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Abstract
This development [1] proves the equivalence of seven formulations
of the well-ordering theorem and twenty formulations of the axiom of
choice. It formalizes the first two chapters of the monograph Fquiv-
alents of the Axiom of Choice by Rubin and Rubin [2]. Some of this
mmaterial involves extremely complex techniques.
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theory AC_Equiv
imports ZF
begin

definition
"W01 = VA. JR. well_ord(A,R)"

definition
"W02 = VA. Ja. Ord(a) N A=a"

definition
"W03 = VA. Ja. Ord(a) N (b. b C a A Axb)"

definition
"W04(m) = VA. Ja f. Ord(a) A domain(f)=a A

(Ub<a. £b) = A A (Vb<a. £D S m)"

definition
"W05 = dm € nat. 1<m A WO04(m)"

definition
"W06 = VA. dm € nat. 1<m A (Jda f. Ord(a) AN domain(f)=a
A (Ub<a. £b) = A AN (Vb<a. £b < m))"

definition
"W07 = VA. Finite(A) +— (VR. well_ord(A,R) — well_ord(A,converse(R)))"

definition
"wog = VA. (Af. £ € (J[X € A. X)) — (IR. well_ord(A,R))"

definition

= 0" where
= VA1 € A. VA2 € A. A1 N A2 75 0 — A1=A2"

pairwise_disjoint :: "i
"pairwise_disjoint (A)

definition
sets_of_size_between :: "[i, i, i] = o" where
"sets_of_size_between(A,m,n) = VB € A. m < B A B < n"

definition
"ACO = VA. 3f. £ € ([[X € Pow(A)-{0}. X)"



definition
"AC1 = VA. 0¢A — (Ff. £ € ([[X € 4. X))

definition
"AC2 = VA. O¢A A pairwise_disjoint(4)
— (3C. VB € A. Jy. BN C = {yH"
definition
"AC3 = VA B. Vf € A->B. Jg. g € ([[x € {a € A. f‘a#0}. £'x)"

definition
"AC4 = VR A B. (R C 4*xB — (3Af. £ € ([[x € domain(R). R“‘{x})))"

definition
"AC6 = VA B. Vf € A->B. dg € range(f)->A. Vx € domain(g). f‘(g‘x)
= x"

definition
"AC6 = VA. 0¢A — ([[B € A. B)#0"

definition
"AC7 = VA. O¢A N (VB1 € A. VB2 € A. Bi=B2) — ([[B € A. B) #
OH
definition
"AC8 = VA. (WB € A. 34B1 B2. B=<Bl,B2> N B1xB2)
— (df. VB € A. f‘B ¢ bij(fst(B),snd(B)))”
definition
"AC9 = VA. (VB1 € A. VB2 € A. B1=B2) —»
(3df. VB1 € A. VB2 € A. f’<B1,B2> € bij(B1,B2))"
definition
"AC10(n) = VA. (VB € A. —Finite(B)) —
(3f. VB € A. (pairwise_disjoint(f‘B) A
sets_of_size_between(f ‘B, 2, succ(n)) A |J (£‘B)=B))"
definition
"AC11 = dn € nat. 1<m A AC10(mn)"
definition
"AC12 = VA. (VB € A. —Finite(B)) —
(3n € nat. 1<n A (3f. VB € A. (pairwise_disjoint(f‘B)
A
sets_of_size_between(f‘B, 2, succ(n)) A |J (£‘B)=B)))"
definition
"AC13(m) = VA. O¢A — (df. VB € A. f'B#0 AN f‘B C B A f‘B 5
m) "



definition
"AC14 = dm € nat. 1<m A AC13(m)"

definition
"AC15 = VA. O%A —
(3m € nat. 1<m A (3f. VB € A. f‘B#0 N f‘B C B A
f‘B < m)"

definition
"AC16(n, k) =
VA. —Finite(4) —
AT. T C {X € Pow(A). X~succ(n)} A
WX € {X € Pow(4). X=~succ(k)}. d!' Y. Y € T ANX C Y))"

definition
"AC17 = VA. Vg € (Pow(A)-{0} -> A) -> Pow(A)-{0}.
3f € Pow(A)-{0} -> A. £°(g‘f) € g‘f"

locale AC18 =
assumes AC18: "A#0 N (WVa € A. B(a) # 0) —
((Na € A. Ub € B(a). X(a,b)) =
(Uf € []a € A. B(a). (\a € A. X(a, £a)))"
— AC18 cannot be expressed within the object-logic

definition
"AC19 = VA. A#0 N 0¢A — ((Na € A. Ub € a. b) =
(Uf € (JIB € A. B). Na € A. f<a))"

lemma rvimage_id: "rvimage(A,id(A),r) = r N A*A"
unfolding rvimage_def
apply (rule equalityI, safe)
apply (drule_tac P = ")la. <id (4) ‘xb,a>:r" in id_conv [THEN subst],
assumption)
apply (drule_tac P = "Aa. (a,ya):r" in id_conv [THEN subst], (assumption+))
apply (fast intro: id_conv [THEN ssubst])
done

lemma ordertype_Int:

"well_ord(A,r) = ordertype(A, r N A*A) = ordertype(4A,r)"
apply (rule_tac P = ")Aa. ordertype (A,a) =ordertype (A,r) " in rvimage_id
[THEN subst])



apply (erule id_bij [THEN bij_ordertype_vimage])
done

lemma lam_sing bij: "(Ax € A. {x}) € bij(4, {{x}. x € AP)"
apply (rule_tac d = "Az. THE x. z={x}" in lam_bijective)
apply (auto simp add: the_equality)

done

lemma inj_strengthen_type:
"[f € inj(A, B); Na. a € A = f‘a € C] = £ € inj(4,0)"
by (unfold inj_def, blast intro: Pi_type)

lemma ex1_two_eq: "[3! x. P(x); P(x); P(y)] = x=y"
by blast

lemma first_in_B:
"[well_ord(J (A),r); O ¢ A; B € A] = (THE b. first(b,B,r)) € B"
by (blast dest!: well_ord_imp_exl_first
[THEN theI, THEN first_def [THEN def_imp_iff, THEN
iffD1]])

lemma ex_choice_fun: "[well_ord(|J (4), R); 0 ¢ A] = 3f. £ € ([[X
e A X"
by (fast elim!: first_in_B intro!: lam_type)

lemma ex_choice_fun_Pow: "well_ord(A, R) — 3f. f € (J[[X € Pow(4)-{0}.
X') n
by (fast elim!: well_ord_subset [THEN ex_choice_fun])

lemma lepoll_m_imp_domain_lepoll_m:
"[m € nat; u < m] = domain(u) < m"
unfolding lepoll_def
apply (erule exE)



apply (rule_tac x = "Ax € domain(u). p i. Jy. (x,y) € u A fx,y) =
ill

in exI)
apply (rule_tac d = "Ay. fst (converse(f) ¢ y) " in lam_injective)
apply (fast intro: LeastI2 nat_into_Ord [THEN Ord_in_Ord]

inj_is_fun [THEN apply_typel)

¢

apply (erule domainE)

apply (frule inj_is_fun [THEN apply_type], assumption)
apply (rule LeastI2)

apply (auto elim!: nat_into_Ord [THEN Ord_in_0Ord])
done

lemma rel_domain_exl1:
"[succ(m) < domain(r); r < succ(m); m € nat] = function(r)"

apply (unfold function_def, safe)

apply (rule ccontr)

apply (fast elim!: lepoll_trans [THEN succ_lepoll_natE]
lepoll_m_imp_domain_lepoll_m [OF _ Diff_sing lepoll]

elim: domain_Diff_eq [OF _ not_sym, THEN subst])
done

lemma rel_is_fun:
"[succ(m) < domain(r); r S succ(m); m € nat;

r C A*B; A=domain(r)] = r € A->B"
by (simp add: Pi_iff rel_domain_ex1)

end

theory Cardinal_aux imports AC_Equiv begin

lemma Diff_lepoll: "[A < succ(m); B C A; B#0] — A-B < m"
apply (rule not_emptyE, assumption)
apply (blast intro: lepoll_trans [OF subset_imp_lepoll Diff_sing lepoll])

done

lemma lepoll_imp_ex_le_eqpoll:
"A S i; Ord(D)] = 3Jj. j < i ANA =G
by (blast intro!: lepoll_cardinal_le well_ord_Memrel
well_ord_cardinal_eqpoll [THEN eqpoll_sym]
dest: lepoll_well_ord)



lemma lesspoll_imp_ex_1lt_eqpoll:
"[A < i; Ord(i)] = 3j. j<i AN A = j"
by (unfold lesspoll_def, blast dest!: lepoll_imp_ex_le_eqpoll elim!: leE)

lemma Un_eqpoll_Inf Ord:

assumes A: "A ~ i" and B: "B =~ i" and NFI: "- Finite(i)" and i:
"Ord(i)"

shows "A U B ~ i"
proof (rule eqpollI)

have AB: "A =~ B" using A B by (blast intro: eqpoll_sym eqpoll_trans)

have "2 < nat"

by (rule subset_imp_lepoll) (rule OrdmemD [OF nat_2I Ord_nat])
also have "... < i"

by (simp add: nat_le_infinite_Ord le_imp_lepoll NFI i)+
also have "... =~ A" by (blast intro: eqpoll_sym A)
finally have "2 < A" .
have ICI: "InfCard([il)"

by (simp add: Inf_Card_is_InfCard Finite_cardinal_iff NFI i)
have "A U B < A + B" by (rule Un_lepoll_sum)

also have "... < A x B"
by (rule lepoll_imp_sum_lepoll_prod [OF AB [THEN eqpoll_imp_lepoll]
<2 < A1)
also have "... ~ i x i"

by (blast intro: prod_eqpoll_cong eqpoll_imp_lepoll A B)
also have "... =~ i"
by (blast intro: well_ord_InfCard_square_eq well_ord_Memrel ICI i)

finally show "4 U B < i" .

~

next
have "i ~ A" by (blast intro: A eqpoll_sym)
also have "... < A U B" by (blast intro: subset_imp_lepoll)
finally show "i < 4 U B" .

qed

schematic__goal paired_bij: "?f € bij({{y,z}. y € x}, x)"
apply (rule RepFun_bijective)

apply (simp add: doubleton_eq_ iff, blast)

done

lemma paired_eqpoll: "{{y,z}. y € x} =~ x"
by (unfold eqpoll_def, fast intro!: paired_bij)

lemma ex_eqpoll_disjoint: "dB. B~ A AN B N C = 0"
by (fast intro!: paired_eqpoll equalsOI elim: mem_asym)



lemma Un_lepoll_Inf Ord:
"[A < i; B < i; —Finite(i); Ord(i)] = A U B < i"
apply (rule_tac A1 = i and C1 = i in ex_eqpoll_disjoint [THEN exE])
apply (erule conjE)
apply (drule lepoll_trans)
apply (erule eqpoll_sym [THEN eqpoll_imp_lepoll])
apply (rule Un_lepoll_Un [THEN lepoll_trans], (assumption+))
apply (blast intro: eqpoll_refl Un_eqpoll_Inf_ Ord eqpoll_imp_lepoll)
done

lemma Least_in_Ord: "[P(i); i € j; 0rd(j)] = (u i. P(i)) € j"
apply (erule Least_le [THEN leE])

apply (erule Ord_in_Ord, assumption)

apply (erule 1tE)

apply (fast dest: OrdmemD)

apply (erule subst_elem, assumption)

done

lemma Diff_first_lepoll:
"[well_ord(x,r); y C x; y < succ(n); n € nat]
= y - {THE b. first(b,y,r)} < n"
apply (case_tac "y=0", simp add: empty_lepollI)
apply (fast intro!: Diff_sing lepoll the_first_in)
done

lemma UN_subset_split:
"Ux € X. P(x)) € Ux € X. P()-Q(x)) U (Ux € X. Qx))"
by blast

lemma UN_sing_lepoll: "Ord(a) — (Jx € a. {P(x)}) < a"
unfolding Iepoll_def
apply (rule_tac x = "A\z € (Ux € a. {P (x) }) . (u i. P (i) =z) " in
exI)
apply (rule_tac d = "Az. P (z) " in lam_injective)
apply (fast intro!: Least_in_0Ord)
apply (fast intro: LeastI elim!: Ord_in_0Ord)
done

lemma UN_fun_lepoll_lemma [rule_format]:
"[well_ord(T, R); —Finite(a); Ord(a); n € nat]
— Vf. Wbea £fb<nAfDbDCT — (Jbeca £b <a"

apply (induct_tac "n")

apply (rule alll)

apply (rule impI)

apply (rule_tac b = "|Jb € a. £‘b" in subst)

apply (rule_tac [2] empty_lepollI)

apply (rule equalsOI [symmetric], clarify)

apply (fast dest: lepoll_0O_is_0O [THEN subst])

apply (rule alll)



apply (rule impI)

apply (erule_tac x = "Ax € a. f‘x - {THE b. first (b,f‘x,R) }" in allE)
apply (erule impE, simp)

apply (fast intro!: Diff_first_lepoll, simp)

apply (rule UN_subset_split [THEN subset_imp_lepoll, THEN lepoll_trans])
apply (fast intro: Un_lepoll_Inf_Ord UN_sing lepoll)

done

lemma UN_fun_lepoll:
"[Vvb € a. £b S n A £D C T; well_ord(T, R);
—Finite(a); Ord(a); n € nat] = (b € a. £‘b) < a"
by (blast intro: UN_fun_lepoll_lemma)

lemma UN_lepoll:
"[Vb € a. F(b) S n A F(b) C T; well_ord(T, R);
—Finite(a); Ord(a); n € nat]
= (Ub € a. F(b)) < a"
apply (rule rev_mp)
apply (rule_tac f="Ab € a. F (b)" in UN_fun_lepoll)
apply auto
done

lemma UN_eq_UN_Diffs:
"Ord(a) = (b € a. F(b)) = (Ub € a. F(b) - (Uc € b. F(c)))"
apply (rule equalityI)
prefer 2 apply fast
apply (rule subsetI)
apply (erule UN_E)
apply (rule UN_I)
apply (rule_tac P = "Az. x € F (z) " in Least_in_Ord, (assumption+))
apply (rule DiffI, best intro: Ord_in_Ord LeastI, clarify)
apply (erule_tac P = "Xz. x € F (z) " and i = ¢ in less_LeastE)
apply (blast intro: Ord_Least 1tI)
done

lemma lepoll_imp_eqpoll_subset:
"a S X = JY. YC X Aa=r~yY"
apply (unfold lepoll_def eqpoll_def, clarify)
apply (blast intro: restrict_bij
dest: inj_is_fun [THEN fun_is_rel, THEN image_subset])
done

lemma Diff_lesspoll_eqpoll_Card_lemma:
"[A~a; —Finite(a); Card(a); B < a; A-B < a] =— P"
apply (elim lesspoll_imp_ex_1t_eqpoll [THEN exE] Card_is_Ord conjE)



apply (frule_tac j=xa in Un_upperl_le [OF 1t_Ord 1t_Ord], assumption)
apply (frule_tac j=xa in Un_upper2_le [OF 1t_Ord 1t_Ord], assumption)
apply (drule Un_least_lt, assumption)
apply (drule egpoll_imp_lepoll [THEN lepoll_trans],

rule le_imp_lepoll, assumption)+
apply (case_tac "Finite(x U xa)")

finite case

apply (drule Finite_Un [OF lepoll_Finite lepoll_Finite], assumption+)
apply (drule subset_Un_Diff [THEN subset_imp_lepoll, THEN lepoll_Finite])
apply (fast dest: eqpoll_sym [THEN eqpoll_imp_lepoll, THEN lepoll_Finite])

infinite case

apply (drule Un_lepoll_Inf Ord, (assumption+))
apply (blast intro: le_0rd2)
apply (drule lesspoll_transl
[OF subset_Un_Diff [THEN subset_imp_lepoll, THEN lepoll_trans]
1t_Card_imp_lesspoll], assumption+)
apply (simp add: lesspoll_def)
done

lemma Diff_lesspoll_eqpoll_Card:
"[A =~ a; —Finite(a); Card(a); B < a] = A - B = a"
apply (rule ccontr)
apply (rule Diff lesspoll_eqpoll_Card_lemma, (assumption+))
apply (blast intro: lesspoll_def [THEN def_imp_iff, THEN iffD2]
subset_imp_lepoll eqpoll_imp_lepoll lepoll_trans)
done

end

theory W06_W01
imports Cardinal_aux
begin

definition
NN :: "i = i" where
"NN(y) = {m € nat. Ja. 3f. Ord(a) A domain(f)=a A
(Ub<a. £b) =y A (Vb<a. £b < m)}"

definition
uu  :: "[i, i, i, i] = i" where
"uu(f, beta, gamma, delta) = (f‘beta * f‘gamma) N f‘delta”

definition

10



—

vvl :: "[i, i, i] = i" where
"vvi(f,m,b) =
let g = p g. (3d. Ord(d) A (domain(uu(f,b,g,d)) # 0 A
domain (uu(f,b,g,d)) < m));
d = u d. domain(uu(f,b,g,d)) # 0 A
domain(uu(f,b,g,d)) < m
in if f‘b # O then domain(uu(f,b,g,d)) else 0"

definition
wwl :: "[i, i, i] i" where
"wwl(f,m,b) = £‘b - vvi(f,m,b)"
definition
ggl :: "[i, i, i] = where

i”
"ggl(f,a,m) = A\b € at++a. if b<a then vv1l(f,m,b) else wwl(f,m,b--a)"

definition
vv2 :: "[i, i, i, i] = i" where
"vv2(f,b,g,s) =
if f‘g # O then {uu(f, b, g, pu d. uu(f,b,g,d) # 0) ‘s} else

Oll
definition
ww2 :: "[i, i, i, i] = i" where
"ww2(f,b,g,s) = f‘g - vv2(f,b,g,s)"
definition
gg2 :: "[i, i, i, i] = i" where

"gg2(f,a,b,s) =
Ag € at++a. if g<a then vv2(f,b,g,s) else ww2(f,b,g--a,s)"

lemma W02 _W03: "W02 — WO3"
by (unfold W02_def WO3_def, fast)

lemma WO3_W01: "WO3 — WO1"
unfolding eqpoll_def W0O1_def WO3_def
apply (intro alll)
apply (drule_tac x=A in spec)
apply (blast intro: bij_is_inj well_ord_rvimage
well_ord_Memrel [THEN well_ord_subset])
done
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lemma W01_W02: "W01 — WO2"

unfolding eqpoll_def W01_def W02_def
apply (blast intro!: Ord_ordertype ordermap_bij)
done

lemma lam_sets: "f € A->B — (A\x € A. {f‘x}): A -> {{b}. b € B}"
by (fast intro!: lam_type apply_type)

lemma surj_imp_eq’: "f € surj(4,B) = (Ja € A. {f‘a}) = B"
unfolding surj_def

apply (fast elim!: apply_type)

done

lemma surj_imp_eq: "[f € surj(4,B); Ord(A)] = (Ja<A. {f‘a}) = B"
by (fast dest!: surj_imp_eq’ intro!: 1tI elim!: 1tE)

lemma WO1_W04: "WO1 — W0O4(1)"
unfolding W01_def W04_def

apply (rule alll)

apply (erule_tac x = A in allE)

apply (erule exE)

apply (intro exI conjI)

apply (erule Ord_ordertype)

apply (erule ordermap_bij [THEN bij_converse_bij, THEN bij_is_fun, THEN

lam_sets, THEN domain_of_fun])

apply (simp_all add: singleton_eqpoll_1 eqpoll_imp_lepoll Ord_ordertype
ordermap_bij [THEN bij_converse_bij, THEN bij_is_surj, THEN surj_imp_eq]
1tD)

done

lemma W04_mono: "[m<n; W04(m)] = W04(n)"

unfolding W04_def
apply (blast dest!: spec intro: lepoll_trans [OF _ le_imp_lepoll])
done

lemma WO4_W05: "[m € nat; 1<m; W04(m)] — W05"
by (unfold W04 _def WO5_def, blast)

lemma WO5_W06: "WO05 — WO06"
by (unfold W04_def WO5_def W0O6_def, blast)
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lemma 1t_oadd_odiff_disj:
"k < i++j; Ord(i); 0rd(j)]
= k<i | (—k<i ANk=1++ (k——i) N (k—-i)<j)"
apply (rule_tac i = k and j = i in Ord_linear2)
prefer 4
apply (drule odiff_lt_mono2, assumption)
apply (simp add: oadd_odiff_inverse odiff_oadd_inverse)
apply (auto elim!: 1t_Ord)
done

lemma domain_uu_subset: "domain(uu(f,b,g,d)) C f£‘b"
by (unfold uu_def, blast)

lemma quant_domain_uu_lepoll_m:
"Wb<a. £‘b < m = Vb<a. Vg<a. Vd<a. domain(uu(f,b,g,d)) < m"
by (blast intro: domain_uu_subset [THEN subset_imp_lepoll] lepoll_trans)

lemma uu_subsetl: "uu(f,b,g,d) C f‘b * f‘g"
by (unfold uu_def, blast)

lemma uu_subset2: "uu(f,b,g,d) C £‘d"
by (unfold uu_def, blast)

lemma uu_lepoll_m: "[Vb<a. £‘b < m; d<a] = uu(f,b,g,d) < m"
by (blast intro: uu_subset2 [THEN subset_imp_lepoll] lepoll_trans)

lemma cases:

"Vb<a. Vg<a. Vd<a. u(f,b,g,d) < m

= (Vb<a. fb # 0 —»

(dg<a. dd<a. u(f,b,g,d) # 0 A u(f,b,g,d) < m))
| (3b<a. £b # 0 N (Vg<a. Vd<a. u(f,b,g,d) # 0 —
u(f,b,g,d) ~ m))"
unfolding lesspoll_def

apply (blast del: equalityI)
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done

lemma UN_oadd: "Ord(a) = (|Jb<a++a. C(b)) = (|Jb<a. C(b) U C(a++b))"
by (blast intro: 1tI 1t_oaddl oadd_lt_mono2 dest!: 1t_oadd_disj)

lemma vvi1_subset: "vvi(f,m,b) C f‘b"
by (simp add: vvl_def Let_def domain_uu_subset)

lemma UN_ggl_eq:
"[0rd(a); m € nat] = (|Jb<a++a. ggi(f,a,m)‘b) = (Jb<a. f‘b)"
by (simp add: ggl_def UN_oadd 1lt_oaddl oadd_le_self [THEN le_imp_not_lt]

1t_Ord odiff_oadd_inverse 1tD vvl_subset [THEN Diff partition]
wwl_def)

lemma domain_ggl: "domain(ggl(f,a,m)) = a++a"
by (simp add: lam_funtype [THEN domain_of_fun] ggl_def)

lemma nested_LeastI:

"[P(a, b); Ord(a); O0rd(b);

Least_a = (p a. 3x. Ord(x) A P(a, x))]

—> P(Least_a, pu b. P(Least_a, b))"
apply (erule ssubst)
apply (rule_tac § = "Az. P (z, u b. P (z, b))" in LeastI2)
apply (fast elim!: LeastI)+
done

lemmas nested_Least_instance =
nested_LeastI [of "Ag d. domain(uu(f,b,g,d)) # 0 A
domain(uu(f,b,g,d)) < m"] for £ b m

lemma ggi_lepoll_m:
"[0rd(a); m € nat;
Vb<a. £b #£0 —»
(dg<a. dd<a. domain(uu(f,b,g,d)) # 0 A

14



domain(uu(f,b,g,d)) < m);
Vb<a. £‘b < succ(m); b<a++a]
= ggi(f,a,m) ‘b < m"
apply (simp add: ggl_def empty_lepolll)

apply (safe dest!: 1t_oadd_odiff_disj)

apply (simp add: vvl_def Let_def empty_lepollI)
apply (fast intro: nested_Least_instance [THEN conjunct2]
elim!: 1t_0Ord)

apply (simp add: wwl_def empty_lepollI)

apply (case_tac "f‘ (b--a) = 0", simp add: empty_lepollI)

apply (rule Diff lepoll, blast)

apply (rule vvl_subset)

apply (drule ospec [THEN mp], assumption+)

apply (elim oexE conjE)

apply (simp add: vvl_def Let_def 1t_Ord nested_Least_instance [THEN conjunctl])
done

lemma ex_d_uu_not_empty:
"[b<a; g<a; f‘b#0; f‘g#0;
y*y C y; (U b<a. f(b)=}’]]
— dd<a. uu(f,b,g,d) # 0"
by (unfold uu_def, blast)

lemma uu_not_empty:
"[b<a; g<a; f‘b#0; fg#0; y*y C y; (Ub<a. f£‘b)=y]
= uu(f,b,g,u d. (uu(f,b,g,d) # 0)) # 0"

apply (drule ex_d_uu_not_empty, assumption+)

apply (fast elim!: LeastI 1t_Ord)

done

lemma not_empty_rel_imp_domain: "[r C A*B; r#0] —> domain(r)#0"
by blast

lemma Least_uu_not_empty_lt_a:
"[b<a; g<a; £f‘b#£0; f‘g#0; y*xy C y; (Ub<a. £‘b)=y]
= (u d. uu(f,b,g,d) # 0) < a"
apply (erule ex_d_uu_not_empty [THEN oexE], assumption+)
apply (blast intro: Least_le [THEN 1lt_trans1] 1t_0Ord)
done
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lemma subset_Diff_sing: "[B C A; a¢B] — B C A-{a}"
by blast

lemma supset_lepoll_imp_eq:
"[A S m; m < B; BC A; m € nat] = A=B"

apply (erule natE)
apply (fast dest!: lepoll_O_is_O intro!: equalityI)
apply (safe intro!: equalityI)
apply (rule ccontr)
apply (rule succ_lepoll_natE)

apply (erule lepoll_trans)

apply (rule lepoll_trans)

apply (erule subset_Diff_sing [THEN subset_imp_lepoll], assumption)
apply (rule Diff_sing lepoll, assumption+)
done

lemma uu_Least_is_fun:
"[Vg<a. Vd<a. domain(uu(f, b, g, d))#0 —
domain(uu(f, b, g, d)) = succ(m);
Vb<a. £b < succ(m); y*y C y;
(Ub<a. £‘b)=y; b<a; g<a; d<a;
f‘b#0; f‘g#0; m € nat; s € f‘b]
= uu(f, b, g, pu d. uu(f,b,g,d)#0) € £‘b -> fg"
apply (drule_tac x2=g in ospec [THEN ospec, THEN mp])
apply (rule_tac [3] not_empty_rel_imp_domain [OF uu_subsetl uu_not_empty])
apply (rule_tac [2] Least_uu_not_empty_lt_a, assumption+)
apply (rule rel_is_fun)
apply (erule egpoll_sym [THEN eqpoll_imp_lepoll])
apply (erule uu_lepoll_m)
apply (rule Least_uu_not_empty_lt_a, assumption+)
apply (rule uu_subsetl)
apply (rule supset_lepoll_imp_eq [OF _ eqpoll_sym [THEN eqpoll_imp_lepolll])
apply (fast intro!: domain_uu_subset)+
done

lemma vv2_subset:
"[Vg<a. Vd<a. domain(uu(f, b, g, d))#0 —
domain(uu(f, b, g, d)) =~ succ(m);
Vb<a. £b < succ(m); y*y C y;
(Ub<a. £‘b)=y; b<a; g<a; m € nat; s € f‘b]
= vv2(f,b,g,s) C fg"
apply (simp add: vv2_def)
apply (blast intro: uu_Least_is_fun [THEN apply_typel)
done
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lemma UN_gg2_eq:
"[Vg<a. Vd<a. domain(uu(f,b,g,d)) # 0 —
domain(uu(f,b,g,d)) ~ succ(m);
Vb<a. £b < succ(m); y*y C y;
(Ub<a. £‘b)=y; 0Ord(a); m € nat; s € f‘b; b<a]
= (Ug<a++a. gg2(f,a,b,s) ‘ g) = y"
unfolding gg2 def
apply (drule sym)
apply (simp add: 1tD UN_oadd oadd_le_self [THEN le_imp_not_1t]
1t_Ord odiff_oadd_inverse ww2_def
vv2_subset [THEN Diff_partition])
done

lemma domain_gg2: "domain(gg2(f,a,b,s)) = at+a"
by (simp add: lam_funtype [THEN domain_of_fun] gg2_def)

lemma vv2_lepoll: "[m € nat; m#0] = vv2(f,b,g,s) < m"
unfolding vv2_def
apply (simp add: empty_lepollI)
apply (fast dest!: le_imp_subset [THEN subset_imp_lepoll, THEN lepoll_O_is_0]

intro!: singleton_eqpoll_1 [THEN eqpoll_imp_lepoll, THEN lepoll_trans]
not_lt_imp_le [THEN le_imp_subset, THEN subset_imp_lepoll]
nat_into_Ord nat_1I)
done

lemma ww2_lepoll:
"[Vb<a. £‘b < succ(m); g<a; m € nat; vv2(f,b,g,d) C fig]
= ww2(f,b,g,d) < m"

unfolding ww2_def

apply (case_tac "f‘g = 0")

apply (simp add: empty_lepollI)

apply (drule ospec, assumption)

apply (rule Diff lepoll, assumption+)

apply (simp add: vv2_def not_emptyI)

done

lemma gg2 lepoll_m:
"[Vg<a. Vd<a. domain(uu(f,b,g,d)) # 0 —
domain(uu(f,b,g,d)) ~ succ(m);
Vb<a. £b < succ(m); y*y C y;
(Ub<a. £‘b)=y; b<a; s € f‘b; m € nat; m# 0; g<a++a]
— gg2(f,a,b,s) ‘g < m"
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apply (simp add: gg2_def empty_lepollI)

apply (safe elim!: 1t_Ord2 dest!: 1lt_oadd_odiff_disj)
apply (simp add: vv2_lepoll)

apply (simp add: ww2_lepoll vv2_subset)

done

lemma lemma_ii: "[succ(m) € NN(y); y*y C y; m € nat; m#0] — m €
NN(y) "
unfolding NN_def
apply (elim CollectE exE conjE)
apply (rule quant_domain_uu_lepoll_m [THEN cases, THEN disjE], assumption)

apply (simp add: lesspoll_succ_iff)
apply (rule_tac x = "a++a" in exI)
apply (fast intro!: Ord_oadd domain_ggl UN_ggl _eq ggl_lepoll_m)

apply (elim oexE conjE)

apply (rule_tac A = "f‘B" for B in not_emptyE, assumption)
apply (rule CollectI)

apply (erule succ_natD)

apply (rule_tac x = "a++a" in exI)

apply (rule_tac x = "gg2 (f,a,b,x) " in exI)

apply (simp add: Ord_oadd domain_gg2 UN_gg2_eq gg2_lepoll_m)
done

lemma z_n_subset_z_succ_n:

"Yn € nat. rec(n, x, Xk r. r U r*r) C rec(succ(n), x, Xk r. r U
r*r)"
by (fast intro: rec_succ [THEN ssubst])

lemma le_subsets:
"[Vn € nat. f(n)<=f(succ(n)); n<m; n € nat; m € nat]
= f(n)<=f(m)"
apply (erule_tac P = "n<m" in rev_mp)
apply (rule_tac P = "Az. n<z — f (n) C f (z) " in nat_induct)
apply (auto simp add: le_iff)
done
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lemma le_imp_rec_subset:
"[a<m; m € nat]
— rec(n, x, Xk r. r U r*r) C rec(m, x, Xk r. r U r*r)"
apply (rule z_n_subset_z_succ_n [THEN le_subsets])
apply (blast intro: 1t_nat_in_nat)+
done

lemma lemma_iv: "dy. x U y*xy C y"
apply (rule_tac x = "|Un € nat. rec (n, x, Ak r. r U r*r) " in exI)
apply safe
apply (rule nat_OI [THEN UN_I], simp)
apply (rule_tac a = "succ (n U na) " in UN_I)
apply (erule Un_nat_type [THEN nat_succI], assumption)
apply (auto intro: le_imp_rec_subset [THEN subsetD]
intro!: Un_upperl_le Un_upper2_le Un_nat_type
elim!: nat_into_Ord)
done

lemma W06_imp_NN_not_empty: "W06 = NN(y) # 0"
by (unfold WO6_def NN_def, clarify, blast)

lemma lemmal:

"fUb<a. £b)=y; x € y; Vb<a. f‘b < 1; Ord(a)] = Jc<a. f'c =
{x}"
by (fast elim!: lepoll_1_is_sing)

lemma lemma2:

"TJb<a. £b)=y; x € y; Vb<a. £‘b < 1; Ord(a)]
= f° (u i. £9 = {x}) = {x}"
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apply (drule lemmal, assumption+)
apply (fast elim!: 1t_Ord intro: LeastI)
done

lemma NN_imp_ex_inj: "1 € NN(y) = Ja f. Ord(a) A f € inj(y, a)"
unfolding NN_def

apply (elim CollectE exE conjE)

apply (rule_tac x = a in exI)

apply (rule_tac x = "Ax € y. p i. £ = {x}" in exI)

apply (rule conjI, assumption)

apply (rule_tac d = "Xi. THE x. x € £‘i" in lam_injective)

apply (drule lemmal, assumption+)

apply (fast elim!: Least_le [THEN 1t_transl, THEN 1tD] 1t_Ord)

apply (rule lemma2 [THEN ssubst], assumption+, blast)

done

lemma y_well_ord: "[y*y C y; 1 € NN(y)] = 3r. well_ord(y, r)"
apply (drule NN_imp_ex_inj)

apply (fast elim!: well_ord_rvimage [OF _ well_ord_Memrel])

done

lemma rev_induct_lemma [rule_format]:
"[n € nat; Am. [m € nat; m#0; P(succ(m))] = P(m)]
= n#0 — P(n) — P(1)"

by (erule nat_induct, blast+)

lemma rev_induct:
"[n € nat; P(n); n#0;
Am. [m € nat; m#0; P(succ(m))] = P(m)]
= P(1)"
by (rule rev_induct_lemma, blast+)

lemma NN_into_nat: "n € NN(y) = n € nat"
by (simp add: NN_def)

lemma lemma3: "[n € NN(y); y*y C y; n#0] = 1 € NN(y)"
apply (rule rev_induct [OF NN_into_nat], assumption+)
apply (rule lemma_ii, assumption+)

done
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lemma NN_y_0: "0 € NN(y) = y=0"

unfolding NN_def
apply (fast intro!: equalityI dest!: lepoll_0_is_0 elim: subst)
done

lemma W06_imp WO1: "W06 — WO1"
unfolding W01_def
apply (rule alll)
apply (case_tac "A=0")
apply (fast intro!: well_ord_Memrel nat_0OI [THEN nat_into_0Ord])
apply (rule_tac x = A in lemma_iv [elim_ format])
apply (erule exE)
apply (drule WO6_imp_NN_not_empty)
apply (erule Un_subset_iff [THEN iffD1, THEN conjE])
apply (erule_tac A = "NN (y) " in not_emptyE)
apply (frule y_well_ord)
apply (fast intro!: lemma3 dest!: NN_y_O elim!: not_emptyE)
apply (fast elim: well_ord_subset)
done

end

theory W01_w07
imports AC_Equiv
begin

definition
"LEMMA =
VX. —Finite(X) — (dR. well_ord(X,R) N —well_ord(X,converse(R)))"

lemma WO7_iff LEMMA: "WO7 <— LEMMA"
unfolding W07_def LEMMA_def

apply (blast intro: Finite_well_ord_converse)

done

lemma LEMMA_imp_W0O1: "LEMMA — WO1"

unfolding W01_def LEMMA_def Finite_def eqpoll_def
apply (blast intro!: well_ord_rvimage [OF bij_is_inj nat_implies_well_ord])
done
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lemma converse_Memrel_not_wf_on:
"[0rd(a); —Finite(a)] = —wf[a] (converse (Memrel(a)))"
unfolding wf_on_def wf_def
apply (drule nat_le_infinite_Ord [THEN le_imp_subset], assumption)
apply (rule notI)
apply (erule_tac x = nat in allE, blast)
done

lemma converse_Memrel_not_well_ord:
"[0rd(a); —Finite(a)] = —well_ord(a,converse (Memrel(a)))"
unfolding well_ord_def
apply (blast dest: converse_Memrel_not_wf_on)
done

lemma well_ord_rvimage_ordertype:
"well ord(A,r) —
rvimage (ordertype(A,r), converse(ordermap(A,r)),r) =
Memrel (ordertype(A,r))"
by (blast intro: ordertype_ord_iso [THEN ord_iso_sym] ord_iso_rvimage_eq
Memrel_type [THEN subset_Int_iff [THEN iffD1]] trans)

lemma well_ord_converse_Memrel:
"[well_ord(A,r); well_ord(A,converse(r))]
—> well_ord(ordertype(A,r), converse(Memrel (ordertype(A,r))))"

apply (subst well_ord_rvimage_ordertype [symmetric], assumption)

apply (rule rvimage_converse [THEN subst])

apply (blast intro: ordertype_ord_iso ord_iso_sym ord_iso_is_bij
bij_is_inj well_ord_rvimage)

done

lemma W01_imp LEMMA: "WO01 —> LEMMA"
apply (unfold WO1_def LEMMA_def, clarify)
apply (blast dest: well_ord_converse_Memrel
Ord_ordertype [THEN converse_Memrel_not_well_ord]
intro: ordertype_ord_iso ord_iso_is_bij bij_is_inj lepoll_Finite
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lepoll_def [THEN def_imp_iff, THEN iffD2] )
done

lemma WO1_iff_w07: "WO1 <— WO7"

apply (simp add: WO7_iff_LEMMA)

apply (blast intro: LEMMA_imp_ W01 WO1_imp_LEMMA)
done

lemma WO1_w08: "WO01 — WO08"
by (unfold WO1_def W0O8_def, fast)

lemma W08 _W01: "WO8 — WO1"
unfolding W01_def WO8_def
apply (rule alll)
apply (erule_tac x = "{{x}. x € A}" in allE)
apply (erule impE)
apply (rule_tac x = "da € {{x}. x € A}. THE x. a={x}" in exI)
apply (force intro!: lam_type simp add: singleton_eq_iff the_equality)
apply (blast intro: lam_sing bij bij_is_inj well_ord_rvimage)
done

end

theory AC7_AC9
imports AC_Equiv
begin

lemma Sigma_fun_space_not0: "[0¢A; B € A] = (nat->|J (4)) * B # 0"
by (blast dest!: Sigma_empty_iff [THEN iffD1] Union_empty_iff [THEN iffD1])

lemma inj_lemma:
"€ A = (\g € (nat->J (4))*C.
(An € nat. if(n=0, snd(g), fst(g)‘(n #- 1))))
€ inj((nat->{J (A))*C, (nat->J (4)) ) "

