File ‹simp.ML›
signature SIMP_DATA =
sig
val case_splits : (thm * string) list
val dest_red : term -> term * term * term
val mk_rew_rules : thm -> thm list
val norm_thms : (thm*thm) list
val red1 : thm
val red2 : thm
val refl_thms : thm list
val subst_thms : thm list
val trans_thms : thm list
end;
infix 4 addcongs delrews delcongs setauto;
signature SIMP =
sig
type simpset
val empty_ss : simpset
val addcongs : simpset * thm list -> simpset
val addrew : Proof.context -> thm -> simpset -> simpset
val delcongs : simpset * thm list -> simpset
val delrews : simpset * thm list -> simpset
val dest_ss : simpset -> thm list * thm list
val print_ss : Proof.context -> simpset -> unit
val setauto : simpset * (Proof.context -> int -> tactic) -> simpset
val ASM_SIMP_CASE_TAC : Proof.context -> simpset -> int -> tactic
val ASM_SIMP_TAC : Proof.context -> simpset -> int -> tactic
val CASE_TAC : Proof.context -> simpset -> int -> tactic
val SIMP_CASE2_TAC : Proof.context -> simpset -> int -> tactic
val SIMP_THM : Proof.context -> simpset -> thm -> thm
val SIMP_TAC : Proof.context -> simpset -> int -> tactic
val SIMP_CASE_TAC : Proof.context -> simpset -> int -> tactic
val mk_congs : Proof.context -> string list -> thm list
val mk_typed_congs : Proof.context -> (string * string) list -> thm list
val tracing : bool Unsynchronized.ref
end;
functor SimpFun (Simp_data: SIMP_DATA) : SIMP =
struct
local open Simp_data in
val lhs_of = #2 o dest_red;
val rhs_of = #3 o dest_red;
fun eq_brl ((b1 : bool, th1), (b2, th2)) = b1 = b2 andalso Thm.eq_thm_prop (th1, th2);
fun lhs_insert_thm th net =
Net.insert_term eq_brl (lhs_of (Thm.concl_of th), (false,th)) net
handle Net.INSERT => net;
fun net_tac ctxt net =
SUBGOAL(fn (prem, i) =>
resolve_tac ctxt (Net.unify_term net (Logic.strip_assums_concl prem)) i);
fun lhs_net_tac ctxt net =
SUBGOAL(fn (prem,i) =>
biresolve_tac ctxt (Net.unify_term net
(lhs_of (Logic.strip_assums_concl prem))) i);
fun goal_concl i thm = Logic.strip_assums_concl (Thm.prem_of thm i);
fun lhs_of_eq i thm = lhs_of(goal_concl i thm)
and rhs_of_eq i thm = rhs_of(goal_concl i thm);
fun var_lhs(thm,i) =
let fun var(Var _) = true
| var(Abs(_,_,t)) = var t
| var(f$_) = var f
| var _ = false;
in var(lhs_of_eq i thm) end;
fun contains_op opns =
let fun contains(Const(s,_)) = member (op =) opns s |
contains(s$t) = contains s orelse contains t |
contains(Abs(_,_,t)) = contains t |
contains _ = false;
in contains end;
fun may_match(match_ops,i) = contains_op match_ops o lhs_of_eq i;
val (normI_thms,normE_thms) = split_list norm_thms;
val norms =
let fun norm thm =
case lhs_of (Thm.concl_of thm) of
Const(n,_)$_ => n
| _ => error "No constant in lhs of a norm_thm"
in map norm normE_thms end;
fun lhs_is_NORM(thm,i) = case lhs_of_eq i thm of
Const(s,_)$_ => member (op =) norms s | _ => false;
fun refl_tac ctxt = resolve_tac ctxt refl_thms;
fun find_res thms thm =
