

Examples for program extraction in Higher-Order Logic

Stefan Berghofer

January 18, 2026

Contents

1	Auxiliary lemmas used in program extraction examples	1
2	Quotient and remainder	3
3	Greatest common divisor	4
4	Warshall's algorithm	6
5	Higman's lemma	11
5.1	Extracting the program	18
5.2	Some examples	19
6	The pigeonhole principle	21
7	Euclid's theorem	26

1 Auxiliary lemmas used in program extraction examples

```
theory Util
imports Main
begin
```

Decidability of equality on natural numbers.

```
lemma nat-eq-dec:  $\bigwedge n::nat. m = n \vee m \neq n$ 
  apply (induct m)
  apply (case-tac n)
  apply (case-tac [3] n)
  apply (simp only: nat.simps, iprover?)+
  done
```

Well-founded induction on natural numbers, derived using the standard structural induction rule.

```

lemma nat-wf-ind:
  assumes R:  $\bigwedge x::\text{nat}. (\bigwedge y. y < x \implies P y) \implies P x$ 
  shows P z
proof (rule R)
  show  $\bigwedge y. y < z \implies P y$ 
  proof (induct z)
    case 0
    then show ?case by simp
  next
    case (Suc n y)
    from nat-eq-dec show ?case
    proof
      assume ny:  $n = y$ 
      have P n
      by (rule R) (rule Suc)
      with ny show ?case by simp
    next
      assume n ≠ y
      with Suc have y < n by simp
      then show ?case by (rule Suc)
    qed
  qed

```

Bounded search for a natural number satisfying a decidable predicate.

```

lemma search:
  assumes dec:  $\bigwedge x::\text{nat}. P x \vee \neg P x$ 
  shows  $(\exists x < y. P x) \vee \neg (\exists x < y. P x)$ 
proof (induct y)
  case 0
  show ?case by simp
next
  case (Suc z)
  then show ?case
  proof
    assume  $\exists x < z. P x$ 
    then obtain x where le:  $x < z$  and P:  $P x$  by iprover
    from le have x < Suc z by simp
    with P show ?case by iprover
next
  assume nex:  $\neg (\exists x < z. P x)$ 
  from dec show ?case
  proof
    assume P:  $P z$ 
    have z < Suc z by simp
    with P show ?thesis by iprover
next

```

```

assume  $nP: \neg P z$ 
have  $\neg (\exists x < Suc z. P x)$ 
proof
  assume  $\exists x < Suc z. P x$ 
  then obtain  $x$  where  $le: x < Suc z$  and  $P: P x$  by iprover
  have  $x < z$ 
  proof (cases  $x = z$ )
    case True
    with  $nP$  and  $P$  show ?thesis by simp
    next
      case False
      with  $le$  show ?thesis by simp
    qed
    with  $P$  have  $\exists x < z. P x$  by iprover
    with  $nex$  show False ..
  qed
  then show ?case by iprover
  qed
  qed
  qed
end

```

2 Quotient and remainder

```

theory QuotRem
imports Util HOL-Library.Realizers
begin

Derivation of quotient and remainder using program extraction.

theorem division:  $\exists r q. a = Suc b * q + r \wedge r \leq b$ 
proof (induct  $a$ )
  case 0
  have  $0 = Suc b * 0 + 0 \wedge 0 \leq b$  by simp
  then show ?case by iprover
next
  case ( $Suc a$ )
  then obtain  $r q$  where  $I: a = Suc b * q + r$  and  $r \leq b$  by iprover
  from nat-eq-dec show ?case
  proof
    assume  $r = b$ 
    with  $I$  have  $Suc a = Suc b * (Suc q) + 0 \wedge 0 \leq b$  by simp
    then show ?case by iprover
  next
    assume  $r \neq b$ 
    with  $r \leq b$  have  $r < b$  by (simp add: order-less-le)
    with  $I$  have  $Suc a = Suc b * q + (Suc r) \wedge (Suc r) \leq b$  by simp
    then show ?case by iprover
  qed

```

qed

extract *division*

The program extracted from the above proof looks as follows

```
division ≡
λx xa.
  nat-induct-P x (0, 0)
  (λa H. let (x, y) = H
    in case nat-eq-dec x xa of Left ⇒ (0, Suc y)
    | Right ⇒ (Suc x, y))
```

The corresponding correctness theorem is

```
a = Suc b * snd (division a b) + fst (division a b) ∧ fst (division a b) ≤ b
```

lemma *division* 9 2 = (0, 3) **by eval**

end

3 Greatest common divisor

theory *Greatest-Common-Divisor*

imports *QuotRem*

begin

theorem *greatest-common-divisor*:

```
  ∧ n::nat. Suc m < n ⇒
    ∃ k n1 m1. k * n1 = n ∧ k * m1 = Suc m ∧
    (∀ l l1 l2. l * l1 = n → l * l2 = Suc m → l ≤ k)
  proof (induct m rule: nat-wf-ind)
    case (1 m n)
    from division obtain r q where h1: n = Suc m * q + r and h2: r ≤ m
    by iprover
    show ?case
    proof (cases r)
      case 0
      with h1 have Suc m * q = n by simp
      moreover have Suc m * 1 = Suc m by simp
      moreover have l * l1 = n ⇒ l * l2 = Suc m ⇒ l ≤ Suc m for l l1 l2
      by (cases l2) simp-all
      ultimately show ?thesis by iprover
    next
      case (Suc nat)
      with h2 have h: nat < m by simp
      moreover from h have Suc nat < Suc m by simp
      ultimately have ∃ k m1 r1. k * m1 = Suc m ∧ k * r1 = Suc nat ∧
      (∀ l l1 l2. l * l1 = Suc m → l * l2 = Suc nat → l ≤ k)
```

```

  by (rule 1)
  then obtain k m1 r1 where h1': k * m1 = Suc m
  and h2': k * r1 = Suc nat
  and h3':  $\bigwedge l l1 l2. l * l1 = Suc m \implies l * l2 = Suc m \implies l \leq k$ 
  by iprover
  have mn: Suc m < n by (rule 1)
  from h1 h1' h2' Suc have k * (m1 * q + r1) = n
  by (simp add: add-mult-distrib2 mult.assoc [symmetric])
  moreover have l ≤ k if ll1n: l * l1 = n and ll2m: l * l2 = Suc m for l l1 l2
  proof -
    have l * (l1 - l2 * q) = Suc nat
    by (simp add: diff-mult-distrib2 h1 Suc [symmetric] mn ll1n ll2m [symmetric])
    with ll2m show l ≤ k by (rule h3')
  qed
  ultimately show ?thesis using h1' by iprover
  qed
qed

```

extract greatest-common-divisor

The extracted program for computing the greatest common divisor is

```

greatest-common-divisor ≡
λx. nat-wf-ind-P x
  (λx H2 xa.
    let (xa, y) = division xa x
    in nat-exhaust-P xa (Suc x, y, 1)
      (λnat. let (x, ya) = H2 nat (Suc x); (xa, ya) = ya
        in (x, xa * y + ya, xa)))

```

instantiation nat :: default

begin

definition default = (0::nat)

instance ..

end

instantiation prod :: (default, default) default

begin

definition default = (default, default)

instance ..

