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Abstract— This paper presents a novel pre-processing stage
that offers significant improvement in the computational effi-
ciency of sphere decoding by imposing a geometrically-inspired
ordering on the columns of the channel matrix. By studying
the performance of a genie decoder, which has knowledge of
the optimal radius, we find that the optimal ordering depends
not only on the channel matrix, but also on the received point.
Analysis of this idealized problem leads to the proposal of an
enhanced ordering. We demonstrate via simulation that it closely
matches with the optimal ordering and more importantly that
it results in a dramatic increase in sphere decoding efficiency
over a 4 × 4 MIMO flat fading channel. We emphasize that the
performance benefit is particularly great at low SNRs and for
high modulation orders, two traditionally challenging regimes
for sphere decoders. We conclude by briefly discussing the
polynomial complexity of the new ordering algorithm.

Index Terms— Sphere decoding, nearest lattice point search,
maximum-likelihood detection, (linear) MIMO systems, pre-
processing, ordering.

I. INTRODUCTION

The Sphere Decoder (SD) is a powerful approach to the
Maximum-Likelihood (ML) detection of signals observed at
the output of overdetermined Multiple Input Multiple Output
(MIMO) systems whose inputs are drawn from a lattice
alphabet [1]. It is based on the enumeration of lattice points
located within a hypersphere of some radius centered at a
target, e.g., the received signal point.

The Fincke-Pohst (F-P) and Schnorr-Euchner (S-E) strate-
gies are two computationally efficient means of realizing this
enumeration [2], and so they have come to form the foundation
of many existing sphere decoders [3], [4]. Underlying both is
the application of the QR factorization to the channel matrix.
The upper triangular structure of the factored matrix enables
the decoder to decompose the overall enumeration task into a
set of smaller sub-tasks of decreasing dimension.

Even when using the more efficient S-E enumeration, it is
known that the computational cost of sphere decoding is highly
sensitive to the ordering of the columns of the channel matrix
[2]. Unlike previous proposals, where ordering decisions are
based only on the channel matrix [2], we formally show
that the optimal ordering for sphere decoding depends on the
channel matrix and also on the received point. This philosophy
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was also recently employed in [5], [6], however our work
is distinguished from these by its geometric perspective and
further improved decoder efficiency.

We begin our presentation in Section II with a precise
formulation of the problem and some mathematical prelim-
inaries. Next, in Section III we study the behaviour of a genie
SD under different orderings of a two-dimensional example
channel. This analysis leads to the design of the new ordering
scheme, which is formalized in Section IV. Simulation results
reported in Section V demonstrate its effectiveness in reducing
the computational cost incurred by a standard SD. Finally we
conclude with comments on the complexity of the ordering
scheme in Section VI.

II. PRELIMINARIES

In this paper we consider problems that can be modelled as
the minimization of the squared Euclidean distance metric to
a target point r over an M -dimensional finite discrete search
set XM ⊂ Z

M with |X | = B:

s∗ = argmin
s∈XM

|r−Hs|2, (1)

where r ∈ R
N , H ∈ R

N×M , and the optimization variables
are the elements of s.1 Examples of such problems include
ML detection of lattice coded signals and QAM modulated
signals transmitted over MIMO flat fading channels, frequency
selective fading channels, or multi-user channels.

We assume an overdetermined problem, i.e., that M ≤ N ,
and that H is of full rank M . For communication over MIMO
flat fading channels, this assumption means that there are
at least as many receive (N ) as transmit (M ) antennas. We
make use of the following notational conveniences: Given a
matrix A, let ai denote the ith column vector and A\i the

tall submatrix comprised of all columns but the ith. Given
a vector z, let zi denote the ith element and z\i the vector

comprised of all elements but the ith. We also denote by ei the
ith elementary vector and by I the index set {1, 2, . . . ,M}.
To distinguish between a variable itself and its value, we use
the underline notation si or s to refer to a variable, and si ∈ X
or s ∈ XM to indicate a particular value.

