
PushPin: Towards Production-Quality Peer-to-Peer
Collaboration

Peter van Hardenberg
pvh@inkandswitch.com

Ink & Switch, LLC
San Francisco, CA, USA

Martin Kleppmann
mk428@cl.cam.ac.uk

University of Cambridge
Cambridge, United Kingdom

Abstract
Fully peer-to-peer application software promises many ben-
efits over cloud software, in particular, being able to func-
tion indefinitely without requiring servers. Research on dis-
tributed consistency mechanisms such as CRDTs has laid
the foundation for P2P data synchronisation and collabora-
tion. In this paper we report on our experience in taking
these technologies beyond research prototypes, and working
towards commercial-grade P2P collaboration software. We
identify approaches that work well in our experience, such
as the functional reactive programming paradigm, and high-
light areas in need of further research, such as the reliability
of NAT traversal and usability challenges.

CCS Concepts: • Networks→ Peer-to-peer protocols; •
Software and its engineering→ Peer-to-peer architec-
tures; Synchronization; •Human-centered computing→
Collaborative and social computing systems and tools.

Keywords: real-time collaboration, CRDTs, peer-to-peer pro-
tocols, distributed programming, usability
ACM Reference Format:
Peter van Hardenberg and Martin Kleppmann. 2020. PushPin: To-
wards Production-Quality Peer-to-Peer Collaboration. In 7th Work-
shop on Principles and Practice of Consistency for Distributed Data
(PaPoC ’20), April 27, 2020, Heraklion, Greece. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3380787.3393683

1 Introduction
In the past, software used to run on one computer. Today
we expect our software and data to be available on multiple
devices, with synchronisation across devices belonging to the
same user (e.g. laptop, smartphone, tablet), and also allowing
real-time collaboration between multiple users.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PaPoC ’20, April 27, 2020, Heraklion, Greece
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7524-5/20/04. . . $15.00
https://doi.org/10.1145/3380787.3393683

At present, such multi-user, multi-device software typ-
ically relies on cloud services that store the authoritative
copy of the users’ data, and which can be accessed through
thin clients such as web browsers and mobile apps. However,
reliance on the cloud comes with problems: services require
ongoing maintenance by expensive 24/7 operations teams,
and they cease to exist when the organisation backing them
terminates their funding. If a cloud service shuts down, users
lose access to all data stored in that service, unless some mi-
gration path to an alternative service is provided. Moreover,
cloud-centric software often does not work well offline, and
can be slow as the client waits for round-trips to the server
in order to load or store data there.

Peer-to-peer (P2P) application software promises to over-
come these problems. In principle, a P2P system should be
able to function indefinitely, without depending on someone
paying to keep a cloud service running. Storing an authori-
tative copy of data on the users’ devices enables offline work
and stronger data ownership [17], and synchronising up-
dates through a P2P network should allow the same kind of
real-time collaboration that we know from cloud software.
While various research prototypes of P2P collaboration

software have been developed [25, 26, 37], we are yet to see
any mainstream applications using this approach. The Push-
Pin project, described in Section 3, is investigating if and how
we can develop commercial-quality collaboration software
with minimal reliance on servers. Our goal is not to create
new algorithms or protocols, but rather to evaluate existing
technologies by developing an example P2P application with
a mindset of industrial software development best practices
and realistic user requirements. We approach this project
with broad interests in exploring programming models, P2P
data distribution, reliability, and usability.

We build upon two foundational technologies:
Conflict-free Replicated Data Types (CRDTs), data

structures that can be concurrently updated by multi-
ple users on different devices, and which automatically
synchronise and merge those updates [8, 33]. We dis-
cuss PushPin’s use of CRDTs in Sections 3 and 4.

P2P replication protocols allow updates from one de-
vice to be propagated to other devices that have a copy
of the data, without relying on cloud services [9, 28, 36].
We discuss these protocols in Section 5.

In summary, our findings are:

https://doi.org/10.1145/3380787.3393683
https://doi.org/10.1145/3380787.3393683

PaPoC ’20, April 27, 2020, Heraklion, Greece Peter van Hardenberg and Martin Kleppmann

• CRDTs provide a reliable, principled foundation for
P2P collaboration.

• Functional Reactive Programming (FRP) is effective
for synchronising user interfaces with state managed
by CRDTs (Section 4).

• P2P protocols work in many cases, but are poorly sup-
ported by many network routers (Section 5).

• Significant open problems remain, including around
authentication and access control, indexing and search,
schema evolution and compatibility, privacy, and the
usability of systems where some devices are in sync
while others are not.

2 Design Principles
Before going into the details of PushPin we outline the prin-
ciples we applied to its design and development.

2.1 Local-First Software
While we want users’ data to be accessible on multiple de-
vices, authoritative copies of this data should reside on users’
local computers. When servers are used, these replicas are
primarily to facilitate data synchronisation and backup. In
previous work we have coined the term local-first software
to describe software that adheres to this principle [17].

With a local-first approach, the software continues work-
ing locally if the user’s computer is disconnected from the
Internet, and cross-device synchronisation happens in the
background when a network connection is available. Even if
all servers are shut down, the copy of the data on the local
disk remains under the user’s control, and fully available for
both reads and writes.

2.2 Minimal Dependence on Servers
We wish for our software to avoid dependence on servers.
Server infrastructure is fragile, and can be both expensive
and laborious to operate and maintain. Further, it is obvi-
ously not available to clients without internet access. By
architecting our software to avoid a server dependency, we
improve resilience and durability of our software.

Thus, in addition to local data storage on each device, the
cross-device data synchronisation mechanism should also
depend on servers to the least degree possible, and servers
should avoid taking unnecessary responsibilities. Where
servers are used, we want them to be as simple, generic,
and fungible as possible, so that one unavailable server can
easily be replaced by another. Further, these servers should
ideally not be centralised: any user or organisation should
be able to provide servers to serve their needs.

2.3 Conflict-Free Data Synchronisation
The combination of using local on-device storage, support for
offline editing, and synchronisation without servers implies
that our application is intrinsically distributed. Each device

serves as a replica, and it would not make sense to enforce
any kind of single system image semantics across replicas,
since that would imply that a device must wait for synchro-
nous coordination with other devices whenever any data is
changed. We cannot rely on consensus algorithms, which
must wait for communication with a quorum of replicas.

