Miscellaneous FOL Examples

January 18, 2026

Contents
1 Natural numbers 1
2 Examples for the manual “Introduction to Isabelle” 2
2.0.1 Some simple backward proofs 2
2.0.2 Demonstration of fast 2
2.0.3 Derivation of conjunction elimination rule 2
2.1 Derived rules involving definitions 3

3 Theory of the natural numbers: Peano’s axioms, primitive
recursion 3
3.1 Proofs about the natural numbers 4

4 Theory of the natural numbers: Peano’s axioms, primitive
recursion 4

5 Intuitionistic FOL: Examples from The Foundation of a Generic

Theorem Prover 5
5.1 Examples with quantifiers 6
6 First-Order Logic: PROLOG examples 7
7 Intuitionistic First-Order Logic 8
7.1 Lemmas for the propositional double-negation translation . . 9
7.2 de Bruijn formulae 00000 9
7.3 Intuitionistic FOL: propositional problems based on Pelletier. 10
7.4 11. Proved in each direction (incorrectly, says Pelletier!!) . . . 11
8 Examples with quantifiers 12
8.1 The converse is classical in the following implications 12
8.2 The following are not constructively valid! 12
8.3 Hard examples with quantifiers 13

9 First-Order Logic: propositional examples (intuitionistic ver-

sion) 17

10 First-Order Logic: quantifier examples (intuitionistic ver-
sion) 19
11 Classical Predicate Calculus Problems 20
11.0.1 Ifand only if oL 20
11.1 Pelletier’'sexamples 21
11.2 Classical Logic: examples with quantifiers 22
11.3 Problems requiring quantifier duplication 23
11.4 Hard examples with quantifiers 23
11.5 Problems (mainly) involving equality or functions 27

12 First-Order Logic: propositional examples (classical ver-

sion) 31
13 First-Order Logic: quantifier examples (classical version) 33
13.1 Negation Normal Form 35
13.1.1 deMorgan laws 35

13.1.2 Pushing in the existential quantifiers 35

13.1.3 Pushing in the universal quantifiers. 35

14 First-Order Logic: the ’if’ example 36

1 Natural numbers

theory Natural-Numbers
imports FOL
begin

Theory of the natural numbers: Peano’s axioms, primitive recursion. (Mod-
ernized version of Larry Paulson’s theory "Nat".)

typedecl nat
instance nat :: <term» (proof)

axiomatization

Zero :: <naty (<0») and

Suc :: <nat => nat> and

rec :: «[nat, 'a, [nat, 'a] => 'a] => 'a»
where

induct [case-names 0 Suc, induct type: nat]:

«P(0) ==> (Nz. P(z) ==> P(Suc(z))) ==> P(n)» and
Suc-inject: «Suc(m) = Suc(n) ==> m = n» and
Suc-neq-0: «Suc(m) = 0 ==> R> and
rec-0: <rec(0, a, f) = a> and

rec-Suc: <rec(Suc(m), a, f) = f(m, rec(m, a, f))

lemma Suc-n-not-n: «Suc(k) # k>
(proof)

definition add :: <nat => nat => nat> (infixl <+> 60)
where «<m + n = rec(m, n, Az y. Suc(y))

lemma add-0 [simp]: <0 + n = n»
(proof)

lemma add-Suc [simp]: «Suc(m) + n = Suc(m + n)»
{proof)

lemma add-assoc: <«(k + m) + n=k + (m + n)
(proof)

lemma add-0-right: <m 4+ 0 = m»
(proof)

lemma add-Suc-right: «<m + Suc(n) = Suc(m + n)»
(proof)

lemma
assumes <!!n. f(Suc(n)) = Suc(f(n))
shows «f(i + j) =i + f(j)
(proof)

end

2 Examples for the manual “Introduction to Is-
abelle”

theory Intro

imports FOL

begin

2.0.1 Some simple backward proofs
lemma mythm: <PV P — P»

(proof)

lemma (P A Q)V R— (PV R)
(proof)

Correct version, delaying use of spec until last.

lemma «(Vz y. P(z,y)) — (Vz w. P(w,z))

(proof)

2.0.2 Demonstration of fast

lemma «(3y. Vz. J(y,z) «— - J(z,2)) — - (V. Jy. V2. J(z,y) «— = J(z,2))
(proof)

1<emrr;§1 Nz Plz,f(z)) +— (Fy. Vz. P(z,y) — P(z,f(z))) A P(z,y))
PrOoo

2.0.3 Derivation of conjunction elimination rule

lemma
assumes major: <P N\ @Q»
and minor: <[P; Q] = R»
shows (R)»

(proof)

2.1 Derived rules involving definitions

Derivation of negation introduction

lemma
assumes (P =— Fulse)
shows <= P»

(proof)

lemma
assumes major: 7 P»
and minor: <P»
shows <R»

(proof)

Alternative proof of the result above

lemma
assumes major: <= P»
and minor: <P»
shows <R»

(proof)

end

3 Theory of the natural numbers: Peano’s axioms,
primitive recursion

theory Nat
imports FOL
begin

typedecl nat
instance nat :: (term» (proof)

axiomatization
Zero :: <nat> (<0») and
Suc :: <nat = nat> and
rec :: «[nat, 'a, [nat, 'a] = 'a] = ‘o
where
induct: <[P(0); Nz. P(x) = P(Suc(z))] = P(n)» and
Suc-inject: <Suc(m)=Suc(n) = m=n» and
Suc-neq-0: «Suc(m)=0 = R» and
rec-0: <rec(0,a,f) = a> and
rec-Suc: <rec(Suc(m), a, f) = f(m, rec(m,a,f))

definition add :: ([nat, nat] = nat> (infixl <+»> 60)
where «<m + n = rec(m, n, Az y. Suc(y))

3.1 Proofs about the natural numbers

lemma Suc-n-not-n: «Suc(k) # k>
(proof)

lemma «(k+m)+n = k+(m-+n)
(proof)

lemma add-0 [simp]: <0+n = n»

(proof)

lemma add-Suc [simp]: «Suc(m)+n = Suc(m+n)>

(proof)

lemma add-assoc: <«(k+m)+n = k+(m+n)>
(proof)

lemma add-0-right: <m+0 = m»

(proof)

lemma add-Suc-right: «<m+Suc(n) = Suc(m+n)>
(proof)

lemma
assumes prem: <A\n. f(Suc(n)) = Suc(f(n))
shows «f(i+j) = i+f(j)

(proof)

end

4 Theory of the natural numbers: Peano’s axioms,
primitive recursion

theory Nat-Class
imports FOL
begin

This is an abstract version of Nat.thy. Instead of axiomatizing a single type
nat, it defines the class of all these types (up to isomorphism).

