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Abstract—This paper presents a novel signal reconstruction
method based on the distributed compressive sensing (DCS)
framework for application to wireless sensor networks (WSN).
The proposed method exploits both the intra-sensor correlation
and the inter-sensor correlation to reduce the number of samples
required for recovering the original signals. An innovative feature
of our method is using the Fréchet mean of the signals to discover
the common support of their sparse representations in some
basis. Then a new greedy algorithm, called precognition matching
pursuit (PMP), is proposed to further reduce the number of
required samples with the knowledge of the common support.
The superior reconstruction quality of the proposed method is
demonstrated by both computer-generated signals and real data
gathered by a WSN located in the Intel Berkeley Research lab.

I. INTRODUCTION

Wireless sensor networks (WSN) provide a flexible way to
monitor the physical parameters of the environment through
the deployment of a large number of sensor nodes. There
are three main challenges in WSN, i.e., network lifetime,
computational ability and bandwidth constraints. The first
two challenges result from the size and cost limitation of
sensor nodes, while the third challenge is due to the physical
character of the wireless channel. Although the actual physical
environmental information such as temperature and humidity
is compressible owning to the presence of temporal correlation
and spatial correlation, traditional signal compression methods
are not usually applied until all the data is gathered at a fusion
center (FC). Compressive sensing (CS) is a sampling theory,
which leverages the compressibility of the signal to reduce
the number of samples required for reconstruction. Using the
CS technique as the data acquisition approach in a WSN can
significantly reduce the energy consumed in the process of
sampling and transmission through the network, and also lower
the wireless bandwidth required for communication.

The traditional approach to measure 1-D environmental
information, e.g., temperature, humidity, light and sound, is
to uniformly sample and then report to the FC. The sampling
rate could range from milliseconds to minutes depending on
the particular application. In [1], [2], CS is used to directly
acquire a reduced number of samples via randomized sampling
in the time domain, and so no explicit compression process is
required. To further utilize the spatial correlation of the envi-
ronmental information, an extension of CS, named distributed
compressive sensing (DCS) [3], is applied to reconstruct the
signal obtained from a group of sensors [4], [5]. The spatial
signal obtained from different sensors could turn out to be

a more compressible signal in a certain basis via reordering
of the samples [6]. However, to the best of our knowledge
there is no efficient method to find the optimal permutation of
the sensors, although most existing variations of CS to WSN
requires the preknowledge of the spatial distribution of the
specific signal.

In this paper, we focus on a DCS model [3] to reduce the
number of samples required for reconstruction. In this DCS
model, signals detected by different sensors have different
innovation supports but only one common support due to some
global factors and spatial correlations. We propose a method
to find the common support by calculating a Fréchet mean.
With the knowledge of the common support, we propose an
new greedy algorithm, called precognition matching pursuit
(PMP), to reconstruct a group of signals collected by a
WSN. The knowledge of the common support enable the
PMP to reconstruct the original signals with a significantly
reduced number of samples. The advantage of our method
is demonstrated by recovering not only computer-generated
signals but also real data gathered by a WSN at the Intel
Berkeley Research lab [7].

The following notation is used. Upper-case letters denote
numbers, boldface upper-case letters denote matrices, bold-
face lower-case letters denote column vectors, and italics
upper-case letters denote supports. The superscripts (·)H and
(·)† denote complex conjugate-transpose and pseudoinverse,
respectively. {Xk} and {xk} (k = 1, 2, . . . ,K) denote a
group of matrices and vectors, respectively. Ā denotes the
complement of set A. suppx and suppxB denote the set
of points of vector x where its absolute value is nonzero and
one of the B largest values, respectively. By xJ = D, we mean
that points whose indexes are in the support J of vector x is
set to a number D.

II. SYSTEM DESCRIPTION

A. Compressive Sensing (CS)

We first consider a WSN with only one sensor. We are
interested in a discrete-time signal f ∈ RN which is sparse
in some sparsifying basis Ψ ∈ RN×N such as the Fourier
transform. This discrete-time vector f can be written in terms
of a sparse representation x ∈ RN as follows:

f = Ψx. (1)

The sensor generates a vector of measurements y ∈
RM (M ≪ N) via random projections, which is represented



by multiplying by a sensing matrix Φ ∈ RM×N :

y = Φf + n = ΦΨx+ n, (2)

where n ∈ RM represents the measurement noise. The entries
of the sensing matrix could be generated using a random
distribution, for example a Gaussian or a Bernouli distribution.
However, these random projection methods consume extra
sampling power and require strict time synchronization with
the FC in the reconstruction process. A technique, called
causal random sampling, is used to avoid those issues. The
entries of the sensing matrix Φ are all zeros except for M
entries in M different columns and rows. To maintain the
causality of the sampling process, the order of the M unity
entries in different rows should be sorted by the column
number, e.g.