let fun find [] = error "Check Simp_Data"
| find(th::thms) = thm RS th handle THM _ => find thms
in find thms end;
val mk_trans = find_res trans_thms;
fun mk_trans2 thm =
let fun mk[] = error"Check transitivity"
| mk(t::ts) = (thm RSN (2,t)) handle THM _ => mk ts
in mk trans_thms end;
fun one_result(tac,thm) = case Seq.pull(tac thm) of
SOME(thm',_) => thm'
| NONE => raise THM("Simplifier: could not continue", 0, [thm]);
fun res1 ctxt (thm,thms,i) = one_result (resolve_tac ctxt thms i,thm);
fun cong_const cong =
case head_of (lhs_of (Thm.concl_of cong)) of
Const(c,_) => c
| _ => "" ;
val atomic = null o Logic.strip_assums_hyp;
fun add_hidden_vars ccs =
let fun add_hvars tm hvars = case tm of
Abs(_,_,body) => Misc_Legacy.add_term_vars(body,hvars)
| _$_ => let val (f,args) = strip_comb tm
in case f of
Const(c,_) =>
if member (op =) ccs c
then fold_rev add_hvars args hvars
else Misc_Legacy.add_term_vars (tm, hvars)
| _ => Misc_Legacy.add_term_vars (tm, hvars)
end
| _ => hvars;
in add_hvars end;
fun add_new_asm_vars new_asms =
let fun itf (tm, at) vars =
if at then vars else Misc_Legacy.add_term_vars(tm,vars)
fun add_list(tm,al,vars) = let val (_,tml) = strip_comb tm
in if length(tml)=length(al)
then fold_rev itf (tml ~~ al) vars
else vars
end
fun add_vars (tm,vars) = case tm of
Abs (_,_,body) => add_vars(body,vars)
| r$s => (case head_of tm of
Const(c,_) => (case AList.lookup (op =) new_asms c of
NONE => add_vars(r,add_vars(s,vars))
| SOME(al) => add_list(tm,al,vars))
| _ => add_vars(r,add_vars(s,vars)))
| _ => vars
in add_vars end;
fun add_norms ctxt (congs,ccs,new_asms) thm =
let val thm' = mk_trans2 thm;
val nops = Thm.nprems_of thm'
val lhs = rhs_of_eq 1 thm'
val rhs = lhs_of_eq nops thm'
val asms = tl(rev(tl(Thm.prems_of thm')))
val hvars = fold_rev (add_hidden_vars ccs) (lhs::rhs::asms) []
val hvars = add_new_asm_vars new_asms (rhs,hvars)
fun it_asms asm hvars =
if atomic asm then add_new_asm_vars new_asms (asm,hvars)
else Misc_Legacy.add_term_frees(asm,hvars)
val hvars = fold_rev it_asms asms hvars
val hvs = map (#1 o dest_Var) hvars
fun norm_step_tac st = st |>
(case head_of(rhs_of_eq 1 st) of
Var(ixn,_) => if member (op =) hvs ixn then refl_tac ctxt 1
else resolve_tac ctxt normI_thms 1 ORELSE refl_tac ctxt 1
| Const _ => resolve_tac ctxt normI_thms 1 ORELSE
resolve_tac ctxt congs 1 ORELSE refl_tac ctxt 1
| Free _ => resolve_tac ctxt congs 1 ORELSE refl_tac ctxt 1
| _ => refl_tac ctxt 1)
val add_norm_tac = DEPTH_FIRST (has_fewer_prems nops) norm_step_tac
val SOME(thm'',_) = Seq.pull(add_norm_tac thm')
in thm'' end;
fun add_norm_tags ctxt congs =
let val ccs = map cong_const congs
val new_asms = filter (exists not o #2)
(ccs ~~ (map (map atomic o Thm.prems_of) congs));
in add_norms ctxt (congs,ccs,new_asms) end;
fun normed_rews ctxt congs =
let
val add_norms = add_norm_tags ctxt congs
fun normed thm =
let
val ctxt' = Variable.declare_thm thm ctxt;
