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1 Natural numbers

theory Natural-Numbers
imports FOL
begin

Theory of the natural numbers: Peano’s axioms, primitive recursion. (Mod-
ernized version of Larry Paulson’s theory "Nat".)

typedecl nat
instance nat :: <term» (proof)

axiomatization

Zero :: <naty  (<0») and

Suc :: <nat => nat> and

rec :: «[nat, 'a, [nat, 'a] => 'a] => 'a»
where

induct [case-names 0 Suc, induct type: nat]:

«P(0) ==> (Nz. P(z) ==> P(Suc(z))) ==> P(n)» and
Suc-inject: «Suc(m) = Suc(n) ==> m = n» and
Suc-neq-0: «Suc(m) = 0 ==> R> and
rec-0: <rec(0, a, f) = a> and



rec-Suc: <rec(Suc(m), a, f) = f(m, rec(m, a, f))

lemma Suc-n-not-n: «Suc(k) # k>
(proof)

definition add :: <nat => nat => nat>  (infixl <+> 60)
where «<m + n = rec(m, n, Az y. Suc(y))

lemma add-0 [simp]: <0 + n = n»
(proof)

lemma add-Suc [simp]: «Suc(m) + n = Suc(m + n)»
{proof)

lemma add-assoc: <«(k + m) + n=k + (m + n)
(proof)

lemma add-0-right: <m 4+ 0 = m»
(proof )

lemma add-Suc-right: «<m + Suc(n) = Suc(m + n)»
(proof)

lemma
assumes <!!n. f(Suc(n)) = Suc(f(n))
shows «f(i + j) =i + f(j)
(proof)

end

2 Examples for the manual “Introduction to Is-
abelle”

theory Intro

imports FOL

begin

2.0.1 Some simple backward proofs
lemma mythm: <PV P — P»

(proof)

lemma (P A Q)V R— (PV R)
(proof)

Correct version, delaying use of spec until last.

lemma «(Vz y. P(z,y)) — (Vz w. P(w,z))



(proof)

2.0.2 Demonstration of fast

lemma «(3y. Vz. J(y,z) «— - J(z,2)) — - (V. Jy. V2. J(z,y) «— = J(z,2))
(proof)

1<emrr;§1 Nz Plz,f(z)) +— (Fy. Vz. P(z,y) — P(z,f(z))) A P(z,y))
PrOoo

2.0.3 Derivation of conjunction elimination rule

lemma
assumes major: <P N\ @Q»
and minor: <[P; Q] = R»
shows (R)»

(proof)

2.1 Derived rules involving definitions

Derivation of negation introduction

lemma
assumes (P =— Fulse)
shows <= P»

(proof)

lemma
assumes major: 7 P»
and minor: <P»
shows <R»

(proof)

Alternative proof of the result above

lemma
assumes major: <= P»
and minor: <P»
shows <R»

(proof)

end

3 Theory of the natural numbers: Peano’s axioms,
primitive recursion

theory Nat
imports FOL
begin



typedecl nat
instance nat :: (term» (proof)

axiomatization
Zero :: <nat> (<0») and
Suc :: <nat = nat> and
rec :: «[nat, 'a, [nat, 'a] = 'a] = ‘o
where
induct: <[P(0); Nz. P(x) = P(Suc(z))] = P(n)» and
Suc-inject: <Suc(m)=Suc(n) = m=n» and
Suc-neq-0: «Suc(m)=0 = R» and
rec-0: <rec(0,a,f) = a> and
rec-Suc: <rec(Suc(m), a, f) = f(m, rec(m,a,f))

definition add :: ([nat, nat] = nat> (infixl <+»> 60)
where «<m + n = rec(m, n, Az y. Suc(y))

3.1 Proofs about the natural numbers

lemma Suc-n-not-n: «Suc(k) # k>
(proof)

lemma «(k+m)+n = k+(m-+n)
(proof)

lemma add-0 [simp]: <0+n = n»

(proof)

lemma add-Suc [simp]: «Suc(m)+n = Suc(m+n)>

(proof)

lemma add-assoc: <«(k+m)+n = k+(m+n)>
(proof)

lemma add-0-right: <m+0 = m»

(proof)

lemma add-Suc-right: «<m+Suc(n) = Suc(m+n)>
(proof)

lemma
assumes prem: <A\n. f(Suc(n)) = Suc(f(n))
shows «f(i+j) = i+f(j)

(proof)

end



4 Theory of the natural numbers: Peano’s axioms,
primitive recursion

theory Nat-Class
imports FOL
begin

This is an abstract version of Nat.thy. Instead of axiomatizing a single type
nat, it defines the class of all these types (up to isomorphism).

Note: The rec operator has been made monomorphic, because class axioms
cannot contain more than one type variable.

class nat =
fixes Zero :: <'ay (<0»)
and Suc :: (a = ‘o
and rec :: a = 'a = ('la = 'a = 'a) = o
assumes induct: <P(0) = (A\z. P(z) = P(Suc(z))) = P(n)
and Suc-inject: «Suc(m) = Suc(n) = m = n»
and Suc-neg-Zero: «Suc(m) = 0 = R»
and rec-Zero: <rec(0, a, f) = a»
and rec-Suc: <rec(Suc(m), a, f) = f(m, rec(m, a, f))»
begin

! !

definition add :: <'a = 'a = 'a> (infixl +) 60)
where <m + n = rec(m, n, Az y. Suc(y))

lemma Suc-n-not-n: «Suc(k) # (k::'a)
{proof)

lemma «(k+ m) + n=%k + (m + n)
{proof)

lemma add-Zero [simp]: <0 + n = n»
{proof)

lemma add-Suc [simp]: <Suc(m) + n = Suc(m + n)»
{proof)

lemma add-assoc: «(k + m) + n=Fk + (m + n)
{proof)

lemma add-Zero-right: <m + 0 = my»
(proof)

lemma add-Suc-right: <m + Suc(n) = Suc(m + n)»
{proof)

lemma
assumes prem: <A\n. f(Suc(n)) = Suc(f(n))



shows «f(i + j) =i + f(j)
{proof)

end

end

5 Intuitionistic FOL: Examples from The Founda-
tion of a Generic Theorem Prover

theory Foundation
imports IFOL
begin

lemma (AN B — (C — AN C)
(proof)