Rather, we have to accept that each device has its own local
view onto the shared data, and that those views may diverge
as users update their data. As devices exchange updates, they
converge again by merging their states. We do this using
conflict-free replicated data types/CRDTs [33]; specifically,
we use Automerge [13, 16], an operation-based CRDT im-
plemented in JavaScript. This library provides fine-grained
conflict resolution (see Section 3.2) for a rich set of datatypes,
including character-by-character editable text [14] and JSON-
like object trees [12]. PushPin requires this rich data model,
which is not provided by other replicated data approaches
such as Cloud Types [3].
This implementation model is not suitable for all types

of software. For example, some corporate systems are built
around robust hierarchies of access controls. While it may
be possible in time to recreate these structures atop CRDTs,
applications where data is primarily held by an individual
are a more obvious first frontier to explore.

2.4 Mainstream, as Far as Possible
In order to explore the user experience implications of a peer-
to-peer architecture, we wanted to develop not just a rough
research prototype, but polished end-user software that is
on par with commercial applications available today, with a
thoughtful graphical and interaction design. We also wanted
to explore the developer experience of peer-to-peer software,
to understand how writing software with this architecture
could become accessible to mainstream software engineers.
Thus, we wanted to base our work on mainstream languages
and platforms as far as possible.

3 PushPin: A Collaborative Corkboard
The PushPin software, shown in Figure 1, allows users to
collect media of various types (including text, web pages,
images, and PDF files), to archive and organise it. Media files
are visually represented as cards on a two-dimensional board,
where they can be resized and positioned arbitrarily. One
board may be nested within another board, enabling hierar-
chical organisation and navigation. This board metaphor is
inspired by software such as Hypercard [10], Miro [2] and
Milanote [19]. PushPin is open source [4].
This application fits well with the principles articulated

in Section 2: the data in this software belongs to the user,
and there are essentially no restrictions as to what the user
may do with their data. Unlike some systems (e.g. banking
or payment systems, auction websites, ride-sharing services,
or games), in this application there is no need to enforce any

PushPin: Towards Production-Quality Peer-to-Peer Collaboration PaPoC ’20, April 27, 2020, Heraklion, Greece

Figure 1. Screenshot of PushPin. The main user interface consists of cards of various types (text, image, PDF, . . .) that can be
freely arranged on a 2D “board”. Boards can be nested within other boards. The toolbar at the top provides navigation between
boards and sharing settings.

global rules or consensus across users, and there is no need
for an authority to decide what actions are allowed. The only
restrictions are access permissions (i.e. defining which user
may view or modify which pieces of data), but we assume
that a user with permission to edit some piece of data may
modify it in any way.

3.1 Building Desktop Software with Electron
Web browsers have become the de-facto standard for cross-
platform software development. They have a robust ecosys-
tem of programming languages (e.g. TypeScript), frameworks
(especially React [6]) and utility libraries (e.g. PDF render-
ing [24]). Browsers continue to become more powerful exe-
cution and rendering environments, with new features for
HTML and CSS always evolving. They are also home to per-
haps the largest community of software developers. Thus,
by building PushPin within this ecosystem, we gain access
to these tools, and hope to remain accessible to a large com-
munity of developers.
Unfortunately, web applications running in a traditional

browser have constraints that make them unsuitable for
local-first/P2P use. These constraints fall in two categories:

Storage. By default, browsers do not reliably store data
or software. The Progressive Web Application stan-
dard [22] and APIs like localStorage or IndexedDB [21]
provide some functionality to store local copies of code
and data, but these systems are slow, and worse, often
silently lose user data. These APIs are designed with
the assumption that local user data is merely a cache,

not authoritative, and such data is prone to being ex-
pired without warning or notification [34, 38]. As a
result, users have no way of predicting whether their
data or the application will be available offline.
Sometimes, manual steps are required: for example,
Google Docs requires installing a special browser ex-
tension to enable offline support, and it only makes
documents available offline when they are specifically
selected by the user. Anecdotally, it appears to be com-
mon for users to think they had enabled offline usage,
only to realise later that their data is unavailable.
Loss of user data is a cardinal sin, and the fact that
browsers are unreliable keepers of locally persisted
data is disqualifying for local-first implementations.

Networking. For security reasons, web browsers restrict
the network communication that application code can
perform: requests are restricted to client-server proto-
cols such as HTTP or WebSocket, and are subject to
the same-origin policy [23]. Even the built-in WebRTC
peer-to-peer communication requires a centralised
server to broker connections (see Section 5.1). It is
not possible to use arbitrary TCP or UDP networking,
which would be required to implement other peer-to-
peer protocols.

We avoid these limitations by building on Electron [1].
Electron runs a JavaScript web application in a dedicated
Chromium-based browser runtime, packaged as a download-
able and locally installed executable containing all of the

PaPoC ’20, April 27, 2020, Heraklion, Greece Peter van Hardenberg and Martin Kleppmann

{
"title": "Inspiration",
"authors": [
"hypermerge:/BvRmN2rU7pQBginzw9KqTXcUmtyYC5aCLiZZ314Ga8Vt?contentType=contact",
"hypermerge:/6YTvUkNePGkPJH3fHaCoJfJdVdKbi6qjDKgp27u3SChG?contentType=contact"

],
"cards": [
{ "x": 0, "y": 0, "width": 577, "height": 484,
"url": "hypermerge:/4uhU1SDgy56cAo3dQH5tqSrrTAZnQSQKkEUPzNUXSvcV?contentType=image" },

{ "x": 0, "y": 486, "width": 577, "height": 95,
"url": "hypermerge:/HHmxeCceWD1ZBrXKeHPv7k7umVW2ncsWyVrUiV3cmMYP?contentType=text" },

{ "x": 612, "y": 84, "width": 370, "height": 862,
"url": "hypermerge:/E6qRRVUsbRcjddCV98TLyyRhPsVNgyiUXAdPsLyKM3mn?contentType=todo-list" }

]
}

Figure 2. JSON document representing a PushPin board with three cards on it.

required code. Once installed, the user can be sure that the
application is available offline.