Note: The rec operator has been made monomorphic, because class axioms
cannot contain more than one type variable.

class nat =
fixes Zero :: <'ay (<0»)
and Suc :: (a = ‘o
and rec :: a = 'a = ('la = 'a = 'a) = o
assumes induct: <P(0) = (A\z. P(z) = P(Suc(z))) = P(n)
and Suc-inject: «Suc(m) = Suc(n) = m = n»
and Suc-neg-Zero: «Suc(m) = 0 = R»
and rec-Zero: <rec(0, a, f) = a»
and rec-Suc: <rec(Suc(m), a, f) = f(m, rec(m, a, f))»
begin

! !

definition add :: <'a = 'a = 'a> (infixl +) 60)
where <m + n = rec(m, n, Az y. Suc(y))

lemma Suc-n-not-n: «Suc(k) # (k::'a)
{proof)

lemma «(k+ m) + n=%k + (m + n)
{proof)

lemma add-Zero [simp]: <0 + n = n»
{proof)

lemma add-Suc [simp]: <Suc(m) + n = Suc(m + n)»
{proof)

lemma add-assoc: «(k + m) + n=Fk + (m + n)
{proof)

lemma add-Zero-right: <m + 0 = my»
(proof)

lemma add-Suc-right: <m + Suc(n) = Suc(m + n)»
{proof)

lemma
assumes prem: <A\n. f(Suc(n)) = Suc(f(n))

shows «f(i + j) =i + f(j)
{proof)

end

end

5 Intuitionistic FOL: Examples from The Founda-
tion of a Generic Theorem Prover

theory Foundation
imports IFOL
begin

lemma (AN B — (C — AN C)
(proof)

A form of conj-elimination

lemma
assumes (A N B>
and <A — B — (O
shows (C"»

(proof)

lemma
assumes (\NA. - - A = A
shows <B V = B»

(proof)

lemma
assumes (\NA. - = A = A
shows <B V = B»

(proof)

lemma
assumes (A V = A
and <= = A
shows (A)»

(proof)

5.1 Examples with quantifiers

lemma
assumes (Vz. G(z)
shows «Vz. G(z) V H(2)»

(proof)

lemma V2. y. z =
(proof)

lemma Jy. Vz. 2z =

(proof)

Parallel lifting example.

lemma Ju. Vz. Jv. Vy. Jw. P(u,z,v,y,w))

(proof)

lemma
assumes ((3z. F(z)) A B
shows (Jz. F(z) A B

(proof)

A bigger demonstration of quantifiers — not in the paper.

lemma «3y. Vz. Q(z,y)) — (V. Jy. Q(z,y))
(proof)

end

6 First-Order Logic: PROLOG examples

theory Prolog
imports FOL
begin

typedecl ‘a list
instance list :: (<term») <term» (proof)

axiomatization
Nil :: <'a list> and
Cons :: «['a, 'a list}=> 'a listy (infixr > 60) and
app = «['a list, 'a list, 'a list] => o> and
rev : «['a list, 'a list] => o
where

appNil: <app(Nil,ys,ys)» and

appCons: <app(xs,ys,zs) ==> app(z:xs, ys, x:2s)> and

revNil: <rev(Nil,Nil)» and

revCons: <[| rev(zs,ys); app(ys, x:Nil, zs) || ==> rev(z:as, 28))

schematic-goal <app(a:b:c:Nil, d:e:Nil, ?z)»
(proof)

schematic-goal <app(?z, c:d:Nil, a:b:c:d:Nil)»
(proof)

schematic-goal <app(?z, 2y, a:b:c:d:Nil)»

(proof)

lemmas rules = appNil appCons revNil revCons

schematic-goal <rev(a:b:c:d:Nil, ?x)»
(proof)

schematic-goal (rev(a:b:c:d:e:f:g:h:i:j:k:l:m:n: Nil, 2w)»

(proof)

schematic-goal <rev(?z, a:b:c:Nil))

(proof)

(ML)

schematic-goal <rev(%z, a:b:c:Nil))
(proof)

schematic-goal (rev(a: ?z:c: 2y:Nil, d:%z:b: 2u)»
(proof)

schematic-goal (rev(a:b:c:d:e:f:g:h:i:j:k:l:m:n:0:p: Nil, ?w)>

(proof)

schematic-goal <a:b:c:d:e:f:g:h:i:j:k:limin:o:p: Nil = 2z A app(2z, %z, 2y) A rev(2y, 2w)>

(proof)

end

7 Intuitionistic First-Order Logic

theory Intuitionistic
imports IFOL
begin

Metatheorem (for propositional formulae): P is classically provable iff == P
is intuitionistically provable. Therefore —P is classically provable iff it is
intuitionistically provable.

Proof: Let @ be the conjunction of the propositions A V = A, one for each
atom A in P. Now ——(Q is intuitionistically provable because =—(AV —A) is
and because double-negation distributes over conjunction. If P is provable
classically, then clearly Q — P is provable intuitionistically, so =—(Q — P)

is also provable intuitionistically. The latter is intuitionistically equivalent
to =) — ——P, hence to == P, since ——() is intuitionistically provable.
Finally, if P is a negation then ——P is intuitionstically equivalent to P.
[Andy Pitts]
lemma (- = (PAQ)+— "~ PA-=Q

(proof)

lemma (- - (P — Q) — (P — Q) — P)p
(proof)

Double-negation does NOT distribute over disjunction.

lemma (- = (P — Q)«— (- =P — == Q)p

{proof)

lemma (= = = P <+— = P)
(proof)

lemma (- - (P —> QVR) — (P— Q) V(P— R))
{proof)

lemma (P +— Q) +— (Q «— P)»
{proof)

lemma ((P — (Q V (@ — R))) — R) — R»
{proof)

lemma

«((G@—A) —J)—D—F)— ((H—B) —I) —C—1)
— A —H) —F —G—(((C—B) —I)—D —(A— ()
— ((F— A) — B) — I) — E»

(proof)

Admissibility of the excluded middle for negated formulae
lemma (P V =P — —Q) — =@

(proof)
The same in a more general form, no ex falso quodlibet

lemma (P V (P—R) — Q@ — R) — Q — R
{proof)

7.1 Lemmas for the propositional double-negation transla-
tion

lemma <P — = = P»
(proof)

lemma <= - (-~ P — P)
{proof)

10

lemma (- = PA=-= (P — Q) — -
{proof)

The following are classically but not constructively valid. The attempt to
prove them terminates quickly!

lemma (((P — Q) — P) — P»

(proof)

lemma «(PAN Q — R) — (P — R) V (@ — R)
(proof)

7.2 de Bruijn formulae

de Bruijn formula with three predicates

lemma

((P+— Q) — PANQAR)A
(+— R) — PANQAR)A
(R+—>P)—PANQANR)— PANQANR
(proof)

de Bruijn formula with five predicates

lemma

((P+—= Q) — PAQARANSANT)A
((Q«—= R —PAQARANSAT)A
(R+—S8S) —PANQARANSAT)A
(§+—=T)—PAQARANSAT)A
(T+—P)—PANQANRANSANT

{proof)

)—PAQARASAT

Problems from of Sahlin, Franzen and Haridi, An Intuitionistic Predicate
Logic Theorem Prover. J. Logic and Comp. 2 (5), October 1992, 619-656.

