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Abstract. Watching athletes allows coaches to provide bati feedback on
how well they are performing and on ways to impréweir technique without
causing or aggravating injuries. The thoroughnasd accuracy of this
traditional observation method are limited by hunadility and availability.
Supplementing coaches with sensor systems thatajereccurate feedback on
any technical aspect of the performance gives tthie fall back if they do not
have enough confidence in their coach’s assessment.

A system is presented to model the quality of eabjt aspects of rowing
technique found to be inconsistently well perforniigda set of novice rowers
when using an ergometer. Using only the motiothefhandle, tracked using a
high-fidelity motion capture system, a coach trates system with their idea of
the skill-level exhibited during each performandsy labeling example
trajectories. Misclassification of unseen perfonges is encouragingly low,
even for unknown performers.

Keywords: Novel Applications, Sports coaching, Quality, Rowihgchnique,
Body motion, Intelligent Sensing Systems, Spatio@mlpPattern Recognition,
Shape Analysis.

1 Introduction

When practising a physical skill, reassurance thattechnique is good or feedback
on how to correct it, are crucial for motivationdaimprovement. Learning a
technique so we perform correctly without thinkireguires lengthy (re)training of
“muscle memory” as well as studying the underlyibipmechanical principles,
especially if the technique is complex or we needteak old habits. Real-time
feedback can help athletes when learning what gmoldbad technique feels like. As
they may not be able to feel whether the wholegserfince is correct and can not
stop to observe themselves, feedback is requied & third party such as a coach.
In this paper, the authors choose to investigateeigging feedback to supplement
coaches of the Olympic sport of rowing. The mfdtieted technique requires a very
high level of consistency and precision at highespbetween multiple rowers. On
the water, a few centimeters difference in a strzke unbalance and decelerate a boat



so there is real need for continuous personal fee@dbRowing can be practiced very
realistically in a laboratory environment by usegtationary ergometer.

Good coaches will always be in demand but automatedlysis of body
movements may offer advantages over human coachiogd-class coaches are
often busy and expensive. They often coach indsjt@ instill competition, giving
each athlete a fraction of their time during whibley might give unrepresentative
and damaging feedback. Even experienced coaches noa simultaneously
concentrate on all aspects of a technique, candsed towards athletes they know,
can fail to notice differences in a performer tlaeg used to watching and can become
impaired by factors such as fatigue.

An automated, surrogate system could analyze athlebntinuously whenever
they train, objectively focusing on any number sih@cts simultaneously. As motion
capture systems continue to develop, this hardwaile become much more
affordable than a real person. On-athlete sensmud also offer a more accurate
perspective from inside the boat rather than fromdistance. When athletes are
interested in semantically sophisticated descmgtiof a performance, informal
discussions between coaches and the authors shibegdnay be less comfortable
representing a performance as digitized trajectooiepoints, rather than watching
their moving flesh. By automating analysis of thegectories, athletes could instead
be presented with comprehendible and familiar agfichl elements from the domain
of rowing, which could also be used as automaticatinstructed, low bandwidth
indices into recorded performances.

The authors have circumstantial evidence from pwts science community that
biomechanical theory can not always justify coathebkavior and that the latter find
difficultly in explaining their judgments. Supesed learning provides a framework
for directly associating coach-level feedback vadrformances recorded using a few
sensibly, but not precisely placed sensors, wheseasditional (bio)-mechanical
approach would require explicit and precise forriiataof rules for every facet of the
technique.

The physical sensation of rowing drives the terrdugy to include words such as
“relaxed”, “fluid”, “too”, “sufficient” or “that looks right!” Their amorphous and
complex nature is hard to capture using expligiintechanical formulae, especially
when the authors tried to use some coaches’ expdaisa Approximations may have
detrimental or unobvious effects on classificatparformance through including or
missing out certain factors; when rowing even smel’ements are important.

