
A Critique of the CAP Theorem

Martin Kleppmann

Abstract

The CAP Theorem is a frequently cited impossibility
result in distributed systems, especially among NoSQL
distributed databases. In this paper we survey some
of the confusion about the meaning of CAP, includ-
ing inconsistencies and ambiguities in its definitions,
and we highlight some problems in its formalization.
CAP is often interpreted as proof that eventually con-
sistent databases have better availability properties than
strongly consistent databases; although there is some
truth in this, we show that more careful reasoning is
required. These problems cast doubt on the utility of
CAP as a tool for reasoning about trade-offs in practi-
cal systems. As alternative to CAP, we propose a delay-
sensitivity framework, which analyzes the sensitivity of
operation latency to network delay, and which may help
practitioners reason about the trade-offs between con-
sistency guarantees and tolerance of network faults.

1 Background
Replicated databases maintain copies of the same data
on multiple nodes, potentially in disparate geographical
locations, in order to tolerate faults (failures of nodes or
communication links) and to provide lower latency to
users (requests can be served by a nearby site). How-
ever, implementing reliable, fault-tolerant applications
in a distributed system is difficult: if there are multi-
ple copies of the data on different nodes, they may be
inconsistent with each other, and an application that is
not designed to handle such inconsistencies may pro-
duce incorrect results.

In order to provide a simpler programming model
to application developers, the designers of distributed
data systems have explored various consistency guar-
antees that can be implemented by the database infras-
tructure, such as linearizability [30], sequential consis-
tency [38], causal consistency [4] and pipelined RAM
(PRAM) [42]. When multiple processes execute opera-
tions on a shared storage abstraction such as a database,

a consistency model describes what values are allowed
to be returned by operations accessing the storage, de-
pending on other operations executed previously or
concurrently, and the return values of those operations.

Similar concerns arise in the design of multipro-
cessor computers, which are not geographically dis-
tributed, but nevertheless present inconsistent views of
memory to different threads, due to the various caches
and buffers employed by modern CPU architectures.
For example, x86 microprocessors provide a level of
consistency that is weaker than sequential, but stronger
than causal consistency [48]. However, in this paper we
focus our attention on distributed systems that must tol-
erate partial failures and unreliable network links.

A strong consistency model like linearizability pro-
vides an easy-to-understand guarantee: informally, all
operations behave as if they executed atomically on a
single copy of the data. However, this guarantee comes
at the cost of reduced performance [6] and fault toler-
ance [22] compared to weaker consistency models. In
particular, as we discuss in this paper, algorithms that
ensure stronger consistency properties among replicas
are more sensitive to message delays and faults in the
network. Many real computer networks are prone to
unbounded delays and lost messages [10], making the
fault tolerance of distributed consistency algorithms an
important issue in practice.

A network partition is a particular kind of communi-
cation fault that splits the network into subsets of nodes
such that nodes in one subset cannot communicate with
nodes in another. As long as the partition exists, any
data modifications made in one subset of nodes cannot
be visible to nodes in another subset, since all messages
between them are lost. Thus, an algorithm that main-
tains the illusion of a single copy may have to delay
operations until the partition is healed, to avoid the risk
of introducing inconsistent data in different subsets of
nodes.

This trade-off was already known in the 1970s [22,
23, 32, 40], but it was rediscovered in the early 2000s,
when the web’s growing commercial popularity made

1

geographic distribution and high availability important
to many organizations [18, 50]. It was originally called
the CAP Principle by Fox and Brewer [16, 24], where
CAP stands for Consistency, Availability and Partition
tolerance. After the principle was formalized by Gilbert
and Lynch [25, 26] it became known as the CAP Theo-
rem.

CAP became an influential idea in the NoSQL move-
ment [50], and was adopted by distributed systems prac-
titioners to critique design decisions [31]. It provoked
a lively debate about trade-offs in data systems, and
encouraged system designers to challenge the received
wisdom that strong consistency guarantees were essen-
tial for databases [17].

The rest of this paper is organized as follows: in sec-
tion 2 we compare various definitions of consistency,
availability and partition tolerance. We then examine
the formalization of CAP by Gilbert and Lynch [25]
in section 3. Finally, in section 4 we discuss some al-
ternatives to CAP that are useful for reasoning about
trade-offs in distributed systems.

2 CAP Theorem Definitions
CAP was originally presented in the form of “consis-
tency, availability, partition tolerance: pick any two”
(i.e. you can have CA, CP or AP, but not all three). Sub-
sequent debates concluded that this formulation is mis-
leading [17, 28, 47], because the distinction between
CA and CP is unclear, as detailed later in this section.
Many authors now prefer the following formulation: if
there is no network partition, a system can be both con-
sistent and available; when a network partition occurs,
a system must choose between either consistency (CP)
or availability (AP).

Some authors [21, 41] define a CP system as one in
which a majority of nodes on one side of a partition
can continue operating normally, and a CA system as
one that may fail catastrophically under a network par-
tition (since it is designed on the assumption that parti-
tions are very rare). However, this definition is not uni-
versally agreed, since it is counter-intuitive to label a
system as “available” if it fails catastrophically under a
partition, while a system that continues partially operat-
ing in the same situation is labelled “unavailable” (see
section 2.3).

Disagreement about the definitions of terms like
availability is the source of many misunderstandings
about CAP, and unclear definitions lead to problems

with its formalization as a theorem. In sections 2.1 to
2.3 we survey various definitions that have been pro-
posed.

2.1 Availability
In practical engineering terms, availability usually
refers to the proportion of time during which a service
is able to successfully handle requests, or the propor-
tion of requests that receive a successful response. A
response is usually considered successful if it is valid
(not an error, and satisfies the database’s safety proper-
ties) and it arrives at the client within some timeout,
which may be specified in a service level agreement
(SLA). Availability in this sense is a metric that is em-
pirically observed during a period of a service’s oper-
ation. A service may be available (up) or unavailable
(down) at any given time, but it is nonsensical to say
that some software package or algorithm is ‘available’
or ‘unavailable’ in general, since the uptime percentage
is only known in retrospect, after a period of operation
(during which various faults may have occurred).

There is a long tradition of highly available and fault-
tolerant systems, whose algorithms are designed such
that the system can remain available (up) even when
some part of the system is faulty, thus increasing the
expected mean time to failure (MTTF) of the system as
a whole. Using such a system does not automatically
make a service 100% available, but it may increase the
observed availability during operation, compared to us-
ing a system that is not fault-tolerant.

2.1.1 The A in CAP

Does the A in CAP refer to a property of an algorithm,
or to an observed metric during system operation? This
distinction is unclear. Brewer does not offer a precise
definition of availability, but states that “availability is
obviously continuous from 0 to 100 percent” [17], sug-
gesting an observed metric. Fox and Brewer also use
the term yield to refer to the proportion of requests that
are completed successfully [24] (without specifying any
timeout).

On the other hand, Gilbert and Lynch [25] write: “For
a distributed system to be continuously available, ev-
ery request received by a non-failing node in the sys-
tem must result in a response”.1 In order to prove a re-

1This sentence appears to define a property of continuous avail-
ability, but the rest of the paper does not refer to this “continuous”
aspect.

2

sult about systems in general, this definition interprets
availability as a property of an algorithm, not as an ob-
served metric during system operation – i.e. they de-
fine a system as being “available” or “unavailable” stat-
ically, based on its algorithms, not its operational status
at some point in time.