in Variable.tradeT (K (map (add_norms o mk_trans) o maps mk_rew_rules)) ctxt [thm] end
in normed end;
fun NORM ctxt norm_lhs_tac = EVERY' [resolve_tac ctxt [red2], norm_lhs_tac, refl_tac ctxt];
val trans_norms = map mk_trans normE_thms;
datatype simpset =
SS of {auto_tac: Proof.context -> int -> tactic,
congs: thm list,
cong_net: thm Net.net,
mk_simps: Proof.context -> thm -> thm list,
simps: (thm * thm list) list,
simp_net: thm Net.net}
val empty_ss = SS{auto_tac= K (K no_tac), congs=[], cong_net=Net.empty,
mk_simps = fn ctxt => normed_rews ctxt [], simps=[], simp_net=Net.empty};
fun insert_thm th net =
Net.insert_term Thm.eq_thm_prop (Thm.concl_of th, th) net
handle Net.INSERT => net;
val insert_thms = fold_rev insert_thm;
fun addrew ctxt thm (SS{auto_tac,congs,cong_net,mk_simps,simps,simp_net}) =
let val thms = map Thm.trim_context (mk_simps ctxt thm)
in SS{auto_tac=auto_tac,congs=congs, cong_net=cong_net, mk_simps=mk_simps,
simps = (thm,thms)::simps, simp_net = insert_thms thms simp_net}
end;
fun op addcongs(SS{auto_tac,congs,cong_net,mk_simps,simps,simp_net}, thms) =
let val congs' = map Thm.trim_context thms @ congs;
in SS{auto_tac=auto_tac, congs= congs',
cong_net= insert_thms (map mk_trans thms) cong_net,
mk_simps = fn ctxt => normed_rews ctxt congs', simps=simps, simp_net=simp_net}
end;
fun delete_thm th net =
Net.delete_term Thm.eq_thm_prop (Thm.concl_of th, th) net
handle Net.DELETE => net;
val delete_thms = fold_rev delete_thm;
fun op delcongs(SS{auto_tac,congs,cong_net,mk_simps,simps,simp_net}, thms) =
let val congs' = fold (remove Thm.eq_thm_prop) thms congs
in SS{auto_tac=auto_tac, congs= congs',
cong_net= delete_thms (map mk_trans thms) cong_net,
mk_simps= fn ctxt => normed_rews ctxt congs', simps=simps, simp_net=simp_net}
end;
fun delrew thm (SS{auto_tac,congs,cong_net,mk_simps,simps,simp_net}) =
let fun find((p as (th,ths))::ps',ps) =
if Thm.eq_thm_prop(thm,th) then (ths,ps@ps') else find(ps',p::ps)
| find([],simps') = ([], simps')
val (thms,simps') = find(simps,[])
in SS{auto_tac=auto_tac, congs=congs, cong_net=cong_net, mk_simps=mk_simps,
simps = simps', simp_net = delete_thms thms simp_net }
end;
fun ss delrews thms = fold delrew thms ss;
fun op setauto(SS{congs,cong_net,mk_simps,simps,simp_net,...}, auto_tac) =
SS{auto_tac=auto_tac, congs=congs, cong_net=cong_net, mk_simps=mk_simps,
simps=simps, simp_net=simp_net};
fun dest_ss(SS{congs,simps,...}) = (congs, map #1 simps);
fun print_ss ctxt (SS{congs,simps,...}) =
writeln (cat_lines
(["Congruences:"] @ map (Thm.string_of_thm ctxt) congs @
["Rewrite Rules:"] @ map (Thm.string_of_thm ctxt o #1) simps));
val (case_thms,case_consts) = split_list case_splits;
val case_rews = map mk_trans case_thms;
fun if_rewritable ifc i thm =
let val tm = goal_concl i thm
fun nobound(Abs(_,_,tm),j,k) = nobound(tm,j,k+1)
| nobound(s$t,j,k) = nobound(s,j,k) andalso nobound(t,j,k)