Φ =


0 1 0 0 0 0 · · · 0
0 0 1 0 0 0 · · · 0
0 0 0 0 0 1 · · · 0

...
. . .

...
0 0 0 0 0 0 · · · 1

 .

Define the matrix A = ΦΨ. Then the recovery procedure
corresponds to the solution of the optimization problem:

min
x̂

∥x̂∥ℓ1 , s.t. ∥Ax̂− y∥ℓ2 ≤ ϵ, (3)

where ϵ > 0 is an estimate of the measurement noise level.
In [8], the author established that the reconstruction error of
(3) obeys

∥x̂− x∥ℓ2 ≤ C0S
−1/2∥x− xS∥ℓ1 + C1ϵ, (4)

where xS is an approximation of x with all but the S-largest
entries set to zero, and C0 and C1 are constants depending
on the restricted isometry constant (RIC) δ of matrix A. We
note that with a reduced number of samples, the reconstructed
signal Ψx̂ is a good approximation to the original signal if
the signal is compressible.

Many approaches and their variants have been proposed
in the literature to solve (3). Most of those algorithms can
be classified into two categories - convex optimization al-
gorithms and greedy algorithms. Generally speaking, convex
optimization algorithms [9], [10] provide higher reconstruction
performance in terms of number of samples required than
do greedy algorithms. However, greedy algorithms still attract
many researcher’s attention owning to their low computational
complexity. In particular, some greedy algorithms such as
Compressive Sampling Matching Pursuit (CoSaMP) [11] and
Subspace Matching Pursuit [12] deliver the same guarantees
in terms of the RIC as the best optimization-based approaches.

B. Distributed Compressive Sensing (DCS)

Here we consider a WSN with K sensors. Each sensor
monitors the environmental parameters independently which
are then transmitted to the FC through the network. DCS is
proposed to reduce the total number of samples required to
reconstruct the environmental signals by exploiting the joint

sparsity of the monitored signals. Suppose all the signals {fk}
(k = 1, . . .K) monitored by different sensors have sparse
representations {xk} in a sparsifying basis Ψ. The sparse
common component and innovations model in [3] assumes
that each signal contains a common component that is sparse
plus an innovation component that is also sparse:

xk = zc + zk, k = 1, . . .K. (5)

In this paper, we focus on a relaxed model of the sparse
common component and innovations model. In our model,
each signal contains a sparse innovation zd,k and a sparse
similar component zc,k, where the similar components {zc,k}
share the same sparse support and sign but have different
amplitudes:

xk = zc,k + zd,k. (6)

This relaxed model can be seen as a generalized sparse com-
mon component and innovations model where the common
component condition is relaxed to become what we will name
a similar component condition.

An application that is well-suited to this model is environ-
mental temperature monitoring by a large number of wireless
sensors deployed at different locations. Owning to the smooth
change of physical parameters, the space-time temperature
signals {fk} are compressible in both the time and space
domain. Global factors, e.g., the sun and prevailing winds,
could result in an effect zc,k which affects all sensors but with
a different order of severity due to the terrain and shade. Local
factors, e.g., animal activities and fire, could lead to sparse
innovations zd,k. There and also related scenarios such as
relative humidity, light intensities and air pressure monitoring
via a WSN.

III. COMMON SUPPORT DISCOVERY

In this section, we aim to find the common support Jc of the
similar components {zc,k}, which could be used to enhance
the algorithm performance in terms of the number of samples
required. A natural idea is using some form of the mean of all
the sparse representations as an approximation. As the sparse
similar components {zc,k} share the same support and sign,
the mean result keeps the value in the common support while
depresses the value in the innovation supports. However, the
mean vector cannot be directly calculated without explicitly
presenting the sparse representations. Instead, we exploit the
Fréchet mean to derive an estimate of the common support,
which can be acquired by solving an ordinary least squares
problem.

The Fréchet mean x̃ of K sparse representations is defined
as follows:

x̃ = argmin
x̃

K∑
k=1

d2(x̃,yk,Ak), (7)

where yk = Φkfk + nk = Akxk + nk is the sample vector
from the kth sensor, Φk is the kth sensor’s sensing matrix,
Ak = ΦkΨ, and the distance function is defined here as

d(x̃,yk,Ak) = ∥Akx̃− yk∥ℓ2 . (8)
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Fig. 1. Comparing the sparse representation (above) with the Fréchet mean
(below). Each sparse representation (N=256) contains 10 common components
(blue) and 20 innovations (red), all of which are randomly placed ±1 spikes.
The Fréchet mean is calculated from 40 sparse representations measured by
independent random Gaussian matrices (M=100).

