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Abstract
Conflict-free Replicated Data Types (CRDTs) for lists allow
multiple users to concurrently insert and delete elements
in a shared list object. However, existing algorithms behave
poorly when users concurrently move list elements to a new
position (i.e. reorder the elements in the list). We demon-
strate the need for such a move operation, and describe an
algorithm that extends a list CRDT with an explicit move op-
eration. Our algorithm can be used in conjunction with any
existing list CRDT algorithm. In addition to moving a single
list element, we also discuss the open problem of moving
ranges of elements.

CCSConcepts: •Theory of computation→Distributed
algorithms; • Software and its engineering → Consis-
tency; • Human-centered computing → Computer sup-
ported cooperative work; • Information systems→ Collab-
orative and social computing systems and tools; • Computer
systems organization → Peer-to-peer architectures.
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1 Introduction
Conflict-free Replicated Data Types (CRDTs) allow multiple
replicas to concurrently modify some shared data object,
while ensuring that all replicas eventually converge towards
the same, consistent state [18]. CRDT algorithms have been
developed for various different datatypes, and one of the
most important datatypes is the list (also called sequence or
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array datatype). A list is a collection of elements in a total
order, which is chosen by the user.
Replicated lists can be used to implement a variety of

important applications, such as:

• collaborative text editors (text is a list of characters);
• collaborative graphics applications (a list of graphical
objects, where the order determines visibility: objects
“further down” may be occluded or filtered by the ob-
jects “higher up”, as illustrated in Figure 1);

• to-do lists and task trackers (a list of tasks, where the
order may reflect the relative priority of tasks as cho-
sen by the user).

Many list CRDTs have been developed, such asWOOT [13],
Treedoc [14], RGA [16], Causal Trees/Timestamped Inser-
tion Trees [2, 4], Logoot [20, 21], and LSEQ [9, 10]. Moreover,
most of the field of Operational Transformation algorithms
is dedicated to algorithms for collaboratively editable text,
i.e. lists [3, 11, 12, 15, 19].
All of the aforementioned algorithms allow replicas to

insert or delete elements anywhere in the list. However, none
of them have explicit support for moving elements from one
position to another position in the list (reordering). This is a
surprising omission because moving is a commonly required
operation: in many to-do list applications, a user can drag
and drop list elements to reorder them, and graphics software
allows users to reorder the object list with commands such as
“bring to front” (which moves an object to the top of the list,
so that it occludes other objects) and “send to back” (which
moves an object to the bottom, so that it is occluded by other
objects). In the example of Figure 1, imagine the user first
creates the pupils and then the white circles of the eyes; if the
software by default places new objects in front of existing
objects, the pupils would then not be visible. The user thus
needs to reorder the object list to bring the pupil objects to
the front.
In this paper we introduce an algorithm that allows an

existing list CRDT to be extendedwith amove operation. The
algorithm is generic in the sense that it can be implemented
on top of any of the aforementioned list CRDTs.

2 Semantics of Concurrent Moves
The simplest way of moving a list element is to delete it
from its existing position, and to re-insert it at the new posi-
tion. However, if two replicas concurrently move the same
element, the result is that the element is duplicated: the
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Figure 1. Graphics software often places objects in a list that determines the z-index; objects higher in the list occlude lower
ones. Here, the eyeballs and mouth are placed above the yellow face, and the pupils in turn are placed above the eyeballs.

two deletions of the same element behave the same as one
deletion, and the two insertions independently re-insert the
element twice.

We argue that such duplication in the face of concurrency
is undesirable, as it is generally not the behaviour expected
by users. For example, say a user has replicas of their to-
do list on their laptop and their smartphone. They move
items on their laptop to match new priorities, and also move
some items on their phone while the phone is offline, as
illustrated in Figure 2. Later, when the phone is online again
and synchronises with the laptop, any items that were moved
on both devices will be duplicated.
This behaviour is especially confusing if the same item

was moved to the same position (e.g. to the top of the list) on
both devices, in which case the duplicated items are likely
to be adjacent in the final list, as in Figure 2 (depending on
any other insertions that might have taken place). However,
even if the concurrent move operations had different des-
tination positions, duplicating the moved element at both
destinations is unlikely to be desirable behaviour in most
applications.

