
Concurrent scheduling in the Active Bat location system

Oliver J. Woodman and Robert K. Harle
Computer Laboratory

University of Cambridge
Cambridge

{ojw28,rkh23}@cam.ac.uk

Abstract—This paper looks at the scalability problems in-
herent in the Active Bat system: an outside-in ultrasonic
location system. Such systems are typically associated with
higher positioning accuracies and longer tag battery lifetimes
relative to comparable inside-out systems. However, they are
often criticised for a lack of scalability since multiple tags
must be addressed in series to prevent interference within the
positioning medium. Multiple radio zones have previously been
used to address this problem. We show that this approach is
sub-optimal both in terms of system complexity and in terms
of the location update rates that can be achieved.

We propose a general solution to the scalability problem
based on the computation of dynamic bounding regions within
which corresponding tags are almost certainly located. These
regions are used to determine when tags are sufficiently well
separated to be queried concurrently without the risk of inter-
ference. We test this approach using real data, concluding that
bounding regions permit more concurrency than is possible
using multiple radio zones whilst at the same time reducing
the complexity of the system.

Keywords-location; outside-in; scalability;

I. INTRODUCTION

The Active Bat system is an outside-in ultrasonic location
system that tracks small tags (known as bats) in indoor envi-
ronments [1]. A bat’s position is queried over an out-of-band
radio channel, which is also used by bats to notify the system
of their presence (this is known as registration). When a bat
receives a query it responds by emitting an ultrasound pulse
that is detected by ceiling-mounted receivers. If the pulse
is detected by three or more ceiling-mounted receivers then
the position of the bat is calculated using multi-lateration.

One property that the Active Bat system (in its simplest
form) has in common with many other outside-in location
systems is that it does not make any assumptions about the
position of a bat prior to a query being made. As a result the
system cannot make any assumptions about which receivers
might hear the bat’s response and so all of the receivers
must listen for the signal. The system must also ensure
that any ultrasound emitted by a previously queried bat has
died down before another query can be made, otherwise the
system has no way of telling which of the bats emitted a
pulse that is detected by a receiver. To ensure this the Active
Bat system is implemented as a slotted system, where the
slot period s = 20 ms is the time taken for an ultrasound
pulse emitted by a bat to fall to a level low enough such

that it will not be detected by any of the receivers. The
system’s scheduler queries one bat at the start of each slot
and listens for the response using all of the receivers until
the end of that slot. The main problem with this approach
is that the average rate at which each bat can be queried is
inversely proportional to the number of bats being tracked
by the system. If 10 bats are being tracked then the average
frequency at which each bat is queried is 5 Hz. If 50 bats are
being tracked then this falls to 1 Hz. Hence the Active Bat
system as described above does not scale well to support
large numbers of tags. We call this the query-rate problem.

One solution to the query-rate problem is to deploy an
inside-out system in which tags calculate their own positions
based on transmissions received from static beacons installed
in the environment [2]. Such systems allow an arbitrarily
large number of tags to position themselves simultaneously
based on the same beacon transmissions. Unfortunately such
systems typically have lower accuracies and require more
advanced algorithms to determine a tag’s position [3]. Since
tags must calculate their own positions in an inside-out
system their battery lives are also shorter than those used
in outside-in systems.

Another solution to the query-rate problem is to use
broadband rather than narrowband signals. The use of broad-
band signals makes it possible for multiple tags to transmit
concurrently in a way such that their individual signals can
still be decoded [4], [5]. Unfortunately the hardware required
is more expensive and typically consumes more power,
shortening the battery life of a tag. Hence it is desirable
to avoid the use of broadband signals unless absolutely
necessary.

In the Active Bat system the query-rate problem is ad-
dressed by supporting the deployment of multiple radio
zones, each of which is covered by its own radio for querying
bats and listening for registrations as shown in Figure 1.
Each zone z has a corresponding set of receivers Rz that
might hear a bat queried by the zone. When a zone z
queries a bat, only the receivers in Rz are used to listen
for the response. Multiple zones are allowed to query bats
concurrently provided that their corresponding receiver sets
are disjoint. For the example in Figure 1 zones one and three
would be allowed to make queries concurrently.