Problem 1.1

lemma
«(Vz. Fy. V. p(z) A q(y) A r(2) «—
(Vz. dy. Va. p(z) A qy) A r(2))
{proof)

Problem 3.1

lemma - (Fz. Vy. mem(y,z) +— - mem(z,z))>
(proof)

Problem 4.1: hopeless!

lemma
«(Vz. p(z) — p(h(z)) V p(9(x))) A Fz. p(z)) A (Vz. = p(h(z)))
< —>f§3 z. p(g9(g9(g9(g(g9(2)))))))
pToo

11

7.3 Intuitionistic FOL: propositional problems based on Pel-
letier.

||1

lemma (- - (P — Q) +— (- Q — - P))»
{proof)

||2

lemma (- - (- = P <— P)

(proof)
3

lemma - (P — Q) — (Q — P)»

{proof)
-4

lemma (- - (- P — Q) +— (- Q@ — P))»
{proof)

||5

lemma (- - ((PV Q@ —PVR)— PV (Q— R))
(proof)

__|6

lemma — - (P V = P))
{proof)

||7

lemma (= =~ (P V === P)
{proof)

——&. Peirce’s law

lemma - - ((P — Q) — P) — P)
{proof)

9

lemma «((PV QQA(=PVQ APV -Q) — ~(=PV-Q)
{proof)

10

lemma «(Q — R) — (R— P AN Q) — (P — (QV R)) — (P<+— Q)
{proof)

12

7.4 11. Proved in each direction (incorrectly, says Pelletier!!)

lemma P +— P»

(proof)

——12. Dijkstra’s law
lemma (- = (P +— Q) +— R) +— (P +— (Q +— R)))
(proof)

lemma (((P +— Q) +— R) — == (P +— (Q «— R))»
{proof)

13. Distributive law

lemma <PV (Q A R) «— (PV Q) A(PV R)
{proof)

——14

lemma (- = (P +— Q) «— (QV-P)AN (= QV P)))
{proof)

——15

lemma (- - (P — Q) «— (- PV Q)
{proof)

——16

lemma (- - (P — Q) vV (@ — P)p»
(proof)

—=17

lemma - = (P A (Q — R)) — 8) «— (W PV QVS)A (= PV =RV
S)))

(proof)

Dijkstra’s “Golden Rule”

lemma (P A Q) +— P+— Q +— (PV Q)
{proof)

8 Examples with quantifiers

8.1 The converse is classical in the following implications ...

lemma «(3z. P(z) — Q) — (Vz. P(z)) — @
{proof)

lemma «((Vz. P(z)) — Q) — = (Vz. P(z) A = Q)
{proof)

lemma «((Vz. - P(z)) — Q) — = (Vz. -~ (P(z) V Q))»

13

{proof)

lemma «(Vz. P(z)) V Q@ — (Vz. P(z) V Q)
{proof)

lemma «(3z. P — Q(z)) — (P — (Fz. Q(x)))»
{proof)

8.2 The following are not constructively valid!

The attempt to prove them terminates quickly!
lemma «((Vz. P(z)) — Q) — (3z. P(z) — Q)
{proof)

lemma (P — (Jz. Q(z))) — (Fz. P — Q(x))»
{proof)

lemma «(Vz. P(z) V Q) — ((Vz. P(z)) V Q)
{proof)

lemma «(Vz. = = P(z)) — = = (V. P(x))
{proof)

Classically but not intuitionistically valid. Proved by a bug in 1986!

lemma Jz. Q(z) — V. Q(z))
{proof)

8.3 Hard examples with quantifiers

The ones that have not been proved are not known to be valid! Some will
require quantifier duplication — not currently available.

——18

lemma - = (3y. Va. P(y) — P(z))
{proof)

——19

lemma — = (2. Vy z. (P(y) — Q(z)) — (P(z) — Q(x)))»
{proof)

14

1e<rnma><(5|x. P— Qx)) AN (3z. Q(z) — P) — == (Fz. P +— Q(z))
proof

22

lemma «((Vz. P +— Q(z)) — (P +— (Vz. Q(z)))
{proof)

-—=23

lemma — = (V2. PV Q(2)) +— (P V (V. Q(x))))
{proof)

24
lemma
<= (Fz. S(z) A Q(z)) AN (V. Pz

(= (3z. P(z)) — (3z. Q(x))) A (
— == (3z. P(z) A R(z))»

< |
O
G
<
=
IS
>

- Q(

Not clear why fast-tac, best-tac, ASTAR and ITER-DEEPEN all take for-
ever.

(proof)
25
lemma
«(Fz. P(z)) A
(Vz. L(z) — = (M(z) A R(z))) A
(Vz. P(z) — (M(x) A L(z))) A
(Vz. P(z) — Q(z)) V (3z. P(z) A R(x)))

27
lemma
«(Fz. P(x) A = Q(x)) A
(Vz. P(z) — R(z)) A
(Vz. M(z) A L(z) — P(z)) A
((3z. R(z) N = Q(z)) — (Va. L(z) — — R(x)))
— (Vz. M(z) — — L(z))»
(proof)

—-—-28. AMENDED

lemma

15

«(Vz. P(z) — (V2. Q(z))) A
(== Vz. Q(z) V R(z)) — (Fz. Q(z) A S(z))) A
(== 3z S(z)) — (Vz. L(z) — M(z)))
— (Vz. P(z) A L(z) — M(z))
(proof)

29. Essentially the same as Principia Mathematica *11.71

lemma

=—30

lemma
«(Vz. (P(z) V Q(z)) — = R(z)) A
(Vz. (Q(z) — = S(z)) — P(z) A R(x))
— (Vz. = = S(z))»
(proof)

32

lemma
«(Vz. P(z) A (Q(z) V R(z)) — S(z)) A
(Vz. S(z) A R(zx) — L(z)) A
(Vz. M(z) — R(z))
— (Vz. P(z) A M(z) — L(z))
(proof)

