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Abstract

In this report, we explore the fundamental concepts behind the emerging field of space-time
coding for wireless communication systems. The first three chapters of background material
discuss, respectively, signal fading and modelling in the wireless propagation environment,
spatial diversity via Multi-Element Antenna (MEA) arrays, and the capacity of the Mul-
tiple Input Multiple Output (MIMO) wireless channel in Rayleigh fading. We find that
at the heart of space-time coding lies the design of two-dimensional signal matrices to be
transmitted over a period of time from a number of antennas. The structure of the signal
enables us to exploit diversity in the spatial and temporal dimensions in order to obtain
improved bit error performance and higher data rates without bandwidth expansion. Thus
it is clear that transmit diversity plays an integral role in space-time code design. A brief
survey of such existing communication techniques follows this discussion, leading naturally
to a proposal for the work to be undertaken in our Ph.D. project.
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Chapter 1

Introduction

Driven by the demand for increasingly sophisticated communication services available any-
time, anywhere, wireless communications has emerged as one of the largest and most rapidly
growing sectors of the global telecommunications industry. A quick glance at the status quo
reveals that over 700 million people around the world subscribe to existing second and third
generation cellular systems supporting data rates of 9.6 Kbps to 2 Mbps. More recently,
IEEE 802.11 wireless LAN networks, enabling communication at rates of around 11 Mbps,
have attracted more than $1.6 billion (USD) in equipment sales [12]. Over the next ten years,
the capabilities of both of these technologies are expected to move toward the 100 Mbps - 1
Gbps range [32] and subscriber numbers to over 2 billion [44]. One of the most significant
technological developments of the last decade, that promises to play a key role in realizing
this tremendous growth, is wireless communication using MIMO antenna architectures.

The study of radio wave propagation was initiated by the works of Hertz and Marconi in
the late 1800s. These experiments demonstrated that electrical signals could be transmitted
via electromagnetic waves travelling at the speed of light. They can be described using the
term Single Input Single Output (SISO), since they involve one circuit radiating energy into
space, and another electrically disconnected circuit collecting this energy at some distance
away. The SISO system model represents the space or wireless channel through which the
electromagnetic wave travels to reach its destination. In Chapter 2, we will take a closer
look at what researchers since then have discovered about the nature of propagation over
the wireless channel, and how some typical communication environments are modelled in
the literature.

In a MIMO system, Multi-Element Antenna (MEA) structures are deployed at both the
transmitter and receiver.1 From a communications engineering perspective, the challenge
is to design the signals to be sent by the transmit array and the algorithms for processing
those seen at the receive array, so that the quality of the transmission (i.e., bit error rate)
and/or its data rate are improved. These gains can then be used to provide increased
reliability, lower power requirements (per transmit antenna) or higher composite data rates
(either higher rates per user or more users per link). What is especially exciting about
the benefits offered by MIMO technology is that they can be attained without the need for
additional spectral resources. In the last five years, the greatly enhanced performance that is
possible over realistic fading channels has been shown both theoretically and demonstrated in
experimental laboratory settings. Hence the recent explosion of interest from both academic
and industrial researchers in the area of space-time coding.

1Since this project will not be concerned with antenna architectures and geometries, we will assume a
MEA comprised of a linear array of uniformly spaced antenna elements and refer to it simply as an array.

1



2 CHAPTER 1. INTRODUCTION

Historically, work on transmit diversity techniques began as early as 1993. In [50],
the authors consider transmitting delayed copies of the information-bearing signal on each
antenna in order to obtain a diversity gain at the receiver. A more generalized approach
presented in [63] proposes the use of a bank of linear time invariant precoding filters at
the transmitter, combined with Maximum Likelihood (ML) detection at the receiver, to
achieve the desired diversity gain. Up to this point, it had been well-known that a diversity
gain proportional to the number of antennas at the receive array could be achieved using
Maximal Ratio Combining (MRC) without any bandwidth expansion. These experiments
were among the first to demonstrate that a diversity gain proportional to the number of
antennas at the transmit array was also possible under certain channel conditions. They also
highlight one of the main features of MIMO communication systems, which is the ability
to benefit from the effects of multipath signal propagation. In Chapter 3, we will provide
a more rigourous definition of diversity gain and study some of these approaches in more
detail.

Naturally, the next issue that researchers tackled was determining the fundamental limits
of multiple transmit antenna technologies. In 1995, a seminal work on the capacity of
multiple antenna channels by Telatar [61] presented analytical equations for the mean and
instantaneous capacities of wireless channels in flat, quasi-static, and spatially independent
Rayleigh fading with perfect Channel State Information (CSI) at the receiver. These results
were independently derived and extended with practical considerations by Foschini et al.
[17]. The main finding of these information theoretic analyses was that in such a fading
environment, the capacity of multiple antenna channels increases linearly with the smaller
of the number of transmit and receive antennas. This and other major results relating to
the capacity of MIMO channels in Rayleigh fading will be summarized Chapter 4.

The term Space-Time Code (STC) was originally coined in 1998 by Tarokh et al. to
describe a new two-dimensional way of encoding and decoding signals transmitted over
wireless fading channels using multiple transmit antennas [60]. In two key papers, the au-
thors laid down the theories of the Space-Time Trellis Code (STTC) [60] and the Space-Time
Block Code (STBC) [57] for flat independent Rayleigh fading channels. A number of other
schemes employing multiple antenna arrays were also developed at about the same time,
e.g., the simple and popular Alamouti STBC [3], a transmit diversity scheme using pilot
symbol-assisted modulation [28] and the Bell Labs lAyered Space-Time (BLAST) multi-
plexing framework [15]. Since then, the term STC has been used more generally to refer to
transmit diversity techniques in which the transmitted signals and corresponding receiver
are designed to exploit spatial diversity. A more detailed overview of some fundamental
techniques, along with a brief survey of core contributions to the field, can be found in
Chapter 5.

In the closing chapter of this report, we will present a proposal for research to be un-
dertaken during the next two years of our Ph.D. project. The main topic that we intend
to address is space-time block coding for frequency selective fading channels. One key ap-
plication area for this work is in low mobility and fixed broadband wireless access systems.
Through this report we demonstrate that there is room for new developments in this area by
approaching the problem from a capacity perspective. A table of completed and projected
activities will also be provided.



Chapter 2

Signal fading and structures

When communicating over a wireless radio channel the received signal cannot be modelled
simply as a copy of the transmitted signal corrupted by additive Gaussian noise. Instead,
we observe signal fading, which can be defined as variations in the magnitude and/or phase
of one or more frequency components, caused by the possibly time-varying characteristics
of the propagation environment.

These variations can be divided into two categories: large and small scale signal fad-
ing. The first encapsulates long-term changes caused by environmental elements, such as
shadowing by buildings and natural features or rain. Degradations of this type are heavily
system-, application- and even terrain-dependent. Thus, solutions addressing large scale
fading tend to be at the system protocol level (e.g., basestation placement, power control),
whereas our focus is on enhancing performance through signal processing at the physical
layer. Of more interest when designing widely-applicable space-time coding algorithms are
the effects of small scale fading. These short-term fluctuations in the received envelope are
caused by signal scattering off objects in the propagation environment.

This scattering leads to a phenomenon known as multipath propagation, where the re-
ceived signal is comprised of a number of constructively and destructively interfering copies
of the transmitted waveform. These copies are also referred to as multipaths, since they
propagate along different paths to reach their destination. Because the properties of the
transmission environment vary from path to path, each copy experiences different attenua-
tions, phase shifts, angles of arrival, Doppler shifts, and time delays. In this report, we will
be concerned primarily with the attenuations, arrival angles and excess delays, i.e., delays
relative to the first arriving multipath, as these enable us to develop a simple yet relevant
model of the wireless channel.

By considering the attenuations and excess delays of the arriving multipaths, we can
characterize the fading channel as a linear system, where the length of its impulse response
corresponds to the maximum excess delay. At any given time, the frequency response of
the channel indicates how it affects transmitted signal components at different frequencies.
Over time, the Channel Impulse Response (CIR) may change, leading to a time-variant
linear system model. Finally, in the case of a MIMO transmission system, the impulse
responses of the channels between each transmit-receive antenna pair may also be different.
The spreads of departure angles from the transmit antenna and arrival angles at the receive
antenna influence the relationships between these responses, as explained in Section 2.1.3.

The overall effect of this linear time-variant space-variant fading channel on a transmitted
signal can be studied more easily by considering each of the domains in turn. Table 2.1
summarizes the kinds of small scale signal fading that may be encountered in the MIMO

3



4 CHAPTER 2. SIGNAL FADING AND STRUCTURES

wireless channel. The criteria used in defining each of the fading types is expressed in fairly
standard notation, with the relevant system characteristics as follows:

• Symbol period Ts. Inverse of the symbol rate Rs.

• Signal bandwidthW . Nominal passband bandwidth needed to transmit the modulated
signal, i.e., W = Rs =

1
Ts
.

• Inter-element distance d. MEA separation, assuming uniform linear array structure.

• Block length L. Length of transmitted block in symbols.

The propagation environment is defined by three parameters:

• Coherence time τcoh ≈ 1
Doppler spread .

• Coherence bandwidth Bcoh ≈ 1
rms delay spread .

• Coherence distance dcoh.

Domain Type of signal fading

Time
Slow fading Quasi-static fading Fast fading

τcoh À Ts τcoh ≈ LTs τcoh < Ts

Frequency
Flat (frequency non-selective) fading Frequency selective fading

Bcoh ÀW Bcoh < W

Space
Spatially correlated fading Spatially independent fading

dcoh À d dcoh < d

Table 2.1: Types of small scale signal fading and their defining criteria.

In the remainder of this chapter we review these parameters and how they relate to the
definitions of the fading types outlined in Table 2.1. We also elaborate on their relevance to
broadband fixed wireless systems. Then we define the mathematical notation, probability
distributions and fading signal models that will be used throughout this report. In particular
we pay special attention to the flat quasi-static, frequency selective, and spatially correlated
fading scenarios. A more comprehensive study can be found in [6].

2.1 Channel parameters

In this section, we consider the three parameters described previously in terms of the do-
mains in which they reside. Before we begin, it will be useful to briefly introduce the Channel
Impulse Response (CIR) function, as well as the notions of coherence and selectivity.

In its most general form, the impulse response of a MIMO channel hij(t, τ) is a function
of time, delay, and transmit and receive antenna positions, or as we show here, the indices of
a particular pair of transmit and receive antennas on their respective uniform linear arrays.
This complex-valued function describes the response of the channel seen by receive antenna
i at time t to a unit impulse transmitted τ time units in the past from transmit antenna j.
It is a generalization of the input delay-spread function that is most often used to represent
the impulse response of a SISO channel.



2.1. CHANNEL PARAMETERS 5

The time domain is reflected by t, and as we shall see the frequency domain by the delay
variable τ . The spatial domains at the transmit and receive arrays are captured by the
indices j and i. In each of these domains, the fading channel is characterized by a coherence
interval. Over this interval, the channel model is considered to be flat or invariant. Outside
of this interval, the channel’s response in that domain may change arbitrarily. Observe that
coherence is a characteristic of the channel and does not depend on the properties of the
signals being transmitted.

When we consider the transmission of a specific signal, it is clear that the properties
of that signal play a role in determining whether the channel’s effect on it are invariant in
any given domain. This relationship between the coherence of the channel the properties
of the signal, are captured by the notion of selectivity. If the channel is selective, then the
region of support1 of the transmitted signal is larger than the coherence interval. Thus the
channel is not flat with respect to the signal in that domain. Conversely if the channel is
not selective, then it is invariant with respect to the transmitted signal.

Observe that along each of the domains or rows of Table 2.1, selectivity increases through
the columns from left to right. In particular, note that correlated channels have relatively low
selectivity, while independent channels exhibit high selectivity in their respective domains.
As we shall see in Chapters 3 and 4, selectivity is essential for obtaining increased diversity
gains and capacities, and correlation is a property that reduces the achievable benefits.

2.1.1 Time selectivity

The coherence time τcoh is the time difference at which the magnitude or envelope correlation
coefficient between two signals at the same frequency falls below 0.5. In other words it
can be assumed that the two signal components separated in time by τcoh will undergo
independent attenuations. Thus a signal experiences slow or time non-selective fading if
its symbol period Ts is much smaller than the channel coherence time, and fast or time
selective fading if Ts > τcoh. When a signal is slow fading, we can assume that the CIR is
time invariant during a block transmission.

Another related type of time-oriented fading that is commonly used in signal analyses
for space-time coding, especially when dealing with block-based algorithms, is quasi-static
fading. In this case, the coherence time is on the order of LTs. The channel attenuation is
assumed to be constant over each block, but changes independently from block to block. In
this project, we will be working almost exclusively with quasi-static fading channels. This
assumption greatly simplifies analysis since it enables the channel to be modelled as an
Linear Time-Invariant (LTI) system within each block.

Since the channel coherence time can be approximated by taking the inverse of the
Doppler spread, it relates to the degree of mobility in the propagation environment. In
particular, although there may be some motion of the scatterers, the fixed wireless channel
has negligible Doppler spread, or equivalently a large coherence time, and is therefore a
slow fading channel. In the context of mobile communications, since the symbol period is
also the inverse of the signal bandwidth or symbol rate, fast fading arises in cases where
the bandwidth is smaller than the Doppler spread of the channel, i.e., when the symbol
rate is low and the mobile unit is moving rapidly. As the data rate increases and/or the
mobile unit’s mobility decreases, the channel becomes more slowly fading. Also note that
the maximum Doppler shift is proportional to the carrier frequency. Thus time selectivity
also becomes a more important consideration as transmission frequencies increase.

1The region of support of a function f(x) is defined as the set X = {x|f(x) 6= 0}. Also, in this discussion
we define the size of such a region to be maxx∈X (x)−minx∈X (x).
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2.1.2 Frequency selectivity

The coherence bandwidth Bcoh captures the analogous notion for two signals of different
frequencies transmitted at the same time. A signal experiences flat or frequency non-selective
fading if its bandwidth W is much smaller than the channel coherence bandwidth, and
frequency selective fading if W > Bcoh.

Another way of thinking about frequency selectivity arises when considering the in-
verse Fourier transform of the channel frequency response. If the channel is frequency
non-selective, then its frequency response is flat over the bandwidth of interest, or equiva-
lently its impulse response is a scaled Dirac delta function. In this case its maximum excess
delay τmax is smaller than a symbol period. Although there are still many multipaths arriv-
ing at the receive antenna, we say that they are not resolvable or that only one significant
multipath component can be resolved by the receiver. Effectively, the symbol period over
which the receiver accumulates and then samples the signal energy, determines the resolu-
tion of the transmission system. Since all of the multipath images arrive at delays more
closely spaced than Ts, they are blended into a single received sample.

In the frequency selective fading case, the response of the channel is not flat and its max-
imum excess delay is larger than Ts. A transmitted signal is sufficiently dispersed in time,
so that the resolution of the receiver enables it to be seen during multiple symbol periods.
Therefore we say that there is more than one resolvable or significant multipath component.
Such channels are also known in the literature as dispersive or multipath fading channels.
Note that in this report, we distinguish multipath fading from multipath propagation. We
will use the latter term to refer to the scattering environment through which all wireless
signals travel. When discussing a multipath fading channel, we will mean that more than
one multipath may be resolved by the receiver.

So far we have considered how τmax, which describes the maximum time dispersion of the
transmitted signal, relates to frequency selectivity. Another quantity that is commonly used
to capture dispersion is the rms delay spread, defined as the square root of the (normalized)
second central moment of the power delay profile of the channel. The power delay profile
phij (t, τ) = ph(τ) = |hij(t, τ)|2 is generally assumed to be independent of time and space.
It describes the power seen at the receiver as a function of delay, and is often used to
specify standardized channel models in the literature. When simulating frequency selective
channels, the delay profile is typically normalized so that

∫ τmax

0 ph(τ) dτ = 1.
The rms delay spread is then given by

σ̂τ =

√∫ τmax

0 (τ − τ)2ph(τ) dτ∫ τmax

0 ph(τ) dτ
, (2.1)

τ =

∫ τmax

0 τph(τ) dτ∫ τmax

0 ph(τ) dτ
.

The channel coherence bandwidth may be approximated by taking the inverse of the
rms delay spread.2 In absolute terms, the extent of the time dispersion induced by fading is
an intrinsic property of the channel. The relative degree of dispersion becomes more severe
as the transmitted symbol period decreases, i.e., as the signal bandwidth increases. For
instance, observe that the same amount of absolute delay results in dispersion over a larger
number of symbol periods as Ts decreases. Thus the broadband wireless channel tends to
be a frequency selective fading channel.

2Note that some authors use the inverse of the maximum excess delay as an approximation of the channel
coherence bandwidth. Since they are both approximations, the use of either definition is acceptable.
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2.1.3 Spatial selectivity

When using MEA arrays, the coherence distance represents the minimum distance in space
separating two antenna elements such that they experience independent fading. This dis-
tance clearly depends on the wavelength λ of the transmitted signal, as the phases of higher
frequency signals are more sensitive to small distance changes than those of low frequency
signals. Thus antenna separations and coherence distances are typically expressed in terms
of wavelengths of the carrier signal. dcoh also depends on the presence of scatterers in the
vicinity of the antenna array, and generally falls somewhere between λ

4 and 12λ.3

To understand why this is the case, we model the multipath propagation environment
by representing the scatterers as sources, each reflecting the signal away from the transmit
array and toward the receive array with some attenuation and delay. In a rich scattering
environment, where many scatterers are approximately uniformly distributed over [0, 2π)
around the receive array, the envelope correlation between two signals seen at antennas sep-
arated by d > λ

4 is less than 0.5 [11]. Thus, given this angle spread and antenna separation,
the channel exhibits independent or spatially selective fading.

As the spread of departure angles of the multipaths from the transmit array or arrival
angles at the receive array decreases, it has been shown that the envelope correlation co-
efficient increases, in other words the coherence distance of the channel also increases [14].
When the correlation coefficient is greater than 0.5 for antennas separated by the desired
distance,4 the channel is said to exhibit correlated fading. This case is more typical for fixed
broadband wireless access solutions, especially in rural deployments, and results in lower
achievable capacity.

Observe that for the time and frequency domains, fading channels are modelled as ei-
ther non-selective (invariant) or selective (changing independently) in the space-time coding
literature. However for the spatial domain, we also consider channels that fall somewhere
in the gray-region between full and partial selectivity. In the former case, the channel at-
tenuations seen by two distinct receive antennas are statistically independent. In the latter
case, there will be some non-zero correlation coefficient between these two signals, hence the
notion of spatially correlated channels.

Table 2.2, adapted from [41], summarizes some typical wireless propagation environments
and the parameters associated with the corresponding fading channels.

2.2 Mathematical notation

In this report, scalars will be denoted by lowercase letters: slj and rli for the transmitted

and received signals respectively, hlj for the channel attenuation, and nli the noise. Where
appropriate, the spatial dimension, i.e., antenna number, will be indicated in the subscript,
with the receive array index i followed by that of the transmit array j if both are required.
The time index may be specified in the superscript or as a parameter (t, l), where the
discrete time index l corresponds to a sample at time t = lTs.

Since the transmitted symbols do not necessarily co-incide with the transmit antennas
or symbol periods in their number or order, we will reserve the variable slj for use when

3In practice, an antenna separation of λ
2
is commonly chosen for subscriber units in rich local scattering

environments with angle spreads of 360◦. For urban roof-top and rural basestations with channels charac-
terized by angle spreads on the order of 10◦, dcoh is typically assumed to be around 10λ.

4For instance, the maximum possible antenna separation may be constrained by the physical size of the
transceiver unit.
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Environment Mobility Doppler
spread

Delay
spread

Rs,max for
flat fadinga

Angle
spread

Spatial
correlation

Rural

Urban

Hilly

Mall

Office

High

Medium

High

Low

Low

190 Hz

120 Hz

190 Hz

10 Hz

5 Hz

0.5 µs

5 µs

20 µs

0.3 µs

0.1 µs

200 Kbaud

20 Kbaud

5 Kbaud

350 Kbaud

1 Mbaud

1◦

20◦

30◦

120◦

360◦

High

Medium

Medium

Low

Low

aAs a rule of thumb, a flat fading channel can be assumed if the symbol rate is less than 1
10σ̂τ

[40].

Table 2.2: Typical wireless propagation environments and their associated parameters. The
mobility and Doppler spread values apply to mobile systems, with approximate values given
for a carrier frequency of 2.5 GHz.

referring to a symbol transmitted from antenna j during symbol period l. We will also make
use of the following notation xq ∈ X , q = {1, . . . , Q} to refer to the symbols independently
of spatio-temporal position. They are chosen from alphabet X ⊂ C of size B = log2 |X |. At
the receiver, soft decisions for the detected symbols (by antenna or generic symbol index) will
be denoted by the corresponding overstruck transmitted symbol (s, x), and hard decisions
covered with a hat (ŝ, x̂).

There are a number of different types of vectors and matrices used in the space-time
coding literature, which can be a source of confusion for readers. In this report we will
distinguish between three kinds of vectors and four kinds of matrices (presented in order of
appearance):

First, vectors whose elements span a non-temporal dimension, e.g., a set of signals
transmitted at the same time from a MEA or an independent sequence of signals, will be
denoted by boldface lowercase letters:

s =
[
s1 s2 · · · sN

]T
,

x =
[
x1 x2 · · · xQ

]T
.

Spatial matrices representing a transformation between spatial dimensions, e.g., a map-
ping from the transmit array space to the receive array space, will be denoted by boldface
uppercase letters (H). In this case, the entries all share the same time index. When dis-
cussing receive diversity, we will be interested in considering the columns of the channel
matrix H, which will be denoted by hj , and to study transmit diversity, the rows of H

will be denoted h
T

i . Observe that under this notation all vectors are column vectors by
definition.

To represent a block of signals transmitted from each of the elements of an array over
a number of symbol periods, space-time matrices are used. The rows of these matrices
span a spatial dimension and their columns span time. They will be denoted by boldface
uppercase letters covered with a tilde (S̃). The size of the matrix in the time dimension
may be indicated in the superscript, or take the default value of the block length L. The
corresponding time × time channel matrix (H̃) will be similarly annotated.

When working with frequency selective fading channels, signals will be expanded in the
time dimension by the memory of the channel equivalent linear filter. To denote vectors
whose elements span the time dimension, i.e., signals transmitted over a number of symbol
periods from the same antenna, we will use boldface lowercase letters covered with a tilde.
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As in the case of the space-time matrix, the length of the vector may be indicated in the
superscript, or take the default value of L. In addition, the starting time index may be
given as a parameter. For instance,

s̃j = s̃Lj =
[
s0j s1j . . . sL−1j

]T
.

Transmission over MIMO frequency selective fading channels is expressed in two ways
in the literature: as a linear combination of SISO channels [2] or using more compact block
notation [26]. We will denote by a calligraphic letter A = Vec(Ã) the block vector obtained
by stacking the columns of space-time matrix Ã. As before, the resulting space-time signal
vector may be annotated by a superscript indicating the size of the source matrix in the
time dimension and the starting time index may be given as a parameter.

To apply linear transformations to these space-time vectors, the relevant matrices may
also have to be expanded. Wherever possible we will make use of the compact Kronecker
product notation:

A⊗B =




a11B · · · a1nB
...

. . .
...

am1B · · · amnB


 ,

where A, B and A ⊗ B are of sizes m × n, p × q and mp × nq, respectively. Singly
time-expanded matrices, e.g., space × space-time, will be denoted by script letters (H ),
annotated by a superscript as necessary. Doubly time-expanded matrices, e.g., space-time
× space-time, will be denoted by script letters covered with a tilde (H̃ ).

In addition to studying blocks transmitted over a number of symbol periods, we will also
be interested in considering transmissions spread over a number of frequency sub-channels,
i.e., developing signal structures appropriate for multi-carrier modulation schemes. We will
use Lf to denote the number of frequency sub-channels. The ensuing space-frequency signal
matrices are straightforward duals of their space-time counterparts and will be indicated by
a subscript f , e.g., S̃f .

The elements of these structures are scalar (discrete) Fourier transform coefficients rep-
resenting the corresponding time domain signals in the frequency domain. They will be
differentiated through the use of blackboard letters ( �

j ,
�
ij), with the spatial dimension

indicated in the subscript and the sub-channel index or frequency dimension specified as a
parameter where appropriate (f).

Some other notations and operations that will be used in this report are summarized in
Table 2.3

2.3 Statistical models for fading signals

At the beginning of this chapter, we briefly introduced the concepts of signal scattering and
multipath. Because the combined effect of the scattered signals cannot easily be expressed
in closed form, more tractable statistical descriptions for the resulting fading coefficients
have been derived based on the nature of signal propagation in the wireless environment.

As there are a large number of scatterers in the wireless channel, the central limit
theorem may be applied to obtain a limiting probability distribution for the composite
received signal. Therefore, if there is no Line Of Sight (LOS) path from the transmitter
to the receiver, we expect the real and imaginary parts of the complex baseband channel
coefficients to be zero-mean Gaussian processes. Their magnitudes can then be modelled
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x∗ Complex conjugate of x

xij Element in the ith row and jth column of X

x:j jth column of X

xi: ith row of X

X† Complex conjugate (Hermitian) transpose of X

X−1 Inverse of X

X+ Moore-Penrose pseudoinverse of X = (X†X)−1X†

λi(X) Eigenvalues of X (parameter may be omitted where clear from context)

detX Determinant of X =
∏n

i=1 λi

rankX Rank of X = Number of non-zero eigenvalues (or singular values)

trX Trace of X =
∑n

i=1 xii

diagX Diagonal elements of X = [x11 . . . xnn]

diagx Diagonal matrix constructed from elements of x = D s.t. dii = xi

In n× n identity matrix

Λ Diagonal matrix of eigenvalues

Σ Diagonal matrix of singular values

U,V Unitary matrix

Fd {x} Discrete Fourier Transform (DFT) of x

Table 2.3: Summary of mathematical notation and operations.

according to a Rayleigh probability distribution and their phases are uniformly distributed
over [0, 2π).

The Rayleigh probability density function is written in terms of a parameter σ > 0,
which corresponds to the standard deviation of the constituent real and imaginary Gaussian
components:

f(α) =





α
σ2 e

− α2

2σ2 , α ≥ 0

0, α < 0
.

