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Abstract—Distributed spatial diversity systems, such as
multi-relay and multi-user networks, have drawn significant
attention from the research community. However, their fea-
sibility in a practical environment remains an open concern.
Most notably, how to optimize cooperation between multiple
users with individual interests and how practical systems
issues can erode diversity gains. Whilst existing information
theoretical analysis may yield insightful bounds, they provide
an inadequate solution for optimal power allocation in realistic
systems due to the mutual information saturation of non-
Gaussian inputs. In our work, we use feasible modulation and
error correction codes to implement a system and demonstrate
how multiple users cannot only improve their performance
through cooperation, but also optimize their performance
through power allocation with imperfect feedback. We do so,
by considering an evolution game theoretic (EGT) approach,
whereby the status-quo between users change with each
decision.

I. INTRODUCTION

Cooperative communication has many aspects, and
chiefly amongst them are: diversity techniques, relay-
ing protocols and optimization. In order to achieve full
diversity amongst available paths, two commonly used
techniques are Distributed-Space-Time-Codes (DSTCs) [1]
and Maximum-Ratio-Combining (MRC) [2]. DSTCs can
achieve the same diversity order as MRC, whilst poten-
tially offering significant spectral efficiency savings when
the number of transmit nodes is large. However, DSTCs
face feasibility challenges concerning synchronization and
coordination. Whilst these challenges have been partially
addressed, the sensitivity to orthogonality errors can cause
unacceptable performance degradation [3]. In order to re-
lay the same transmission through different independently
faded paths, two popular protocols are often considered,
i.e., Amplify-and-Forward, and Decode-and-Forward. Fur-
thermore, forward-error-correction (FEC) codes can also be
included to improve performance. In literature, information
theoretic and symbol error rate characterization are well
defined for MRC receivers [2] [4]. It has also been shown
in [5] that power allocation solutions cannot assume Gaus-
sian inputs due to the saturation of realistic modulation

Fig. 1. Multiple users in cooperation, observed from a user i’s perspec-
tive. Other users (i′) are potential partners (set S), of which some can
cooperate (subset U ) and others cannot (subset S \ {U}).

constellations. Optimization of such networks has been
performed mostly for relay networks, where multiple relays
unselfishly assist a single user in transmission. Such opti-
mization include partner selection [6][7] and power control
[8]. Relay network optimization is significantly different
to that of cooperative networks, where each user must
optimize power allocation between transmitting its own
data and relaying that of others. What remains unclear is
how multiple users should optimally allocate their resources
in a realistic cooperative network. The open challenges are:
how will competing users settle on cooperation, and how
to optimize such a network given channel state information
(CSI) estimation errors? To consider these problems, we
first construct a system model consisting of multiple users
in cooperation as shown in Fig. 1. We then characterize the
system’s performance before investigating the aspects of
user behaviour, partner selection, optimization and channel
state feedback.

II. SYSTEM SETUP

A. System Model

We consider M single-antenna users, randomly dis-
tributed and connected by channels which experience re-
ciprocal quasi-static Rayleigh fading and are impaired by



Fig. 2. Non-Cooperative, and Repetition Cooperative Transmission Stages
for M = 4 Users. U1D2 means User 1 is transmitting User 2’s data
through cooperation.

Additive White Gaussian Noise (AWGN). Such a channel
model is most appropriate for transmissions dominated by
non-line-of-sight (NLOS) propagation paths. Each coopera-
tion cycle will experience a constant fading gain, and spatial
diversity is achieved through MRC at the common desti-
nation. In Fig. 2, we show the frequency-time utilization
of Non-Cooperative (Direct) Transmission and Repetition
Cooperative Transmission. When in cooperation, the first
transmission step for every user is used to broadcast their
own data to the common destination and to each other.
In the remaining steps, they relay each other’s data in
cooperation and in the case of unsuccessful cooperation,
they simply retransmit their own data. We also consider
two commonly used forward-error-correction (FEC) codes,
namely: Block codes and Convolution codes. We note that
No-Cooperation utilizes a fraction of 1

M and Repetition
Diversity utilizes a fraction of 1

M2 the degrees of freedom
inside a channel. Therefore, for a fairer transmit power
comparison, we shall compensate the No-Cooperation case
with the use of M times greater transmit power. We note
that alternatively a fair rate comparison can also be made by
having different modulation and coding schemes, as shown
in our previous work [9].

