
Tweaking TCP’s Timers
CUED/F-INFENG/TR.487

Kieran Mansley

Laboratory for Communication Engineering,
Cambridge University Engineering Department,

William Gates Building, 15 J.J.Thomson Avenue,
Cambridge CB3 0FD. UK

kjm25@cam.ac.uk

July 6, 2004

Abstract

This paper presents an architecture for implementing TCP timers
efficiently at user-level, as part of the Cambridge User-Level TCP
(CULT). The unusual architecture that CULT presents (as opposed to
the normal in-kernel arrangement) makes the use of a separate thread
for timers undesirable. In addition, the facilities for accurate time
measurement and scheduling at user-level are limited in comparison
with the kernel.

This leads to a number of changes, illustrated by considering the
delayed-acknowledgement timer. In particular: (i) timers are pro-
cessed “in-line” by the data thread to which they correspond, avoiding
the need to lock due to a separate timer thread; and (ii) the upper
and lower limits on the delayed-acknowledgement timer are changed
by the use of “timer-buckets” to ensure no unnecessary delayed ac-
knowledgements are sent while also reducing the maximum expected
delay.

The new architecture results in a more scalable solution as no lists
of connections need to be searched on timer clock ticks at the cost
of slightly increased complexity to set and clear timers. Should the
period of timers decrease to cope with faster networks this trade-off
will become more important.

1

2 1 INTRODUCTION

1 Introduction

1.1 Cambridge User-Level TCP

Cambridge User-Level TCP (CULT) [1] is an attempt to create a high per-
formance implementation of TCP at user-level. It is targeted at server clus-
ters, and makes use of facilities provided by RDMA cluster networks such as
CLAN [2] to increase efficiency in a number of areas including: (i) low over-
head demultiplex of incoming packets due to the connection oriented nature
of the underlying networks; (ii) true zero-copy transmission facilitated by
buffering for retransmission being performed at the network gateway; (iii)
advanced load-balancing based on the network buffer usage of the applica-
tion; and (iv) removal of context-switch and locking overheads by the avoid-
ance of any dedicated threads in the protocol stack (all protocol processing
is performed using the application thread that requests it).

The efficient implementation of TCP timers is one aspect of this work, and
the CULT architecture makes this implementation particularly interesting:
it presents unusual constraints and problems when compared to more tradi-
tional kernel-based TCPs. The rest of this paper describes these challenges
in more detail, and the solution that has been devised to address them.

1.2 TCP Timers

TCP uses timers to cope with inactivity. Whenever an action or response is
expected from a remote node, the local TCP will set a timeout to recover in
case that action or response is not received. For example, when a segment is
transmitted, TCP sets a retransmission timer which will resend the segment
if it is not acknowledged.

In total there are seven different timers:

Connection-establishment timer: set when a SYN is transmitted, and
aborts the connection if no response is received within 75 seconds.

Retransmission timer: set when data are transmitted, and retransmits
the data if no acknowledgement is received.

Delayed-acknowledgement timer: set when data are received that do
not need to be acknowledged immediately. If, after 200ms, the ac-
knowledgement is still pending (i.e. it has been unable to piggy-back
on an outgoing data segment) it is then sent.

Persist timer: set when the remote node advertises a window size of zero,
thus preventing any data being sent. If the window has not been opened

1.3 Historical Constraints 3

when the timer expires, 1 byte is sent in case the window update was
lost. (Window updates, like acknowledgements, are not sent reliably).

Keep-alive timer: expires after 2 hours of inactivity (if requested by the
application) and sends a special segment to keep the connection open.

FIN WAIT 2 timer: set if the connection is in the FIN WAIT 2 state, and
cannot receive any more data. If after 11 minutes 15 seconds a FIN
has not been received the connection is dropped.

TIME WAIT (or 2MSL) timer: set when a connection enters the TIME WAIT

state, and expires after twice the Maximum Segment Lifetime (MSL).
The state for the connection is deleted allowing the socket to be reused.

The duration of the delayed-acknowledgement and persist timers depends
on the measured round trip time of the connection. The reasoning behind
all these timers is discussed in detail by Stevens in TCP/IP Illustrated. [3,
Chapter 25]

1.3 Historical Constraints

When TCP was specified in RFC 793 [4] in 1981 the support for time mea-
surement in operating systems, when compared to today, was poor. TCP was
also designed to be easily portable to a large number of operating systems,
and so made very few assumptions and demands about what was available,
even if some systems could offer much more. In addition, TCP did not need
as accurate time measurements, as the time intervals being measured were
larger due to slower networks resulting in lower bandwidths and longer round
trip times.1

As a result, to implement all the timers TCP only requires that two
functions are called periodically: (i) the fast timer is called every 200ms
and (ii) the slow timer every 500ms. TCP uses these two periodic “ticks”
to schedule and check all the timers described above, as well as measuring
round trip times.