——33

lemma
«(Vz. = = (P(a) A (P(z) — P(b)) — P(c))) +—
Vz. = = ((— P(a) V P(z (c
(proof)

36

lemma
(V. Jy. J(z,y)) A
(Vz. Jy. G(z,y)) A
Vzy. J(zy) vV G
— (Vz. y. H(z,y

)(x,y) — (V2. J(y,2) Vv G(y,2) — H(z,2)))

16

<
)
>
T
=
&
<
]
|
=
<
=
&

{proof)

37
lemma
«((Vz. Jw. V. Jy.
- = (P(z,2) — P(y,w)) A P(y,2) A (P(y,w) — Fu. Q(u,w)))) A
(Vo z. = P(z,2) — (3y. Qy,2))) A
(== G2y Qzy) — (Va. R(z,z)))
— == (V2. 3y. R(z,y))
(proof)
39
lemma <~ (Jz. Vy. F(y,z) +— = F(y,y))
(proof)
40. AMENDED
lemma

«(Jy. Va. F(z,y) «— F(z,x)) —
- (Vz. Jy. Vz. F(zy) «— - F(z,2))»

(proof)
44
lemma
«(Vz. f(z) —
(Fy. 9(y) A h(z,y) A (Fy. g(y) A = W(z,y))))
(Fz. j(z) A (Yy. g(y) — h(z,y)))
— Fz. j(z) A = fz))
(proof)
48

lemma «(a=bVec=d)A(a=cVb=d) —a=dVb=o

lemma
«(Fzw. Vry Py «— (z2=2ANy=w) —
Fz. V. Jw. Vy. Plz,y) «— y = w) «— = 2z)
(proof)

52

Almost the same as 51.

lemma
«(Fzw. Vzy Play) «— (z=2Ay=w) —
Fw.Vy. Fz. Va. P(r,y) +— 2= 2) «— y = w)
(proof)

56

17

lemma «(Vz. (3y. P(y) Az = f(y)) — P(z)) «— (Va. P(x) — P(f(z)))
{proof)
o7

lemma

P(f(a,b), f(b,c)) A P(f(b,c), f(a,c)) A
(Vzyz P(z,y) A P(y,z) — P(x,2)) — P(f(a,b), f(a,c))

{proof)

60

le<rnma><V:E. P(z,f(z)) «+— Jy. (Vz. P(z,y) — P(z,f(x))) A P(z,y))
proof

end

9 First-Order Logic: propositional examples (in-
tuitionistic version)

theory Propositional-Int

imports IFOL

begin

commutative laws of A and V

lemma <P A Q — QAN P>
(proof)

lemma <PV Q — QV P>
(proof)

associative laws of A and V

lemma «(PA Q) AR— PA(QAR)
{proof)

lemma «(PV Q) VR — PV (QV R)
(proof)

distributive laws of A and V

lemma «(PA Q)V R — (PV R)A(QV R)
{proof)

lemma «(PV R)A(QV R) — (PAQ)V R
(proof)

lemma «(PV Q) AR — (PAR)V (Q AR
{proof)

lemma «(PAR)V (QANR) — (PV Q) AR

18

(proof)
Laws involving implication

lemma (P — R) A (Q — R) «— (P V Q@ — R)»
{proof)

lemma «(PA Q@ — R) «— (P — (@ — R))»
{proof)

lemma «((P —R) — R) — (@ — R) — R) — (PANQ@ — R) — R

(proof)

lemma (-~ (P — R) — - (@ — R) — - (P AN Q@ — R)»
{proof)

lemma (P — Q A R) «— (P — Q) A (P — R)»
(proof)

Propositions-as-types

lemma <P — (Q — P)

{proof)
lemma (P — Q@ — R) — (P — Q) — (P — R)»

{proof)
lemma (P — Q) V (P — R) — (P — Q V R)»

{proof)

lemma (P — Q) — (- Q@ — = P)
(proof)

Schwichtenberg’s examples (via T. Nipkow)
lemma stab-imp: <«(((@ — R) — R) — Q) — (P — @) — R) — R)
— P —

{proof)

lemma stab-to-peirce:
<(((P—>R)p—)R)—)P)—>(((Q—>R)—)R)—)Q)
— (P — Q) — P) — P
(proof)

lemma peirce-imp1:

(@ — R) — Q) — Q)

— ((P—Q) —R) —P—Q —P—
{proof)
lemma peirce-imp2: «((P — R) — P) — P) — (P — @ — R) — P)
— P
(proof)

lemma mints: <(P — Q) — P) — P) — Q) — @

19

{proof)

lemma mints-solovev: (P — (@ — R) — Q) — (P — @) — R) — R»
(proof)

lemma tatsuta:
«(((P7 — P1) — P10) — P4 — P))
— (((P8 — P2) — P9) — P3 — P10)
— (P1 — P8) — P6 — P7
— (((P8 — P2) — P9) — P4)
— (P1 — P3) — (((P6 — P1) — P2) — P9) — P5)

{proof)

lemma tatsutal:
«(((P8 — P2) — P9) — P3 — P10)
— (((P3 — P2) — P9) — P4)
— (((P6 — P1) — P2) — P9)
— (((P7 — P1) — P10) — P4 — P5)
— (P1 — P3) — (P1 — P8) — P6 — P7 — P

{proof)

end

10 First-Order Logic: quantifier examples (intu-
itionistic version)
theory Quantifiers-Int

imports IFOL
begin

lemma «(Vz y. P(z,y)) — Yy z. P(z,y))
(proof)

lemma <3z y. P(z,y)) — (Jyz. Plz,y))

(proof)
lemma «(Vz. P(z)) V V. Q(z)) — (Vz. P(z) V Q(z))

{proof)

lemma «((Vz. P — Q(z)) «— (P — (Vz. Q(x)))»
{proof)

lemma «(Vz. P(z) — Q) «— ((3z. P(z)) — Q)
{proof)

Some harder ones

lemma «(3z. P(z) V Q(z)) «+— (Fz. P(z)) V 3z. Q(z))»
{proof)

20

lemma «(3z. P(z) A Q(z)) — (Fz. P(z)) A Bz. Q(z))
{proof)

Basic test of quantifier reasoning

lemma <(3y. Vz. Q(z,y)) — (V. Jy. Q(z,y))
(proof)

lemma «(Vz. Q(z)) — (Jz. Q(z))
{proof)

The following should fail, as they are false!

lemma «(Vz. Jy. Q(z,y)) — (Jy. V. Q(z,y))
{proof)

lemma ((Jz. Q(z)) — (Vz. Q(z))
{proof)

schematic-goal <P(%a) — (Vz. P(x))
(proof)

schematic-goal «(P(%a) — (Vz. Q(z))) — (Vz. P(z) — Q(z))»
(proof)