Its mean value is E(α) =
√

π
2σ and its average power is E(α2) = 2σ2.

In some cases, particularly in some existing commercial fixed wireless systems, there is
a LOS path from the basestation to the subscriber units. The appropriate statistical model
in this case is known as the Rice distribution. Its probability density function is given by

f(α) =





α
σ2 e

−α2+A2

2σ2 I0(
Aα
σ2 ), α ≥ 0

0, α < 0
,

where A is the peak amplitude of the dominant signal and I0(·) is the zeroth modified Bessel
function of the first kind. The Ricean channel is sometimes described using the K-factor
K = A2

2σ2 , which is the ratio of the power of the dominant signal, or specular component, to
that of the scattered signals, or Rayleigh component. Observe that when K = 0 the Ricean
distribution becomes the Rayleigh distribution.

Finally, the Nakagami-m distribution is an alternative two-parameter statistical model
for the envelope of the channel response. Although it has been shown that this distribution
provides the best fit for urban radio channels [55], we will likely use the Rayleigh distribution
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in our work because of its simpler form and more common application in the literature. We
include the Nagakami-m probability density function here for completeness:

f(α) =





2
Γ(m)

(
m
2σ2

)m
α2m−1e−

mα2

2σ2 , α ≥ 0

0, α < 0
,

where σ represents the power of the real and imaginary Gaussian components as before and
the fading figure is

m =
(2σ2)2

E ([α2 − 2σ2]2)
, m ≥ 1

2
.

More detailed information and experimental results on the Nakagami-m distribution
can be found in [55] and the references therein. We note that it reduces to the Rayleigh
distribution when m = 1.

2.4 System models for fading channels

In this section we overview the key mathematical structures and features underlying three
important wireless channel models. First we consider the quasi-static flat fading channel,
which is the most popular in the literature because of its simplicity of analysis and relevance
to narrowband communication schemes. Next, the quasi-static frequency selective fading
channel is of interest, because its properties are more appropriate for broadband systems.
Finally, since spatial correlation is found to some degree in all MIMO transmission systems,
we will take a look at how such correlation is modelled mathematically.

There are three standard assumptions that we make throughout this report about the
channel impulse response function. First we assume that it is wide-sense stationary. This
means that its autocorrelation is a function only of relative time differences and not abso-
lute time references. Secondly we assume that it experiences uncorrelated scattering. This
assumption is equivalent to wide-sense stationarity of the channel response in the frequency
domain [54, Chapter 2]. This results in uncorrelatedness between the responses seen at
different delays. Finally we make an analogous assumption in the spatial domain, that
the spatial correlation between two transmit/receive antenna pairs is dependent only on
their relative positions, i.e., indices on the uniform linear arrays, and not on their absolute
positions.

In addition, we make the assumption that even if the channel itself is time-varying, its
power delay profile remains time invariant as well as spatially invariant. These assumptions
lead to a more tractable form for the autocorrelation function

rh(i1, i2, j1, j2, t1, t2, τ1, τ2) = E
[
h∗i1j1(t1, τ1)hi2j2(t2, τ2)

]

= E
[√

ph(τ)ĥ
∗
i1j1

(t1, τ)
√
ph(τ)ĥi2,j2(t2, τ)

]
δ(τ2 − τ1)

= ph(τ1)(RM )i2,i1(R
†
N )j2,j1rh(t2 − t1)δ(τ2 − τ1),

where ĥ are normalized random variables having unit variance, RM and RN are receive
and transmit (spatial) correlation matrices that will be derived in Section 2.4.3, and rh(θ)
represents the temporal autocorrelation induced by fast fading. These reduce to δ(i2 − i1),
δ(j2 − j1) and 1 respectively in the case of quasi-static spatially uncorrelated fading.
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In this report, we will be working with the complex baseband representation of discrete
time signals. For completeness, Figure 2.1 shows the applicable communication system
diagrams and where the signals of interest can be found.

gT (t) h(t)

n(t)

t = lTs
gR(t)

Rx filterChannelTx filter Whitening
filter fw[l]

device

Detector+
Decision

r[l] ŝ[l]s[l]
rc[l]

(a) Full system diagram, continuous time.

h[l]

n[l]
s[l]

Detector device

s[l] ŝ[l]r[l] DecisionChannel

(b) Simplified system diagram, discrete time.

Figure 2.1: Complex baseband communication system diagrams.

The sampled received signals (before and after whitening) can be expressed as

rc[l] =

∞w

−∞

[ ∞w

−∞
h(τ)

∞∑

k=−∞
s[k]gT (θ − τ − kTs) dτ + n(θ)

]
gR(lTs − θ) dθ

=
∞∑

k=−∞
hc[l − k]s[k] + n[l]c

r[l] =

Pw−1∑

p=0

fw[p]z
−p
( ∞∑

k=−∞
hc[l − k]s[k] + nc[l]

)

=
∞∑

k=−∞
s[k]

Pw−1∑

p=0

fw[p]hc[l − p− k] +
P−1∑

p=0

fw[p]nc[l − p],

where the discrete time whitening filter is of length Pw and the discrete time, and for quasi-
static fading time invariant, channel impulse response is defined by the discrete filtered
convolution (?)

h[l] =
P−1∑

p=0

fw[p]

∞x

−∞
h(τ)gT (θ)gR([l − p]Ts − τ − θ) dθ dτ.

With these definitions in hand, the simplified equivalent system diagram shown in Fig-
ure 2.1(b) will be used for the remainder of this report. See Appendix D for a more detailed
discussion.

2.4.1 Flat quasi-static fading channel

The simplest channel model is that of flat quasi-static fading. In this case the path attenua-
tions do not vary over the duration of the block transmission, thus the channel becomes an
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LTI system within the block. The attenuations also do not vary over the spectrum of the
transmitted signal, and as discussed in Section 2.1.2, its impulse response is a scaled Dirac
delta function. Thus the process can be modelled mathematically as a single-tap filter with
complex coefficient h[l], or equivalently by real path attenuation α[l] and phase shift θ[l]:

r[l] = α[l]ejθ[l]s[l] + n[l]

= h[l]s[l] + n[l]. (2.2)

Equation 2.2 actually illustrates the possibly time selective fading case with one transmit
antenna and one receive antenna. Because the channel under consideration is slowly fading,
the coefficients will be independent of time, i.e., h[l] = h. Also note that we have dropped
the delay and spatial parameters to simplify the notation.

In the MIMO case, we may have M receive antennas and N transmit antennas, leading
to the following matrix equation:

r = Hs+ n, (2.3)

where r is an M × 1 vector of signals received at each antenna, s is an N × 1 vector of
signals transmitted by each antenna, and n is an M × 1 vector of complex Additive White
Gaussian Noise (AWGN) signals seen at each receive antenna. The channel matrix H is an
M ×N matrix, whose elements hij represent the complex fading coefficients experienced by
a signal transmitted from transmit antenna j to receive antenna i.

In the case of block transmission over a flat quasi-static fading channel, the full trans-
mission may be represented using space-time transmit, receive and noise signal matrices R̃,
S̃ and Ñ of sizes M × L, N × L and M × L, respectively.

R̃ = HS̃+ Ñ. (2.4)

2.4.2 Frequency selective quasi-static fading channel

In the case of frequency-selective fading, the coherence bandwidth of the channel is smaller
than the bandwidth of the signal. Equivalently, the delay spread of the channel is larger
than the symbol period Ts. Thus each transmitted symbol is dispersed over K symbol
periods, where τmax ≤ KTs. These K images of the signal are referred to as resolvable paths
as discussed in Section 2.1.2.

The linear system representation of a dispersive fading channel is then a finite impulse
response filter of length K or of memory K − 1. The first multipath is assumed to arrive at
time 0. In this case, we must include the delay parameter, but can simplify the presentation
by recalling that within each block over a quasi-static channel h(t, τ) = h(τ) is time invari-
ant. We also define the discrete delay variable k as corresponding to a delay of τ = kTs.
Thus in the derivations that follow, we will write the CIR as h(t, kTs) = hk.

Equation 2.2 representing the SISO case then becomes

r[l] =
K−1∑

k=0

hks[l − k] + n[l]. (2.5)

In a block transmission scheme, e.g., Orthogonal Frequency Division Multiplexing (OFDM),
directly applying (2.5) exposes the first symbol in each new block to interference from the
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last K − 1 symbols of the previous block. A common strategy used to protect the current
block from Inter-Block Interference (IBI) is to flush out these leftover symbols by inserting
a prefix of K − 1 guard symbols. Thus a small rate loss is incurred because L̃ = L+K − 1
symbols must be transmitted to convey L information-bearing symbols.

The following expressions describe the signals involved in such a block transmission,
where we assume that the channel is quasi-static, i.e., its impulse response is LTI:

r̃L̃ = H̃L̃s̃L̃ + ñL̃ (2.6)

r̃L̃ =
[
r[−K + 1] · · · r[−1] r[0] · · · r[L− 1]

]T

where the channel matrix and transmitted signal and noise vectors are given by

H̃L̃ =




h0 0 · · · 0 hK−1 · · · h1

h1 h0 0 · · · 0
. . .

...
...

. . .
. . . 0 · · · 0 hK−1

hK−1 · · · h1 h0 0 · · · 0

0
. . . · · ·

. . .
. . .

. . .
...

...
. . .

. . . · · ·
. . . h0 0

0 · · · 0 hK−1 · · · h1 h0




(2.7)

s̃L̃ =
[
s[−K + 1] · · · s[−1] s[0] · · · s[L− 1]

]T

ñL̃ =
[
n[−K + 1] · · · n[−1] n[0] · · · n[L− 1]

]T

Observe that the L̃ × L̃ CIR matrix has a special structure. Each of its columns dif-
fers from the previous column by a circular shift; such a matrix is called circulant. Some
important properties of circulant matrices will be discussed later on. The other vectors in
(2.6) are of length L̃. The symbols to the left and channel coefficients above the annotated
lines are associated with the inserted prefix. Thus the information-bearing block can be
recovered simply by discarding the first K − 1 received symbols. It is straightforward to
verify that the L data symbols r[0], . . . , r[L− 1] correspond to those given by (2.5).

We also note that the first symbol depends on the current symbol of interest as well as
the previous prefix symbols. If these are chosen to be the cyclic extension of the block of
data symbols, i.e., s[−k] = s[L − k], k = {1, . . . ,K − 1}, then we can rewrite (2.6) in the
following equivalent form:

r̃ = H̃s̃+ ñ, (2.8)

where the superscripts have been dropped since the vectors are all of length L. H̃ is again a
circulant matrix, now of size L×L, generated by the same channel response as before, and
the transmitted, received and noise vectors correspond precisely to the L elements appearing
to the right of the annotated lines in the previous expressions.

Because it is circulant, the SISO channel matrix (2.7) inherits some useful properties:

1. It is specified completely by its first column.

2. All other columns can be generated by circularly shifting the first, and all circular
shifts of the first column necessarily appear as columns.
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3. Circulant matrices are always square and Toeplitz, i.e., the elements along every diag-
onal are the same.

4. The set of n × n complex-valued circulant matrices with binary operations matrix
addition and multiplication form a field. In particular, matrix multiplication is com-
mutative within this field.

5. The circulant matrix is diagonalized by the inverse DFT, i.e., its EigenValue De-
composition (EVD) is given by H̃ = U†DFT,LΛUDFT,L, where UDFT,L is the L × L

unitary DFT matrix,5 Λ is a diagonal matrix containing the eigenvalues of H̃, and
diagΛ = [λ0 · · · λL−1] = [

� 0 · · · � L−1] = Fd

{
[h0 · · · hK−1 0 · · · 0]

}
, the DFT of the

zero-extended CIR.

In particular, Property 5 is of interest because it emphasizes the dual nature of the
multipath fading channel as a frequency selective fading channel. The frequency selectivity
is represented by the different eigenvalues found on the diagonal of Λ, i.e., the non-flat
frequency response of the channel. We can also see that the EVD decouples the frequency
selective block transmission channel into Lf = L parallel flat fading channels as follows:

r̃ = U†DFT,LΛUDFT,Ls̃+ ñ

UDFT,Lr̃ = ΛUDFT,Ls̃+UDFT,Lñ

Fd {r̃} = ΛFd {s̃}+ Fd {ñ} .
By decoupling we mean that the coefficients received in each of the frequency divided

sub-channels depend only on those transmitted in that sub-channel, and noise. Because Λ is
diagonal, the composite signal mixtures that would otherwise be seen by the receiver have
been reduced to simple single variable equations. Furthermore, the symbols transmitted
on any of the Lf sub-channels or tones experience only flat fading, rather than the more
difficult to combat frequency selective type. This result is well known to be advantageous,
among other reasons because it removes the need for complex equalizers at the receiver.
Because of its frequency domain structure, this block transmission strategy is known as
Discrete Multi-Tone (DMT) or OFDM.

So far in this section, we have only been considering transmissions from a single antenna
to a single antenna. Next we will take a look at some structures required for analysis of the
frequency selective MIMO fading channel. A single symbol transmission from N transmit
antennas to M receive antennas may be expressed as follows:

r = H
KSK [−K + 1] + n

where H K is a 1×K space × space-time block matrix of M ×N blocks of spatial channel
coefficients,

H K =




hK−1
11 · · · hK−1

N1

...
. . .

...

hK−1
1M · · · hK−1

NM︸ ︷︷ ︸
Delay K-1

· · ·

· · ·

· · ·

h0
11 · · · h0

N1

...
. . .

...
h0

1M · · · h0
NM︸ ︷︷ ︸

Delay 0


 =

[
H[K − 1] · · · H[0]

]
,

5UDFT,L =
1√
L




1 1 1 · · · 1

1 e−j 2π
L e−j

2π(2)
L · · · e−j

2π(L−1)
L

...
...

. . .
...

1 e−j
2π(L−1)

L e−j
2π(L−1)(2)

L · · · e−j
2π(L−1)(L−1)

L



, UIDFT,L = U†

DFT,L.
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and SK [−K + 1] = Vec
(
S̃K [−K + 1]

)
is a NK × 1 space-time block vector of transmitted

signals

S̃K [−K + 1] =




s1[−K + 1] · · · s1[0]
...

. . .
...

sN [−K + 1] · · · sN [0]


 , SK [−K + 1] =




s[−K + 1]
...
s[0]


 , (2.9)

and r and n are M × 1 received signals and complex AWGN vectors as before.

We will also be interested in the case of block transmission over the MIMO frequency
selective quasi-static fading channel, which is described mathematically in an analogous
manner to (2.8) by

R = H̃ S +N ,

where R = Vec(R̃) and N = Vec(Ñ) are ML× 1 space-time block vectors of received and
noise signals

R̃ =




r1[0] · · · r1[L− 1]
...

. . .
...

rM [0] · · · rM [L− 1]


 , R =




r[0]
...

r[L− 1]


 ,

Ñ =




n1[0] · · · n1[L− 1]
...

. . .
...

nM [0] · · · nM [L− 1]


 , N =




n[0]
...

n[L− 1]


 ,

H̃ is a space-time × space-time block circulant matrix of L×L blocks, each containing the
M ×N MIMO spatial channel matrix corresponding to a particular multipath delay,

H̃ =




H[0] 0 · · · 0 H[K − 1] · · · H[1]

H(1) H[0] 0 · · · 0
. . .

...
...

. . .
. . . 0 · · · 0 H[K − 1]

H[K − 1] · · · H[1] H[0] 0 · · · 0

0
. . . · · ·

. . .
. . .

. . .
...

...
. . .

. . . · · ·
. . . H[0] 0

0 · · · 0 H(K − 1) · · · H[1] H[0]




, (2.10)

and S is a NL × 1 space-time block vector of transmitted signals as described in (2.9),
except that in this case the sequence of signals sent from each antenna is of length L and
starts from time index t.

Comparing (2.7) and (2.10), we can see that H̃ could equivalently be constructed by
appropriately interleaving the NM SISO channel impulse response matrices H̃ij , which
correspond to each pair of transmit and receive antennas. Finally we note that the MIMO
frequency selective channel matrix is block diagonalized by the unitary block inverse DFT
matrices UDFT,NL = UDFT ⊗ IN and UDFT,ML = UDFT ⊗ IM , where UDFT is the L× L
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unitary DFT matrix as before [53]:

UDFT,MLH̃ U†DFT,NL = Λ
H̃

diag
(
Λ

H̃

)
l

= H[l] (lth diagonal block of Λ
H̃
)

=
K−1∑

k=0

H[k]e−j
2π
L
kl.

The L diagonal blocks comprising space-frequency × space-frequency channel matrix Λ
H̃

are M × N matrices representing the frequency response of the MIMO channel in each of
the Lf = L discrete frequency bins. Because of its similarity to the DMT solution for SISO
frequency selective fading channels, the term Discrete Matrix Multi-Tone (DMMT) has been
coined to describe this block transmission structure [43].

2.4.3 Flat quasi-static spatially correlated fading channel

To model the spatial selectivity of the channel, we begin by considering the flat quasi-static
multi-antenna model given in (2.4):

R̃ = HS̃+ Ñ.

Each column ofH represents the path gains and phase shifts seen by a signal propagating
from one of the N transmit antennas to all M antennas in the receive array. To consider
the true statistical dependence between these random variables, we would have to look at
the NM × NM covariance matrix E

[
Vec(H)Vec(H)†

]
. However it has been shown via

simulation that a more compact separable product form provides a good approximation
of the correlation (both in terms of the distribution of eigenvalues of HH† [51] and the
magnitudes of the resulting coefficients [11]).

This product form of the channel correlation is derived by making a few simplifying
assumptions [11]:

• The channel coefficients are random variables with unit variance.

• The correlation between the fading coefficients corresponding to the paths to two

different receive antennas does not depend on the transmit antenna, i.e., E
(
h∗ijhi′j

)
=

E
(
h∗ij′hi′j′

)
for all j′. Hence this term is referred to as the receive correlation.

• Analogously, the correlation corresponding to the paths from two different transmit
antennas does not depend on the receive antenna, and is referred to as the transmit
correlation.

• Finally, the correlation corresponding to two distinct paths having no common trans-
mit or receive antennas is computed by taking the product of the appropriate receive

and transmit correlation coefficients, i.e., E
(
h∗ijhi′j′

)
= E

(
h∗ijhi′j

)
E
(
h∗i′jhi′j′

)
.

For simplicity, we use a zero mean distribution for the channel coefficients h in the
following. First we form the receive correlation matrix RM,j for the signal sent by transmit
antenna j:

RM,j = E
(
hjh

†
j

)
.
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Note that hj is a column vector containing the channel coefficients seen by allM elements
of the receive array corresponding to paths from transmit antenna j. RM,j then encapsulates
the spatial correlation between the signals received at each of the M antennas, i.e., hj =

R
1
2
M,jĥj , where ĥ1j , . . . , ĥMj are uncorrelated random variables with zero mean and unit

variance for all j.6

Applying the first assumption, we get that RM,j = RM is independent of j, allowing us
to express H in the following partially-decorrelated form:

H = R
1
2
MĤ,

where the rows of Ĥ are uncorrelated random vectors. By this we mean that E

(
ĥ
†
i ĥi′

)
=

∑N
j=1 E

(
ĥ∗ij ĥi′j

)
= 0 ∀ i′ 6= i. Also note that (RM )i′i corresponds to the receive correlation

coefficient E
(
h∗ijhi′j

)
for any j.

We can also form an analogous transmit correlation matrix encapsulating the spatial
correlation between signals transmitted from each of the N antennas:

RN,i = E

(
ĥ
∗
i ĥ

T

i

)
,

where h
T

i is a row vector containing the channel coefficients seen by receive antenna i
along paths from all N elements of the transmit array, after receive correlation has been

removed. As in the previous argument, we see that ĥi = R
∗
2
N,ihw,i, where hw,i1, . . . , hw,iN

are uncorrelated random variables with zero mean and unit variance for all i.7 Applying the
assumption that the fading statistics are the same for all receive antennas, i.e., RN,i = RN

is independent of i, we can fully decorrelate H as follows:

ĤT = R
∗
2
NH

T
w

H = R
1
2
MHwR

†
2
N ,

where all entries of Hw are uncorrelated (i.e., white) random variables with zero mean and

unit variance. Similarly to the previous decomposition, (R†N )j′j corresponds to the transmit

correlation coefficient E
(
h∗ijhij′

)
for any i.

Thus spatial selectivity is modelled by the matrices RM and RN , which represent the
spatial correlation between signals received by and transmitted from the receive and transmit
antenna arrays, respectively. We note that they are both by definition Hermitian positive
semi-definite.

2.5 Discussion

Much of the existing work in space-time coding concentrates on slow or quasi-static, flat,
and spatially independent fading channels. These assumptions are relevant to narrowband

6This can be seen by observing that E
(
ĥjĥ

†
j

)
= R

− 1
2

M,jE
(
hjh

†
j

)
R

− †
2

M,j = IM .

7Similarly, this can be seen by observing that E
(
h
∗
w,ih

T

w,i

)
= R

− 1
2

N,iE

(
ĥ
∗
i ĥ

T

i

)
R

− †
2

N,i = IN .
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communications with low mobility in rich scattering environments. However, they are not
representative of the channels applicable to broadband fixed wireless access, a technology
that we believe will become increasingly important in years to come.

The broadband fixed wireless access channel is a slow, frequency selective fading channel,
which may experience medium to high spatial correlation, depending on the applications
being considered. Although spatial correlation reduces the achievable capacity, its frequency
selectivity provides additional diversity which can be exploited to improve the performance
of a system communicating over this channel.



Chapter 3

Diversity and spatial diversity

The wireless environment presents a challenging communications problem because of the
possibly time-, frequency- and spatially-varying degradations caused by signal fading. As
we shall see, these impairments are not necessarily harmful. Under certain conditions it is
possible to take advantage of the variations in the channel’s responses to improve the re-
ceived Signal-to-Noise Ratio (SNR). For instance, suppose that the channel is such that two
identical signals, transmitted in parallel over two distinct frequency sub-channels, experience
independent fading effects. The receiver can then obtain two copies of the desired signal,
and the probability that both are severely degraded is lower than in the case where only
one observation is available. Thus a better overall estimate may be recovered by combining
these together in some manner.

The idea of obtaining a number of different copies of the same signal is called diversity.
Such techniques provide a powerful toolset for achieving reliable transmission over fading
channels. Although there are a number of means by which signal diversity can be obtained,
the desired end remains the same: Enable the receiver to recover a more robust replica of
the transmitted signal by combining a number of independently faded copies. Thus, diver-
sity techniques can only be applied in cases and domains where the channel is sufficiently
selective.

In this report we will be concerned primarily with spatial diversity, i.e., that derived
from using MEA arrays. However, there are also four other kinds of diversity that are of
current interest in the literature:

Delay diversity arises in a multipath channel, where the receiver can resolve multiple de-
layed copies of the same signal. Equalization may be used to provide diversity gain in
this case, or for instance, a RAKE receiver [32]. This type of diversity may be referred
to as frequency diversity, as such a multipath channel is equivalently modelled as a
frequency selective fading channel.

Time diversity is available when the channel is fast fading. Thus signals sent from one
symbol period to the next experience independent fading and may be combined to
achieve a diversity gain.

Polarization diversity takes advantage of single antenna structures supporting orthogonal
polarizations to provide independently fading channels [36]. These may present a
promising cost- and space-effective alternative to MEAs, however recent results reveal
that transmit diversity schemes generally suffer a performance loss when combined
with polarization diversity [39].

20
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Modal diversity or pattern diversity is a benefit available when using multimode antennas.
It has been shown theoretically that the correlations between signals received by the
different modes are sufficiently low that a significant diversity gain can be realized
[56]. Such approaches are also envisioned to provide an alternative solution to MEAs,
especially in applications with stringent physical size requirements.

We begin by introducing the ideas underlying the use of spatial diversity, briefly sketch-
ing its historical development and defining the term diversity gain. Then we derive the
performance gains available to systems using receive only, transmit only, and combined
transmit and receive diversity. Throughout this report we will make use of the following
standard assumptions, which are commonly applied in the literature for analysis of wireless
systems in fading environments:

• Limited transmitter power. The total transmitted power, regardless of the number
of transmit antennas, is constrained to be less than P .

• Rayleigh fading channel. The coefficients h[l] are drawn from a circularly symmet-
ric complex Gaussian distribution with zero mean and unit variance (or independent
real and imaginary parts each having variance 1

2).

• Spatially independent fading. At any given time, these coefficients hij [l] are inde-
pendent, i.e., there is enough physical separation between the antenna elements such
that the signals fade independently across the arrays.

• Perfect CSI at the receiver. The receiver has perfect knowledge of the channel
coefficients. This is a reasonable assumption when the fading is slow enough to allow
estimation of the channel state with negligible error, as in the case of fixed wireless
systems.

• Circularly symmetric complex Gaussian noise. In addition to fading, the signals
are also corrupted by additive noise components ni[l] that are modelled as independent
circularly symmetric complex Gaussian random variables with zero mean and variance
N0 (or

N0
2 per dimension).

3.1 Spatial diversity

MEA arrays are used in wireless communications to improve system performance at the
expense of processing complexity at either the transmitter, receiver, or both. The purpose
of this chapter is to illustrate how the signals transmitted using MEAs can be designed
and processed to provide a diversity advantage, i.e., improved SNR and hence bit error
performance at the receiver. In the case of the MIMO channel, where MEAs are used at
both the transmitter and receiver, increased capacity or a multiplexing gain may also be
realized; this topic will be touched upon in Section 3.4 and discussed in more detail in
Chapter 4.

Research in spatial diversity focused initially on receiver techniques, motivated by the
goal of mitigating degradations in the signal caused by multipath propagation. Under the
assumption that the paths taken by each of the copies result in statistically independent
fading effects, we can conclude that they are unlikely to all be in a deep fade, i.e., strongly
distorted, simultaneously. Thus an improved signal may be obtained by forming a weighted
combination of the received copies. Three common receive diversity strategies used when
communicating over Rayleigh fading channels are selection diversity, equal gain combining,
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and the well-known optimal SNR approach, MRC which will be discussed in more detail in
Section 3.2.

Because of the physical size of the relevant antennas,1 as well as restrictions on the
processing power available at subscriber terminals, receive diversity was appropriate for
improving signal quality only at the basestation, i.e., in the uplink. Interest in trans-
mit diversity techniques arose in an attempt to realize similar performance benefits in the
downlink, while displacing the additional processing complexity and the physical burden
of the MEA from subscriber units to the basestation. The general structure of a transmit
diversity system will be presented in Section 3.3, and a survey of some proposed techniques
in Section 5.2.

