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ABSTRACT
This paper presents a novel approach to movement recog-
nition, using the vertical component of a person’s Ground
Reaction Force (GRF). Typical primitive movements such
as taking a step, jumping, drop-landing, sitting down, rising
to stand and crouching are decomposed and recognized in
terms of the GRF signal observed by a weight sensitive floor.
Previous works focused on vision processing for movement
recognition. This work provides a new sensor modality for
a larger research effort, that of sentient computing, which
is concerned with giving computers awareness of their envi-
ronment and inhabitants.

1. INTRODUCTION
This paper describes the implementation of a classification
system to recognize everyday human movements. The ap-
proach is novel in that it uses the forces experienced by a
floor to classify movements, as opposed to a number of ex-
isting vision systems.

The output of the classification system provides a new sensor
modality for a larger research effort, that of sentient comput-
ing [1], which is concerned with giving computers awareness
of their environment and its inhabitants. Through aware-
ness comes the ability of developing new techniques for in-
teracting away from the desk. For example, it is possible to
tie the delivery of information to physical actions anywhere
in the environment.

Movement is generated by a biomechanical process that ex-
erts forces on the environment. These forces can be ob-
served using a suitable sensing system and used to classify
movement patterns. This research uses pressure sensors un-
derneath a floor to observe the vertical component of the
ground reaction force (GRF) which is used to classify move-
ments. Pattern recognition can be described as the best
possible way of utilizing available sensors, processors and
domain knowledge to make decisions automatically [2]. The
four best known approaches are: 1) template matching; 2)

statistical classification; 3) syntactic or structured match-
ing; 4) neural networks. The statistical approach represents
a pattern by d-features, viewed as a point in d-dimensional
space. Training patterns are used to determine the decision
boundaries, which are specified by the probability distribu-
tions of the patterns belonging to each class. The Hidden
Markov Model (HMM) [3] is one type of statistical model
and is chosen for classifying the movements in this research.
HMMs are ideal as they implicitly model all of the many
sources of variability inherent in real movements, and are
shown to work well in practice.

This paper details the implementation of a movement recog-
nition system using the vertical component of the ground re-
action force and Hidden Markov Models. Section 2 presents
related work, examining approaches to movement recogni-
tion and giving context to this research. Section 3 illustrates
the GRF patterns generated by typical human movements.
Patterns must be sensed from the environment, and this
forms the topic of section 4, which looks at the construction
of a weight sensitive or “active” floor to sense the GRF.
The choice of good features for time-series discrimination
is a highly problem dependent task and is one of the fun-
damental steps in statistical pattern recognition. This is
the topic of section 5 which describes the selection of fea-
tures from the GRF time-series. Section 6 discusses the
implementation of the recognition system using HMMs and
determining suitable model parameters for each movement
considered. Section 7 describes the implementation of the
online recognition system in a distributed computing en-
vironment. Section 8 considers practical and entertaining
uses of movement awareness, and describes two applications
in detail. Section 9 concludes.

2. RELATED WORK
Human movement tracking has been an active area of vision
research for several years. Movement tracking is the process
of observing the position of many parts of the body, and
tracking their movement. These motion capture systems
have applications in computer animation and biomechanics
studies. However, motion tracking should be distinguished
from movement recognition. There are several approaches to
motion capture using vision; marker-based, edge detection
and motion-energy images. With marker based motion cap-
ture, passive (e.g. reflective) or active (e.g. IR LEDs) mark-
ers are placed on the body, which generate bright points in
the image [4]. These points are then used to determine the
position of various limbs, or the relative positions of adjoin-
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ing limbs. Detecting the edges of arms, legs or torsos allows
the angles between some limbs to be computed [5]. With
these two approaches, it is possible to use a vector of an-
gles to specify the orientation of each limb (or a sub-set)
on the body relative to the limb it is joined to. These an-
gles can then used in the pattern recognition process. An
interesting untagged system for movement recognition uses
motion-energy and motion history images to perform recog-
nition using temporal templates [6]. This technique repre-
sents motion as changes between sequences of images and
uses the pattern of these changes to model a movement.