A form of conj-elimination

lemma
assumes (A N B>
and <A — B — (O
shows (C"»

(proof)

lemma
assumes (\NA. - - A = A
shows <B V = B»

(proof)

lemma
assumes (\NA. - = A = A
shows <B V = B»

(proof)

lemma
assumes (A V = A
and <= = A
shows (A)»

(proof)

5.1 Examples with quantifiers

lemma
assumes (Vz. G(z)
shows «Vz. G(z) V H(2)»

(proof)



lemma V2. y. z =
(proof )

lemma Jy. Vz. 2z =

(proof)

Parallel lifting example.

lemma Ju. Vz. Jv. Vy. Jw. P(u,z,v,y,w))

(proof)

lemma
assumes ((3z. F(z)) A B
shows (Jz. F(z) A B

(proof)

A bigger demonstration of quantifiers — not in the paper.

lemma «3y. Vz. Q(z,y)) — (V. Jy. Q(z,y))
(proof)

end

6 First-Order Logic: PROLOG examples

theory Prolog
imports FOL
begin

typedecl ‘a list
instance list :: (<term») <term» (proof)

axiomatization
Nil  :: <'a list> and
Cons :: «['a, 'a list}=> 'a listy  (infixr > 60) and
app = «['a list, 'a list, 'a list] => o> and
rev  : «['a list, 'a list] => o
where

appNil: <app(Nil,ys,ys)» and

appCons: <app(xs,ys,zs) ==> app(z:xs, ys, x:2s)> and

revNil: <rev(Nil,Nil)» and

revCons: <[| rev(zs,ys); app(ys, x:Nil, zs) || ==> rev(z:as, 28))

schematic-goal <app(a:b:c:Nil, d:e:Nil, ?z)»
(proof)

schematic-goal <app(?z, c:d:Nil, a:b:c:d:Nil)»
(proof )

schematic-goal <app(?z, 2y, a:b:c:d:Nil)»



(proof)

lemmas rules = appNil appCons revNil revCons

schematic-goal <rev(a:b:c:d:Nil, ?x)»
(proof)

schematic-goal (rev(a:b:c:d:e:f:g:h:i:j:k:l:m:n: Nil, 2w)»

(proof)

schematic-goal <rev(?z, a:b:c:Nil))

(proof)

(ML)

schematic-goal <rev( %z, a:b:c:Nil))
(proof)

schematic-goal (rev(a: ?z:c: 2y:Nil, d:%z:b: 2u)»
(proof)

schematic-goal (rev(a:b:c:d:e:f:g:h:i:j:k:l:m:n:0:p: Nil, ?w)>

(proof)

schematic-goal <a:b:c:d:e:f:g:h:i:j:k:limin:o:p: Nil = 2z A app( 2z, %z, 2y) A rev( 2y, 2w)>

(proof)

end

7 Intuitionistic First-Order Logic

theory Intuitionistic
imports IFOL
begin

Metatheorem (for propositional formulae): P is classically provable iff == P
is intuitionistically provable. Therefore —P is classically provable iff it is
intuitionistically provable.

Proof: Let @ be the conjunction of the propositions A V = A, one for each
atom A in P. Now ——(Q is intuitionistically provable because =—(AV —A) is
and because double-negation distributes over conjunction. If P is provable
classically, then clearly Q — P is provable intuitionistically, so =—(Q — P)



is also provable intuitionistically. The latter is intuitionistically equivalent
to =) — ——P, hence to == P, since ——() is intuitionistically provable.
Finally, if P is a negation then ——P is intuitionstically equivalent to P.
[Andy Pitts]
lemma (- = (PAQ)+— "~ PA-=Q

(proof )

lemma (- - (P — Q) — (P — Q) — P)p
(proof)

Double-negation does NOT distribute over disjunction.

lemma (- = (P — Q)«— (- =P — == Q)p

{proof)

lemma (= = = P <+— = P)
(proof)

lemma (- - (P —> QVR) — (P— Q) V(P— R))
{proof)

lemma (P +— Q) +— (Q «— P)»
{proof)

lemma ((P — (Q V (@ — R))) — R) — R»
{proof)

lemma

«((G@—A) —J)—D—F)— ((H—B) —I) —C—1)
— A —H) —F —G—(((C—B) —I)—D —(A— ()
— ((F— A) — B) — I) — E»

(proof)

Admissibility of the excluded middle for negated formulae
lemma (P V =P — —Q) — =@

(proof)
The same in a more general form, no ex falso quodlibet

lemma (P V (P—R) — Q@ — R) — Q — R
{proof)

7.1 Lemmas for the propositional double-negation transla-
tion

lemma <P — = = P»
(proof )

lemma <= - (-~ P — P)
{proof)

10



lemma (- = PA=-= (P — Q) — -
{proof)

The following are classically but not constructively valid. The attempt to
prove them terminates quickly!

lemma (((P — Q) — P) — P»

(proof)

lemma «(PAN Q — R) — (P — R) V (@ — R)
(proof)

7.2 de Bruijn formulae

de Bruijn formula with three predicates

lemma

((P+— Q) — PANQAR)A
(+— R) — PANQAR)A
(R+—>P)—PANQANR)— PANQANR
(proof)

de Bruijn formula with five predicates

lemma

((P+—= Q) — PAQARANSANT)A
((Q«—= R —PAQARANSAT)A
(R+—S8S) —PANQARANSAT)A
(§+—=T)—PAQARANSAT)A
(T+—P)—PANQANRANSANT

{proof)

)—PAQARASAT

Problems from of Sahlin, Franzen and Haridi, An Intuitionistic Predicate
Logic Theorem Prover. J. Logic and Comp. 2 (5), October 1992, 619-656.

