
Equivalents of the Axiom of Choice

Krzysztof Gra̧bczewski

January 18, 2026

Abstract
This development [1] proves the equivalence of seven formulations

of the well-ordering theorem and twenty formulations of the axiom of
choice. It formalizes the first two chapters of the monograph Equiv-
alents of the Axiom of Choice by Rubin and Rubin [2]. Some of this
mmaterial involves extremely complex techniques.

Contents
0.1 Lemmas useful in each of the three proofs 30
0.2 Lemmas used in the proofs of AC1 =⇒ WO2 and AC17 =⇒ AC1 33
0.3 The proof of AC1 =⇒ WO2 . 34

AC15_WO6 AC16_WO4

AC16_lemmas

AC17_AC1

AC18_AC19 AC7_AC9

AC_Equiv

Cardinal_aux

DC HH

Hartog WO1_AC WO1_WO7

WO2_AC16

WO6_WO1

[FOL]

[Pure]

[ZF]

1

theory AC_Equiv
imports ZF
begin

definition
"WO1 ≡ ∀ A. ∃ R. well_ord(A,R)"

definition
"WO2 ≡ ∀ A. ∃ a. Ord(a) ∧ A≈a"

definition
"WO3 ≡ ∀ A. ∃ a. Ord(a) ∧ (∃ b. b ⊆ a ∧ A≈b)"

definition
"WO4(m) ≡ ∀ A. ∃ a f. Ord(a) ∧ domain(f)=a ∧

(
⋃

b<a. f‘b) = A ∧ (∀ b<a. f‘b . m)"

definition
"WO5 ≡ ∃ m ∈ nat. 1≤m ∧ WO4(m)"

definition
"WO6 ≡ ∀ A. ∃ m ∈ nat. 1≤m ∧ (∃ a f. Ord(a) ∧ domain(f)=a

∧ (
⋃

b<a. f‘b) = A ∧ (∀ b<a. f‘b . m))"

definition
"WO7 ≡ ∀ A. Finite(A) ←→ (∀ R. well_ord(A,R) −→ well_ord(A,converse(R)))"

definition
"WO8 ≡ ∀ A. (∃ f. f ∈ (

∏
X ∈ A. X)) −→ (∃ R. well_ord(A,R))"

definition

pairwise_disjoint :: "i ⇒ o" where
"pairwise_disjoint(A) ≡ ∀ A1 ∈ A. ∀ A2 ∈ A. A1 ∩ A2 6= 0 −→ A1=A2"

definition
sets_of_size_between :: "[i, i, i] ⇒ o" where

"sets_of_size_between(A,m,n) ≡ ∀ B ∈ A. m . B ∧ B . n"

definition
"AC0 ≡ ∀ A. ∃ f. f ∈ (

∏
X ∈ Pow(A)-{0}. X)"

2

definition
"AC1 ≡ ∀ A. 0 /∈A −→ (∃ f. f ∈ (

∏
X ∈ A. X))"

definition
"AC2 ≡ ∀ A. 0 /∈A ∧ pairwise_disjoint(A)

−→ (∃ C. ∀ B ∈ A. ∃ y. B ∩ C = {y})"
definition

"AC3 ≡ ∀ A B. ∀ f ∈ A->B. ∃ g. g ∈ (
∏

x ∈ {a ∈ A. f‘a 6=0}. f‘x)"

definition
"AC4 ≡ ∀ R A B. (R ⊆ A*B −→ (∃ f. f ∈ (

∏
x ∈ domain(R). R‘‘{x})))"

definition
"AC5 ≡ ∀ A B. ∀ f ∈ A->B. ∃ g ∈ range(f)->A. ∀ x ∈ domain(g). f‘(g‘x)

= x"

definition
"AC6 ≡ ∀ A. 0 /∈A −→ (

∏
B ∈ A. B) 6=0"

definition
"AC7 ≡ ∀ A. 0 /∈A ∧ (∀ B1 ∈ A. ∀ B2 ∈ A. B1≈B2) −→ (

∏
B ∈ A. B) 6=

0"

definition
"AC8 ≡ ∀ A. (∀ B ∈ A. ∃ B1 B2. B=〈B1,B2〉 ∧ B1≈B2)

−→ (∃ f. ∀ B ∈ A. f‘B ∈ bij(fst(B),snd(B)))"

definition
"AC9 ≡ ∀ A. (∀ B1 ∈ A. ∀ B2 ∈ A. B1≈B2) −→

(∃ f. ∀ B1 ∈ A. ∀ B2 ∈ A. f‘〈B1,B2〉 ∈ bij(B1,B2))"

definition
"AC10(n) ≡ ∀ A. (∀ B ∈ A. ¬Finite(B)) −→

(∃ f. ∀ B ∈ A. (pairwise_disjoint(f‘B) ∧
sets_of_size_between(f‘B, 2, succ(n)) ∧

⋃
(f‘B)=B))"

definition
"AC11 ≡ ∃ n ∈ nat. 1≤n ∧ AC10(n)"

definition
"AC12 ≡ ∀ A. (∀ B ∈ A. ¬Finite(B)) −→

(∃ n ∈ nat. 1≤n ∧ (∃ f. ∀ B ∈ A. (pairwise_disjoint(f‘B)
∧

sets_of_size_between(f‘B, 2, succ(n)) ∧
⋃

(f‘B)=B)))"

definition
"AC13(m) ≡ ∀ A. 0 /∈A −→ (∃ f. ∀ B ∈ A. f‘B 6=0 ∧ f‘B ⊆ B ∧ f‘B .

m)"

3

definition
"AC14 ≡ ∃ m ∈ nat. 1≤m ∧ AC13(m)"

definition
"AC15 ≡ ∀ A. 0 /∈A −→

(∃ m ∈ nat. 1≤m ∧ (∃ f. ∀ B ∈ A. f‘B 6=0 ∧ f‘B ⊆ B ∧
f‘B . m))"

definition
"AC16(n, k) ≡
∀ A. ¬Finite(A) −→

(∃ T. T ⊆ {X ∈ Pow(A). X≈succ(n)} ∧
(∀ X ∈ {X ∈ Pow(A). X≈succ(k)}. ∃ ! Y. Y ∈ T ∧ X ⊆ Y))"

definition
"AC17 ≡ ∀ A. ∀ g ∈ (Pow(A)-{0} -> A) -> Pow(A)-{0}.

∃ f ∈ Pow(A)-{0} -> A. f‘(g‘f) ∈ g‘f"

locale AC18 =
assumes AC18: "A 6=0 ∧ (∀ a ∈ A. B(a) 6= 0) −→

((
⋂

a ∈ A.
⋃

b ∈ B(a). X(a,b)) =
(
⋃

f ∈
∏

a ∈ A. B(a).
⋂

a ∈ A. X(a, f‘a)))"
— AC18 cannot be expressed within the object-logic

definition
"AC19 ≡ ∀ A. A 6=0 ∧ 0 /∈A −→ ((

⋂
a ∈ A.

⋃
b ∈ a. b) =

(
⋃

f ∈ (
∏

B ∈ A. B).
⋂

a ∈ A. f‘a))"

lemma rvimage_id: "rvimage(A,id(A),r) = r ∩ A*A"
unfolding rvimage_def

apply (rule equalityI, safe)
apply (drule_tac P = "λa. <id (A) ‘xb,a>:r" in id_conv [THEN subst],

assumption)
apply (drule_tac P = "λa. 〈a,ya〉:r" in id_conv [THEN subst], (assumption+))
apply (fast intro: id_conv [THEN ssubst])
done

lemma ordertype_Int:
"well_ord(A,r) =⇒ ordertype(A, r ∩ A*A) = ordertype(A,r)"

apply (rule_tac P = "λa. ordertype (A,a) =ordertype (A,r) " in rvimage_id
[THEN subst])

4

apply (erule id_bij [THEN bij_ordertype_vimage])
done

lemma lam_sing_bij: "(λx ∈ A. {x}) ∈ bij(A, {{x}. x ∈ A})"
apply (rule_tac d = "λz. THE x. z={x}" in lam_bijective)
apply (auto simp add: the_equality)
done

lemma inj_strengthen_type:
" [[f ∈ inj(A, B);

∧
a. a ∈ A =⇒ f‘a ∈ C]] =⇒ f ∈ inj(A,C)"

by (unfold inj_def, blast intro: Pi_type)

lemma ex1_two_eq: " [[∃ ! x. P(x); P(x); P(y)]] =⇒ x=y"
by blast

lemma first_in_B:
" [[well_ord(

⋃
(A),r); 0 /∈ A; B ∈ A]] =⇒ (THE b. first(b,B,r)) ∈ B"

by (blast dest!: well_ord_imp_ex1_first
[THEN theI, THEN first_def [THEN def_imp_iff, THEN

iffD1]])

lemma ex_choice_fun: " [[well_ord(
⋃

(A), R); 0 /∈ A]] =⇒ ∃ f. f ∈ (
∏

X
∈ A. X)"
by (fast elim!: first_in_B intro!: lam_type)

lemma ex_choice_fun_Pow: "well_ord(A, R) =⇒ ∃ f. f ∈ (
∏

X ∈ Pow(A)-{0}.
X)"
by (fast elim!: well_ord_subset [THEN ex_choice_fun])

lemma lepoll_m_imp_domain_lepoll_m:
" [[m ∈ nat; u . m]] =⇒ domain(u) . m"

unfolding lepoll_def
apply (erule exE)

5

apply (rule_tac x = "λx ∈ domain(u). µ i. ∃ y. 〈x,y〉 ∈ u ∧ f‘〈x,y〉 =
i"

in exI)
apply (rule_tac d = "λy. fst (converse(f) ‘ y) " in lam_injective)
apply (fast intro: LeastI2 nat_into_Ord [THEN Ord_in_Ord]

inj_is_fun [THEN apply_type])
apply (erule domainE)
apply (frule inj_is_fun [THEN apply_type], assumption)
apply (rule LeastI2)
apply (auto elim!: nat_into_Ord [THEN Ord_in_Ord])
done

lemma rel_domain_ex1:
" [[succ(m) . domain(r); r . succ(m); m ∈ nat]] =⇒ function(r)"

apply (unfold function_def, safe)
apply (rule ccontr)
apply (fast elim!: lepoll_trans [THEN succ_lepoll_natE]

lepoll_m_imp_domain_lepoll_m [OF _ Diff_sing_lepoll]
elim: domain_Diff_eq [OF _ not_sym, THEN subst])

done

lemma rel_is_fun:
" [[succ(m) . domain(r); r . succ(m); m ∈ nat;

r ⊆ A*B; A=domain(r)]] =⇒ r ∈ A->B"
by (simp add: Pi_iff rel_domain_ex1)

end

theory Cardinal_aux imports AC_Equiv begin

lemma Diff_lepoll: " [[A . succ(m); B ⊆ A; B 6=0]] =⇒ A-B . m"
apply (rule not_emptyE, assumption)
apply (blast intro: lepoll_trans [OF subset_imp_lepoll Diff_sing_lepoll])
done

lemma lepoll_imp_ex_le_eqpoll:
" [[A . i; Ord(i)]] =⇒ ∃ j. j ≤ i ∧ A ≈ j"

by (blast intro!: lepoll_cardinal_le well_ord_Memrel
well_ord_cardinal_eqpoll [THEN eqpoll_sym]

dest: lepoll_well_ord)

6

lemma lesspoll_imp_ex_lt_eqpoll:
" [[A ≺ i; Ord(i)]] =⇒ ∃ j. j<i ∧ A ≈ j"

by (unfold lesspoll_def, blast dest!: lepoll_imp_ex_le_eqpoll elim!: leE)

lemma Un_eqpoll_Inf_Ord:
assumes A: "A ≈ i" and B: "B ≈ i" and NFI: "¬ Finite(i)" and i:

"Ord(i)"
shows "A ∪ B ≈ i"

proof (rule eqpollI)
have AB: "A ≈ B" using A B by (blast intro: eqpoll_sym eqpoll_trans)

have "2 . nat"
by (rule subset_imp_lepoll) (rule OrdmemD [OF nat_2I Ord_nat])

also have "... . i"
by (simp add: nat_le_infinite_Ord le_imp_lepoll NFI i)+

also have "... ≈ A" by (blast intro: eqpoll_sym A)
finally have "2 . A" .
have ICI: "InfCard(|i|)"

by (simp add: Inf_Card_is_InfCard Finite_cardinal_iff NFI i)
have "A ∪ B . A + B" by (rule Un_lepoll_sum)
also have "... . A × B"

by (rule lepoll_imp_sum_lepoll_prod [OF AB [THEN eqpoll_imp_lepoll]
‹2 . A›])

also have "... ≈ i × i"
by (blast intro: prod_eqpoll_cong eqpoll_imp_lepoll A B)

also have "... ≈ i"
by (blast intro: well_ord_InfCard_square_eq well_ord_Memrel ICI i)

finally show "A ∪ B . i" .
next

have "i ≈ A" by (blast intro: A eqpoll_sym)
also have "... . A ∪ B" by (blast intro: subset_imp_lepoll)
finally show "i . A ∪ B" .

qed

schematic_goal paired_bij: "?f ∈ bij({{y,z}. y ∈ x}, x)"
apply (rule RepFun_bijective)
apply (simp add: doubleton_eq_iff, blast)
done

lemma paired_eqpoll: "{{y,z}. y ∈ x} ≈ x"
by (unfold eqpoll_def, fast intro!: paired_bij)

lemma ex_eqpoll_disjoint: "∃ B. B ≈ A ∧ B ∩ C = 0"
by (fast intro!: paired_eqpoll equals0I elim: mem_asym)

7

lemma Un_lepoll_Inf_Ord:
" [[A . i; B . i; ¬Finite(i); Ord(i)]] =⇒ A ∪ B . i"

apply (rule_tac A1 = i and C1 = i in ex_eqpoll_disjoint [THEN exE])
apply (erule conjE)
apply (drule lepoll_trans)
apply (erule eqpoll_sym [THEN eqpoll_imp_lepoll])
apply (rule Un_lepoll_Un [THEN lepoll_trans], (assumption+))
apply (blast intro: eqpoll_refl Un_eqpoll_Inf_Ord eqpoll_imp_lepoll)
done

lemma Least_in_Ord: " [[P(i); i ∈ j; Ord(j)]] =⇒ (µ i. P(i)) ∈ j"
apply (erule Least_le [THEN leE])
apply (erule Ord_in_Ord, assumption)
apply (erule ltE)
apply (fast dest: OrdmemD)
apply (erule subst_elem, assumption)
done

lemma Diff_first_lepoll:
" [[well_ord(x,r); y ⊆ x; y . succ(n); n ∈ nat]]
=⇒ y - {THE b. first(b,y,r)} . n"

apply (case_tac "y=0", simp add: empty_lepollI)
apply (fast intro!: Diff_sing_lepoll the_first_in)
done

lemma UN_subset_split:
"(

⋃
x ∈ X. P(x)) ⊆ (

⋃
x ∈ X. P(x)-Q(x)) ∪ (

⋃
x ∈ X. Q(x))"

by blast

lemma UN_sing_lepoll: "Ord(a) =⇒ (
⋃

x ∈ a. {P(x)}) . a"
unfolding lepoll_def

apply (rule_tac x = "λz ∈ (
⋃

x ∈ a. {P (x) }) . (µ i. P (i) =z) " in
exI)
apply (rule_tac d = "λz. P (z) " in lam_injective)
apply (fast intro!: Least_in_Ord)
apply (fast intro: LeastI elim!: Ord_in_Ord)
done

lemma UN_fun_lepoll_lemma [rule_format]:
" [[well_ord(T, R); ¬Finite(a); Ord(a); n ∈ nat]]
=⇒ ∀ f. (∀ b ∈ a. f‘b . n ∧ f‘b ⊆ T) −→ (

⋃
b ∈ a. f‘b) . a"

apply (induct_tac "n")
apply (rule allI)
apply (rule impI)
apply (rule_tac b = "

⋃
b ∈ a. f‘b" in subst)

apply (rule_tac [2] empty_lepollI)
apply (rule equals0I [symmetric], clarify)
apply (fast dest: lepoll_0_is_0 [THEN subst])
apply (rule allI)

8

apply (rule impI)
apply (erule_tac x = "λx ∈ a. f‘x - {THE b. first (b,f‘x,R) }" in allE)
apply (erule impE, simp)
apply (fast intro!: Diff_first_lepoll, simp)
apply (rule UN_subset_split [THEN subset_imp_lepoll, THEN lepoll_trans])
apply (fast intro: Un_lepoll_Inf_Ord UN_sing_lepoll)
done

lemma UN_fun_lepoll:
" [[∀ b ∈ a. f‘b . n ∧ f‘b ⊆ T; well_ord(T, R);

¬Finite(a); Ord(a); n ∈ nat]] =⇒ (
⋃

b ∈ a. f‘b) . a"
by (blast intro: UN_fun_lepoll_lemma)

lemma UN_lepoll:
" [[∀ b ∈ a. F(b) . n ∧ F(b) ⊆ T; well_ord(T, R);

¬Finite(a); Ord(a); n ∈ nat]]
=⇒ (

⋃
b ∈ a. F(b)) . a"

apply (rule rev_mp)
apply (rule_tac f="λb ∈ a. F (b)" in UN_fun_lepoll)
apply auto
done

lemma UN_eq_UN_Diffs:
"Ord(a) =⇒ (

⋃
b ∈ a. F(b)) = (

⋃
b ∈ a. F(b) - (

⋃
c ∈ b. F(c)))"

apply (rule equalityI)
prefer 2 apply fast

apply (rule subsetI)
apply (erule UN_E)
apply (rule UN_I)
apply (rule_tac P = "λz. x ∈ F (z) " in Least_in_Ord, (assumption+))

apply (rule DiffI, best intro: Ord_in_Ord LeastI, clarify)
apply (erule_tac P = "λz. x ∈ F (z) " and i = c in less_LeastE)
apply (blast intro: Ord_Least ltI)
done

lemma lepoll_imp_eqpoll_subset:
"a . X =⇒ ∃ Y. Y ⊆ X ∧ a ≈ Y"

apply (unfold lepoll_def eqpoll_def, clarify)
apply (blast intro: restrict_bij

dest: inj_is_fun [THEN fun_is_rel, THEN image_subset])
done

lemma Diff_lesspoll_eqpoll_Card_lemma:
" [[A≈a; ¬Finite(a); Card(a); B ≺ a; A-B ≺ a]] =⇒ P"

apply (elim lesspoll_imp_ex_lt_eqpoll [THEN exE] Card_is_Ord conjE)

9

apply (frule_tac j=xa in Un_upper1_le [OF lt_Ord lt_Ord], assumption)
apply (frule_tac j=xa in Un_upper2_le [OF lt_Ord lt_Ord], assumption)
apply (drule Un_least_lt, assumption)
apply (drule eqpoll_imp_lepoll [THEN lepoll_trans],

rule le_imp_lepoll, assumption)+
apply (case_tac "Finite(x ∪ xa)")

finite case

apply (drule Finite_Un [OF lepoll_Finite lepoll_Finite], assumption+)
apply (drule subset_Un_Diff [THEN subset_imp_lepoll, THEN lepoll_Finite])
apply (fast dest: eqpoll_sym [THEN eqpoll_imp_lepoll, THEN lepoll_Finite])

infinite case

apply (drule Un_lepoll_Inf_Ord, (assumption+))
apply (blast intro: le_Ord2)
apply (drule lesspoll_trans1

[OF subset_Un_Diff [THEN subset_imp_lepoll, THEN lepoll_trans]
lt_Card_imp_lesspoll], assumption+)

apply (simp add: lesspoll_def)
done

lemma Diff_lesspoll_eqpoll_Card:
" [[A ≈ a; ¬Finite(a); Card(a); B ≺ a]] =⇒ A - B ≈ a"

apply (rule ccontr)
apply (rule Diff_lesspoll_eqpoll_Card_lemma, (assumption+))
apply (blast intro: lesspoll_def [THEN def_imp_iff, THEN iffD2]

subset_imp_lepoll eqpoll_imp_lepoll lepoll_trans)
done

end

theory WO6_WO1
imports Cardinal_aux
begin

definition
NN :: "i ⇒ i" where

"NN(y) ≡ {m ∈ nat. ∃ a. ∃ f. Ord(a) ∧ domain(f)=a ∧
(
⋃

b<a. f‘b) = y ∧ (∀ b<a. f‘b . m)}"

definition
uu :: "[i, i, i, i] ⇒ i" where

"uu(f, beta, gamma, delta) ≡ (f‘beta * f‘gamma) ∩ f‘delta"

definition

10

vv1 :: "[i, i, i] ⇒ i" where
"vv1(f,m,b) ≡

let g = µ g. (∃ d. Ord(d) ∧ (domain(uu(f,b,g,d)) 6= 0 ∧
domain(uu(f,b,g,d)) . m));

d = µ d. domain(uu(f,b,g,d)) 6= 0 ∧
domain(uu(f,b,g,d)) . m

in if f‘b 6= 0 then domain(uu(f,b,g,d)) else 0"

definition
ww1 :: "[i, i, i] ⇒ i" where

"ww1(f,m,b) ≡ f‘b - vv1(f,m,b)"

definition
gg1 :: "[i, i, i] ⇒ i" where

"gg1(f,a,m) ≡ λb ∈ a++a. if b<a then vv1(f,m,b) else ww1(f,m,b--a)"

definition
vv2 :: "[i, i, i, i] ⇒ i" where

"vv2(f,b,g,s) ≡
if f‘g 6= 0 then {uu(f, b, g, µ d. uu(f,b,g,d) 6= 0)‘s} else

0"

definition
ww2 :: "[i, i, i, i] ⇒ i" where

"ww2(f,b,g,s) ≡ f‘g - vv2(f,b,g,s)"

definition
gg2 :: "[i, i, i, i] ⇒ i" where

"gg2(f,a,b,s) ≡
λg ∈ a++a. if g<a then vv2(f,b,g,s) else ww2(f,b,g--a,s)"

lemma WO2_WO3: "WO2 =⇒ WO3"
by (unfold WO2_def WO3_def, fast)

lemma WO3_WO1: "WO3 =⇒ WO1"
unfolding eqpoll_def WO1_def WO3_def

apply (intro allI)
apply (drule_tac x=A in spec)
apply (blast intro: bij_is_inj well_ord_rvimage

well_ord_Memrel [THEN well_ord_subset])
done

11

lemma WO1_WO2: "WO1 =⇒ WO2"
unfolding eqpoll_def WO1_def WO2_def

apply (blast intro!: Ord_ordertype ordermap_bij)
done

lemma lam_sets: "f ∈ A->B =⇒ (λx ∈ A. {f‘x}): A -> {{b}. b ∈ B}"
by (fast intro!: lam_type apply_type)

lemma surj_imp_eq’: "f ∈ surj(A,B) =⇒ (
⋃

a ∈ A. {f‘a}) = B"
unfolding surj_def

apply (fast elim!: apply_type)
done

lemma surj_imp_eq: " [[f ∈ surj(A,B); Ord(A)]] =⇒ (
⋃

a<A. {f‘a}) = B"
by (fast dest!: surj_imp_eq’ intro!: ltI elim!: ltE)

lemma WO1_WO4: "WO1 =⇒ WO4(1)"
unfolding WO1_def WO4_def

apply (rule allI)
apply (erule_tac x = A in allE)
apply (erule exE)
apply (intro exI conjI)
apply (erule Ord_ordertype)
apply (erule ordermap_bij [THEN bij_converse_bij, THEN bij_is_fun, THEN
lam_sets, THEN domain_of_fun])
apply (simp_all add: singleton_eqpoll_1 eqpoll_imp_lepoll Ord_ordertype

ordermap_bij [THEN bij_converse_bij, THEN bij_is_surj, THEN surj_imp_eq]
ltD)

done

lemma WO4_mono: " [[m≤n; WO4(m)]] =⇒ WO4(n)"
unfolding WO4_def

apply (blast dest!: spec intro: lepoll_trans [OF _ le_imp_lepoll])
done

lemma WO4_WO5: " [[m ∈ nat; 1≤m; WO4(m)]] =⇒ WO5"
by (unfold WO4_def WO5_def, blast)

lemma WO5_WO6: "WO5 =⇒ WO6"
by (unfold WO4_def WO5_def WO6_def, blast)

