Examples for program extraction in Higher-Order
Logic

Stefan Berghofer

January 18, 2026

Contents
1 Auxiliary lemmas used in program extraction examples 1
2 Quotient and remainder 3
3 Greatest common divisor 4
4 Warshall’s algorithm 6
5 Higman’s lemma 11
5.1 Extracting the program 18
5.2 Someexamples L L 19
6 The pigeonhole principle 21
7 Euclid’s theorem 26

1 Auxiliary lemmas used in program extraction
examples

theory Util
imports Main
begin

Decidability of equality on natural numbers.

lemma nat-eq-dec: An:nat. m =nV m#n
apply (induct m)
apply (case-tac n)
apply (case-tac [3] n)
apply (simp only: nat.simps, iprover?)+
done

Well-founded induction on natural numbers, derived using the standard
structural induction rule.

lemma nat-wf-ind:
assumes R: Az:nat. (Ay. y <z = Py) = Pux
shows P z
proof (rule R)
show A\y. y<z= Py
proof (induct z)
case (
then show ?case by simp
next
case (Suc n y)
from nat-eq-dec show ?case
proof
assume ny: n =y
have P n
by (rule R) (rule Suc)
with ny show ?case by simp
next
assume n # y
with Suc have y < n by simp
then show ?Zcase by (rule Suc)
qed
qed
qed

Bounded search for a natural number satisfying a decidable predicate.

lemma search:
assumes dec: Az:nat. PV - P
shows (Jz<y. Pz) V - (Jz<y. P z)
proof (induct y)
case ()
show ?case by simp
next
case (Suc 2)
then show ?case
proof
assume J2<z. Pz
then obtain z where le: x < z and P: P z by iprover
from le have z < Suc z by simp
with P show ?Zcase by iprover
next
assume nez: - (z<z. P 1)
from dec show ?case
proof
assume P: P z
have z < Suc z by simp
with P show ?thesis by iprover
next

assume nP: - Pz
have — (Fz<Suc z. P)
proof
assume Jz<Suc z. Pz
then obtain x where le: © < Suc z and P: P z by iprover
have z < z
proof (cases x = z)
case True
with nP and P show ?thesis by simp
next
case Fulse
with le show ?thesis by simp
qged
with P have Jz<z. P z by iprover
with nexr show Fulse ..
qed
then show ?case by iprover
qed
qed
qed

end

2 Quotient and remainder

theory QuotRem
imports Util HOL— Library. Realizers
begin

Derivation of quotient and remainder using program extraction.

theorem division: 3rq. a = Sucbx g+ r Ar<b
proof (induct a)
case ()
have 0 = Suc b« 0 + 0 A 0 < b by simp
then show ?Zcase by iprover
next
case (Suc a)
then obtain r ¢ where I: a = Suc b * ¢ + r and r < b by iprover
from nat-eq-dec show ?case
proof
assume r = b
with I have Suc a = Suc b * (Suc ¢) + 0 A 0 < b by simp
then show ?case by iprover
next
assume 1 # b
with <r < b have r < b by (simp add: order-less-le)
with I have Suc a = Suc b * ¢ + (Suc r) A (Suc r) < b by simp
then show ?case by iprover
qed

qed
extract division
The program extracted from the above proof looks as follows

division =
AT za.
nat-induct-P x (0, 0)
(Ma H. let (z,y) = H
in case nat-eq-dec x za of Left = (0, Suc y)
| Right = (Suc z, y))

The corresponding correctness theorem is

a = Suc b * snd (division a b) + fst (division a b) A fst (division a b) < b

lemma division 9 2 = (0, 3) by eval

end

3 Greatest common divisor

theory Greatest-Common-Divisor
imports QuotRem
begin

theorem greatest-common-divisor:
An:nat. Suc m < n =
Jknimi.kxnl =nAksxml=SucmA
(Vili2.lxll =n—1%12=8ucm—1<k)
proof (induct m rule: nat-wf-ind)
case (I m n)
from division obtain r ¢ where hi: n = Suc m x ¢ + r and h2: r < m
by iprover
show ?Zcase
proof (cases r)
case 0
with h! have Suc m *x ¢ = n by simp
moreover have Suc m x 1 = Suc m by simp
moreover have | x [= n = [*[2 = Sucm = | < Suc m for [1 (2
by (cases 12) simp-all
ultimately show ¢thesis by iprover
next
case (Suc nat)
with h2 have h: nat < m by simp
moreover from h have Suc nat < Suc m by simp
ultimately have 3k m1 r1. k * m1 = Suc m A k * rl
(WII112. 1% 11 = Suc m — | %12 = Suc nat — [

Suc nat A
k)

A

by (rule 1)
then obtain k m1 r1 where h1’ k x m1 = Suc m
and h2” k *x r1 = Suc nat
and A8 AL 12. 111 = Sucm =l %12 = Sucnat = 1<k
by iprover
have mn: Suc m < n by (rule 1)
from h1 h1’ h2’ Suc have k x (m1 x ¢+ r1) =n
by (simp add: add-mult-distrib2 mult.assoc [symmetric])
moreover have [< k if [lIn: | * [1 = nand [[2m: [x [2 = Suc m for [11 12
proof —
have [% (I1 — 2 % q) = Suc nat
by (simp add: diff-mult-distrib2 h1 Suc [symmetric] mn llin 112m [symmetric])
with [[2m show [< k by (rule h3’)
qed
ultimately show ?thesis using hi1’ by iprover
qged
qed

extract greatest-common-divisor
The extracted program for computing the greatest common divisor is
greatest-common-divisor =
Az. nat-wf-ind-P x
(Az H2 za.
let (za, y) = division za x
in nat-exhaust-P za (Suc z, y, 1)
(Anat. let (z, ya) = H2 nat (Suc z); (za, ya) = ya
in (z, za * y + ya, 1a)))

instantiation nat :: default
begin

definition default = (0::nat)
instance ..
end

instantiation prod :: (default, default) default
begin

definition default = (default, default)
instance ..
end

instantiation fun :: (type, default) default
begin

definition default = (Az. default)

instance ..

