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ABSTRACT
This paper explores the use of location-awareness to dy-
namically optimise the energy consumption of an office. It
makes use of high-accuracy location data collected over 60
days randomly selected from a year in a commercial envi-
ronment to evaluate the potential for energy savings and to
motivate techniques that might be used.

The results suggest that the energy expended on lighting
and fast-response systems could have been cut by 50%; that
75.8% of the average user’s working day was spent in their
office; and that around 140Wh per PC per day could have
been saved, compared to a policy that had machines on for
the entirety of the working day. We also find inconsistent
office usage that would make optimising slow response sys-
tems much harder.
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INTRODUCTION
The explosion in consumer electronics has carried with it a
price in terms of increased energy demands in all aspects of
our lives. The environmental costs of producing the neces-
sary energy are coming under scrutiny, and we are seeing a
push toward reductions in power usage. Generally, the en-
ergy reduction techniques come at the expense of our con-
venience or comfort: we are advised to shower for shorter
periods; avoid using standby states on electronics; set the
thermostat a few degrees cooler. Whilst these approaches
undoubtedly have a beneficial effect in reducing energy con-
sumption, researchers have also recognised the potential to
use technology to monitor other technology, with sensors
providing a view of the world from which the environment
might be autonomously optimised. In principle, this could
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permit for reductions in energy consumption without reduc-
ing convenience and comfort — a ‘have your cake and eat
it’ approach.

Implementing a system to dynamically optimise an environ-
ment is recognised as a very difficult problem. The most
common approach has been to use a variety of simple sen-
sors and apply Bayesian inference techniques to attempt to
infer the state of user(s) in the environment and hence adapt
the power states of associated devices. For example, [6]
looked at desktop PCs and tried to dynamically and proba-
bilistically assign each user a state from the set{using, about
to use, not using} in order to set the power state of the asso-
ciated PC appropriately.

In this paper, we contribute to this field by studying the
extent to which fine-grained location throughout a building
might be used in dynamic power management of devices.
To make our observations, we use a large corpus of cap-
tured location data from a non-academic environment with
50 rooms, involving around 40 people with various roles,
captured during 60 working days randomly selected from a
year. The data were not collected specifically for this work,
but rather as a corpus of data for future, unforeseen tasks
such as this work. Consequently, this analysis is not a de-
tailed evaluation of a location-aware power management sys-
tem, but an analysis of what such systems might be able to
contribute. We analyse the collected location data to form a
picture of how people work and what energy savings might
reasonably be expected if we were able to prevent device
‘idling’.

In particular, we emphasise that any changes should not frus-
trate users. As an example, we informally asked a number of
computer users in various commercial and non-commercial
settings why they did not have their desktop machines auto-
matically power down, suspend-to-disk, or go to sleep after
a specified time. The majority cited the frustration of hav-
ing to wait for the system to reach a usable state as a major
contributing factor. We cannot afford, then, to assume that
an aggressive power saving policy will necessarily lead to
power savings since it may prove very unpopular and be cir-
cumvented. Instead workstations in the scheme discussed
must be powered up and in a usable statebeforethe user is
physically upon them.

BACKGROUND
Context-aware power management (CAPM) was introduced
by Harris and Cahill [5, 6], who concentrated on using sen-



sors to optimise the power states of desktop PCs in an of-
fice environment. They used coarse location in the form of
proximity detection using Bluetooth, microphones to detect
activity, and webcams and facial tracking to estimate when
a display was being observed. They characterised users as
HeavyUse (≥ 85% of their time using their computer when
in its vicinity) and LightUse (significantly less time spentus-
ing their PC when in its vicinity). They found that predicting
user state for HeavyUse was generally successful (within 8%
of the ground truth ‘oracle’), whilst achieving useful predic-
tion for the LightUse grouping was essentially too challeng-
ing for today’s systems.