1The complex case where s ∈ (X 2)M is a vector of M QAM modulated
signals, r ∈ CN and H ∈ CN×M can be written as an equivalent problem in
twice the number of real dimensions, i.e., with r ∈ R2N and H ∈ R2N×2M .
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Fig. 1. Some geometric entities useful in the analysis of sphere decoding.

Given matrix H of full rank M and alphabet X of size B,
we define the finite lattice of points in the search set as

L �
{
z

∣∣ z = Hs, s ∈ XM
}

. (2)

There are BM lattice points in L, shown in Fig. 1(a) for B =
M = 2. It can be decomposed into any of M collections of B
sub-lattices, each comprised of BM−1 lattice points embedded
in one of B parallel affine sets.2 Given i ∈ I, the ith collection

{Fi(si) | si ∈ X } , (3)

contains B affine sets defined as

Fi(si) �
{
z

∣∣ 〈
z− hisi, (H−1)T

i

〉
= 0

}
, (4)

with 〈a,b〉 denoting the inner product. The affine sets in
(3) share normal vector (H−1)T

i . We denote the orthogonal
projection of a vector y onto this normal as proj(H−1)T

i
(y);

its orthogonal projection onto affine set Fi(si) is then

projFi(si)(y) � y − proj(H−1)T
i
(y − hisi), (5)

and the corresponding orthogonal distance is

d(y,Fi(si)) �
∣∣∣y − projFi(si)(y)

∣∣∣ . (6)

Note that projFi(si)(y) is the point in the affine set that is
closest in Euclidean distance to y, as depicted in Fig. 1(b).

The B sub-lattices contained in the sets of (3) can be written
as shifted copies of one another:

Li(si) =
{
z

∣∣ z = H\is\i, s\i ∈ XM−1
}

+ hisi, (7)

where we refer to hi and si as the offset vector and offset
coefficient of Li(si) and Fi(si), respectively. Observe that
Li(si)−hisi is a sub-lattice with M − 1 degrees of freedom.

Finally, we overview the geometry of sphere decoding.
A SD searches for the nearest lattice point to target r by
exploring the affine sets containing sub-lattices of L in an
ordered manner. First it selects index i1 ∈ I and computes
the distances from the target to each of the affine sets in the

2Recall that an affine set M ⊂ RN is a set such that M = S + a for
some subspace S ⊂ RN and offset a ∈ RN . See [7, Sec. 1] for more details.
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Fig. 2. The expansions performed by a sphere decoder in a real 2D search
space with BPSK modulation applied to the transmitted signals.

ith1 collection as well as the projections of the target onto each.

y(si1) = projFi1(si1)(r), si1 ∈ X . (8)

The first stage is depicted in Fig. 2(a).
We call projection y(si1) a residual target, because it

represents the components that remain after an orthogonal
part has been projected away. Algebraically, it is obtained by
applying one of B constraints si1

= si1 . The residual inherits
the offset coefficient of the affine set in which it resides, and its
level is given by the number of constraints applied thusfar in
the search. The decomposition of a point into its B residuals is
referred to as expansion. We use the term node to encapsulate
the constraints, accumulated distance or cost (from r), level
and projection associated with a residual; we also use the terms
node and residual interchangeably.

The search problem has now been broken down into B
lower dimensional sub-problems, each a search for the nearest
sub-lattice point to a residual target:

min
z∈L

|r − z|2= min
si1∈X

d2 (r,Fi1 (si1 )) + min
z∈Li1(si1 )

|y (si1 ) − z|2 . (9)

The decoder chooses one of these sub-problems by applying
constraint si1 = si1 ; all subsequent operations are therefore
restricted to affine set Fi1 (si1). Then it selects another col-
lection i2 ∈ I \ i1 and repeats the expansion procedure with
residual target y (si1) as its argument. Fig. 2(b) illustrates the
expansion of a level 1 residual. Observe that one level is gained
through each expansion; thus a level M residual is simply a
lattice point and its cost is the distance to the target.