Performance improvements attributed to the receiver having obtained multiple copies of
the same information signal are referred to in the literature as diversity advantage, order,
level, or gain. Such improvements are most obviously manifest in the form of steeper bit
error curves. Perhaps a more intuitive way of thinking of diversity advantage is as the ratio
of the SNR obtained using diversity to that obtained with a single transmission path (given
the same total transmitted power and signal bandwidth). We will show how this SNR relates
to the bit error performance and define diversity advantage more formally as the asymptotic
slope of the bit error curve on a log-log scale [1]. Thus it reflects the exponential decrease
of the bit error rate against SNR.

We will say that a technique achieves full spatial diversity if its diversity advantage is
equal to the number of paths from the transmit to the receive arrays. We shall see that the
notion of diversity gain is not as clear cut for instance as that of coding gain. In particular,
two systems can have the same diversity gain but achieve different bit error performance
curves (e.g., see Fig. 3.5). These ideas will be made more clear as the chapter progresses.

3.2 Receive only diversity

A simple illustration of diversity advantage can be seen by considering the well-known MRC
receiver. We begin with a system having no diversity and show how receive diversity can
be used to improve its performance without increasing transmitted power or bandwidth. In
Figure 3.1 the N = 1, M = 1 SISO flat fading channel and a optimal SNR detector are
shown. The optimality of this detector can be seen by applying Schwarz’ Inequality and is
also discussed in Appendix A in more detail. The received signal is

r[l] = h[l]s[l] + n[l],

and the detected signal is then

s[l] = h∗[l] [h[l]s[l] + n[l]]

= α2[l]s[l] + α[l]ñ[l],

where α[l] = |h[l]| is the magnitude of the channel coefficient or path gain, and the noise term
ñ[l] has the same distribution as n[l] since the circularly symmetric Gaussian distribution
is invariant to multiplication by unit phase components. We note that this detector is
sometimes referred to in the space-time coding literature as a discrete matched filter, since
it maximizes the post-detection SNR by matching to the complex channel coefficient h[l].

1A nominal quarter wavelength antenna tuned to the 800-900 MHz frequency bands used in second
generation cellular systems would be around 8-9cm in size.
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s[l]
h∗[l]

s[l]r[l]

h[l]

n[l]

Figure 3.1: System diagram for N = 1 transmit antenna, M = 1 receive antenna SISO
channel with optimal SNR detector.

The conditional SNR of the SISO system given perfect knowledge of the channel coeffi-
cients h[l] (and hence their magnitudes α[l]) is

ρSISO|α[l] =

∣∣α2[l]s[l]
∣∣2

E
(
|α[l]ñ[l]|2

)

= ρα2[l], (3.1)

where ρ = P
N0

is the SNR of the channel without fading. This expression may also be
referred to as the instantaneous SNR since it corresponds to the SNR of a particular channel
realization. Analogously, the instantaneous bit error rate of a coherent Binary Phase Shift
Keying (BPSK) system communicating over this channel is given by

pε|α[l] (ρ) = Q
(√

2ρα[l]
)
,

The average bit error rate can be determined by simulation or analytically by integrating
over the Rayleigh probability density function of the channel coefficient:

pε,M=1(ρ) =

∫ ∞

0
pε|α (ρ) · f(α) dα

=

∫ ∞

0
Q
(√

2ρα
)
· 2αe−α2

dα

= − Q
(√

2ρα
)
· e−α2

∣∣∣
∞

0
−
∫ ∞

0

1√
2π
e−ρα

2 ·
√

2ρe−α
2
dα

=
1

2
−
√
ρ

π

∫ ∞

0
e−(1+ρ)α

2
dα

u=α
√
1+ρ

=
1

2
−
√

ρ

π(1 + ρ)

∫ ∞

0
e−u

2
du

=
1

2

(
1−

√
ρ

1 + ρ

)
. (3.2)

At high SNRs, (3.2) can be approximated as 1
4ρ [42]. Observe that the exponent of the

SNR ρ is −1, hence we say that the SISO system has a diversity advantage of 1. In the
plot shown in Figure 3.3 at the end of the section, we also note that the asymptotic slope
of the no diversity curve is −1, or equivalently that the bit error rate falls by an order of
magnitude for every additional 10 dB of SNR.
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Next, if we consider the N = 1, M Single Input Multiple Output (SIMO) channel shown
in Figure 3.2, we can write the signal received along the ith branch as

ri[l] = hi[l]s[l] + ni[l].

The SNR per branch along each transmission path can be expressed similarly as in (3.1):

ρi|αi[l] = ρα2i [l].

r1[l]
h∗1[l]

s[l] r2[l]
h∗2[l]

s[l]
...

rM [l]
h∗M [l]

... ...
...

...
... ...

h2[l]

hM [l]

nM [l]

h1[l] n2[l]

n1[l]

Figure 3.2: System diagram for N = 1 transmit antenna, M receive antennas SIMO channel
with optimal MRC receiver.

In the MRC diversity combining scheme, the estimated signal is obtained by forming a
linear combination of the signals received at each antenna. It is well-known to be an optimal
SNR linear processing receive diversity algorithm. In fact, it can also be shown that MRC
combining is optimal in the ML sense, and thus achieves the best performance over the set
of all linear and non-linear receiver structures. See Appendix A for more details.

s[l] =
M∑

i=1

ci[l]ri[l]

=
M∑

i=1

ci[l] [hi[l]s[l] + ni[l]] .
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The conditional SNR of the combined signal given the channel coefficients h1[l], . . . , hM [l]
is then

ρSIMO,MRC|αi[l],i=1,...,M =

∣∣∣
∑M

i=1 ci[l]hi[l]s[l]
∣∣∣
2

E

(∣∣∣
∑M

i=1 ci[l]ni[l]
∣∣∣
2
)

≤ ρ ·
∑M

i=1 |ci[l]|2
∑M

i=1 α
2
i [l]∑M

i=1 |ci[l]|2

= ρ
M∑

i=1

α2i [l] (3.3)

= Mρi|αi[l] ,

where the average branch SNR ρi is equal to the SNR of the system with no diversity given in
(3.1), thus giving a full diversity advantage of M . The MRC combining scheme is designed
to achieve this optimal SNR by setting the combining weights ci[l] = h∗i [l].

2 Observe that
the magnitudes of the combining weights are precisely those of the path gains, thus “good”
paths with high SNRs will figure more prominently in the resulting combination, whereas
paths with low SNRs will play a lesser role.

The signal estimate is therefore

s[l] =
M∑

i=1

h∗i [l] [hi[l]s[l] + ni[l]]

= s[l]
M∑

i=1

α2i [l] +
M∑

i=1

α[l]ñi[l],

and decoding can proceed from this form. The instantaneous SNR of this signal is given by
(3.3) and thus the instantaneous bit error rate of a coherent BPSK system communicating
over this channel is

pε|αi[l],j=1,...,M (ρ) = Q




√√√√2ρ

M∑

i=1

α2i [l]




= Q

(√
2ρχ22M

)
,

where χ22M is a chi-squared random variable with 2M degrees of freedom. Note that when
plotting this curve, we would like to see the error rate in terms of the average (received)
SNR per bit. Again from (3.3), we can see that this is

ρ = E
(
ρSIMO,MRC|αi[l],j=1,...,M

)

= Mρ.

2This follows from Schwarz’ Inequality, which states that |〈x, y〉|2 ≤ 〈x, x〉〈y, y〉, where 〈x, y〉 denotes
the inner product of x and y, i.e., x†y for vectors,

∫
x∗(t)y(t) dt for continuous time signals,

∑
l x

∗[l]y[l] for
discrete time signals, or E (x∗y) for random variables. Equality is achieved if and only if x = Cy for some
constant C.
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Thus we are actually interested in

pε|αi[l],j=1,...,M (ρ) = Q

(√
2
ρ

M
χ22M

)
,

and when simulating the system, we set the transmitted power to P = Eb

M
. Thus P represents

the transmitted power per antenna that achieves an average SNR per bit of Eb

N0
. Exact

expressions for the bit error probabilities using MRC with M = 2, 4 have been derived as
follows and are plotted in Figure 3.3.

pε,M=2(ρ) =
1

2
− 1

2

√
ρ

1 + ρ
− 1

4

√
ρ

(1 + ρ)3
≈ 1

8ρ2

pε,M=4(ρ) =
1

2
− 1

2

√
ρ

1 + ρ
− 1

4

√
ρ

(1 + ρ)3
− 3

16

√
ρ

(1 + ρ)5
− 15

96

√
ρ

(1 + ρ)7
≈ 1

32ρ4

It can be shown that in the limit as M → ∞, the performance of MRC approaches that
obtained over an equivalent AWGN channel, i.e., with the same N0, but with no fading. See
Appendix B for more details.
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Figure 3.3: Bit error rate vs. average SNR per bit for 1:M systems in independent flat
Rayleigh fading using uncoded BPSK with a coherent optimal MRC receiver.

Also in Appendix B, we show that in the high SNR regime, the bit error probability is
approximately proportional to ρ−M . Hence the definition of the diversity advantage given
at the beginning of Section 3.1, as the asymptotic slope of the bit error performance curve
on a log-log scale.

3.3 Transmit only diversity

The success of receive diversity in improving the performance of wireless communication
systems led to the wide deployment of multiple element antenna arrays, particularly at
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basestations where hardware size and cost are less important considerations. There they
could be used to enhance the uplink channel from the subscriber unit to the basestation.
To achieve similar benefits in the downlink channel, while not requiring multiple element
arrays at the subscriber unit, researchers turned their attention to transmit diversity.

Transmit diversity is inherently a more difficult problem than receive diversity. In the
case of receive diversity we obtain copies of the signal that are assumed to have undergone
independent fading. The task at hand is to combine them optimally to recover the original
transmitted signal. One fundamental difference between such systems and those employing
transmit diversity is that in the latter case the signals are already combined when they reach
the receiver. Even assuming that the receiver has perfect CSI, separating this mixture of
signals in an optimal manner is a great challenge.

We note that there are two classes of problems that are very closely related to transmit
diversity detection: The more general is blind source separation, where a number of multi-
plicative or convolutive mixtures are observed and the goal is to recover pure copies of the
constituent sources. There is a large body of signal processing literature on this subject, for
instance a recent survey can be found in [10]. Source separation is analogous to extracting
the streams corresponding to each antenna in the transmit array. However, the transmit
diversity detection problem is simpler, since the sources are discrete rather than continuous
random variables.

Another superset of transmit diversity detection is the class of problems known as Multi-
User Detection (MUD). In this case, the receive antenna observes N signals coming not only
from different antennas, but also from different users. Detecting the signals of the individual
users is also analogous to extracting the streams transmitted by each antenna in a transmit
diversity system. However, transmit diversity detection is simplified by the knowledge that
the antennas are co-located. Therefore the near-far problem does not have to be addressed
with complicated power control algorithms.

To investigate transmit diversity, we first consider the N transmit, M = 1 receive
antenna Multiple Input Single Output (MISO) channel shown in Figure 3.4.

h1[l]

s1[l]

n[l]

h2[l]

r[l]
Detector

s2[l]

s1[l]

s2[l]

...

l = 1, . . . , L

sN [l]sN [l]

hN [l]

...
...

Figure 3.4: System diagram for N transmit antenna, M = 1 receive antenna MISO channel.
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The received signal, assuming slow or quasi-static and flat fading, can be written as

r[l] =
N∑

j=1

hj [l]sj [l] + n[l], l = 1, . . . , L

r̃T = h
T
S̃+ ñT

r̃ = S̃Th+ ñ, (3.4)

where h[l] and s[l] are vectors of channel coefficients and transmitted signals respectively
and S̃ is a N × L space-time signal matrix.

From matrix (3.4) we see immediately that in order to resolve this system of equations,
the block length Lmust be at least as large as the number of transmit antennasN . Otherwise
we are left with an underdetermined system of equations. We use the term resolve here
rather than solve because the noise vector is an unknown random variable. Thus using linear
techniques, the best we can hope to do is to provide an estimate of the solution. Zero-forcing
type estimates are obtained by inverting the matrix (ignoring the noise), leading to receivers
of the form H−1 or H+ = (H†H)−1H†. Whereas Minimum Mean Squared Error (MMSE)
estimates take the noise into consideration by minimizing the residual error term. In this
case the linear receiver and has the form H†(HH† + 1

ρ
IM )−1.

Also observe that (3.4) as it stands does not enable us to resolve anything. Given
ideal CSI at the receiver, h is already known and it is an estimate for S̃ that we are
trying to obtain. Thus in order to make use of this framework, we have to impose some
additional structure on S̃. The following approach for two transmit antennas is known as
the Alamouti STBC and has been shown to be an optimal SNR linear processing transmit
diversity algorithm [3]:

S̃ =

[
x1 −x∗2
x2 x∗1

]

[
r[1]
r[2]

]
=

[
x1 x2
−x∗2 x∗1

] [
h1
h2

]
+

[
n[1]
n[2]

]

=

[
x1h1 + x2h2
−x∗2h1 + x∗1h2

] [
h1
h2

]
+

[
n[1]
n[2]

]

[
r[1]
r∗[2]

]
=

[
h1 h2
h∗2 −h∗1

] [
x1
x2

]
+

[
n[1]
n∗[2]

]
, (3.5)

The ML solution can then be found by inverting the channel matrix derived in (3.5).
Note that it is not usually the case that the optimal ML estimate can be obtained us-
ing linear techniques. Since the constructed channel matrix is a scaled unitary matrix,
i.e., det (H)H−1 = H†, the ML, zero-forcing and MMSE solutions are all equivalent. See
Appendix A for a more detailed discussion:

[
x1
x2

]
=

[
h∗1 h2
h∗2 −h1

] [
r[1]
r∗[2]

]

=
(
α21 + α22

) [ x1
x2

]
+

[
h∗1 h2
h∗2 −h1

] [
n[1]
n∗[2]

]

=
(
α21 + α22

) [ x1
x2

]
+

[
ñ1[1] ñ2[2]
ñ2[1] ñ1[2]

] [
α1
α2

]
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Note that for this code Q = 2 signals are being transmitted using N = 2 antennas,
s1[1] = x1, s1[2] = −x∗2, s2[1] = x2 and s2[2] = x∗1, therefore |x1|2+ |x2|2 = |s1|2+ |s2|2. The
conditional SNR achieved by the Alamouti STBC given perfect knowledge of the channel
coefficients h1, h2 (and hence their magnitudes α1, α2) is

ρMISO,Alamouti−2:1|α1,α2
=

∣∣(α21 + α22)x
∣∣2

E
(
|α1ñ+ α2ñ′|2

)

= ρ(α21 + α22) (3.6)

where ñ and ñ′ are independent random noise terms having the same probability distribution
as n[l]. Comparing this SNR to that of the SISO system (i.e., with no diversity) in (3.1)
we get a full diversity advantage of 2. (This follows from the post-detection SNR in (3.6),
which indicates that the bit error performance curve is based on a χ2 random variable with
four degrees of freedom.) The scheme is also optimal in terms of SNR, since it results in
the same benefit as an MRC receiver with the same number of diversity paths.

The instantaneous bit error rate of a coherent BPSK system communicating over this
channel using the Alamouti code is

pε|α1,α2
(ρ) = Q

(√
2ρ(α21 + α22)

)

= Q

(√
2ρχ24

)
,

where χ24 is a chi-squared random variable with four degrees of freedom. However when
simulating this system, we will be interested in its performance compared to that of other
schemes, given the same total transmitted power. Thus the transmitted power per antenna
(or signal) will be reduced by a factor of 2 and (3.6) becomes

ρMISO,Alamouti−2:1|α1,α2,|s1|2+|s2|2≤P =
ρ

2
(α21 + α22) (3.7)

which is the same SNR as in the SISO case in expected value. This does not mean that there
is no diversity advantage. From the plots in Figure 3.5 we can see that the performance
curves for the Alamouti STBC and no diversity cases differ. Because the diversity advantage
of the code is 2, the asymptotic slope (as the SNR increases) of its bit error curve is steeper
than that of the SISO curve by a factor of 2.

We can also see that the decreased transmit power results in a the 3 dB shift to the right
with respect to the curve for the MRC receiver. However, the shape and slope of the two
curves are the same, because they have the same diversity advantage. We make one final
comment about the fact that these curves are plotted in terms of average SNR per bit per
receive branch. This ensures a fair comparison, for in the case of transmit diversity we are
only looking at the average SNR per bit for one of the transmitted signals, i.e., one transmit
branch.3

3Plots in terms of average SNR per bit per receive branch are also presented in [3]. One way to explain why
this comparison is more fair is to consider the elements of the antenna arrays as separate users communicating
with a basestation. In this analogy, the receive diversity scenario corresponds to the downlink from the single
basestation antenna to the multiple users, and the transmit diversity scenario to the uplink from all users to
the basestation. To compare the uplink and downlink performance fairly, we should plot the bit error rate
against the average SNR per bit per user in both directions, rather than against the average SNR per bit
(i.e., for all users) in the downlink and only per a single user in the uplink.
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Figure 3.5: Bit error rate vs. average SNR per bit per receive branch for 2:1 systems in
independent flat Rayleigh fading using uncoded coherent BPSK with the Alamouti STBC.
Analogous curves for 1:1 (no diversity) and 1:2 MRC receiver system having the same
diversity advantage are also shown for comparison.

The Alamouti code illustrates that for N = 2, the full diversity advantage can be
achieved using a STBC signal structure with a block length of L = 2. Since only linear
operations are employed at the receiver, this performance improvement can also be realized
with little increase in computational complexity. We note that although this code is generally
accepted to be one of the best solutions in the case where there are two transmit and one
receive antenna, transmit diversity is by no means a solved problem. In particular, observe
that the code cannot be extended to accommodate more than two transmit antennas. More
general transmit diversity strategies have been proposed in the literature; details on these
can be found in Chapter 5. The Alamouti code was chosen for presentation here because
we feel that it most clearly illustrates the main ideas behind transmit diversity.

Another important point that should be made about the Alamouti STBC is the following:
If we look more closely at (3.5), we can see that the code is in fact using the spatial
diversity available at the transmitter to create time selectivity in the quasi-static fading
channel. Because the transmitted signals are combined by the channel, transmit diversity
by itself does not provide any SNR benefit. If we consider the signals seen at the receiver
over l = 1, . . . , L separately, then those sent from the other antenna elements are actually
sources of co-channel interference, with respect to detecting a particular transmitted signal
of interest. Thus the Signal-to-Interference-and-Noise Ratio (SINR) is further reduced in
comparison to the baseline SISO system SNR. A diversity advantage is only achieved through
extending the transmission in the time domain and exploiting the temporal diversity induced
by the mathematical properties of the space-time signal matrix S̃.

We note that the underlying structure of the Alamouti code could just as easily have
been used to create frequency selectivity in a flat fading channel from the spatial diversity
at the transmitter. In this case the transmission resources are divided into Lf = 2 parallel
sub-channels in the frequency domain, each of bandwidth W

Lf
. Because of the reduced
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transmission bandwidth, the symbol period must be extended by the same factor to LfTs.
We can then define the following space-frequency code:

S̃f =

[ �

1 −
� ∗
2�

2

� ∗
1

]

[ �

[1]
� ∗[2]

]
=

[ �
1

�
2

� ∗
2 −

� ∗
1

] [ �

1
�

2

]
+

[ �

[1]
� ∗[2]

]

Although the symbol period has been doubled, the rate of this code is the same as that
of the space-time version. Symbols take twice as long to send, however two can be sent
simultaneously over the disjoint frequency sub-channels. Thus a block length in the time
domain of L = 1 is sufficient. We can see immediately from its structure, which is identical
to that given by (3.5), that the same diversity advantage is achieved.

As observed in [27], the maximum diversity arises when the channel is time, frequency,
and spatially selective. The degree of selectivity may be represented by the number of
independent sub-channels per transmission block in each of these domains: L, Lf and M ,
respectively. Spatial diversity at the transmitter cannot increase the diversity advantage
beyond the maximum level of LLfM , it can only be used to help achieve this diversity level
if the fading on the sub-channels in the other domains is correlated or non-selective.

3.4 Combined transmit and receive diversity

So far we have considered deploying MEAs at the transmitter or at the receiver, as a means
of obtaining a spatial diversity advantage. MEAs can also be used at both the transmit and
receive arrays, in conjunction with STBCs of block length L = N , to provide a diversity
advantage of up to NM over flat quasi-static fading channels. In a manner similar to the
Alamouti code discussed previously, spatial diversity at the transmitter may be converted
into selectivity in the time or frequency domains.

The generic MIMO system diagram is shown in Figure 3.6. As illustrated, if the receiver
is linear, we will denote it by the matrix W.

Observe that unlike the MISO channel, where the block length must be greater than
one in order for the transmitted signals to be estimated, in this case we do not require any
conditions on the block length. From a purely mathematical perspective, the received signal
at any sampling time can be expressed as

r = Hs+ n, (3.8)

where H is an M × N matrix of channel coefficients. Assuming that H is full rank, the
solvability of this matrix equation is determined by the relationship between M and N . As
long as M ≥ N , the transmitted signal vector s may be estimated. If M < N , we are left
with an underdetermined system, which may still be partially solved, usually given some
additional structure imposed on the set of transmitted signals.

It is important to emphasize that this way of thinking about the MIMO channel is
fundamentally different from those that we have considered so far in this chapter. There is
still spatial diversity available at both ends of the communication link. However in this case
we are not interested in diversity combining or in obtaining an SNR advantage. Instead we
are looking at the problem of transmitting up to min(M,N) different signals simultaneously,
and recovering them at the receiver. As noted in Section 3.3, this is essentially the problem
of blind source separation.
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Figure 3.6: System diagram for N transmit, M receive antenna MIMO channel.

In this section we take a closer look at these two classes of communication strategies for
MIMO channels. They may be referred to in the literature using the terms diversity and
spatial multiplexing techniques.

3.4.1 Improving the received SNR

The first simple yet illustrative code is obtained by constructing an extended version of the
Alamouti STBC for two transmit and two receive antennas:

S̃ =

[
x1 −x∗2
x2 x∗1

]

[
r1[1] r2[1]
r1[2] r2[2]

]
=

[
x1 x2
−x∗2 x∗1

] [
h11 h21
h12 h22

]
+

[
n[1]
n[2]

]




r1[1]
r∗1[2]
r2[1]
r∗2[2]


 =




h11 h12
h∗12 −h∗11
h21 h22
h∗22 −h∗21



[
x1
x2

]
+




n[1]
n∗[2]
n[1]
n∗[2]


 .

ML detection can be done via a linear operation by applying the Moore-Penrose pseu-
doinverse of the constructed channel matrix at the receiver:

[
x1
x2

]
=

[
h∗11 h12 h∗21 h22
h∗12 −h11 h∗22 −h21

]



r1[1]
r∗1[2]
r2[1]
r∗2[2]




=
(
α211 + α212 + α221 + α222

) [ x1
x2

]
+

[
ñ11[1] ñ12[2] ñ21[1] ñ22[2]
ñ12[1] ñ11[2] ñ22[1] ñ21[2]

]



α11
α12
α21
α22
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We can see immediately from the structure of the estimated signal that the full diversity
advantage of LM = 4 is achieved. (As before, this follows since the post-detection SNR is
ρ(α211+α

2
12+α

2
21+α

2
22) and therefore the bit error performance curve is based on a χ2 random

variable with eight degrees of freedom.) Thus as shown in Figure 3.8, its performance is
the same as that of an MRC receiver with 4 diversity branches, except that the transmitted
power per antenna is reduced by a factor of 2 to maintain the same total transmitted power.
Note that the post-detection SNR of both signals is the same.

Finally, we also observe that there is a repetition-like structure to the Alamouti STBC.
The same signals are sent in each symbol period, but they are conjugated and their order
is permuted to induce temporal selectivity. Therefore, although the full diversity advantage
is achieved, we are only able to transmit Q = 2 signals in L = 2 symbols periods, giving an
overall communication rate of 1 sym/s/Hz.

3.4.2 Increasing the data capacity

As noted previously, when using MEAs at both the transmit and receive arrays, it is not
necessary to add redundancy to the transmitted signal matrix in order to detect the symbols.
From (3.8), we can see immediately that min(M,N) different signals can be recovered at
the receiver using standard processing techniques based on linear algebra. This increase in
the communication rate is known as a spatial multiplexing gain.

The most popular of spatial multiplexing strategies is known as the Bell Labs lAyered
Space-Time (BLAST) transmission scheme. It is a simpler version of it, known as (Vertical)
V-BLAST that we will discuss here [15, 25]. The challenge of spatial multiplexing lies in
the design of the receiver processing algorithms. In V-BLAST, four main approaches are
proposed for resolving the transmitted signals.

As before, we can obtain a zero-forcing type estimate of the transmitted signal vector
by inverting the channel matrix. The linear detector matrix is given by W = (H†H)−1H†.
The performance of this basic receiver can be improved by detecting the transmitted signals
one at a time, and then feeding back the symbol decisions as follows:

W = (H†H)−1H† (3.9)

For j= 1 to N : sj = eTj Wr (nulling) (3.10)

= sj + eTj Wn (3.11)

ŝj = Quantize(sj) (3.12)

r = Hs+ n− ŝjhj (cancellation)

= H\hjs\sj + n, (3.13)

where ej is an elementary vector of appropriate length (N) in direction j, i.e., ej′ = 1 if
j′ = j, 0 otherwise. Since independent symbols are transmitted from each of the antennas,
sj = xj and so we work with sj and ŝj here.