12

lemma lt_oadd_odiff_disj:
" [[k < i++j; Ord(i); Ord(j)]]
=⇒ k < i | (¬ k<i ∧ k = i ++ (k--i) ∧ (k--i)<j)"

apply (rule_tac i = k and j = i in Ord_linear2)
prefer 4

apply (drule odiff_lt_mono2, assumption)
apply (simp add: oadd_odiff_inverse odiff_oadd_inverse)

apply (auto elim!: lt_Ord)
done

lemma domain_uu_subset: "domain(uu(f,b,g,d)) ⊆ f‘b"
by (unfold uu_def, blast)

lemma quant_domain_uu_lepoll_m:
"∀ b<a. f‘b . m =⇒ ∀ b<a. ∀ g<a. ∀ d<a. domain(uu(f,b,g,d)) . m"

by (blast intro: domain_uu_subset [THEN subset_imp_lepoll] lepoll_trans)

lemma uu_subset1: "uu(f,b,g,d) ⊆ f‘b * f‘g"
by (unfold uu_def, blast)

lemma uu_subset2: "uu(f,b,g,d) ⊆ f‘d"
by (unfold uu_def, blast)

lemma uu_lepoll_m: " [[∀ b<a. f‘b . m; d<a]] =⇒ uu(f,b,g,d) . m"
by (blast intro: uu_subset2 [THEN subset_imp_lepoll] lepoll_trans)

lemma cases:
"∀ b<a. ∀ g<a. ∀ d<a. u(f,b,g,d) . m
=⇒ (∀ b<a. f‘b 6= 0 −→

(∃ g<a. ∃ d<a. u(f,b,g,d) 6= 0 ∧ u(f,b,g,d) ≺ m))
| (∃ b<a. f‘b 6= 0 ∧ (∀ g<a. ∀ d<a. u(f,b,g,d) 6= 0 −→

u(f,b,g,d) ≈ m))"
unfolding lesspoll_def

apply (blast del: equalityI)

13

done

lemma UN_oadd: "Ord(a) =⇒ (
⋃

b<a++a. C(b)) = (
⋃

b<a. C(b) ∪ C(a++b))"
by (blast intro: ltI lt_oadd1 oadd_lt_mono2 dest!: lt_oadd_disj)

lemma vv1_subset: "vv1(f,m,b) ⊆ f‘b"
by (simp add: vv1_def Let_def domain_uu_subset)

lemma UN_gg1_eq:
" [[Ord(a); m ∈ nat]] =⇒ (

⋃
b<a++a. gg1(f,a,m)‘b) = (

⋃
b<a. f‘b)"

by (simp add: gg1_def UN_oadd lt_oadd1 oadd_le_self [THEN le_imp_not_lt]

lt_Ord odiff_oadd_inverse ltD vv1_subset [THEN Diff_partition]
ww1_def)

lemma domain_gg1: "domain(gg1(f,a,m)) = a++a"
by (simp add: lam_funtype [THEN domain_of_fun] gg1_def)

lemma nested_LeastI:
" [[P(a, b); Ord(a); Ord(b);

Least_a = (µ a. ∃ x. Ord(x) ∧ P(a, x))]]
=⇒ P(Least_a, µ b. P(Least_a, b))"

apply (erule ssubst)
apply (rule_tac Q = "λz. P (z, µ b. P (z, b))" in LeastI2)
apply (fast elim!: LeastI)+
done

lemmas nested_Least_instance =
nested_LeastI [of "λg d. domain(uu(f,b,g,d)) 6= 0 ∧

domain(uu(f,b,g,d)) . m"] for f b m

lemma gg1_lepoll_m:
" [[Ord(a); m ∈ nat;

∀ b<a. f‘b 6=0 −→
(∃ g<a. ∃ d<a. domain(uu(f,b,g,d)) 6= 0 ∧

14

domain(uu(f,b,g,d)) . m);
∀ b<a. f‘b . succ(m); b<a++a]]

=⇒ gg1(f,a,m)‘b . m"
apply (simp add: gg1_def empty_lepollI)
apply (safe dest!: lt_oadd_odiff_disj)

apply (simp add: vv1_def Let_def empty_lepollI)
apply (fast intro: nested_Least_instance [THEN conjunct2]

elim!: lt_Ord)

apply (simp add: ww1_def empty_lepollI)
apply (case_tac "f‘ (b--a) = 0", simp add: empty_lepollI)
apply (rule Diff_lepoll, blast)
apply (rule vv1_subset)
apply (drule ospec [THEN mp], assumption+)
apply (elim oexE conjE)
apply (simp add: vv1_def Let_def lt_Ord nested_Least_instance [THEN conjunct1])
done

lemma ex_d_uu_not_empty:
" [[b<a; g<a; f‘b 6=0; f‘g 6=0;

y*y ⊆ y; (
⋃

b<a. f‘b)=y]]
=⇒ ∃ d<a. uu(f,b,g,d) 6= 0"

by (unfold uu_def, blast)

lemma uu_not_empty:
" [[b<a; g<a; f‘b 6=0; f‘g 6=0; y*y ⊆ y; (

⋃
b<a. f‘b)=y]]

=⇒ uu(f,b,g,µ d. (uu(f,b,g,d) 6= 0)) 6= 0"
apply (drule ex_d_uu_not_empty, assumption+)
apply (fast elim!: LeastI lt_Ord)
done

lemma not_empty_rel_imp_domain: " [[r ⊆ A*B; r 6=0]] =⇒ domain(r)6=0"
by blast

lemma Least_uu_not_empty_lt_a:
" [[b<a; g<a; f‘b 6=0; f‘g 6=0; y*y ⊆ y; (

⋃
b<a. f‘b)=y]]

=⇒ (µ d. uu(f,b,g,d) 6= 0) < a"
apply (erule ex_d_uu_not_empty [THEN oexE], assumption+)
apply (blast intro: Least_le [THEN lt_trans1] lt_Ord)
done

15

lemma subset_Diff_sing: " [[B ⊆ A; a /∈B]] =⇒ B ⊆ A-{a}"
by blast

lemma supset_lepoll_imp_eq:
" [[A . m; m . B; B ⊆ A; m ∈ nat]] =⇒ A=B"

apply (erule natE)
apply (fast dest!: lepoll_0_is_0 intro!: equalityI)
apply (safe intro!: equalityI)
apply (rule ccontr)
apply (rule succ_lepoll_natE)
apply (erule lepoll_trans)
apply (rule lepoll_trans)
apply (erule subset_Diff_sing [THEN subset_imp_lepoll], assumption)

apply (rule Diff_sing_lepoll, assumption+)
done

lemma uu_Least_is_fun:
" [[∀ g<a. ∀ d<a. domain(uu(f, b, g, d))6=0 −→

domain(uu(f, b, g, d)) ≈ succ(m);
∀ b<a. f‘b . succ(m); y*y ⊆ y;
(
⋃

b<a. f‘b)=y; b<a; g<a; d<a;
f‘b 6=0; f‘g 6=0; m ∈ nat; s ∈ f‘b]]

=⇒ uu(f, b, g, µ d. uu(f,b,g,d) 6=0) ∈ f‘b -> f‘g"
apply (drule_tac x2=g in ospec [THEN ospec, THEN mp])

apply (rule_tac [3] not_empty_rel_imp_domain [OF uu_subset1 uu_not_empty])
apply (rule_tac [2] Least_uu_not_empty_lt_a, assumption+)

apply (rule rel_is_fun)
apply (erule eqpoll_sym [THEN eqpoll_imp_lepoll])

apply (erule uu_lepoll_m)
apply (rule Least_uu_not_empty_lt_a, assumption+)

apply (rule uu_subset1)
apply (rule supset_lepoll_imp_eq [OF _ eqpoll_sym [THEN eqpoll_imp_lepoll]])
apply (fast intro!: domain_uu_subset)+
done

lemma vv2_subset:
" [[∀ g<a. ∀ d<a. domain(uu(f, b, g, d))6=0 −→

domain(uu(f, b, g, d)) ≈ succ(m);
∀ b<a. f‘b . succ(m); y*y ⊆ y;
(
⋃

b<a. f‘b)=y; b<a; g<a; m ∈ nat; s ∈ f‘b]]
=⇒ vv2(f,b,g,s) ⊆ f‘g"

apply (simp add: vv2_def)
apply (blast intro: uu_Least_is_fun [THEN apply_type])
done

16

lemma UN_gg2_eq:
" [[∀ g<a. ∀ d<a. domain(uu(f,b,g,d)) 6= 0 −→

domain(uu(f,b,g,d)) ≈ succ(m);
∀ b<a. f‘b . succ(m); y*y ⊆ y;
(
⋃

b<a. f‘b)=y; Ord(a); m ∈ nat; s ∈ f‘b; b<a]]
=⇒ (

⋃
g<a++a. gg2(f,a,b,s) ‘ g) = y"

unfolding gg2_def
apply (drule sym)
apply (simp add: ltD UN_oadd oadd_le_self [THEN le_imp_not_lt]

lt_Ord odiff_oadd_inverse ww2_def
vv2_subset [THEN Diff_partition])

done

lemma domain_gg2: "domain(gg2(f,a,b,s)) = a++a"
by (simp add: lam_funtype [THEN domain_of_fun] gg2_def)

lemma vv2_lepoll: " [[m ∈ nat; m 6=0]] =⇒ vv2(f,b,g,s) . m"
unfolding vv2_def

apply (simp add: empty_lepollI)
apply (fast dest!: le_imp_subset [THEN subset_imp_lepoll, THEN lepoll_0_is_0]

intro!: singleton_eqpoll_1 [THEN eqpoll_imp_lepoll, THEN lepoll_trans]
not_lt_imp_le [THEN le_imp_subset, THEN subset_imp_lepoll]
nat_into_Ord nat_1I)

done

lemma ww2_lepoll:
" [[∀ b<a. f‘b . succ(m); g<a; m ∈ nat; vv2(f,b,g,d) ⊆ f‘g]]
=⇒ ww2(f,b,g,d) . m"

unfolding ww2_def
apply (case_tac "f‘g = 0")
apply (simp add: empty_lepollI)
apply (drule ospec, assumption)
apply (rule Diff_lepoll, assumption+)
apply (simp add: vv2_def not_emptyI)
done

lemma gg2_lepoll_m:
" [[∀ g<a. ∀ d<a. domain(uu(f,b,g,d)) 6= 0 −→

domain(uu(f,b,g,d)) ≈ succ(m);
∀ b<a. f‘b . succ(m); y*y ⊆ y;
(
⋃

b<a. f‘b)=y; b<a; s ∈ f‘b; m ∈ nat; m 6= 0; g<a++a]]
=⇒ gg2(f,a,b,s) ‘ g . m"

17

apply (simp add: gg2_def empty_lepollI)
apply (safe elim!: lt_Ord2 dest!: lt_oadd_odiff_disj)
apply (simp add: vv2_lepoll)

apply (simp add: ww2_lepoll vv2_subset)
done

lemma lemma_ii: " [[succ(m) ∈ NN(y); y*y ⊆ y; m ∈ nat; m 6=0]] =⇒ m ∈
NN(y)"

unfolding NN_def
apply (elim CollectE exE conjE)
apply (rule quant_domain_uu_lepoll_m [THEN cases, THEN disjE], assumption)

apply (simp add: lesspoll_succ_iff)
apply (rule_tac x = "a++a" in exI)
apply (fast intro!: Ord_oadd domain_gg1 UN_gg1_eq gg1_lepoll_m)

apply (elim oexE conjE)
apply (rule_tac A = "f‘B" for B in not_emptyE, assumption)
apply (rule CollectI)
apply (erule succ_natD)
apply (rule_tac x = "a++a" in exI)
apply (rule_tac x = "gg2 (f,a,b,x) " in exI)
apply (simp add: Ord_oadd domain_gg2 UN_gg2_eq gg2_lepoll_m)
done

lemma z_n_subset_z_succ_n:
"∀ n ∈ nat. rec(n, x, λk r. r ∪ r*r) ⊆ rec(succ(n), x, λk r. r ∪

r*r)"
by (fast intro: rec_succ [THEN ssubst])

lemma le_subsets:
" [[∀ n ∈ nat. f(n)<=f(succ(n)); n≤m; n ∈ nat; m ∈ nat]]
=⇒ f(n)<=f(m)"

apply (erule_tac P = "n≤m" in rev_mp)
apply (rule_tac P = "λz. n≤z −→ f (n) ⊆ f (z) " in nat_induct)
apply (auto simp add: le_iff)
done

18

lemma le_imp_rec_subset:
" [[n≤m; m ∈ nat]]
=⇒ rec(n, x, λk r. r ∪ r*r) ⊆ rec(m, x, λk r. r ∪ r*r)"

apply (rule z_n_subset_z_succ_n [THEN le_subsets])
apply (blast intro: lt_nat_in_nat)+
done

lemma lemma_iv: "∃ y. x ∪ y*y ⊆ y"
apply (rule_tac x = "

⋃
n ∈ nat. rec (n, x, λk r. r ∪ r*r) " in exI)

apply safe
apply (rule nat_0I [THEN UN_I], simp)
apply (rule_tac a = "succ (n ∪ na) " in UN_I)
apply (erule Un_nat_type [THEN nat_succI], assumption)
apply (auto intro: le_imp_rec_subset [THEN subsetD]

intro!: Un_upper1_le Un_upper2_le Un_nat_type
elim!: nat_into_Ord)

done

lemma WO6_imp_NN_not_empty: "WO6 =⇒ NN(y) 6= 0"
by (unfold WO6_def NN_def, clarify, blast)

lemma lemma1:
" [[(

⋃
b<a. f‘b)=y; x ∈ y; ∀ b<a. f‘b . 1; Ord(a)]] =⇒ ∃ c<a. f‘c =

{x}"
by (fast elim!: lepoll_1_is_sing)

lemma lemma2:
" [[(

⋃
b<a. f‘b)=y; x ∈ y; ∀ b<a. f‘b . 1; Ord(a)]]

=⇒ f‘ (µ i. f‘i = {x}) = {x}"

19

apply (drule lemma1, assumption+)
apply (fast elim!: lt_Ord intro: LeastI)
done

lemma NN_imp_ex_inj: "1 ∈ NN(y) =⇒ ∃ a f. Ord(a) ∧ f ∈ inj(y, a)"
unfolding NN_def

apply (elim CollectE exE conjE)
apply (rule_tac x = a in exI)
apply (rule_tac x = "λx ∈ y. µ i. f‘i = {x}" in exI)
apply (rule conjI, assumption)
apply (rule_tac d = "λi. THE x. x ∈ f‘i" in lam_injective)
apply (drule lemma1, assumption+)
apply (fast elim!: Least_le [THEN lt_trans1, THEN ltD] lt_Ord)
apply (rule lemma2 [THEN ssubst], assumption+, blast)
done

lemma y_well_ord: " [[y*y ⊆ y; 1 ∈ NN(y)]] =⇒ ∃ r. well_ord(y, r)"
apply (drule NN_imp_ex_inj)
apply (fast elim!: well_ord_rvimage [OF _ well_ord_Memrel])
done

lemma rev_induct_lemma [rule_format]:
" [[n ∈ nat;

∧
m. [[m ∈ nat; m 6=0; P(succ(m))]] =⇒ P(m)]]

=⇒ n 6=0 −→ P(n) −→ P(1)"
by (erule nat_induct, blast+)

lemma rev_induct:
" [[n ∈ nat; P(n); n 6=0;∧

m. [[m ∈ nat; m 6=0; P(succ(m))]] =⇒ P(m)]]
=⇒ P(1)"

by (rule rev_induct_lemma, blast+)

lemma NN_into_nat: "n ∈ NN(y) =⇒ n ∈ nat"
by (simp add: NN_def)

lemma lemma3: " [[n ∈ NN(y); y*y ⊆ y; n 6=0]] =⇒ 1 ∈ NN(y)"
apply (rule rev_induct [OF NN_into_nat], assumption+)
apply (rule lemma_ii, assumption+)
done

20

lemma NN_y_0: "0 ∈ NN(y) =⇒ y=0"
unfolding NN_def

apply (fast intro!: equalityI dest!: lepoll_0_is_0 elim: subst)
done

lemma WO6_imp_WO1: "WO6 =⇒ WO1"
unfolding WO1_def

apply (rule allI)
apply (case_tac "A=0")
apply (fast intro!: well_ord_Memrel nat_0I [THEN nat_into_Ord])
apply (rule_tac x = A in lemma_iv [elim_format])
apply (erule exE)
apply (drule WO6_imp_NN_not_empty)
apply (erule Un_subset_iff [THEN iffD1, THEN conjE])
apply (erule_tac A = "NN (y) " in not_emptyE)
apply (frule y_well_ord)
apply (fast intro!: lemma3 dest!: NN_y_0 elim!: not_emptyE)

apply (fast elim: well_ord_subset)
done

end

theory WO1_WO7
imports AC_Equiv
begin

definition
"LEMMA ≡
∀ X. ¬Finite(X) −→ (∃ R. well_ord(X,R) ∧ ¬well_ord(X,converse(R)))"

lemma WO7_iff_LEMMA: "WO7 ←→ LEMMA"
unfolding WO7_def LEMMA_def

apply (blast intro: Finite_well_ord_converse)
done

lemma LEMMA_imp_WO1: "LEMMA =⇒ WO1"
unfolding WO1_def LEMMA_def Finite_def eqpoll_def

apply (blast intro!: well_ord_rvimage [OF bij_is_inj nat_implies_well_ord])
done

21

lemma converse_Memrel_not_wf_on:
" [[Ord(a); ¬Finite(a)]] =⇒ ¬wf[a](converse(Memrel(a)))"

unfolding wf_on_def wf_def
apply (drule nat_le_infinite_Ord [THEN le_imp_subset], assumption)
apply (rule notI)
apply (erule_tac x = nat in allE, blast)
done

lemma converse_Memrel_not_well_ord:
" [[Ord(a); ¬Finite(a)]] =⇒ ¬well_ord(a,converse(Memrel(a)))"

unfolding well_ord_def
apply (blast dest: converse_Memrel_not_wf_on)
done

lemma well_ord_rvimage_ordertype:
"well_ord(A,r) =⇒

rvimage (ordertype(A,r), converse(ordermap(A,r)),r) =
Memrel(ordertype(A,r))"

by (blast intro: ordertype_ord_iso [THEN ord_iso_sym] ord_iso_rvimage_eq
Memrel_type [THEN subset_Int_iff [THEN iffD1]] trans)

lemma well_ord_converse_Memrel:
" [[well_ord(A,r); well_ord(A,converse(r))]]
=⇒ well_ord(ordertype(A,r), converse(Memrel(ordertype(A,r))))"

apply (subst well_ord_rvimage_ordertype [symmetric], assumption)
apply (rule rvimage_converse [THEN subst])
apply (blast intro: ordertype_ord_iso ord_iso_sym ord_iso_is_bij

bij_is_inj well_ord_rvimage)
done

lemma WO1_imp_LEMMA: "WO1 =⇒ LEMMA"
apply (unfold WO1_def LEMMA_def, clarify)
apply (blast dest: well_ord_converse_Memrel

Ord_ordertype [THEN converse_Memrel_not_well_ord]
intro: ordertype_ord_iso ord_iso_is_bij bij_is_inj lepoll_Finite

22

lepoll_def [THEN def_imp_iff, THEN iffD2])
done

lemma WO1_iff_WO7: "WO1 ←→ WO7"
apply (simp add: WO7_iff_LEMMA)
apply (blast intro: LEMMA_imp_WO1 WO1_imp_LEMMA)
done

lemma WO1_WO8: "WO1 =⇒ WO8"
by (unfold WO1_def WO8_def, fast)

lemma WO8_WO1: "WO8 =⇒ WO1"
unfolding WO1_def WO8_def

apply (rule allI)
apply (erule_tac x = "{{x}. x ∈ A}" in allE)
apply (erule impE)
apply (rule_tac x = "λa ∈ {{x}. x ∈ A}. THE x. a={x}" in exI)
apply (force intro!: lam_type simp add: singleton_eq_iff the_equality)

apply (blast intro: lam_sing_bij bij_is_inj well_ord_rvimage)
done

end

theory AC7_AC9
imports AC_Equiv
begin

lemma Sigma_fun_space_not0: " [[0 /∈A; B ∈ A]] =⇒ (nat->
⋃

(A)) * B 6= 0"
by (blast dest!: Sigma_empty_iff [THEN iffD1] Union_empty_iff [THEN iffD1])

lemma inj_lemma:
"C ∈ A =⇒ (λg ∈ (nat->

⋃
(A))*C.