end

instantiation fun :: (type, default) default

begin

```

definition default = ( $\lambda x. \text{default}$ )
instance ..
end

lemma greatest-common-divisor 7 12 = (4, 3, 2) by eval
end

```

4 Warshall's algorithm

```

theory Warshall
imports HOL-Library.Realizers
begin

```

Derivation of Warshall's algorithm using program extraction, based on Berger, Schwichtenberg and Seisenberger [1].

```

datatype b = T | F

primrec is-path' :: ('a  $\Rightarrow$  'a  $\Rightarrow$  b)  $\Rightarrow$  'a  $\Rightarrow$  'a list  $\Rightarrow$  'a  $\Rightarrow$  bool
where
  is-path' r x [] z  $\longleftrightarrow$  r x z = T
  | is-path' r x (y # ys) z  $\longleftrightarrow$  r x y = T  $\wedge$  is-path' r y ys z

definition is-path :: (nat  $\Rightarrow$  nat  $\Rightarrow$  b)  $\Rightarrow$  (nat * nat list * nat)  $\Rightarrow$  nat  $\Rightarrow$  nat  $\Rightarrow$  bool
where is-path r p i j k  $\longleftrightarrow$ 
  fst p = j  $\wedge$  snd (snd p) = k  $\wedge$ 
  list-all ( $\lambda x. x < i$ ) (fst (snd p))  $\wedge$ 
  is-path' r (fst p) (fst (snd p)) (snd (snd p))

definition conc :: 'a  $\times$  'a list  $\times$  'a  $\Rightarrow$  'a  $\times$  'a list  $\times$  'a  $\Rightarrow$  'a  $\times$  'a list * 'a
where conc p q = (fst p, fst (snd p) @ fst q # fst (snd q), snd (snd q))

theorem is-path'-snoc [simp]:  $\bigwedge x. \text{is-path}' r x (ys @ [y]) z = (\text{is-path}' r x ys y \wedge r y z = T)$ 
by (induct ys) simp+

theorem list-all-scoc [simp]: list-all P (xs @ [x])  $\longleftrightarrow$  P x  $\wedge$  list-all P xs
by (induct xs) (simp+, iprover)

theorem list-all-lemma: list-all P xs  $\Longrightarrow$  ( $\bigwedge x. P x \Longrightarrow Q x$ )  $\Longrightarrow$  list-all Q xs
proof -
  assume PQ:  $\bigwedge x. P x \Longrightarrow Q x$ 
  show list-all P xs  $\Longrightarrow$  list-all Q xs
  proof (induct xs)
    case Nil

```

```

show ?case by simp
next
  case (Cons y ys)
  then have Py: P y by simp
  from Cons have Pys: list-all P ys by simp
  show ?case
    by simp (rule conjI PQ Py Cons Pys) +
  qed
qed

theorem lemma1:  $\bigwedge p. \text{is-path } r p i j k \implies \text{is-path } r p (\text{Suc } i) j k$ 
  unfolding is-path-def
  apply (simp cong add: conj-cong add: split-paired-all)
  apply (erule conjE) +
  apply (erule list-all-lemma)
  apply simp
  done

theorem lemma2:  $\bigwedge p. \text{is-path } r p 0 j k \implies r j k = T$ 
  unfolding is-path-def
  apply (simp cong add: conj-cong add: split-paired-all)
  apply (case-tac a)
  apply simp-all
  done

theorem is-path'-conc:  $\text{is-path}' r j xs i \implies \text{is-path}' r i ys k \implies$ 
   $\text{is-path}' r j (xs @ i \# ys) k$ 
proof -
  assume pys: is-path' r i ys k
  show  $\bigwedge j. \text{is-path}' r j xs i \implies \text{is-path}' r j (xs @ i \# ys) k$ 
  proof (induct xs)
    case (Nil j)
    then have r j i = T by simp
    with pys show ?case by simp
  next
    case (Cons z zs j)
    then have jzr: r j z = T by simp
    from Cons have pzs: is-path' r z zs i by simp
    show ?case
      by simp (rule conjI jzr Cons pzs) +
  qed
qed

theorem lemma3:
   $\bigwedge p q. \text{is-path } r p i j i \implies \text{is-path } r q i i k \implies$ 
   $\text{is-path } r (\text{conc } p q) (\text{Suc } i) j k$ 
  apply (unfold is-path-def conc-def)
  apply (simp cong add: conj-cong add: split-paired-all)
  apply (erule conjE) +

```

```

apply (rule conjI)
apply (erule list-all-lemma)
apply simp
apply (rule conjI)
apply (erule list-all-lemma)
apply simp
apply (rule is-path'-conc)
apply assumption+
done

theorem lemma5:
   $\bigwedge p. \text{is-path } r p (\text{Suc } i) j k \implies \neg \text{is-path } r p i j k \implies$ 
   $(\exists q. \text{is-path } r q i j i) \wedge (\exists q'. \text{is-path } r q' i i k)$ 
proof (simp cong add: conj-cong add: split-paired-all is-path-def, (erule conjE)+)
fix xs
assume asms:
  list-all ( $\lambda x. x < \text{Suc } i$ ) xs
  is-path' r j xs k
   $\neg \text{list-all } (\lambda x. x < i) xs$ 
show ( $\exists ys. \text{list-all } (\lambda x. x < i) ys \wedge \text{is-path}' r j ys i$ )  $\wedge$ 
  ( $\exists ys. \text{list-all } (\lambda x. x < i) ys \wedge \text{is-path}' r i ys k$ )
proof
have  $\bigwedge j. \text{list-all } (\lambda x. x < \text{Suc } i) xs \implies \text{is-path}' r j xs k \implies$ 
   $\neg \text{list-all } (\lambda x. x < i) xs \implies$ 
   $\exists ys. \text{list-all } (\lambda x. x < i) ys \wedge \text{is-path}' r j ys i$  (is PROP ?ih xs)
proof (induct xs)
  case Nil
  then show ?case by simp
next
  case (Cons a as j)
  show ?case
  proof (cases a=i)
    case True
    show ?thesis
    proof
      from True and Cons have r j i = T by simp
      then show list-all ( $\lambda x. x < i$ ) []  $\wedge$  is-path' r j [] i by simp
    qed
  next
    case False
    have PROP ?ih as by (rule Cons)
    then obtain ys where ys: list-all ( $\lambda x. x < i$ ) ys  $\wedge$  is-path' r a ys i
    proof
      from Cons show list-all ( $\lambda x. x < \text{Suc } i$ ) as by simp
      from Cons show is-path' r a as k by simp
      from Cons and False show  $\neg \text{list-all } (\lambda x. x < i)$  as by (simp)
    qed
    show ?thesis
    proof

