

How to Prove it in Isabelle/HOL

Tobias Nipkow

January 18, 2026

Abstract

How does one perform induction on the length of a list? How are numerals converted into *Suc* terms? How does one prove equalities in rings and other algebraic structures?

This document is a collection of practical hints and techniques for dealing with specific frequently occurring situations in proofs in Isabelle/HOL. Not arbitrary proofs but proofs that refer to material that is part of *Main* or *Complex_Main*.

This is *not* an introduction to

- proofs in general; for that see mathematics or logic books.
- Isabelle/HOL and its proof language; for that see the tutorial [1] or the reference manual [3].
- the contents of theory *Main*; for that see the overview [2].

Contents

1	<i>Main</i>	2
1.1	Natural numbers	2
1.2	Lists	2
1.3	Algebraic simplification	3

Chapter 1

Main

1.1 Natural numbers

Induction rules

In addition to structural induction there is the induction rule *less_induct*:

$$(\wedge x. (\wedge y. y < x \Rightarrow P y) \Rightarrow P x) \Rightarrow P a$$

This is often called “complete induction”. It is applied like this:

$$(\text{induction } n \text{ rule: less_induct})$$

In fact, it is not restricted to *nat* but works for any wellfounded order $<$.

There are many more special induction rules. You can find all of them via the Find button (in Isabelle/jedit) with the following search criteria:

```
name: Nat name: induct
```

How to convert numerals into *Suc* terms

Solution: simplify with the lemma *numeral_eq_Suc*.

Example:

```
lemma fixes x :: int shows "x ^ 3 = x * x * x"  
by (simp add: numeral_eq_Suc)
```

This is a typical situation: function “ $^$ ” is defined by pattern matching on *Suc* but is applied to a numeral.

Note: simplification with *numeral_eq_Suc* will convert all numerals. One can be more specific with the lemmas *numeral_2_eq_2* ($2 = \text{Suc } (\text{Suc } 0)$) and *numeral_3_eq_3* ($3 = \text{Suc } (\text{Suc } (\text{Suc } 0))$).

1.2 Lists

Induction rules

In addition to structural induction there are a few more induction rules that come in handy at times:

- Structural induction where the new element is appended to the end of the list (*rev_induct*):

$$[\![P []; \lambda xs. P xs \implies P (xs @ [x])]\!] \implies P xs$$

- Induction on the length of a list (*length_induct*):

$$(\lambda xs. \forall ys. \text{length } ys < \text{length } xs \longrightarrow P ys \implies P xs) \implies P xs$$

- Simultaneous induction on two lists of the same length (*list_induct2*):

$$\begin{aligned} & [\![\text{length } xs = \text{length } ys; P [] []; \\ & \quad \lambda xs y ys. \\ & \quad \quad [\![\text{length } xs = \text{length } ys; P xs ys]\!] \implies P (x \# xs) (y \# ys)]\!] \\ & \implies P xs ys \end{aligned}$$

1.3 Algebraic simplification

On the numeric types *nat*, *int* and *real*, proof method *simp* and friends can deal with a limited amount of linear arithmetic (no multiplication except by numerals) and method *arith* can handle full linear arithmetic (on *nat*, *int* including quantifiers). But what to do when proper multiplication is involved? At this point it can be helpful to simplify with the lemma list *algebra_simps*. Examples:

```
lemma fixes x :: int
shows "(x + y) * (y - z) = (y - z) * x + y * (y - z)"
by(simp add: algebra_simps)
```

```
lemma fixes x :: "'a :: comm_ring"
shows "(x + y) * (y - z) = (y - z) * x + y * (y - z)"
by(simp add: algebra_simps)
```

Rewriting with *algebra_simps* has the following effect: terms are rewritten into a normal form by multiplying out, rearranging sums and products into some canonical order. In the above lemma the normal form will be something like $x * y + y * y - x * z - y * z$. This works for concrete types like *int* as well as for classes like *comm_ring* (commutative rings). For some classes (e.g. *ring* and *comm_ring*) this yields a decision procedure for equality.

Additional function and predicate symbols are not a problem either:

```
lemma fixes f :: "int ⇒ int" shows "2 * f(x*y) - f(y*x) < f(y*x) + 1"
by(simp add: algebra_simps)
```

Here *algebra_simps* merely has the effect of rewriting $y * x$ to $x * y$ (or the other way around). This yields a problem of the form $2 * t - t < t + 1$ and we are back in the realm of linear arithmetic.

Because *algebra_simps* multiplies out, terms can explode. If one merely wants to bring sums or products into a canonical order it suffices to rewrite with *ac_simps*:

```
lemma fixes f :: "int ⇒ int" shows "f(x*y*z) − f(z*x*y) = 0"  
by(simp add: ac_simps)
```

The lemmas *algebra_simps* take care of addition, subtraction and multiplication (algebraic structures up to rings) but ignore division (fields). The lemmas *field_simps* also deal with division:

```
lemma fixes x :: real shows "x+z ≠ 0 ⇒ 1 + y/(x+z) = (x+y+z)/(x+z)"  
by(simp add: field_simps)
```

Warning: *field_simps* can blow up your terms beyond recognition.

Bibliography

- [1] Tobias Nipkow. *Programming and Proving in Isabelle/HOL*. <https://isabelle.in.tum.de/doc/prog-prove.pdf>.
- [2] Tobias Nipkow. *What's in Main*. <https://isabelle.in.tum.de/doc/main.pdf>.
- [3] Makarius Wenzel. *The Isabelle/Isar Reference Manual*. <https://isabelle.in.tum.de/doc/isar-ref.pdf>.