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Abstract—In this paper, we investigate the optimal mapping
scheme for 8PSK for an iterative demapping and decoding system
over quasi-static fading channels. We show that there are only
86 unique 8PSK mappings and conjecture that only 70 8PSK
mappings will have unique error performance characteristics.
We obtain an analytical expression for the demapper extrinsic
information transfer (EXIT) functions using a Binary Erasure
Channel (BEC) to model a-priori information and use this to
help select the mapping that converges earliest to a bit error
rate (BER) value of 10−5. Finally, we present the performance of
the optimal mapping scheme and compare its performance with
mappings that have the lowest bit error floor, earliest convergence
threshold and best non-iterative performance over an additive
white Gaussian noise (AWGN) channel.

I. INTRODUCTION

Turbo or iterative techniques have been proposed for a

large number of communication scenarios including multi-user

processing [1], space-time processing [2] and the processing

of bit interleaved coded modulation with iterative decoding

(BICM-ID) [3]. They have been shown to exhibit excellent

performance over the AWGN channel [4].

The quasi-static fading channel is extremely important be-

cause it models various practical scenarios characterised by

extremely low time and frequency diversity, e.g., fixed wireless

access (FWA) channels. Iterative techniques have been shown

to improve performance in these channels however it has

been observed that the choice of mapping scheme can have

a dramatic effect on system performance [5]. It is therefore

important to match the encoder and mapper appropriately. For

our system model, two or more mapping schemes may result

in identical system performance, this implies that we need only

consider a subsection of the 8! = 40, 320 mappings possible
with 8PSK. Brännström and Rasmussen use a bit-wise distance

criterion to classify all 8PSK mappings into 86 sub-sets [6].

This paper investigates the process of selecting an optimal

8PSK mapping scheme. Section II introduces the system

model. Sections III, IV, V and VI demonstrate the existence

of several equivalent mappings, leading to a reduction of the

entire set of 8PSK mappings. In Section VI we also introduce

the BEC approximation to the AWGN a-priori channel model

for EXIT charts. Section VII provides the final BER simulation

results and our optimal mapping. Finally, the main conclusions

of this work are summarised in Section VIII.

II. SYSTEM MODEL

Fig.1 depicts the communications system model. We con-

sider both single antenna systems (NT = NR = 1) often
known as single-input single-output (SISO), which do not

exploit space diversity, as well as multiple antenna systems

(NT , NR >1), which do exploit space diversity. The transmit-
ter consists of four main stages: the encoder, the interleaver,

the mapper and the space-time processor (see Fig.1). Initially,

the information bits are convolutionally encoded at rate Rc,

these coded bits are then pseudo-random interleaved. Finally,

groups of 3 interleaved coded bits are mapped to a complex
symbol from a unit power 8-ary phase shift keying (PSK)
constellation.

In multiple transmit antenna systems (NT > 1), the space-
time processing block generates a space-time block code

(STBC) according to the generator matrices G2, G3 or G4

given by [7]. Essentially, a total of K×NT symbols obtained

from the original K ′ modulation symbols are transmitted

during K time slots by NT transmit antennas.

The signal is distorted by a frequency-flat quasi-static fading

channel as well as AWGN. Consequently, we express the

relationship between the complex receive symbols and the

complex transmit symbols associated with a specific STBC

frame as:

r = hs + n (1)

Here, r denotes the NR × K matrix whose element rj(k)
denotes the complex receive symbol at time slot k and receive
antenna j; s denotes the NT × K matrix whose element

si(k) denotes the complex transmit symbol at time slot k
and transmit antenna i; h denotes the NR × NT matrix of

channel gains whose element hj,i denotes the channel gain

from transmit antenna i to receive antenna j (note that hj,i

is independent of time slot k); and n denotes the NR × K
matrix whose element nj(k) denotes the noise random variable
at time slot k and receive antenna j. The channel gains
are uncorrelated circularly symmetric complex Gaussian with

mean zero and variance 1
2 per dimension. The noise random

variables are uncorrelated circularly symmetric complex Gaus-

sian with mean zero and variance 1
2·SNRnorm

= NT

2·SNR per

dimension, where SNR denotes the average signal-to-noise

ratio per receive antenna.
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Fig. 1: Communications system model.

