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ABSTRACT

Sparse signals can be sensed with a reduced number of ran-

dom projections and then reconstructed if compressive sens-

ing (CS) is employed. Traditionally, the projection matrix has

been chosen as a random Gaussian matrix, but improved re-

construction performance can be obtained by optimizing the

projection matrix. In this paper, we are interested in projec-

tion matrix designs for sensing sparse signals in overcomplete

dictionaries. In particular, we put forth a closed form design

that stems from the formulation of an optimization problem,

which bypasses the complexity of iterative design approaches.

1. INTRODUCTION

Consider a signal f ∈ R
N which has a sparse representation

x ∈ R
K in a known dictionary D ∈ R

N×K(N ≤ K). Thus, the

signal can be described by

f = Dx. (1)

We say the signal f is sparse if its representation satisfies

‖x‖0 ≤ S ≪ N, where the ℓ0 norm counts the number of

nonzero elements in x. This sparse signal can be represented

by a linear combination of very few signal-atoms {di}K
i=1

which are columns of the overcomplete dictionary D. Thus,

it is wasteful to sample the signal fully and then discard most

coefficients.

Compressive sensing (CS) has attracted a growing inter-

est in the recent years, as it enables one to recover the signal

with a reduced number of measurements [1, 2]. The sensing

process can be described by

y = Φf + n, (2)

where y ∈ R
M (M ≪ N) is the measurement vector, Φ ∈

R
M×N is the projection matrix and n ∈ R

M is the noise vec-

tor with i.i.d. random elements drawn according to N (0, σ2).
One can then reconstruct the sparse signal by solving the fol-

lowing problem:

min
x

‖x‖0 s.t. ‖ΦDx− y‖2 ≤ ǫ, (3)
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where ǫ > 0 relates to an estimate of the noise level. As (3)

is known to be an NP-hard problem, a number of convex op-

timization algorithms and greedy algorithms have been pro-

posed in the literature for recovering very sparse signals [3].

The projection matrix Φ is assumed to be randomly gen-

erated in most works owing to its convenience in theoretical

analysis. However, Elad proposes to optimize the projection

matrix using iterative algorithms that lead to an improved av-

erage reconstruction performance [4]. Subsequently, Duarte-

Carvajalino and Sapiro assume the dictionary is not fixed and

propose to optimize the projection matrix and dictionary si-

multaneously [5]. Xu et al. consider the equiangular tight

frame (ETF) as their target design and proposed an algorithm

to make the projection matrix approach that design [6]. Al-

though improved average performances are observed, the op-

timized projection matrices are iteratively computed in these

approaches.

In our earlier work, we focused on the study on nonit-

erative designs and have shown that the mean squared error

(MSE) performance of unit-norm tight frame based projection

matrices surpasses that of the other designs mentioned previ-

ously, where we restrict the dictionary to be the orthonormal

basis. In this paper, we study the design of the projection

matrix for signals over some known overcomplete dictionary,

which adds a lot of flexibility and significantly extends the

range of applicability of the work. A noniterative design of

the projection matrix is proposed and its superior reconstruc-

tion performance is demonstrated by a range of numerical re-

sults.

The following notation is used. Upper-case letters denote

numbers, boldface upper-case letters denote matrices, bold-

face lower-case letters denote column vectors and calligraphic

upper-case letters denote sets. (·)T , Tr(·) and rank(·) denote

the transpose, trace and rank of a matrix, respectively. ‖x‖1

denotes the ℓ1 norm, i.e., the summation of the absolute value

of elements of the vector x. ‖x‖2 =
√

∑

i x2
i denotes the ℓ2

norm of the vector x. ‖X‖F denotes the Frobenius norm of

the matrix X. X � 0 denotes that the matrix X is positive

semi-definite.



2. DESIGN OF THE PROJECTION MATRIX FOR

SPARSE SIGNALS

In the first instance, we consider a simplified measurement

model

y = Φx + n, (4)

i.e., f = x, x is sparse and so D is the identity matrix in

(1). Note that having abstained some result for this model,

later on we will return to the more general model given in the

introduction.

We wish to minimize the mean squared error (MSE) in

estimating x from y, given by

MSE(Φ) = Ex,n

(

‖F(Φx + n) − x‖2
2

)

, (5)

where F(·) denotes an estimator and Ex,n(·) denotes expec-

tation with respect to the joint distribution of the random vec-

tors x and n. We assume a random signal model where the

signal is exactly S-sparse and the positions of the S nonzero

elements follow an equiprobable distribution.