Rather, we argue that the best semantics in this situation
is for the system to pick one of the destination positions as
the “winner”; as the replicas communicate, they all converge

towards a list in which the moved element is located only
at the winning position, and nowhere else. This approach is
illustrated in Figure 3. Any deterministic method of picking
the winner is suitable (e.g. based on a priority given to each
replica, or based on the timestamp of the operations).

3 A Generic Moving Algorithm
Intuitively, if wewant to pick onewinner from among several
concurrent moves for the same element, we can use a long-
established CRDT: a last-writer wins (LWW) register [5, 17].
We need one such register for each list element, containing
the position of that element. Moving an element to a new
location is then merely a matter of updating the value of that
element’s register.
In general, we could also use a multi-value (MV) regis-

ter [17], which would allow an element to exist at multiple
positions in the list simultaneously after having experienced
conflicting moves. This is not the same as the duplication
described in Section 2, since the multiple positions still be-
long to the same element, and a subsequent move would
collapse them back into a single position again. The MV reg-
ister option can be used if the LWW behaviour (discarding
all but one of the concurrent moves of the same element) is
unacceptable.
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Figure 2. If moving is implemented by deleting and re-inserting, concurrent moves of the same element result in the anomaly
shown here: the moved element is duplicated.
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Figure 3.When the same element is concurrently moved to different positions on different replicas, one of those positions
should become the “winning” position as the replicas converge. In this example, replica A’s move operation wins.

Regardless of whether a LWW or MV register is used, this
approach requires a stable way of referencing some position
in the list (i.e. the value held by the register). An integer
index is not suitable, because an insertion or deletion at any
position would require changing all of the indices following
that position. Fortunately, all known list CRDTs already in-
corporate schemes for stable position identifiers. The details
vary: Treedoc uses a path through a binary tree [14], Logoot
uses a list of (integer, replicaID) pairs [20], RGA uses a so-
called s4vector [16], Causal Trees/Timestamped Insertion

Trees use a timestamp [2, 4], and so on. But all of these ap-
proaches have in common that they can uniquely refer to a
particular position in a list, in a way that is not affected by
operations on other list positions.

Assume now that p1,p2, . . . are position identifiers accord-
ing to one of the aforementioned schemes, andv1,v2, . . . are
the values of list elements (e.g. to-do list items). We can now
model the state of the list as a set of (value, register) pairs
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Figure 4. Replica B moves a range of characters (here, “•Milk”), while concurrently replica Amakes an edit inside the same
range. If the move is performed character-by-character, A’s edit remains at the old position, while its surrounding context has
moved to a new position, leading to an anomalous outcome.

contained in an add-wins set CRDT:

state = AWSet({(v1, LWWRegister(p1)),
(v2, LWWRegister(p2)), . . . })

In some schemes (such as Treedoc, Logoot and LSEQ), the
position identifiers themselves encode their relative order-
ing [7], and thus no further state is required. In others (such
as RGA and CT), the list CRDT requires an additional data
structure that determines the order in which position identi-
fiers appear in the list.

In order to obtain the elements in their list order we need
to query the above set by the position identifiers stored
within the registers. We can do this efficiently by treating
the set of pairs as a table in a relational database and using a
database index on the position-register column. The index
lets us efficiently find all the list elements with a particular
position ID (or range of position IDs).
Note that when the position of a list element is changed,

the old position identifier no longer has any value associated
with it, and thus it should be regarded as nonexistent (like
a tombstone in some CRDTs). It is also possible for multi-
ple list elements to have the same position identifier, and
thus for several list elements to appear at the same position.
This is similar to having a multi-value register of values at
each list position. (Note this situation is different from our
earlier use of a MV register, which was about one element
having multiple positions, not one position having multiple
elements.)