| nobound(Bound n,j,k) = n < k orelse k+j <= n
| nobound(_) = true;
fun check_args(al,j) = forall (fn t => nobound(t,j,0)) al
fun find_if(Abs(_,_,tm),j) = find_if(tm,j+1)
| find_if(tm as s$t,j) = let val (f,al) = strip_comb tm in
case f of Const(c,_) => if c=ifc then check_args(al,j)
else find_if(s,j) orelse find_if(t,j)
| _ => find_if(s,j) orelse find_if(t,j) end
| find_if(_) = false;
in find_if(tm,0) end;
fun IF1_TAC ctxt cong_tac i =
let fun seq_try (ifth::ifths,ifc::ifcs) thm =
(COND (if_rewritable ifc i) (DETERM(resolve_tac ctxt [ifth] i))
(seq_try(ifths,ifcs))) thm
| seq_try([],_) thm = no_tac thm
and try_rew thm = (seq_try(case_rews,case_consts) ORELSE one_subt) thm
and one_subt thm =
let val test = has_fewer_prems (Thm.nprems_of thm + 1)
fun loop thm =
COND test no_tac
((try_rew THEN DEPTH_FIRST test (refl_tac ctxt i))
ORELSE (refl_tac ctxt i THEN loop)) thm
in (cong_tac THEN loop) thm end
in COND (may_match(case_consts,i)) try_rew no_tac end;
fun CASE_TAC ctxt (SS{cong_net,...}) i =
let val cong_tac = net_tac ctxt cong_net i
in NORM ctxt (IF1_TAC ctxt cong_tac) i end;
datatype cntrl = STOP | MK_EQ | ASMS of int | SIMP_LHS | REW | REFL | TRUE
| PROVE | POP_CS | POP_ARTR | IF;
fun simp_refl([],_,ss) = ss
| simp_refl(a'::ns,a,ss) = if a'=a then simp_refl(ns,a,SIMP_LHS::REFL::ss)
else simp_refl(ns,a,ASMS(a)::SIMP_LHS::REFL::POP_ARTR::ss);
val tracing = Unsynchronized.ref false;
fun variants_abs ([],P) = P
| variants_abs ((a,T)::aTs, P) =
variants_abs (aTs, #2 (Term.dest_abs_global (Abs (a,T,P))));
fun prepare_goal i st =
let val subgi = Thm.prem_of st i
val params = rev (Logic.strip_params subgi)
in variants_abs (params, Logic.strip_assums_concl subgi) end;
fun pr_goal_lhs ctxt i st =
writeln (Syntax.string_of_term ctxt (lhs_of (prepare_goal i st)));
fun pr_goal_concl ctxt i st =
writeln (Syntax.string_of_term ctxt (prepare_goal i st))
fun pr_goals ctxt (i,j) st =
if i>j then ()
else (pr_goal_concl ctxt i st; pr_goals ctxt (i+1,j) st);
fun pr_rew ctxt (i,n,thm,thm',not_asms) =
if !tracing
then (if not_asms then () else writeln"Assumption used in";
pr_goal_lhs ctxt i thm; writeln"->"; pr_goal_lhs ctxt (i+n) thm';
if n>0 then (writeln"Conditions:"; pr_goals ctxt (i, i+n-1) thm')
else ();
writeln"" )
else ();
fun strip_varify(\<^Const_>‹Pure.imp for H B›, n, vs) =
if n=0 then subst_bounds(vs,H)::strip_varify(B,0,vs)
else strip_varify(B,n-1,vs)
| strip_varify(\<^Const_>‹Pure.all _ for ‹Abs(_,T,t)››, n, vs) =
strip_varify(t,n,Var(("?",length vs),T)::vs)
| strip_varify _ = [];
fun execute ctxt (ss,if_fl,auto_tac,cong_tac,net,i,thm) =
let
fun simp_lhs(thm,ss,anet,ats,cs) =
if var_lhs(thm,i) then (ss,thm,anet,ats,cs) else
if lhs_is_NORM(thm,i) then (ss, res1 ctxt (thm,trans_norms,i), anet,ats,cs)
else case Seq.pull(cong_tac i thm) of
SOME(thm',_) =>
let val ps = Thm.prems_of thm
and ps' = Thm.prems_of thm';
val n = length(ps')-length(ps);
