
OpSets: Sequential Specifications for Replicated
Datatypes (Extended Version)
Martin Kleppmann
Computer Laboratory, University of Cambridge, UK
mk428@cl.cam.ac.uk

https://orcid.org/0000-0001-7252-6958

Victor B. F. Gomes
Computer Laboratory, University of Cambridge, UK
vb358@cl.cam.ac.uk

https://orcid.org/0000-0002-2954-4648

Dominic P. Mulligan
Security Research Group, Arm Research, Cambridge, UK
Dominic.Mulligan@arm.com

https://orcid.org/0000-0003-4643-3541

Alastair R. Beresford
Computer Laboratory, University of Cambridge, UK
arb33@cl.cam.ac.uk

https://orcid.org/0000-0003-0818-6535

Abstract
We introduce OpSets, an executable framework for specifying and reasoning about the seman-
tics of replicated datatypes that provide eventual consistency in a distributed system, and for
mechanically verifying algorithms that implement these datatypes. Our approach is simple but
expressive, allowing us to succinctly specify a variety of abstract datatypes, including maps, sets,
lists, text, graphs, trees, and registers. Our datatypes are also composable, enabling the construc-
tion of complex data structures. To demonstrate the utility of OpSets for analysing replication
algorithms, we highlight an important correctness property for collaborative text editing that has
traditionally been overlooked; algorithms that do not satisfy this property can exhibit awkward
interleaving of text. We use OpSets to specify this correctness property and prove that although
one existing replication algorithm satisfies this property, several other published algorithms do
not. We also show how OpSets can be used to develop new replicated datatypes: we provide
a simple specification of an atomic move operation for trees, an operation that had previously
been thought to be impossible to implement without locking. We use the Isabelle/HOL proof
assistant to formalise the OpSets approach and produce mechanised proofs of correctness of the
main claims in this paper, thereby eliminating the ambiguity of previous informal approaches,
and ruling out reasoning errors that could occur in handwritten proofs.

2012 ACM Subject Classification Networks → Protocol testing and verification; Networks →
Formal specifications; Theory of computation → Distributed algorithms; Computer systems or-
ganization → Distributed architectures; Software and its engineering → Distributed systems
organizing principles; Software and its engineering → Formal software verification

Keywords and phrases replication; conflict-free replicated datatypes; distributed systems; spec-
ification; formal verification

ar
X

iv
:1

80
5.

04
26

3v
2

 [
cs

.D
C

]
 1

4
M

ay
 2

01
8

mailto:mk428@cl.cam.ac.uk
https://orcid.org/0000-0001-7252-6958
mailto:vb358@cl.cam.ac.uk
https://orcid.org/0000-0002-2954-4648
mailto:Dominic.Mulligan@arm.com
https://orcid.org/0000-0003-4643-3541
mailto:arb33@cl.cam.ac.uk
https://orcid.org/0000-0003-0818-6535

:2 OpSets: Sequential Specifications for Replicated Datatypes

1 Introduction

A common requirement across many distributed systems is that several nodes may concur-
rently access and manipulate some shared data structure. Examples include everything from
journalists using their laptops to work on a shared text document to a set of web servers
manipulating a common database. In doing so, it is important that the shared data satisfies
certain consistency guarantees. For example, strong consistency models such as serializability
[31] or linearizability [26] make a system behave like a single sequentially executing node,
even when it is in fact replicated and concurrent. An unavoidable downside of these models is
that any operation or transaction must wait for network communication before it is allowed
to complete [13, 19]. Thus, in a system with strong consistency, a node cannot make progress
while it is offline or partitioned from other nodes.

On the other hand, eventual consistency [5, 9, 56, 60] allows each participant to modify a
local copy (replica) of a shared data structure while offline, but its definition is very weak:
“if no new updates are made to the shared state, all nodes will eventually have the same
data.” The premise “if no new updates are made” may never be true if the shared state is
continually modified (i.e. the system is never quiescent). Moreover, nothing in the definition
of eventual consistency specifies which final states are legal.

Conflict-free Replicated Data Types, or CRDTs [51, 52], are abstractions for replicated
state that have received significant attention in recent years (see § 6). The primary correctness
property for CRDTs is convergence [52, 21], defined as: “whenever any two replicas have
applied the same set of updates, they are in the same state”, even if each replica applies the
updates in a different order. Convergence is a stronger property than eventual consistency,
but it also fails to define what exactly the converged state should be.

In this work we introduce Operation Sets (or OpSets for short), a novel approach for
specifying the semantics of replicated datatypes, and for reasoning about algorithms for
concurrent data access and manipulation. We go beyond merely ensuring replica convergence:
the OpSets approach is an executable specification that precisely defines the permitted states
of a replica after some set of updates has been applied. Our contributions in this paper are
as follows:

In § 2 we introduce the OpSet, which provides a simple abstraction for specifying and
reasoning about the consistency properties of concurrently editable data structures.
On top of this abstraction, in § 3 and § 5, we specify a variety of composable abstract
datatypes (maps, sets, lists, text, graphs, trees, and registers), and we argue that our
specifications are both simple and precise, making them a suitable tool for reasoning
about replicated data.
In § 4 we demonstrate how the OpSet abstraction can be used to reason about existing
algorithms. We highlight an important correctness property for collaborative text editing
that has been overlooked by prior work in this area. Our specification is, to our knowledge,
the first that correctly captures this property. We then review a selection of text editing
CRDTs from the literature, prove that one satisfies our specification, and identify several
others that fail to satisfy our correctness property.
In § 5 we show how the OpSet abstraction can be used to develop new replicated datatypes.
In particular we describe, for the first time, how an atomic move operation can be defined
for a tree CRDT. This operation can be used to move a subtree to a new position within
the tree, or to rename a key in a map, or to reorder items in a list. The OpSets approach
enables a simple definition of this operation that had previously been thought impossible
to implement without locking [40, 41].

M. Kleppmann, V. B. F. Gomes, D. P. Mulligan, and A. R. Beresford :3

Using the Isabelle/HOL proof assistant [64] we formalise the OpSets approach, producing
mechanised proofs of correctness of the main claims in this paper. In particular, we prove
that our list specification is strictly stronger than the recent specification of collaborative
text editing by Attiya et al. [4]. By using mechanised proofs we eliminate the ambiguity
of previous informal approaches, and rule out reasoning errors that could occur in
handwritten proofs. Moreover, the proof framework we have developed is reusable and
can be leveraged to verify other datatypes in the future.

The appendices contain an overview of our Isabelle/HOL mechanisation, and pseudocode
for the replicated datatypes discussed in this paper. The full formal proof development is
published in the Isabelle Archive of Formal Proofs [33].

2 The OpSets Approach

The OpSets approach is a simple abstraction for describing the consistency properties of a
replicated data system. We outline the general approach in this section, before describing
concrete data structures and specifications in § 3 and § 5.

2.1 System Model
We assume that the system consists of a set of nodes connected by a network. These nodes
concurrently access some shared data structure, which may be a relational database (consisting
of rows in tables), a text document (a sequence of characters), a vector-graphics document
(a tree of records describing graphical objects), a filesystem (a tree of directories and files),
or any other kind of data structure.

New nodes can be added at any time, and the set of nodes need not be known in advance.
Nodes might be mobile devices, and hence we assume that nodes are sometimes offline, i.e.
temporarily unable to communicate with other nodes. We require that nodes can access
the shared data anytime, even while offline. Thus, each node has a local copy of the shared
data structure, which it can read and modify without waiting for any communication or
coordination with other nodes.

Whenever a node makes a modification to that structure, it records the change as an
operation. For example, an operation may describe an insertion at a particular position in
a text document. Each node locally maintains a set of operations, the OpSet. Whenever a
node makes a change to the shared data, it adds the corresponding operation to its OpSet,
and also sends messages containing the operation to other nodes. Whenever a node receives
a message from another node, the operation in that message is added to the recipient’s local
OpSet. Operations remain immutable throughout this process.

We make no assumptions about the reliability of the network: messages may be lost,
duplicated, or arbitrarily reordered. Reflecting the characteristics of real networks, we assume
that lost messages are retransmitted when possible (e.g. using TCP), but messages may
be permanently lost due to network or node failures. Since the OpSet at each node is a
monotonically growing set of operations, any two communicating nodes can merge their
OpSets using the standard set union operator ∪. Set union is commutative, associative, and
idempotent, ensuring that communicating nodes converge towards the same OpSet contents.

We assume that each operation has a unique identifier (ID), that new IDs can be generated
by any node without communication with other nodes, and that we have a total ordering on
operation IDs. These requirements can easily be met by using Lamport timestamps [35] as
IDs. A Lamport timestamp is a pair (counter ,nodeID) that is constructed as follows:

:4 OpSets: Sequential Specifications for Replicated Datatypes

counter is an integer. To generate a new ID, find the maximum counter of any existing
operation ID in the local OpSet, and increment that number.
nodeID is a string that uniquely identifies the node generating the ID, e.g. a UUID [36].

Although different nodes may generate IDs with the same counter value, each node
generates IDs with strictly monotonically increasing counter values, and thus IDs are globally
unique. We define the total order on IDs as being the lexicographic order:

(ctr1,node1) < (ctr2,node2) ⇐⇒ ctr1 < ctr2 ∨ (ctr1 = ctr2 ∧ node1 < node2).

2.2 Interpreting an OpSet
Most definitions of operation-based CRDTs describe how a node’s local state is manipulated
by operations [51, 52]. We now depart from this convention and present an alternative
formulation of replicated datatypes.

In the OpSets approach, we require that the shared data structure is never manipulated
directly. Instead, we use an interpretation function J−K that takes an OpSet O and returns
the current state JOK of the shared data structure described by the OpSet. The interpretation
function is pure, i.e. deterministic, side-effect free, and its result depends only on O. All
nodes in the system employ the same interpretation function.

Consequently, whenever any two nodes have the same OpSet O, their view of the
shared data structure JOK must also be equal. This construction trivially ensures eventual
consistency: as two nodes converge towards the same OpSet contents, any data structure
that is deterministically derived from the OpSet must also converge.

In principle, any deterministic function can serve as interpretation function. However, in
defining the semantics of CRDTs (see § 3 and § 5), we have found it useful to specialise J−K
such that we can interpret one operation at a time.

Let the OpSet O be a set of pairs (id, op), where id is a unique operation identifier and
op is an arbitrary description of the change that occurred. Assume that we have a total
ordering < on identifiers, as explained in § 2.1. Then observe that for any OpSet there exists
a unique sequence of operations, containing all operations of the OpSet in ascending order of
their identifier. We can specify the semantics of each operation — that is, the effect of the
operation on the OpSet interpretation — when applied in this sequential order.

Formally, we can define the interpretation JOK of the OpSet O as follows:
q
∅
y

= InitialState
q
O ∪ {(id, op)}

y
= interp

[
JOK, (id, op)

]
provided that ∀ (id ′, op′) ∈ O. id ′ < id

where interp
[
S, (id, op)

]
is the interpretation of the operation (id, op) in the state S, and

InitialState is a fixed minimal element (e.g. the empty tree, or empty list) of the replicated
type described. In other words, if S is the result of interpreting all operations with identifiers
less than id, then interp

[
S, (id, op)

]
is the interpretation of the OpSet to which (id, op) has

been added. For example, if id1 < id2 < id3, we have:
q
{(id1, op1), (id2, op2), (id3, op3)}

y
=

interp
[
interp

[
interp

[
InitialState, (id1, op1)

]
, (id2, op2)

]
, (id3, op3)

]
Provided that the operation interpretation interp

[
S, (id, op)

]
is deterministic, the OpSet

interpretation function J−K is also deterministic, due to the fact that the operation order in
the OpSet is unique.

