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Abstract. Context-aware computing in location-aware environments demands
the combination of real world position with a computational world model to infer
context. We present a novel approach to building world models using signals
inherent in positioning systems, building on the work of the robotics research
field.

We implement the approach using the Bat ultrasonic location system. We ob-
serve excellent results when trying to extract the height and shape of horizontal
surfaces, and demonstrate how to image and characterise object volumes.
Results are collected using personnel Bats and by using an autonomous vehicle
which moves randomly. In both cases, the results are accurate and reliable.

1 Introduction

The context-aware computing paradigm [14] has sparked an interest in the develop-
ment of technologies that realise the applications it offers. Thus far, the major enabling
technology has emerged as location (both through absolute positioning and spatial con-
tainment), with many research systems already demonstrated to locate personnel and
objects [4,7,10,11,13,15,17, 18], and many more on the horizon.

Context-aware systems must integrate location information with a knowledge of
the world in which they operate. This knowledge is contained within a world model,
and may be as detailed or sparse as the applications which utilise it demand. As a
minimum, the authors have found by experience that a useful system should be aware of
room bounds, computer host positions, and the location of major office furniture. These
facilitate the majority of applications such a hot-desking and “follow-me” applications.

The experiences of the authors with the SPIRIT context-aware system [1], have
highlighted a series of practical problems that regularly manifest in a real world de-
ployment. Objects modelled by SPIRIT, but not explicitly tracked by sensor systems,
are continually observed to unexpectedly move, reconfigure, or be removed altogether.
As an example, users commonly shift and re-orient their desktop display.

The resultant loss of synchronisation between the real world and the world model
can be problematic for context-aware systems. If a monitor is moved, for example, the
ability to hot-desk to it whilst in its vicinity is immediately lost. The system continues
to make decisions consistent with its model, but now inconsistent with the real world.
Users become confused, and start to distrust the system, reducing its value.



To prevent this, context-aware systems must be able to respond to changes in the
real world. Current implementations use a world model that is manually configured
at initial switch on. Adaptation to any subsequent changes in the real world relies on
human administrators observing those inconsistencies and taking the time to correct
them. On the scale of a laboratory implementation, this is adequate. However, larger
deployments clearly cannot depend on this approach.

This paper presents a method of using signals within positioning systems to infer
the presence, position, and shape of objects in the environment with minimal human
involvement.

2 Robotics and Positioning Signal Propagation

Unobtrusive positioning systems rely on the propagation of wave phenomena. The char-
acteristics of the propagation (such as time-of-flight) or the wave itself (phase) provide
information that can be combined with the information from other waves to compute
a position. For example, the Bat system [17] uses the time-of-flight measurements of
ultrasonic waves propagating between a transmitter and multiple, ceiling-mounted, re-
ceivers to perform a multilateration calculation and estimate the transmitter position.

Given the position of a transmitter and a receiver that detects an emitted signal,
we establish a vector between these positions, known as a ray. Herein, it will be as-
sumed that the positioning system uses a mobile transmitter and fixed receivers. All
concepts are directly applicable to the inverse situation by symmetry arguments. As the
transmitter is moved around, a series of new rays are established with each successful
positioning calculation.

Fig. 1. The build up of rays around a table

Over time, the rays penetrate into three-dimensional space. Where objects made of
material that is opaque to the positioning medium exist, no rays are expected (illus-
trated in Fig. 1). The essential premise, then, is to facilitate the aggregation up of rays
within an environment, and provide an analysis algorithm to extract information from
the regions that no rays intercept.



In a real system, rays may build up very quickly. A three-dimensional position re-
quires a minimum of three receiver sightings, and hence provides at least three rays. At
a conservative update rate of 0.1Hz, we generate a minimum of 25,920 rays per person
per day. Robust systems are likely to vastly exceed this minimum. It is therefore not
storage efficient to store the details of every ray within the system.

Fig. 2. A vertical slice through an occupancy grid. Grey cells are occupied. Rays are represented
by thick dark lines.

Instead, we can use a three-dimensional occupancy grid. Occupancy grids were
first proposed by Moravec and Elfes in the field of robotics and autonomous naviga-
tion, where robots must use attached sensors to model their environment. There exists
extensive literature in the field pertaining to mapping and exploration [2, 3,8, 9, 16].

For the purposes of this paper, an occupancy grid is a three dimensional construction
that segments the space of interest into regular cubes. Each cube is associated with a
binary state from the set {occupied, unoccupied}.