(λn ∈ nat. if(n=0, snd(g), fst(g)‘(n #- 1))))
∈ inj((nat->

⋃
(A))*C, (nat->

⋃
(A))) "

23

unfolding inj_def
apply (rule CollectI)
apply (fast intro!: lam_type if_type apply_type fst_type snd_type, auto)

apply (rule fun_extension, assumption+)
apply (drule lam_eqE [OF _ nat_succI], assumption, simp)
apply (drule lam_eqE [OF _ nat_0I], simp)
done

lemma Sigma_fun_space_eqpoll:
" [[C ∈ A; 0 /∈A]] =⇒ (nat->

⋃
(A)) * C ≈ (nat->

⋃
(A))"

apply (rule eqpollI)
apply (simp add: lepoll_def)
apply (fast intro!: inj_lemma)
apply (fast elim!: prod_lepoll_self not_sym [THEN not_emptyE] subst_elem

elim: swap)
done

lemma AC6_AC7: "AC6 =⇒ AC7"
by (unfold AC6_def AC7_def, blast)

lemma lemma1_1: "y ∈ (
∏

B ∈ A. Y*B) =⇒ (λB ∈ A. snd(y‘B)) ∈ (
∏

B ∈
A. B)"
by (fast intro!: lam_type snd_type apply_type)

lemma lemma1_2:
"y ∈ (

∏
B ∈ {Y*C. C ∈ A}. B) =⇒ (λB ∈ A. y‘(Y*B)) ∈ (

∏
B ∈ A.

Y*B)"
apply (fast intro!: lam_type apply_type)
done

lemma AC7_AC6_lemma1:
"(

∏
B ∈ {(nat->

⋃
(A))*C. C ∈ A}. B) 6= 0 =⇒ (

∏
B ∈ A. B) 6= 0"

by (fast intro!: equals0I lemma1_1 lemma1_2)

lemma AC7_AC6_lemma2: "0 /∈ A =⇒ 0 /∈ {(nat ->
⋃

(A)) * C. C ∈ A}"
by (blast dest: Sigma_fun_space_not0)

24

lemma AC7_AC6: "AC7 =⇒ AC6"
unfolding AC6_def AC7_def

apply (rule allI)
apply (rule impI)
apply (case_tac "A=0", simp)
apply (rule AC7_AC6_lemma1)
apply (erule allE)
apply (blast del: notI

intro!: AC7_AC6_lemma2 intro: eqpoll_sym eqpoll_trans
Sigma_fun_space_eqpoll)

done

lemma AC1_AC8_lemma1:
"∀ B ∈ A. ∃ B1 B2. B=〈B1,B2〉 ∧ B1 ≈ B2
=⇒ 0 /∈ { bij(fst(B),snd(B)). B ∈ A }"

apply (unfold eqpoll_def, auto)
done

lemma AC1_AC8_lemma2:
" [[f ∈ (

∏
X ∈ RepFun(A,p). X); D ∈ A]] =⇒ (λx ∈ A. f‘p(x))‘D ∈

p(D)"
apply (simp, fast elim!: apply_type)
done

lemma AC1_AC8: "AC1 =⇒ AC8"
unfolding AC1_def AC8_def

apply (fast dest: AC1_AC8_lemma1 AC1_AC8_lemma2)
done

lemma AC8_AC9_lemma:
"∀ B1 ∈ A. ∀ B2 ∈ A. B1 ≈ B2
=⇒ ∀ B ∈ A*A. ∃ B1 B2. B=〈B1,B2〉 ∧ B1 ≈ B2"

by fast

lemma AC8_AC9: "AC8 =⇒ AC9"
unfolding AC8_def AC9_def

25

apply (intro allI impI)
apply (erule allE)
apply (erule impE, erule AC8_AC9_lemma, force)
done

lemma snd_lepoll_SigmaI: "b ∈ B =⇒ X . B × X"
by (blast intro: lepoll_trans prod_lepoll_self eqpoll_imp_lepoll

prod_commute_eqpoll)

lemma nat_lepoll_lemma:
" [[0 /∈ A; B ∈ A]] =⇒ nat . ((nat →

⋃
(A)) × B) × nat"

by (blast dest: Sigma_fun_space_not0 intro: snd_lepoll_SigmaI)

lemma AC9_AC1_lemma1:
" [[0 /∈A; A 6=0;

C = {((nat->
⋃

(A))*B)*nat. B ∈ A} ∪
{cons(0,((nat->

⋃
(A))*B)*nat). B ∈ A};

B1 ∈ C; B2 ∈ C]]
=⇒ B1 ≈ B2"

by (blast intro!: nat_lepoll_lemma Sigma_fun_space_eqpoll
nat_cons_eqpoll [THEN eqpoll_trans]
prod_eqpoll_cong [OF _ eqpoll_refl]

intro: eqpoll_trans eqpoll_sym)

lemma AC9_AC1_lemma2:
"∀ B1 ∈ {(F*B)*N. B ∈ A} ∪ {cons(0,(F*B)*N). B ∈ A}.
∀ B2 ∈ {(F*B)*N. B ∈ A} ∪ {cons(0,(F*B)*N). B ∈ A}.

f‘〈B1,B2〉 ∈ bij(B1, B2)
=⇒ (λB ∈ A. snd(fst((f‘<cons(0,(F*B)*N),(F*B)*N>)‘0))) ∈ (

∏
X

∈ A. X)"
apply (intro lam_type snd_type fst_type)
apply (rule apply_type [OF _ consI1])
apply (fast intro!: fun_weaken_type bij_is_fun)
done

lemma AC9_AC1: "AC9 =⇒ AC1"
unfolding AC1_def AC9_def

apply (intro allI impI)
apply (erule allE)
apply (case_tac "A 6=0")

26

apply (blast dest: AC9_AC1_lemma1 AC9_AC1_lemma2, force)
done

end

theory WO1_AC
imports AC_Equiv
begin

theorem WO1_AC1: "WO1 =⇒ AC1"
by (unfold AC1_def WO1_def, fast elim!: ex_choice_fun)

lemma lemma1: " [[WO1; ∀ B ∈ A. ∃ C ∈ D(B). P(C,B)]] =⇒ ∃ f. ∀ B ∈ A. P(f‘B,B)"
unfolding WO1_def

apply (erule_tac x = "
⋃

({{C ∈ D (B) . P (C,B) }. B ∈ A}) " in allE)
apply (erule exE, drule ex_choice_fun, fast)
apply (erule exE)
apply (rule_tac x = "λx ∈ A. f‘{C ∈ D (x) . P (C,x) }" in exI)
apply (simp, blast dest!: apply_type [OF _ RepFunI])
done

lemma lemma2_1: " [[¬Finite(B); WO1]] =⇒ |B| + |B| ≈ B"
unfolding WO1_def

apply (rule eqpoll_trans)
prefer 2 apply (fast elim!: well_ord_cardinal_eqpoll)
apply (rule eqpoll_sym [THEN eqpoll_trans])
apply (fast elim!: well_ord_cardinal_eqpoll)
apply (drule spec [of _ B])
apply (clarify dest!: eqpoll_imp_Finite_iff [OF well_ord_cardinal_eqpoll])

apply (simp add: cadd_def [symmetric]
eqpoll_refl InfCard_cdouble_eq Card_cardinal Inf_Card_is_InfCard)

done

lemma lemma2_2:
"f ∈ bij(D+D, B) =⇒ {{f‘Inl(i), f‘Inr(i)}. i ∈ D} ∈ Pow(Pow(B))"

by (fast elim!: bij_is_fun [THEN apply_type])

27

lemma lemma2_3:
"f ∈ bij(D+D, B) =⇒ pairwise_disjoint({{f‘Inl(i), f‘Inr(i)}.

i ∈ D})"
unfolding pairwise_disjoint_def

apply (blast dest: bij_is_inj [THEN inj_apply_equality])
done

lemma lemma2_4:
" [[f ∈ bij(D+D, B); 1≤n]]
=⇒ sets_of_size_between({{f‘Inl(i), f‘Inr(i)}. i ∈ D}, 2, succ(n))"

apply (simp (no_asm_simp) add: sets_of_size_between_def succ_def)
apply (blast intro!: cons_lepoll_cong

intro: singleton_eqpoll_1 [THEN eqpoll_imp_lepoll]
le_imp_subset [THEN subset_imp_lepoll] lepoll_trans

dest: bij_is_inj [THEN inj_apply_equality] elim!: mem_irrefl)
done

lemma lemma2_5:
"f ∈ bij(D+D, B) =⇒

⋃
({{f‘Inl(i), f‘Inr(i)}. i ∈ D})=B"

unfolding bij_def surj_def
apply (fast elim!: inj_is_fun [THEN apply_type])
done

lemma lemma2:
" [[WO1; ¬Finite(B); 1≤n]]
=⇒ ∃ C ∈ Pow(Pow(B)). pairwise_disjoint(C) ∧

sets_of_size_between(C, 2, succ(n)) ∧⋃
(C)=B"

apply (drule lemma2_1 [THEN eqpoll_def [THEN def_imp_iff, THEN iffD1]],

assumption)
apply (blast intro!: lemma2_2 lemma2_3 lemma2_4 lemma2_5)
done

theorem WO1_AC10: " [[WO1; 1≤n]] =⇒ AC10(n)"
unfolding AC10_def

apply (fast intro!: lemma1 elim!: lemma2)
done

end

theory Hartog
imports AC_Equiv
begin

definition
Hartog :: "i ⇒ i" where

28

"Hartog(X) ≡ µ i. ¬ i . X"

lemma Ords_in_set: "∀ a. Ord(a) −→ a ∈ X =⇒ P"
apply (rule_tac X = "{y ∈ X. Ord (y) }" in ON_class [elim_format])
apply fast
done

lemma Ord_lepoll_imp_ex_well_ord:
" [[Ord(a); a . X]]
=⇒ ∃ Y. Y ⊆ X ∧ (∃ R. well_ord(Y,R) ∧ ordertype(Y,R)=a)"

unfolding lepoll_def
apply (erule exE)
apply (intro exI conjI)

apply (erule inj_is_fun [THEN fun_is_rel, THEN image_subset])
apply (rule well_ord_rvimage [OF bij_is_inj well_ord_Memrel])
apply (erule restrict_bij [THEN bij_converse_bij])

apply (rule subset_refl, assumption)
apply (rule trans)
apply (rule bij_ordertype_vimage)
apply (erule restrict_bij [THEN bij_converse_bij])
apply (rule subset_refl)
apply (erule well_ord_Memrel)
apply (erule ordertype_Memrel)
done

lemma Ord_lepoll_imp_eq_ordertype:
" [[Ord(a); a . X]] =⇒ ∃ Y. Y ⊆ X ∧ (∃ R. R ⊆ X*X ∧ ordertype(Y,R)=a)"

apply (drule Ord_lepoll_imp_ex_well_ord, assumption, clarify)
apply (intro exI conjI)
apply (erule_tac [3] ordertype_Int, auto)
done

lemma Ords_lepoll_set_lemma:
"(∀ a. Ord(a) −→ a . X) =⇒
∀ a. Ord(a) −→
a ∈ {b. Z ∈ Pow(X)*Pow(X*X), ∃ Y R. Z=〈Y,R〉 ∧ ordertype(Y,R)=b}"

apply (intro allI impI)
apply (elim allE impE, assumption)
apply (blast dest!: Ord_lepoll_imp_eq_ordertype intro: sym)
done

lemma Ords_lepoll_set: "∀ a. Ord(a) −→ a . X =⇒ P"
by (erule Ords_lepoll_set_lemma [THEN Ords_in_set])

lemma ex_Ord_not_lepoll: "∃ a. Ord(a) ∧ ¬a . X"
apply (rule ccontr)
apply (best intro: Ords_lepoll_set)
done

29

lemma not_Hartog_lepoll_self: "¬ Hartog(A) . A"
unfolding Hartog_def

apply (rule ex_Ord_not_lepoll [THEN exE])
apply (rule LeastI, auto)
done

lemmas Hartog_lepoll_selfE = not_Hartog_lepoll_self [THEN notE]

lemma Ord_Hartog: "Ord(Hartog(A))"
by (unfold Hartog_def, rule Ord_Least)

lemma less_HartogE1: " [[i < Hartog(A); ¬ i . A]] =⇒ P"
by (unfold Hartog_def, fast elim: less_LeastE)

lemma less_HartogE: " [[i < Hartog(A); i ≈ Hartog(A)]] =⇒ P"
by (blast intro: less_HartogE1 eqpoll_sym eqpoll_imp_lepoll

lepoll_trans [THEN Hartog_lepoll_selfE])

lemma Card_Hartog: "Card(Hartog(A))"
by (fast intro!: CardI Ord_Hartog elim: less_HartogE)

end

theory HH
imports AC_Equiv Hartog
begin

definition
HH :: "[i, i, i] ⇒ i" where

"HH(f,x,a) ≡ transrec(a, λb r. let z = x - (
⋃

c ∈ b. r‘c)
in if f‘z ∈ Pow(z)-{0} then f‘z else

{x})"

0.1 Lemmas useful in each of the three proofs
lemma HH_def_satisfies_eq:

"HH(f,x,a) = (let z = x - (
⋃

b ∈ a. HH(f,x,b))
in if f‘z ∈ Pow(z)-{0} then f‘z else {x})"

by (rule HH_def [THEN def_transrec, THEN trans], simp)

lemma HH_values: "HH(f,x,a) ∈ Pow(x)-{0} | HH(f,x,a)={x}"
apply (rule HH_def_satisfies_eq [THEN ssubst])
apply (simp add: Let_def Diff_subset [THEN PowI], fast)
done

lemma subset_imp_Diff_eq:
"B ⊆ A =⇒ X-(

⋃
a ∈ A. P(a)) = X-(

⋃
a ∈ A-B. P(a))-(

⋃
b ∈ B. P(b))"

by fast

30

lemma Ord_DiffE: " [[c ∈ a-b; b<a]] =⇒ c=b | b<c ∧ c<a"
apply (erule ltE)
apply (drule Ord_linear [of _ c])
apply (fast elim: Ord_in_Ord)
apply (fast intro!: ltI intro: Ord_in_Ord)
done

lemma Diff_UN_eq_self: "(
∧

y. y∈A =⇒ P(y) = {x}) =⇒ x - (
⋃

y ∈ A.
P(y)) = x"
by (simp, fast elim!: mem_irrefl)

lemma HH_eq: "x - (
⋃

b ∈ a. HH(f,x,b)) = x - (
⋃

b ∈ a1. HH(f,x,b))
=⇒ HH(f,x,a) = HH(f,x,a1)"

apply (subst HH_def_satisfies_eq [of _ _ a1])
apply (rule HH_def_satisfies_eq [THEN trans], simp)
done

lemma HH_is_x_gt_too: " [[HH(f,x,b)={x}; b<a]] =⇒ HH(f,x,a)={x}"
apply (rule_tac P = "b<a" in impE)
prefer 2 apply assumption+
apply (erule lt_Ord2 [THEN trans_induct])
apply (rule impI)
apply (rule HH_eq [THEN trans])
prefer 2 apply assumption+
apply (rule leI [THEN le_imp_subset, THEN subset_imp_Diff_eq, THEN ssubst],

assumption)
apply (rule_tac t = "λz. z-X" for X in subst_context)
apply (rule Diff_UN_eq_self)
apply (drule Ord_DiffE, assumption)
apply (fast elim: ltE, auto)
done

lemma HH_subset_x_lt_too:
" [[HH(f,x,a) ∈ Pow(x)-{0}; b<a]] =⇒ HH(f,x,b) ∈ Pow(x)-{0}"

apply (rule HH_values [THEN disjE], assumption)
apply (drule HH_is_x_gt_too, assumption)
apply (drule subst, assumption)
apply (fast elim!: mem_irrefl)
done

lemma HH_subset_x_imp_subset_Diff_UN:
"HH(f,x,a) ∈ Pow(x)-{0} =⇒ HH(f,x,a) ∈ Pow(x - (

⋃
b ∈ a. HH(f,x,b)))-{0}"

apply (drule HH_def_satisfies_eq [THEN subst])
apply (rule HH_def_satisfies_eq [THEN ssubst])
apply (simp add: Let_def Diff_subset [THEN PowI])
apply (drule split_if [THEN iffD1])
apply (fast elim!: mem_irrefl)

31

done

lemma HH_eq_arg_lt:
" [[HH(f,x,v)=HH(f,x,w); HH(f,x,v) ∈ Pow(x)-{0}; v ∈ w]] =⇒ P"

apply (frule_tac P = "λy. y ∈ Pow (x) -{0}" in subst, assumption)
apply (drule_tac a = w in HH_subset_x_imp_subset_Diff_UN)
apply (drule subst_elem, assumption)
apply (fast intro!: singleton_iff [THEN iffD2] equals0I)
done

lemma HH_eq_imp_arg_eq:
" [[HH(f,x,v)=HH(f,x,w); HH(f,x,w) ∈ Pow(x)-{0}; Ord(v); Ord(w)]] =⇒ v=w"

apply (rule_tac j = w in Ord_linear_lt)
apply (simp_all (no_asm_simp))
apply (drule subst_elem, assumption)
apply (blast dest: ltD HH_eq_arg_lt)

apply (blast dest: HH_eq_arg_lt [OF sym] ltD)
done

lemma HH_subset_x_imp_lepoll:
" [[HH(f, x, i) ∈ Pow(x)-{0}; Ord(i)]] =⇒ i . Pow(x)-{0}"

unfolding lepoll_def inj_def
apply (rule_tac x = "λj ∈ i. HH (f, x, j) " in exI)
apply (simp (no_asm_simp))
apply (fast del: DiffE

elim!: HH_eq_imp_arg_eq Ord_in_Ord HH_subset_x_lt_too
intro!: lam_type ballI ltI intro: bexI)

done

lemma HH_Hartog_is_x: "HH(f, x, Hartog(Pow(x)-{0})) = {x}"
apply (rule HH_values [THEN disjE])
prefer 2 apply assumption
apply (fast del: DiffE

intro!: Ord_Hartog
dest!: HH_subset_x_imp_lepoll
elim!: Hartog_lepoll_selfE)

done

lemma HH_Least_eq_x: "HH(f, x, µ i. HH(f, x, i) = {x}) = {x}"
by (fast intro!: Ord_Hartog HH_Hartog_is_x LeastI)

lemma less_Least_subset_x:
"a ∈ (µ i. HH(f,x,i)={x}) =⇒ HH(f,x,a) ∈ Pow(x)-{0}"

apply (rule HH_values [THEN disjE], assumption)
apply (rule less_LeastE)
apply (erule_tac [2] ltI [OF _ Ord_Least], assumption)
done

32

0.2 Lemmas used in the proofs of AC1 =⇒ WO2 and AC17 =⇒ AC1

lemma lam_Least_HH_inj_Pow:
"(λa ∈ (µ i. HH(f,x,i)={x}). HH(f,x,a))
∈ inj(µ i. HH(f,x,i)={x}, Pow(x)-{0})"

apply (unfold inj_def, simp)
apply (fast intro!: lam_type dest: less_Least_subset_x

elim!: HH_eq_imp_arg_eq Ord_Least [THEN Ord_in_Ord])
done

lemma lam_Least_HH_inj:
"∀ a ∈ (µ i. HH(f,x,i)={x}). ∃ z ∈ x. HH(f,x,a) = {z}
=⇒ (λa ∈ (µ i. HH(f,x,i)={x}). HH(f,x,a))

∈ inj(µ i. HH(f,x,i)={x}, {{y}. y ∈ x})"
by (rule lam_Least_HH_inj_Pow [THEN inj_strengthen_type], simp)

lemma lam_surj_sing:
" [[x - (

⋃
a ∈ A. F(a)) = 0; ∀ a ∈ A. ∃ z ∈ x. F(a) = {z}]]

=⇒ (λa ∈ A. F(a)) ∈ surj(A, {{y}. y ∈ x})"
apply (simp add: surj_def lam_type Diff_eq_0_iff)
apply (blast elim: equalityE)
done

lemma not_emptyI2: "y ∈ Pow(x)-{0} =⇒ x 6= 0"
by auto

lemma f_subset_imp_HH_subset:
"f‘(x - (

⋃
j ∈ i. HH(f,x,j))) ∈ Pow(x - (

⋃
j ∈ i. HH(f,x,j)))-{0}

=⇒ HH(f, x, i) ∈ Pow(x) - {0}"
apply (rule HH_def_satisfies_eq [THEN ssubst])
apply (simp add: Let_def Diff_subset [THEN PowI] not_emptyI2 [THEN if_P],
fast)
done

lemma f_subsets_imp_UN_HH_eq_x:
"∀ z ∈ Pow(x)-{0}. f‘z ∈ Pow(z)-{0}
=⇒ x - (

⋃
j ∈ (µ i. HH(f,x,i)={x}). HH(f,x,j)) = 0"

apply (case_tac "P ∈ {0}" for P, fast)
apply (drule Diff_subset [THEN PowI, THEN DiffI])
apply (drule bspec, assumption)
apply (drule f_subset_imp_HH_subset)
apply (blast dest!: subst_elem [OF _ HH_Least_eq_x [symmetric]]

elim!: mem_irrefl)
done

lemma HH_values2: "HH(f,x,i) = f‘(x - (
⋃

j ∈ i. HH(f,x,j))) | HH(f,x,i)={x}"
apply (rule HH_def_satisfies_eq [THEN ssubst])
apply (simp add: Let_def Diff_subset [THEN PowI])
done

33

lemma HH_subset_imp_eq:
"HH(f,x,i): Pow(x)-{0} =⇒ HH(f,x,i)=f‘(x - (

⋃
j ∈ i. HH(f,x,j)))"

apply (rule HH_values2 [THEN disjE], assumption)
apply (fast elim!: equalityE mem_irrefl dest!: singleton_subsetD)
done

lemma f_sing_imp_HH_sing:
" [[f ∈ (Pow(x)-{0}) -> {{z}. z ∈ x};

a ∈ (µ i. HH(f,x,i)={x})]] =⇒ ∃ z ∈ x. HH(f,x,a) = {z}"
apply (drule less_Least_subset_x)
apply (frule HH_subset_imp_eq)
apply (drule apply_type)
apply (rule Diff_subset [THEN PowI, THEN DiffI])
apply (fast dest!: HH_subset_x_imp_subset_Diff_UN [THEN not_emptyI2],
force)
done

lemma f_sing_lam_bij:
" [[x - (

⋃
j ∈ (µ i. HH(f,x,i)={x}). HH(f,x,j)) = 0;

f ∈ (Pow(x)-{0}) -> {{z}. z ∈ x}]]
=⇒ (λa ∈ (µ i. HH(f,x,i)={x}). HH(f,x,a))