end

lemma greatest-common-divisor 7 12 = (4, 3, 2) by eval

end

4 Warshall’s algorithm

theory Warshall
imports HOL— Library. Realizers
begin

Derivation of Warshall’s algorithm using program extraction, based on Berger,
Schwichtenberg and Seisenberger [1].

datatype b =T | F

primrec is-path’ :: (‘la = 'a = b) = '‘a = 'a list = 'a = bool
where

isspath’ rx || z+— raxz="T
| is-path’ rx (y # ys) z+— raxy =T A is-path’ vy ys z

definition is-path :: (nat = nat = b) = (nat * nat list * nat) = nat = nat =
nat = bool
where is-path rp i j k +—
fstp=j A snd (snd p) =k A
list-all (A\x. © < 1) (fst (snd p)) A
is-path’ r (fst p) (fst (snd p)) (snd (snd p))

definition conc :: 'a x ‘a list x 'a = 'a x 'a list x 'a = 'a x 'a list * 'a
where conc p q = (fst p, fst (snd p) Q fst g # fst (snd q), snd (snd q))

theorem is-path’-snoc [simp]: N\z. is-path’ vz (ys @ [y]) z = (is-path’ r x ys y A
ryz=1T)
by (induct ys) simp+

theorem list-all-scoc [simp]: list-all P (zs Q [z]) +— P z A list-all P zs
by (induct zs) (simp+, iprover)

theorem list-all-lemma: list-all P s = (A\z. Pz = Q z) = list-all Q xs
proof —
assume PQ: A\z. Pz = Q=
show list-all P xs = list-all Q) xs
proof (induct xs)
case Nil

show ?case by simp
next
case (Cons y ys)
then have Py: P y by simp
from Cons have Pys: list-all P ys by simp
show ?case
by simp (rule conjl PQ Py Cons Pys)+
qed
qed

theorem lemmal: A\p. is-path r p ijk = is-path r p (Suc i) jk
unfolding is-path-def
apply (simp cong add: conj-cong add: split-paired-all)
apply (erule conjE)+
apply (erule list-all-lemma)
apply simp
done

theorem lemma2: \p. is-pathrp 0jk = rjk=T
unfolding is-path-def
apply (simp cong add: conj-cong add: split-paired-all)
apply (case-tac a)
apply simp-all
done

theorem is-path’-conc: is-path’ v j s i = is-path’ r i ys k =
is-path’ rj (zs Q i # ys) k
proof —
assume pys: is-path’ ri ys k
show Aj. is-path’ r j xs i = is-path’ rj (zs Q i # ys) k
proof (induct xs)
case (Nil j)
then have rj i = T by simp
with pys show ?case by simp
next
case (Cons z zs j)
then have jzr: 7 j z = T by simp
from Cons have pzs: is-path’ v z zs i by simp
show ?case
by simp (rule conjI jzr Cons pzs)+
qed
qed

theorem lemma3:
Ap q. is-path rp i ji = is-path r qi ik =
is-path r (conc p q) (Suc i) jk
apply (unfold is-path-def conc-def)
apply (simp cong add: conj-cong add: split-paired-all)
apply (erule conjE)+

apply (rule conjI)

apply (erule list-all-lemma)
apply simp

apply (rule conjI)

apply (erule list-all-lemma)
apply simp

apply (rule is-path’-conc)
apply assumption+

done

theorem lemmas:
Ap. is-path v p (Suc i) jk = — is-pathrpijk =
(3q. is-path r qiji) A (3q’. is-path r q' iik)
proof (simp cong add: conj-cong add: split-paired-all is-path-def, (erule conjE)+)
fix s
assume asms:
list-all (A\xz. © < Suc 7) zs
is-path’ v j xs k
= list-all (M. © < @) s
show (Jys. list-all (Az. < @) ys A is-path’ rj ys i) A
(Fys. list-all (Az. z < i) ys A is-path’ r i ys k)
proof
have Aj. list-all (A\z. x < Suc 7) ©s = is-path’ r j xs k =
= list-all (A\z. © < ©) s =
Jys. list-all (A\x. x < 4) ys A is-path’ r j ys i (is PROP 2ih xs)
proof (induct xs)
case Nil
then show ?Zcase by simp
next
case (Cons a as j)
show ?case
proof (cases a=1)
case True
show ?thesis
proof
from True and Cons have rji = T by simp
then show list-all (A\x. x < %) [| A is-path’ v j [] i by simp
qed
next
case Fulse
have PROP ?ih as by (rule Cons)
then obtain ys where ys: list-all (Az. © < i) ys A is-path’ r a ys i
proof
from Cons show list-all (Az. © < Suc i) as by simp
from Cons show is-path’ r a as k by simp
from Cons and False show — list-all (Az. © < ©) as by (simp)
qed
show ?thesis
proof

from Cons False ys
show list-all (Az. £<i) (aftys) A is-path’ r j (a#ys) i by simp
qed
qed
qed
from this asms show Jys. list-all (A\z. © <) ys A is-path’ rj ys i .
have Ak. list-all (A\z. © < Suc i) xs = is-path’ r j zs k =
= list-all (A\z. © < i) s =
Jys. list-all (Az. < @) ys A is-path’ r i ys k (is PROP ?ih xs)
proof (induct zs rule: rev-induct)
case Nil
then show ?Zcase by simp
next
case (snoc a as k)
show ?case
proof (cases a=1)
case True
show ?thesis
proof
from True and snoc have r ¢ k = T by simp
then show list-all (Ax. x < 7) [| A is-path’ r i || k by simp
qged
next
case Fulse
have PROP ?ih as by (rule snoc)
then obtain ys where ys: list-all (Az. © < i) ys A is-path’ r i ys a
proof
from snoc show list-all (Az. © < Suc i) as by simp
from snoc show is-path’ r j as a by simp
from snoc and Fualse show — list-all (Az. v < ©) as by simp
qed
show ?thesis
proof
from snoc False ys
show list-all (Az. z < @) (ys @ [a]) A is-path’ ri (ys Q [a]) &k
by simp
qged
qed
qed
from this asms show Jys. list-all (Az. © < i) ys A is-path’ r i ys k .
qed
qged

