N x € Li"
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theorem V_equals_L_in_L:
"[(x) +— constructible(L,x)"
proof -
have "L(x) +— (@(@il[L]. 0Ord(i) N x € Lset(i))"
by (auto simp add: L_def intro: Ord_in_L)
moreover have "... «<— constructible(L,x)"
by (simp add: constructible_def Lset_abs Lset_closed)
ultimately show 7thesis by blast
qed

end
15 The Axiom of Choice Holds in L!
theory AC_in_L imports Formula Separation begin

15.1 Extending a Wellordering over a List — Lexicographic
Power

This could be moved into a library.

consts
rlist o "[i,i]=d"
inductive
domains "rlist(A,r)" C "list(A) * list(A)"
intros
shorterI:
"[length(1’) < length(1); 1’ € list(4); 1 € list(A)]
= <17, 1> € rlist(A,r)"
samel:
"[<17,1> € rlist(A,r); a € 4]
— <Coms(a,l1’), Cons(a,l1)> € rlist(4d,r)"
diffI:

"[length(1’) = length(1l); <a’,a> € r;
1’ € list(A); 1 € list(4); a’ € A; a € A]
— <Coms(a’,1’), Cons(a,1)> € rlist(4d,r)"
type_intros list.intros

15.1.1 Type checking

lemmas rlist_type = rlist.dom_subset

lemmas field_rlist = rlist_type [THEN field_rel_subset]

15.1.2 Linearity

lemma rlist_Nil_Cons [intro]:
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"la € A; 1 € 1ist(A)] = <[], Cons(a,1)> € rlist(A, r)"
by (simp add: shorterI)

lemma linear rlist:
assumes r: "linear(A,r)" shows "linear(list(A),rlist(A4,r))"
proof -
have "xs € list(4) = ys € list(A) = (xs,ys) € rlist(A,r) V xs
=ys V (ys,xs) € rlist(4, r)"
for xs ys
proof (induct xs arbitrary: ys rule: list.induct)
case Nil
thus 7case by (induct ys rule: list.induct) (auto simp add: shorterI)
next
case (Cons x xs)
then have yConsCase: "(Cons(x,xs),Cons(y,ys)) € rlist(A,r) V x=y
A xs = ys V (Cons(y,ys), Cons(x,xs)) € rlist(4,r)"
if "y € A" and "ys € list(A)" for y ys
using that
apply (rule_tac i = "length(xs)" and j = "length(ys)" in Ord_linear_1t)
apply (simp_all add: shorterlI)
apply (rule linearE [OF r, of x y])
apply (auto simp add: diffI intro: sameI)
done
from <ys € 1list(A)> show ?case
by (cases rule: list.cases) (simp_all add: Cons rlist_Nil_Cons yConsCase)
qged
thus ?thesis by (simp add: linear_def)
qed

15.1.3 Well-foundedness

Nothing preceeds Nil in this ordering.

inductive cases rlist_NilE: " <1,[]> € rlist(A,r)"
inductive__cases rlist_ConsE: " <1’, Cons(x,1)> € rlist(4d,r)"

lemma not_rlist_Nil [simp]: " <1,[]1> ¢ rlist(4d,r)"
by (blast intro: elim: rlist_NilE)

lemma rlist_imp_length_le: "<1’,1> € rlist(A,r) = length(1’) < length(1)"
apply (erule rlist.induct)

apply (simp_all add: lel)

done

lemma wf_on_rlist_n:
"[n € nat; wf[A](r)] = wf[{l € list(4A). length(1) = n}](rlist(A,r))"
apply (induct_tac n)
apply (rule wf_onI2, simp)
apply (rule wf_onI2, clarify)
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apply (erule_tac a=y in list.cases, clarify)

apply (simp (no_asm_use))

apply clarify

apply (simp (no_asm_use))

apply (subgoal_tac "V12 € list(A). length(12) = x — Cons(a,12) € B",
blast)

apply (erule_tac a=a in wf_on_induct, assumption)
apply (rule balll)

apply (rule impI)

apply (erule_tac a=12 in wf_on_induct, blast, clarify)
apply (rename_tac a’ 12 1°)

apply (drule_tac x="Cons(a’,1’)" in bspec, typecheck)
apply simp

apply (erule mp, clarify)

apply (erule rlist_ConsE, auto)

done

lemma list_eq UN_length: "list(A) = (|Jn€nat. {1 € list(4). length(1)
=nk)"
by (blast intro: length_type)

lemma wf_on_rlist: "wf[A]l(r) = wfl[list(A)](rlist(A,r))"
apply (subst list_eq_UN_length)
apply (rule wf_on_Union)
apply (rule wf_imp_wf_on [OF wf_Memrel [of nat]])
apply (simp add: wf_on_rlist_n)
apply (frule rlist_type [THEN subsetD])
apply (simp add: length_type)
apply (drule rlist_imp_length_le)
apply (erule 1leE)
apply (simp_all add: 1t_def)
done

lemma wf_rlist: "wf(r) — wf(rlist(field(r),r))"
apply (simp add: wf_iff_ wf_on_field)

apply (rule wf_on_subset_A [OF _ field rlist])
apply (blast intro: wf_on_rlist)

done

lemma well ord_rlist:

"well ord(A,r) —> well_ord(list(A), rlist(A,r))"
apply (rule well_ordI)
apply (simp add: well_ord_def wf_on_rlist)
apply (simp add: well_ord_def tot_ord_def linear_rlist)
done
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15.2 An Injection from Formulas into the Natural Numbers

There is a well-known bijection between nat x nat and nat given by the
expression f(m,n) = triangle(m+n) + m, where triangle(k) enumerates the
triangular numbers and can be defined by triangle(0)=0, triangle(succ(k))
= succ(k + triangle(k)). Some small amount of effort is needed to show that
f is a bijection. We already know that such a bijection exists by the theorem
well_ord_InfCard_square_eq:

[well_ord(A, r); InfCard([A])] = A X A ~ A

However, this result merely states that there is a bijection between the
two sets. It provides no means of naming a specific bijection. Therefore,
we conduct the proofs under the assumption that a bijection exists. The
simplest way to organize this is to use a locale.

Locale for any arbitrary injection between nat x nat and nat

locale Nat_Times_Nat =
fixes fn
assumes fn_inj: "fn € inj(nat*nat, nat)"

consts enum :: "[i,i]=i"
primrec
"enum(f, Member(x,y)) = f ¢ <0, £ ¢ (x,y)>"
"enum(f, Equal(x,y)) =f ¢ <1, £  (x,y)>"
"enum(f, Nand(p,q)) = f ¢ <2, f ° <enum(f,p), enum(f,q)>>"
"enum (f, Forall(p)) = f ¢ <succ(2), enum(f,p)>"

lemma (in Nat_Times_Nat) fn_type [TC,simp]:
"[x € nat; y € nat] = fn‘(x,y) € nat"
by (blast intro: inj_is_fun [OF fn_inj] apply_funtype)

lemma (in Nat_Times_Nat) fn_iff:

"[x € nat; y € nat; u € nat; v € nat]

= (fn‘(x,y) = fn‘(u,v)) <— (x=u A y=v)"
by (blast dest: inj_apply_equality [OF fn_inj])

lemma (in Nat_Times_Nat) enum_type [TC,simp]:
"p € formula —> enum(fn,p) € nat"
by (induct_tac p, simp_all)

lemma (in Nat_Times_Nat) enum_inject [rule_format]:
"p € formula = Vq&formula. enum(fn,p) = enum(fn,q) — p=q"
apply (induct_tac p, simp_all)
apply (rule balll)
apply (erule formula.cases)
apply (simp_all add: fn_iff)
apply (rule balll)
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apply (erule formula.cases)

apply (simp_all add: fn_iff)

apply (rule balll)

apply (erule_tac a=qa in formula.cases)
apply (simp_all add: fn_iff)

apply blast
apply (rule balll)
apply (erule_tac a=q in formula.cases)
apply (simp_all add: fn_iff, blast)
done

lemma (in Nat_Times_Nat) inj_formula_nat:
"(Ap € formula. enum(fn,p)) € inj(formula, nat)"
apply (simp add: inj_def lam_type)
apply (blast intro: enum_inject)
done

lemma (in Nat_Times_Nat) well_ord_formula:
"well_ord(formula, measure(formula, enum(fn)))"

apply (rule well_ord_measure, simp)

apply (blast intro: enum_inject)

done

lemmas nat_times_nat_lepoll_nat =
InfCard_nat [THEN InfCard_square_eqpoll, THEN eqpoll_imp_lepoll]

Not needed—but interesting?

theorem formula_lepoll_nat: "formula < nat"
apply (insert nat_times_nat_lepoll_nat)
unfolding lepoll_def
apply (blast intro: Nat_Times_Nat.inj_formula_nat Nat_Times_Nat.intro)

done

15.3 Defining the Wellordering on DPow(4)

The objective is to build a wellordering on DPow(4) from a given one on
A. We first introduce wellorderings for environments, which are lists built
over A. We combine it with the enumeration of formulas. The order type of
the resulting wellordering gives us a map from (environment, formula) pairs
into the ordinals. For each member of DPow(4), we take the minimum such
ordinal.

