Energy Efficient Signal Acquisition via
Compressive Sensing in Wireless Sensor Networks

Wei Chen and lan J. Wassell
Digital Technology Group (DTG), Computer Laboratory, Usrisity of Cambridge, UK
Email: {wc253,ijw24t@cam.ac.uk

Abstract—This paper presents a novel approach based on the
compressive sensing (CS) framework to monitor 1-D environ-
mental information using a wireless sensor network (WSN). fie
proposed method exploits the compressibility of the signato
reduce the number of samples required to recover the sampled
signal at the fusion center (FC) and so reduce the energy con-
sumption of the sensors. An innovative feature of our approeh
is a new random sampling scheme that considers the causality
of sampling, hardware limitations and the trade-off betwea the
randomization scheme and computational complexity. In add
tion, a sampling rate indicator (SRI) feedback scheme is prmposed
to enable the sensor to adjust its sampling rate to maintain
an acceptable reconstruction performance while minimizig the
energy consumption. A significant reduction in the number of ~ . -~
samples required to achieve acceptable reconstruction eor is
demonstrated using real data gathered by a WSN located in the
Hessle Anchorage of the Humber Bridge.

I. INTRUDUCTION

Wireless sensor networks (WSN) provide the ability to
monitor various physical characteristics of the real world
such as sound, temperature, humidity, etc., by distriguéin
large number of inexpensive small devices in the detected. 1. Layout of the WSN at the hessle anchorage of the HurBhielge:
environment. The main constraints of WSNs are owing t8) Plan view of the WSN; (b) Elevation view of the WSN.
the limited energy storage and low computational capabilit
of each node. Those constrains are due to size and cost
limitations, as most applications require the use of smadl aone can recover sparse signals from far fewer samples than
inexpensive sensor nodes. Although the sensor nodes higveredicted by the Nyquist-Shannon sampling theorem [3]-
limited computational capability and energy, the fusiontee [6]. Samples made via CS contain a little redundancy in the
(FC) (or any back-end processor) usually has a comparativéiformation level, and the sampling process accomplisives t
high computational capability [1]. functions, i.e., detection and compression. CS trades roff a

The traditional approach to measure 1-D environmentaicrease in the computational complexity of post-processi
information, e.g., temperature and humidity, is to unifrm against the convenience of a smaller quantity of data acqui-
sample and then report data to a FC. The sampling perigtion and lower demands on the computational capability of
could range from milliseconds to minutes depending on tiiee sensor node. CS directly acquires the compressed rersio
particular application. Actually, such signals are geltgrawhile sampling, and so no explicit compression process is
compressible by transforming to some suitable basis. THequired.
traditional sampling approach is not energy efficient sithee ~ Motivated by the asymmetrical structure of WSNs, we
transmitted data contains a large portion of redundant-infgropose a novel approach based on CS techniques that aims to
mation. An alternative method [2] is compressing and theeduce the energy consumption of a real WSN shown in fig 1.
transmitting. Although power consumption of the transimiss This WSN is located in the Hessle Anchorage of the Humber
is reduced, compression requires additional energy an@snaBridge [7] for monitoring 1-D environmental informationei,
computational demands of the sensor nodes. Furthermase, tamperature and humidity. As the total power consumption
approach is not suitable for real-time applications owmghe is approximately proportional to the number of samples, the
latency in gathering the data and the computation to execpi@ver consumption reduction via CS results from sparser
the compression algorithm at the sensor node. sampling and reduced transmission. Compared with the other

Compressive sensing (CS), also called compressed sensimg approaches mentioned previously, CS overcomes all the
and Sub-Nyquist sampling, has a surprising property thdisadvantages with no penalty at the sensor, although the FC




has to make a significant effort for signal recovery. s fe

The main contributions of this paper are summarized . )
follows. Firstly, we propose a practical random samplinpgzz;:fl Random Sampling :> &Reccg’l;:gi‘fg“]f& Qolnput
generator considering the causality of sampling and hamelw:
limitations, where the parameters of the generator can T |

adjusted to trade-off the randomness of sampling agai
fast reconstruction. Secondly, the proposed approach dues
not need any prior knowledge about the monitored signal to Fig. 2. The proposed CS approach.
determine a suitable sampling rate, and sensors are able to

adjust their sampling rates to make the reconstructioalskdi

for signals with time-varying sparsity levels. Simulasoshow (BPDN) [8], which can be written as

that under a tolerable level of reconstruction error, thevgro

SRI feedback

consumption owing to both data acquisition and transmissio mfin 1% e 3
can be significantly reduced by the proposed approach. st |@Tx — v, < e ®)
. , <€,
Il. COMPRESSIVESENSING OVERVIEW wheree is an estimate of the noise level. In [9], Candés shows