Back to things that are provable ...

lemma «(Vz. P(z) — Q(z)) A (3z. P(z)) — (Fz. Q(z))

{proof)
lemma (P — (3z. Q(z))) A P — (Jz. Q(z))

(proof)

sc(h?er)natic-goal «(Vz. P(z) — Q(f(2))) A (V. Q(z) — R(g(z))) A P(d) —
R(%a)»
{proof)

lemma ¢(Vz. Q(z)) — (Fz. Q(z))
{proof)

Some slow ones

le<mm€}><(Vw y. P(z) — Qy)) «— (Fz. P(z)) — (Vy. Qy)))
Proo

lemma 3z y. P(z) A Q(z,y)) «— (Fz. P(z) A Sy. Qz,y)))
{proof)

1e<mmz}><(EI y. V. P(z) — Q(z,y)) — (V. P(z) — Fy. Qz,y)))
proo,

end

21

11 Classical Predicate Calculus Problems

theory Classical
imports FOL
begin

lemma «(P — QV R) — (P — Q) V(P — R)»
{proof)

11.0.1 If and only if

lemma (P +— Q) «— (Q <— P)
(proof)

lemma = (P <— = P)

(proof)

11.1 Pelletier’s examples

Sample problems from

o F. J. Pelletier, Seventy-Five Problems for Testing Automatic Theorem
Provers, J. Automated Reasoning 2 (1986), 191-216. Errata, JAR 4
(1988), 236-236.

The hardest problems — judging by experience with several theorem provers,
including matrix ones — are 34 and 43.

1

lemma (P — Q) +— (- Q@ — = P)
{proof)

2

lemma <= = P <— P
(proof)

3

lemma (- (P — Q) — (Q — P)»
{proof)

4

lemma (- P — Q) «— (- Q@ — P)
{proof)

5

lemma «((PV Q) — (PV R)) — (PV (Q — R))»
{proof)

22

6

lemma <PV = P)

{proof)
7

lemma <PV = = = P»
(proof)

8. Peirce’s law

lemma «((P — Q) — P) — P»
{proof)

9

lemma «((PVQA-PVQAPV-Q) —-(-PV-Qp
{proof)

10

lemma «(Q — R)A(R— PAQ A(P— QV R) — (P+— Q)
(proof)

11. Proved in each direction (incorrectly, says Pelletier!!)

lemma (P «— P»
(proof)

12. "Dijkstra’s law"

lemma (((P +— Q) +— R) +— (P +— (Q +— R))»
(proof)

13. Distributive law

lemma <PV (Q A R) «— (PV Q) A (PV R)
{proof)

14

lemma (P +— Q) «— (Q V- P)A (= QV P))p
{proof)

15

lemma (P — Q) +— (- PV Q)
(proof)

16

lemma «(P — Q) V (@ — P)
{proof)

17

lemma ((PA (Q — R)) — S)«— (mPVQQVS)AN-PV-RVSI)
{proof)

23

11.2 Classical Logic: examples with quantifiers

lemma «(Vz. P(z) A Q(z)) «— (Vz. P(z)) A V. Q(z))
{proof)

lemma «(3z. P — Q(z)) +— (P — (Fz. Q(x)))»
{proof)

lemma ¢(3z. P(z) — Q) +— (Vz. P(z)) — @
(proof)

lemma «(Vz. P(z)) V Q «— (Vz. P(z) V Q)
{proof)

Discussed in Avron, Gentzen-Type Systems, Resolution and Tableaux, JAR
10 (265-281), 1993. Proof is trivial!

1e<rnmz}><—| (3z. = P(z)) A (Bz. P(z)) vV 3z P(z) A Q(x))) A = (3z. P(z)))
Proo

11.3 Problems requiring quantifier duplication

Theorem B of Peter Andrews, Theorem Proving via General Matings, JACM
28 (1981).
lemma «(3z. Vy. P(z) «+— P(y)) — ((Fz. P(z)) «— (Vy. P(y)))»

(proof)

Needs multiple instantiation of ALL.

leznm?;(vfb' P(z) — P(f(x))) A P(d) — P(f(f(f(d))))
proo

Needs double instantiation of the quantifier

lemma 3z. P(z) — P(a) A P(b)
{proof)

lemma 32. P(z) — (Vz. P(z))
{proof)

lemma 3z. (Jy. P(y)) — P(z)
{proof)

V. Lifschitz, What Is the Inverse Method?, JAR 5 (1989), 1-23. NOT
PROVED.

lemma
Hra' Vy. Iz 2"
(= P(yy) V P(z,z) V = 5(2,2)) A
(S(zy) V = S(y,2) v Q(2',2") A
(Q(z"y) V = Qy,2") v S(z',z"))
(proof)

24

11.4 Hard examples with quantifiers

18

lemma 3y. Vz. P(y) — P(z)
{proof)

19

lemma 3z. Vy z. (P(y) — Q(2)) — (P(z) — Q(z))»
{proof)

20

lemma ((Vzy. 32. Vw. (P(z) A Q(y) — R(z) A S(w)))
7 (f3>I y. P(z) A Q(y)) — (=
PTOO0,

21

le<rnma><(5| z. P — Q(z)) A (3z. Q(z) — P) — (Fz. P +— Q(z))»
proof

22
lemma «((Vz. P +— Q(z)) — (P +— (Vz. Q(z)))
{proof)
23
lemma «(Vz. PV Q(z)) +— (P V (Vz. Q(z)))
{proof)
24
lemma
= (Fz. S(z) A Q) A (V. P(z) — Q(z) V R(z)) A
(= (3z. P(z)) — (Fz. Q(z)) A Vz. Q(z) V R(z) — S(x))
— (Fz. P(z) AN R(z))
{proof)
25
lemma
«(Fz. P(z)) A
(Vz. L(z) — = (M(z) A R(z))) A
— (M(z) N L(z))) A

26

lemma
«(Fz. p(z)) +— Fz. q(2))) A
(Vz. Vy. p(z) A q(y) — (r(z) «— s(y)))

25

— (Vz. p(z) — r(z)) +— Vz. q(z) — s(z)))
(proof)

27

lemma
«(Fz. P(z) A= Q(z)) A
(Vz. P(z) — R(z)) A
(Vz. M(z) AN L(z) — P(z)) A
(Bz. R(z) A= Q(z)) — (Vz. L(z) — - R(x)))
— (Va. M(z) — — L(z))»
{proof)

28. AMENDED

lemma
(Vz. P(z) — (Vz. Q(z))) A
(Vz. Q(z) V R(z)) — (Fz. Qz) A S(z))) A
((390 5()) — (Va. L(z) — M(z)))
— (Va. P(z) A L(z) — M(z))
(proof)