definition
env_form r :: "[i,i,i]=i" where
— wellordering on (environment, formula) pairs
"env_form_r(f,r,A) =
rmult(list(A), rlist(4, r),
formula, measure(formula, enum(f)))"
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definition
env_form map :: "[i,i,i,i]=1" where
— map from (environment, formula) pairs to ordinals
"env_form_map(f,r,A,z)
= ordermap(list(A) * formula, env_form_r(f,r,A)) ¢ z"

definition
DPow_ord :: "[i,i,i,i,i]=0" where
— predicate that holds if k is a valid index for X
"DPow_ord(f,r,A,X,k) =
Jenv € list(4). dp € formula.
arity(p) < succ(length(env)) A
X = {x€A. sats(A, p, Cons(x,env))} A
env_form_map(f,r,A,(env,p)) = k"

definition
DPow_least :: "[i,i,i,i]=i" where
— function yielding the smallest index for X
"DPow_least(f,r,A,X) = p k. DPow_ord(f,r,A,X,k)"

definition
DPow_r :: "[i,i,i]=i" where
— a wellordering on DPow (A)
"DPow_r(f,r,A) = measure(DPow(A), DPow_least(f,r,A))"

lemma (in Nat_Times_Nat) well_ord_env_form r:
"well_ord(A,r)
= well_ord(list(A) * formula, env_form_r(fn,r,A))"
by (simp add: env_form_r_def well_ord_rmult well_ord_rlist well_ord_formula)

lemma (in Nat_Times_Nat) Ord_env_form_map:
"[well_ord(A,r); z € 1list(A) * formula]
—> Ord(env_form_map(fn,r,A,z))"
by (simp add: env_form_map_def Ord_ordermap well_ord_env_form_r)

lemma DPow_imp_ex_DPow_ord:
"X € DPow(A) — dk. DPow_ord(fn,r,A,X,k)"
apply (simp add: DPow_ord_def)
apply (blast dest!: DPowD)
done

lemma (in Nat_Times_Nat) DPow_ord_imp_0Ord:
"[DPow_ord(fn,r,A,X,k); well_ord(A,r)] = Ord(k)"

apply (simp add: DPow_ord_def, clarify)

apply (simp add: Ord_env_form_map)

done

lemma (in Nat_Times_Nat) DPow_imp_DPow_least:
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"[X € DPow(A); well_ord(A,r)]

— DPow_ord(fn, r, A, X, DPow_least(fn,r,A,X))"
apply (simp add: DPow_least_def)
apply (blast dest: DPow_imp_ex_DPow_ord intro: DPow_ord_imp_Ord LeastI)
done

lemma (in Nat_Times_Nat) env_form_map_inject:
"[env_form_map(fn,r,A,u) = env_form_map(fn,r,A,v); well_ord(A,r);
u € list(A) * formula; v € list(A) * formula]
= u=v"
apply (simp add: env_form_map_def)
apply (rule inj_apply_equality [OF bij_is_inj, OF ordermap_bij,
OF well_ord_env_form_r], assumption+)
done

lemma (in Nat_Times_Nat) DPow_ord_unique:
"[DPow_ord(fn,r,A,X,k); DPow_ord(fn,r,A,Y,k); well_ord(A,r)]
== X=Y"

apply (simp add: DPow_ord_def, clarify)

apply (drule env_form_map_inject, auto)

done

lemma (in Nat_Times_Nat) well_ord_DPow_r:
"well _ord(A,r) — well_ord(DPow(A), DPow_r(fn,r,A))"
apply (simp add: DPow_r_def)
apply (rule well_ord_measure)
apply (simp add: DPow_least_def)
apply (drule DPow_imp_DPow_least, assumption)+
apply simp
apply (blast intro: DPow_ord_unique)
done

lemma (in Nat_Times_Nat) DPow_r_type:
"DPow_r(fn,r,A) C DPow(A) * DPow(A)"
by (simp add: DPow_r_def measure_def, blast)

15.4 Limit Construction for Well-Orderings

Now we work towards the transfinite definition of wellorderings for Lset ().
We assume as an inductive hypothesis that there is a family of wellorderings
for smaller ordinals.

definition

rlimit :: "[i,i=i]=1i" where

— Expresses the wellordering at limit ordinals. The conditional lets us remove
the premise Limit (i) from some theorems.

"rlimit(i,r) =
if Limit(i) then
{z: Lset(i) * Lset(i).
dx’ x. z = <x’,x> A
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(lrank(x’) < lrank(x) |
(lrank(x’) = lrank(x) A <x’,x> € r(succ(lrank(x)))))}
else 0"

definition
Lset_new :: "i=i" where
— This constant denotes the set of elements introduced at level succ (i)
"Lset_new(i) = {x € Lset(succ(i)). lrank(x) = i}"

lemma Limit_Lset_eq2:
"Limit (i) = Lset(i) = (|Jj€i. Lset_new(j))"
apply (simp add: Limit_Lset_eq)
apply (rule equalityI)
apply safe
apply (subgoal_tac "Ord(y)")
prefer 2 apply (blast intro: Ord_in_Ord Limit_is_0Ord)
apply (simp_all add: Limit_is_Ord Lset_iff_lrank_lt Lset_new_def
Ord_mem_iff_1t)
apply (blast intro: 1t_trans)
apply (rule_tac x = "succ(lrank(x))" in bexI)
apply (simp)
apply (blast intro: Limit_has_succ 1tD)
done

lemma wf_on_Lset:
"wf [Lset (succ(j))] (r(succ(j))) = wfl[Lset_new(j)](rlimit(i,r))"
apply (simp add: wf_on_def Lset_new_def)
apply (erule wf_subset)
apply (simp add: rlimit_def, force)
done

lemma wf_on_rlimit:
"(Vj<i. wflLset(j)1(x(j))) = wfllset(i)](rlimit(i,r))"
apply (case_tac "Limit(i)")
prefer 2
apply (simp add: rlimit_def wf_on_any_O0)
apply (simp add: Limit_Lset_eq2)
apply (rule wf_on_Union)
apply (rule wf_imp_wf_on [OF wf_Memrel [of i]])
apply (blast intro: wf_on_Lset Limit_has_succ Limit_is_Ord 1tI)
apply (force simp add: rlimit_def Limit_is_Ord Lset_iff_lrank_lt Lset_new_def
Ord_mem_iff_1t)
done

lemma linear rlimit:
"[Limit (i); V j<i. linear(Lset(j), r(j))]
— linear(Lset (i), rlimit(i,r))"

apply (frule Limit_is_Ord)

apply (simp add: Limit_Lset_eq2 Lset_new_def)
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apply (simp add: linear def rlimit_def Ball_def 1t_Ord Lset_iff_ lrank_1t)
apply (simp add: 1tI, clarify)

apply (rename_tac u v)

apply (rule_tac i="lrank(u)" and j="lrank(v)" in Ord_linear_1t, simp_all)

apply (drule_tac x="succ(lrank(u) U lrank(v))" in ospec)
apply (simp add: 1tI)

apply (drule_tac x=u in spec, simp)

apply (drule_tac x=v in spec, simp)

done

lemma well _ord_rlimit:
"[Limit(i); V j<i. well_ord(Lset(j), r(j))]
= well_ord(Lset (i), rlimit(i,r))"
by (blast intro: well_ordI wf_on_rlimit well_ord_is_wf
linear rlimit well_ord_is_linear)

lemma rlimit_cong:
"(Nj. j<i = r’(j) = r(§j)) = rlimit(i,r) = rlimit(i,r’)"
apply (simp add: rlimit_def, clarify)
apply (rule refl iff_refl Collect_cong ex_cong conj_cong)+
apply (simp add: Limit_is_Ord Lset_lrank_lt)
done

15.5 Transfinite Definition of the Wellordering on L

definition
Lr :: "[i, i] = i" where
"L r(f) = M.
transrec3(i, 0, Ax r. DPow_r(f, r, Lset(x)),
Ax r. rlimit(x, Ay. r‘y))"

15.5.1 The Corresponding Recursion Equations

lemma [simp]: "L_r(f,0) = 0"
by (simp add: L_r_def)

lemma [simp]: "L_r(f, succ(i)) = DPow_r(f, L_r(f,i), Lset(i))"
by (simp add: L_r_def)

The limit case is non-trivial because of the distinction between object-level
and meta-level abstraction.

lemma [simp]: "Limit(i) = L_r(f,i) = rlimit(i, L_r(f))"
by (simp cong: rlimit_cong add: transrec3_Limit L_r_def 1tD)

lemma (in Nat_Times_Nat) L_r_type:
"Ord(i) —> L_r(fn,i) C Lset(i) * Lset(i)"
apply (induct i rule: trans_induct3)
apply (simp_all add: Lset_succ DPow_r_type well_ord_DPow_r rlimit_def
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Transset_subset_DPow [OF Transset_Lset], blast)
done

lemma (in Nat_Times_Nat) well _ord_L_r:
"Ord(i) — well_ord(Lset (i), L_r(fn,i))"
apply (induct i rule: trans_induct3)
apply (simp_all add: well_ord0O Lset_succ L_r_type well_ord_DPow_r
well ord_rlimit 1tD)
done

lemma well _ord_L_r:
"Ord(i) = dr. well_ord(Lset(i), r)"
apply (insert nat_times_nat_lepoll_nat)
unfolding lepoll_def
apply (blast intro: Nat_Times_Nat.well_ ord_L_r Nat_Times_Nat.intro)
done