M. Kleppmann, V. B. F. Gomes, D. P. Mulligan, and A. R. Beresford :5

2.3 Receiving Messages Out-of-order

Many computing systems are based on the idea of putting operations in some total order, and
executing them in that order. For example, serializable transactions [31] and state machine
replication [50] follow this approach. However, it is important to understand that the OpSet
interpretation of § 2.2 relies on a weaker notion of ordering than most systems.

With serializable transactions and state machine replication, once a transaction/operation
has been executed in some state, its results are expected to be durable. Thus, before executing
some transaction Ti, the system needs to ensure that there is no pending transaction with
a lower ID than Ti (which would need to be executed before Ti), since otherwise the
subsequent arrival of a transaction with lower ID would invalidate the state in which Ti was
executed. However, ensuring this precondition is expensive: as we show in § 6.1, it requires
communication with at least a quorum of nodes; if the IDs are Lamport timestamps, it even
requires communication with every single node [35]. If too many nodes are offline, the system
cannot execute any transactions.

By contrast, our system model of § 2.1 requires nodes to always be able to read and
modify the shared data, even when all nodes are offline. Moreover, we do not assume any
ordering guarantees from the network. Thus, whenever there is some operation (id1, op1) ∈ O
in the OpSet O of some node, it is possible that the node will subsequently receive a message
containing (id2, op2), where id2 < id1; that is, the later-arriving operation needs to be applied
before the existing operation (id1, op1) in the OpSet interpretation JOK.

In the OpSet model, such out-of-order delivery of operations is no problem: the order
in which operations are received has no effect on the OpSet O, and since we assume the
interpretation function to be pure and side-effect free, the interpretation JOK can always be
recomputed whenever new operations are added to O.

The interpretation function is an executable specification that defines the expected result
of interpreting a set of operations. Presenting replicated datatypes in this manner has two
significant advantages:

1. Unlike typical definitions of CRDT algorithms [51, 52], it is not necessary for the inter-
pretation function interp

[
S, (id, op)

]
to commute with respect to other operations: any

pure function can be used. This fact makes it much simpler to specify the interpretation
of operations, as we shall see in § 3 and § 5.

2. We can guarantee the existence of an implementation of each described datatype: the
specification itself. This is in contrast to axiomatic specifications, which may not be
implementable, and require additional work to demonstrate than an implementation
exists which satisfies the axiomatic description.

For practical implementations of replicated datatypes, a naive OpSet interpretation may
exhibit poor performance, since nodes must potentially apply the same subset of operations
repeatedly. More efficient (and, most likely, more complex) algorithms for CRDTs can
therefore be developed and shown to satisfy the OpSet-based specification—we do this in § 4.

However, we have developed a practical JavaScript CRDT implementation around the
OpSet model [34], and found it to have some advantages: for example, users can easily
inspect the editing history of a document, since every past version of the document is
the interpretation of a particular subset of operations. Moreover, using OpSets provides a
straightforward mechanism for recovering from network partitions and failures, as missing
operations may be retransmitted and added to the OpSets of previously partitioned nodes.
The details of this implementation are beyond the scope of this paper.

:6 OpSets: Sequential Specifications for Replicated Datatypes

3 Specifying a Graph of Lists, Maps, and Registers

We now make the OpSets approach concrete by defining example semantics for commonly-
used data structures: maps (which associate values with user-specified keys) and lists (linear
sequences of values). The map datatype can also represent a set (by using keys as members
of the set, and ignoring values). The list datatype can also represent text (by mapping each
character to a list element). In both lists and maps the values may be primitives (such as
numbers or strings), or references to other map or list objects. Using these references we can
construct arbitrary object graphs, including cycles of object references, like in object-oriented
programming languages. In § 5 we will show how to restrict this object graph so that it
conforms to a tree structure.

We treat each key of a map, and each element of a list, as a multi-value register. That is,
if there are several concurrent assignments to the same map key or list element, our datatype
preserves all concurrently written values. Thus, reading a map key or list element may return
multiple values, which may be merged explicitly by the user. Assigning a new value to a map
key or list element overwrites all causally preceding values. Different register behaviour, such
as last-writer-wins (arbitrarily picking one of the concurrently written values as winner), can
easily be defined, as we show later.

3.1 Generating Operations
An OpSet for these datatypes may contain six types of operation:

(id, MakeMap) creates a new, empty map object that is identified by id.
(id, MakeList) creates a new, empty list object that is identified by id.
(id, MakeVal(val)) associates the ID id with the primitive value val (e.g. a number,
string, or boolean). This operation is used to “wrap” any primitive value, allowing Assign
operations (see below) to always use IDs as values, regardless of whether the value is a
primitive value, or a reference to a map or list object.
(id, InsertAfter(ref)) creates a new list element with ID id, and inserts it into a list. If ref
is the ID of a prior MakeList operation, then the new element is inserted at the head of
that list. Otherwise ref must be the ID of an existing list element (i.e. a prior InsertAfter
operation), in which case the new list element is inserted immediately after the referenced
list element. Note that the InsertAfter operation does not associate a value with the new
list element; that is done by a subsequent Assign operation.
(id, Assign(obj, key, val, prev)) assigns a new value to a key within a map (if obj is the ID
of a prior MakeMap operation), or to a list element (if obj is the ID of a prior MakeList
operation). In the case of map assignment, key is the user-specified key to be updated,
which may be any primitive value such as a string or integer. In the case of a list, key
is the ID of the list element to be updated (i.e. the ID of a prior InsertAfter operation).
val is the ID of the value being assigned, which may identify a MakeMap, MakeList, or
MakeVal operation. prev is the set of IDs of prior Assign operations to the same key in
the same object, which are overwritten by the present operation.
(id, Remove(obj, key, prev)) removes a key-value pair from a map, or an element from
a list. As with Assign, obj is the ID of the prior MakeMap or MakeList operation that
created the object being updated, and key identifies the key or list element being removed.
prev is the set of IDs of prior Assign operations to the same key in the same object, which
are removed by the present operation.

Pseudocode for generating these operations is given in Appendix A.

M. Kleppmann, V. B. F. Gomes, D. P. Mulligan, and A. R. Beresford :7

3.2 Interpreting Operations
We use the sequential OpSet interpretation given in § 2.2. To encode the current state of
map and list data structures we use a pair of relations (E, L):

The element relation E ⊆ (ID× ID× (ID ∪Key)× ID) is a set of 4-tuples containing
the values currently assigned to map keys and list elements. If (id, obj, key, val) ∈ E, then
an Assign operation with ID id updated the object with ID obj, assigning the value with
ID val to the map key or list element key. If obj references a list object, key is the ID of
an element in the list relation L (see below). If obj references a map object, any primitive
value such as string or integer may be used as key.

The list relation L ⊆ (ID× (ID ∪ {⊥})) is a set of pairs that indicates the order of list
elements. If (prev,next) ∈ L, that means the list element with ID prev is immediately
followed by the list element with ID next. We use (last,⊥) ∈ L to indicate that list
element last has no successor. To indicate that head is the first element in the list obj (i.e.
obj is the ID of the MakeList operation that created the list) we have (obj, head) ∈ L.

Initially, both relations are empty; that is, we have J∅K = InitialState = (∅, ∅). We can then
define the interpretation of the six operation types as follows:

interp
[
(E, L), (id, Assign(obj, key, val, prev))

]
=({

(id ′, obj ′, key′, val ′) ∈ E | id ′ /∈ prev
}
∪
{

(id, obj, key, val)
}
, L
)

interp
[
(E, L), (id, Remove(obj, key, prev))

]
=({

(id ′, obj ′, key′, val ′) ∈ E | id ′ /∈ prev
}
, L
)

interp
[
(E, L), (id, InsertAfter(ref))

]
=

(E, L) if @n. (ref , n) ∈ L(
E,
{

(p, n) ∈ L | p 6= ref
}
∪
{

(ref , id)
}
∪
{

(id, n) | (ref , n) ∈ L
})

if ∃n. (ref , n) ∈ L

interp
[
(E, L), (id, MakeList)

]
=
(
E, L ∪

{
(id, ⊥)

})
interp

[
(E, L), (id, MakeMap)

]
= (E, L)

interp
[
(E, L), (id, MakeVal(val))

]
= (E, L)

The interpretation of Assign and Remove updates only E and leaves L unchanged; con-
versely, the interpretation of InsertAfter and MakeList updates only L. Both the Assign and
Remove interpretations remove any tuples from causally prior assignments (those whose IDs
appear in prev), but leave any tuples from concurrent assignments unchanged. This is the
behaviour of a multi-value register; if a last-writer-wins register is required, the condition
id ′ /∈ prev can be changed to obj ′ 6= obj ∨ key′ 6= key, which removes any existing tuples
with the same object ID and key.

The interpretation of InsertAfter resembles the insertion into a linked list, as illustrated
in Figure 1. For example, to interpret (id, InsertAfter(ref)), if we have (ref ,next) ∈ L, we
remove the pair (ref ,next) from L, and add the pairs (ref , id) and (id,next) to L. Thus, the
new list element id is inserted between ref and next.

Note that L never shrinks, it only ever grows through interpreting InsertAfter operations.
When a list element is removed by a Remove operation, the effect is that all values are

:8 OpSets: Sequential Specifications for Replicated Datatypes

Before:

L = {(2, 13), (13, 5), (5, 23), (23,⊥)}

After adding (25, InsertAfter(13)) to OpSet:

L′ = L − {(13, 5)} ∪ {(13, 25), (25, 5)}

2 13 13 5 5 23 None

13 25 25 5

2 13 5 23 None

Figure 1 Illustration of the interpretation of an InsertAfter operation.

Hello!

Hello Alice! Hello Charlie!

Hello Al Ciharcliee!

Insert “ Alice” between “o” and “!” Insert “ Charlie” between “o” and “!”

Merge concurrent
edits

Figure 2 Two concurrent insertions at the same position are interleaved.

removed from the list element in the element relation E, but the list element remains in L as
a tombstone, so that any concurrent InsertAfter operations can still locate the referenced list
position. Thus, from a user’s point of view a list element only exists if it has at least one
associated value in the E relation; any list elements without an associated value should be
ignored.

4 Discussion: Merging Text Edits

The datatypes we have specified in § 3 can support a wide range of applications. For example,
the list datatype can be used to implement a collaborative text editor: by treating the text
as a list of individual characters, every edit can be expressed as a sequence of insertion or
deletion operations on the list.

The problem of collaborative text editing has been studied extensively, using two main
approaches: Operational Transformation and CRDTs. We discuss this prior work in § 6. We
will now highlight a scenario that, to our knowledge, has not been considered by any previous
work on collaborative text editing.

Consider the execution illustrated in Figure 2. In this example, two users are concurrently
editing a text document that initially reads “Hello!”. The user on the left changes it to read
“Hello Alice!”, while concurrently the user on the right changes the document to read “Hello
Charlie!”. When the concurrent edits are merged, the algorithm randomly interleaves the
two insertions of “ Alice” and “ Charlie” character by character, resulting in an unreadable
jumble of characters.

