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An Impulse Response Model and Q factor
Estimation for Vehicle Cavities

Steven Herbert, Student Member, IEEE, Tian Hong Loh, Member, IEEE, and Ian Wassell

Abstract—To facilitate efficient communications (i.e., minimum
power consumption and maximum information throughput) in
vehicle cavities, it is necessary to fully understand the underlying
physics of the propagation process. This can be characterised
as a statistical model of the channel impulse response, which
we derive from a general starting point. The impulse response
model is useful is its own right for ultra-wideband pulse radio
communications, channel simulations and time of arrival posi-
tioning systems, and it also allows us to verify the generally
accepted property that the energy retained in the cavity decays
exponentially with time after an impulse input. This property
can be characterised as a cavity Q factor, and we investigate
methods of Q factor estimation in vehicle cavities, using only
a limited amount of data, such as would typically be available
to a deployed in-vehicle wireless network. We find that the most
reliable approach utilises is an inverse discrete Fourier transform
based method, which finds the maximum likelihood instantaneous
Q factor, given measured data across various spatial links and
frequency channels.

Index Terms—Impulse response, ray tracing model, vehicle
cavity, Q factor, reverberation chamber, channel sounding.

I. INTRODUCTION

W IRELESS devices are increasingly being deployed in
vehicle cavities. Infotainment systems must co-exist

alongside the vehicle radio, wi-fi, mobile phones, Bluetooth
headsets, and wireless sensor networks (WSNs) [1]. To
deploy effective wireless systems in vehicle cavities, it is
essential to understand the physics of the electromagnetic
wave propagation.

The impulse response of a channel is sufficient for complete
characterisation, however the vehicle cavity is fundamentally
a dynamic environment (i.e., there are moving objects such
as passengers within it), therefore the impulse response is
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itself a time varying function. For simplicity in this paper
we deal only with the instantaneous impulse response (we
perform our measurements in cavities unoccupied by humans
or other moving objects to avoid time variation affecting
our results). Previously there has been some success [2]
with fitting the Saleh-Valenzuela model [3] to the impulse
response of in vehicle channels, however we observe from
the impulse response measurements presented in Section IV
that in general the clustered structure of the Saleh-Valenzuela
model may not apply to vehicle cavities. We therefore derive
a theoretical model for a general case of a cavity channel,
where we assume no correlation between arriving rays, in
Section IV and validate it with the measurements detailed in
Section II and III.

Our model is expressed in terms of five parameters which
relate directly to the properties of the arriving rays. We
assert that this model is directly applicable to ultra-wideband
pulse radio communications, channel simulations and time
of arrival positioning systems, however we also show that
it is consistent with the observed exponential decay model
of energy retained in vehicle cavities [4], which is also the
accepted model for the reverberation chamber [5]. Such
cavities can be characterised by a single parameter, its
quality ‘Q’ factor, which is related to the time constant
of the expontial decay. For narrowband communications
applications, where individual rays cannot be resolved, it
is more appropriate to simply characterise the channel in
terms of the Q factor. Most of the existing work in this area
relates to reverberation chambers, and we note that these are
in general designed to be tightly controlled electromagnetic
propagation environments [6], [7], and therefore Q factor
estimation by a deployed in-vehicle wireless network may
differ somewhat from that undertaken in a reverberation
chamber. In Section V we propose three methods for Q factor
estimation that can be employed by a typical narrowband
wireless network, e.g., a WSN.

II. EXPERIMENTAL METHOD

We undertook two measurement campaigns. The first a
broadband frequency sweep using a vector network analyser
(VNA), from which we found an approximate impulse re-
sponse via an inverse discrete Fourier transform (IDFT), the
second a narrowband frequency sweep, which we believe is
typical of the data that can be gathered by an idealised form
of an in-vehicle WSN.
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Fig. 1. The Vehicle Like Cavity.

A. Broadband Measurements

The purpose of performing a broadband frequency sweep
is to subsequently undertake an IDFT to approximate the
channel impulse response. The requirements of the frequency
sweep are therefore that the total bandwidth must be as
large as possible to achieve the greatest possible temporal
resolution. The frequency resolution must be sufficient such
that the total time duration of the impulse response is much
greater than the time constant of exponential decay. We chose
a frequency sweep of 4 - 17 GHz at a resolution of 1 MHz to
satisfy these requirements, and the VNA was set to an output
power of 0 dBm. The measurements were undertaken in a
metal cavity known to have similar electromagnetic radiation
propagation properties to those of a vehicle cavity (the cavity
was the one used in the ‘SEFERE’ project [8]) which is
shown in Figure 1. To mimic a real scenario we also added a
car seat with a human dummy (i.e., having the same dielectric
properties as human tissue) sitting on it. The box was located
in a fully anechoic chamber, which had the advantage,
compared to performing the measurements in an actual car
parked outside, of a much lower noise floor. We were also
able to use a VNA with a much greater frequency range
than that of the portable one which we would have had to
use had we performed the measurements outdoors in a real car.