One particular execution of the algorithm is avail-
able if every request in that execution eventually re-
ceives a response. Thus, an algorithm is “available” un-
der Gilbert and Lynch’s definition if all possible exe-
cutions of the algorithm are available. That is, the al-
gorithm must guarantee that requests always result in
responses, no matter what happens in the system (see
section 2.3.1).

Note that Gilbert and Lynch’s definition requires any
non-failed node to be able to generate valid responses,
even if that node is completely isolated from the other
nodes. This definition is at odds with Fox and Brewer’s
original proposal of CAP, which states that “data is con-
sidered highly available if a given consumer of the data
can always reach some replica” [24, emphasis original].

Many so-called highly available or fault-tolerant sys-
tems have very high uptime in practice, but are in fact
“unavailable” under Gilbert and Lynch’s definition [34]:
for example, in a system with an elected leader or pri-
mary node, if a client that cannot reach the leader due
to a network fault, the client cannot perform any writes,
even though it may be able to reach another replica.

2.1.2 No maximum latency

Note that Gilbert and Lynch’s definition of availability
does not specify any upper bound on operation latency:
it only requires requests to eventually return a response
within some unbounded but finite time. This is conve-
nient for proof purposes, but does not closely match our
intuitive notion of availability (in most situations, a ser-
vice that takes a week to respond might as well be con-
sidered unavailable).

This definition of availability is a pure liveness prop-
erty, not a safety property [5]: that is, at any point in
time, if the response has not yet arrived, there is still
hope that the availability property might still be ful-
filled, because the response may yet arrive – it is never
too late. This aspect of the definition will be impor-
tant in section 3, when we examine Gilbert and Lynch’s
proofs in more detail.

(In section 4 we will discuss a definition of availabil-
ity that takes latency into account.)

2.1.3 Failed nodes

Another noteworthy aspect of Gilbert and Lynch’s def-
inition of availability is the proviso of applying only to
non-failed nodes. This allows the aforementioned defi-
nition of a CA system as one that fails catastrophically
if a network partition occurs: if the partition causes all
nodes to fail, then the availability requirement does not
apply to any nodes, and thus it is trivially satisfied, even
if no node is able to respond to any requests. This defini-
tion is logically sound, but somewhat counter-intuitive.

2.2 Consistency

Consistency is also an overloaded word in data sys-
tems: consistency in the sense of ACID is a very differ-
ent property from consistency in CAP [17]. In the dis-
tributed systems literature, consistency is usually under-
stood as not one particular property, but as a spectrum of
models with varying strengths of guarantee. Examples
of such consistency models include linearizability [30],
sequential consistency [38], causal consistency [4] and
PRAM [42].

There is some similarity between consistency mod-
els and transaction isolation models such as serializ-
ability [15], snapshot isolation [14], repeatable read and
read committed [3, 27]. Both describe restrictions on
the values that operations may return, depending on
other (prior or concurrent) operations. The difference is
that transaction isolation models are usually formalized
assuming a single replica, and operate at the granular-
ity of transactions (each transaction may read or write
multiple objects). Consistency models assume multi-
ple replicas, but are usually defined in terms of single-
object operations (not grouped into transactions). Bailis
et al. [12] demonstrate a unified framework for reason-
ing about both distributed consistency and transaction
isolation in terms of CAP.

2.2.1 The C in CAP

Fox and Brewer [24] define the C in CAP as one-
copy serializability (1SR) [15], whereas Gilbert and
Lynch [25] define it as linearizability. Those defini-
tions are not identical, but fairly similar.2 Both are

2Linearizability is a recency guarantee, whereas 1SR is not. 1SR
requires isolated execution of multi-object transactions, which lin-
earizability does not. Both require coordination, in the sense of sec-
tion 4.4 [12].

3

safety properties [5], i.e. restrictions on the possible ex-
ecutions of the system, ensuring that certain situations
never occur.

In the case of linearizability, the situation that may
not occur is a stale read: stated informally, once a write
operation has completed or some read operation has re-
turned a new value, all following read operations must
return the new value, until it is overwritten by another
write operation. Gilbert and Lynch observe that if the
write and read operations occur on different nodes, and
those nodes cannot communicate during the time when
those operations are being executed, then the safety
property cannot be satisfied, because the read operation
cannot know about the value written.

The C of CAP is sometimes referred to as strong con-
sistency (a term that is not formally defined), and con-
trasted with eventual consistency [9, 49, 50], which is
often regarded as the weakest level of consistency that
is useful to applications. Eventual consistency means
that if a system stops accepting writes and sufficient3

communication occurs, then eventually all replicas will
converge to the same value. However, as the aforemen-
tioned list of consistency models indicates, it is overly
simplistic to cast ‘strong’ and eventual consistency as
the only possible choices.

2.2.2 Probabilistic consistency

It is also possible to define consistency as a quantitative
metric rather than a safety property. For example, Fox
and Brewer [24] define harvest as “the fraction of the
data reflected in the response, i.e. the completeness of
the answer to the query,” and probabilistically bounded
staleness [11] studies the probability of a read returning
a stale value, given various assumptions about the distri-
bution of network latencies. However, these stochastic
definitions of consistency are not the subject of CAP.

2.3 Partition Tolerance
A network partition has long been defined as a com-
munication failure in which the network is split into
disjoint sub-networks, with no communication possible
across sub-networks [32]. This is a fairly narrow class
of fault, but it does occur in practice [10], so it is worth
studying.

3It is not clear what amount of communication is ‘sufficient’. A
possible formalization would be to require all replicas to converge to
the same value within finite time, assuming fair-loss links (see section
2.3.2).

2.3.1 Assumptions about system model

It is less clear what partition tolerance means. Gilbert
and Lynch [25] define a system as partition-tolerant
if it continues to satisfy the consistency and availabil-
ity properties in the presence of a partition. Fox and
Brewer [24] define partition-resilience as “the system
as whole can survive a partition between data replicas”
(where survive is not defined).

At first glance, these definitions may seem redundant:
if we say that an algorithm provides some guarantee
(e.g. linearizability), then we expect all executions of
the algorithm to satisfy that property, regardless of the
faults that occur during the execution.

However, we can clarify the definitions by observing
that the correctness of a distributed algorithm is always
subject to assumptions about the faults that may occur
during its execution. If you take an algorithm that as-
sumes fair-loss links and crash-stop processes, and sub-
ject it to Byzantine faults, the execution will most likely
violate safety properties that were supposedly guaran-
teed. These assumptions are typically encoded in a sys-
tem model, and non-Byzantine system models rule out
certain kinds of fault as impossible (so algorithms are
not expected to tolerate them).

Thus, we can interpret partition tolerance as mean-
ing “a network partition is among the faults that are
assumed to be possible in the system.” Note that this
definition of partition tolerance is a statement about the
system model, whereas consistency and availability are
properties of the possible executions of an algorithm. It
is misleading to say that an algorithm “provides parti-
tion tolerance,” and it is better to say that an algorithm
“assumes that partitions may occur.”

If an algorithm assumes the absence of partitions, and
is nevertheless subjected to a partition, it may violate
its guarantees in arbitrarily undefined ways (including
failing to respond even after the partition is healed, or
deleting arbitrary amounts of data). Even though it may
seem that such arbitrary failure semantics are not very
useful, various systems exhibit such behavior in prac-
tice [35, 36]. Making networks highly reliable is very
expensive [10], so most distributed programs must as-
sume that partitions will occur sooner or later [28].