The problem is even worse if the concurrent insertions are not just a single word, but
an entire paragraph or section. In these cases, interleaving the users’ insertions would most
likely result in an entirely incomprehensible text that would have to be deleted and rewritten.
Even though the merge in Figure 2 is so obviously undesirable, there is to our knowledge

M. Kleppmann, V. B. F. Gomes, D. P. Mulligan, and A. R. Beresford :9

no formal specification of collaborative text editing that rules out such an interleaving of
insertions.

I Theorem 1. The Astrong specification of collaborative text editing by Attiya et al. [4] allows
the outcome in Figure 2; that is, an algorithm that interleaves concurrent insertions at the
same position may nevertheless satisfy the Astrong specification. Moreover, the text editing
CRDT algorithms Logoot [62, 63] and LSEQ [42, 43] also allow this outcome.

Proof. Follows directly from the respective definitions, which are all based on the idea of
assigning each character a position in a totally ordered identifier space, such that the order
of identifiers corresponds to the order of characters in the document. When a new character
is inserted, it is assigned an identifier that lies somewhere between the identifiers of its
predecessor and successor. However, when concurrent insertions with the same predecessor
and successor are performed, those insertions are ordered arbitrarily. Repeated insertions
within the same predecessor-successor interval may thus be interleaved arbitrarily.

We also performed tests with open source implementations of Logoot [1, 3] and LSEQ
[12, 42], and observed this interleaving anomaly occurring in practice. J

Rather than interleaving characters, a better approach to merging is to keep all insertions
by a particular user together as a continuous sequence. With this constraint, there are two
acceptable merged results in the example of Figure 2: either “Hello Alice Charlie!” or “Hello
Charlie Alice!”. The choice between these two outcomes is arbitrary, as there is no a priori
requirement for one user’s insertions to come before the other’s.

I Theorem 2. The list specification from § 3 does not allow interleaving of concurrent
insertions. That is, if one user inserts a character sequence 〈x1, x2, . . . , xn〉 and another
user concurrently inserts a character sequence 〈y1, y2, . . . , ym〉 at the same position, the
merged document contains either the character sequence 〈x1, x2, . . . , xn, y1, y2, . . . , ym〉 or the
character sequence 〈y1, y2, . . . , ym, x1, x2, . . . , xn〉 at the specified position.

Proof. We formalise the list specification and Theorem 2 using the Isabelle/HOL proof
assistant [64]. The formal proof development is summarised in Appendix C.3. J

For an informal argument why interleaving is ruled out, see Figure 3, which shows an
editing scenario similar to Figure 2, but with the insertions of “ Alice” and “ Charlie”
shortened to “Al” and “Ch” respectively. The example contains four insertion operations
(“A”, “l”, “C”, and “h”), which can be ordered in six possible ways. However, among the six
possible operation orderings there are only two possible results: ChAl or AlCh. Interleavings
such as CAhl or AChl never occur.

In fact, the end result depends only on the relative ordering of the operations that
insert “A” and “C”, respectively. All other operations can be reordered without affecting
the outcome. Thus, even if the inserted strings are longer than two characters, their relative
ordering only depends on the IDs of their first character. The remaining characters follow
their initial character without interleaving.

Note that there are only six possible orderings of the four operations, and not 4! = 24,
because the Lamport timestamp ordering on identifiers (as given in § 2.1) is a linear extension
of the causal order. In this example we assume that text is typed from left to right (that is,
“A” is always inserted before “l”, and “C” is inserted before “h”). This implies that the ID of
the operation inserting “l” must be greater than that of the insertion of “A”, and likewise
the “h” insertion must be greater than the “C” insertion.

:10 OpSets: Sequential Specifications for Replicated Datatypes

id1, InsertAfter(id0), “A”→ A id1, InsertAfter(id0), “A”→ A id1, InsertAfter(id0), “A”→ A
id2, InsertAfter(id1), “l” → Al id2, InsertAfter(id0), “C”→ CA id2, InsertAfter(id0), “C”→ CA
id3, InsertAfter(id0), “C”→ CAl id3, InsertAfter(id1), “l” → CAl id3, InsertAfter(id2), “h” → ChA
id4, InsertAfter(id3), “h” → ChAl id4, InsertAfter(id2), “h” → ChAl id4, InsertAfter(id1), “l” → ChAl

id1, InsertAfter(id0), “C”→ C id1, InsertAfter(id0), “C”→ C id1, InsertAfter(id0), “C”→ C
id2, InsertAfter(id0), “A”→ AC id2, InsertAfter(id0), “A”→ AC id2, InsertAfter(id1), “h” → Ch
id3, InsertAfter(id2), “l” → AlC id3, InsertAfter(id1), “h” → ACh id3, InsertAfter(id0), “A”→ ACh
id4, InsertAfter(id1), “h” → AlCh id4, InsertAfter(id2), “l” → AlCh id4, InsertAfter(id3), “l” → AlCh

Figure 3 All possible operation orderings when the strings “Al” (for “Alice”) and “Ch” (for
“Charlie”) are concurrently inserted at the same position. The operation IDs are arbitrary; we only
require that id0 < id1 < id2 < id3 < id4.

I Theorem 3. The OpSet list specification from § 3 is strictly stronger than the Astrong
specification of Attiya et al [4]. That is, any algorithm that satisfies the list specification given
in § 3 also satisfies Astrong, but the converse is not true.

Proof. We formalise the Astrong specification with Isabelle/HOL, and produce a mechanically
verified proof that every possible execution of the list specification from § 3 satisfies all
conditions of Astrong. The formal proof development is summarised in Appendix C.5. The
fact that our specification is strictly stronger follows from Theorems 1 and 2. J

I Theorem 4. The RGA algorithm [49] satisfies the OpSet list specification introduced in
this paper, while Logoot [62, 63] and LSEQ [42, 43] do not.

Proof. We use Isabelle/HOL to prove that RGA satisfies our specification, as described in
Appendix C.4. Our Isabelle/HOL implementation of RGA is based on the formalisation that
we developed in previous work [20, 21]. The fact that Logoot and LSEQ do not satisfy our
specification follows directly from Theorems 1 and 2. J

5 A Replicated Tree Datatype

In § 3 we gave an OpSet specification of a replicated object graph datatype. In this model,
every map or list object has a unique ID (namely, the ID of the MakeMap or MakeList
operation that created it), and objects can reference each other using these IDs.

We now build upon this model, showing how to restrict the object graph so that it is
always a tree. A tree is a graph in which every vertex has exactly one parent (except for
the root, which has no parent), and in which the parent relation has no cycles. Tree data
structures are useful in many applications: for example, file systems (consisting of directories
and files) and XML or JSON documents are trees. Branch nodes in this tree may be either
maps or lists, and leaf nodes are primitive values (wrapped in a MakeVal operation).

5.1 The Difficulty of a Move Operation
In applications that use tree-structured data, a frequently required operation is to move a
subtree to a new location within the tree. For example:

In a filesystem, renaming a directory can be expressed as moving the directory node from
the old name to the new name. Similarly, a directory may be moved to a new path.

M. Kleppmann, V. B. F. Gomes, D. P. Mulligan, and A. R. Beresford :11

root

A

C

B

root

A

B C

root

B

A

C

?

Move B to be
a child of A

Move A to be
a child of B

merge

(a) root

A

B C

(b) root

A

B

B′

A′

C

(c) root

A

B C

(d) root

B

A

C

Figure 4 Initially, A and B are siblings. B is moved to be a child of A, while concurrently A is
moved to be a child of B. Boxes (a) to (d) show possible outcomes of the merge.

In vector graphics applications, several graphical objects may be grouped together as a
logical unit. This operation can be expressed by creating a new branch node to represent
the group, and then moving the individual objects to be children of that group node.

In a to-do list application, users may use the order of items in the list to denote a priority
order, and they may drag and drop items to change their relative order. Reordering items
is equivalent to moving items to new locations within the list.

A move operation can be naively emulated by deleting the subtree from its old location
and recreating it at the new location. However, if two users perform this process concurrently,
the resulting tree will contain two copies of the moved subtree, which would be undesirable
in all of the application examples given above. Thus, we require an atomic move operation
that does not create duplicate objects in case of concurrent moves.

A more subtle kind of conflict is illustrated in Figure 4. Here, B is moved to be a child
of A, while concurrently A is moved to be a child of B. If the CRDT does not take care to
detect this situation, it may introduce a cycle in the merged result, as shown in Figure 4(a);
this result is no longer a tree. Handling such conflicting move operations is a challenging
problem, and to our knowledge no existing implementation of a tree CRDT has found an
adequate solution to this problem.

Several CRDT tree datatypes for XML [37, 45] and JSON data [32, 34, 58] have been
developed, but to our knowledge, none of them define a move operation. Tao et al. [55]
implemented a CRDT-based replicated filesystem, resolving concurrent moves with an
approach illustrated in Figure 4(b): conflicting branch nodes (directories) are duplicated,
and leaf nodes (files) may be referenced from multiple branch nodes. Thus, Tao et al.’s data
structure is strictly a DAG, not a tree.

Najafzadeh [40, 41] also implemented a CRDT-based replicated filesystem, but chose
a different approach: move operations must acquire a global lock before they can proceed,
which ensures that conflicting concurrent move operations cannot occur in the first place.
This conservative approach rules out move conflicts, but the resulting datatype is not strictly
a CRDT, since some operations require strongly consistent synchronisation.

:12 OpSets: Sequential Specifications for Replicated Datatypes

5.2 Specifying a Tree with Atomic Moves

We now demonstrate the power of the OpSets approach by using it to define a tree CRDT
with an anomaly-free atomic move operation. Our specification rules out violations of the
tree structure such as those in Figure 4(a,b), and concurrent moves do not duplicate tree
nodes. Moreover, our CRDT does not require any locks or global synchronisation.

When the OpSet contains conflicting move operations, our specification chooses one of
them as the one that takes effect, and simply ignores the other conflicting operations. Thus,
in the example of Figure 4, the merged outcome of the two conflicting move operations
is either (c) or (d). If two users concurrently move the same item to different locations,
the move operation with the greater ID determines the item’s final location. However, in
non-conflict situations, all concurrent move operations take effect.

We define a tree to be a restricted form of the object graph specified in § 3. First,
we require that there is a designated root object: assume that we have an operation ID
root that is less than all other operation IDs (according to the total order on identifiers,
introduced in § 2.1). Further assume that for any OpSet O specifying a tree, we have either
(root, MakeList) ∈ O or (root, MakeMap) ∈ O, depending on whether the root node is a list
or a map. We define an object x to be the parent of an object y if one of the values in x is a
reference to y. The ancestor relation is the transitive closure of the parent relation, defined
using the element relation E:

parent(E, i) =
{{

(obj, val) | ∃ id, key. (id, obj, key, val) ∈ E
}

if i = 1{
(x, z) | (x, y) ∈ parent(E, i− 1) ∧ (y, z) ∈ parent(E, 1)

}
if i > 1

ancestor(E) =
⋃

i ≥ 1
parent(E, i)

An object graph is a tree if the root has no parent, every non-root node has exactly
one parent, and if the ancestor relation has no cycles. We can redefine the operation
interpretations from § 3.2 to preserve this tree invariant. In fact, it is sufficient to redefine
only the interpretation of Assign, and to leave the interpretation of the other five operation
types unchanged:

interp
[
(E, L), (id, Assign(obj, key, val, prev))

]
=

(E, L) if (val, obj) ∈ ancestor(E)({
(id ′, obj ′, key′, val ′) ∈ E | id ′ /∈ prev ∧ val ′ 6= val

}
∪
{

(id, obj, key, val)
}
, L
)

if (val, obj) /∈ ancestor(E)

This definition differs in two ways from that in § 3.2. Firstly, the operation has no effect
if val is already an ancestor of the proposed parent obj, since the operation would otherwise
introduce a cycle. Secondly, any existing tuple in E that references the same value val is
removed, preserving the invariant that every non-root node must have exactly one parent.