As network speeds have increased this relatively coarse-grained ability to
measure time and schedule actions has become increasingly noticeable, and
although operating systems can now measure time very accurately with very
little overhead (particularly in the kernel), TCP has not adapted to make full

1For example, the original TCP specification bounds a measured network RTT to be
greater than 1 second. As this is used to time retransmission, it can lead to unnecessary
delay in modern networks, which will commonly have RTTs of less than 100ms. This is
one of the problems addressed by TCP Vegas [5].

4 1 INTRODUCTION

use of this facility (although some modifications such as TCP Vegas [5] do go
some way to improving matters). The problems that this leads to are widely
known, with many proposed solutions which are discussed fully in Section 5.

1.4 Timer Implementation

These historical constraints have to some extent shaped the way that most
TCPs implement timer support.

Setting and clearing timers is a common operation (each sent and received
segment will involve at least one or more timer operations), and so this must
be cheap: usually just involving setting a flag in the protocol control block.
However, this means that on each of the fast and slow clock ticks the list of
connections must be searched to discover which require attention, which has
time complexity of O(n) where n is the number of connections. The draw-
backs of this approach are well illustrated by the delayed-acknowledgement
timer:

When the list of connections is searched for those that have delayed ac-
knowledgements it is not known when, other than after the last fast timer
tick, this acknowledgement was delayed. i.e. It could have been waiting for
anything between 0ms and 200ms. This has two side-effects: (i) an acknowl-
edgement could be sent unnecessarily if it had only been waiting for 0ms, and
(ii) an acknowledgement could be delayed for much greater than the RTT of
the network if it had been waiting for 200ms.

The TCP specification suggests that at least every other acknowledge-
ment should be sent. i.e. If there is a request to delay an acknowledgement,
and one is already pending on that connection, an acknowledgement should
be sent straight away. (As acknowledgements are cumulative, a single one
is sufficient.) This means that on a reasonably busy connection (even if it
half-duplex, and so acknowledgements will never be able to piggy-back on
data) it should never be necessary to send a delayed acknowledgement on a
timer tick. However, in practice, on average every other fast timer tick will
result in one being sent.2

As well as the scalability issue, searching the list of connections each
clock tick has a second detrimental side effect. Timers are, in a user-level
context, most easily implemented as a separate thread. Great effort has been
expended to avoid the need for multiple threads per connection in the CULT
stack. If a separate thread were used for timers, many of the benefits gained

2This can be demonstrated by noting that if an odd number of acknowledgements are
requested between two ticks, an acknowledgement will be sent at the tick, but if an even
number of acknowledgements are requested, no acknowledgement will be sent on the next
tick.

1.5 Time at User-Level 5

from single threading would immediately be lost: locking would be required
for access to the stack to ensure that the state for each connection is only
used by a single thread at a time.

1.5 Time at User-Level

Most TCPs are kernel-based. As CULT is a user-level stack, it has a different
set of problems when trying to efficiently implement timers. Accurate time
measurement is a common operation within the kernel, and so is well sup-
ported: on Linux, for example, the “jiffies” variable is incremented whenever
the timer interrupt occurs (typically 100 times a second). The kernel also
provides “task-queues” or “tasklets” and “kernel timers” that can be used
to schedule execution of code at a later time - ideal for implementing TCP’s
timers.

As with many operating system resources, access to such features from
user level requires a system call (e.g. gettimeofday()), which is relatively
expensive. Solutions to this such as Soft Timers [6] are able to reduce this
cost by executing the event handler at certain (common) entry points into
the kernel, when the overhead is already being taken. There is also the
possibility of using a real time scheduler to ensure that a process is executed
at a specific time.

The approach taken by CULT is to use the free running processor cycle
counter which is accessible on x86 systems using the “rdtsc” assembler in-
structions. This has very low overhead and provides high-resolution (of the
order of nanoseconds) time information. It does require calibration however,
to gain an accurate measure time in more standard units (seconds rather
than processor cycles).

2 Cross-Thread Scheduling

An interesting way to view this problem of efficiently implementing the fast-
timer is to consider it as a scheduling problem. Threads (or processes) can
be in many scheduling states: (i) Runnable when it is only prevented from
running because the processor is busy with something else; (ii) Running
when it is actually executing on the processor; and (iii) Waiting when it is
waiting for something (some I/O to complete, or a lock to be released for
example) and so cannot currently continue. A typical state diagram for the
life cycle of a process is shown in Figure 1.