The receiver consists of two main parts: (i) the soft demap-

per and (ii) the soft-in soft-out decoder. These two stages are

separated by pseudo-random interleavers and de-interleavers,

and they exchange soft information in an iterative manner (see

Fig.1). Specifically, the soft demapper takes as a priori infor-

mation LDem
A on the code bits which is an interleaved version

of the extrinsic information LDec
E on the code bits produced

by the soft input-soft output decoder. Then, it computes the a-

posteriori information LDem
D of the code bits, a log-likelihood

ratio (LLR) from which we remove LDem
A to give LDem

E , the

extrinsic information. The extrinsic information is then used

as the a-priori input for the log-MAP algorithm [8] decoder,

and is given by:

LDem
E (bm(k)|r)= ln

∑

(s∈s
+)

p(r|s)
log2M
∏

m′=1
m′ 6=m

K′
∏

k′=1
k′ 6=k

Pr(bm′(k′))

∑

(s∈s
−)

p(r|s)
log2M
∏

m′=1
m′ 6=m

K′
∏

k′=1
k′ 6=k

Pr(bm′(k′))

(2)

where bm(k) is the mth bit conveyed by the kth mapped

symbol, s+ ={s: bm(k)=1}), and s−={s: bm(k)=0}).
The eight positions in an 8PSK constellation are described

by S(q) =
√

Ese
j 2πq

8 for q = 0, 1, ..., 7. The average symbol
energy is given by Es = 3RcEb where Eb is the average

energy per information bit. The 3-bit symbols are mapped to
the constellation positions using a mapping l, such that the
symbol at S(q) is given by l(q); the elements of l are expressed
in octal notation. For example, the mapping in Fig. 2(a) is

given by l1 = [0, 1, 2, 3, 4, 5, 6, 7] and is known as natural
mapping. A mapping is divided into three sub-mappings, each

of which maps one of the bits in the 3-bit symbols to the
constellation positions. We assign the following labels to the

three sub-mappings (B, C, D), the three Hamming weight one
8PSK symbols (Bs, Cs, Ds) and the three Hamming weight

two 8PSK symbols (Bs, Cs, Ds).

There is a special relationship between these symbols and

these sub-mappings: the single weight of symbol As is con-

tained in sub-mapping A, furthermore As is the logical com-
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Fig. 2: Two possible representations of Natural mapping

plement of the bit sequence of symbol As, for A ∈ {B, C, D}.
Therefore we are only able to assign one of these sets of

labels freely since this will define the other two sets. There are

therefore 3! = 6 possible distinct labellings for each mapping.
Consider natural mapping, its three sub-mappings corre-

spond to the three rings in Fig. 2(b). We choose the following

labelling scheme for these sub-mappings:

l1 = BCD =

























000
001
010
011
100
101
110
111

























=





00001111
00110011
01010101





′

(3)

where ′ denotes the transpose operator. The first sub-mapping

label in l1 is assigned to the inner most sub-mapping, the
second label to the central sub-mapping and the final label

to the outer most sub-mapping. Therefore for our choice of

natural sub-mapping labels we get: Bs = 100, Cs = 010,
Ds = 001 and Bs = 011, Cs = 101, Ds = 110.

III. MAPPING OPERATORS

When considering the mapping choice for our system

model, we introduce four operators that take advantage of our

assumptions on the channel noise and input bit distribution to

drastically reduce the number of unique 8PSK mappings. The

first two operators maintain the relative order of the symbols,

using the assumption of circularly symmetric noise, to identify

equivalent mappings. The next two operators maintain the

Hamming distance between the constellation positions, using

the assumption of equi-probable symbols at the channel input,

to identify equivalent mappings. These final two operators

have also been presented in [9] as the interchanging and

complementation of rows (sub-mappings) respectively. If the

mappings are viewed as a number expressed in octal, then

we are able to index them in ascending order (See [6]), e.g.

l1 = [0, 1, 2, 3, 4, 5, 6, 7] and l40320 = [7, 6, 5, 4, 3, 2, 1, 0]. We
illustrate the effect of the operators on natural mapping (l1).

A. Constellation Rotation (Cr): l5914 = [1, 2, 3, 4, 5, 6, 7, 0]

Under the assumption of circularly symmetric noise, rotat-

ing the constellation positions of the symbols will not affect



performance, i.e., all mappings l(q) = S(q + t) for t ∈ Z

are equivalent, e.g., l1 ≡ l5914. We refer to this operation of
rotation as Constellation Rotation (Cr). The Cr operation gives

a set expansion of eight, i.e., it gives a total of eight different

mappings that are equivalent.