Although the use of multiple radio zones makes it possible

z1 z2 z3Rz2

Figure 1. An Active Bat system with three separate radio zones. Circles
indicate receiver locations.

to scale the Active Bat system to track large numbers of bats
over a large area, there are a number of drawbacks. The
first is increased hardware complexity, since multiple radio
transmitters are required. The complexity of the system’s
software is also increased, since it must keep track of which
bats are in which zones and determine when a bat moves
from one zone to another. A third drawback is that radio
zones do not allow as many bats to be queried concurrently
as is often possible. For example it is often possible to
schedule multiple bats at once within a single zone without
the risk of interference (e.g. when they are at opposite ends
of the zone); however this is never permitted.

In this paper we propose a more general solution to the
query-rate problem, which is described in Section II. Section
III outlines how this solution can be applied to the Active
Bat system. We test our approach using real data obtained
from the system in Section IV and compare it to the use of
multiple radio zones in Section V.

II. A MORE GENERAL SOLUTION

In this section we present a solution to the query-rate
problem based on the computation of a (time-varying)
bounding region Cb

t for each bat b. Bounding regions are
constructed such that the true position of b at time t is almost
certainly contained by Cb

t . The bounding region for a bat
grows in the absence of measurements to take into account
possible movement since it was last positioned. When the
bat is queried the resulting measurements can be used to
shrink the bounding region.

Given a bounding region, the set of receivers that might
hear the bat’s response can be calculated prior to a query
being made. Only the receivers in this set need listen for
the bat. Hence if multiple bats are associated with disjoint
receiver sets then they can be queried simultaneously. Note
that this approach is similar to the use of radio zones. In
both approaches a set of receivers is constructed for each
bat that over-approximates the set of receivers that would
actually hear it should it be queried. In both cases bats can
be queried concurrently provided that their corresponding
receiver sets are disjoint. The key difference is that the radio
zones approach uses static sets of receivers corresponding
to each radio zone, where-as our solution uses dynamically
generated sets based on bounding regions. Since the location
of a bat can usually be bounded to a region far smaller

than the size of a typical radio zone, our approach is able
to construct smaller receiver sets and hence allow more
concurrency.

In the remainder of this section we outline our solution
in detail. In Section II-A we present a geometric algorithm
for calculating bat bounding regions. In Section II-B we
show how a bounding region can be used to calculate sets
of receivers that might hear the response from a bat should it
be queried. The use of such sets to help solve the query-rate
problem is described in Section II-C.

A. Calculating Bounding Regions

Bounding regions can be calculated using a variety of
algorithms in either two or three dimensions. In all cases the
goal is to ensure that the bat lies within the region whilst
at the same time making it as small as possible. Hence it
is desirable to take environmental constraints such as walls
into account, since they restrict possible movement. In this
section we present a geometric algorithm that calculates a
2-dimensional bounding region for relatively little computa-
tional cost whilst taking environmental constraints defined
by a floor plan into account.

We define a floor plan as an anti-clockwise polygon P
with zero or more clockwise holes that represent obstructions
(e.g. interior walls), as shown in Figure 2(a). A point is said
to be inside P if it is inside the outer polygon but not inside
any of the holes. Note that in this paper we will refer to the
edges and vertices of both the outer polygon and the inner
holes simply as the edges and vertices of P .

Suppose that a bat b was last positioned at time t−δt and
that the position obtained was x in P . Assuming a maximum
bat speed vmax, the bat could have moved a distance of

dmax = δt · vmax + ε (1)

away from x at time t, where ε is an estimate of the
maximum error in x. Hence a point on the edge of the
bounding region is either a point on the edge of P that is
reachable from x by some path shorter than dmax, or a point
in P such that the shortest path to that point from x is of
length dmax. The following simple observations can be made
regarding the shortest path between any two points x and y
inside a floor plan [6].
• If the vector ~xy does not intersect any edges of P then

~xy is the shortest path between the two points.
• The shortest path may turn only at concave vertices

of the polygon’s outer edge and convex vertices of the
hole edges. These vertices are known as the possible
turning points of P , as shown in Figure 2(a).