We consider the well-known oracle estimator, which uses

least square estimation based on the prior knowledge of the

positions of the S non-zero elements of the sparse representa-

tion, in order to bound the MSE in (5). The reason for using

the oracle estimator is based on the fact that the oracle MSE is

equal to the unbiased Cramér-Rao bound (CBD) for exactly S

sparse deterministic vectors [7]. The oracle MSE - for a fixed

sparse vector x - is given by:

MSE
oracle
n (Φ,x) =En

(

‖Foracle(Φx + n) − x‖2
2

)

=σ2Tr
(

(

ET
JΦTΦEJ

)−1
)

,
(6)

where En(·) denotes expectation with respect to the distribu-

tion of the random vector n, J denotes the set containing the

positions of the S nonzero elements of x and EJ denotes the

matrix that results from the identity matrix by deleting the set

of columns out of the set J .

Consequently, the average value of the oracle MSE -

which acts as a lower bound to the MSE in (5) - is given by:

MSE
oracle(Φ) = Ex

(

MSE
oracle
n (Φ,x)

)

= Ex

(

σ2Tr
(

(

ET
JΦT ΦEJ

)−1
))

= σ2
EJ

(

Tr
(

(

ET
JΦTΦEJ

)−1
))

,

(7)

where Ex(·) and EJ (·) denote expectation with respect to the

distribution of the random vector x and the random set J , re-

spectively. In (7), we have used the fact that the expectation

with respect to the distribution of the random vector x is equal

to the expectation with respect to the distribution of the posi-

tions of the nonzero elements of the random vector x, owing

to the use of the oracle.

We define the coherence matrix of the sensing matrix as

Q = ΦTΦ. We now look for the coherence matrix, which

Fig. 1. Comparison of the MSE of projection matrices (M =
64, N = 128 and σ2 = 10−4).

up to a rotation leads to the sensing matrix, that minimizes

the average value of the oracle MSE subject to an energy con-

straint by posing the following optimization problem:

min
Q

EJ

(

Tr
(

(

ET
JQEJ

)−1
))

s.t. Q � 0,

Tr (Q) = N,

rank(Q) ≤ M,

(8)

However, (8) is non-convex due to the rank constraint. There-

fore, we first consider a convex relaxation of (8) by ignoring

the rank constraint, and then look for a feasible solution that is

the closest to the solution to the relaxed problem and satisfies

the rank constraint.

Proposition 1 The solution of the optimization problem:

min
Q

EJ

(

Tr

(

(

ET
JQEJ

)−1
))

s.t. Q � 0,

Tr (Q) = N,

(9)

which represents a convex relaxation of the original optimiza-

tion problem in (8), is the N × N identity matrix IN.

For finite-dimentional real spaces, we define a Parseval

tight frame as a matrix Φ ∈ R
M×N such that ‖ΦT z‖2

2 = ‖z‖2
2

for any vector z ∈ R
M. We claim in Proposition 2 that a

Parseval tight frame is the closest design - in the Frobenius

norm sense - to the solution of the convex relaxation of the

original optimization problem in (8).

Proposition 2 The solution of the optimization problem

min
Φ

∥

∥ΦT Φ− IN

∥

∥

2

F

s.t. Tr
(

ΦTΦ
)

= N,
(10)

is the M × N Parseval tight frame.

In the interest of space, the proofs are omitted, but they

are similar to our proofs in [8]. Fig. 1 illustrates the average



MSE performance of the oracle estimator and the practical ℓ1

minimization estimator using basis pursuit de-noise (BPDN).

The MSE is calculated by averaging over 1000 trials, where

in each trial we generate randomly a sparse vector with S ran-

domly placed ±1 spikes. The reconstruction performance of

Parseval tight frames based sensing matrices clearly outper-

forms the reconstruction performance of the Gaussian matrix

for both estimators.

3. DESIGN OF THE PROJECTION MATRIX FOR

SENSING SPARSE SIGNALS IN AN

OVERCOMPLETE DICTIONARY

We now return to the measurement model considered in the

introduction,

y = ΦDx + n, (11)

where f = Dx is sparse in the overcomplete dictionary D.

This model does not lead to a simple formulation as the model

in (4) where the dictionary can be seen to correspond to an

identity matrix and the model in [8] where the dictionary cor-

responds to an orthonormal matrix. However, the previous

analysis suggests that the projection matrix design Φ ought

to be such that ΦD is close to a Parseval tight frame.

Let U ∈ R
M×K be a Parseval tight frame. Therefore, we

define the following optimization problem:

min
Φ̂

∥

∥

∥
Φ̂D− U

∥

∥

∥

2

F
+ α

∥

∥

∥
Φ̂

∥

∥

∥

2

F
, (12)

where α ≥ 0 is a given scalar. The term,

∥

∥

∥
Φ̂

∥

∥

∥

2

F
, in (12)

denotes the penalty for the amplified energy of the projection

matrix. In other words, the solution of (12) is the design that

makes ΦD close to the Parseval tight frame and consumes

low energy in the projection. The solution of the optimization

problem gives

Φ̂ = UDT
(

DDT + αIN

)−1
, (13)

where IN is the N × N identity matrix.