2.3.2 Partitions and fair-loss links

Further confusion arises due to the fact that network
partitions are only one of a wide range of faults that can
occur in distributed systems, including nodes failing or

4

restarting, nodes pausing for some amount of time (e.g.
due to garbage collection), and loss or delay of mes-
sages in the network. Some faults can be modeled in
terms of other faults (for example, Gilbert and Lynch
state that the loss of an individual message can be mod-
eled as a short-lived network partition).

In the design of distributed systems algorithms,
a commonly assumed system model is fair-loss
links [19]. A network link has the fair-loss property if
the probability of a message not being lost is non-zero,
i.e. the link sometimes delivers messages. The link may
have intervals of time during which all messages are
dropped, but those intervals must be of finite duration.
On a fair-loss link, message delivery can be made re-
liable by retrying a message an unbounded number of
times: the message is guaranteed to be eventually deliv-
ered after a finite number of attempts [19].

We argue that fair-loss links are a good model of
most networks in practice: faults occur unpredictably;
messages are lost while the fault is occurring; the fault
lasts for some finite duration (perhaps seconds, perhaps
hours), and eventually it is healed (perhaps after human
intervention). There is no malicious actor in the network
who can cause systematic message loss over unlimited
periods of time – such malicious actors are usually only
assumed in the design of Byzantine fault tolerant algo-
rithms.

Is “partitions may occur” equivalent to assuming fair-
loss links? Gilbert and Lynch [25] define partitions as
“the network will be allowed to lose arbitrarily many
messages sent from one node to another.” In this defini-
tion it is unclear whether the number of lost messages
is unbounded but finite, or whether it is potentially infi-
nite.

Partitions of a finite duration are possible with fair-
loss links, and thus an algorithm that is correct in a sys-
tem model of fair-loss links can tolerate partitions of a
finite duration. Partitions of an infinite duration require
some further thought, as we shall see in section 3.

3 The CAP Proofs

In this section, we build upon the discussion of defini-
tions in the last section, and examine the proofs of the
theorems of Gilbert and Lynch [25]. We highlight some
ambiguities in the reasoning of the proofs, and then sug-
gest a more precise formalization.

3.1 Theorems 1 and 2
Gilbert and Lynch’s Theorem 1 is stated as follows:

It is impossible in the asynchronous network model
to implement a read/write data object that guarantees
the following properties:

• Availability

• Atomic consistency4

in all fair executions (including those in which mes-
sages are lost).

Theorem 2 is similar, but specified in a system model
with bounded network delay. The discussion in this sec-
tion 3.1 applies to both theorems.

3.1.1 Availability of failed nodes

The first problem with this proof is the definition of
availability. As discussed in section 2.1.3, only non-
failing nodes are required to respond.

If it is possible for the algorithm to declare nodes as
failed (e.g. if a node may crash itself), then the avail-
ability property can be trivially satisfied: all nodes can
be crashed, and thus no node is required to respond. Of
course, such an algorithm would not be useful in prac-
tice. Alternatively, if a minority of nodes is permanently
partitioned from the majority, an algorithm could define
the nodes in the minority partition as failed (by crash-
ing them), while the majority partition continues imple-
menting a linearizable register [7].

This is not the intention of CAP – the raison d’être
of CAP is to characterize systems in which a minority
partition can continue operating independently of the
rest – but the present formalization of availability does
not exclude such trivial solutions.

3.1.2 Finite and infinite partitions

Gilbert and Lynch’s proofs of theorems 1 and 2 con-
struct an execution of an algorithm A in which a write
is followed by a read, while simultaneously a partition
exists in the network. By showing that the execution is
not linearizable, the authors derive a contradiction.

Note that this reasoning is only correct if we assume
a system model in which partitions may have infinite
duration.

If the system model is based on fair-loss links, then
all partitions may be assumed to be of unbounded but

4In this context, atomic consistency is synonymous with lineariz-
ability, and it is unrelated to the A in ACID.

5

finite duration (section 2.3.2). Likewise, Gilbert and
Lynch’s availability property does not place any upper
bound on the duration of an operation, as long as it is fi-
nite (section 2.1.2). Thus, if a linearizable algorithm en-
counters a network partition in a fair-loss system model,
it is acceptable for the algorithm to simply wait for the
partition to be healed: at any point in time, there is still
hope that the partition will be healed in future, and so
the availability property may yet be satisfied. For exam-
ple, the ABD algorithm [7] can be used to implement a
linearizable read-write register in an asynchronous net-
work with fair-loss links.5

On the other hand, in an execution where a partition
of infinite duration occurs, the algorithm is forced to
make a choice between waiting until the partition heals
(which never happens, thus violating availability) and
exhibiting the execution in the proof of Theorem 1 (thus
violating linearizability). We can conclude that Theo-
rem 1 is only valid in a system model where infinite
partitions are possible.

3.1.3 Linearizability vs. eventual consistency

Note that in the case of an infinite partition, no infor-
mation can ever flow from one sub-network to the other.
Thus, even eventual consistency (replica convergence in
finite time, see section 2.2.1) is not possible in a system
with an infinite partition.

Theorem 1 demonstrated that in a system model with
infinite partitions, no algorithm exists which ensures
linearizability and availability in all executions. How-
ever, we can also see that in the same system model, no
algorithm exists which ensures eventual consistency in
all executions.

The CAP theorem is often understood as demonstrat-
ing that linearizability cannot be achieved with high
availability, whereas eventual consistency can. How-
ever, the results so far do not differentiate between lin-
earizable and eventually consistent algorithms: both are
possible if partitions are always finite, and both are im-
possible in a system model with infinite partitions.

To distinguish between linearizability and eventual
consistency, a more careful formalization of CAP is re-
quired, which we give in section 3.2.

5ABD [7] is an algorithm for a single-writer multi-reader regis-
ter. It was extended to the multi-writer case by Lynch and Shvarts-
man [44].

3.2 The partitionable system model
In this section we suggest a more precise formulation of
CAP, and derive a result similar to Gilbert and Lynch’s
Theorem 1 and Corollary 1.1. This formulation will
help us gain a better understanding of CAP and its con-
sequences.

3.2.1 Definitions

Define a partitionable link to be a point-to-point link
with the following properties:

1. No duplication: If a process p sends a message m
once to process q, then m is delivered at most once
by q.

2. No creation: If some process q delivers a message
m with sender p, then m was previously sent to q
by process p.

(A partitionable link is allowed to drop an infinite num-
ber of messages and cause unbounded message delay.)

Define the partitionable model as a system model
in which processes can only communicate via parti-
tionable links, in which processes never crash,6 and in
which every process has access to a local clock that is
able to generate timeouts (the clock progresses mono-
tonically at a rate approximately equal to real time, but
clocks of different processes are not synchronized).

Define an execution E as admissible in a system
model M if the processes and links in E satisfy the prop-
erties defined by M.

Define an algorithm A as terminating in a system
model M if, for every execution E of A, if E is admissi-
ble in M, then every operation in E terminates in finite
time.7

Define an execution E as loss-free if for every mes-
sage m sent from p to q during E, m is eventually deliv-
ered to q. (There is no delay bound on delivery.)