The measurement set-up is shown in Figure 2. The origin
(‘O’) is defined in the figure, at the floor of the cavity. The
cavity has dimensions 1260 mm × 1050 mm × 1220mm
(x × y × z). It has four rectangular appertures with corners
located: 1) (0, 230, 700) mm, (0, 230, 1000) mm, (0, 820,
700) mm, (0, 820, 1000) mm; 2) (1260, 230, 700) mm,
(1260, 230, 1000) mm, (1260, 820, 700) mm, (1260, 820,
1000) mm; 3) (230, 0, 700) mm, (230, 0, 1000) mm, (1030,
0, 700) mm, (1030, 0, 1000) mm; 4) (230, 1050, 700) mm,

Fig. 2. The measurement set-up for the Broadband VNA Frequency sweep.

Fig. 3. WSN unit with low-profile TMZ
21 higher-order mode patch antennas.

(230, 1050, 1000) mm, (1030, 1050, 700) mm, (1030, 1050,
1000) mm. Ports 1 and 2 of the VNA were connected to
Schwartzbeck 9112 antennas, both horizontally polarised,
and were located at (860, 920, 650) mm and (170, 120, 650)
mm respectively. An irregular metal object was positioned to
totally obscure the line of sight (LOS).

B. Narrowband Measurements

The narrowband measurements were undertaken to
investigate how we can estimate the cavity Q factor using
a WSN system. To simulate the WSN we positioned the
WSN type units, shown in Figure 3, close to the cavity
walls, where we would expect the sensors to be located in a
practical deployment. Each unit consists of a box to house a
wireless sensor node, and is equiped with a low-profile TMZ

21

higher-order mode patch antenna [9]. For our measurements
we have dispensed with the wireless sensor nodes and used
a co-axial cable to connect each pair of nodes to the VNA.
We measured the channel frequency response at the sixteen
802.15.4 channels [10] (i.e., 2.405 - 2.48 GHz at a resolution
of 5 MHz), and the VNA was set to an output power level of
0 dBm. Note that 802.15.4 has been chosen as it provides the
physical layer for Zigbee [11] which in turn is used in a large
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Fig. 4. Lab Car: (a) Car; (b) Unit 1 - dashboard; (c) Unit 2 - front driver
side door; (d) Unit3 - rear passenger side door; (e) Unit 4 - boot driver side
window;- (f) Unit 5 - boot passenger side floor.

Fig. 5. NPL Van: (a) Unit 1 - dashboard; (b) Unit 2 - middle seat headrest;
(c) Unit 4 - passenger door; (d) Unit 3 - middle floor.

number of the available WSN systems, such as Micaz [12].

Measurements were undertaken in the unoccupied lab car
where five antenna locations were used (i.e., ten links), as
shown in Figure 4. In the unoccupied NPL van, four antenna
locations were used (six links), as shown in Figure 5. In each
case every permutation of pairs of units were connected to
the VNA, in a Single-Input Single-Output (SISO) set-up.

III. PROCESSING THE BROADBAND FREQUENCY SWEEP
TO APPROXIMATE THE IMPULSE RESPONSE

From the measured broadband frequency sweep, we
estimated the channel impulse response using the following
approach:

1) We note that the measured S parameters include the
antennas, however using standard S matrix theory we
removed their effect. We used a reverberation chamber
to measure S11 (S11meas) and the efficiency (η) of the
antennas, and modelled each antenna as a two port S
network, using the following S parameters, adapted from
[13]:

Transmitter: S11=S11meas

S21=S12=
√
η

1− S11meas
|1− S11meas|

S22=0

Receiver: S11=0

S21=S12=
√
η

1− S11meas
|1− S11meas|

S22=S11meas

2) We know that the receive antenna collects energy over
an apperture with area that is inversely proportional
to the frequency of operation squared. We therefore
normalise across the frequency sweep by multiplying
S21 by the frequency (i.e., as S parameters have the
same dimensions as the square root of power, note that
as the angle of arrival of the ray is not in general the
direction of maximum gain, we do not need to scale by
the gain).

3) We perform an IDFT on the normalised S21
measurements.

4) We make a subjective judgement regarding the point at
which the impulse response becomes indistinguishable
from the noise floor, and truncate the impulse response.

5) We make a subjective judgement regarding a suitable
threshold above which the received power is the result
of received impulses, and set all values below this
to zero, leading to a discretised form of the impulse
response. In this instance 5 × 10−4 was found to be a
suitable threshold (i.e., see Figure 6).