These vision systems suffer when occlusion or back ground
movement is present, operate in a limited workspace, and
tend to be resource intensive. For example, the Microsoft
EasyLiving [7] group have recently installed pressure sensors
under seat cushions and the floor to determine if someone
is sitting or standing. They need to distinguish between a
stand and a sit as the occlusion of the chair prevents their
vision tracking system from tracking people that are sitting
down. Movement awareness of rising to stand or sitting
down is a useful input to this system. Furthermore, appli-
cations often require more detailed information than just
the type of movement, and this information is provided by
characterization of the movement. This characterizion is es-
sential for many applications. For example, in gait analysis
the parameters of step duration, stride length, rate of force
rise and fall, impulse, cadence, contact and stride time, foot
progression angle and foot identity are important informa-
tion. It is not possible to accurately extract all of these
parameters using vision techniques alone.

The advent of micro-machined accelerometers allows an-
other approach to determining the angles between the limbs
[8]. However these operate in a similar fashion to a tagged
system with many accelerometers having to be carefully
placed. The accelerometers also require power and network-
ing, are cumbersome and again cannot provide the param-
eters required for full characterization. These systems tend
to be used for static position determination to represent a
human model for ergonomic assessment.

The ground reaction force is used in clinical movement anal-
ysis (e.g. gait analysis). Force plates (e.g. Kistler [9]) model
the force exerted by the user onto the floor, and their use
is widespread in the biomechanics literature. Force plates
use load-cells to determine the GRF in 1D, 2D or 3D. Force
plates tend to be expensive and not suitable for wide-spread
deployment in aware environments. Olivetti and Oracle Re-
search (ORL)1 developed the Active Floor [10] that provides
the vertical component of the GRF. Their work focused on
person identification using the GRF observed during the gait
cycle. This work was later replicated at Georgia Tech using
a different feature set to model the GRF signal during gait
[11], and was deployed in their Aware Home [12] for person
identification and tracking.

Sentient computing is the use of appropriate sensing tech-
nologies to maintain a representation of physical space in a
world model, which allows shared a perception of the phys-
ical world between computers and people. This shared per-
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ception allows applications to be more responsive and useful
by observing and reacting to the physical world; it allows the
environment (physical space) to become the interface with
computers. The information in the world model contains
information such as the position and orientation of people
and objects, environmental conditions, device capability and
state, whatever. Movement recognition is another input to
the model. This additional awareness can give information
on how we live and work, what activities we perform, to-
gether with specific applications that use this information.
Body motion can be used as a form of nonverbal commu-
nication, similar to gesture recognition. An attentive envi-
ronment can sense these motions and use them as control
inputs.

3. MOVEMENT ANALYSIS
This section shows the GRF for several common movements.
These examples illustrate the pattern classes which the sys-
tem will attempt to recognize. The classes are actually de-
fined by a large set of such sampled motions, captured un-
der a range of conditions. We discuss physical origins of the
characteristic features of each motion.

3.1 Ground Reaction Force
The GRF is a three-component vector representing the forces
in the vertical, anterior-posterior and medial-lateral planes
[13]. Each component measures a different characteristic of
movement. The vertical component is primarily generated
by the vertical acceleration of the body and is of highest
magnitude. In the remainder of this paper the term ground
reaction force (GRF) refers to the vertical component only,
unless stated otherwise.

As body mass is short term fixed, the force experienced by
the floor is dependent on the acceleration of the body act-
ing upon it2. If the GRF is less than body weight, then the
weight of the body is not being supported by the floor and
this signifies acceleration downwards. For example, when
you crouch there is a downward acceleration of the body
and so the GRF will be reduced. And conversely, when
thrusting the body upwards (as in a jump) additional force
or acceleration is required to thrust upwards, and this is ex-
perienced by the floor. When the vertical force is normalised
to body weight, the resultant time-series is the acceleration
profile of the movement.

3.2 Some Movements
The GRFs for several movements are discussed in the fol-
lowing sections. The GRF is normalized by body weight
(i.e. normalized GRF = GRF/Body weight), and some move-
ments are concatenated in the GRF trace as they exhibit a
natural relationship.