theorem lemmad’:
Ap. is-path v p (Suc i) jk = — is-pathrpijk =
- (Vq. —ispathrqiji) N— (Vq' = ispathrq' iik)
by (iprover dest: lemmad)

theorem warshall: N\j k. = (3 p. is-path rp i jk) VvV (I p. is-path rpijk)

proof (induct 7)
case (0j k)
show ?Zcase
proof (cases rj k)
assume rj k=T
then have is-path v (j, [], k) 0j k
by (simp add: is-path-def)
then have Jp. is-path rp 05k ..
then show ?thesis ..
next
assume rj k= F
then have r j k # T by simp
then have — (3 p. is-path rp 0 j k)
by (iprover dest: lemmaZ2)
then show ?thesis ..
qged
next
case (Suc ij k)
then show ?case
proof
assume h1: = (3 p. is-path r p i j k)
from Suc show Zcase
proof
assume — (I p. is-path r p i j 1)
with Al have — (3 p. is-path r p (Suc i) j k)
by (iprover dest: lemmad”)
then show ?case ..
next
assume dp. is-path rpiji
then obtain p where h2: is-path rpiji ..
from Suc show Zcase
proof
assume — (I p. is-path r p i i k)
with hl have — (3 p. is-path r p (Suc 7) j k)
by (iprover dest: lemma5")
then show Zcase ..
next
assume dgq. is-path r qi i k
then obtain ¢ where is-path r qi ik ..
with h2 have is-path r (conc p q) (Suc i) j k
by (rule lemma3)
then have Jpq. is-path r pq (Suc i) jk ..
then show ?case ..
qed
qed
next
assume dp. is-path rp i jk
then have Jp. is-path r p (Suc i) j k
by (iprover intro: lemmal)

10

then show ?case ..
qed
qed

extract warshall
The program extracted from the above proof looks as follows

warshall =
Az za xb xc.
nat-induct-P xa
(Aza zb. case x za xb of T = Some (za, [|, zb) | F = None)
(Ax H2 za zb.
case H2 xa zb of
None =
case H2 za = of None = None
| Some ¢ =
case H2 x xb of None = None | Some ga = Some (conc q qa)
| Some ¢ = Some q)
xb xc

The corresponding correctness theorem is

case warshall v i j k of None = Vx. = is-path r x i j k
| Some q = is-path r qijk

ML-val @{code warshall}

end

5 Higman’s lemma

theory Higman
imports Main
begin

Formalization by Stefan Berghofer and Monika Seisenberger, based on Co-
quand and Fridlender [2].

datatype letter = A | B

inductive emb :: letter list = letter list = bool
where
emb0 [Pure.intro]: emb || bs
| emb! [Pure.intro]: emb as bs = emb as (b # bs)
| emb2 [Pure.intro]: emb as bs => emb (a # as) (a # bs)

inductive L :: letter list = letter list list = bool

for v :: letter list
where

11

L0 [Pure.intro]: emb wv = L v (w # ws)
| L1 [Pure.intro]: L v ws = L v (w # ws)

inductive good :: letter list list = bool
where

good0 [Pure.introl: L w ws => good (w # ws)
| goodl [Pure.intro]: good ws = good (w # ws)

inductive R :: letter = letter list list = letter list list = bool
for a :: letter

where
RO [Pure.intro]: R a [] ||

| R1 [Pure.intro]: R a vs ws => R a (w # vs) ((a # w) # ws)

inductive T :: letter = letter list list = letter list list = bool
for a :: letter
where
TO0 [Pure.intro]: a # b = R b ws zs = T a (w # zs) ((a # w) # zs)
| T1 [Pure.intro]: T a ws zs = T a (w # ws) ((a # w) # 2s)
| T2 [Pure.intro]: a £ b = T a ws 28 = T a ws ((b # w) # 29)

inductive bar :: letter list list = bool
where
barl [Pure.introl: good ws = bar ws
| bar2 [Pure.intro]: (Aw. bar (w # ws)) = bar ws

theorem propl: bar ([] # ws)
by iprover

theorem lemmal: L as ws = L (a # as) ws
by (erule L.induct) iprover+

lemma lemma2” R a vs ws = L as vs = L (a # as) ws
supply [[simproc del: defined-all]]
apply (induct set: R)
apply (erule L.cases)
apply simp+
apply (erule L.cases)
apply simp-all
apply (rule L0O)
apply (erule emb2)
apply (erule L1)
done

lemma lemma2: R a vs ws => good vs => good ws
supply [[simproc del: defined-all]]
apply (induct set: R)
apply iprover
apply (erule good.cases)

12

apply simp-all

apply (rule good0)
apply (erule lemma2’)
apply assumption
apply (erule goodl)
done

lemma lemma3” T a vs ws => L as vs = L (a # as) ws
supply [[simproc del: defined-all]]
apply (induct set: T)
apply (erule L.cases)
apply simp-all
apply (rule L0O)
apply (erule emb2)
apply (rule L1)
apply (erule lemmal)
apply (erule L.cases)
apply simp-all
apply iprover+
done

lemma lemma3: T a ws zs = good ws = good zs
supply [[simproc del: defined-all]]
apply (induct set: T)
apply (erule good.cases)
apply simp-all
apply (rule good0)
apply (erule lemmal)
apply (erule good1)
apply (erule good.cases)
apply simp-all
apply (rule good0)
apply (erule lemma3’)
apply iprover+
done

lemma lemma4: R a ws zs = ws # [| = T a ws zs
supply [[simproc del: defined-all]]
apply (induct set: R)
apply iprover
apply (case-tac vs)
apply (erule R.cases)
apply simp
apply (case-tac a)
apply (rule-tac b=B in T0)
apply simp
apply (rule R0)
apply (rule-tac b=A in T0)
apply simp