29. Essentially the same as Principia Mathematica *11.71

lemma
(Jz. P(z)) A Ty Qy))
— ((Vz. P(z) — R(z)) A (Vy. Qy) — S(y)) <—
(Vo y. P(z) A Q(y) — R(z) A S(y))
(proof)
30
lemma

lemma
«(Vz. P(z) A (Q(z) V R(z
(Vz. S(z) A R(z) — L(z)) A
(V2. M(z) — R(x))
— (Vz. P(z) A M(z)

26

{proof)
33

lemma
«(Vaz. P(a) A (P(z) — P(b)) — P(c¢)) +—
< (V:L’f>(ﬁ P(a) v P(z) V P(c)) A (= P(a) V = P(b) V P(c)))
proo

34. AMENDED (TWICE!!). Andrews’s challenge.

lemma
((Fz. Vy. p(z) «— p(y)) +— (Fz. q(2)) <— (Vy. p(y)))) <—
< ((3]95> Vy. q(z) < q(y)) «— (Fz. p(z)) <— (Vy. q(y))))
PToo.

35

lemma 3z y. P(z,y) — (Vu v. P(u,v))
(proof)

36

lemma
(Va. Jy. J(z,y)) A
(Va. Jy. G(z,y)) A
(V:v y- J(zy) Vv G(zy) — (V2. J(y.2) V Gly,2) — H(z,2)))
— (V2. 3y. H(z,y))
(proof)

37

lemma
«(Vz. Jw. V. Jy.
(P(z,2) — P(y,w)) A P(y,2) A (P(y,w) — (3u. Qu,w)))) A
(V2. = Pz,z) — (3y. Qy,2))) A
(Bzy. Qz,y)) — (Va. R(z,r)))
— (Vz. Jy. R(z,y))

{proof)
38

lemma

«(Va. pla) A (p(z) — By. p(y) A r(z,y))) —
(Fz. Jw. p(z) A r(z,w) A r(w,2))) «—
(Vz. (= pla) V p(z) V (Fz. Jw. p(z) A r(z,w) A r(w,z))) A

(
(= p(@) v = By ply) A r(zy)) v
(2. Fw. p(z) A r(z,w) A r(w,2))))

{proof)

39

lemma - (Jz. Vy. F(y,z) +— = F(y,y))
(proof)

27

40. AMENDED
lemma
«(Fy. Va. F(z,y) +— F(z,2)) —
- (V. Jy. Vz. F(zy) «— - F(z,2))
(proof)

41
lemma
«(Vz. Jy. V. f(z,y) «— f(z,2) A = f(z,2))
— 0 3z V. f(z,2))
(proof)

42

lemma = (Jy. Vz. p(z,y) «— - (T2 p(z,2) A p(z,2)))
{proof)

43

lemma
(Vo Vy. q(z,y) +— (V2. p(2,2) < p(2,9)))
< —>f§\79:- Vy. q(z,y) < q(y,7))
pToo

Other proofs: Can use auto, which cheats by using rewriting! Deepen-tac
alone requires 253 secs. Or by (mini-tac 1 THEN Deepen-tac 5 1).

44

lemma
(V. f(z) — Py 9(y) A h(z,y) A Sy 9(y) A = h(z,9))) A
3z j(x) A (Vy. g(y) — h(z,y)))
— Fz. j(z) A = f(2))
(proof)

45

lemma

(Fz. f(z) A= g(z)) —
Bz f(x) A= gl@) A (Vy. fy) A= g(y) — §(z,9)))) A
(Vzy. f(z) A fy) A b(zy) — = 5(y,2))
— (Vz. f(z) — g(x))
(proof)

28

11.5 Problems (mainly) involving equality or functions

48

lemma «(a=bVe=d)A(a=cVb=d) —a=dVb=o
{proof)

49. NOT PROVED AUTOMATICALLY. Hard because it involves substi-
tution for Vars; the type constraint ensures that x,y,z have the same type
as a,b,u.
lemma
«(Fzy:'aVz.z=a2Vz=y)ANPla) N P(b) Na#b— (NVu:a. P(u))
(proof)

50. (What has this to do with equality?)

lemma «(Vz. P(a,x) V (Vy. P(z,y))) — (3z. Vy. P(z,y))
{proof)

51

lemma
(Fzw.Vzy. Plzy) +— (x=2ANy=w)) —
(Fz. Y. Jw. Vy. P(z,y) «— y=w) <— = = 2)»
(proof)

52

Almost the same as 51.

lemma
«(Fzw. Vzy Plzy) «— (z=2ANy=uw)) —
Fw.Vy. Fz. Va. P(r,y) +— z=2) «— y = w)
(proof)

95

Non-equational version, from Manthey and Bry, CADE-9 (Springer, 1988).
fast DISCOVERS who killed Agatha.

schematic-goal
lives(agatha) A lives(butler) A lives(charles) N
(killed(agatha,agatha) V killed(butler,agatha) V killed(charles,agatha)) A
(Vz y. killed(z,y) — hates(z,y) A — richer(z,y)) A
(V. hates(agatha,r) — — hates(charles,x)) A
(hates(agatha,agatha) A hates(agatha,charles)) A
(V. lives(x) A = richer(z,agatha) — hates(butler,z)) A
(Vz. hates(agatha,z) — hates(butler,z)) A
(Vz. = hates(z,agatha) V — hates(z,butler) V — hates(z,charles)) —
killed(?who,agatha)»
(proof)

56

29

1e<rnm2}><(Vx. (Fy. P(y) ANz = f(y)) — P(z)) «— (Va. P(x) — P(f(z)))
proo

o7

lemma

«P(f(ab), f(b,c)) N P(f(b,c), f(a,c)) A
Vzyz P(z,y) A P(y,z) — P(x,2)) — P(f(a,b), f(a,c))

{proof)
58 NOT PROVED AUTOMATICALLY

lemma («(Vz y. f(z) = g(y)) — Vzy. f(f(z) = fl9(y)))
(proof)

59

lemma «(Vz. P(z) «— - P(f(z))) — (3z. P(x) A =~ P(f(z)))
(proof)

60

le<1nm£}><Vx. P(z,f(z)) +— (By. (V2. P(z,y) — P(z,f(x))) A P(z,y))
proo

62 as corrected in JAR 18 (1997), page 135

From Rudnicki, Obvious Inferences, JAR 3 (1987), 383-393. It does seem
obvious!