6) We set all values to zero at times before t0, i.e., the
time of flight of a ray travelling along the LOS (in this
case t0 = 3.52× 10−9s.

7) We square the absolute value of the response at each
time instant to get the response to an impulse of energy.

8) We normalise the total energy received to unity.

Figure 6 shows the resulting impulse response. We also
achieved similar results with different antenna orientations
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Fig. 6. Impulse Response of the Electromagnetic Cavity.

and positions of the metal object.

IV. AN IMPULSE RESPONSE MODEL FOR
ELECTROMAGNETIC CAVITIES

From Figure 6 we observe that the impulse response
does not exhibit ray arrival clustering required by the Saleh-
Valenzuela model, or indeed any other apparent structure.
The enclosed nature of the electromagnetic cavity means that
in general we cannot assume that successive rays have taken
similar paths, therefore we derive an impulse response model
which does not rely on objects to give it structure, specifically
we assume:

1) All rays arrive independently.

2) All rays are attenuated independently.

Strictly speaking the impulse response is a deterministic
phenomenon, therefore we can formulate it statistically by
noting that a cavity has some statistical properties from which
we can estimate an impulse response for arbitrary transmitter
and receiver locations.

We seperate the statistical impulse response into a ray arrival
process and a ray attenuation process, derived in sections IV-A
and IV-B respectively. In each case we start with a simple
scenario and then add in complicating factors to model the
real environment. In section IV-C we validate the model using
our measurements.

A. Ray Arrival Process

The impulse response, y(t) is derived in terms of a number
of received rays (of which the ith has magnitude Ai and
delay τi, as shown):

y(t) =

∞∑
i=1

Aiδ(t− τi), (1)

where t is time, and δ() is the Dirac delta function.

We characterise the random arrival of rays in terms of their
arrival time, and it is known that the Poisson process models
the most general arrival process, where all rays arrive indepen-
dently [14]. The number of arrivals, n, in a time interval ∆t
is modelled as a Poisson distribution, with probability density
function (PDF):

P (n) =
(kb∆t)

ne−kb∆t

n!
, (2)

with ray arrival rate, kb [s−1], (typically λ would be used,
however kb is used here to avoid later ambiguity with
wavelength). Here and below the notation “[.]” is used to
denote the units of the given parameter.

Equation 2 is the Homogenous Poisson process PDF,
and is only valid if the parameter, kb does not vary with
time. This is not the case for our process, so we can only
consider Equation 2 to be valid where the time interval,
∆t, is sufficiently short such that kb is approximately constant.

To find the variation of kb with time, we consider a cavity
which is completely closed by a perfectly reflective boundary,
and consists of a constant, lossless medium. We assume the
transmitter to be a point source with an isotropic radiation
pattern and the receiver to also have an isotropic radiation
pattern and to have a small apperture (as we are using the
antenna to approximate the signal at a point). Consider a
time interval ∆t which is sufficiently short such that kb is
approximately constant, hence we can write an expression for
the expected energy arriving in this time:

E(Entot)=E

 ∑
all rays

Enray

 , (3)

=E(n)× Enray, (4)
∝kb∆t× t−2, (5)

where E(.) is the expectation, Entot is total energy, Enray is
the energy of a ray, which is deterministic and proportional to
t−2 as the medium is constant. The expectation of a Poisson
random variable is equal to its parameter, in this case kb∆t.
In a lossless medium, to obey the law of the conservation of
energy, Equation 5 must not vary with t (specifically it must
be proportional to ∆t at any t), therefore kb ∝ t2. We can
therefore further define kb:

kb = kb0t
2, (6)

where kb0 [s−3] is a parameter.

Allowing for a Variable Medium

Consider a (theoretical) medium which is lossless, but has
regions of varying propagation velocity. Our original assump-
tion of a Poisson process is still valid, even though previously
we have used the property that in a constant medium the power
decay of a ray is proportional to t−2. In general the decay of
ray power is inversely proportional to the square of distance
travelled. Consider Equation 3, where the energy of a ray is
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not known deterministically. We assume that many rays arrive
in the time interval ∆t:

E(Entot)=E

 ∑
all rays

Enray

 , (7)

≈E(n)× E(Enray), (8)
=kb∆t× E(Enray), (9)
∝kb∆t× t−2. (10)

Equation 10 arrises since the mean of the decaying power
is proportional to t−2, and therefore the characterisation of
the arrival process for a cavity filled with a variable medium
is the same as that for a constant medium. In simple terms
we can say that the random arrival process has absorbed the
randomness of the time of flight, which means that our arrival
process model generalises to the case where the rays propagate
through a non-uniform medium.