Problem 1.1

lemma
«(Vz. Fy. V. p(z) A q(y) A r(2) «—
(Vz. dy. Va. p(z) A qy) A r(2))
{proof )

Problem 3.1

lemma - (Fz. Vy. mem(y,z) +— - mem(z,z))>
(proof)

Problem 4.1: hopeless!

lemma
«(Vz. p(z) — p(h(z)) V p(9(x))) A Fz. p(z)) A (Vz. = p(h(z)))
< —>f§3 z. p(g9(g9(g9(g(g9(2)))))))
pToo

11



7.3 Intuitionistic FOL: propositional problems based on Pel-
letier.

_|_|1

lemma (- - (P — Q) +— (- Q — - P))»
{proof)

_|_|2

lemma (- - (- = P <— P)

(proof)
3

lemma - (P — Q) — (Q — P)»

{proof )
-4

lemma (- - (- P — Q) +— (- Q@ — P))»
{proof)

_|_|5

lemma (- - ((PV Q@ —PVR)— PV (Q— R))
(proof)

_\_|6

lemma — - (P V = P))
{proof)

_|_|7

lemma (= =~ (P V === P)
{proof)

——&. Peirce’s law

lemma - - ((P — Q) — P) — P)
{proof)

9

lemma «((PV QQA(=PVQ APV -Q) — ~(=PV-Q)
{proof)

10

lemma «(Q — R) — (R— P AN Q) — (P — (QV R)) — (P<+— Q)
{proof)

12



7.4 11. Proved in each direction (incorrectly, says Pelletier!!)

lemma P +— P»

(proof)

——12. Dijkstra’s law
lemma (- = (P +— Q) +— R) +— (P +— (Q +— R)))
(proof)

lemma (((P +— Q) +— R) — == (P +— (Q «— R))»
{proof)

13. Distributive law

lemma <PV (Q A R) «— (PV Q) A(PV R)
{proof)

——14

lemma (- = (P +— Q) «— (QV-P)AN (= QV P)))
{proof)

——15

lemma (- - (P — Q) «— (- PV Q)
{proof)

——16

lemma (- - (P — Q) vV (@ — P)p»
(proof)

—=17

lemma - = (P A (Q — R)) — 8) «— (W PV QVS)A (= PV =RV
S)))

(proof)

Dijkstra’s “Golden Rule”

lemma (P A Q) +— P+— Q +— (PV Q)
{proof)

8 Examples with quantifiers

8.1 The converse is classical in the following implications ...

lemma «(3z. P(z) — Q) — (Vz. P(z)) — @
{proof)

lemma «((Vz. P(z)) — Q) — = (Vz. P(z) A = Q)
{proof)

lemma «((Vz. - P(z)) — Q) — = (Vz. -~ (P(z) V Q))»

13



{proof)

lemma «(Vz. P(z)) V Q@ — (Vz. P(z) V Q)
{proof)

lemma «(3z. P — Q(z)) — (P — (Fz. Q(x)))»
{proof)

8.2 The following are not constructively valid!

The attempt to prove them terminates quickly!
lemma «((Vz. P(z)) — Q) — (3z. P(z) — Q)
{proof )

lemma (P — (Jz. Q(z))) — (Fz. P — Q(x))»
{proof)

lemma «(Vz. P(z) V Q) — ((Vz. P(z)) V Q)
{proof)

lemma «(Vz. = = P(z)) — = = (V. P(x))
{proof)

Classically but not intuitionistically valid. Proved by a bug in 1986!

lemma Jz. Q(z) — V. Q(z))
{proof)

8.3 Hard examples with quantifiers

The ones that have not been proved are not known to be valid! Some will
require quantifier duplication — not currently available.

——18

lemma - = (3y. Va. P(y) — P(z))
{proof)

——19

lemma — = (2. Vy z. (P(y) — Q(z)) — (P(z) — Q(x)))»
{proof)

14



1e<rnma><(5|x. P— Qx)) AN (3z. Q(z) — P) — == (Fz. P +— Q(z))
proof

22

lemma «((Vz. P +— Q(z)) — (P +— (Vz. Q(z)))
{proof)

-—=23

lemma — = (V2. PV Q(2)) +— (P V (V. Q(x))))
{proof)

24
lemma
<= (Fz. S(z) A Q(z)) AN (V. Pz

(= (3z. P(z)) — (3z. Q(x))) A (
— == (3z. P(z) A R(z))»

< |
O
G
<
=
IS
>

- Q(

Not clear why fast-tac, best-tac, ASTAR and ITER-DEEPEN all take for-
ever.

(proof )
25
lemma
«(Fz. P(z)) A
(Vz. L(z) — = (M(z) A R(z))) A
(Vz. P(z) — (M(x) A L(z))) A
(Vz. P(z) — Q(z)) V (3z. P(z) A R(x)))

27
lemma
«(Fz. P(x) A = Q(x)) A
(Vz. P(z) — R(z)) A
(Vz. M(z) A L(z) — P(z)) A
((3z. R(z) N = Q(z)) — (Va. L(z) — — R(x)))
— (Vz. M(z) — — L(z))»
(proof)

—-—-28. AMENDED

lemma

15



«(Vz. P(z) — (V2. Q(z))) A
(== Vz. Q(z) V R(z)) — (Fz. Q(z) A S(z))) A
(== 3z S(z)) — (Vz. L(z) — M(z)))
— (Vz. P(z) A L(z) — M(z))
(proof )

29. Essentially the same as Principia Mathematica *11.71

lemma

=—30

lemma
«(Vz. (P(z) V Q(z)) — = R(z)) A
(Vz. (Q(z) — = S(z)) — P(z) A R(x))
— (Vz. = = S(z))»
(proof )

32

lemma
«(Vz. P(z) A (Q(z) V R(z)) — S(z)) A
(Vz. S(z) A R(zx) — L(z)) A
(Vz. M(z) — R(z))
— (Vz. P(z) A M(z) — L(z))
(proof )

——33

lemma
«(Vz. = = (P(a) A (P(z) — P(b)) — P(c))) +—
Vz. = = ((— P(a) V P(z (c
(proof)

36

lemma
(V. Jy. J(z,y)) A
(Vz. Jy. G(z,y)) A
Vzy. J(zy) vV G
— (Vz. y. H(z,y

)(x,y) — (V2. J(y,2) Vv G(y,2) — H(z,2)))

16
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{proof)

37
lemma
«((Vz. Jw. V. Jy.
- = (P(z,2) — P(y,w)) A P(y,2) A (P(y,w) — Fu. Q(u,w)))) A
(Vo z. = P(z,2) — (3y. Qy,2))) A
(== G2y Qzy) — (Va. R(z,z)))
— == (V2. 3y. R(z,y))
(proof)
39
lemma <~ (Jz. Vy. F(y,z) +— = F(y,y))
(proof)
40. AMENDED
lemma