∈ bij(µ i. HH(f,x,i)={x}, {{y}. y ∈ x})"
unfolding bij_def

apply (fast intro!: lam_Least_HH_inj lam_surj_sing f_sing_imp_HH_sing)
done

lemma lam_singI:
"f ∈ (

∏
X ∈ Pow(x)-{0}. F(X))

=⇒ (λX ∈ Pow(x)-{0}. {f‘X}) ∈ (
∏

X ∈ Pow(x)-{0}. {{z}. z ∈ F(X)})"
by (fast del: DiffI DiffE

intro!: lam_type singleton_eq_iff [THEN iffD2] dest: apply_type)

lemmas bij_Least_HH_x =
comp_bij [OF f_sing_lam_bij [OF _ lam_singI]

lam_sing_bij [THEN bij_converse_bij]]

0.3 The proof of AC1 =⇒ WO2

lemma bijection:
"f ∈ (

∏
X ∈ Pow(x) - {0}. X)

=⇒ ∃ g. g ∈ bij(x, µ i. HH(λX ∈ Pow(x)-{0}. {f‘X}, x, i) = {x})"
apply (rule exI)
apply (rule bij_Least_HH_x [THEN bij_converse_bij])
apply (rule f_subsets_imp_UN_HH_eq_x)
apply (intro ballI apply_type)
apply (fast intro: lam_type apply_type del: DiffE, assumption)
apply (fast intro: Pi_weaken_type)

34

done

lemma AC1_WO2: "AC1 =⇒ WO2"
unfolding AC1_def WO2_def eqpoll_def
apply (intro allI)
apply (drule_tac x = "Pow(A) - {0}" in spec)
apply (blast dest: bijection)
done

end

theory AC15_WO6
imports HH Cardinal_aux
begin

lemma lepoll_Sigma: "A 6=0 =⇒ B . A*B"
unfolding lepoll_def

apply (erule not_emptyE)
apply (rule_tac x = "λz ∈ B. 〈x,z〉" in exI)
apply (fast intro!: snd_conv lam_injective)
done

lemma cons_times_nat_not_Finite:
"0 /∈A =⇒ ∀ B ∈ {cons(0,x*nat). x ∈ A}. ¬Finite(B)"

apply clarify
apply (rule nat_not_Finite [THEN notE])
apply (subgoal_tac "x 6= 0")
apply (blast intro: lepoll_Sigma [THEN lepoll_Finite])+

done

lemma lemma1: " [[
⋃

(C)=A; a ∈ A]] =⇒ ∃ B ∈ C. a ∈ B ∧ B ⊆ A"
by fast

lemma lemma2:
" [[pairwise_disjoint(A); B ∈ A; C ∈ A; a ∈ B; a ∈ C]] =⇒ B=C"

by (unfold pairwise_disjoint_def, blast)

lemma lemma3:
"∀ B ∈ {cons(0, x*nat). x ∈ A}. pairwise_disjoint(f‘B) ∧

sets_of_size_between(f‘B, 2, n) ∧
⋃

(f‘B)=B

35

=⇒ ∀ B ∈ A. ∃ ! u. u ∈ f‘cons(0, B*nat) ∧ u ⊆ cons(0, B*nat) ∧

0 ∈ u ∧ 2 . u ∧ u . n"
unfolding sets_of_size_between_def

apply (rule ballI)
apply (erule_tac x="cons(0, B*nat)" in ballE)
apply (blast dest: lemma1 intro!: lemma2, blast)

done

lemma lemma4: " [[A . i; Ord(i)]] =⇒ {P(a). a ∈ A} . i"
unfolding lepoll_def

apply (erule exE)
apply (rule_tac x = "λx ∈ RepFun(A,P). µ j. ∃ a∈A. x=P(a) ∧ f‘a=j"

in exI)
apply (rule_tac d = "λy. P (converse (f) ‘y) " in lam_injective)
apply (erule RepFunE)
apply (frule inj_is_fun [THEN apply_type], assumption)
apply (fast intro: LeastI2 elim!: Ord_in_Ord inj_is_fun [THEN apply_type])
apply (erule RepFunE)
apply (rule LeastI2)

apply fast
apply (fast elim!: Ord_in_Ord inj_is_fun [THEN apply_type])

apply (fast elim: sym left_inverse [THEN ssubst])
done

lemma lemma5_1:
" [[B ∈ A; 2 . u(B)]] =⇒ (λx ∈ A. {fst(x). x ∈ u(x)-{0}})‘B 6= 0"

apply simp
apply (fast dest: lepoll_Diff_sing

elim: lepoll_trans [THEN succ_lepoll_natE] ssubst
intro!: lepoll_refl)

done

lemma lemma5_2:
" [[B ∈ A; u(B) ⊆ cons(0, B*nat)]]
=⇒ (λx ∈ A. {fst(x). x ∈ u(x)-{0}})‘B ⊆ B"

apply auto
done

lemma lemma5_3:
" [[n ∈ nat; B ∈ A; 0 ∈ u(B); u(B) . succ(n)]]
=⇒ (λx ∈ A. {fst(x). x ∈ u(x)-{0}})‘B . n"

apply simp
apply (fast elim!: Diff_lepoll [THEN lemma4 [OF _ nat_into_Ord]])
done

lemma ex_fun_AC13_AC15:
" [[∀ B ∈ {cons(0, x*nat). x ∈ A}.

pairwise_disjoint(f‘B) ∧

36

sets_of_size_between(f‘B, 2, succ(n)) ∧
⋃

(f‘B)=B;
n ∈ nat]]

=⇒ ∃ f. ∀ B ∈ A. f‘B 6= 0 ∧ f‘B ⊆ B ∧ f‘B . n"
by (fast del: subsetI notI

dest!: lemma3 theI intro!: lemma5_1 lemma5_2 lemma5_3)

theorem AC10_AC11: " [[n ∈ nat; 1≤n; AC10(n)]] =⇒ AC11"
by (unfold AC10_def AC11_def, blast)

theorem AC11_AC12: "AC11 =⇒ AC12"
by (unfold AC10_def AC11_def AC11_def AC12_def, blast)

theorem AC12_AC15: "AC12 =⇒ AC15"
unfolding AC12_def AC15_def

apply (blast del: ballI
intro!: cons_times_nat_not_Finite ex_fun_AC13_AC15)

done

lemma OUN_eq_UN: "Ord(x) =⇒ (
⋃

a<x. F(a)) = (
⋃

a ∈ x. F(a))"
by (fast intro!: ltI dest!: ltD)

lemma AC15_WO6_aux1:
"∀ x ∈ Pow(A)-{0}. f‘x 6=0 ∧ f‘x ⊆ x ∧ f‘x . m
=⇒ (

⋃
i<µ x. HH(f,A,x)={A}. HH(f,A,i)) = A"

apply (simp add: Ord_Least [THEN OUN_eq_UN])
apply (rule equalityI)
apply (fast dest!: less_Least_subset_x)
apply (blast del: subsetI

37

intro!: f_subsets_imp_UN_HH_eq_x [THEN Diff_eq_0_iff [THEN
iffD1]])
done

lemma AC15_WO6_aux2:
"∀ x ∈ Pow(A)-{0}. f‘x 6=0 ∧ f‘x ⊆ x ∧ f‘x . m
=⇒ ∀ x < (µ x. HH(f,A,x)={A}). HH(f,A,x) . m"

apply (rule oallI)
apply (drule ltD [THEN less_Least_subset_x])
apply (frule HH_subset_imp_eq)
apply (erule ssubst)
apply (blast dest!: HH_subset_x_imp_subset_Diff_UN [THEN not_emptyI2])

done

theorem AC15_WO6: "AC15 =⇒ WO6"
unfolding AC15_def WO6_def

apply (rule allI)
apply (erule_tac x = "Pow (A) -{0}" in allE)
apply (erule impE, fast)
apply (elim bexE conjE exE)
apply (rule bexI)
apply (rule conjI, assumption)
apply (rule_tac x = "µ i. HH (f,A,i) ={A}" in exI)
apply (rule_tac x = "λj ∈ (µ i. HH (f,A,i) ={A}) . HH (f,A,j) " in exI)
apply (simp_all add: ltD)

apply (fast intro!: Ord_Least lam_type [THEN domain_of_fun]
elim!: less_Least_subset_x AC15_WO6_aux1 AC15_WO6_aux2)

done

theorem AC10_AC13: " [[n ∈ nat; 1≤n; AC10(n)]] =⇒ AC13(n)"
apply (unfold AC10_def AC13_def, safe)
apply (erule allE)
apply (erule impE [OF _ cons_times_nat_not_Finite], assumption)
apply (fast elim!: impE [OF _ cons_times_nat_not_Finite]

dest!: ex_fun_AC13_AC15)

38

done

lemma AC1_AC13: "AC1 =⇒ AC13(1)"
unfolding AC1_def AC13_def

apply (rule allI)
apply (erule allE)
apply (rule impI)
apply (drule mp, assumption)
apply (elim exE)
apply (rule_tac x = "λx ∈ A. {f‘x}" in exI)
apply (simp add: singleton_eqpoll_1 [THEN eqpoll_imp_lepoll])
done

lemma AC13_mono: " [[m≤n; AC13(m)]] =⇒ AC13(n)"
unfolding AC13_def

apply (drule le_imp_lepoll)
apply (fast elim!: lepoll_trans)
done

theorem AC13_AC14: " [[n ∈ nat; 1≤n; AC13(n)]] =⇒ AC14"
by (unfold AC13_def AC14_def, auto)

theorem AC14_AC15: "AC14 =⇒ AC15"
by (unfold AC13_def AC14_def AC15_def, fast)

39

lemma lemma_aux: " [[A 6=0; A . 1]] =⇒ ∃ a. A={a}"
by (fast elim!: not_emptyE lepoll_1_is_sing)

lemma AC13_AC1_lemma:
"∀ B ∈ A. f(B)6=0 ∧ f(B)<=B ∧ f(B) . 1
=⇒ (λx ∈ A. THE y. f(x)={y}) ∈ (

∏
X ∈ A. X)"

apply (rule lam_type)
apply (drule bspec, assumption)
apply (elim conjE)
apply (erule lemma_aux [THEN exE], assumption)
apply (simp add: the_equality)
done

theorem AC13_AC1: "AC13(1) =⇒ AC1"
unfolding AC13_def AC1_def

apply (fast elim!: AC13_AC1_lemma)
done

theorem AC11_AC14: "AC11 =⇒ AC14"
unfolding AC11_def AC14_def

apply (fast intro!: AC10_AC13)
done

end

theory AC16_lemmas
imports AC_Equiv Hartog Cardinal_aux
begin

lemma cons_Diff_eq: "a /∈A =⇒ cons(a,A)-{a}=A"
by fast

lemma nat_1_lepoll_iff: "1.X ←→ (∃ x. x ∈ X)"
unfolding lepoll_def

apply (rule iffI)
apply (fast intro: inj_is_fun [THEN apply_type])

40

apply (erule exE)
apply (rule_tac x = "λa ∈ 1. x" in exI)
apply (fast intro!: lam_injective)
done

lemma eqpoll_1_iff_singleton: "X≈1 ←→ (∃ x. X={x})"
apply (rule iffI)
apply (erule eqpollE)
apply (drule nat_1_lepoll_iff [THEN iffD1])
apply (fast intro!: lepoll_1_is_sing)
apply (fast intro!: singleton_eqpoll_1)
done

lemma cons_eqpoll_succ: " [[x≈n; y /∈x]] =⇒ cons(y,x)≈succ(n)"
unfolding succ_def

apply (fast elim!: cons_eqpoll_cong mem_irrefl)
done

lemma subsets_eqpoll_1_eq: "{Y ∈ Pow(X). Y≈1} = {{x}. x ∈ X}"
apply (rule equalityI)
apply (rule subsetI)
apply (erule CollectE)
apply (drule eqpoll_1_iff_singleton [THEN iffD1])
apply (fast intro!: RepFunI)
apply (rule subsetI)
apply (erule RepFunE)
apply (rule CollectI, fast)
apply (fast intro!: singleton_eqpoll_1)
done

lemma eqpoll_RepFun_sing: "X≈{{x}. x ∈ X}"
unfolding eqpoll_def bij_def

apply (rule_tac x = "λx ∈ X. {x}" in exI)
apply (rule IntI)
apply (unfold inj_def surj_def, simp)
apply (fast intro!: lam_type RepFunI intro: singleton_eq_iff [THEN iffD1],
simp)
apply (fast intro!: lam_type)
done

lemma subsets_eqpoll_1_eqpoll: "{Y ∈ Pow(X). Y≈1}≈X"
apply (rule subsets_eqpoll_1_eq [THEN ssubst])
apply (rule eqpoll_RepFun_sing [THEN eqpoll_sym])
done

lemma InfCard_Least_in:
" [[InfCard(x); y ⊆ x; y ≈ succ(z)]] =⇒ (µ i. i ∈ y) ∈ y"

apply (erule eqpoll_sym [THEN eqpoll_imp_lepoll,
THEN succ_lepoll_imp_not_empty, THEN not_emptyE])

41

apply (fast intro: LeastI
dest!: InfCard_is_Card [THEN Card_is_Ord]
elim: Ord_in_Ord)

done

lemma subsets_lepoll_lemma1:
" [[InfCard(x); n ∈ nat]]
=⇒ {y ∈ Pow(x). y≈succ(succ(n))} . x*{y ∈ Pow(x). y≈succ(n)}"

unfolding lepoll_def
apply (rule_tac x = "λy ∈ {y ∈ Pow(x) . y≈succ (succ (n))}.

<µ i. i ∈ y, y-{µ i. i ∈ y}>" in exI)
apply (rule_tac d = "λz. cons (fst(z), snd(z))" in lam_injective)
apply (blast intro!: Diff_sing_eqpoll intro: InfCard_Least_in)

apply (simp, blast intro: InfCard_Least_in)
done

lemma set_of_Ord_succ_Union: "(∀ y ∈ z. Ord(y)) =⇒ z ⊆ succ(
⋃

(z))"
apply (rule subsetI)
apply (case_tac "∀ y ∈ z. y ⊆ x", blast)
apply (simp, erule bexE)
apply (rule_tac i=y and j=x in Ord_linear_le)
apply (blast dest: le_imp_subset elim: leE ltE)+
done

lemma subset_not_mem: "j ⊆ i =⇒ i /∈ j"
by (fast elim!: mem_irrefl)

lemma succ_Union_not_mem:
"(

∧
y. y ∈ z =⇒ Ord(y)) =⇒ succ(

⋃
(z)) /∈ z"

apply (rule set_of_Ord_succ_Union [THEN subset_not_mem], blast)
done

lemma Union_cons_eq_succ_Union:
"
⋃

(cons(succ(
⋃

(z)),z)) = succ(
⋃

(z))"
by fast

lemma Un_Ord_disj: " [[Ord(i); Ord(j)]] =⇒ i ∪ j = i | i ∪ j = j"
by (fast dest!: le_imp_subset elim: Ord_linear_le)

lemma Union_eq_Un: "x ∈ X =⇒
⋃

(X) = x ∪
⋃

(X-{x})"
by fast

lemma Union_in_lemma [rule_format]:
"n ∈ nat =⇒ ∀ z. (∀ y ∈ z. Ord(y)) ∧ z≈n ∧ z 6=0 −→

⋃
(z) ∈ z"

apply (induct_tac "n")
apply (fast dest!: eqpoll_imp_lepoll [THEN lepoll_0_is_0])
apply (intro allI impI)
apply (erule natE)
apply (fast dest!: eqpoll_1_iff_singleton [THEN iffD1]

42

intro!: Union_singleton, clarify)
apply (elim not_emptyE)
apply (erule_tac x = "z-{xb}" in allE)
apply (erule impE)
apply (fast elim!: Diff_sing_eqpoll

Diff_sing_eqpoll [THEN eqpoll_succ_imp_not_empty])
apply (subgoal_tac "xb ∪

⋃
(z - {xb}) ∈ z")

apply (simp add: Union_eq_Un [symmetric])
apply (frule bspec, assumption)
apply (drule bspec)
apply (erule Diff_subset [THEN subsetD])
apply (drule Un_Ord_disj, assumption, auto)
done

lemma Union_in: " [[∀ x ∈ z. Ord(x); z≈n; z 6=0; n ∈ nat]] =⇒
⋃

(z) ∈ z"
by (blast intro: Union_in_lemma)

lemma succ_Union_in_x:
" [[InfCard(x); z ∈ Pow(x); z≈n; n ∈ nat]] =⇒ succ(

⋃
(z)) ∈ x"

apply (rule Limit_has_succ [THEN ltE])
prefer 3 apply assumption
apply (erule InfCard_is_Limit)
apply (case_tac "z=0")
apply (simp, fast intro!: InfCard_is_Limit [THEN Limit_has_0])
apply (rule ltI [OF PowD [THEN subsetD] InfCard_is_Card [THEN Card_is_Ord]],
assumption)
apply (blast intro: Union_in

InfCard_is_Card [THEN Card_is_Ord, THEN Ord_in_Ord])+
done

lemma succ_lepoll_succ_succ:
" [[InfCard(x); n ∈ nat]]
=⇒ {y ∈ Pow(x). y≈succ(n)} . {y ∈ Pow(x). y≈succ(succ(n))}"

unfolding lepoll_def
apply (rule_tac x = "λz ∈ {y∈Pow(x). y≈succ(n)}. cons(succ(

⋃
(z)), z)"

in exI)
apply (rule_tac d = "λz. z-{

⋃
(z) }" in lam_injective)

apply (blast intro!: succ_Union_in_x succ_Union_not_mem
intro: cons_eqpoll_succ Ord_in_Ord
dest!: InfCard_is_Card [THEN Card_is_Ord])

apply (simp only: Union_cons_eq_succ_Union)
apply (rule cons_Diff_eq)
apply (fast dest!: InfCard_is_Card [THEN Card_is_Ord]

elim: Ord_in_Ord
intro!: succ_Union_not_mem)

done

lemma subsets_eqpoll_X:

43

" [[InfCard(X); n ∈ nat]] =⇒ {Y ∈ Pow(X). Y≈succ(n)} ≈ X"
apply (induct_tac "n")
apply (rule subsets_eqpoll_1_eqpoll)
apply (rule eqpollI)
apply (rule subsets_lepoll_lemma1 [THEN lepoll_trans], assumption+)
apply (rule eqpoll_trans [THEN eqpoll_imp_lepoll])
apply (erule eqpoll_refl [THEN prod_eqpoll_cong])

apply (erule InfCard_square_eqpoll)
apply (fast elim: eqpoll_sym [THEN eqpoll_imp_lepoll, THEN lepoll_trans]

intro!: succ_lepoll_succ_succ)
done

lemma image_vimage_eq:
" [[f ∈ surj(A,B); y ⊆ B]] =⇒ f‘‘(converse(f)‘‘y) = y"

unfolding surj_def
apply (fast dest: apply_equality2 elim: apply_iff [THEN iffD2])
done

lemma vimage_image_eq: " [[f ∈ inj(A,B); y ⊆ A]] =⇒ converse(f)‘‘(f‘‘y)
= y"
by (fast elim!: inj_is_fun [THEN apply_Pair] dest: inj_equality)

lemma subsets_eqpoll:
"A≈B =⇒ {Y ∈ Pow(A). Y≈n}≈{Y ∈ Pow(B). Y≈n}"

unfolding eqpoll_def
apply (erule exE)
apply (rule_tac x = "λX ∈ {Y ∈ Pow (A) . ∃ f. f ∈ bij (Y, n) }. f‘‘X"
in exI)
apply (rule_tac d = "λZ. converse (f) ‘‘Z" in lam_bijective)
apply (fast intro!: bij_is_inj [THEN restrict_bij, THEN bij_converse_bij,

THEN comp_bij]
elim!: bij_is_fun [THEN fun_is_rel, THEN image_subset])

apply (blast intro!: bij_is_inj [THEN restrict_bij]
comp_bij bij_converse_bij
bij_is_fun [THEN fun_is_rel, THEN image_subset])

apply (fast elim!: bij_is_inj [THEN vimage_image_eq])
apply (fast elim!: bij_is_surj [THEN image_vimage_eq])
done

lemma WO2_imp_ex_Card: "WO2 =⇒ ∃ a. Card(a) ∧ X≈a"
unfolding WO2_def

apply (drule spec [of _ X])
apply (blast intro: Card_cardinal eqpoll_trans

well_ord_Memrel [THEN well_ord_cardinal_eqpoll, THEN eqpoll_sym])
done

lemma lepoll_infinite: " [[X.Y; ¬Finite(X)]] =⇒ ¬Finite(Y)"

44

by (blast intro: lepoll_Finite)

lemma infinite_Card_is_InfCard: " [[¬Finite(X); Card(X)]] =⇒ InfCard(X)"
unfolding InfCard_def

apply (fast elim!: Card_is_Ord [THEN nat_le_infinite_Ord])
done

lemma WO2_infinite_subsets_eqpoll_X: " [[WO2; n ∈ nat; ¬Finite(X)]]
=⇒ {Y ∈ Pow(X). Y≈succ(n)}≈X"

apply (drule WO2_imp_ex_Card)
apply (elim allE exE conjE)
apply (frule eqpoll_imp_lepoll [THEN lepoll_infinite], assumption)
apply (drule infinite_Card_is_InfCard, assumption)
apply (blast intro: subsets_eqpoll subsets_eqpoll_X eqpoll_sym eqpoll_trans)

done

lemma well_ord_imp_ex_Card: "well_ord(X,R) =⇒ ∃ a. Card(a) ∧ X≈a"
by (fast elim!: well_ord_cardinal_eqpoll [THEN eqpoll_sym]

intro!: Card_cardinal)

lemma well_ord_infinite_subsets_eqpoll_X:
" [[well_ord(X,R); n ∈ nat; ¬Finite(X)]] =⇒ {Y ∈ Pow(X). Y≈succ(n)}≈X"

apply (drule well_ord_imp_ex_Card)
apply (elim allE exE conjE)
apply (frule eqpoll_imp_lepoll [THEN lepoll_infinite], assumption)
apply (drule infinite_Card_is_InfCard, assumption)
apply (blast intro: subsets_eqpoll subsets_eqpoll_X eqpoll_sym eqpoll_trans)

done

end

theory WO2_AC16 imports AC_Equiv AC16_lemmas Cardinal_aux begin

definition
recfunAC16 :: "[i,i,i,i] ⇒ i" where

"recfunAC16(f,h,i,a) ≡
transrec2(i, 0,

λg r. if (∃ y ∈ r. h‘g ⊆ y) then r
else r ∪ {f‘(µ i. h‘g ⊆ f‘i ∧

(∀ b<a. (h‘b ⊆ f‘i −→ (∀ t ∈ r. ¬ h‘b ⊆ t))))})"