B. Constellation Reflection (Cf): l5040 = [0, 7, 6, 5, 4, 3, 2, 1]

Under the assumption of circularly symmetric noise, reflect-

ing the constellation positions of the symbols will not affect

performance, i.e., both mappings l(q) = S(tq) for t = ±1 are
equivalent, e.g., l1 ≡ l5040. We refer to this type of operation
accordingly as constellation reflection (Cf). The Cf operation

gives a set expansion of two.

C. Sub-mapping Reordering (Sr): l289 =





00110011
00001111
01010101





′

Under the assumption of equi-probable input symbols, re-

ordering the sub-mappings will not affect performance, e.g.,

l1 ≡ l289. We obtained l289 by exchanging sub-mappings B
and C, l289 = CBD. We note that this reordering has affected
the symbol labels, we now have Bs = 010, Cs = 100 and
Ds = 001. We refer to this type of operation as sub-mapping
reordering (Sr). The Sr operation gives a set expansion of

3! = 6.

D. Bit Flipping (Bf): l23617 =





11110000
00110011
01010101





′

Under the assumption of equi-probable symbols, comple-

mentation of one of the sub-mappings will not affect per-

formance, e.g., l1 ≡ l23617. This operation can also be
represented by the exclusive OR operation with symbol X ,
where X ∈ {Bs, Cs, Ds, Bs, Cs, Ds, 111}. We obtained l2355
by the complementation of sub-mapping B or X = Bs. We

note that the bit flipping operation does not affect the symbol

values, i.e., Bs = 100, Cs = 010 and Ds = 001. The Bf
operation gives a set expansion of 23 = 8.

IV. SET REDUCING OPERATOR COMBINATIONS

Using these four operators a mapping may generate a full

set expansion of 768. Unfortunately, for some mappings com-

binations of the operators will generate the original mapping,

they will therefore not have a full set expansion. Consider

l1 = [0, 1, 2, 3, 4, 5, 6, 7], if we Bf with X = Bs we generate

l23617 = [4, 5, 6, 7, 0, 1, 2, 3] and we observe that with a
simple Cr operation we can return to the original mapping,

l1. Therefore l1 will not have a full set expansion.
We found that there are twelve combinations of operators

that could render the original mapping, called T1 to T12.

These combinations were deduced by careful consideration

of the effect that operators have on the phase relationships

in a mapping. We introduce the following notation for Table

I: the combination of mapping operators is denoted by the

concatenation of their abbreviations, e.g., CrBf, and the phase

of symbol S2 anti-clockwise from S1 is denoted by θ(S1, S2).
Some phase relationships are used repeatedly, so we abbreviate

T1

CrBf X = Bs

α = β 6= π θ( 000 , Bs ) = π

κ = −δ 6= π θ( Cs , Ds ) = π

T2

CrBf X = Bs

α = −β 6= π θ( 000 , Bs ) = π

κ = δ 6= π θ( Cs , Ds ) = π

T3
CrBf X = 111

α = β = κ = δ = π

T4

CrCfBfX = Bs

α = −β θ( 000 , Bs ) is odd

κ = δ θ( 000 , Cs ) = θ(Ds, Bs )

T5

CrCfBfX = Bs

α = β θ( 000 , Bs ) is odd

κ = −δ θ( 000 , Cs ) = θ(Ds, Bs )

T6

CrCfBfX = 111

θ( 000 , 111 ) is odd

θ( 000 , Bs ) = θ(Bs, 111 )

T7

CrSrBfX = Bs , lc = CBD

θ( 000 , Bs ) = ± π
2

α = β = κ = −δ 6= π θ( 000 , Ds ) = π

θ( 000 , Cs ) = ∓ π
2

T8

CrSrBfX = Bs , lc = CBD

θ( 000 , Bs ) = ± π
2

−α = β = κ = δ 6= π θ( 000 , Ds ) = π

θ( 000 , Cs ) = ∓ π
2

T9

CrSrBfX = Bs , lc = BDC

α = β 6= π
θ( 000 , Bs ) = π

κ = δ = π

T10

CrSrBf X = 111, lc = BDC

α = β = π
θ( Cs , Ds ) = π

κ = −δ 6= π

T11

CrSrCfBfX = Bs , lc = BDC

α = −β
θ( 000 , Bs ) is odd

θ( 000 , Cs ) = θ(Cs, Bs )

T12

CrSrCfBfX = 111, lc = BDC

κ = δ

θ( 000 , 111 ) is odd

θ( 000 , Bs ) = θ(Bs, 111 )

θ( 000 , Cs ) = θ(Ds, 111 )

TABLE I: Table of all set reducing operator combinations.

them further: α = θ(000, 111), β = θ(Bs, Bs), κ = θ(Cs, Cs)
and δ = θ(Ds, Ds). Each operator combination has particular
phase requirements a mapping must satisfy, Table I.