«(Jy. Va. F(z,y) «— F(z,x)) —
- (Vz. Jy. Vz. F(zy) «— - F(z,2))»

(proof)
44
lemma
«(Vz. f(z) —
(Fy. 9(y) A h(z,y) A (Fy. g(y) A = W(z,y))))
(Fz. j(z) A (Yy. g(y) — h(z,y)))
— Fz. j(z) A = fz))
(proof )
48

lemma «(a=bVec=d)A(a=cVb=d) —a=dVb=o

lemma
«(Fzw. Vry Py «— (z2=2ANy=w) —
Fz. V. Jw. Vy. Plz,y) «— y = w) «— = 2z)
(proof)

52

Almost the same as 51.

lemma
«(Fzw. Vzy Play) «— (z=2Ay=w) —
Fw.Vy. Fz. Va. P(r,y) +— 2= 2) «— y = w)
(proof)

56

17



lemma «(Vz. (3y. P(y) Az = f(y)) — P(z)) «— (Va. P(x) — P(f(z)))
{proof)
o7

lemma

P(f(a,b), f(b,c)) A P(f(b,c), f(a,c)) A
(Vzyz P(z,y) A P(y,z) — P(x,2)) — P(f(a,b), f(a,c))

{proof)

60

le<rnma><V:E. P(z,f(z)) «+— Jy. (Vz. P(z,y) — P(z,f(x))) A P(z,y))
proof

end

9 First-Order Logic: propositional examples (in-
tuitionistic version)

theory Propositional-Int

imports IFOL

begin

commutative laws of A and V

lemma <P A Q — QAN P>
(proof )

lemma <PV Q — QV P>
(proof)

associative laws of A and V

lemma «(PA Q) AR— PA(QAR)
{proof)

lemma «(PV Q) VR — PV (QV R)
(proof)

distributive laws of A and V

lemma «(PA Q)V R — (PV R)A(QV R)
{proof)

lemma «(PV R)A(QV R) — (PAQ)V R
(proof)

lemma «(PV Q) AR — (PAR)V (Q AR
{proof)

lemma «(PAR)V (QANR) — (PV Q) AR

18



(proof)
Laws involving implication

lemma (P — R) A (Q — R) «— (P V Q@ — R)»
{proof)

lemma «(PA Q@ — R) «— (P — (@ — R))»
{proof)

lemma «((P —R) — R) — (@ — R) — R) — (PANQ@ — R) — R

(proof)

lemma (-~ (P — R) — - (@ — R) — - (P AN Q@ — R)»
{proof)

lemma (P — Q A R) «— (P — Q) A (P — R)»
(proof)

Propositions-as-types

lemma <P — (Q — P)

{proof)
lemma (P — Q@ — R) — (P — Q) — (P — R)»

{proof)
lemma (P — Q) V (P — R) — (P — Q V R)»

{proof)

lemma (P — Q) — (- Q@ — = P)
(proof)

Schwichtenberg’s examples (via T. Nipkow)
lemma stab-imp: <«(((@ — R) — R) — Q) — (P — @) — R) — R)
— P —

{proof)

lemma stab-to-peirce:
<(((P—>R)p—)R)—)P)—>(((Q—>R)—)R)—)Q)
— (P — Q) — P) — P
(proof)

lemma peirce-imp1:

(@ — R) — Q) — Q)

— ((P—Q) —R) —P—Q —P—
{proof )
lemma peirce-imp2: «((P — R) — P) — P) — (P — @ — R) — P)
— P
(proof)

lemma mints: <(P — Q) — P) — P) — Q) — @
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{proof)

lemma mints-solovev: (P — (@ — R) — Q) — (P — @) — R) — R»
(proof)

lemma tatsuta:
«(((P7 — P1) — P10) — P4 — P))
— (((P8 — P2) — P9) — P3 — P10)
— (P1 — P8) — P6 — P7
— (((P8 — P2) — P9) — P4)
— (P1 — P3) — (((P6 — P1) — P2) — P9) — P5)

{proof)

lemma tatsutal:
«(((P8 — P2) — P9) — P3 — P10)
— (((P3 — P2) — P9) — P4)
— (((P6 — P1) — P2) — P9)
— (((P7 — P1) — P10) — P4 — P5)
— (P1 — P3) — (P1 — P8) — P6 — P7 — P

{proof)

end

10 First-Order Logic: quantifier examples (intu-
itionistic version)
theory Quantifiers-Int

imports IFOL
begin

lemma «(Vz y. P(z,y)) — Yy z. P(z,y))
(proof)

lemma <3z y. P(z,y)) — (Jyz. Plz,y))

(proof)
lemma «(Vz. P(z)) V V. Q(z)) — (Vz. P(z) V Q(z))

{proof)

lemma «((Vz. P — Q(z)) «— (P — (Vz. Q(x)))»
{proof)

lemma «(Vz. P(z) — Q) «— ((3z. P(z)) — Q)
{proof)

Some harder ones

lemma «(3z. P(z) V Q(z)) «+— (Fz. P(z)) V 3z. Q(z))»
{proof)

20



lemma «(3z. P(z) A Q(z)) — (Fz. P(z)) A Bz. Q(z))
{proof)

Basic test of quantifier reasoning

lemma <(3y. Vz. Q(z,y)) — (V. Jy. Q(z,y))
(proof )

lemma «(Vz. Q(z)) — (Jz. Q(z))
{proof)

The following should fail, as they are false!

lemma «(Vz. Jy. Q(z,y)) — (Jy. V. Q(z,y))
{proof)

lemma ((Jz. Q(z)) — (Vz. Q(z))
{proof)

schematic-goal <P(%a) — (Vz. P(x))
(proof)

schematic-goal «(P(%a) — (Vz. Q(z))) — (Vz. P(z) — Q(z))»
(proof )

Back to things that are provable ...

lemma «(Vz. P(z) — Q(z)) A (3z. P(z)) — (Fz. Q(z))

{proof)
lemma (P — (3z. Q(z))) A P — (Jz. Q(z))