According to the Shannon Sampling theorem, the Samp” t CS is robust to the effect of noise since the solutitn
rate should be no less than twice the maximum frequen@y (3) obeys
in the signal. Actually, the twice oversampling rate is a stor . _1/2
case bound. Most natural signals can be transformed to @noth 1" = xlle; < CoS™ 7l = xslles + Cre, )
space, where a small pumber of the co_effigients represerit mvc\)/ﬁerec _ 2+(2vV/2-2)dss — _4I¥hs 4. is an
of the power of the signals, e.g., audio signals can be trans-~ = ° 1*#\/§+,1)ﬁ2s Ii bl n 1§(|ﬂ+1)525' S
formed into the frequency domain, images can be represen"f'e?cﬁ’rox'"(;?t'or,1 ohx with & du_t the S-largest entries set tc;
by a discrete cosine transform (DCT) or transformed into {FET0, andzs Is the restricted isometry constant (RIC) [9] 0

wavelet domain. matrix e. o o
{Another form of reconstruction in the presence of noise is

CS is an alternative sampling theory, which asserts tha X )
wn as the least absolute shrinkage and selection operato

certain signals can be recovered from far fewer samples t > L
Shannon sampling uses. The idea of CS is that a siyaaR Y (LASSO) [10], which instead minimizes the energy of detec-
tion error with an¢; constraint:

can be recovered from a small set df (M < N) non-

adaptive, linear measurementse R if the signal can be min 1BT% — y|?
represented as a sparse objective R in some orthonormal % : (5)
basis® € RV*Y, The sampled signal via CS can be presented S.t. 1%lle, < m,

as wheren > 0. Both BPDN and LASSO can be written as an

unconstrained optimization problem for some> 0 for any

where ® € RM*N represents a sensing matrix amds an 7 =0 ande >0
unknown noise term. ) 1 . ) R
The success of CS relies on two objective conditions, i.e., min || @Tx -yl + 7l (6)
sparsity and incoherence. Sparsity makes it possible tosabs
the signal with less samples than the Shannon samplingytheot!!. THE PROPOSEDCOMPRESSIVESENSING APPROACH

. . . ) N
requires. We say the signéllis 5 sparse ifx € R™ has only In this section, we present a novel CS approach for a WSN

S nonzero elements. CS can also.be used to apprquat%ymonitor 1-D environmental information. The proposed
reconstruct a nearly sparse signal with power-law distidins, approach includes three main process, i.e., random sagnplin

i.e._, ]E_hez'th largest entry of the transformed representatiaf} 4, sensor, CS reconstruction at the FC and sampling rate
satisfies indicator (SRI) feedback, as shown in fig 2.

y=®f+2z=>3Ux+ 1z, (1)

|$i| S C-iP

for eachl < ¢ < N, whereC is a constant angp > 1. A. Random Sampling

In addition, incoherence between the sensing mafrand The technique to be used here is known as random sampling,
the transform systen® is also of crucial importance for CS.which was successfully applied in [11], [12]. Sampling at
Random matrices are largely incoherent with any fixed basisiformly distributed random time points satisfies the re-
[5], which makes CS a general strategy for sampling. stricted isometry property (RIP) [9] when the sparse basis
Since it is a linear program (LP) [4¥; minimization is orthogonal [13]. For random sampling 1-D signals, the estri

widely used for CS signal reconstruction, whilg mini- of the sensing matrix® are all zeros except folM entries
mization is computationally intractable. One form of reconin M different columns and rows. To maintain the causality
struction using the€/; minimization is basis pursuit de-noiseof the sampling process, the order of thé unity entries in



different rows should be sorted by the column number, e.gthe value of SRI. At the beginning, the sensor sends its mseud
random generator seed to the FC. Then it samples the unknown