45

lemma recfunAC16_0: "recfunAC16(f,h,0,a) = 0"
by (simp add: recfunAC16_def)

lemma recfunAC16_succ:
"recfunAC16(f,h,succ(i),a) =
(if (∃ y ∈ recfunAC16(f,h,i,a). h ‘ i ⊆ y) then recfunAC16(f,h,i,a)

else recfunAC16(f,h,i,a) ∪
{f ‘ (µ j. h ‘ i ⊆ f ‘ j ∧
(∀ b<a. (h‘b ⊆ f‘j
−→ (∀ t ∈ recfunAC16(f,h,i,a). ¬ h‘b ⊆ t))))})"

apply (simp add: recfunAC16_def)
done

lemma recfunAC16_Limit: "Limit(i)
=⇒ recfunAC16(f,h,i,a) = (

⋃
j<i. recfunAC16(f,h,j,a))"

by (simp add: recfunAC16_def transrec2_Limit)

lemma transrec2_mono_lemma [rule_format]:
" [[

∧
g r. r ⊆ B(g,r); Ord(i)]]

=⇒ j<i −→ transrec2(j, 0, B) ⊆ transrec2(i, 0, B)"
apply (erule trans_induct)
apply (rule Ord_cases, assumption+, fast)
apply (simp (no_asm_simp))
apply (blast elim!: leE)
apply (simp add: transrec2_Limit)
apply (blast intro: OUN_I ltI Ord_in_Ord [THEN le_refl]

elim!: Limit_has_succ [THEN ltE])
done

lemma transrec2_mono:
" [[

∧
g r. r ⊆ B(g,r); j≤i]]

=⇒ transrec2(j, 0, B) ⊆ transrec2(i, 0, B)"
apply (erule leE)
apply (rule transrec2_mono_lemma)
apply (auto intro: lt_Ord2)
done

lemma recfunAC16_mono:
"i≤j =⇒ recfunAC16(f, g, i, a) ⊆ recfunAC16(f, g, j, a)"

46

unfolding recfunAC16_def
apply (rule transrec2_mono, auto)
done

lemma lemma3_1:
" [[∀ y<x. ∀ z<a. z<y | (∃ Y ∈ F(y). f(z)<=Y) −→ (∃ ! Y. Y ∈ F(y) ∧

f(z)<=Y);
∀ i j. i≤j −→ F(i) ⊆ F(j); j≤i; i<x; z<a;
V ∈ F(i); f(z)<=V; W ∈ F(j); f(z)<=W]]

=⇒ V = W"
apply (erule asm_rl allE impE)+
apply (drule subsetD, assumption, blast)
done

lemma lemma3:
" [[∀ y<x. ∀ z<a. z<y | (∃ Y ∈ F(y). f(z)<=Y) −→ (∃ ! Y. Y ∈ F(y) ∧

f(z)<=Y);
∀ i j. i≤j −→ F(i) ⊆ F(j); i<x; j<x; z<a;
V ∈ F(i); f(z)<=V; W ∈ F(j); f(z)<=W]]

=⇒ V = W"
apply (rule_tac j=j in Ord_linear_le [OF lt_Ord lt_Ord], assumption+)
apply (erule lemma3_1 [symmetric], assumption+)
apply (erule lemma3_1, assumption+)
done

lemma lemma4:
" [[∀ y<x. F(y) ⊆ X ∧

(∀ x<a. x < y | (∃ Y ∈ F(y). h(x) ⊆ Y) −→
(∃ ! Y. Y ∈ F(y) ∧ h(x) ⊆ Y));

x < a]]
=⇒ ∀ y<x. ∀ z<a. z < y | (∃ Y ∈ F(y). h(z) ⊆ Y) −→

(∃ ! Y. Y ∈ F(y) ∧ h(z) ⊆ Y)"
apply (intro oallI impI)
apply (drule ospec, assumption, clarify)
apply (blast elim!: oallE)
done

lemma lemma5:
" [[∀ y<x. F(y) ⊆ X ∧

(∀ x<a. x < y | (∃ Y ∈ F(y). h(x) ⊆ Y) −→
(∃ ! Y. Y ∈ F(y) ∧ h(x) ⊆ Y));

x < a; Limit(x); ∀ i j. i≤j −→ F(i) ⊆ F(j)]]
=⇒ (

⋃
x<x. F(x)) ⊆ X ∧

47

(∀ xa<a. xa < x | (∃ x ∈
⋃

x<x. F(x). h(xa) ⊆ x)
−→ (∃ ! Y. Y ∈ (

⋃
x<x. F(x)) ∧ h(xa) ⊆ Y))"

apply (rule conjI)
apply (rule subsetI)
apply (erule OUN_E)
apply (drule ospec, assumption, fast)
apply (drule lemma4, assumption)
apply (rule oallI)
apply (rule impI)
apply (erule disjE)
apply (frule ospec, erule Limit_has_succ, assumption)
apply (drule_tac A = a and x = xa in ospec, assumption)
apply (erule impE, rule le_refl [THEN disjI1], erule lt_Ord)
apply (blast intro: lemma3 Limit_has_succ)
apply (blast intro: lemma3)
done

lemma dbl_Diff_eqpoll_Card:
" [[A≈a; Card(a); ¬Finite(a); B≺a; C≺a]] =⇒ A - B - C≈a"

by (blast intro: Diff_lesspoll_eqpoll_Card)

lemma Finite_lesspoll_infinite_Ord:
" [[Finite(X); ¬Finite(a); Ord(a)]] =⇒ X≺a"

unfolding lesspoll_def
apply (rule conjI)
apply (drule nat_le_infinite_Ord [THEN le_imp_lepoll], assumption)

unfolding Finite_def
apply (blast intro: leI [THEN le_imp_subset, THEN subset_imp_lepoll]

ltI eqpoll_imp_lepoll lepoll_trans)
apply (blast intro: eqpoll_sym [THEN eqpoll_trans])
done

lemma Union_lesspoll:

48

" [[∀ x ∈ X. x . n ∧ x ⊆ T; well_ord(T, R); X . b;
b<a; ¬Finite(a); Card(a); n ∈ nat]]

=⇒
⋃

(X)≺a"
apply (case_tac "Finite (X)")
apply (blast intro: Card_is_Ord Finite_lesspoll_infinite_Ord

lepoll_nat_imp_Finite Finite_Union)
apply (drule lepoll_imp_ex_le_eqpoll)
apply (erule lt_Ord)
apply (elim exE conjE)
apply (frule eqpoll_imp_lepoll [THEN lepoll_infinite], assumption)
apply (erule eqpoll_sym [THEN eqpoll_def [THEN def_imp_iff, THEN iffD1],

THEN exE])
apply (frule bij_is_surj [THEN surj_image_eq])
apply (drule image_fun [OF bij_is_fun subset_refl])
apply (drule sym [THEN trans], assumption)
apply (blast intro: lt_Ord UN_lepoll lt_Card_imp_lesspoll

lt_trans1 lesspoll_trans1)
done

lemma Un_sing_eq_cons: "A ∪ {a} = cons(a, A)"
by fast

lemma Un_lepoll_succ: "A . B =⇒ A ∪ {a} . succ(B)"
apply (simp add: Un_sing_eq_cons succ_def)
apply (blast elim!: mem_irrefl intro: cons_lepoll_cong)
done

lemma Diff_UN_succ_empty: "Ord(a) =⇒ F(a) - (
⋃

b<succ(a). F(b)) = 0"
by (fast intro!: le_refl)

lemma Diff_UN_succ_subset: "Ord(a) =⇒ F(a) ∪ X - (
⋃

b<succ(a). F(b))
⊆ X"
by blast

lemma recfunAC16_Diff_lepoll_1:
"Ord(x)
=⇒ recfunAC16(f, g, x, a) - (

⋃
i<x. recfunAC16(f, g, i, a)) . 1"

apply (erule Ord_cases)
apply (simp add: recfunAC16_0 empty_subsetI [THEN subset_imp_lepoll])

prefer 2 apply (simp add: recfunAC16_Limit Diff_cancel
empty_subsetI [THEN subset_imp_lepoll])

apply (simp add: recfunAC16_succ
Diff_UN_succ_empty [of _ "λj. recfunAC16(f,g,j,a)"]

49

empty_subsetI [THEN subset_imp_lepoll])
apply (best intro: Diff_UN_succ_subset [THEN subset_imp_lepoll]

singleton_eqpoll_1 [THEN eqpoll_imp_lepoll] lepoll_trans)
done

lemma in_Least_Diff:
" [[z ∈ F(x); Ord(x)]]
=⇒ z ∈ F(µ i. z ∈ F(i)) - (

⋃
j<(µ i. z ∈ F(i)). F(j))"

by (fast elim: less_LeastE elim!: LeastI)

lemma Least_eq_imp_ex:
" [[(µ i. w ∈ F(i)) = (µ i. z ∈ F(i));

w ∈ (
⋃

i<a. F(i)); z ∈ (
⋃

i<a. F(i))]]
=⇒ ∃ b<a. w ∈ (F(b) - (

⋃
c<b. F(c))) ∧ z ∈ (F(b) - (

⋃
c<b. F(c)))"

apply (elim OUN_E)
apply (drule in_Least_Diff, erule lt_Ord)
apply (frule in_Least_Diff, erule lt_Ord)
apply (rule oexI, force)
apply (blast intro: lt_Ord Least_le [THEN lt_trans1])
done

lemma two_in_lepoll_1: " [[A . 1; a ∈ A; b ∈ A]] =⇒ a=b"
by (fast dest!: lepoll_1_is_sing)

lemma UN_lepoll_index:
" [[∀ i<a. F(i)-(

⋃
j<i. F(j)) . 1; Limit(a)]]

=⇒ (
⋃

x<a. F(x)) . a"
apply (rule lepoll_def [THEN def_imp_iff [THEN iffD2]])
apply (rule_tac x = "λz ∈ (

⋃
x<a. F (x)). µ i. z ∈ F (i) " in exI)

unfolding inj_def
apply (rule CollectI)
apply (rule lam_type)
apply (erule OUN_E)
apply (erule Least_in_Ord)
apply (erule ltD)
apply (erule lt_Ord2)
apply (intro ballI)
apply (simp (no_asm_simp))
apply (rule impI)
apply (drule Least_eq_imp_ex, assumption+)
apply (fast elim!: two_in_lepoll_1)
done

lemma recfunAC16_lepoll_index: "Ord(y) =⇒ recfunAC16(f, h, y, a) .
y"
apply (erule trans_induct3)

50

apply (simp (no_asm_simp) add: recfunAC16_0 lepoll_refl)

apply (simp (no_asm_simp) add: recfunAC16_succ)
apply (blast dest!: succI1 [THEN rev_bspec]

intro: subset_succI [THEN subset_imp_lepoll] Un_lepoll_succ

lepoll_trans)
apply (simp (no_asm_simp) add: recfunAC16_Limit)
apply (blast intro: lt_Ord [THEN recfunAC16_Diff_lepoll_1] UN_lepoll_index)
done

lemma Union_recfunAC16_lesspoll:
" [[recfunAC16(f,g,y,a) ⊆ {X ∈ Pow(A). X≈n};

A≈a; y<a; ¬Finite(a); Card(a); n ∈ nat]]
=⇒

⋃
(recfunAC16(f,g,y,a))≺a"

apply (erule eqpoll_def [THEN def_imp_iff, THEN iffD1, THEN exE])
apply (rule_tac T=A in Union_lesspoll, simp_all)
apply (blast intro!: eqpoll_imp_lepoll)
apply (blast intro: bij_is_inj Card_is_Ord [THEN well_ord_Memrel]

well_ord_rvimage)
apply (erule lt_Ord [THEN recfunAC16_lepoll_index])
done

lemma dbl_Diff_eqpoll:
" [[recfunAC16(f, h, y, a) ⊆ {X ∈ Pow(A) . X≈succ(k #+ m)};

Card(a); ¬ Finite(a); A≈a;
k ∈ nat; y<a;
h ∈ bij(a, {Y ∈ Pow(A). Y≈succ(k)})]]

=⇒ A -
⋃

(recfunAC16(f, h, y, a)) - h‘y≈a"
apply (rule dbl_Diff_eqpoll_Card, simp_all)
apply (simp add: Union_recfunAC16_lesspoll)
apply (rule Finite_lesspoll_infinite_Ord)
apply (rule Finite_def [THEN def_imp_iff, THEN iffD2])
apply (blast dest: ltD bij_is_fun [THEN apply_type], assumption)
apply (blast intro: Card_is_Ord)
done

lemmas disj_Un_eqpoll_nat_sum =
eqpoll_trans [THEN eqpoll_trans,

OF disj_Un_eqpoll_sum sum_eqpoll_cong nat_sum_eqpoll_sum]

lemma Un_in_Collect: " [[x ∈ Pow(A - B - h‘i); x≈m;
h ∈ bij(a, {x ∈ Pow(A) . x≈k}); i<a; k ∈ nat; m ∈ nat]]
=⇒ h ‘ i ∪ x ∈ {x ∈ Pow(A) . x≈k #+ m}"

51

by (blast intro: disj_Un_eqpoll_nat_sum
dest: ltD bij_is_fun [THEN apply_type])

lemma lemma6:
" [[∀ y<succ(j). F(y)<=X ∧ (∀ x<a. x<y | P(x,y) −→ Q(x,y)); succ(j)<a]]
=⇒ F(j)<=X ∧ (∀ x<a. x<j | P(x,j) −→ Q(x,j))"

by (blast intro!: lt_Ord succI1 [THEN ltI, THEN lt_Ord, THEN le_refl])

lemma lemma7:
" [[∀ x<a. x<j | P(x,j) −→ Q(x,j); succ(j)<a]]
=⇒ P(j,j) −→ (∀ x<a. x≤j | P(x,j) −→ Q(x,j))"

by (fast elim!: leE)

lemma ex_subset_eqpoll:
" [[A≈a; ¬ Finite(a); Ord(a); m ∈ nat]] =⇒ ∃ X ∈ Pow(A). X≈m"

apply (rule lepoll_imp_eqpoll_subset [of m A, THEN exE])
apply (rule lepoll_trans, rule leI [THEN le_imp_lepoll])
apply (blast intro: lt_trans2 [OF ltI nat_le_infinite_Ord] Ord_nat)

apply (erule eqpoll_sym [THEN eqpoll_imp_lepoll])
apply (fast elim!: eqpoll_sym)
done

lemma subset_Un_disjoint: " [[A ⊆ B ∪ C; A ∩ C = 0]] =⇒ A ⊆ B"
by blast

lemma Int_empty:
" [[X ∈ Pow(A -

⋃
(B) -C); T ∈ B; F ⊆ T]] =⇒ F ∩ X = 0"

by blast

lemma subset_imp_eq_lemma:

52

"m ∈ nat =⇒ ∀ A B. A ⊆ B ∧ m . A ∧ B . m −→ A=B"
apply (induct_tac "m")
apply (fast dest!: lepoll_0_is_0)
apply (intro allI impI)
apply (elim conjE)
apply (rule succ_lepoll_imp_not_empty [THEN not_emptyE], assumption)
apply (frule subsetD [THEN Diff_sing_lepoll], assumption+)
apply (frule lepoll_Diff_sing)
apply (erule allE impE)+
apply (rule conjI)
prefer 2 apply fast
apply fast
apply (blast elim: equalityE)
done

lemma subset_imp_eq: " [[A ⊆ B; m . A; B . m; m ∈ nat]] =⇒ A=B"
by (blast dest!: subset_imp_eq_lemma)

lemma bij_imp_arg_eq:
" [[f ∈ bij(a, {Y ∈ X. Y≈succ(k)}); k ∈ nat; f‘b ⊆ f‘y; b<a; y<a]]

=⇒ b=y"
apply (drule subset_imp_eq)
apply (erule_tac [3] nat_succI)

unfolding bij_def inj_def
apply (blast intro: eqpoll_sym eqpoll_imp_lepoll

dest: ltD apply_type)+
done

lemma ex_next_set:
" [[recfunAC16(f, h, y, a) ⊆ {X ∈ Pow(A) . X≈succ(k #+ m)};

Card(a); ¬ Finite(a); A≈a;
k ∈ nat; m ∈ nat; y<a;
h ∈ bij(a, {Y ∈ Pow(A). Y≈succ(k)});
¬ (∃ Y ∈ recfunAC16(f, h, y, a). h‘y ⊆ Y)]]

=⇒ ∃ X ∈ {Y ∈ Pow(A). Y≈succ(k #+ m)}. h‘y ⊆ X ∧
(∀ b<a. h‘b ⊆ X −→
(∀ T ∈ recfunAC16(f, h, y, a). ¬ h‘b ⊆ T))"

apply (erule_tac m1=m in dbl_Diff_eqpoll [THEN ex_subset_eqpoll, THEN
bexE],

assumption+)
apply (erule Card_is_Ord, assumption)
apply (frule Un_in_Collect, (erule asm_rl nat_succI)+)
apply (erule CollectE)
apply (rule rev_bexI, simp)
apply (rule conjI, blast)

53

apply (intro ballI impI oallI notI)
apply (drule subset_Un_disjoint, rule Int_empty, assumption+)
apply (blast dest: bij_imp_arg_eq)
done

lemma ex_next_Ord:
" [[recfunAC16(f, h, y, a) ⊆ {X ∈ Pow(A) . X≈succ(k #+ m)};

Card(a); ¬ Finite(a); A≈a;
k ∈ nat; m ∈ nat; y<a;
h ∈ bij(a, {Y ∈ Pow(A). Y≈succ(k)});
f ∈ bij(a, {Y ∈ Pow(A). Y≈succ(k #+ m)});
¬ (∃ Y ∈ recfunAC16(f, h, y, a). h‘y ⊆ Y)]]

=⇒ ∃ c<a. h‘y ⊆ f‘c ∧
(∀ b<a. h‘b ⊆ f‘c −→
(∀ T ∈ recfunAC16(f, h, y, a). ¬ h‘b ⊆ T))"

apply (drule ex_next_set, assumption+)
apply (erule bexE)
apply (rule_tac x="converse(f)‘X" in oexI)
apply (simp add: right_inverse_bij)
apply (blast intro: bij_converse_bij bij_is_fun [THEN apply_type] ltI

Card_is_Ord)
done

lemma lemma8:
" [[∀ x<a. x<j | (∃ xa ∈ F(j). P(x, xa))

−→ (∃ ! Y. Y ∈ F(j) ∧ P(x, Y)); F(j) ⊆ X;
L ∈ X; P(j, L) ∧ (∀ x<a. P(x, L) −→ (∀ xa ∈ F(j). ¬P(x, xa)))]]

=⇒ F(j) ∪ {L} ⊆ X ∧
(∀ x<a. x≤j | (∃ xa ∈ (F(j) ∪ {L}). P(x, xa)) −→

(∃ ! Y. Y ∈ (F(j) ∪ {L}) ∧ P(x, Y)))"
apply (rule conjI)
apply (fast intro!: singleton_subsetI)
apply (rule oallI)
apply (blast elim!: leE oallE)
done

54

lemma main_induct:
" [[b < a; f ∈ bij(a, {Y ∈ Pow(A) . Y≈succ(k #+ m)});

h ∈ bij(a, {Y ∈ Pow(A) . Y≈succ(k)});
¬Finite(a); Card(a); A≈a; k ∈ nat; m ∈ nat]]

=⇒ recfunAC16(f, h, b, a) ⊆ {X ∈ Pow(A) . X≈succ(k #+ m)} ∧
(∀ x<a. x < b | (∃ Y ∈ recfunAC16(f, h, b, a). h ‘ x ⊆ Y) −→

(∃ ! Y. Y ∈ recfunAC16(f, h, b, a) ∧ h ‘ x ⊆ Y))"
apply (erule lt_induct)
apply (frule lt_Ord)
apply (erule Ord_cases)

apply (simp add: recfunAC16_0)

prefer 2 apply (simp add: recfunAC16_Limit)
apply (rule lemma5, assumption+)
apply (blast dest!: recfunAC16_mono)

apply clarify
apply (erule lemma6 [THEN conjE], assumption)
apply (simp (no_asm_simp) split del: split_if add: recfunAC16_succ)
apply (rule conjI [THEN split_if [THEN iffD2]])
apply (simp, erule lemma7, assumption)

apply (rule impI)
apply (rule ex_next_Ord [THEN oexE],

assumption+, rule le_refl [THEN lt_trans], assumption+)
apply (erule lemma8, assumption)
apply (rule bij_is_fun [THEN apply_type], assumption)
apply (erule Least_le [THEN lt_trans2, THEN ltD])
apply (erule lt_Ord)

apply (erule succ_leI)
apply (erule LeastI)
apply (erule lt_Ord)
done

lemma lemma_simp_induct:
" [[∀ b. b<a −→ F(b) ⊆ S ∧ (∀ x<a. (x<b | (∃ Y ∈ F(b). f‘x ⊆ Y))

−→ (∃ ! Y. Y ∈ F(b) ∧ f‘x ⊆ Y));
f ∈ a->f‘‘(a); Limit(a);
∀ i j. i≤j −→ F(i) ⊆ F(j)]]