Measurements of performances of a similar quatity ls|ave inherent noise from
the sensors and differences in where they are wo@haracterization of what
technique works best for different athletes alsdsat variation that is not suited to
exact mechanical formulae. Even for more tangisigects such as “overreaching” or
“leaning back too far”, rules would need to be pesdized and require expert
biomechanical advice to be trustworthy. The awthHound that a large number of
biomechanical measurements are typically takeniastlumenting athletes is time



consuming. Rules that rely on specific sensor@imecdependable on those sensors
functioning. By using such rules the system isgamized to the domain of rowing
and the same system could not be taught diffeportiag techniques.

The highly complex nature of rowing where largeantlass variations are present
but important differences between classes are ndageto multiple, occasionally
unobvious aspects changing by large or very smalbumts, makes this an apt
challenging problem for machine learning, espegialhen using a limited set of
body movements. How well a learning system migitognize the quality of an
individual aspect of technique when performed Hiedént people and with different
levels of skill, whilst ignoring other changing asps of the technique, is a question
that has not been addressed for the domain of gpasrfar as the authors are aware.

The process of coaching athletes includes observatind analysis of their
technique to determine the quality of their perfante, deciding what
encouragement or corrections are necessary andifating how to communicate this
so that athletes appreciate it. This involves a&xghg and demonstrating correct
technigue whilst the athletes rest so they canrbenpted to recall it as necessary
during a later performance. The quality of a perfance can be described at various
levels of precision from an overall judgment of thieole performance, to the quality
of individual aspects of the technique, to a higidyailed description of each muscle.
This work focuses on determining the quality of iudlual aspects of rowing
technique using binary classification as this pidesi a simple yet informative
representation of common judgments.

2 PreviousWork

Much research exists into the capture and anabfdimiman body motion, including
recognition of everyday activities to specific gagations. However, judgment of
the quality of a physical performance is less comrand work that exists tends to
focus on a few direct biomechanical measuremerdas dne somehow related to
quality within the medical domain.

Work in [2] uses HMMs to recognize a vocabularygestures that could make up
a surgical procedure. Using different observatiofisthe performance, a naive
judgment of skill is based simply on the numberdifferent gestures used in a
performance, or the percentage of time spent oh gasture. No rigorous validation
is completed. Authors of [5] admit that the objeetmeasurements of surgeons’
dexterity as recorded by a motion capture systethinwan operating theatre does not
capture the complexity and differences in styleslived in assessing the skill of
different surgeons. The authors of [4, 10] use Htd obtain values for overall
quality of a complete surgical performance, rathiean individual aspects. The
method used in [10] splits the performances intd-sections with semantic
significance and used the distance from a tempetdormance as a measure of
quality. The authors of [4] calculated the logelikood of a performance by applying



one model to the whole performance, disregardingiaernal structure and achieved
a recognition of performance that correlated highity an expert (r = 0.93 p<0.001).

Recognition of sporting activities is the focusvadrk in [3], where elements of a
technique such as the tennis serve are recognizeiiéo footage. However this is
done by high-level scene analysis. The work oejMjluates overall quality in Karate
using many markers and requiring models of prowtygerformances that are
morphed to new performances. Results are preséntezhe person performing 20
different Karate moves. Recognition accuracy \&aoeer technique but is on average
85%. The author of [6] discussed the need foniddal aspects of a performance to
be assessed, but proposed that an automated seéd-lsgstem would struggle with
the flexible or fuzzy nature of the existing rulstic

3 Description of the System

The system provides binary classification of a pafion of strokes taken from a
number of different performances. Strokes are re¢pd based on the quality of an
arbitrary aspect of the rowing technique usedis kble to learn the judgment rule
from a set of labeled performances and providedatibn of how well it generalizes
over an unseen population of strokes.

3.1 Motion Capture

The VICON motion capture system [11] was used with cameras and default
parameter values to track the position of singlmfsoon multiple objects augmented
with 3 or more retro-reflective markers (see Fij. IThe sample rate was set to
200Hz. The objects are automatically identifieshgsaunique markers topologies.