Every constructible set is well-ordered! Therefore the Wellordering Theorem
and the Axiom of Choice hold in L!

theorem L_implies_AC: assumes x: "L(x)" shows "dr. well_ord(x,r)"
using Transset_Lset x

apply (simp add: Transset_def L_def)

apply (blast dest!: well ord L_r intro: well_ord_subset)

done

interpretation L: M _basic L by (rule M_basic_L)

theorem "Vx[L]. dr. wellordered(L,x,r)"
proof
fix x
assume "L(x)"
then obtain r where "well_ord(x,r)"
by (blast dest: L_implies_AC)
thus "dr. wellordered(L,x,r)"
by (blast intro: L.well_ord_imp_relativized)
qed

In order to prove 3r[L]. wellordered(L, x, r),it’s necessary to know that
r is actually constructible. It follows from the assumption “V equals L’ 7,
but this reasoning doesn’t appear to work in Isabelle.

end

16 Absoluteness for Order Types, Rank Functions
and Well-Founded Relations

theory Rank imports WF_absolute begin
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16.1 Order Types: A Direct Construction by Replacement

locale M_ordertype = M_basic +
assumes well_ord_iso_separation:
"[MCA); M(E); M()]
—> separation (M, A\x. x€A — @Q@y[M]. GplM].
fun_apply(M,f,x,y) A pair(M,y,x,p) AN p € r)))"
and obase_separation:
— part of the order type formalization
") M)
—> separation(M, Aa. Ix[M]. Ig[M]. Imx[M]. Ipar[M].
ordinal (M,x) N membership(M,x,mx) N pred_set(M,A,a,r,par)

order_isomorphism(M,par,r,x,mx,g))"
and obase_equals_separation:
"[M(A); M(D)]
—> separation (M, A\x. x€A — —~Q@y[M]. Jg[M].
ordinal(M,y) A (Imy[M]. Ipxr[M].
membership(M,y,my) N pred_set(M,A,x,r,pxr)

order_isomorphism(M,pxr,r,y,my,g))))"
and omap_replacement:
"MCA); M(x)]
= strong_replacement (M,
Aa z. dx[M]. JgM]. Imx[M]. Jpar[M].
ordinal (M,x) A pair(M,a,x,z) A membership(M,x,mx) A
pred_set (M,A,a,r,par) A order_isomorphism(M,par,r,x,mx,g))"

Inductive argument for Kunen’s Lemma I 6.1, etc. Simple proof from Hal-
mos, page 72

lemma (in M_ordertype) wellordered_iso_subset_lemma:
"[wellordered(M,A,r); f € ord_iso(A,r, A’,r); A’<=4A; y € A;

M(4); M(£); M(@)] = - <f‘y, y> € "

unfolding wellordered_def ord_iso_def
apply (elim conjE CollectE)
apply (erule wellfounded_on_induct, assumption+)

apply (insert well_ord_iso_separation [of A f r])

apply (simp, clarify)
apply (drule_tac a = x in bij_is_fun [THEN apply_type], assumption, blast)
done

Kunen’s Lemma I 6.1, page 14: there’s no order-isomorphism to an initial
segment of a well-ordering

lemma (in M_ordertype) wellordered_iso_predD:
"[wellordered(M,A,r); f € ord_iso(A, r, Order.pred(4,x,r), r);
M(A); M(£); M()] = x ¢ A"
apply (rule notI)
apply (frule wellordered_iso_subset_lemma, assumption)
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apply (auto elim: predE)
apply (drule ord_iso_is_bij [THEN bij_is_fun, THEN apply_typel, assumption)

apply (simp add: Order.pred_def)
done

lemma (in M_ordertype) wellordered_iso_pred_eq_lemma:
"[f € (Order.pred(A,y,r), r) = (Order.pred(A,x,r), r);
wellordered(M,A,r); x€A; y€A; M(4); M(f); M(x)] = (x,y) ¢ r"
apply (frule wellordered_is_trans_on, assumption)
apply (rule notI)
apply (drule_tac x2=y and x=x and r2=r in
wellordered_subset [OF _ pred_subset, THEN wellordered_iso_predD])

apply (simp add: trans_pred_pred_eq)
apply (blast intro: predI dest: transM)+
done

Simple consequence of Lemma 6.1

lemma (in M_ordertype) wellordered_iso_pred_eq:
"[wellordered(M,A,r);

f € ord_iso(Order.pred(A,a,r), r, Order.pred(A,c,r), r);
M(A); M(f); M(r); a€cd; celd] = a=c"

apply (frule wellordered_is_trans_on, assumption)

apply (frule wellordered_is_linear, assumption)

apply (erule_tac x=a and y=c in linearE, auto)

apply (drule ord_iso_sym)

apply (blast dest: wellordered_iso_pred_eq_lemma)+
done

Following Kunen’s Theorem I 7.6, page 17. Note that this material is not
required elsewhere.

Can’t use well_ord_iso_preserving because it needs the strong premise
well ord(4, r)

lemma (in M_ordertype) ord_iso_pred_imp_lt:
"[f € ord_iso(Order.pred(A,x,r), r, i, Memrel(i));
g € ord_iso(Order.pred(A,y,r), r, j, Memrel(j));
wellordered(M,A,r); x € A; y € A; M(A); M(xr); M(f); M(g);
M(j);
Ord(i); 0rd(j); (x,y) € r]
= i < j"
apply (frule wellordered_is_trans_on, assumption)
apply (frule_tac y=y in transM, assumption)
apply (rule_tac i=i and j=j in Ord_linear_1lt, auto)

case i = j yields a contradiction
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apply (rule_tac x1=x and Al="Order.pred(4A,y,r)" in
wellordered_iso_predD [THEN notE])
apply (blast intro: wellordered_subset [OF _ pred_subset])
apply (simp add: trans_pred_pred_eq)
apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans)
apply (simp_all add: pred_iff)

case j < i also yields a contradiction

apply (frule restrict_ord_iso2, assumption+)
apply (frule ord_iso_sym [THEN ord_iso_is_bij, THEN bij_is_fun])
apply (frule apply_type, blast intro: 1tD)
— thus converse(f) ¢ j € Order.pred(A, x, r)
apply (simp add: pred_iff)
apply (subgoal_tac
"Jh[M]. h € ord_iso(Order.pred(A,y,r), r,
Order.pred (A, converse(f)‘j, r), r)")
apply (clarify, frule wellordered_iso_pred_eq, assumption+)
apply (blast dest: wellordered_asym)
apply (intro rexI)
apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans)+
done

lemma ord_iso_conversel:
"[f: ord_iso(A,r,B,s); <b, f‘a>: s; a:d; b:B]
— <converse(f) ¢ b, a> € r"
apply (frule ord_iso_converse, assumption+)
apply (blast intro: ord_iso_is_bij [THEN bij_is_fun, THEN apply_funtype])

apply (simp add: left_inverse_bij [OF ord_iso_is_bij])
done

definition
obase :: "[i=o0,1i,i] = i" where
— the domain of om, eventually shown to equal A
"obase(M,A,r) = {acA. Ix[M]. g[M]. Ord(x) A
g € ord_iso(Order.pred(4,a,r),r,x,Memrel (x))}"

definition
omap :: "[i=0,i,i,i] = o" where
— the function that maps wosets to order types
"omap(M,A,r,f) =
Vz[M].
z € f <— (JacA. Ix[M]. gM]. z = (a,x) A Ord(x) A
g € ord_iso(Order.pred(A,a,r),r,x,Memrel(x)))"

definition
otype :: "[i=0,1i,i,i] = o" where — the order types themselves
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"otype(M,A,r,i) = I£[M]. omap(M,A,r,f) A is_range(M,f,i)"

Can also be proved with the premise M(z) instead of M(£), but that version
is less useful. This lemma is also more useful than the definition, omap_def.

lemma (in M_ordertype) omap_iff:

"lomap (M,A,r,f); M(A); M(£)]