Our interpretation of these results is that predicting whena
computer will be used by a nearby user is not a realistic goal
for today’s technology. The time taken to transition between
PC power states is significantly longer than the time taken
for a user to shift task from, say, reading a book to typing.
Instead we posit that the success of the HeavyUse user anal-
ysis is due entirely to the Bluetooth proximity detection —
i.e. it is only currently possible to predict device usage byas-
suming it is in use when a user is within operational range of
it. Since HeavyUse users essentially use their PC whenever
near it by definition, the resultant predictions were close to
the oracle.

Furthermore, even if we were able to accurately predict when
a computer was not about to be used, entering a low power
state does not support the manner in which we have empiri-
cally observed modern PCs to be used. The proliferation of
global connectivity means that desktop PCs1 are often used
for monitoring tasks when not in physical use. When at their
desks, users want to know when email arrives and when in-
stant messaging sessions are requested.

In this paper, we use these observations to motivate a sin-
gle assumption:when a user is within range of a device,
the device should be treated as in use. This means we do
not strictly minimise energy usage, but we avoid ever incon-
veniencing the user, whilst still making significant energy
savings. It also permits us to be be more reactive in our ap-
proach.

Note that some devices are able to change the power state
of specific components very quickly. A PC, for example,
may power down its display or its hard disk and resume both
extremely quickly. In recognition of this, we adapt our def-
inition of ‘in use’ to permit these changes since they cause
minimal frustration. In effect, we are merely saying that an
‘in use’ device should behave exactly as is acceptable to the
user today — i.e.we are attempting to apply location-aware
power management such that the results are invisible to to-
day’s end users.

Harris and Cahill’s work is the only one we are aware of
that concentrates on the office environment. CAPM in the

1We assume that a desktop PC is wholly dedicated to providing lo-
cal computing and general network services are provided by care-
fully monitored machines in controlled server rooms. This ap-
proach is more energy efficient and appropriate for business.

home has, however, received much attention, particularly
in the MavHome project [11]. Here, researchers developed
an information-theoretic framework for predicting the mo-
tions of users in a home environment. Sensor input again
concentrated on location, this time using RFID readers and
pressure mats. Each location within the home was assigned
a unique textual descriptor and any movement was repre-
sented by concatenating these descriptors into a string. Tex-
tual compression schemes were used to highlight patterns in
the strings and hence assist in predicting where any user was
heading to allow for optimisation. The framework was eval-
uated only in simulation for a small house, which makes it
difficult to know whether the prediction scheme could func-
tion well enough to avoid frustration.

AI techniques have also been used to analyse and predict
building usage. Research such as the Neural Network House
[9] and by Mayhofer at al. [8] have assumed sensor-laden
homes that can make semi-intelligent decisions in order to
save energy (e.g. if no-one is home at 11pm, no-one is likely
to be staying there tonight so switch to a low power mode).
Again, though, these tend to be applied to small residential
dwellings and evaluated through simulation. We view this
work as complementary rather than competitive.

We note that any probabilistic approach (such as used in
MavHome or by Harris and Cahill) will occasionally cause
a machine to be in an unusable state when a user wishes
to use it and therefore will cause frustration sooner or later.
We hope to demonstrate here that for some energy sinks this
is inevitable and the probabilistic approach is appropriate,
whilst for other devices we can implement schemes that will
provide no frustration at the cost ofslightly greater energy
usage. Again, this highlights the trade-off between conve-
nience and power minimisation, but we feel that the goal
should be to minimise power under the constraint of max-
imal convenience. If this is not the case, schemes will be
circumvented or simply not implemented.

Since we make use of fine-grained tracking systems, it is also
worth providing a brief review of the state of the art in or-
der to justify their consideration. Demonstrated in-building
systems have been based on many different approaches, each
with important characteristics. Infra-red badges [14] provide
reliable room-level location with low infrastructure costs;
WiFi radio systems [3, 15] have very low infrastructure and
deployment costs, but crucially they are unable to reliably
associate a user with a room because the signals penetrate
walls; ultrasound systems [2, 7] have very high accuracy
(of the order of centimetres) but equally high infrastructure
costs; UWB radio systems offer a good compromise with
sub-metre tracking and intermediate deployment costs [13].
UWB systems in particular are becoming popular in com-
mercial and industrial settings.