A ray is quantised onto a grid by determining the cells it intercepts, and assigning
them the unoccupied state (Fig. 2). Using a spatial grid reduces the storage require-
ments, and eases analysis. The accuracy of such a representation depends on the choice
of cell size. A smaller cell size necessitates larger storage requirements, but potentially
gives increased accuracy.

3 Real World Difficulties

Ideally a ray-tracing system would record the receivers that receive any positioning
pulse and store the corresponding rays in some form. However, to do so would make
the implicit assumption that the path traversed by the positioning signal was straight
and direct between the transmitter and receiver. In reality, waves are subject to a series
of physical phenomena which may cause deviations from this ideal. In particular, waves
may be diffracted (Fig. 3(a)) or reflected (Fig. 3(b)).

The possibility of signals taking non-direct paths has traditionally been a serious
problem for positioning systems. It introduces a source of significant error into the
positioning algorithm. In any set of positioning signals, we wish to establish those that
traversed direct paths, and use only those when ray-tracing.



(a) Edge diffraction (b) Specular reflection

Fig. 3. Wave phenomena causing signal path deviations

We can reliably estimate the direct-path subset of measurements by discarding the
rays for all measurements that are discarded by the positioning algorithm. In this way
we maintain all measurements that are consistent with the returned position. By ensur-
ing that the positioning algorithm is resilient to non-direct measurements, these mea-
surements most likely represent the direct-path subset.
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Fig. 4. Reflection images in the Bat system

However, in extreme cases, it is still possible to misidentify direct signals, as il-
lustrated in Fig. 4. Here, no signals propagate to any receivers without first specularly
reflecting from a monitor. The resultant time-of-flight (or equivalent) measurements are
consistent with a position reflected through the plane of the monitor, and a position-
ing algorithm will converge on this reflected position, producing rays that obscure the
monitor.

The positioning algorithm implemented within the Bat system uses a non-linear
model of the data. The standard usage of such an algorithm is to create a model from all
measures, discard the largest outlier and repeat until a certain error level is reached, or
the algorithm diverges. As described in [6], the Bat algorithm modifies this technique,
and discards only the measures with the largest positive residuals, thereby encapsulating
the idea that an ultrasonic signal cannot travel faster than the speed of sound. The effect
of this is that a single direct measurement is enough to prevent the positioning algorithm



converging. Thus, situations where a reflected position is returned can be minimised, but
not eliminated.

To handle the introduction of such error requires a more detailed approach when
forming an occupancy grid. In robotics, a probability of occupancy is assigned to each
cell rather than a binary state, and a final probability threshold applied to convert to
a binary grid [16]. This works well because the error model for the sensor is easily
modelled, allowing for meaningful probabilities. In this methodology, a ray becomes a
probabilistic beam with reduced probability of occupancy further from the central axis.

With a positioning system, this methodology can be difficult to apply. Inherent po-
sitional error can be used to create a beam, using a Gaussian distribution centred on the
position estimate, with a width determined by any available error estimate. However,
this does not account for reflections, which are not predictable and hence not reliably
modelled. Similarly, if the grid cell size exceeds the typical error for a position, quan-
tising beams onto the grid is little different from the quantisation of rays, but more
demanding in both computation and storage

An alternative approach when the typical positional error is of the same order as,
or less than, the cell size is to reduce the effect of erroneous measures statistically. A
voting grid can be formed, whereby each cell has an associated voting count rather than
a binary occupancy state or a floating point probability. This voting count is incremented
whenever a ray intercepts the cell.

When reflected positions such as that shown in Fig. 4 are possible, we expect to
see a build up of votes within those cells in proportion to the probability of finding
the incorrect reflected position. The positioning algorithm described in [6] makes this
probability sufficiently small that we can identify the erroneous cell interceptions by
thresholding the voting grid to form a binary occupancy grid.

4 Ceiling Mounted Positioning Systems

The systems that have exhibited the highest positioning accuracy to date are primarily
ceiling mounted [10, 12,13, 17]. The Bat system, for example, uses a mobile ultrasonic
transmitter and a series of ceiling mounted receivers to position to within 3cm (95%
confidence level).

Such systems are well suited to ray-tracing because they typically have a reasonably
large density of receivers and produce accurate positions, ensuring a fast and extensive
build up of reliable rays. However, the geometry of the situation means that volumes
vertically below a surface (such as the space underneath a table) cannot be mapped. So
such systems are best restricted to the determination of specific surfaces.