Processes enter the Waiting state when they need some other process
or task to complete an action before they can continue. There is generally

6 2 CROSS-THREAD SCHEDULING

Runable Running

Waiting

New Terminated

Interrupt

Scheduler Dispatch

Exit

I/O or Event WaitI/O or Event Completion

Admitted

Figure 1: Scheduling States of a Process

no mechanism for the event that the processes is waiting to complete to
be changed once it is in the Waiting state, or for a process to move from
Runnable to Waiting without going through Running. This is because, in
general, the process itself must decide when to enter the Waiting state, and
the only way for it to change its mind about that is for that process to be
executed: i.e. It must be in the Running state.

In the case of our TCP timers, the timer thread is usually in the Waiting
state, waiting for 200ms to pass. At the end of this time it will become
Runnable, and eventually Running when it reaches the head of the Runnable
queue. However, because there it usually no work for it to do, it will quickly
return to the Waiting state. In other words, it is polling.

It is possible to determine if the timer thread has any work to do. i.e. if
there are any acknowledgements that have delayed for more than 200ms (or
whatever threshold time is set), and this calculation can be performed by any
other TCP thread as follows:

Each TCP connection has either a time at which it would like the fast
timer to be run (200ms since it delayed an acknowledgement) or no require-
ment for the fast timer (if it does not currently have any acknowledgements
pending). If any of the times for the connections that have delayed acknowl-
edgements are less than the current time, then the timer thread needs to
be run. However, these times are constantly shifting as acknowledgements
are sent, and other acknowledgements are delayed. As a result, the time at
which the timer thread should next become Runnable is constantly updat-
ing. However, as mentioned above, there is currently no mechanism whereby
the condition that a process is waiting on can be updated. If support for

7

this were available, it would mean one group of threads or processes (the
data-sending threads) preventing another (the timer thread) from becoming
Runnable, which would be a new scheduling concept.

Processes do, of course, already influence when others can be Runnable
through, for example, condition variables (and it may be possible to produce
the desired effect through the use of these), but there is currently no way to
explicitly alter the condition that another process is waiting on; only whether
or not that condition is true. Condition variables would also require one of
the other threads to be active at the right time in order to signal the condition
variable as met, whereas the suggestion above would still operate correctly
if none of the data threads are currently running. Scheduler Activations [7]
(where the kernel schedules processors to a group of threads, which then use
a user level scheduler to divide the processor among them, so allowing for an
efficient N:M threading model) are more promising, and could be extended
to perform this role.

To support this would require significant changes to either the POSIX
thread library or the kernel (depending on which scheduler is being used)
to provide the necessary API. However, due to the complexity of this, and
the fact that for CULT it is hoped that the timer thread can be avoided
completely for active connections (as discussed below) this has not been
done. It would however constitute a very interesting area of further work,
and as scheduling is so key to many aspects of operating systems, it could
have many other applications.

3 New Timer Architecture

This dissertation presents a different approach to TCP timers, developed to
counter the problems described (namely, (i) the inaccurate delay of acknowl-
edgements, and (ii) the scalability and thread-consequences of searching lists
of connections by timers).

3.1 Fast Timer Buckets

Timer buckets are a means of providing the upper and lower time limits on a
delay. There are two buckets, and events that require a delay are marshalled
into one of them. The target bucket that events are placed in is swapped
periodically, and each bucket is emptied with the same periodicity but out of
phase with the switching of the target bucket. This is illustrated by Figure 2.

The difference in phase between switching the target bucket and emptying
that bucket is responsible for ensuring a non-zero lower limit. i.e. There is

8 3 NEW TIMER ARCHITECTURE

Target Bucket A

Target Bucket B

Empty Bucket B

Empty Bucket A

time (ms)x x+100 x+200 x+300 x+400 x+500 x+600 x+700 x+800

time (ms)x x+100 x+200 x+300 x+400 x+500 x+600 x+700 x+800
Min

Max

Figure 2: Timer Buckets

a delay between a bucket no longer being the target, and that bucket being
emptied. The upper limit is, obviously, enforced by the fact that the buckets
are regularly emptied.