B. Definitions

For a system of M users, a particular user i can have m
other partners at any particular fading instance, where 0 ≤
m ≤ M−1. Each other partner is denoted as user i′ where
i′, i′ 6= i. In a Decode-and-Forward protocol, the chance
of cooperation is based on the inter-user channel condition
and the FEC code (C) utilized. We define the instantaneous
channel signal to noise ratio (SNR) as γ = |h|2 E

N0
, where E

is the transmit energy, |h| is the magnitude of the complex
fading coefficient h, and N0 is the average additive white
Gaussian noise (AWGN) power spectral density. We define
γi−d as the average SNR of the uplink channel between
node i and destination d, and γi−i′ as the average SNR of
the interuser channel between nodes i and i′. Referring to
Fig. 1, we define a powerset S , which contains all the valid

subsets of 0 ≤ m ≤ M − 1 potential cooperation partners.
The subset U is a part of S , that contains all the partners
which can provide cooperation. Hence, S\{U} contains all
the remaining nodes that cannot assist the considered user
i.

C. Characterization

In our previous work [10], we found the exact frame-
error-rate (FER) expression for Decode-and-Forward (DF)
user, in a cooperative system with arbitrary (asymmetrical)
channels. For user i, its FER is:
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where ω and ψ are power allocation factors to allow fair
comparison between different user behaviour scenarios (B),
that we shall explain in section III and for now we assume
ω = 1, ψ = M −m and B = 1. We define ℘i−i′ as the
chance of cooperation between user i and i′:

℘i−i′ = 1− pDirect
fFading,C

= 1−
∫ ∞
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e
− γ

γi−d dγ.
(2)

The term pDirect
fAWGN,C

is the FER for Non-Cooperative (Direct)
transmission in an AWGN channel utilizing FEC code C.
Previously, we have considered DF systems utilizing Block
Codes [11] and Turbo Codes [10]. For the purpose of
this paper we shall be considering channel codes, whose
performance in AWGN channels can be characterized by
an SNR threshold (T ), i.e., convolution and turbo codes
[12]. In [10], we substitute the chance of cooperation (2)
into the FER expression (1) and the user i’s frame error
rate (FER) was found to be:
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(3)

Expression 3 considers users who are willing to cooperate if
possible. In the following section, we investigate a practical
system with M users, where each user is only willing to
cooperate if certain conditions are satisfied.



III. GAME THEORY

A. User Behaviour

Thus far, most previous literature investigates coopera-
tion between nodes who are willing to cooperate. We call
this unselfish cooperation (UsC). In our previous work [11],
we investigated the impact of mutually selfish cooperation
(MsC). In MsC, we define cooperation to exist when it is
both possible and reciprocal, otherwise there will be no
cooperation (NC). It was concluded that MsC significantly
reduces the performance and renders optimization less
effective. We also considered the impact of users deceiving
other users by not cooperating despite promising to, which
we called leeching cooperation (LC). The exploited user
(EX) experiences a significantly reduced performance. Our
previous work established that the aggregate long-term
performance of all users is higher in unselfish coopera-
tion, consequently we now consider the dynamics of the
cooperative behaviour problem.

B. System Setup

In this work, we extend our investigation concerning
user behaviour this time using Evolutionary Game Theo-
retic (EGT) analysis. In EGT, the game theory’s model is
updated based upon previous experience. We consider a
system of M users, each user i has a set of strategies Ai

available, compromising of the aforementioned behaviour
strategies. A user’s behaviour strategy is consistent within
one cooperation cycle (a quasi-static fading block). We
introduce a penalty factor X , which is the number of
cooperation cycles that a Leecher (LC) is locked out of
cooperation by the other users. When denied the opportu-
nity to cooperate, a Leecher node has only one behaviour
strategy available: no cooperation (NC).

Let us assume that user i chooses behaviour strategy ai

from the available strategy set Ai. Given that other users
observe a set of behaviour strategies, the user knows what
the ideal performance outcome is. However, since strategies
are decided independently, each user is uncertain what
performance outcome to expect until some knowledge is
acquired about the game theory trade-off. A user i acquires
this knowledge by recording the performance of previous
attempts at strategy ai. We define user i’s utility Ui as a
function of the ideal error rate expression given in (1) for
behaviour ai, in addition to previous experience of the error
rate performance based on other users’ strategies:

Ui(ai) = pDF
fFading,C(T )

(ai) +
n∑

j=1

eDF
Fading,C(T )(j, ai,Ai′), (4)

where the previously measured frame error
(eDF

Fading,C(T )(j, ai,Ai′)) is averaged over all previous
n transmission frames using strategy ai, subject to
other users’ strategy set Ai′ . Referring to the error rate
expression (1) for different user behaviors, the variables
B, ψ and ω are as follows:
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Fig. 3. Evolution Game Theory simulation results on Average Chance
of a Behaviour mode against the Lock-out duration X . Uplink SNR of
10dB averaged between asymmetrical values, and Interuser SNR of 20dB
averaged, for M = 6 users and N = 5000 evolution cycles. We have
used a turbo code with generator polynomials (1, 5/7, 5/7) in octal form,
a threshold of T = −4.4dB, and an input frame size of 256.