The labelling scheme that we choose to apply to a mapping

will not affect which combinations it satisfies, however in

Table I we have chosen a labelling that focuses on symbols Bs

or Bs. Therefore when considering whether or not a mapping

satisfies a particular combination, we should choose labellings

that will also focus on symbols Bs and Bs. If we are unable

to find such a labelling scheme then the mapping will not

satisfy the operator combination. For example, it is apparent

that l1 satisfies T1 if we set Bs = 100, Cs = 010, Ds = 001.
However because θ(000, 100) = π for l1 we will be unable to
satisfy T2 since phase requirement θ(000, Bs) = π is always
violated regardless of our values of Bs, Cs, Ds.

A single mapping generates an entire set expansion and we

have calculated that there are a total of 86 non-equivalent non-

overlapping set expansions in 8PSK. We deduced that there

are 56 sets with reduced set expansions and calculated the

size of these sets. Therefore we can calculate that there are 30

non-equivalent sets with full set expansions. We divide these

86 unique sub-sets of 8PSK into 15 groups according to the

combinations they satisfy and label them accordingly, Table II.

The table details the operator combinations a sub-set satisfies

and its size (Ac).

A sub-set is generated from a mapping by using the four

mapping operators, however the operators affect the phase



Mapping Name Multiple combinations Ac

L0 - L29 768

M1a - d T1 T4 (T5) 192

M2a - b T1 T6 (T5) 192

M3a - b T2 T4 T8 (T11 T12) 96

M4a T2 T4 192

M5a - b T2 T5 T7 (T11 T12) 96

M6a T2 T5 192

M7a - b T2 T6 (T4) 192

M8a - b T3 T4 (T5) 192

M9a - f T4 384

M10a - d T5 384

M11a - b T6 384

N1a - d T9 T5 (T12) T10 T5 (T11) 96 96

N2a - d T9 T10 192 192

N3a - t T11 T12 192 192

TABLE II: Table showing the 15 groupings of operator combinations

relationships of a mapping and some Bf operations can gen-

erate a mapping with phase relationships that satisfy different

operator combinations to the original mapping. For the first 12

sub-set groupings in Table II the mappings in a set expansion

all satisfy the same combinations, but for the final three groups

the mappings in the set expansions will satisfy one of two

collections of operator combinations. We present both in the

Multiple combinations column, and the number of mappings

that satisfy each collection in a set expansion. The size of

set expansion of a mapping and the number of operator

combinations it satisfies are related. The set expansion will

halve for each non-parenthesised combination it satisfies. The

combinations in parenthesis are satisfied coincidentally, they

are the result of the non-parenthesised combinations and the

phase restrictions these combinations place on a mapping,

hence they do not contribute to the set reduction.

V. BIT-WISE DISTANCE SPECTRA

We are able to gain further insight into the unique 8PSK

mappings by considering their bit-wise distance spectrum [6].

The bit-wise distance spectra with zero a-priori information

for any mapping is defined below and is denoted by W0; here

and in the rest of the paper we use the sub-index b to represent
the number of known bits

W0 ,







w1
0(1) w1

0(2) w1
0(3) w1

0(4)

w2
0(1) w2

0(2) w2
0(3) w2

0(4)

w3
0(1) w3

0(2) w3
0(3) w3

0(4)






, (4)

where wi
0(j) denotes the average of the total Hamming

distance for bit position i = 1, 2...m of a symbol to all

other symbols at Euclidean distance dj , for all symbols.

We calculate this term below, where the Hamming distance

between ith bits of the symbols at Sn and Sm is dH(Si
n, Si

m).

wi
0(j = 1, 2, 3) =

1

4

7
∑

n=0

dH(Si
n, Si

n+j), (5)

wi
0(j = 4) =

1

8

7
∑

n=0

dH(Si
n, Si

n+4). (6)

The elements of bit-wise distance spectrum for full a-priori

information are defined in a similar fashion, except that

symbols are considered if they only differ in the ith bit.