```

```

from Cons False ys
show list-all (λx. x < i) (a#ys) ∧ is-path' r j (a#ys) i by simp
qed
qed
qed
from this asms show ∃ ys. list-all (λx. x < i) ys ∧ is-path' r j ys i .
have ∀ k. list-all (λx. x < Suc i) xs  $\implies$  is-path' r j xs k  $\implies$ 
   $\neg$  list-all (λx. x < i) xs  $\implies$ 
  ∃ ys. list-all (λx. x < i) ys ∧ is-path' r i ys k (is PROP ?ih xs)
proof (induct xs rule: rev-induct)
  case Nil
  then show ?case by simp
next
  case (snoc a as k)
  show ?case
  proof (cases a=i)
    case True
    show ?thesis
    proof
      from True and snoc have r i k = T by simp
      then show list-all (λx. x < i) [] ∧ is-path' r i [] k by simp
    qed
next
  case False
  have PROP ?ih as by (rule snoc)
  then obtain ys where ys: list-all (λx. x < i) ys ∧ is-path' r i ys a
  proof
    from snoc show list-all (λx. x < Suc i) as by simp
    from snoc show is-path' r j as a by simp
    from snoc and False show  $\neg$  list-all (λx. x < i) as by simp
  qed
  show ?thesis
  proof
    from snoc False ys
    show list-all (λx. x < i) (ys @ [a]) ∧ is-path' r i (ys @ [a]) k
      by simp
    qed
  qed
  qed
from this asms show ∃ ys. list-all (λx. x < i) ys ∧ is-path' r i ys k .
qed
qed

```

theorem lemma5':

```

 $\bigwedge p. \text{is-path } r p (\text{Suc } i) j k \implies \neg \text{is-path } r p i j k \implies$ 
 $\neg (\forall q. \neg \text{is-path } r q i j i) \wedge \neg (\forall q'. \neg \text{is-path } r q' i i k)$ 
by (iprover dest: lemma5)

```

theorem warshall: $\bigwedge j k. \neg (\exists p. \text{is-path } r p i j k) \vee (\exists p. \text{is-path } r p i j k)$

```

proof (induct i)
  case (0 j k)
    show ?case
    proof (cases r j k)
      assume r j k = T
      then have is-path r (j, [], k) 0 j k
        by (simp add: is-path-def)
      then have  $\exists p. \text{is-path } r p 0 j k ..$ 
      then show ?thesis ..
    next
      assume r j k = F
      then have r j k  $\neq T$  by simp
      then have  $\neg (\exists p. \text{is-path } r p 0 j k)$ 
        by (iprover dest: lemma2)
      then show ?thesis ..
    qed
  next
    case (Suc i j k)
    then show ?case
    proof
      assume h1:  $\neg (\exists p. \text{is-path } r p i j k)$ 
      from Suc show ?case
    proof
      assume  $\neg (\exists p. \text{is-path } r p i j i)$ 
      with h1 have  $\neg (\exists p. \text{is-path } r p (\text{Suc } i) j k)$ 
        by (iprover dest: lemma5')
      then show ?case ..
    next
      assume  $\exists p. \text{is-path } r p i j i$ 
      then obtain p where h2:  $\text{is-path } r p i j i ..$ 
      from Suc show ?case
    proof
      assume  $\neg (\exists p. \text{is-path } r p i i k)$ 
      with h1 have  $\neg (\exists p. \text{is-path } r p (\text{Suc } i) j k)$ 
        by (iprover dest: lemma5')
      then show ?case ..
    next
      assume  $\exists q. \text{is-path } r q i i k$ 
      then obtain q where  $\text{is-path } r q i i k ..$ 
      with h2 have  $\text{is-path } r (\text{conc } p q) (\text{Suc } i) j k$ 
        by (rule lemma3)
      then have  $\exists pq. \text{is-path } r pq (\text{Suc } i) j k ..$ 
      then show ?case ..
    qed
  qed
  next
    assume  $\exists p. \text{is-path } r p i j k$ 
    then have  $\exists p. \text{is-path } r p (\text{Suc } i) j k$ 
      by (iprover intro: lemma1)

```

```

then show ?case ..
qed
qed

```

```
extract warshall
```

The program extracted from the above proof looks as follows

```

warshall ≡
λx xa xb xc.
  nat-induct-P xa
  (λxa xb. case x xa xb of T ⇒ Some (xa, [], xb) | F ⇒ None)
  (λx H2 xa xb.
    case H2 xa xb of
    None ⇒
      case H2 xa x of None ⇒ None
      | Some q ⇒
        case H2 x xb of None ⇒ None | Some qa ⇒ Some (conc q qa)
        | Some q ⇒ Some q)
    xb xc

```

The corresponding correctness theorem is

```

case warshall r i j k of None ⇒ ∀x. ¬ is-path r x i j k
| Some q ⇒ is-path r q i j k

```

```
ML-val @{code warshall}
```

```
end
```

5 Higman's lemma

```

theory Higman
imports Main
begin

```

Formalization by Stefan Berghofer and Monika Seisenberger, based on Coquand and Fridlender [2].

```
datatype letter = A | B
```

```

inductive emb :: letter list ⇒ letter list ⇒ bool
where
  emb0 [Pure.intro]: emb [] bs
  | emb1 [Pure.intro]: emb as bs ⇒ emb as (b # bs)
  | emb2 [Pure.intro]: emb as bs ⇒ emb (a # as) (a # bs)

```

```

inductive L :: letter list ⇒ letter list list ⇒ bool
  for v :: letter list
where

```

```

L0 [Pure.intro]: emb w v ==> L v (w # ws)
| L1 [Pure.intro]: L v ws ==> L v (w # ws)

inductive good :: letter list list => bool
where
  good0 [Pure.intro]: L w ws ==> good (w # ws)
  | good1 [Pure.intro]: good ws ==> good (w # ws)

inductive R :: letter => letter list list => letter list list => bool
  for a :: letter
where
  R0 [Pure.intro]: R a [] []
  | R1 [Pure.intro]: R a vs ws ==> R a (w # vs) ((a # w) # ws)

inductive T :: letter => letter list list => letter list list => bool
  for a :: letter
where
  T0 [Pure.intro]: a ≠ b ==> R b ws zs ==> T a (w # zs) ((a # w) # zs)
  | T1 [Pure.intro]: T a ws zs ==> T a (w # ws) ((a # w) # zs)
  | T2 [Pure.intro]: a ≠ b ==> T a ws zs ==> T a ws ((b # w) # zs)

inductive bar :: letter list list => bool
where
  bar1 [Pure.intro]: good ws ==> bar ws
  | bar2 [Pure.intro]: (Λ w. bar (w # ws)) ==> bar ws

theorem prop1: bar ([] # ws)
  by iprover

theorem lemma1: L as ws ==> L (a # as) ws
  by (erule L.induct) iprover+

lemma lemma2': R a vs ws ==> L as vs ==> L (a # as) ws
  supply [[simproc del: defined-all]]
  apply (induct set: R)
  apply (erule L.cases)
  apply simp+
  apply (erule L.cases)
  apply simp-all
  apply (rule L0)
  apply (erule emb2)
  apply (erule L1)
  done

lemma lemma2: R a vs ws ==> good vs ==> good ws
  supply [[simproc del: defined-all]]
  apply (induct set: R)
  apply iprover
  apply (erule good.cases)