Given these observations it is possible to construct an
algorithm that calculates bounding regions based on the
computation of visibility polygons. Let an expansion point

e = (x, r, θ1, θ2) (2)

(a)

x
r = dmax

(b)

x

(c)

x

(d)

Figure 2. (a) A simple floor plan and the set of possible turning points
(circles) on shortest paths through the environment. (b) The range-limited
visibility polygon from a bat’s previous position (marked by a cross) and
the first turning points (circles) of shortest paths from that position. (c) The
polygons and new turning points after the first set of expansion points has
been processed. (d) The completed containment region.

consist of a point x in P , a range r and angles θ1 < θ2.
The visibility polygon V(e) is defined to contain a point y
in P if and only if the following three conditions hold true:

1) There is a line-of-sight from x to y.
2) The distance between x and y is not greater than the

range r.
3) The angle from x to y falls between θ1 and θ2:

θ1 ≤ atan2(yy − yx, xy − xx) ≤ θ2 (3)

where x = (xx, yx) and y = (xy, yy).

Due to space limitations we do not describe an algorithm
for constructing visibility polygons here. Several suitable
algorithms can be found in [6].

To construct the bounding region Cb
t for bat b at time t

we first calculate the visibility polygon V(einit), where

einit = (x, dmax,−π, π) (4)

in which x is the last position calculated for bat b and dmax

is given by Equation 1. This polygon contains all positions
that the bat could have reached since it was last positioned
by travelling in a straight line, as shown in Figure 2(b).
Next we find the set of first turning points on shortest paths
from x. Any such points must lie on the edge of V(einit).
Hence we find the subset of the possible turning points of
P that also lie on the edge of V(einit). For each point p
in this set we determine whether it really is a first turning
point by considering the vertices v−1 and v+1, which are
the predecessor and successor vertices of p on the edges of
P . If the turn formed by the vertices (x,p,v−1) is anti-
clockwise then a shortest path could turn at p and head in

p

v-1v+1

x
x

θ1

θ2

(a)

p

v-1v+1

x

θ2

θ1

(b)

p

v-1v+1

x

(c)

Figure 3. Conditions for first turning points. In each case the tag’s previous
position x is marked by a cross. (a) The turn (x,p,v−1) is anti-clockwise,
so p is a first turning point. (b) The turn (x,p,v+1) is clockwise, so p is
a first turning point. (c) p is not a first turning point.

any direction between the angles

θ1 = atan2(yp − yx, xp − xx) (5)
θ2 = atan2(yv−1 − yp, xv−1 − xp) (6)

as shown in Figure 3(a). Hence p is a first turning point
in this case. Similarly p is a first turning point if the turn
formed by the vertices (x,p,v−1) is clockwise, since in this
case a shortest path could turn and head in any direction
between the angles

θ1 = atan2(yv+1 − yp, xv+1 − xp) (7)
θ2 = atan2(yp − yx, xp − xx) (8)

as shown in Figure 3(b). If neither of these two conditions
apply then p is not a first turning point, as shown in Figure
3(c).

For each of the identified first turning points p we
construct a new expansion point

ep = (p, dmax − | ~xp|, θ1, θ2) . (9)

V(ep) contains all possible points that can be reached by
following a shortest path from x with a single turn at p.
For the example in Figure 2 there are four first turning
points, as shown in Figure 2(b). Figure 2(c) shows the
corresponding visibility polygons. To construct the bounding
region the process of identifying first turning points and
generating their visibility polygons is repeated for each
newly generated polygon until no further turning points are
found. The resulting set of polygons forms the bounding
region within which the bat must be located, as shown in
Figure 2(d). Note that the generated polygons may overlap
since a path through a series of first turning points is not
necessarily a globally-shortest path. The bounding region is
the region covered by at least one polygon.