13

apply (rule RO)
apply simp
apply (rule T1)
apply simp
done

lemma letter-neq: a # b = ¢ # a = ¢ = b for a b c :: letter

apply (case-tac a)

apply (case-tac b)

apply (case-tac ¢, simp, simp)

apply (case-tac ¢, simp, simp)

apply (case-tac b)

apply (case-tac ¢, simp, simp)

apply (case-tac ¢, simp, simp)

done

lemma letter-eg-dec: a = bV a # b for a b :: letter

apply (case-tac a)

apply (case-tac b)

apply simp

apply simp

apply (case-tac b)

apply simp

apply simp

done

theorem prop2:
assumes ab: a # b and bar: bar xs
shows Ays zs. bar ys = T a s zs = T b ys zs = bar zs
using bar
proof induct
fix zs zs
assume 71 a zs zs and good zs
then have good zs by (rule lemma3)
then show bar zs by (rule barl)
next
fix xs ys
assume I: Aw ys zs. bar ys = T a (w # z8) 2s = T b ys zs = bar zs
assume bar ys
then show Azs. T a xs zs = T b ys zs = bar zs
proof induct
fix ys zs
assume T b ys zs and good ys
then have good zs by (rule lemma3)
then show bar zs by (rule barl)
next
fix ys zs
assume I Nw zs. T a xs zs = T b (w # ys) zs = bar zs
and ys: Aw. bar (w # ys) and Ta: T a xs zs and Tb: T b ys zs

14

show bar zs
proof (rule bar2)
fix w
show bar (w # zs)
proof (cases w)
case Nil
then show %thesis by simp (rule propl1)
next
case (Cons ¢ cs)
from letter-eq-dec show ?thesis
proof
assume ca: ¢ = a
from ab have bar ((a # cs) # zs) by (iprover intro: I ys Ta Tb)
then show %thesis by (simp add: Cons ca)
next
assume ¢ # a
with ab have cb: ¢ = b by (rule letter-neq)
from ab have bar ((b # cs) # zs) by (iprover intro: I' Ta Tb)
then show ?thesis by (simp add: Cons cb)
qed
qed
qed
qed
qed

theorem prop3:
assumes bar: bar xs
shows Azs. zs # [= R a xs zs = bar zs
using bar
proof induct
fix xs zs
assume R a zs zs and good xs
then have good zs by (rule lemmaZ2)
then show bar zs by (rule barl)
next
fix xs zs
assume I: Aw zs. w # xs # [] = R a (w # xs) zs = bar zs
and zsb: Aw. bar (w # zs) and zsn: zs # [| and R: R a xs zs
show bar zs
proof (rule bar2)
fix w
show bar (w # zs)
proof (induct w)

case Nil
show ?case by (rule propl1)
next

case (Cons ¢ cs)
from letter-eq-dec show ?case
proof

15

assume ¢ = a
then show ?%thesis by (iprover intro: I [simplified] R)

next
from R xsn have T: T a zs zs by (rule lemma4)
assume c # a
then show %thesis by (iprover intro: prop2 Cons xsb xsn R T)

qed

qed
qed
qed

theorem higman: bar ||
proof (rule bar2)
fix w
show bar [w)
proof (induct w)
show bar [[|]] by (rule propl1)
next
fix ¢ cs assume bar [cs]
then show bar [¢ # cs] by (rule prop3) (simp, iprover)
qged
qed

primrec is-prefiz :: 'a list = (nat = 'a) = bool
where
is-prefix [| f = True
| is-prefix (x # xzs) f = (x = [(length zs) A is-prefix xs f)

theorem L-idx:
assumes L: L w ws
shows is-prefic ws f = 3i. emb (f i) w A i < length ws
using L
proof induct
case (L0 v ws)
then have emb (f (length ws)) w by simp
moreover have length ws < length (v # ws) by simp
ultimately show ?case by iprover
next
case (L1 ws v)
then obtain ¢ where emb: emb (f i) w and ¢ < length ws
by simp iprover
then have i < length (v # ws) by simp
with emb show ?case by iprover
qed

theorem good-idz:
assumes good: good ws
shows is-prefic ws f = 3ij. emb (fi) (f)) Ni<j
using good

16

proof induct
case (good0 w ws)
then have w = f (length ws) and is-prefix ws f by simp-all
with good0 show ?case by (iprover dest: L-idx)
next
case (goodl ws w)
then show ?case by simp
qed

theorem bar-idz:
assumes bar: bar ws
shows is-prefic ws f = Jij. emb (fi) (fj) Ni <}
using bar
proof induct
case (barl ws)
then show ?case by (rule good-idr)
next
case (bar2 ws)
then have is-prefiz (f (length ws) # ws) f by simp
then show Zcase by (rule bar2)
qed

Strong version: yields indices of words that can be embedded into each other.

theorem higman-idz: 3 (i::nat) j. emb (f i) (fj) N i <j
proof (rule bar-idz)

show bar [| by (rule higman)

show is-prefiz [| f by simp
qed

Weak version: only yield sequence containing words that can be embedded
into each other.

theorem good-prefiz-lemma:
assumes bar: bar ws
shows is-prefix ws f = Jwvs. is-prefizx vs f A good vs
using bar
proof induct
case barl
then show ?case by iprover
next
case (bar2 ws)
from bar2.prems have is-prefix (f (length ws) # ws) f by simp
then show ?case by (iprover intro: bar2)
qed

theorem good-prefix: Fvs. is-prefix vs f A good vs
using higman

by (rule good-prefiz-lemma) simp+

end

17

5.1 Extracting the program

theory Higman-FExtraction
imports Higman HOL— Library.Realizers HOL— Library. Open-State-Syntax
begin

declare R.induct [ind-realizer]
declare T.induct [ind-realizer]
declare L.induct [ind-realizer]
declare good.induct [ind-realizer)
declare bar.induct [ind-realizer]

extract higman-idx

Program extracted from the proof of higman-idz:
higman-idx = Ax. bar-idx x higman