(proof)

sc(h?er)natic-goal «(Vz. P(z) — Q(f(2))) A (V. Q(z) — R(g(z))) A P(d) —
R(%a)»
{proof)

lemma ¢(Vz. Q(z)) — (Fz. Q(z))
{proof)

Some slow ones

le<mm€}><(Vw y. P(z) — Qy)) «— (Fz. P(z)) — (Vy. Qy)))
Proo

lemma 3z y. P(z) A Q(z,y)) «— (Fz. P(z) A Sy. Qz,y)))
{proof)

1e<mmz}><(EI y. V. P(z) — Q(z,y)) — (V. P(z) — Fy. Qz,y)))
proo,

end
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11 Classical Predicate Calculus Problems

theory Classical
imports FOL
begin

lemma «(P — QV R) — (P — Q) V(P — R)»
{proof)

11.0.1 If and only if

lemma (P +— Q) «— (Q <— P)
(proof)

lemma = (P <— = P)

(proof)

11.1 Pelletier’s examples

Sample problems from

o F. J. Pelletier, Seventy-Five Problems for Testing Automatic Theorem
Provers, J. Automated Reasoning 2 (1986), 191-216. Errata, JAR 4
(1988), 236-236.

The hardest problems — judging by experience with several theorem provers,
including matrix ones — are 34 and 43.

1

lemma (P — Q) +— (- Q@ — = P)
{proof)

2

lemma <= = P <— P
(proof)

3

lemma (- (P — Q) — (Q — P)»
{proof)

4

lemma (- P — Q) «— (- Q@ — P)
{proof)

5

lemma «((PV Q) — (PV R)) — (PV (Q — R))»
{proof)
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6

lemma <PV = P)

{proof)
7

lemma <PV = = = P»
(proof )

8. Peirce’s law

lemma «((P — Q) — P) — P»
{proof)

9

lemma «((PVQA-PVQAPV-Q) —-(-PV-Qp
{proof)

10

lemma «(Q — R)A(R— PAQ A(P— QV R) — (P+— Q)
(proof )

11. Proved in each direction (incorrectly, says Pelletier!!)

lemma (P «— P»
(proof )

12. "Dijkstra’s law"

lemma (((P +— Q) +— R) +— (P +— (Q +— R))»
(proof)

13. Distributive law

lemma <PV (Q A R) «— (PV Q) A (PV R)
{proof)

14

lemma (P +— Q) «— (Q V- P)A (= QV P))p
{proof)

15

lemma (P — Q) +— (- PV Q)
(proof)

16

lemma «(P — Q) V (@ — P)
{proof)

17

lemma ((PA (Q — R)) — S)«— (mPVQQVS)AN-PV-RVSI)
{proof)
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11.2 Classical Logic: examples with quantifiers

lemma «(Vz. P(z) A Q(z)) «— (Vz. P(z)) A V. Q(z))
{proof)

lemma «(3z. P — Q(z)) +— (P — (Fz. Q(x)))»
{proof)

lemma ¢(3z. P(z) — Q) +— (Vz. P(z)) — @
(proof)

lemma «(Vz. P(z)) V Q «— (Vz. P(z) V Q)
{proof)

Discussed in Avron, Gentzen-Type Systems, Resolution and Tableaux, JAR
10 (265-281), 1993. Proof is trivial!

1e<rnmz}><—| (3z. = P(z)) A (Bz. P(z)) vV 3z P(z) A Q(x))) A = (3z. P(z)))
Proo

11.3 Problems requiring quantifier duplication

Theorem B of Peter Andrews, Theorem Proving via General Matings, JACM
28 (1981).
lemma «(3z. Vy. P(z) «+— P(y)) — ((Fz. P(z)) «— (Vy. P(y)))»

(proof)

Needs multiple instantiation of ALL.

leznm?;(vfb' P(z) — P(f(x))) A P(d) — P(f(f(f(d))))
proo

Needs double instantiation of the quantifier

lemma 3z. P(z) — P(a) A P(b)
{proof)

lemma 32. P(z) — (Vz. P(z))
{proof)

lemma 3z. (Jy. P(y)) — P(z)
{proof)

V. Lifschitz, What Is the Inverse Method?, JAR 5 (1989), 1-23. NOT
PROVED.

lemma
Hra' Vy. Iz 2"
(= P(yy) V P(z,z) V = 5(2,2)) A
(S(zy) V = S(y,2) v Q(2',2") A
(Q(z"y) V = Qy,2") v S(z',z"))
(proof )
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11.4 Hard examples with quantifiers

18

lemma 3y. Vz. P(y) — P(z)
{proof)

19

lemma 3z. Vy z. (P(y) — Q(2)) — (P(z) — Q(z))»
{proof)

20

lemma ((Vzy. 32. Vw. (P(z) A Q(y) — R(z) A S(w)))
7 (f3>I y. P(z) A Q(y)) — (=
PTOO0,

21

le<rnma><(5| z. P — Q(z)) A (3z. Q(z) — P) — (Fz. P +— Q(z))»
proof

22
lemma «((Vz. P +— Q(z)) — (P +— (Vz. Q(z)))
{proof )
23
lemma «(Vz. PV Q(z)) +— (P V (Vz. Q(z)))
{proof )
24
lemma
= (Fz. S(z) A Q) A (V. P(z) — Q(z) V R(z)) A
(= (3z. P(z)) — (Fz. Q(z)) A Vz. Q(z) V R(z) — S(x))
— (Fz. P(z) AN R(z))
{proof)
25
lemma
«(Fz. P(z)) A
(Vz. L(z) — = (M(z) A R(z))) A
— (M(z) N L(z))) A

26

lemma
«(Fz. p(z)) +— Fz. q(2))) A
(Vz. Vy. p(z) A q(y) — (r(z) «— s(y)))
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— (Vz. p(z) — r(z)) +— Vz. q(z) — s(z)))
(proof)

27

lemma
«(Fz. P(z) A= Q(z)) A
(Vz. P(z) — R(z)) A
(Vz. M(z) AN L(z) — P(z)) A
(Bz. R(z) A= Q(z)) — (Vz. L(z) — - R(x)))
— (Va. M(z) — — L(z))»
{proof)