== z € f <

(JacA. Ix[M]. FgM]. z = (a,x) A Ord(x) A
g € ord_iso(Order.pred(4,a,r),r,x,Memrel(x)))"

apply (simp add: omap_def)
apply (rule iffI)
apply (drule_tac [2] x=z in rspec)
apply (drule_tac x=z in rspec)
apply (blast dest: transM)+
done

lemma (in M_ordertype) omap_unique:
"lomap (M,A,r,£f); omap(M,A,r,f’); M(A); M(x); M(£f); M(£’)] = £’
= f”
apply (rule equality_ iffI)
apply (simp add: omap_iff)
done

lemma (in M_ordertype) omap_yields_Ord:
"[omap(M,A,r,£); (a,x) € £; M(a); M(x)] = Ord(x)"
by (simp add: omap_def)

lemma (in M_ordertype) otype_iff:
"lotype(M,A,r,i); M(A); M(r); M(i)]
— x € 1 <—
M(x) A Ord(x) A
(JacA. Jg[M]. g € ord_iso(Order.pred(A,a,r),r,x,Memrel(x))))"
apply (auto simp add: omap_iff otype_def)
apply (blast intro: transM)
apply (rule rangeI)
apply (frule transM, assumption)
apply (simp add: omap_iff, blast)
done

lemma (in M_ordertype) otype_eq_range:
"[omap(M,A,r,f); otype(M,A,r,i); M(A); M(r); M(£); M(i)]
= 1 = range(f)"

apply (auto simp add: otype_def omap_iff)

apply (blast dest: omap_unique)

done

lemma (in M_ordertype) Ord_otype:
"[otype(M,A,r,i); trans[A]l(r); M(A); M(r); M(i)] = O0rd(i)"
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apply (rule 0OrdI)
prefer 2
apply (simp add: Ord_def otype_def omap_def)
apply clarify
apply (frule pair_components_in_M, assumption)
apply blast
apply (auto simp add: Transset_def otype_iff)
apply (blast intro: transM)
apply (blast intro: Ord_in_Ord)
apply (rename_tac y a g)
apply (frule ord_iso_sym [THEN ord_iso_is_bij, THEN bij_is_fun,
THEN apply_funtypel], assumption)
apply (rule_tac x="converse(g) ‘y" in bexI)
apply (frule_tac a="converse(g) ¢ y" in ord_iso_restrict_pred, assumption)

apply (safe elim!: predE)
apply (blast intro: restrict_ord_iso ord_iso_sym 1tI dest: transM)
done

lemma (in M_ordertype) domain_omap:
"lomap (M,A,r,f); M(A); M(r); M(B); M(£)]
— domain(f) = obase(M,A,r)"
apply (simp add: obase_def)
apply (rule equality_ iffI)
apply (simp add: domain_iff omap_iff, blast)
done

lemma (in M_ordertype) omap_subset:
"lomap (M,A,r,£f); otype(M,A,r,i);
M(A); M(xr); M(£); M(B); M(i)] = f C obase(M,A,r) * i"
apply clarify
apply (simp add: omap_iff obase_def)
apply (force simp add: otype_iff)
done

lemma (in M_ordertype) omap_funtype:
"[omap (M,A,r,f); otype(M,A,r,i);
M(A); M(r); M(f); M(i)] = f € obase(M,A,r) -> i"
apply (simp add: domain_omap omap_subset Pi_iff function_def omap_iff)

apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans)
done

lemma (in M_ordertype) wellordered_omap_bij:
"[wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i);
M(A); M(r); M(£f); M(i)] = f € bij(obase(M,A,r),i)"
apply (insert omap_funtype [of A r f i])
apply (auto simp add: bij_def inj_def)
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prefer 2 apply (blast intro: fun_is_surj dest: otype_eq_range)

apply (frule_tac a=w in apply_Pair, assumption)

apply (frule_tac a=x in apply_Pair, assumption)

apply (simp add: omap_iff)

apply (blast intro: wellordered_iso_pred_eq ord_iso_sym ord_iso_trans)

done

This is not the final result: we must show oB(4, r) = 4

lemma (in M_ordertype) omap_ord_iso:

"[wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i);

M(A); M(r); M(f); M(i)] = f € ord_iso(obase(M,A,r),r,i,Memrel(i))"

apply (rule ord_isoI)
apply (erule wellordered_omap_bij, assumption+)
apply (insert omap_funtype [of A r f i], simp)
apply (frule_tac a=x in apply_Pair, assumption)
apply (frule_tac a=y in apply_Pair, assumption)
apply (auto simp add: omap_iff)

direction 1: assuming (x, y) € r

apply (blast intro: 1tD ord_iso_pred_imp_1lt)
direction 2: proving (x, y) € r using linearity of r

apply (rename_tac x y g ga)
apply (frule wellordered_is_linear, assumption,
erule_tac x=x and y=y in linearE, assumption+)

the case x = y leads to immediate contradiction

apply (blast elim: mem_irrefl)

the case (y, x) € r: handle like the opposite direction

apply (blast dest: ord_iso_pred_imp_lt 1tD elim: mem_asym)
done

lemma (in M_ordertype) Ord_omap_image_pred:
"[wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i);
M(A); M(xr); M(£); M(i); b € A] = 0rd(f ‘‘ Order.pred(A,b,r))"
apply (frule wellordered_is_trans_on, assumption)
apply (rule 0rdI)
prefer 2 apply (simp add: image_iff omap_iff Ord_def, blast)

Hard part is to show that the image is a transitive set.

apply (simp add: Transset_def, clarify)

apply (simp add: image_iff pred_iff apply_iff [OF omap_funtype [of A r
£ i]1)

apply (rename_tac c j, clarify)

apply (frule omap_funtype [of A r f, THEN apply_funtypel, assumption+)
apply (subgoal_tac "j € i")
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prefer 2 apply (blast intro: Ord_trans Ord_otype)
apply (subgoal_tac "converse(f) ¢ j € obase(M,A,r)")
prefer 2
apply (blast dest: wellordered_omap_bij [THEN bij_converse_bij,

THEN bij_is_fun, THEN apply_funtype])
apply (rule_tac x="converse(f) ¢ j" in bexI)
apply (simp add: right_inverse_bij [OF wellordered_omap_bij])
apply (intro predI conjI)
apply (erule_tac b=c in trans_onD)
apply (rule ord_iso_conversel [OF omap_ord_iso [of A r f i]])
apply (auto simp add: obase_def)
done

(4

lemma (in M_ordertype) restrict_omap_ord_iso:
"[wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i);
D C obase(M,A,r); M(A); M(x); M(f); M(i)]
= restrict(f,D) € ((D,r) = (f‘‘D, Memrel(f‘‘D)))"
apply (frule ord_iso_restrict_image [OF omap_ord_iso [of A r f il],
assumption+)
apply (drule ord_iso_sym [THEN subset_ord_iso_Memrel])
apply (blast dest: subsetD [OF omap_subset])
apply (drule ord_iso_sym, simp)
done

lemma (in M_ordertype) obase_equals:

"[wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i);

M(4); M(r); M(£f); M(i)] = obase(M,A,r) = A"

apply (rule equalityI, force simp add: obase_def, clarify)
apply (unfold obase_def, simp)
apply (frule wellordered_is_wellfounded_on, assumption)
apply (erule wellfounded_on_induct, assumption+)
apply (frule obase_equals_separation [of A r], assumption)
apply (simp, clarify)
apply (rename_tac b)
apply (subgoal_tac "Order.pred(A,b,r) C obase(M,A,r)")
apply (blast intro!: restrict_omap_ord_iso Ord_omap_image_pred)
apply (force simp add: pred_iff obase_def)
done

Main result: om gives the order-isomorphism (4, r) = (i, Memrel(i))

theorem (in M_ordertype) omap_ord_iso_otype:
"[wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i);
M(A); M(r); M(£f); M(i)] = f € ord_iso(4, r, i, Memrel(i))"
apply (frule omap_ord_iso, assumption+)
apply (simp add: obase_equals)
done

lemma (in M_ordertype) obase_exists:
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"[M(A); M(r)] = M(obase(M,A,r))"
apply (simp add: obase_def)
apply (insert obase_separation [of A r])
apply (simp add: separation_def)
done

lemma (in M_ordertype) omap_exists:

"[M(4); M(r)] = Fz[M]. omap(M,A,r,z)"
apply (simp add: omap_def)
apply (insert omap_replacement [of A r])
apply (simp add: strong_replacement_def)
apply (drule_tac x="obase(M,A,r)" in rspec)
apply (simp add: obase_exists)
apply (simp add: obase_def)
apply (erule impE)
apply (clarsimp simp add: univalent_def)
apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans, clarify)

apply (rule_tac x=Y in rexI)
apply (simp add: obase_def, blast, assumption)
done

lemma (in M_ordertype) otype_exists:
"[wellordered(M,A,r); M(A); M(r)] = 3Fi[M]. otype(M,A,r,i)"
apply (insert omap_exists [of A r])
apply (simp add: otype_def, safe)
apply (rule_tac x="range(x)" in rexI)
apply blast+
done

lemma (in M_ordertype) ordertype_exists:

"[wellordered(M,A,r); M(A); M(r)]

— df[M]. (Fi[M]. Ord(i) N f € ord_iso(A, r, i, Memrel(i)))"
apply (insert obase_exists [of A r] omap_exists [of A r] otype_exists
[of A r], simp, clarify)
apply (rename_tac i)
apply (subgoal_tac "Ord(i)", blast intro: omap_ord_iso_otype)
apply (rule Ord_otype)

apply (force simp add: otype_def)
apply (simp_all add: wellordered_is_trans_on)
done

lemma (in M_ordertype) relativized_imp_well_ord:
"[wellordered(M,A,r); M(A); M(r)] = well_ord(4,r)"

apply (insert ordertype_exists [of A r], simp)

apply (blast intro: well_ord_ord_iso well_ord_Memrel)

done
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16.2 Kunen’s theorem 5.4, page 127

(a) The notion of Wellordering is absolute

theorem (in M_ordertype) well_ord_abs [simp]:
"[M(4); M(r)] = wellordered(M,A,r) +— well_ord(A,r)"
by (blast intro: well_ord_imp_relativized relativized_imp_well_ord)

(b) Order types are absolute

theorem (in M_ordertype) ordertypes_are_absolute:
"[wellordered(M,A,r); f € ord_iso(A, r, i, Memrel(i));
M(A); M(r); M(£); M(i); Ord(i)] = i = ordertype(4,r)"
by (blast intro: Ord_ordertype relativized_imp_well_ord ordertype_ord_iso
Ord_iso_implies_eq ord_iso_sym ord_iso_trans)

16.3 Ordinal Arithmetic: Two Examples of Recursion

Note: the remainder of this theory is not needed elsewhere.