3.2.1 Step
The GRF for a single step is shown in figure 1. Heel contact
is the first event, with maximum load of approximately 110%
body weight occurring between 5-10% of the gait cycle (1).
As the knee then bends the force is absorbed thus causing
an acceleration less than body weight (2). This stage ends
with the leg straightening and the foot being flat on the

2treating the trunk as center of mass
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floor, which results in a second turning point (3). The re-
mainder of the waveform corresponds to the thrust required
to continue the step and generate forward propulsion (4).
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Figure 1: Step

3.2.2 Crouch, jump and dropland
The movements of crouch, jump and dropland are presented
in figure 2. Prior to jumping a human is required to lower
the centre of mass (COM) by hip and knee flexion. The
lower the COM drops the more distance is available for the
push of the actual jump. This crouching movement produces
a downward acceleration and reduces the force experienced
by the floor, settling back to body weight upon completion
(1). During the first phase of a jump, an increase in GRF is
caused by exerting a force, through the leg muscles, to cause
an upwards acceleration (2). This force continues until it
ultimately exceeds the force of gravity and body lifts off the
floor (i.e. jump). As the body begins to leave the floor there
is a rapid unloading of the forces acting and the GRF quickly
subsides (3). Following a jump no load is experienced by
the floor during the in-flight phase (4). A drop-landing is
characterized by a rapid and intense force being exerted on
the floor (5). In the case of human movement, the toes make
first contact, followed by the heels. The knees then bend to
absorb this energy (6), followed by a settling period (7). The
maximum force experienced during a dropland can exceed
three times body weight, and this depends on the height
from which the object falls (e.g. height of the jump).

3.2.3 Rise to stand and sit
The movements of rising to stand and sitting down are de-
picted in figure 3. Rising from a chair can be decomposed
into phases of leaning forward, ascent, and establishing sta-
bility in standing. There is an initial requirement to create
a force greater than body weight to cause an upward ac-
celeration of the body (1). This maximum force decreases
after the thighs leave the seat (2). Once the body is up to
velocity there is an increase in GRF back to body weight. A
similar pattern is apparent for sitting from standing. With a
sit, there is an increase in GRF prior to seat contact caused
by the breaking activity to control descent (4). The GRF
rapidly declines as the thighs contact with the seat.
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Figure 2: Crouch, jump and dropland
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Figure 3: Rise to stand and sit
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4. SENSOR SYSTEM FOR GRF ACQUISI-
TION

The development of a recognition system requires the ability
to sense the environment. The concern in this research is to
sense the GRF from the floor. In an Active Floor the basic
sensor is the strain gauge. Arranging matrices of load-cells
and placing floor tiles on top allows the measurement of the
GRF.

4.1 The Active Floor
The Active Floor was developed by Olivetti and Oracle Re-
search (ORL) in 1995. It provides a mechanism for deter-
mining the vertical ground reaction force (GRF) experienced
by a floor. Early work at ORL focused on identifying people
by examining their gait using Hidden Markov Models [10].
This research focuses on using the Active Floor to provide
ground reaction force information thus enabling the classifi-
cation of basic human movements.
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Figure 4: Plan view of the Active Floor

The current implementation of the Active Floor consists of
a four by four array of load-cells with a three by three array
of false tiles resting on top (figure 4). Each tile is composed
of a steel plate, with a three quarter inch plywood board
bonded to it, and dimensionally matches a standard floor
tile (i.e. 500mm × 500mm). Standard floor carpet tiles then
rest on these tiles. The corner of each tile sits on a load-cell.
At the corners the load cell supports only one tile, and each
vertex on the outer edge supports two. The inner load-cells
support four tiles each.

The sensor bus is extended using a CORBA interface to the
data acquisition device which makes the information accessi-
ble to interested applications. Services then operate on this
data, for example to extract the GRF per tile. The GRF is
the sum of the reaction forces acting upwards in an opposite
direction to the applied load, irrespective of the position of
the load.

5. FEATURE SELECTION
The aim of feature selection is to formulate a feature vector
that captures the important information of the GRF signal,
specifically that information which allows classification.

Initially, three basic features are extracted from the sig-
nal. Firstly the signal is normalized by body weight (BW)

prior to feature extraction. This normalized signal is then
segmented into windows of sample size n=20 observations,
which corresponds to a duration of 20ms. For each window
the features are extracted and represent this segment of the
waveform. The primary three features extracted per win-
dow are: the mean (x̄), the standard deviation (s), and the
slope (m). The duration of the movement is inherently in-
corporated by the choice HMM type (left-right model) used
in the classifier. A left-right model has the property that
as time increases, the state index increases or remains the
same, therefore the duration is modelled by the number of
states and the state transition probabilities.