In the sequence shown in Fig. 2, we project along (H−1)T
1

in the first expansion, i.e. i1 = 1. This choice imposes a
particular order on all of the projections performed by the
SD. More formally, we define an ordering Π as a permutation
of the index set I and write its elements as the ordered set

Π = {iM , iM−1, . . . , i1} , (10)



where the mapping from I to Π is a bijection. Π also defines
an M ×M permutation matrix PΠ �

[
eiM

eiM−1 · · · ei1

]
.

We index the elements of Π in reverse order because the
relationship between the QR factorization and the F-P or
S-E enumerations dictates that a SD selects collections for
expansion in the reverse order of the columns of H. For
instance, given a 2×2 channel matrix H, to make the decoder
project along (H−1)T

1 in the first expansion, we pre-process
H through right multiplication by P{2,1}, i.e., by applying
ordering Π = {2, 1}.

In the two-dimensional illustration shown in Fig. 2, a SD
can find an optimal solution in just two expansions. More
generally, in M dimensions or with higher order modulation,
this would not necessarily be the case. One key difference
between current proposals lies in how the next node for
expansion is chosen, both its level and its offset coefficient.
For instance, the F-P enumeration expands nodes in order of
increasing level, with those at the same level ordered according
to their offset coefficients. With respect to Fig. 2(b), it would
expand the level 1 residual in F1(−1) and then the one in
F1(1). The S-E enumeration also considers nodes in order of
increasing level. However it expands those at the same level
in order of increasing orthogonal distance, i.e., in Fig. 2(b),
the level 1 residual in F1(1) and then the one in F1(−1).

Another important consideration is the stop condition for
sphere decoding. Most decoders require three input parame-
ters: The received point r, channel matrix H, and a search
radius C. In order to guarantee the optimality of the solution
returned, the radius must be at least as large as the optimal
radius, denoted by C∗, and from a computational perspective,
at least all nodes inside the hypersphere of radius C∗ centered
at r must be expanded. More precisely, we denote the number
of nodes expanded by a SD as ν(r,H, C), a quantity that
reflects its computational efficiency and satisfies

ν(r,H, C) ≥ ν(r,H, C∗). (11)

These ideas are formalized and proved in a separate work [8].

III. ORDERINGS AND SPHERE DECODING: AN EXAMPLE

To study the impact of orderings on sphere decoding ef-
ficiency, we introduce the notion of a genie SD. The genie
decoder has prior knowledge of the optimal search radius C∗
and expands exclusively those nodes lying within the optimal
search hypersphere. It performs the same operations as other
SDs, however it is guaranteed to achieve the optimal efficiency

ν∗(r,H) � ν(r,H, C∗). (12)

Unlike other decoders, when the genie decoder is called
with different orderings applied to the channel matrix, any
variations in ν∗ can be attributed solely to the ordering, and not
to other parameters that may be more difficult to capture, e.g.,
the choice of the next residual for expansion. This approach
enables us to effectively decouple the ordering part of the
problem from the SD itself.

Next we consider how the genie decoder would decode a
received signal transmitted using BPSK modulation over a
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Fig. 3. The expansions performed when decoding r (transmitted using BPSK
modulation) under the two possible orderings of channel matrix H.

sample 2× 2 channel

H =
[

1.13 −5.65
6.78 −2.20

]
. (13)

Given a received point r and ordering Π = {1, 2}, i.e.,
the natural ordering, the decoder begins by expanding r
along normal vector (H−1)T

2 . Fig. 3(a) shows the resulting
expansions; in particular, note that there are three nodes inside
the detection hypersphere and so ν∗(r,H[ e1 e2 ]) = 3.

The neighbouring plot in Fig. 3(b) shows the behaviour of
the genie decoder under the inverted ordering Π = {2, 1}. In
this case, the first expansion is along normal vector (H−1)T

1

and the resulting efficiency is ν∗(r,H[ e2 e1 ]) = 2. Therefore
we might conclude that the inverted ordering is advantageous
for improved decoder efficiency, given the received point in
question. It is also important to observe that ν∗ is governed
by the geometric locations of the nodes, which are in turn
determined solely by r and the ordering applied to H.