Adjusting the Arrival Process for a Cavity with Appertures

Consider a cavity with appertures. Now suppose that
these appertures are enclosed by an arbitrary surface to
form a completely closed boundary, such as those analysed
previously.

The impulse response arrival process of this cavity (i.e.,
with the appertures closed) can be modelled as described pre-
viously, however when the appertures are re-introduced some
of the rays will be lost to the outside world. We model this as a
statistical process, which for a single ray is a Bernoulli process,
i.e., a ray is either lost or it is not. Let e−k

′
e be the probability

that a ray is lost, and let a given ray undergo m reflections with
the cavity boundaries. We assume that each reflection with a
cavity boundary is an independent and identically distributed
(iid) Bernoulli random process with a probability e−k

′′
e of

being lost when the appertures are reintroduced. Therefore for
a ray still to exist when the appertures are reintroduced, all
reflections must still exist. Therefore:

1− e−k
′
e = 1−

m∏
i=1

e−k
′′
e , (11)

⇒ e−k
′
e = e−mk

′′
e . (12)

The number of reflections will be a random variable with the
mean scaled by the time of flight, therefore we define:

e−ket = e−mk
′′
e , (13)

where ke [s−1] is a parameter.

Therefore we expect that only e−ket of the rays to remain
when we re-introduce the appertures. Accordingly we must
therefore scale kb by e−ket. Note that the Poisson arrival
process is already a random process, so we simply scale
the parameter by the mean of the ray loss process, as the
randomness will be absorbed by the Poisson process. We can
therefore express the general form for the distribution of the

number of arrivals, n, arriving in a short time interval, ∆t, at
a time lapse t after an impulse as:

P (n)=
(kb∆t)

ne−kb∆t

n!
, (14)

kb=kb0t
2e−ket. (15)

B. Ray Attenuation Process

We continue to assume that the transmitter and receiver
antennas both have isotropic radiation patterns. Consider a ray
to traverse a path which can be split into a large number, N ,
of short elements, the rays energy will be:

Enray ∝
N∏
i=1

(
di
di−1

)−2

e−zi , (16)

where di is distance to the end of the ith element, and e−zi is
attenuation. Note that ray power decay with distance can only
be expressed in terms of ray power at some other distance,
hence the distances are relative to a distance ‘d0’, which is
arbitrarily close to the source. An equivalent expression to 16
is:

Enray ∝
(
dN
d0

)−2

e−
∑N

i=1
zi . (17)

We assume that the N elements are iid random variables
(whilst in reality this may not be correct, in the absence of
a good model for how the elements are correlated, this is the
only sensible assumption we can make for the most general
case, moreover as we subsequently apply the central limit
theorem (CLT) it should not matter so long as the ray passes
through a sufficient number of regions of the cavity). Noting
that the number of elements is proportional to the ray distance,
we can apply the CLT to the sum in Equation 17 to yield:

Enray∝
dN
d0
e−Z , (18)

Z∼N (k′cdN , k
′
ddN ), (19)

where N (mean, variance) is the normal distribution.

It is desirable to express the model as a function of time
of flight, rather than distance of flight. We can do this by
making the assumption that t ∝ dN . Note this applies if the
propagation is through a constant medium, such as is typically
the case in a reverberation chamber. However, in the vehicle
cavity, even though the majority of the propagation is through
air, there are short sections possibly through human tissue.
Consequently in this case the relationship between time and
distance is itself a random variable, however we choose to
neglect this effect since it is expected that the attenuation
incurred owing to the change of medium (such as human
tissue) will dominate over the small change in the ratio of
time of flight to distance. Moreover if a random variable
were introduced to model the relationship between time and
distance, this would not be independent of the attenuation
process (since the same physical change of medium causes
the attenuation and the change in ray propagation velocity),
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and consequently it is non trivial to correctly model the co-
dependence of these two random processes. We therefore
express Equations 18 and 19 as:

Enray=kat
−2e−Z , (20)

Z∼N (kct, kdt), (21)

where ka [Js2], kc [s−1] and kd [s−1] are parameters- which is
in the form of a lognormal distribution [15] scaled by kat−2.
We note that the ray energy in Equation 20 is also scaled
by its initial energy and its receive antenna attenuation, i.e.,
according to the radiation patterns of the transmit and receive
antennas respectively, if they are not isotropic. Depending on
the specific radiation pattern, users of this model may need
to introduce another random variable to account for this (i.e.,
as the angle from which the ray was transmitted is in general
not known). We used omnidirectional antennas, which are not
highly directional, and we found a good agreement with our
model without needing to introduce another random variable
to account for the radiation pattern.