Electron also makes Node.js APIs available to application
code, which enables full access to the local filesystem, and
socket APIs allowing arbitrary TCP and UDP networking.
Thus, Electron allows software engineers with web devel-
opment skills to write cross-platform desktop software for
macOS, Windows, and Linux.

3.2 Automerge Documents
Application state in PushPin is managed by Automerge [13,
16, 17], a JavaScript CRDT library that provides a JSON data
model [12]. Automerge defines a format in which data up-
dates can be written to local disk and replicated to other
devices. Network communication is provided by a separate
layer called Hypermerge, which we discuss in Section 5.
An Automerge document is the unit of replication and

sharing in PushPin: that is, a user can access either all or none
of a document. We want a PushPin user to be able to share
their content with other users at a fine-grained level: e.g. one
card at a time, or one board at a time. For this reason, we
represent each card and each board as a separate document.
For example, Figure 2 shows the JSON representation of

a board. It contains a title (rendered in the toolbar in Fig-
ure 1), a list of users who have contributed to the board, and
a list of cards on the board. Each card has x, y, width and
height attributes recording its dimensions, and a url linking
to the document that stores its content (see Section 3.3).

Automerge allows state to be concurrently updated on dif-
ferent devices, and ensures that replicas converge to the same
state as they communicate. For example, if a user drags a card
to a new position, this modifies only the x and y attributes
of that card, leaving the rest of the document unchanged.
If another user concurrently creates a new card on another
device, it is inserted into the list of cards. The CRDT tracks

that change and records it as an Automerge operation for
replication. The concurrent updates (changing the position
of one card and adding another card) are merged cleanly on
each replica.

3.3 URLs and Linking
Each document is identified by a unique hypermerge URL
of the form shown in Figure 2. Given a URL, a PushPin
instance can obtain the corresponding document content
through a process described in Section 5.2. By including one
document’s URL in the content of another document, we
form a graph of links, similar to the web.

The same URL can be referenced from multiple places, al-
lowing e.g. the same card to be embedded on multiple boards.
URLs can also be shared with another user by sending them
through any communication channel, such as email. When a
PushPin instance loads a document containing a hypermerge
URL, it eagerly resolves and downloads the content belong-
ing to that URL. Thus, any transitively reachable documents
are automatically added to PushPin’s local document storage
on that device, making them available offline.

Each URL also includes a contentType parameter, which
indicates how that document should be rendered in the user
interface. This parameter is part of the URL, not the docu-
ment content, because the same document content may be
rendered differently in different contexts. For example, Push-
Pin could be extended to support flashcards for language
learning. In one context, the document containing the data-
base of flashcards could be rendered as a list of entries, while
in another context it might be rendered as a quiz interface,
presenting one side of one flashcard at a time.

4 Creating User Interfaces for CRDTs
In traditional server-centric web applications, the server is
considered the sole authority, and synchronisation between

PushPin: Towards Production-Quality Peer-to-Peer Collaboration PaPoC ’20, April 27, 2020, Heraklion, Greece

{"title": "...",
 "cards": [
 {"x": 0, ...},
]
}

Automerge
document

User interface

Render
function
(React)

State updates
User in

put

click, drag,
key press

Network

{"title": "...",
 "cards": [
 {"x": 0, ...},
]
}

{"title": "...",
 "cards": [
 {"x": 0, ...},
]
}

C
R
D

T
sy

nc
 p

ro
to

co
l

CRDTsync

other replicas

Figure 3. The data flow of Document Functional Reactive Programming (DFRP).

client-side and server-side state is usually performed in an ad-
hoc way, with user actions translating into HTTP requests
that perform API calls on a server. Handling the responses
to those HTTP requests typically leads to “callback hell” and
requires lots of tricky application-specific error handling
code [20].
In contrast, CRDTs provide us with a principled way of

managing and reasoning about the state of multiple replicas:
each replica can optimistically update its local state, and
a replication protocol running in the background ensures
that they eventually converge [32]. Application code only
interacts with the local CRDT data; no application-specific
code is required to handle errors such as network timeouts.
However, the convergence we have discussed so far is at

the level of Automerge documents, such as the JSON shown
in Figure 2. In this section we will expand the discussion to
include the state of the user interface.

4.1 Functional Reactive Programming (FRP)
For PushPin we wanted a similarly principled approach to
developing user interfaces, which would allow the state of
the CRDT and the state of the user interface to be kept in
sync in a way that is robust and easy to reason about.
We solved this problem using the Functional Reactive

Programming (FRP) approach [5, 20], which has been gaining
popularity in JavaScript web applications, especially due to
its implementation in Facebook’s React library [6].
FRP works by defining a deterministic render function

that takes the current state of an application and returns a
description of a user interface that displays this state. When-
ever the user performs an action, rather than updating the
user interface directly, the state is updated to reflect that ac-
tion. The updated state is then passed to the render function,
which computes the updated user interface. Re-computing
the full user interface on every change would be expensive,
so in practice, performance is improved by detecting which

elements of the view rely on changed state, and updating
only those parts that are necessary. However, the conceptual
simplicity remains: the render function cleanly translates
between application state and user interface state.

4.2 Document FRP (DFRP)
In the usual implementation of FRP, the application state
(the input to the render function) is simply an in-memory
object. In PushPin, we generalise this approach by making
an Automerge document the input to the render function.
We call this approach Document FRP (DFRP).

Figure 3 illustrates the DFRP data flow. An Automerge
document may be newly created, or loaded from local disk,
or fetched over the network. Regardless of its origin, the
document can be displayed by passing it to the deterministic
render function.
The resulting user interface has attached event handlers

that detect user input, such as mouse clicks or keyboard in-
put. When any such events occur, the Automerge document
is updated to reflect the user input, and the render function
is called again to refresh the user interface. This local inter-
action can be performed regardless of whether the user is
currently connected to the Internet.