16.3.1 Ordinal Addition

definition
is_oadd_fun :: "[i=o0,i,i,i,i] = o" where
"is_oadd_fun(M,i,j,x,f) =
(Vsj msj. M(sj) — M(msj) —

successor(M, j,sj) —> membership(M,sj,msj) —

M_is_recfun(M,
Ax g y. Jgx[M]. image(M,g,x,gx) A union(M,i,gx,y),
msj, x, £))"

definition
is_oadd :: "[i=o0,i,i,i] = o" where
"is_oadd(M,i,j,k) =

(- ordinal(M,i) A — ordinal(M,j) A k=0) |

(- ordinal(M,i) A ordinal(M,j) A k=j) |

(ordinal(M,i) A — ordinal(M,j) A k=i) |

(ordinal(M,i) A ordinal(M,j) A

(3f £j sj. M(£) N M(£j) N M(sj) A
successor(M,j,sj) A is_oadd_fun(M,i,sj,sj,f) A
fun_apply(M,f,j,fj) A £j = k))"

definition
omult_eqns :: "[i,i,i,i] = o" where
"omult_eqns(i,x,g,z) =

Ord(x) A

(x=0 — z=0) A

Vj. x =succ(j) — z=gF ++ i) A
(Limit(x) — z = |J (g “x))"
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definition
is_omult_fun :: "[i=0,i,i,i] = o" where
"is_omult_fun(M,i,j,f) =
(3df. M(df) A is_function(M,f) A
is_domain(M,f,df) A subset(M, j, df)) A
(Vx€j. omult_eqns(i,x,f,fx))"

definition
is_omult :: "[i=o0,1i,i,i] = o" where
"is_omult(M,i,j,k) =
Jf fj sj. M(E) N M(£j) N M(sj) A
successor(M, j,sj) A is_omult_fun(M,i,sj,f) A
fun_apply(M,f,j,fj) A fj = k"

locale M_ord_arith = M_ordertype +
assumes oadd_strong_replacement:
M) ; MG =
strong_replacement (M,
Ax z. Jy[M]. pair(M,x,y,z) A
(3f[M]. I£x[M]. is_oadd_fun(M,i,j,x,f) A
image(M,f,x,fx) Ny =1 U fx))"

and omult_strong_replacement’:
"M@ ; M) =
strong_replacement (M,
Ax z. Jy[Ml. z = (x,y) A
(glM]. is_recfun(Memrel(succ(j)),x, \x g. THE z. omult_eqns(i,x,g,z),g)

y = (THE z. omult_eqgns(i, x, g, z))))"

is_oadd_fun: Relating the pure "language of set theory" to Isabelle/ZF

lemma (in M_ord_arith) is_oadd_fun_iff:
"la<j; M(i); M(3); M(a); M(£)]
—> is_oadd_fun(M,i,j,a,f) +—
f € a — range(f) N (WVx. M(x) — x <a — fx =1 U f“x)"
apply (frule 1t_Ord)
apply (simp add: is_oadd_fun_def
relation2_def is_recfun_abs [of "Ax g. i U g‘x"]
is_recfun_iff_equation
Ball_def 1t_trans [OF 1tI, of _ a] 1t_Memrel)
apply (simp add: 1t_def)
apply (blast dest: transM)
done

lemma (in M_ord_arith) oadd_strong_replacement’:
"M@G); MGI] =

242



strong_replacement (M,
Ax z. dy[M]. z = (x,y) A
(3glM]. is_recfun(Memrel(succ(j)),x, x g. i U g‘“‘x,g)

A

y = iU g”X))“
apply (insert oadd_strong replacement [of i j])
apply (simp add: is_oadd_fun_def relation2 def

is_recfun_abs [of "Xx g. 1 U g‘‘x"])
done

lemma (in M_ord_arith) exists_oadd:

"lord(G); M(@1); M@)]

= Jf[M]. is_recfun(Memrel(succ(j)), j, \x g. i U g‘‘x, f)"
apply (rule wf_exists_is_recfun [OF wf_Memrel trans_Memrel])

apply (simp_all add: Memrel_type oadd_strong replacement’)
done

lemma (in M_ord_arith) exists_oadd_fun:
"[0rd(G); M(@i); M(§)] = I£[M]. is_oadd_fun(M,i,succ(j),succ(j),f)"
apply (rule exists_oadd [THEN rexE])
apply (erule Ord_succ, assumption, simp)
apply (rename_tac f)
apply (frule is_recfun_type)
apply (rule_tac x=f in rexI)
apply (simp add: fun_is_function domain_of_fun 1t_Memrel apply_recfun
1t_def
is_oadd_fun_iff Ord_trans [OF _ succIl], assumption)
done

lemma (in M_ord_arith) is_oadd_fun_apply:
"[x < j; M(@i); M(§); M(f); is_oadd_fun(M,i,j,j,f)]
= f‘x =1 U (Jkex. {f < kP"

apply (simp add: is_oadd_fun_iff 1t_0Ord2, clarify)

apply (frule 1t_closed, simp)

apply (frule leI [THEN le_imp_subset])

apply (simp add: image_fun, blast)

done

lemma (in M_ord_arith) is_oadd_fun_iff_oadd [rule_format]:
”ﬂis_oadd_fun(M,i,J,J,f); M(i); M(J); M(£f); Ord(i); Urd(j)ﬂ
= j<J — £ = i++j"

apply (erule_tac i=j in trans_induct, clarify)

apply (subgoal_tac "Vkex. k<J")

apply (simp (no_asm_simp) add: is_oadd_def oadd_unfold is_oadd_fun_apply)

apply (blast intro: 1t_trans 1tI 1t_Ord)

done

lemma (in M_ord_arith) Ord_oadd_abs:
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"[M(i); M(G); M(k); Ord(i); Ord(j)] = is_oadd(M,i,j,k) <— k = i++j"
apply (simp add: is_oadd_def is_oadd_fun_iff_oadd)
apply (frule exists_oadd_fun [of j i], blast+)
done

lemma (in M_ord_arith) oadd_abs:

"[M(i); M(G); M(k)] = is_oadd(M,i,j,k) < k = i++j"
apply (case_tac "Ord(i) A 0rd(j)")
apply (simp add: Ord_oadd_abs)
apply (auto simp add: is_oadd_def oadd_eq_if_raw_oadd)
done

lemma (in M_ord_arith) oadd_closed [intro,simp]:
"[M(i); M(G)] = M@E++j)"

apply (simp add: oadd_eq_if_raw_oadd, clarify)

apply (simp add: raw_oadd_eq_oadd)

apply (frule exists_oadd_fun [of j i], auto)

apply (simp add: is_oadd_fun_iff_oadd [symmetric])

done

16.3.2 Ordinal Multiplication

lemma omult_eqns_unique:
"[omult_eqns(i,x,g,z); omult_eqns(i,x,g,z’)] = z=z’"
apply (simp add: omult_eqns_def, clarify)
apply (erule Ord_cases, simp_all)
done

lemma omult_eqns_0: "omult_eqns(i,0,g,z) <— z=0"
by (simp add: omult_eqns_def)

lemma the_omult_eqns_0: "(THE z. omult_eqns(i,0,g,z)) = 0"

by (simp add: omult_eqgns_0)

lemma omult_eqns_succ: "omult_eqns(i,succ(j),g,z) +— 0rd(j) N z = g‘j
++ iM

by (simp add: omult_eqns_def)

lemma the_omult_eqns_succ:
"Ord(j) = (THE z. omult_eqns(i,succ(j),g,z)) = g‘j ++ 1"
by (simp add: omult_egns_succ)

lemma omult_eqns_Limit:
"Limit (x) —> omult_eqns(i,x,g,z) <— z = |J (g ‘x)"
apply (simp add: omult_eqns_def)
apply (blast intro: Limit_is_Ord)
done

lemma the_omult_eqns_Limit:
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"Limit(x) = (THE z. omult_eqns(i,x,g,z)) = |J (g ‘x)"
by (simp add: omult_eqns_Limit)

lemma omult_eqns_Not: "— 0Ord(x) =—> — omult_eqns(i,x,g,z)"
by (simp add: omult_eqns_def)