Then, from the equation yk = Akxk+nk, we can rewrite the
distance function as

d(x̃,yk,Ak) = ∥Akx̃−Akxk − nk∥ℓ2 , (9)

which is equal to the Euclidean distance in a low-dimensional
space between x̃ and xk, in the absence of the noise term.
The Fréchet mean can be obtained by solving the following
problem:

min
x̃

∥∥∥Âx̃− ŷ
∥∥∥2
ℓ2
, (10)

where the extended sensing matrix Â and the extended mea-
surement vector ŷ are given by

Â =
[
AH

1 · · ·AH
K

]H
, (11)

and
ŷ =

[
yH
1 · · ·yH

K

]H
. (12)

The Fréchet mean can be considered as the result of mini-
mizing the sum of the squared distances between the observed
set and the predicted point. If rank(Â) = N , (10) turns to
be an ordinary least squares problem, of which the result can
be written using an explicit formula x̃ = (ÂHÂ)−1ÂH ŷ or
computed with the use of a speeding-up algorithm such as
conjugate gradient (CG) [13]. Consequently, for a sequence
of independently generated random matrices Φk (and hence
Ak), at least K =

⌈
N
M

⌉
measured signals are required to

make the system overdetermined, which is satisfied in a WSN
having only a low number of sensors.

Fig 1 gives a simplified example of the Fréchet mean, which
is derived from 40 correlated sparse representations. As shown
in Fig 1 the mean result keeps the value in the common
support while depresses the value in the innovation support,
then the common support can be detected by selecting absolute
values above a given threshold. In addition, if the common
support size is known, we can detect the support by choosing a
given number of largest absolute values. The detected common
support cannot be guaranteed to be exactly the same as the real
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Fig. 2. The 99% reconstruction trend of different algorithms (N=256). Each
sparse representation in the simulation contains half common components and
half innovations, all of which are randomly placed ±1 spikes. For the PMP,
the Fréchet mean is calculated from 40 sparse representations measured by
independent random Gaussian matrices.

one. However, the proposed reconstruction algorithm put forth
in the next section does not require an exactly correct common
support for proper reconstruction.

IV. PRECOGNITION MATCHING PURSUIT (PMP)

We have developed a new greedy algorithm, namely pre-
cognition matching pursuit (PMP), which aims to achieve fast
reconstruction and a reduced requirement on the number of
measurements compared to traditional matching pursuit (MP)
and its variations [11], [14], [15]. The PMP learns from partial
support information, e.g., the common support detected by
calculating the Fréchet mean in the DCS model, and returns
a better signal in terms of the number of samples required.
The pseudo-code of the PMP for a group of signals can be
described as follows:

Algorithm 1 Precognition matching pursuit (PMP)
Input: A group of measurement vectors yk (k = 1, 2, . . . ,K),

a group of measurement matrices Ak (k = 1, 2, . . . ,K),
a group of sparsity levels Sk (k = 1, 2, . . . ,K), and an
estimated common support Jc;

Output: An estimate group of sparse signals x̂k (k =
1, 2, . . . ,K);

Process: For k > 0, do
1) Initialization: Let x̂k = 0 and r = yk;
2) Repeat:

• u = AH
k r, W = 2 · (Sk − ∥Jc∥ℓ0);

• T = suppuW , O = suppx̂k;
• J = T ∪ Jc ∪ O;
• v = A†

k,Jyk, Q = suppvSk

• x̂k,Q = vQ, x̂k,Q̄ = 0, r = yk −Ak,Jx̂k;
• if halting condition true then

quit the iteration;
end if.



Fig. 3. Layout of the WSN of the Intel Berkeley Research lab.

The key idea of the PMP is to try to iteratively estimate the
support of the sparse signal xk. The selected support J in each
iteration contains the locations of W = 2·(Sk−∥Jc∥ℓ0) largest
values of a residual vector returned in the previous iteration,
the known partial support Jc of xk, and the locations of the
nonzeros of previous x̂k. With the estimated support J, the
reconstructed signal x̂k is calculated by solving the following
least square problem

min
x̂k

∥Ak,Jx̂k,J − yk∥2ℓ2 . (13)

Next, all the elements in x̂k are set to zero except for the
Sk largest values. For each reconstructed signal in the group,
iterations stop when the result satisfies some halting condition.
One halting condition for sparse signals is that the residual’s
norm r is smaller than a given threshold. For an exactly sparse
signal, the threshold can be chosen as the noise level for
noisy measurements or zero for noiseless measurements. For a
compressible signal, to the best of our knowledge, there is no
way to identify the best threshold. Therefore, one can either set
a threshold based on empirical knowledge or let the algorithm
stop when the improvement of the residual is smaller than a
certain threshold.