=⇒ (
⋃

j<a. F(j)) ⊆ S ∧

55

(∀ x ∈ f‘‘a. ∃ ! Y. Y ∈ (
⋃

j<a. F(j)) ∧ x ⊆ Y)"
apply (rule conjI)
apply (rule subsetI)
apply (erule OUN_E, blast)
apply (rule ballI)
apply (erule imageE)
apply (drule ltI, erule Limit_is_Ord)
apply (drule Limit_has_succ, assumption)
apply (frule_tac x1="succ(xa)" in spec [THEN mp], assumption)
apply (erule conjE)
apply (drule ospec)

apply (erule leI [THEN succ_leE])
apply (erule impE)
apply (fast elim!: leI [THEN succ_leE, THEN lt_Ord, THEN le_refl])
apply (drule apply_equality, assumption)
apply (elim conjE ex1E)

apply (rule ex1I, blast)
apply (elim conjE OUN_E)
apply (erule_tac i="succ(xa)" and j=aa

in Ord_linear_le [OF lt_Ord lt_Ord], assumption)
prefer 2
apply (drule spec [THEN spec, THEN mp, THEN subsetD], assumption+, blast)

apply (drule_tac x1=aa in spec [THEN mp], assumption)
apply (frule succ_leE)
apply (drule spec [THEN spec, THEN mp, THEN subsetD], assumption+, blast)

done

theorem WO2_AC16: " [[WO2; 0<m; k ∈ nat; m ∈ nat]] =⇒ AC16(k #+ m,k)"
unfolding AC16_def

apply (rule allI)
apply (rule impI)
apply (frule WO2_infinite_subsets_eqpoll_X, assumption+)
apply (frule_tac n="k #+ m" in WO2_infinite_subsets_eqpoll_X, simp, simp)

apply (frule WO2_imp_ex_Card)
apply (elim exE conjE)
apply (drule eqpoll_trans [THEN eqpoll_sym,

THEN eqpoll_def [THEN def_imp_iff, THEN iffD1]],
assumption)

apply (drule eqpoll_trans [THEN eqpoll_sym,

56

THEN eqpoll_def [THEN def_imp_iff, THEN iffD1]],

assumption+)
apply (elim exE)
apply (rename_tac h)
apply (rule_tac x = "

⋃
j<a. recfunAC16 (h,f,j,a) " in exI)

apply (rule_tac P="λz. Y ∧ (∀ x ∈ z. Z(x))" for Y Z
in bij_is_surj [THEN surj_image_eq, THEN subst], assumption)

apply (rule lemma_simp_induct)
apply (blast del: conjI notI

intro!: main_induct eqpoll_imp_lepoll [THEN lepoll_infinite]
)
apply (blast intro: bij_is_fun [THEN surj_image, THEN surj_is_fun])
apply (erule eqpoll_imp_lepoll [THEN lepoll_infinite,

THEN infinite_Card_is_InfCard,
THEN InfCard_is_Limit],

assumption+)
apply (blast dest!: recfunAC16_mono)
done

end

theory AC16_WO4
imports AC16_lemmas
begin

lemma lemma1:
" [[Finite(A); 0<m; m ∈ nat]]
=⇒ ∃ a f. Ord(a) ∧ domain(f) = a ∧

(
⋃

b<a. f‘b) = A ∧ (∀ b<a. f‘b . m)"
unfolding Finite_def

apply (erule bexE)
apply (drule eqpoll_sym [THEN eqpoll_def [THEN def_imp_iff, THEN iffD1]])
apply (erule exE)
apply (rule_tac x = n in exI)
apply (rule_tac x = "λi ∈ n. {f‘i}" in exI)
apply (simp add: ltD bij_def surj_def)
apply (fast intro!: ltI nat_into_Ord lam_funtype [THEN domain_of_fun]

singleton_eqpoll_1 [THEN eqpoll_imp_lepoll, THEN lepoll_trans]

nat_1_lepoll_iff [THEN iffD2]
elim!: apply_type ltE)

done

57

lemmas well_ord_paired = paired_bij [THEN bij_is_inj, THEN well_ord_rvimage]

lemma lepoll_trans1: " [[A . B; ¬ A . C]] =⇒ ¬ B . C"
by (blast intro: lepoll_trans)

lemmas lepoll_paired = paired_eqpoll [THEN eqpoll_sym, THEN eqpoll_imp_lepoll]

lemma lemma2: "∃ y R. well_ord(y,R) ∧ x ∩ y = 0 ∧ ¬y . z ∧ ¬Finite(y)"
apply (rule_tac x = "{{a,x}. a ∈ nat ∪ Hartog (z) }" in exI)
apply (rule well_ord_Un [OF Ord_nat [THEN well_ord_Memrel]

Ord_Hartog [THEN well_ord_Memrel], THEN exE])
apply (blast intro!: Ord_Hartog well_ord_Memrel well_ord_paired

lepoll_trans1 [OF _ not_Hartog_lepoll_self]
lepoll_trans [OF subset_imp_lepoll lepoll_paired]

elim!: nat_not_Finite [THEN notE]
elim: mem_asym
dest!: Un_upper1 [THEN subset_imp_lepoll, THEN lepoll_Finite]

lepoll_paired [THEN lepoll_Finite])
done

lemma infinite_Un: "¬Finite(B) =⇒ ¬Finite(A ∪ B)"
by (blast intro: subset_Finite)

lemma succ_not_lepoll_lemma:
" [[¬(∃ x ∈ A. f‘x=y); f ∈ inj(A, B); y ∈ B]]
=⇒ (λa ∈ succ(A). if(a=A, y, f‘a)) ∈ inj(succ(A), B)"

58

apply (rule_tac d = "λz. if (z=y, A, converse (f) ‘z) " in lam_injective)
apply (force simp add: inj_is_fun [THEN apply_type])

apply (simp (no_asm_simp))
apply force
done

lemma succ_not_lepoll_imp_eqpoll: " [[¬A ≈ B; A . B]] =⇒ succ(A) . B"
unfolding lepoll_def eqpoll_def bij_def surj_def

apply (fast elim!: succ_not_lepoll_lemma inj_is_fun)
done

lemmas ordertype_eqpoll =
ordermap_bij [THEN exI [THEN eqpoll_def [THEN def_imp_iff, THEN

iffD2]]]

lemma cons_cons_subset:
" [[a ⊆ y; b ∈ y-a; u ∈ x]] =⇒ cons(b, cons(u, a)) ∈ Pow(x ∪ y)"

by fast

lemma cons_cons_eqpoll:
" [[a ≈ k; a ⊆ y; b ∈ y-a; u ∈ x; x ∩ y = 0]]
=⇒ cons(b, cons(u, a)) ≈ succ(succ(k))"

by (fast intro!: cons_eqpoll_succ)

lemma set_eq_cons:
" [[succ(k) ≈ A; k ≈ B; B ⊆ A; a ∈ A-B; k ∈ nat]] =⇒ A = cons(a,

B)"
apply (rule equalityI)
prefer 2 apply fast
apply (rule Diff_eq_0_iff [THEN iffD1])
apply (rule equals0I)
apply (drule eqpoll_sym [THEN eqpoll_imp_lepoll])
apply (drule eqpoll_sym [THEN cons_eqpoll_succ], fast)
apply (drule cons_eqpoll_succ, fast)
apply (fast elim!: lepoll_trans [THEN lepoll_trans, THEN succ_lepoll_natE,

OF eqpoll_sym [THEN eqpoll_imp_lepoll] subset_imp_lepoll])
done

lemma cons_eqE: " [[cons(x,a) = cons(y,a); x /∈ a]] =⇒ x = y "
by (fast elim!: equalityE)

lemma eq_imp_Int_eq: "A = B =⇒ A ∩ C = B ∩ C"
by blast

59

lemma eqpoll_sum_imp_Diff_lepoll_lemma [rule_format]:
" [[k ∈ nat; m ∈ nat]]
=⇒ ∀ A B. A ≈ k #+ m ∧ k . B ∧ B ⊆ A −→ A-B . m"

apply (induct_tac "k")
apply (simp add: add_0)
apply (blast intro: eqpoll_imp_lepoll lepoll_trans

Diff_subset [THEN subset_imp_lepoll])
apply (intro allI impI)
apply (rule succ_lepoll_imp_not_empty [THEN not_emptyE], fast)
apply (erule_tac x = "A - {xa}" in allE)
apply (erule_tac x = "B - {xa}" in allE)
apply (erule impE)
apply (simp add: add_succ)
apply (fast intro!: Diff_sing_eqpoll lepoll_Diff_sing)
apply (subgoal_tac "A - {xa} - (B - {xa}) = A - B", simp)
apply blast
done

lemma eqpoll_sum_imp_Diff_lepoll:
" [[A ≈ succ(k #+ m); B ⊆ A; succ(k) . B; k ∈ nat; m ∈ nat]]
=⇒ A-B . m"

apply (simp only: add_succ [symmetric])
apply (blast intro: eqpoll_sum_imp_Diff_lepoll_lemma)
done

lemma eqpoll_sum_imp_Diff_eqpoll_lemma [rule_format]:
" [[k ∈ nat; m ∈ nat]]
=⇒ ∀ A B. A ≈ k #+ m ∧ k ≈ B ∧ B ⊆ A −→ A-B ≈ m"

apply (induct_tac "k")
apply (force dest!: eqpoll_sym [THEN eqpoll_imp_lepoll, THEN lepoll_0_is_0])
apply (intro allI impI)
apply (rule succ_lepoll_imp_not_empty [THEN not_emptyE])
apply (fast elim!: eqpoll_imp_lepoll)
apply (erule_tac x = "A - {xa}" in allE)
apply (erule_tac x = "B - {xa}" in allE)
apply (erule impE)
apply (force intro: eqpoll_sym intro!: Diff_sing_eqpoll)
apply (subgoal_tac "A - {xa} - (B - {xa}) = A - B", simp)
apply blast
done

60

lemma eqpoll_sum_imp_Diff_eqpoll:
" [[A ≈ succ(k #+ m); B ⊆ A; succ(k) ≈ B; k ∈ nat; m ∈ nat]]
=⇒ A-B ≈ m"

apply (simp only: add_succ [symmetric])
apply (blast intro: eqpoll_sum_imp_Diff_eqpoll_lemma)
done

lemma subsets_lepoll_0_eq_unit: "{x ∈ Pow(X). x . 0} = {0}"
by (fast dest!: lepoll_0_is_0 intro!: lepoll_refl)

lemma subsets_lepoll_succ:
"n ∈ nat =⇒ {z ∈ Pow(y). z . succ(n)} =

{z ∈ Pow(y). z . n} ∪ {z ∈ Pow(y). z ≈ succ(n)}"
by (blast intro: leI le_imp_lepoll nat_into_Ord

lepoll_trans eqpoll_imp_lepoll
dest!: lepoll_succ_disj)

lemma Int_empty:
"n ∈ nat =⇒ {z ∈ Pow(y). z . n} ∩ {z ∈ Pow(y). z ≈ succ(n)} =

0"
by (blast intro: eqpoll_sym [THEN eqpoll_imp_lepoll, THEN lepoll_trans]

succ_lepoll_natE)

locale AC16 =
fixes x and y and k and l and m and t_n and R and MM and LL and

GG and s
defines k_def: "k ≡ succ(l)"

and MM_def: "MM ≡ {v ∈ t_n. succ(k) . v ∩ y}"
and LL_def: "LL ≡ {v ∩ y. v ∈ MM}"
and GG_def: "GG ≡ λv ∈ LL. (THE w. w ∈ MM ∧ v ⊆ w) - v"
and s_def: "s(u) ≡ {v ∈ t_n. u ∈ v ∧ k . v ∩ y}"

assumes all_ex: "∀ z ∈ {z ∈ Pow(x ∪ y) . z ≈ succ(k)}.
∃ ! w. w ∈ t_n ∧ z ⊆ w "

and disjoint[iff]: "x ∩ y = 0"
and "includes": "t_n ⊆ {v ∈ Pow(x ∪ y). v ≈ succ(k #+ m)}"
and WO_R[iff]: "well_ord(y,R)"
and lnat[iff]: "l ∈ nat"
and mnat[iff]: "m ∈ nat"
and mpos[iff]: "0<m"
and Infinite[iff]: "¬ Finite(y)"
and noLepoll: "¬ y . {v ∈ Pow(x). v ≈ m}"

begin

61

lemma knat [iff]: "k ∈ nat"
by (simp add: k_def)

lemma Diff_Finite_eqpoll: " [[l ≈ a; a ⊆ y]] =⇒ y - a ≈ y"
apply (insert WO_R Infinite lnat)
apply (rule eqpoll_trans)
apply (rule Diff_lesspoll_eqpoll_Card)
apply (erule well_ord_cardinal_eqpoll [THEN eqpoll_sym])
apply (blast intro: lesspoll_trans1

intro!: Card_cardinal
Card_cardinal [THEN Card_is_Ord, THEN nat_le_infinite_Ord,

THEN le_imp_lepoll]
dest: well_ord_cardinal_eqpoll

eqpoll_sym eqpoll_imp_lepoll
n_lesspoll_nat [THEN lesspoll_trans2]
well_ord_cardinal_eqpoll [THEN eqpoll_sym,

THEN eqpoll_imp_lepoll, THEN lepoll_infinite])+
done

lemma s_subset: "s(u) ⊆ t_n"
by (unfold s_def, blast)

lemma sI:
" [[w ∈ t_n; cons(b,cons(u,a)) ⊆ w; a ⊆ y; b ∈ y-a; l ≈ a]]
=⇒ w ∈ s(u)"

unfolding s_def succ_def k_def
apply (blast intro!: eqpoll_imp_lepoll [THEN cons_lepoll_cong]

intro: subset_imp_lepoll lepoll_trans)
done

lemma in_s_imp_u_in: "v ∈ s(u) =⇒ u ∈ v"
by (unfold s_def, blast)

lemma ex1_superset_a:
" [[l ≈ a; a ⊆ y; b ∈ y - a; u ∈ x]]
=⇒ ∃ ! c. c ∈ s(u) ∧ a ⊆ c ∧ b ∈ c"

apply (rule all_ex [simplified k_def, THEN ballE])
apply (erule ex1E)
apply (rule_tac a = w in ex1I, blast intro: sI)
apply (blast dest: s_subset [THEN subsetD] in_s_imp_u_in)

62

apply (blast del: PowI
intro!: cons_cons_subset eqpoll_sym [THEN cons_cons_eqpoll])

done

lemma the_eq_cons:
" [[∀ v ∈ s(u). succ(l) ≈ v ∩ y;

l ≈ a; a ⊆ y; b ∈ y - a; u ∈ x]]
=⇒ (THE c. c ∈ s(u) ∧ a ⊆ c ∧ b ∈ c) ∩ y = cons(b, a)"

apply (frule ex1_superset_a [THEN theI], assumption+)
apply (rule set_eq_cons)
apply (fast+)
done

lemma y_lepoll_subset_s:
" [[∀ v ∈ s(u). succ(l) ≈ v ∩ y;

l ≈ a; a ⊆ y; u ∈ x]]
=⇒ y . {v ∈ s(u). a ⊆ v}"

apply (rule Diff_Finite_eqpoll [THEN eqpoll_sym, THEN eqpoll_imp_lepoll,

THEN lepoll_trans], fast+)
apply (rule_tac f3 = "λb ∈ y-a. THE c. c ∈ s (u) ∧ a ⊆ c ∧ b ∈ c"

in exI [THEN lepoll_def [THEN def_imp_iff, THEN iffD2]])
apply (simp add: inj_def)
apply (rule conjI)
apply (rule lam_type)
apply (frule ex1_superset_a [THEN theI], fast+, clarify)
apply (rule cons_eqE [of _ a])
apply (drule_tac A = "THE c. P (c)" and C = y for P in eq_imp_Int_eq)
apply (simp_all add: the_eq_cons)
done

lemma x_imp_not_y [dest]: "a ∈ x =⇒ a /∈ y"
by (blast dest: disjoint [THEN equalityD1, THEN subsetD, OF IntI])

lemma w_Int_eq_w_Diff:
"w ⊆ x ∪ y =⇒ w ∩ (x - {u}) = w - cons(u, w ∩ y)"

by blast

lemma w_Int_eqpoll_m:
" [[w ∈ {v ∈ s(u). a ⊆ v};

l ≈ a; u ∈ x;

63

∀ v ∈ s(u). succ(l) ≈ v ∩ y]]
=⇒ w ∩ (x - {u}) ≈ m"

apply (erule CollectE)
apply (subst w_Int_eq_w_Diff)
apply (fast dest!: s_subset [THEN subsetD]

"includes" [simplified k_def, THEN subsetD])
apply (blast dest: s_subset [THEN subsetD]

"includes" [simplified k_def, THEN subsetD]
dest: eqpoll_sym [THEN cons_eqpoll_succ, THEN eqpoll_sym]

in_s_imp_u_in
intro!: eqpoll_sum_imp_Diff_eqpoll)

done

lemma eqpoll_m_not_empty: "a ≈ m =⇒ a 6= 0"
apply (insert mpos)
apply (fast elim!: zero_lt_natE dest!: eqpoll_succ_imp_not_empty)
done

lemma cons_cons_in:
" [[z ∈ xa ∩ (x - {u}); l ≈ a; a ⊆ y; u ∈ x]]
=⇒ ∃ ! w. w ∈ t_n ∧ cons(z, cons(u, a)) ⊆ w"

apply (rule all_ex [THEN bspec])
unfolding k_def

apply (fast intro!: cons_eqpoll_succ elim: eqpoll_sym)
done

lemma subset_s_lepoll_w:
" [[∀ v ∈ s(u). succ(l) ≈ v ∩ y; a ⊆ y; l ≈ a; u ∈ x]]
=⇒ {v ∈ s(u). a ⊆ v} . {v ∈ Pow(x). v ≈ m}"

apply (rule_tac f3 = "λw ∈ {v ∈ s (u) . a ⊆ v}. w ∩ (x - {u})"
in exI [THEN lepoll_def [THEN def_imp_iff, THEN iffD2]])

apply (simp add: inj_def)
apply (intro conjI lam_type CollectI)

apply fast
apply (blast intro: w_Int_eqpoll_m)

apply (intro ballI impI)

apply (rule w_Int_eqpoll_m [THEN eqpoll_m_not_empty, THEN not_emptyE])
apply (blast, assumption+)
apply (drule equalityD1 [THEN subsetD], assumption)
apply (frule cons_cons_in, assumption+)
apply (blast dest: ex1_two_eq intro: s_subset [THEN subsetD] in_s_imp_u_in)+

64

done

lemma well_ord_subsets_eqpoll_n:
"n ∈ nat =⇒ ∃ S. well_ord({z ∈ Pow(y) . z ≈ succ(n)}, S)"

apply (rule WO_R [THEN well_ord_infinite_subsets_eqpoll_X,
THEN eqpoll_def [THEN def_imp_iff, THEN iffD1], THEN

exE])
apply (fast intro: bij_is_inj [THEN well_ord_rvimage])+
done

lemma well_ord_subsets_lepoll_n:
"n ∈ nat =⇒ ∃ R. well_ord({z ∈ Pow(y). z . n}, R)"

apply (induct_tac "n")
apply (force intro!: well_ord_unit simp add: subsets_lepoll_0_eq_unit)
apply (erule exE)
apply (rule well_ord_subsets_eqpoll_n [THEN exE], assumption)
apply (simp add: subsets_lepoll_succ)
apply (drule well_ord_radd, assumption)
apply (erule Int_empty [THEN disj_Un_eqpoll_sum,

THEN eqpoll_def [THEN def_imp_iff, THEN iffD1], THEN
exE])
apply (fast elim!: bij_is_inj [THEN well_ord_rvimage])
done

lemma LL_subset: "LL ⊆ {z ∈ Pow(y). z . succ(k #+ m)}"
unfolding LL_def MM_def

apply (insert "includes")
apply (blast intro: subset_imp_lepoll eqpoll_imp_lepoll lepoll_trans)
done

lemma well_ord_LL: "∃ S. well_ord(LL,S)"
apply (rule well_ord_subsets_lepoll_n [THEN exE, of "succ(k#+m)"])
apply simp
apply (blast intro: well_ord_subset [OF _ LL_subset])
done

lemma unique_superset_in_MM:
"v ∈ LL =⇒ ∃ ! w. w ∈ MM ∧ v ⊆ w"

apply (unfold MM_def LL_def, safe, fast)

65

apply (rule lepoll_imp_eqpoll_subset [THEN exE], assumption)
apply (rule_tac x = x in all_ex [THEN ballE])
apply (blast intro: eqpoll_sym)+
done

lemma Int_in_LL: "w ∈ MM =⇒ w ∩ y ∈ LL"
by (unfold LL_def, fast)

lemma in_LL_eq_Int:
"v ∈ LL =⇒ v = (THE x. x ∈ MM ∧ v ⊆ x) ∩ y"

apply (unfold LL_def, clarify)
apply (subst unique_superset_in_MM [THEN the_equality2])
apply (auto simp add: Int_in_LL)
done

lemma unique_superset1: "a ∈ LL =⇒ (THE x. x ∈ MM ∧ a ⊆ x) ∈ MM"
by (erule unique_superset_in_MM [THEN theI, THEN conjunct1])

lemma the_in_MM_subset:
"v ∈ LL =⇒ (THE x. x ∈ MM ∧ v ⊆ x) ⊆ x ∪ y"

apply (drule unique_superset1)
unfolding MM_def

apply (fast dest!: unique_superset1 "includes" [THEN subsetD])
done

lemma GG_subset: "v ∈ LL =⇒ GG ‘ v ⊆ x"
unfolding GG_def

apply (frule the_in_MM_subset)
apply (frule in_LL_eq_Int)
apply (force elim: equalityE)
done

lemma nat_lepoll_ordertype: "nat . ordertype(y, R)"
apply (rule nat_le_infinite_Ord [THEN le_imp_lepoll])
apply (rule Ord_ordertype [OF WO_R])

apply (rule ordertype_eqpoll [THEN eqpoll_imp_lepoll, THEN lepoll_infinite])

apply (rule WO_R)
apply (rule Infinite)
done

66

lemma ex_subset_eqpoll_n: "n ∈ nat =⇒ ∃ z. z ⊆ y ∧ n ≈ z"
apply (erule nat_lepoll_imp_ex_eqpoll_n)
apply (rule lepoll_trans [OF nat_lepoll_ordertype])
apply (rule ordertype_eqpoll [THEN eqpoll_sym, THEN eqpoll_imp_lepoll])

apply (rule WO_R)
done

lemma exists_proper_in_s: "u ∈ x =⇒ ∃ v ∈ s(u). succ(k) . v ∩ y"
apply (rule ccontr)
apply (subgoal_tac "∀ v ∈ s (u) . k ≈ v ∩ y")
prefer 2 apply (simp add: s_def, blast intro: succ_not_lepoll_imp_eqpoll)

unfolding k_def
apply (insert all_ex "includes" lnat)
apply (rule ex_subset_eqpoll_n [THEN exE], assumption)
apply (rule noLepoll [THEN notE])
apply (blast intro: lepoll_trans [OF y_lepoll_subset_s subset_s_lepoll_w])
done

lemma exists_in_MM: "u ∈ x =⇒ ∃ w ∈ MM. u ∈ w"
apply (erule exists_proper_in_s [THEN bexE])
apply (unfold MM_def s_def, fast)
done

lemma exists_in_LL: "u ∈ x =⇒ ∃ w ∈ LL. u ∈ GG‘w"
apply (rule exists_in_MM [THEN bexE], assumption)
apply (rule bexI)
apply (erule_tac [2] Int_in_LL)

unfolding GG_def
apply (simp add: Int_in_LL)
apply (subst unique_superset_in_MM [THEN the_equality2])
apply (fast elim!: Int_in_LL)+
done

lemma OUN_eq_x: "well_ord(LL,S) =⇒
(
⋃

b<ordertype(LL,S). GG ‘ (converse(ordermap(LL,S)) ‘ b)) = x"
apply (rule equalityI)
apply (rule subsetI)
apply (erule OUN_E)
apply (rule GG_subset [THEN subsetD])
prefer 2 apply assumption
apply (blast intro: ltD ordermap_bij [THEN bij_converse_bij, THEN bij_is_fun,