Left multiplication by eTj in (3.10) has the effect of selecting the jth row of W, hence

only the jth signal is estimated. The quantization operation in (3.12) represents the non-
linear decision device. The symbol decision is fed back and subtracted from subsequent
detection loops, with (3.13) being based on the assumption that the decision is correct, i.e.,
that ŝj = sj . H\hj and s\sj are the channel matrix and transmitted signal vector with the

jth column and jth entry, respectively, removed.
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The strategy employed by this non-linear receiver is known in the MUD literature as
successive interference cancellation and in V-BLAST it is referred to as zero-forcing nulling
and cancellation. It has also been shown to be equivalent to the generalized Decision-
Feedback Equalizer (DFE) [25]. To consider the bit error performance of V-BLAST with
zero-forcing nulling and cancellation, we derive the SNR of the j th signal from (3.11):

ρMIMO,ZF−V−BLAST |hj =
ρ

∑M
i=1 |wji|2

. (3.14)

It can be shown that

1
∑M

i=1 |hij |2
≤

M∑

i=1

|wji|2 ≤
1

min(σ2i )
,

where σi are the singular values of H. The SNR can then be bounded as follows:

ρmin(σ2i ) ≤ ρMIMO,ZF−V−BLAST |hj ≤ ρ
M∑

i=1

|hij |2 .

Thus the potential diversity advantage offered by V-BLAST is the same as that sup-
ported by MRC strategies. Intuitively, we can see that this conclusion is reasonable by
considering that the signals transmitted from each of the N antennas are seen by all M re-
ceive antennas. Ignoring the difficulty of separating the sources from the observed mixtures,
the combined SNR seen at the receiver for each of the transmitted signals is M times that
obtained without spatial diversity. This level of diversity corresponds to the slopes of the
optimal ML decoder performance curves shown in Figure 3.7.4 However, we can also see
from the plots that the sub-optimal linear receiver structures achieve almost no diversity
gain.

Another observation that can be made from (3.14) is that since the SNR varies inversely
with the squared magnitude of the receiver vector, it is not the same for all of the transmitted
signals. Given this disparity in the signal SNRs, we expect that better performance can be
obtained by choosing the order of detection of the transmitted signals such that those with
higher SNRs, i.e., that are the least likely to be in error, are detected first. This strategy
is known as zero-forcing nulling and cancellation with ordering, and as can be seen in
Figure 3.7, its performance is indeed superior to that obtained when the transmitted signals
are detected in an arbitrary order. A proof that the globally optimal solution is attained
by applying this ordering is given in [64].

Successive interference cancellation describes the general idea of detecting a set of trans-
mitted symbols sequentially, feeding back symbol decisions after each loop and removing
the interference caused by that symbol from the received vector. In the case of zero-forcing
nulling, the detector matrix corresponds to the inverse of the channel matrix. Such ap-
proaches lead to the problem of noise amplification and generally exhibit poorer performance
compared to solutions that take the noise vector into consideration. The well-known best
estimate in AWGN is given by the MMSE detector matrix W = H†(H†H + 1

ρ
IM )−1. In

Figure 3.7, the performance of the MMSE nulling and cancellation V-BLAST receivers with
and without ordering are shown for two and four antenna systems using Quadrature Phase
Shift Keying (QPSK) modulation.

4The performance data for the ML curves were extracted from [24] and [22], respectively. We may
undertake to implement an ML decoder (e.g., the sphere decoder [62]) at some point in the future. The plots
for the other curves were generated via simulation.
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(a) 2:2 V-BLAST system.
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(b) 4:4 V-BLAST system.

Figure 3.7: Bit error rate vs. average SNR per bit for V-BLAST systems in independent
flat Rayleigh fading using uncoded coherent QPSK. The curves corresponding to the no
diversity case are also shown for comparison.
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The zero-forcing and MMSE nulling strategies presented previously are both sub-optimal
detectors. Although their performance falls short of that offered by an optimal ML detector,
they remain more widely used in practice because of their much lower computational com-
plexities. Comparing the sub-optimal methods, we see that the diversity advantage offered
by the zero-forcing receivers is slightly less than 1, and that of the best sub-optimal receiver,
MMSE with cancellation and ordering, is nearly as good as that of the ML approach. Study-
ing the two plots together, we observe that the bit error curves become steeper as the number
of transmit and receive antennas is increased. However the maximum potential diversity
advantage of M is not realized.

Finally, we take a look at the spatial multiplexing gain offered by V-BLAST. In the
cases simulated here, we have two transmit, two receive antenna (Fig. 3.7(a)) and four
transmit, four receive antenna (Fig. 3.7(b)) systems using QPSK modulation. Both send
Q = N symbols per symbol period and thus achieve the desired spatial multiplexing gain
of min(M,N). (If M ≥ N , all Q symbols can be recovered, otherwise at most M symbols
can be reliably transmitted.) This multiplexing gain is said to be optimal, since it is not
mathematically possible to separate more than min(M,N) independent sources from M
observed mixtures.

The increased data capacity offered by the V-BLAST scheme does not come without
a cost in performance. In Figure 3.8, we compare the bit error curves of V-BLAST to
those of an Alamouti STBC operating over the same 2:2 MIMO channel. To make a fair
comparison, we would like to transmit using both systems at the same rate. The rate
of the Alamouti code can be increased by using higher order modulation. Thus we show
simulated performance results for the STBC using QPSK, and BPSK for V-BLAST, giving
both schemes maximum rates of 2 b/s/Hz. Also, to maintain reasonable levels of receiver
complexity, the V-BLAST MMSE with cancellation and ordering approach is used.
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Figure 3.8: Bit error rate vs. average SNR per bit for 2:2 systems in independent flat
Rayleigh fading using uncoded coherent modulation: QPSK with the Alamouti STBC and
BPSK with V-BLAST. The curve corresponding to the no diversity case is also shown for
comparison.
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Although it appears that the block code outperforms BLAST at most SNRs, we note
that the target rates for state-of-the-art BLAST systems, which are presently under test
at Bell Labs, range from 20-40 b/s/Hz [18]. These sorts of rates can easily be achieved
using the BLAST architecture, for instance 10 antennas each transmitting symbols from an
8-Quadrature Amplitude Modulation (QAM) alphabet achieve an overall rate of 3 b/s/Hz
per spatial dimension, or 30 b/s/Hz. In order to achieve comparable rates with a STBC, an
unrealistic modulation scheme supporting 30 bits per symbol would be required.

3.5 Summary

In this chapter we have taken a look at spatial diversity advantage from the perspective
of SNR gain. We have seen that the diversity advantage reflects the steepness of the bit
error performance curve. To be more precise, in the high SNR regime, it is approximately
proportional to the slope of the bit error performance curve on a log-log scale. A number
of well-known systems have also been simulated and plots of their performance in the flat
quasi-static fading channel are shown throughout.

Table 3.1 summarizes the maximum diversity advantage and rates that can be achieved
in the various spatial diversity scenarios.

Spatial diversity scenario Maximum diversity advantage Maximum rate

No diversity 1 1 sym/s/Hz

Receive diversity M 1 sym/s/Hz

Transmit diversity N 1 sym/s/Hz

Transmit and receive diversity NM min(M,N) sym/s/Hz

Table 3.1: Summary of achievable performance for different spatial diversity scenarios in
flat quasi-static Rayleigh fading.

We stress that of these spatial diversity scenarios, only the MIMO channel can support
higher communication rates. This unique benefit is commonly referred to as a spatial
multiplexing gain. In the next chapter we will study the information theoretic capacity of
MIMO channels and prove that the maximum gain is min(M,N).



Chapter 4

Capacity of MIMO Rayleigh fading
channels

Previously in Chapter 3, we considered the potential improvement in received SNR offered
by employing spatial diversity at the transmit or receive antenna arrays or both. Research
in these areas was primarily aimed at displacing processing complexity from subscriber
units to base stations. It was a key result rediscovered independently by Telatar [61] and
Foschini et al. [17] that revitalized interest in MIMO channels. These analyses demonstrate
that not only can multiple antenna systems provide enhanced transmission reliability, but
they are also the key to achieving greatly increased data rates over the wireless channel
without any bandwidth expansion.

In this chapter we overview core results published in the literature on the capacity of
MIMO channels. We begin by sketching the proof that in a flat, quasi-static, spatially
independent fading environment, the capacity of the MIMO channel increases linearly with
the smaller of the number of transmit and receive antennas. For completeness, capacity
expressions based on the optimal input signal distributions are derived for both the cases
where CSI is and is not available at the transmitter. Then we consider the cases of frequency
selective and spatially correlated fading scenarios. Another important finding that will be
of interest to us is a derivation of the effective maximum capacity attained by some STBCs.

4.1 Flat quasi-static fading channel

We begin by considering the flat quasi-static multi-antenna model given in (3.8), dropping
the time-dependence for simplicity in the subsequent derivations:

r = Hs+ n.

Applying the Singular Value Decomposition (SVD) toH allows us to write the following:

r = UΣV†s+ n

U†r = ΣV†s+U†n

r̃ = Σs̃+ ñ, (4.1)

where U and V are unitary transformations, thus the distributions of r̃, s̃ and ñ are equiv-
alent to those of r, s and n, respectively. Σ is a diagonal matrix containing the singular

38



4.1. FLAT QUASI-STATIC FADING CHANNEL 39

values of H, i.e., the positive square roots of the eigenvalues of HH†. The number of non-
zero singular values is rankH ≤ min(M,N), effectively decoupling the MIMO channel into
at most min(M,N) parallel complex AWGN fading sub-channels. Note that if the elements
of H are i.i.d., rankH = min(M,N) with probability 1.

Given a total transmitted power constraint of P per symbol period, i.e.,
∑N

j=1 |s̃j |2 =

trE
[
s̃s̃†
]
≤ P , the instantaneous capacity of the MIMO channel can be determined by

maximizing the mutual information

I(s̃; r̃) = H(r̃)−H(ñ)

= log2 det

(
Kr̃
N0

)
,

where H(x) denotes the entropy of random variable x and Kr̃ = Kr is the covariance matrix
of the received signal vector:

Kr = E
(
rr†
)

= N0IM +HKsH
†

Kr̃ = N0IM +ΣKs̃Σ.

Thus the capacity is given by

C|H = max
trK≤ρ

log2 det
(
IM +HKH†

)

= max
trK≤ρ

log2 det (IM +ΣKΣ) ,

This capacity is referred to as an instantaneous capacity because it is conditioned on a
particular realization of the fading coefficientsH. When CSI is not available at the transmit-
ter, the capacity achieving distribution is the circularly symmetric complex Gaussian with
zero mean and covariance matrix K = ρ

N
IN . In this case, the expression for the capacity is

then

C|H = log2 det
(
IM +

ρ

N
HH†

)
. (4.2)

If the transmitter has access to CSI, usually obtained through feedback from the receiver,
the capacity achieving distribution has a diagonal covariance matrix whose entries are opti-
mized by water filling over the inverse squared singular value spectrum of the spatial channel

matrix [13, 61]: kii = (µ − 1
σ2
i

)+, where µ is chosen such that trK =
∑min(M,N)

i=1 kii = ρ.

The instantaneous capacity in this case is given by

C|H =

min(M,N)∑

i=1

[
log2(µσ

2
i )
]+
.

As we do not presume that CSI is available at the transmitter, we will use the simpler form
in 4.2 as the instantaneous capacity for the remainder of this section.

The Shannon capacity of the MIMO channel is given by the maximum rate at which
error-free communication is possible over all realizations of H. Observe that for all rates, no
matter how small, there is a non-zero probability that the channel matrix cannot support
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reliable communication at that rate. Thus the Shannon capacity of the Rayleigh fading
channel is zero. Instead, we may be interested in its mean or ergodic capacity, determined
by evaluating the expectation

C = EH

[
log2 det

(
IM +

ρ

N
HH†

)]
(4.3)

over all possible channel realizations H. We note that this expectation is often more easily
taken overHH†, which is known as a Wishart matrix when the entries ofH are independent
Rayleigh random variables. See [61, 48] and the references therein for more details.

Because the capacity of the Rayleigh fading channel is itself a random variable, it can be
characterized by its probability density and distribution functions fC(R; ρ) = P (C|H = R)
and FC(R; ρ) = P (C|H < R). In addition to these standard representations, the following
more descriptive statistics are also commonly used:

• Outage probability. Given target rate R and transmitted power constraint in terms
of SNR ρ, the probability that the capacity of the channel is not sufficient to support
reliable communication

POUT (R; ρ) = P (C|H < R)

= FC(R; ρ).

• Complementary Cumulative Distribution Function (CCDF). Given transmit-
ted SNR constraint ρ, the distribution over target rates R of the probability that the
capacity of the channel is sufficient to support reliable communication

FCCDF (R; ρ) = P (C|H ≥ R)

= 1− FC(R; ρ).

• Supportable rate. Given a target maximum outage probability and transmitted
SNR constraint ρ, the maximum rate at which reliable communication is theoretically
possible

RMAX(ε; ρ) = maxR s.t. P (C|H < R) ≤ ε

= F−1C (ε; ρ).

This quantity may also be referred to as outage capacity in the literature.

The capacity distribution and related quantities are difficult to evaluate analytically for
the MIMO channel. However, in the sections to follow we will briefly consider the results
derived for some special cases.

4.1.1 Receive only diversity

When N = 1, it is convenient to recall that det
(
IM + ρ

N
HH†

)
= det

(
IN + ρ

N
H†H

)
. Then

assuming that the entries of h are independent complex Gaussian random variables, with
independent real and imaginary parts having mean zero and variance 1

2 , we have that h†h
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is a χ22M random variable. A closed form analytical expression can be derived for the
probability distribution function of the capacity:

FC,1:M (R; ρ) = P (C|h < R)

= P
(
log2 det

[
IN + ρh†h

]
< R

)

= P
(
log2

[
1 + ρχ22M

]
< R

)

= P

(
χ22M <

2R − 1

ρ

)

=
γ
(
M, 2

R−1
ρ

)

Γ(M)
, (4.4)

where γ(α, x) is the incomplete gamma function.1 This expression for the capacity distribu-
tion function allows us to compute and study a number of descriptive statistics of interest.

Figure 4.1 shows the outage probability plotted against target rate for systems with one
transmit antenna and a number of receive antennas varying from one to 10. The SNR is set
to 15 dB for these simulations. As expected, we see that for a given rate, as the number
of receive antennas increases, the outage probability decreases. Also, for a desired outage
probability, the maximum achievable rate increases with the number of antennas. However,
the rate of this increase is slower than linearly, as will be made more clear in Figure 4.3.
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Figure 4.1: Outage probability vs. target rate for 1:M channels in flat quasi-static Rayleigh
fading, ρ = 15 dB.

Because of the close relationship between the CCDF and the outage probability, the
curve depicted in Figure 4.2 is simply the reflection of the previous plot, shown on a linear
rather than logarithmic scale. Both are frequently used in the literature to present capacity
results.

1The incomplete gamma function γ(α, x) =
∫ x

0
tα−1e−t dt.
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Figure 4.2: Capacity CCDF as a function of target rate for 1:M channels in flat quasi-static
Rayleigh fading, ρ = 15 dB.

In Figure 4.3, the supportable rate is plotted against the number of receive antennas for
target maximum outage probabilities varying from 0.01% to 50%. The SNR is set to 15 dB
again. Although an outage probability of 50% does not represent a very high quality link,
this curve is shown because as demonstrated by the simulations it provides a good upper
bound on the ergodic capacity. Alternatively, the ergodic capacity may be determined by
evaluating the integral

C1:M =
1

Γ(M)

∫ ∞

0
log2(1 + ρx)xM−1e−x dx. (4.5)

From the plot, we can see that for all outage levels, the growth in rate is approximately
logarithmic in the number of receive antennas. It has been shown that the ergodic capacity
converges to log2(1 + ρM) as M becomes large [61]. Also, note that the ergodic capacity
does not become a very good estimate of the more applicable outage capacities until the
number of antennas is quite large.

4.1.2 Transmit only diversity

When M = 1, the capacity of the MISO flat fading channel can be expressed as

CN :1|h = log2

(
1 +

ρ

N
h
T
h
∗)

= log2

(
1 +

ρ

N
χ22N

)
, (4.6)

where again we make the assumption that the entries of h are independent complex Gaussian
random variables, with independent real and imaginary parts having mean zero and variance
1
2 . Thus h

T
h
∗
is a χ22N distributed random variable. A closed form expression for the
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Figure 4.3: Supportable rate vs. number of receive antennas for 1:M channels in flat quasi-
static Rayleigh fading, ρ = 15 dB.

capacity distribution can then be derived in a manner similar to that used in the receive
diversity case:

FC,N :1(R; ρ) = P (CN :1|h < R)

= P
(
log2

[
1 +

ρ

N
χ22N

]
< R

)

= P

(
χ22N <

N [2R − 1]

ρ

)

=
γ
(
N, N [2

R−1]
ρ

)

Γ(N)
. (4.7)

For N =M > 1, the distribution of the MISO channel (4.7) is strictly greater than that
of the SIMO channel (4.4). Thus its outage probability is higher for any target rate, its
CCDF drops off more slowly, and its supportable rate is lower for any desired outage level.
It has been shown that the ergodic capacity in this case converges to a constant log2(1+ ρ)
as N becomes large [61].

4.1.3 Combined transmit and receive diversity

In the case where both transmit and receive diversity are available, it is helpful to define
m = min(M,N) and n = max(M,N). We also note that the at mostm non-zero eigenvalues
of HH† are the same as those of H†H. The ergodic capacity can then be obtained from
(4.3) by applying some results on the probability density of eigenvalues of Wishart matrices
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λi = σ2i [61]:

CN :M = EH

[
log2 det

(
IM +

ρ

N
HH†

)]

= Eλi

[
m∑

i=1

log2

(
1 + ρ

λi
N

)]

= mEλ

[
log2

(
1 + ρ

λ

N

)]

= m

∫ ∞

0
log2

(
1 + ρ

λ

N

)
pλ(λ) dλ

≈ m

∫ 4

0
log2(1 + ρx)

1

π

√
1

x
− 1

4
dx. (4.8)

Note that the capacity growth in this case is linear in m, the smaller of the number
of receive or transmit antennas. The plot in Figure 4.4 shows how the ergodic capacity
grows with the number of receive or transmit antennas for the spatial diversity scenarios
considered in this section. The expectations were evaluated numerically using Matlab r©

given a received SNR of 15 dB.
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Figure 4.4: Ergodic capacity vs. number of receive/transmit antennas for receive only, trans-
mit only, and combined transmit and receive diversity channels in flat quasi-static Rayleigh
fading, ρ = 15 dB.

Table 4.1 summarizes the instantaneous and ergodic capacities achievable using the
different spatial diversity scenarios.

The ergodic capacity expressions for the no diversity case were derived by evaluating the
integral in (4.5) with M = 1 and applying the approximations that at low SNR, i.e., ρ ≈ 1,
log2(1+ρx) ≈ log2(1+ρ) log2(1+x), and at high SNR, log2(1+ρx) ≈ log2(1+ρ)+ log2(x).
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Spatial diversity scenario Instantaneous capacity Ergodic capacity

No diversity log2(1 + ρχ2
2) ≈ log2(1 + ρ) 0.2194e

ln 2
(at low SNR)a

? log2(1 + ρ) + γ

ln 2
(≈ at high SNR)b

Receive diversity log2(1 + ρχ2
2M ) > log2(1 + ρM) (≈ for large M)

Transmit diversity log2
(
1 + ρ

N
χ2

2N

)
> log2(1 + ρ) (≈ for large N)

Transmit and receive diversity log2 det
(
IM +

ρ

N
HH†) ≈ m

[
log2(1 + ρ) 0.2194e

ln 2

]
(at low SNR)

? m
[
log2(1 + ρ)− 1

ln 2

]
(≈ at high SNR)

aIntegrated numerically,
∫∞
1
ln(x)e−x dx = 0.2194 . . ., and e = 2.7183 . . ..

bThe Euler-Mascheroni constant γ =
∫∞
0
ln(x)e−x dx = −0.5772 . . ..

Table 4.1: Summary of achievable capacity in b/s/Hz for different spatial diversity scenarios
in flat quasi-static Rayleigh fading with no transmitter CSI.

These were then verified graphically and extended in a straightforward manner to the equal
transmit and receive diversity scenario, by observing that the integral in (4.8) is less than
that in (4.5) at all relevant SNRs.

4.2 Frequency selective quasi-static fading channel

If the channel is frequency selective, we consider the case of block transmissions using the
DMT or DMMT structures. Its capacity can be derived by first applying the EVD to H.
This transformation decouples the channel into Lf = L parallel flat fading sub-channels.
The overall capacity can then be determined by averaging over those of the constituent
sub-channels. Since the fading in each of the sub-channels is flat, these capacities can be
computed using the techniques introduced in the previous section.

4.2.1 No spatial diversity

We begin by taking a look at the SISO frequency selective fading channel. Recall from
Section 2.4.2 that the channel matrix H̃ is circulant, and its first column is given by the
zero-extended CIR h̃ = [ h0 · · · hK−1 0 · · · 0 ]T of length Lf = L. H̃ is diagonalized by the
unitary inverse DFT matrix, and its eigenvalues diagΛ correspond to the DFT coefficients
of h̃ in order.2 We can then write the following expression for the instantaneous block
capacity:

C
1:1|H̃ = max

trK≤Lρ
log2 det

(
IL + H̃KH̃†

)

= max
trK≤Lρ

log2 det
(
IL +ΛKΛ†

)
.

Without any CSI available at the transmitter, the capacity achieving distribution is
the circularly symmetric complex Gaussian with zero mean and covariance matrix K =
ρIL. Observe that a per block transmitted energy constraint of Lρ is being applied to the
composite channel use of length L symbol periods. This constraint is weaker than the per
symbol constraint applied to study the flat fading scenario. However, it can be shown that

2We note that the unitary DFT matrix is also used by some authors to diagonalize H̃. By definition of
the EVD, the eigenvalues must remain the same. In this case, the order of the eigenvalues reflects the DFT
of the first row of H̃, rather than that of the first column.
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the capacities derived under both of these constraints are equal [30]. The block capacity is
then averaged over the block length for comparison to that of the symbol-based flat fading
channel. With this power constraint, the capacity becomes

C
1:1|H̃ =

1

L
log2 det

(
IL + ρΛΛ†

)

=
1

L

L−1∑

l=0

log2

(
1 + ρ |λl|2

)
. (4.9)

If the transmitter has access to CSI, the capacity achieving distribution has a diagonal
covariance matrix whose entries are optimized by water filling over the inverse power spec-
trum of the channel: kll = (µ− 1

|λl|2
)+, where µ is chosen such that trK =

∑L−1
l=0 kll = Lρ.

The capacity in this case is given by

C
1:1|H̃ =

1

L

L−1∑

l=0

[
log2

(
µ |λl|2

)]+
.

Note that the Toeplitz channel matrix is always square and full rank. Thus block trans-
mission over the SISO frequency selective channel is equivalent to transmission over Lf = L
parallel flat fading sub-channels. The gains experienced along each are determined by |λl|2,
the squared magnitudes of the eigenvalues of the channel matrix H̃, or the power spectrum
of the CIR. Hence the sub-channels may be referred to as spectral eigenmodes. However,
the magnitudes of some of the eigenvalues may be quite small. These weak eigenmodes
correspond to frequency bins where nulls appear in the power spectrum.

Unlike the flat fading channel, the relationships between elements of H̃ are not modelled
statistically. Instead it is typical for a multipath channel to be specified in terms of its power

delay profile p
h̃
[k] = E

(∣∣hk
∣∣2
)
for k = 0, . . . ,K. Then we can express hk as

√
p
h̃
[k]ĥk, where

ĥk are independent complex Gaussian random variables with zero mean and unit variance.
Next, we recall that by Parseval’s Theorem the sum of the eigenvalues is constrained as
follows:

L−1∑

l=0

|λl|2 = L

K−1∑

k=0

p
h̃
[k]|ĥk|2.

Therefore, the sum in (4.9) is maximized when all of the eigenvalues are equal.3 Finally,
since ĥk are i.i.d., the total power is maximized when the delay profile is uniform, i.e.,∑L−1

l=0 |λl|2 = L
K

∑K−1
k=0 |ĥk|2. In this case, the eigenvalues have unit variance and their

squared magnitudes are χ22K distributed. We then arrive at the following bound for the
capacity of the SISO frequency selective channel:

C
1:1|H̃ ≤ log2

(
1 + ρ |λ|2

)

= log2

(
1 +

ρ

K
χ22K

)
. (4.10)

Note the similarity between (4.10) and the capacity of the MISO flat fading channel
(4.6). Thus, the distribution of the lower bound of the SISO frequency selective channel

3This conclusion can also be reached by observing that log2(x) is a concave function and applying Jensen’s
Inequality to (4.9).
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capacity can be derived in a similar manner as previously:

FC,1:1,FS(R; ρ) = P (C
1:1|H̃ < R)

≥ P
[
log2

(
1 +

ρ

K
χ22K

)
< R

]

=
γ
(
K, K[2

R−1]
ρ

)

Γ(K)
. (4.11)

Equation 4.11 reveals that the outage probability of the SISO frequency selective channel
is lower bounded by that of a MISO flat fading channel with N = K. We have also
confirmed via simulation that in the case of equal power multipath components, this bound
is a good average case approximation. In particular, the capacity of the frequency selective
fading channel is generally greater than that of the underlying SISO flat fading channel.
Equivalently, its outage probability is lower, except at very high target rates where the
likelihood of an outage is very high in both cases (e.g., >20%). The following plots illustrate
our findings:
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Figure 4.5: Outage probability vs. target rate for N :1 channels in frequency selective
quasi-static Rayleigh fading, ρ=15 dB, K=2 equal power multipath components. The cor-
responding flat fading curves are also shown for comparison.

Figure 4.5 clearly illustrates the relationship between frequency selectivity and MISO
spatial diversity by plotting the outage probabilities of two-tap equal power multipath chan-
nels alongside those of flat fading channels for various values of N . An SNR of 15 dB is
used in the simulations with a block length of L=128. Similar performance curves are ob-
served for different block lengths. Although we have omitted the derivations for the MISO
frequency selective fading channel, it is straightforward to show that its capacity is governed
by a χ22KN random variable. Therefore we observe that the outage curves for the 4:1 flat
fading channel and 2:1 frequency selective case with K = 2 nearly coincide.

Figure 4.6 shows the outage probabilities of two sample three-tap multipath channels
for the same values of N . The flat fading results are also included for comparison. The
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(a) Equal power multipath components.
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(b) Multipath components with SUI-2 power delay profile (0 dB,
-12 dB and 15 dB).