Corresponding correctness theorem:

emb (f (fst (higman-idz f))) (f (snd (higman-idz f))) A
fst (higman-idz f) < snd (higman-idz f)

Program extracted from the proof of higman:

higman =
bar2 [(rec-list (propl []) (Aa w H. prop3 a [a # w] H (R1 || [| w R0)))

Program extracted from the proof of propI:

propl =
Az, bar2 ([# x) (Aw. barl (w # [] #) (good0 w ([] # z) (LO [] x)))

Program extracted from the proof of prop2:

prop2 =
Az za zb zc H.
compat-barT .rec-split-barT
(Aws za xb zba H Ha Haa. barl zba (lemma3 x Ha za))
(Aws xb r zba zbb H.
compat-barT .rec-split-barT (Aws x b H Ha. barl zb (lemma3 za Ha x))
(Awsa zb ra xc H Ha.

bar2 xc
(Aw. case w of [| = propl zc
| a # list =
case letter-eq-dec a = of
Left =

r list wsa ((z # list) # xzc) (bar2 wsa zb)
(T1 ws zc list H) (T2 z wsa xc list Ha)
| Right =

18

ra list ((za # list) # xc) (T2 xa ws zc list H)
(T1 wsa zc list Ha)))
H zbb)
H zb zc

Program extracted from the proof of prop3:

prop3 =
Az za H.
compat-barT .rec-split-barT (Aws za zb H. barl zb (lemma2 x H za))
(Aws za r zb H.
bar2 xb
(rec-list (prop1 xb)
(Aa w Ha.
case letter-eq-dec a = of
Left = rw ((z # w) # xb) (R1 ws zb w H)
| Right =
prop2 a z ws ((a # w) # xb) Ha (bar2 ws za)
(TO0 x ws b w H) (T2 a ws zb w (lemma4 xz H)))))
H za

5.2 Some examples

instantiation LT and TT :: default
begin

definition default = L0 [] ||
definition default = TO A || [] [] RO
instance ..

end

function mk-word-auz :: nat = Random.seed = letter list x Random.seed
where
mk-word-auz k = exec {
i < Random.range 10;
(if i > 7Nk >2VEk> 1000 then Pair ||
else exec {
let 1 = (if i mod 2 = 0 then A else B);
Is < mk-word-aux (Suc k);
Pair (I # ls)
N}
by pat-completeness auto
termination
by (relation measure ((—) 1001)) auto

definition mk-word :: Random.seed = letter list X Random.seed

19

where mk-word = mk-word-auz 0

primrec mk-word-s :: nat = Random.seed = letter list X Random.seed
where
mk-word-s 0 = mk-word
| mk-word-s (Suc n) = exec {
- < mk-word;
mk-word-s n

}

definition g1 :: nat = letter list
where g1 s = fst (mk-word-s s (20000, 1))

definition ¢2 :: nat = letter list
where ¢2 s = fst (mk-word-s s (50000, 1))

fun f1 :: nat = letter list

where
f] 0= [A7 A]
| f1 (Suc 0) = [B]
| f1 (Suc (Suc 0)) = [4, B]
| f1-=]]
fun f2 :: nat = letter list
where
f20 =14, A
| 12 (Suc 0) = [B]
| 2 (Suc (Suc 0)) = [B, A]
| f2-=]
ML-val «
local

val higman-idz = @Q{code higman-idz};
val g1 = @{code g1};
val g2 = Q{code g2};
val f1 = @{code f1};
val f2 = @{code f2};
mn
val (i1, j1) = higman-idz g1;
val (v, wl) = (g1 i1, g1 j1);
val (12, j2) = hzgman idz g2;
val (v2, w2) = (92142, 92 j2);
(i3, j3) = higman-idz f1;
(03, w3) = (f1 43, f1 j3);
val (i4, j4) = higman—z’dx 12;
val (vf, w) = (24, 2 j4);

end;

20

end

6 The pigeonhole principle

theory Pigeonhole
imports Util HOL— Library.Realizers HOL— Library. Code- Target-Numeral
begin

We formalize two proofs of the pigeonhole principle, which lead to extracted
programs of quite different complexity. The original formalization of these
proofs in NUPRL is due to Aleksey Nogin [3].

This proof yields a polynomial program.

theorem pigeonhole:
NNt i< Sucn=fi<n)=3Fij.i<SucnAj<iANfi=f]j
proof (induct n)
case (
then have Suc 0 < Suc 0 A 0 < Suc 0 A f (Suc 0) = f 0 by simp
then show ?case by iprover
next
case (Suc n)
have r:
k < Suc (Suc n) =
(Nij. Suck <i= i< Suc (Sucn) = j<i=fi#fj =
(Fij.i<kANj<iAfi=fj) fork
proof (induct k)
case (
let ?f = Ai. if f i = Suc n then f (Suc (Suc n)) else f i
have ~ (Fij. i < Sucn Aj<iA ?fi= 97
proof
assume 37 j. i < Sucn ANj<iN ?fi=2fj
then obtain 7 j where ¢: i < Sucnand j: j < ¢and f: 9fi = 9fj
by iprover
from j have i-nz: Suc 0 < ¢ by simp
from 7 have iSSn: i < Suc (Suc n) by simp
have 5055n: Suc 0 < Suc (Suc n) by simp
show Fulse
proof cases
assume fi: fi = Sucn
show Fulse
proof cases
assume fj: fj = Sucn
from i-nz and iSSn and j have fi # fj by (rule 0)
moreover from fi have fi = fj
by (simp add: fj [symmetric])
ultimately show ¢thesis ..
next
from ¢ and j have j < Suc (Suc n) by simp
with S0SSn and le-refl have f (Suc (Suc n)) # fj