```

```

apply simp-all
apply (rule good0)
apply (erule lemma2)
apply assumption
apply (erule good1)
done

lemma lemma3':  $T a \text{ vs } ws \implies L \text{ as } ws \implies L (a \# as) \text{ ws}$ 
supply [[simproc del: defined-all]]
apply (induct set: T)
apply (erule L.cases)
apply simp-all
apply (rule L0)
apply (erule emb2)
apply (rule L1)
apply (erule lemma1)
apply (erule L.cases)
apply simp-all
apply iprover+
done

lemma lemma3:  $T a \text{ ws } zs \implies good \text{ ws } \implies good \text{ zs}$ 
supply [[simproc del: defined-all]]
apply (induct set: T)
apply (erule good.cases)
apply simp-all
apply (rule good0)
apply (erule lemma1)
apply (erule good1)
apply (erule good.cases)
apply simp-all
apply (rule good0)
apply (erule lemma3)
apply iprover+
done

lemma lemma4:  $R a \text{ ws } zs \implies ws \neq [] \implies T a \text{ ws } zs$ 
supply [[simproc del: defined-all]]
apply (induct set: R)
apply iprover
apply (case-tac vs)
apply (erule R.cases)
apply simp
apply (case-tac a)
apply (rule-tac b=B in T0)
apply simp
apply (rule R0)
apply (rule-tac b=A in T0)
apply simp

```

```

apply (rule R0)
apply simp
apply (rule T1)
apply simp
done

lemma letter-neq:  $a \neq b \implies c \neq a \implies c = b$  for  $a b c :: letter$ 
apply (case-tac a)
apply (case-tac b)
apply (case-tac c, simp, simp)
apply (case-tac c, simp, simp)
apply (case-tac b)
apply (case-tac c, simp, simp)
apply (case-tac c, simp, simp)
done

lemma letter-eq-dec:  $a = b \vee a \neq b$  for  $a b :: letter$ 
apply (case-tac a)
apply (case-tac b)
apply simp
apply simp
apply (case-tac b)
apply simp
apply simp
done

theorem prop2:
assumes ab:  $a \neq b$  and bar:  $\text{bar } xs$ 
shows  $\bigwedge ys zs. \text{bar } ys \implies T a xs zs \implies T b ys zs \implies \text{bar } zs$ 
using bar
proof induct
fix xs zs
assume T a xs zs and good xs
then have good zs by (rule lemma3)
then show bar zs by (rule bar1)
next
fix xs ys
assume I:  $\bigwedge w ys zs. \text{bar } ys \implies T a (w \# xs) zs \implies T b ys zs \implies \text{bar } zs$ 
assume bar ys
then show  $\bigwedge zs. T a xs zs \implies T b ys zs \implies \text{bar } zs$ 
proof induct
fix ys zs
assume T b ys zs and good ys
then have good zs by (rule lemma3)
then show bar zs by (rule bar1)
next
fix ys zs
assume I':  $\bigwedge w zs. T a xs zs \implies T b (w \# ys) zs \implies \text{bar } zs$ 
and ys:  $\bigwedge w. \text{bar } (w \# ys)$  and Ta:  $T a xs zs$  and Tb:  $T b ys zs$ 

```

```

show bar zs
proof (rule bar2)
fix w
show bar (w # zs)
proof (cases w)
case Nil
then show ?thesis by simp (rule prop1)
next
case (Cons c cs)
from letter-eq-dec show ?thesis
proof
assume ca: c = a
from ab have bar ((a # cs) # zs) by (iprover intro: I ys Ta Tb)
then show ?thesis by (simp add: Cons ca)
next
assume c ≠ a
with ab have cb: c = b by (rule letter-neq)
from ab have bar ((b # cs) # zs) by (iprover intro: I' Ta Tb)
then show ?thesis by (simp add: Cons cb)
qed
qed
qed
qed
qed

theorem prop3:
assumes bar: bar xs
shows ∃zs. xs ≠ [] ⇒ R a xs zs ⇒ bar zs
using bar
proof induct
fix xs zs
assume R a xs zs and good xs
then have good zs by (rule lemma2)
then show bar zs by (rule bar1)
next
fix xs zs
assume I: ∃w zs. w # xs ≠ [] ⇒ R a (w # xs) zs ⇒ bar zs
and xsb: ∃w. bar (w # xs) and xsn: xs ≠ [] and R: R a xs zs
show bar zs
proof (rule bar2)
fix w
show bar (w # zs)
proof (induct w)
case Nil
show ?case by (rule prop1)
next
case (Cons c cs)
from letter-eq-dec show ?case
proof

```

```

assume c = a
then show ?thesis by (iprover intro: I [simplified] R)
next
  from R xsn have T: T a xs zs by (rule lemma4)
  assume c ≠ a
  then show ?thesis by (iprover intro: prop2 Cons xsb xsn R T)
qed
qed
qed
qed

theorem higman: bar []
proof (rule bar2)
  fix w
  show bar [w]
  proof (induct w)
    show bar [] by (rule prop1)
  next
    fix c cs assume bar [cs]
    then show bar [c # cs] by (rule prop3) (simp, iprover)
  qed
qed

primrec is-prefix :: 'a list ⇒ (nat ⇒ 'a) ⇒ bool
where
  is-prefix [] f = True
  | is-prefix (x # xs) f = (x = f (length xs) ∧ is-prefix xs f)

theorem L-idx:
  assumes L: L w ws
  shows is-prefix ws f ⇒ ∃ i. emb (f i) w ∧ i < length ws
  using L
  proof induct
    case (L0 v ws)
    then have emb (f (length ws)) w by simp
    moreover have length ws < length (v # ws) by simp
    ultimately show ?case by iprover
  next
    case (L1 ws v)
    then obtain i where emb: emb (f i) w and i < length ws
      by simp iprover
    then have i < length (v # ws) by simp
      with emb show ?case by iprover
  qed

theorem good-idx:
  assumes good: good ws
  shows is-prefix ws f ⇒ ∃ i j. emb (f i) (f j) ∧ i < j
  using good

```

```

proof induct
  case (good0 w ws)
    then have w = f (length ws) and is-prefix ws f by simp-all
    with good0 show ?case by (iprover dest: L-idx)
next
  case (good1 ws w)
  then show ?case by simp
qed

theorem bar-idx:
  assumes bar: bar ws
  shows is-prefix ws f  $\Rightarrow \exists i j. \text{emb } (f i) (f j) \wedge i < j$ 
  using bar
proof induct
  case (bar1 ws)
  then show ?case by (rule good-idx)
next
  case (bar2 ws)
  then have is-prefix (f (length ws) # ws) f by simp
  then show ?case by (rule bar2)
qed

```

Strong version: yields indices of words that can be embedded into each other.

```

theorem higman-idx:  $\exists (i::nat) j. \text{emb } (f i) (f j) \wedge i < j$ 
proof (rule bar-idx)
  show bar [] by (rule higman)
  show is-prefix [] f by simp
qed

```

Weak version: only yield sequence containing words that can be embedded into each other.

```

theorem good-prefix-lemma:
  assumes bar: bar ws
  shows is-prefix ws f  $\Rightarrow \exists vs. \text{is-prefix } vs f \wedge \text{good } vs$ 
  using bar
proof induct
  case bar1
  then show ?case by iprover
next
  case (bar2 ws)
  from bar2.prem have is-prefix (f (length ws) # ws) f by simp
  then show ?case by (iprover intro: bar2)
qed

```

```

theorem good-prefix:  $\exists vs. \text{is-prefix } vs f \wedge \text{good } vs$ 
  using higman
  by (rule good-prefix-lemma) simp+

```

end

5.1 Extracting the program

```
theory Higman-Extraction
imports Higman HOL-Library.Realizers HOL-Library.Open-State-Syntax
begin
```

```
declare R.induct [ind-realizer]
declare T.induct [ind-realizer]
declare L.induct [ind-realizer]
declare good.induct [ind-realizer]
declare bar.induct [ind-realizer]
```

```
extract higman-idx
```