In the case of delayed acknowledgements, it is convenient to set the lower
limit at 50 ms and the upper limit at 150 ms. This maintains the average de-
lay from the standard 0-200 ms range, but both reduces the maximum delay
and introduces a guaranteed minimum delay to ensure that piggybacking of
acknowledgements is encouraged. To achieve these limits, the period of the
bucket switching and emptying is 200 ms, with the emptying 90

�

(i.e. 50 ms)
out of phase, as shown in Figure 2.

3.2 Lazy Implementation

This work focuses on how to efficiently implement protocols. For this aspect
of TCP we need a way to regularly switch between the two buckets and
empty them appropriately, without requiring a separate thread to control it.

This has been achieved using a lazy approach: whenever a data thread
performs an timer operation, or an operation that is blocked, it determines
if a timer bucket action is required (i.e. switch or empty bucket).

Each bucket is represented using a simple counter. It records the number
of delayed acknowledgements that are currently pending. When an acknowl-
edgement is delayed, the current bucket’s counter is increased. When an
acknowledgement is sent, the counter is set to zero.

Two variables are used to track which bucket to use: (i) the current
bucket to use if delaying an acknowledgement, and (ii) the bucket to examine
when “emptying” on the next timer tick. They are updated as follows:

Current Target Bucket: The time at which the next bucket switch should

3.2 Lazy Implementation 9

take place is also recorded. Whenever an acknowledgement is delayed
(just before the timer bucket counter is increased) this time is compared
to the current time3, and if it has passed the buckets are switched. This
has the side effect that, because it is done lazily, the buckets do not
switch exactly every 100 ms, and in the absence of any acknowledge-
ments being sent a bucket could span considerably more than that.
This is, however, safe in that it only happens to an empty (inactive)
bucket: as soon as something tries to add to a bucket, the switch occurs,
and the “next switch time” is updated accordingly.

Bucket to Empty: Whenever a bucket is emptied, a “struct timeval”
timeout structure is set to 100 ms from the current time. This structure
is passed to any blocking operation involving that connection, so that
once 100 ms has passed the timer handler is executed, without requiring
a separate thread. The timer handler examines the current bucket,
sends any acknowledgements that have been delayed, and updates the
timeout structure.

This approach separates the timing of the bucket switch and the bucket
emptying, and so the two may drift, resulting in one not falling exactly half
way between the other. This effectively alters the phase difference between
them, and is not ideal: it will alter the limits on the time for which ac-
knowledgements are delayed. However, the fact that they are not in phase is
enough to ensure that there is usually sufficient delay to enable piggybacking.

3.2.1 Implications

Although at first glance the benefit of not sending a few unnecessary ac-
knowledgements is small, this has wider implications. It has been suggested
that TCPs’ timers’ frequencies should be increased to allow for more ac-
curate time measurement, and lower delays in responding to inactivity on
modern networks. As the period of the timers decreases, the proportion of
acknowledgements that would occur immediately before a clock tick would
increase, and so the number of unnecessary acknowledgements would also
rise. By using this bucket approach you will always maintain a gap between
a delayed acknowledgement being requested, and the timer that sends it if
nothing else has.

By maintaining a bucket for each connection the scheme also removes the
need to search all connections on each timer tick: each connection is now
responsible for administering its own delayed acknowledgement timers.

3For performance, the processor cycle counter (rather than a system call) is used to
obtain a measurement of time.

10 3 NEW TIMER ARCHITECTURE

This comes at the cost of increasing the complexity of requesting and
cancelling a delayed acknowledgement, mostly as a result of the need to
compare times to determine when to switch buckets. An implementation in
C of the new algorithm on the Intel x86 architecture (making use of the “Read
Time Stamp Counter” processor cycle counter for measuring time) requires
an additional 28 assembler instructions (assembled without optimisations on
a dual Pentium 4 Xeon architecture). Whether this trade off is beneficial will
depend on the frequency of the fast timer, the number of active connections,
and the traffic pattern experienced; this is discussed in Section 4.

While these timer bucket changes can be implemented on their own, addi-
tional benefits can be realised by extending the concept of making each data
thread responsible for the timers of that connection to avoid the possibility
of the data thread coming into conflict with the timer thread.

3.3 Timer Threads

The need for a separate timer thread arises from the requirement that some
timers occur during periods when the application will not perform any oper-
ations on that connection.4 As a result, the data thread will not be executing
any protocol code, and so it can not be used to perform timer operations.
This in turn leads to locks being required both by the timer thread, and the
application thread, to ensure exclusive access to a connection.

As the timer thread is required for some cases where the data thread is
not active, to avoid locking we need to ensure that only one of the threads
will attempt to use a connection at any one time. To do this we ensure that
those connections which are active, and so likely to receive attention by a
data thread are not touched by the timer thread. The timer thread only
looks after the timers of those connections which are inactive.