Figure 4.6: Outage probability vs. target rate for N :1 channels in frequency selective quasi-
static Rayleigh fading, ρ=15 dB,K=3 multipath components. The corresponding flat fading
curves are also shown for comparison.
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differences between the two plots arise from the distribution of power over the delay profile
of the channel. In Figure 4.6(a) an equal power distribution is applied, and in Figure 4.6(b)
the SUI-2 profile of 0 dB, -12 dB and -15 dB is used. Observe that for any target rate,
the outage probability of the uniform power profile channel is lower than that of the more
realistic scenario. This experiment also has implications for LOS or near LOS channels.
Since they have a single dominant tap in their delay profiles, the resulting capacity curves
more closely resemble those of Figure 4.6(b). Thus they are less able to take advantage of
the enhanced capacity potential offered by frequency selective fading channels, especially at
higher target rates.

4.2.2 Combined transmit and receive diversity

Next, we consider the MIMO frequency selective fading channel. As we saw in Section 2.4.2,
the block circulant channel matrix is block diagonalized by appropriately sized unitary
block inverse DFT matrices. The resulting block diagonal matrix Λ

H̃
contains the Lf

spatial channel matrices corresponding to each of the frequency sub-channels. The elements
of these blocks are the flat fading channel coefficients seen along the paths between each
transmit-receive antenna pair.

Following [48], we can express the block capacity as follows:

C
N :M

∣∣∣H̃ = max
trK≤Lρ

log2 det
(
IML + H̃ KH̃

†
)

= max
trK≤Lρ

log2 det
(
IML +Λ

H̃
KΛ†

H̃

)
.

With the assumption of no CSI at the transmitter, the capacity achieving distribution is
given by the circularly symmetric complex Gaussian with zero mean and covariance matrix
K = ρ

N
INL. In this case, the block capacity can be expressed as

C
N :M

∣∣∣H̃ = log2 det
(
IML +

ρ

N
Λ

H̃
Λ†

H̃

)

=
L−1∑

l=0

log2 det
(
IM +

ρ

N
H[l]H[l]†

)
.

To continue with the derivation we need to take a closer look at H[l]. From Section 2.4.2, we

have that H[l] =
∑K−1

k=0 H[k]e−j
2π
L
kl. Observe that this sum corresponds to an element-wise

DFT, i.e., denoting the elements of M × N matrix H[l] by
� l
ij , we have that

� l
ij =

K−1∑

k=0

hkije
−j 2π

L
kl

=
K−1∑

k=0

√
p
h̃
[k]ĥkije

−j 2π
L
kl,

E
[

� l
ij

(
� l
ij

)∗]
=

K−1∑

k=0

p
h̃
[k]

= 1,
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by normalization of the power delay profile. Each DFT consists of the sum over a distinct
set of K independent circularly symmetric complex Gaussian random variables with mean
zero and variance determined by the delay profile.

As before, we can obtain an upper bound on the capacity by assuming a uniform delay
profile and observing that since the complex exponential is a unitary operation,

H̃l[k] = H[k]e−j
2π
L
kl

∼ Hw.

Therefore the elements of H[l] are independent circularly symmetric complex Gaussian ran-
dom variables with mean zero, unit variance, and whose squared magnitudes have 2K
degrees of freedom. The rotated coefficient matrices H̃l[k] are also independent over k. The
(symbol-based or block averaged) instantaneous capacity of the MIMO frequency selective
channel can then be bounded as follows:

C
N :M

∣∣∣H̃ =
1

L

L−1∑

l=0

log2 det

(
IM +

ρ

KN

K−1∑

k=0

H̃l[k]H̃l[k]†
)

≤ 1

L

L−1∑

l=0

K−1∑

k=0

log2 det
(
IM +

ρ

KN
H̃l[k]H̃l[k]†

)
(4.12)

Further simplification is complicated by the fact that H[l] and H(l′) (hence also H̃l[k]
and H̃l′ [k]) are not independent for l 6= l′. However, we can make the observation that the
sum in (4.12) is maximized when all of its arguments are the same, in other words when
they are independent of l and k. The resulting upper bound on the ergodic capacity of the
frequency selective MIMO channel is given by

C
N :M

∣∣∣H̃ ≤ KEHw

[
log2 det

(
IM +

ρ

KN
HwH

†
w

)]
,

which can be evaluated numerically or approximated using the techniques demonstrated in
[61] for flat fading channels. The following preliminary simulations reveal some characteris-
tics of this channel.

Figure 4.7 shows the outage probability of MIMO frequency selective channels where
N = M . The SNR is 15 dB and there are two equal power multipath components with a
block length of 128. Similar performance curves are observed for different numbers of equal
and unequal power multipath components and block lengths. The difference between the
outage probabilities of the frequency selective and flat fading scenarios can be attributed
to the additional degrees of freedom provided by the K multipath components. As in
Figure 4.5, Figure 4.7 shows improved outage characteristics exhibited at target rates lower
than the approximate ergodic capacity (outage capacity at which POUT = 1

2).
Figure 4.8 illustrates the supportable rate of MIMO frequency selective channels where

N =M . Again an SNR of 15 dB is used in these simulations and there are two equal power
multipath components with a block length of 128. We find that at outage levels ranging
from 0.1% to 10% the supportable rates available in the frequency selective fading channel
are higher than those offered by its flat fading counterpart.

Table 4.2 summarizes the instantaneous capacities and upper bounds for various fre-
quency selective fading scenarios.
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Figure 4.7: Outage probability vs. target rate for N=M channels in frequency selective
quasi-static Rayleigh fading, ρ=15 dB, K=2 equal power multipath components. The cor-
responding flat fading curves are also shown for comparison.
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selective quasi-static Rayleigh fading, ρ=15 dB, K=2 equal power multipath components.
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Spatial diversity
scenario

Instantaneous capacity Upper bound

No diversity 1
L

∑L−1
l=0 log2(1 + ρ

∣∣ � l
∣∣2) log2

(
1 + ρ

K
χ2

2K

)

Receive diversity 1
L

∑L−1
l=0 log2(1 + ρ

∑M

i=1

∣∣ � l
i

∣∣2) log2
(
1 + ρ

K
χ2

2KM

)

Transmit diversity 1
L

∑L−1
l=1 log2

(
1 + ρ

N

∑N

j=1

∣∣ � l
j

∣∣2
)

log2
(
1 + ρ

KN
χ2

2KN

)

Transmit and
receive diversity

1
L

∑L−1
l=0 log2 det

(
IM +

ρ

KN

∑K−1
k=0 H̃l[k]H̃l[k]†

)
K log2 det

(
IM +

ρ

KN
HH†)

Table 4.2: Summary of achievable capacity and upper bounds in b/s/Hz for different spatial
diversity scenarios in frequency selective quasi-static Rayleigh fading with no transmitter
CSI.

Finally, we note that there is a small fractional rate loss of L
L+K−1 associated with block

transmission over frequency selective channels, due to the cyclic prefix which is inserted to
combat IBI. This prefix is also necessary for our study of the frequency selective channel
from a block-based perspective and the application of the DFT in the analysis. It has been
shown that in the limit as L → ∞, the capacity of the DMMT channel considered here
converges to that of the more general frequency selective fading scenario [43].

4.3 Flat quasi-static spatially correlated fading channel

From (4.1), we can see that transmission over the MIMO channel is equivalent to trans-
mission over m = min(M,N) parallel SISO sub-channels. Note that these sub-channels do
not represent particular physical paths between the transmit and receive arrays. The gains
experienced along each are determined by the squared singular values of the spatial channel
matrix H, or the eigenvalues of HH†. Hence the sub-channels are referred to as spatial
eigenmodes [51, 9].

Just as the squared magnitudes of the eigenvalues of the channel impulse response matrix
represent gains associated with each of the spectral eigenmodes, the squared magnitudes of
the singular values of the spatial channel matrix indicate gains applied to each of the spatial
eigenmodes. Spatial nulls occur when the magnitudes of the singular values are small, and
also result in degraded overall capacity. In [51], the notion of effective degrees of freedom is
introduced, roughly characterizing the number of spatial sub-channels over which reliable
communication can occur.

4.3.1 Receive only correlation

To study what happens to the capacity when the fading channel is spatially correlated, we
begin by taking a look at a typical uplink scenario. In this case, it is assumed that there
is only significant spatial correlation at the receiver (basestation). Recall that the receive
correlation matrix is Hermitian and positive semi-definite by definition. Following [11] we
also make the assumption that the spatial correlation between fading coefficients depends
only on the relative positions of the antennas, which are arranged in a uniform linear array.
Therefore (RM )kl = (RM )k−l+1,1 for all valid row and column indices, and RM is Toeplitz.
It has been shown that this is a reasonable structure for the correlation matrix when the
angle spread is small [4].

Since the receive correlation matrix is Hermitian and positive semi-definite, its SVD is
given by RM = UMΛMU

†
M , i.e., its singular values correspond to its (non-negative real)
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eigenvalues and it is diagonalized by unitary matrix UM . The following expression can then
be derived about the channel matrix:

HH† = R
1
2
MHwH

†
wR

†
2
M

= Λ
1
2
MUMHwH

†
wU

†
MΛ

1
2
M

∼ ΛMHwH
†
w,

where the ∼ relation indicates equality in terms of probability distribution. The capacity
of this channel, under the assumption of no CSI at the transmitter, is then

C|H =

min[m,rankRM ]∑

i=1

log2

(
1 + ρ

λM,iσ
2
i

N

)
.

The received power on each of the parallel spatial sub-channels is now scaled by the non-
flat spatial eigenmode spectrum. Further, the number of sub-channels making significant
contributions to the overall communication capacity is constrained not only by the smaller
of the number of transmit or receive antennas, but also by the rank of the receive correlation
matrix. Unlike the previous analysis presented for the frequency selective channel, where
H̃ was circulant and therefore full rank, the rank of RM can become close to unity as the
angle spread at the receiver approaches zero [7].

4.3.2 Combined transmit and receive correlation

When both transmit and receive correlation are present, the analysis is complicated by the
“sandwiched” transmit correlation matrix. As a result, the channel capacity can only be
bounded above and below as shown in [51]:

HH† = R
1
2
MHwRNH

†
wR

†
2
M

∼ ΛMHwΛNH
†
w

C|H ≥
min[m,rankRM ]∑

i=1

log2

[
1 + ρ

λM,i

N

(
λN,i |Rii|2

)]
(4.13)

≤
min[m,rankRM ]∑

i=1

log2

[
1 + ρ

λM,i

N

(
λN,i |Rii|2 +

N∑

i′=i+1

λN,i′ |Rii′ |2
)]

, (4.14)

where R is the upper triangular matrix arising from the QR decomposition ofHw. Similarly
to the previous case, we can see that the spatial sub-channels are scaled by the transmit
and receive spatial eigenmode spectra, both of which may be non-flat.

For the case where there is no receive correlation, the authors note that the mean
values of the lower (4.13) and upper bounds (4.14) differ by less than 1 b/s/Hz per spatial
dimension. The lower bound had previously been derived [15] and shown to converge to the
same value as the exact capacity in the large m (minimum number of transmit and receive
antennas) limit. In more recent work, Chuah et al. prove that even with spatial correlation,
the capacity still scales linearly with m [11]. It is also demonstrated via simulation that the
reduction in theoretical capacity due to correlated fading is about 10-20%.
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4.4 Effective capacity of some STBCs

We saw in Chapter 3 that STBCs such as that proposed by Alamouti enjoy optimal diversity
gains and simple linear detection algorithms. However their performance falls short of that
offered by spatial multiplexing schemes in terms of realized capacity. In this section, we
consider the question of whether a greater capacity is achievable by STBCs.

Typically the term capacity is associated with a particular communication channel rather
than a transmission scheme. However, it is also possible to consider the maximum achievable
rate of some STBCs, by treating the channel as a standard AWGN channel and re-assigning
the received SNR according to the properties of the code. We will refer to this quantity
CE = log2 (1 + ρcode) as the effective capacity, where ρcode is the post-detection SNR achieved
the code. The derivations presented here are based on results reported in [29] and [46].

We begin by considering the 2:1 Alamouti STBC described in Section 3.3. Recall that the

channel matrix is h
T
= [h1 h2] and the SNR seen at the receiver is given by ρ

2(|h1|
2+ |h2|2).

The instantaneous capacity supported by the channel is then

C2:1|h = log2 det
(
I1 +

ρ

2
h
T
h
∗)

= log2

[
1 +

ρ

2

(
|h1|2 + |h2|2

)]

= CE,Alamouti−2:1.

Therefore we can conclude that the Alamouti code is able to achieve the maximum
capacity offered by the 2:1 MISO channel. Note that this statement is not meant to imply
that the Alamouti STBC does in fact achieve full channel capacity, only that it is not
restricted by its structure to some fraction of the available capacity.

Next we take another look at the 2:2 Alamouti code described in Section 3.4. In this
case, the channel matrix and received SNR are given by

H =

[
h11 h12
h21 h22

]

ρAlamouti−2:2 =
ρ

2

(
|h11|2 + |h12|2 + |h21|2 + |h22|2

)

=
ρ

2
‖H‖2F ,

where ‖·‖F denotes the Frobenius norm. However, the instantaneous capacity of the channel
is

C2:2|H = log2 det
(
I2 +

ρ

2
HH†

)

= log2

[
1 +

ρ

2
‖H‖2F +

(ρ
2

)2
det
(
HH†

)]

> CE,Alamouti−2:2,

where strict inequality follows by defining det
(
HH†

)
,
∏rankH
i=1 σ2i . Thus we can see that

although the structured use of channel resources made by the Alamouti block codes leads to
efficient detection algorithms, there is an implicit sacrifice of effective capacity. This class
of codes is only optimal in terms of diversity advantage and rate for the 2:1 MISO channel.
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We note that this result was extended in [29] to STBCs based on orthogonal designs
([57], to be overviewed in Chapter 5). One of the first analytical proofs that we will be
looking at in our Ph.D. project is the effective capacity of the time-reversal STBCs, which
were recently proposed for frequency selective fading channels and will also be discussed in
Chapter 5. More details on our ideas for this study are given in Chapter 6.



Chapter 5

Space-time coding

Now that we have studied the underlying phenomena making it possible for MIMO systems
employing space-time coding strategies to support greatly enhanced performance, we turn
to a more detailed exploration of what researchers in the field have done with this potential.
First, to help us understand the relationships between different types of codes, as well as the
codes within each class, we give a system-level overview of space-time transmission through
generic transmitter and receiver models. This brief section is followed by a survey of some
key algorithms and results from the space-time coding literature.

5.1 Transmitter and receiver system models

To formalize the main ideas behind space-time coding and express them in a clear mathemat-
ical framework, we begin by presenting generic system models for the space-time transmitter
(Fig. 5.1) and receiver (Fig. 5.2). These diagrams encapsulate many of the structures and
ideas that are mentioned in the space-time coding literature. More importantly, they pro-
vide us with a starting point for studying the similarities and differences between existing
approaches, and also lay the groundwork for further discussion and analysis.

Space-timeOuter RFBinary
source encoder encoder modulator

s̃1

Modulator
s̃N

... ...

. . .

l = 1, . . . ,
⌈
BQ

ν

⌉
q = 1, . . . , Q

B = log2 |X |
S̃ ∈ C
C ⊂ CN×L

cl xq ∈ Xbl

N transmit
antennas

Figure 5.1: System model of generic space-time transmitter.

A space-time transmission starts from the source, which generates κ-bit data vectors

bl ∈ {0, 1}κ. For reasons that will become clear, we consider
⌈
BQ
ν

⌉
such vectors at a time.

The outer encoder represents a traditional error correcting code of rate κ
ν
. Therefore it

produces from this input
⌈
BQ
ν

⌉
ν-bit codewords cl ∈ {0, 1}ν . The modulator is a bit-to-

symbol mapper that outputs Q symbols from finite and generally complex alphabet X ∈ C,
where the modulation order is B = log2 |X |. Note that it is possible for the outer encoding

56
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to be done by a coded modulation scheme. In this case we might think of the modulator as
a sub-block of the outer encoder.

The next step in our generic system is the space-time encoder. It transforms the Q
symbols xq into N vectors of complex signals to be transmitted from the N antennas.
Each is of length L, which is the number of symbol periods that it takes to complete the
transmission. These vectors form the rows of space-time signal matrix S̃, which is an element
of codebook C ⊂ CN×L of size 2BQ. The overall rate of the code is therefore κ

ν
BQ
L
, where

the first term arises from the outer code, the second from the modulation order, and the
third from the inner space-time code. We note that whereas the rate of a traditional code
is always less than one, that of a space-time code is limited by its spatial multiplexing gain,
which as shown previously can exceed one.

We will see that some of the currently proposed space-time techniques can best be
described as space-time coded modulation schemes, e.g., a Space-Time Trellis Code (STTC).
Effectively these approaches treat the modulator as a sub-block of the space-time encoder.
In the discussion to follow, we concentrate on the modulator and space-time encoder blocks.
However the others are illustrated here to show how space-time codes fit into the overall
design of transmission systems.

. . .

RF de-
modulator

r̃1
...
r̃M

DestinationQ
Outer
decoder

Space-time
detector Q modulator

De-...

xq, x̂q cl, ĉl

l = 1, . . . ,
⌈
QB

ν

⌉
q = 1, . . . , QR̃ ∈ CM×L

M receive
antennas

b̂l

Figure 5.2: System model of generic space-time receiver.

Figure 5.2 depicts the system model of a space-time receiver. As is typical in transmis-
sion systems, the receiver blocks perform the inverse operations of their transmitter-side
counterparts. We note that the quantizer or (symbol) decision device is shown in two places
as a dotted block. It would typically be placed before the demodulator, except in the case of
a detection approach making use of soft-decision information, e.g., the soft-decision Viterbi
algorithm applied to a STTC. The space-time detector may also make use of feedback from
the output of the quantizer, as we saw in the V-BLAST receiver.

5.2 Overview of existing space-time techniques

In this section, we aim to highlight important developments that have been reported in
the body of literature on space-time coding. Because the field is growing and changing so
rapidly, it is not feasible to assemble a comprehensive up-to-date survey. However, we have
selected schemes that are representative of the types of solutions being proposed to address
communication over various fading channels. To assist in presenting a logically structured
discussion, we have divided the existing works into four major directions of current research
interest. These are summarized by the classification tree shown in Figure 5.3. Because the
proposed project focuses on STBCs for frequency selective fading channels, our survey will
be concentrated on these strategies.
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Space-time

trellis codes

Space-time

block codes

Threaded ST

architecture

Spatial

multiplexing

Transmit

diversity

Space-time

techniques

Layered ST

architecture

Concatenated

(outer) codes

Multi-user

detection

Figure 5.3: Classification of space-time coding techniques and related areas of research.

The four leaf nodes represent areas that have produced interesting recent publications.
Two other related fields of study are also shown in the diagram: Concatenated codes,
which involve wrapping a generally one-dimensional outer code around an inner space-time
technique to improve its performance, and Multi-User Detection (MUD). To keep this report
focused on space-time coding, these topics will not be discussed here; we merely mention
them for completeness since they are often combined with space-time ideas in the literature.

There are a number of criteria that have been applied in the design and evaluation of
space-time codes. Among the most popular are maximizing diversity gain or achievable
rate (spatial multiplexing gain). Without going too far into the underlying analysis, we will
highlight the performance of the codes that we survey with respect to these parameters,
and summarize their properties in a concise tabular format for convenient reference (Table
5.1). We will also briefly consider the decoding complexities of the various schemes, as well
as limitations, such as constraints on the number of transmit antennas, and other benefits,
such as coding gain.

5.2.1 Space-time block codes

Our discussion of space-time block coding techniques is divided into three sections. The
first concentrates on techniques proposed for use over flat quasi-static spatially independent
fading channels. These schemes are appropriate for communication systems operating under
sufficiently narrowband conditions, so that the flat fading assumption is applicable. The
next codes were developed for wideband systems and therefore address issues raised by the
frequency selectivity of the channel. Finally, recent approaches to the difficult challenge of
coding for spatial correlated channels are briefly overviewed.

Flat quasi-static fading channel

There are three key STBCs that we will discuss in this section. Although new block codes
appear in the literature every few months, these three are still widely used as performance
benchmarks and form the foundation of insightful new analytical results. The first is the
Alamouti code, which we will cover only lightly here since it has already been studied in the
previous chapters. Next, we have an extended version of Alamouti’s work, which accommo-
dates larger numbers of transmit antennas, proposed by Tarokh et al. under the name of
orthogonal designs. Finally we take a look at the linear dispersion codes of Hassibi et al.,
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which address the capacity limitations of both of these codes and also support arbitrary
numbers of transmit antennas.

The Alamouti block code [3] The Alamouti code is the first and probably most well-
known STBC. It is designed from the perspective of diversity gain, with the goal of enabling
a multiple antenna transmission scheme to achieve the same performance benefits as the
optimal SNR multiple antenna MRC receiver. The Alamouti block code succeeds in realizing
this desired diversity gain, in the case where there are two transmit antennas, by arranging
the symbols and their complex conjugates in a special 2 × 2 matrix

S̃ =

[
x1 −x∗2
x2 x∗1

]
.

We have already seen that the Alamouti code achieves an optimal diversity gain, while
still admitting a linear ML detection algorithm. To understand why this is the case, we
highlight two aspects of the design of the space-time encoder.

First, each column of S̃ contains the symbols transmitted from the pair of antennas
during a particular symbol period. Observe that the second column is a permutation and a
reflection of the complex conjugate of the first. Therefore when S̃ is transmitted over a flat
fading channel, we can write the following:

h
T
S̃ =

[
h
T
x h

T
Px∗

]

[ (
h
T
S̃
)
1

(
h
T
S̃
)∗
2

]
=

[
h
T
(
h
T
P
)∗ ]

x,

where P is the appropriate permutation and reflection matrix. The manipulation described
by these expressions allows the algebraic structure of S̃ to be transferred to the effective
channel matrix seen by the receiver. One of the key questions that space-time block code
design must ask is what kind of structure can be transferred in this manner to the effective
channel? For instance, are we limited to permutations and reflections? Another important
consideration is to understand what structures are advantageous.

The second ingredient that makes the Alamouti code so effective is its simplicity. Be-
cause the algebraic characteristics passed on to the channel give it a unitary structure, ML
detection is possible via linear operations. However, as we saw in Chapter 4, it is also this
scaled unitary channel matrix that prevents the block code from achieving the full capacity
available in the MIMO channel. Thus it seems to be the case that there may not be a single
structure that is optimal for all applications.

STBCs based on orthogonal designs [57, 58] Aside from the capacity limitations
of the Alamouti STBC, there is also the issue that its design only applies when there are
two transmit antennas. The extension of the ideas behind the code to systems with larger
numbers of transmit antennas, and also to those employing complex symbol alphabets, is
considered by Tarokh et al..

The authors define a linear processing orthogonal design in a set of indeterminate vari-
ables x1, . . . , xn as an n × n matrix X such that the entries of X are linear combinations
of xi, x

∗
i , and X†X = cIn for some constant c.1 We can see immediately that orthogonal

designs capture exactly those properties of a channel matrix that make linear ML detection

1We have merged the definitions of the real and complex orthogonal designs for brevity.
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possible. It can also be shown that this structure results in optimal diversity gain, and in
fact the complex orthogonal design (or unitary design) for N = 2 is precisely the Alamouti
STBC.

The construction and existence of such matrices is explained in detail in [57]. We note
here that real orthogonal designs exist only for N = 2, 4, and 8. For systems using real
symbol alphabets and having other numbers of transmit antennas, generalized real orthog-
onal designs are derived. STBCs based on real designs are rate 1 by definition; a number
codes based on generalized real designs are constructed explicitly for N ≤ 8.

To make these ideas more clear, let us first take a closer look at a real orthogonal design.
The code for a N = 4 transmit antenna system is given by

S̃ =




x1 −x2 −x3 −x4
x2 x1 x4 −x3
x3 −x4 x2 x2
x4 x3 −x2 x1


 .

Again we see that each column of S̃ differs from the first by a permutation and a
reflection. Thus when transmitting this code over a slow fading channel, its structure will
be transferred to the effective channel matrix, as we saw in the case of the Alamouti STBC.
There are Q = 4 symbols being sent over L = 4 symbol periods, thus the rate of the
space-time encoder is 1.

Next we consider a generalized real orthogonal design, for instance the one that is con-
structed for the N = 3 transmit antenna case:

S̃ =



x1 −x2 −x3 −x4
x2 x1 x4 −x3
x3 −x4 x1 x2


 .

Although it may seem counter-intuitive at first, this design is also of rate 1. There are
Q = 4 symbols being sent over L = 4 symbol periods. In addition, the receiver still sees
N = 3 independently faded copies of each symbol. Therefore the optimal diversity gain
of NM for any number of receive antennas M is also realized. However we note that the
optimal decoding delay, given the constraint L ≥ N to ensure that the system of equations
at the detector is not underdetermined (see Section 3.3), is L = N . Thus the codes based
on generalized real designs are not delay optimal.

These ideas can also be extended to systems using complex symbol alphabets. It is shown
that complex orthogonal designs only exist forN = 2, namely the Alamouti STBC. Therefore
the analogous notion of generalized complex orthogonal designs is derived, and various codes
are constructed. However, since codes based on generalized complex designs may nominally
be constructed by concatenating the corresponding real design and its complex conjugate,
they generally achieve a rate of 12 . The generalized design for N = 4 is given by

S̃ =




x1 −x2 −x3 −x4 x∗1 −x∗2 −x∗3 −x∗4
x2 x1 x4 −x3 x∗2 x∗1 x∗4 −x∗3
x3 −x4 x2 x2 x∗3 −x∗4 x∗2 x∗2
x4 x3 −x2 x1 x∗4 x∗3 −x∗2 x∗1


 .

L = 8 symbol periods are required to transmit Q = 4 symbols, resulting in a significantly
reduced rate, especially taking into consideration the increased capacity offered by compet-
itive MIMO schemes such as BLAST. Two closely related works include STBC based on
amicable designs, which achieve higher rates than those based on orthogonal designs for some
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numbers of transmit and receive antennas [23], and quasi-orthogonal STBC, which sacrifice
diversity to achieve rate 1 for some scenarios with more than two transmit antennas [34].
However, we note that because these STBCs share the scaled orthogonal/unitary effective
channel structure as induced by the Alamouti block code, the same capacity limitations are
also inherent in their design.

Linear dispersion codes [29] To realize rates higher than 1 sym/s/Hz using space-
time block coded transmission, Hassibi et al. study the effective capacity of codes based on
orthogonal designs. The authors show that it is not possible for these codes to achieve the
maximum capacity supported by the channel. They then develop a new class of block codes
designed to maximize the mutual information between the transmitted and received signals.
The resulting designs are called linear dispersion codes.