Program extracted from the proof of *higman-idx*:

```
higman-idx ≡ λx. bar-idx x higman
```

Corresponding correctness theorem:

```
emb (f (fst (higman-idx f))) (f (snd (higman-idx f))) ∧
fst (higman-idx f) < snd (higman-idx f)
```

Program extracted from the proof of *higman*:

```
higman ≡
bar2 [] (rec-list (prop1 []) (λa w H. prop3 a [a # w] H (R1 [] [] w R0)))
```

Program extracted from the proof of *prop1*:

```
prop1 ≡
λx. bar2 ([] # x) (λw. bar1 (w # [] # x) (good0 w ([] # x) (L0 [] x)))
```

Program extracted from the proof of *prop2*:

```
prop2 ≡
λx xa xb xc H.
compat-barT.rec-split-barT
(λws xa xb xba H Ha Haa. bar1 xba (lemma3 x Ha xa))
(λws xb r xba xbb H.
compat-barT.rec-split-barT (λws x xb H Ha. bar1 xb (lemma3 xa Ha x))
(λwsa xb ra xc H Ha.
bar2 xc
(λw. case w of [] ⇒ prop1 xc
| a # list ⇒
  case letter-eq-dec a x of
    Left ⇒
      r list wsa ((x # list) # xc) (bar2 wsa xb)
      (T1 ws xc list H) (T2 x wsa xc list Ha)
    | Right ⇒
```

$$\begin{aligned}
& ra \text{ list } ((xa \# list) \# xc) (T2 xa ws xc list H) \\
& \quad (T1 wsa xc list Ha))) \\
H & xbb) \\
H & xb xc
\end{aligned}$$

Program extracted from the proof of *prop3*:

$$\begin{aligned}
prop3 \equiv & \\
\lambda x \text{ xa } H. & \\
compat-barT.rec-split-barT & (\lambda ws \text{ xa } xb \text{ H}. \text{ bar1 } xb (\text{ lemma2 } x \text{ H } xa)) \\
(\lambda ws \text{ xa } r \text{ xb } H. & \\
\text{ bar2 } xb \\
(\text{ rec-list } (prop1 xb) & \\
(\lambda a \text{ w } Ha. & \\
\text{ case letter-eq-dec } a \text{ x of } & \\
\text{ Left } \Rightarrow r \text{ w } ((x \# w) \# xb) (R1 ws xb w H) & \\
\mid \text{ Right } \Rightarrow & \\
prop2 a \text{ x ws } ((a \# w) \# xb) \text{ Ha } (\text{ bar2 } ws xa) & \\
(\text{ T0 } x \text{ ws } xb \text{ w H}) (T2 a \text{ ws } xb \text{ w } (\text{ lemma4 } x \text{ H}))) \\
H & xa
\end{aligned}$$

5.2 Some examples

```

instantiation LT and TT :: default
begin

definition default = L0 [] []
definition default = T0 A [] [] R0
instance ..
end

function mk-word-aux :: nat  $\Rightarrow$  Random.seed  $\Rightarrow$  letter list  $\times$  Random.seed
where
  mk-word-aux k = exec {
    i  $\leftarrow$  Random.range 10;
    (if i > 7  $\wedge$  k > 2  $\vee$  k > 1000 then Pair []
     else exec {
      let l = (if i mod 2 = 0 then A else B);
      ls  $\leftarrow$  mk-word-aux (Suc k);
      Pair (l # ls)
    })}
  by pat-completeness auto
termination
  by (relation measure ((-) 1001)) auto

definition mk-word :: Random.seed  $\Rightarrow$  letter list  $\times$  Random.seed

```

```

where mk-word = mk-word-aux 0

primrec mk-word-s :: nat  $\Rightarrow$  Random.seed  $\Rightarrow$  letter list  $\times$  Random.seed
where
  mk-word-s 0 = mk-word
  | mk-word-s (Suc n) = exec {
    -  $\leftarrow$  mk-word;
    mk-word-s n
  }

definition g1 :: nat  $\Rightarrow$  letter list
  where g1 s = fst (mk-word-s s (20000, 1))

definition g2 :: nat  $\Rightarrow$  letter list
  where g2 s = fst (mk-word-s s (50000, 1))

fun f1 :: nat  $\Rightarrow$  letter list
where
  f1 0 = [A, A]
  | f1 (Suc 0) = [B]
  | f1 (Suc (Suc 0)) = [A, B]
  | f1 - = []

fun f2 :: nat  $\Rightarrow$  letter list
where
  f2 0 = [A, A]
  | f2 (Suc 0) = [B]
  | f2 (Suc (Suc 0)) = [B, A]
  | f2 - = []

ML-val ‹
  local
    val higman-idx = @{code higman-idx};
    val g1 = @{code g1};
    val g2 = @{code g2};
    val f1 = @{code f1};
    val f2 = @{code f2};
  in
    val (i1, j1) = higman-idx g1;
    val (v1, w1) = (g1 i1, g1 j1);
    val (i2, j2) = higman-idx g2;
    val (v2, w2) = (g2 i2, g2 j2);
    val (i3, j3) = higman-idx f1;
    val (v3, w3) = (f1 i3, f1 j3);
    val (i4, j4) = higman-idx f2;
    val (v4, w4) = (f2 i4, f2 j4);
  end;
›

```

end

6 The pigeonhole principle

```
theory Pigeonhole
imports Util HOL-Library.Realizers HOL-Library.Code-Target-Numerical
begin
```

We formalize two proofs of the pigeonhole principle, which lead to extracted programs of quite different complexity. The original formalization of these proofs in NUPRL is due to Aleksey Nogin [3].

This proof yields a polynomial program.

theorem *pigeonhole*:

$\bigwedge f. (\bigwedge i. i \leq \text{Suc } n \implies f i \leq n) \implies \exists i j. i \leq \text{Suc } n \wedge j < i \wedge f i = f j$

proof (*induct n*)

case 0

then have $\text{Suc } 0 \leq \text{Suc } 0 \wedge 0 < \text{Suc } 0 \wedge f(\text{Suc } 0) = f 0$ **by** *simp*

then show $?case$ **by** *iprover*

next

case ($\text{Suc } n$)

have r :

$k \leq \text{Suc } (\text{Suc } n) \implies$

$(\bigwedge i j. \text{Suc } k \leq i \implies i \leq \text{Suc } (\text{Suc } n) \implies j < i \implies f i \neq f j) \implies$

$(\exists i j. i \leq k \wedge j < i \wedge f i = f j)$ **for** k

proof (*induct k*)

case 0

let $?f = \lambda i. \text{if } f i = \text{Suc } n \text{ then } f(\text{Suc } (\text{Suc } n)) \text{ else } f i$

have $\neg (\exists i j. i \leq \text{Suc } n \wedge j < i \wedge ?f i = ?f j)$

proof

assume $\exists i j. i \leq \text{Suc } n \wedge j < i \wedge ?f i = ?f j$

then obtain $i j$ **where** $i: i \leq \text{Suc } n$ **and** $j: j < i$ **and** $f: ?f i = ?f j$

by *iprover*

from j **have** *i-nz*: $\text{Suc } 0 \leq i$ **by** *simp*

from i **have** *iSSn*: $i \leq \text{Suc } (\text{Suc } n)$ **by** *simp*

have *S0SSn*: $\text{Suc } 0 \leq \text{Suc } (\text{Suc } n)$ **by** *simp*

show *False*

proof *cases*

assume $f i: f i = \text{Suc } n$

show *False*

proof *cases*

assume $f j: f j = \text{Suc } n$

from *i-nz* **and** *iSSn* **and** j **have** $f i \neq f j$ **by** (*rule 0*)

moreover from $f i$ **have** $f i = f j$

by (*simp add: fj [symmetric]*)

ultimately show $?thesis$..