UNDERSTANDING WHERE THE ENERGY GOES
In order to understand the true effect any optimisation might
have, it is important to consider where energy is typically
used. Naturally, the power budget for a given building is
dependent on a large number of factors, from size to func-



Source Residential Commercial
Space Heating 30.7% 14.2%
Space Cooling 12.3% 13.1%
Water Heating 12.2% 6.8%
Ventilation n/a 6.0%
Lighting 11.0% 25.5%
Refrigeration 7.5% 4.1%
Electronics 7.4% 6.3%
Wet Clean 4.8% n/a
Cooking 4.5% 2.0%
Computers 1.1% 3.2%
Misc 8.5% 18.7%
Total Sector Expenditure in
Petawatt hours(PWh)

6.38154 5.2447

Table 1. Typical building power expenditure (Source: US DoE[10]).

tion to employee count to the current season. Table 1 shows
the primary sources of energy expenditure are environmen-
tal temperature control and lighting, but many express sur-
prise that the consumption attributed to computers is so low
in comparison. This is partly due to the fact that computer
equipment receives a bad press: it is a target because it repre-
sents something that is visibly consuming power when idle,
and can therefore be ‘easily’ optimised. These data moti-
vated us to expand our interest from the desktop PC to look
at whether savings might also be possible for other major
sources of energy consumption. Since our location data is
from an office environment, this is our target herein.

Some of the devices listed in Table 1 are not optimisable
given user locations. There is potential to dynamically op-
timise heating, cooling, lighting, and electrical devices, but
those devices that either demand human presence or are in-
different to it (such as refrigeration, cooking and cleaning)
have little chance of being dynamically optimised using a
CAPM system and hence receive no further consideration
here.

GROUNDING OUR FINDINGS
Providing meaningful answers to our research questions is
challenging at best. To ground our findings we avoid simu-
lating building use, and opt instead to analyse theactualus-
age of a specific building with an installed personnel track-
ing system. The building used was the former AT&T Re-
search building in Cambridge, UK, which featured an ultra-
sonic location system that provided three-dimensional track-
ing accuracy of approximately 3cm 95% of the time [2]. The
building had three floors and 50 rooms, with a mix of users
from management, research, and administration. We classi-
fied each room as an office, a corridor, or a communal room
(a kitchen, a meeting room, etc). Under this classification,
the building had 35 offices, 6 corridor spaces and 9 commu-
nal rooms.

Over the course of a year, researchers selected 60 days dur-
ing which the location events generated by the tracking sys-
tem were recorded between the hours of 0630 and 1930. The
resultant logs provide a detailed picture of where building
users went, and are used throughout this paper as a repre-
sentative view of the use of an office environment. Clearly,
no two workplaces are the same, so it is difficult to con-

Figure 1. Positions recorded for a particular user over fourhours on a
particular day. The data were recorded across three floors, each shown
separately.

fidently generalise the results, but qualitatively we observe
trends typical of other workspaces and we feel that the re-
sults derived from them are more reliable than the alternative
of simulation.

It is, however, important to understand that the location logs
cannot be guaranteed as complete or totally accurate. Build-
ing users were not required to submit to being tracked, nor
were they required to ensure that they wore their tracker at
all times. However, there were incentives to be tracked and
there is no evidence to suggest that the data are not a good
representation of how the office space was used. Figure 1 il-
lustrates the general quality of the data by plotting the logged
path for a particular user during the course of a day.

CLASSIFICATION OF ENERGY SINKS
When considering typical energy sinks and how to optimise
them, we found it useful to categorise them by their ‘resume’
times from a reduced-power state. Broadly speaking, we
consider three categories:

1. Instantaneous resume. To the human eye, these devices
switch power state instantaneously. Lighting and elec-
tronic displays are good examples.

2. Sluggish resume. These devices have non-instantaneous
resume times, but still resume within the order of a minute.
A typical example is a desktop PC.

3. Slow resume. These devices are associated with slow
warm-up periods often of the order of fractions of hours.
Heating and cooling systems are good examples.