More generally, Fig. 4 shows a map of the optimal ordering
regions of the columns of sample channel matrix H over the
domain of possible received points r, where we call ordering
Π∗ and permuted channel matrix H∗ = HPΠ∗ optimal if

ν∗(r,H∗) ≤ ν∗(r,HP) (14)

for all M ! permutation matrices P.
Given our sample channel matrix, M ! = 2 and there are

two possible orderings of H. In Fig. 4, light shading indicates
points r for which ν∗(r,H[ e1 e2 ]) = ν∗(r,H[ e2 e1 ]), i.e.,
where both orderings result in the same decoder efficiency,
medium shading shows where the decoder using ordering
Π = {1, 2} expands fewer nodes, and dark shading, where
ordering Π = {2, 1} is favoured. As expected, since the point
considered in Fig. 3 is located in a darkly shaded region, the
inverted ordering leads to improved decoding efficiency.

More importantly, Fig. 4 establishes an important property:
The optimal ordering for efficient sphere decoding depends not
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Fig. 4. Optimal ordering of the columns of channel matrix H as a
function of received point r: Light shading indicates that both orderings are
equivalent, medium shading that H∗ = H[ e1 e2 ], and dark shading that
H∗ = H[ e2 e1 ]. The dashed curve is highlighted for further analysis.

only on the channel matrix H, but also on the received point
r. It also provides insight into why some orderings achieve
better efficiencies than others for a given received point r.
Consider the dashed curve highlighted in Fig. 4. It delineates
the boundary between a region where H∗ = H[ e2 e1 ] and
one where both orderings result in the same efficiency. The
change arises because the efficiency of the natural ordering is
reduced as the boundary is crossed from left to right.

To understand this behaviour, consider the projections per-
formed by the genie decoder under ordering {1, 2}, as r
crosses the boundary. An equation for this curve is given by

d(r,F2(−1)) = C∗, (15)

defined over regions where r is such that the optimal search
radius satisfies C∗ =

∣∣∣r−H
[−1

1

]∣∣∣.
When r lies to the left of the boundary, the distance from r

to the second nearest affine set in the chosen collection satis-
fies d(r,F2(−1)) > C∗, and so the decoder does not have to
expand any of the nodes contained in F2(−1). However, when
r crosses to its right, d(r,F2(−1)) < C∗ and consequently
node y(−1) lies within the optimal search hypersphere. Since
all nodes lying within this hypersphere must be expanded, the
efficiency of the natural ordering becomes degraded by one.

IV. A NEW ORDERING SCHEME

Now we formalize the intuition gained from the previous
example, generalize it to higher dimensions, and present the
new ordering. Our overall strategy is, at each level, to choose
the best collection of affine sets onto which to project the
residual target y. The following decision criterion is proposed:

i′ = argmax
i

d(y,Fi(βi)), (16)

where βi is the offset coefficient of the second nearest affine
set to y in collection i.

The rationale behind decision criterion (16) is to expand
y along the direction where the second nearest affine set is
the greatest distance away. In so doing, we seek to reduce
the number of nodes expanded by the genie decoder in
any of the affine sets Fi′(si′), si′ �= αi′ , where αi′ is the
offset coefficient of the nearest affine set to y in the chosen
collection. In the best case, if all of the expanded nodes lie in
Fi′(αi′), the problem dimension will effectively be reduced
by one, leading to a greatly improved decoder efficiency.