An execution E is partitioned if it is not loss-free.
Note: we may assume that links automatically resend
lost messages an unbounded number of times. Thus, an
execution in which messages are transiently lost during

6The assumption that processes never crash is of course unrealis-
tic, but it makes the impossibility results in section 3.2.2 stronger. It
also rules out the trivial solution of section 3.1.1.

7Our definition of terminating corresponds to Gilbert and Lynch’s
definition of available. We prefer to call it terminating because the
word available is widely understood as referring to an empirical met-
ric (see section 2.1). There is some similarity to wait-free data struc-
tures [29], although these usually assume reliable communication and
unreliable processes.

6

some finite time period is not partitioned, because the
links will eventually deliver all messages that were lost.
An execution is only partitioned if the message loss per-
sists forever.

For the definition of linearizability we refer to Her-
lihy and Wing [30].

There is no generally agreed formalization of even-
tual consistency, but the following corresponds to a
liveness property that has been proposed [8, 9]: even-
tually, every read operation read(q) at process q must
return a set of all the values v ever written by any pro-
cess p in an operation write(p,v). For simplicity, we
assume that values are never removed from the read set,
although an application may only see one of the values
(e.g. the one with the highest timestamp).

More formally, an infinite execution E is eventually
consistent if, for all processes p and q, and for ev-
ery value v such that operation write(p,v) occurs in E,
there are only finitely many operations in E such that
v /∈ read(q).

3.2.2 Impossibility results

Assertion 1. If an algorithm A implements a termi-
nating read-write register R in the partitionable model,
then there exists a loss-free execution of A in which R is
not linearizable.

Proof. Consider an execution E1 in which the initial
value of R is v1, and no messages are delivered (all
messages are lost, which is admissible for partitionable
links). In E1, p first performs an operation write(p,v2)
where v2 6= v1. This operation must terminate in finite
time due to the termination property of A.

After the write operation terminates, q performs an
operation read(q), which must return v1, since there is
no way for q to know the value v2, due to all messages
being lost. The read must also terminate. This execution
is not linearizable, because the read did not return v2.

Now consider an execution E2 which extends E1 as
follows: after the termination of the read(q) operation,
every message that was sent during E1 is delivered (this
is admissible for partitionable links). These deliveries
cannot affect the execution of the write and read op-
erations, since they occur after the termination of both
operations, so E2 is also non-linearizable. Moreover, E2
is loss-free, since every message was delivered.

Corollary 2. There is no algorithm that implements
a terminating read-write register in the partitionable
model that is linearizable in all loss-free executions.

This corresponds to Gilbert and Lynch’s Corollary 1,
and follows directly from the existence of a loss-free,
non-linearizable execution (assertion 1).

Assertion 3. There is no algorithm that implements
a terminating read-write register in the partitionable
model that is eventually consistent in all executions.

Proof. Consider an execution E in which no messages
are delivered, and in which process p performs opera-
tion write(p,v). This write must terminate, since the al-
gorithm is terminating. Process q with p 6= q performs
read(q) infinitely many times. However, since no mes-
sages are delivered, q can never learn about the value
written, so read(q) never returns v. Thus, E is not even-
tually consistent.

3.2.3 Opportunistic properties

Note that corollary 2 is about loss-free executions,
whereas assertion 3 is about all executions. If we limit
ourselves to loss-free executions, then eventual consis-
tency is possible (e.g. by maintaining a replica at each
process, and broadcasting every write to all processes).

However, everything we have discussed in this sec-
tion pertains to the partitionable model, in which we
cannot assume that all executions are loss-free. For clar-
ity, we should specify the properties of an algorithm
such that they hold for all admissible executions of a
given system model, not only selected executions.

To this end, we can transform a property P into an
opportunistic property P ′ such that:

∀E : (E |= P ′)⇔ (lossfree(E)⇒ (E |= P))

or, equivalently:

∀E : (E |= P ′)⇔ (partitioned(E)∨ (E |= P)) .

In other words, P ′ is trivially satisfied for executions
that are partitioned. Requiring P ′ to hold for all execu-
tions is equivalent to requiring P to hold for all loss-
free executions.

Hence we define an execution E as opportunistically
eventually consistent if E is partitioned or if E is eventu-
ally consistent. (This is a weaker liveness property than
eventual consistency.)

Similarly, we define an execution E as opportunisti-
cally terminating linearizable if E is partitioned, or if
E is linearizable and every operation in E terminates in
finite time.

7

Assertion 4. Opportunistic terminating linearizability
cannot be achieved in all executions of the partitionable
model, whereas opportunistic eventual consistency can
be achieved.

The first part follows from corollary 2, and the sec-
ond part follows from the algorithm described above.
This distinction can be understood as the key result of
CAP. However, it is arguably not a very interesting or
insightful result.

3.3 Mismatch between formal model and
practical systems

Many of the problems in this section are due to the
fact that availability is defined by Gilbert and Lynch as
a liveness property (section 2.1.2). Liveness properties
make statements about something happening eventually
in an infinite execution, which is confusing to practi-
tioners, since real systems need to get things done in a
finite (and usually short) amount of time.

Quoting Lamport [39]: “Liveness properties are in-
herently problematic. The question of whether a real
system satisfies a liveness property is meaningless; it
can be answered only by observing the system for an
infinite length of time, and real systems don’t run for-
ever. Liveness is always an approximation to the prop-
erty we really care about. We want a program to termi-
nate within 100 years, but proving that it does would re-
quire the addition of distracting timing assumptions. So,
we prove the weaker condition that the program eventu-
ally terminates. This doesn’t prove that the program will
terminate within our lifetimes, but it does demonstrate
the absence of infinite loops.”

Brewer [17] and some commercial database ven-
dors [1] state that “all three properties [consistency,
availability, and partition tolerance] are more contin-
uous than binary”. This is in direct contradiction to
Gilbert and Lynch’s formalization of CAP (and our
restatement thereof), which expresses consistency and
availability as safety and liveness properties of an algo-
rithm, and partitions as a property of the system model.
Such properties either hold or they do not hold; there is
no degree of continuity in their definition.

Brewer’s informal interpretation of CAP is intuitively
appealing, but it is not a theorem, since it is not ex-
pressed formally (and thus cannot be proved or dis-
proved) – it is, at best, a rule of thumb. Gilbert and
Lynch’s formalization can be proved correct, but it does
not correspond to practitioners’ intuitions for real sys-

tems. This contradiction suggests that although the for-
mal model may be true, it is not useful.

4 Alternatives to CAP

In section 2 we explored the definitions of the terms
consistency, availability and partition tolerance, and
noted that a wide range of ambiguous and mutually
incompatible interpretations have been proposed, lead-
ing to widespread confusion. Then, in section 3 we ex-
plored Gilbert and Lynch’s definitions and proofs in
more detail, and highlighted some problems with the
formalization of CAP.

All of these misunderstandings and ambiguity lead
us to asserting that CAP is no longer an appropriate
tool for reasoning about systems. A better framework
for describing trade-offs is required. Such a framework
should be simple to understand, match most people’s in-
tuitions, and use definitions that are formal and correct.

In the rest of this paper we develop a first draft of
an alternative framework called delay-sensitivity, which
provides tools for reasoning about trade-offs between
consistency and robustness to network faults. It is based
on to several existing results from the distributed sys-
tems literature (most of which in fact predate CAP).