OPTIMISING INSTANTANEOUS RESUME
Many buildings are already equipped with coarse location-
based lighting control in the form of wall switches with em-
bedded infra-red detectors. When these sense the presence
of a heat source (presumed to be human), the local lighting
is switched on. Similarly, the absence of a heat signature
triggers a countdown to powering off the lights. Naturally
this approach is more energy efficient and convenient than
a physical light switch, but in our experience the approach
suffers from a number of drawbacks:

• The scheme is purely reactive. To be recognised one must



Figure 2. Using spatial zones as triggers. Rooms A and B are connected
as shown. Each has two associated spatial zones (shown hatched), one
for ingress and one for egress. The ingress zone is chosen to spill into
the adjacent room to allow warning of imminent likely entry.

be in the room, which necessitates entering a dark space
initially.

• Even if detected quickly, the lighting system may not re-
spond instantly. This is especially true of power-saving
bulbs, which tend to require a short warm-up period.

• It is hard to completely cover cover an entire space in such
a way that users cannot inadvertently hide from the sen-
sor. This can cause the lighting to turn off at inappropriate
moments.

These problems are barely tolerable for a lighting system (in
our laboratory, they are often circumvented to avoid being
plunged into darkness at inopportune moments). The lack
of any notion of identity is a further issue for more personal
devices — every PC display in the room or area should not
spring to life when a cleaner enters. There is, then, good
motivation for using a more fine-grained tracking system
that can identify those it tracks. Instantaneous resumes lend
themselves to predominantly reactive schemes, although a
degree of pro-action may be desirable.

To handle reactive events we use the notion of spatial zones,
first applied by the Sentient Computing project developed by
the University of Cambridge and AT&T Research [2]. The
principle is simple — define 2D spatial zones (essentially
polygons overlaid on a map of the area) that trigger system
events whenever a user enters or exits them [4]. Fine-grained
tracking is important here for two reasons: firstly, it is usu-
ally associated with faster location update rates and hence
better estimation of the time at which zones become ‘active’;
secondly, it provides a more reliable estimate of proximity.
Coarse proximity-based location such as that employed by
Harris and Cahill is usually unable to associate a user with a
room and thus resumes could be mistakenly triggered when
the user is actually in an adjacent room.

When dealing with lighting, we use the room outlines as the
relevant spatial zones, and take advantage of the faster up-
date rates associated with fine-grained tracking to minimise
the delay in turning on lights as a user enters. However, in
some cases, any delay at all may be unacceptable, in which
case we extend the notion of spatial zones to incorporate a
separate ingress and egress zone, where the latter is the true
room zone and a subset of the former. The ingress zone is an
extension of the egress zone at the doorways to create small
‘spill-over’ areas which will be triggered justbeforethe user
enters, allowing for pro-active resumption of lighting in the

Figure 3. Captured location sightings in a corridor show thetendency
for users to adopt the corridor centre line when traversing buildings.

room if it is currently off (Figure 2).

Provided that a given user is reliably tracked, this scheme
guaranteesthat the lights will be on when they enter the
room, achieving both convenience and invisibility. However,
the ingress adaptation introduces the possibility that a re-
sume will be falsely triggered if, for example, a user walked
through the ingress zone without subsequently entering the
attached room. This would trigger the lights to be on unnec-
essarily which would be an unwarranted energy consump-
tion. When we reviewed the captured data, we found that
this may be less of an issue than first envisaged. Figure 3
shows all captured locations within a particular section ofa
corridor over the course of a day, and clearly demonstrates
the natural tendency for humans to maximise their distance
from walls unless diverting to a destination (doorways to
attached rooms are shown indented along the corridor out-
line). To quantitatively assess this, we chose a commonly-
occupied room and looked at the average number of false
resumes per day that would have occurred for a range of
ingress extension sizes. The results in Figure 4 suggest an
extension of 0.5m perpendicular to the door would be ap-
propriate for the environment studied. Our empirical results
from location-aware systems suggest that the wider the cor-
ridors, the greater the extension can be, giving more time for
pro-action if desired.