We introduce the notation IE,b to represent the average

demapper Mutual information when b bits are known. It was
reasoned in [6] that the extrinsic Mutual information for zero

a-priori information, IE,0, is dependent on W0, we would

further conjecture that it is a function of the sum of the bit-

wise distance spectra, w0(j) ,
∑m

i=1 wi
0(j). Similarly, it has

been proved in [6] that the extrinsic Mutual Information for

full a-priori information, IE,2, is a function of the sum of the

bit-wise distance spectra, w2(j):

IE,2 =
1

m

M/2
∑

j=1

w2(j)J

[

√

8γssin

(

πj

M

)]

. (7)

Using this classification, we can see from (5) and (6)

that the mapping operators will not affect the values of w0

or w2, and hence equivalent mappings will have the same

[w0, w2] values. Furthermore, we have found that there are
only 70 unique pairings of [w0, w2], implying that some
non-equivalent mappings have equivalent [w0, w2] values. We
therefore evaluated how these special non-equivalent mappings

performed, through EXIT charts and BER plots.

Finally, we present all 86 unique sub-sets in table III. We

give the sub-set name, set expansion size (Ac), the mapping

with the lowest index in the sub-set (lc), its mapping index (c)
and sub-set distance spectra values [w0, w2]. Some mappings
are already well known and we also include these names: Gray,

Natural (N), Set partitioning (SP) [10], modified set partition-

ing (MSP), semi-set partitioning (SSP) [11], and Maximum

squared Euclidean weight (MSEW) [10].

VI. EXIT CHARTS

For a similar BICM-ID system over a quasi-static fading

channel it was shown that the convergence threshold dictates

error performance [12]. For an iteratively decoded system a

standard tool for predicting the convergence threshold has been

ten Brink’s EXIT charts [13]. Therefore although we are able

to classify mappings for zero and full a-priori information,

we are particularly interested in the form of the EXIT curve

in the region between these two points.

There are three main methods to model the a-priori infor-

mation in an iterative system [14]:

• Model it as an AWGN channel. This is ten Brink’s

assumption for EXIT charts.

• Model it as a BEC with erasure probability ǫ.
• Model it as a BSC with cross-over probability p.

We propose to approximate the AWGN a-priori channel

with a BEC channel with erasure probability ǫ. We are then
able to derive the EXIT chart function (the extrinsic mutual

information IE) as a quadratic in terms of the a-priori mutual

information IA. We make use of the well-known relationship

between the mutual information and erasure probability of the

BEC, I = 1 − ǫ

IE(IA) = (1− IA)2IE,0 + IA(1− IA)IE,1 + (IA)2IE,2. (8)

It was further shown by ten Brink that for independent and

uniformly distributed binary inputs the area under this EXIT
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chart curve is equal to the capacity of the constellation, this is

known as the area property. The capacity of a constellation is

independent of the mappings scheme implemented, therefore

we can rewrite the demapper EXIT function as a function of

only two mapping dependent terms, IE,0 and IE,2, and the

constellation constrained capacity, C8PSK :

IE(IA) = [3(IE,2 + IE,0) − 2C8PSK ](IA)2 (9)

+[2C8PSK − 2IE,2 − 4IE,0]IA + IE,0.

We have found that using the BEC as an approximation

to the AWGN a-priori channel provides tight approximation

for the EXIT chart curve of the demapper. We considered a

wide range of Eb/N0 and mapping schemes, Fig. 3. Using

this model, we make a further conjecture that non-equivalent

mappings with equivalent [w0, w2] values will have the same
error performance characteristics. Therefore we need only

consider 70 non-equivalent 8PSK sub-sets.

Using the BEC a-priori approximation we are able to

draw some guidelines for mapping selection for a particular

convolutional code. Consider that at the convergence threshold

of a turbo code, the decoding trajectory is able to just squeeze

past the bottleneck between the two decoding EXIT functions

and traverse the whole EXIT chart to the top right corner.

This leads to a sudden sharp decrease in the BER curve. In

order to achieve similar performance for our system we would

also require the first intersection of the demapper and decoder

EXIT curves at the convergence threshold to be as close to

IDem
A = 1 as possible; this is more likely with concave, rather
that convex, functions. For example, consider the SP mapping,

Fig. 3; due to its convexity it intersects with the decoder EXIT

curve earlier than would be desired. For this mapping there

is a more gradual transition from a high to low BER at the

convergence threshold.