We can avoid having multiple list elements with the same
position identifier by always creating a fresh position identi-
fier as the destination of a move operation. All of the afore-
mentioned list CRDTs havemethods of creating new, globally
unique position identifiers for any location within a list.
This algorithm is a CRDT because its state is a straight-

forward composition of existing CRDTs.

4 Moving Ranges of Elements
The algorithm of Section 3 allows a single list element to be
moved at a time. In some applications, a further challenge
arises: we may want to move not just one element, but move
an entire consecutive range of elements in one operation.
For example, in a text document, a user may want to move a
section of text (e.g. a paragraph, or the text of a bullet point)
to a different position in the text [8].

We might try to move a range of elements by moving each
element individually. However, this approach has a problem,
which is illustrated in Figure 4. In this example, replica B
wants to swap the order of two bullet points in the text
of a shopping list by moving the character range “• Milk”
(including the bullet point character •), while concurrently
replica A changes the text “Milk” to “Soy milk”. While the
move is successful, the character insertions and deletion of
A’s edit remain attached to the old position of “Milk” (near
the end of the document, after “Bacon\n”). This is the case
because CRDTs for lists and text perform insertions and
deletions at particular position IDs, which remain unchanged
even as elements are moved to new position IDs.

In contrast, the desired outcome of this scenario is shown
in Figure 5: we wantA’s edit to apply in the context in which
it was originally made, even if that context has since moved
to a new position in the document. In order to enable this
semantics, it is not sufficient to move each element individ-
ually: we need to capture the fact that a certain range of
elements is moved, so that any concurrent edits that fall
within that range can be redirected to the new position of
that range.
At present, there is no known algorithm for performing

such moves of ranges of elements. Various tricky edge-cases
would need to be handled by such an algorithm, such as
concurrent moves of partially overlapping ranges, andmoves
whose destination position falls within another range that is
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Figure 5. The desired outcome of the scenario in Figure 4.

itself being moved. Part of the solution may be to give each
list element a unique identity that is independent from its
position in the document, so that the position of a list element
can be changed without changing its identity; insertions and
deletions can then reference the identities of their context,
rather than their position IDs.
We will briefly discuss one more approach for moving

ranges, and explain why it is not sufficient. In the example of
Figures 4 and 5, if the application needs to support reordering
of bullet points, we might try to simplify the problem by
using a two-level hierarchy instead of a flat sequence of
characters. That is, we can create a top-level list object in
which each list element contains the entire content of a
single bullet point, and use a separate text CRDT object for
the content of each bullet point. In this design, moving bullet
points requires only a single-element move operation.

However, this approach has a different problem: when the
user presses the enter key in the middle of the text of a bullet
point, the usual behaviour in most editors is to split it into
two bullet points. Conversely, hitting the delete key while
the cursor is positioned at the end of a bullet point’s text
usually joins it with the following bullet point’s text. If each
bullet point is represented as a separate text object, these
splitting and joining operations require moving a range of
characters from one text object to another.

Thus, representing each bullet point as a single list element
for the sake of moving does not actually obviate the need
for moving ranges of characters. As before, implementing
move as delete-and-reinsert has the effect of duplicating text
if two users concurrently split or join the same bullet point.
Thus, it seems that support for moving ranges of characters
is an important feature for collaborative document editors.

5 Related work
Our previous unpublishedwork [6] discusses a single-element
move operation for lists in the context of a larger specifi-
cation framework for CRDTs. However, this work does not
provide an efficient implementation of this operation.

Apart from this work, to our knowledge Ahmed-Nacer et
al. [1] provide the only published list CRDT that includes a
single-element move operation. However, it is designed to
duplicate an element when moved concurrently – semantics
we consider undesirable. Moreover, we believe the algorithm
to be more complicated than necessary.
All other list CRDTs [2, 4, 9, 10, 13, 14, 16, 20, 21] and

Operational Transformation algorithms [3, 11, 12, 15, 19]
provide only insertion and deletion.
Lord [8] discusses the problem of moving ranges of ele-

ments, but does not present a solution.