4.1 Latency and availability

As discussed in section 2.1.2, the latency (response
time) of operations is often important in practice, but
it is deliberately ignored by Gilbert and Lynch.

The problem with latency is that it is more difficult
to model. Latency is influenced by many factors, espe-
cially the delay of packets on the network. Many com-
puter networks (including Ethernet and the Internet) do
not guarantee bounded delay, i.e. they allow packets
to be delayed arbitrarily. Latencies and network delays
are therefore typically described as probability distribu-
tions.

On the other hand, network delay can model a wide
range of faults. In network protocols that automatically
retransmit lost packets (such as TCP), transient packet
loss manifests itself to the application as temporarily
increased delay. Even when the period of packet loss
exceeds the TCP connection timeout, application-level
protocols often retry failed requests until they succeed,
so the effective latency of the operation is the time from
the first attempt until the successful completion. Even

8

network partitions can be modelled as large packet de-
lays (up to the duration of the partition), provided that
the duration of the partition is finite and lost packets are
retransmitted an unbounded number of times.

Abadi [2] argues that there is a trade-off between
consistency and latency, which applies even when there
is no network partition, and which is as important as the
consistency/availability trade-off described by CAP. He
proposes a “PACELC” formulation to reason about this
trade-off.

We go further, and assert that availability should be
modeled in terms of operation latency. For example, we
could define the availability of a service as the propor-
tion of requests that meet some latency bound (e.g. re-
turning successfully within 500 ms, as defined by an
SLA). This empirically-founded definition of availabil-
ity closely matches our intuitive understanding.

We can then reason about a service’s tolerance of net-
work problems by analyzing how operation latency is
affected by changes in network delay, and whether this
pushes operation latency over the limit set by the SLA.
If a service can sustain low operation latency, even as
network delay increases dramatically, it is more toler-
ant of network problems than a service whose latency
increases.

4.2 How operation latency depends on
network delay

To find a replacement for CAP with a latency-centric
viewpoint we need to examine how operation latency is
affected by network latency at different levels of con-
sistency. In practice, this depends on the algorithms and
implementation of the particular software being used.
However, CAP demonstrated that there is also interest
in theoretical results identifying the fundamental lim-
its of what can be achieved, regardless of the particular
algorithm in use.

Several existing impossibility results establish lower
bounds on the operation latency as a function of the net-
work delay d. These results show that any algorithm
guaranteeing a particular level of consistency cannot
perform operations faster than some lower bound. We
summarize these results in table 1 and in the following
sections.

Our notation is similar to that used in complexity the-
ory to describe the running time of an algorithm. How-
ever, rather than being a function of the size of input,
we describe the latency of an operation as a function of

Consistency level write read
latency latency

linearizability O(d) O(d)

sequential consistency O(d) O(1)
causal consistency O(1) O(1)

Table 1: Lowest possible operation latency at various
consistency levels, as a function of network delay d.

network delay.
In this section we assume unbounded network delay,

and unsynchronized clocks (i.e. each process has access
to a clock that progresses monotonically at a rate ap-
proximately equal to real time, but the synchronization
error between clocks is unbounded).

4.2.1 Linearizability

Attiya and Welch [6] show that any algorithm imple-
menting a linearizable read-write register must have an
operation latency of at least u/2, where u is the uncer-
tainty of delay in the network between replicas.8

In this proof, network delay is assumed to be at most
d and at least d − u, so u is the difference between
the minimum and maximum network delay. In many
networks, the maximum possible delay (due to net-
work congestion or retransmitting lost packets) is much
greater than the minimum possible delay (due to the
speed of light), so u≈ d. If network delay is unbounded,
operation latency is also unbounded.

For the purposes of this survey, we can simplify the
result to say that linearizability requires the latency of
read and write operations to be proportional to the net-
work delay d. This is indicated in table 1 as O(d) la-
tency for reads and writes. We call these operations
delay-sensitive, as their latency is sensitive to changes
in network delay.

4.2.2 Sequential consistency

Lipton and Sandberg [42] show that any algorithm im-
plementing a sequentially consistent read-write register
must have |r|+ |w| ≥ d, where |r| is the latency of a
read operation, |w| is the latency of a write operation,

8Attiya and Welch [6] originally proved a bound of u/2 for write
operations (assuming two writer processes and one reader), and a
bound of u/4 for read operations (two readers, one writer). The u/2
bound for read operations is due to Mavronicolas and Roth [46].

9

and d is the network delay. Mavronicolas and Roth [46]
further develop this result.

This lower bound provides a degree of choice for the
application: for example, an application that performs
more reads than writes can reduce the average opera-
tion latency by choosing |r| = 0 and |w| ≥ d, whereas
a write-heavy application might choose |r| ≥ d and
|w| = 0. Attiya and Welch [6] describe algorithms for
both of these cases (the |r| = 0 case is similar to the
Zab algorithm used by Apache ZooKeeper [33]).

Choosing |r|= 0 or |w|= 0 means the operation can
complete without waiting for any network communica-
tion (it may still send messages, but need not wait for
a response from other nodes). The latency of such an
operation thus only depends on the local database algo-
rithms: it might be constant-time O(1), or it might be
O(logn) where n is the size of the database, but either
way it is independent of the network delay d, so we call
it delay-independent.

In table 1, sequential consistency is described as hav-
ing fast reads and slow writes (constant-time reads, and
write latency proportional to network delay), although
these roles can be swapped if an application prefers fast
writes and slow reads.

4.2.3 Causal consistency

If sequential consistency allows the latency of some op-
erations to be independent of network delay, which level
of consistency allows all operation latencies to be inde-
pendent of the network? Recent results [8, 45] show that
causal consistency [4] with eventual convergence is the
strongest possible consistency guarantee with this prop-
erty.9

Read Your Writes [49], PRAM [42] and other weak
consistency models (all the way down to eventual con-
sistency, which provides no safety property [9]) are
weaker than causal consistency, and thus achievable
without waiting for the network.

If tolerance of network delay is the only considera-
tion, causal consistency is the optimal consistency level.
There may be other reasons for choosing weaker con-
sistency levels (for example, the metadata overhead of
tracking causality [8, 20]), but these trade-offs are out-
side of the scope of this discussion, as they are also out-
side the scope of CAP.

9There are a few variants of causal consistency, such as real time
causal [45], causal+ [43] and observable causal [8] consistency.
They have subtle differences, but we do not have space in this paper
to compare them in detail.

4.3 Heterogeneous delays

A limitation of the results in section 4.2 is that they as-
sume the distribution of network delays is the same be-
tween every pair of nodes. This assumption is not true
in general: for example, network delay between nodes
in the same datacenter is likely to be much lower than
between geographically distributed nodes communicat-
ing over WAN links.

If we model network faults as periods of increased
network delay (section 4.1), then a network partition
is a situation in which the delay between nodes within
each partition remains small, while the delay across par-
titions increases dramatically (up to the duration of the
partition).

For O(d) algorithms, which of these different delays
do we need to assume for d? The answer depends on
the communication pattern of the algorithm.

4.3.1 Modeling network topology

For example, a replication algorithm that uses a sin-
gle leader or primary node requires all write requests
to contact the primary, and thus d in this case is the net-
work delay between the client and the leader (possibly
via other nodes). In a geographically distributed system,
if client and leader are in different locations, d includes
WAN links. If the client is temporarily partitioned from
the leader, d increases up to the duration of the partition.