The mean (equation 1; where xi represent the GRF data
points of the window) provides information on the intensity
of the signal and is a simple description of the underlying
trend. The intensity is useful in describing the evolution of
the force. For example, a drop-landing will exhibit a force
well exceeding 250% BW, whereas a step will exhibit a max-
imum component at about 110% BW. The standard devia-
tion (equation 2) is a measure of the variation of the signal.
The acceleration has direct correlation with the acceleration
of the body in the biomechanical process. The slope is cal-
culated from the acceleration curve (i.e. normalized GRF)
and captures the rate of change of acceleration. Some move-
ments, e.g. a dropland, have a quite high initial acceleration,
while others, such as the acceleration phase of a jump, have
a more gentle slope. The slope is that of a least-squares
straight line fit of the windowed data (equation 3; where y1

and yn are the end-point values of the fitted line). A slope
of zero or near zero represents a static vertical force acting
upon the floor. If this force is less than body weight, the
body is accelerating downwards, and vice versa.

x̄ =
1

n

n∑
i=1

xi (1)

s =

√∑n
i=1(xi − x̄)2

n
(2)

m =
yn − y1

n
(3)

These features (x̄, s, m) represent a single window. To com-
plement these features, delta and acceleration (i.e. first and
second order regression) coefficients are appended to each
feature vector. These coefficients add time-derivatives be-
tween the windows. The delta coefficients, dt, are computed
(eqn. 4) for each of the basic features x̄, s, m, with ct repre-
senting the basic feature to which the regression is applied.

dt =

∑2
θ=1 θ(ct+θ − ct−θ)

2
∑2
θ=1 θ

2
(4)

Equation 4 is then applied to the computed delta coefficients
(i.e. ct = dt;∀ x̄, s,m) to obtain acceleration coefficients.
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6. CLASSIFIER DEVELOPMENT
The Hidden Markov Model (HMM) is used to classify the
GRF generated by movements. In particular, the HMM
toolkit (HTK) [14] is used to implement the classification
system. This section describes the development of a recogni-
tion system using HMMs and a procedure used to determine
suitable model parameters.

6.1 Model Development
An HMM can be defined by λ = (A,B,Π), where A =
{aij} represents the transition probability distribution; B =
{bj(k)} the observation probability distribution at time t in
state j; and Π = {πi} the initial state probabilities. In the
classification of movements, each movement is represented
by an HMM. The first step is to specify a prototype model
that defines the model topology (i.e. L-R or ergodic, number
of states, mixtures, etc.). In a L-R model, the state transi-
tion probabilities are zero for previous states, i.e. there is no
back-tracking. In an ergodic model, it is possible to transit
from any state to any other state in the network.

Training is performed to adjust the model parameters to
maximise the probability of the observation sequence (O)
given the model, i.e. max P (O|λ). This training is per-
formed using the Baum-Welch algorithm, which is an iter-
ative process to improve the model by locally maximising
P (O|λ). Embedded re-estimation is a technique to train
several models from a unique source of data by updating all
the models simultaneously.

Recognition is achieved by computing the likelihood of each
model generating the unlabelled observation sequence and
selecting the one with maximum probability. That is, given
an observation sequence for an unspecified movement, com-
pute the probability of the sequence given each of the mod-
els, and choose the one with maximum probability.

6.2 Determining Model Parameters
The choices relating to the type of model (e.g. L-R or er-
godic), number of states and choice of observation symbols
(i.e. discrete or continuous), depend on the signal being
modelled. This research uses continuous densities in a L-
R model configuration in which it is only possible to remain
in the current state or progress to the next (i.e. Bakis-1
model). With a L-R model, the number of states is propor-
tional to the average duration, and thus the state duration
is inherently modelled, and it is neither necessary nor useful
to explicitly include state duration probabilities [3].