Having chosen collection i′, we propose to project y onto
Fi′(αi′). The remaining normal vectors (H−1)T

i , i �= i′ are
likewise projected in order to restrict subsequent operations
to the same affine set. The decision metrics can then be
recomputed in the lower dimensional set and this procedure
repeated until all M selections have been made. Pseudocode
to compute proposed ordering Π̂ is given in Algorithm 1:

Algorithm 1 An Enhanced Ordering (r,H,M,X )
1: I ←− {1, 2, . . . ,M} Initialize index set
2: y←− r Initialize target
3: G←− (H−1)T Compute inverse
4: for each level L from 1 to M do
5: for each index i in set I do
6: αi ←− argminx∈X |〈y,gi〉 − x| Find nearest sets
7: βi ←− argminx∈X\αi

|〈y,gi〉 − x| Second nearest
8: δi ←− d (y,Fi(βi)) Compute distances
9: end for

10: Π̂M−L+1 ←− i′ ←− argmaxi∈I δi Select collection L
11: s0,i′ ←− αi′ Record offset coeff.
12: I ←− I \ i′ Remove from index set
13: y←− projFi′ (αi′ )(y)− hi′αi′ Project+shift residual
14: for each index i in set I do Project inverse
15: gi ←− projFi′ (0)(gi)
16: end for
17: end for
18: Return Π̂, s0

Recall that projecting onto the affine set with offset co-
efficient αi′ in collection i′ is algebraically equivalent to
applying constraint si′ = αi′ . Recording these constraints as
the ordering is computed provides an initial data estimate s0 as
a byproduct of Algorithm 1. Further results on the properties
of s0 are discussed in a separate work [9].

V. PERFORMANCE EVALUATION

Here we provide two ways of evaluating the performance of
the enhanced ordering scheme. First we consider how closely
the orderings recommended by Algorithm 1 correspond to the
optimal ones confirmed by simulation (Fig. 4). Fig. 5 depicts
a map of the proposed ordering decisions Ĥ = HPΠ over the
domain of possible received points r, given the same sample
channel as before (13). For this two-dimensional example, the
match between the recommendations made by Algorithm 1
and the optimal orderings can easily be verified graphically. A
similar correspondence is evidenced when using higher order
modulations; these results have been omitted for brevity.
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Fig. 5. Proposed ordering of the columns of a sample two-dimensional (real)
channel matrix H as a function of received point r: Medium shading indicates
where Hp = H[ e1 e2 ], and dark shading where Hp = H[ e2 e1 ].
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One of the key hypotheses underlying our work is that an
ordering effective in enhancing the performance of the genie
decoder should also enhance that of other SDs based on the
F-P or S-E enumerations. Thus a more important performance
evaluation of the enhanced ordering scheme is obtained by
considering how successful it is in reducing the number of
nodes expanded by a standard SD. Fig. 6 shows the average
number of nodes expanded by an efficient decoder based on
the S-E enumeration that adaptively decreases its search radius
as lattice points are discovered [2]. The performance curves
obtained under three orderings are reported: Random ordering,
that used in V-BLAST decoding [10], and the new proposal.

A vast improvement is realized by the new ordering, espe-
cially at low SNRs, where the complexity of existing SDs is
not widely considered to be competitive. What is particularly

noteworthy is that this improvement remains significant even
as the modulation order is increased. Although the ordering
was derived using the notion of a genie decoder, simulation
results indicate that the benefits offered are transferable to
other SDs as well. Thus we have shown that the proposed
scheme is an extremely effective pre-processing stage that can
be readily combined with existing algorithms.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have proposed a novel yet compatible pre-
processing stage for sphere decoders. We demonstrated via
simulation that it not only offers a significant reduction in the
computational cost of subsequent sphere decoding stages, but
also that it is especially effective in the low SNR regime, which
has traditionally been an expensive one for SDs. Another
strength of the new ordering is that it is of increasing influence
at higher spectral efficiencies, thus enabling existing decoders
to achieve ML detection at a competitive computational cost
over a wider range of performance parameters.

The time complexity of Algorithm 1 is O(M3), roughly
comparable to a matrix inversion and a few QR factorizations.
In practice, we have observed immensely reduced decoding
times at low SNRs using unoptimized implementations of the
proposed ordering. As can be seen from Fig. 6, as the SNR
exceeds a certain modulation-dependent level, the number of
nodes expanded by most SDs, even under random ordering,
converges to a lower bound.3 Thus at such SNRs it may not
be efficient to apply any pre-processing.
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