lemma (in M_ord_arith) the_omult_eqns_closed:
"[M(@i); M(x); M(g); function(g)]
—> M(THE z. omult_eqns(i, x, g, z))"
apply (case_tac "Ord(x)")
prefer 2 apply (simp add: omult_eqns_Not) — trivial, non-Ord case
apply (erule Ord_cases)
apply (simp add: omult_eqns_0)
apply (simp add: omult_eqns_succ)
apply (simp add: omult_eqns_Limit)
done

lemma (in M_ord_arith) exists_omult:
"[0rd(G); M(@i); M(G)]
= Jf[M]. is_recfun(Memrel (succ(j)), j, \x g. THE z. omult_eqns(i,x,g,z),
£)"
apply (rule wf_exists_is_recfun [OF wf_Memrel trans_Memrel])
apply (simp_all add: Memrel_type omult_strong replacement’)
apply (blast intro: the_omult_eqns_closed)
done

lemma (in M_ord_arith) exists_omult_fun:
w[0rd(§); M(i); M(@G)] = I£[M]. is_omult_fun(M,i,succ(j),f)"

apply (rule exists_omult [THEN rexE])
apply (erule Ord_succ, assumption, simp)
apply (rename_tac f)
apply (frule is_recfun_type)
apply (rule_tac x=f in rexI)
apply (simp add: fun_is_function domain_of_fun 1lt_Memrel apply_recfun
1t_def

is_omult_fun_def Ord_trans [0OF _ succIl])
apply (force dest: Ord_in_0Ord’

simp add: omult_eqns_def the_omult_eqns_0 the_omult_eqns_succ
the_omult_eqns_Limit, assumption)

done

lemma (in M_ord_arith) is_omult_fun_apply_O:
"[0 < j; is_omult_fun(M,i,j,f)] = f0 = 0"
by (simp add: is_omult_fun_def omult_eqns_def 1t_def ball_conj_distrib)

lemma (in M_ord_arith) is_omult_fun_apply_succ:

"[succ(x) < j; is_omult_fun(M,i,j,f)] = f‘succ(x) = f‘x ++ i"
by (simp add: is_omult_fun_def omult_eqns_def 1t_def, blast)
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lemma (in M_ord_arith) is_omult_fun_apply Limit:

"[x < j; Limit(x); M(3); M(f); is_omult_fun(M,i,j,f)]

= f ‘“x = (Uyex. £yp)"
apply (simp add: is_omult_fun_def omult_eqns_def 1t_def, clarify)
apply (drule subset_trans [0OF OrdmemD], assumption+)
apply (simp add: ball_conj_distrib omult_Limit image_function)
done

lemma (in M_ord_arith) is_omult_fun_eq_omult:
"[is_omult_fun(M,i,J,f); M(J); M(£); 0rd(i); O0rd(j)]
= j<J — ‘5 = i*xx*j"
apply (erule_tac i=j in trans_induct3)
apply (safe del: impCE)
apply (simp add: is_omult_fun_apply_0)
apply (subgoal_tac "x<J")
apply (simp add: is_omult_fun_apply_ succ omult_succ)
apply (blast intro: 1t_trans)
apply (subgoal_tac "Vkex. k<J")
apply (simp add: is_omult_fun_apply_ Limit omult_Limit)
apply (blast intro: 1t_trans 1tI 1t_0Ord)
done

lemma (in M_ord_arith) omult_abs:
"[M@); M(@G); M(k); Ord(i); 0rd(j)] = is_omult(M,i,j,k) «— k =
i**j"
apply (simp add: is_omult_def is_omult_fun_eq_omult)
apply (frule exists_omult_fun [of j i], blast+)
done

16.4 Absoluteness of Well-Founded Relations

Relativized to M: Every well-founded relation is a subset of some inverse
image of an ordinal. Key step is the construction (in M) of a rank function.

locale M_wfrank = M_trancl +
assumes wfrank_separation:
"M(r) =
separation (M, Ax.
Vrplus[M]. tran_closure(M,r,rplus) —
- (3f[M]. M_is_recfun(M, Ax f y. is_range(M,f,y), rplus, x,

)"
and wfrank_strong replacement:
"M(r) =
strong_replacement (M, A\x z.
Vrplus[M]. tran_closure(M,r,rplus) —
GylM]. 3£[M]. pair(M,x,y,z) A
M_is_recfun(M, Ax f y. is_range(M,f,y), rplus,
x, f) A

is_range(M,f,y)))"
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and Ord_wfrank_separation:
"M(r) =
separation (M, Ax.
Vrplus[M]. tran_closure(M,r,rplus) —
- (Vf[M]. Vrangef[M].
is_range (M, f,rangef) —
M_is_recfun(M, M\x f y. is_range(M,f,y), rplus, x, f) —
ordinal (M,rangef)))"

Proving that the relativized instances of Separation or Replacement agree
with the "real" ones.

lemma (in M_wfrank) wfrank_separation’:
"M(r) =
separation
M, \x. - (If[M]. is_recfun(r™+, x, A\x f. range(f), £)))"
apply (insert wfrank_separation [of r])
apply (simp add: relation2_def is_recfun_abs [of "Ax. range"])
done

lemma (in M_wfrank) wfrank_strong replacement’:
"M(r) =
strong_replacement (M, Ax z. Jy[M]. I£[M].
pair(M,x,y,z) A is_recfun(r”+, x, A\x f. range(f), f)
N
y = range(f))"
apply (insert wfrank_strong replacement [of r])
apply (simp add: relation2_def is_recfun_abs [of "Ax. range"])
done

lemma (in M_wfrank) Ord_wfrank_separation’:
"M(r) =
separation (M, Ax.
- (Vf[M]. is_recfun(r™+, x, Ax. range, f) — Ord(range(f))))"

apply (insert Ord_wfrank_separation [of r])
apply (simp add: relation2 def is_recfun_abs [of "Ax. range"])
done

This function, defined using replacement, is a rank function for well-founded
relations within the class M.

definition
wellfoundedrank :: "[i=0,i,i] = i" where
"wellfoundedrank(M,r,A) =
{p. x€A, Iy[M]. I£[M].
p = (x,y) A is_recfun(r™+, x, A\x f. range(f), f)

y = range(f)}"

lemma (in M_wfrank) exists_wfrank:
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"[wellfounded (M,r); M(a); M(r)]
—> Jf[M]. is_recfun(r~+, a, Ax f. range(f), £f)"
apply (rule wellfounded_exists_is_recfun)
apply (blast intro: wellfounded_trancl)
apply (rule trans_trancl)
apply (erule wfrank_separation’)
apply (erule wfrank_strong replacement’)
apply (simp_all add: trancl_subset_times)
done

lemma (in M_wfrank) M_wellfoundedrank:
"[wellfounded (M,r); M(r); M(A)] — M(wellfoundedrank(M,r,A))"
apply (insert wfrank_strong replacement’ [of r])
apply (simp add: wellfoundedrank_def)
apply (rule strong_replacement_closed)
apply assumption+
apply (rule univalent_is_recfun)
apply (blast intro: wellfounded_trancl)
apply (rule trans_trancl)
apply (simp add: trancl_subset_times)
apply (blast dest: transM)
done

lemma (in M_wfrank) Ord_wfrank_range [rule_format]:
"[wellfounded(M,r); acA; M(r); M(A)]
= Vf[M]. is_recfun(r™+, a, Ax f. range(f), f) — Ord(range(f))"
apply (drule wellfounded_trancl, assumption)
apply (rule wellfounded_induct, assumption, erule (1) transM)
apply simp
apply (blast intro: Ord_wfrank_separation’, clarify)

The reasoning in both cases is that we get y such that (y, x) € r~+ We find that
f ¢y = restrict(f, r™+ -°° {y}).

apply (rule OrdI [OF _ Ord_is_Transset])
An ordinal is a transitive set...

apply (simp add: Transset_def)

apply clarify

apply (frule apply_recfun2, assumption)
apply (force simp add: restrict_iff)

...of ordinals. This second case requires the induction hyp.

apply clarify

apply (rename_tac i y)

apply (frule apply_recfun2, assumption)
apply (frule is_recfun_imp_in_r, assumption)
apply (frule is_recfun_restrict)

apply (simp add: trans_trancl trancl_subset_times)+
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apply (drule spec [THEN mp], assumption)

apply (subgoal_tac "M(restrict(f, r™+ -‘¢ {y}))")

apply (drule_tac x="restrict(f, r™+ -‘¢ {y})" in rspec)
apply assumption

apply (simp add: function_apply_equality [OF _ is_recfun_imp_function])

apply (blast dest: pair_ components_in_M)
done

lemma (in M_wfrank) Ord_range_wellfoundedrank:
"[wellfounded (M,r); r C A*A; M(r); M(A)]
— 0Ord (range(wellfoundedrank(M,r,A)))"

apply (frule wellfounded_trancl, assumption)

apply (frule trancl_subset_times)

apply (simp add: wellfoundedrank_def)

apply (rule OrdI [OF _ Ord_is_Transset])

prefer 2

by our previous result the range consists of ordinals.

apply (blast intro: Ord_wfrank_range)

We still must show that the range is a transitive set.