C. Evidence for the Model

We have proposed a model for the impulse response of the
vehicle cavity, with the arrival process defined in Equations 14
and 15, and the attenuation process defined in Equations 20
and 21. We now use our measurements to provide evidence
which supports our model.

Arrival Process

We visualise the arrival process by plotting the inter-arrival
process. It is known that a Poisson process with parameter
kb will have an exponential inter-arrival distribution, also with
parameter kb [14]. Furthermore it is known that the mean is
k−1
b and the variance is k−2

b . We use the discretised impulse
response, shown in Figure 6 to approximate the inter-arrival
times of the process. This is shown in Figure 7 together with
a fitted example for the mean of the inter-arrival process (i.e.,
as kb is a function of time as defined in Equations 14 and 15).
We observe from Figure 7 that the mean appears to be a good
fit to the measured data. We also observe that as the mean
value increases, so does the variation in the measured data,
indeed this is to be expected, as for the exponential inter-
arrival process, the mean is equal to the standard deviation.
We note that in the region approximately from 1.25 × 10−8

to 2.5 × 10−8 s, the paths are arriving so rapidly that we
are probably not able to actually resolve individual rays. This
conjecture is suported by the much greater energy levels
observed during this time interval of the impulse response
shown previously in Figure 6.

Attenuation Process

As identified in our analysis of the inter-arrival process, our
discretised impulse response cannot resolve rays over its entire
duration, therefore to investigate the ray attenuation process,
we focus on the rays arriving at approximately 1 × 10−8 s
shown in Figure 6. For simplicity we assume that the arrival
time is approximately the same for all these rays, and fit
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Fig. 7. Inter-arrival Times of the Process.
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Fig. 8. Ray Attenuation Process, with Maximum Likelihood Lognormal Fit.

a lognormal distribution, shown in Figure 8. We observe
a reasonably good fit, albeit with only a small number of
datapoints (i.e., there were only 33 resolved rays available).
It should be noted that whilst we have provided some evidence
for the lognormal distribution, we have not investigated our
proposed model for the variation of the lognormal parameters
with time.

Energy Retained in the Cavity

We use the expected energy in the cavity, a time t after an
impulse to further support our model. We assume that in a time
duration ∆t a large number of paths will arrive, and the time
variation of the parameters (i.e., kb0t2e−ket, kat−2, kct and
kdt) is small. Using the law of large numbers [16], we can say
that the mean energy of the rays arriving in the time ∆t equals
the actual population mean. The expected energy arriving in
the time interval ∆t is therefore the expected number of rays,
multiplied by the average energy:

E(Entot) = E(n)× E(Enray), (22)

where:

E(n)=kb0t
2e−ket∆t, (23)

E(Enray)=kat
−2e−kct+

kd
2 t, (24)

noting that Equation 23 arrises from the expectation of a
Poisson random variable as discussed previously, and Equa-
tion 24 is the expectation of a lognormal random variable [15].
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Substituting Equations 23 and 24 into Equation 22:

E(Entot)=kb0t
2e−ket∆t× kat−2e−kct+

kd
2 t, (25)

=kakb0e
−(kc−

kd
2 +ke)t∆t, (26)

=ke
−t
τ ∆t, (27)

where we define k = kakb0 and τ = 1

kc−
kd
2 +ke

, then dividing
by ∆t to get the expected power (Powtot):

E(Powtot) = ke
−t
τ . (28)

It is easiest to visualise this property by considering the
expected cumulative energy (Encum), which can be found by
intergrating the expected power with respect to time:

E(Encum)=

∫ t

t0′

ke
−t
τ dt, (29)

=kτ
(
e
−t

0′
τ − e

−t
τ

)
. (30)

Figure 9 shows our measurements together with a fit for the
mean cumulative energy, note that we use the fact that we now
know the time of arrival of the first ray, t0′ . We observe a good
fit, which provides strong evidence that our impulse response
is valid. In particular this justifies our scaling of the lognormal
parameters kd and ke by the time of flight, as the expectation
of this creates the exponentially decaying expectation of
the total energy. An accepted property of the reverberation
chamber is that the energy retained decays exponentially with
time after an impulse [5] and this has also been observed
to be the case in vehicle cavities [4]. We observe that our
theory and measurements are consistent with this property,
and this provides strong evidence for the validity of our model.

In reverberation chambers, the time constant, τ (i.e., of
decay of energy) can be used to find the quality ‘Q’ factor
of the cavity [5]:

Q = 2πfτ, (31)

where f is the frequency of operation.

This can also be applied to the vehicle cavity if the value
of τ is the same for all possible antenna locations (i.e., as the
Q factor is a property of the cavity, it therefore ceases to have
a meaning if it varies with antenna location). In Section V we
address the estimation of the Q factor of vehicle cavities.