The question of how much of an energy saving this approach
provides translates roughly to asking how often a room is oc-
cupied. For illustration, we assume three lighting schemes:

1. All lights are on 24 hours a day.

2. Lights are switched on by the first office owner2 to enter
in the morning and off by the last to leave.

3. Room lights are automatically switched off when the room
is vacant using location-awareness.

We filtered the raw location logs using point-in-polygon tests
with the room outlines in order to measure the length of time
each room was occupied in each day. Figure 5(a) shows the
average daily illumination time for each room when using
lighting schemes 2 and 3. In recognition of the fact that not
all rooms were the same size, we reproduce Figure 5(a) as
Figure 5(b), which weights the data according to how many
bulbs would be needed to light the room, under the empirical
observation that one bulb was required for every 10m2.

2We ignore any entry by non-office owners since these were typi-
cally caused by e.g. administration putting a folder on a desk early
in the morning.
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Figure 4. Extending ingress spatial zones and its effect on the number of mistaken resume events.
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Figure 5. The average illumination time for each lighting scheme per room. The rooms are presented in order of type: offices (section I), communal
(section II), corridors (section III).



In order to generalise our results, we have computed the to-
tal daily illumination time for the building in terms of both
room-hours3 and our estimated bulb-hours. The results for
the different classifications are given in Table 2. Empirically,
we note that the majority of non-residential buildings oper-
ate on a policy similar to that of scheme 2, so these results
suggest the energy requirements for building lighting could
be halved by using a reactive location-aware power manage-
ment scheme.

There is, however, a caveat to this result. It is clear from
Figure 5(a) that the biggest advantage to a reactive scheme
comes from application to the corridors, but the analysis fails
to capture that the small overall occupancy time of corridors
is itself the sum of many, much shorter occupancy periods
created by user movement. Unfortunately, rapid switching
of today’s fluorescent bulbs causes a deterioration in bulb
lifetime which may be have its own environmental impact
[12].4 Enforcing a policy that ensures only one state change
per assigned period (five minutes is identified as the break-
even for fluorescent bulbs in [5]) is extremely difficult for
both reactive and proactive schemes, and it is inevitable that
there will need to be rapid switching on occasion. We anal-
ysed the lengths of the periods of vacancy for each room
to discover how likely it is that a given vacancy will last
longer than a given time. The results for the different types
of room are shown in Figure 6. We observe that the probabil-
ity a room will remain vacant for at least a 5-minute break-
even period is 0.26 (corridors); 0.42 (communal areas); 0.56
(offices); and 0.37 overall. This analysis does not, how-
ever, capture the effect of daily routines which may make
the probability distribution time-dependent. If, for example,
a given office goes to lunch at 12pm each day, it is very likely
that any vacancy starting at 12pm will last longer than 5 min-
utes. We study this in more detail when considering slow
resuming systems. In general, for a 5 minute break-even pe-
riod, we advocate a scheme that reactively turns office and
communal lights on for a minimum of five minutes before
returning to location-aware management, and which leaves
corridor lighting on whilst the building floor is in use. We
also note that there is a general trend to replace fluorescent
bulbs with LED ‘bulbs’, for which rapid switching is not an
issue.

Note that we have assumed lighting is per-room, rather than
per-personal area. This is of course the norm today (one
lightswitch per room), but we note that location-awareness
offers the opportunity to have more specific per-person spot-
lighting. Similarly, we have noted that some instantaneous
resume devices are typically associated with a particular user
rather than a particular room (e.g. a display or a telephone).
It may be the case that these devices power-down automati-
cally when not in use (computer displays for example), but
some electronics provide output on an assumption of the
user being there (electronic signs, telephones) and so it isin-

3A room-hour is defined here as an hour of illumination for a spe-
cific room.
4It is not clear whether the necessary increase in bulb production
would outweigh the benefit of reduced energy consumption, but it
certainly creates more work for building maintenance departments!
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Figure 7. Proportions of time users spent in their respective offices.

structive to examine whether there is value in location-aware
power management of such user-specific devices.