This interpretation of Assign performs an atomic move whenever val is the ID of an
existing object in the tree; in that case, it is moved from its existing position to the key key
in the object obj. If val does not currently exist in the tree (e.g. because it has just been
created), the operation behaves like conventional assignment.

M. Kleppmann, V. B. F. Gomes, D. P. Mulligan, and A. R. Beresford :13

6 Related Work

6.1 Interpretation of Operation Sequences
The general idea of establishing a total order of operations, and executing them in that
order, appears in many areas of computing: for example, in the state machine approach
to replication [50], the event sourcing approach to data modelling [59], write-ahead logs
for crash recovery [38], serializable transactions [13], and scalable multicore data structures
[8]. However, beneath the superficial similarity of these approaches there are important
differences that need to be distinguished.

As discussed in § 2.3, many of these systems rely on the property that after some operation
is executed, all subsequent operations will appear after it in the total order. In other words,
the operation sequence is an append-only log, and new operations never need to be inserted
ahead of an existing operation in the total order. This is a very strong property: in the
context of a distributed system, it requires an atomic broadcast (or total order broadcast)
protocol [15], which is equivalent to solving distributed consensus [11]. This class of protocols
requires communication with a quorum of nodes in order to make progress [27], and it cannot
guarantee progress in a fully asynchronous setting [17].

By contrast, the sequential OpSet interpretation of § 2.2 does not require atomic broadcast
because it allows operations to be added to the OpSet in any order, and it assigns operation
IDs without any coordination. Few systems use this approach; the most closely related prior
work are the Bayou system [57], which executes tentative transactions deterministically in
timestamp order, and Burckhardt’s standard conflict resolution [9, § 4.3.3]. Both of these
share the OpSet approach’s characteristic that operations with a higher ID need to be undone
and re-applied when a new operation with a lower ID is received.

Our contribution in this paper is to formulate the OpSet approach more generally as a
tool for specifying and reasoning about complex replicated data structures, such as lists and
trees. Our work is the first to use this approach in mechanised proofs, in which we show that
a non-OpSet list CRDT (RGA) satisfies an OpSet-based specification, and prove the absence
of the interleaving anomaly in Figure 2.

Baquero et al. [6] and Grishchenko [23] have proposed representing CRDTs in terms of a
partially-ordered log of operations, where the partial order captures the causal relationships
between operations. The OpSet approach can be seen as a variant of this idea, in which we
define the total order on identifiers to be a linear extension of the partial order.

6.2 Specification and Verification of Replicated Datatypes
Algorithms for collaboratively editing a shared data structure have been the topic of active
research for approximately 30 years, under the headings of Operational Transformation
[16, 48, 53, 47] and CRDTs [51, 52]. However, throughout this time, the exact consistency
properties provided by the algorithms have been somewhat unclear. For example, Sun et
al. [54] identified three desirable properties that they articulated informally: convergence,
causality preservation, and intention preservation. While the definition of the first two
properties is fairly unambiguous, the definition of “intention preservation” leaves much more
room for interpretation. Efforts to formally specify and verify the semantics of replicated
datatypes have replaced such informal statements with precise consistency properties.

Burckhardt et al. [10] provide a wide-ranging formal account of CRDTs, covering their
specification, verification, and optimality, with the semantics of an operation on a replicated
datatype given as a function of the operation, o, and a operation context—the set of operations

:14 OpSets: Sequential Specifications for Replicated Datatypes

visible to a node at the time that o was received. Our OpSets can be seen as an explicitly
executable variation on this idea: nodes record all operations that they have ever received in
a monotonically growing set, and the interpretation function builds the result “bottom up” in
a fold-like operation. In contrast to Burckhardt et al., who focus on applying their techniques
to set and counter datatypes, we apply our approach to the specification of lists, maps, and
trees, using our OpSets as a tool for designing new replicated datatypes—including those
previously thought impossible, such as our replicated tree with atomic move. Gotsman et
al. [22] extend Burckhardt et al.’s formalism to reason about hybrid consistency models,
providing a modular proof rule inspired by permissions-based logics to enforce an integrity
invariant for a given consistency model.

Bieniusa et al. [7] articulate a principle of permutation equivalence that partially specifies
the expected semantics of replicated datatypes, but which leaves some combinations of oper-
ations unspecified. Zeller et al. [65] formalise counters, registers, and sets using Isabelle/HOL
and provide mechanised proofs of their correctness. Attiya et al. [4] give two specifications
of collaborative text editing (Astrong and Aweak), prove that the RGA CRDT [49] satisfies
Astrong, and conjecture that the Operational Transformation algorithm Jupiter [44] satisfies
Aweak. Wei et al. [61] complete the proof that Jupiter satisfies Aweak.

In our prior work [21] we establish a formal verification framework for CRDTs in Is-
abelle/HOL, and verify the strong eventual consistency properties (in particular, convergence)
of a list, set, and counter datatype. The Isabelle implementation of RGA we use in § 3 is
based on this work [20]. However, this work does not specify the datatype semantics beyond
the convergence property.

Gaducci et al. [18] develop a semantics for replicated datatypes, placing a focus on
compositionality, where a replicated datatype is modelled as a function from labelled directed
acyclic graphs of events to sets of values, with each value in this set potentially observable at
a node under different ordering of events observed at that node. A notion of behavioural
refinement for replicated datatypes induced by set inclusion is also defined, along with a
generalisation of their relational semantics to a categorical one.

Mukund et al. [39] use traces to provide bounded declarative specifications of CRDTs
and show how Counter Example Guided Abstract Refinement (CEGAR) can be used to
automatically verify a reference CRDT implementation against its bounded specification.

6.3 Collaborative Tree Datatypes
For collaborative editing of tree data structures, several CRDTs [37, 32] and Operational
Transformation algorithms [29, 28, 14] have been proposed. However, most of them only
consider insertion and deletion of tree nodes, but do not support a move operation.

As explained in § 5, supporting an operation that can move a subtree to a new location
within a tree introduces new conflicts that need to be handled. Ahmed-Nacer et al. [2] survey
approaches to handling these conflicts without providing concrete algorithms. Tao et al. [55]
propose handling conflicting move operations by allowing the same object to appear in more
than one location; thus, their datatype is strictly a DAG, not a tree.

Najafzadeh [40, 41] asserts that concurrent move operations on a tree cannot safely be
implemented in a CRDT, since the precondition of a move operation is not stable. Najafzadeh
suggests the use of locks to globally synchronise move operations, preventing a scenario such
as that in Figure 4 from ever occurring. However, the resulting datatype is not strictly a
CRDT, since some operations require strongly consistent synchronisation.

To our knowledge, our move semantics specified in § 5 is the first definition of such an
operation on a fully asynchronous tree CRDT. We avoid the apparent contradiction with

M. Kleppmann, V. B. F. Gomes, D. P. Mulligan, and A. R. Beresford :15

Najafzadeh’s assertion by evaluating the precondition (val, obj) /∈ ancestor(E) at the same
time as applying the operation, rather than at the time when the operation is generated,
and by applying all operations in the OpSet in a deterministic order.

7 Conclusion

In this work we have introduced Operation Sets (OpSets), a simple but powerful approach
for specifying the semantics of replicated datatypes. We specified a variety of common,
composable replicated datatypes in the OpSets model, and used Isabelle/HOL to formally
reason about their properties. We have used this specification to highlight an interleaving
anomaly that affects some existing collaborative text editing algorithms, and proved that the
RGA algorithm satisfies our list specification. Finally, we demonstrated how the OpSet model
to can be used to develop new replication algorithms, and we introduced a specification for
an atomic move operation in a tree CRDT.

The OpSets approach is an executable specification that precisely defines the permitted
states of a replica after some set of updates have been applied. In this paper we have used a
sequential OpSet interpretation: operations are applied in strict ascending order of ID. This
property is very useful as it trivially ensures convergence, and it simplifies reasoning about
specifications and invariants for CRDTs. In contrast, the traditional approach to defining
CRDTs requires operations to be commutative, increasing their complexity. In proving that
RGA satisfies our list specification, we demonstrate a correspondence between sequential
specification and commutative implementation; for future work it will be interesting to
further explore this correspondence for other datatypes. In particular, we hypothesise that it
is possible to derive a tree CRDT with a commutative move operation from the specification
in § 5, which could then be used to implement a distributed peer-to-peer file system.

Although we focussed on sequential OpSet interpretations in this paper, note that any
deterministic function can be used as interpretation function J−K. In particular, one can
view the OpSet as a database of facts, containing all changes ever made to the shared data,
and the interpretation function as a query over this database. The resulting datatype is
then a materialized view in database terminology. When new operations are added to an
OpSet O, computing the corresponding change to JOK is a materialized view maintenance
problem, for which optimised algorithms have been developed [24]. We hypothesise that these
techniques can be applied to replicated datatypes, allowing efficient CRDT implementations
to be derived from an OpSet-based specification.

Acknowledgements

The authors wish to acknowledge the support of The Boeing Company, the EPSRC “REMS:
Rigorous Engineering for Mainstream Systems” programme grant (EP/K008528), and the EP-
SRC “Interdisciplinary Centre for Finding, Understanding and Countering Crime in the Cloud”
grant (EP/M020320). We thank Nathan Chong, Peter Sewell, and KC Sivaramakrishnan for
their helpful feedback on this paper.

References

1 Mehdi Ahmed-Nacer, Claudia-Lavinia Ignat, Gérald Oster, Hyun-Gul Roh, and Pascal Urso.
Evaluating CRDTs for real-time document editing. In 11th ACM Symposium on Document
Engineering (DocEng), pages 103–112, September 2011. doi:10.1145/2034691.2034717.

http://dx.doi.org/10.1145/2034691.2034717

:16 OpSets: Sequential Specifications for Replicated Datatypes

2 Mehdi Ahmed-Nacer, Stéphane Martin, and Pascal Urso. File system on CRDT. Technical
Report RR-8027, INRIA, July 2012. URL: https://hal.inria.fr/hal-00720681/.

3 Mehdi Ahmed-Nacer, Gérald Oster, and Pascal Urso. Java benchmarker of optimistic
replication algorithms. URL: https://github.com/PascalUrso/ReplicationBenchmark.

4 Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morrison, Hongseok Yang,
and Marek Zawirski. Specification and complexity of collaborative text editing. In ACM
Symposium on Principles of Distributed Computing (PODC), pages 259–268, July 2016.
doi:10.1145/2933057.2933090.

5 Peter Bailis and Ali Ghodsi. Eventual consistency today: Limitations, extensions, and
beyond. ACM Queue, 11(3), March 2013. doi:10.1145/2460276.2462076.

6 Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Making operation-based
CRDTs operation-based. In 14th IFIP International Conference on Distributed Appli-
cations and Interoperable Systems (DAIS), pages 126–140, June 2014. doi:10.1007/
978-3-662-43352-2_11.

7 Annette Bieniusa, Marek Zawirski, Nuno Preguiça, Marc Shapiro, Carlos Baquero, Val-
ter Balegas, and Sérgio Duarte. Brief announcement: Semantics of eventually consistent
replicated sets. In 26th International Symposium on Distributed Computing (DISC), pages
441–442, October 2012. doi:10.1007/978-3-642-33651-5_48.