6 Conclusions
This short paper has made the case for list CRDTs to support
an explicit move operation, allowing list elements to be re-
ordered without duplicating them in the case of concurrent
moves. We have outlined an algorithm for single-element
moves that can be retrofitted to any existing list CRDT that
uses stable position IDs to refer to locations within the list
(which is the case for all currently known list CRDTs). We
have also demonstrated the need for moving a contiguous
range of list elements to a new position; finding an algorithm
that adds this feature to a CRDT is at present an open prob-
lem. We hope that future research will succeed in developing
an algorithm for moving ranges of elements.

Acknowledgments
Martin Kleppmann is supported by a Leverhulme Trust Early
Career Fellowship and by the Isaac Newton Trust.

References
[1] Mehdi Ahmed-Nacer, Pascal Urso, Valter Balegas, and Nuno Preguiça.

2013. Concurrency Control and Awareness Support for Multi-
synchronous Collaborative Editing. In 9th IEEE International Con-
ference on Collaborative Computing (CollaborateCom). ICST. https:
//doi.org/10.4108/icst.collaboratecom.2013.254113

[2] Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Mor-
rison, Hongseok Yang, and Marek Zawirski. 2016. Specification
and Complexity of Collaborative Text Editing. In ACM Symposium

5

https://doi.org/10.4108/icst.collaboratecom.2013.254113
https://doi.org/10.4108/icst.collaboratecom.2013.254113


PaPoC ’20, April 27, 2020, Heraklion, Greece Martin Kleppmann

on Principles of Distributed Computing (PODC). 259–268. https:
//doi.org/10.1145/2933057.2933090

[3] Clarence Ellis and S J Gibbs. 1989. Concurrency Control in Groupware
Systems. In ACM International Conference on Management of Data
(SIGMOD). 399–407. https://doi.org/10.1145/67544.66963

[4] Victor Grishchenko. 2014. Citrea and Swarm: Partially ordered op logs
in the browser. In 1st Workshop on Principles and Practice of Eventual
Consistency (PaPEC). https://doi.org/10.1145/2596631.2596641

[5] Paul R Johnson and Robert H Thomas. 1975. RFC 677: TheMaintenance
of Duplicate Databases. https://tools.ietf.org/html/rfc677

[6] Martin Kleppmann, Victor B. F. Gomes, Dominic P. Mulligan, and Alas-
tair R. Beresford. 2018. OpSets: Sequential Specifications for Replicated
Datatypes (Extended Version). https://arxiv.org/abs/1805.04263

[7] Martin Kleppmann, Victor B. F. Gomes, Dominic P. Mulligan, and
Alastair R. Beresford. 2019. Interleaving anomalies in collaborative
text editors. In 6thWorkshop on Principles and Practice of Consistency for
Distributed Data (PaPoC 2019). ACM. https://doi.org/10.1145/3301419.
3323972

[8] Robert Lord. 2019. Notes on Splicing CRDTs for Structured Hypertext.
https://lord.io/blog/2019/splicing-crdts/

[9] Brice Nédelec, Pascal Molli, and Achour Mostefaoui. 2016. CRATE:
Writing Stories Together with our Browsers. In 25th International
World Wide Web Conference (WWW). 231–234. https://doi.org/10.
1145/2872518.2890539

[10] Brice Nédelec, Pascal Molli, Achour Mostefaoui, and Emmanuel
Desmontils. 2013. LSEQ: an Adaptive Structure for Sequences in Dis-
tributed Collaborative Editing. In 13th ACM Symposium on Document
Engineering (DocEng). 37–46. https://doi.org/10.1145/2494266.2494278

[11] David A Nichols, Pavel Curtis, Michael Dixon, and John Lamping. 1995.
High-Latency, Low-Bandwidth Windowing in the Jupiter Collabora-
tion System. In 8th Annual ACM Symposium on User Interface Software
and Technology (UIST). 111–120. https://doi.org/10.1145/215585.215706

[12] Gérald Oster, Pascal Molli, Pascal Urso, and Abdessamad Imine. 2006.
Tombstone Transformation Functions for Ensuring Consistency in Col-
laborative Editing Systems. In 2nd International Conference on Collabo-
rative Computing (CollaborateCom). https://doi.org/10.1109/COLCOM.
2006.361867