4.1 Horizontal Surfaces

Determining the height, size, and shape of horizontal surfaces in the human environ-
ment is particularly useful. These are the surfaces upon which we can work, and upon
which we store items of interest to context-aware systems.

To demonstrate ray-tracing, an experiment was performed using a combination of
two tables within a room covered by the Bat system. The two tables were chosen to be
of differing heights and shapes, and were setup as shown in Fig. 5.
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Fig. 5. Table configuration for tests

A Bat was moved at random in and around the vicinity of the tables for a period of
a few minutes, whilst the Bat system was held in a high update rate to maximise result
collection. A total of 6,630 positions were recorded, giving rise to 77,631 rays. The
rays were quantised onto a voting grid with dimensions 3.0mx4.0mx2.2m and a cell
size of 0.02m. A low threshold was applied, since there were no near-vertical surfaces
to reflect positions, and thus very few erroneous rays. Figure 6 shows the resultant ray
intersections with horizontal planes at different heights, slices, superimposed with the
measured outlines of the tables.

At low heights, we observe the intersection distribution to be scarce and highly glob-
ular; a result of fewer sightings made at that height. Even so, we immediately see the
emergence of the larger square table. The table outline becomes sharper as we approach
the table height of 0.7m. Beyond this we observe the circular outline of the second table
begin to form. Again, we qualitatively note that the outline is sharpest at a height of
1.1m; the correct height for the second table. We then pass through a region of exten-
sive intersections with no large scale regions present. Above a height of approximately
1.4m, we see small near-circular slices of the individual intersection cones associated
with, and centred on, each receiver position (see Fig. 6(t)).

Autonomous Extraction of Specific Surfaces Once a binary occupancy grid is es-
tablished, various techniques can be used to extract object details. It is possible to ap-
ply image processing techniques such as the Sobel edge detector or the Hough trans-
form [5]. These, however, must be performed in three-dimensional space, which is slow
and cumbersome. They also produce extensive edge information, which can be difficult
to reduce and amalgamate to form polygonal object representations.

It is also possible to use the characteristics of the occupancy grid at various heights
to autonomously extract information about an individual surface. Given a seed point, s,
located approximately at the centre of the surface we can use region growing code on a
series of slices at different heights to examine the geometrical properties of any region
containing s.
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Fig. 6.




At each height, we can form a dimensionless constant, R, for the region, where R
is defined in terms of the region perimeter, P, and the region area, A
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Fig.7.

When no region exists around seed s, we stop searching, making the implicit as-
sumption that no surfaces exist above this height. We can justify this by realising that,
for there to be no region, rays from the ceiling must penetrate into the area and a signif-
icant volume above it, as illustrated in Fig. 7. The dashed horizontal line represents the
first height at which no region can be found using the seed shown as a vertical dashed
line. We can conclude that any object above this height would likely be ceiling mounted
itself.

The quantity R provides an estimate of how noisy the region shape is. Since we ex-
pect edges to be smooth for comfort, safety and aesthetic reasons, we expect to observe
a strong local minimum in a plot of R versus height, z. We term such a plot the profile
plot.
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Fig. 8. The profile plot

Figure 8 shows the profile plot for the data collected for Section 4.1, using a seed
manually calculated to be the centre of the true table position. The underlying distribu-
tion is noisy and can be smoothed with a simple boxcar average (dashed line in Fig. 8).



[Table [ Perimeter Error [ AreaError R Error[ Height Error |

Square [-0.001m (-0.02%)[+0.28m?* (+11.2%)| +15.4 [-0.013m (-1.9%)
Circular| -0.28m (-0.09%) | -0.15m? (-19.5%) | +16.1 | -0.02m (-1.8%)

Table 1. Errors

This highlights two major minima at heights of 0.7m and 1.1m. We can then find the lo-
cal minimum within this region from the original profile plot. The results shown in Fig.
8 estimate the heights of the two minima to be 0.67m and 1.07m, in good agreement
with the measured heights of the table surfaces (0.683m and 1.090m, respectively).
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Fig. 9. Autonomous extraction results

Figure 9 shows the convex hull of the perimeter of each region extracted at the
heights with minima in the profile plot. The true shapes and positions of the tables are
superimposed for comparison. Table 1 details the associated errors.
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Rvalue | 18.0 28.8 16.0 4.0 25.0

Table 2. Profile plot ratios

Note that the value of R is also indicative of shape of the object. Table 2 gives
the expected values of R for a series of shapes. Whilst it has not been possible to
reliably extract the shape given any experimentally determined value of R, the order



of magnitude of R is a useful indicator as to whether an object is genuinely present. For
example, finding R > 50 is unlikely for an object in an office environment.