Likewise, whenever the network synchronisation protocol
running in the background receives an update from another
replica, Automerge applies this update to the CRDT state.
We then again call the render function with this updated
state, which refreshes the user interface accordingly. Thus,
the user interface logic need make no distinction between
a local user’s updates and remote updates received over
the network: both can simply result in a call to the render
function. (It may be desirable to differentiate writes from
different sources, but PushPin does not do so in the current
implementation.)
In applications written in the DFRP style, the developer

never needs to worry about API calls to a server backend, or

PaPoC ’20, April 27, 2020, Heraklion, Greece Peter van Hardenberg and Martin Kleppmann

the fact that they may fail. Instead, all communication is via
shared CRDT state that can be updated by any collaborator
at any time. Because a DFRP project’s consistent data model
doesn’t require implementing and integrating separate code-
bases for clients and servers, a DFRP project can actually be
simpler to develop than traditional web applications, even
though it is also more powerful.

4.3 Ephemeral Versus Persistent State
The most rudimentary approach to DFRP is to keep all appli-
cation state in a single CRDT. This is problematic: for some
types of state, such as cursor or page scroll position, each
PushPin instance should have its own state — converging all
replicas to the same state is undesirable.

Also, some fast-changing data (e.g. mouse position or ani-
mation timers) could swamp the CRDT with low-value in-
formation; there is no reason to persist such updates. We
therefore divide the application state into two parts: persis-
tent state that is replicated, and ephemeral state that exists
only locally.
Still, we may wish to share ephemeral data with peers

that are currently online: it can be helpful to see whether
other users are viewing the same document as you, where
their cursor is located, or which items they have selected. It
might be interesting to see another user’s current position
in a podcast or video, or a hint that shows they are currently
typing into a chat textbox but have not yet submitted.
For ephemeral updates PushPin uses an additional mes-

saging channel, adjacent to the CRDT, which ties arbitrary
messages to a device and user context. The current implemen-
tation is rudimentary: ephemeral data is not associated with
a particular CRDT state and is distributed only over direct
P2P connections. Nevertheless, it enables shared contextual
awareness in the user experience of PushPin, providing a
feeling of presence when other users are online or collabo-
rating.

4.4 Supporting Multiple Documents
Sections 3.2 and 3.3 explained how PushPin breaks down all
of its data into fine-grained documents. This decomposition
of state is also beneficial for user interface development,
because rendering can be done at the document level.

Monolithic FRP can become difficult to reason about, as all
events and states are unified into a single transition function.
In contrast, PushPin’s fundamental primitive is to render one
Automerge document (e.g. the contents of one card) with
one FRP function. These document renderers can be nested
arbitrarily to produce complex views.
For example, the board document render function can

include renderings of text or image documents within its
output. Likewise, the same FRP code could render a text
document at the root of the application to show the content
full-screen. This makes the user interface components more
easily reusable and composable. It is also easy to extend

the application with new renderers, allowing users to have
boards containing a mixture of predefined card types and
custom card types they have defined themselves.

Moreover, we can provide multiple renderers that are able
to render the same document in different ways. For example,
in the user interface shown in Figure 1, the board is actu-
ally being rendered twice: firstly as a spatial representation
containing the cards, and secondly within the toolbar as the
title of the board and its authors. Some render functions can
even render a wide variety of documents: for example, the
toolbar can render any type of document that has a title and
a list of authors.

4.5 High-Performance User Interfaces
To deliver high-performance software, we need to respond as
fast as the user’s display. For a monitor with a 60 Hz refresh
rate, the application should respond to input within 16 ms.

Unfortunately, many tasks including CRDT computations
and cryptographic operations can easily exceed this time
budget, and so we perform as much work as possible in a
background process. Automerge is split into a frontend that
runs on the user interface thread, and a backend that runs
on the background thread, with an asynchronous message-
passing protocol between the two.

Moreover, Automerge allows local user input to be applied
immediately to the document state in the frontend, without
waiting for any communication with the backend. This min-
imises the time between user input (such as pressing a key)
and the corresponding update appearing on the screen. Au-
tomerge transparently handles the fact that local user input
in the frontend can happen concurrently with the backend
processing remote operations. We have not seen any other
CRDT implementation that provides this feature.

5 Peer-to-peer Networking for
Collaboration

Every networked application relies on three core facilities
provided by the networking stack: discovering the network
address to connect to, establishing a connection, and securing
the confidentiality and integrity of the data transfer.

In a traditional web application, discovery is provided by
DNS, connection by TCP, and security by SSL/TLS. However,
these technologies are designed for centralised infrastructure,
and they are not a good fit with our goal of being resilient
to infrastructure failures:

• DNS records are only available with internet access,
and expire if the domain name owner stops paying the
required registration fees.

• TCP requires a server with a publicly routeable IP
address; it cannot connect directly to most end-user
devices as they are behind NAT (see Section 5.3).

PushPin: Towards Production-Quality Peer-to-Peer Collaboration PaPoC ’20, April 27, 2020, Heraklion, Greece

• SSL/TLS certificates are tied to DNS records, which
mean only servers associated with that certificate can
be trusted to provide data.

The peer-to-peer technologies we explored in PushPin
attempt to overcome the need for centralised infrastructure.

5.1 Existing Peer-to-Peer Technologies
We considered several P2P networking stacks for PushPin:

WebRTC is a peer-to-peer protocol built into modern
web browsers. It is primarily designed for audio and
video calls, but it can also carry application data. Web-
RTC does not provide a peer discovery mechanism;
typically, applications rely on a server to help peers dis-
cover each others’ IP addresses (this process is called
signaling).

BitTorrent is widely used for file sharing. It provides a
distributed hash table (DHT) for peer discovery, and
uses the uTP protocol to establish connections between
peers. However, it is designed for static files, and is not
suitable for replicating data that is constantly chang-
ing, like in collaboration software.

IPFS aims to provide decentralised storage through a
networking stack called libp2p. Like BitTorrent, it is
mostly focused on replicating static files; it provides
limited support for changing data through its IPNS
and PubSub modules, but these features are immature
at the time of writing.

Dat [11, 28] is a peer-to-peer data sharing platform. For
peer discovery it uses a combination of mDNS on local
networks (see Section 5.2), and a DHT with seed nodes
operated by a nonprofit foundation. It uses BitTorrent’s
uTP protocol to establish connections.