The split of connections is managed by maintaining lists of those in each
group. Timers on connections in the CLOSED, LISTEN, or TIME WAIT states
are managed by the timer thread. The rest are managed by the application
data threads.

The application data thread manages timers as described in Section 3.2:
it compares the current time against the next required timer whenever it
enters a blocking operation. If 100ms have passed since the last “tick”, the
fast timer (and if 500ms have passed the slow timer) routine is called, but it
only operates on that connection.

The timer thread operates much as it would in a normal environment,

4For example, the TIME WAIT timer is used to clean up connections after they have
been closed.

11

waking every 100ms, looping over the list of connections it is responsible for
and calling the fast and slow timer functions for each one.

When the connection lists are manipulated they must be locked to ensure
consistency, but this only happens at connection setup and tear-down, and
so is not on the data path.

This change has the following properties:

� No locks are required on the data path as only a single thread can op-
erate on each connection at any one time. This represents a significant
efficiency saving.

� Clock ticks on active connections do not require iteration over all con-
nections to determine which need attention.

� Timers on active connections occur with lower priority than data op-
erations. This is because timers occur when an operation would block,
i.e. when a data operation cannot immediately complete. This is justi-
fied by the use of timers to react to inactivity : if there is data activity,
then the timers are not required. This property is of particular interest
to a loaded server where checking timers (but not doing anything useful
as nothing is required) could take a significant portion of CPU time.

� The accuracy of timers on active connections is reduced, and we can-
not guarantee they will be called in a timely manner, although the
probability of them being unduly delayed is low.

4 Measurements and Results

The exact trade-off between increased complexity of queueing an acknowl-
edgement versus decreased likelihood of sending an unnecessary delayed ac-
knowledgement is complex. It is highly dependent on the traffic pattern,
number of (and any interaction between) connections, the application that
is using the stack, the cost of obtaining a mutex, and many other possible
variables. The suggested improvements will clearly not improve matters in
all cases. This section attempts to quantify these trade-offs.

4.1 Cost of Queueing an Acknowledgement

The proposed bucket scheme for the delayed acknowledgement timer in-
creases the complexity of queueing an acknowledgement. This is a common
operation (almost every received packet will result in this operation being
called), so even a small increase in complexity could be detrimental.

12 4 MEASUREMENTS AND RESULTS

To measure this effect profiling code was inserted into the function that
queues and dispatches acknowledgements. This profiling measured and recorded
the number of processor cycles that were spent in the added section of code,
and the number of cycles spent in the old (non-bucket) equivalent. The latter
of these is just a single bitwise OR operation to set a flag. The results of this
are shown in Figure 3.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120 140 160 180 200

F
re

qu
en

cy

Time (nanosecs)

TCP ACK without buckets
TCP ACK with buckets

Figure 3: Time Taken to Queue a Delayed ACK

As these are very small sections of code there is a significant “probe-
effect”: the timings include the time spent measuring the time. However,
this is constant for both versions, so a comparison is valid. The times (in
seconds) are calculated offline from the processor cycle count using the bo-
gomips measure. The test used to obtain these results was a simple “ttcp”
benchmark, running on a Dual Intel P4 Xeon 2.4GHz server.

From Figure 3 the added complexity of dealing with buckets adds 34 ns
to each acknowledgement request. This overhead will be taken each time
the quantity of unacknowledged data exceeds twice the TCP Maximum Seg-
ment Size (MSS), and the frequency of this will clearly depend on the traffic
pattern. If we consider a single connection using the full theoretical 1Gbps
of bandwidth, and a MSS of 1460 bytes, it will happen every 11.7us. The
additional overhead will therefore amount to 0.29% of a single CPU. In prac-

4.2 Cost of Fast Timer Routine 13

tise the overhead is considerably less than this as the theoretical maximum
bandwidth is rarely achieved5 and so the acknowledgements are requested
less frequently.

4.2 Cost of Fast Timer Routine

The benefit that the bucket scheme has is avoiding the need to call the fast
timer routine. To measure the saving this represents a small piece of test
code was created. This test wakes up every 200ms, and iterates over a list
of “connections”.6 Each connection is locked with a mutex and a flag is
checked, in the same way that would happen in the fast timer. In this way
the test simulates the work needed to check a set of connections for a delayed
acknowledgement, but not the work involved in dequeueing and sending any
delayed acknowledgements found. As a result, the test measures just the
work that has been avoided by the bucket scheme. It is also possible to
easily vary the number of connections in a way that would be difficult to do
on a “live” TCP stack.