Having specified the features (section 5) and the model type,
the window size in feature extraction and the number of
states must be specified. An iterative search was performed
with window sizes from 10-30 milliseconds, and with the
number of states ranging from 1 to 20, both with unit in-
crements. The window duration was specified between 10ms
and 30ms as the mean is not correctly estimated with a win-
dow duration of less than 10ms, and features are not well
defined with the large window duration of 30ms. The max-
imum number of states (20) was not reached by any move-
ment and deemed to be a sufficient upper limit. The obser-
vation sequences were manually labelled. For each window,
feature vectors were generated. Then for each state a new
model topology was specified and the models were trained

Movement # States Model
Crouch 11 Bakis-1
Sit 6 Bakis-1
Jump 8 Bakis-1
Step 8 Bakis-1
Rise to Stand 8 Bakis-1
Dropland 7 Bakis-1
Static 1-2 Ergodic

Table 1: Number of states per movement

Movement # Samples Hit Ins.
Crouch 102 102 1
Sit 34 34 0
Jump 102 102 0
Step 27 27 0
Rise to Stand 34 34 0
Dropland 102 102 0
Static 315 312 0

Table 2: Results

using embedded re-estimation. Recognition was performed
on labelled test sequences and performance evaluated.

A window duration of 20ms was found to represent the signal
sufficiently. The number of states in the HMMs can differ.
Table 1 lists the movements and the corresponding number
of states.

6.3 Evaluation
It is necessary to show the performance of the classifier with
data not previously used for training the models. To this
end, several minutes of new GRF data were recorded and the
movements also video-taped. These GRF sequences were
then put through the classifier which generates a list of rec-
ognized movements. This list is compared to the actual
sequence of movements performed. Table 2 shows the num-
ber of test sequences for each movement with the number
of correct hits and insertion errors. An insertion error oc-
curs when a movement was incorrectly recognized as being
present when it was not physically performed. These results
show excellent classification performance.

The results show that the classifier can correctly recognize
a sequence of movements and provides no information re-
garding the alignment of the movement boundaries with
the physical movement. It is possible to manually label
each movement in the test data and compare the alignment,
though this is a laborious process. Instead, to show the
alignment accuracy of movement recognition, a new GRF
time-series composed of several movements was classified.
Figure 5 shows this GRF on which the movement bound-
aries are indicated.

7. ONLINE MOVEMENT RECOGNITION
For the majority of sentient applications that use movement
information, it is desirable to get the events in real-time.
The system is composed of data acquisition, data processing
(including classification), and event notification. Each of
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Figure 5: Labelled recognition

these stages are composed of several processes, as shown in
figure 6, and operate in a distributed environment.

Data Acquisition
The load-cells of the Active Floor are connected to a data
acquisition device (DAQ) that provides the signal condition-
ing and A/D conversion required for strain gauge measure-
ment, and is connected to a server. As the DAQ is tightly
coupled to the sensors of the Active Floor, which is in turn
distributed throughout the environment, the DAQ is repre-
sented by a corresponding CORBA software object. This
interface allows control of the DAQ and data acquisition
over the network, effectively extending the sensor bus.

Data Processing
There are several stages of data processing, cumulating into
a classification process to recognize movements. The process
starts with ground reaction force (GRF) extraction, in which
the GRF is the convolution of several sensors, depending on
where the force is exerted on the floor.

A movement detector is employed to determine when move-
ment is occurring on the floor, and to send this data for
further processing. Initiating a new motion will involve a
change in force, resulting in a non-zero slope. When there is
a sufficient load, but no movement on the floor, an adaptive
weight estimator determines the body weight of the user and
uses this as the the normalization factor. As the user moves
on the floor they are tracked and this normalization factor
remains.

Feature extraction is the next stage of processing. The fea-
tures are generated and then passed into the classification
engine. Following the successful recognition of a movement,
it is then characterized to extract information such as the
duration of a step, which foot made the step, the height of
a jump, the weight of the object lifted, etc. The next stage
is to present this information to clients.

Event Notification

Feature Extraction

Movement
Detection

Adaptive body
weight estimation

Floor
Active

Force Extraction
Ground Reaction

Classification

Characterisation

Event Notification

Application

D
ata Processing

E
vent N

otification
D

ata A
cquisition

Figure 6: Block diagram of online-recognition com-
ponents
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A mechanism is desired that can notify interested clients
of recognized movements. These clients and applications
are likely to be distributed. Applications are notified using
an event mechanism; we choose the CORBA notification
service [15]. The notification service provides filtering of
structured events, so clients can specify the movements and
attributes they are interested in. Structured events, which
consists of name-value pairs, are generated by the classifi-
cation and characterization processes and are then either
pushed or pulled onto the notification channel. Event filter-
ing can be applied to these name-value pairs, ensuring that
the client only gets the events they are interested in.