V. EVALUATING THE Q FACTOR OF VEHICLE CAVITIES

Preliminary measurements indicate that it is valid to analyse
both the unoccupied lab car and unoccupied NPL van as
cavities with a Q factor (i.e., τ is approximately the same
for a variety of antenna locations). We investigate methods to
use WSN systems to estimate the Q factor, in Section V-A
we identify potential problems, in Section V-B we propose
three methods to estimate the Q factor and in Section V-C we
present the results of the Q factor evaluated according to these
three methods, and discuss the relative merits of the methods.
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Fig. 9. Cumulative Energy with Minimum Mean Squared Error Exponential
Fit.

A. Problems with Q factor Calculation in the Vehicle Cavity

Typically Q factor evaluations in a reverberation chamber
are undertaken by finding the average power transferred over
a large number of stirrer positions, for an arbitrary non LOS
(NLOS) channel. This method makes four assumptions that
are not valid in the vehicle cavity.

1) Deterministic field can be neglected: The reverberation
chamber can be thought of as the addition of two electric
fields, the stirred field and the deterministic field [5]. In a
well designed chamber the stirred field will dominate and
the deterministic field can be neglected. The analogy in
the vehicle cavity is the motion of the occupants as being
equivalent to stirrers, therefore it is necessary to make some
further assumptions about the motion of occupants before
exploiting this property to estimate the Q factor. It is therefore
preferable to estimate an instantaneous Q factor (that is to
say the power received from rays existing instantaneously
and not making any assumptions concerning their existence
or lack of at any other time instant) from the variation of
received signal in frequency and across different channels in
space.

2) Significance of LOS: It is specified that a LOS must not
exist between the transmitter and receiver when evaluating
the Q factor of a reverberation chamber [5]. This is because
typically highly directional antennas, such as horns, are used
to perform a sweep across a large frequency range. In the
vehicle cavity it is envisaged that it will not be possible to
exploit the LOS between two units, even if it exists in the
empty cavity, as there is no guarantee that it will exist when
the vehicle is loaded with occupants. The antenna is therefore
designed to radiate into the cavity as uniformally as possible
(i.e., it has an omnidirectional pattern) in order to exploit
the reverberative environment to transfer information. In this
instance if a LOS component exists it will merely be the first
ray of the impulse response.

It is of course possible to place two antennas arbitrarily
close together, such that the LOS path dominates to such an
extent that it cannot be thought of as part of the arrival rate
process, however in the first instance we shall not consider
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such a scenario.

3) The Volume of the Cavity is not Clearly Defined: In
the reverberation chamber, the Q factor is evaluated by the
following equation [5]:

Q =
16π2V

ηtxηrxλ3
〈Pr
Pt
〉, (32)

where V is the cavity volume, η is the antenna efficiency, λ
is the wavelength, and Pt is the power transmitted and Pr is
the power received. 〈.〉 denotes an average. This is derived by
considering the energy stored per unit volume to be uniform
in the reverberation chamber, however the vehicle cavity
contains absorbing objects, and has large apertures, therefore
the uniformity assumption is not valid- and it is therefore not
possible to define the cavity volume.

4) The cavity time constant is much greater than the time of
flight of a ray travelling directly between any pair of nodes: In
order to apply Equation 32, not only must the cavity volume
be defined, but the average power ratio 〈PrPt 〉 must be the same
for all links (as we perform the average over all links). The
expected ratio of power received to power transmitted of a
given link can be found from Equation 29, noting that as we
are now working with a constant carrier frequency input rather
than an impulse, the expression is now valid as a function of
power not energy:

〈Pr
Pt
〉=
∫ ∞
t0

ke
−t
τ dt, (33)

=kτe
−t0
τ , (34)

where t0 is arrival time of the first ray, which we approximate
as the time of flight of the LOS path (i.e., this is the instant
at which impulses can begin to arrive).

If t0 << τ for all channels then e
−t0
τ ≈ 1 and therefore

〈PrPt 〉 ≈ kτ . If this were the case, along with having a well
defined volume, then we could confidently apply Equation 32
to evaluate the Q factor, however as we have so stated this is
not necessarily the case for vehicle channels.

B. Evaluation of the Q Factor of a Vehicle Cavity

As detailed in the experimental method (i.e., Section II), we
aim to estimate the cavity Q factor for a practical arrangement
of an in-vehicle WSN, using just narrowband measurements
(i.e., as would typically be available to an in-vehicle WSN).
In our case we use a VNA, however for the first two Q
factor estimation methods, we use only the magnitude of the
received power (i.e., analagous to the received signal strength
indicator (RSSI), which is available on virtually all wireless
sensor motes).