The average time per iteration of the connection list, and the CPU usage
this represents, is plotted in Figure 4 for different list sizes. The times plotted
do not include the overhead of sleeping and waking this process every time
the list needs to be walked. The times were calculated using both in-line
profiling and the unix “time” utility (taking the ratio of user CPU time to
elapsed real time to calculate the CPU percentage).

Figure 4 shows that the point at which the list iteration becomes more
expensive than the bucket scheme is approximately 4000 connections (de-
pending on which technique is used to measure the time taken). This may
seem high, but it should be noted that this is the worst case for the bucket
scheme, and an ideal case for the connection list iteration scheme. Other
factors which would increase the cost of the list iteration (such as the thread
switch overhead) were not taken into account. Also, if the period of the fast
timer was reduced in the future (or this approach used for something other
than TCP where the frequency is higher), this would result in the bucket
scheme becoming more favourable. The bucket scheme does not have a di-
rect dependence on the number of connections (it is capped by the number
of acknowledgements sent, which is itself a function of the number of packets
received), and so represents a more scalable solution.

5This analysis has ignored the bandwidth taken up by the network protocol headers.
6These “connections” are just data structures; there is no data transfer involved.

14 4 MEASUREMENTS AND RESULTS

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 10 100 1000 10000 100000

T
im

e
(n

s)

Connection list size

Time to iterate list
150.88x + 26.39

(a) Time to iterate list

 0.0001

 0.001

 0.01

 0.1

 1

 10

 10 100 1000 10000 100000

C
P

U
 u

sa
ge

 (
%

)

Connection list size

CPU to iterate list (%) measured inline
0.0000754x + 0.0001191

CPU to iterate list (%) measured with ’time’
0.0000692x + 0.001060

CPU for bucket scheme (%)

(b) CPU used to iterate list

Figure 4: Overhead of iterating over a list of connections

Note the log-log scale

4.3 Reduction in Data Path Locks 15

4.3 Reduction in Data Path Locks

We have not been able to formally quantify what is perhaps the major benefit
of this work: the removal of the need for many of the locks on the data
path. A conservative estimate of this follows: with a stack operating at full
1Gbps network bandwidth, transferring data to or from the application 1KB
at a time, will involve 122070 read or write operations each second. If we
have avoided a single lock/unlock pair of operations on each of these calls
(measured above to take approximately 150 ns) the total saving will amount
to 1.8% of a CPU, ignoring other factors. This dwarfs the overhead (0.29%)
of the bucket scheme.

4.4 Discussion and Comparison

There are currently no widely used user-level TCP stacks to compare to
the approach suggested here. Although it has been noted that timers at
user-level are a different implementation problem to those in the kernel, this
section therefore examines two of the most common (open-source) kernel
TCP stacks: Linux, and FreeBSD.

During the period of time that this work has been carried out, the Linux
kernel TCP has improved markedly. At the time of writing, the latest Linux
kernel (2.6.5) uses the generic (i.e. not specific to TCP) kernel timer support.
This is based on a hierarchical timing wheel [8] and an evaluation (of an
earlier, but largely similar, version: Linux 2.5) showed it performed and
scaled well [9]. Timing wheels (in their simplest form) represent an ordered
circular list of events, with each element in the list containing the events that
should occur at a particular time. On each tick of the clock, the next element
in the list is examined, and any events present are processed. This scheme
is O(1) (with respect to the number of timers) for setting timers, clearing
timers, and performing each clock tick, but does require that all timers are
set for periods less than a fixed upper bound (to prevent wrapping around the
circular list). The timing wheel scheme has been extended [10, 11] to remove
the need for the fixed upper bound, and dynamically size the “wheel”.

This approach has similarities with that described in this section: it re-
places the need to search lists of connections on each timer tick with an
individual, per-connection, timer. This avoids the need to bucket delayed
acknowledgements, as each connection is dealt with individually, but this is
enabled by the ease (and low cost) with which kernel timers can be modified
(from within the kernel). This would be hard to replicate at user-level with-
out the ability to change the scheduling condition that a process is waiting
on, as outlined in Section 2. It also, in the forms currently used, requires a

16 5 RELATED WORK

regular clock tick to service the wheel. At user-level this lends itself to a sep-
arate thread, which is something CULT needs to avoid. It may be possible
to adapt it to use a lazy evaluation, and so allow it to be used in-line by the
data threads as proposed in Section 3.2

Timing wheels are also used by the FreeBSD implementation, and an
implementation for the BSD UNIX version of TCP has demonstrated their
scalability [12]. In FreeBSD each connection has a separate delayed acknowl-
edgement timer, and timers are managed centrally using a timing wheel. The
timer is reset to 100ms (rather than 200ms) each time an acknowledgement
is requested as a result of received segments, if there is no delayed acknowl-
edgement timer in progress. This condition means that delayed acknowl-
edgements are sent for every other received segment, rather than waiting for
the outstanding unacknowledged data to exceed twice the maximum segment
size. The timer is cancelled (if in progress) when a segment is sent.