The quadratic coefficient of (9) can be used to measure the

concavity/convexity of EXIT functions. Furthermore due to the
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area property, for a fixed IE,0 the lower the value of IE,2 the

greater the degree of convexity, but the higher the bit error rate.

We define early convergence to a BER value of 10−5 as our

optimisation criterion. There is therefore a trade-off between

early convergence and low error floors.

VII. SIMULATION RESULTS

This section investigates the performance of iterative de-

mapping and decoding techniques over frequency-flat quasi-

static fading channels both with and without antenna diversity.

We considered the 86 unique 8PSK mapping schemes coupled

with a rate 1/2 RSC code with octal generator polynomial
(1, 5/7). We will emphasise differences in performance in the
quasi-static fading and the AWGN regimes for BER perfor-

mance curves. In our simulations, we consider a frame length

of 2052 and a soft input-soft output decoder implementing the

log-MAP algorithm.

We propose the mapping M8a (c = 48) as optimal for
our system model, the performance curves in Fig. 4 illustrate

its performance both with and without antenna diversity. We

compare its performance with three other mapping schemes:

Gray mapping, which has been shown to have the best BER

performance for non-iterative systems; semi-set partitioning

(SSP) mapping, which has the lowest bit error floor for

8PSK; set partitioning (SP) mapping, which has a convex

EXIT function and has the lowest convergence threshold. It is

actually difficult to ascertain that SP mapping has the lowest

convergence threshold from EXIT charts, and indeed there are

a few mappings with very similar thresholds.

The EXIT functions for these four mappings are depicted

in Fig. 3, as well as each BEC approximation curve and

the decoder EXIT function. We observe that the M8a EXIT

function has a high initial value and a slightly concave EXIT

function, this combination enables it to have a much sharper

BER plot decrease than SP mapping while having a much

earlier convergence than SSP mapping.



We observe that iterating increases the performance in

all scenarios with the exception of Gray mapping, which

does not benefit. Both SP and M8a mappings have identical

performance in systems with limited antenna diversity, and

both outperform SSP mapping over all scenarios (antennas,

iterations) over all Eb/N0. For systems with significant an-

tenna diversity for low Eb/N0 SP mapping outperforms M8a

mapping, however this corresponds to high BER values. We

observe that M8a mapping outperforms the other three map-

pings for systems with significant antenna diversity at medium

to high Eb/N0 by approximately 1dB.

VIII. CONCLUSIONS

We observed that we can classify all 8PSK mappings

into 86 sub-sets under comprehensive assumptions, with all

mappings within a sub-set being equivalent. Furthermore we

conjecture that only 70 of these sub-sets will have unique

error performance characteristics. We show that using the

BEC as an approximation to the AWGN for the a-priori

channel in EXIT charts gives very good results and enables a

quadratic description of the EXIT curve. We use this analytical

description to help aid our selection of an optimal mapping

for our system model, M8a mapping, and compare its BER

performance with mappings that are also optimal for different

criteria. Results demonstrate that M8a mapping outperforms

other mappings for our system with high antenna diversity and

medium to high Eb/N0. For systems that are non-iterative or

have low antenna diversity, we observed that Gray mapping

outperforms all other mappings for all Eb/N0.
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c Name Ac lc w0 w2