In these instances, we want the spatial zones to be linked to
specific users, and these considerations lead us to examine
how often users are in their assigned offices. Figure 7 il-
lustrates the percentage of the working day that users spent
in their office. From these data, an average worker spent
75.8±13.5% of their time in their office, showing that, in
principle, devices could be switched off for almost one quar-
ter of the working day.

OPTIMISING SLUGGISH RESUME
For this class of device, we consider the desktop PC as an
illustrative example. Here, we use the term ‘PC’ to refer
to the computer itself rather than its peripherals such as the
attached display, since these typically power down and re-
sume near-instantly. Computers typically feature a variety of
power saving states that are either transitioned autonomously
(processor speed, hard disk spin state) or manually (suspend,
power off, etc). In most scenarios, the power savings caused
by the former can be significantly outweighed by the latter.

The power saving in most modern day PCs is based around
the Advanced Configuration and Power Interface (ACPI) in-
dustry standard [1]. This specification defines four global
states for a machine; G0 (on or working), G1 (sleeping), G2



Average daily illumination
Scheme Office (Rh/Bh) Communal (Rh/Bh) Corridors (Rh/Bh) All (Rh/Bh)
1 437.5 / 1344 216 / 624 144 / 456 1200 / 2352
2 89.5 / 139.7 74.5 / 200.2 61.5 / 196.6 219.5 / 512.7
3 56.1 / 93.7 30.5 / 115.7 9.6 / 34.1 91.8 / 226.0

Table 2. Average illumination times in terms of room-hours (Rh) and estimated bulb-hours (Bh).

(soft-off), and G3 (hard-off). The G1 state is further divided
into ‘S’ states, the most important of which are S3 (‘suspend-
to-RAM’, ‘sleep’, or ‘standby’) and S4 (‘suspend-to-disk’,
or ‘hibernate’). We model a desktop PC as a machine that
operates in states G0, S3, S4, G2, or G3, as per the state dia-
gram of Figure 8. This Figure is annotated with experimen-
tally measured power draws from a Dell Optiplex 745MT
E4600 desktop machine running Microsoft Windows XP that
implements a modern ACPI interface and enters a true ACPI
S3 suspend-to-RAM state5. The quoted power values were
measured at the mains socket to which the PC was attached.

The, perhaps initially surprising, result from measuring the
power draws is that the power difference between the S3 and
S4 states is negligible. There is, therefore, a strong argument
not to use the S4 state on modern desktops. However, it
is important to remember that a machine in S4 draws the
same power as in G2 and can be instantly switched to G3
(with its zero power draw) without loss of software state.
A networked mains adapter (using a protocol such as X10)
can be envisaged that would cut power automatically to a
hibernating machine. It is therefore reasonable to proceedon
the assumption that S4 draws the same power as G3 (0W).

The natural way to handle a sluggish power state response is
to make use of the extended ingress spatial zones, as used in
the analysis of instantaneous resume devices above. We can
envisage extending the ingress region into surrounding ar-
eas until its boundary represents the distance from the room
which we expect a user to traverse in the time taken to re-
sume. The logical approach is to assume that users move at
their maximum speed to ensure there will always be time to
resume. Figure 9 shows the frequency of speeds observed
for three random users from a single day’s worth of location
data, suggesting a maximum speed of around 2ms−1. This
corresponds to a zone-doorway distance of at least 10m for
the transition to and from S3, and a huge 120m+ for the S4
transition.6

The power scheme naturally becomes the implementation of
the following algorithm:

if Owner within 10mthen

5In the past, suspend-to-RAM has tended to draw similar powerto
the idling state, and its usage has thus provided little truebenefit.
New machines do not suffer from this issue.
6The S4 transition time is bounded by the time it takes to trans-
fer the memory image residing on disk into live memory. Modern
desktop drives can transfer at average rates around 60MB/s,requir-
ing approximately 17s for each 1GB of main memory in the sys-
tem. The upcoming generation of Solid State Drives (SSDs) are set
to increase the read speed by almost an order of magnitude, how-
ever, so S4 to G0 transition times could be dramatically reduced in
the medium-term.