As with Linux, this is made possible by the ability to manipulate timers
with low overhead in the kernel. However, the fact that both Linux and
FreeBSD have opted for an increased complexity timer set/clear operation
and individual timers for each connection, in order to achieve greater scala-
bility justifies the goals and approach taken in this paper.

5 Related Work

The approach of using timeouts to detect failures has been highlighted [13]
for some time as sub-optimal. In this paper Zhang suggests that a decision
based on a timeout is a guess and that for high performance external events
should trigger failure recovery with timeouts used as a second line of defence.7

He highlights how it is particularly difficult to choose the amount of time to
wait before retransmitting an unacknowledged packet, as this must be based
on an estimate of the round trip time. This raises another problem of how to
accurately measure the round trip time. Zhang also points out that external
events convey information about what has gone wrong (and why), so allowing
a more informed response. Finally, to have some confidence that a failure
really has occurred timeouts must be set conservatively (so as to avoid false
detections of errors). This can often lead to unnecessary delays, particularly
where the timeouts are overly conservative. This is increasingly an issue in
modern, faster, networks where the times being measured are considerably
less than their equivalents when TCP was designed.

7The TCP Vegas approach to retransmitting after three consecutive acknowledgements
is a good example of this.

17

As mentioned in Section 1.3 the TCP slow timer is used both for schedul-
ing timeouts and for measuring round trip times. Aron and Druschel criticise
the use of this relatively coarse grained (500ms) clock for measurements. [14]
They show how it leads to a high variance in the measured RTT, especially
when the RTT is comparable to the clock period, which in turn leads to
a very high estimation of the retransmission timeout (RTO). They propose
separating the roles of scheduling and measurement, and using a more accu-
rate clock (1ms) for measurement. Scheduling of events is still done using
the slow timer, and the retransmission timeout is still restricted to be no less
than 2 ticks (0.5–1 sec) to ensure correct behaviour. In related work on TCP
Vegas [5], Brakmo, O’Malley and Peterson demonstrate how the algorithm
for calculating the RTO often results in estimates as high as 5 ticks (a delay
of 2-2.5secs) and never less than 3 ticks (1–1.5 secs) for a round-trip time of
100ms. They propose a more aggressive and responsive method for perform-
ing retransmissions, by retransmitting once a RTT has passed, even if the
timeout has not yet expired. To do this they record the (much more accu-
rate) system time whenever a packet is sent, and compare this to the system
time when certain acknowledgements are received. This is very much in line
with the approach that Zhang expounds, as described above. Both of these
papers show how improved time measurement can also lead to improvements
in the slow start phase of TCP.

TCP implementations originally (and in some cases still do) performed
a linear search of all the current connections on each timer tick to check if
anything needs to be done. Aron and Druschel show how a simple change
can lead to dramatic increases in performance. [15] They sort the list of
connections so that all those in the TIME WAIT state are at the end of the list,
and that those in the TIME WAIT state are in the order in which they entered
the TIME WAIT state. They can then terminate the loop that checks the
timeouts of the connections as soon as one of the TIME WAIT state connections
is encountered. (In the case of the slow timer they must also check the first
few connections in the TIME WAIT state in case those connections have expired
and should now be closed). As the TIME WAIT state can be long compared
to the amount of time that a connection is active (particularly for short
lived connections such as you might see in a web server) there can be many
more connections in the TIME WAIT state than any other. This change has
a large impact on the time spent scanning the lists. In the test case used
for comparison they were able to reduce the maximum CPU overhead of the
timers from 25% to 0.36%.