28. AMENDED

lemma
(Vz. P(z) — (Vz. Q(z))) A
(Vz. Q(z) V R(z)) — (Fz. Qz) A S(z))) A
((390 5( )) — (Va. L(z) — M(z)))
— (Va. P(z) A L(z) — M(z))
(proof )

29. Essentially the same as Principia Mathematica *11.71

lemma
(Jz. P(z)) A Ty Qy))
— ((Vz. P(z) — R(z)) A (Vy. Qy) — S(y)) <—
(Vo y. P(z) A Q(y) — R(z) A S(y))
(proof )
30
lemma

lemma
«(Vz. P(z) A (Q(z) V R(z
(Vz. S(z) A R(z) — L(z)) A
(V2. M(z) — R(x))
— (Vz. P(z) A M(z)
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{proof)
33

lemma
«(Vaz. P(a) A (P(z) — P(b)) — P(c¢)) +—
< (V:L’f>(ﬁ P(a) v P(z) V P(c)) A (= P(a) V = P(b) V P(c)))
proo

34. AMENDED (TWICE!!). Andrews’s challenge.

lemma
((Fz. Vy. p(z) «— p(y)) +— (Fz. q(2)) <— (Vy. p(y)))) <—
< ((3]95> Vy. q(z) < q(y)) «— (Fz. p(z)) <— (Vy. q(y))))
PToo.

35

lemma 3z y. P(z,y) — (Vu v. P(u,v))
(proof )

36

lemma
(Va. Jy. J(z,y)) A
(Va. Jy. G(z,y)) A
(V:v y- J(zy) Vv G(zy) — (V2. J(y.2) V Gly,2) — H(z,2)))
— (V2. 3y. H(z,y))
(proof )

37

lemma
«(Vz. Jw. V. Jy.
(P(z,2) — P(y,w)) A P(y,2) A (P(y,w) — (3u. Qu,w)))) A
(V2. = Pz,z) — (3y. Qy,2))) A
(Bzy. Qz,y)) — (Va. R(z,r)))
— (Vz. Jy. R(z,y))

{proof)
38

lemma

«(Va. pla) A (p(z) — By. p(y) A r(z,y))) —
(Fz. Jw. p(z) A r(z,w) A r(w,2))) «—
(Vz. (= pla) V p(z) V (Fz. Jw. p(z) A r(z,w) A r(w,z))) A

(
(= p(@) v = By ply) A r(zy)) v
(2. Fw. p(z) A r(z,w) A r(w,2))))

{proof)

39

lemma - (Jz. Vy. F(y,z) +— = F(y,y))
(proof)
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40. AMENDED
lemma
«(Fy. Va. F(z,y) +— F(z,2)) —
- (V. Jy. Vz. F(zy) «— - F(z,2))
(proof )

41
lemma
«(Vz. Jy. V. f(z,y) «— f(z,2) A = f(z,2))
— 0 3z V. f(z,2))
(proof )

42

lemma = (Jy. Vz. p(z,y) «— - (T2 p(z,2) A p(z,2)))
{proof)

43

lemma
(Vo Vy. q(z,y) +— (V2. p(2,2) < p(2,9)))
< —>f§\79:- Vy. q(z,y) < q(y,7))
pToo

Other proofs: Can use auto, which cheats by using rewriting! Deepen-tac
alone requires 253 secs. Or by (mini-tac 1 THEN Deepen-tac 5 1).

44

lemma
(V. f(z) — Py 9(y) A h(z,y) A Sy 9(y) A = h(z,9))) A
3z j(x) A (Vy. g(y) — h(z,y)))
— Fz. j(z) A = f(2))
(proof )

45

lemma

(Fz. f(z) A= g(z)) —
Bz f(x) A= gl@) A (Vy. fy) A= g(y) — §(z,9)))) A
(Vzy. f(z) A fy) A b(zy) — = 5(y,2))
— (Vz. f(z) — g(x))
(proof)
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11.5 Problems (mainly) involving equality or functions

48

lemma «(a=bVe=d)A(a=cVb=d) —a=dVb=o
{proof)

49. NOT PROVED AUTOMATICALLY. Hard because it involves substi-
tution for Vars; the type constraint ensures that x,y,z have the same type
as a,b,u.
lemma
«(Fzy:'aVz.z=a2Vz=y)ANPla) N P(b) Na#b— (NVu:a. P(u))
(proof)

50. (What has this to do with equality?)

lemma «(Vz. P(a,x) V (Vy. P(z,y))) — (3z. Vy. P(z,y))
{proof)

51

lemma
(Fzw.Vzy. Plzy) +— (x=2ANy=w)) —
(Fz. Y. Jw. Vy. P(z,y) «— y=w) <— = = 2)»
(proof)

52

Almost the same as 51.

lemma
«(Fzw. Vzy Plzy) «— (z=2ANy=uw)) —
Fw.Vy. Fz. Va. P(r,y) +— z=2) «— y = w)
(proof )

95

Non-equational version, from Manthey and Bry, CADE-9 (Springer, 1988).
fast DISCOVERS who killed Agatha.

schematic-goal
lives(agatha) A lives(butler) A lives(charles) N
(killed(agatha,agatha) V killed(butler,agatha) V killed(charles,agatha)) A
(Vz y. killed(z,y) — hates(z,y) A — richer(z,y)) A
(V. hates(agatha,r) — — hates(charles,x)) A
(hates(agatha,agatha) A hates(agatha,charles)) A
(V. lives(x) A = richer(z,agatha) — hates(butler,z)) A
(Vz. hates(agatha,z) — hates(butler,z)) A
(Vz. = hates(z,agatha) V — hates(z,butler) V — hates(z,charles)) —
killed( ?who,agatha)»
(proof)

56
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1e<rnm2}><(Vx. (Fy. P(y) ANz = f(y)) — P(z)) «— (Va. P(x) — P(f(z)))
proo

o7

lemma

«P(f(ab), f(b,c)) N P(f(b,c), f(a,c)) A
Vzyz P(z,y) A P(y,z) — P(x,2)) — P(f(a,b), f(a,c))

{proof)
58 NOT PROVED AUTOMATICALLY

lemma («(Vz y. f(z) = g(y)) — Vzy. f(f(z) = fl9(y)))
(proof)