1) Q Factor Evaluation Method 1- Power Average Across
Frequency and Space: Notwithstanding the issues raised in
section V-A, we consider it a sensible reference to evaluate
the Q factor according to Equation 32. We average over all
instantaneous values of power in space (i.e., the various links)
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Fig. 10. Average Power Received against Time of Flight of Direct Line, for
10 links in the Lab Car, with MMSE line of best fit.

and frequency, and we use the internal volume of the car
cavity as the volume.

This Q factor evaluation method is defined for use in
reverberation chambers, however the average will typically
take place over 200 or more stirrer positions. We perform
preliminary work in the reverberation chamber and achieve
consistent values of Q by performing an average over 16
frequency channels at 6 spatial locations (as will be the case
in the NPL van, which is the worst case scenario since we
have 10 spatial positions available in the lab car) compared
with the conventional Q factor evaluation that employs over
200 stirrer positions.

2) Q Factor Evaluation Method 2- Decay of Power with
LOS Distance: Re-expressing Equation 34 in logarithmic form
yields:

ln(〈Pr〉)− ln(Pt) = ln(kτ)− t0
τ
, (35)

where ln is the natural logarithm. Now if we set the
transmission power to be constant and equal for all links, we
can see that as ln(Pt) and ln(kτ) are constants, τ (and hence
the Q factor) can be estimated from the gradient of the graph
of ln(〈Pr〉) versus t0. This is shown for the lab car results in
Figure 10.

The advantages of this method, compared to method 1
are that we do not assume that t0 << τ , and we do not
require use of the cavity volume. The disadvantage is that
this method relies on there being sufficient variation in link
LOS distances to find the gradient, and this may not always
be the case in deployed networks (and indeed when we tried
this method on data gathered in the NPL van, we found that
the link lengths were too similar to get meaningful results).

3) Q Factor Evaluation Method 3- Maximum Likelihood
Parameter Estimation: The previous heuristic Q factor
estimation methods provide an intuitive starting point
for characterising the intra-vehicular radio propagation
environment, however by being a little more specific about
the statistical processes occuring, it is possible to find a
method which uses the available information to find a Q
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factor estimate that is in some sense optimal. To do this we
take a Bayesian starting point, noting that our physical model
means that the Q factor is the only parameter required to
characterise the cavity.

Let r be a vector of the received power across all frequencies
and channels in space, at a given time instant:

maximise P (Q|r) =
P (r|Q)P (Q)

P (r)
. (36)

As we have no prior belief regarding the Q factor, we
choose a uniform prior P (Q), therefore maximum a posteriori
estimation is identical to maximum likelihood estimation,

maximise P (Q|r) = P (r|Q). (37)

The vector of observations r is a vector of Rayleigh
random variables, however it is known that the frequency
points at which r is evaluated are not independent [17]. It
is not trivial to see how the statistical propagation model
allows us to estimate the joint likelihood of the observation
r in the frequency domain, however we propose that by
taking an IDFT of the observations, and thus working in the
time domain, it is possible to estimate this joint distribution
(i.e., instead of transforming our statistical model into
the frequency domain, we transform our observations into
the time domain). It should be noted that for any vector
of observations at a set of frequency points, there exists
a dual form in the time domain. For simplicity we will
look exclusively at cases with 16 equally spaced points in
frequency (i.e., with a spacing between points of 5MHz).
Finally, it is important to note that as the IDFT is merely
a deterministic operation on the observation vector, the
maximum likelihood estimate (and likelihood value) will be
the same as that which would be obtained if it were possible
to estimate directly in the frequency domain, provided the
statistical model is applied properly.

Let rf,link be the vector representing the observations at
points in frequency, for the link in space link, and rt,link be
its IDFT. Now since channels in space are independent:

P (r|Q) =
∏

all links

P (rf,link|Q) =
∏

all links

P (rt,link|Q).

(38)
Let n be the number of elements in the vector rf,link,

therefore its IDFT, rt,link, will also be an n point vector. The
resolution of rf,link is 5 MHz, with a total frequency range
of 80 MHz. This leads to a resolution in time of 12.5 ns for
a maximum duration of 200ns for rt,link.