THEN apply_type])
apply (rule subsetI)
apply (erule exists_in_LL [THEN bexE])
apply (force intro: ltI [OF _ Ord_ordertype]

ordermap_type [THEN apply_type]

67

simp add: ordermap_bij [THEN bij_is_inj, THEN left_inverse])
done

lemma in_MM_eqpoll_n: "w ∈ MM =⇒ w ≈ succ(k #+ m)"
unfolding MM_def

apply (fast dest: "includes" [THEN subsetD])
done

lemma in_LL_eqpoll_n: "w ∈ LL =⇒ succ(k) . w"
by (unfold LL_def MM_def, fast)

lemma in_LL: "w ∈ LL =⇒ w ⊆ (THE x. x ∈ MM ∧ w ⊆ x)"
by (erule subset_trans [OF in_LL_eq_Int [THEN equalityD1] Int_lower1])

lemma all_in_lepoll_m:
"well_ord(LL,S) =⇒
∀ b<ordertype(LL,S). GG ‘ (converse(ordermap(LL,S)) ‘ b) . m"

unfolding GG_def
apply (rule oallI)
apply (simp add: ltD ordermap_bij [THEN bij_converse_bij, THEN bij_is_fun,
THEN apply_type])
apply (insert "includes")
apply (rule eqpoll_sum_imp_Diff_lepoll)
apply (blast del: subsetI

dest!: ltD
intro!: eqpoll_sum_imp_Diff_lepoll in_LL_eqpoll_n
intro: in_LL unique_superset1 [THEN in_MM_eqpoll_n]

ordermap_bij [THEN bij_converse_bij, THEN bij_is_fun,

THEN apply_type])+
done

lemma "conclusion":
"∃ a f. Ord(a) ∧ domain(f) = a ∧ (

⋃
b<a. f ‘ b) = x ∧ (∀ b<a. f ‘

b . m)"
apply (rule well_ord_LL [THEN exE])
apply (rename_tac S)
apply (rule_tac x = "ordertype (LL,S)" in exI)
apply (rule_tac x = "λb ∈ ordertype(LL,S).

GG ‘ (converse (ordermap (LL,S)) ‘ b)" in exI)
apply (simp add: ltD)
apply (blast intro: lam_funtype [THEN domain_of_fun]

Ord_ordertype OUN_eq_x all_in_lepoll_m [THEN ospec])
done

68

end

theorem AC16_WO4:
" [[AC_Equiv.AC16(k #+ m, k); 0 < k; 0 < m; k ∈ nat; m ∈ nat]] =⇒

WO4(m)"
unfolding AC_Equiv.AC16_def WO4_def

apply (rule allI)
apply (case_tac "Finite (A)")
apply (rule lemma1, assumption+)
apply (cut_tac lemma2)
apply (elim exE conjE)
apply (erule_tac x = "A ∪ y" in allE)
apply (frule infinite_Un, drule mp, assumption)
apply (erule zero_lt_natE, assumption, clarify)
apply (blast intro: AC16.conclusion [OF AC16.intro])
done

end

theory AC17_AC1
imports HH
begin

lemma AC0_AC1_lemma: " [[f:(
∏

X ∈ A. X); D ⊆ A]] =⇒ ∃ g. g:(
∏

X ∈ D.
X)"
by (fast intro!: lam_type apply_type)

lemma AC0_AC1: "AC0 =⇒ AC1"
unfolding AC0_def AC1_def

apply (blast intro: AC0_AC1_lemma)
done

lemma AC1_AC0: "AC1 =⇒ AC0"
by (unfold AC0_def AC1_def, blast)

lemma AC1_AC17_lemma: "f ∈ (
∏

X ∈ Pow(A) - {0}. X) =⇒ f ∈ (Pow(A)
- {0} -> A)"

69

apply (rule Pi_type, assumption)
apply (drule apply_type, assumption, fast)
done

lemma AC1_AC17: "AC1 =⇒ AC17"
unfolding AC1_def AC17_def

apply (rule allI)
apply (rule ballI)
apply (erule_tac x = "Pow (A) -{0}" in allE)
apply (erule impE, fast)
apply (erule exE)
apply (rule bexI)
apply (erule_tac [2] AC1_AC17_lemma)
apply (rule apply_type, assumption)
apply (fast dest!: AC1_AC17_lemma elim!: apply_type)
done

lemma UN_eq_imp_well_ord:
" [[x - (

⋃
j ∈ µ i. HH(λX ∈ Pow(x)-{0}. {f‘X}, x, i) = {x}.

HH(λX ∈ Pow(x)-{0}. {f‘X}, x, j)) = 0;
f ∈ Pow(x)-{0} -> x]]
=⇒ ∃ r. well_ord(x,r)"

apply (rule exI)
apply (erule well_ord_rvimage

[OF bij_Least_HH_x [THEN bij_converse_bij, THEN bij_is_inj]
Ord_Least [THEN well_ord_Memrel]], assumption)

done

lemma not_AC1_imp_ex:
"¬AC1 =⇒ ∃ A. ∀ f ∈ Pow(A)-{0} -> A. ∃ u ∈ Pow(A)-{0}. f‘u /∈ u"

unfolding AC1_def
apply (erule swap)
apply (rule allI)
apply (erule swap)
apply (rule_tac x = "

⋃
(A)" in exI)

apply (blast intro: lam_type)
done

70

lemma AC17_AC1_aux1:
" [[∀ f ∈ Pow(x) - {0} -> x. ∃ u ∈ Pow(x) - {0}. f‘u /∈u;

∃ f ∈ Pow(x)-{0}->x.
x - (

⋃
a ∈ (µ i. HH(λX ∈ Pow(x)-{0}. {f‘X},x,i)={x}).

HH(λX ∈ Pow(x)-{0}. {f‘X},x,a)) = 0]]
=⇒ P"

apply (erule bexE)
apply (erule UN_eq_imp_well_ord [THEN exE], assumption)
apply (erule ex_choice_fun_Pow [THEN exE])
apply (erule ballE)
apply (fast intro: apply_type del: DiffE)
apply (erule notE)
apply (rule Pi_type, assumption)
apply (blast dest: apply_type)
done

lemma AC17_AC1_aux2:
"¬ (∃ f ∈ Pow(x)-{0}->x. x - F(f) = 0)
=⇒ (λf ∈ Pow(x)-{0}->x . x - F(f))

∈ (Pow(x) -{0} -> x) -> Pow(x) - {0}"
by (fast intro!: lam_type dest!: Diff_eq_0_iff [THEN iffD1])

lemma AC17_AC1_aux3:
" [[f‘Z ∈ Z; Z ∈ Pow(x)-{0}]]
=⇒ (λX ∈ Pow(x)-{0}. {f‘X})‘Z ∈ Pow(Z)-{0}"

by auto

lemma AC17_AC1_aux4:
"∃ f ∈ F. f‘((λf ∈ F. Q(f))‘f) ∈ (λf ∈ F. Q(f))‘f
=⇒ ∃ f ∈ F. f‘Q(f) ∈ Q(f)"

by simp

lemma AC17_AC1: "AC17 =⇒ AC1"
unfolding AC17_def

apply (rule classical)
apply (erule not_AC1_imp_ex [THEN exE])
apply (case_tac

"∃ f ∈ Pow(x)-{0} -> x.
x - (

⋃
a ∈ (µ i. HH (λX ∈ Pow (x) -{0}. {f‘X},x,i) ={x}) . HH

(λX ∈ Pow (x) -{0}. {f‘X},x,a)) = 0")
apply (erule AC17_AC1_aux1, assumption)
apply (drule AC17_AC1_aux2)
apply (erule allE)
apply (drule bspec, assumption)
apply (drule AC17_AC1_aux4)
apply (erule bexE)
apply (drule apply_type, assumption)
apply (simp add: HH_Least_eq_x del: Diff_iff)
apply (drule AC17_AC1_aux3, assumption)

71

apply (fast dest!: subst_elem [OF _ HH_Least_eq_x [symmetric]]
f_subset_imp_HH_subset elim!: mem_irrefl)

done

lemma AC1_AC2_aux1:
" [[f:(

∏
X ∈ A. X); B ∈ A; 0 /∈A]] =⇒ {f‘B} ⊆ B ∩ {f‘C. C ∈ A}"

by (fast elim!: apply_type)

lemma AC1_AC2_aux2:
" [[pairwise_disjoint(A); B ∈ A; C ∈ A; D ∈ B; D ∈ C]] =⇒ f‘B

= f‘C"
by (unfold pairwise_disjoint_def, fast)

lemma AC1_AC2: "AC1 =⇒ AC2"
unfolding AC1_def AC2_def

apply (rule allI)
apply (rule impI)
apply (elim asm_rl conjE allE exE impE, assumption)
apply (intro exI ballI equalityI)
prefer 2 apply (rule AC1_AC2_aux1, assumption+)
apply (fast elim!: AC1_AC2_aux2 elim: apply_type)
done

lemma AC2_AC1_aux1: "0 /∈A =⇒ 0 /∈ {B*{B}. B ∈ A}"
by (fast dest!: sym [THEN Sigma_empty_iff [THEN iffD1]])

lemma AC2_AC1_aux2: " [[X*{X} ∩ C = {y}; X ∈ A]]
=⇒ (THE y. X*{X} ∩ C = {y}): X*A"

apply (rule subst_elem [of y])
apply (blast elim!: equalityE)
apply (auto simp add: singleton_eq_iff)
done

lemma AC2_AC1_aux3:
"∀ D ∈ {E*{E}. E ∈ A}. ∃ y. D ∩ C = {y}
=⇒ (λx ∈ A. fst(THE z. (x*{x} ∩ C = {z}))) ∈ (

∏
X ∈ A. X)"

apply (rule lam_type)

72

apply (drule bspec, blast)
apply (blast intro: AC2_AC1_aux2 fst_type)
done

lemma AC2_AC1: "AC2 =⇒ AC1"
unfolding AC1_def AC2_def pairwise_disjoint_def

apply (intro allI impI)
apply (elim allE impE)
prefer 2 apply (fast elim!: AC2_AC1_aux3)
apply (blast intro!: AC2_AC1_aux1)
done

lemma empty_notin_images: "0 /∈ {R‘‘{x}. x ∈ domain(R)}"
by blast

lemma AC1_AC4: "AC1 =⇒ AC4"
unfolding AC1_def AC4_def

apply (intro allI impI)
apply (drule spec, drule mp [OF _ empty_notin_images])
apply (best intro!: lam_type elim!: apply_type)
done

lemma AC4_AC3_aux1: "f ∈ A->B =⇒ (
⋃

z ∈ A. {z}*f‘z) ⊆ A*
⋃

(B)"
by (fast dest!: apply_type)

lemma AC4_AC3_aux2: "domain(
⋃

z ∈ A. {z}*f(z)) = {a ∈ A. f(a)6=0}"
by blast

lemma AC4_AC3_aux3: "x ∈ A =⇒ (
⋃

z ∈ A. {z}*f(z))‘‘{x} = f(x)"
by fast

lemma AC4_AC3: "AC4 =⇒ AC3"
unfolding AC3_def AC4_def

apply (intro allI ballI)
apply (elim allE impE)
apply (erule AC4_AC3_aux1)
apply (simp add: AC4_AC3_aux2 AC4_AC3_aux3 cong add: Pi_cong)
done

73

lemma AC3_AC1_lemma:
"b /∈A =⇒ (

∏
x ∈ {a ∈ A. id(A)‘a 6=b}. id(A)‘x) = (

∏
x ∈ A. x)"

apply (simp add: id_def cong add: Pi_cong)
apply (rule_tac b = A in subst_context, fast)
done

lemma AC3_AC1: "AC3 =⇒ AC1"
unfolding AC1_def AC3_def

apply (fast intro!: id_type elim: AC3_AC1_lemma [THEN subst])
done

lemma AC4_AC5: "AC4 =⇒ AC5"
unfolding range_def AC4_def AC5_def

apply (intro allI ballI)
apply (elim allE impE)
apply (erule fun_is_rel [THEN converse_type])
apply (erule exE)
apply (rename_tac g)
apply (rule_tac x=g in bexI)
apply (blast dest: apply_equality range_type)
apply (blast intro: Pi_type dest: apply_type fun_is_rel)
done

lemma AC5_AC4_aux1: "R ⊆ A*B =⇒ (λx ∈ R. fst(x)) ∈ R -> A"
by (fast intro!: lam_type fst_type)

lemma AC5_AC4_aux2: "R ⊆ A*B =⇒ range(λx ∈ R. fst(x)) = domain(R)"
by (unfold lam_def, force)

lemma AC5_AC4_aux3: " [[∃ f ∈ A->C. P(f,domain(f)); A=B]] =⇒ ∃ f ∈ B->C.
P(f,B)"
apply (erule bexE)
apply (frule domain_of_fun, fast)
done

lemma AC5_AC4_aux4: " [[R ⊆ A*B; g ∈ C->R; ∀ x ∈ C. (λz ∈ R. fst(z))‘

74

(g‘x) = x]]
=⇒ (λx ∈ C. snd(g‘x)): (

∏
x ∈ C. R‘‘{x})"

apply (rule lam_type)
apply (force dest: apply_type)
done

lemma AC5_AC4: "AC5 =⇒ AC4"
apply (unfold AC4_def AC5_def, clarify)
apply (elim allE ballE)
apply (drule AC5_AC4_aux3 [OF _ AC5_AC4_aux2], assumption)
apply (fast elim!: AC5_AC4_aux4)
apply (blast intro: AC5_AC4_aux1)
done

lemma AC1_iff_AC6: "AC1 ←→ AC6"
by (unfold AC1_def AC6_def, blast)

end

theory AC18_AC19
imports AC_Equiv
begin

definition
uu :: "i ⇒ i" where

"uu(a) ≡ {c ∪ {0}. c ∈ a}"

lemma PROD_subsets:
" [[f ∈ (

∏
b ∈ {P(a). a ∈ A}. b); ∀ a ∈ A. P(a)<=Q(a)]]

=⇒ (λa ∈ A. f‘P(a)) ∈ (
∏

a ∈ A. Q(a))"
by (rule lam_type, drule apply_type, auto)

lemma lemma_AC18:
" [[∀ A. 0 /∈ A −→ (∃ f. f ∈ (

∏
X ∈ A. X)); A 6= 0]]

=⇒ (
⋂

a ∈ A.
⋃

b ∈ B(a). X(a, b)) ⊆
(
⋃

f ∈
∏

a ∈ A. B(a).
⋂

a ∈ A. X(a, f‘a))"
apply (rule subsetI)
apply (erule_tac x = "{{b ∈ B (a) . x ∈ X (a,b) }. a ∈ A}" in allE)

75

apply (erule impE, fast)
apply (erule exE)
apply (rule UN_I)
apply (fast elim!: PROD_subsets)

apply (simp, fast elim!: not_emptyE dest: apply_type [OF _ RepFunI])
done

lemma AC1_AC18: "AC1 =⇒ PROP AC18"
unfolding AC1_def

apply (rule AC18.intro)
apply (fast elim!: lemma_AC18 apply_type intro!: equalityI INT_I UN_I)
done

theorem (in AC18) AC19
unfolding AC19_def

apply (intro allI impI)
apply (rule AC18 [of _ "λx. x", THEN mp], blast)
done

lemma RepRep_conj:
" [[A 6= 0; 0 /∈ A]] =⇒ {uu(a). a ∈ A} 6= 0 ∧ 0 /∈ {uu(a). a ∈ A}"

apply (unfold uu_def, auto)
apply (blast dest!: sym [THEN RepFun_eq_0_iff [THEN iffD1]])
done

lemma lemma1_1: " [[c ∈ a; x = c ∪ {0}; x /∈ a]] =⇒ x - {0} ∈ a"
apply clarify
apply (rule subst_elem, assumption)
apply (fast elim: notE subst_elem)
done

lemma lemma1_2:
" [[f‘(uu(a)) /∈ a; f ∈ (

∏
B ∈ {uu(a). a ∈ A}. B); a ∈ A]]

=⇒ f‘(uu(a))-{0} ∈ a"
apply (unfold uu_def, fast elim!: lemma1_1 dest!: apply_type)
done

lemma lemma1: "∃ f. f ∈ (
∏

B ∈ {uu(a). a ∈ A}. B) =⇒ ∃ f. f ∈ (
∏

B
∈ A. B)"
apply (erule exE)
apply (rule_tac x = "λa∈A. if (f‘ (uu(a)) ∈ a, f‘ (uu(a)), f‘ (uu(a))-{0})"

76

in exI)
apply (rule lam_type)
apply (simp add: lemma1_2)
done

lemma lemma2_1: "a 6=0 =⇒ 0 ∈ (
⋃

b ∈ uu(a). b)"
by (unfold uu_def, auto)

lemma lemma2: " [[A 6=0; 0 /∈A]] =⇒ (
⋂

x ∈ {uu(a). a ∈ A}.
⋃

b ∈ x. b) 6=
0"
apply (erule not_emptyE)
apply (rule_tac a = 0 in not_emptyI)
apply (fast intro!: lemma2_1)
done

lemma AC19_AC1: "AC19 =⇒ AC1"
apply (unfold AC19_def AC1_def, clarify)
apply (case_tac "A=0", force)
apply (erule_tac x = "{uu (a) . a ∈ A}" in allE)
apply (erule impE)
apply (erule RepRep_conj, assumption)
apply (rule lemma1)
apply (drule lemma2, assumption, auto)
done

end

theory DC
imports AC_Equiv Hartog Cardinal_aux
begin

lemma RepFun_lepoll: "Ord(a) =⇒ {P(b). b ∈ a} . a"
unfolding lepoll_def

apply (rule_tac x = "λz ∈ RepFun (a,P) . µ i. z=P (i) " in exI)
apply (rule_tac d="λz. P (z)" in lam_injective)
apply (fast intro!: Least_in_Ord)

apply (rule sym)
apply (fast intro: LeastI Ord_in_Ord)
done

Trivial in the presence of AC, but here we need a wellordering of X
lemma image_Ord_lepoll: " [[f ∈ X->Y; Ord(X)]] =⇒ f‘‘X . X"

unfolding lepoll_def
apply (rule_tac x = "λx ∈ f‘‘X. µ y. f‘y = x" in exI)
apply (rule_tac d = "λz. f‘z" in lam_injective)
apply (fast intro!: Least_in_Ord apply_equality, clarify)
apply (rule LeastI)

77

apply (erule apply_equality, assumption+)
apply (blast intro: Ord_in_Ord)
done

lemma range_subset_domain:
" [[R ⊆ X*X;

∧
g. g ∈ X =⇒ ∃ u. 〈g,u〉 ∈ R]]

=⇒ range(R) ⊆ domain(R)"
by blast

lemma cons_fun_type: "g ∈ n->X =⇒ cons(〈n,x〉, g) ∈ succ(n) -> cons(x,
X)"

unfolding succ_def
apply (fast intro!: fun_extend elim!: mem_irrefl)
done

lemma cons_fun_type2:
" [[g ∈ n->X; x ∈ X]] =⇒ cons(〈n,x〉, g) ∈ succ(n) -> X"

by (erule cons_absorb [THEN subst], erule cons_fun_type)

lemma cons_image_n: "n ∈ nat =⇒ cons(〈n,x〉, g)‘‘n = g‘‘n"
by (fast elim!: mem_irrefl)

lemma cons_val_n: "g ∈ n->X =⇒ cons(〈n,x〉, g)‘n = x"
by (fast intro!: apply_equality elim!: cons_fun_type)

lemma cons_image_k: "k ∈ n =⇒ cons(〈n,x〉, g)‘‘k = g‘‘k"
by (fast elim: mem_asym)

lemma cons_val_k: " [[k ∈ n; g ∈ n->X]] =⇒ cons(〈n,x〉, g)‘k = g‘k"
by (fast intro!: apply_equality consI2 elim!: cons_fun_type apply_Pair)

lemma domain_cons_eq_succ: "domain(f)=x =⇒ domain(cons(〈x,y〉, f)) =
succ(x)"
by (simp add: domain_cons succ_def)

lemma restrict_cons_eq: "g ∈ n->X =⇒ restrict(cons(〈n,x〉, g), n) =
g"
apply (simp add: restrict_def Pi_iff)
apply (blast intro: elim: mem_irrefl)
done

lemma succ_in_succ: " [[Ord(k); i ∈ k]] =⇒ succ(i) ∈ succ(k)"
apply (rule Ord_linear [of "succ(i)" "succ(k)", THEN disjE])
apply (fast elim: Ord_in_Ord mem_irrefl mem_asym)+
done

lemma restrict_eq_imp_val_eq:
" [[restrict(f, domain(g)) = g; x ∈ domain(g)]]
=⇒ f‘x = g‘x"