59

lemma «(Vz. P(z) «— - P(f(z))) — (3z. P(x) A =~ P(f(z)))
(proof )

60

le<1nm£}><Vx. P(z,f(z)) +— (By. (V2. P(z,y) — P(z,f(x))) A P(z,y))
proo

62 as corrected in JAR 18 (1997), page 135

From Rudnicki, Obvious Inferences, JAR 3 (1987), 383-393. It does seem
obvious!

lemma
«(Va. F(z) A= G(z) — By. H(z,y) A J(y)) A
(Fz. K(z) A (I) (Vy. H(z,y) — K(y))) A
< (fo>K(:v) G(z)) — (Elx K(z) — = G(z))»
proo

Halting problem: Formulation of Li Dafa (AAR Newsletter 27, Oct 1994.)
author U. Egly.

lemma
«((Fz. A(z) AN Vy. Cly) — (V2. D(2,y,2)))) —
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(Fw. Cw) A (Vy. Cly) — (V2. D(w,y.2))))
(Avw.(\%u;)- A (Vu. Clu) — (Yo. D(w,u,v))) —

(C0) A Pa) -5 o) & OO
(Avu). C(w) A

y) A P(y,z) — Q(w,y,z) A O0(w,g)) A
(C(:l(/) A P(yvz) — Q(w7yvz) A OO(w,b))) —

) , ) A
y) A Q(w,y,y)) A OO(w,b) — P(v,y) A O0(v,b)))))
y. C(y) — (Vz. D(2,9,2))))

Halting problem II: credited to M. Bruschi by Li Dafa in JAR 18(1), p. 105.

lemma
(Vy. Cly) — (Vz. D(z,y,2)))) —
A (Vy. Cly) — (V2. D(w,y,2)))))

(v w(vC(w) A Vu. Clu) — (Yv. D(w,u,v))) —
Y 2.
(C(y) A P(y,2) — Q(w,y,z) A O0(w,g)) A
(C(y) A = P(y,z) — Q(w,y,2) A 00(w,b))))
A
(Bw. Cw) A (Vy. (C(y) A P(y,y) — Q(w,y,y) A 00(w,g)) A
(Cy) A = P(y,y) — Q(w,y,y) A O0(w,b))))
_)

(3v. Cv) A (Vy. (C(y) A P(y,y) — P(v,y) A 00(v,9)) A
(C(y) A = P(y,y) — P(v,y) A OO0(v,b)))))
H
(Bv. Cv) A (Vy. (C(y) A P(y,y) — P(vy) A 00(v,9)) A
(C(y) A= Plyy) — P(v,y) A 00(v,b))))
H
(Bu. Clu) A (Vy. (C(y) A P(y,y) — = P(u,y)) A
(C(y) A = P(y,y) — P(u,y) A 00(u,b)))))
< —}; (Fz. A(z) A Vy. Cly) — (V2. D(z,y,2))))»
proo

Challenge found on info-hol.
lemma Vz. 3v w. Vy z. P(z) A Q(y) — (P(v) V R(w)) A (R(z) — Q(v))»
(proof)

Attributed to Lewis Carroll by S. G. Pulman. The first or last assumption
can be deleted.

lemma
«(Vz. honest(z) A industrious(x) — healthy(x)) A
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= (Fa. grocer(z) A healthy(x)) A
(Vz. industrious(z) A grocer(z) — honest(z)) A
(Vz. cyclist(z) — industrious(z)) A
(V. = healthy(x) A cyclist(z) — — honest(z))
— (Vz. grocer(z) — — cyclist(z))»

{proof)

end

12 First-Order Logic: propositional examples (clas-
sical version)

theory Propositional-Cla

imports FOL

begin

commutative laws of A and V

lemma <P A Q — QNP>

(proof)

lemma <PV Q — QV P>
(proof)

associative laws of A and V

lemma «(PA Q) AR— PA(QAR)
(proof )

lemma «(PV Q) VR — PV (QVR)
(proof)

distributive laws of A and V
lemma «(PA Q)V R — (PV R)A(QV R)
(proof )

lemma «(PV R A(QV R)— (PANQ)V R
(proof)

lemma «(PV Q) AR— (PAR)V (Q A R
(proof)

lemma «(PAR)V (QANR) — (PV Q) AR
{proof)

Laws involving implication

lemma (P — R) A (Q — R) +— (P V Q@ — R)»
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{proof)

lemma (P A Q — R) «— (P — (@ — R))»
{proof)

lemma «((P — R) — R) — (@ — R) — R) — (P AN Q@ — R) — R
{proof)

lemma (- (P — R) — - (Q — R) — -~ (P AN Q — R)
(proof)

lemma (P — Q A R) «— (P — Q) AN (P — R)»
{proof)

Propositions-as-types

lemma <P — (Q — P)

{proof)
lemma (P — Q@ — R) — (P — Q) — (P — R)»

(proof)
lemma (P — Q) V (P — R) — (P — Q V R)»

{proof)

lemma (P — Q) — (- Q — = P)
{proof)

Schwichtenberg’s examples (via T. Nipkow)
lemma stab-imp: <«(((@ — R) — R) — Q) — (P — @) — R) — R)
— P — O

{proof )

lemma stab-to-peirce:
«((P—R)—R)—P)— (((Q—R) — R — Q@
— ((P— Q) — P) — P
(proof)

lemma peirce-imp1:

«(( — R) — Q) — Q)

— ((P—>Q) —R)—P—Q —P— @
(proof)

lemma peirce-imp2: «((P — R) — P) — P) — (P — @ — R) — P)
— P
{proof )

lemma mints: <((P — Q) — P) — P) — Q) — @
{proof)

lemma mints-solovev: «(P — (@ — R) — Q) — (P — Q) — R) — R»
(proof)

33



lemma tatsuta:
«(((P7 — P1) — P10) — P4 — P))
— (((P8 — P2) — P9) — P3 — P10)
— (P1 — P8) — P6 — P7
— (((P3 — P2) — P9) — P4)
— (P1 — P3) — (((P6 — P1) — P2) — P9) — P5)

{proof)

lemma tatsutal:
«(((P8 — P2) — P9) — P3 — P10)
— (((P3 — P2) — P9) — P4)
— (((P6 — P1) — P2) — P9)
— (((P7 — P1) — P10) — P4 — P5)
— (P1 — P8) — (P1 — P8) — P6 — P7 — P55

(proof)

end

13 First-Order Logic: quantifier examples (classi-
cal version)
theory Quantifiers-Cla

imports FOL
begin

lemma «(Vz y. P(z,y)) — Yy z. P(z,y))
{proof)

lemma <3z y. P(z,y)) — Qyz. Pz,y))
{proof)

Converse is false.
lemma «(Vz. P(z)) V V. Q(z)) — (Vz. P(z) V Q(z))
(proof)

lemma «(Vz. P — Q(z)) +— (P — (Vz. Q(z)))»
{proof)

lemma «(Vz. P(z) — Q) +— ((3z. P(z)) — Q)
(proof)

Some harder ones.