The time response rt,link therefore takes the form of ‘bins’,
where each element is the complex sum of all rays arriving
in the corresponding time interval, which shall be noted t−
and t+ for the lower and upper limits respectively of the ith

bin. Translating the time domain response to zero, and noting
that this means that the first bin is centred on zero, the vector
t− and t+ can be expressed:
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Fig. 11. IDFT of 16 Frequency Points for Lab Car- For 10 Links.
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Fig. 12. IDFT of 16 Frequency Points for NPL van- For 6 Links.

t−=(0; 6.25; 18.75; 31.25; 43.75; 56.25;

68.75; 81.25; 93.75; 106.25; 118.75;

131.25; 143.75; 156.25; 168.75; 181.25) ns, (39)

t+=(6.25; 18.75; 31.25; 43.75; 56.25; 68.75;

81.25; 93.75; 106.25; 118.75; 131.25;

143.75; 156.25; 168.75; 181.25; 193.75) ns. (40)

It is noted that the contents of each bin corresponds
to an independent Rayleigh random variable, where the
parameter of the distribution can be found from the energy
arriving during the time interval. It should be noted that
the first ray will not arrive during the first bin if the LOS
time t0 > t+(0), consequently from Equation 38 we can write:

P (rt,link|Q) =
∏

all n|t0<t+(n)

Ray(rt,link(n), σ(n)), (41)

where Ray(x, σ) is the Rayleigh PDF of observation x, with
parameter σ - relating to the expected power in each time
interval Ω:
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TABLE I
Q FACTOR ESTIMATION.

Method 1 Method 2 Method 3
Q Q Q

Lab Car 117 69 180

NPL Van 56 n/a 206

Ω=

∫ t+

max(t−;t0)

ke
−t
τ dt, (42)

σ=

√
Ω

2
. (43)

This approach can best be visualised by observing that the
decay of each channel in space is identical, once the first ray
has arrived. This is shown in Figure 11 and Figure 12 for
the lab car and the NPL van respectively. It should also be
noted that after approximately 80 ns the signal reaches the
noise floor, and therefore an additive white Gaussian noise
(AWGN) term is included in the Q factor estimate. Note the
apparent rise at the end of the plot is an artefact of the IDFT,
and that the IDFT processing distorts the values of absolute
power (shown on the y axis). However since our concern is
with the shape of the curve, not its absolute value, this effect
can be neglected.

C. Results and Discussion

The Q factor has been estimated using the three proposed
methods, giving the results summarised in Table I. Heddebaut
et al [18] measure the in-vehicle Q factor in the frequency
range 1 - 6GHz and obtain results in the range 100 - 1000.
They define the in-vehicle Q factor as the maximum observed
ratio of 16π2V

λ3

|S21|2
1−|S11|2 , and therefore as expected their Q

factor is typically higher than our value- but nontheless has
the same order of magnitude. Ruddle [19] also estimates in
vehicle Q factors in the range 100 - 1000 by performing
numerical simulations.

It is encouraging to note that the values of Q factor from
method 3 are consistent with previous work. The value of
Q factor from method 2 is somewhat lower, probably as a
result of this method using only a small amount of the total
data, i.e., the difference in power received for the various
links as a function of the difference in lengths of these links.
Our experimental results suggest that a system designer must
pay attention to the physical environment and wireless link
placements (i.e., specifically a variety of separation distances)
if method 2 is to yield reliable Q factor estimates. Method
1 gives values of Q which are significantly lower than
those from method 3 (especially for the NPL van), which is
likely to be a result of the rapid energy loss as identified in
Section V-A. Nonetheless if a wireless system designer can
live with this drawback then method 1 may be sufficient.

Overall however, if magnitude and phase information are
available we believe that method 3 is the best approach to
aggregate the available information and so yields reliable esti-
mates of the cavity Q factor. It uses all of the available channel
state information and does not require knowledge about the
cavity volume and approximations concerning variable energy
loss between links. It is interesting and encouraging to note,
that using a small number of datapoints such as one may have
available when implementing a WSN, we arrive at the same
conclusion as that reached by VanT Hof [20] when conducting
measurements in a reverberation chamber using many more
datapoints over a much broader frequency range.

VI. CONCLUSION

We have used ray tracing analysis to propose a statistical
impulse response model for the electromagnetic cavity.
The model is for the general case where all rays arrive
independently and are attenuated independently. We have
performed measurements which provide evidence to support
our model, and importantly we have shown that our model is
consistent with the accepted electromagnetic cavity property
that energy retained after an impulse decays exponentially
with time.

For a reverberation chamber this exponential decay is pa-
rameterised by the Q factor. By carefully identifying the dif-
ferences between reverberation chambers and vehicle cavities,
we have shown that a reverberation chamber type analysis
can also be applied to vehicle cavities. We have demonstrated
successful parameter estimation (i.e., of the Q factor) using a
small number of channel frequency response datapoints across
a narrow band, such as would typically be available to a
deployed WSN. We propose that estimating the Q factor from
the decay time constant (which is found by an IDFT of the
frequency response) is the best method for a wireless network
deployed in a vehicle cavity.
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