8 Silas Boyd-Wickizer, M Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. OpLog: a
library for scaling update-heavy data structures. Technical Report MIT-CSAIL-TR-2014-
019, MIT CSAIL, September 2014. URL: http://hdl.handle.net/1721.1/89653.

9 Sebastian Burckhardt. Principles of eventual consistency. Foundations and Trends in
Programming Languages, 1(1-2):1–150, October 2014. doi:10.1561/2500000011.

10 Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. Replicated
data types: Specification, verification, optimality. In 41st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL), pages 271–284, January 2014.
doi:10.1145/2535838.2535848.

11 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, March 1996. doi:10.1145/226643.226647.

12 Chat-Wane. LSEQTree. URL: https://github.com/Chat-Wane/LSEQTree.
13 Susan B Davidson, Hector Garcia-Molina, and Dale Skeen. Consistency in partitioned

networks. ACM Computing Surveys, 17(3):341–370, September 1985. doi:10.1145/5505.
5508.

14 Aguido Horatio Davis, Chengzheng Sun, and Junwei Lu. Generalizing operational trans-
formation to the Standard General Markup Language. In ACM Conference on Computer
Supported Cooperative Work (CSCW), pages 58–67, November 2002. doi:10.1145/587078.
587088.

15 Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Computing Surveys, 36(4):372–421, December
2004. doi:10.1145/1041680.1041682.

16 Clarence Ellis and S J Gibbs. Concurrency control in groupware systems. In ACM In-
ternational Conference on Management of Data (SIGMOD), pages 399–407, May 1989.
doi:10.1145/67544.66963.

17 Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, April 1985. doi:
10.1145/3149.214121.

18 Fabio Gadducci, Hernán C. Melgratti, and Christian Roldán. A denotational view of repli-
cated data types. In 19th International Conference on Coordination Models and Languages
(COORDINATION), pages 138–156, June 2017. doi:10.1007/978-3-319-59746-1_8.

https://hal.inria.fr/hal-00720681/
https://github.com/PascalUrso/ReplicationBenchmark
http://dx.doi.org/10.1145/2933057.2933090
http://dx.doi.org/10.1145/2460276.2462076
http://dx.doi.org/10.1007/978-3-662-43352-2_11
http://dx.doi.org/10.1007/978-3-662-43352-2_11
http://dx.doi.org/10.1007/978-3-642-33651-5_48
http://hdl.handle.net/1721.1/89653
http://dx.doi.org/10.1561/2500000011
http://dx.doi.org/10.1145/2535838.2535848
http://dx.doi.org/10.1145/226643.226647
https://github.com/Chat-Wane/LSEQTree
http://dx.doi.org/10.1145/5505.5508
http://dx.doi.org/10.1145/5505.5508
http://dx.doi.org/10.1145/587078.587088
http://dx.doi.org/10.1145/587078.587088
http://dx.doi.org/10.1145/1041680.1041682
http://dx.doi.org/10.1145/67544.66963
http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1007/978-3-319-59746-1_8

M. Kleppmann, V. B. F. Gomes, D. P. Mulligan, and A. R. Beresford :17

19 Seth Gilbert and Nancy A Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. ACM SIGACT News, 33(2):51–59, 2002. doi:
10.1145/564585.564601.

20 Victor B F Gomes, Martin Kleppmann, Dominic P Mulligan, and Alastair R Beresford. A
framework for establishing strong eventual consistency for conflict-free replicated data types.
Archive of Formal Proofs, July 2017. URL: http://isa-afp.org/entries/CRDT.html.

21 Victor B F Gomes, Martin Kleppmann, Dominic P Mulligan, and Alastair R Beresford.
Verifying strong eventual consistency in distributed systems. Proceedings of the ACM on
Programming Languages (PACMPL), 1(OOPSLA), October 2017. doi:10.1145/3133933.

22 Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro.
‘Cause I’m strong enough: reasoning about consistency choices in distributed systems.
In 43rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), pages 371–384, January 2016. doi:10.1145/2837614.2837625.

23 Victor Grishchenko. Citrea and Swarm: Partially ordered op logs in the browser. In
1st Workshop on Principles and Practice of Eventual Consistency (PaPEC), April 2014.
doi:10.1145/2596631.2596641.

24 Ashish Gupta and Inderpal Singh Mumick. Materialized Views: Techniques, Implementa-
tions, and Applications. MIT Press, May 1999.

25 Florian Haftmann and Makarius Wenzel. Local theory specifications in Isabelle/Isar. In
International Workshop on Types for Proofs and Programs (TYPES), pages 153–168, 2008.
doi:10.1007/978-3-642-02444-3_10.

26 Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems (TOPLAS),
12(3):463–492, July 1990. doi:10.1145/78969.78972.

27 Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. Flexible Paxos: Quorum inter-
section revisited. In 20th International Conference on Principles of Distributed Systems
(OPODIS), December 2016. doi:10.4230/LIPIcs.OPODIS.2016.25.

28 Claudia-Lavinia Ignat and Moira C Norrie. Customizable collaborative editor relying on
treeOPT algorithm. In 8th European Conference on Computer-Supported Cooperative Work
(ECSCW), pages 315–334, September 2003. doi:10.1007/978-94-010-0068-0_17.

29 Tim Jungnickel and Tobias Herb. Simultaneous editing of JSON objects via operational
transformation. In 31st Annual ACM Symposium on Applied Computing (SAC), pages
812–815, April 2016. doi:10.1145/2851613.2852003.

30 Florian Kammüller, Markus Wenzel, and Lawrence C. Paulson. Locales - A sectioning
concept for Isabelle. In 12th International Conference on Theorem Proving in Higher
Order Logics (TPHOLs), pages 149–166, 1999. doi:10.1007/3-540-48256-3_11.

31 Martin Kleppmann. Designing Data-Intensive Applications. O’Reilly Media, April 2017.
32 Martin Kleppmann and Alastair R Beresford. A conflict-free replicated JSON datatype.

IEEE Transactions on Parallel and Distributed Systems, 28(10):2733–2746, April 2017. doi:
10.1109/TPDS.2017.2697382.

33 Martin Kleppmann, Victor B. F. Gomes, Dominic P. Mulligan, and Alastair R. Beresford.
OpSets: Sequential specifications for replicated datatypes (proof document), May 2018.
URL: https://www.isa-afp.org/entries/OpSets.html.

34 Martin Kleppmann, Peter van Hardenberg, and Orion Henry. Automerge. URL: https:
//github.com/automerge/automerge.

35 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commu-
nications of the ACM, 21(7):558–565, July 1978. doi:10.1145/359545.359563.

36 Paul J Leach, Michael Mealling, and Rich Salz. A Universally Unique IDentifier (UUID)
URN namespace. IETF Standards Track, RFC 4122, July 2005. doi:10.17487/rfc4122.

http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1145/564585.564601
http://isa-afp.org/entries/CRDT.html
http://dx.doi.org/10.1145/3133933
http://dx.doi.org/10.1145/2837614.2837625
http://dx.doi.org/10.1145/2596631.2596641
http://dx.doi.org/10.1007/978-3-642-02444-3_10
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2016.25
http://dx.doi.org/10.1007/978-94-010-0068-0_17
http://dx.doi.org/10.1145/2851613.2852003
http://dx.doi.org/10.1007/3-540-48256-3_11
http://dx.doi.org/10.1109/TPDS.2017.2697382
http://dx.doi.org/10.1109/TPDS.2017.2697382
https://www.isa-afp.org/entries/OpSets.html
https://github.com/automerge/automerge
https://github.com/automerge/automerge
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.17487/rfc4122

:18 OpSets: Sequential Specifications for Replicated Datatypes

37 Stéphane Martin, Pascal Urso, and Stéphane Weiss. Scalable XML collaborative editing
with undo. In On the Move to Meaningful Internet Systems, pages 507–514, October 2010.
doi:10.1007/978-3-642-16934-2_37.

38 C Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. ARIES:
A transaction recovery method supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Transactions on Database Systems (TODS), 17(1):94–
162, March 1992. doi:10.1145/128765.128770.

39 Madhavan Mukund, Gautham Shenoy R., and S. P. Suresh. Effective verification of repli-
cated data types using later appearance records (LAR). In 13th International Symposium
on Automated Technology for Verification and Analysis (ATVA), pages 293–308, October
2015. doi:10.1007/978-3-319-24953-7_23.

40 Mahsa Najafzadeh. The Analysis and Co-design of Weakly-Consistent Applications.
PhD thesis, Université Pierre et Marie Curie, August 2016. URL: https://tel.
archives-ouvertes.fr/tel-01351187v1.

41 Mahsa Najafzadeh, Marc Shapiro, and Patrick Eugster. Co-design and verification of
an available file system. In 19th International Conference on Verification, Model Check-
ing, and Abstract Interpretation (VMCAI), pages 358–381, January 2018. doi:10.1007/
978-3-319-73721-8_17.

42 Brice Nédelec, Pascal Molli, and Achour Mostefaoui. CRATE: Writing stories together with
our browsers. In 25th International World Wide Web Conference (WWW), pages 231–234,
April 2016. doi:10.1145/2872518.2890539.

43 Brice Nédelec, Pascal Molli, Achour Mostefaoui, and Emmanuel Desmontils. LSEQ:
an adaptive structure for sequences in distributed collaborative editing. In 13th ACM
Symposium on Document Engineering (DocEng), pages 37–46, September 2013. doi:
10.1145/2494266.2494278.

44 David A Nichols, Pavel Curtis, Michael Dixon, and John Lamping. High-latency, low-
bandwidth windowing in the Jupiter collaboration system. In 8th Annual ACM Symposium
on User Interface Software and Technology (UIST), pages 111–120, November 1995. doi:
10.1145/215585.215706.

45 Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. Yjs: A framework for
near real-time P2P shared editing on arbitrary data types. In 15th International Conference
on Web Engineering (ICWE), June 2015. doi:10.1007/978-3-319-19890-3_55.

46 Tobias Nipkow and Gerwin Klein. Concrete Semantics - With Isabelle/HOL. Springer,
2014. doi:10.1007/978-3-319-10542-0.

47 Gérald Oster, Pascal Molli, Pascal Urso, and Abdessamad Imine. Tombstone transfor-
mation functions for ensuring consistency in collaborative editing systems. In 2nd Inter-
national Conference on Collaborative Computing (CollaborateCom), 2006. doi:10.1109/
COLCOM.2006.361867.

48 Matthias Ressel, Doris Nitsche-Ruhland, and Rul Gunzenhäuer. An integrating,
transformation-oriented approach to concurrency control and undo in group editors. In
ACM Conference on Computer Supported Cooperative Work (CSCW), pages 288–297,
November 1996. doi:10.1145/240080.240305.

49 Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. Replicated abstract data
types: Building blocks for collaborative applications. Journal of Parallel and Distributed
Computing, 71(3):354–368, 2011. doi:10.1016/j.jpdc.2010.12.006.