23



unfolding inj_def
apply (rule CollectI)
apply (fast intro!: lam_type if_type apply_type fst_type snd_type, auto)

apply (rule fun_extension, assumption+)

apply (drule lam_eqE [OF _ nat_succI], assumption, simp)
apply (drule lam_eqE [OF _ nat_O0I], simp)

done

lemma Sigma_fun_space_eqpoll:
"[c € A; 0¢A] = (nat->J (4)) * C ~ (mat->{J (4))"
apply (rule eqpollI)
apply (simp add: lepoll_def)
apply (fast intro!: inj_lemma)
apply (fast elim!: prod_lepoll_self not_sym [THEN not_emptyE] subst_elem

elim: swap)
done

lemma AC6_AC7: "AC6 — ACT"
by (unfold AC6_def AC7_def, blast)

lemma lemmail_1: "y € ([[B € A. Y*B) = (AB € A. snd(y‘B)) € ([[B €
A. B)"
by (fast intro!: lam_type snd_type apply_type)

lemma lemmal_2:
"y € (J[B € {Y*C. C € A}. B) = (AB € A. y“(Y*B)) € (][|[B € A.
Y*B)"
apply (fast intro!: lam_type apply_type)
done

lemma AC7_AC6_lemmal:
"(IIB € {(nat->|J (A))*C. C € A}. B) # 0 = ([[B € A. B) # 0"
by (fast intro!: equalsOI lemmal_1 lemmal_2)

lemma AC7_AC6_lemma2: "0 ¢ A = 0 ¢ {(nat > |J(4)) * C. C € A}"
by (blast dest: Sigma_fun_space_not0)
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lemma AC7_AC6: "AC7 — AC6"

unfolding AC6_def AC7_def
apply (rule alll)
apply (rule impI)
apply (case_tac "A=0", simp)
apply (rule AC7_AC6_lemmal)
apply (erule allE)
apply (blast del: notI

intro!: AC7_AC6_lemma2 intro: eqpoll_sym eqpoll_trans
Sigma_fun_space_eqpoll)

done

lemma AC1_AC8_lemmal:
"YB € A. 3B1 B2. B=(B1,B2) A Bl ~ B2
= 0 ¢ { bij(fst(B),snd(B)). B € A }"
apply (unfold eqpoll_def, auto)
done

lemma AC1_AC8_lemma2:
"[f € (J[X € RepFun(A,p). X); D € A] = (\x € A. f‘p(x))‘D €
p(D)”
apply (simp, fast elim!: apply_type)
done

lemma AC1_AC8: "AC1 = AC8"

unfolding AC1_def AC8_def
apply (fast dest: AC1_AC8_lemmal AC1_AC8_lemma2)
done

lemma AC8_AC9_lemma:

"YB1 € A. VB2 € A. Bl = B2

—> VB € A*A. 1B1 B2. B=(B1,B2) A B1 =~ B2"
by fast

lemma AC8_AC9: "AC8 — AC9"
unfolding AC8_def AC9_def
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apply (intro alll impI)

apply (erule allE)

apply (erule impE, erule AC8_AC9_lemma, force)
done

lemma snd_lepoll_SigmaI: "b € B =— X < B x X"
by (blast intro: lepoll_trans prod_lepoll_self eqpoll_imp_lepoll
prod_commute_eqpoll)

lemma nat_lepoll_lemma:
"[o ¢ A; B € A] = nat < ((mat — |J (4)) X B) x nat"

~

by (blast dest: Sigma_fun_space_notO intro: snd_lepoll_Sigmal)

lemma AC9_AC1_lemmal:
n[ogA; AF#0;
C = {((nat->J (A))*B)*nat. B € A} U
{cons (0, ((nat->{J (A))*B)*nat). B € A};
B1 € C; B2 € (]
—> B1 =~ B2"
by (blast intro!: nat_lepoll_lemma Sigma_fun_space_eqpoll
nat_cons_eqpoll [THEN eqpoll_trans]
prod_eqpoll_cong [OF _ eqpoll_refl]
intro: eqpoll_trans eqpoll_sym )

lemma AC9_AC1_lemma2:

"VB1 € {(F*B)*N. B € A} U {cons(0, (F*B)*N). B € A}.

VB2 ¢ {(F¥B)*N. B € A} U {cons(0, (F¥B)*N). B € A}.

f£‘(B1,B2) € bij(B1, B2)

= (AB € A. snd(fst((f‘<comns(0, (F¥B)*N), (F¥xB)*N>)‘0))) € ([[X
e A X"
apply (intro lam_type snd_type fst_type)
apply (rule apply_type [OF _ consI1])
apply (fast intro!: fun_weaken_type bij_is_fun)
done

lemma AC9_AC1: "AC9 — AC1"
unfolding AC1_def AC9_def

apply (intro alll impI)

apply (erule allE)

apply (case_tac "A#0")
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apply (blast dest: AC9_AC1_lemmal AC9_AC1_lemma2, force)
done

end

theory WO1_AC
imports AC_Equiv
begin

theorem W0O1_AC1: "WO1 — AC1"
by (unfold AC1_def WO1_def, fast elim!: ex_choice_fun)

lemma lemmai: "[W01; VB € A. 3C € D(B). P(C,B)] = 3f. VB € A. P(f‘B,B)"
unfolding W01_def

apply (erule_tac x = "|J({{C € D (B) . P (C,B) }. B € A}) " in allE)

apply (erule exE, drule ex_choice_fun, fast)

apply (erule exE)

apply (rule_tac x = "Ax € A. £f{C € D (x) . P (C,x) }" in exI)

apply (simp, blast dest!: apply_type [OF _ RepFunI])

done

lemma lemma2_1: "[-Finite(B); W01] = [B| + |B] =~ B"
unfolding W01_def
apply (rule eqpoll_trans)
prefer 2 apply (fast elim!: well_ord_cardinal_eqpoll)
apply (rule eqpoll_sym [THEN eqpoll_trans])
apply (fast elim!: well_ord_cardinal_eqpoll)
apply (drule spec [of _ BJ])
apply (clarify dest!: eqpoll_imp_Finite_iff [OF well_ord_cardinal_eqpoll])

apply (simp add: cadd_def [symmetric]
eqpoll_refl InfCard_cdouble_eq Card_cardinal Inf_Card_is_InfCard)

done
lemma lemma2 2:

"f € bij(D+D, B) = {{f‘Inl(i), f‘Inr(i)}. i € D} € Pow(Pow(B))"
by (fast elim!: bij_is_fun [THEN apply_typel)
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lemma lemma2_ 3:
"f € bij(D+D, B) = pairwise_disjoint ({{f‘Inl(i), f‘Inr(i)}.
i€ Dp"
unfolding pairwise_disjoint_def
apply (blast dest: bij_is_inj [THEN inj_apply_equalityl])
done

lemma lemma2 4:
"[f € bij(D+D, B); 1<n]
— sets_of_size_between({{f‘Inl(i), f‘Inr(i)}. i € D}, 2, succ(n))"
apply (simp (no_asm_simp) add: sets_of_size_between_def succ_def)
apply (blast intro!: cons_lepoll_cong
intro: singleton_eqpoll_1 [THEN eqpoll_imp_lepoll]
le_imp_subset [THEN subset_imp_lepoll] lepoll_trans

dest: bij_is_inj [THEN inj_apply_equality] elim!: mem_irrefl)
done

lemma lemma2 5:
"f € bij(D+D, B) = U({{f’Inl(i), f¢Inr(i)}. i € D})=B"
unfolding bij_def surj_def
apply (fast elim!: inj_is_fun [THEN apply_typel)
done

lemma lemma2:
"[wW01; —Finite(B); 1<n]
= 3C € Pow(Pow(B)). pairwise_disjoint(C) A
sets_of_size_between(C, 2, succ(n)) A
U (C)=B"
apply (drule lemma2_ 1 [THEN eqpoll_def [THEN def_imp_iff, THEN iffD1]],

assumption)
apply (blast intro!: lemma2 2 lemma2_3 lemma2 4 lemma2_ 5)
done

theorem W01_AC10: ”[[WUI; 1§n]] = AC10(n)"
unfolding AC10_def

apply (fast intro!: lemmal elim!: lemma2)

done

end

theory Hartog
imports AC_Equiv
begin

definition
Hartog :: "i = i" where
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"Hartog(X) = p i. - i < X"

lemma Ords_in_set: "Va. Ord(a) — a € X = P"

apply (rule_tac X = "{y € X. Ord (y) }" in ON_class [elim_format])
apply fast

done

lemma Ord_lepoll_imp_ex_well_ord:
"[ord(a); a S X]
= dY. Y C X A (3R. well_ord(Y,R) A ordertype(Y,R)=a)"
unfolding lepoll_def
apply (erule exE)
apply (intro exI conjI)
apply (erule inj_is_fun [THEN fun_is_rel, THEN image_subset])
apply (rule well_ord_rvimage [OF bij_is_inj well_ord_Memrel])
apply (erule restrict_bij [THEN bij_converse_bij])
apply (rule subset_refl, assumption)
apply (rule trans)
apply (rule bij_ordertype_vimage)
apply (erule restrict_bij [THEN bij_converse_bijl)
apply (rule subset_refl)
apply (erule well_ord_Memrel)
apply (erule ordertype_Memrel)
done

lemma Ord_lepoll_imp_eq_ordertype:
"[0rd(a); a < X] = 3Y. Y C X A (3R. R C X*X A ordertype(Y,R)=a)"
apply (drule Ord_lepoll_imp_ex_well_ord, assumption, clarify)
apply (intro exI conjI)
apply (erule_tac [3] ordertype_Int, auto)

done

lemma Ords_lepoll_set_lemma:
"Wa. Ord(a) — a S X) =

Va. Ord(a) —

a € {b. Z € Pow(X)*Pow(X*X), 3Y R. Z=(Y,R) A ordertype(Y,R)=b}"
apply (intro alll impI)
apply (elim allE impE, assumption)
apply (blast dest!: Ord_lepoll_imp_eq_ordertype intro: sym)
done

lemma Ords_lepoll_set: "Va. Ord(a) — a < X = P"
by (erule Ords_lepoll_set_lemma [THEN Ords_in_set])

lemma ex_0Ord_not_lepoll: "Ja. Ord(a) A —a < X"
apply (rule ccontr)

apply (best intro: Ords_lepoll_set)

done
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lemma not_Hartog_lepoll_self: "— Hartog(A) < A"
unfolding Hartog_def

apply (rule ex_Ord_not_lepoll [THEN exE])

apply (rule LeastI, auto)

done

lemmas Hartog lepoll_selfE = not_Hartog lepoll_self [THEN notE]

lemma Ord_Hartog: "Ord(Hartog(A))"
by (unfold Hartog def, rule Ord_Least)

lemma less_HartogEl: "[i < Hartog(A); — i < A] = P"
by (unfold Hartog def, fast elim: less_LeastE)

lemma less_HartogE: "[i < Hartog(A); i ~ Hartog(A)] = P"
by (blast intro: less_HartogEl eqpoll_sym eqpoll_imp_lepoll
lepoll_trans [THEN Hartog_lepoll_selfE])

lemma Card_Hartog: "Card(Hartog(A))"
by (fast intro!: CardI Ord_Hartog elim: less_HartogE)

end
theory HH
imports AC_Equiv Hartog
begin
definition
HH :: "[i, i, i] = i" where
"HH(f,x,a) = transrec(a, A\b r. let z = x - (Uc € b. r‘c)
in if f‘z € Pow(z)-{0} then f‘z else
{xp)"

0.1 Lemmas useful in each of the three proofs

lemma HH_def_satisfies_eq:
"HH(f,x,a) = (let z = x - (Ub € a. HH(f,x,b))
in if f‘z € Pow(z)-{0} then f‘z else {x})"
by (rule HH_def [THEN def_transrec, THEN trans], simp)

lemma HH values: "HH(f,x,a) € Pow(x)-{0} | HH(f,x,a)={x}"
apply (rule HH def_satisfies_eq [THEN ssubst])

apply (simp add: Let_def Diff_ subset [THEN PowI], fast)
done

lemma subset_imp Diff_eq:

"B C A = X-(Ja € A. P(a)) = X-(Ja € A-B. P(a))-(Jb € B. P(b))"
by fast
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lemma Ord_DiffE: "[c € a-b; b<a] = c=b | b<c A c<a"
apply (erule 1tE)

apply (drule Ord_linear [of _ c])

apply (fast elim: Ord_in_Ord)

apply (fast intro!: 1tI intro: Ord_in_Ord)

done

lemma Diff_UN_eq_self: "(Ay. yéA = P(y) = {x}) = x - (Uy € A.
P(y)) = x"

by (simp, fast elim!: mem_irrefl)

lemma HH eq: "x - (b € a. HH(f,x,b)) = x - (b € al. HH(f,x,b))
—> HH(f,x,a) = HH(f,x,al)"

apply (subst HH_def_satisfies_eq [of _ _ al])
apply (rule HH def_satisfies_eq [THEN trans], simp)
done

lemma HH_is_x_gt_too: "[HH(f,x,b)={x}; b<a] —> HH(f,x,a)={x}"

apply (rule_tac P = "b<a" in impE)

prefer 2 apply assumption+

apply (erule 1t_0Ord2 [THEN trans_induct])

apply (rule impI)

apply (rule HH_eq [THEN trans])

prefer 2 apply assumption+

apply (rule leI [THEN le_imp_subset, THEN subset_imp_Diff_eq, THEN ssubst],

assumption)
apply (rule_tac t = "Az. z-X" for X in subst_context)
apply (rule Diff UN_eq_self)
apply (drule Ord_DiffE, assumption)
apply (fast elim: 1tE, auto)
done

lemma HH_subset_x_lt_too:
"[HH(f,x,a) € Pow(x)-{0}; b<a] = HH(f,x,b) € Pow(x)-{0}"
apply (rule HH_values [THEN disjE], assumption)
apply (drule HH_is_x_gt_too, assumption)
apply (drule subst, assumption)
apply (fast elim!: mem_irrefl)
done

lemma HH_subset_x_imp_subset_Diff_UN:
"HH(f,x,a) € Pow(x)-{0} —> HH(f,x,a) € Pow(x - ((Ub € a. HH(f,x,b)))-{0}"
apply (drule HH_def_satisfies_eq [THEN subst])
apply (rule HH_def_satisfies_eq [THEN ssubst])
apply (simp add: Let_def Diff_subset [THEN PowI])
apply (drule split_if [THEN iffD1])
apply (fast elim!: mem_irrefl)
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done

lemma HH_eq_arg_1t:

"[HH(f,x,v)=HH(f,x,w); HH(f,x,v) € Pow(x)-{0}; v € w] = P"
apply (frule_tac P = "A\y. y € Pow (x) -{0}" in subst, assumption)
apply (drule_tac a = w in HH_subset_x_imp_subset_Diff_UN)
apply (drule subst_elem, assumption)
apply (fast intro!: singleton_iff [THEN iffD2] equalsOI)
done

lemma HH_eq_imp_arg_eq:
"[HH(f,x,v)=HH(f,x,w); HH(f,x,w) € Pow(x)-{0}; Ord(v); Ord(w)] — v=uw"
apply (rule_tac j = w in Ord_linear_1t)
apply (simp_all (no_asm_simp))
apply (drule subst_elem, assumption)
apply (blast dest: 1tD HH_eq_arg_1t)
apply (blast dest: HH_eq_arg 1t [OF sym] 1tD)
done

lemma HH_subset_x_imp_lepoll:
"[HH(f, x, i) € Pow(x)-{0}; O0rd(i)] = i < Pow(x)-{0}"
unfolding lepoll_def inj_def

apply (rule_tac x = "A\j € i. HH (f, x, j) " in exI)

apply (simp (no_asm_simp))

apply (fast del: DiffE
elim!: HH_eq_imp_arg eq Ord_in_Ord HH_subset_x_1t_too
intro!: lam_type balll 1tI intro: bexI)

done

lemma HH_Hartog_is_x: "HH(f, x, Hartog(Pow(x)-{0})) = {x}"
apply (rule HH_values [THEN disjE])
prefer 2 apply assumption
apply (fast del: DiffE
intro!: Ord_Hartog
dest!: HH_subset_x_imp_lepoll
elim!: Hartog_lepoll_selfE)
done

lemma HH_Least_eq_x: "HH(f, x, pu i. HH(f, x, i) = {x}) = {x}"
by (fast intro!: Ord_Hartog HH_Hartog_is_x LeastI)

lemma less_Least_subset_x:

"a € (u i. HH(f,x,i)={x}) —> HH(f,x,a) € Pow(x)-{0}"
apply (rule HH values [THEN disjE], assumption)
apply (rule less_LeastE)
apply (erule_tac [2] 1tI [OF _ Ord_Least], assumption)
done
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0.2 Lemmas used in the proofs of Act = w02 and Ac17 = AcC1

lemma lam_Least_HH_inj_Pow:
"(Aa € (u i. HH(f,x,i)={x}). HH(f,x,a))
€ inj(u i. HH(f,x,i)={x}, Pow(x)-{0})"
apply (unfold inj_def, simp)
apply (fast intro!: lam_type dest: less_Least_subset_x
elim!: HH_eq_imp_arg _eq Ord_Least [THEN Ord_in_Ord])
done

lemma lam_Least_HH_inj:
"WVa € (u i. HH(f,x,i)={x}). dz € x. HH(f,x,a) = {z}
= (\a € (u i. HH(f,x,i)={x}). HH(f,x,a))
€ inj(u i. HH(f,x,i)={x}, {{y}. y € xP)"
by (rule lam_Least_HH_inj_Pow [THEN inj_strengthen_type], simp)

lemma lam_surj_sing:
"[x - (Ua € A. F(a)) = 0; Va € A. 3z € x. F(a) = {z}]
= (\a € A. F(a)) € surj(4A, {{y}. y € x}I)"

apply (simp add: surj_def lam_type Diff_eq_O_iff)

apply (blast elim: equalityE)

done

lemma not_emptyI2: "y € Pow(x)-{0} = x # 0"
by auto

lemma f_subset_imp_HH_subset:
"fi(x - (Uj € i. HH(f,x,j))) € Pow(x - ((Jj € i. HH(f,x,j)))-{0}

= HH(f, x, 1) € Pow(x) - {0}"
apply (rule HH_def_satisfies_eq [THEN ssubst])
apply (simp add: Let_def Diff_subset [THEN PowI] not_emptyI2 [THEN if_P],
fast)
done

lemma f_subsets_imp_UN_HH_eq_x:
"Wz € Pow(x)-{0}. f‘z € Pow(z)-{0}
= x - (Jj € (u i. HH(f,x,i)={x}). HH(f,x,j)) = O"
apply (case_tac "P € {0}" for P, fast)
apply (drule Diff_subset [THEN PowI, THEN DiffI])
apply (drule bspec, assumption)
apply (drule f_subset_imp_HH_subset)
apply (blast dest!: subst_elem [OF _ HH_Least_eq_x [symmetric]]
elim!: mem_irrefl)
done

lemma HH_values2: "HH(f,x,i) = £f‘(x - (Uj € i. HH(f,x,3j))) | HH(f,x,i)={x}"
apply (rule HH def_satisfies_eq [THEN ssubst])

apply (simp add: Let_def Diff_subset [THEN PowI])

done
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lemma HH_subset_imp_eq:
"HH(f,x,1i): Pow(x)-{0} = HH(f,x,i)=f‘(x - (Uj € i. HH(f,x,j)))"
apply (rule HH_values2 [THEN disjE], assumption)
apply (fast elim!: equalityE mem_irrefl dest!: singleton_subsetD)
done

lemma f_sing imp_ HH_sing:

"[f € (Pow(x)-{0}) -> {{z}. z € x};

a € (p i. HH(f,x,i)={x})] = 3z € x. HH(f,x,a) = {z}"

apply (drule less_Least_subset_x)
apply (frule HH_subset_imp_eq)
apply (drule apply_type)
apply (rule Diff_subset [THEN PowI, THEN DiffI])
apply (fast dest!: HH_subset_x_imp_subset_Diff UN [THEN not_emptyI2],
force)
done

lemma f_sing lam_bij:
"[x - (Jj € (u i. HH(f,x,i)={x}). HH(f,x,j)) = 0;
f € (Pow(x)-{0}) -> {{z}. z € x}]
= (\a € (u i. HH(f,x,i)={x}). HH(f,x,a))
€ bij(p i. HH(f,x,i)={x}, {{y}. y € x}P)"
unfolding bij_def
apply (fast intro!: lam_Least_HH_inj lam_surj_sing f_sing_imp_HH_sing)
done

lemma lam_singI:
"f € (J[[X € Pow(x)-{0}. F(X))
= (A\X € Pow(x)-{0}. {f‘X}) € ([[X € Pow(x)-{0}. {{z}. z € F(X)P)"
by (fast del: DiffI DiffE
intro!: lam_type singleton_eq_iff [THEN iffD2] dest: apply_type)

lemmas bij_Least_HH_x =
comp_bij [OF f_sing lam_bij [OF _ lam_singI]
lam_sing bij [THEN bij_converse_bij]]

0.3 The proof of ac1 — wo2

lemma bijection:
"f € ([[X € Pow(x) - {0}. X)
— Jg. g € bij(x, p i. HHO\X € Pow(x)-{0}. {f‘X}, x, i) = {x})"
apply (rule exI)
apply (rule bij_Least_HH_x [THEN bij_converse_bij])
apply (rule f_subsets_imp_UN_HH_eq_x)
apply (intro balll apply_type)
apply (fast intro: lam_type apply_type del: DiffE, assumption)
apply (fast intro: Pi_weaken_type)
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done

lemma AC1_W02: "AC1 — W0O2"
unfolding AC1_def WO02_def eqpoll_def
apply (intro alll)
apply (drule_tac x = "Pow(A) - {0}" in spec)
apply (blast dest: bijection)
done

end

theory AC15_W06
imports HH Cardinal_aux
begin

lemma lepoll_Sigma: "A#0 —> B < AxB"
unfolding Iepoll_def

apply (erule not_emptyE)

apply (rule_tac x = "Mz € B. (x,z)" in exI)

apply (fast intro!: snd_conv lam_injective)

done

lemma cons_times_nat_not_Finite:

"0¢A4 =—> VB € {cons(0,x*nat). x € A}. —Finite(B)"
apply clarify
apply (rule nat_not_Finite [THEN notE] )
apply (subgoal_tac "x # 0")
apply (blast intro: lepoll_Sigma [THEN lepoll_Finite])+
done

lemma lemmal: "[|J (C)=A; a € A] = 3B € C. a € B A B C A"
by fast

lemma lemma2:
"[pairwise_disjoint(A); B € A; C € A; a € B; a € C|] = B=C"
by (unfold pairwise_disjoint_def, blast)

lemma lemma3:

"VB € {cons(0, x*nat). x € A}. pairwise_disjoint(f‘B) A
sets_of_size_between(f‘B, 2, n) A |J (f‘B)=B
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— VB € A. 3! u. u € f‘cons(0, B*nat) AN u C cons(0, B*nat) A

0cuAn2<uAnuSna"
unfolding sets_of_size_between_def
apply (rule balll)
apply (erule_tac x="cons(0, B*nat)" in ballE)
apply (blast dest: lemmal intro!: lemma2, blast)
done

lemma Ilemma4: "[A < i; Ord(i)] = {P(a). a € A} S i"
unfolding lepoll_def
apply (erule exE)
apply (rule_tac x = "Ax € RepFun(4,P). p j. Ja€A. x=P(a) A f‘a=j"
in exI)
apply (rule_tac d = "Ay. P (converse (f) ‘y) " in lam_injective)
apply (erule RepFunE)
apply (frule inj_is_fun [THEN apply_type], assumption)
apply (fast intro: LeastI2 elim!: Ord_in_Ord inj_is_fun [THEN apply_type])
apply (erule RepFunE)
apply (rule LeastI2)
apply fast
apply (fast elim!: Ord_in_Ord inj_is_fun [THEN apply_typel)
apply (fast elim: sym left_inverse [THEN ssubst])
done

lemma lemmab 1:
"[B € 4; 2 S uB] = (Ax € A. {fst(x). x € u(x)-{0}}) ‘B # 0"
apply simp
apply (fast dest: lepoll_Diff sing
elim: lepoll_trans [THEN succ_lepoll_natE] ssubst
intro!: lepoll_refl)
done

lemma lemma5_2:

"[B € A; u(B) C cons(0, B*nat)]

= (\x € A. {fst(x). x € u(x)-{0}})‘B C B"
apply auto
done

lemma lemma5_3:
"[a € nat; B € A; 0 € u(B); u(B) < succ(n)]
= (Ax € A. {fst(x). x € u(x)-{0}}) ‘B < n"
apply simp
apply (fast elim!: Diff_lepoll [THEN lemma4 [OF _ nat_into_Ord]])
done

lemma ex_fun_AC13_AC15:

"[VB € {cons(0, x*nat). x € A}.
pairwise_disjoint (£‘B) A
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sets_of_size_between(f‘B, 2, succ(m)) A |J (£‘B)=B;
n € nat]
= Jf. VB € A. f°B#0ANfBC BATf‘B<nn"
by (fast del: subsetI notI
dest!: lemma3 thel intro!: lemmab_1 lemma5_2 lemma5_3)

theorem AC10_AC11: "[[n € nat; 1<n; AClO(n)]] — AC11"
by (unfold AC10_def AC11_def, blast)

theorem AC11_AC12: "AC11 — AC12"
by (unfold AC10_def AC11_def AC11_def AC12_def, blast)

theorem AC12_AC15: "AC12 — AC15"
unfolding AC12_def AC15_def
apply (blast del: balll
intro!: cons_times_nat_not_Finite ex_fun_AC13_AC15)
done

lemma OUN_eq_UN: "Ord(x) = ((Ja<x. F(a)) = (Ua € x. F(a))"
by (fast intro!: 1tI dest!: 1tD)

lemma AC15_W06_aux1:
"Wx € Pow(A)-{0}. £x#0 N f‘x C x A f‘x S m
= (Ui<p x. HH(f,A,x)={A}. HH(f,A,i)) = A"
apply (simp add: Ord_Least [THEN OUN_eq_UN])
apply (rule equalityI)
apply (fast dest!: less_Least_subset_x)
apply (blast del: subsetI
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intro!: f_subsets_imp_UN_HH_eq_x [THEN Diff_eq_O_iff [THEN
iffD11])
done

lemma AC15_W06_aux2:
"Wx € Pow(A)-{0}. £x#0 N f‘x C x A f‘x S m
= Vx < (u x. HH(f,A,x)={A}). HH(f,A,x) < m"
apply (rule oalll)
apply (drule 1tD [THEN less_Least_subset_x])
apply (frule HH_subset_imp_eq)
apply (erule ssubst)
apply (blast dest!: HH_subset_x_imp_subset_Diff_ UN [THEN not_emptyI2])

done

theorem AC15_W06: "AC15 — WO6"

unfolding AC15_def W06_def
apply (rule alll)
apply (erule_tac x = "Pow (A) -{0}" in allE)
apply (erule impE, fast)
apply (elim bexE conjE exE)
apply (rule bexI)

apply (rule conjI, assumption)

apply (rule_tac x = "p i. HH (f,A,i) ={A}" in exI)

apply (rule_tac x = "Aj € (u i. HH (f,A,i) ={A}) . HH (f,A,j) " in exI)
apply (simp_all add: 1tD)
apply (fast intro!: Ord_Least lam_type [THEN domain_of_fun]

elim!: less_Least_subset_x AC15_W06_aux1 AC15_W06_aux2)

done

theorem AC10_AC13: "[[n € nat; 1<n; AClO(n)]] — AC13(n)"

apply (unfold AC10_def AC13_def, safe)

apply (erule allE)

apply (erule impE [OF _ cons_times_nat_not_Finite], assumption)

apply (fast elim!: impE [OF _ cons_times_nat_not_Finite]
dest!: ex_fun_AC13_AC15)
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done

lemma AC1_AC13: "AC1 = AC13(1)"
unfolding AC1_def AC13_def
apply (rule alll)
apply (erule allE)
apply (rule impI)
apply (drule mp, assumption)
apply (elim exE)
apply (rule_tac x = "Ax € A. {f‘x}" in exI)
apply (simp add: singleton_eqpoll_1 [THEN eqpoll_imp_lepoll])
done

lemma AC13_mono: "[m<n; AC13(m)] — AC13(n)"
unfolding AC13_def

apply (drule le_imp_lepoll)

apply (fast elim!: lepoll_trans)

done

theorem AC13_AC14: ”[[11 € nat; 1<n; AC13(n)]] — AC14"
by (unfold AC13_def AC14_def, auto)

theorem AC14_AC15: "AC14 — AC15"
by (unfold AC13_def AC14_def AC15_def, fast)
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lemma lemma_aux: "[A#0; A < 1] = Ja. A={a}"
by (fast elim!: not_emptyE lepoll_1_is_sing)

lemma AC13_AC1_lemma:
"VB € A. f(B)#0 N f(B)<=B A f(B) < 1
= (Ax € A. THE y. f(x)={y}) € ([[Xx € 4. )"
apply (rule lam_type)
apply (drule bspec, assumption)
apply (elim conjE)
apply (erule lemma_aux [THEN exE], assumption)
apply (simp add: the_equality)
done

theorem AC13_AC1: "AC13(1) — AC1"
unfolding AC13_def AC1_def

apply (fast elim!: AC13_AC1_lemma)

done

theorem AC11_AC14: "AC11 — AC14"

unfolding AC11_def AC14_def
apply (fast intro!: AC10_AC13)
done

end

theory AC16_lemmas
imports AC_Equiv Hartog Cardinal_aux
begin

lemma cons_Diff_eq: "a¢A —> cons(a,A)-{a}=A"
by fast

lemma nat_1_lepoll_ iff: "1<X +— (3x. x € X)"
unfolding Iepoll_def

apply (rule iffI)

apply (fast intro: inj_is_fun [THEN apply_typel)
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apply (erule exE)

apply (rule_tac x = "da € 1. x" in exI)
apply (fast intro!: lam_injective)

done

lemma eqpoll_1_iff_singleton: "X~1 +— (Ox. X={x})"
apply (rule iffI)

apply (erule eqpollE)

apply (drule nat_1_lepoll_iff [THEN iffD1])

apply (fast intro!: lepoll_1_is_sing)

apply (fast intro!: singleton_eqpoll_1)

done

lemma cons_eqpoll_succ: "[x~n; y¢x] = cons(y,x)=~succ(n)"
unfolding succ_def

apply (fast elim!: cons_eqpoll_cong mem_irrefl)

done

lemma subsets_eqpoll_1_eq: "{Y € Pow(X). Y=1} = {{x}. x € X}"
apply (rule equalityI)

apply (rule subsetI)

apply (erule CollectE)

apply (drule eqpoll_1_iff_singleton [THEN iffD1])
apply (fast intro!: RepFunI)

apply (rule subsetI)

apply (erule RepFunE)

apply (rule CollectI, fast)

apply (fast intro!: singleton_eqpoll_1)

done

lemma egpoll_RepFun_sing: "X~{{x}. x € X}"
unfolding eqpoll_def bij_def
apply (rule_tac x = "Ax € X. {x}" in exI)
apply (rule IntI)
apply (unfold inj_def surj_def, simp)
apply (fast intro!: lam_type RepFunl intro: singleton_eq_iff [THEN iffD1],
simp)
apply (fast intro!: lam_type)
done

lemma subsets_eqpoll_1_eqpoll: "{Y € Pow(X). Y=1}=X"
apply (rule subsets_eqpoll_1_eq [THEN ssubst])

apply (rule eqpoll_RepFun_sing [THEN eqpoll_sym])

done

lemma InfCard_Least_in:
"[InfCard(x); vy C x; y = succ(z)] = (u i. i € y) € y"
apply (erule eqpoll_sym [THEN eqpoll_imp_lepoll,
THEN succ_lepoll_imp_not_empty, THEN not_emptyE])
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apply (fast intro: LeastI
dest!: InfCard_is_Card [THEN Card_is_Ord]
elim: Ord_in_Ord)

done

lemma subsets_lepoll_lemmal:

"[InfCard(x); n € nat]

= {y € Pow(x). y~succ(succ(m))} < x*{y € Pow(x). y=succ(n)}"

unfolding lepoll_def
apply (rule_tac x = "Ay € {y € Pow(x) . y=succ (succ (n))}.
<pw i. i €y, y-{p i. i € y}p>" in exI)

apply (rule_tac d = "Az. cons (fst(z), snd(z))" in lam_injective)
apply (blast intro!: Diff_sing eqpoll intro: InfCard_Least_in)
apply (simp, blast intro: InfCard_Least_in)
done

lemma set_of_0rd_succ_Union: "(Vy € z. Ord(y)) — z C succ(J (2))"
apply (rule subsetI)

apply (case_tac "Vy € z. y C x", blast )

apply (simp, erule bexE)

apply (rule_tac i=y and j=x in Ord_linear_le)

apply (blast dest: le_imp_subset elim: leE 1tE)+

done

lemma subset_not_mem: "j C i = i ¢ j"
by (fast elim!: mem_irrefl)

lemma succ_Union_not_mem:

"(Ny. y € z = 0rd(y)) = succ(| (z)) ¢ z"
apply (rule set_of_0Ord_succ_Union [THEN subset_not_mem], blast)
done

lemma Union_cons_eq_succ_Union:

"\U (cons (succ(l (2)),2)) = succ( (2))"
by fast

lemma Un_Ord_disj: "[0rd(i); Ord(j)] = i U j =1 [ i U j=j"
by (fast dest!: le_imp_subset elim: Ord_linear le)

lemma Union_eq Un: "x € X = [JX) = x U |J &X-{xH"
by fast

lemma Union_in_lemma [rule_format]:
"n € nat = Vz. (Vy € z. 0rd(y)) A z=n A z#0 — |J(z) € z"
apply (induct_tac "n")
apply (fast dest!: eqpoll_imp_lepoll [THEN lepoll_O_is_0])
apply (intro alll impI)
apply (erule natE)
apply (fast dest!: eqpoll_1_iff_singleton [THEN iffD1]
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intro!: Union_singleton, clarify)
apply (elim not_emptyE)
apply (erule_tac x = "z-{xb}" in allE)
apply (erule impE)
apply (fast elim!: Diff_sing eqpoll

Diff_sing _eqpoll [THEN eqpoll_succ_imp_not_empty])

apply (subgoal_tac "xb U |J (z - {xb}) € z")
apply (simp add: Union_eq_Un [symmetric])
apply (frule bspec, assumption)
apply (drule bspec)
apply (erule Diff_subset [THEN subsetD])
apply (drule Un_Ord_disj, assumption, auto)
done

lemma Union_in: "[Vx € z. Ord(x); z=n; z#0; n € nat] = |J (z) € z"
by (blast intro: Union_in_lemma)

lemma succ_Union_in_x:

"[InfCard(x); z € Pow(x); z~n; n € nat] = succ(|J (2)) € x"
apply (rule Limit_has_succ [THEN 1tE])
prefer 3 apply assumption
apply (erule InfCard_is_Limit)
apply (case_tac "z=0")
apply (simp, fast intro!: InfCard_is_Limit [THEN Limit_has_0])
apply (rule 1tI [OF PowD [THEN subsetD] InfCard_is_Card [THEN Card_is_Ord]],
assumption)
apply (blast intro: Union_in

InfCard_is_Card [THEN Card_is_Ord, THEN Ord_in_Ord])+

done

lemma succ_lepoll_succ_succ:
"[InfCard(x); n € nat]
= {y € Pow(x). y=msucc(n)} < {y € Pow(x). y=ssucc(succ(n))}"
unfolding lepoll_def
apply (rule_tac x = "Xz € {y€Pow(x). y~succ(n)}. cons(succ( (z)), z)"

in exI)
apply (rule_tac d = "Az. z-{|J (z) }" in lam_injective)
apply (blast intro!: succ_Union_in_x succ_Union_not_mem
intro: cons_eqpoll_succ Ord_in_Ord
dest!: InfCard_is_Card [THEN Card_is_Ord])
apply (simp only: Union_cons_eq_succ_Union)
apply (rule cons_Diff_eq)
apply (fast dest!: InfCard_is_Card [THEN Card_is_0Ord]
elim: Ord_in_Ord
intro!: succ_Union_not_mem)
done

lemma subsets_eqpoll_X:
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"[InfCard(X); n € nat] = {Y € Pow(X). Y=succ(m)} ~ X"
apply (induct_tac "n")
apply (rule subsets_eqpoll_1_eqgpoll)
apply (rule eqpolll)
apply (rule subsets_lepoll_lemmal [THEN lepoll_trans], assumption+)
apply (rule eqpoll_trans [THEN eqpoll_imp_lepoll])
apply (erule eqpoll_refl [THEN prod_eqpoll_cong])
apply (erule InfCard_square_eqpoll)
apply (fast elim: eqpoll_sym [THEN eqpoll_imp_lepoll, THEN lepoll_trans]

intro!: succ_lepoll_succ_succ)
done

lemma image_vimage_eq:
"[f € surj(A,B); y C B] = f‘‘(converse(f)‘‘y) = y"
unfolding surj_def
apply (fast dest: apply_equality2 elim: apply iff [THEN iffD2])
done

lemma vimage_image_eq: "[f € inj(A,B); y C A] = converse(f) ‘‘(£‘‘y)
= yn
by (fast elim!: inj_is_fun [THEN apply_Pair] dest: inj_equality)

lemma subsets_eqpoll:
"AmB =—> {Y € Pow(4). Y=n}~{Y € Pow(B). Y=n}"

unfolding eqpoll_def
apply (erule exE)
apply (rule_tac x
in exI)
apply (rule_tac d = "AZ. converse (f) ‘‘Z" in lam_bijective)
apply (fast intro!: bij_is_inj [THEN restrict_bij, THEN bij_converse_bij,

"AX € {Y € Pow (4) . df. £ € bij (Y, n) }. £<X"