138 M3a, Gray 12 0,1,3,2,6,7,5,4 2.00 4.00 4.00 2.00 2.00 0.00 1.00 0.00

24 M3b 24 0,1,2,3,7,6,5,4 2.50 3.00 3.50 3.00 1.50 1.00 0.50 0.00

18 N3v 48 0,1,2,3,6,7,5,4 2.50 3.00 4.00 2.50 1.50 1.00 0.50 0.00

22 N1d 24 0,1,2,3,7,5,6,4 2.50 3.00 4.50 2.00 1.50 1.00 0.00 0.50

12 L0 96 0,1,2,3,5,7,6,4 2.50 3.50 4.00 2.00 1.50 0.75 0.50 0.25

92 N2d 48 0,1,2,6,7,3,5,4
2.50 4.00 3.50 2.00

1.50 0.50 0.50 0.50

132 N3j 48 0,1,3,2,5,7,6,4 1.75 0.00 1.25 0.00

82 M9d 48 0,1,2,6,4,5,7,3 2.50 4.00 4.00 1.50 1.50 0.50 0.50 0.50

122 M1c 24 0,1,3,2,4,5,7,6 2.50 5.00 3.50 1.00 1.50 0.00 0.50 1.00

17 M5b 12 0,1,2,3,6,7,4,5 3.00 2.00 5.00 2.00 1.00 2.00 0.00 0.00

42 M9f 48 0,1,2,4,6,7,5,3 3.00 3.00 3.50 2.50 1.00 1.00 1.00 0.00

16 L1 96 0,1,2,3,6,5,7,4
3.00 3.00 4.00 2.00

1.00 1.25 0.50 0.25

11 M10d 48 0,1,2,3,5,7,4,6 1.00 1.50 0.50 0.00

41 N3a 48 0,1,2,4,6,7,3,5
3.00 3.00 4.50 1.50

1.00 1.00 0.50 0.50

54 N3r 48 0,1,2,5,3,7,6,4 1.25 1.00 0.25 0.50

10 L2 96 0,1,2,3,5,6,7,4 3.00 3.50 3.00 2.00 1.00 1.00 1.00 0.00

36 L3 96 0,1,2,4,5,7,6,3

3.00 3.50 3.50 2.00

1.00 0.75 1.00 0.25

4 L4 96 0,1,2,3,4,6,7,5
1.25 0.75 0.75 0.25

58 L5 96 0,1,2,5,4,6,7,3

38 L6 96 0,1,2,4,6,3,7,5
3.00 3.50 4.00 1.50

1.00 1.00 0.50 0.50

68 L7 96 0,1,2,5,7,3,6,4 1.25 0.75 0.25 0.75

8 M6a 24 0,1,2,3,5,4,7,6

3.00 4.00 3.00 2.00
1.00 1.00 1.00 0.00

88 M4a 24 0,1,2,6,5,4,7,3

127 M7b 24 0,1,3,2,5,4,6,7 1.50 0.00 1.50 0.00

35 L8 96 0,1,2,4,5,7,3,6

3.00 4.00 3.50 1.50

1.00 0.50 1.00 0.50
112 M9a 48 0,1,2,7,5,4,6,3

2 L9 96 0,1,2,3,4,5,7,6

1.25 0.50 0.75 0.5080 N3o 48 0,1,2,6,4,3,7,5

89 N3n 48 0,1,2,6,5,7,3,4

81 N3p 48 0,1,2,6,4,5,3,7 3.00 4.00 4.00 1.00 1.25 0.50 0.25 1.00

32 L10 96 0,1,2,4,5,3,7,6 3.00 4.50 3.00 1.50 1.00 0.50 1.00 0.50

6 L11 96 0,1,2,3,4,7,6,5 3.50 2.50 4.50 1.50 0.75 1.50 0.25 0.50

48 M8a 24 0,1,2,4,7,6,5,3 3.50 3.00 2.50 3.00 0.50 1.00 1.50 0.00

72 M9e 48 0,1,2,5,7,6,4,3 3.50 3.00 3.00 2.50 1.00 1.00 1.00 0.00

46 N2b 48 0,1,2,4,7,5,6,3

3.50 3.00 3.50 2.00

0.50 1.00 1.00 0.50
47 N1b 24 0,1,2,4,7,6,3,5

5 L12 96 0,1,2,3,4,7,5,6
0.75 1.25 0.75 0.25

28 L13 96 0,1,2,4,3,6,7,5

64 N3f 48 0,1,2,5,6,4,7,3
0.75 1.50 0.75 0.00

53 N3g 48 0,1,2,5,3,7,4,6

3 N1c 24 0,1,2,3,4,6,5,7
1.00 1.00 0.50 0.50

71 N2a 48 0,1,2,5,7,6,3,4

30 L14 96 0,1,2,4,3,7,6,5

3.50 3.00 4.00 1.50
0.75 1.00 0.75 0.50

39 N3i 48 0,1,2,4,6,5,3,7

65 M11a 48 0,1,2,5,6,7,3,4 1.00 1.00 0.50 0.50