• Unselfish - UsC (B = 1 ω = 1 ψ = M −m)
• Mutually Selfish - MsC (B = 2 ω = 1 ψ = M −m)
• No Cooperation - NC (B = ∞, ψ = M )
• Leeching User - LC (UsC, B = 1) or (MsC, B = 2)

and ω = M ψ = M
• User Being Leeched - EX (B = ∞, ψ = M −m).

As new users enter a network with no prior performance
experience, the utility function (error rate) have the fol-
lowing relationship for most channel conditions: UEX >
UNC > UMsC > UUsC > ULC . Therefore, from an
individual user’s perspective, there is a constant evaluation
of whether to trust other users with Unselfish Cooperation
(UsC), or exploiting other users (LC) and risk suffering the
consequences of no cooperation (NC) for X cycles. The
stability criterion for this dynamic trade-off is represented
as the Nash Equilibrium, which occurs when a behaviour
exists so that no unilateral deviation to a new behaviour
(a
′
i) by any single user is profitable. This notion is formally

represented by the following expression:

Ui(a) = Ui(ai,ai′) ≤ Ui(a
′
i,a

i′), (5)

and this applies to all users. Since the utility function Ui

is the error rate, lower values represent a better utility and
corresponding behaviour.

C. Results and Analysis

We examine the effect of the normalized lock out pe-
riod, X/N (cooperation cycles) has on the user behaviour
dynamics in an evolutionary game theory setup. The pa-
rameter N affects the duration a user has to learn about
the various evolutionary game theoretic possibilities, and
we found N = 5000 to adequately describe the possible
outcomes. Based on this, we present the simulation results



shown in Fig.3 for the aforementioned user behaviour
scenarios. Here we consider half of the users in the network
are new and without experience of the game, and the rest
have experience of the game. For a no lock out duration
X
N = 0%, the experienced users will not attempt to leech
(LC), because they have experience of the fact that if all
users leech, it will simply have the poor performance owing
to no-cooperation (NC). Therefore, the experienced users
will attempt cooperation, but this fails due to the new users
leeching behaviour. The experienced users update their own
learning model to account for this fact, and this results
in mixture of leeching (LC) and no-cooperation (NC)
behaviour (Point A in Fig.3). For low lock out duration
ratios X

N = 0.2% (corresponding to 10 frames), leeching is
significantly reduced. This leads to cooperative behaviour,
that is dominated by Unselfish Cooperation (UsC) (Point
B). As we further increase the lock out duration penalty, the
likelihood of Leecher (LC) behaviour falls to near zero and
the performance trade-off between Mutually Selfish Coop-
eration (MsC) and Unselfish Cooperation (UsC) becomes
dominant (Point C). This trade-off reflects the dilemma
that when an asymmetry in cooperation behaviour exists
between users, the user that adopts MsC experiences the
benefits of the user that adopts UsC, whilst the UsC user
suffers a performance loss. Yet, if both users adopt the MsC
strategy, the performance is below the scenario of all users
adopting the UsC strategy. Learning from this trade-off
becomes the dominant effect in the evolutionary learning
experience. What we can conclude from our findings is
that a stable equilibrium is difficult to establish for any
behaviour strategy. In Unselfish Cooperation, the users are
aware of the potential performance degradation of Leeching
and Mutually Cooperating users. In No Cooperation, the
users are aware of the potential performance gains of any
other strategy. Hence, what we have found is that for a small
lock out duration penalty X > 4 cycles, there can be a high
chance of cooperation (95%), which is dominated by the
optimal performance behaviour, i.e., Unselfish Cooperation
(UsC). This is similar to the conclusion reached by other
game theoretic approaches such as those by [13]. Therefore,
we shall proceed to optimize the performance of unselfish
users by power allocation and evaluate the solution’s re-
silience to feedback delays and errors.