THEN comp_bij]
elim!: bij_is_fun [THEN fun_is_rel, THEN image_subset])

apply (blast intro!: bij_is_inj [THEN restrict_bij]

comp_bij bij_converse_bij

bij_is_fun [THEN fun_is_rel, THEN image_subset])
apply (fast elim!: bij_is_inj [THEN vimage_image_eq])
apply (fast elim!: bij_is_surj [THEN image_vimage_eq])
done

lemma W02_imp_ex_Card: "W02 —> da. Card(a) A X=a"
unfolding W02_def
apply (drule spec [of _ X])
apply (blast intro: Card_cardinal eqpoll_trans
well_ord_Memrel [THEN well_ord_cardinal_eqpoll, THEN eqpoll_sym])
done

lemma lepoll_infinite: "[XSY; —Finite(X)] = —Finite(Y)"
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by (blast intro: lepoll_Finite)

lemma infinite_Card_is_InfCard: "[-Finite(X); Card(X)] = InfCard(X)"
unfolding InfCard_def

apply (fast elim!: Card_is_Ord [THEN nat_le_infinite_Ord])

done

lemma W02_infinite_subsets_eqpoll_X: "[W02; n € nat; —Finite(X)]
= {Y € Pow(X). Y=succ(n)}=X"
apply (drule WO2_imp_ex_Card)
apply (elim allE exE conjE)
apply (frule eqpoll_imp_lepoll [THEN lepoll_infinite], assumption)
apply (drule infinite_Card_is_InfCard, assumption)
apply (blast intro: subsets_eqpoll subsets_eqpoll_X eqpoll_sym eqpoll_trans)

done

lemma well_ord_imp_ex_Card: "well_ord(X,R) —> Ja. Card(a) N X=~a"
by (fast elim!: well_ord_cardinal_eqpoll [THEN eqpoll_sym]
intro!: Card_cardinal)

lemma well_ord_infinite_subsets_eqpoll_X:
"[well_ord(X,R); n € nat; —Finite(X)] = {Y € Pow(X). Ymsucc(n)}=X"
apply (drule well_ord_imp_ex_Card)
apply (elim allE exE conjE)
apply (frule egpoll_imp_lepoll [THEN lepoll_infinite], assumption)
apply (drule infinite_Card_is_InfCard, assumption)
apply (blast intro: subsets_eqpoll subsets_eqpoll_X eqpoll_sym eqpoll_trans)

done

end

theory W02_AC16 imports AC_Equiv AC16_lemmas Cardinal_aux begin

definition
recfunAC16 :: "[i,i,i,i] = i" where
"recfunAC16(f,h,i,a) =

transrec2(i, O,
Ag r. if 3y € r. h‘g C y) then r
else r U {f‘(u i. h‘g C £i A
(Vb<a. (h‘b C f‘i — (Yt € r. = h‘b C t))))P)"
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lemma recfunAC16_0: "recfunAC16(f,h,0,a) = 0"
by (simp add: recfunAC16_def)

lemma recfunAC16_succ:
"recfunAC16 (f,h,succ(i),a) =
(if (Ay € recfunAC16(f,h,i,a). h ¢ i C y) then recfunAC16(f,h,i,a)

else recfunAC16(f,h,i,a) U
{f “(uj.h “iCf*‘jA
(Vb<a. (h‘b C £°j
— (Vt € recfunAC16(f,h,i,a). = h‘b C t))))P"
apply (simp add: recfunAC16_def)
done

lemma recfunAC16_Limit: "Limit (i)
—> recfunAC16(f,h,i,a) = (|Jj<i. recfunAC16(f,h,j,a))"
by (simp add: recfunAC16_def transrec2_Limit)

lemma transrec2_mono_lemma [rule_format]:
"[Ag r. r C B(g,r); 0Ord(i)]
=—> j<i — transrec2(j, 0, B) C transrec2(i, 0, B)"
apply (erule trans_induct)
apply (rule Ord_cases, assumption+, fast)
apply (simp (no_asm_simp))
apply (blast elim!: 1eE)
apply (simp add: transrec2_Limit)
apply (blast intro: OUN_I 1tI Ord_in_Ord [THEN le_refl]
elim!: Limit_has_succ [THEN 1tE])
done

lemma transrec2_mono:
"[Ag r. r C B(g,r); j<i]
— transrec2(j, 0, B) C transrec2(i, 0, B)"
apply (erule leE)
apply (rule transrec2_mono_lemma)
apply (auto intro: 1t_0Ord2 )
done

lemma recfunAC16_mono:
"i<j = recfunAC16(f, g, i, a) C recfunAC16(f, g, j, a)"
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unfolding recfunAC16_def
apply (rule transrec2_mono, auto)
done

lemma lemma3 1:
"[Vy<x. Vz<a. z<y | QY € F(y). f(z)<=Y) — (3! Y. Y € F(y) A
f(z)<=Y);
Vi j. i<j — F(i) C F(j); j<i; i<x; z<a;
Ve F(i); f(2)<=V; W € F(j); f(z)<=W]
== V=W"
apply (erule asm_rl allE impE)+
apply (drule subsetD, assumption, blast)
done

lemma lemma3:
"[Vy<x. Vz<a. z<y | (Y € F(y). f(z)<=Y) — (3! Y. Y € F(y) A
f(z)<=Y);
Vi j. i<j — F(i) C F(j); i<x; j<x; z<a;
Ve F(i); £(2)<=V; W € F(j); f(z)<=W]
— V= W"
apply (rule_tac j=j in Ord_linear_le [OF 1t_Ord 1t_Ord], assumption+)
apply (erule lemma3_1 [symmetric], assumption+)
apply (erule lemma3_1, assumption+)
done

lemma lemma4:
"[Vy<x. F(y) C X A
(Vx<a. x <y | QY € F(y). h(x) C Y) —
@!'Y. Y e€Fy Nhx CY);
x < a]
= Vy<x. Vz<a. z <y | (AY € F(y). h(z) C V) —
(3!'Y. Y € F(l)ANh(z) CY)"
apply (intro oalll impI)
apply (drule ospec, assumption, clarify)
apply (blast elim!: oallE )
done

lemma lemma5:
"[Vy<x. F(y) C X A
(Vx<a. x <y | AY € F(y). h(x) C Y) —
3!'Y. Yy € F(y) Nhx) CYV);
x < a; Limit(x); Vi j. i<j — F(i) C F(j)]
= (U=x<x. F(x)) C X A
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(Vxa<a. xa < x | (3x € Jx<x. F(x). h(xa) C x)
— 3! Y. Y e (Ux<x. F(x)) A h(xa) C Y))"
apply (rule conjI)
apply (rule subsetI)
apply (erule OUN_E)
apply (drule ospec, assumption, fast)
apply (drule lemma4, assumption)
apply (rule oalll)
apply (rule impI)
apply (erule disjE)
apply (frule ospec, erule Limit_has_succ, assumption)
apply (drule_tac A = a and x = xa in ospec, assumption)
apply (erule impE, rule le_refl [THEN disjI1], erule 1t_Ord)
apply (blast intro: lemma3 Limit_has_succ)
apply (blast intro: lemma3)
done

lemma dbl_Diff_eqpoll_Card:
"[Am~a; Card(a); —Finite(a); B<a; C<a] = A - B - C=a"
by (blast intro: Diff_lesspoll_eqpoll_Card)

lemma Finite_lesspoll_infinite_Ord:
"[Finite(X); —Finite(a); Ord(a)] = X<a"
unfolding lesspoll_def
apply (rule conjI)
apply (drule nat_le_infinite_Ord [THEN le_imp_lepoll], assumption)
unfolding Finite_def
apply (blast intro: leI [THEN le_imp_subset, THEN subset_imp_lepoll]
1tI eqpoll_imp_lepoll lepoll_trans)
apply (blast intro: eqpoll_sym [THEN eqpoll_trans])
done

lemma Union_lesspoll:
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~

"[Vx € X. x S n A x CT; well_ord(T, R); X
b<a; —Finite(a); Card(a); n € nat]
= U &x=<a"
apply (case_tac "Finite (X)")
apply (blast intro: Card_is_Ord Finite_lesspoll_infinite_Ord
lepoll_nat_imp_Finite Finite_Union)
apply (drule lepoll_imp_ex_le_eqpoll)
apply (erule 1t_Ord)
apply (elim exE conjE)
apply (frule egpoll_imp_lepoll [THEN lepoll_infinite], assumption)
apply (erule eqpoll_sym [THEN eqpoll_def [THEN def_imp_iff, THEN iffD1],
THEN exE])
apply (frule bij_is_surj [THEN surj_image_eq])
apply (drule image_fun [OF bij_is_fun subset_refl])
apply (drule sym [THEN trans], assumption)
apply (blast intro: 1t_Ord UN_lepoll 1t_Card_imp_lesspoll
1t_transl lesspoll_transi)
done

lemma Un_sing eq cons: "A U {a} = cons(a, A)"
by fast

lemma Un_lepoll_succ: "A S B = A U {a} < succ(B)"
apply (simp add: Un_sing_eq_cons succ_def)

apply (blast elim!: mem_irrefl intro: cons_lepoll_cong)
done

lemma Diff_UN_succ_empty: "Ord(a) — F(a) - (|Jb<succ(a). F(b)) = 0"
by (fast intro!: le_refl)

lemma Diff_UN_succ_subset: "Ord(a) = F(a) U X - (|Jb<succ(a). F(b))
g xn
by blast

lemma recfunAC16_Diff_lepoll_1:
"Ord (x)
— recfunAC16(f, g, x, a) - (|Ji<x. recfunAC16(f, g, i, a)) < 1"
apply (erule Ord_cases)
apply (simp add: recfunAC16_0 empty_subsetI [THEN subset_imp_lepoll])

prefer 2 apply (simp add: recfunAC16_Limit Diff_cancel
empty_subsetI [THEN subset_imp_lepoll])

apply (simp add: recfunAC16_succ
Diff_UN_succ_empty [of _ "Aj. recfunAC16(f,g,j,a)"]
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empty_subsetI [THEN subset_imp_lepoll])
apply (best intro: Diff_ UN_succ_subset [THEN subset_imp_lepoll]
singleton_eqpoll_1 [THEN eqpoll_imp_lepoll] lepoll_trans)
done

lemma in_Least_Diff:

"[z € F(x); Ord(x)]

= z € F(pi. z € F(i)) - (Uj<u i. z € F@)). FGI)"
by (fast elim: less_LeastE elim!: LeastI)

lemma Least_eq_imp_ex:

"p i. w € F(i)) = (u i. z € F(i));

w € (Ui<a. F(i)); z € (Ui<a. F(i))]

= db<a. w € (F(b) - (Uc<b. F(c))) Az € (F(b) - (Uc<b. F(c)))"
apply (elim OUN_E)
apply (drule in_Least_Diff, erule 1t_Ord)
apply (frule in_Least_Diff, erule 1t_Ord)
apply (rule oexI, force)
apply (blast intro: 1t_Ord Least_le [THEN lt_trans1])
done

lemma two_in_lepoll_1: "[A < 1; a € A; b € A] = a=b"
by (fast dest!: lepoll_1_is_sing)

lemma UN_lepoll_index:
"[Vi<a. F(i)-(Jj<i. F(G)) < 1; Limit(a)]
= (Ux<a. Fx)) < a”
apply (zrule lepoll_def [THEN def_imp_iff [THEN iffD2]])
apply (rule_tac x = "\z € (Ux<a. F (x)). p i. z € F (i) " in exI)
unfolding inj_def
apply (rule CollectI)
apply (rule lam_type)
apply (erule OUN_E)
apply (erule Least_in_Ord)
apply (erule 1tD)
apply (erule 1t_0rd2)
apply (intro balll)
apply (simp (no_asm_simp))
apply (rule impI)
apply (drule Least_eq_imp_ex, assumption+)
apply (fast elim!: two_in_lepoll_1)
done

lemma recfunAC16_lepoll_index: "Ord(y) —> recfunAC16(f, h, y, a) <

y"
apply (erule trans_induct3)

50



apply (simp (no_asm_simp) add: recfunAC16_0 lepoll_refl)

apply (simp (no_asm_simp) add: recfunAC16_succ)
apply (blast dest!: succIl [THEN rev_bspec]
intro: subset_succI [THEN subset_imp_lepoll] Un_lepoll_succ

lepoll_trans)
apply (simp (no_asm_simp) add: recfunAC16_Limit)
apply (blast intro: 1t_Ord [THEN recfunAC16_Diff_lepoll_1] UN_lepoll_index)
done

lemma Union_recfunAC16_lesspoll:

"[recfunAC16(f,g,y,a) C {X € Pow(A). X~n};

Ama; y<a; —Finite(a); Card(a); n € nat]

= |J (recfunAC16(f,g,y,a))<a"
apply (erule eqpoll_def [THEN def_imp_iff, THEN iffD1, THEN exE])
apply (rule_tac T=A in Union_lesspoll, simp_all)
apply (blast intro!: eqpoll_imp_lepoll)
apply (blast intro: bij_is_inj Card_is_Ord [THEN well_ord_Memrel]

well_ord_rvimage)

apply (erule 1t_Ord [THEN recfunAC16_lepoll_index])
done

lemma dbl_Diff_eqpoll:
"[recfunAC16(f, h, y, a) C {X € Pow(4) . Xmsucc(k #+ m)};
Card(a); — Finite(a); A=a;
k € nat; y<a;
h € bij(a, {Y € Pow(A). Y=succ(k)})]
= A - |J (recfunAC16(f, h, y, a)) - hfy~a"
apply (rule dbl_Diff_eqpoll_Card, simp_all)
apply (simp add: Union_recfunAC16_lesspoll)
apply (rule Finite_lesspoll_infinite_Ord)
apply (rule Finite_def [THEN def_imp_iff, THEN iffD2])
apply (blast dest: 1tD bij_is_fun [THEN apply_typel], assumption)
apply (blast intro: Card_is_Ord)
done

lemmas disj_Un_eqpoll_nat_sum =
eqpoll_trans [THEN eqpoll_trans,
OF disj_Un_eqpoll_sum sum_eqpoll_cong nat_sum_eqpoll_sum]

lemma Un_in_Collect: "[x € Pow(A - B - h‘i); x~m;
h € bij(a, {x € Pow(A) . x=~k}); i<a; k € nat; m € nat]
— h ‘i Uzx € {x € Pow(4d) . x~k #+ m}"
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by (blast intro: disj_Un_eqpoll_nat_sum
dest: 1tD bij_is_fun [THEN apply_typel)

lemma lemma6:
"[Vy<succ(j). F(y)<=X N (Vx<a. x<y | P(x,y) — Q(x,y)); succ(j)<a]
= F(j)<=X N (Vx<a. x<j | P(x,j) — Q(x,j))"

by (blast intro!: 1t_Ord succIl [THEN 1tI, THEN 1t_Ord, THEN le_refl])

lemma lemma?:

"[Vx<a. x<j | P(x,j) — Q(x,j); succ(j)<a]

= P(j,j) — (Vx<a. x<j | P(x,j) — Q(x,j))"
by (fast elim!: leE)

lemma ex_subset_eqpoll:
"[A=a; — Finite(a); Ord(a); m € nat] = 3IX € Pow(4). X~m"

apply (rule lepoll_imp_eqpoll_subset [of m A, THEN exE])

apply (rule lepoll_trans, rule leI [THEN le_imp_lepoll])

apply (blast intro: 1lt_trans2 [OF 1tI nat_le_infinite_Ord] Ord_nat)
apply (erule eqpoll_sym [THEN eqpoll_imp_lepoll])
apply (fast elim!: eqpoll_sym)
done

lemma subset_Un_disjoint: "[A C B UC; ANC=0] = A C B"
by blast

lemma Int_empty:
"[X € Pow(A -U(B) -C); TE€B; FCT]=FnNX=0"
by blast

lemma subset_imp_eq lemma:
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"m € nat = VAB. ACBAm<AANB<m — A=B"
apply (induct_tac "m")
apply (fast dest!: lepoll_0_is_0)
apply (intro alll impI)
apply (elim conjE)
apply (rule succ_lepoll_imp_not_empty [THEN not_emptyE], assumption)
apply (frule subsetD [THEN Diff_sing lepoll], assumption+)
apply (frule lepoll_Diff_sing)
apply (erule allE impE)+
apply (rule conjI)
prefer 2 apply fast
apply fast
apply (blast elim: equalityE)
done

lemma subset_imp_eq: "[A C B; m < A; B < m; m € nat] = A=B"
by (blast dest!: subset_imp_eq_lemma)

lemma bij_imp_arg eq:
"[f € bij(a, {Y € X. Y~succ(k)}); k € nat; £b C f‘y; b<a; y<a]

= b=y"
apply (drule subset_imp_eq)
apply (erule_tac [3] nat_succI)
unfolding bij_def inj_def
apply (blast intro: eqpoll_sym eqpoll_imp_lepoll
dest: 1tD apply_type)+
done

lemma ex_next_set:
"[recfunAC16(f, h, y, a) C {X € Pow(4) . X=succ(k #+ m)};
Card(a); — Finite(a); A=a;
k € nat; m € nat; y<a;
h € bij(a, {Y € Pow(4). Y=succ(k)});
- (Y € recfunAC16(f, h, y, a). h‘y C Y)]
— JX € {Y € Pow(4). Y=succ(k #+ m)}. h'y C X A

(Vb<a. h‘'b C X —

(VT € recfunAC16(f, h, y, a). - h‘b C T))"
apply (erule_tac ml=m in dbl_Diff_eqpoll [THEN ex_subset_eqpoll, THEN
bexE],

assumption+)
apply (erule Card_is_Ord, assumption)
apply (frule Un_in_Collect, (erule asm_rl nat_succI)+)
apply (erule CollectE)
apply (rule rev_bexI, simp)
apply (rule conjI, blast)
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apply (intro ballIl impI oalll notI)

apply (drule subset_Un_disjoint, rule Int_empty, assumption+)
apply (blast dest: bij_imp_arg_eq)

done

lemma ex_next_0Ord:
"[recfunAC16(f, h, y, a) C {X € Pow(4) . X~succ(k #+ m)};
Card(a); — Finite(a); A=a;
k € nat; m € nat; y<a;
h € bij(a, {Y € Pow(A). Y=succ(k)});
f € bij(a, {Y € Pow(4). Y=succ(k #+ m)});
- (Y € recfunAC16(f, h, y, a). h‘y C V)]
= dc<a. h‘y C fc A
(Wb<a. h‘b C f‘c —
(VT € recfunAC16(f, h, y, a). = h‘b C T))"
apply (drule ex_next_set, assumption+)
apply (erule bexE)
apply (rule_tac x="converse(f) ‘X" in oexI)
apply (simp add: right_inverse_bij)
apply (blast intro: bij_converse_bij bij_is_fun [THEN apply_typel 1tI
Card_is_0rd)
done

lemma lemma8:
"[Vx<a. x<j | (xa € F(j). P(x, xa))
— (3! Y. Y€ F@G)ANPE, V)); F(G) CX;
L € X; P(j, L) AN (Vx<a. P(x, L) — (Vxa € F(j). —P(x, xa)))]

= F@() UAL} C X A
(Vx<a. x<j | (3xa € (F(j) U {L}). P(x, xa)) —
@rvy.vye (F@G UL AP, D"
apply (rule conjI)
apply (fast intro!: singleton_subsetI)
apply (rule oalll)
apply (blast elim!: 1eE oallE)
done
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lemma main_induct:
"[b < a; f € bij(a, {Y € Pow(4) . Ymsucc(k #+ m)});
h € bij(a, {Y € Pow(4) . Y=succ(k)});
—Finite(a); Card(a); Ama; k € nat; m € nat]
— recfunAC16(f, h, b, a) C {X € Pow(4) . X=succ(k #+ m)} N
(Vx<a. x < b | (Y € recfunAC16(f, h, b, a). h ‘' x C V) —