For PushPin we decided to build upon the hypercore pro-
tocol and implementation from the Dat project [11, 28]. A
hypercore is an append-only log that is authenticated with a
public key; only the owner of the corresponding private key
can modify the log, but many peers can store replicas of it.

We map each Automerge document to a set of hypercores,
with one hypercore per device that has edited the document.
We chose this protocol since it focuses on replicatingmutable
data, unlike e.g. WebRTC, which provides only an ephemeral
messaging channel. Our integration of Hypercore with Au-
tomerge is called Hypermerge [29].

5.2 Peer Discovery
The Dat protocol allows the replicas of a hypercore to be
discovered based on a hash of its public key [11]. We con-
struct the URL for a document by encoding this public key.
Thus, the URL is a stable identifier for the document, even
as its content changes, and knowledge of the URL allows a
peer to obtain a copy of the document via the peer discovery
mechanism.

When peers are on the same LAN (wired or wireless net-
work), they attempt to discover one another using mDNS,
a variation on DNS that broadcasts DNS-like service adver-
tisements or discovery requests to a well known multicast
IP address [35]. (mDNS is also known as Bonjour or Zero-
conf, and is commonly used for discovering local network
resources such as printers.) If successful, the peers can con-
nect directly via TCP and begin exchanging data. This mode
of discovery is appealing since it depends only on the lo-
cal network: communication between peers does not flow
via the Internet, and it does not depend on any centralised
infrastructure.
When peers are not on the same LAN, the Dat protocol

queries a Distributed Hash Table (DHT) for peer discovery
[30]. A DHT operates by discovering new peers during its
operation, but for bootstrapping purposes the addresses of a
few seed nodes have to be hard-coded into the client software.
In PushPin’s case, the seed nodes are operated by the Dat
non-profit foundation (the Dat DHT is independent from
the BitTorrent DHT). This is a weak form of centralisation:
if all of those nodes become unavailable, a software update
would be necessary, but in principle there is no reason why
those nodes could not be distributed more resiliently across
multiple organisations.

5.3 NAT Traversal
Due to a shortage of IPv4 addresses, most personal comput-
ing devices do not have a globally reachable IP address, but
rather a local address in a reserved space (e.g. 192.168.x.x
or 10.x.x.x). When such a device wishes to establish a con-
nection to another, the local router records the destination
of outbound traffic and routes responses back to the origi-
nating local client. This process is called Network Address
Translation (NAT).

A device behind a NAT router can make outbound connec-
tions, but it cannot receive inbound TCP connections from
outside of the NAT. An exception: in home environments,
where the user has control over their own router, the UPnP
standard allows devices to reserve particular ports on the
router’s public IP address as the destination for inbound con-
nections. However, mobile devices often use networks with
NAT on which UPnP is not available, such as a coffee shop
WiFi or a corporate office network.

In these cases, the most viable solution is known as “hole
punching” or NAT traversal [7]. This process requires the
temporary intervention of a third host to introduce the two
peers, and both peers sending UDP packets to each other,
allowing a connection to be established. NAT traversal is
performed by BitTorrent’s uTP protocol [27], and by the
STUN protocol in WebRTC [31].
However, there are situations in which neither the LAN

discovery approach nor NAT traversal works. For example,
some coffee-shop WiFi and some corporate networks are
set up in a “guest network” mode, which prevents all local

PaPoC ’20, April 27, 2020, Heraklion, Greece Peter van Hardenberg and Martin Kleppmann

connections between devices on the network (intended as a
security measure to prevent inadvertent sharing of data with
other users on a public network). Without local traffic, we
attempt to fall back on NAT traversal; however, this approach
also fails, since many routers in their default configuration
refuse to create NAT traversing routes that originate and
terminate within the same network.

In this case, establishing a direct connection between the
peers seems to be impossible, and the only remaining op-
tion is to use a server with a public IP address to proxy
the communication between the peers, e.g. using the TURN
protocol [18].
In the case of PushPin, users in this position can take

advantage of indirect replication through another mutually
routable peer. In fact, this is one of the key benefits of running
a storage peer described in the next section. Note that, while
we have not implemented it today, in principle, any PushPin
instance could provide relay services to other peers.

5.4 Storage Peers
A limitation of any peer-to-peer system is that two peers
can only communicate while they are both online. However,
mobile devices are often offline, potentiallymaking it difficult
to find an opportunity to exchange updates. For example,
if your colleague has shared the URL of a PushPin board
with you, it would be annoying if you could not access that
board because the only copy of the board resides on your
colleague’s closed laptop.
We can overcome this limitation by introducing storage

peers, which replicate all the data belonging to a particular
user or set of users. A storage peer runs the same replica-
tion code as PushPin, recursively following any Hypermerge
URLs, but it runs as a simple Unix daemonwithout any visual
user interface. The storage peer can be deployed on a server
or other computer that is always online, allowing other de-
vices to sync with the storage peer at any time. Storage peers
also provide a form of backup.

Unlike a traditional server, a storage peer can be reached
throughNAT traversal, so it does not need a public IP address:
for example, it could be a device on the user’s home internet
connection. Since it only stores the data for a small number
of users, it does not need to be a powerful machine. We have
experimented with using a Raspberry Pi as storage peer,
writing data to an SD card, and also running storage peers
on virtual server instances in public cloud providers.
An interesting detail of the PushPin storage peer is that

its user interface is not a web interface, nor a command line
interface, but an Automerge document.When it starts up, the
storage peer prints a URL that users can load from PushPin
on another computer. Users then interact with their storage
peer by making edits to this administration document within
PushPin. The storage peer daemon monitors that document
for changes and takes actions based on what it finds.