lemma
«(Va. F(z) A= G(z) — By. H(z,y) A J(y)) A
(Fz. K(z) A (I) (Vy. H(z,y) — K(y))) A
< (fo>K(:v) G(z)) — (Elx K(z) — = G(z))»
proo

Halting problem: Formulation of Li Dafa (AAR Newsletter 27, Oct 1994.)
author U. Egly.

lemma
«((Fz. A(z) AN Vy. Cly) — (V2. D(2,y,2)))) —

30

(Fw. Cw) A (Vy. Cly) — (V2. D(w,y.2))))
(Avw.(\%u;)- A (Vu. Clu) — (Yo. D(w,u,v))) —

(C0) A Pa) -5 o) & OO
(Avu). C(w) A

y) A P(y,z) — Q(w,y,z) A O0(w,g)) A
(C(:l(/) A P(yvz) — Q(w7yvz) A OO(w,b))) —

) ,) A
y) A Q(w,y,y)) A OO(w,b) — P(v,y) A O0(v,b)))))
y. C(y) — (Vz. D(2,9,2))))

Halting problem II: credited to M. Bruschi by Li Dafa in JAR 18(1), p. 105.

lemma
(Vy. Cly) — (Vz. D(z,y,2)))) —
A (Vy. Cly) — (V2. D(w,y,2)))))

(v w(vC(w) A Vu. Clu) — (Yv. D(w,u,v))) —
Y 2.
(C(y) A P(y,2) — Q(w,y,z) A O0(w,g)) A
(C(y) A = P(y,z) — Q(w,y,2) A 00(w,b))))
A
(Bw. Cw) A (Vy. (C(y) A P(y,y) — Q(w,y,y) A 00(w,g)) A
(Cy) A = P(y,y) — Q(w,y,y) A O0(w,b))))
_)

(3v. Cv) A (Vy. (C(y) A P(y,y) — P(v,y) A 00(v,9)) A
(C(y) A = P(y,y) — P(v,y) A OO0(v,b)))))
H
(Bv. Cv) A (Vy. (C(y) A P(y,y) — P(vy) A 00(v,9)) A
(C(y) A= Plyy) — P(v,y) A 00(v,b))))
H
(Bu. Clu) A (Vy. (C(y) A P(y,y) — = P(u,y)) A
(C(y) A = P(y,y) — P(u,y) A 00(u,b)))))
< —}; (Fz. A(z) A Vy. Cly) — (V2. D(z,y,2))))»
proo

Challenge found on info-hol.
lemma Vz. 3v w. Vy z. P(z) A Q(y) — (P(v) V R(w)) A (R(z) — Q(v))»
(proof)

Attributed to Lewis Carroll by S. G. Pulman. The first or last assumption
can be deleted.

lemma
«(Vz. honest(z) A industrious(x) — healthy(x)) A

31

= (Fa. grocer(z) A healthy(x)) A
(Vz. industrious(z) A grocer(z) — honest(z)) A
(Vz. cyclist(z) — industrious(z)) A
(V. = healthy(x) A cyclist(z) — — honest(z))
— (Vz. grocer(z) — — cyclist(z))»

{proof)

end

12 First-Order Logic: propositional examples (clas-
sical version)

theory Propositional-Cla

imports FOL

begin

commutative laws of A and V

lemma <P A Q — QNP>

(proof)

lemma <PV Q — QV P>
(proof)

associative laws of A and V

lemma «(PA Q) AR— PA(QAR)
(proof)

lemma «(PV Q) VR — PV (QVR)
(proof)

distributive laws of A and V
lemma «(PA Q)V R — (PV R)A(QV R)
(proof)

lemma «(PV R A(QV R)— (PANQ)V R
(proof)

lemma «(PV Q) AR— (PAR)V (Q A R
(proof)

lemma «(PAR)V (QANR) — (PV Q) AR
{proof)

Laws involving implication

lemma (P — R) A (Q — R) +— (P V Q@ — R)»

32

{proof)

lemma (P A Q — R) «— (P — (@ — R))»
{proof)

lemma «((P — R) — R) — (@ — R) — R) — (P AN Q@ — R) — R
{proof)

lemma (- (P — R) — - (Q — R) — -~ (P AN Q — R)
(proof)

lemma (P — Q A R) «— (P — Q) AN (P — R)»
{proof)

Propositions-as-types

lemma <P — (Q — P)

{proof)
lemma (P — Q@ — R) — (P — Q) — (P — R)»

(proof)
lemma (P — Q) V (P — R) — (P — Q V R)»

{proof)

lemma (P — Q) — (- Q — = P)
{proof)

Schwichtenberg’s examples (via T. Nipkow)
lemma stab-imp: <«(((@ — R) — R) — Q) — (P — @) — R) — R)
— P — O

{proof)

lemma stab-to-peirce:
«((P—R)—R)—P)— (((Q—R) — R — Q@
— ((P— Q) — P) — P
(proof)

lemma peirce-imp1:

«((— R) — Q) — Q)

— ((P—>Q) —R)—P—Q —P— @
(proof)

lemma peirce-imp2: «((P — R) — P) — P) — (P — @ — R) — P)
— P
{proof)

lemma mints: <((P — Q) — P) — P) — Q) — @
{proof)

lemma mints-solovev: «(P — (@ — R) — Q) — (P — Q) — R) — R»
(proof)

33

lemma tatsuta:
«(((P7 — P1) — P10) — P4 — P))
— (((P8 — P2) — P9) — P3 — P10)
— (P1 — P8) — P6 — P7
— (((P3 — P2) — P9) — P4)
— (P1 — P3) — (((P6 — P1) — P2) — P9) — P5)

{proof)

lemma tatsutal:
«(((P8 — P2) — P9) — P3 — P10)
— (((P3 — P2) — P9) — P4)
— (((P6 — P1) — P2) — P9)
— (((P7 — P1) — P10) — P4 — P5)
— (P1 — P8) — (P1 — P8) — P6 — P7 — P55

(proof)

end

13 First-Order Logic: quantifier examples (classi-
cal version)
theory Quantifiers-Cla

imports FOL
begin

lemma «(Vz y. P(z,y)) — Yy z. P(z,y))
{proof)

lemma <3z y. P(z,y)) — Qyz. Pz,y))
{proof)

Converse is false.
lemma «(Vz. P(z)) V V. Q(z)) — (Vz. P(z) V Q(z))
(proof)

lemma «(Vz. P — Q(z)) +— (P — (Vz. Q(z)))»
{proof)

lemma «(Vz. P(z) — Q) +— ((3z. P(z)) — Q)
(proof)

Some harder ones.