next

from i **and** j **have** $j < \text{Suc } (\text{Suc } n)$ **by** *simp*

with *S0SSn* **and** *le-refl* **have** $f(\text{Suc } (\text{Suc } n)) \neq f j$

```

    by (rule 0)
  moreover assume  $f j \neq \text{Suc } n$ 
  with  $f i$  and  $f$  have  $f (\text{Suc } (\text{Suc } n)) = f j$  by simp
  ultimately show  $\text{False} ..$ 
qed
next
  assume  $f i: f i \neq \text{Suc } n$ 
  show  $\text{False}$ 
  proof cases
    from  $i$  have  $i < \text{Suc } (\text{Suc } n)$  by simp
    with  $\text{S0SSn}$  and  $\text{le-refl}$  have  $f (\text{Suc } (\text{Suc } n)) \neq f i$ 
    by (rule 0)
    moreover assume  $f j = \text{Suc } n$ 
    with  $f i$  and  $f$  have  $f (\text{Suc } (\text{Suc } n)) = f i$  by simp
    ultimately show  $\text{False} ..$ 
next
  from  $i\text{-nz}$  and  $iSSn$  and  $j$ 
  have  $f i \neq f j$  by (rule 0)
  moreover assume  $f j \neq \text{Suc } n$ 
  with  $f i$  and  $f$  have  $f i = f j$  by simp
  ultimately show  $\text{False} ..$ 
qed
qed
qed
moreover have  $?f i \leq n$  if  $i \leq \text{Suc } n$  for  $i$ 
proof -
  from that have  $i: i < \text{Suc } (\text{Suc } n)$  by simp
  have  $f (\text{Suc } (\text{Suc } n)) \neq f i$ 
  by (rule 0) (simp-all add:  $i$ )
  moreover have  $f (\text{Suc } (\text{Suc } n)) \leq \text{Suc } n$ 
  by (rule Suc) simp
  moreover from  $i$  have  $i \leq \text{Suc } (\text{Suc } n)$  by simp
  then have  $f i \leq \text{Suc } n$  by (rule Suc)
  ultimately show  $?thesis$ 
  by simp
qed
then have  $\exists i j. i \leq \text{Suc } n \wedge j < i \wedge ?f i = ?f j$ 
  by (rule Suc)
  ultimately show  $?case ..$ 
next
  case ( $\text{Suc } k$ )
  from search [OF nat-eq-dec] show  $?case$ 
  proof
    assume  $\exists j < \text{Suc } k. f (\text{Suc } k) = f j$ 
    then show  $?case$  by (iprover intro: le-refl)
  next
    assume  $\text{nex: } \neg (\exists j < \text{Suc } k. f (\text{Suc } k) = f j)$ 
    have  $\exists i j. i \leq k \wedge j < i \wedge f i = f j$ 
    proof (rule Suc)

```

```

from Suc show k ≤ Suc (Suc n) by simp
fix i j assume k: Suc k ≤ i and i: i ≤ Suc (Suc n)
  and j: j < i
show f i ≠ f j
proof cases
  assume eq: i = Suc k
  show ?thesis
  proof
    assume f i = f j
    then have f (Suc k) = f j by (simp add: eq)
    with nex and j and eq show False by iprover
  qed
next
  assume i ≠ Suc k
  with k have Suc (Suc k) ≤ i by simp
  then show ?thesis using i and j by (rule Suc)
  qed
qed
then show ?thesis by (iprover intro: le-SucI)
qed
qed
show ?case by (rule r) simp-all
qed

```

The following proof, although quite elegant from a mathematical point of view, leads to an exponential program:

```

theorem pigeonhole-slow:
  ∀f. (∀i. i ≤ Suc n ⇒ f i ≤ n) ⇒ ∃i j. i ≤ Suc n ∧ j < i ∧ f i = f j
proof (induct n)
  case 0
  have Suc 0 ≤ Suc 0 ..
  moreover have 0 < Suc 0 ..
  moreover from 0 have f (Suc 0) = f 0 by simp
  ultimately show ?case by iprover
next
  case (Suc n)
  from search [OF nat-eq-dec] show ?case
  proof
    assume ∃j < Suc (Suc n). f (Suc (Suc n)) = f j
    then show ?case by (iprover intro: le-refl)
  next
    assume ¬ (∃j < Suc (Suc n). f (Suc (Suc n)) = f j)
    then have nex: ∀j < Suc (Suc n). f (Suc (Suc n)) ≠ f j by iprover
    let ?f = λi. iff i = Suc n then f (Suc (Suc n)) else f i
    have ∀i. i ≤ Suc n ⇒ ?f i ≤ n
    proof -
      fix i assume i: i ≤ Suc n
      show ?thesis i
      proof (cases f i = Suc n)

```

```

case True
from i and nex have f (Suc (Suc n)) ≠ f i by simp
with True have f (Suc (Suc n)) ≠ Suc n by simp
moreover from Suc have f (Suc (Suc n)) ≤ Suc n by simp
ultimately have f (Suc (Suc n)) ≤ n by simp
with True show ?thesis by simp
next
case False
from Suc and i have f i ≤ Suc n by simp
with False show ?thesis by simp
qed
qed
then have ∃ i j. i ≤ Suc n ∧ j < i ∧ ?f i = ?f j by (rule Suc)
then obtain i j where i: i ≤ Suc n and ji: j < i and f: ?f i = ?f j
  by iprover
have f i = f j
proof (cases f i = Suc n)
  case True
  show ?thesis
  proof (cases f j = Suc n)
    assume f j = Suc n
    with True show ?thesis by simp
  next
    assume f j ≠ Suc n
    moreover from i ji nex have f (Suc (Suc n)) ≠ f j by simp
    ultimately show ?thesis using True f by simp
  qed
next
case False
show ?thesis
proof (cases f j = Suc n)
  assume f j = Suc n
  moreover from i nex have f (Suc (Suc n)) ≠ f i by simp
  ultimately show ?thesis using False f by simp
next
assume f j ≠ Suc n
with False f show ?thesis by simp
qed
qed
moreover from i have i ≤ Suc (Suc n) by simp
ultimately show ?thesis using ji by iprover
qed
qed

```

extract *pigeonhole* *pigeonhole-slow*

The programs extracted from the above proofs look as follows:

```

pigeonhole ≡
λx. nat-induct-P x (λx. (Suc 0, 0))