To avoid generating redundant polygons (i.e. polygons
that are spanned entirely by other polygons in the set),
turning points are processed in order of range from high
to low. When an expansion point is processed the cor-
responding visibility polygon is generated only if another
expansion point has not already been processed at the same
vertex. If one has then we know that the point has already

rr

Figure 4. The receiver regions corresponding to three receivers (black dots)
in the Active Bat system. Circles indicate the positions of other receivers.

been reached along a shorter path and hence the expansion
point can simply be ignored. The complete algorithm for
constructing a bounding region is as follows.

1) Let Cb
t := φ be the containment region, let P := φ

be the set of positions at which expansion points have
been processed and let E := {einit} be the set of
pending expansion points.

2) Remove the expansion point

enext = (y, r, θ1, θ2) (10)

with the smallest range from E. If y ∈ P goto (5).
3) Generate the visibility polygon V(enext), add y to P

and expand the containment region

Cb
t := Cb

t ∪ V(enext) . (11)

4) Find the set of first turning points from y. For each
first turning point p add the expansion point ep to E.

5) If E 6= φ goto (2), else return Cb
t .

B. Calculating receiver sets

Given the bounding region Cb
t for a bat b at time t it is

possible to construct the set of (potentially) useful receivers
U b

t that might receive a direct signal from the bat should it be
queried. It is also possible to construct the superset Rb

t ⊇ U b
t

that also contains receivers that might hear the bat’s response
only via a reflected or refracted path. A receiver that is
in Rb

t but not U b
t will never be useful when positioning

the bat, however it must still be considered when deciding
which bats can be queried concurrently. This is because the
signal emitted by b may cause interference at the receiver
that prevents it from being used to position another bat.

In order to calculate the receiver sets U b
t and Rb

t we must
first define coverage regions Ur and Rr corresponding to
each receiver r. Ur is the region within which a bat can be
located such that a signal emitted from it might reach r via a
direct path. Since ultrasound cannot pass through walls, Ur

is the visibility polygon from the position of r that is range
limited by the maximum range of a bat, which is 6 m. Rr is
the region from which a signal could be received via a direct

є Rbb є Ub

x

Figure 5. The containment region and receiver sets generated for a tag in
the Active Bat system. The tag’s previous position is marked by a cross.

or indirect path, calculated under the worst case assumption
that a signal could be reflected anywhere in the environment
(since the signal could bounce off a dynamic obstruction)
with no loss of power (since the obstruction could be a very
hard surface). Under these assumptionsRr can be calculated
using the geometric tag bounding algorithm described in
Section II-A, using

er = (xr, 6,−π, π) (12)

as the initial expansion point where xr is the position of the
receiver. Figure 4 shows the coverage regions Ur and Rr

for three receivers.
Given the receiver coverage regions Ur and Rr, the

receiver sets Rb
t and U b

t for a bat b are constructed as
follows. For each receiver r

r ∈ Rb
t ⇔ Intersects(Cb

t ,Rr) (13)

r ∈ U b
t ⇔ Intersects(Cb

t ,Ur) . (14)

In other words a receiver r is included in Rb
t if and only if

the bat might be located in a position where it might be heard
by the receiver. The receiver is included in U b

t if it might
receive a signal from b via a direct path. Figure 5 shows an
example of the receiver sets calculated for a single bat.

C. Using receiver sets

If the system decides to query a bat b at time t then
the system need only listen for the bat’s response using the
receivers in U b

t . Any receivers that are not in this set cannot
receive a direct signal from b and hence cannot obtain a time-
of-flight measurement that is useful for positioning a tag.
Any measurements that would have been made by receivers
not in U b

t are effectively discarded. Hence measurements that
are guaranteed to be of no use when calculating the bat’s
position are filtered out for free. Such measurements are
those that are guaranteed to be of indirect signals from the
bat or caused by other ultrasound sources in the environment,
such as jingling keys and rustling crisp packets.