(3! Y. Y € recfunACi16(f, h, b, a) N h * x C Y))"
apply (erule 1t_induct)
apply (frule 1t_Ord)
apply (erule 0Ord_cases)

apply (simp add: recfunAC16_0)

prefer 2 apply (simp add: recfunAC16_Limit)
apply (rule lemma5, assumption+)
apply (blast dest!: recfunAC16_mono)

apply clarify
apply (erule lemma6 [THEN conjE], assumption)
apply (simp (no_asm_simp) split del: split_if add: recfunAC16_succ)
apply (zrule conjI [THEN split_if [THEN iffD2]])

apply (simp, erule lemma7, assumption)
apply (rule impI)
apply (rule ex_next_Ord [THEN oexE],

assumption+, rule le_refl [THEN 1lt_trans], assumption+)

apply (erule lemma8, assumption)

apply (rule bij_is_fun [THEN apply_typel, assumption)

apply (erule Least_le [THEN 1lt_trans2, THEN 1tD])

apply (erule 1t_0Ord)

apply (erule succ_lel)
apply (erule LeastI)
apply (erule 1t_Ord)
done

lemma lemma_simp_induct:
"[Vb. b<a — F(b) C S A (Vx<a. (x<b | (AY € F(b). £f'x C Y))
— (3! Y. Y €FM ANLfxCVY));
f € a->f‘“(a); Limit(a);
Vi j. i<j — F(i) C F(j)]
= (Uj<a. F(j)) € S A
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(Wx € f“a. 31'Y. Y € (Uj<a. F(G)) Ax C V"
apply (rule conjI)
apply (rule subsetI)
apply (erule OUN_E, blast)
apply (rule balll)
apply (erule imageE)
apply (drule 1tI, erule Limit_is_Ord)
apply (drule Limit_has_succ, assumption)
apply (frule_tac x1="succ(xa)" in spec [THEN mp], assumption)
apply (erule conjE)
apply (drule ospec)

apply (erule leI [THEN succ_leE])

apply (erule impE)

apply (fast elim!: leI [THEN succ_leE, THEN 1t_Ord, THEN le_refl])
apply (drule apply_equality, assumption)

apply (elim conjE exlE)

apply (rule ex1I, blast)
apply (elim conjE OUN_E)
apply (erule_tac i="succ(xa)" and j=aa
in Ord_linear_le [OF 1t_Ord 1t_0Ord], assumption)
prefer 2
apply (drule spec [THEN spec, THEN mp, THEN subsetD], assumption+, blast)

apply (drule_tac xl1=aa in spec [THEN mp], assumption)
apply (frule succ_leE)
apply (drule spec [THEN spec, THEN mp, THEN subsetD], assumption+, blast)

done

theorem W02_AC16: "[W02; O<m; k € nat; m € nat] —> AC16(k #+ m,k)"
unfolding AC16_def

apply (rule alll)

apply (rule impI)

apply (frule WO2_infinite_subsets_eqpoll_X, assumption+)

apply (frule_tac n="k #+ m" in W02_infinite_subsets_eqpoll_X, simp, simp)

apply (frule WO2_imp_ex_Card)
apply (elim exE conjE)
apply (drule eqgpoll_trans [THEN eqpoll_sym,
THEN eqpoll_def [THEN def_imp_iff, THEN iffD1]],
assumption)
apply (drule eqpoll_trans [THEN eqpoll_sym,
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THEN eqpoll_def [THEN def_imp_iff, THEN iffD1]],

assumption+)
apply (elim exE)
apply (rename_tac h)
apply (rule_tac x = "|Jj<a. recfunAC16 (h,f,j,a) " in exI)
apply (rule_tac P="Xz. Y AN (Vx € z. Z(x))" for Y Z

in bij_is_surj [THEN surj_image_eq, THEN subst], assumption)
apply (rule lemma_simp_induct)
apply (blast del: conjI notI

intro!: main_induct eqpoll_imp_lepoll [THEN lepoll_infinite]

apply (blast intro: bij_is_fun [THEN surj_image, THEN surj_is_fun])
apply (erule eqpoll_imp_lepoll [THEN lepoll_infinite,

THEN infinite_Card_is_InfCard,

THEN InfCard_is_Limit],

assumption+)
apply (blast dest!: recfunAC16_mono)
done
end

theory AC16_W04
imports AC16_lemmas
begin

lemma lemmal:

"[Finite(A); O<m; m € nat]

=—> da f. Ord(a) A domain(f) = a A

(Ub<a. £b) = A A (Vb<a. £b < m)"
unfolding Finite_def

apply (erule bexE)
apply (drule eqpoll_sym [THEN eqpoll_def [THEN def_imp_iff, THEN iffD1]])
apply (erule exE)
apply (rule_tac x = n in exI)
apply (rule_tac x = "Ai € n. {f‘i}" in exI)
apply (simp add: 1tD bij_def surj_def)
apply (fast intro!: 1tI nat_into_Ord lam_funtype [THEN domain_of_fun]

singleton_eqpoll_1 [THEN eqpoll_imp_lepoll, THEN lepoll_trans]
nat_1_lepoll_iff [THEN iffD2]

elim!: apply_type 1tE)
done
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lemmas well_ord_paired = paired_bij [THEN bij_is_inj, THEN well_ord_rvimage]

lemma lepoll_transi: "[A < B; - A < C] = - B < C"
by (blast intro: lepoll_trans)

lemmas lepoll_paired = paired_eqpoll [THEN eqpoll_sym, THEN eqpoll_imp_lepoll]

lemma lemma2: "Jy R. well_ord(y,R) AN x Ny =0 A -y < z A —Finite(y)"
apply (rule_tac x = "{{a,x}. a € nat U Hartog (z) }" in exI)
apply (rule well_ord_Un [OF Ord_nat [THEN well_ord_Memrel]
Ord_Hartog [THEN well_ord_Memrel], THEN exE])
apply (blast intro!: Ord_Hartog well_ord_Memrel well_ord_paired
lepoll_transl [OF _ not_Hartog lepoll_self]
lepoll_trans [OF subset_imp_lepoll lepoll_paired]
elim!: nat_not_Finite [THEN notE]
elim: mem_asym
dest!: Un_upperl [THEN subset_imp_lepoll, THEN lepoll_Finite]
lepoll_paired [THEN lepoll_Finite])
done

lemma infinite Un: "—Finite(B) = —Finite(A U B)"
by (blast intro: subset_Finite)

lemma succ_not_lepoll_lemma:
"[-(@x € A. f‘x=y); f € inj(A, B); y € B]
= (\a € succ(4). if(a=A, y, f‘a)) € inj(succ(4), B)"
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apply (rule_tac d = "Az. if (z=y, A, converse (f) ‘z) in lam_injective)

apply (force simp add: inj_is_fun [THEN apply_type])

apply (simp (no_asm_simp))
apply force
done

lemma succ_not_lepoll_imp_eqpoll: "[-A =~ B; A < B] = succ(4d) < B"
unfolding lepoll_def eqpoll_def bij_def surj_def

apply (fast elim!: succ_not_lepoll_lemma inj_is_fun)

done

lemmas ordertype_eqpoll =
ordermap_bij [THEN exI [THEN eqpoll_def [THEN def_imp_iff, THEN
iffD2]]]

lemma cons_cons_subset:
"la € y; b € y-a; u € x] = cons(b, cons(u, a)) € Pow(x U y)"
by fast

lemma cons_cons_eqpoll:
"la = k; a Cy; b €y-a; u€x; xNy-=0|
— cons(b, cons(u, a)) =~ succ(succ(k))"
by (fast intro!: cons_eqpoll_succ)

lemma set_eq_cons:
"[succ(k) ~ A; k ~ B; B C A; a € A-B; k € nat] = A = cons(a,
B)"
apply (rule equalityI)
prefer 2 apply fast
apply (rule Diff_eq_O_iff [THEN iffD1])
apply (rule equalsOI)
apply (drule eqpoll_sym [THEN eqpoll_imp_lepoll])
apply (drule eqpoll_sym [THEN cons_eqpoll_succ], fast)
apply (drule cons_eqpoll_succ, fast)
apply (fast elim!: lepoll_trans [THEN lepoll_trans, THEN succ_lepoll_natE,
OF eqgpoll_sym [THEN eqpoll_imp_lepoll] subset_imp_lepoll])
done

lemma cons_eqE: "[cons(x,a) = cons(y,a); x ¢ a] = x =y "
by (fast elim!: equalityE)

lemma eq_imp_Int_eq: "A =B — AN C=BnNCc"
by blast
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lemma eqpoll_sum_imp_ Diff lepoll_lemma [rule_format]:

"[k € nat; m € nat]

= VAB. Ax~k#+ m ANk SBABCA — A-B <m"
apply (induct_tac "k")
apply (simp add: add_0)
apply (blast intro: eqpoll_imp_lepoll lepoll_trans

Diff_subset [THEN subset_imp_lepoll])

apply (intro alll impI)
apply (rule succ_lepoll_imp_not_empty [THEN not_emptyE], fast)
apply (erule_tac x = "A - {xa}" in allE)
apply (erule_tac x = "B - {xa}" in allE)
apply (erule impE)
apply (simp add: add_succ)
apply (fast intro!: Diff_sing eqpoll lepoll_Diff_sing)
apply (subgoal_tac "A - {xa} - (B - {xa}) = A - B", simp)
apply blast
done

lemma eqpoll_sum_imp_Diff lepoll:
"[A = succ(k #+ m); B C A; succ(k) < B; k € nat; m € nat]
= A-B S m"

apply (simp only: add_succ [symmetric])

apply (blast intro: eqpoll_sum_imp_Diff_lepoll_lemma)

done

lemma eqpoll_sum_imp_Diff eqpoll_lemma [rule_format]:

"[k € nat; m € nat]

— VAB. A~k #+ m ANk =~ BANB C A — A-B = m"
apply (induct_tac "k")
apply (force dest!: eqpoll_sym [THEN eqpoll_imp_lepoll, THEN lepoll_0_is_0])
apply (intro alll impI)
apply (rule succ_lepoll_imp_not_empty [THEN not_emptyE])
apply (fast elim!: eqpoll_imp_lepoll)
apply (erule_tac x = "A - {xa}" in allE)
apply (erule_tac x = "B - {xa}" in allE)
apply (erule impE)
apply (force intro: eqpoll_sym intro!: Diff_sing eqpoll)
apply (subgoal_tac "A - {xa} - (B - {xa}) = A - B", simp)
apply blast
done
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lemma eqpoll_sum_imp_Diff_ eqpoll:
"[A = succ(k #+ m); B C A; succ(k) ~ B; k € nat; m € nat]
— A-B = m"

apply (simp only: add_succ [symmetric])

apply (blast intro: eqpoll_sum_imp_Diff_eqpoll_lemma)

done

lemma subsets_lepoll_O_eq unit: "{x € Pow(X). x < O} = {0}"

~

by (fast dest!: lepoll_O_is_0 intro!: lepoll_refl)

lemma subsets_lepoll_succ:
"n € nat = {z € Pow(y). z < succ(@} =
{z € Pow(y). z < n} U {z € Pow(y). z =~ succ(n)}"
by (blast intro: lel le_imp_lepoll nat_into_Ord
lepoll_trans eqpoll_imp_lepoll
dest!: lepoll_succ_disj)

lemma Int_empty:
"n € nat = {z € Pow(y). z < n} N {z € Pow(y). z = succ(n)} =

O"
by (blast intro: eqpoll_sym [THEN eqpoll_imp_lepoll, THEN lepoll_trans]

succ_lepoll_natE)
locale AC16 =

fixes x and y and k and 1 and m and t_n and R and MM and LL and
GG and s

defines k_def: "k = succ(l)"
and MM_def: "MM = {v € t_n. succ(k) < v N y}"
and LL_def: "LL =4{vNy. v E MM"
and GG_def: "GG = A& € LL. (THE w. w € MM N v C w) - v"
and s_def: "s(u) ={vetn uev Ak SvnyH
assumes all_ex: "Wz € {z € Pow(x U y) . z = succ(k)}.

d'w. wetnANzCw"
and disjoint[iff]: "x Ny = 0"

and "includes": "t_n C {v € Pow(x U y). v = succ(k #+ m)}"
and WO_R[iff]: "well_ord(y,R)"

and Inat[iff]: "l € nat"

and mnat[iff]: "m € nat"

and mpos[iff]: "0<m"

and Infinite[iff]: "- Finite(y)"
and noLepoll: "-y S {v € Pow(x). v =~ m}"
begin
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lemma knat [iff]: "k € nat"
by (simp add: k_def)

lemma Diff_Finite_eqpoll: "[1 ~ a; a Cy] = y - a = y"
apply (insert WO_R Infinite lnat)
apply (rule eqpoll_trans)
apply (rule Diff_ lesspoll_eqpoll_Card)
apply (erule well_ord_cardinal_eqpoll [THEN eqpoll_sym])
apply (blast intro: lesspoll_transl
intro!: Card_cardinal
Card_cardinal [THEN Card_is_Ord, THEN nat_le_infinite_Ord,
THEN le_imp_lepoll]
dest: well_ord_cardinal_eqgpoll
eqpoll_sym eqpoll_imp_lepoll
n_lesspoll_nat [THEN lesspoll_trans2]
well_ord_cardinal_eqpoll [THEN eqpoll_sym,
THEN eqpoll_imp_lepoll, THEN lepoll_infinite])+
done

lemma s_subset: "s(u) C t_n"
by (unfold s_def, blast)

lemma sI:
"[w € t_n; cons(b,cons(u,a)) C w; a C y; b € y-a; 1 ~ a
= w € s(w"
unfolding s_def succ_def k_def
apply (blast intro!: eqpoll_imp_lepoll [THEN cons_lepoll_cong]
intro: subset_imp_lepoll lepoll_trans)
done

lemma in_s_imp_u_in: "v € s(u) = u € v"
by (unfold s_def, blast)

lemma ex1_superset_a:
"[1 ~a; aly; bey-a; uc x|
— d! c. c € s(u) ha Cc Abe€c"
apply (rule all_ex [simplified k_def, THEN ballE])
apply (erule ex1E)
apply (rule_tac a = w in ex1I, blast intro: sI)
apply (blast dest: s_subset [THEN subsetD] in_s_imp_u_in)
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apply (blast del: PowI
intro!: cons_cons_subset eqpoll_sym [THEN cons_cons_eqpoll])
done

lemma the_eq_cons:

"[Vv € s(w). succ(l) =~ v N y;

l~a aCy;, bey-a; uc€zx|

— (THE c. ¢ € s(w Na C c A b € c)Ny=cons(b, a)"
apply (frule ex1_superset_a [THEN theI], assumption+)
apply (rule set_eq_cons)
apply (fast+)
done

lemma y_lepoll_subset_s:
"[Vv € s(w). succ(l) =~ v N y;
l1=~a; aCy; uc€x]|
=y < {v € s(w). a C v}"
apply (rule Diff Finite_eqpoll [THEN eqpoll_sym, THEN eqpoll_imp_lepoll,

THEN lepoll_trans], fast+)
apply (rule_tac f3 = "Ab € y-a. THE c. ¢ € s () Na C ¢c A b € ¢"

in exI [THEN lepoll_def [THEN def_imp_iff, THEN iffD2]])
apply (simp add: inj_def)
apply (rule conjI)
apply (rule lam_type)
apply (frule exl_superset_a [THEN thelI], fast+, clarify)
apply (rule cons_eqE [of _ a])
apply (drule_tac A = "THE c. P (c)" and C = y for P in eq_imp_Int_eq)
apply (simp_all add: the_eq_cons)
done

lemma x_imp_not_y [dest]: "a € x = a ¢ y"
by (blast dest: disjoint [THEN equalityD1, THEN subsetD, OF IntI])

lemma w_Int_eq_w_Diff:
"w Cx Uy = wnN (x-A{u}) =w - cons(u, wny"
by blast

lemma w_Int_eqpoll_m:

"w € {v € s(uw). a C v};
1l ~ a; u € x;
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Vv € s(u). succ(l) = v N y]
= w N (x - {u}) ~n"
apply (erule CollectE)
apply (subst w_Int_eq_w_Diff)
apply (fast dest!: s_subset [THEN subsetD]
"includes" [simplified k_def, THEN subsetD])
apply (blast dest: s_subset [THEN subsetD]
"includes" [simplified k_def, THEN subsetD]
dest: eqpoll_sym [THEN cons_eqpoll_succ, THEN eqpoll_sym]

in_s_imp_u_in
intro!: eqpoll_sum_imp_Diff_eqpoll)
done

lemma eqpoll_m_not_empty: "a ~ m = a # 0"

apply (insert mpos)

apply (fast elim!: zero_lt_natE dest!: eqpoll_succ_imp_not_empty)
done

lemma cons_cons_in:
"z € xa N (x -{ub); 1 =~ a; a C y; u € x]
= d! w. w € t_n A cons(z, cons(u, a)) C w"
apply (rule all_ex [THEN bspec])
unfolding k_def
apply (fast intro!: cons_eqpoll_succ elim: eqpoll_sym)
done

lemma subset_s_lepoll_w:
"[Vv € s(@). succ(l) = vNy;aCy;, 1=a;uc€x]|
= {v € s(w. a C v} < {v € Pow(x). v = m}"
apply (rule_tac f3 = "\w € {v € s (w) . a C v} wn (x-{up"
in exI [THEN lepoll_def [THEN def_imp_iff, THEN iffD2]])
apply (simp add: inj_def)
apply (intro conjI lam_type CollectI)
apply fast
apply (blast intro: w_Int_eqpoll_m)
apply (intro balll impI)

apply (rule w_Int_eqpoll_m [THEN eqpoll_m_not_empty, THEN not_emptyE])
apply (blast, assumption+)

apply (drule equalityD1 [THEN subsetD], assumption)

apply (frule cons_cons_in, assumption+)

apply (blast dest: exl_two_eq intro: s_subset [THEN subsetD] in_s_imp_u_in)+
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done

lemma well_ord_subsets_eqpoll_n:
"n € nat = 3S. well_ord({z € Pow(y) . z = succ(m)}, S)"
apply (rule WO_R [THEN well_ord_infinite_subsets_eqpoll_X,
THEN eqpoll_def [THEN def_imp_iff, THEN iffD1], THEN
exE])
apply (fast intro: bij_is_inj [THEN well_ord_rvimage])+
done

lemma well_ord_subsets_lepoll_n:
"n € nat = JR. well_ord({z € Pow(y). z < n}, R)"
apply (induct_tac "n")
apply (force intro!: well_ord_unit simp add: subsets_lepoll_O_eq_unit)
apply (erule exE)
apply (rule well_ord_subsets_eqpoll_n [THEN exE], assumption)
apply (simp add: subsets_lepoll_succ)
apply (drule well_ord_radd, assumption)
apply (erule Int_empty [THEN disj_Un_eqpoll_sum,
THEN eqpoll_def [THEN def_imp_iff, THEN iffD1], THEN
exE])
apply (fast elim!: bij_is_inj [THEN well_ord_rvimage])
done

< succ(k #+ m)}"

~

lemma LL_subset: "LL C {z € Pow(y). z
unfolding LL_def MM_def

apply (insert "includes")

apply (blast intro: subset_imp_lepoll eqpoll_imp_lepoll lepoll_trans)

done

lemma well_ord_LL: "4S. well_ord(LL,S)"

apply (rule well_ord_subsets_lepoll_n [THEN exE, of "succ(k#+m)"])
apply simp

apply (blast intro: well_ord_subset [OF _ LL_subset])

done

lemma unique_superset_in_MM:
"v € LL =— d! w. w € MM AN v C w"
apply (unfold MM_def LL_def, safe, fast)
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apply (rule lepoll_imp_eqpoll_subset [THEN exE], assumption)
apply (rule_tac x = x in all_ex [THEN ballE])

apply (blast intro: eqpoll_sym)+

done

lemma Int_in LL: "w € MM = w N y € LL"
by (unfold LL_def, fast)

lemma in_LL_eq_Int:

"vw. € LL = v = (THEx. x € MM AN v C x) N y"
apply (unfold LL_def, clarify)
apply (subst unique_superset_in_MM [THEN the_equality2])
apply (auto simp add: Int_in_LL)
done

lemma unique_supersetl: "a € LL = (THE x. x € MM N a C x) € MM"
by (erule unique_superset_in_MM [THEN theI, THEN conjunct1])

lemma the_in_MM_subset:
"vw. € LL = (THE x. x e MM N v C x) C x U y"
apply (drule unique_superset1)
unfolding MM_def
apply (fast dest!: unique_supersetl "includes" [THEN subsetD])
done

lemma GG _subset: "v € LL — GG ‘ v C x"
unfolding GG_def

apply (frule the_in_MM_subset)

apply (frule in_LL_eq_Int)

apply (force elim: equalityE)

done

lemma nat_lepoll_ordertype: "nat < ordertype(y, R)"
apply (rule nat_le_infinite_Ord [THEN le_imp_lepoll])
apply (rule Ord_ordertype [OF WO_R])

apply (rule ordertype_eqpoll [THEN eqpoll_imp_lepoll, THEN lepoll_infinite])
apply (zrule WO_R)

apply (rule Infinite)
done
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lemma ex_subset_eqpoll_n: "n € nat =— Jz. z C y A n = z
apply (erule nat_lepoll_imp_ex_eqpoll_n)

apply (rule lepoll_trans [OF nat_lepoll_ordertype])

apply (rule ordertype_eqpoll [THEN eqpoll_sym, THEN eqpoll_imp_lepoll])

apply (rule WO_R)
done

lemma exists_proper_in_s: "u € x = Jv € s(w). succk) S vnNy"

apply (rule ccontr)

apply (subgoal_tac "Vv € s () . k = v N y")

prefer 2 apply (simp add: s_def, blast intro: succ_not_lepoll_imp_eqpoll)
unfolding k_def

apply (insert all_ex "includes" lnat)

apply (rule ex_subset_eqpoll_n [THEN exE], assumption)

apply (rule nolLepoll [THEN notE])

apply (blast intro: lepoll_trans [OF y_lepoll_subset_s subset_s_lepoll_w])

done

lemma exists_in MM: "u € x —> dw € MM. u € w"
apply (erule exists_proper_in_s [THEN bexE])
apply (unfold MM_def s_def, fast)

done

lemma exists_in LL: "u € x —> dw € LL. u € GG‘w"
apply (rule exists_in_MM [THEN bexE], assumption)
apply (rule bexI)
apply (erule_tac [2] Int_in_LL)
unfolding GG_def
apply (simp add: Int_in_LL)
apply (subst unique_superset_in_MM [THEN the_equality2])
apply (fast elim!: Int_in_ LL)+
done

lemma OUN_eq_x: "well_ord(LL,S) —
(U b<ordertype(LL,S). GG ¢ (converse(ordermap(LL,S)) ‘ b)) = x"
apply (rule equalityI)
apply (rule subsetI)
apply (erule OUN_E)
apply (rule GG_subset [THEN subsetD])
prefer 2 apply assumption
apply (blast intro: 1tD ordermap_bij [THEN bij_converse_bij, THEN bij_is_fun,
THEN apply_typel)
apply (rule subsetI)
apply (erule exists_in_LL [THEN bexE])
apply (force intro: 1tI [OF _ Ord_ordertypel]
ordermap_type [THEN apply_typel
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simp add: ordermap_bij [THEN bij_is_inj, THEN left_inverse])
done

lemma in_MM_eqgpoll_n: "w € MM —> w =~ succ(k #+ m)"
unfolding MM_def

apply (fast dest: "includes" [THEN subsetD])

done

lemma in_LL_eqpoll_n: "w € LL — succ(k) S w"
by (unfold LL_def MM_def, fast)

lemma in LL: "w € LL — w C (THE x. x € MM AN w C x)"
by (erule subset_trans [OF in_LL_eq_Int [THEN equalityD1] Int_lowerl])

lemma all_in_lepoll_m:
"well_ord(LL,S) =
V b<ordertype(LL,S). GG ‘ (converse(ordermap(LL,S)) ‘ b) < m"
unfolding GG_def
apply (rule oalll)
apply (simp add: 1tD ordermap_bij [THEN bij_converse_bij, THEN bij_is_fun,
THEN apply_typel)
apply (insert "includes")
apply (rule eqpoll_sum_imp Diff_lepoll)
apply (blast del: subsetI
dest!: 1tD
intro!: eqpoll_sum_imp_Diff_lepoll in_LL_eqpoll_n
intro: in_LL  unique_supersetl [THEN in_MM_eqpoll_n]
ordermap_bij [THEN bij_converse_bij, THEN bij_is_fun,

THEN apply_typel)+
done

lemma "conclusion":
"Ja f. Ord(a) A domain(f) = a A ((Ub<a. £ “b) =x AN (Vb<a. £ ¢
b < m)"
apply (rule well_ord_LL [THEN exE])
apply (rename_tac S)
apply (rule_tac x = "ordertype (LL,S)" in exI)
apply (rule_tac x = "Ab € ordertype(LL,S).
GG ¢ (converse (ordermap (LL,S)) ¢ b)" in exI)
apply (simp add: 1tD)
apply (blast intro: lam_funtype [THEN domain_of_fun]
Ord_ordertype OUN_eq_x all_in_lepoll_m [THEN ospec])
done
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end

theorem AC16_W04:
"[AC_Equiv.AC16(k #+ m, k); 0 < k; O < m; k € nat; m € nat] =

w04 (m) "

unfolding AC_Equiv.AC16_def W04_def
apply (rule alll)
apply (case_tac "Finite (4)")
apply (rule lemmal, assumption+)
apply (cut_tac lemma2)
apply (elim exE conjE)
apply (erule_tac x = "A U y" in allE)
apply (frule infinite_Un, drule mp, assumption)
apply (erule zero_lt_natE, assumption, clarify)
apply (blast intro: AC16.conclusion [OF AC16.intro])
done

end

theory AC17_AC1
imports HH
begin

lemma ACO_AC1_lemma: "[f:([[X € A. X); D C A] = 3Jg. g:([[X € D.
X) n
by (fast intro!: lam_type apply_type)

lemma ACO_AC1: "ACO — AC1"
unfolding ACO_def AC1_def

apply (blast intro: ACO_AC1_lemma)

done

lemma AC1_ACO: "AC1 — ACO"
by (unfold ACO_def AC1_def, blast)

lemma AC1_AC17_lemma: "f € ([[X € Pow(4) - {0}. X) = f € (Pow(4)
- {0} > A"
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apply (rule Pi_type, assumption)
apply (drule apply_type, assumption, fast)
done

lemma AC1_AC17: "AC1 = AC1T7"
unfolding AC1_def AC17_def
apply (rule alll)
apply (rule balll)
apply (erule_tac x = "Pow (A) -{0}" in allE)
apply (erule impE, fast)
apply (erule exE)
apply (rule bexI)
apply (erule_tac [2] AC1_AC17_lemma)
apply (rule apply_type, assumption)
apply (fast dest!: AC1_AC17_lemma elim!: apply_type)
done

lemma UN_eq_imp_well_ord:
"lx - AJj € p i. HHOAX € Pow(x)-{0}. {f‘X}, x, i) = {x}.
HH(AX € Pow(x)-{0}. {f‘X}, x, j)) = 0;
f € Pow(x)-{0} -> x]
— dr. well_ord(x,r)"
apply (rule exI)
apply (erule well_ord_rvimage
[OF bij_Least_HH_x [THEN bij_converse_bij, THEN bij_is_inj]
Ord_Least [THEN well_ord_Memrel]], assumption)
done

lemma not_AC1_imp_ex:
"-AC1 = JA. VI € Pow(4)-{0} -> A. Ju € Pow(A)-{0}. f‘u ¢ u"
unfolding AC1_def
apply (erule swap)
apply (rule alll)
apply (erule swap)
apply (rule_tac x = "|J (A)" in exI)
apply (blast intro: lam_type)
done
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lemma AC17_AC1_aux1:
"[Vf € Pow(x) - {0} -> x. Ju € Pow(x) - {0}. f‘uédu;
Jf € Pow(x)-{0}->x.
x - (Ua € (u i. HHOA\X € Pow(x)-{0}. {f‘X},x,i)={x}).
HH(AX € Pow(x)-{0}. {f‘X},x,a)) = 0]
= P"
apply (erule bexE)
apply (erule UN_eq_imp_well_ord [THEN exE], assumption)
apply (erule ex_choice_fun_Pow [THEN exE])
apply (erule ballE)
apply (fast intro: apply_type del: DiffE)
apply (erule notE)
apply (rule Pi_type, assumption)
apply (blast dest: apply_type)
done

lemma AC17_AC1_aux2:
"= (Af € Pow(x)-{0}->x. x - F(f) = 0)
= (Af € Pow(x)-{0}->x . x - F(£))
€ (Pow(x) -{0} -> x) -> Pow(x) - {0}"
by (fast intro!: lam_type dest!: Diff_eq O_iff [THEN iffD1])

lemma AC17_AC1_aux3:

"[£Z € Z; Z € Pow(x)-{0}]

= (MX € Pow(x)-{0}. {£‘X})‘Z € Pow(Z)-{0}"
by auto

lemma AC17_AC1_aux4:
"If € F. £°((A\f € F. Q(f))‘f) € (AMf € F. Q(£))‘f
= Jf € F. £Q(f) € Q)"

by simp

lemma AC17_AC1: "AC17 — AC1"
unfolding AC17_def
apply (rule classical)
apply (erule not_AC1_imp_ex [THEN exE])
apply (case_tac
"Jf € Pow(x)-{0} -> x.
x - (Ua € (ui. HH (\X € Pow (x) -{0}. {f‘X},x,i) ={x}) . HH
(AX € Pow (x) -{0}. {f‘X},x,a)) = 0")
apply (erule AC17_AC1_auxl, assumption)
apply (drule AC17_AC1_aux2)
apply (erule allE)
apply (drule bspec, assumption)
apply (drule AC17_AC1_aux4)
apply (erule bexE)
apply (drule apply_type, assumption)
apply (simp add: HH_Least_eq_x del: Diff_iff )
apply (drule AC17_AC1_aux3, assumption)
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apply (fast dest!: subst_elem [OF _ HH_Least_eq_x [symmetric]]
f_subset_imp_HH_subset elim!: mem_irrefl)
done

lemma AC1_AC2_aux1:
"[£:([[X € A. X); B € A; 0¢A] = {fB¥ C B N {f‘C. C € A}"
by (fast elim!: apply_type)

lemma AC1_AC2 aux2:

"[pairwise_disjoint(A); B € A; C € A; D € B; D € C] = f‘B
= fec"
by (unfold pairwise_disjoint_def, fast)

lemma AC1_AC2: "AC1 = AC2"

unfolding AC1_def AC2_def
apply (rule alll)
apply (rule impI)
apply (elim asm_rl conjE allE exE impE, assumption)
apply (intro exI balll equalityI)
prefer 2 apply (rule AC1_AC2_auxl, assumption+)
apply (fast elim!: AC1_AC2_ aux2 elim: apply_type)
done

lemma AC2_AC1_auxl: "0¢A —> O ¢ {B*{B}. B € A}"
by (fast dest!: sym [THEN Sigma_empty_iff [THEN iffD1]])

lemma AC2_AC1_aux2: "[X*{X} N C = {y}; X € 4]
=> (THE y. X¥{X} N C = {y}): X*A"

apply (rule subst_elem [of y])

apply (blast elim!: equalityE)

apply (auto simp add: singleton_eq_iff)

done

lemma AC2_AC1_aux3:

"YD € {Ex{E}. E € A}. Jy. D N C = {y}

= (A\x € A. fst(THE z. (x¥{x} N C = {z}))) € (J[X € A. X)"
apply (rule lam_type)
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apply (drule bspec, blast)
apply (blast intro: AC2_AC1_aux2 fst_type)
done

lemma AC2_AC1: "AC2 — AC1"
unfolding AC1_def AC2_def pairwise_disjoint_def
apply (intro alll impI)
apply (elim allE impE)
prefer 2 apply (fast elim!: AC2_AC1_aux3)
apply (blast intro!: AC2_AC1_aux1)
done

lemma empty notin_images: "0 ¢ {R‘‘{x}. x € domain(R)}"
by blast

lemma AC1_AC4: "AC1 = AC4"
unfolding AC1_def AC4_def
apply (intro alll impI)
apply (drule spec, drule mp [OF _ empty_notin_images])
apply (best intro!: lam_type elim!: apply_type)
done

lemma AC4_AC3_auxl: "f € A->B = (|Jz € A. {z}*f‘z) C A+{J (B)"
by (fast dest!: apply_type)

lemma AC4_AC3_aux2: "domain(|Jz € A. {z}*f(z)) = {a € A. f(a)#0}"
by blast

lemma AC4_AC3_aux3: "x € A = ((Jz € A. {z}*f(2)) {x} = f(O"
by fast

lemma AC4_AC3: "AC4 — AC3"
unfolding AC3_def AC4_def
apply (intro alll balll)
apply (elim allE impE)
apply (erule AC4_AC3_auxl)
apply (simp add: AC4_AC3_aux2 AC4_AC3_aux3 cong add: Pi_cong)
done

73



lemma AC3_AC1_lemma:
"p¢Ad = ([[x € {a € A. id(4) ‘a#b}. id(4)‘x) = ([[x € A. =)
apply (simp add: id_def cong add: Pi_cong)
apply (rule_tac b = A in subst_context, fast)
done

lemma AC3_AC1: "AC3 — AC1"

unfolding AC1_def AC3_def
apply (fast intro!: id_type elim: AC3_AC1_lemma [THEN subst])
done

lemma AC4_AC5: "AC4 — AC5"
unfolding range_def AC4_def AC5_def
apply (intro alll balll)
apply (elim allE impE)
apply (erule fun_is_rel [THEN converse_type])
apply (erule exE)
apply (rename_tac g)
apply (rule_tac x=g in bexI)
apply (blast dest: apply_equality range_type)
apply (blast intro: Pi_type dest: apply_type fun_is_rel)
done

lemma AC5_AC4_auxl: "R C A¥B —> (Ax € R. fst(x)) € R -> A"
by (fast intro!: lam_type fst_type)

lemma AC5_AC4_aux2: "R C A*#B — range(A\x € R. fst(x)) = domain(R)"
by (unfold lam_def, force)

lemma AC5_AC4_aux3: "[3f € A->C. P(f,domain(f)); A=B] = 3If € B->C.
P(£f,B)"

apply (erule bexE)

apply (frule domain_of_fun, fast)

done

lemma AC5_AC4_aux4: "[R C A*B; g € C->R; Vx € C. (Az € R. fst(z))°
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(g = x]
= (A\x € C. snd(g‘x)): (J[[x € C. R““{xP)"
apply (rule lam_type)
apply (force dest: apply_type)
done

lemma AC5_AC4: "AC5 — AC4"

apply (unfold AC4_def AC5_def, clarify)

apply (elim allE ballE)

apply (drule AC5_AC4_aux3 [OF _ AC5_AC4_aux2], assumption)
apply (fast elim!: AC5_AC4_aux4)

apply (blast intro: AC5_AC4_aux1)

done

lemma AC1_iff_AC6: "AC1 +— AC6"
by (unfold AC1_def AC6_def, blast)

end

theory AC18_AC19
imports AC_Equiv

begin
definition
uu :: "i = i" where
"wu(a) = {c U {0}. ¢ € a}"

lemma PROD_subsets:
"[f € ([Ib € {P(a). a € A}. b); Va € A. P(a)<=Q(a)]
= (la € A. £f‘P(a)) € (J]a € A. Qa))"

by (rule lam_type, drule apply_type, auto)

lemma lemma_AC18:
"[VA. 0 ¢ A — Af. £ € ([[X € A. X)); A # 0]
= (a € A. Ub € B(a). X(a, b)) C
(Uf € []a € 4. B(a). (Na € 4. X(a, f‘a))"
apply (rule subsetI)
apply (erule_tac x = "{{b € B (a) . x € X (a,b) }. a € A}" in allE)
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apply (erule impE, fast)

apply (erule exE)

apply (rule UN_I)

apply (fast elim!: PROD_subsets)

apply (simp, fast elim!: not_emptyE dest: apply_type [OF _ RepFunI])
done

lemma AC1_AC18: "AC1 — PROP AC18"
unfolding AC1_def
apply (rule AC18.intro)
apply (fast elim!: lemma_AC18 apply_type intro!: equalityI INT I UN_I)
done

theorem (in AC18) AC19
unfolding AC19_def
apply (intro alll impI)
apply (rule AC18 [of _ "Ax. x", THEN mp], blast)
done

lemma RepRep_conj:
"[A # 0; 0 ¢ A] = {uu(a). a € A} # 0 AN 0 ¢ {uu(a). a € A}"
apply (unfold uu_def, auto)
apply (blast dest!: sym [THEN RepFun_eq_O_iff [THEN iffD1]])
done

lemma lemmal_1: "[c € a; x = c U {0}; x ¢ a] = x - {0} € a"
apply clarify

apply (rule subst_elem, assumption)

apply (fast elim: notE subst_elem)

done

lemma lemmal_2:
"[£(uua)) ¢ a; £ € (I[B € {uu(a). a € A}. B); a € 4]
= f‘(uu(a))-{0} € a"
apply (unfold uu_def, fast elim!: lemmal_1 dest!: apply_type)
done

lemma lemmal: "3f. £ € ([[B € {uu(a). a € A}. B) — 3If. £ € ([[B

€ A. B)"

apply (erule exE)

apply (rule_tac x = "la€A. if (f° (uu(a)) € a, £¢ (uu(a)), £° (uu(a))-{OP)"
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in exI)
apply (rule lam_type)
apply (simp add: lemmal_2)
done

lemma lemma2_1: "a#0 = 0 € (|Jb € uu(a). b)"
by (unfold uu_def, auto)

lemma Iemma2: "[A#0; 0¢4A] = ((x € {uu(a). a € 4}. Ub € x. b) #
OH

apply (erule not_emptyE)

apply (rule_tac a = 0 in not_emptyI)

apply (fast intro!: lemma2_1)

done

lemma AC19_AC1: "AC19 — AC1"

apply (unfold AC19_def AC1_def, clarify)

apply (case_tac "A=0", force)

apply (erule_tac x = "{uu (a) . a € A}" in allE)
apply (erule impE)

apply (erule RepRep_conj, assumption)

apply (rule lemmal)

apply (drule lemma2, assumption, auto)

done

end

theory DC
imports AC_Equiv Hartog Cardinal_aux
begin

lemma RepFun_lepoll: "Ord(a) —> {P(b). b € a} < a"
unfolding lepoll_def
apply (rule_tac x = "Mz € RepFun (a,P) . p i. z=P (i) " in exI)
apply (rule_tac d="Az. P (z)" in lam_injective)
apply (fast intro!: Least_in_0Ord)
apply (rule sym)
apply (fast intro: LeastI Ord_in_Ord)
done

Trivial in the presence of AC, but here we need a wellordering of X

lemma image_Ord_lepoll: "[f € X->Y; Ord(X)] = f“‘X < X"
unfolding lepoll_def

apply (rule_tac x = "Ax € £f°‘X. py. £y = x" in exI)

apply (rule_tac d = "Az. £‘z" in lam_injective)

apply (fast intro!: Least_in_Ord apply_equality, clarify)

apply (rule LeastI)
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apply (erule apply_equality, assumption+)
apply (blast intro: Ord_in_Ord)
done

lemma range_subset_domain:
"[R C X*X; Ng. g € X = FJu. (g,u) € R]
= range(R) C domain(R)"

by blast

lemma cons_fun_type: "g € n->X — cons((n,x), g) € succ(n) -> cons(x,
X"
unfolding succ_def
apply (fast intro!: fun_extend elim!: mem_irrefl)
done

lemma cons_fun_type2:
"lg € n->X; x € X] = cons({n,x), g) € succ(m) -> X"
by (erule cons_absorb [THEN subst], erule cons_fun_type)

lemma cons_image_n: "n € nat — cons((n,x), g)‘‘n = g‘‘n"
by (fast elim!: mem_irrefl)

lemma cons_val_n: "g € n->X — cons({(n,x), g)‘n = x"
by (fast intro!: apply_equality elim!: cons_fun_type)

lemma cons_image_k: "k € n — cons({n,x), g)‘‘k = g‘‘k"
by (fast elim: mem_asym)

lemma cons_val_k: "[k € n; g € n->X] = cons((n,x), g)‘k = g‘k"
by (fast intro!: apply_equality consI2 elim!: cons_fun_type apply_Pair)

lemma domain_cons_eq_succ: "domain(f)=x —> domain(cons({x,y), f)) =
succ(x)"
by (simp add: domain_cons succ_def)

lemma restrict_cons_eq: "g € n->X —> restrict(cons({n,x), g), n) =
g"

apply (simp add: restrict_def Pi_iff)

apply (blast intro: elim: mem_irrefl)

done

lemma succ_in_succ: "[0rd(k); i € k] = succ(i) € succ(k)"
apply (rule Ord_linear [of "succ(i)" "succ(k)", THEN disjE])
apply (fast elim: Ord_in_Ord mem_irrefl mem_asym)+

done

lemma restrict_eq_imp_val_eq:

"[restrict (f, domain(g)) = g; x € domain(g)]
— f‘x = g‘x"
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by (erule subst, simp add: restrict)

lemma domain_eq_imp_fun_type: "[domain(f)=A; f € B->C] = £ € A->C"
by (frule domain_of_fun, fast)

lemma ex_in_domain: "[R C A * B; R # 0] = 3x. x € domain(R)"
by (fast elim!: not_emptyE)

definition
DC :: "i = o" where
"DC(a) = VX R. R C Pow(X)*X A
VY € Pow(X). Y < a — (@x € X. (Y,x) € R))
— (3f € a->X. Vb<a. <f“‘b,f‘b> € R)"

definition
DCO :: o where
"DCO =

VA BR. R C A*xB N R#0 A range(R) C domain(R)
— (df € nat->domain(R). Vn € nat. <f‘n,f‘succ(n)>:R)"
definition
ff :: "[i, i, i, i] = i" where

"ff(b, X, Q, R) =
transrec(b, Ac r. THE x. first(x, {x € X. <r‘‘c, x> € R},
Q))H

locale DCO_imp =
fixes XX and RR and X and R

assumes all_ex: "VY € Pow(X). Y < nat — (3x € X. (Y, x) € R)"

defines XX_def: "XX = (Un € nat. {f € n->X. Vk € n. <f“‘k, £'k> €

R}) n
and RR_def: "RR = {(z1,z2):XX*XX. domain(z2)=succ(domain(z1))
A restrict(z2, domain(z1l)) = z1}"
begin
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lemma lemmal 1: "RR C XX*XX"
by (unfold RR_def, fast)

lemma lemmal_2: "RR # 0"
unfolding RR_def XX_def

apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply

apply
done

(rule all_ex [THEN ballE])
(erule_tac [2] notE [OF _ empty_subsetI [THEN PowI]])
(erule_tac impE [OF _ nat_OI [THEN n_lesspoll_nat]])
(erule bexE)
(rule_tac a = "<0, {(0, x)}>" in not_emptyI)
(rule CollectI)
(rule Sigmal)
(rule nat_OI [THEN UN_I])
(simp (no_asm_simp) add: nat_OI [THEN UN_I])
(rule nat_1I [THEN UN_I]J)
(force intro!: singleton_fun [THEN Pi_typel]
simp add: singleton_0 [symmetric])
(simp add: singleton_0)

lemma lemmal_3: "range(RR) C domain(RR)"
unfolding RR_def XX_def

apply
apply

apply
apply
apply
apply
apply

apply

(rule range_subset_domain, blast, clarify)
(frule fun_is_rel [THEN image_subset, THEN PowlI,
THEN all_ex [THEN bspec]])
(erule impE[OF _ lesspoll_trans1[OF image_Ord_lepoll
[OF _ nat_into_Ord] n_lesspoll_nat]],
assumption+)
(erule bexE)
(rule_tac x = "cons ((n,x), g) " in exI)
(rule CollectI)
(force elim!: cons_fun_type2
simp add: cons_image_n cons_val_n cons_image_k cons_val_k)
(simp add: domain_of_fun succ_def restrict_cons_eq)
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done

lemma lemma2:

"[Vn € nat. <f‘n, f‘succ(n)> € RR; f € nat -> XX; n € nat]

= dk € nat. f‘succ(n) € k -> X AN n € k

A <f‘succ(n) ‘‘n, f‘succ(n)‘n> € R"
apply (induct_tac "n")
apply (drule apply_type [OF _ nat_1I])
apply (drule bspec [OF _ nat_0I])
apply (simp add: XX_def, safe)
apply (rule rev_bexI, assumption)
apply (subgoal_tac "0 € y", force)
apply (force simp add: RR_def
intro: 1tD elim!: nat_O_le [THEN leE])

apply (drule bspec [0OF _ nat_succIl], assumption)

apply (subgoal_tac "f ° succ (succ (x)) € succ (k) ->X")

apply (drule apply_type [OF _ nat_succI [THEN nat_succI]], assumption)
apply (simp (no_asm_use) add: XX_def RR_def)

apply safe

apply (frule_tac a="succ(k)" in domain_of_fun [symmetric, THEN trans],

assumption)
apply (frule_tac a=y in domain_of_fun [symmetric, THEN trans],
assumption)
apply (fast elim!: nat_into_Ord [THEN succ_in_succ]
dest!: bspec [0OF _ nat_into_Ord [THEN succ_in_succ]])
apply (drule domain_of_ fun)
apply (simp add: XX_def RR_def, clarify)
apply (blast dest: domain_of_fun [symmetric, THEN trans] )
done

lemma lemma3_1:
"[Vn € nat. <f‘n, f‘succ(n)> € RR; f € nat -> XX; m € nat]
= A{ff‘succ(x)‘x. x € m} = {f‘succ(m)‘x. x € m}"
apply (subgoal_tac "Vx € m. f‘succ (m) ‘x = f‘succ (x) ‘x")
apply simp
apply (induct_tac "m", blast)
apply (rule balll)
apply (erule succE)
apply (rule restrict_eq_imp_val_eq)
apply (drule bspec [OF _ nat_succI], assumption)
apply (simp add: RR_def)
apply (drule lemma2, assumption+)
apply (fast dest!: domain_of_fun)
apply (drule_tac x = xa in bspec, assumption)
apply (erule sym [THEN trans, symmetric])
apply (rule restrict_eq_imp_val_eq [symmetric])
apply (drule bspec [0OF _ nat_succI], assumption)
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apply (simp add: RR_def)
apply (drule lemma2, assumption+)
apply (blast dest!: domain_of_fun
intro: nat_into_Ord OrdmemD [THEN subsetD])
done

lemma lemma3:
"[Vn € nat. <f‘n, f‘succ(n)> € RR; f € nat -> XX; m € nat]
= (Ax € nat. f‘succ(x)‘x) ‘‘ m = f‘succ(m)‘‘m"
apply (erule natE, simp)
apply (subst image_lam)
apply (fast elim!: OrdmemD [OF nat_succI Ord_nat])
apply (subst lemma3_1, assumption+)
apply fast
apply (fast dest!: lemma2
elim!: image_fun [symmetric, OF _ OrdmemD [OF _ nat_into_Ord]l])
done

end

theorem DCO_imp_DC_nat: "DCO —> DC(mnat)"
apply (unfold DC_def DCO_def, clarify)
apply (elim allE)

apply (erule impE)

apply (blast intro!: DCO_imp.lemmal_1 [OF DCO_imp.intro] DCO_imp.lemmal_2
[OF DCO_imp.intro] DCO_imp.lemmal_3 [OF DCO_imp.intro])
apply (erule bexE)
apply (rule_tac x = "An € nat. f‘succ (n) ‘n" in rev_bexI)
apply (rule lam_type, blast dest!: DCO_imp.lemma2 [OF DCO_imp.intro]
intro: fun_weaken_type)
apply (rule oalll)
apply (frule DCO_imp.lemma2 [OF DCO_imp.intro], assumption)
apply (blast intro: fun_weaken_type)
apply (erule 1tD)

¢

apply (subst DCO_imp.lemma3 [OF DCO_imp.intro], assumption+)
apply (fast elim!: fun_weaken_type)

apply (erule 1tD)

apply (force simp add: 1t_def)

done

lemma singleton_in_funs:
"x € X = {(0,x)} €
(Un € nat. {f € succ(m)->X. Yk € n. <f‘k, f‘succ(k)> €
R}) n
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apply (rule nat_O0I [THEN UN_I])

apply (force simp add: singleton_0O [symmetric]
intro!: singleton_fun [THEN Pi_typel)

done

locale imp DCO =
fixes XX and RR and x and R and f and allRR
defines XX_def: "XX = (Un € nat.
{f € succ(n)->domain(R). Vk € n. <f‘k, f‘succ(k)>
€ RD"
and RR_def:
"RR = {(z1,z2):Fin(XX)*XX.
(domain(z2)=succ(|Jf € z1. domain(f))
AN (Vf € z1. restrict(z2, domain(f)) = £))
| (- (3g € XX. domain(g)=succ(Jf € z1. domain(f))

AN (Vf € zl. restrict(g, domain(f)) = £)) A z2={{(0,x)})}"
and allRR_def:
"allRR = V b<nat.
<f‘‘b, £b> €
{(z1,z2)€Fin(XX)*XX. (domain(z2)=succ(|Jf € z1. domain(f))
AN (IUf € z1. domain(f)) = b
N (Vf € z1. restrict(z2,domain(f))
=f))}"
begin

lemma lemma4:
"[range(R) C domain(R); x € domain(R)]
=—> RR C Pow(XX)*XX A
(VY € Pow(XX). Y < nat — (3x € XX. (Y,x):RR))"
apply (rule conjI)
apply (force dest!: FinD [THEN PowI] simp add: RR_def)
apply (rule impI [THEN ballI])
apply (drule Finite_Fin [OF lesspoll_nat_is_Finite PowD], assumption)
apply (case_tac
"Jg € XX. domain (g) =
succ(f € Y. domain(f)) N (Vf€Y. restrict(g, domain(f))
=f)")
apply (simp add: RR_def, blast)
apply (safe del: domainE)
unfolding XX_def RR_def
apply (rule rev_bexI, erule singleton_in_funs)
apply (simp add: nat_OI [THEN rev_bexI] cons_fun_type2)
done

lemma UN_image_succ_eq:

"[f € nat->X; n € nat]
= (Ux € f‘‘succ(@). P(x)) = P(f‘n) U (Ux € f“‘n. Px))"
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by (simp add: image_fun OrdmemD)

lemma UN_image_succ_eq_succ:
"f[Ux € £“n. P(x)) = y; P(f‘n) = succ(y);
f € nat -> X; n € nat] = (Ux € f‘‘succ(m). P(x)) = succ(y)"
by (simp add: UN_image_succ_eq, blast)

lemma apply_domain_type:
"[h € succ(n) -> D; n € nat; domain(h)=succ(y)] = h‘y € D"
by (fast elim: apply_type dest!: trans [OF sym domain_of_fun])

lemma image_fun_succ:
"[h € nat -> X; n € nat] = h‘‘succ(n) = cons(h‘n, h‘‘n)"
by (simp add: image_fun OrdmemD)

lemma f_n_type:
"[domain(f‘n) = succ(k); f € nat -> XX; n € nat]
= f‘n € succ(k) -> domain(R)"
unfolding XX_def
apply (drule apply_type, assumption)
apply (fast elim: domain_eq_imp_fun_type)
done

lemma f_n_pairs_in_R [rule_format]:
"[h € nat -> XX; domain(h‘n) = succ(k); n € nat]
= Vi € k. <h‘n‘i, h‘n‘succ(i)> € R"
unfolding XX_def
apply (drule apply_type, assumption)
apply (elim UN_E CollectE)
apply (drule domain_of_fun [symmetric, THEN trans], assumption, simp)
done

lemma restrict_cons_eq _restrict:
"[restrict(h, domain(u))=u; h € n->X; domain(u) C n]
— restrict(cons((n, y), h), domain(u)) = u"

unfolding restrict_def

apply (simp add: restrict_def Pi_iff)

apply (erule sym [THEN trans, symmetric])

apply (blast elim: mem_irrefl)

done

lemma all_in_image_restrict_eq:
"[Vx € f‘‘n. restrict(f‘n, domain(x))=x;
f € nat > XX;
n € nat; domain(f‘n) = succ(n);
(Ux € f“‘n. domain(x)) C n]
= Vx € f‘‘succ(n). restrict(cons(<succ(n),y>, f‘n), domain(x))
= X”
apply (rule balll)
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apply (simp add: image_fun_succ)

apply (drule f_n_type, assumption+)

apply (erule disjE)

apply (simp add: domain_of_fun restrict_cons_eq)
apply (blast intro!: restrict_cons_eq_restrict)
done

lemma simplify_recursion:
"[V b<nat. <f‘‘b, f‘b> € RR;
f € nat -> XX; range(R) C domain(R); x € domain(R)]
— allRR"
unfolding RR_def allRR_def
apply (rule oalll, drule 1tD)
apply (erule nat_induct)
apply (drule_tac x=0 in ospec, blast intro: Limit_has_0)
apply (force simp add: singleton_fun [THEN domain_of_fun] singleton_in_funs)

apply (simp only: separation split)
apply (drule_tac x="succ(xa)" in ospec, blast intro: 1tI)
apply (elim conjE disjE)
apply (force elim!: trans subst_context
intro!: UN_image_succ_eq_succ)
apply (erule notE)
apply (simp add: XX_def UN_image_succ_eq_succ)
apply (elim conjE bexE)
apply (drule apply_domain_type, assumption+)
apply (erule domainE)+
apply (frule f_n_type)
apply (simp add: XX_def, assumption+)
apply (rule rev_bexI, erule nat_succl)
apply (rename tac m i j y z)
apply (rule_tac x = "cons(<succ(m), z>, £f‘m)" in bexI)
prefer 2 apply (blast intro: cons_fun_type2)
apply (zrule conjI)
prefer 2 apply (fast del: balll subsetl
elim: trans [OF _ subst_context, THEN domain_cons_eq_succ]
subst_context
all_in_image_restrict_eq [simplified XX_def]
trans equalityD1)

apply (rule balll)
apply (erule succE)

apply (simp add: cons_val_n cons_val_k)
apply (drule f_n_pairs_in_R [simplified XX_def, OF _ domain_of_fun],

assumption, assumption, assumption)
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apply (simp add: nat_into_Ord [THEN succ_in_succ] succI2 cons_val_k)
done

lemma lemma2:
"lallRR; f € nat->XX; range(R) C domain(R); x € domain(R); n €
nat]
— f‘n € succ(n) -> domain(R) N (Vi € n. <f‘n‘i, f‘n‘succ(i)>:R)"
unfolding allRR_def
apply (drule ospec)
apply (erule 1tI [OF _ Ord_nat])
apply (erule CollectE, simp)
apply (rule conjI)
prefer 2 apply (fast elim!: f_n_pairs_in_R trans subst_context)
unfolding XX_def
apply (fast elim!: trans [THEN domain_eq_imp_fun_type] subst_context)
done

lemma lemma3:
"lallRR; f € nat->XX; n€nat; range(R) C domain(R); x € domain(R)]
= f‘n‘n = f‘succ(n) ‘n"

apply (frule lemma2 [THEN conjunctl, THEN domain_of_fun], assumption+)

unfolding allRR_def

apply (drule ospec)

apply (drule 1tI [OF nat_succI Ord_nat], assumption, simp)

apply (elim conjE ballE)

apply (erule restrict_eq_imp_val_eq [symmetric], force)

apply (simp add: image_fun OrdmemD)

done

end

theorem DC_nat_imp_DCO: "DC(nat) = DCO"

unfolding DC_def DCO_def
apply (intro alll impI)
apply (erule asm_rl conjE ex_in_domain [THEN exE] allE)+
apply (erule impE [OF _ imp_DCO.lemma4], assumption+)
apply (erule bexE)
apply (drule imp_DCO.simplify_recursion, assumption+)
apply (rule_tac x = "An € nat. f‘n‘n" in bexI)
apply (rule_tac [2] lam_type)

apply (erule_tac [2] apply_type [OF imp_DCO.lemma2 [THEN conjunctl] succI1])

apply (rule balll)

apply (frule_tac n="succ(n)" in imp_DCO.lemma2,
(assumption/erule nat_succlI)+)

apply (drule imp_DCO.lemma3, auto)

done
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lemma fun_Ord_inj:

"[f € a->X; Ord(a);

Ab c. [b<c; ¢ € a] = f‘b#f‘c]

= f € inj(a, X)"
apply (unfold inj_def, simp)
apply (intro balll impI)
apply (rule_tac j=x in Ord_in_Ord [THEN Ord_linear_1lt], assumption+)
apply (blast intro: Ord_in_Ord, auto)
apply (atomize, blast dest: not_sym)
done

lemma value_in_image: "[f € X->Y; A C X; a € A] = f‘a € f°‘A"
by (fast elim!: image_fun [THEN ssubst])

lemma lesspoll_lemma: "[- A < B; C < B] = A - C # 0"
unfolding lesspoll_def
apply (fast dest!: Diff_eq_O_iff [THEN iffD1, THEN subset_imp_lepoll]
intro!: eqpolll elim: notE
elim!: eqpollE lepoll_trans)
done

theorem DC_W03: "(VK. Card(K) — DC(K)) — WO3"
unfolding DC_def W03_def
apply (rule alll)
apply (case_tac "A < Hartog (A)")
apply (fast dest!: lesspoll_imp_ex_1lt_eqpoll
intro!: Ord_Hartog leI [THEN le_imp_subset])

apply (erule allE impE)+
apply (rule Card_Hartog)
apply (erule_tac x = A in allE)
apply (erule_tac x = "{(z1,z2) € Pow (A) *A . z1 < Hartog (A) N z2 ¢
z1}"

in allE)
apply simp
apply (erule impE, fast elim: lesspoll_lemma [THEN not_emptyE])
apply (erule bexE)
apply (rule Hartog_lepoll_selfE)
apply (rule lepoll_def [THEN def_imp_iff, THEN iffD2])
apply (rule exI, rule fun_Ord_inj, assumption, rule Ord_Hartog)
apply (drule value_in_image)
apply (drule OrdmemD, rule Ord_Hartog, assumption+, erule 1tD)
apply (drule ospec)
apply (blast intro: 1tI Ord_Hartog, force)
done
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lemma images_eq:
"[Vx € A. f‘x=g‘x; f € Df->Cf; g € Dg->Cg; A C Df; A C Dg]
:> f{{A - g{{AH

apply (simp (no_asm_simp) add: image_fun)

done

lemma lam_images_eq:
"[0rd(a); b € a] = (\x € a. h(x))“‘b = (Ax € b. h(x))“‘b"

apply (rule images_eq)

apply (rule balll)

apply (drule OrdmemD [THEN subsetD], assumption+)

apply simp

apply (fast elim!: RepFunI OrdmemD intro!: lam_type)+
done

lemma lam_type_RepFun: "(Ab € a. h(b)) € a -> {h(b). b € a}"
by (fast intro!: lam_type RepFunI)

lemma lemmaX:
"[VY € Pow(X). Y < K — (3x € X. (Y, x) € R);
b € K; Z € Pow(X); Z < K]
= {x € X. (Z,x) € R} # O"
by blast

lemma WO1_DC_lemma:
"[Card(K); well_ord(X,Q);
VY € Pow(X). Y < K — (3x € X. (Y, x) € R); b € K]
— ff(b, X, Q, R) € {x € X. <(Ac € b. ff(c, X, Q, R)) ‘b, x> €
R}"
apply (rule_tac P = "b € K" in impE, (erule_tac [2] asm_rl)+)
apply (rule_tac i=b in Card_is_Ord [THEN Ord_in_Ord, THEN trans_induct],

assumption+)
apply (rule impI)
apply (rule ff_def [THEN def_transrec, THEN ssubst])
apply (erule the_first_in, fast)
apply (simp add: image_fun [OF lam_type_RepFun subset_refl])
apply (erule lemmaX, assumption)
apply (blast intro: Card_is_Ord OrdmemD [THEN subsetD])
apply (blast intro: lesspoll_transl in_Card_imp_lesspoll RepFun_lepoll)
done

theorem W01_DC_Card: "WO01 — VK. Card(K) — DC(K)"
unfolding DC_def WO1_def
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apply (rule alll impI)+

apply (erule allE exE conjE)+

apply (rule_tac x = "Ab € K. ff (b, X, Ra, R) " in bexI)
apply (simp add: lam_images_eq [OF Card_is_Ord 1tD])
apply (fast elim!: 1tE WO1_DC lemma [THEN CollectD2])
apply (rule_tac lam_type)

apply (rule WO1_DC_lemma [THEN CollectD1], assumption+)
done

end
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