By contrast, the ABD algorithm [7] waits for re-
sponses from a majority of replicas, so d is the largest
among the majority of replicas that are fastest to re-
spond. If a minority of replicas is temporarily parti-
tioned from the client, the operation latency remains in-
dependent of the partition duration.

Another possibility is to treat network delay within
the same datacenter, dlocal, differently from net-
work delay over WAN links, dremote, because usu-
ally dlocal � dremote. Systems such as COPS [43],
which place a leader in each datacenter, provide lin-
earizable operations within one datacenter (requiring
O(dlocal) latency), and causal consistency across da-
tacenters (making the request latency independent of
dremote).

4.4 Delay-independent operations

The big-O notation for operation latency ignores con-
stant factors (such as the number of network round-trips
required by an algorithm), but it captures the essence of

10

what we need to know for building systems that can
tolerate network faults: what happens if network delay
dramatically degrades? In a delay-sensitive O(d) algo-
rithm, operation latency may increase to be as large as
the duration of the network interruption (i.e. minutes or
even hours), whereas a delay-independent O(1) algo-
rithm remains unaffected.

If the SLA calls for operation latencies that are signif-
icantly shorter than the expected duration of network in-
terruptions, delay-independent algorithms are required.
In such algorithms, the time until replica convergence
is still proportional to d, but convergence is decou-
pled from operation latency. Put another way, delay-
independent algorithms support disconnected or offline
operation. Disconnected operation has long been used
in network file systems [37] and automatic teller ma-
chines [18].

For example, consider a calendar application running
on a mobile device: a user may travel through a tunnel
or to a remote location where there is no cellular net-
work coverage. For a mobile device, regular network
interruptions are expected, and they may last for days.
During this time, the user should still be able to inter-
act with the calendar app, checking their schedule and
adding events (with any changes asynchronously prop-
agated when an internet connection is next available).

However, even in environments with fast and re-
liable network connectivity, delay-independent algo-
rithms have been shown to have performance and scal-
ability benefits: in this context, they are known as
coordination-free [13] or ALPS [43] systems. Many
popular database integrity constraints can be imple-
mented without synchronous coordination between
replicas [13].

4.5 Proposed terminology
Much of the confusion around CAP is due to the am-
biguous, counter-intuitive and contradictory definitions
of terms such as availability, as discussed in section 2.
In order to improve the situation and reduce misunder-
standings, there is a need to standardize terminology
with simple, formal and correct definitions that match
the intuitions of practitioners.

Building upon the observations above and the results
cited in section 4.2, we propose the following defini-
tions as a first draft of a delay-sensitivity framework for
reasoning about consistency and availability trade-offs.
These definitions are informal and intended as a starting
point for further discussion.

Availability is an empirical metric, not a property of
an algorithm. It is defined as the percentage of
successful requests (returning a non-error response
within a predefined latency bound) over some pe-
riod of system operation.

Delay-sensitive describes algorithms or operations
that need to wait for network communication to
complete, i.e. which have latency proportional to
network delay. The opposite is delay-independent.
Systems must specify the nature of the sen-
sitivity (e.g. an operation may be sensitive to
intra-datacenter delay but independent of inter-
datacenter delay). A fully delay-independent sys-
tem supports disconnected (offline) operation.

Network faults encompass packet loss (both transient
and long-lasting) and unusually large packet delay.
Network partitions are just one particular type of
network fault; in most cases, systems should plan
for all kinds of network fault, and not only parti-
tions. As long as lost packets or failed requests are
retried, they can be modeled as large network de-
lay.

Fault tolerance is used in preference to high availabil-
ity or partition tolerance. The maximum fault that
can be tolerated must be specified (e.g. “the al-
gorithm can tolerate up to a minority of replicas
crashing or disconnecting”), and the description
must also state what happens if more faults occur
than the system can tolerate (e.g. all requests return
an error, or a consistency property is violated).

Consistency refers to a spectrum of different con-
sistency models (including linearizability and
causal consistency), not one particular consistency
model. When a particular consistency model such
as linearizability is intended, it is referred to by its
usual name. The term strong consistency is vague,
and may refer to linearizability, sequential consis-
tency or one-copy serializability.

5 Conclusion
In this paper we discussed several problems with the
CAP theorem: the definitions of consistency, availabil-
ity and partition tolerance in the literature are somewhat
contradictory and counter-intuitive, and the distinction
that CAP draws between “strong” and “eventual” con-
sistency models is less clear than widely believed.

11

CAP has nevertheless been very influential in the
design of distributed data systems. It deserves credit
for catalyzing the exploration of the design space of
systems with weak consistency guarantees, e.g. in the
NoSQL movement. However, we believe that CAP has
now reached the end of its usefulness; we recommend
that it should be relegated to the history of distributed
systems, and no longer be used for justifying design de-
cisions.

As an alternative to CAP, we propose a simple delay-
sensitivity framework for reasoning about trade-offs be-
tween consistency guarantees and tolerance of network
faults in a replicated database. Every operation is cat-
egorized as either O(d), if its latency is sensitive to
network delay, or O(1), if it is independent of net-
work delay. On the assumption that lost messages are
retransmitted an unbounded number of times, we can
model network faults (including partitions) as periods
of greatly increased delay. The algorithm’s sensitivity to
network delay determines whether the system can still
meet its service level agreement (SLA) when a network
fault occurs.

The actual sensitivity of a system to network de-
lay depends on its implementation, but – in keeping
with the goal of CAP – we can prove that certain lev-
els of consistency cannot be achieved without making
operation latency proportional to network delay. These
theoretical lower bounds are summarized in Table 1.
We have not proved any new results in this paper, but
merely drawn on existing distributed systems research
dating mostly from the 1990s (and thus predating CAP).

For future work, it would be interesting to model the
probability distribution of latencies for different con-
currency control and replication algorithms (e.g. by ex-
tending PBS [11]), rather than modeling network delay
as just a single number d. It would also be interesting
to model the network communication topology of dis-
tributed algorithms more explicitly.

We hope that by being more rigorous about the impli-
cations of different consistency levels on performance
and fault tolerance, we can encourage designers of dis-
tributed data systems to continue the exploration of the
design space. And we also hope that by adopting sim-
ple, correct and intuitive terminology, we can help guide
application developers towards the storage technologies
that are most appropriate for their use cases.

Acknowledgements
Many thanks to Niklas Ekström, Seth Gilbert and Henry
Robinson for fruitful discussions around this topic.

References
[1] ACID support in Aerospike. Aerospike, Inc., June 2014.

URL http://www.aerospike.com/docs/architecture/

assets/AerospikeACIDSupport.pdf.

[2] Daniel J Abadi. Consistency tradeoffs in modern distributed
database system design. IEEE Computer Magazine, 45(2):37–
42, February 2012. doi:10.1109/MC.2012.33.

[3] Atul Adya. Weak Consistency: A Generalized Theory and Opti-
mistic Implementations for Distributed Transactions. PhD the-
sis, Massachusetts Institute of Technology, March 1999.

[4] Mustaque Ahamad, Gil Neiger, James E Burns, Prince Kohli,
and Phillip W Hutto. Causal memory: definitions, implemen-
tation, and programming. Distributed Computing, 9(1):37–49,
March 1995. doi:10.1007/BF01784241.