5.5 Data Confidentiality and Integrity
Some peer-to-peer systems, such as BitTorrent and IPFS, use
a content-addressable storage approach to data integrity:
files are identified by the hash of their contents, and the
recipient can check the integrity of the file by comparing its
actual hash to the expected hash. However, this approach
is not suitable for collaboration software, where the shared
data changes frequently, and the hash would change on every
modification. Instead, Dat relies on cryptographic signatures
to ensure that nobody can make undetected alterations to
the data without knowing the private key.
The Dat protocol encrypts the communication between

peers, using the URL of the document as a shared secret to
establish the encryption key [11]. Thus, the URL acts as a
bearer token (or capability) that grants read access to the
document to anyone who knows it.
A downside of this approach is that there is no real way

of revoking a user’s access to a document. It is possible to
generate a new URL and copy the document content, but
this breaks any links to that document. We are interested in
stronger access control and end-to-end encryption protocols
for collaboration software that allow key rotation and revo-
cation [15], but we have left this issue out of scope in the
PushPin project.
The peer discovery protocol uses hashes of URLs, not

the URLs themselves, so that anyone observing the peer
discovery traffic (such as the DNS server, or other devices
on the local network when using mDNS) does not gain the
ability to read the document.

5.6 Scalability of Peer Discovery
On a local network, a Dat peer broadcasts all the hashes of
URLs for data it holds, and all the hashes it requests. This
approach is suitable when the number of URLs is small, but
it breaks down as collections expand. Since PushPin uses a
separate URL for each card, a user quickly accumulates many
hundreds or thousands of document URLs. In our testing we
found that we could fairly reliably crash the consumer-grade
WiFi routers found in short-term rentals with half a dozen
researchers sharing their collections.
The Secure Scuttlebutt [36] project avoids this problem

by placing all of a user’s activity into a single log, which
it then merges with all of that user’s peers and their peers
out for several degrees of social connection. This trades one
problem for another: by merging all of a user’s data (and
their peers’ data) into one feed, there is no way to selectively
synchronise that user. A peer either downloads all, or none.

Fortunately, we have observed that users tend to collabo-
rate on more than one document with the same collaborator.
Thus, when searching for peers that have a copy of a new doc-
ument, it is likely that this document of interest can be found
in the repository of a peer you are already connected to. We
can significantly reduce the amount of discovery network

PushPin: Towards Production-Quality Peer-to-Peer Collaboration PaPoC ’20, April 27, 2020, Heraklion, Greece

traffic by first querying existing peers, and only performing
a global DHT lookup if this fails. Perhaps these peers could
also forward queries on our behalf, recreating a DHT-like
network. This is an area for future work.

5.7 Metadata Privacy
A downside of peer-to-peer protocols is that the peer discov-
ery mechanisms leak information about users to other nodes
on the network. Although the content of documents is only
available to peers who know their URLs, the discovery keys
(hashes of URLs) are widely broadcast, allowing a user’s de-
vice to be identified by the pattern of discovery keys it shares.
With this information, an attacker can monitor a user’s IP ad-
dresses over time, and thus track their approximate physical
location.

A number of defences could reduce this tracking potential
(e.g. automatic rotation of discovery keys, or some form of
interactive proof exchange through a third party prior to
exposing IP addresses), but this remains an area of active
concern and research.

6 Conclusions
The PushPin project set out to create a novel type of software:
fully-featured peer-to-peer collaboration software that is fast,
reliable, and useful. Specifically, we wanted the software to:

• respond quickly (within 16 ms) to local user input;
• permit local reads and writes at all times;
• allow collaboration over any kind of network connec-
tion (with or without internet access);

• not rely on any centralised services.
By storing data in the Automerge CRDT, replicating it over

a peer-to-peer network based on Dat, building user interfaces
using React’s FRP model, and delivering the software as an
Electron application, PushPin has met these goals.

6.1 State Synchronisation
Taking a principled approach to state synchronisation re-
duces the complexity of developing distributed software. We
synchronise replicas with the Automerge CRDT, and we
use FRP to synchronise the user interface with the local
application state. This programming model treats all state
updates equally, regardless of origin, eliminating ad-hoc calls
to remote APIs. CRDT updates can be replicated immedi-
ately for real-time collaboration, or batched up and sent
asynchronously. We achieve high performance by splitting
Automerge into a frontend and backend, running expensive
operations on a background thread without blocking the
user interface.
Complex application states are composed of several re-

lated documents (e.g. directories, text notes, user profiles),
each with their own context-specific rendering function. The
URLs for these documents are self-validating and stable over
time.

6.2 Networking
Peer-to-peer networking has three stages: content discovery,
connection, and synchronisation. The most promising tech-
niques for discovery are based on the distributed hash tables,
supplemented by mDNS locally. Connection is complicated
by the widespread assumption of client-server architectures
and widespread NAT routing, and connectivity in public
environments like cafes and corporate offices can be particu-
larly challenging. The state of the art for NAT traversal in
public environments is “hole punching”, which PushPin per-
forms using uTP, a NAT-traversing protocol inherited from
BitTorrent, but it is imperfect. As with BitTorrent, by repli-
cating self-validating data, the system avoids many concerns
about trusting data origin.

6.3 Future Work
Many open problems remain, and we invite the community
to help explore these topics in future work:

• Different versions of an application, running different
data model versions, need to be able to run side-by-
side and interoperate. How do we enable this, while
preventing documents from entering invalid states?

• Establishing direct peer-to-peer connectivity is prob-
lematic in certain common network environments.

• Distributed Hash Table side channels are a concerning
source of privacy leaks.

• The PushPin implementation currently has no mech-
anism for determining which users’ writes to a docu-
ment should be accepted.

• In a P2P system, different peers may have seen differ-
ent subsets of updates for a given document. How do
we communicate this to users?

• New and old networking stacks have promise to im-
prove connectivity, including BLE, WiFiDirect, and
ultrasonic modems.

• PushPin currently leaves almost all data un-encrypted,
requiring trust in any peer that stores your data.

• Rotation of cryptographic keys is an important issue
that we are exploring.

• Efficient document querying and indexes are needed:
there is no way to load just the titles of a collection of
Automerge documents.