The proposed codes can be defined in terms of space-time modulation using a set of 2Q
dispersion matrices Aq,Bq ∈ CN×L:

S̃ =

Q∑

q=1

(xRqAq + jxIqBq) , (5.1)

where the subscript R is used to denote the real part of a complex-valued structure, and
the subscript I its imaginary component. They subsume two important classes of STBCs,
those based on orthogonal designs and V-BLAST, by defining the dispersion matrices ap-
propriately. For instance, if Q = 2 and

A1 =

[
1 0
0 1

]
, B1 =

[
1 0
0 −1

]
, A2 =

[
0 −1
1 0

]
, B2 =

[
0 1
1 0

]
,

then the linear combination of (5.1) gives

S̃ =

[
xR1 + jxI1 −xR2 + jxI2
xR2 + jxI2 −xR1 − jxI1

]

=

[
x1 −x∗2
x2 x∗1

]
,

which is precisely the design of the Alamouti STBC. In V-BLAST, Q = LN and Aq = Bq =
eje

T
l , where j and l are specified by Q = N(l− 1)+ j, j = 1, . . . , N, l = 1, . . . , L. Thus the

transmitted signal matrix becomes

S̃ =




x1 · · · xN(L−1)+1
...

. . .
...

xN · · · xNL


 .

What differentiates the linear dispersion code from others that we have considered pre-
viously in this report is the approach taken to decoding. It is based on detecting 2Q
dimensional, rather than N dimensional, vectors of transmitted symbols. A key step
in the development of this algorithm is the transformation of the received signal matrix
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R̃ = HS̃+ Ñ into the following form:

R̃ = H

Q∑

q=1

(xRqAq + jxIqBq) + Ñ

[
R̃T

R

R̃T
I

︸ ︷︷ ︸
,R

]
=

Q∑

q=1

(
xRq

[
AT

Rq −AT
Iq

AT
Iq AT

Rq

︸ ︷︷ ︸
,Aq

] [
HT

R

HT
I

︸ ︷︷ ︸
,H

]
+ xIq

[
−BT

Iq −BT
Rq

BT
Rq −BT

Iq

︸ ︷︷ ︸
,Bq

] [
HT

R

HT
I

])
+

[
ÑT

R

ÑT
I

︸ ︷︷ ︸
,N

]

Vec(R) =



A1H:1 B1H:1 · · · AQH:1 BQH:1

...
...

. . .
...

...
A1H:M B1H:M · · · AQH:M BQH:M︸ ︷︷ ︸

,H


Vec

([
xTR
xTI
︸︷︷︸
,X

])
+Vec(N ). (5.2)

Vec(R), Vec(X ) and Vec(N ) are vectors of length 2LM , 2Q and 2LM respectively. The
constructed channel matrix H is of size 2LM × 2Q and therefore the overall system of
equations can be resolved, i.e., it is not underdetermined, as long as the number of trans-
mitted symbols Q ≤ LM . This limit agrees with the maximum rate that we expect to be
achievable by space-time codes over MIMO channels.

From the structure of (5.2), it is clear that the methods described previously for detect-
ing V-BLAST transmissions are identically applicable to decoding linear dispersion codes.
However, generally the complexity of the detector is increased because the dimension of the
transmitted symbol vector is higher.

The main drawback of linear dispersion codes is that good designs are not known to
follow systematic or algebraic rules. Choosing the dispersion matrices involves choosing a
target block rate Q given M , N and L, and then optimizing the effective ergodic capacity

CE,LD(ρ,M,N,L) = max
Aq,Bq,

q=1,...,Q

1

2L
E
[
log2 det

(
I2LM +

ρ

N
H H

†
)]
,

subject to a power constraint on Aq,Bq. The authors note that the problem can be solved
using gradient-based optimization methods and have presented a number of codes for various
parameter values. They observe that linear dispersion codes are highly non-unique, in
particular any 2Q×2Q orthogonal matrix transformation preserves the mutual information
of the code. They show how this property can be used to optimize the performance of the
code for other criteria, e.g., diversity gain, without sacrificing effective capacity.

In general, it is shown via simulation that linear dispersion codes optimized first for
spatial multiplexing gain and then for diversity gain outperform STBCs based on orthog-
onal designs and V-BLAST over a wide range of SNRs and target rates. Other authors
have also applied the linear dispersion framework to search for good codes, for instance
Heath et al. construct codes with optimal ergodic capacity that are further optimized for
bit error performance [45]. However, the design procedure as it stands cannot be directly
extended to multipath fading channels where the symbol period exceeds the coherence time
of the channel.

Frequency selective fading channel

There are two main strategies that researchers have applied to generalizing space-time block
codes for transmission over frequency selective or multipath fading channels. In the first class
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are those techniques for single-carrier modulation systems that focus on reducing equaliza-
tion complexity. The key proposal in this area is a time-reversal approach by Lindskog et al.
that takes advantage of the space-time code structure to decrease the dimensionality of the
equalization step. The second class of techniques are built around block processing op-
erations that effectively convert the frequency selective channel into a set of flat fading
sub-channels. These may employ OFDM with multi-carrier modulation or Frequency Do-
main Equalization (FDE) with single-carrier modulation. A modified STBC is then designed
to communicate over the resulting set of frequency sub-channels.

Time reversal (TR) STBC [37, 35] Time reversal block codes are essentially an ex-
tension of the class of STBC for flat fading channels based on orthogonal designs. They are
designed for use with single-carrier modulation with the goal of simplifying the equalization
procedure by decoupling the problem from LN dimensions to N L-dimensional tasks which
may be executed in parallel. To gain some insight into how this decoupling is achieved, let
us consider the simplest TR-STBC based on the Alamouti code with one receive antenna.

Recall that the original code transmits over L = 2 symbol periods using N = 2 antennas
and an arbitrary number of receive antennas. Each column of the transmitted signal matrix
is comprised of the symbols sent from the transmit array during a given symbol period. In
a frequency selective fading channel, these symbol columns will suffer Inter-Symbol Inter-
ference (ISI) because the delay spread of the channel exceeds the symbol period. Thus the
Alamouti code cannot be directly applied in a frequency selective setting without a compu-
tationally expensive LN -dimensional Maximum Likelihood Sequence Estimation (MLSE)
equalizer.

The TR-STBC strategy involves protecting the data symbol columns by enclosing each
of them between guard columns of known symbols. We will refer to these guard blocks
as the prefix and suffix, both must be of length at least K − 1, and denote by L̂ the net
length of the protected data block. It is clear that there is some rate loss associated with
the guard blocks, which can be reduced by increasing the size of the data block. However,
the maximum size of the data blocks is also limited by the coherence time of the channel.2

In addition, data columns where complex conjugation is applied in the underlying code are
transmitted in time-reversed order, hence the name given to the code. The accompanying
guard blocks are also conjugated and time-reversed.

To assist in the following derivations, we define the matrix IAn to be the n×n permutation
matrix with ones along the anti-diagonal. Thus left multiplication by IAn corresponds to order
reversal in the row dimension and right multiplication to reversal in the column dimension.
Clearly IAn is symmetric. We also recall that matrix multiplication of circulant matrices is
commutative and note that IAnTI

A
n = TT for all Toeplitz matrices T (of which circulant

matrices are a subset).

2The authors suggest making use of the guard blocks for channel estimation and also note that because of
the requirement for accurate channel estimation, there is some rate loss associated with all coherent coding
schemes.
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The transmitted signal matrix has the following general structure:

S̃ =




d−K+1
1 · · · d−1

1

...
. . .

...

d−K+1
N · · · d−1

N︸ ︷︷ ︸
Guard prefix 1

S̃L̂(1)

︸ ︷︷ ︸
Data block 1

dL̂1 · · · dL̂+K−2
1

...
. . .

...

dL̂N · · · dL̂+K−2
N︸ ︷︷ ︸

Guard suffix 1

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

(dL̂+K−2
1 )∗ · · · (dL̂1 )

∗

...
. . .

...

(dL̂+K−2
N )∗ · · · (dL̂N )

∗

︸ ︷︷ ︸
Guard prefix L0

S̃L̂(L0)

︸ ︷︷ ︸
Data block L0

(d−1
1 )

∗ · · · (d−K+1
1 )∗

...
. . .

...

(d−1
N )

∗ · · · (d−K+1
N )∗

︸ ︷︷ ︸
Guard suffix L0




Observe that the channel must be sufficiently slowly fading so that it is appropriate to
assume that the fading coefficients are constant over L̃ = L0[L̂+ 2(K − 1)] symbol periods,
where as before L̃ denotes the gross block length including guard symbols, and L0 is the
block length of the underlying STBC design for flat fading.

In the case of the time reversal Alamouti block code, L0 = 2 and the data blocks take
the following form:

S̃L̂(1) =

[
x0

1 · · · xL̂−1
1

x0
2 · · · xL̂−1

2

]
=

[
xT1
xT2

]

S̃L̂(2) =

[
−(xL̂−1

2 )∗ · · · −(x0
2)

∗

(xL̂−1
1 )∗ · · · (x0

1)
∗

]
=

[
−x†2I

A

L̂

x†1I
A

L̂

]
,

Since Q = L0L̂ data symbols are transmitted during L̃ symbol periods, the code has an

overall rate of L̂

L̂+2(K−1) .
3

In [35] it is argued that the so-called border effects4 may be ignored asymptotically and
are therefore removed from the analysis by making a simplifying approximation. We have
found that by defining the prefix and suffix blocks as cyclic extensions of the data block,
the border effects are eliminated without the need for any approximations and we may then
perform more elegant block analysis using the structures developed in Section 2.4.2. Thus
after dropping the prefix and suffix blocks, the received signal can be decoded as follows:

r̃(b) =
[
H̃1 H̃2

] [ s̃1(b)
s̃2(b)

]
+ ñ(b), b = 1, 2 (5.3)

[
r̃(1)

IA
L̂
r̃∗(2)

]
=

[
H̃1 H̃2

IA
L̂
H̃∗

2I
A

L̂
−IA

L̂
H̃∗

1I
A

L̂

] [
x1

x2

]
+

[
ñ(1)

IA
L̂
ñ∗(2)

]

=

[
H̃1 H̃2

H̃†
2 −H̃†

1︸ ︷︷ ︸
H

] [
x1

x2

]
+

[
ñ(1)

IA
L̂
ñ∗(2)

]
(5.4)

H
†
[

r̃(1)
IA
L̂
r̃∗(2)

]
=

[
I2 ⊗

(
H̃1H̃

†
1 + H̃2H̃

†
2

)] [
x1

x2

]
+ H

†
[

ñ(1)
IA
L̂
ñ∗(2)

]
(5.5)

3For STBCs based on orthogonal designs with more than two transmit antennas, the number of data
symbols transmitted during L̃ symbol periods is Q ≤ L0L̂.

4Small error terms arising in the first and last K − 1 symbols due to undefined inputs at the beginning
and end of the block transmission.
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The scaled block unitary nature of H is revealed in (5.5). This structure enables decou-
pling of the generally LN -dimensional vector equalization of (5.4) into two L-dimensional
scalar equalization steps. Since the time-reversed codes are detected in an analogous man-
ner to those based on orthogonal designs, it can be shown that they achieve the optimal
diversity gain of NMK, while still sharing the same modest decoding complexity. The main
drawback of the TR-STBC approach is its limited rate compared to the potential multi-
plexing gain available in the MIMO channel. In addition, it still incurs the complexity of
L-dimensional MLSE equalization.

STBC with frequency domain processing [38, 2, 67] A number of researchers have
also considered extensions of the Alamouti scheme to systems using frequency domain pro-
cessing. One of the first proposals for combining STBC with OFDM and multi-carrier
modulation was put forward by Mudulodu et al.. Subsequently, two works based on single-
carrier transmission systems with frequency domain processing at the receiver were presented
by Al-Dhahir and Zhou et al.. All three approaches share substantially similar signal matrix
structures and thus we will follow [2] here.

In this work STBC over frequency selective fading channels is proposed in combination
with FDE. As we shall see, it exhibits a structure that bears some resemblance to time-
reversal, and thus shares many properties of the TR-STBC. The transmitted signal matrix
is of the form

S̃ =

[
s−K+1
1 · · · s−1

1

s−K+1
2 · · · s−1

2︸ ︷︷ ︸
Cyclic prefix 1

S̃L̂(1)

︸ ︷︷ ︸
Data block 1

sL̂1 · · · sL̂+K−1
1

sL̂2 · · · sL̂+K−1
2︸ ︷︷ ︸

Cyclic prefix 2

S̃L̂(2)

︸ ︷︷ ︸
Data block 2

]

S̃L̂(1) =

[
x0

1 · · · xL̂−1
1

x0
2 · · · xL̂−1

2

]
=

[
x̃T1 [l]
x̃T2 [l]

]

S̃L̂(2) =

[
−(x0

2)
∗ −(xL̂−1

2 )∗ · · · −(x1
2)

∗

(x0
1)

∗ (xL̂−1
1 )∗ · · · (x1

1)
∗

]
=

[
−x̃†2[−lmod L̂]

x̃†1[−lmod L̂]

]
,

Like TR-STBC, this approach involves transmitting a number of protected data blocks.
Recall that the SISO frequency selective fading channel matrix is circulant and thus diago-
nalized by the unitary inverse DFT matrix. Following (5.3) for the case where there is one
receive antenna, we can drop the cyclic prefix, diagonalize the channel matrix, and write
the following:

˜
�

(b) =
[
Λ
H̃1

Λ
H̃2

] [ ˜� 1(b)
˜� 2(b)

]
+ ˜

�

(b), b = 1, 2

[
�̃ (1)

�̃ ∗(2)

]
=

[
Λ

H̃1
Λ

H̃2

Λ∗
H̃2

−Λ∗
H̃1︸ ︷︷ ︸

ΛH

] [
˜� 1

˜� 2

]
+

[
˜� (1)
˜� ∗(2)

]
(5.6)

Λ†
H

[
�̃ (1)

�̃ ∗(2)

]
=

[
I2 ⊗

(
|Λ
H̃1
|2 + |Λ

H̃2
|2
)] [ ˜� 1

˜� 2

]
+Λ†

H

[
˜� (1)
˜� ∗(2)

]
(5.7)

where (5.6) follows from properties of the DFT.

The elements of diagonal matrices Λ
H̃j

are the DFT coefficients of the channel impulse

response from transmit antenna j to the receiver. As we saw in Section 4.2 these random
variables have unit variance and under certain assumptions their squared magnitudes are
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χ22K distributed. Since diversity combining at the receiver enables us to see two copies of
the transmitted signals, each scaled by an independent CIR DFT coefficient, the STBC

with frequency domain processing provides an SNR of ρ
(
|λl
H̃1
|2 + |λl

H̃2
|2
)
. Therefore the

scheme can achieve a diversity gain of 2K. Another maximum diversity argument based on
the Pair-wise Error Probability (PEP) is given in [67].

We note that the rate achieved by this transmission scheme is fractionally higher than
that of the TR-STBC because it does not require a guard suffix block. Commenting on their
decoding complexities, we see from (5.7) that not only is the equalization step decoupled
in space, but since Λ

H̃j
are diagonal it is also decoupled in time. As expected by virtue of

the frequency domain processing, no equalization is actually needed. The LN -dimensional
problem has been reduced to LN 1-dimensional detection steps. There is however a small
computational requirement imposed by the DFT operations.

5.2.2 Space-time trellis codes [60, 59]

One of the primary goals of STBC design is to maximize the diversity gain attained by
transmit diversity systems. As such, it is perhaps more appropriate to call them space-
time modulation or transmission techniques, since they do not address the error-correction
function that is traditionally associated with channel coding in modern communications.
For instance, although there is a repetition component in the design of orthogonal STBCs,
its purpose is not to serve as a repetition code but rather to improve the received SNR via
diversity combining. One way to introduce a coding component into the STBC framework
is to wrap an outer error-correction code around the inner space-time modulation. Another
is provided by space-time trellis codes.

STTCs were originally proposed by Tarokh et al. as an an extension of trellis coding to
space-time signal structures. Just as trellis codes impose structure within each codeword
(over the code space) and also between codewords transmitted in sequence (over time),
STTCs impose similar constraints in physical space and time by distributing the symbols
comprising each codeword over the elements of the transmit antenna array. Thus they are
able to provide a diversity gain as well as a coding gain.

With reference to Figure 5.1, during each symbol period, the space-time encoder takes
as its input one symbol x and generates output symbols s1 · · · sN . Note that the encoder is
always initialized to its zero state before beginning a codeword transmission. Therefore the
block length L = Q, and the rate of the STTC is 1 sym/s/Hz. The overall data rate is then
specified by the base-2 logarithm B of the symbol alphabet.

The diversity gain of STTCs is determined via a PEP argument. The PEP expresses the
probability of transmitting S̃c and deciding in favour of S̃ε at the decoder. Thus it provides
a lower bound on the average probability of error, as it only considers errors to a single
other codeword. An upper bound on the conditional PEP, given channel coefficients H, can
be obtained by applying the Chernoff bound (e.g., see [27]). Observing that the resulting
PEP is the product of Independent Identically Distributed (i.i.d.) random expressions, the
average PEP can then be written as the product of their expectation. Defining the codeword
difference matrix B = S̃c − S̃ε with SVD B = UΣV† and r = rankB a sketch of the
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derivation is given as follows:

p(S̃c → S̃ε |H) ≤ e−d
2(S̃c→S̃ε|H ) ρ4 (Chernoff bound)

d2(S̃c → S̃ε |H) =

M∑

i=1

h
T

i BB
†h
∗
i

=
M∑

i=1

r∑

j=1

|h̃ij |2σ2j (h̃ij ∼ hij ∼ χ22)

and so p(S̃c → S̃ε |H) ≤
M∏

i=1

r∏

j=1

e−|h̃ij |
2σ2

j
ρ
4

p(S̃c → S̃ε) <
M∏

i=1

r∏

j=1

(
σ2j
ρ

4

)−1

=
(
det
[
BB†

])−M(ρ
4

)−Mr

, (5.8)

where (5.8) follows by defining det
(
BB†

)
=
∏r
j=1 σ

2
j .

As we saw in Section 3.2, the exponent of the SNR term in the average probability of
error expression (5.8) gives the diversity gain of the code. Also, recall that the coding gain
is defined as the additional power (in dB) that an uncoded system must transmit in order
to achieve the same error performance as the coded system. Therefore from (5.8) we can see

that a coding gain of approximately γ = [det
(
BB†

)
]
1
r is achieved. The challenges in STTC

design lie in maximizing these benefits. To this end Tarokh et al., and Guey et al. in an
independent work, derived the following fundamental criteria for space-time trellis coding
over flat quasi-static fading channels:

• Rank criterion To achieve the optimal diversity gain ofMN , the block length L ≥ N
and the codeword difference matrix B must be full rank over all pairs of codewords.
Otherwise the diversity gain is Mr, where

r = min
B=S̃c−S̃

c′ ,
S̃c,S̃c′∈C

rankB.

It can be shown that this criterion is equivalent to the effective Hamming distance
metric applied in the error analysis of trellis coded modulation systems [27].

• Determinant criterion The coding gain can be optimized by designing the codebook
such that the minimum determinant

γmin = min
B=S̃c−S̃

c′ ,
S̃c,S̃c′∈C

det
(
BB†

)
,

is maximized. It can be shown that this criterion is equivalent to the effective product
distance applied in the error analysis of trellis coded modulation systems [27].

Having derived the design criteria for space-time trellis coding, we now turn to a simple
illustrative example. Figure 5.4 shows the trellis section, symbol map and convolutional
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encoder of a four state STTC designed for a two transmit antenna system using QPSK
modulation. It was constructed using two design rules proposed by Tarokh et al. that result
in optimal diversity designs in some cases (see [60, 27] for more details). The labels to
the left of the trellis correspond to the branches leaving each mode, from top to bottom.
They show the data symbol and signals transmitted by each of the two transmit antennas
as xl/sl1s

l
2.

3/03

3/13

3/23

3/33

2/02

2/12

2/22

2/32

1/01

1/11

1/21

1/31

0/00

0/10

0/20

0/30

(a) Trellis section.

−1

Symbol “2”

j Symbol “1”

Symbol “0”

1

Symbol “3”−j

(b) Symbol map (QPSK).

DD
xl sl1

slN

(c) Convolutional encoder.

Figure 5.4: A four state STTC over the QPSK symbol alphabet forN = 2 transmit antennas.

As in standard trellis coding notation, each node corresponds to a particular encoder
state. In this example, there are four states, or equivalently the convolutional encoder has
two one-bit memory elements.5 It can be shown that in order to support a diversity gain
of Mr, there must be at least 2B(r−1) states in the trellis of the STTC. Since they are
decoded using the Viterbi Algorithm (VA), which scales exponentially with the number of
trellis states, the decoder complexity grows exponentially with the spectral efficiency and
diversity of the scheme. This very high complexity is one of the main disadvantages of
space-time trellis coding.

The original codes designed by Tarokh et al. achieve the optimal diversity gain and some
portion of the available coding gain. Since their original proposal, a number of authors have
tackled the problem of searching for STTCs with higher coding gains. Some notable results
include improved codes found using computer assisted search techniques by Grimm et al.
[27] and the current state-of-the-art by Yan et al. [65], as well as those constructed using
more systematic approaches by Baro et al. [5] and El Gamal et al. [1, 21]. The coding gain
offered by these codes is around 1-2 dB higher than that of the first STTCs.

5.2.3 Layered space-time architecture

As introduced in Section 3.4.2, layered space-time systems are designed to optimize spatial
multiplexing rather than diversity gain. They generally have M > N receive antennas and

5Since a QPSK alphabet is being used, two memory elements are needed to store each delayed symbol.
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therefore achieve rates of N sym/s/Hz by transmitting independent sub-streams from each
antenna. Although this is not necessarily the case, we will assume thatM > N for simplicity
in our comments to follow. Some diversity gain is still available via diversity combining at the
receiver. As we shall see, some coding gain may also be obtained by applying 1 dimensional
outer codes to each of the sub-streams. There are three main approaches that we will discuss
here: uncoded V-BLAST, coded (Horizontal) H-BLAST, and coded (Diagonal) D-BLAST.

Vertical BLAST [18, 64] In the vertically layered space-time architecture proposed
by Foschini et al. at Bell Labs, Q = NL symbols are transmitted over L symbol periods,
resulting in a rate of N sym/s/Hz as desired. Since the signals transmitted during each
symbol period are independent, i.e., there is no temporal code structure, we can consider
detection in each time step separately. Detection is done by a strategy known as successive
interference cancellation, whereby each of the N symbols is detected in sequence and the
hard-decision produced at the end of each loop is used to cancel out interference caused by
the detected symbol from the residual observation vector.

The V-BLAST transmitted signal matrix is given by

S̃ =




s01 · · · sL−11
...

. . .
...

s0N · · · sL−1N


 =




x1 · · · xN(L−1)+1
...

. . .
...

xN · · · xNL




There are three key tasks performed at the receiver: ordering, nulling and cancellation.
The ordering operation involves selecting the order of detection of the symbols at each time
step. It is clear that depending on the channel characteristics, the attenuation experienced
along each path may vary. As we saw in Section 3.4.2, in order to improve receiver perfor-
mance, it is advantageous to detect those symbols with higher post-detection SNRs first.
These symbols are the least likely to be in error, which is an important property since errors
in detected symbols are propagated via the cancellation step to subsequent detection loops.

The nulling step is analogous to the feedforward filter of a generalized Decision-Feedback
Equalizer (DFE). Its goal is to produce the best estimate of a particular transmitted symbol,
given the presence of interference and noise. This step can be implemented using sub-optimal
(i.e., not ML) zero-forcing or MMSE linear detectors, or the sphere decoder. The latter
approach is non-linear, ML, and incurs a higher complexity cost than the linear techniques.

The purpose of the cancellation step is to improve the performance of subsequent nulling
loops by removing interference caused by the most recently decoded symbol. It is analogous
to the feedback filter of a generalized DFE. This step is non-linear since it is based on the
hard-decision or quantized symbol. A block diagram of the V-BLAST detector demonstrat-
ing this correspondence is shown in Figure 5.5.

We also note that the diversity gain achievable by V-BLAST is potentially M , since M
independently faded copies of each transmitted symbol are seen by the receiver. However,
based on simulation results presented in Section 3.4.2, the zero-forcing nulling approach
yields diversity gains on the order of 1 and only the ML sphere decoder comes close to
achieving the maximum achievable gain of M .

Horizontal BLAST [16] The performance of V-BLAST is such that with a moderate
number of antennas and reasonably low decoding complexity (e.g., a 4:4 system using an
MMSE detector with cancellation and ordering), an average SNR per bit of 15-20 dB is
required to achieve an error probability of 10−3. This level is generally accepted as the
minimum tolerable bit error rate for voice transmission. To improve upon the performance
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Qf(r) = eTj Wr

Feedforward filter
ŝjsjr

f(ŝ) =
∑j−1

µ=1 e
T
µWhµŝµ

Feedback filter

(ŝ1, . . . , ŝj−1)

Figure 5.5: The V-BLAST detector as a generalized DFE.

of V-BLAST, one approach is to add more antennas at the receiver, thus making more
diversity gain available through observation of an increased number of redundant signal
copies.

Another approach is to introduce traditional error control coding in the time dimension,
thus improving the overall performance by some amount of coding gain. This strategy is
applied in H-BLAST, where ν = L and Q = NL. The NBκ information-bearing bits
carried in each space-time matrix are first partitioned into N words of length Bκ and these
words are then encoded by rate κ

L
outer encoders. The resulting codewords cj of length BL

bits are modulated to produce N codewords ξj , each consisting of L symbols. These are
transmitted as shown in the following matrix structure:

S̃ =




ξ11 · · · ξL1
...

. . .
...

ξ1N · · · ξLN


 ,

where the symbols corresponding to the first transmitted codeword are shaded to highlight
the horizontal layering that gives the scheme its name.