[5] Bowen Alpern and Fred B Schneider. Defining liveness. In-
formation Processing Letters, 21(4):181–185, October 1985.
doi:10.1016/0020-0190(85)90056-0.

[6] Hagit Attiya and Jennifer L Welch. Sequential con-
sistency versus linearizability. ACM Transactions on
Computer Systems (TOCS), 12(2):91–122, May 1994.
doi:10.1145/176575.176576.

[7] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing mem-
ory robustly in message-passing systems. Journal of the ACM,
42(1):124–142, January 1995. doi:10.1145/200836.200869.

[8] Hagit Attiya, Faith Ellen, and Adam Morrison. Limitations of
highly-available eventually-consistent data stores. In ACM Sym-
posium on Principles of Distributed Computing (PODC), July
2015. doi:10.1145/2767386.2767419.

[9] Peter Bailis and Ali Ghodsi. Eventual consistency today: Lim-
itations, extensions, and beyond. ACM Queue, 11(3), March
2013. doi:10.1145/2460276.2462076.

[10] Peter Bailis and Kyle Kingsbury. The network is reliable. ACM
Queue, 12(7), July 2014. doi:10.1145/2639988.2639988.

[11] Peter Bailis, Shivaram Venkataraman, Michael J Franklin,
Joseph M Hellerstein, and Ion Stoica. Probabilistically bounded
staleness for practical partial quorums. Proceedings of the
VLDB Endowment, 5(8):776–787, April 2012.

[12] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi,
Joseph M Hellerstein, and Ion Stoica. Highly available transac-
tions: Virtues and limitations. In 40th International Conference
on Very Large Data Bases (VLDB), September 2014.

[13] Peter Bailis, Alan Fekete, Michael J Franklin, Ali Ghodsi,
Joseph M Hellerstein, and Ion Stoica. Coordination-avoiding
database systems. Proceedings of the VLDB Endowment, 8(3):
185–196, November 2014.

12

http://www.aerospike.com/docs/architecture/assets/AerospikeACIDSupport.pdf
http://www.aerospike.com/docs/architecture/assets/AerospikeACIDSupport.pdf
http://dx.doi.org/10.1109/MC.2012.33
http://dx.doi.org/10.1007/BF01784241
http://dx.doi.org/10.1016/0020-0190(85)90056-0
http://dx.doi.org/10.1145/176575.176576
http://dx.doi.org/10.1145/200836.200869
http://dx.doi.org/10.1145/2767386.2767419
http://dx.doi.org/10.1145/2460276.2462076
http://dx.doi.org/10.1145/2639988.2639988

[14] Hal Berenson, Philip A Bernstein, Jim N Gray, Jim Melton,
Elizabeth O’Neil, and Patrick O’Neil. A critique of
ANSI SQL isolation levels. In ACM International Con-
ference on Management of Data (SIGMOD), May 1995.
doi:10.1145/568271.223785.

[15] Philip A Bernstein, Vassos Hadzilacos, and Nathan Good-
man. Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987. ISBN 0201107155.
URL http://research.microsoft.com/en-us/people/

philbe/ccontrol.aspx.

[16] Eric A Brewer. Towards robust distributed systems (keynote). In
19th ACM Symposium on Principles of Distributed Computing
(PODC), July 2000.

[17] Eric A Brewer. CAP twelve years later: How the “rules” have
changed. IEEE Computer Magazine, 45(2):23–29, February
2012. doi:10.1109/MC.2012.37.

[18] Eric A Brewer. NoSQL: Past, present, future. In QCon San
Francisco, November 2012. URL http://www.infoq.com/

presentations/NoSQL-History.

[19] Christian Cachin, Rachid Guerraoui, and Luı́s Rodrigues. In-
troduction to Reliable and Secure Distributed Programming.
Springer, 2nd edition, February 2011. ISBN 978-3-642-15259-
7.

[20] Bernadette Charron-Bost. Concerning the size of logical clocks
in distributed systems. Information Processing Letters, 39(1):
11–16, July 1991. doi:10.1016/0020-0190(91)90055-M.

[21] Jeff Darcy. When partitions attack, October 2010. URL
http://pl.atyp.us/wordpress/index.php/2010/10/

when-partitions-attack/.

[22] Susan B Davidson, Hector Garcia-Molina, and Dale Skeen.
Consistency in partitioned networks. ACM Computing Surveys,
17(3):341–370, September 1985. doi:10.1145/5505.5508.

[23] Michael J Fischer and Alan Michael. Sacrificing serializability
to attain high availability of data in an unreliable network. In 1st
ACM Symposium on Principles of Database Systems (PODS),
pages 70–75, March 1982. doi:10.1145/588111.588124.

[24] Armando Fox and Eric A Brewer. Harvest, yield, and scal-
able tolerant systems. In 7th Workshop on Hot Topics in
Operating Systems (HotOS), pages 174–178, March 1999.
doi:10.1109/HOTOS.1999.798396.

[25] Seth Gilbert and Nancy Lynch. Brewer’s conjecture
and the feasibility of consistent, available, partition-tolerant
web services. ACM SIGACT News, 33(2):51–59, 2002.
doi:10.1145/564585.564601.

[26] Seth Gilbert and Nancy Lynch. Perspectives on the CAP theo-
rem. IEEE Computer Magazine, 45(2):30–36, February 2012.
doi:10.1109/MC.2011.389.

[27] Jim N Gray, Raymond A Lorie, Gianfranco R Putzolu, and Irv-
ing L Traiger. Granularity of locks and degrees of consistency in
a shared data base. In G M Nijssen, editor, Modelling in Data
Base Management Systems: Proceedings of the IFIP Working
Conference on Modelling in Data Base Management Systems,
pages 364–394. Elsevier/North Holland Publishing, 1976.

[28] Coda Hale. You can’t sacrifice partition tolerance, Oc-
tober 2010. URL http://codahale.com/you-cant-

sacrifice-partition-tolerance/.

[29] Maurice P Herlihy. Impossibility and universality results for
wait-free synchronization. In 7th ACM Symposium on Princi-
ples of Distributed Computing (PODC), pages 276–290, August
1988. doi:10.1145/62546.62593.

[30] Maurice P Herlihy and Jeannette M Wing. Linearizability: A
correctness condition for concurrent objects. ACM Transactions
on Programming Languages and Systems, 12(3):463–492, July
1990. doi:10.1145/78969.78972.

[31] Jeff Hodges. Notes on distributed systems for young bloods,
January 2013. URL http://www.somethingsimilar.com/

2013/01/14/notes-on-distributed-systems-for-

young-bloods/.

[32] Paul R Johnson and Robert H Thomas. RFC 677: The mainte-
nance of duplicate databases. Network Working Group, January
1975. URL https://tools.ietf.org/html/rfc677.

[33] Flavio P Junqueira, Benjamin C Reed, and Marco Serafini.
Zab: High-performance broadcast for primary-backup sys-
tems. In 41st IEEE International Conference on Depend-
able Systems and Networks (DSN), pages 245–256, June 2011.
doi:10.1109/DSN.2011.5958223.

[34] Won Kim. Highly available systems for database applica-
tion. ACM Computing Surveys, 16(1):71–98, March 1984.
doi:10.1145/861.866.