Seed ldentification Section 4.1 described a method of extracting a surface shape and
height given a seed point which lies within its bounds. To autonomously extract all the
surfaces in a region, then, we require a method of identifying the seed points within a
data set.

(a) Contour plot (b) Thresholded using average (c) Region extraction
value

Fig. 10. Using contour plots to determine seeds

Consider a three dimensional occupancy grid with all rays quantised into it, as de-
scribed in Section 2. We can examine each vertical column of cells in turn, and create
a two-dimensional grid which contains the largest number of consecutive empty cells
within that column. This creates a contour plot of the number of empty cells within a
column, as shown in Fig. 10(a) for the table data above.

By applying a threshold to the contour plot (Fig. 10(b)), we can use region growing
algorithms to extract regions (Fig. 10(c)) from which we obtain seed points. Figure 11
illustrates that the choice of seed point within a region is important. It shows two seed
points, S1 and S2, and sketches of their resultant profile plots. We observe that S1
prematurely ends the plot, and obscures the local minimum. To avoid this situation, we
take the centre of the column with the highest count as a seed point (S2). This ensures
that we do not prematurely cease searching in the profile plot. If multiple cells have this
same maximum, it suffices to take the average centre position.



Fig. 11. The importance of seed choice

Given a set of seed points, we create a profile plot for each, and search for minima
and subsequently horizontal surfaces as in Section 4.1.

4.2 Non-Horizontal Surfaces

Non-horizontal surfaces are potentially problematic for ray-tracing in ceiling mounted
systems. Finding such surfaces is possible by first performing a coordinate rotation as
illustrated in Fig. 12, and then applying the profile plot analysis of the previous section.
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Fig. 12. Coordinate system rotation for non-horizontal surfaces

Such an approach can work well given prior knowledge of the surface inclination.
If this information is not available, as is often the case, we require that a complete
profile plot be created for every three-dimensional direction and the most likely plot
then determined. This is computationally expensive and hence an impractical solution.

Profile plots may still exhibit useful characteristics. To demonstrate this, a large
cardboard wedge was suspended within a room (Fig. 13), and 42,270 rays collected in
its vicinity. In effect, the wedge is a stack of horizontal surfaces of diminishing area
with increasing height. As expected, then, we see an extended minimum in the profile
plot (Fig. 14), which does not lend itself to the analysis of Section 4.1.

However, it is of use to consider the variation of region area with height. A three-
dimensional object will have a characteristic trace in a plot of these quantities. For
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Fig. 14. Wedge experimental profile plot

example, consider the arbitrary wedge in Fig. 13. At height, z, its horizontal cross-
section has area,

A(z) = w - z(2). (2)
Where the dimension, z, varies as

z z

z2(2)=L— —— — —— 3)
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Simple geometry dictates that
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Combining (2), (3), and (4), then, we find that
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This relationship is characteristic for a general wedge. Figure 15 shows the plot of
area versus height for the experimental data. From (5), and the measured parameters of
the wedge, we expect to find a gradient of —1.55m. The best fit line shown in Fig. 15
has a gradient of —1.56 & 0.01m.
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Fig. 15. Variation of area with height

Whilst it is not possible to infer the shape directly from this gradient measurement
(due to ambiguities), it serves as an identifier for an object. Such a quantity can be used
to determine whether a newly discovered object is truly a new object, or a previously
identified object that has moved. Note that more complex objects have a correspond-
ingly more complex variation of cross-sectional area with height.

In order to analyse new objects of which there is no prior knowledge, volumes can
be imaged using the unoccupied cells within an occupancy grid. Figure 16 illustrates the
unoccupied cells found in the area of the cardboard wedge. The true wedge shape and
position has been overlaid to illustrate the accuracy in determining occupied volume.

In general, we have found the volume images to represent the top features of ob-
jects to a good approximation. Due to the nature of ceiling-based positioning systems,
information below these features cannot be extracted.

5 Autonomous Ray Collection

Due to the nature of the Bat system, signals are designed to propagate from Bat height
(usually chest height) to the ceiling. This height range does not typically contain any
objects, reducing the value of the methods described above when using only personnel
movements to collect data. This limitation can be solved by distributing the receivers
across a variety of heights, or by using Bats that lie below the height of the objects of
interest. The latter approach can be realised with the use of a small autonomous vehicle.