We note that the PMP needs knowledge about the sparsity
level S, which is also required in many other MP algorithms,
such as orthogonal matching pursuit (OMP), regularized or-
thogonal matching pursuit (ROMP) and compressive sampling
matching Pursuit (CoSaMP). As O

(
S log N

S

)
measurements

are enough for reliable reconstruction [16], the sparsity level
can be roughly estimated as M

logN . Alternatively, we can also
test several sparsity levels and choose the one with minimal
least error ∥Akx̂k − yk∥ℓ2 .

One can observe that the PMP is similar to the CoSaMP [11]
except for an additional common support and a smaller size
of discovered support in each iteration. This key innovation
enables the PMP to return a better reconstructed signal. A
comparison of different reconstruction algorithms is shown in
Fig 2, which considers an exactly sparse signal and noiseless
measurements.

V. EXPERIMENTAL RESULTS

In this section, we apply the proposed method described
previously to reconstruct the signals gathered by the WSN
located in the Intel Berkeley Research lab [7]. In this WSN,

Fig. 4. Environmental temperature signals detected by the WSN.

54 Mica2Dot sensors with weather boards were deployed
in one floor of the lab building as shown in Fig 3. Each
sensor detected the environmental humidity, temperature and
light every 31 seconds for more than one month. We use
randomly selected samples of the original data for evaluating
the proposed method, i.e., the sampling manner is similar to
randomly sampling the original signals.

Instead of uniform sampling, each sensor independently and
randomly collects a small portion of the original samples and
transmits them to the FC. Note that the signals monitored by
the WSN might be compressible rather than exactly sparse in
some sparsifying basis, and all the measurements are disturbed
by the noise. This differs from the scenario used for simula-
tions in the previous sections. In the following evaluation of
our method, we use the discrete cosine transform (DCT) as the
sparsifying domain for simplicity since it avoids dealing with
the complex values yielded by the Fourier transform. We note
that the environmental temperature signals in the detected area
have sparse DCT coefficients vectors as shown in Fig 4(a), and
have high spatial correlations as shown in Fig 4(b).

All signals we study in the following have a length of
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Fig. 5. Environmental temperature signals detected by the WSN and
reconstruction results using the PMP algorithm.
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Fig. 6. Performance of three different reconstruction algorithms in terms of real signals (N=1024) detected by the WSN.

1024. We assume the sparsity level S = 50 in our simulation
according to Fig 4(a), and half of the sparse components have a
common support. We first calculate the Fréchet mean from the
randomly sampled signal of different sensors, and then obtain
the common support from the Fréchet mean, which is used as
an input of the PMP to independently reconstruct each signal.
In Fig 5, we demonstrate the effectiveness of our method in
terms of reconstructing the temperature signal with a reduced
number of samples. We achieve similar performance in recon-
structing the humidity signal and the light signal, but these
are not shown here due to the limited space. We define the re-

construction signal to noise ratio (SNR) to be
∑K

k=1 ∥f̂k∥2
ℓ2∑K

k=1 ∥f̂k−fk∥2
ℓ2

,

where fk and f̂k are the original signal and reconstructed signal
of the kth sensor respectively. In Fig 6, we show the superiority
of our method in comparison with the ℓ1 minimization algo-
rithm and the CoSaMP algorithm which is one of the most
efficient algorithm in the category of greedy methods. The
performance of the ℓ1 minimization algorithm, where we use
the CVX code (http://www.stanford.edu/∼boyd/cvx/), is better
than the proposed method for smaller numbers of samples.
However, the ℓ1 minimization algorithm takes several minutes
to reconstruct the group of signals while our methods just
requires a few seconds using the same PC, which makes our
method promising in terms of computational complexity.

VI. CONCLUSIONS

In this paper, we study the problem of monitoring the phys-
ical parameters of a real environment by a WSN, and focus on
the DCS framework to reduce the number of samples required
to reconstruct the original signals. As the number of samples is
proportional to the total energy consumed by a sensor, which
includes sampling, processing and transmission. Therefore, a
reduced number of samples made by each sensor would save
the battery power of the sensor and prolong the life time of the
WSN. We propose a method to discover the common support
of a group of signals by calculating a Fréchet mean, which is
shown to be effective. By using the estimated common support,
we also propose a greedy algorithm, called PMP, to reconstruct
a group of correlated signals. We show that the PMP algorithm
requires less samples for exact reconstruction than most of the

other greedy algorithms including OMP, ROMP and CoSaMP
in the DCS model. In addition, experiments demonstrate the
advantage of our method in the reconstruction of actual signals
collected by a practical WSN.
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