apply (simp add: Transset_def, clarify, simp)
apply (rename_tac x i f u)
apply (frule is_recfun_imp_in_r, assumption)
apply (subgoal_tac "M(u) A M(i) A M(x)")
prefer 2 apply (blast dest: transM, clarify)
apply (rule_tac a=u in rangeI)
apply (rule_tac x=u in Replacel)
apply simp
apply (rule_tac x="restrict(f, r~+ -‘¢ {u})" in rexI)

apply (blast intro: is_recfun_restrict trans_trancl dest:

apply simp
apply blast

Unicity requirement of Replacement

apply clarify

apply (frule apply_recfun2, assumption)
apply (simp add: trans_trancl is_recfun_cut)
done

lemma (in M_wfrank) function_wellfoundedrank:
"[wellfounded(M,r); M(r); M(A)]
— function(wellfoundedrank(M,r,A))"

apply (simp add: wellfoundedrank_def function_def, clarify)

Uniqueness: repeated below!

apply (drule is_recfun_functional, assumption)
apply (blast intro: wellfounded_trancl)
apply (simp_all add: trancl_subset_times trans_trancl)
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done

lemma (in M_wfrank) domain_wellfoundedrank:

"[wellfounded (M,r); M(r); M(A)]

— domain(wellfoundedrank(M,r,A)) = A"
apply (simp add: wellfoundedrank_def function_def)
apply (rule equalityI, auto)
apply (frule transM, assumption)
apply (frule_tac a=x in exists_wfrank, assumption+, clarify)
apply (rule_tac b="range(f)" in domainI)
apply (rule_tac x=x in Replacel)

apply simp
apply (rule_tac x=f in rexI, blast, simp_all)

Uniqueness (for Replacement): repeated above!

apply clarify
apply (drule is_recfun_functional, assumption)

apply (blast intro: wellfounded_trancl)

apply (simp_all add: trancl_subset_times trans_trancl)
done

lemma (in M_wfrank) wellfoundedrank_type:
"[wellfounded (M,r); M(r); M(A)]
— wellfoundedrank(M,r,A) € A -> range(wellfoundedrank(M,r,A))"
apply (frule function_wellfoundedrank [of r A], assumption+)
apply (frule function_imp_Pi)
apply (simp add: wellfoundedrank_def relation_def)
apply blast
apply (simp add: domain_wellfoundedrank)
done

lemma (in M_wfrank) Ord_wellfoundedrank:
"[wellfounded(M,r); a € A; r C A*A; M(r); M(A)]
— Ord(wellfoundedrank(M,r,A) ¢ a)"
by (blast intro: apply_funtype [OF wellfoundedrank_typel]
Ord_in_Ord [OF Ord_range_wellfoundedrank])

lemma (in M_wfrank) wellfoundedrank_eq:
”[[is_recfun(r‘+, a, Ax. range, f);
wellfounded(M,r); a € A; M(£); M(r); M(A)]
— wellfoundedrank(M,r,A) ¢ a = range(f)"
apply (rule apply_equality)
prefer 2 apply (blast intro: wellfoundedrank_type)
apply (simp add: wellfoundedrank_def)
apply (rule ReplaceI)
apply (rule_tac x="range(f)" in rexI)
apply blast
apply simp_all

Unicity requirement of Replacement
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apply clarify
apply (drule is_recfun_functional, assumption)

apply (blast intro: wellfounded_trancl)

apply (simp_all add: trancl_subset_times trans_trancl)
done

lemma (in M_wfrank) wellfoundedrank_lt:
"[{a,b) € r;
wellfounded(M,r); r C AxA; M(r); M(A)]
— wellfoundedrank(M,r,A) ¢ a < wellfoundedrank(M,r,A) ¢ b"
apply (frule wellfounded_trancl, assumption)
apply (subgoal_tac "ac€A A b€EA")
prefer 2 apply blast
apply (simp add: 1t_def Ord_wellfoundedrank, clarify)
apply (frule exists_wfrank [of concl: _ b], erule (1) transM, assumption)
apply clarify
apply (rename_tac fb)
apply (frule is_recfun_restrict [of concl: "r~+" a])
apply (rule trans_trancl, assumption)
apply (simp_all add: r_into_trancl trancl_subset_times)

Still the same goal, but with new is_recfun assumptions.

apply (simp add: wellfoundedrank_eq)
apply (frule_tac a=a in wellfoundedrank_eq, assumption+)
apply (simp_all add: transM [of a])

We have used equations for wellfoundedrank and now must use some for is_recfun.

apply (rule_tac a=a in rangel)

apply (simp add: is_recfun_type [THEN apply_iff] vimage_singleton_iff
r_into_trancl apply_recfun)

done

lemma (in M_wfrank) wellfounded_imp_subset_rvimage:
"[wellfounded(M,r); r C A*A; M(r); M(A)]
= Ji f. Ord(i) AN r C rvimage(A, f, Memrel(i))"
apply (rule_tac x="range(wellfoundedrank(M,r,A))" in exI)
apply (rule_tac x="wellfoundedrank(M,r,A)" in exI)
apply (simp add: Ord_range_wellfoundedrank, clarify)
apply (frule subsetD, assumption, clarify)
apply (simp add: rvimage_iff wellfoundedrank_lt [THEN 1tD])
apply (blast intro: apply_rangel wellfoundedrank_type)
done

lemma (in M_wfrank) wellfounded_imp_wf:
"[wellfounded(M,r); relation(r); M(r)] = wf(x)"
by (blast dest!: relation_field_times_field wellfounded_imp_subset_rvimage
intro: wf_rvimage_Ord [THEN wf_subset])
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lemma (in M_wfrank) wellfounded_on_imp_wf_on:
"[wellfounded_on(M,A,r); relation(r); M(r); M(A)] = wf[Al(x)"

apply (simp add: wellfounded_on_iff_wellfounded wf_on_def)

apply (rule wellfounded_imp_wf)

apply (simp_all add: relation_def)

done

theorem (in M_wfrank) wf_abs:
"[relation(r); M(r)] = wellfounded(M,r) <— wf(r)"
by (blast intro: wellfounded_imp_wf wf_imp_relativized)

theorem (in M_wfrank) wf_on_abs:
"[relation(r); M(r); M(A)] = wellfounded_on(M,A,r) +— wf[A]l(r)"
by (blast intro: wellfounded_on_imp_wf_on wf_on_imp_relativized)

end

17 Separation for Facts About Order Types, Rank
Functions and Well-Founded Relations

theory Rank_Separation imports Rank Rec_Separation begin

This theory proves all instances needed for locales M_ordertype and M_wfrank.
But the material is not needed for proving the relative consistency of AC.

17.1 The Locale M_ordertype

17.1.1 Separation for Order-Isomorphisms

lemma well ord_iso_Reflects:
"REFLECTS[Ax. x€A —>

(3ylL]. Ipl[L]. fun_apply(L,f,x,y) A pair(L,y,x,p) A p

€ 1),

A x. x€A — (Qy € Lset(i). dp € Lset(i).

fun_apply (##Lset (i) ,f,x,y) A pair(##Lset(i),y,x,p) N p

= r)]”

by (intro FOL_reflections function_reflections)

lemma well_ord_iso_separation:
"[L(A); L(f); L(r)]
—> separation (L, Ax. x€A — (@yl[L]. 3plL].
fun_apply(L,f,x,y) A pair(L,y,x,p) AN p € r)))"
apply (rule gen_separation_multi [OF well_ord_iso_Reflects, of "{A,f,r}"],

auto)
apply (rule_tac env="[A,f,r]" in DPow_LsetI)
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apply (rule sep_rules | simp)+
done

17.1.2 Separation for obase

lemma obase_reflects:
"REFLECTS[Aa. Jx[L]. 3g[L]. Imx[L]. Ipar[L].
ordinal(L,x) N membership(L,x,mx) A pred_set(L,A,a,r,par)

A\
order_isomorphism(L,par,r,x,mx,g),
A a. dx € Lset(i). dg € Lset(i). dmx € Lset(i). dpar € Lset(i).
ordinal (##Lset (i) ,x) A membership (##Lset (i),x,mx) A pred_set (##Lset(i),A,a,r,}
A

order_isomorphism(##Lset (i),par,r,x,mx,g)]"
by (intro FOL_reflections function_reflections fun_plus_reflections)

lemma obase_separation:
— part of the order type formalization
"[L(A); L(xr)]
—> separation(L, Aa. Ix[L]. 3g[L]. Imx([L]. Fpar([L].
ordinal(L,x) N membership(L,x,mx) N pred_set(L,A,a,r,par)
N
order_isomorphism(L,par,r,x,mx,g))"
apply (rule gen_separation_multi [OF obase_reflects, of "{A,r}"], auto)
apply (rule_tac env="[A,r]" in DPow_LsetI)
apply (rule ordinal_iff_sats sep_rules | simp)+
done