78

by (erule subst, simp add: restrict)

lemma domain_eq_imp_fun_type: " [[domain(f)=A; f ∈ B->C]] =⇒ f ∈ A->C"
by (frule domain_of_fun, fast)

lemma ex_in_domain: " [[R ⊆ A * B; R 6= 0]] =⇒ ∃ x. x ∈ domain(R)"
by (fast elim!: not_emptyE)

definition
DC :: "i ⇒ o" where

"DC(a) ≡ ∀ X R. R ⊆ Pow(X)*X ∧
(∀ Y ∈ Pow(X). Y ≺ a −→ (∃ x ∈ X. 〈Y,x〉 ∈ R))
−→ (∃ f ∈ a->X. ∀ b<a. <f‘‘b,f‘b> ∈ R)"

definition
DC0 :: o where

"DC0 ≡ ∀ A B R. R ⊆ A*B ∧ R 6=0 ∧ range(R) ⊆ domain(R)
−→ (∃ f ∈ nat->domain(R). ∀ n ∈ nat. <f‘n,f‘succ(n)>:R)"

definition
ff :: "[i, i, i, i] ⇒ i" where

"ff(b, X, Q, R) ≡
transrec(b, λc r. THE x. first(x, {x ∈ X. <r‘‘c, x> ∈ R},

Q))"

locale DC0_imp =
fixes XX and RR and X and R

assumes all_ex: "∀ Y ∈ Pow(X). Y ≺ nat −→ (∃ x ∈ X. 〈Y, x〉 ∈ R)"

defines XX_def: "XX ≡ (
⋃

n ∈ nat. {f ∈ n->X. ∀ k ∈ n. <f‘‘k, f‘k> ∈
R})"

and RR_def: "RR ≡ {〈z1,z2〉:XX*XX. domain(z2)=succ(domain(z1))
∧ restrict(z2, domain(z1)) = z1}"

begin

79

lemma lemma1_1: "RR ⊆ XX*XX"
by (unfold RR_def, fast)

lemma lemma1_2: "RR 6= 0"
unfolding RR_def XX_def

apply (rule all_ex [THEN ballE])
apply (erule_tac [2] notE [OF _ empty_subsetI [THEN PowI]])
apply (erule_tac impE [OF _ nat_0I [THEN n_lesspoll_nat]])
apply (erule bexE)
apply (rule_tac a = "<0, {〈0, x〉}>" in not_emptyI)
apply (rule CollectI)
apply (rule SigmaI)
apply (rule nat_0I [THEN UN_I])
apply (simp (no_asm_simp) add: nat_0I [THEN UN_I])
apply (rule nat_1I [THEN UN_I])
apply (force intro!: singleton_fun [THEN Pi_type]

simp add: singleton_0 [symmetric])
apply (simp add: singleton_0)
done

lemma lemma1_3: "range(RR) ⊆ domain(RR)"
unfolding RR_def XX_def

apply (rule range_subset_domain, blast, clarify)
apply (frule fun_is_rel [THEN image_subset, THEN PowI,

THEN all_ex [THEN bspec]])
apply (erule impE[OF _ lesspoll_trans1[OF image_Ord_lepoll

[OF _ nat_into_Ord] n_lesspoll_nat]],
assumption+)

apply (erule bexE)
apply (rule_tac x = "cons (〈n,x〉, g) " in exI)
apply (rule CollectI)
apply (force elim!: cons_fun_type2

simp add: cons_image_n cons_val_n cons_image_k cons_val_k)
apply (simp add: domain_of_fun succ_def restrict_cons_eq)

80

done

lemma lemma2:
" [[∀ n ∈ nat. <f‘n, f‘succ(n)> ∈ RR; f ∈ nat -> XX; n ∈ nat]]
=⇒ ∃ k ∈ nat. f‘succ(n) ∈ k -> X ∧ n ∈ k

∧ <f‘succ(n)‘‘n, f‘succ(n)‘n> ∈ R"
apply (induct_tac "n")
apply (drule apply_type [OF _ nat_1I])
apply (drule bspec [OF _ nat_0I])
apply (simp add: XX_def, safe)
apply (rule rev_bexI, assumption)
apply (subgoal_tac "0 ∈ y", force)
apply (force simp add: RR_def

intro: ltD elim!: nat_0_le [THEN leE])

apply (drule bspec [OF _ nat_succI], assumption)
apply (subgoal_tac "f ‘ succ (succ (x)) ∈ succ (k) ->X")
apply (drule apply_type [OF _ nat_succI [THEN nat_succI]], assumption)
apply (simp (no_asm_use) add: XX_def RR_def)
apply safe
apply (frule_tac a="succ(k)" in domain_of_fun [symmetric, THEN trans],

assumption)
apply (frule_tac a=y in domain_of_fun [symmetric, THEN trans],

assumption)
apply (fast elim!: nat_into_Ord [THEN succ_in_succ]

dest!: bspec [OF _ nat_into_Ord [THEN succ_in_succ]])
apply (drule domain_of_fun)
apply (simp add: XX_def RR_def, clarify)
apply (blast dest: domain_of_fun [symmetric, THEN trans])
done

lemma lemma3_1:
" [[∀ n ∈ nat. <f‘n, f‘succ(n)> ∈ RR; f ∈ nat -> XX; m ∈ nat]]
=⇒ {f‘succ(x)‘x. x ∈ m} = {f‘succ(m)‘x. x ∈ m}"

apply (subgoal_tac "∀ x ∈ m. f‘succ (m) ‘x = f‘succ (x) ‘x")
apply simp
apply (induct_tac "m", blast)
apply (rule ballI)
apply (erule succE)
apply (rule restrict_eq_imp_val_eq)
apply (drule bspec [OF _ nat_succI], assumption)
apply (simp add: RR_def)

apply (drule lemma2, assumption+)
apply (fast dest!: domain_of_fun)

apply (drule_tac x = xa in bspec, assumption)
apply (erule sym [THEN trans, symmetric])
apply (rule restrict_eq_imp_val_eq [symmetric])
apply (drule bspec [OF _ nat_succI], assumption)

81

apply (simp add: RR_def)
apply (drule lemma2, assumption+)
apply (blast dest!: domain_of_fun

intro: nat_into_Ord OrdmemD [THEN subsetD])
done

lemma lemma3:
" [[∀ n ∈ nat. <f‘n, f‘succ(n)> ∈ RR; f ∈ nat -> XX; m ∈ nat]]
=⇒ (λx ∈ nat. f‘succ(x)‘x) ‘‘ m = f‘succ(m)‘‘m"

apply (erule natE, simp)
apply (subst image_lam)
apply (fast elim!: OrdmemD [OF nat_succI Ord_nat])

apply (subst lemma3_1, assumption+)
apply fast

apply (fast dest!: lemma2
elim!: image_fun [symmetric, OF _ OrdmemD [OF _ nat_into_Ord]])

done

end

theorem DC0_imp_DC_nat: "DC0 =⇒ DC(nat)"
apply (unfold DC_def DC0_def, clarify)
apply (elim allE)
apply (erule impE)

apply (blast intro!: DC0_imp.lemma1_1 [OF DC0_imp.intro] DC0_imp.lemma1_2
[OF DC0_imp.intro] DC0_imp.lemma1_3 [OF DC0_imp.intro])
apply (erule bexE)
apply (rule_tac x = "λn ∈ nat. f‘succ (n) ‘n" in rev_bexI)
apply (rule lam_type, blast dest!: DC0_imp.lemma2 [OF DC0_imp.intro]

intro: fun_weaken_type)
apply (rule oallI)
apply (frule DC0_imp.lemma2 [OF DC0_imp.intro], assumption)

apply (blast intro: fun_weaken_type)
apply (erule ltD)

apply (subst DC0_imp.lemma3 [OF DC0_imp.intro], assumption+)
apply (fast elim!: fun_weaken_type)

apply (erule ltD)
apply (force simp add: lt_def)
done

lemma singleton_in_funs:
"x ∈ X =⇒ {〈0,x〉} ∈

(
⋃

n ∈ nat. {f ∈ succ(n)->X. ∀ k ∈ n. <f‘k, f‘succ(k)> ∈
R})"

82

apply (rule nat_0I [THEN UN_I])
apply (force simp add: singleton_0 [symmetric]

intro!: singleton_fun [THEN Pi_type])
done

locale imp_DC0 =
fixes XX and RR and x and R and f and allRR
defines XX_def: "XX ≡ (

⋃
n ∈ nat.

{f ∈ succ(n)->domain(R). ∀ k ∈ n. <f‘k, f‘succ(k)>
∈ R})"

and RR_def:
"RR ≡ {〈z1,z2〉:Fin(XX)*XX.

(domain(z2)=succ(
⋃

f ∈ z1. domain(f))
∧ (∀ f ∈ z1. restrict(z2, domain(f)) = f))

| (¬ (∃ g ∈ XX. domain(g)=succ(
⋃

f ∈ z1. domain(f))

∧ (∀ f ∈ z1. restrict(g, domain(f)) = f)) ∧ z2={〈0,x〉})}"
and allRR_def:

"allRR ≡ ∀ b<nat.
<f‘‘b, f‘b> ∈
{〈z1,z2〉∈Fin(XX)*XX. (domain(z2)=succ(

⋃
f ∈ z1. domain(f))

∧ (
⋃

f ∈ z1. domain(f)) = b
∧ (∀ f ∈ z1. restrict(z2,domain(f))

= f))}"
begin

lemma lemma4:
" [[range(R) ⊆ domain(R); x ∈ domain(R)]]
=⇒ RR ⊆ Pow(XX)*XX ∧

(∀ Y ∈ Pow(XX). Y ≺ nat −→ (∃ x ∈ XX. 〈Y,x〉:RR))"
apply (rule conjI)
apply (force dest!: FinD [THEN PowI] simp add: RR_def)
apply (rule impI [THEN ballI])
apply (drule Finite_Fin [OF lesspoll_nat_is_Finite PowD], assumption)
apply (case_tac

"∃ g ∈ XX. domain (g) =
succ(

⋃
f ∈ Y. domain(f)) ∧ (∀ f∈Y. restrict(g, domain(f))

= f)")
apply (simp add: RR_def, blast)
apply (safe del: domainE)

unfolding XX_def RR_def
apply (rule rev_bexI, erule singleton_in_funs)
apply (simp add: nat_0I [THEN rev_bexI] cons_fun_type2)
done

lemma UN_image_succ_eq:
" [[f ∈ nat->X; n ∈ nat]]
=⇒ (

⋃
x ∈ f‘‘succ(n). P(x)) = P(f‘n) ∪ (

⋃
x ∈ f‘‘n. P(x))"

83

by (simp add: image_fun OrdmemD)

lemma UN_image_succ_eq_succ:
" [[(

⋃
x ∈ f‘‘n. P(x)) = y; P(f‘n) = succ(y);

f ∈ nat -> X; n ∈ nat]] =⇒ (
⋃

x ∈ f‘‘succ(n). P(x)) = succ(y)"
by (simp add: UN_image_succ_eq, blast)

lemma apply_domain_type:
" [[h ∈ succ(n) -> D; n ∈ nat; domain(h)=succ(y)]] =⇒ h‘y ∈ D"

by (fast elim: apply_type dest!: trans [OF sym domain_of_fun])

lemma image_fun_succ:
" [[h ∈ nat -> X; n ∈ nat]] =⇒ h‘‘succ(n) = cons(h‘n, h‘‘n)"

by (simp add: image_fun OrdmemD)

lemma f_n_type:
" [[domain(f‘n) = succ(k); f ∈ nat -> XX; n ∈ nat]]
=⇒ f‘n ∈ succ(k) -> domain(R)"

unfolding XX_def
apply (drule apply_type, assumption)
apply (fast elim: domain_eq_imp_fun_type)
done

lemma f_n_pairs_in_R [rule_format]:
" [[h ∈ nat -> XX; domain(h‘n) = succ(k); n ∈ nat]]
=⇒ ∀ i ∈ k. <h‘n‘i, h‘n‘succ(i)> ∈ R"

unfolding XX_def
apply (drule apply_type, assumption)
apply (elim UN_E CollectE)
apply (drule domain_of_fun [symmetric, THEN trans], assumption, simp)
done

lemma restrict_cons_eq_restrict:
" [[restrict(h, domain(u))=u; h ∈ n->X; domain(u) ⊆ n]]
=⇒ restrict(cons(〈n, y〉, h), domain(u)) = u"

unfolding restrict_def
apply (simp add: restrict_def Pi_iff)
apply (erule sym [THEN trans, symmetric])
apply (blast elim: mem_irrefl)
done

lemma all_in_image_restrict_eq:
" [[∀ x ∈ f‘‘n. restrict(f‘n, domain(x))=x;

f ∈ nat -> XX;
n ∈ nat; domain(f‘n) = succ(n);
(
⋃

x ∈ f‘‘n. domain(x)) ⊆ n]]
=⇒ ∀ x ∈ f‘‘succ(n). restrict(cons(<succ(n),y>, f‘n), domain(x))

= x"
apply (rule ballI)

84

apply (simp add: image_fun_succ)
apply (drule f_n_type, assumption+)
apply (erule disjE)
apply (simp add: domain_of_fun restrict_cons_eq)

apply (blast intro!: restrict_cons_eq_restrict)
done

lemma simplify_recursion:
" [[∀ b<nat. <f‘‘b, f‘b> ∈ RR;

f ∈ nat -> XX; range(R) ⊆ domain(R); x ∈ domain(R)]]
=⇒ allRR"

unfolding RR_def allRR_def
apply (rule oallI, drule ltD)
apply (erule nat_induct)
apply (drule_tac x=0 in ospec, blast intro: Limit_has_0)
apply (force simp add: singleton_fun [THEN domain_of_fun] singleton_in_funs)

apply (simp only: separation split)
apply (drule_tac x="succ(xa)" in ospec, blast intro: ltI)
apply (elim conjE disjE)
apply (force elim!: trans subst_context

intro!: UN_image_succ_eq_succ)
apply (erule notE)
apply (simp add: XX_def UN_image_succ_eq_succ)
apply (elim conjE bexE)
apply (drule apply_domain_type, assumption+)
apply (erule domainE)+
apply (frule f_n_type)
apply (simp add: XX_def, assumption+)
apply (rule rev_bexI, erule nat_succI)
apply (rename_tac m i j y z)
apply (rule_tac x = "cons(<succ(m), z>, f‘m)" in bexI)
prefer 2 apply (blast intro: cons_fun_type2)
apply (rule conjI)
prefer 2 apply (fast del: ballI subsetI

elim: trans [OF _ subst_context, THEN domain_cons_eq_succ]
subst_context
all_in_image_restrict_eq [simplified XX_def]
trans equalityD1)

apply (rule ballI)
apply (erule succE)

apply (simp add: cons_val_n cons_val_k)

apply (drule f_n_pairs_in_R [simplified XX_def, OF _ domain_of_fun],
assumption, assumption, assumption)

85

apply (simp add: nat_into_Ord [THEN succ_in_succ] succI2 cons_val_k)
done

lemma lemma2:
" [[allRR; f ∈ nat->XX; range(R) ⊆ domain(R); x ∈ domain(R); n ∈

nat]]
=⇒ f‘n ∈ succ(n) -> domain(R) ∧ (∀ i ∈ n. <f‘n‘i, f‘n‘succ(i)>:R)"

unfolding allRR_def
apply (drule ospec)
apply (erule ltI [OF _ Ord_nat])
apply (erule CollectE, simp)
apply (rule conjI)
prefer 2 apply (fast elim!: f_n_pairs_in_R trans subst_context)

unfolding XX_def
apply (fast elim!: trans [THEN domain_eq_imp_fun_type] subst_context)
done

lemma lemma3:
" [[allRR; f ∈ nat->XX; n∈nat; range(R) ⊆ domain(R); x ∈ domain(R)]]
=⇒ f‘n‘n = f‘succ(n)‘n"

apply (frule lemma2 [THEN conjunct1, THEN domain_of_fun], assumption+)
unfolding allRR_def

apply (drule ospec)
apply (drule ltI [OF nat_succI Ord_nat], assumption, simp)
apply (elim conjE ballE)
apply (erule restrict_eq_imp_val_eq [symmetric], force)
apply (simp add: image_fun OrdmemD)
done

end

theorem DC_nat_imp_DC0: "DC(nat) =⇒ DC0"
unfolding DC_def DC0_def

apply (intro allI impI)
apply (erule asm_rl conjE ex_in_domain [THEN exE] allE)+
apply (erule impE [OF _ imp_DC0.lemma4], assumption+)
apply (erule bexE)
apply (drule imp_DC0.simplify_recursion, assumption+)
apply (rule_tac x = "λn ∈ nat. f‘n‘n" in bexI)
apply (rule_tac [2] lam_type)
apply (erule_tac [2] apply_type [OF imp_DC0.lemma2 [THEN conjunct1] succI1])
apply (rule ballI)
apply (frule_tac n="succ(n)" in imp_DC0.lemma2,

(assumption|erule nat_succI)+)
apply (drule imp_DC0.lemma3, auto)
done

86

lemma fun_Ord_inj:
" [[f ∈ a->X; Ord(a);∧

b c. [[b<c; c ∈ a]] =⇒ f‘b 6=f‘c]]
=⇒ f ∈ inj(a, X)"

apply (unfold inj_def, simp)
apply (intro ballI impI)
apply (rule_tac j=x in Ord_in_Ord [THEN Ord_linear_lt], assumption+)
apply (blast intro: Ord_in_Ord, auto)
apply (atomize, blast dest: not_sym)
done

lemma value_in_image: " [[f ∈ X->Y; A ⊆ X; a ∈ A]] =⇒ f‘a ∈ f‘‘A"
by (fast elim!: image_fun [THEN ssubst])

lemma lesspoll_lemma: " [[¬ A ≺ B; C ≺ B]] =⇒ A - C 6= 0"
unfolding lesspoll_def

apply (fast dest!: Diff_eq_0_iff [THEN iffD1, THEN subset_imp_lepoll]
intro!: eqpollI elim: notE
elim!: eqpollE lepoll_trans)

done

theorem DC_WO3: "(∀ K. Card(K) −→ DC(K)) =⇒ WO3"
unfolding DC_def WO3_def

apply (rule allI)
apply (case_tac "A ≺ Hartog (A)")
apply (fast dest!: lesspoll_imp_ex_lt_eqpoll

intro!: Ord_Hartog leI [THEN le_imp_subset])
apply (erule allE impE)+
apply (rule Card_Hartog)
apply (erule_tac x = A in allE)
apply (erule_tac x = "{〈z1,z2〉 ∈ Pow (A) *A . z1 ≺ Hartog (A) ∧ z2 /∈
z1}"

in allE)
apply simp
apply (erule impE, fast elim: lesspoll_lemma [THEN not_emptyE])
apply (erule bexE)
apply (rule Hartog_lepoll_selfE)
apply (rule lepoll_def [THEN def_imp_iff, THEN iffD2])
apply (rule exI, rule fun_Ord_inj, assumption, rule Ord_Hartog)
apply (drule value_in_image)
apply (drule OrdmemD, rule Ord_Hartog, assumption+, erule ltD)
apply (drule ospec)
apply (blast intro: ltI Ord_Hartog, force)
done

87

lemma images_eq:
" [[∀ x ∈ A. f‘x=g‘x; f ∈ Df->Cf; g ∈ Dg->Cg; A ⊆ Df; A ⊆ Dg]]
=⇒ f‘‘A = g‘‘A"

apply (simp (no_asm_simp) add: image_fun)
done

lemma lam_images_eq:
" [[Ord(a); b ∈ a]] =⇒ (λx ∈ a. h(x))‘‘b = (λx ∈ b. h(x))‘‘b"

apply (rule images_eq)
apply (rule ballI)
apply (drule OrdmemD [THEN subsetD], assumption+)
apply simp

apply (fast elim!: RepFunI OrdmemD intro!: lam_type)+
done

lemma lam_type_RepFun: "(λb ∈ a. h(b)) ∈ a -> {h(b). b ∈ a}"
by (fast intro!: lam_type RepFunI)

lemma lemmaX:
" [[∀ Y ∈ Pow(X). Y ≺ K −→ (∃ x ∈ X. 〈Y, x〉 ∈ R);

b ∈ K; Z ∈ Pow(X); Z ≺ K]]
=⇒ {x ∈ X. 〈Z,x〉 ∈ R} 6= 0"

by blast

lemma WO1_DC_lemma:
" [[Card(K); well_ord(X,Q);

∀ Y ∈ Pow(X). Y ≺ K −→ (∃ x ∈ X. 〈Y, x〉 ∈ R); b ∈ K]]
=⇒ ff(b, X, Q, R) ∈ {x ∈ X. <(λc ∈ b. ff(c, X, Q, R))‘‘b, x> ∈

R}"
apply (rule_tac P = "b ∈ K" in impE, (erule_tac [2] asm_rl)+)
apply (rule_tac i=b in Card_is_Ord [THEN Ord_in_Ord, THEN trans_induct],

assumption+)
apply (rule impI)
apply (rule ff_def [THEN def_transrec, THEN ssubst])
apply (erule the_first_in, fast)
apply (simp add: image_fun [OF lam_type_RepFun subset_refl])
apply (erule lemmaX, assumption)
apply (blast intro: Card_is_Ord OrdmemD [THEN subsetD])

apply (blast intro: lesspoll_trans1 in_Card_imp_lesspoll RepFun_lepoll)
done

theorem WO1_DC_Card: "WO1 =⇒ ∀ K. Card(K) −→ DC(K)"
unfolding DC_def WO1_def

88

apply (rule allI impI)+
apply (erule allE exE conjE)+
apply (rule_tac x = "λb ∈ K. ff (b, X, Ra, R) " in bexI)
apply (simp add: lam_images_eq [OF Card_is_Ord ltD])
apply (fast elim!: ltE WO1_DC_lemma [THEN CollectD2])

apply (rule_tac lam_type)
apply (rule WO1_DC_lemma [THEN CollectD1], assumption+)
done

end

References

[1] Lawrence C. Paulson and Krzysztof Gra̧bczewski. Mechanizing set the-
ory: Cardinal arithmetic and the axiom of choice. Journal of Automated
Reasoning, 17(3):291–323, December 1996.

[2] Herman Rubin and Jean E. Rubin. Equivalents of the Axiom of Choice,
II. North-Holland, 1985.

89

	Lemmas useful in each of the three proofs
	Lemmas used in the proofs of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 AC1 =-3mu WO2 and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 AC17 =-3mu AC1
	The proof of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 AC1 =-3mu WO2