50 Fred B Schneider. Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Computing Surveys, 22(4):299–319, December 1990. doi:10.1145/98163.
98167.

http://dx.doi.org/10.1007/978-3-642-16934-2_37
http://dx.doi.org/10.1145/128765.128770
http://dx.doi.org/10.1007/978-3-319-24953-7_23
https://tel.archives-ouvertes.fr/tel-01351187v1
https://tel.archives-ouvertes.fr/tel-01351187v1
http://dx.doi.org/10.1007/978-3-319-73721-8_17
http://dx.doi.org/10.1007/978-3-319-73721-8_17
http://dx.doi.org/10.1145/2872518.2890539
http://dx.doi.org/10.1145/2494266.2494278
http://dx.doi.org/10.1145/2494266.2494278
http://dx.doi.org/10.1145/215585.215706
http://dx.doi.org/10.1145/215585.215706
http://dx.doi.org/10.1007/978-3-319-19890-3_55
http://dx.doi.org/10.1007/978-3-319-10542-0
http://dx.doi.org/10.1109/COLCOM.2006.361867
http://dx.doi.org/10.1109/COLCOM.2006.361867
http://dx.doi.org/10.1145/240080.240305
http://dx.doi.org/10.1016/j.jpdc.2010.12.006
http://dx.doi.org/10.1145/98163.98167
http://dx.doi.org/10.1145/98163.98167

M. Kleppmann, V. B. F. Gomes, D. P. Mulligan, and A. R. Beresford :19

51 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A comprehensive study
of convergent and commutative replicated data types. Technical Report 7506, INRIA, 2011.
URL: http://hal.inria.fr/inria-00555588/.

52 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replicated
data types. In 13th International Symposium on Stabilization, Safety, and Security of Dis-
tributed Systems (SSS), pages 386–400, October 2011. doi:10.1007/978-3-642-24550-3_
29.

53 Chengzheng Sun and Clarence Ellis. Operational transformation in real-time group edi-
tors: Issues, algorithms, and achievements. In ACM Conference on Computer Supported
Cooperative Work (CSCW), pages 59–68, November 1998. doi:10.1145/289444.289469.

54 Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang, and David Chen. Achieving
convergence, causality preservation, and intention preservation in real-time cooperative
editing systems. ACM Transactions on Computer-Human Interaction (TOCHI), 5(1):63–
108, 1998. doi:10.1145/274444.274447.

55 Vinh Tao, Marc Shapiro, and Vianney Rancurel. Merging semantics for conflict updates
in geo-distributed file systems. In 8th ACM International Systems and Storage Conference
(SYSTOR), May 2015. doi:10.1145/2757667.2757683.

56 Douglas B Terry, Alan J Demers, Karin Petersen, Mike J Spreitzer, Marvin M Theimer,
and Brent B Welch. Session guarantees for weakly consistent replicated data. In 3rd
International Conference on Parallel and Distributed Information Systems (PDIS), pages
140–149, September 1994. doi:10.1109/PDIS.1994.331722.

57 Douglas B Terry, Marvin M Theimer, Karin Petersen, Alan J Demers, Mike J Spreitzer,
and Carl H Hauser. Managing update conflicts in Bayou, a weakly connected replicated
storage system. In 15th ACM Symposium on Operating Systems Principles (SOSP), pages
172–182, December 1995. doi:10.1145/224056.224070.

58 Frank S Thomas. crjdt: A conflict-free replicated JSON datatype in Scala. URL: https:
//github.com/fthomas/crjdt.

59 Vaughn Vernon. Implementing Domain-Driven Design. Addison-Wesley Professional,
February 2013.

60 Werner Vogels. Eventually consistent. Communications of the ACM, 52(1):40–44, January
2009. doi:10.1145/1435417.1435432.

61 Hengfeng Wei, Yu Huang, and Jian Lu. Specification and implementation of replicated list:
The Jupiter protocol revisited. arxiv.org, August 2017. URL: https://arxiv.org/abs/
1708.04754.

62 Stéphane Weiss, Pascal Urso, and Pascal Molli. Logoot: A scalable optimistic repli-
cation algorithm for collaborative editing on P2P networks. In 29th IEEE Interna-
tional Conference on Distributed Computing Systems (ICDCS), pages 404–412, June 2009.
doi:10.1109/ICDCS.2009.75.

63 Stéphane Weiss, Pascal Urso, and Pascal Molli. Logoot-Undo: Distributed collaborative
editing system on P2P networks. IEEE Transactions on Parallel and Distributed Systems,
21(8):1162–1174, January 2010. doi:10.1109/TPDS.2009.173.

64 Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The Isabelle framework. In
21st International Conference on Theorem Proving in Higher Order Logics (TPHOLs),
pages 33–38, August 2008. doi:10.1007/978-3-540-71067-7_7.

65 Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter. Formal specification and
verification of CRDTs. In 34th IFIP International Conference on Formal Techniques
for Distributed Objects, Components and Systems (FORTE), June 2014. doi:10.1007/
978-3-662-43613-4_3.

http://hal.inria.fr/inria-00555588/
http://dx.doi.org/10.1007/978-3-642-24550-3_29
http://dx.doi.org/10.1007/978-3-642-24550-3_29
http://dx.doi.org/10.1145/289444.289469
http://dx.doi.org/10.1145/274444.274447
http://dx.doi.org/10.1145/2757667.2757683
http://dx.doi.org/10.1109/PDIS.1994.331722
http://dx.doi.org/10.1145/224056.224070
https://github.com/fthomas/crjdt
https://github.com/fthomas/crjdt
http://dx.doi.org/10.1145/1435417.1435432
https://arxiv.org/abs/1708.04754
https://arxiv.org/abs/1708.04754
http://dx.doi.org/10.1109/ICDCS.2009.75
http://dx.doi.org/10.1109/TPDS.2009.173
http://dx.doi.org/10.1007/978-3-540-71067-7_7
http://dx.doi.org/10.1007/978-3-662-43613-4_3
http://dx.doi.org/10.1007/978-3-662-43613-4_3

:20 OpSets: Sequential Specifications for Replicated Datatypes

A Generating Operations

Listing 1 gives pseudocode for functions that generate these operations. Intuitively, these
functions form an API through which nodes can modify OpSets to indirectly describe
replicated list and map datatypes. The first parameter O of each function is the OpSet that
defines the current state of the node, and the functions return an updated OpSet containing
new operations. The interpretation JOK returns a pair (E, L) as defined in § 3.2. The function
newID(O) returns a unique ID (e.g. a Lamport timestamp [35]) that is greater than any
existing ID in the OpSet O. Note that we elide explicit network broadcasts reflecting changes
in a node’s OpSet.

The function setMapKey can be called by a user to update a map object with ID map,
setting a key key to a value val. If val references an existing object, id1 is set to the ID of
that existing object; otherwise, the function valueID generates a new Make · · · operation
for the value, and the new operation is added to O′. A new ID id2 is generated for the Assign
operation, in which the key key is set to id1 (which identifies the value val). Finally, the
function returns the OpSet with the Assign operation included. The other definitions follow
a similar pattern.

The list manipulation functions setListIndex, insListIndex and removeListIndex
take a numeric index as argument to identify the position in the list being edited. The
numeric index is translated into the ID of a list element using the function idxKeyE, L():

idxKeyE, L(obj, key, i) =

idxKeyE, L(obj, n, i− 1)
if i > 0 ∧ (key, n) ∈ L ∧ ∃ id, val. (id, obj, key, val) ∈ E

idxKeyE, L(obj, n, i)
if (key, n) ∈ L ∧ @ id, val. (id, obj, key, val) ∈ E

key if i = 0 ∧ ∃ id, val. (id, obj, key, val) ∈ E

key is initially the ID of the MakeList operation that created the list. The function recursively
moves along the linked list structure in L, decrementing the index for every list element that
has an associated value, and not counting any list elements without associated value (which
are treated as deleted). Eventually, it returns the ID of the list element with the desired
index.

B Introduction to Isabelle/HOL

To help any readers who are not familiar with Isabelle/HOL, this appendix provides a brief
introduction to the key concepts and syntax, taken from our previous work [21]. A more
detailed introduction can be found in the standard tutorial material [46].

B.1 Syntax of expressions.
Isabelle/HOL is a logic with a strict, polymorphic, inferred type system. Function types are
written τ1 ⇒ τ2, and are inhabited by total functions, mapping elements of τ1 to elements
of τ2. We write τ1 × τ2 for the product type of τ1 and τ2, inhabited by pairs of elements of
type τ1 and τ2, respectively. Type operators are applied to arguments in reverse order: τ list
denotes the type of lists of elements of type τ , and τ set denotes the type of mathematical
(i.e., potentially infinite) sets of type τ , for instance. Type variables are written in lowercase,
and preceded with a prime: ′a⇒ ′a denotes the type of a polymorphic identity function, for

M. Kleppmann, V. B. F. Gomes, D. P. Mulligan, and A. R. Beresford :21

Listing 1 Generating new operations for modifying maps and lists.
function setMapKey(O,map, key, val)

(E, L) = JOK
(id1, op1) = valueID(O, val)
if op1 6= ⊥ then
O := O ∪

{
(id1, op1)

}
)

end if
id2 = newID(O)
prev = {id | ∃ v. (id,map, key, v) ∈ E}
return O ∪{

(id2, Assign(map, key, id1, prev))
}

end function

function removeMapKey(O,map, key)
(E, L) = JOK
id1 = newID(O)
prev = {id | ∃ v. (id,map, key, v) ∈ E}
return O ∪{

(id1, Remove(map, key, prev))
}

end function

function valueID(O, val)
if val is a primitive type then
return (newID(O), MakeVal(val))

else if val = [] (empty list literal) then
return (newID(O), MakeList)

else if val = {} (empty map literal) then
return (newID(O), MakeMap)

else (val is an existing object)
return (objID(val), ⊥)

end if
end function

function setListIndex(O, list, index, val)
(E, L) = JOK
(id1, op1) = valueID(O, val)
if op1 6= ⊥ then
O := O ∪

{
(id1, op1)

}
)

end if
id2 = newID(O)
key = idxKeyE, L(list, list, index)
prev = {id | ∃ v. (id, list, key, v) ∈ E}
return O ∪{

(id2, Assign(list, key, id1, prev))
}

end function

function insListIndex(O, list, index, val)
(E, L) = JOK
(id1, op1) = valueID(O, val)
if op1 6= ⊥ then
O := O ∪

{
(id1, op1)

}
)

end if
id2 = newID(O)
if index = 0 then

ref = list
else

ref = idxKeyE, L(list, list, index − 1)
end if
O := O ∪

{
(id2, InsertAfter(ref))

}
id3 = newID(O)
return O ∪{

(id3, Assign(list, id2, id1, ∅))
}

end function

function removeListIndex(O, list, index)
(E, L) = JOK
id1 = newID(O)
key = idxKeyE, L(list, list, index)
prev = {id | ∃ v. (id, list, key, v) ∈ E}
return O ∪{

(id1, Remove(list, key, prev))
}

end function

:22 OpSets: Sequential Specifications for Replicated Datatypes

example. Tagged union types are introduced with the datatype keyword, with constructors
of these types usually written with an initial upper case letter.

In Isabelle/HOL’s term language we write t :: τ for a type ascription, constraining the
type of the term t to the type τ . We write λx. t for an anonymous function mapping an
argument x to t(x), and write the application of term t with function type to an argument
u as t u. Terms of list type are introduced using one of two constructors: the empty list []
or ‘nil’, and the infix ‘cons’ operator #, which prepends an element to an existing list. We
use [t1, . . . , tn] as syntactic sugar for a list literal, and xs @ ys to express the concatenation
(appending) of two lists xs and ys. We write { } for the empty set, and use usual mathematical
notation for set union, disjunction, membership tests, and so on: t ∪ u, t ∩ u, and x ∈ t. We
write t −→ s for logical implication between formulae (terms of type bool). Strictly speaking
Isabelle is a logical framework, providing a weak meta-logic within which object logics are
embedded, including the Isabelle/HOL object logic that we use in this work. Accordingly,
the implication arrow of Isabelle’s meta-logic, t =⇒ u, is required in certain contexts over
the object-logic implication arrow, t −→ s, already introduced. However, for purposes of
an intuitive understanding, the two forms of implication can be regarded as equivalent by
the reader, with the requirement to use one over the other merely being an implementation
detail of Isabelle itself. We will sometimes use the shorthand [[H1; . . . ; Hn]] =⇒ C instead of
iterated meta-logic implications, i.e., H1 =⇒ . . . =⇒ Hn =⇒ C.