21

by (rule 0)
moreover assume fj # Suc n
with fi and f have f (Suc (Suc n)) = fj by simp
ultimately show False ..
qged
next
assume fi: fi # Sucn
show Fulse
proof cases
from 7 have i < Suc (Suc n) by simp
with S0S5Sn and le-refl have f (Suc (Suc n)) # fi
by (rule 0)
moreover assume fj = Suc n
with fi and f have f (Suc (Suc n)) = fi by simp
ultimately show False ..
next
from i-nz and SSn and j
have f i # fj by (rule 0)
moreover assume fj # Suc n
with fi and f have fi = fj by simp
ultimately show Fulse ..
qged
qed
qed
moreover have ?f ¢ < n if 1 < Suc n for ¢
proof —
from that have i: i < Suc (Suc n) by simp
have f (Suc (Suc n)) # fi
by (rule 0) (simp-all add: 7)
moreover have f (Suc (Suc n)) < Suc n
by (rule Suc) simp
moreover from ¢ have | < Suc (Suc n) by simp
then have fi < Suc n by (rule Suc)
ultimately show ?thesis
by simp
qed
then have 3ij. i < Sucn Aj<i A ?fi=9fj
by (rule Suc)
ultimately show Zcase ..
next
case (Suc k)
from search [OF nat-eg-dec] show ?case
proof
assume 3j<Suc k. f (Suc k) = fj
then show ?case by (iprover intro: le-refl)
next
assume nex: - (3j<Suc k. f (Suc k) = fj)
have 3ij. i <kANj<iAfi=Ff]
proof (rule Suc)

22

from Suc show k < Suc (Suc n) by simp
fix 7 j assume k: Suc k < 7 and i: ¢ < Suc (Suc n)
and j: j < ¢
show fi # fj
proof cases
assume eq: i = Suc k
show ?thesis
proof
assume fi = fj
then have f (Suc k) = fj by (simp add: eq)
with ner and j and eq show Fulse by iprover
qed
next
assume 1 # Suc k
with k£ have Suc (Suc k) < i by simp
then show ?thesis using ¢ and j by (rule Suc)
qged
qed
then show ?thesis by (iprover intro: le-Sucl)
qed
qged
show ?case by (rule r) simp-all
qed

The following proof, although quite elegant from a mathematical point of
view, leads to an exponential program:

theorem pigeonhole-slow:
N (Ni. i <Sucn=fi<n)=3Fiji<SucnAj<iANfi=f]
proof (induct n)
case (
have Suc 0 < Suc 0 ..
moreover have 0 < Suc 0 ..
moreover from 0 have f (Suc 0) = f 0 by simp
ultimately show ?case by iprover
next
case (Suc n)
from search [OF nat-eq-dec] show ?case
proof
assume 3j < Suc (Suc n). f (Suc (Suc n)) = fj
then show ?case by (iprover intro: le-refl)
next
assume — (3j < Suc (Suc n). f (Suc (Suc n)) = f7)
then have nex: Vj < Suc (Suc n). f (Suc (Suc n)) # fj by iprover
let ?f = Ai. if fi = Suc n then f (Suc (Suc n)) else fi
have A\i. i < Sucn = ?fi<n
proof —
fix 7 assume 7: ¢ < Suc n
show ?thesis i
proof (cases fi = Suc n)

23

case True
from ¢ and nez have f (Suc (Suc n)) # f i by simp
with True have f (Suc (Suc n)) # Suc n by simp
moreover from Suc have f (Suc (Suc n)) < Suc n by simp
ultimately have f (Suc (Suc n)) < n by simp
with True show ?thesis by simp
next
case Fulse
from Suc and 7 have fi < Suc n by simp
with False show ?thesis by simp
qed
qed
then have 3ij. i < Sucn Aj< i A ?fi= ?2fjby (rule Suc)
then obtain ¢ j where i: i < Sucn and ji: j < ¢ and f: 9fi = ?fj
by iprover
have fi=fj
proof (cases fi = Suc n)
case True
show ?thesis
proof (cases f j = Suc n)
assume fj = Sucn
with True show ?thesis by simp
next
assume fj # Sucn
moreover from i ji nex have f (Suc (Suc n)) # fj by simp
ultimately show ?thesis using True f by simp
qed
next
case Fulse
show ?thesis
proof (cases f j = Suc n)
assume fj = Sucn
moreover from ¢ nex have f (Suc (Suc n)) # fi by simp
ultimately show ?thesis using False f by simp
next
assume fj # Sucn
with False f show ?thesis by simp
qed
qed
moreover from ¢ have ¢ < Suc (Suc n) by simp
ultimately show ?thesis using ji by iprover
qed
qed

extract pigeonhole pigeonhole-slow
The programs extracted from the above proofs look as follows:

pigeonhole =
Az. nat-induct-P x (Az. (Suc 0, 0))

24

(Az H2 za.
nat-induct-P (Suc (Suc z)) default
(A\z H2.
case search (Suc z) (Azb. nat-eq-dec (za (Suc z)) (za zb)) of
None = let (z, y) = H2 in (x, y) | Some p = (Suc z, p)))

pigeonhole-slow =
Az. nat-induct-P x (Az. (Suc 0, 0))
(Az H2 za.
case search (Suc (Suc x))
(Azb. nat-eq-dec (za (Suc (Suc x))) (za xb)) of
None =
let (z, y) =
H2 (Xi. if za i = Suc z then za (Suc (Suc x)) else za 1)
in (z, y)
| Some p = (Suc (Suc z), p))

The program for searching for an element in an array is

search =
Az H. nat-induct-P x None
(\y Ha.
case Ha of None = case H y of Left = Some y | Right = None
| Some p = Some p)

The correctness statement for pigeonhole is
(Ni. it < Sucn = fi<n)=

fst (pigeonhole n f) < Suc n A
snd (pigeonhole n f) < fst (pigeonhole n f) A

f (fst (pigeonhole n f)) = f (snd (pigeonhole n f))

In order to analyze the speed of the above programs, we generate ML code
from them.

instantiation nat :: default
begin

definition default = (0::nat)
instance ..
end

instantiation prod :: (default, default) default
begin

definition default = (default, default)

instance ..