The sets U b
t and Rb

t can also be used to determine when
it is possible to query multiple bats concurrently without the

risk of interference between their emitted signals at useful
receivers. Formally, let Qt = {q1, q2, ..., qn} be the set of
queries that are in progress at time t, meaning that the query
has been made (i.e. transmitted over the radio channel) but
the receivers are still listening for the bat’s response. For
each query q let

Rq = R
bq

tq
(15)

be the set of receivers that might hear the response, where
bq is the bat being queried and tq is the time at which the
query was made. Given this set, it is safe to start a new
query of a bat b at time t if

∀q ∈ Qt . (U b
t ∩Rq = φ) . (16)

Using this safety condition the Active Bat system’s scheduler
can determine when bat queries can be overlapped, hence
allowing the system to track large numbers of bats over a
large area without decreasing the average query-rate. Note
that this condition does not permit concurrency when many
bats are concentrated in a single region of space. In this case
the receiver sets corresponding to different bats will always
overlap and hence Equation 16 will not permit any query
concurrency. For environments in which this is a regular
occurrence it may be necessary to resort to using either
broadband signals or an inside-out system.

III. SCHEDULING BAT QUERIES

Recall from Section I that the Active Bat system is
a slotted system, meaning that bats are queried by the
infrastructure component in fixed slots of length 20 ms. The
existing system maintains a list of bats L that are waiting to
be queried, ordered from most urgent to least urgent. This
list is updated based on events such as bat registrations, de-
registrations, priority changes and query completions. For
example a priority change will cause the list to be re-ordered,
a query completion event will cause the queried bat to be
re-inserted into the list so it is queried again in the future,
and so on. We avoid this complexity by considering it the
job of a pre-scheduler. The job of the scheduler itself is to
remove bats from the pre-scheduler’s list and perform the
queries. The existing scheduler simply removes and queries
the first bat in the list in each slot.

In this section we describe a greedy scheduling algorithm
that makes use of the receiver sets U b

t and Rb
t to query mul-

tiple bats concurrently whilst satisfying the safety condition
given by Equation 16. The resulting system is still slotted,
but can query multiple bats simultaneously in a single slot1.
The set of bats B to be queried in a slot starting at time t
is constructed as follows:

1) Let A := R be the set of available receivers, which
is initially equal to the set of all receivers R. Let

1This could be achieved over the out-of-band radio channel by notifying
each bat to be queried and then sending a single start-query message to
cause all of the notified bats to simultaneously emit an ultrasound response.

Figure 6. The floor plan of the area covered by the Active Bat system
and bat traces calculated from our data-set between 11.00 a.m. and 11.30.

i := 1 be an index into the pre-scheduler’s list
L = [b1, b2, ..., bn].

2) Consider bat b = L[i]. If

∀r ∈ U b
t . (r ∈ A) (17)

then schedule bat b by adding it to B and updating
the set of available receivers:

A := A \Rb
t . (18)

3) i := i+ 1.
4) If i ≤ n goto (2), else return B.

Note that this algorithm satisfies the safety condition given
by Equation 16 and has the nice property that the most
urgent bat (i.e. L[1]) is always queried. When the slot is
completed each bat b that was queried is positioned using
the time-of-flight measurements obtained by receivers in U b

t .

IV. RESULTS

In this section we present results obtained by applying
the greedy scheduling algorithm to data obtained from a
real deployment of the Active Bat system. The test system
is installed in one wing of our laboratory and covers a
485 m2 area as shown in Figure 6. It was not possible
for us to modify the Active Bat system in order to test
the algorithm ‘for real’. To do so would have required
extensive changes to the system’s hardware that were not
practical to implement. As an alternative we modified the
system to query only a single bat in every slot. We then
gave this bat to 15 different people who each carried the
bat for one day whilst we logged the registration and de-
registration events received by the pre-scheduler as well as
the raw time-of-arrival measurements made by the receivers
in each slot. By time-shifting these logs to be as though
they all occurred on the same day, we obtain a data-set in
which multiple bats are tracked over a single virtual day. For
each slot in this day the data-set contains raw time-of-flight
measurements corresponding to each bat being queried. Bat
traces calculated from a half-hour period in this virtual day
are shown in Figure 6.