val a = length(Logic.strip_assums_hyp(nth ps (i - 1)))
val l = map (length o Logic.strip_assums_hyp) (take n (drop (i-1) ps'));
in (simp_refl(rev(l),a,REW::ss),thm',anet,ats,cs) end
| NONE => (REW::ss,thm,anet,ats,cs);
fun add_asms(ss,thm,a,anet,ats,cs) =
let val As = strip_varify(Thm.prem_of thm i, a, []);
val thms = map (Thm.trivial o Thm.cterm_of ctxt) As;
val new_rws = maps mk_rew_rules thms;
val rwrls = map mk_trans (maps mk_rew_rules thms);
val anet' = fold_rev lhs_insert_thm rwrls anet;
in (ss,thm,anet',anet::ats,cs) end;
fun rew(seq,thm,ss,anet,ats,cs, more) = case Seq.pull seq of
SOME(thm',seq') =>
let val n = (Thm.nprems_of thm') - (Thm.nprems_of thm)
in pr_rew ctxt (i,n,thm,thm',more);
if n=0 then (SIMP_LHS::ss, thm', anet, ats, cs)
else ((replicate n PROVE) @ (POP_CS::SIMP_LHS::ss),
thm', anet, ats, (ss,thm,anet,ats,seq',more)::cs)
end
| NONE => if more
then rew((lhs_net_tac ctxt anet i THEN assume_tac ctxt i) thm,
thm,ss,anet,ats,cs,false)
else (ss,thm,anet,ats,cs);
fun try_true(thm,ss,anet,ats,cs) =
case Seq.pull(auto_tac ctxt i thm) of
SOME(thm',_) => (ss,thm',anet,ats,cs)
| NONE => let val (ss0,thm0,anet0,ats0,seq,more)::cs0 = cs
in if !tracing
then (writeln"*** Failed to prove precondition. Normal form:";
pr_goal_concl ctxt i thm; writeln"")
else ();
rew(seq,thm0,ss0,anet0,ats0,cs0,more)
end;
fun if_exp(thm,ss,anet,ats,cs) =
case Seq.pull (IF1_TAC ctxt (cong_tac i) i thm) of
SOME(thm',_) => (SIMP_LHS::IF::ss,thm',anet,ats,cs)
| NONE => (ss,thm,anet,ats,cs);
fun step(s::ss, thm, anet, ats, cs) = case s of
MK_EQ => (ss, res1 ctxt (thm,[red2],i), anet, ats, cs)
| ASMS(a) => add_asms(ss,thm,a,anet,ats,cs)
| SIMP_LHS => simp_lhs(thm,ss,anet,ats,cs)
| REW => rew(net_tac ctxt net i thm,thm,ss,anet,ats,cs,true)
| REFL => (ss, res1 ctxt (thm,refl_thms,i), anet, ats, cs)
| TRUE => try_true(res1 ctxt (thm,refl_thms,i),ss,anet,ats,cs)
| PROVE => (if if_fl then MK_EQ::SIMP_LHS::IF::TRUE::ss
else MK_EQ::SIMP_LHS::TRUE::ss, thm, anet, ats, cs)
| POP_ARTR => (ss,thm,hd ats,tl ats,cs)
| POP_CS => (ss,thm,anet,ats,tl cs)
| IF => if_exp(thm,ss,anet,ats,cs);
fun exec(state as (s::ss, thm, _, _, _)) =
if s=STOP then thm else exec(step(state));
in exec(ss, thm, Net.empty, [], []) end;
fun EXEC_TAC ctxt (ss,fl) (SS{auto_tac,cong_net,simp_net,...}) =
let val cong_tac = net_tac ctxt cong_net
in fn i =>
(fn thm =>
if i <= 0 orelse Thm.nprems_of thm < i then Seq.empty
else Seq.single(execute ctxt (ss,fl,auto_tac,cong_tac,simp_net,i,thm)))
THEN TRY(auto_tac ctxt i)
end;
fun SIMP_TAC ctxt = EXEC_TAC ctxt ([MK_EQ,SIMP_LHS,REFL,STOP],false);
fun SIMP_CASE_TAC ctxt = EXEC_TAC ctxt ([MK_EQ,SIMP_LHS,IF,REFL,STOP],false);
fun ASM_SIMP_TAC ctxt = EXEC_TAC ctxt ([ASMS(0),MK_EQ,SIMP_LHS,REFL,STOP],false);
fun ASM_SIMP_CASE_TAC ctxt = EXEC_TAC ctxt ([ASMS(0),MK_EQ,SIMP_LHS,IF,REFL,STOP],false);
fun SIMP_CASE2_TAC ctxt = EXEC_TAC ctxt ([MK_EQ,SIMP_LHS,IF,REFL,STOP],true);