25

end

definition test n u = pigeonhole (nat-of-integer n) (Am. m — 1)
definition test’ n u = pigeonhole-slow (nat-of-integer n) (Am. m — 1)
definition test’’ u = pigeonhole 8 (List.nth [0, 1, 2, 3, 4, 5, 6, 3, 7, 8)])

ML-val timeit (Q{code test} 10)
ML-val timeit (Q{code test’} 10)
ML-val timeit (Q{code test} 20)
ML-val timeit (Q{code test’} 20)
ML-val timeit (Q{code test} 25)
ML-val timeit (Q{code test'} 25)
ML-val timeit (Q{code test} 500)
ML-val timeit Q{code test’’}

end

7 Euclid’s theorem

theory Fuclid

imports
HOL— Computational-Algebra. Primes
Util
HOL- Library. Code-Target-Numeral
HOL— Library. Realizers

begin

A constructive version of the proof of Euclid’s theorem by Markus Wenzel
and Freek Wiedijk [4].

lemma factor-greater-onel: n = mxk=— m<n—k<n=— Suc 0 <m
by (induct m) auto

lemma factor-greater-one2: n =mx k= m<n=%k<n= Suc0 <k
by (induct k) auto

lemma prod-mn-less-k: 0 <n = 0 <k= Suc 0 <m= mxn=kFk=n
<k
by (induct m) auto

lemma prime-eq: prime (p:nat) +— 1 <p A (¥Vm. mdodp — 1 <m — m
=p)

apply (simp add: prime-nat-iff)

apply (rule iffT)

apply blast

apply (erule conjFE)

apply (rule conjI)

apply assumption

apply (rule olll impI)+

26

apply (erule allE)

apply (erule impFE)

apply assumption

apply (case-tac m = 0)
apply simp

apply (case-tac m = Suc 0)
apply simp

apply simp

done

lemma prime-eq”: prime (p:nat) «— 1 <p AN Vmk.p=mxk — 1 <m—
m = p)
by (simp add: prime-eq dvd-def HOL.all-simps [symmetric| del: HOL.all-simps)

lemma not-prime-ex-mk:
assumes n: Suc 0 < n
shows (Im k. Suc 0 <m A Suc 0 <kAm<nAk<nAn=mxk)V prime
n
proof —
from nat-eg-dec have (3m<n. n =m x k) V - (Im<n. n = m * k) for k
by (rule search)
then have (Jk<n. Im<n. n=m x k) V = (FTk<n. Im<n. n = m x k)
by (rule search)
then show ?thesis
proof
assume Jk<n. Im<n.n = m *x k
then obtain £ m where k: k<n and m: m<n and nmk: n = m % k
by iprover
from nmk m k have Suc 0 < m by (rule factor-greater-onel)
moreover from nmk m k have Suc 0 < k by (rule factor-greater-one2)
ultimately show ?thesis using k m nmk by iprover
next
assume — (Fk<n. Im<n. n = m * k)
then have A: Vk<n.Vm<n. n # m x k by iprover
have Vmk. n=mxk — Suc0 <m—m=mn
proof (intro alll impl)
fix m k
assume nmk: n = m x k
assume m: Suc 0 < m
from n m nmk have k: 0 < k
by (cases k) auto
moreover from n have n: 0 < n by simp
moreover note m
moreover from nmk have m x kK = n by simp
ultimately have kn: k < n by (rule prod-mn-less-k)
show m = n
proof (cases k = Suc 0)
case True
with nmk show ?thesis by (simp only: mult-Suc-right)

27

next
case Fulse
from m have 0 < m by simp
moreover note n
moreover from Fulse n nmk k have Suc 0 < k by auto
moreover from nmk have k * m = n by (simp only: ac-simps)
ultimately have mn: m < n by (rule prod-mn-less-k)
with kn A nmk show ?thesis by iprover
qed
qed
with n have prime n
by (simp only: prime-eq’ One-nat-def simp-thms)
then show ?thesis ..
qed
qed

lemma dvd-factorial: 0 < m = m < n = m dvd fact n
proof (induct n rule: nat-induct)
case (
then show ?case by simp
next
case (Suc n)
from <m < Suc n)» show Zcase
proof (rule le-SucE)
assume m < n
with «0 < m» have m dvd fact n by (rule Suc)
then have m dvd (fact n x Suc n) by (rule dvd-mult2)
then show %thesis by (simp add: mult.commute)
next
assume m = Suc n
then have m dvd (fact n * Suc n)
by (auto intro: dvdl simp: ac-simps)
then show %thesis by (simp add: mult.commute)
qed
qed

lemma dvd-prod [iff]: n dvd (J] m::nat €# mset (n # ns). m)
by (simp add: prod-mset-Un)

definition all-prime :: nat list = bool
where all-prime ps +— (V pEset ps. prime p)

lemma all-prime-simps:
all-prime ||
all-prime (p # ps) <— prime p A all-prime ps
by (simp-all add: all-prime-def)

lemma all-prime-append: all-prime (ps @ gs) <— all-prime ps A all-prime gs
by (simp add: all-prime-def ball-Un)

28

lemma split-all-prime:
assumes all-prime ms and all-prime ns
shows dg¢s. all-prime gs N
(I m::nat €# mset gs. m) = ([munat €# mset ms. m) = ([[m::nat €# mset
ns. m)
(is Jgs. 2P gs N 2Q qs)
proof —
from assms have all-prime (ms @ ns)
by (simp add: all-prime-append)
moreover
have ([[m:nat €# mset (ms @ ns). m) = ([[m:nat €# mset ms. m) =
(ITm::nat €# mset ns. m)
using assms by (simp add: prod-mset-Un)
ultimately have ?P (ms @Q ns) A 2Q (ms @ ns) ..
then show ?thesis ..
qed

lemma all-prime-nempty-g-one:

assumes all-prime ps and ps # ||

shows Suc 0 < ([m:nat €# mset ps. m)

using <ps # [<all-prime ps»

unfolding One-nat-def [symmetric]

by (induct ps rule: list-nonempty-induct)