B.2 Definitions and theorems.
New non-recursive definitions are entered into Isabelle’s global context using the definition
keyword. Recursive functions are defined using the fun keyword, and support pattern matching
on their arguments. All functions are total, and therefore every recursive function must be
provably terminating. All termination proofs in this work are generated automatically by
Isabelle itself.

Inductive relations are defined with the inductive keyword. For example, the definition

inductive only-fives :: nat list ⇒ bool where
only-fives [] |
[[only-fives xs]] =⇒ only-fives (5#xs)

introduces a new constant only-fives of type nat list ⇒ bool. The two clauses in the body
of the definition enumerate the conditions under which only-fives xs is true, for arbitrary
xs: firstly, only-fives is true for the empty list; and secondly, if you know that only-fives xs
is true for some xs, then you can deduce that only-fives (5#xs) (i.e., xs prefixed with the
number 5) is also true. Moreover, only-fives xs is true in no other circumstances—it is the
smallest relation closed under the rules defining it. In short, the clauses above state that
only-fives xs holds exactly in the case where xs is a (potentially empty) list containing only
repeated copies of the natural number 5.

Lemmas, theorems, and corollaries can be asserted using the lemma, theorem, and
corollary keywords, respectively. There is no semantic difference between these keywords in
Isabelle, and they serve only to mark certain results as especially important (or unimportant)
for human readers. For example,

theorem only-fives-concat:
assumes only-fives xs and only-fives ys
shows only-fives (xs @ys)

M. Kleppmann, V. B. F. Gomes, D. P. Mulligan, and A. R. Beresford :23

conjectures that if xs and ys are both lists of fives, then their concatenation xs@ ys is also a
list of fives. Isabelle then requires that this claim be proved by using one of its proof methods,
for example by induction. Some proofs can be automated, whilst others require the user to
provide explicit reasoning steps. The theorem is assigned a name, here only-fives-concat, so
that it may be referenced in later proofs.

C Statements of Mechanised Proofs

In this appendix we provide a copy of the Isabelle/HOL definitions and proof statements that
support the central claims in the paper. For space reasons, the actual proofs are omitted; the
full formal proof development can be found in the Isabelle Archive of Formal Proofs [33].
The source code is available at https://github.com/trvedata/opsets.

C.1 Abstract OpSet
In this section, we define a general-purpose OpSet abstraction that is not specific to any one
particular datatype. An OpSet is a set of (ID, operation) pairs with an associated total order
on IDs (represented here with the linorder typeclass), and satisfying the following properties:

1. The ID is unique (that is, if any two pairs in the set have the same ID, then their operation
is also the same).

2. If the operation references the IDs of any other operations, those referenced IDs are less
than that of the operation itself, according to the total order on IDs. To avoid assuming
anything about the structure of operations here, we use a function deps that returns the
set of dependent IDs for a given operation. This requirement is a weak expression of
causality: an operation can only depend on causally prior operations, and by making the
total order on IDs a linear extension of the causal order, we can easily ensure that any
referenced IDs are less than that of the operation itself.

3. The OpSet is finite (but we do not assume any particular maximum size).
We define it as follows in Isabelle:1

locale opset =
fixes opset :: (′oid::{linorder} × ′oper) set
and deps :: ′oper ⇒ ′oid set

assumes unique-oid: (oid, op1) ∈ opset =⇒ (oid, op2) ∈ opset =⇒ op1 = op2
and ref-older : (oid, oper) ∈ opset =⇒ ref ∈ deps oper =⇒ ref < oid
and finite-opset: finite opset

We prove that any subset of an OpSet is also a valid OpSet. This is the case because,
although an operation can depend on causally prior operations, the OpSet does not require
those prior operations to actually exist. This weak assumption makes the OpSet model more
general and simplifies reasoning about OpSets.

1 In programming terms, a locale (or ’local theory’) may be thought of as an interface with associated
laws that implementations must obey. When showing that an implementation matches this interface,
one must also show that the implementation satisfies all assumed laws of the locale. Moreover, locales
can be extended with new assumed facts and fixed constants to form a hierarchy, and definitions and
theorems may be defined and declared within a locale and made available to all of its implementations.
See the standard Isabelle tutorial material, as well as [30] and [25] for a more detailed explanation of
locales.

https://github.com/trvedata/opsets

:24 OpSets: Sequential Specifications for Replicated Datatypes

lemma opset-subset:
assumes opset Y deps
and X ⊆ Y

shows opset X deps

C.1.1 The spec-ops predicate

The spec-ops predicate describes a list of (ID, operation) pairs that corresponds to the
linearisation of an OpSet, and which we use for sequentially interpreting the OpSet. A list
satisfies spec-ops iff it is sorted in ascending order of IDs, if the IDs are unique, and if every
operation’s dependencies have lower IDs than the operation itself. A list is implicitly finite in
Isabelle/HOL.

definition spec-ops :: (′oid::{linorder} × ′oper) list ⇒ (′oper ⇒ ′oid set) ⇒ bool
where
spec-ops ops deps ≡ (sorted (map fst ops) ∧ distinct (map fst ops) ∧

(∀ oid oper ref . (oid, oper) ∈ set ops ∧ ref ∈ deps oper −→ ref < oid))

We prove that for any given OpSet, a spec-ops linearisation exists:

lemma spec-ops-exists:
assumes opset ops deps
shows ∃ op-list. set op-list = ops ∧ spec-ops op-list deps

Conversely, for any given spec-ops list, the set of pairs in the list is an OpSet:

lemma spec-ops-is-opset:
assumes spec-ops op-list deps
shows opset (set op-list) deps

C.1.2 The crdt-ops predicate

Like spec-ops, the crdt-ops predicate describes the linearisation of an OpSet into a list. Like
spec-ops, it requires IDs to be unique. However, its other properties are different: crdt-ops
does not require operations to appear in sorted order, but instead, whenever any operation
references the ID of a prior operation, that prior operation must appear previously in the
crdt-ops list. Thus, the order of operations is partially constrained: operations must appear
in causal order, but concurrent operations can be ordered arbitrarily.

This list describes the operation sequence in the order it is typically applied to an
operation-based CRDT. Applying operations in the order they appear in crdt-ops requires that
concurrent operations commute. For any crdt-ops operation sequence, there is a permutation
that satisfies the spec-ops predicate. Thus, to check whether a CRDT satisfies its sequential
specification, we can prove that interpreting any crdt-ops operation sequence with the
commutative operation interpretation results in the same end result as interpreting the
spec-ops permutation of that operation sequence with the sequential operation interpretation.

M. Kleppmann, V. B. F. Gomes, D. P. Mulligan, and A. R. Beresford :25

inductive crdt-ops :: (′oid::{linorder} × ′oper) list ⇒ (′oper ⇒ ′oid set) ⇒ bool
where
crdt-ops [] deps |
[[crdt-ops xs deps;
oid /∈ set (map fst xs);
∀ ref ∈ deps oper . ref ∈ set (map fst xs) ∧ ref < oid

]] =⇒ crdt-ops (xs @ [(oid, oper)]) deps

C.2 Specifying List Insertion

In this section we consider only list insertion. We model an insertion operation as a pair (ID,
ref), where ref is either None (signifying an insertion at the head of the list) or Some r (an
insertion immediately after a reference element with ID r). If the reference element does not
exist, the operation does nothing.

We provide two different definitions of the interpretation function for list insertion: insert-
spec and insert-alt. The insert-alt definition matches the paper, while insert-spec uses the
Isabelle/HOL list datatype, making it more suitable for formal reasoning. In section C.2.2
we prove that the two definitions are in fact equivalent.

fun insert-spec :: ′oid list ⇒ (′oid × ′oid option) ⇒ ′oid list
where
insert-spec xs (oid, None) = oid#xs |
insert-spec [] (oid, -) = [] |
insert-spec (x#xs) (oid, Some ref) =

(if x = ref then x # oid # xs
else x # (insert-spec xs (oid, Some ref)))

fun insert-alt :: (′oid × ′oid option) set ⇒ (′oid × ′oid) ⇒ (′oid × ′oid option) set
where
insert-alt list-rel (oid, ref) = (

if ∃n. (ref , n) ∈ list-rel
then {(p, n) ∈ list-rel. p 6= ref } ∪ {(ref , Some oid)} ∪
{(i, n). i = oid ∧ (ref , n) ∈ list-rel}

else list-rel)

interp-ins is the sequential interpretation of a set of insertion operations. It starts with
an empty list as initial state, and then applies the operations from left to right.

definition interp-ins :: (′oid × ′oid option) list ⇒ ′oid list where
interp-ins ops ≡ foldl insert-spec [] ops

C.2.1 The insert-ops predicate

We now specialise the definitions from section C.1 for list insertion. insert-opset is an opset
consisting only of insertion operations, and insert-ops is the specialisation of the spec-ops
predicate for insertion operations.

:26 OpSets: Sequential Specifications for Replicated Datatypes

locale insert-opset = opset opset set-option
for opset :: (′oid::{linorder} × ′oid option) set

definition insert-ops :: (′oid::{linorder} × ′oid option) list ⇒ bool where
insert-ops list ≡ spec-ops list set-option

C.2.2 Equivalence of the two definitions of insertion
We now prove that the two definitions of insertion, insert-spec and insert-alt, are equivalent.
First we define how to derive the successor relation from an Isabelle list. This relation contains
(id, None) if id is the last element of the list, and (id1, id2) if id1 is immediately followed by
id2 in the list.

fun succ-rel :: ′oid list ⇒ (′oid × ′oid option) set
where
succ-rel [] = {} |
succ-rel [head] = {(head, None)} |
succ-rel (head#x#xs) = {(head, Some x)} ∪ succ-rel (x#xs)

interp-alt is the equivalent of interp-ins, but using insert-alt instead of insert-spec. To match
the paper, it uses a distinct head element to refer to the beginning of the list.

definition interp-alt :: ′oid ⇒ (′oid × ′oid option) list ⇒ (′oid × ′oid option) set
where
interp-alt head ops ≡ foldl insert-alt {(head, None)}

(map (λx. case x of
(oid, None) ⇒ (oid, head) |
(oid, Some ref) ⇒ (oid, ref))

ops)

We can now prove that insert-spec and insert-alt are equivalent:

theorem insert-alt-equivalent:
assumes insert-ops ops
and head /∈ fst ‘ set ops
and

∧
r . Some r ∈ snd ‘ set ops =⇒ r 6= head

shows succ-rel (head # interp-ins ops) = interp-alt head ops

C.3 No Interleaving
The predicate insert-seq start ops is true iff ops is a list of insertion operations that begins
by inserting after start, and then continues by placing each subsequent insertion directly
after its predecessor. This definition models the sequential insertion of text at a particular
place in a text document.