Figure 17(a) shows a simple prototype of such a vehicle, programmed to move with
the algorithm of Fig. 17(b). This algorithm effectively moves the vehicle along random
paths within an area.

Two tables were arranged within a room as shown in Fig. 18(a). The vehicle, with a
Bat attached, was allowed to move freely around the room for a period of 30 minutes.
The path taken is superimposed on Fig. 18(a).

The two autonomously identified regions, along with their profile plots, are shown in
Fig. 18. The primary minima estimate the table heights to be 0.73m and 0.72m. These
correspond to errors of +0.05m and +0.04m, respectively. This is in excellent agree-
ment, giving an error with the same order of magnitude as the underlying positioning
system.

Note that a misleading minimum appears at a height of approximately 0.2m. This is
an artifact of all results being collected at this height. Thus the slice at this height is sim-



(@) The full test area (cell size 0.1m) (b) Region around the wedge (cell size 0.03m)

(c) Region around the wedge (cell size 0.03m)

Fig. 16. Unoccupied cells
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ply the sighting distribution, which is not noisy, and therefore has a low R value. When
collecting sightings at a single height, it is hence justifiable to ignore any minimum that
is within a small distance of this height.

6 Limitations

The ray-tracing methodology is limited at any boundary of a ceiling mounted sensor
network. In the specific case of the Bat system, ultrasonic signals cannot penetrate walls,
making the boundaries rooms.

Positioning itself is limited in the same regions. Consider Fig. 19(a), a topological
view of a room and its ceiling mounted receivers. Two transmitter tags, A and B, are
shown in symmetrical positions, along with their corresponding areas of possible re-
ception on the ceiling. Since we require a minimum of three measurements to distinct
receivers to calculate a three-dimensional position, we see that only B is positioned due
to its orientation.

It is possible to rectify the problem by increasing receiver density along the bound-
aries, but this involves increased installation and maintenance requirements, and does
not guarantee reliable positioning (since highly clustered receivers do not give a good
geometry for positioning). Even when this is done, however, there is a reduced likeli-
hood of transmitters being near to walls.

The result is a series of regions near walls and corners where rays do not penetrate
because of the asymmetrical receiver distribution, as illustrated in Fig. 19(b). Objects in
such regions cannot be found using the ray tracing methods described above. Instead, it
is possible to use reflected signals to get information about such areas [6].

It is useful to note that a good receiver geometry for positioning gives rise to a good
geometry for ray-tracing, and thus applying the ray-tracing methodology to a position-
ing system that exhibits good coverage will likely yield good results.

When imaging a volume, the accuracy of the volume shape at representing sloped
surfaces depends on the density and coverage extent of receivers, and the actual incli-



0.2 0.

(a) Setup and path

3 04

0.5

(b)

06 0.7
Height (m)

Profile plots

1036 T T T

T

1035.5

1035 |-

1034.5

T

1034 -

1033.5

T

1033

T

T

1032.5

1032 ! ! ! ! !

T T T T
Estimated Table Positions
Actual Table Positions -------

!

!

995 9955 996 996.5 997 9975

(c) Extraction results

Fig. 18.

998

998.5

999




— -
-
@ @ % @ o egion of
tm::?c‘: ~ray build up
N
v v
(@) (b) View per-
pendicular  to
line n-m

Fig. 19. Boundary effects

nation. Since we typically aim to reduce the density in deployments, and the coverage
extent is limited by room bounds, imaging may not extract a clean and accurate repre-
sentation without a high result density from a diverse set of rays.

7 Conclusions and Further Work

The authors have presented a use of time-of-flight positioning system signals to map
the environment. The approach permits for the recognition that an object exists within
an environment, and the determination of its height and shape.

The ideas have been implemented and demonstrated to work using results from
a ceiling-based ultrasonic positioning system. They should transfer directly to more
generic positioning systems that do not have ceiling-mounted receivers. Such systems
have fewer limitations, since rays are established in many different orientations, rather
than solely toward the ceiling. It is hoped to demonstrate this using a modified Bat
system that distributes the receivers throughout three-dimensional space.

This paper primarily addresses the creation of a world model from an unconfigured
state. Equally, the process could be used to maintain world models in dynamic environ-
ments, although the update rate would be relatively slow, and highly dependent upon the
sighting distribution. Future work will address the need for timely and reliable updates
to spatial subsections of an occupancy grid.
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