(simp-all add: all-prime-simps prod-mset-Un prime-gt-1-nat less-1-mult del:

One-nat-def)

lemma factor-exists: Suc 0 < n => (I ps. all-prime ps A (]| m::nat €# mset ps.
m) =n)
proof (induct n rule: nat-wf-ind)
case (1 n)
from «Suc 0 < n»
have (Im k. Suc 0 < m A Suc 0 <kAm<nAk<nAn=m=xk)V prime
n
by (rule not-prime-ez-mk)
then show ?case
proof
assume Im k. Suc 0 < m A Suc 0 <kAm<nAk<nAn=msxk
then obtain m k where m: Suc 0 < m and k: Suc 0 < k and mn: m < n
and kn: k < n and nmk: n = m * k
by iprover
from mn and m have 3 ps. all-prime ps A ([] m::nat €# mset ps. m) = m
by (rule 1)
then obtain ps! where all-prime ps! and prod-psl-m: (]| m::nat €# mset
psl. m) =m
by iprover
from kn and k have I ps. all-prime ps A ([[m::nat €# mset ps. m) = k
by (rule 1)
then obtain ps2 where all-prime ps2 and prod-ps2-k: (]| m::nat €# mset

29

ps2. m) =k
by iprover
from <all-prime psi» <all-prime ps2>
have I ps. all-prime ps A ([[m::nat €# mset ps. m) =
(ITm::nat €# mset psi. m) x (][m::nat €# mset ps2. m)
by (rule split-all-prime)
with prod-ps1-m prod-ps2-k nmk show ?thesis by simp
next
assume prime n then have all-prime [n] by (simp add: all-prime-simps)
moreover have ([[m:nat €# mset [n]. m) = n by (simp)
ultimately have all-prime [n] A ([] m::nat €# mset [n]. m) = n ..
then show ?thesis ..
qed
qed

lemma prime-factor-exists:
assumes N: (I1:nat) < n
shows 3 p. prime p A p dvd n
proof —
from N obtain ps where all-prime ps and prod-ps: n = ([[m::nat €# mset
ps. m)
using factor-exists by simp iprover
with N have ps # ||
by (auto simp add: all-prime-nempty-g-one)
then obtain p gs where ps: ps = p # gs
by (cases ps) simp
with <all-prime ps» have prime p
by (simp add: all-prime-simps)
moreover from <all-prime ps> ps prod-ps have p dvd n
by (simp only: dvd-prod)
ultimately show #“thesis by iprover
qed

Euclid’s theorem: there are infinitely many primes.

lemma Fuclid: Ap::nat. prime p A n < p
proof —
let %k = fact n + (1::nat)
have 1 < %k by simp
then obtain p where prime: prime p and dvd: p dvd ?k
using prime-factor-exists by iprover
have n < p
proof —
have - p < n
proof
assume pn: p < n
from <prime p> have 0 < p by (rule prime-gt-0-nat)
then have p dvd fact n using pn by (rule dvd-factorial)
with dvd have p dvd %k — fact n by (rule dvd-diff-nat)
then have p dvd 1 by simp

30

with prime show Fulse by auto
qed
then show #?thesis by simp
qed
with prime show ?thesis by iprover
qed

extract Fuclid
The program extracted from the proof of Euclid’s theorem looks as follows.
Euclid = Az. prime-factor-exists (fact z + 1)
The program corresponding to the proof of the factorization theorem is
factor-exists =
Az. nat-wf-ind-P x
(A\zx H2.
case not-prime-ex-mk x of None = [z]

| Some p = let (z, y) = p in split-all-prime (H2 z) (H2 y))

instantiation nat :: default
begin

definition default = (0::nat)
instance ..
end

instantiation list :: (type) default
begin

definition default = ||
instance ..
end
primrec iterate :: nat = (‘a = 'a) = 'a = 'a list
where
iterate 0 f x = |]
| iterate (Suc n) foz = (let y = fz iny # iterate n fy)

lemma factor-exists 1007 = [53, 19] by eval

lemma factor-exists 567 = [7, 3, 3, 3, 8] by eval
lemma factor-exists 345 = [23, 5, 3] by eval
lemma factor-exists 999 = [37, 3, 3, 3] by eval
lemma factor-exists 876 = [73, 3, 2, 2] by eval

31

lemma iterate 4 Euclid 0 = [2, 8, 7, 71] by eval

end

References

1]

U. Berger, H. Schwichtenberg, and M. Seisenberger. The Warshall algo-
rithm and Dickson’s lemma: Two examples of realistic program extrac-
tion. Journal of Automated Reasoning, 26:205—221, 2001.

T. Coquand and D. Fridlender. A proof of Higman’s lemma by structural
induction. Technical report, Chalmers University, November 1993.

A. Nogin. Writing constructive proofs yielding efficient extracted pro-
grams. In D. Galmiche, editor, Proceedings of the Workshop on Type-
Theoretic Languages: Proof Search and Semantics, volume 37 of Elec-
tronic Notes in Theoretical Computer Science. Elsevier Science Publish-
ers, 2000.

M. Wenzel and F. Wiedijk. A comparison of the mathematical proof
languages Mizar and Isar. Journal of Automated Reasoning, 29(3-
4):389-411, 2002.

32

	Auxiliary lemmas used in program extraction examples
	Quotient and remainder
	Greatest common divisor
	Warshall's algorithm
	Higman's lemma
	Extracting the program
	Some examples

	The pigeonhole principle
	Euclid's theorem