inductive insert-seq :: ′oid option ⇒ (′oid × ′oid option) list ⇒ bool where
insert-seq start [(oid, start)] |
[[insert-seq start (list @ [(prev, ref)])]]

=⇒ insert-seq start (list @ [(prev, ref), (oid, Some prev)])

M. Kleppmann, V. B. F. Gomes, D. P. Mulligan, and A. R. Beresford :27

Consider an execution that contains two distinct insertion sequences, xs and ys, that
both begin at the same initial position start. We prove that, provided the starting element
exists, the two insertion sequences are not interleaved. That is, in the final list order, either
all insertions by xs appear before all insertions by ys, or vice versa.

theorem no-interleaving:
assumes insert-ops ops
and insert-seq start xs and insert-ops xs
and insert-seq start ys and insert-ops ys
and set xs ⊆ set ops and set ys ⊆ set ops
and distinct (map fst xs @ map fst ys)
and start = None ∨ (∃ r . start = Some r ∧ r ∈ set (interp-ins ops))

shows (∀ x ∈ set (map fst xs). ∀ y ∈ set (map fst ys). list-order ops x y) ∨
(∀ x ∈ set (map fst xs). ∀ y ∈ set (map fst ys). list-order ops y x)

For completeness, we also prove what happens if there are two insertion sequences, xs and
ys, but their reference element start does not exist. In this failure case, none of the insertions
in xs or ys take effect.

theorem missing-start-no-insertion:
assumes insert-ops ops
and insert-seq (Some start) xs and insert-ops xs
and insert-seq (Some start) ys and insert-ops ys
and set xs ⊆ set ops and set ys ⊆ set ops
and start /∈ set (interp-ins ops)

shows ∀ x ∈ set (map fst xs) ∪ set (map fst ys). x /∈ set (interp-ins ops)

C.4 The Replicated Growable Array (RGA)

The RGA algorithm [49] is a replicated list (or collaborative text-editing) algorithm. In this
section we prove that RGA satisfies our list specification. The Isabelle/HOL definition of
RGA in this section is based on our prior work on formally verifying CRDTs [21, 20].

:28 OpSets: Sequential Specifications for Replicated Datatypes

fun insert-body :: ′oid::{linorder} list ⇒ ′oid ⇒ ′oid list where
insert-body [] e = [e] |
insert-body (x # xs) e =

(if x < e then e # x # xs
else x # insert-body xs e)

fun insert-rga :: ′oid::{linorder} list ⇒ (′oid × ′oid option) ⇒ ′oid list where
insert-rga xs (e, None) = insert-body xs e |
insert-rga [] (e, Some i) = [] |
insert-rga (x # xs) (e, Some i) =

(if x = i then
x # insert-body xs e

else
x # insert-rga xs (e, Some i))

definition interp-rga :: (′oid::{linorder} × ′oid option) list ⇒ ′oid list where
interp-rga ops ≡ foldl insert-rga [] ops

definition rga-ops :: (′oid::{linorder} × ′oid option) list ⇒ bool where
rga-ops list ≡ crdt-ops list set-option

We can then prove that RGA satisfies our list specification:

theorem rga-meets-spec:
assumes rga-ops xs
shows ∃ ys. set ys = set xs ∧ insert-ops ys ∧ interp-ins ys = interp-rga xs

C.5 Relationship to Strong List Specification
In this section we show that our list specification is stronger than the Astrong specification
of collaborative text editing by Attiya et al. [4]. We do this by showing that the OpSet
interpretation of any set of insertion and deletion operations satisfies all of the consistency
criteria that constitute the Astrong specification.

Attiya et al.’s specification is as follows [4]:

An abstract execution A = (H, vis) belongs to the strong list specification Astrong if
and only if there is a relation lo ⊆ elems(A) × elems(A), called the list order, such
that:

1. Each event e = do(op, w) ∈ H returns a sequence of elements w = a0 . . . an−1,
where ai ∈ elems(A), such that
a. w contains exactly the elements visible to e that have been inserted, but not

deleted:

∀a. a ∈ w ⇐⇒ (do(ins(a,_),_) ≤vis e) ∧ ¬(do(del(a),_) ≤vis e).

b. The order of the elements is consistent with the list order:

∀i, j. (i < j) =⇒ (ai, aj) ∈ lo.

M. Kleppmann, V. B. F. Gomes, D. P. Mulligan, and A. R. Beresford :29

c. Elements are inserted at the specified position: if op = ins(a, k), then a =
amin{k, n−1}.

2. The list order lo is transitive, irreflexive and total, and thus determines the order
of all insert operations in the execution.

This specification considers only insertion and deletion operations, but no assignment.
Moreover, it considers only a single list object, not a graph of composable objects like in our
paper. Thus, we prove the relationship to Astrong using a simplified interpretation function
that defines only insertion and deletion on a single list.

We first define a datatype for list operations, with two constructors: Insert ref val, and
Delete ref. For insertion, the ref argument is the ID of the existing element after which we
want to insert, or None to insert at the head of the list. The val argument is an arbitrary
value to associate with the list element. For deletion, the ref argument is the ID of the
existing list element to delete.

datatype (′oid, ′val) list-op =
Insert ′oid option ′val |
Delete ′oid

When interpreting operations, the result is a pair (list, vals). The list contains the IDs of
list elements in the correct order (equivalent to the list relation in the paper), and vals is a
mapping from list element IDs to values (equivalent to the element relation in the paper).

Insertion delegates to the previously defined insert-spec interpretation function. Deleting
a list element removes it from vals.

fun interp-op :: (′oid list × (′oid ⇀ ′val)) ⇒ (′oid × (′oid, ′val) list-op)
⇒ (′oid list × (′oid ⇀ ′val)) where

interp-op (list, vals) (oid, Insert ref val) = (insert-spec list (oid, ref), vals(oid 7→ val)) |
interp-op (list, vals) (oid, Delete ref) = (list, vals(ref := None))

definition interp-ops :: (′oid × (′oid, ′val) list-op) list ⇒ (′oid list × (′oid ⇀ ′val))
where
interp-ops ops ≡ foldl interp-op ([], Map.empty) ops

list-order ops x y holds iff, after interpreting the list of operations ops, the list element with
ID x appears before the list element with ID y in the resulting list.

definition list-order :: (′oid × (′oid, ′val) list-op) list ⇒ ′oid ⇒ ′oid ⇒ bool where
list-order ops x y ≡ ∃ xs ys zs. fst (interp-ops ops) = xs @ [x] @ ys @ [y] @ zs

The make-insert function generates a new operation for insertion into a given index in a
given list. The exclamation mark is Isabelle’s list subscript operator.

fun make-insert :: ′oid list ⇒ ′val ⇒ nat ⇒ (′oid, ′val) list-op where
make-insert list val 0 = Insert None val |
make-insert [] val k = Insert None val |
make-insert list val (Suc k) = Insert (Some (list ! (min k (length list − 1)))) val

The list-ops predicate is a specialisation of spec-ops to the list-op datatype: it describes a
list of (ID, operation) pairs that is sorted by ID, and can thus be used for the sequential
interpretation of the OpSet.

:30 OpSets: Sequential Specifications for Replicated Datatypes

fun list-op-deps :: (′oid, ′val) list-op ⇒ ′oid set where
list-op-deps (Insert (Some ref) -) = {ref } |
list-op-deps (Insert None -) = {} |
list-op-deps (Delete ref) = {ref }

locale list-opset = opset opset list-op-deps
for opset :: (′oid::{linorder} × (′oid, ′val) list-op) set

definition list-ops :: (′oid::{linorder} × (′oid, ′val) list-op) list ⇒ bool where
list-ops ops ≡ spec-ops ops list-op-deps

C.5.1 Satisfying all conditions of Astrong

Part 1(a) of Attiya et al.’s specification states that whenever the list is observed, the elements
of the list are exactly those that have been inserted but not deleted. Astrong uses the visibility
relation ≤vis to capture the operations known to a node at some arbitrary point in the
execution; in the OpSet model, we can simply prove the theorem for an arbitrary OpSet,
since the contents of the OpSet at a particular time on a particular node correspond exactly
to the set of operations known to that node at that time.

theorem inserted-but-not-deleted:
assumes list-ops ops
and interp-ops ops = (list, vals)

shows a ∈ dom (vals) ←→ (∃ ref val. (a, Insert ref val) ∈ set ops) ∧
(@ i. (i, Delete a) ∈ set ops)

Part 1(b) states that whenever the list is observed, the order of list elements is consistent
with the global list order. We can define the global list order simply as the list order that
arises from interpreting the OpSet containing all operations in the entire execution. Then, at
any point in the execution, the OpSet is some subset of the set of all operations.

We can then rephrase condition 1(b) as follows: whenever list element x appears before
list element y in the interpretation of some-ops, then for any OpSet all-ops that is a superset
of some-ops, x must also appear before y in the interpretation of all-ops. In other words,
adding more operations to the OpSet does not change the relative order of any existing list
elements.

theorem list-order-consistent:
assumes list-ops some-ops and list-ops all-ops
and set some-ops ⊆ set all-ops
and list-order some-ops x y

shows list-order all-ops x y

Part 1(c) states that inserted elements appear at the specified position: that is, immediately
after an insertion of oid at index k, the list index k does indeed contain oid (provided that k
is less than the length of the list). We prove this property below.

theorem correct-position-insert:
assumes list-ops (ops @ [(oid, ins)])
and ins = make-insert (fst (interp-ops ops)) val k
and list = fst (interp-ops (ops @ [(oid, ins)]))

shows list ! (min k (length list − 1)) = oid

M. Kleppmann, V. B. F. Gomes, D. P. Mulligan, and A. R. Beresford :31

Part 2 states that the list order relation must be transitive, irreflexive, and total. These
three properties are straightforward to prove, using our definition of the list-order predicate.

theorem list-order-trans:
assumes list-ops ops
and list-order ops x y
and list-order ops y z

shows list-order ops x z

theorem list-order-irrefl:
assumes list-ops ops
shows ¬ list-order ops x x

theorem list-order-total:
assumes list-ops ops
and x ∈ set (fst (interp-ops ops))
and y ∈ set (fst (interp-ops ops))
and x 6= y

shows list-order ops x y ∨ list-order ops y x

	1 Introduction
	2 The OpSets Approach
	2.1 System Model
	2.2 Interpreting an OpSet
	2.3 Receiving Messages Out-of-order

	3 Specifying a Graph of Lists, Maps, and Registers
	3.1 Generating Operations
	3.2 Interpreting Operations

	4 Discussion: Merging Text Edits
	5 A Replicated Tree Datatype
	5.1 The Difficulty of a Move Operation
	5.2 Specifying a Tree with Atomic Moves

	6 Related Work
	6.1 Interpretation of Operation Sequences
	6.2 Specification and Verification of Replicated Datatypes
	6.3 Collaborative Tree Datatypes

	7 Conclusion
	A Generating Operations
	B Introduction to Isabelle/HOL
	B.1 Syntax of expressions.
	B.2 Definitions and theorems.

	C Statements of Mechanised Proofs
	C.1 Abstract OpSet
	C.1.1 The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 spec-ops predicate
	C.1.2 The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 crdt-ops predicate

	C.2 Specifying List Insertion
	C.2.1 The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 insert-ops predicate
	C.2.2 Equivalence of the two definitions of insertion

	C.3 No Interleaving
	C.4 The Replicated Growable Array (RGA)
	C.5 Relationship to Strong List Specification
	C.5.1 Satisfying all conditions of Astrong