fun REWRITE ctxt (ss,fl) (SS{auto_tac,cong_net,simp_net,...}) =
let val cong_tac = net_tac ctxt cong_net
in fn thm => let val state = thm RSN (2,red1)
in execute ctxt (ss,fl,auto_tac,cong_tac,simp_net,1,state) end
end;
fun SIMP_THM ctxt = REWRITE ctxt ([ASMS(0),SIMP_LHS,IF,REFL,STOP],false);
val subst_thms = map Drule.export_without_context subst_thms;
fun exp_app(0,t) = t
| exp_app(i,t) = exp_app(i-1,t $ Bound (i-1));
fun exp_abs(\<^Type>‹fun T1 T2›,t,i) =
Abs("x"^string_of_int i,T1,exp_abs(T2,t,i+1))
| exp_abs(T,t,i) = exp_app(i,t);
fun eta_Var(ixn,T) = exp_abs(T,Var(ixn,T),0);
fun Pinst(f,fT,(eq,eqT),k,i,T,yik,Ts) =
let fun xn_list(x,n) =
let val ixs = map_range (fn i => (x^(radixstring(26,"a",i)),0)) (n - 1);
in ListPair.map eta_Var (ixs, take (n+1) Ts) end
val lhs = list_comb(f,xn_list("X",k-1))
val rhs = list_comb(f,xn_list("X",i-1) @ [Bound 0] @ yik)
in Abs("", T, Const(eq,[fT,fT]--->eqT) $ lhs $ rhs) end;
fun find_subst ctxt T =
let fun find (thm::thms) =
let val (Const(_,cT), va, vb) = dest_red(Thm.prem_of thm 1);
val [P] = subtract (op =) [va, vb] (Misc_Legacy.add_term_vars (Thm.concl_of thm, []));
val eqT::_ = binder_types cT
in if Sign.typ_instance (Proof_Context.theory_of ctxt) (T,eqT) then SOME(thm,va,vb,P)
else find thms
end
| find [] = NONE
in find subst_thms end;
fun mk_cong ctxt (f,aTs,rT) (refl,eq) =
let val k = length aTs;
fun ri((subst,va as Var(a,Ta),vb as Var(b,Tb), Var (P, _)),i,si,T,yik) =
let val cx = Thm.cterm_of ctxt (eta_Var(("X"^si,0),T))
val cb = Thm.cterm_of ctxt vb
val cy = Thm.cterm_of ctxt (eta_Var(("Y"^si,0),T))
val cp = Thm.cterm_of ctxt (Pinst(f,rT,eq,k,i,T,yik,aTs))
in infer_instantiate ctxt [(a,cx),(b,cy),(P,cp)] subst end;
fun mk(c,T::Ts,i,yik) =
let val si = radixstring(26,"a",i)
in case find_subst ctxt T of
NONE => mk(c,Ts,i-1,eta_Var(("X"^si,0),T)::yik)
| SOME s => let val c' = c RSN (2,ri(s,i,si,T,yik))
in mk(c',Ts,i-1,eta_Var(("Y"^si,0),T)::yik) end
end
| mk(c,[],_,_) = c;
in mk(refl,rev aTs,k-1,[]) end;
fun mk_cong_type ctxt (f,T) =
let val (aTs,rT) = strip_type T;
fun find_refl(r::rs) =
let val (Const(eq,eqT),_,_) = dest_red(Thm.concl_of r)
in if Sign.typ_instance (Proof_Context.theory_of ctxt) (rT, hd(binder_types eqT))
then SOME(r,(eq,body_type eqT)) else find_refl rs
end
| find_refl([]) = NONE;
in case find_refl refl_thms of
NONE => [] | SOME(refl) => [mk_cong ctxt (f,aTs,rT) refl]
end;
fun mk_congs' ctxt f =
let val T = case Sign.const_type (Proof_Context.theory_of ctxt) f of
NONE => error(f^" not declared") | SOME(T) => T;
val T' = Logic.incr_tvar 9 T;
in mk_cong_type ctxt (Const(f,T'),T') end;
val mk_congs = maps o mk_congs';
fun mk_typed_congs ctxt =
let
fun readfT(f,s) =
let
val T = Logic.incr_tvar 9 (Syntax.read_typ ctxt s);
val t = case Sign.const_type (Proof_Context.theory_of ctxt) f of
SOME(_) => Const(f,T) | NONE => Free(f,T)
in (t,T) end
in maps (mk_cong_type ctxt o readfT) end;
end;
end;