1e<mmz}><(EI z. P(z) V Q(z)) +— (3. P(x)) V (Fz. Q(z))
proo
lemma «3z. P(z) A Q(z)) — (Fz. P(z)) A Bz. Q(z))

{proof)

34

Basic test of quantifier reasoning.
lemma «3y. Vz. Q(z,y)) — V. Jy. Q(z,y))
{proof)

lemma ¢(Vz. Q(z)) — (Jz. Q(z))
{proof)

The following should fail, as they are false!
lemma «(Vz. 3y. Q(z,y)) — (Jy. V. Q(z,y))
(proof)

lemma «((3z. Q(z)) — (Vz. Q(z))
{proof)

schematic-goal (P(%a) — (Vz. P(z))»
{proof)

schematic-goal «((P(%a) — (Vz. Q(z))) — (Vz. P(z) — Q(x))»
(proof)
Back to things that are provable ...
lemma «(Vz. P(z) — Q(z)) A (3z. P(z)) — (Fz. Q(z))
{proof)
An example of why ezl should be delayed as long as possible.
lemma (P — (3z. Q(z))) A P — (Jz. Q(z))
(proof)

sc(h?er)natic-goal «(Vz. P(z) — Q(f(2))) A (V. Q(z) — R(g(z))) A P(d) —
R(%a)»
{proof)

lemma ((Vz. Q(z)) — (Jz. Q(z))
{proof)

Some slow ones

Principia Mathematica *11.53

lezllma};(w y. P(z) — Qy)) «— ((Fz. P(z)) — (Vy. Qy)))
PTOO,

lemma <3z y. P(z) A Q(z,y)) «— (Fz. P(z) A Fy. Qlz,y)))
{proof)

le<mm;;><(3 y. V. P(z) — Q(z,y)) — (V. P(z) — y. Q(z,y)))
proo

35

end

theory Miniscope
imports FOL
begin

lemmas ccontr = FalseE [THEN classical]

13.1 Negation Normal Form
13.1.1 de Morgan laws

lemma demorgansi:
<ﬁ(P/\Q)HﬁP\/ﬁQ)
= (PV Q)+—PA~ Q@
(" P+— P
(proof)

lemma demorgans2:
¢AP. - (Vz. P(z)) +— (Fz. = P(z))
(ANP. -~ (Fz. P(x)) «— (Vz. = P(x))
(proof)

lemmas demorgans = demorgansl demorgans?2

lemma nnf-simps:
(P— Q) «— (- PV Q)
<ﬁ(P—>Q)<—>(P/\ﬁQ)>
(P+— Q) +— (PVQAEHQVP)H
G (P— Q) +— (PVQ AN(PV-Q)
(proof)

13.1.2 Pushing in the existential quantifiers

lemma ex-simps:

«(Fz. P) +— P>

(AP Q. (3z. P(z) A Q) +— (Fz. P(z)) A @

AP Q. (3z. P A Q(z)) «— P A (Fz. Qz))

(AP Q. 3z. P(z) V Q(z)) +— (Fz. P(z)) Vv 3z. Q(z))
(AP Q. (3z. P(z) V Q) +— (Fz. P(z)) vV @

AP Q. 3z. PV Q(z)) «— PV (3z. Qz))

{proof)

13.1.3 Pushing in the universal quantifiers

lemma all-simps:

36

«(Vz. P) «— P»

AP Q. (Vz. P(z) A Q(z)) «— (Vz. P(z)) A (Vz. Q(x))
AP Q. Vz. P(z) N Q) «— (V. P(z)) A @

AP Q. (Vz. P A Q(z)) «— P A (Vz. Q(z))

AP Q. (Vz. P(z) V Q) «— (V. P(z)) V @

2/\P Q> (Vz. PV Q(z)) +— PV (Vz. Q(z))

proof

lemmas mini-simps = demorgans nnf-simps ex-simps all-simps
(ML)

end

14 First-Order Logic: the ’if’ example

theory If
imports FOL
begin

definition if :: «[0,0,0]=>0)
where «if(P,Q,R) = PAN QV -~ P AR

lemma ifI: <[P = @Q; - P = R] = if (P,Q,R))
(proof)

lemma fE: <[if (P,Q,R); [P; Q] = S; [~ P; R] = 5] = S
{proof)

lemma if-commute: <if (P, if (Q,A,B), if (Q,C,D)) +— if (Q, if (P,A,C), if (P,B,D))>
{proof)

Trying again from the beginning in order to use blast

declare ifI [intro!]
declare ifE [elim!]

lemma if-commute: <if (P, if (Q,A,B), if (Q,C,D)) «— if (Q, if (P,A,C), if(P,B,D))»
(proof)

lemma f(if(P,Q.R), A, B) +— if(P, if (Q,A,B), if (R,A,B))>
(proof)

Trying again from the beginning in order to prove from the definitions

lemma <if (if (P,Q,R), A, B) +— if(P, if (Q,A,B), if(R,A,B))>
(proof)

An invalid formula. High-level rules permit a simpler diagnosis.

37

lemma <if (if (P,Q,R), A, B) «+— if (P, if(Q,A,B), if (R,B,A))
(proof)

Trying again from the beginning in order to prove from the definitions.

lemma <if (if (P,Q,R), A, B) «— if (P, if(Q,A,B), if(R,B,A))
(proof)

end

38

	Natural numbers
	Examples for the manual ``Introduction to Isabelle''
	Some simple backward proofs
	Demonstration of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 fast
	Derivation of conjunction elimination rule

	Derived rules involving definitions

	Theory of the natural numbers: Peano's axioms, primitive recursion
	Proofs about the natural numbers

	Theory of the natural numbers: Peano's axioms, primitive recursion
	Intuitionistic FOL: Examples from The Foundation of a Generic Theorem Prover
	Examples with quantifiers

	First-Order Logic: PROLOG examples
	Intuitionistic First-Order Logic
	Lemmas for the propositional double-negation translation
	de Bruijn formulae
	Intuitionistic FOL: propositional problems based on Pelletier.
	11. Proved in each direction (incorrectly, says Pelletier!!)

	Examples with quantifiers
	The converse is classical in the following implications …
	The following are not constructively valid!
	Hard examples with quantifiers

	First-Order Logic: propositional examples (intuitionistic version)
	First-Order Logic: quantifier examples (intuitionistic version)
	Classical Predicate Calculus Problems
	If and only if
	Pelletier's examples
	Classical Logic: examples with quantifiers
	Problems requiring quantifier duplication
	Hard examples with quantifiers
	Problems (mainly) involving equality or functions

	First-Order Logic: propositional examples (classical version)
	First-Order Logic: quantifier examples (classical version)
	Negation Normal Form
	de Morgan laws
	Pushing in the existential quantifiers
	Pushing in the universal quantifiers

	First-Order Logic: the 'if' example