The H-BLAST receiver tasks are nearly the same as those for V-BLAST, with a few
differences: In H-BLAST the ordering step must take into consideration the post-detection
SNRs of each complete codeword in making its selection. This change reflects the fact
that the subsequent nulling and cancellation operations are based on codeword rather than
symbol decisions. In addition, there is a small wrinkle in nulling step, which may be imple-
mented using a symbol-by-symbol detector (as before in V-BLAST). Alternatively, improved
performance may be attained by using a sequence estimator or a soft-decision symbol-based
approach. Overall the receiver complexity is higher than that of V-BLAST, first because of
the additional complexity imposed by the outer code and secondly because of the increased
dimensionality incurred by working with codewords rather than symbols.

Clearly the rate of the overall system is decreased by a factor of κ
L

and the amount of
coding gain depends on the particular outer code applied. The diversity gain available in
H-BLAST should be the same as that for V-BLAST, although we have not seen any proofs
or comments to this effect in the literature.

Diagonal BLAST [15] Finally, we consider the structure and properties of the best
and most sophisticated of the BLAST techniques. D-BLAST extends the outer coding
introduced in H-BLAST to span both the space and time dimensions. In this case ν = Nδ,
Q = NL and Lκ

δ
information-bearing bits are transmitted per space-time matrix. They are
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first partitioned into L
δ
− (N − 1) words of length κ and these words are then encoded by

rate κ
NBδ

outer encoders. The resulting codewords cj of length NBδ bits are modulated to
produce codewords ξl (l = 1, . . . , L

δ
− (N − 1)) each consisting of Nδ symbols. These are

arranged for transmission in an N × L symbol matrix as follows:

S̃ =




ξ11 · ξδ1 ξ12 · ξδ2 · · · · · · · · · 0

0 ξδ+1
1 · ξ2δ1 · · · · · · · · ·

...

...
. . . · · · · · · · · · · · · · · · 0

0 · · · 0 ξ
(N−1)δ+1
1 · ξNδ

1 · · · ξNδ
L
δ
−(N−1)



,

where the symbols corresponding to the first transmitted codeword are shaded to highlight
the diagonal layering that gives the scheme its name. The dwelling time δ captures the
duration in symbol periods of each codeword-transmit antenna association.

In terms of decoding, the D-BLAST detector performs essentially the same operations
as those of the other BLAST variants. However, it is termed balanced since the symbols
constituting each codeword are spread in both space and time. In particular, the order of
their detection does not affect performance. As for H-BLAST, nulling and cancellation are
based on codeword rather than symbol decisions. The decoding complexity of D-BLAST is
comparable to that of H-BLAST.

The rate of the transmission using the D-BLAST architecture is decreased by an outer
coding factor of κ

NBδ
as well as another factor of L−(N−1)δ

Lδ
, owing to the diagonal layering

strategy, which limits the number of codewords that can be arranged in the transmission
matrix. This second factor is sometimes referred to in the literature as border wastage.6

Simulations reported in the literature show that the D-BLAST architecture achieves higher
outage capacities than H-BLAST [16]. It is also argued in [66] that the diversity gain

of D-BLAST is N(N+1)
2 . However, we believe that the gain captured by this expression

includes coding gain and the component arising from diversity remains the same as that for
V-BLAST.

5.2.4 Threaded space-time architecture [20, 22]

The last space-time architecture that we consider in this section is Threaded Space-Time
(TST) proposed by El Gamal et al. It was developed to enable the construction of full
rate and full diversity MIMO transmission systems by combining layering ideas with con-
stituent space-time codes. It is based on partitioning the space-time signal matrix into
non-overlapping threads, which as we shall see have dispersion properties that allow them
to be effectively treated as distinct antenna elements.

One obvious advantage is that no thread is associated with a particular set of spatial
propagation paths for very long. Thus performance is improved by spreading the symbols
of a codeword over space and enabling the decoder to average over the channel attenuations
seen by each symbol, just as D-BLAST improved over H-BLAST by balancing out the layers
across the spatial dimension.

6Although we have not seen this discussed in the literature, it seems that rate loss due to border wastage
could be avoided entirely by packing N − 1 more codewords into the empty slots at the beginning and end
of each transmission block. These codewords would experience a delay of L rather than N , since they could
not be decoded until the entire block had been received.



72 CHAPTER 5. SPACE-TIME CODING

In the TST scheme ν = L, Q = NL and NBκ information-bearing bits are transmitted
by each space-time matrix. The bits are first partitioned into D words of length Bκ, where
generally D ≤ N but for simplicity we set D = N in this discussion. These words are then
encoded by rate κ

L
outer encoders. These channel codes are referred to in TST as constituent

codes and generally may be of different rates. The resulting codewords cj of length BL bits
are modulated to produce D codewords ξj , each consisting of L symbols.

Next, each of these D modulated codewords is associated with a thread. The thread is
the special structure that gives TST its name. Formally a thread is defined as an indexing
set d ⊂ {1, . . . , N} × {0, . . . , L− 1} such that the following conditions are met:

• (j, l), (j′, l′) ∈ d⇒ l 6= l′ or j = j′.

• The spatial span defined as max{j | (j, l) ∈ d for some l}−min{j | (j, l) ∈ d for some l)}
must be full, i.e., N .7

• The temporal span defined as max{l | (j, l) ∈ d for some j}−min{l | (j, l) ∈ d for some j)}
must be full, i.e., L.8

Since each of the D modulated codewords must be assigned to a thread, we require a
set of D threads in the TST architecture. Good standard thread sets have the properties
that each thread is active during all L symbol periods, and that over the block each thread
is associated with each transmit antenna equally often. Further, a set of N threads should
form a partition of {1, . . . , N} × {0, . . . , L− 1}, i.e., they should not overlap.

Observe that a thread may be specified by an N × L matrix D with the space-time
resources that it uses marked by 1 entries. In this context, the thread defining conditions
can be summarized as follows: None of the column sums of D may exceed 1, all of its
column sums must be at least 1 and all of its row sums must also be at least 1. The thread
set defining conditions imply again that the column sums should be precisely 1, and that
the row sums should be equal, i.e., ≈ L

N
. This observation reveals that there are many

structural similarities between the TST and linear dispersion frameworks, similarities that
we believe remain unexplored in the literature.

As an example, for N = L = 4 a standard set of D = N thread matrices is given by

D1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , D2 =




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0




D3 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 , D4 =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 ,

7I do not believe that any ordering on the spatial antenna elements was intended by the authors, and
therefore a better definition of spatial span is simply σS = {j | (j, l) ∈ d for some l}, with full spatial span
then being achieved when |σS | = N .

8Likewise, I would suggest that the intended meaning of temporal span is σT = {l | (j, l) ∈ d for some j},
and full temporal span is achieved when |σT | = L.
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The resulting space-time signal matrix can then be written as

S̃ =




ξ11 ξ24 ξ33 ξ42

ξ12 ξ21 ξ34 ξ43

ξ13 ξ22 ξ31 ξ44

ξ14 ξ23 ξ32 ξ41



,

where the symbols corresponding to the first thread are shaded to highlight the threading
strategy that gives the scheme its name.

This example enables us to visualize some of the more subtle benefits offered by the
threaded architecture. Observe that if the channel experiences spatially independent fading,
threading induces temporally independent fading through spatial hopping. The effect of this
strategy is somewhat similar to that of using an interleaver to reduce temporal correlation in
a slow fading channel. In addition, TST may enable multiple users to share the transmission
resource in a more balanced and efficient manner.

Many existing space-time codes, most obviously the family of BLAST solutions, can be
captured by the TST framework. The key difference between the TST approach and that of
BLAST lies in their decoding strategies. For instance in D-BLAST, although the layering
of the transmitted signal matrices may appear to be the same as presented above, detection
is effected via a MUD-like receiver based on successive interference cancellation. In TST,
space-time codes may be applied over a subset of threads, as if each thread were a distinct
antenna element. Thus enabling the threaded architecture to offer the potentially reduced
complexity and diversity gains as those realized by its constituent codes.

Analyses are presented in [20, 22] predicting the expected gains supported by the TST
framework, and simulation results demonstrating the excellent performance achieved by
space-time block codes combined with TST are given in [22]. We are particularly interested
in the observation that the thread matrices exhibit very similar structure to the dispersion
matrices of linear dispersion space-time codes. It may even be argued that through the defi-
nition of its thread criteria, TST provides a way of constraining the design of the dispersion
matrices, with added channel coding, to achieve certain performance advantages.9 It may
also be the case that the study of space-time block coding over frequency selective channels
will be facilitated by one or the other framework.

5.2.5 Discussion

Our goal in this chapter was to present an overview of some fundamental approaches to
space-time coding. A concise summary comparing the surveyed techniques with respect to
diversity gain, achievable rate and decoding complexity is provided in Table 5.1. Some other
major categories of related work include:

• Other statistical models for fading. Although we will use the Rayleigh distri-
bution to model fading coefficients in our work, primarily because of its analytical
simplicity, many authors develop and generalize their codes for the Ricean fading
channel.

9It should be clear that the linear dispersion framework is more general than TST, for instance in that it
allows overlapping among the “marked” entries of the dispersion matrices.
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• Space-time codes for correlated fading channels. It has been shown that when
the fading channel exhibits spatial correlation, the achievable diversity gain is limited
by its degrees of freedom. More precisely, the optimal diversity gain is reduced from
MN to rank (RM ) rank (RN ) [8]. Proposals for improving performance using con-
catenated outer codes [52] and maximized diversity designs for block fading channels
[19] have recently been proposed. Space-time coding solutions for correlated fading
channels are generally referred to in the literature by the term robust.

• Systems with transmitter CSI. Feedback or closed loop schemes make use of CSI
at the transmitter to enhance code design. There are two main classes of approaches
that fall into this category:

– Matching the power or statistics of the transmitted signals to the channel.

– Selecting only a subset of the antennas for transmission based on current channel
conditions.

• Channel state estimation. Most existing space-time codes are designed under the
assumption of perfect receiver CSI. Studies have been undertaken to analyze per-
formance degradations in the presence of channel estimation errors and also to take
advantage of the structure of some space-time codes to facilitate estimation.

• Differential space-time coding. For cases where CSI is not available at the receiver,
e.g., in very fast fading environments, differential space-time block coding schemes
based on codebooks of unitary space-time signal matrices [31] and unitary group codes
[33] have been proposed. The latter codes have the desirable property of being able
to achieve the same performance as regular block codes when CSI is available.

Code
Diversity
gain

Achievable rate
[sym/s/Hz]

Decoding
complexity

Additional
comments

Alamouti STBC 2M 1 • Only for N = 2

Orthogonal designs NM 1 • X ⊂ R or N = 2

NM
[

1
2
, 1
)

• X * R and
N > 2

Linear dispersion < NM > min(M,N) ••

TR-STBC NML < 1 •••
Same constraints as
orthogonal designs

STBC+frequency
domain processing

NML < 1 ••

Tarokh STTC NM 1 •••• Provides coding gain

V-BLAST ≤M min(M,N) ••

H-BLAST ≤M > min(M,N) ••• Provides coding gain

D-BLAST ≤M > min(M,N) •••
Provides more coding
gain than H-BLAST

Table 5.1: Comparative summary of the performance and properties some representative
space-time codes.

Our research is concerned with computationally efficient ways of exploiting the MIMO
frequency selective fading channel to achieve higher communication rates and improved bit
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error performance. Potential application areas include low mobility and fixed broadband
wireless access systems. To realize these benefits, some computational cost will almost
certainly have to be incurred. Although it is acceptable to perform complicated offline
optimizations when designing a code, it is desirable to ensure that decoding complexity is
kept at a reasonable level. Therefore we have chosen to focus our research on space-time
block coding strategies.

Space-time block coding has been an active area of research for about five years. Existing
proposals for the frequency selective fading channel, which we are interested in because of
its relevance to wideband transmissions, are primarily extensions of the Alamouti STBC or
of those based on orthogonal designs. As such they enjoy optimal diversity gains but suffer
from limited data rates of less than 1 sym/s/Hz.

A natural question to ask is how a space-time block code might be designed for frequency
selective channels so as to achieve a higher spectral efficiency, while still maintaining a
relatively low decoding complexity. This is an issue that has not been well addressed in the
literature and that we intend to study in our Ph.D. project. In the next chapter, we provide
more details on how we will approach this topic.



Chapter 6

Research Proposal and Activities

The purpose of this chapter is twofold: First, I will summarize the tasks that have been
undertaken during the first year of this Ph.D. project to prepare for its successful and timely
completion. I believe that the comprehensive coverage of this report itself provides evidence
of having developed a solid background in the field of space-time coding. Thus I will strive
to be relatively brief in this section. Secondly, I will present a research plan describing some
specific tasks and milestones that I anticipate completing during the course of the project.

6.1 Completed activities

The first year began with an in-depth study of diversity and capacity, two fundamental
concepts that are undoubtedly key ingredients in space-time coding design. This process
also involved reading about important related communication principles such as wireless
channel modelling and simulation, ML detection, and coding theory, as well as reviewing
core mathematical results in linear algebra and matrix theory. General background material
on the wireless channel and applicable signal models is presented in Chapter 2, and further
discussion of diversity and capacity, with reference to existing space-time code structures,
in Chapters 3 and 4 of this report, as well as in Appendix A.

The following list highlights key activities completed during the first year in preparation
for this project:

• Preliminary analysis of space-time coding structures. Through the study and
presentation of fundamental results on diversity and capacity in Chapters 3 and 4, I
have gained greater facility working with the matrix manipulations, inequalities and
techniques used to analyze space-time codes. I have also consolidated mathematical
models for the systems of interest and assigned consistent naming conventions for the
structures involved.

• Simulation of fundamental space-time block codes. To demonstrate under-
standing of the concepts behind and methodologies applicable to space-time code
design, as well as to compare the performance of existing techniques, I have conducted
numerous preliminary simulations during the first year. These include investigating di-
versity transmission systems, as well as the Alamouti STBC and V-BLAST space-time
algorithms.

• Preliminary simulations of MIMO channel capacity. The study of MIMO
channel capacities is complicated by the fact that often results cannot be expressed

76
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in closed form or in a form that clarifies the relationships between the capacity and
parameters of interest. As illustrated in Chapter 4, preliminary simulations have
been conducted to investigate outage probabilities, capacity distributions and ergodic
capacities for some of the more challenging MIMO Rayleigh fading scenarios.

• Capacity study of the frequency selective MIMO channel. In particular,
because of the intended focus of this project on frequency selective fading, I have
concentrated my efforts on studying the potential capacity offered by this channel.
The original derivations and simulations presented in Section 4.2 may lead to some
interesting extensions to the capacity results currently found in the literature.

• Survey of space-time coding techniques. Finally, to complement the detailed
survey in Chapter 5, which is focused on block coding schemes, I have compiled an
extensive bibliography of existing works on general space-time coding, spatial multi-
plexing and related topics. This more comprehensive listing is available online.

The simulations have been primarily conducted in Matlab r©, and the resulting plots
can be found throughout Chapters 3 and 4. With the exception of recent efforts analyz-
ing the capacity of frequency selective fading channels, most of the plots confirm results
already published in the literature. However, much insight into the structures and proce-
dures involved in space-time coding has been gained through these valuable exercises, in
addition to practical implementation experience that will facilitate development and testing
of new space-time designs. Since I chose to focus on two very fundamental schemes, I also
expect that the simulation tools created during the first year will continue to serve as useful
benchmarks.

6.2 Proposed research plan

During the first year, I acquired a grasp of the theoretical and simulation tools applied in
space-time coding research, and prepared a literature survey of key existing works. These
studies have led to the conclusion that investigating space-time block codes for frequency
selective fading channels from a capacity perspective is an important and interesting direction
for study that has not yet been well addressed in the literature. It is also an area that I feel
well equipped to undertake research in after my readings and preliminary work this year.

The overall goals of my project proposal are first, to develop a novel space-time code
for the frequency selective MIMO fading channel that, unlike current proposals, strives to
attain a larger portion of the available capacity. Secondly, acknowledging the importance
of low complexity for practical applications, the design will be centered around the tradeoff
between capacity, diversity and decoding complexity. In the remainder of this section, some
specific challenges that I propose to tackle in this Ph.D. project are outlined.

6.2.1 Frequency selective MIMO fading channel study

I will begin by continuing the study of the frequency selective MIMO fading channel. In
Chapter 4 we discussed the capacity of this channel, which is reasonably well-understood
for the SISO and MISO cases. We were able to obtain a simple expression for the capacity
of these channels based on χ22K distributed random variables. However, we have not seen
any results in the literature on simplified or asymptotic approximations for the capacity
of the full frequency selective MIMO channel. In the absence of such expressions, I have
conducted simulations and found that the outage probability offered by SISO and MISO
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frequency selective channels is lower bounded by that of a MISO flat fading channel with
KN transmit antennas. We have also seen that the communication rates supported by
the MIMO frequency selective channel are greater than those offered by the underlying flat
fading channel.

In addition to capacity benefits, the frequency selective channel provides frequency di-
versity. This diversity gain can be obtained by using MLSE equalization in the time domain,
e.g., the VA, or Frequency Domain Equalization (FDE)(see [47] and the references therein).
The FDE is based on the key observation that while the equalization operation in the time
domain is based on an L-dimensional vector optimization:

ŝ = argmin
s̃∈XL

∣∣∣r̃− H̃s̃
∣∣∣
2
,

where H̃ is a circulant matrix, the corresponding equalization in the frequency domain is
based on L scalar optimizations:

UDFT,Lŝ = argmin
�̃ ∈XL

DFT

|˜
�

−Λ˜� |2

whereΛ is a diagonal matrix containing the DFT coefficients of the channel impulse response
and the dual alphabet XL

DFT =
{
˜� |˜� = UDFT,Ls̃, s̃ ∈ XL

}
. This alphabet is difficult to

visualize, however since the DFT is a unitary transform, we can apply the inverse DFT and
perform the optimizations in the time domain:

ŝl = argmin
sl∈X

∣∣∣∣
(
U†DFT,LWUDFT,Lr̃

)l
− sl

∣∣∣∣
2

, l = 0, . . . , L,

where the frequency domain equalizer matrix W = (|Λ|2)−1Λ† for a zero-forcing type or
Λ†(|Λ|2+ 1

ρ
IL)

−1 for an MMSE type operation. Because of its much lower complexity, FDE
is a useful tool that I expect to play an important role in this project.

There is also an intriguing analogy between the time domain equalization performed by
MISO or MIMO receivers and the decoding of rate 1

n
or rate k

n
convolutional codes. At first

glance it would seem that it might be possible to apply the FDE approach directly to the
convolutional decoding problem. Thus providing a much lower complexity alternative to the
VA in a frequency-like dual code domain. However, I have encountered some difficulty here
with respect to the nature of this frequency-like dual domain and the appropriate definition
of the DFT, i.e., whether it should be over GF(2) or C or another field entirely.

A brief sketch of the problem is provided in Appendix C. This study is not the pri-
mary focus of the project and is only mentioned here because of its close relationship to
equalization for transmit diversity systems in frequency selective fading channels. Of more
interest in my work will be the application of FDE and related frequency domain processing
concepts to decoding space-time transmissions over frequency selective channels.

6.2.2 Trading off capacity, diversity and complexity

As discussed in Chapter 5, it is clear that the rates of many existing STBC proposals for
frequency selective fading channels, i.e., those based on orthogonal designs, are limited to
rates of > 1 sym/s/Hz. The first analytical contribution of this project will include a formal
proof that this is not merely an incidental property of these codes, but rather a fundamental
limitation because of the way in which they manipulate the channel. I expect that as in
the analogous analysis for STBCs over flat fading channels, the proof will reveal certain
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properties of the induced channel matrix that simultaneously enable full diversity gain and
inhibit capacity.

An important question to address is then how a code might be designed to achieve a
good diversity gain while also taking advantage of the potential capacity growth offered by
the channel. In [29], the authors consider first maximizing mutual information and then
applying unitary transformations to increase the diversity gain offered by the resulting codes.
This approach seems to have worked well in the flat fading channel and it is one that I will
try to apply to the frequency selective case.

In addition, I note an important observation in [24]: that low computational complexities
have facilitated uptake of STBCs, particularly the Alamouti code, by telecommunication
standards bodies. Therefore I will be interested not only in studying the tradeoff between
diversity and capacity, but also that between these properties and decoding complexity. In
general, establishing simple expressions governing the tradeoffs between performance and
complexity is a very difficult problem. However as we have seen throughout this report, for
many space-time codes these parameters are heavily dependent on the characteristics of the
channel matrixH andH†H. Thus I hope to be able to make some progress in understanding
how they are related within this context.

6.2.3 Design methodology

A number of different criteria have been used to design and evaluate space-time coding
schemes in the literature. At first it was believed that optimal diversity gain should be the
primary goal. However based on recent publications [24, 29], the focus is shifting toward
capacity and computational efficiency.

With respect to the design of a novel space-time code, one approach that I will consider is
the extension of techniques such as linear dispersion codes, which have been recently devel-
oped to support higher data rates over flat fading channels, to frequency selective channels.
Since the frequency selective channel actually provides another dimension of diversity (i.e.,
frequency diversity), I expect it to be the case that the most effective approaches to code
design for systems transmitting over this environment may not be simple extensions of codes
for flat fading channels. However, the linear dispersion code framework is very general and
I hope that this starting point will give more insight into the limitations and opportunities
offered by the frequency selective channel.

6.2.4 Verification of designs via simulation

Ultimately new space-time designs will have to be tested via simulation. I expect to continue
using Matlab r© in this work and conduct preliminary simulations over a basic frequency
selective quasi-static fading channel. The analysis and simulations presented in this report
were done using this channel. It is implemented by generating M × N spatial channel
matrices for each multipath, scaling them by the appropriate power delay profile, and then
constructing the block circulant H̃ as described in Section 2.4.2.

For the capacity simulations in Section 4.2.2, I used a hypothetical uniform power delay
profile and one of the three tap power delay profiles specified in the Stanford University
Interim (SUI) channel models. In the next stage of the project I may consider using channels
specified by the Multiple Element Transmit and Receive Antennas (METRA) projects, as
they are based on the four and six tap power delay profiles that are expected to form the core
of the 3rd Generation Partnership Project (3GPP) Spatial Channel Model (SCM) standard
proposal [49].
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The complete SUI and METRA models include a Ricean fading component as well as
Doppler spreading. Since it is not the immediate purpose to study the design of space-time
codes for these channels, these parameters are likely to remain omitted in future simulations.
The use of a simplified channel model is typical of results presented in the literature. Finally,
in addition to simulations supporting the development of new space-time code designs, it
will likely be necessary to simulate a few existing space-time codes to provide some basis
for performance comparison. I anticipate that the TR-STBC and STBC with frequency
domain processing techniques will be two good benchmarks for the proposed work.

6.2.5 Additional topics

Should promising results arise from our work designing block codes for frequency selective
fading channels, there are a few avenues of additional research that may be of interest. First
it will be informative to consider extensions to other fading scenarios such as combined
frequency selective and correlated fading. This particular case has been studied in the
context of OFDM-like space-time codes and preliminary results showed that in some cases
the diversity benefit provided by the frequency selectivity of the channel could be used
to compensate for the loss of degrees of freedom caused by spatial correlation. Initially
this study would involve simulating a spatially correlated channel and investigating the
performance of our codes.

Another interesting consideration is the applicability of any techniques that are devel-
oped to applications for multi-access channels. This theme is already beginning to emerge in
the literature, for instance in architectures such as threaded space-time, where the notion of
a constituent code is easily extended to the code of a particular user in a multi-user system.

Finally, related to the study of space-time block coding schemes that can achieve spec-
tral efficiencies of more than 1 sym/s/Hz is that of space-time trellis coding schemes capable
of realizing the same goal. As we saw in Section 5.2.2, current STTC designs are focused
on maximizing diversity and coding gains. At the heart of each lies a simple rate 1

N
con-

volutional encoder. There do not seem to be any obvious reasons why higher rate encoders
could not be used. Since the VA scales with the number of states in the trellis, the decoder
complexity should remain comparable to that of rate 1 STTCs, as long as design criteria
are devised to ensure that the number of memory elements in the encoder remains as low as
possible. It has been shown that in order to achieve higher rates, some diversity gain must
be sacrificed [60].

The proposed research plan is summarized visually with realistic scheduling details,
including time allocated for writing tasks, in Figure 6.1.
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July Oct.AprilJan.
2003

July Oct.AprilJan.
2004

JulyAprilJan.
2005

MIMO channel modeling

Multi−user detection

MRC diversity receiver

MIMO channel capacity study

Frequency domain equalization

Reading

Simulations

Space−time coding

STBC (Alamouti)

Linear dispersion code (Hassibi)

Design
Implementation

Proposed space−time code

Comparative Evaluation

Frequency selective MIMO channel study
Analogy with trellis decoding

Analysis

Complexity analysis
Tradeoff with diversity, complexity
Capacity analysis

Additional topics

First Year Progress Report
Conference paper or draft chapters

Writing

Dissertation

Anticipated work areas

Application to multi−user systems

V−BLAST (Foschini)
TR−STBC (Lindskog)
STBC+FDE (Al−Dhahir)

Figure 6.1: Projected milestones and completed activities, January 2003 to October 2005.
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Appendix A

ML decoding in fading channels
with perfect receiver CSI

In this appendix we review some derivations and concepts relating to ML decoding in fading
channels with complex AWGN, where the receiver has perfect channel knowledge. For
simplicity, we consider single symbol period transmissions over memoryless channels, e.g.,
flat quasi-static fading.

Let the complex baseband transmitted symbol s be drawn from alphabet X of cardinality
B. We assume that the channel coefficients are known at the receiver, and that the complex
AWGN is of zero mean and variance N0. In the derivations that follow, D-dimensional
complex-valued random variables are represented as 2D-dimensional real-valued random
variables annotated by an underline, i.e., given complex x or x,

x =

[
xR
xI

]
or

[
xR
xI

]
,

where the subscripts R and I are used to denote the real and imaginary parts of complex-
valued variables. Note that the channel matrix must be handled in a slightly different
manner. For a memoryless channel, each received signal can be considered in isolation from
those seen previously. In this case the general MIMO received signal can be expressed
mathematically as

r = Hs+ n

or equivalently r =

[
HR −HI

HI HR
︸ ︷︷ ︸

,H

]
s+ n.