8 é ? 8 8 8 8 signal at its highest rate and sends the samples to the FIC unti
00000 1 0 the SRI feedback is received. The SRI is determined from the
& ...

reconstruction quality indicator (RQI) that is calculatgdhe
: .o FC, and the SRl is set to maintain the RQI within a specialized
0 000O0O0 --- 1 range. The calculation of RQI and the design of the range will

However. randomized samoling cannot be applied direct?e explained later in detail. When the RQI goes out of the
. X . piing can PP Xnge, the sensor will be notified to increase or decrease its
into a real WSN since two sampling times may be too cIo;

to be handled by the hardware. To overcome this, Dang, gitndom sampling rate via the SRI until the RQI again becomes

| t dom ind ) hort ti iod and af:ceptable. This scheme enables the sensor to sample any 1-
al. generate random Indexes in a short ime period and SCRig, ,i-onmental signal blindly and then adaptively adjist i
them to a large time scale [12]. To increase the sampllrg

time randomness, they embed a normally distributed tirtes jit %mpllng rate when unanticipated changes of the sparsiy le

to the result. The sampling time € RM*! in [12] can be of the monitored signal occur.
expressed by the following equation: B. CS On-line Reconstruction

N CS algorithms can recover an off-line signal that has a
t =a xrandsanpl e (?’ M) (7) sparse representation with relatively few samples. Empipy
+ B x round(r andn(AZ, 1)), Fhe same approach to deal with an on.-Iine signal such as the
instantaneous temperature of the environment, the FCsstart
where a is the down sampling factor)V is the number each reconstruction when enough new samples are gathered.
of the maximum samples limited by the hardward, the Thus, the latency of this approach is the time taken to gather
number of samples we actually take,is scaling factor of the data. However, many applications of interest for sensbr
the jitter, functionr andsanpl e(£, M) is randomly picking works require timely feedback based on the latest inforonati
M numbers from 1 tof and functionrandn(M,1) is concerning the environment. The off-line approach thatdias
generating anM/ x 1 matrix with i.i.d. normally distributed |ong response delay is not suitable for these applications.
entries satisfyingV/(0, 1). Another simpler approach to solve |deally, for an on-line application, the FC should make the
this issue is using the additive random sampling procesfs [1feconstruction and report the update when it receives eawsh n
In this case, the sampling time is sample. The response delay of this ideal method is givenéy th
f=ti o+ ®) random sampling interval. To reconstruct a signal withire on
’ sampling interval, the FC must have the power of a super com-
where: € [1,M], to = 0, «; is an i.i.d. Gaussian randomputer even using up to date reconstruction algorithms.aabetr
variablev j\/(%, TL—N;) where the constant determines the off the response delay for lower computational requiremment
speed of convergence. The authors of [14]use0.25 in their one possibility is to perform a reconstruction after reirgjv
implementation. Although this randomized sampling apphoaseveral new samples. Both the new samples and a number of
is simple, it inhibits the use of fast Fourier transform (fFFTprior samples are then used to recover the signal. The pefiod
in recovery algorithms, since FFT requires the randomizéeconstruction should be chosen to be less than the required
sampling intervals to be equal to one or several fixed tingtelay sensitivity of the specific application, and longedrth
units. the time that one reconstruction process consumes.
To trade-off the randomness of sampling against faster
computation, the sampling intervals should be one or severéa SRI Feedback
multiples of a given unit. Let denote the minimum sampling The SRI feedback enables the sensor to adjust its sampling
interval that the hardware can use amde a fixed positive rate to keep the reconstruction quality in an acceptablgeaan
integer. A large value of: trade-offs randomization for the However, it appears that we cannot compute the reconsiructi
convenience of the FC. Now assur¢ is a positive integer. quality directly without knowing explicitly the whole sigh
We suggest a simpler approach for sampling that can lstead, we propose to use some additional samples to évalua

written as follows the reconstruction performance. The use of these additiona
ON samples can be viewed in a similar way to that of pilot symbols
ti =ti—1+ {% (ﬁ — 1>-‘ LE (9) in a communication system.