We tested the greedy scheduling algorithm in simulation,
using the real time-of-flight measurements from the data-
set described above. The bat registration and de-registration

events were replayed into an emulated version of the sys-
tem’s standard pre-scheduler. The greedy scheduler then se-
lected bats to query in each slot over the course of the virtual
day. Bounding regions were calculated by the scheduler
with the maximum position error set to ε = 0.03 m. The
maximum bat speed was assumed to be vmax = 4 ms−1,
which was practically never exceeded by users of the system
in a separate 24-day study [7]. For each slot the queries were
emulated by returning the raw time-of-flight measurements
recorded in the data-set for that slot that were obtained from
the selected bats. Each queried bat b was then positioned by
applying the Active Bat system’s standard multi-lateration
algorithm to the subset of those measurements that were
obtained by receivers in U b

t .
One advantage of our simulation is that it makes it

possible to test different scheduling algorithms on the same
data, which is not possible when testing a live deployment.
The only disadvantage is that our data does not capture
temporal events such as meetings that occur during a real
day, since the users were actually tracked on separate days.
We believe that this has a minimal effect on our results
because most of the tracked users follow a similar daily
routine. To ensure that our simulation was as realistic
as possible, bounding regions were calculated using the
most recently calculated bat positions but excluding those
calculated during the previous slot. This models the fact that
in practice the scheduler would have to decide which bats
to schedule prior to these positions becoming available.

In a real deployment the scheduler would be required
to schedule each slot during the previous slot. Hence the
computation of bounding regions and receiver sets as well
as the execution of the greedy scheduling algorithm would
all have to be performed in at most 20 ms−1. Our Java
implementation achieved this target for every slot during
the virtual day. The maximum time required to schedule
a single slot was 14 ms. For sufficiently large numbers of
bats it would be necessary to implement more efficient
versions of the algorithms or upgrade the hardware on
which they are executed. Bounding regions and receiver sets
could be calculated more efficiently by growing them over
successive slots when a bat is not positioned rather than
re-computing them from scratch. These algorithms are also
applied independently to each bat, making it trivial to spread
the computation over multiple processors. Hence we believe
that our approach is scalable to large numbers of bats.

Figure 7 shows the average queries-per-slot made by the
greedy scheduler plotted as a function of the number of bats
registered to the system (which is equivalent to the length
of the pre-scheduler’s queue), which varied naturally over
the virtual day as tracked users moved in and out of the
deployment area. The results show that it was often possible
to schedule multiple bats simultaneously. As expected more
concurrency was possible when more bats were registered.
For example an average of 3.55 bats were scheduled per slot

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6 7 8

%
 o

f s
lo

ts

Queries per slot

len(L)=4
len(L)=7

len(L)=10
len(L)=13

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 2 4 6 8 10 12 14

Q
ue

rie
s

pe
r s

lo
t

Pre-scheduler queue length

Figure 7. The mean number of bats queried in each slot plotted as a
function of the number of registered tags. Error bars indicate ±σ values.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6 7 8

%
 o

f s
lo

ts

Queries per slot

len(L)=4
len(L)=7

len(L)=10
len(L)=13

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 2 4 6 8 10 12 14

Q
ue

rie
s

pe
r s

lo
t

Pre-scheduler queue length

Figure 8. The queries-per-slot breakdown when 4, 7, 10 and 12 bats were
registered.

during periods of the day in which 10 bats were registered
to the system, compared to 2.78 when only 5 bats were
registered. The maximum number of bats scheduled in a
single slot was 8. Note that although Figure 7 shows a
drop in the average number of queries when 14 bats were
registered, we do not believe that this data-point is reliable
since it is based on very few measurements (there was
only a single 20 second period during which 14 bats were
registered).

Figure 8 shows a breakdown of the number of queries
made in slots when 4, 7, 10 and 13 bats were registered.
Note that these distributions are dependent on the order in
which bats are queried, and hence depend on the specifics of
the pre-scheduler. In the Active Bat system the pre-scheduler
lowers the priority of bats that the system has previously
failed to position, since these bats are likely to be partially
or fully occluded from the receivers. If this were not the case

then such bats would be scheduled more frequently. Since
such bats would have relatively large bounding regions (as
they will not have been recently positioned) we would expect
this to increase the percentage of slots in which very few
bats are queried.