```

```
(λx H2 xa.
  nat-induct-P (Suc (Suc x)) default
  (λx H2.
    case search (Suc x) (λxb. nat-eq-dec (xa (Suc x)) (xa xb)) of
      None ⇒ let (x, y) = H2 in (x, y) | Some p ⇒ (Suc x, p)))
```

```
pigeonhole-slow ≡
λx. nat-induct-P x (λx. (Suc 0, 0))
(λx H2 xa.
  case search (Suc (Suc x))
    (λxb. nat-eq-dec (xa (Suc (Suc x))) (xa xb)) of
      None ⇒
        let (x, y) =
          H2 (λi. if xa i = Suc x then xa (Suc (Suc x)) else xa i)
        in (x, y)
      | Some p ⇒ (Suc (Suc x), p))
```

The program for searching for an element in an array is

```
search ≡
λx H. nat-induct-P x None
(λy Ha.
  case Ha of None ⇒ case H y of Left ⇒ Some y | Right ⇒ None
  | Some p ⇒ Some p)
```

The correctness statement for *pigeonhole* is

```
(∀i. i ≤ Suc n ⇒ f i ≤ n) ⇒
fst (pigeonhole n f) ≤ Suc n ∧
snd (pigeonhole n f) < fst (pigeonhole n f) ∧
f (fst (pigeonhole n f)) = f (snd (pigeonhole n f))
```

In order to analyze the speed of the above programs, we generate ML code from them.

```
instantiation nat :: default
begin

  definition default = (0::nat)

  instance ..

  end

  instantiation prod :: (default, default) default
begin

  definition default = (default, default)

  instance ..
```

```

end

definition test n u = pigeonhole (nat-of-integer n) ( $\lambda m. m - 1$ )
definition test' n u = pigeonhole-slow (nat-of-integer n) ( $\lambda m. m - 1$ )
definition test'' u = pigeonhole 8 (List.nth [0, 1, 2, 3, 4, 5, 6, 3, 7, 8])

ML-val timeit (@{code test} 10)
ML-val timeit (@{code test'} 10)
ML-val timeit (@{code test} 20)
ML-val timeit (@{code test'} 20)
ML-val timeit (@{code test} 25)
ML-val timeit (@{code test'} 25)
ML-val timeit (@{code test} 500)
ML-val timeit @{code test'}

end

```

7 Euclid's theorem

```

theory Euclid
imports
  HOL-Computational-Algebra.Primes
  Util
  HOL-Library.Code-Target-Numerical
  HOL-Library.Realizers
begin

```

A constructive version of the proof of Euclid's theorem by Markus Wenzel and Freek Wiedijk [4].

```

lemma factor-greater-one1: n = m * k  $\implies m < n \implies k < n \implies Suc 0 < m
  by (induct m) auto$ 
```

```

lemma factor-greater-one2: n = m * k  $\implies m < n \implies k < n \implies Suc 0 < k
  by (induct k) auto$ 
```

```

lemma prod-mn-less-k: 0 < n  $\implies 0 < k \implies Suc 0 < m \implies m * n = k \implies n < k
  by (induct m) auto$ 
```

```

lemma prime-eq: prime (p::nat)  $\longleftrightarrow 1 < p \wedge (\forall m. m \text{ dvd } p \longrightarrow 1 < m \longrightarrow m = p)$ 
  apply (simp add: prime-nat-iff)
  apply (rule iffI)
  apply blast
  apply (erule conjE)
  apply (rule conjI)
  apply assumption
  apply (rule allI impI) +

```

```

apply (erule allE)
apply (erule impE)
apply assumption
apply (case-tac m = 0)
apply simp
apply (case-tac m = Suc 0)
apply simp
apply simp
done

lemma prime-eq': prime (p::nat)  $\longleftrightarrow$   $1 < p \wedge (\forall m k. p = m * k \longrightarrow 1 < m \longrightarrow m = p)$ 
  by (simp add: prime-eq dvd-def HOL.all-simps [symmetric] del: HOL.all-simps)

lemma not-prime-ex-mk:
  assumes n: Suc 0 < n
  shows  $(\exists m k. Suc 0 < m \wedge Suc 0 < k \wedge m < n \wedge k < n \wedge n = m * k) \vee \text{prime } n$ 
proof -
  from nat-eq-dec have  $(\exists m < n. n = m * k) \vee \neg (\exists m < n. n = m * k)$  for k
    by (rule search)
  then have  $(\exists k < n. \exists m < n. n = m * k) \vee \neg (\exists k < n. \exists m < n. n = m * k)$ 
    by (rule search)
  then show ?thesis
proof
  assume  $\exists k < n. \exists m < n. n = m * k$ 
  then obtain k m where k:  $k < n$  and m:  $m < n$  and nmk:  $n = m * k$ 
    by iprover
  from nmk m k have Suc 0 < m by (rule factor-greater-one1)
  moreover from nmk m k have Suc 0 < k by (rule factor-greater-one2)
  ultimately show ?thesis using k m nmk by iprover
next
  assume  $\neg (\exists k < n. \exists m < n. n = m * k)$ 
  then have A:  $\forall k < n. \forall m < n. n \neq m * k$  by iprover
  have  $\forall m k. n = m * k \longrightarrow \text{Suc } 0 < m \longrightarrow m = n$ 
  proof (intro allI impI)
    fix m k
    assume nmk:  $n = m * k$ 
    assume m: Suc 0 < m
    from n m nmk have k:  $0 < k$ 
      by (cases k) auto
    moreover from n have n:  $0 < n$  by simp
    moreover note m
    moreover from nmk have m * k = n by simp
    ultimately have kn:  $k < n$  by (rule prod-mn-less-k)
    show m = n
  proof (cases k = Suc 0)
    case True
    with nmk show ?thesis by (simp only: mult-Suc-right)
  qed
qed

```

```

next
  case False
    from m have 0 < m by simp
    moreover note n
    moreover from False n nmk k have Suc 0 < k by auto
    moreover from nmk have k * m = n by (simp only: ac-simps)
    ultimately have mn: m < n by (rule prod-mn-less-k)
    with kn A nmk show ?thesis by iprover
  qed
qed
with n have prime n
  by (simp only: prime-eq' One-nat-def simp-thms)
  then show ?thesis ..
qed
qed

lemma dvd-factorial: 0 < m ==> m ≤ n ==> m dvd fact n
proof (induct n rule: nat-induct)
  case 0
  then show ?case by simp
next
  case (Suc n)
  from <m ≤ Suc n> show ?case
  proof (rule le-SucE)
    assume m ≤ n
    with <0 < m> have m dvd fact n by (rule Suc)
    then have m dvd (fact n * Suc n) by (rule dvd-mult2)
    then show ?thesis by (simp add: mult.commute)
  next
    assume m = Suc n
    then have m dvd (fact n * Suc n)
      by (auto intro: dvdI simp: ac-simps)
    then show ?thesis by (simp add: mult.commute)
  qed
qed

lemma dvd-prod [iff]: n dvd (Π m::nat ∈# mset (n # ns). m)
  by (simp add: prod-mset-Un)

definition all-prime :: nat list ⇒ bool
  where all-prime ps ⟷ ( ∀ p ∈ set ps. prime p)

lemma all-prime-simps:
  all-prime []
  all-prime (p # ps) ⟷ prime p ∧ all-prime ps
  by (simp-all add: all-prime-def)

lemma all-prime-append: all-prime (ps @ qs) ⟷ all-prime ps ∧ all-prime qs
  by (simp add: all-prime-def ball-Un)