[35] Kyle Kingsbury. Call me maybe: RabbitMQ, June 2014.
URL https://aphyr.com/posts/315-call-me-maybe-

rabbitmq.

[36] Kyle Kingsbury. Call me maybe: Elasticsearch 1.5.0, April
2015. URL https://aphyr.com/posts/323-call-me-

maybe-elasticsearch-1-5-0.

[37] James J Kistler and M Satyanarayanan. Disconnected
operation in the Coda file system. ACM Transactions
on Computer Systems (TOCS), 10(1):3–25, February 1992.
doi:10.1145/146941.146942.

[38] Leslie Lamport. How to make a multiprocessor com-
puter that correctly executes multiprocess programs. IEEE
Transactions on Computers, 28(9):690–691, September 1979.
doi:10.1109/TC.1979.1675439.

[39] Leslie Lamport. Fairness and hyperfairness. Dis-
tributed Computing, 13(4):239–245, November 2000.
doi:10.1007/PL00008921.

[40] Bruce G Lindsay, Patricia Griffiths Selinger, C Galtieri, Jim N
Gray, Raymond A Lorie, Thomas G Price, Gianfranco R Put-
zolu, Irving L Traiger, and Bradford W Wade. Notes on dis-
tributed databases. Technical Report RJ2571(33471), IBM Re-
search, July 1979.

[41] Nicolas Liochon. You do it too: Forfeiting network par-
tition tolerance in distributed systems, July 2015. URL
http://blog.thislongrun.com/2015/07/Forfeit-

Partition-Tolerance-Distributed-System-CAP-

Theorem.html.

13

http://dx.doi.org/10.1145/568271.223785
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
http://dx.doi.org/10.1109/MC.2012.37
http://www.infoq.com/presentations/NoSQL-History
http://www.infoq.com/presentations/NoSQL-History
http://dx.doi.org/10.1016/0020-0190(91)90055-M
http://pl.atyp.us/wordpress/index.php/2010/10/when-partitions-attack/
http://pl.atyp.us/wordpress/index.php/2010/10/when-partitions-attack/
http://dx.doi.org/10.1145/5505.5508
http://dx.doi.org/10.1145/588111.588124
http://dx.doi.org/10.1109/HOTOS.1999.798396
http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1109/MC.2011.389
http://codahale.com/you-cant-sacrifice-partition-tolerance/
http://codahale.com/you-cant-sacrifice-partition-tolerance/
http://dx.doi.org/10.1145/62546.62593
http://dx.doi.org/10.1145/78969.78972
http://www.somethingsimilar.com/2013/01/14/notes-on-distributed-systems-for-young-bloods/
http://www.somethingsimilar.com/2013/01/14/notes-on-distributed-systems-for-young-bloods/
http://www.somethingsimilar.com/2013/01/14/notes-on-distributed-systems-for-young-bloods/
https://tools.ietf.org/html/rfc677
http://dx.doi.org/10.1109/DSN.2011.5958223
http://dx.doi.org/10.1145/861.866
https://aphyr.com/posts/315-call-me-maybe-rabbitmq
https://aphyr.com/posts/315-call-me-maybe-rabbitmq
https://aphyr.com/posts/323-call-me-maybe-elasticsearch-1-5-0
https://aphyr.com/posts/323-call-me-maybe-elasticsearch-1-5-0
http://dx.doi.org/10.1145/146941.146942
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1007/PL00008921
http://blog.thislongrun.com/2015/07/Forfeit-Partition-Tolerance-Distributed-System-CAP-Theorem.html
http://blog.thislongrun.com/2015/07/Forfeit-Partition-Tolerance-Distributed-System-CAP-Theorem.html
http://blog.thislongrun.com/2015/07/Forfeit-Partition-Tolerance-Distributed-System-CAP-Theorem.html

[42] Richard J Lipton and Jonathan S Sandberg. PRAM: A scalable
shared memory. Technical Report CS-TR-180-88, Princeton
University Department of Computer Science, September 1988.

[43] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and
David G Andersen. Don’t settle for eventual: Scalable causal
consistency for wide-area storage with COPS. In 23rd ACM
Symposium on Operating Systems Principles (SOSP), pages
401–416, October 2011. doi:10.1145/2043556.2043593.

[44] Nancy Lynch and Alex Shvartsman. Robust emulation of
shared memory using dynamic quorum-acknowledged broad-
casts. In 27th Annual International Symposium on Fault-
Tolerant Computing (FTCS), pages 272–281, June 1997.
doi:10.1109/FTCS.1997.614100.

[45] Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin. Consistency,
availability, and convergence. Technical Report UTCS TR-11-
22, University of Texas at Austin, Department of Computer Sci-
ence, May 2011.

[46] Marios Mavronicolas and Dan Roth. Linearizable read/write
objects. Theoretical Computer Science, 220(1):267–319, June
1999. doi:10.1016/S0304-3975(98)90244-4.

[47] Henry Robinson. CAP confusion: Problems with ‘partition
tolerance’, April 2010. URL http://blog.cloudera.

com/blog/2010/04/cap-confusion-problems-with-

partition-tolerance/.

[48] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco
Zappa Nardelli, and Magnus O Myreen. x86-TSO: A
rigorous and usable programmer’s model for x86 multiproces-
sors. Communications of the ACM, 53(7):89–97, July 2010.
doi:10.1145/1785414.1785443.

[49] Douglas B Terry, Alan J Demers, Karin Petersen, Mike J
Spreitzer, Marvin M Theimer, and Brent B Welch. Ses-
sion guarantees for weakly consistent replicated data. In
3rd International Conference on Parallel and Distributed In-
formation Systems (PDIS), pages 140–149, September 1994.
doi:10.1109/PDIS.1994.331722.

[50] Werner Vogels. Eventually consistent. ACM Queue, 6(6):14–19,
October 2008. doi:10.1145/1466443.1466448.

14

http://dx.doi.org/10.1145/2043556.2043593
http://dx.doi.org/10.1109/FTCS.1997.614100
http://dx.doi.org/10.1016/S0304-3975(98)90244-4
http://blog.cloudera.com/blog/2010/04/cap-confusion-problems-with-partition-tolerance/
http://blog.cloudera.com/blog/2010/04/cap-confusion-problems-with-partition-tolerance/
http://blog.cloudera.com/blog/2010/04/cap-confusion-problems-with-partition-tolerance/
http://dx.doi.org/10.1145/1785414.1785443
http://dx.doi.org/10.1109/PDIS.1994.331722
http://dx.doi.org/10.1145/1466443.1466448

	Background
	CAP Theorem Definitions
	Availability
	The A in CAP
	No maximum latency
	Failed nodes

	Consistency
	The C in CAP
	Probabilistic consistency

	Partition Tolerance
	Assumptions about system model
	Partitions and fair-loss links

	The CAP Proofs
	Theorems 1 and 2
	Availability of failed nodes
	Finite and infinite partitions
	Linearizability vs. eventual consistency

	The partitionable system model
	Definitions
	Impossibility results
	Opportunistic properties

	Mismatch between formal model and practical systems

	Alternatives to CAP
	Latency and availability
	How operation latency depends on network delay
	Linearizability
	Sequential consistency
	Causal consistency

	Heterogeneous delays
	Modeling network topology

	Delay-independent operations
	Proposed terminology

	Conclusion