V. ZONES VS RECEIVER SETS

The Active Bat system currently uses multiple radio
zones to address the query-rate problem. In practice the
deployment described above would be divided into at most
three radio zones, with the radio zones at either end of
the central corridor overlapping the zone in the middle (see
Figure 1). The two end zones would be able to query bats
concurrently, meaning that a maximum of 2 bats could be
scheduled in a single slot. If the middle zone were to query
a bat in every other slot then the average query-rate would
be 1.5. Hence the results shown in Figure 7 clearly illustrate
that the use of bounding regions permits more concurrency
than is possible using multiple radio zones.

There are several benefits to replacing multiple radio
zones entirely with the algorithms presented in this paper.
The hardware complexity of the system is reduced since only
one radio controller is required. The software complexity
is also reduced because it is not necessary to perform
hand-overs as bats move between zones. Although these
benefits are attractive, we believe that multiple radio zones
are still necessary to achieve a truly scalable system. When
a bat registers with a system consisting of multiple zones
it does so only with the zone within which it is located.
This effectively positions the bat within that zone before
it is ever queried, meaning that other bats can be queried
concurrently in different (non-overlapping) radio zones at
the same time as the first query is being made to the newly
registered bat. When using only bounding regions the initial
bounding region of a newly registered bat covers the entire
deployment area. Hence no other bats can be queried whilst
a newly registered bat is being queried for the first time.
When the system is scaled to cover a sufficiently large area
the number of bat registrations will be such that only one
bat is ever queried in each slot. Hence we see the use of
bounding regions as a within-zone technique to boost the
average query-rate, rather than as a replacement to the use
of multiple radio zones. Although we cannot entirely remove
the need for multiple zones, the use of bounding regions do
make it possible to have fewer, larger radio zones, and hence
partially reduce the system’s complexity.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a solution to the query-
rate problem and applied it to the Active Bat location
system. By maintaining a bounding region within which
each bat is almost certainly located, time-varying sets of
receivers that might hear each of the bats should they be
queried are constructed. These sets are used to determine

when multiple bats can be queried concurrently without
the risk of interference. We tested this approach using a
simulation driven by real data obtained from the system.
Our results demonstrate that bounding regions permit more
query concurrency than is possible using only multiple radio
zones. To achieve a truly scalable system we propose that the
algorithms presented in this paper should be applied within
multiple radio zones, rather than replacing them altogether.

In the future we plan to investigate ways of improving the
estimation of bounding regions. For example the maximum
bat speed could be set individually for each user based on
observed behaviour. We also plan to investigate more aggres-
sive scheduling techniques. For example the scheduler might
choose to query multiple bats with overlapping receiver
sets concurrently, provided that it is likely that they can be
positioned using the remaining non-overlapping receivers.

ACKNOWLEDGEMENTS

The authors would like to thank Andrew Rice for his
insightful comments. This work has been partly funded by
the EPSRC.

REFERENCES

[1] M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles,
A. Ward, and A. Hopper, “Implementing a sentient computing
system,” Computer, vol. 34, no. 8, pp. 50–56, 2001.

[2] N. B. Priyantha, “The cricket indoor location system,” Ph.D.
dissertation, Massachusetts Institute of Technology, Cam-
bridge, MA, USA, 2005.

[3] A. Smith, H. Balakrishnan, M. Goraczko, and N. B. Priyantha,
“Tracking moving devices with the cricket location system,” in
Proceedings of the Second International Conference on Mobile
Systems, Applications and Services (Mobisys 2004), New York,
NY, USA, June 2004, pp. 190–202.

[4] M. Hazas and A. Ward, “A novel broadband ultrasonic location
system,” in Proceedings of the Fourth International Conference
on Ubiquitous Computing (UbiComp 2002), 2002, pp. 264–
280.

[5] ——, “A high performance privacy-oriented location system,”
in Proceedings of the First IEEE International Conference on
Pervasive Computing and Communications (PerCom 2003),
2003, pp. 216–223.

[6] S. Ghosh, Visibility Algorithms in the Plane. New York, USA:
Cambridge University Press, 2007.

[7] R. Harle, “Maintaining world models in context-aware envi-
ronments,” Ph.D. dissertation, University of Cambridge, Cam-
bridge, UK, 2004.