Figure A.1 provides a geometric view of the fading process for a single transmitted QPSK
signal. Observe that in a fading channel, the effective signal constellation is a rotated and
scaled version of the one from which the transmitted symbol was actually selected. The
complex noise term adds a random circularly symmetric component to intermediate point
hs after the fading transformation. Thus as we saw in Chapter 3, the SNR without fading
is ρ = P

N0
, compared to P

N0
α = ρα when the fading is taken into consideration.
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P

θ

s

r

√
N0

Pα

hs

Figure A.1: Illustration of received (bold triangle), intermediate (bold circle) signal points,
and rotated and scaled fading constellation (circles) when a signal (bold cross) drawn from
a QPSK constellation (crosses) is transmitted over a complex AWGN fading channel.

The likelihood function of the received signal given perfect CSI and that s was sent is
given by the conditional probability density

f(r |s was sent,H) =
1

√
2π

M√
detΣ

e−
1
2
(r−Hs)†Σ−1(r−Hs),

where Σ =
N0
2
I2M ,

and so f(r |s was sent,H) =
1

(πN0)
M
e
− 1

N0
|r−Hs|2

. (A.1)

Since log(x) is concave, the ML estimate of the transmitted signal can be found by
choosing the one that maximizes the log-likelihood function. Constants terms and factors
are typically removed to simplify the presentation. Because the exponent in (A.1) is negative,
the likelihood and log-likelihood are maximized when its magnitude is minimized:

ŝML = argmin
s∈XN

|r−Hs|2 . (A.2)

For the SISO and SIMO cases, where there is a single transmitted signal, the ML solution
corresponds to the discrete matched filter and MRC receivers, respectively. Since the channel
matrix is either square (a scalar) or tall (a vector), with statistically independent entries,
h†h is non-singular with probability 1 and the Moore-Penrose pseudoinverse is well-defined.
It is then straightforward to show that the linear receiver w = h† is optimal:

|r− hs|2 =

∣∣∣h†r− |h|2 s
∣∣∣
2

|h|2
,

and so ŝML = argmin
s∈X

∣∣∣h†r− |h|2 s
∣∣∣
2
. (A.3)
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Observe that |h|2 is a scalar quantity. Thus this coherent receiver has the effect of
inverting the rotation operation caused by the fading channel. However, when transmit
diversity is employed, this sort of channel inversion is usually no longer possible. For instance
in the case of a system using transmit diversity only, we have the following minimization
problem over the N -dimensional space XN :

ŝML = argmin
s∈XN

∣∣∣r − hT s
∣∣∣
2
.

Because the rows and columns of h
∗
h
T
are multiples of each other, it is a singular matrix

and the Moore-Penrose pseudoinverse of h
T
is not well-defined. The structure of the optimal

receiver may not be linear, and solutions may not be unique. MIMO transmission systems
where M < N , i.e., the channel matrix is wide, suffer from the same difficulty.1

For a MIMO channel where M ≥ N , solving (A.2) can be shown to be equivalent to
minimizing

ŝML = argmin
s∈XN

(r−Hs)†(r−Hs)

= argmin
s∈XN

Re
[
s†(H†Hs− 2H†r)

]
(A.4)

= argmin
s∈XN

(H†r−H†Hs)†(H†H)−1(H†r−H†Hs) (A.5)

, argmin
s∈XN

∣∣∣H†r−H†Hs
∣∣∣
2

(H†H)−1
.

It is well known that the complexity of the ML problem is generally exponential in the
dimension of the search space (2N in this case) [32]. However the sphere decoder is a recent
advance in lattice coding theory that enables a solution to be found in polynomial time
(O(n3) to O(n6), where n is the dimension of the search space) [62, 32]. Further complexity
improvements can only be realized by exploiting special properties of the channel matrix,
or by inducing a channel matrix with desirable characteristics.

For instance in the case of the Alamouti STBC, where H† = det (H)H−1, (A.5) can be
reduced as follows:

∣∣∣H†r−H†Hs
∣∣∣
2

(H†H)−1
=

∣∣H†r− det (H) s
∣∣2

detH
,

and so ŝML = argmin
s∈XN

∣∣∣H†r− det (H) s
∣∣∣
2
. (A.6)

Note the similarity between (A.3) and (A.6): detH is also a scalar quantity, hence the
ML solution for the Alamouti code can be found using N scalar minimizations, rather than
the more computationally costly vector optimization in (A.5).

1In this case, although the pseudoinverse may exist, it is still not possible to recover more than M

signals, assuming that the transmitted symbols are independent. To see why this is the case, consider that
geometrically a wide matrix corresponds to a projection onto a lower dimensional subspace. Because some
information about the higher dimensions is lost, such a transformation can only be partially inverted at best.



Appendix B

Average bit error rates for MRC
receive diversity with M antennas

In this appendix we derive exact expressions for the average bit error rates for receive
diversity when using MRC with two and four receive antennas. We then generalize these
expressions in the limit as M →∞. Recall from Chapter 3 that the instantaneous bit error
rate conditioned on the channel coefficients h1(t), . . . , hM (t) is

pε|hi[l],j=1,...,M (ρ) = Q

(√
2ρχ22M

)
,

where χ22M is a chi-squared random variable with 2M degrees of freedom. The general
expressions for the probability density and distribution functions of a chi-squared random
variable with r degrees of freedom, derived from Gaussian random variables with zero mean
and variance 1

2 , are given by

fr(x) =
x

r
2
−1e−x

Γ( r2)

Fr(x) =
γ( r2 , x)

Γ( r2)
,

where the gamma function is defined over the integers as Γ(x) = (x−1)! and the incomplete
gamma function as γ(α, x) =

∫ x
0 t

α−1e−t dt. In particular we will be working with the
chi-squared distributions with four and eight degrees of freedom:

f4(x) = xe−x

F4(x) = 1− e−x − xe−x

f8(x) =
x3e−x

6

F8(x) = 1− e−x − xe−x − x2

2
e−x − x3

6
e−x

Some other helpful identities that we will make use of are
∫ ∞

0
u2ne−u

2
du =

√
π

2

1

2

3

2
· · · 2n− 1

2

=
√
π
(2n− 1)!!

2n+1
,
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where the double factorial is defined over the odd integers as n!! = n·(n−2)·(n−4) · · · 5·3·1,
and the geometric series sum:

N∑

k=0

rk =
1− rN+1
1− r , |r| < 1.

The average bit error probability for the case with M=2 receive antennas is then

pε,M=2(ρ) =

∫ ∞

0
pε|hi[l],j=1,M (ρ) · f4(x) dx

=

∫ ∞

0
Q
(√

2ρx
)
· f4(x) dx

= Q
(√

2ρx
)
· F4(x)

∣∣∣
∞

0
+

∫ ∞

0

√
ρ

4πx
e−ρx · F4(x) dx

x=z2
=

√
ρ

π

∫ ∞

0
e−ρz

2 − e−z2(1+ρ) − z2e−z2(1+ρ) dz

=

√
ρ

π

(
1√
ρ

√
π

2
− 1√

(1 + ρ)

√
π

2
− 1√

(1 + ρ)3

√
π

4

)

=
1

2
− 1

2

√
ρ

1 + ρ
− 1

4

√
ρ

(1 + ρ)3

= pε,M=1(ρ)−
1

4

√
ρ

(1 + ρ)3
.

Using a similar approach, we can also derive an expression for the bit error probability
for the case with M = 4 receive antennas:

pε,M=4(ρ) =

∫ ∞

0
pε|hi[l],j=1,...,M (ρ) · f8(x) dx

=

∫ ∞

0

√
ρ

4πx
e−ρx · F8(x) dx

x=z2
=

√
ρ

π

∫ ∞

0
e−ρz

2 − e−z2(1+ρ) − z2e−z2(1+ρ) − z4

2
e−z

2(1+ρ) − z6

6
e−z

2(1+ρ) dz

= pε,M=2(ρ)−
√
ρ

π

(
1

2
√

(1 + ρ)5
3
√
π

8
− 1

6
√

(1 + ρ)7
15
√
π

16

)

= pε,M=2(ρ)−
3

16

√
ρ

(1 + ρ)5
− 15
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√
ρ

(1 + ρ)7
.
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Based on these derivations, a general expression for the bit error probability is given by

pε,M (ρ) =
1

2

[
1−

M∑

i=1

√
ρ

(1 + ρ)2i−1
(2i− 3)!!

(2i− 2)!!

]

=
1

2

[
1− µ

M∑

i=1

(1− µ2)i−1 (2i− 3)!!

(2i− 2)!!

]
,

where µ =
√

ρ
(1+ρ) . Since (2i−3)!!

(2i−2)!! ≈ 1
2i−1 , and in the high SNR regime we can make the

approximations 1
2(1 + µ) ≈ 1 and 1

2(1 − µ) ≈ 1
4ρ [42], the following approximate average

error probability expression can also be derived:

pε,M (ρÀ 1) ≈ 1

2

[
1− µ

M∑

i=1

1

ρi−1
(2i− 3)!!

(2i− 2)!!

]

≤ 1

2

[
1− µ

M∑

i=1

1

(2ρ)i−1

]

=
1

2

[
1− µ

1− 1
(2ρ)M

1− 1
2ρ

]

≈ 1

2

[
µ− µ− µ

(2ρ)M

µ

]

=
1

2(2ρ)M

Naturally, next we would like to consider what happens to the average bit error proba-

bility in the limit as M → ∞. We begin by taking a look at what happens to Υ =
χ2

2M
M

as
M becomes large:

EΥ =
1

M
· Eχ22M

=

∫∞
0 x · xM−1e−x dx

M · Γ(M)

=
Γ(M + 1)

M !

= 1

EΥ2 =
1

M2
· E
(
[χ22M ]2

)

=

∫∞
0 x2 · xM−1e−x dx

M2 · Γ(M)

=
Γ(M + 2)

M ·M !

=
M + 1

M
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Thus for all M , the expected value of Υ is 1, and as M → ∞ its variance tends to
0. Thus as M becomes large, the density function of Υ approaches a Dirac delta function
centered around 1:

lim
M→∞

fΥ(y) = δ(y − 1).

The average bit error probability of the SIMO system asM →∞ can then be determined:

pε,M→∞(ρ) = lim
M→∞

∫ ∞

0
pε|hi[l],j=1,...,M (ρ) · f2M (x) dx

= lim
M→∞

∫ ∞

0
Q
(√

2ρx
)
· f2M (x) dx

x=My
= lim

M→∞

∫ ∞

0
Q
(√

2ρy
)
· fΥ(y) dy

=

∫ ∞

0
Q
(√

2ρy
)
· δ(y − 1) dy

= Q
(√

2ρ
)
,

which is the same error performance as that obtained over an AWGN channel with the same
noise power and no fading. (Recall that ρ =Mρ is the average SNR per bit.)



Appendix C

On decoding rate 1

n convolutional
codes

The well-known VA is widely applied to solve the problem of decoding convolutional codes.
It is essentially a ML sequential processing detection technique and thus can also be used
for MLSE equalization. With respect to the latter problem, we have encountered cases in
the space-time coding literature where the structure of the channel matrix may be exploited
to decouple the equalization procedure, both in space and in time [2]. In this appendix
we explore how these strategies may also be applied to simplify the decoding of rate 1

n

convolutional codes.

We believe that this approach inspired by space-time coding may be more computation-
ally efficient than the VA under certain conditions. Like the VA, it exhibits a small rate loss
due to border effects. For the case of the VA, this is caused by appending a suffix of zeros
to reset the encoder state between codewords. In the algorithm that we are considering, a
cyclic prefix is prepended to enable block processing in a frequency-like dual code domain.

D D D

...

xl

yln

yl1gK−11

gK−12

g12

g02

g1n

g0n

gK−1n

yl2

g11

g01

Figure C.1: A rate 1
n
convolutional encoder.

We begin by considering the structure of a 1
n
convolutional code as shown in Figure C.1.

Let us define the constraint length of the code as K, where K − 1 is the minimum number
of zero input symbols required to reset the state of the encoder, i.e., the number of delays
in the longest delay line or equivalently, the memory of the encoder. At each time step l,

94



95

the encoder accepts an input symbol xl from alphabet A and produces n-symbol codewords
(y1y2 · · · yn)l. We are interested in decoding blocks of codewords of length L.

The codeword-wise encoding operation can be expressed as a linear filter:

ylj =

K−1∑

k=0

gkj x
l−k, l = 1, . . . , L.

The output of this filter at time step l depends on the current input symbol and the
K−1 previous inputs. To ensure that all required inputs are well-defined, we let x0, . . . , xL−1

contain the data symbols and set x−k = xL−k for K = 1, . . . ,K − 1. This strategy is known
as prepending a cyclic prefix. The decoder ignores the first n(K − 1) received symbols and
the block codeword encoding operation can then be written in the form of an nL-dimensional
linear matrix equation:




y0

...
yL−1

︸ ︷︷ ︸
,Y


 =




g0 0 · · · 0 gK−1 · · · g1

g1 g0 0 · · · 0
. . .

...
...

. . .
. . . 0 · · · 0 gK−1

gK−1 · · · g1 g0 0 · · · 0

0
. . . · · ·

. . .
. . .

. . .
...

...
. . .

. . . · · ·
. . . g0 0

0 · · · 0 gK−1 · · · g1 g0

︸ ︷︷ ︸
,G







x0

...
xL−1

︸ ︷︷ ︸
,X


 , (C.1)

where X and Y are L × 1 and nL × 1 vectors formed by stacking the input and encoded
bits, respectively, first by codeword and then by time index, i.e., ,

Y =
[
y0 · · · yL−1

]
=



y01 · · · yL−11
...

. . .
...

y0n · · · yL−1n


 , Y = Vec (Y)

X =
[
x01 · · · xL−11

]
, X = Vec (X) ,

and G is an nL× L block circulant matrix with

[
g0 · · · gK−1

]
=



g01 · · · gK−11
...

. . .
...

g0n · · · gK−1n


 .

Recall that G is then block diagonalized by the unitary inverse DFT: G = U†DFT,nLGUDFT,L,

where element ij of UDFT,L = 1√
L
e−j

2π
L
(i−1)(j−1) and UDFT,nL is specified by the Kronecker

product UDFT,L ⊗ In.
If Y is transmitted over an AWGN channel, the signal seen at the receiver is given by

Z = GX +N ∈ CnL, where the elements of N are zero mean noise samples with variance
N0. The ML detection problem can then be expressed as

X̂ = argmin
X∈AL

|Z − GX |2

= argmin
X∈AL

∣∣∣Z −U†DFT,nLGUDFT,LX
∣∣∣
2
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CONVOLUTIONAL CODES

Next let us define the dual code alphabet

ALU =
{
X | X = UX , X ∈ AL

}
,

where U is an L × L unitary matrix. Because U is unitary,
∣∣ALU

∣∣ =
∣∣AL

∣∣. Also note
that metrics are preserved by unitary transformations, i.e., given c, d ∈ CN , µ(c, d) =
µ(UNc,UNd) for all metrics µ. In particular, Euclidean distance is a metric and therefore
defining Z = UDFT,nLZ gives the following equivalent minimization problem:

X̂ = U†DFT,LX̂

X̂ = argmin
X∈AL

U

|Z−GX|2 . (C.2)

To address this problem in the frequency-like dual code domain, we exploit the structures
of nL× L block diagonal matrix G and L× L diagonal matrix G†G:

G =




� 0 0 · · · 0

0 � 1
. . .

...
...

. . .
. . . 0

0 · · · 0 � L−1



, G†G =




∣∣ � 0
∣∣2 0 · · · 0

0
∣∣ � 1
∣∣2 . . .

...
...

. . .
. . . 0

0 · · · 0
∣∣ � L−1

∣∣2



,

where � l = [ � l1 · · · � ln]
T and � li =

∑K−1
k=0 g

k
i e
−j 2π

L
kl. The nL-dimensional minimization in

(C.2) can then be decoupled into L n-dimensional problems:

X̂ = argmin
X∈AL

U

(
Z† − X†G†

)(
Z−GX

)

= argmin
X∈AL

U

(
Z†Z− Z†GX− X†G†Z + X†G†GX

)

= argmin
X∈AL

U

L−1∑

l=0

[
( � l)† � l − ( � l)† � l

�
l − (

�
l)∗( � l)† � l + (

�
l)∗( � l)† � l

�
l
]

= argmin
X∈AL

U

L−1∑

l=0

∣∣∣ � l − � l
�
l
∣∣∣
2

(Aside: At this point in the development, we pause since there is a hopefully small
but important flaw in the reasoning. Equation C.1 is not quite correct unless we specify
that xl, yli, g

l
i ∈ GF(2) and redefine addition and multiplication appropriately within the

finite field. However this may invalidate the block diagonalization. We are looking at
ways to address this, more specifically decompositions within the finite field (e.g., using a
modified Hadamard transform instead of the DFT) and also, since it is clear that Z ∈ CnL,
understanding the transition from GF(2nL) to CnL. We are still exploring what implications
these issues have for decoding convolutional codes in a frequency-like dual domain, but
believe that there is potential here for complexity savings.)



Appendix D

On the design of transmit and
receive filters

In this appendix we consider the effect of the transmit and receive filters on the continuous
time and discrete time systems presented in Chapter 2. We begin by repeating the complex
baseband system diagrams for convenient reference.

gT (t) h(t)

n(t)

t = lTs
gR(t)

Rx filterChannelTx filter Whitening
filter fw[l]

device

Detector+
Decision

r[l] ŝ[l]s[l]
rc[l]

(a) Full system diagram, continuous time.

h[l]

n[l]
s[l]

Detector device

s[l] ŝ[l]r[l] DecisionChannel

(b) Simplified system diagram, discrete time.

Complex baseband communication system diagrams.

To simplify the analysis, we will present our derivations in the frequency domain as much
as possible. Let the continuous time Fourier transforms of the transmitted and received
signals (before sampling) be denoted by � (f) and

�

c(f) respectively, that of the transmit
and receive filters by � T (f) and � R(f) respectively, that of the channel impulse response
by

�
(f) and that of the noise by

�

(f). Then the frequency domain representation of the
received signal can be written as

�

c(f) = � (f) ? � T (f)
�
(f)

︸ ︷︷ ︸
, � (f)

� R(f)

︸ ︷︷ ︸
, � (f)

+
�

(f) � R(f),

where as we shall see, the subscript c is used to indicate that the samples rc[l] may be
statistically correlated.
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Our first goal is to design the transmit and receive filters to minimize ISI. The well-
known Nyquist criterion states that in order to ensure ISI-free transmission, the overall
pulse shape p(t) must be such that its impulse and frequency responses satisfy

p(kTs) = p[k] = δ[k] (time domain)

∞∑

n=−∞
�

(
f − n

Ts

)
= Ts (frequency domain),

where δ[k] is the Kronecker delta function. This goal can be achieved by choosing a pulse
shape that satisfies the Nyquist criterion, e.g., the raised cosine pulse, and then defining the
transmit and receive filters such that the product of their frequency responses is equal to
that of the product of the pulse and the inverse of the channel:

� T (f) � R(f) =

� ∗(f) � (f)

| �
(f)| (D.1)

We note that there are an infinite number of filters that satisfy (D.1). However, the Nyquist
criterion only applies for transmission in the absence of noise. Our second goal is to attain
good bit error performance, in other words � T (f) and � R(f) must also be designed to reduce
the effects of channel noise in some optimal manner.

Optimal detection in an AWGN channel is typically accomplished using a matched filter.
In this case the time domain representation of the output of the sampler is given by

rc[l] =
∞∑

k=−∞
s[k]

∞w

−∞
c(θ − kTs)gR(lTs − θ) dθ

︸ ︷︷ ︸
, hc[l − k]

+

∞w

−∞
n(θ)gR(lTs − θ) dθ

︸ ︷︷ ︸
, nc[l]

and its SNR by

ρrc[l] =

P

∣∣∣∣∣

∞w

−∞
c(θ − kTs)gR(lTs − θ) dθ

∣∣∣∣∣

2

N0

∞w

−∞
|gR(lTs − θ)|2 dθ

, (D.2)

where as before P is the power of the transmitted signal and N0 that of the noise. By
applying Schwarz’ Inequality to the numerator of (D.2) and matching the receive filter to
the lth transmitted symbol, we find that the received SNR is maximized by choosing

gR(t) = Kc∗(−t)

or equivalently � R(f) = K
� ∗(f) � ∗T (f), (D.3)

for some real scaling factor K.

D.1 Flat fading channel

If the channel is flat fading,
�
(f) =

�
is constant over the frequency band of interest. As

long as
� 6= 0 (D.1) is well defined and ISI-free transmission is possible. Combining the filter

design criteria of (D.1) and (D.3) leads to the following transmit and receive filter pair:

� T (f) = � (f), � R(f) =

� ∗

| � | � ∗(f), such that � (f) � ∗(f) = � (f). (D.4)
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Next we are interested in the implications of the transmit and receive filters for the
discrete time CIR and noise processes. The continuous time noise process n(t) is assumed
to be circularly symmetric complex Gaussian with zero mean and variance N0. The auto-
correlation of the discrete time noise process rnc [k] can be derived as follows:

E (n∗c [l]nc[l + k]) = E

( ∞w

−∞
n∗(θ)g∗R(lTs − θ) dθ

∞w

−∞
n(θ′)gR(lTs + kTs − θ′) dθ′

)

=

∞x

−∞
E
[
n∗(θ)n(θ′)

]
g∗R(lTs − θ)gR(lTs + kTs − θ′) dθ dθ′

φ=lTs−θ
= N0

∞w

−∞
g∗R(φ)gR(kTs + φ) dφ

= N0rgR [k], (D.5)

where rgR [k] is the discrete time autocorrelation function of the receive filter. In order for
the filtered and sampled noise process to be spectrally white, its autocorrelation must be
equal to the Kronecker delta function. In other words, the power spectrum of the receive
filter must correspond to the frequency response of a Nyquist pulse.

Applying the filter design in (D.4), we find that the power spectrum of the receive filter
is | � R(f)|2 = � (f). Assuming that the transmitted pulse satisfies the Nyquist criterion,
its autocorrelation function is then rgR [k] = p[k] = δ[k]. Thus the sampled noise process
is spectrally white with variance N0. In this case, the whitening filter is not needed since
n[l] = nc[l] is already white. Also recall that the noise convolution integral is the limit of
an infinite sum of independent Gaussian random variables. Therefore the output sample is
also Gaussian and we have that the filtered and sampled noise process is complex AWGN
with the same statistics as n(t).

To consider the properties of the filtered and sampled channel impulse response, we
assume that the fading is Rayleigh. Then we can write the complex-valued response in
terms of its real and imaginary components, which are i.i.d. Gaussian random processes
with zero mean and unit variance. The frequency domain representation of the filtered real
(or imaginary) channel response can be expressed as

�
R � T (f) � R(f) =

�
R � (f)

Similarly to the previous argument, if the transmitted pulse satisfies the Nyquist crite-
rion, the real and imaginary components of the sampled channel impulse response are then
spectrally white, i.e., hR[l] = hRc [l]. Further, hR[l] and hI [l] have the same unit variance as
the continuous time processes hR(t) and hI(t) respectively. The convolution integral again
yields the limit of an infinite sum of independent Gaussian random variables, which is also
Gaussian. Therefore the filtered and sampled channel impulse response is Rayleigh, with
the same statistics as its continuous time counterpart.

D.2 Frequency selective fading channel

If the channel is frequency selective, by definition its rms delay spread exceeds Ts. In the
frequency domain this implies that the coherence bandwidth of the channel is smaller than
the nominal bandwidth of the transmitted signal. Therefore, there are at least one and
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at most
⌊
σ̂τ
Ts

⌋
nulls in its frequency response

�
(f). Because of these spectral nulls, the

denominator term in (D.1) is effectively zero at some frequencies and the filter condition for
ISI-free transmission is not well defined.

In this case, the transmit and receive filters are designed such that they do not introduce
any additional ISI into the system. The ISI caused by the channel is then handled using
equalization techniques as discussed in previous sections of this report that address frequency
selective fading channels. The validity of the matched filtering operation is not affected by
the frequency selectivity of the channel. Therefore the criterion in (D.3) still applies. For
convenience, we set K = 1 and the resulting transmit and receive filter pair is

� T (f) = � (f), � R(f) =
� ∗(f) � ∗(f), such that � (f) � ∗(f) = � (f).

As before, we can now study the effect of these transmit and receive filters on the
statistics of the discrete time channel coefficients and noise process. The power spectral
density (before sampling) and sampled autocorrelation function of the filtered discrete time
noise process are

snc(f) = N0 |
�
(f)|2 � (f) (D.6)

rnc [k] = N0rh[k],

where we recall that the autocorrelation function of the channel is specified by its power
delay profile, which takes non-zero values for k = 0, . . . ,K. For the following analysis, we
define the two-sided autocorrelation of length 2K − 1 as rh[k] = ph[|k|].

Observe that the noise process nc[l] is not spectrally white. Since it is mathematically
simpler to work with a white noise process in subsequent analysis of the discrete time
system, a discrete whitening filter is inserted after the sampler [42]. This filter is designed
by factoring the z-transform of the sampled autocorrelation function

H(z) =
K∑

k=−K
rh[k]z

−k

= F(z)F∗(z−1)

The desired discrete whitening filter is then an IIR filter with z-transform

1

F∗(z−1)
≈ zPw

Pw−1∑

p=0

fw[p]z
−p (truncated and causal)

where Pw is the length of the truncated filter. After whitening the discrete power spectral
density of the resulting noise is N0 � (f). As before, the filtered noise retains its Gaussian
characteristic and with the whitening filter we have that the discrete time noise process n[l]
is complex AWGN with the same statistics as n(t).

The properties of the filtered and sampled channel impulse response, can be studied by
writing the complex-valued response in terms of its real and imaginary components. The
frequency domain representation of the filtered real (or imaginary) channel response can be
expressed as

�
R(f) � T (f) � R(f) = | �

R(f)|2 � (f) (D.7)
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Similarly to the previous argument, we assume that the transmitted pulse satisfies the
Nyquist criterion. The real and imaginary components of the sampled channel impulse
response are then not spectrally white. However, it can be seen from the mathematical
structures of (D.6) and (D.7) that applying the discrete whitening filter to the sampled
convolution of the signal and correlated channel coefficients hc[l] is equivalent to sampling
the convolution of the signal and statistically white channel h[l].

The unit variance and Gaussian characteristic of the continuous time processes hR(t)
and hI(t) is also preserved. Therefore the filtered and sampled channel impulse response is
Rayleigh, with the same statistics as its continuous time counterpart.
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