At the beginning, the FC calculates the sparsity level of the
where~; is an i.i.d. random variabte /(0, 1) and function received samples which are sampled at the highest rate of the
[a] gives the smallest integer no less thanNote that the sensor. If a sparse representation is found, the FC will send
expected value of the sampling interval is approximat%t@s SRI back to the sensor to let it adjust its sampling rate, eher
for this random sampling scheme. the value of SRI should result in an acceptable RQI. Then
We defineSRI = % The sensor does not require priofor the following received data that are randomly sampled,
information about the sparsity level of the signal to defeem the FC reserve a small portion of the data for calculating the
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Fig. 3. The first segment of original temperature samples. Fig. 4. The RQI trend of the first segment of original tempaeatsamples.
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where 7 is the index set of the reserved samples. If the RQI 164t
is below the acceptable reconstruction quality, the FC will 1635
send an SRI and the sensor will increase its sampling rate. I
Contrarily, if the RQI is above the upper threshold, the sens O A 0 fone s0oo oo
will be notified to decrease the sampling rate to reduce gnerg

Consumption. Fig. 5. The second segment of original temperature (red)reconstructed
temperature (blue).

IV. PERFORMANCEEVALUATION

In this section, we provide multiple examples to show o’
the performance of the proposed CS approach described in e
the previous section. All the data we use are gathered by
the wireless environmental sensor network located in the
Hessle Anchorage of the Humber Bridge [7] from 08/09/2007
06:25:00 to 15/10/2007 05:39:46. The temperature andvelat
humidity of the environment are sensed approximately every
5 minutes, and some of the samples are lost during the
transmission. We demonstrate that the proposed approach
can significantly reduce the number of samples needed for
representing the environmental information under a reqlir % rrdvency coefitientindex (sortet) - Temperatire
reconstruction quality.

In our evaluation, each sampling time is derived fromig.6. Sorted Fourier transform coefficients of the secauireent of original
equation (9). We use the interior point algorithm i- temperature (red) and reconstructed temperature (blue).
magic [15] for reconstruction. Fig 3 shows the first segment
of original temperature signal, which has 2000 samples and
is then randomly sampled at different rates. In this exampkamples reserved for comparison, which can not be computed
90% of random samples are used for CS reconstruction, whileestimated.
the remaining 10% samples are reserved for evaluation of thdor a given RQI requirement, the FC will notify the sensor
reconstruction quality. We compute the RQI at different samof the SRI, which can later be changed if a different recon-
pling rates and average it with 100 independent trials,ngivi struction performance is needed. In this example, we requir
the results shown in fig 4. We notice that the RQI decreasesthat the RQI is less thad x 10~7 and higher thari x 1077,
the sampling rate is increased, i.e., the reconstructia@iityu For the second segment of the temperature signal, the sensor
is better for at higher rates. However, we also notice that theduces its random sampling rate to one fourth of its prita,ra
RQI trend has a floor effect due to the sampling noise in the., 500 samples out of 2000 original samples, where 90%
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Fig. 7. Original relative humidity (red) and reconstructethtive humidity
(blue) via the proposed approach.
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Fig. 8. Original relative humidity (red) and reconstructethtive humidity
(blue) via the proposed approach.

are used for reconstruction and the other 10% are reserved
calculating the RQI.

that is monitoring 1-D environmental information. Becao$e
the smoothness and periodicity of 1-D signals of interésty t
have a nearly sparse representation in the frequency dpmain
which makes compression possible. The proposed techniques
include random sampling and the SRI feedback. In practical
applications, the hardware limits the minimum sampling in-
terval, while the fast Fourier transform (FFT) operatioritet

FC restricts the randomization since it requires all sangpli
intervals to be a multiple of one or several fixed time unitsr O
random sampling solution trades off the randomization and
computational complexity. Further more, it is not necegsar
for the sensor to acquire any prior knowledge about the &igna
The SRI feedback enables the sensor to have the ability to
adjust its random sampling rate to maintain the reconstmict
quality and reduce energy consumption. We evaluate the
performance of the proposed approach using real temperatur
and relative humidity data gathered by sensors. By empipyin
these techniques, energy consumptions in both data atopmisi
and transmission can be significantly reduced. The proposed
approach can be applied in other WSN application monitoring
1-D environmental information, although the energy sasing
will vary for different scenarios and applications.
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