```

```

lemma split-all-prime:
  assumes all-prime ms and all-prime ns
  shows  $\exists qs. \text{all-prime } qs \wedge$ 
     $(\prod m::nat \in \# mset qs. m) = (\prod m::nat \in \# mset ms. m) * (\prod m::nat \in \# mset$ 
     $ns. m)$ 
    (is  $\exists qs. ?P qs \wedge ?Q qs$ )
  proof -
    from assms have all-prime (ms @ ns)
      by (simp add: all-prime-append)
    moreover
      have  $(\prod m::nat \in \# mset (ms @ ns). m) = (\prod m::nat \in \# mset ms. m) * (\prod m::nat \in \# mset ns. m)$ 
        using assms by (simp add: prod-mset-Un)
      ultimately have ?P (ms @ ns)  $\wedge$  ?Q (ms @ ns) ..
      then show ?thesis ..
  qed

lemma all-prime-nempty-g-one:
  assumes all-prime ps and ps  $\neq \emptyset$ 
  shows Suc 0  $< (\prod m::nat \in \# mset ps. m)$ 
  using <ps  $\neq \emptyset$  > all-prime ps
  unfolding One-nat-def [symmetric]
  by (induct ps rule: list-nonempty-induct)
    (simp-all add: all-prime-simps prod-mset-Un prime-gt-1-nat less-1-mult del: One-nat-def)

lemma factor-exists: Suc 0  $< n \implies (\exists ps. \text{all-prime } ps \wedge (\prod m::nat \in \# mset ps. m) = n)$ 
proof (induct n rule: nat-wf-ind)
  case (1 n)
  from <Suc 0 < n>
  have  $(\exists m k. \text{Suc } 0 < m \wedge \text{Suc } 0 < k \wedge m < n \wedge k < n \wedge n = m * k) \vee \text{prime } n$ 
    by (rule not-prime-ex-mk)
  then show ?case
  proof
    assume  $\exists m k. \text{Suc } 0 < m \wedge \text{Suc } 0 < k \wedge m < n \wedge k < n \wedge n = m * k$ 
    then obtain m k where m: Suc 0 < m and k: Suc 0 < k and mn: m < n
      and kn: k < n and nmk: n = m * k
      by iprover
    from mn and m have  $\exists ps. \text{all-prime } ps \wedge (\prod m::nat \in \# mset ps. m) = m$ 
      by (rule 1)
    then obtain ps1 where all-prime ps1 and prod-ps1-m:  $(\prod m::nat \in \# mset$ 
       $ps1. m) = m$ 
      by iprover
    from kn and k have  $\exists ps. \text{all-prime } ps \wedge (\prod m::nat \in \# mset ps. m) = k$ 
      by (rule 1)
    then obtain ps2 where all-prime ps2 and prod-ps2-k:  $(\prod m::nat \in \# mset$ 
       $ps2. m) = k$ 
      by iprover
  qed

```

```

ps2.  $m) = k$ 
      by iprover
  from ‹all-prime ps1› ‹all-prime ps2›
  have  $\exists ps. \text{all-prime } ps \wedge (\prod m::nat \in \# mset ps. m) =$ 
     $(\prod m::nat \in \# mset ps1. m) * (\prod m::nat \in \# mset ps2. m)$ 
    by (rule split-all-prime)
  with prod-ps1-m prod-ps2-k nmk show ?thesis by simp
next
  assume prime n then have all-prime [n] by (simp add: all-prime-simps)
  moreover have  $(\prod m::nat \in \# mset [n]. m) = n$  by (simp)
  ultimately have all-prime [n]  $\wedge (\prod m::nat \in \# mset [n]. m) = n ..$ 
  then show ?thesis ..
qed
qed

lemma prime-factor-exists:
  assumes  $N: (1::nat) < n$ 
  shows  $\exists p. \text{prime } p \wedge p \text{ dvd } n$ 
proof -
  from N obtain ps where all-prime ps and prod-ps:  $n = (\prod m::nat \in \# mset ps. m)$ 
  using factor-exists by simp iprover
  with N have ps  $\neq []$ 
  by (auto simp add: all-prime-nempty-g-one)
  then obtain p qs where ps:  $ps = p \# qs$ 
  by (cases ps) simp
  with ‹all-prime ps› have prime p
  by (simp add: all-prime-simps)
  moreover from ‹all-prime ps› ps prod-ps have p dvd n
  by (simp only: dvd-prod)
  ultimately show ?thesis by iprover
qed

```

Euclid's theorem: there are infinitely many primes.

```

lemma Euclid:  $\exists p::nat. \text{prime } p \wedge n < p$ 
proof -
  let ?k = fact n + (1::nat)
  have 1 < ?k by simp
  then obtain p where prime: prime p and dvd: p dvd ?k
  using prime-factor-exists by iprover
  have n < p
  proof -
    have  $\neg p \leq n$ 
    proof
      assume pn:  $p \leq n$ 
      from ‹prime p› have 0 < p by (rule prime-gt-0-nat)
      then have p dvd fact n using pn by (rule dvd-factorial)
      with dvd have p dvd ?k - fact n by (rule dvd-diff-nat)
      then have p dvd 1 by simp
    qed
  qed

```

```

  with prime show False by auto
qed
then show ?thesis by simp
qed
with prime show ?thesis by iprover
qed

```

extract Euclid

The program extracted from the proof of Euclid's theorem looks as follows.

Euclid $\equiv \lambda x. \text{prime-factor-exists} (\text{fact } x + 1)$

The program corresponding to the proof of the factorization theorem is

```

factor-exists ≡
λx. nat-wf-ind-P x
  (λx H2.
    case not-prime-ex-mk x of None ⇒ [x]
    | Some p ⇒ let (x, y) = p in split-all-prime (H2 x) (H2 y))

instantiation nat :: default
begin

definition default = (0::nat)

instance ..

end

instantiation list :: (type) default
begin

definition default = []

instance ..

end

primrec iterate :: nat ⇒ ('a ⇒ 'a) ⇒ 'a ⇒ 'a list
where
  iterate 0 f x = []
  | iterate (Suc n) f x = (let y = f x in y # iterate n f y)

lemma factor-exists 1007 = [53, 19] by eval
lemma factor-exists 567 = [7, 3, 3, 3, 3] by eval
lemma factor-exists 345 = [23, 5, 3] by eval
lemma factor-exists 999 = [37, 3, 3, 3] by eval
lemma factor-exists 876 = [73, 3, 2, 2] by eval

```

```
lemma iterate 4 Euclid 0 = [2, 3, 7, 71] by eval
end
```

References

- [1] U. Berger, H. Schwichtenberg, and M. Seisenberger. The Warshall algorithm and Dickson’s lemma: Two examples of realistic program extraction. *Journal of Automated Reasoning*, 26:205–221, 2001.
- [2] T. Coquand and D. Fridlender. A proof of Higman’s lemma by structural induction. Technical report, Chalmers University, November 1993.
- [3] A. Nogin. Writing constructive proofs yielding efficient extracted programs. In D. Galmiche, editor, *Proceedings of the Workshop on Type-Theoretic Languages: Proof Search and Semantics*, volume 37 of *Electronic Notes in Theoretical Computer Science*. Elsevier Science Publishers, 2000.
- [4] M. Wenzel and F. Wiedijk. A comparison of the mathematical proof languages Mizar and Isar. *Journal of Automated Reasoning*, 29(3-4):389–411, 2002.