IV. REALISTIC OPTIMIZATION

A. Partner Selection

We have so far considered cooperation without any
penalties. In a realistic system, factors such as synchroniza-
tion, channel-state-information (CSI) feedback delay, and
user behaviour can potentially erode that capacity. Whilst
modeling such penalties and their precise effects are impor-
tant, the analysis can also be complex, as shown in [14].
We consider the Decode-and-Forward (DF) protocol, due
to the fact that the Amplify-and-Forward (AF) protocol’s
performance is highly susceptible to instantaneous channel

estimation errors [15]. The challenge of partner selection is
more difficult due to uncertain cooperation. In our previous
work [10], we used a method similar to that proposed
by [6] and [7], where partnerships are selected based on
minimizing the harmonic mean of the SNRs. First we
define the harmonic mean of user i’s channels with respect
to a partner i′: Si−i′ = 2

1
γ

i−i′
+ 1

γ
i′−d

. We then minimize

the difference between the average harmonic mean of all
partnerships, thus creating partnerships of similar channel
quality. This can be seen as a modified and long term
version of the instantaneous relay selection criterion used
in [6]. After partner selection, the partnerships of M = 2
users each have their own individual FER, and the system
FER is the sum of all partnership FERs. Whilst we cannot
prove what the optimal partnership size is for a given set of
channel conditions, we have chosen M = 2 to demonstrate
optimization through power allocation and effect of channel
feedback issues. Therefore, for a specific partnership, we
can use the previous FER function (3) for M = 2 users,
and we will now look at applying a power constraint and
optimizing power allocation.

B. Power Allocation

Given that we have now selected one partner for each
user, we have effectively reduced a M sized network to
M/2 pairs of 2 user cooperation. For the schemes to be fair
and comparable to each other, we add a power constraint
whereby the amount of power available to each user is fixed
(i.e., unity per block):

PBi + PCi = 1, (6)

where PBi is the power allocation factor for step 1 and PCi is
for step 2 of a cooperation cycle. As shown in [10], we first
utilize a brute force search approach, which searches along
all valid FER possibilities, subject to the power constraint.
This may be seen as a optimal solution for our error rate
minimization approach. In order for a deterministic power
optimization to produce unique solutions which provide the
lowest system FER, we must ensure the objective system
FER equation and the power constraint equation are both
convex. To do so, we examine the second-order partial
derivatives of the FER and constraint functions. When the
derivatives are formed into a square matrix, it is known as
the Hessian matrix. The Hessian is used to show whether
the functions are semi-definite positive; or in other words:
convex. In our previous work [10], we showed that it
is indeed convex. Therefore, using Lagrangian multipliers
(Lagrangian Λ), we found the minimum FER under the
power constraint:

PBi =
( γi−i′+γi−d

γi−i′+γi′−d
)

1
3

1 + ( γi−i′+γi−d

γi−i′+γi′−d
)

1
3

. (7)

From (7), we can see that a symmetric system (γi−d =
γi′−d) would reduce the scheme to equal power allocation.



V. CHANNEL FEEDBACK: ERRORS AND DELAYS

So far, the power allocation solutions have relied on
an accurate average CSI feedback in all channels (γ).
Currently the receiver averages the perfect channel state
estimates over a period of N blocks, where N is sufficiently
large to yield an accurate description of the average channel
state information (CSI). The CSI is then fed back to the
transmit nodes via full duplex channels. We now consider
how estimation errors in the average CSI can affect the per-
formance gains achieved through adaptive power allocation.
Furthermore, we consider the ideal case of instantaneous
feedback, the gains that can be achieved with utilizing that,
and how a delay in feedback can erode such gains.

A. Erroneous CSI

In the first part of Fig. 4, we show the 3 fading blocks,
each a cooperation cycle with M transmission stages. The
first stage is the broadcast stage (labeled B), and the remain-
ing M − 1 stages are for cooperation or retransmission.
The average CSI is fed back from the receiver to each
transmitting user. The average CSI is defined as the instan-
taneous CSI over N fading blocks, and for large values of
N , the average CSI can be accurately estimated, despite
the errors in the instantaneous CSI. We now introduce
scenarios, where the CSI is corrupted by errors made during
the estimation process that is not fully eliminated through
averaging. Conventionally this estimation error is assumed
to be independent complex Gaussian distributed [16]. We
define the estimated channel gain |h′| as:

|h′| = |h|+ |∆h|, (8)

where |∆h| is the independent complex Gaussian error,
which is zero mean and has a variance σ2