8. APPLICATIONS
The use of context in applications is slowly emerging. The
output of the classifier provides additional context to an at-
tentive system. This new interface, enabled by movement
events, allows application developers to use more awareness
when developing applications, making them more percep-
tive of the environment. As mentioned, this research is part
of the larger effort of sentient computing, and this move-
ment recognition is not in isolation, but contributes to the
awareness of the system.

However many fun and practical applications are possible
using movement recognition alone. Applications exist in
safety, entertainment and the development of context-aware
applications. Applications in safety extend from monitoring
tasks for manual materials handling injuries, to fall detec-
tion of the elderly by examining their gait and balance.

The majority of entertaining applications stem from the
ability to control a virtual character from physical move-
ments or having an application respond to your location
on the floor. For example, controlling the movement of a
character in a game through your own movements gives an
exciting new degree of interactivity, making the game more
involving, and a new motivation for exercise.

8.1 Controlling Quake with real movements
The ability to control a virtual environment through phys-
ical movements allows for the development of entertaining
applications. In particular, we use this exciting new aware-
ness to directly control movement in a virtual environment,
namely the game Quake. The control set is relatively small.
Through movement, it is necessary to control direction, rate
of progression, jumping, and shooting of weapons.

The direction can be forward, backward, left, right, and
combinations. The direction is determined by the location
of the force on the floor. Regions are defined that repre-
sent the directions, and the direction is set when the center
of pressure is contained within a region. These direction
control regions can be specified anywhere on the floor, and
are set during a calibration stage. Both single and multi-
ple tile configurations have been used. Using the three tile
configuration (figure 7), the region of one tile represents go-
ing straight, with the other two representing left and right.
On each tile a region is specified for forward and backward,
thus facilitating the choice of any direction determined by
the location of the force on the tile.

Progression is achieved by on-the-spot stepping on any of the

RightLeft

Straight

Forward

F

B B

Back

F

Quake   DisplayTM

Figure 7: Plan view of selected floor tiles with mark-
ings indicating the regions used in determining di-
rection

defined progression regions (tiles). The frequency of steps is
used to control the speed at which the character moves, if
at all. A physical jump in a progression region represents a
jump in the virtual environment. The application uses the
online classification of movements to determine that a jump
has occurred. Finally an EMG sensor, placed on the arm, is
used to detect a virtual trigger pull and to simulate a shoot
event.

These control events are exported to the application by gen-
erating the corresponding keyboard events to the operating
system. For the Quake control application a simple map-
ping between the movements and required keys is all that
is required. This mapping can easily be altered to control
the browsing or movement though any virtual environment
(e.g. a VRML world).

8.2 Task Monitoring
The awareness of movement can be used for task monitoring
during manual materials handling (MMH). MMH relates to
people’s interactions with objects that are lifted, carried,
pushed or pulled. Lifting tasks make up a large proportion of
MMH tasks and are involved in far more back injuries than
other types of MMH tasks [16]. There are two approaches
to the analysis of MMH for lifting tasks; biomechanical and
physiological, and equations exist that give recommended
limits for each. The biomechanical limits are determined
in the NIOSH guidelines [16]. These guidelines specify the
maximum permissible limit by considering the weight and
position of the object being lifted, the height and range of
lift, and the method and frequency of lifting. Sometimes we
are not aware of our actions during MMH and a sentient
environment has the potential to reduce these work related
injuries. Using the Active Floor and movement recognition
it is possible to identify that a lift has occurred, and the lift
is characterized to extract the parameters for the NIOSH
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equation. Through the use of awareness it is possible to
alert the potential of injury and to build a history of lifting
tasks.

9. CONCLUSION
Sentient systems depend on awareness of their environment
and inhabitants. This paper describes a new technique for
recognizing whole body human movement using the GRF
and HMMs. This new awareness is provided to sentient
environments. This information enables the development
of novel applications that respond in real-time to human
movements.
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