To enable fair comparison to other projection matrix de-

signs, we pose an energy constrain, i.e., Tr
(

ΦT Φ
)

= N.

Thus, we derive our projection matrix design for the over-

complete dictionary as follows,

Φ =

√
NΦ̂

‖Φ̂‖F

=

√
NUDT

(

DDT + αIN

)−1

‖UDT (DDT + αIN)
−1 ‖F

. (14)

The scalar α controls the weight for the energy penalty of the

projection. If the penalty is not considered, i.e. α = 0, we

have the projection matrix design Φ =
UDT (DDT )−1

‖UDT (DDT )−1‖F

. In

contrast, for a very high penalty, i.e., α = +∞, we have the

design Φ = UD
T

‖UDT ‖F

.
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Fig. 2. Histogram of the absolute off-diagonal entries of Ψ.

To illustrate the behavior of the proposed design, we

present the histogram of the absolute values of the off-

diagonal entries of the coherence matrix Ψ = DT ΦTΦD

in Fig. 2. The overcomplete dictionary D of size 64 × 80 is

generated with entries drawn from the i.i.d. zero mean and

unit variance Gaussian distribution. We derive two projection

matrices containing 40 projections using (14) with α = 1
and α = 0.1 and compare the two designs with Gaussian

matrix design. Generally, it is known that a projection matrix

with small off-diagonal entries has a high reconstruction per-

formance according to the mutual coherence reconstruction

condition [9]. Fig. 2 shows that the distributions of off-

diagonal entries in both designs are better than the Gaussian

matrix design. We note the design with α = 0.1 has smaller

off-diagonal entries in absolute value than the design with

α = 1. However, the sensed energy ‖ΨD‖F = 6.2780 for

the α = 0.1 design is lower than the others owing to the low

penalty α = 0.1 for the amplified energy of the projection

matrix in (14), which results in a noise amplification effect

compared to the Gaussian matrix design.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed

projection matrix design in the CS setting with an overcom-

plete dictionary. Note that the proposed matrix Φ is generated

in a noniterative manner.

In the first experiment, we use an overcomplete discrete

cosine transform (DCT) dictionary of size 64 × 80, i.e., N =
64 and K = 80. The four estimators used to reconstruct the

signal are listed as follows: the oracle estimator, orthogonal

matching pursuit (OMP), the dantzig selector and BPDN. We

compare the reconstruction performances of five projection

matrix designs including a random Gaussian matrix, the pro-

posed design (with α = 1) and three other optimized itera-

tive designs, i.e., Elad’s design [4], Duarte-Carvajalino and

Sapiro’s design [5], and Xu’s design [6]. The reconstruc-



Fig. 3. Comparison of the MSE of different projection matrix

designs (M = 40, N = 64, K = 80 and σ2 = 10−4).

tion performance in terms of average MSE is calculated by

averaging over 1000 trials, where in each trial we generate

randomly a sparse vector with S randomly placed ±1 spikes.

As shown in Fig. 3, the proposed design improves the recon-

struction performance for all the four estimators, compared to

the Gaussian matrix design. The iterative algorithms includ-

ing Elad’s design, Duarte-Carvajalino and Sapiro’s design,

and Xu’s design, slightly outperform the proposed design, but

their computation complexity associated with the generation

of the projection matrix is much higher than our method.

The cameraman image of size 256× 256 pixels is used to

demonstrate the advantage of the proposed projection matrix

design in Fig. 4. The image is partitioned into 1024 nonover-

lapping patches of size 8 × 8 pixels, i.e., N = 64. We use the

overcomplete DCT dictionary of size 64× 80 as the sparsify-

ing dictionary and set M = 40. OMP is used to reconstruct

the image from its noisy projections owing to its fast execu-

tion. Let P be original image and P̃ be the reconstruction

result. We define the reconstructed signal to noise ratio by

SNR =
‖P̃‖F

‖P− P̃‖F

. (15)

Two reconstructed images, i.e., one using a Gaussian matrix

and the other using our design, and their SNRs are shown in

Fig. 4. As can be seen, a higher reconstruction quality and

a higher SNR is obtained by using the proposed projection

matrix design.

Fig. 4. Reconstructed images using Gaussian projection ma-

trix and the proposed projection matrix design.

5. CONCLUSIONS

In this paper, we investigate the problem of projection matrix

design for sensing signals which are sparse in overcom-

plete dictionaries. We derive a close-form expression for

generating the optimized projection matrix, which has been

shown to lead to MSE performance gains for standard CS

reconstruction algorithms. The proposed approach leads to a

closed-form design that bypasses the complexity of previous

approaches.
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