Enter G0
else if Owner within 120mthen

Enter S3
else

Enter S4
end if

For many PCs, use of the S4 state is likely only to come
when the user has left the building (easily determined with
a location-aware system)or when the system is able to con-
fidently predict their absence for longer than a previously
determined break-even period. Realistically, the best source
of such predictions will come from mining shared calen-
dars, which are used extensively in today’s business arena.
Knowing, for example, that Alice has a one-hour meeting
tabled and has entered the assigned meeting room should be
sufficient to confidently predict her absence for at least 45
minutes. Since, however, we are entering the realm of pre-
diction, there will inevitably be mistakes and the invisibility
goal will be compromised. Therefore, avoiding the use of S4
when the user is within the building seems to be justified, es-
pecially since the difference in power draw between S3 and
S4 is almost negligible.

Returning briefly to Figure 7 and the derived result that the
average user spent 75.8% of their working day in their of-
fice, we see that an average PC can be in S3 for one quar-
ter of the working day, G0 for the rest, and use S4 out-
side the working day and still achieve the invisibility goal.
We have found unattributed quotes that estimate 50% of UK
businesses operate with their computers on 24/7, whilst the
majority of the remainder operate a ‘switch on in the morn-
ing, off in the evening’ policy. If we assume a 5-day work-
ing week and an 8-hour working day, with an average G0
power consumption of 100W, an S3 consumption of 3W and
an S4 consumption of 0W, the three schemes (24/7, on for
working day, location-aware) would consume an average of
2,400Wh, 571Wh, and 437.3Wh per day, per PC, respec-
tively. Location-awareness could therefore provide energy
savings of up to 83%.

OPTIMISING SLOW RESUME
Our illustrative example for slow resuming systems is envi-
ronmental temperature control. Heating or cooling a room
is a power-hungry operation that consumes almost one third
of the energy used in buildings. The response time from
starting a heater or cooler to achieving the desired temper-
ature is dependent on a wide range of complex factors, but
is almost always a lengthy process in comparison to other
devices. Because of this, reactive power schemes are all but
ruled out. The key goal is to predict when a user will next use
a given room in sufficient time to allow appropriate heating



Figure 8. State diagram for modelled PC with annotated powerdraws and transition times where appropriate.
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Figure 9. Frequency of speeds observed over a 24 hour period for three users.

or cooling of it. This type of pro-action suits the probabilistic
schemes such as those mentioned in the background section
above, the techniques for which are well established. Our
only contribution to that work is to note that no mention is
generally given to the use of shared calendars, which would
seem to be a very potent source of a-priori information for
the probabilistic frameworks in an office setting.

We note that the degree of success for these probabilistic
methods is dependent on how predictable people are in their
daily lives. We therefore take the opportunity to see how
consistent users in our captured logs were in their use of the
building. To study this, we sample the occupancy by any-
oneOr,d(t) ∈ {0, 1}, for each room,r, on each day,d, at
discrete one-minute time intervals,t = tn. In order to dis-
cover how consistent each period of occupancy was, we fur-
ther compute a histogram of the resultant occupancy traces,
Hr(tn) =

∑
j=days Or,j(tn). Figure 10 depicts eachHr as

a row in a colour-coded image. We observe that rooms had
characteristic start and end times for their usage, which dif-
fered from each other by as much as 2.5 hours. Most offices
show two consistently occupied periods separated by a mid-
day period of vacancy, which we attribute to lunch. Commu-
nal rooms received either sporadic, unpredictable use (meet-
ing rooms) or highly consistent use (e.g. a hardware labo-
ratory). The main corridors saw a roughly uniform usage
throughout the day, whilst minor corridors had very unpre-
dictable usage.

A typical building heating policy today is to control the tem-
perature of the building between the hours of potential use.
For many buildings this corresponds to setting a timer switch

to control temperature between around 0600 and 1930. Fig-
ure 10 runs over the same period and it is clear that we can
use the observations just made to improve this policy, as-
suming room temperature can be controlled on a per-room
basis:

• We can predict when a user is likely to arrive in the morn-
ing such that their office is correctly heated. We can also
predict when the first user of the day will arrive to heat the
corridors and communal spaces.