17.1.3 Separation for a Theorem about obase

lemma obase_equals_reflects:
"REFLECTS[M\x. x€A — —~(Qy[L]. 3gl[L].
ordinal(L,y) A (3myl[L]. Ipxr[L].
membership(L,y,my) N pred_set(L,A,x,r,pxr) A
order_isomorphism(L,pxr,r,y,my,g))),
M x. x€A — = (Jy € Lset(i). dg € Lset(i).
ordinal (##Lset(i),y) AN (3my € Lset(i). Ipxr € Lset(i).
membership (##Lset (i),y,my) A pred_set (##Lset(i),A,x,r,pxr)
A
order_isomorphism(##Lset (i),pxr,r,y,my,g)))]"
by (intro FOL_reflections function_reflections fun_plus_reflections)

lemma obase_equals_separation:
"[L(4); L(x)]
= separation (L, Ax. x€A — -~ (Qyl[L]. JglL].
ordinal(L,y) A (dmy[L]. 3pxr[L].
membership(L,y,my) A pred_set(L,A,x,r,pxr)

order_isomorphism(L,pxr,r,y,my,g))))"
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apply (rule gen_separation_multi [OF obase_equals_reflects, of "{A,r}"],
auto)

apply (rule_tac env="[A,r]" in DPow_LsetI)

apply (rule sep_rules | simp)+

done

17.1.4 Replacement for omap

lemma omap_reflects:

"REFLECTS[Az. Ja[L]. acB A (3x[L]. Jgl[L]. Imx[L]. Fpar[L].
ordinal(L,x) A pair(L,a,x,z) A membership(L,x,mx) A
pred_set(L,A,a,r,par) A order_isomorphism(L,par,r,x,mx,g)),

Ai z. Ja € Lset(i). a€B A (dx € Lset(i). 3g € Lset(i). dmx € Lset(i).

dpar € Lset(i).
ordinal (##Lset (i) ,x) N pair(##Lset(i),a,x,z) N
membership (##Lset (i) ,x,mx) A pred_set (##Lset(i),A,a,r,par) A
order_isomorphism(##Lset (i),par,r,x,mx,g))]"
by (intro FOL_reflections function_reflections fun_plus_reflections)

lemma omap_replacement:
"[L(a); L(r)]
—> strong_replacement (L,
Aa z. dx[L]. dglL]. Imx[L]. Jpar[L].
ordinal(L,x) A pair(L,a,x,z) A membership(L,x,mx) A
pred_set(L,A,a,r,par) A order_isomorphism(L,par,r,x,mx,g))"
apply (rule strong_replacementI)
apply (rule_tac u="{A,r,B}" in gen_separation_multi [OF omap_reflects],
auto)
apply (rule_tac env="[A,B,r]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done

17.2 Instantiating the locale M_ordertype

Separation (and Strong Replacement) for basic set-theoretic constructions
such as intersection, Cartesian Product and image.

lemma M_ordertype_axioms_L: "M_ordertype_axioms (L)"
apply (rule M_ordertype_axioms.intro)
apply (assumption | rule well_ord_iso_separation
obase_separation obase_equals_separation
omap_replacement)+
done

theorem M_ordertype_L: "M_ordertype(L)"
apply (rule M_ordertype.intro)
apply (rule M _basic_L)
apply (rule M_ordertype_axioms_L)
done
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17.3 The Locale M_wfrank

17.3.1 Separation for wfrank

lemma wfrank Reflects:
"REFLECTS[Ax. Vrplus[L]. tran_closure(L,r,rplus) —
- (Af[L]. M_is_recfun(L, A\x f y. is_range(L,f,y), rplus,

x, £)),

Ai x. Vrplus € Lset(i). tran_closure(##Lset(i),r,rplus) —

- (df € Lset(i).
M_is_recfun(##Lset(i), Ax f y. is_range(##Lset(i),f,y),
rplus, x, £))]"

by (intro FOL_reflections function_reflections is_recfun_reflection tran_closure_reflection

lemma wfrank_separation:

"L(r) =

separation (L, Ax. Vrplus[L]. tran_closure(L,r,rplus) —

- (Af[L]. M_is_recfun(L, A\x f y. is_range(L,f,y), rplus, x,

£)))"
apply (rule gen_separation [OF wfrank_Reflects], simp)
apply (rule_tac env="[r]" in DPow_LsetI)
apply (rule sep_rules tran_closure_iff_sats is_recfun_iff_sats | simp)+
done

17.3.2 Replacement for wfrank

lemma wfrank_replacement_Reflects:
"REFLECTS[M\z. dx[L]. x € A A
(Vrplus[L]. tran_closure(L,r,rplus) —
(3ylL]. 3£[L]. pair(L,x,y,z) A
M_is_recfun(L, Ax f y. is_range(L,f,y), rplus,
x, ) A
is_range(L,f,y))),
Ai z. dx € Lset(i). x € A A
(Vrplus € Lset(i). tran_closure (##Lset(i),r,rplus) —
(3y € Lset(i). If € Lset(i). pair(##Lset(i),x,y,z) A
M_is_recfun(##Lset(i), Ax f y. is_range(##Lset(i),f,y), rplus,
x, f) A
is_range (##Lset (i),f,y)))]1"
by (intro FOL_reflections function_reflections fun_plus_reflections
is_recfun_reflection tran_closure_reflection)

lemma wfrank_strong replacement:
"L(r) =
strong_replacement (L, Ax z.
Vrplus[L]. tran_closure(L,r,rplus) —
AylL]. 3f[L]. pair(L,x,y,z) A
M_is_recfun(L, Ax f y. is_range(L,f,y), rplus,
x, f) A
is_range(L,f,y)))"
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apply (rule strong_replacementI)
apply (rule_tac u="{r,B}"
in gen_separation_multi [OF wfrank_replacement_Reflects],
auto)
apply (rule_tac env="[r,B]" in DPow_LsetI)
apply (rule sep_rules tran_closure_iff_sats is_recfun_iff_sats | simp)+
done

17.3.3 Separation for Proving 0rd_wfrank_range

lemma Ord_wfrank Reflects:
"REFLECTS[Ax. Vrplus[L]. tran_closure(L,r,rplus) —
- (Vf[L]. Vrangef[L].
is_range(L,f,rangef) —>
M_is_recfun(L, Ax f y. is_range(L,f,y), rplus, x, f) —
ordinal (L,rangef)),
Ai x. Vrplus € Lset(i). tran_closure(##Lset(i),r,rplus) —
- (Vf € Lset(i). Vrangef € Lset(i).
is_range (##Lset (i) ,f,rangef) —
M_is_recfun(##Lset (i), Ax f y. is_range(##Lset(i),f,y),
rplus, x, f) —
ordinal (##Lset (i) ,rangef))]"
by (intro FOL_reflections function_reflections is_recfun_reflection
tran_closure_reflection ordinal_reflection)

lemma Ord_wfrank_separation:
"L(r) =
separation (L, Ax.
Vrplus[L]. tran_closure(L,r,rplus) —
- (Vf[L]. Vrangef[L].
is_range(L,f,rangef) —>
M_is_recfun(L, Ax f y. is_range(L,f,y), rplus, x, f) —
ordinal (L,rangef)))"
apply (rule gen_separation [OF Ord_wfrank_Reflects], simp)
apply (rule_tac env="[r]" in DPow_LsetI)
apply (rule sep_rules tran_closure_iff_sats is_recfun_iff_sats | simp)+
done

17.3.4 Instantiating the locale M_wfrank

lemma M wfrank_axioms_L: "M_wfrank_axioms(L)"
apply (rule M_wfrank_axioms.intro)
apply (assumption | rule
wfrank_separation wfrank_strong_replacement Ord_wfrank_separation)+
done

theorem M _wfrank_ L: "M _wfrank(L)"
apply (rule M_wfrank.intro)
apply (rule M_trancl_L)
apply (rule M_wfrank_axioms_L)
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done

lemmas exists_wfrank = M_wfrank.exists_wfrank [OF M_wfrank_L]
and M_wellfoundedrank = M_wfrank.M wellfoundedrank [OF M_wfrank_L]
and Ord_wfrank_range = M_wfrank.Ord_wfrank_range [OF M_wfrank_L]
and Ord_range_wellfoundedrank = M_wfrank.Ord_range_wellfoundedrank [OF
M_wfrank_L]
and function_wellfoundedrank = M_wfrank.function_wellfoundedrank [OF
M _wfrank_L]
and domain_wellfoundedrank = M_wfrank.domain_wellfoundedrank [OF M_wfrank_ L]
and wellfoundedrank_type = M_wfrank.wellfoundedrank_type [OF M_wfrank_L]
and Ord_wellfoundedrank = M_wfrank.Ord_wellfoundedrank [OF M_wfrank L]
and wellfoundedrank_eq = M_wfrank.wellfoundedrank_eq [OF M_wfrank_L]
and wellfoundedrank_lt = M_wfrank.wellfoundedrank_ 1t [OF M_wfrank_ L]
and wellfounded_imp_subset_rvimage = M_wfrank.wellfounded_imp_subset_rvimage
[OF M_wfrank_L]
and wellfounded_imp_wf = M_wfrank.wellfounded_imp_wf [OF M_wfrank_L]
and wellfounded_on_imp_wf_on = M_wfrank.wellfounded_on_imp_wf_on [OF
M _wfrank_L]
and wf_abs = M_wfrank.wf_abs [OF M_wfrank_L]
and wf_on_abs = M_wfrank.wf_on_abs [OF M_wfrank L]

end
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