106 M1a, MSP 24 0,1,2,7,4,5,6,3
3.50 3.00 4.50 1.00

0.50 1.00 0.50 1.00

1 M2b, N, SP 24 0,1,2,3,4,5,6,7 1.00 1.00 0.00 1.00

29 L15 96 0,1,2,4,3,7,5,6

3.50 3.50 3.00 2.00
0.75 0.75 1.25 0.25

33 L16 96 0,1,2,4,5,6,3,7

67 L17 96 0,1,2,5,7,3,4,6 1.00 0.75 1.00 0.25

44 L18 96 0,1,2,4,7,3,6,5

3.50 3.50 3.50 1.50

0.50 0.75 1.00 0.75

26 L19 96 0,1,2,4,3,5,7,6
0.75 1.00 0.75 0.50

59 L20 96 0,1,2,5,4,7,3,6

57 L21 96 0,1,2,5,4,6,3,7 1.00 0.75 0.50 0.75

43 N2c 48 0,1,2,4,7,3,5,6
3.50 4.00 2.50 2.00

0.50 0.50 1.50 0.50

151 N3c 48 0,1,3,4,5,2,6,7 1.25 0.00 1.75 0.00

31 N3e 48 0,1,2,4,5,3,6,7

3.50 4.00 3.00 1.50

0.75 0.50 1.25 0.50111 L22 96 0,1,2,7,5,4,3,6

206 N3h 48 0,1,3,6,5,2,7,4

56 L23 96 0,1,2,5,4,3,7,6
1.00 0.50 1.00 0.50

87 M9c 48 0,1,2,6,5,4,3,7

105 M10b 48 0,1,2,7,4,5,3,6
3.50 4.00 3.50 1.00

0.50 0.50 1.00 1.00

146 M10a 48 0,1,3,4,2,5,7,6 1.00 0.50 0.50 1.00

609 M1d 24 0,1,7,2,4,5,3,6 3.50 5.00 2.50 1.00 0.50 0.00 1.50 1.00

66 M7a 24 0,1,2,5,6,7,4,3 4.00 2.00 4.00 2.00 0.50 2.00 0.50 0.00

27 N3t 48 0,1,2,4,3,6,5,7 4.00 3.00 2.50 2.50 0.50 1.00 1.50 0.00

51 L24 96 0,1,2,5,3,6,4,7
4.00 3.00 3.00 2.00

0.50 1.25 1.00 0.25

50 M10c 48 0,1,2,5,3,4,7,6 0.50 1.50 1.00 0.00

25 M11b 48 0,1,2,4,3,5,6,7

4.00 3.00 3.50 1.50

0.50 1.00 1.00 0.50

49 L25 96 0,1,2,5,3,4,6,7
0.75 1.00 0.75 0.50

63 N3k 48 0,1,2,5,6,4,3,7

104 N3q 48 0,1,2,7,4,3,6,5
4.00 3.00 4.00 1.00

0.25 1.00 0.75 1.00

55 N3l 48 0,1,2,5,4,3,6,7 0.75 1.00 0.25 1.00

163 L26 96 0,1,3,4,7,2,5,6 4.00 3.50 2.50 2.00 0.50 0.75 1.50 0.25

103 L27 96 0,1,2,7,4,3,5,6
4.00 3.50 3.00 1.50

0.25 0.75 1.25 0.75

85 L28 96 0,1,2,6,5,3,4,7 0.50 1.00 1.00 0.50

495 M3b 12 0,1,6,2,5,4,3,7 4.00 4.00 2.00 2.00 1.00 0.00 2.00 0.00

519 M9b 48 0,1,6,3,5,4,2,7 4.00 4.00 2.50 1.50 0.50 0.50 1.50 0.50

607 N3m 48 0,1,7,2,4,3,5,6 4.00 4.00 3.00 1.00 0.25 0.50 1.25 1.00

61 L29 96 0,1,2,5,6,3,4,7 4.50 2.50 3.50 1.50 0.25 1.50 0.75 0.50

1699 N1a, MSEW 24 0,3,4,1,7,2,5,6 4.50 3.00 2.50 2.00 0.00 1.00 1.50 0.50

517 N3d 48 0,1,6,3,5,2,4,7
4.50 3.00 3.00 1.50

0.25 1.00 1.25 0.50

493 N3b 48 0,1,6,2,5,3,4,7 0.50 1.00 1.00 0.50

1777 M2a, SSP, MSEW 24 0,3,4,7,1,2,5,6
4.50 3.00 3.50 1.00

0.00 1.00 1.00 1.00

513 M1b 24 0,1,6,3,4,5,2,7 0.50 1.00 0.50 1.00

1695 M5a, MSEW 12 0,3,4,1,6,5,2,7 5.00 2.00 3.00 2.00 0.00 2.00 1.00 0.00

TABLE III: Table of 8PSK sub-sets