• We can observe when an office goes to lunch and predict
the length of the vacancy based on historical trends.

• We can observe when users of an office leave for the day
and switch off temperature control in that office.

From Figure 10 we observe that no-one was seen before
0700 on any day in any room. Therefore we compare to a
best-case timer policy that runs from 0700 to 1930. For just
the 30 offices in use, this corresponds to an operational time
of 375 room-hours. From Figure 10 we find that this heating
policy would control the temperature for 46 room-hours in
the morning, 24 room-hours in the evening, and 6.5 room-
hours at lunch time when the associated rooms are very con-
sistently empty. i.e. for the offices alone,20% of the fully
operational time is spent heating or cooling rooms that are
very consistently empty. This, or course, does not necessar-
ily translate to a 20% energy waste since heating and cooling
are very complex processes. Nonetheless, a heating system
can operate at a lower power for the predicable vacancy peri-
ods, keeping the rooms at a habitable-but-non-optimal tem-
perature in case an unexpected arrival occurs, a policy that
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would still provide an important energy reduction.

LOCATION SYSTEM POWER DRAW
Throughout this discussion, we have ignored the fact that
energy is expended just on determining the location of the
users. For reference, the system used to capture the data used
in this paper required approximately 40W per room to run,
along with one dedicated computer per building. Its succes-
sor (the Ubisense UWB platform) draws approximately 14W
per room. Whilst these draws are clearly significant, it is im-
portant to recognise that neither system has been optimised
to minimise power consumptionin any way, so we would
expect careful engineering todramaticallyreduce this con-
sumption. We also observe that location-awareness should
provide other benefits by enabling general location-aware
applications and hence this expenditure is not solely for en-
ergy reduction.

We also note that, whilst the fine-grained data were nec-
essary to analyse what is possible, some of the proposed
schemes could be implemented using much simpler, lower-
grade location sensing, which would have correspondingly

lower power consumption.

CONCLUSIONS AND FURTHER WORK
This work has provided a unique look at how a set of 40
people used the building they worked in, with an empha-
sis on whether building energy consumption can be reduced,
primarily reactively, through dynamic optimisation basedon
input from a building-wide location system. Previous work
has used lower-grade sensors and assumed more pro-active
schemes, at the cost of making mistakes. Here, we have
emphasised that energy consumption needs to be minimised
under the constraint of maximal user comfort (or, equiva-
lently, minimal user disruption) relative to today’s working
practices. We believe this will encourage adoption of our
scheme.

Although the data presented are rich, the analysis ultimately
only provides a single data point, since it derives from a sin-
gle building and a single set of people. Nonetheless, in the
absence of location data of a comparable nature, we believe
the analysis has provided an interesting and novel insight.
To summarise the work:



• We believe CAPM systems today will benefit mostly from
location data.

• We believe CAPM systems should be designed to reduce
energy consumption under the constraint of having an in-
visible effect to users. This is to improve user acceptance
up of the system.

• Predominantly reactive schemes may be more appropriate
than pro-active, probability-based schemes since the latter
will not guarantee invisibility of the results.

• Lighting is suited to a reactive scheme using spatial zones,
especially where LED lighting is used. We estimate that
the energy expended on lighting for the building studied
could have been cut by around 50% compared to the com-
mon first-in-last-out scheme.

• PCs can be semi-reactively optimised by making use of
the ACPI S3 power state. We found that 75% of the aver-
age user’s working day was spent in the vicinity of their
computer, and estimate savings of around 140Wh per PC
per day compared to a typical scheme that keeps machines
on for the working day (and off otherwise).

• The ACPI S4 option for computers is not attractive during
the working day due to the time it takes to wake from this
state. It is better to use the sleep or standby state unless
the return time of the user is known to high accuracy.

• Temperature control has a long response time to power
state changes and demands a predictive approach. We
have not found sufficient consistency in user behaviour
to suggest that predictive approaches will be particularly
accurate in practice.
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