[13] Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. 2006.
Data Consistency for P2P Collaborative Editing. In ACM Conference
on Computer Supported Cooperative Work (CSCW). https://doi.org/10.
1145/1180875.1180916

[14] Nuno Preguiça, Joan Manuel Marquès, Marc Shapiro, and Mihai Letia.
2009. A commutative replicated data type for cooperative editing. In
29th IEEE International Conference on Distributed Computing Systems
(ICDCS). https://doi.org/10.1109/ICDCS.2009.20

[15] Matthias Ressel, Doris Nitsche-Ruhland, and Rul Gunzenhäuer. 1996.
An Integrating, Transformation-Oriented Approach to Concurrency
Control and Undo in Group Editors. In ACM Conference on Computer
Supported Cooperative Work (CSCW). 288–297. https://doi.org/10.1145/
240080.240305

[16] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. 2011.
Replicated abstract data types: Building blocks for collaborative ap-
plications. J. Parallel and Distrib. Comput. 71, 3 (2011), 354–368.
https://doi.org/10.1016/j.jpdc.2010.12.006

[17] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. A comprehensive study of Convergent and Commutative Replicated
Data Types. Technical Report 7506. INRIA. http://hal.inria.fr/inria-
00555588/

[18] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. Conflict-free Replicated Data Types. In 13th International Sympo-
sium on Stabilization, Safety, and Security of Distributed Systems (SSS).
386–400. https://doi.org/10.1007/978-3-642-24550-3_29

[19] Chengzheng Sun and Clarence Ellis. 1998. Operational Transformation
in Real-Time Group Editors: Issues, Algorithms, and Achievements.
In ACM Conference on Computer Supported Cooperative Work (CSCW).
59–68. https://doi.org/10.1145/289444.289469

[20] StéphaneWeiss, Pascal Urso, and Pascal Molli. 2009. Logoot: A Scalable
Optimistic Replication Algorithm for Collaborative Editing on P2P Net-
works. In 29th IEEE International Conference on Distributed Computing
Systems (ICDCS). 404–412. https://doi.org/10.1109/ICDCS.2009.75

[21] Stéphane Weiss, Pascal Urso, and Pascal Molli. 2010. Logoot-Undo:
Distributed Collaborative Editing System on P2P networks. IEEE
Transactions on Parallel and Distributed Systems 21, 8 (Jan. 2010), 1162–
1174. https://doi.org/10.1109/TPDS.2009.173

6

https://doi.org/10.1145/2933057.2933090
https://doi.org/10.1145/2933057.2933090
https://doi.org/10.1145/67544.66963
https://doi.org/10.1145/2596631.2596641
https://tools.ietf.org/html/rfc677
https://arxiv.org/abs/1805.04263
https://doi.org/10.1145/3301419.3323972
https://doi.org/10.1145/3301419.3323972
https://lord.io/blog/2019/splicing-crdts/
https://doi.org/10.1145/2872518.2890539
https://doi.org/10.1145/2872518.2890539
https://doi.org/10.1145/2494266.2494278
https://doi.org/10.1145/215585.215706
https://doi.org/10.1109/COLCOM.2006.361867
https://doi.org/10.1109/COLCOM.2006.361867
https://doi.org/10.1145/1180875.1180916
https://doi.org/10.1145/1180875.1180916
https://doi.org/10.1109/ICDCS.2009.20
https://doi.org/10.1145/240080.240305
https://doi.org/10.1145/240080.240305
https://doi.org/10.1016/j.jpdc.2010.12.006
http://hal.inria.fr/inria-00555588/
http://hal.inria.fr/inria-00555588/
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1145/289444.289469
https://doi.org/10.1109/ICDCS.2009.75
https://doi.org/10.1109/TPDS.2009.173

	Abstract
	1 Introduction
	2 Semantics of Concurrent Moves
	3 A Generic Moving Algorithm
	4 Moving Ranges of Elements
	5 Related work
	6 Conclusions
	Acknowledgments
	References