1e<mmz}><(EI z. P(z) V Q(z)) +— (3. P(x)) V (Fz. Q(z))
proo
lemma «3z. P(z) A Q(z)) — (Fz. P(z)) A Bz. Q(z))

{proof)
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Basic test of quantifier reasoning.
lemma «3y. Vz. Q(z,y)) — V. Jy. Q(z,y))
{proof)

lemma ¢(Vz. Q(z)) — (Jz. Q(z))
{proof)

The following should fail, as they are false!
lemma «(Vz. 3y. Q(z,y)) — (Jy. V. Q(z,y))
(proof)

lemma «((3z. Q(z)) — (Vz. Q(z))
{proof)

schematic-goal (P(%a) — (Vz. P(z))»
{proof)

schematic-goal «((P(%a) — (Vz. Q(z))) — (Vz. P(z) — Q(x))»
(proof )
Back to things that are provable ...
lemma «(Vz. P(z) — Q(z)) A (3z. P(z)) — (Fz. Q(z))
{proof )
An example of why ezl should be delayed as long as possible.
lemma (P — (3z. Q(z))) A P — (Jz. Q(z))
(proof)

sc(h?er)natic-goal «(Vz. P(z) — Q(f(2))) A (V. Q(z) — R(g(z))) A P(d) —
R(%a)»
{proof)

lemma ((Vz. Q(z)) — (Jz. Q(z))
{proof)

Some slow ones

Principia Mathematica *11.53

lezllma};(w y. P(z) — Qy)) «— ((Fz. P(z)) — (Vy. Qy)))
PTOO,

lemma <3z y. P(z) A Q(z,y)) «— (Fz. P(z) A Fy. Qlz,y)))
{proof)

le<mm;;><(3 y. V. P(z) — Q(z,y)) — (V. P(z) — y. Q(z,y)))
proo
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end

theory Miniscope
imports FOL
begin

lemmas ccontr = FalseE [THEN classical]

13.1 Negation Normal Form
13.1.1 de Morgan laws

lemma demorgansi:
<ﬁ(P/\Q)HﬁP\/ﬁQ)
= (PV Q)+—PA~ Q@
(" P+— P
(proof)

lemma demorgans2:
¢AP. - (Vz. P(z)) +— (Fz. = P(z))
(ANP. -~ (Fz. P(x)) «— (Vz. = P(x))
(proof)

lemmas demorgans = demorgansl demorgans?2

lemma nnf-simps:
(P— Q) «— (- PV Q)
<ﬁ(P—>Q)<—>(P/\ﬁQ)>
(P+— Q) +— (PVQAEHQVP)H
G (P— Q) +— (PVQ AN(PV-Q)
(proof)

13.1.2 Pushing in the existential quantifiers

lemma ex-simps:

«(Fz. P) +— P>

(AP Q. (3z. P(z) A Q) +— (Fz. P(z)) A @

AP Q. (3z. P A Q(z)) «— P A (Fz. Qz))

(AP Q. 3z. P(z) V Q(z)) +— (Fz. P(z)) Vv 3z. Q(z))
(AP Q. (3z. P(z) V Q) +— (Fz. P(z)) vV @

AP Q. 3z. PV Q(z)) «— PV (3z. Qz))

{proof)

13.1.3 Pushing in the universal quantifiers

lemma all-simps:
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«(Vz. P) «— P»

AP Q. (Vz. P(z) A Q(z)) «— (Vz. P(z)) A (Vz. Q(x))
AP Q. Vz. P(z) N Q) «— (V. P(z)) A @

AP Q. (Vz. P A Q(z)) «— P A (Vz. Q(z))

AP Q. (Vz. P(z) V Q) «— (V. P(z)) V @

2/\P Q> (Vz. PV Q(z)) +— PV (Vz. Q(z))

proof

lemmas mini-simps = demorgans nnf-simps ex-simps all-simps
(ML)

end

14 First-Order Logic: the ’if’ example

theory If
imports FOL
begin

definition if :: «[0,0,0]=>0)
where «if(P,Q,R) = PAN QV -~ P AR

lemma ifI: <[P = @Q; - P = R] = if (P,Q,R))
(proof)

lemma fE: <[if (P,Q,R); [P; Q] = S; [~ P; R] = 5] = S
{proof)

lemma if-commute: <if (P, if (Q,A,B), if (Q,C,D)) +— if (Q, if (P,A,C), if (P,B,D))>
{proof)

Trying again from the beginning in order to use blast

declare ifI [intro!]
declare ifE [elim!]

lemma if-commute: <if (P, if (Q,A,B), if (Q,C,D)) «— if (Q, if (P,A,C), if(P,B,D))»
(proof )

lemma f(if(P,Q.R), A, B) +— if(P, if (Q,A,B), if (R,A,B))>
(proof)

Trying again from the beginning in order to prove from the definitions

lemma <if (if (P,Q,R), A, B) +— if(P, if (Q,A,B), if(R,A,B))>
(proof )

An invalid formula. High-level rules permit a simpler diagnosis.
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lemma <if (if (P,Q,R), A, B) «+— if (P, if(Q,A,B), if (R,B,A))
(proof)

Trying again from the beginning in order to prove from the definitions.

lemma <if (if (P,Q,R), A, B) «— if (P, if(Q,A,B), if(R,B,A))
(proof )

end
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