Aron and Druschel extend their findings above to create “Soft Timers” [6]:
a facility whereby events can be efficiently scheduled with a granularity of
tens of microseconds. This is achieved by executing the event handler at

18 6 CONCLUSIONS

certain entry points into the kernel. These are accessed frequently in the
normal course of program execution in response to operating system activ-
ity (system calls, page faults, interrupts, etc). The overhead of entering the
kernel has already been made to perform the required operation, and if an
event handler is also executed at this time the cost of the context switch is
amortised over them both. The times at which the trigger events will be
called is neither regular nor predictable, so this technique can only sched-
ule events probabilistically. However, experiments show that these triggers
happen sufficiently frequently for it to be suitable for supporting a number
of network operations. The authors suggest that rate-based clocking and
polling of the network could both be implemented with low CPU overhead
using this technique. This is a similar approach to the lazy evaluation of
timers suggested in Section 3.2, but done at entry to the kernel, rather than
at blocking points within the TCP stack at user-level.

6 Conclusions

This paper has presented an alternative approach to implementing TCP’s
timers, and has in particular focused on the delayed-acknowledgement timer
as an example. The changes involve using two “timer buckets” to provide
upper and lower limits on the delay, and so remove the possibility of delayed
acknowledgements being sent unnecessarily. By checking the timers “in-line”
for active connections, the Cambridge User-Level TCP is able to avoid having
to perform connection list searching on each timer clock tick. This in turn
removes much of the need for locking on the TCP data path8, leading to
greater efficiency in other areas of the protocol implementation.

The use of this scheme (in common with other proposals such as timing
wheels) increases the complexity of setting and clearing timers (tests have
shown that this 34ns to each delayed-acknowledgement request), but makes
the checking of timers a more scalable operation, and removes some locking
overhead from the data path. The point for TCP where the new scheme starts
to offer a benefit is around 4000 connections; this is high, but as the period
of timers decreases (as is arguably necessary for modern fast networks) this
figure drops. In addition, the removal of locks on the data path introduces a
saving that outweighs this overhead.

8Some locks may still be necessary to access, for example, a memory pool

REFERENCES 19

Acknowledgements

References

[1] Kieran Mansley. Engineering a User Level TCP for the CLAN Net-
work. In Proceedings of the Workshop on Network-I/O Convergence:
Experience, Lessons, Implications (NICELI), part of ACM SIGCOMM,
2003.

[2] David Riddoch, Steve Pope, Derek Roberts, Glenford Mapp, Dave
Clarke, David Ingram, Kieran Mansley, and Andrew Hopper. Tripwire:
A Synchronisation Primitive for Virtual Memory Mapped Computing.
In Proceedings of the 4th International Conference on Algorithms and
Architectures for Parallel Processing (ICA3PP), 2000.

[3] Gary R. Wright and W. Richard Stevens. TCP/IP Illustrated, Volume
2. Addison-Wesley, 1995.

[4] Jon Postel. Transmission control protocol. RFC 791, 1981.

[5] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. TCP
Vegas: New Techniques for Congestion Detection and Avoidance. In
Proceedings of ACM SIGCOMM, pages 24–35, 1994.

[6] M. Aron and P. Druschel. Soft Timers: Efficient Microsecond Software
Timer Support for Network Processing. ACM Transactions on Com-
puter Science, 18(3), August 2000.

[7] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and
Henry M. Levy. Scheduler Activations: Effective Kernel Support for the
User-Level Management of Parallelism. ACM Transactions on Computer
Systems, 10(1):53–79, February 1992.

[8] George Varghese and Anthony Lauck. Hashed and Hierarchical Timing
Wheels: Efficient Data Structures for Implementing a Timer Facility.
IEEE/ACM Transactions on Networking, 5(6):824–834, 1996.

[9] Andy Pfiffer. A Study of Linux 2.5 Timer Scalability. White Paper,
Open Source Development Labs, CGL Project, http://developer.

osdl.org/~andyp/timers/.

[10] R. Brown. Calendar queues: a fast 0(1) priority queue implementation
for the simulation event set problem. Communications of the ACM,
31(10), October 1988.

20 REFERENCES

[11] G. Davison. Calendar P’s and Queues. Communications of the ACM,
32(10):1241–1242, October 1989.

[12] A. Costello and G. Varghese. Redesigning the BSD Callout and Timer
Facilities. Technical Report WUCS-95-23, Washington University in St.
Louis, November 1995.

[13] L. Zhang. Why TCP timers don’t work well. In Proceedings of ACM
SIGCOMM, pages 397–405, 1986.

[14] Mohit Aron and Peter Druschel. TCP: Improving Startup Dynamics by
Adaptive Timers and Congestion Control. Technical Report TR98-318,
Dept. of Computer Science, Rice University, 1998.

[15] Mohit Aron and Peter Druschel. TCP Implementation Enhancements
for Improving Webserver Performance. Technical Report TR99-335,
Dept. of Computer Science, Rice University, 6, 1999.