CSI. We define
the CSI error as a percentage, given by: |∆h|

|h| × 100%. In
general, the pilot channel SNR γPilot is not equal to the
data channel SNR γ, as the pilot channel is transmitted
at a different power. We run simulations whereby we
insert this estimation noise into our deterministic power
allocation solution for a M user system. In Fig. 5, we plot
the following scenarios: Equal Power Allocation (circles);
and Power Allocation with the original clean average CSI
(squares), 5% (crosses) and 10% (stars) noisy average
CSI. The simulation results are shown using symbols and
theory using lines. We can see that by introducing what
is equivalent to a 5% estimation error to the average
CSI estimation, the performance of power allocation is
degraded, but it is still an improvement over equal power
allocation. A tolerance of 10% can be accepted before the
performance degrades to equal power allocation or worse.

B. Delayed CSI

We also consider the case where we feed back the
instantaneous CSI of a fading block (one fading block is one
cooperation cycle which contains M transmission stages).
Hence, power allocation is adapted based on each fading

Fig. 4. Cooperation transmission cycles with Average-Erroneous and
Instant-Delayed CSI feedback
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Fig. 5. DF system with Turbo Codes for 4 Users: Effect of CSI on
the system FER with 25dB interuser channel and 5 and 10 per cent CSI
estimation error. Symbols indicate simulation results, and lines indicate
approximate theoretical expressions.

block as opposed to the average CSI of N fading blocks.
In the second part of Fig. 4, we show the 3 fading blocks,
each is a cooperation cycle with M transmission stages.
The ideal scenario is for the destination to observe if a
significant change in CSI occurs on receiving every stage of
transmission, via a constant power pilot channel. Therefore,
in such a scenario, the earliest form of meaningful adaptive
power control takes place after a delay. Either way we
assume that the first transmission stage out of M stages,
cannot benefit from adaptive power allocation and will
be transmitted at equal power ( 1

M ). In order for power
allocation based on instantaneous CSI to be effective, M
must be high (i.e., it must be for a large number of cooper-
ating users). The complexity of such a problem (large M )
makes the deterministic approaches too complex and we run
simulations on a system whereby we numerically search for
optimal power allocation solutions based on perfect and
delayed and non-delayed instantaneously CSI. In Fig. 6,
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Fig. 6. DF system with Turbo Codes for 4 Users: Effect of CSI on
the system FER with 25dB interuser channel and 1 transmission stage
delay. Symbols indicate simulation results, and lines indicate approximate
theoretical expressions.

we observe that the ideal instantaneous CSI feedback, i.e.,
no errors and instant feedback (triangles), can improve
performance significantly compared to both equal power
(circles) and power allocation based on average CSI without
errors (squares). However, a delay of one transmission stage
(stars) for M = 4 users can reduce performance to that of a
power allocation solution which relies on average CSI. This
is because the first transmission stage is used for channel
discovery as shown in Fig. 4 and adaptive power allocation
begins at the second transmission stage, by when an sub-
optimal amount power has already been consumed. We
can conclude that a similar observation can be made for
other sized networks, but the performance will be better
for networks with a high number of cooperating partners
M > 2.

VI. CONCLUSION

Most existing work has succeeded in analyzing and
optimizing cooperation for systems with unselfish nodes
and no competing interests, often using information theo-
retic analysis. In our work, we utilize practical modulation
and coding schemes which have been shown to yield
more reliable optimization solutions in [5]. We use an
evolutionary game theoretic (EGT) approach to find the
dynamics of various user behaviors and how cooperation
can be established. We found that given a small lock-out
period ( 10 frames) for leeching users, cooperation can
be established with high certainty (95%). Furthermore, we
use partner selection and develop power allocation strate-
gies between the selected partners and produce matching
numerical and theoretical solutions. We then analyzed the
effect that CSI delay and estimation errors have upon our
solutions. We found how an average CSI estimation error in
excess of 10% can reduce the effectiveness of our solution
to that of equal power allocation, which requires no CSI.

Furthermore, it was found that whilst an idealized power
allocation solution that relies on instantaneous CSI can
yield large performance gains, a delay of one transmission
stage can reduce these gains to that of our solution that
relies upon the use of average CSI. Therefore, we conclude
that a realistic cooperative communication system needs
to first utilize a suitable performance metric to encourage
cooperation. Then, partner selection can be performed to
reduce operational complexity. After which, power alloca-
tion based on the average of estimated channel gains can
be used to improve performance in most SNR regimes.
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