Acknowledgments
Thank you to Roshan Choxi, Ignatius Gilfedder, Mark Mc-
Granaghan, Jeff Peterson, andMatt Tognetti, who contributed
to the development of PushPin. Thank you to the Dat Foun-
dation, particularly Mathias Buus, for their development
of dat, hypercore, and hyperswarm. The project was pro-
duced under the auspices of the Ink & Switch research lab
(https://www.inkandswitch.com/). Martin Kleppmann is sup-
ported by a Leverhulme Trust Early Career Fellowship and
by the Isaac Newton Trust.

https://www.inkandswitch.com/

PaPoC ’20, April 27, 2020, Heraklion, Greece Peter van Hardenberg and Martin Kleppmann

References
[1] [n.d.]. Electron. https://www.electronjs.org/
[2] [n.d.]. Miro. https://miro.com
[3] Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Benjamin P

Wood. 2012. Cloud Types for Eventual Consistency. In 26th European
Conference on Object-Oriented Programming (ECOOP 2012). Springer
LNCS, volume 7313, 283–307. https://doi.org/10.1007/978-3-642-
31057-7_14

[4] Roshan Choxi, Ignatius Gilfedder, Mark McGranaghan, Jeff Peterson,
Matt Tognetti, and Peter van Hardenberg. 2019. PushPin source code.
https://github.com/automerge/pushpin

[5] Evan Czaplicki and Stephen Chong. 2013. Asynchronous functional
reactive programming for GUIs. In 34th Annual SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2013).
ACM, 411–422. https://doi.org/10.1145/2491956.2462161

[6] Facebook, Inc. [n.d.]. React. https://reactjs.org/
[7] Bryan Ford, Pyda Srisuresh, and Dan Kegel. 2005. Peer-to-Peer Com-

munication Across Network Address Translators. In USENIX Annual
Technical Conference (ATC 2005). 179–192. http://brynosaurus.com/
pub/net/p2pnat.pdf

[8] Victor B F Gomes, Martin Kleppmann, Dominic P Mulligan, and Alas-
tair R Beresford. 2017. Verifying strong eventual consistency in dis-
tributed systems. Proceedings of the ACM on Programming Languages
(PACMPL) 1, OOPSLA (Oct. 2017). https://doi.org/10.1145/3133933

[9] Richard Guy, Peter Reiher, David Ratner, Michial Gunter, Wilkie Ma,
and Gerald Popek. 1999. Rumor: Mobile Data Access Through Opti-
mistic Peer-to-Peer Replication. In International Conference on Con-
ceptual Modeling Workshops. Springer LNCS, volume 1552, 254–265.
https://doi.org/10.1007/978-3-540-49121-7_22

[10] Internet Archive. [n.d.]. HyperCard Stacks. https://archive.org/
details/hypercardstacks

[11] Duncan Keall. 2019. How Dat works. https://datprotocol.github.io/
how-dat-works/

[12] Martin Kleppmann and Alastair R Beresford. 2017. A Conflict-Free
Replicated JSON Datatype. IEEE Transactions on Parallel and Dis-
tributed Systems 28, 10 (April 2017), 2733–2746. https://doi.org/10.
1109/TPDS.2017.2697382

[13] Martin Kleppmann and Alastair R. Beresford. 2018. Automerge: Real-
time data sync between edge devices. In 1st UK Mobile, Wearable
and Ubiquitous Systems Research Symposium (MobiUK 2018). https:
//mobiuk.org/abstract/S4-P5-Kleppmann-Automerge.pdf

[14] Martin Kleppmann, Victor B F Gomes, Dominic P Mulligan, and Alas-
tair R Beresford. 2019. Interleaving anomalies in collaborative text
editors. In 6th Workshop on Principles and Practice of Consistency for
Distributed Data (PaPoC 2019). ACM. https://doi.org/10.1145/3301419.
3323972

[15] Martin Kleppmann, Stephan A Kollmann, Diana A Vasile, and Alas-
tair R Beresford. 2018. From Secure Messaging to Secure Collabora-
tion. In 26th International Workshop on Security Protocols (SPW 2018).
Springer LNCS, volume 11286, 179–185. https://doi.org/10.1007/978-
3-030-03251-7_21

[16] Martin Kleppmann, Peter van Hardenberg, Orion Henry, and Herb
Caudill. [n.d.]. Automerge. https://github.com/automerge/automerge

[17] Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark
McGranaghan. 2019. Local-First Software: You own your data, in spite
of the cloud. In ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (Onward!
2019). ACM, 154–178. https://doi.org/10.1145/3359591.3359737

[18] R. Mahy, P. Matthews, and J. Rosenberg. 2010. RFC5766: Traversal Us-
ing Relays around NAT (TURN): Relay Extensions to Session Traversal
Utilities for NAT (STUN). https://doi.org/10.17487/rfc5766

[19] Milanote Pty Ltd. [n.d.]. Milanote. https://www.milanote.com

[20] Ragnar Mogk, Lars Baumgärtner, Guido Salvaneschi, Bernd Freisleben,
and Mira Mezini. 2018. Fault-tolerant Distributed Reactive Program-
ming. In 32nd European Conference on Object-Oriented Programming
(ECOOP 2018), Vol. 109. Schloss Dagstuhl. https://doi.org/10.4230/
LIPIcs.ECOOP.2018.1

[21] Mozilla Developer Network. [n.d.]. IndexedDB API. https://developer.
mozilla.org/en-US/docs/Web/API/IndexedDB_API

[22] Mozilla Developer Network. [n.d.]. Progressive web apps
(PWAs). https://developer.mozilla.org/en-US/docs/Web/Progressive_
web_apps

[23] Mozilla Developer Network. [n.d.]. Same-origin policy.
https://developer.mozilla.org/en-US/docs/Web/Security/Same-
origin_policy

[24] Mozilla Labs. [n.d.]. PDF.js. https://mozilla.github.io/pdf.js/
[25] Brice Nédelec, Pascal Molli, and Achour Mostefaoui. 2016. CRATE:

Writing Stories Together with our Browsers. In 25th International
World Wide Web Conference. ACM, 231–234. https://doi.org/10.1145/
2872518.2890539

[26] Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. 2016.
Near Real-Time Peer-to-Peer Shared Editing on Extensible Data Types.
In 19th International Conference on Supporting Group Work (GROUP
2016). ACM, 39–49. https://doi.org/10.1145/2957276.2957310

[27] Arvid Norberg. 2009. BEP 29: uTorrent transport protocol. https:
//www.bittorrent.org/beps/bep_0029.html

[28] Maxwell Ogden, Karissa McKelvey, and Mathias Buus Madsen. 2018.
Dat – Distributed Dataset Synchronization and Versioning. https:
//github.com/datprotocol/whitepaper/raw/master/dat-paper.pdf

[29] Jeff Peterson, Peter Hardenberg, Matt Tognetti, Jim Pick, and Orion
Henry. [n.d.]. Hypermerge. https://github.com/automerge/
hypermerge

[30] RangerMauve. [n.d.]. How Dat discovers peers. https://rangermauve.
hashbase.io/posts/how-dat-discovers-peers

[31] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. 2008. RFC5389:
Session Traversal Utilities for NAT (STUN). https://doi.org/10.17487/
rfc5389

[32] Yasushi Saito and Marc Shapiro. 2005. Optimistic Replication. Comput.
Surveys 37, 1 (March 2005), 42–81. https://doi.org/10.1145/1057977.
1057980

[33] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. Conflict-Free Replicated Data Types. In 13th International Sym-
posium on Stabilization, Safety, and Security of Distributed Systems (SSS
2011). Springer, 386–400. https://doi.org/10.1007/978-3-642-24550-
3_29

[34] Stack Overflow. [n.d.]. When is localStorage cleared? https://
stackoverflow.com/questions/8537112/when-is-localstorage-cleared

[35] Daniel H Steinberg and Stuart Cheshire. 2005. Zero Configuration
Networking: The Definitive Guide. O’Reilly Media.

[36] Dominic Tarr, Erick Lavoie, Aljoscha Meyer, and Christian Tschudin.
2019. Secure Scuttlebutt: An Identity-Centric Protocol for Subjective
and Decentralized Applications. In 6th ACMConference on Information-
Centric Networking (ICN 2019). ACM. https://doi.org/10.1145/3357150.
3357396

[37] Albert van der Linde, Pedro Fouto, João Leitão, Nuno Preguiça, San-
tiago Castiñeira, and Annette Bieniusa. 2017. Legion: Enriching
Internet Services with Peer-to-Peer Interactions. In 26th Interna-
tional Conference on World Wide Web (WWW 2017). ACM, 283–292.
https://doi.org/10.1145/3038912.3052673

[38] John Wilander. 2020. Full Third-Party Cookie Blocking and
More. https://webkit.org/blog/10218/full-third-party-cookie-
blocking-and-more/

https://www.electronjs.org/
https://miro.com
https://doi.org/10.1007/978-3-642-31057-7_14
https://doi.org/10.1007/978-3-642-31057-7_14
https://github.com/automerge/pushpin
https://doi.org/10.1145/2491956.2462161
https://reactjs.org/
http://brynosaurus.com/pub/net/p2pnat.pdf
http://brynosaurus.com/pub/net/p2pnat.pdf
https://doi.org/10.1145/3133933
https://doi.org/10.1007/978-3-540-49121-7_22
https://archive.org/details/hypercardstacks
https://archive.org/details/hypercardstacks
https://datprotocol.github.io/how-dat-works/
https://datprotocol.github.io/how-dat-works/
https://doi.org/10.1109/TPDS.2017.2697382
https://doi.org/10.1109/TPDS.2017.2697382
https://mobiuk.org/abstract/S4-P5-Kleppmann-Automerge.pdf
https://mobiuk.org/abstract/S4-P5-Kleppmann-Automerge.pdf
https://doi.org/10.1145/3301419.3323972
https://doi.org/10.1145/3301419.3323972
https://doi.org/10.1007/978-3-030-03251-7_21
https://doi.org/10.1007/978-3-030-03251-7_21
https://github.com/automerge/automerge
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.17487/rfc5766
https://www.milanote.com
https://doi.org/10.4230/LIPIcs.ECOOP.2018.1
https://doi.org/10.4230/LIPIcs.ECOOP.2018.1
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://mozilla.github.io/pdf.js/
https://doi.org/10.1145/2872518.2890539
https://doi.org/10.1145/2872518.2890539
https://doi.org/10.1145/2957276.2957310
https://www.bittorrent.org/beps/bep_0029.html
https://www.bittorrent.org/beps/bep_0029.html
https://github.com/datprotocol/whitepaper/raw/master/dat-paper.pdf
https://github.com/datprotocol/whitepaper/raw/master/dat-paper.pdf
https://github.com/automerge/hypermerge
https://github.com/automerge/hypermerge
https://rangermauve.hashbase.io/posts/how-dat-discovers-peers
https://rangermauve.hashbase.io/posts/how-dat-discovers-peers
https://doi.org/10.17487/rfc5389
https://doi.org/10.17487/rfc5389
https://doi.org/10.1145/1057977.1057980
https://doi.org/10.1145/1057977.1057980
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://stackoverflow.com/questions/8537112/when-is-localstorage-cleared
https://stackoverflow.com/questions/8537112/when-is-localstorage-cleared
https://doi.org/10.1145/3357150.3357396
https://doi.org/10.1145/3357150.3357396
https://doi.org/10.1145/3038912.3052673
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/

	Abstract
	1 Introduction
	2 Design Principles
	2.1 Local-First Software
	2.2 Minimal Dependence on Servers
	2.3 Conflict-Free Data Synchronisation
	2.4 Mainstream, as Far as Possible

	3 PushPin: A Collaborative Corkboard
	3.1 Building Desktop Software with Electron
	3.2 Automerge Documents
	3.3 URLs and Linking

	4 Creating User Interfaces for CRDTs
	4.1 Functional Reactive Programming (FRP)
	4.2 Document FRP (DFRP)
	4.3 Ephemeral Versus Persistent State
	4.4 Supporting Multiple Documents
	4.5 High-Performance User Interfaces

	5 Peer-to-peer Networking for Collaboration
	5.1 Existing Peer-to-Peer Technologies
	5.2 Peer Discovery
	5.3 NAT Traversal
	5.4 Storage Peers
	5.5 Data Confidentiality and Integrity
	5.6 Scalability of Peer Discovery
	5.7 Metadata Privacy

	6 Conclusions
	6.1 State Synchronisation
	6.2 Networking
	6.3 Future Work

	Acknowledgments
	References