]

Fig. 1. Ergometer and rower augmented with VICON markérse erg, its seat and its handle
were 3 objects. Parts of the body were capturetufare use.



Some markers on body parts and the seat were @ctliad short periods of time
no longer than half a second, which is approxinyatelquarter of the period of a
stroke. Conventional video was also used to retfwrgerformances for review later.

3.2 Preprocessing

Occluded portions of the trajectories are recovarsitig linear interpolation. All
trajectories are transformed from the motion capttw-ordinate system to an erg-
coordinate system (see Fig. 2) to make analysiiseoflata more intuitive.

+7 Markers of the seat were used to define the X-asis
= the seat moves along it, and the X-Y plane fromciwhi
\ \ 3 ;% the normal gives the Z-axis. The seat exhibited a
a e P measured deviation of less than one mm from the
Sl il S averaged X-axis. This work only uses markers @n th
[ /7\ handle, seat and erg-frame. This trajectory is
/,/ -y segmented into separate strokes using an algotitatn

/

4 S detects the main troughs in the handle’s X-cootéina
R The first and last strokes were discarded in cheg t

o ) were unrepresentative as the athletes were warming
Fig. 2. Erg co-ordinate system up/down.

3.3 FeatureExtraction
The tempo-spatial features listed below are usedpgcesent the handle trajectory for

a stroke. The stroke rate (number of strokes em@nute) is made invariant as it is
taken to be independent of the aspects of technigeé in this study.

« Distance travelled «Length < Height « Shape moments
e Speed moments < Wobble « Drive smoothness ¢ Recovery smoothness
« Shape smoothness e Ratio « Drive angle « Recovery angle

Abstract Features. The trajectory’s distance was computed, as wasetingth (along
X-axis) and height (along Y-axis). Moments of #i2 shape formed by orthogonally
projecting the trajectory onto the X-Y plane welgoacomputed, using the projected
co-ordinates for each sample s, as valugs)hand IXs) and summing over all
samples s, from the trajectory. The following weecenputed for shapé!?, A'% 2%,
A% 2% (1). The instantaneous, mean-subtracted speedchtsample point s, was
used as the functiop(s) to compute the speed moments’, 1'% p?, % p?(2).

WI=3 (h(sP hy(s)f) . wP*= X (h(s) hy(s)w(s)) , @

Physical Performance Features. The following were chosen based on preliminary
experiments to investigate how well they disambigdaa small set of performances
of differing overall quality. Wobble (lateral varice) was computed as the variance



in the distance each trajectory sample is frombigst fit line when they are projected
into the X-Z plane. Smoothness of the drive ammbvery in time were computed by
low-pass filtering the mean-subtracted, instantasexpeed of the handle at 3Hz (as
the raw motion data was too noisy), identifyinggkaraccelerations by taking the
second derivative and summing the absolute valfidgsosignal. Smoothness of the
shape was computed by forming a signal from th¢éadies of each subsequent
trajectory sample point, to the centroid of thgeittory and low-pass filtering at 6Hz,
followed by measuring the flatness of the absolatee of the second differential of
this signal by counting the number of samples & less than 0.4 s All
smoothness measures were normalized to the leftile stroke.

Rowing Features. Ratio is the ratio of the time spent on the recgpvo the time
spent on the slide. Drive and recovery angledtaeangles between the best fit line
and X axis when the points are projected into theé plane.

3.4 Supervised Learning

Normalization and Negation. Each feature used in the model has parameters
computed to adjust its values to be roughly withi& same range as all other features
in order to weight and compare them more easiljis Ts done for each stroke by
subtracting the minimum and dividing by the difiece between the maximum and
minimum values of the feature, in the non-normaliaining set. If the values from
the training set for a single feature correlatehlidout negatively with each strokes’
labeled scores, the normalized feature’s complen®nsed instead of the original
feature, i.e. the original feature value is sulitddrom 1. The labeled score for each
stroke is normalized to O (bad) and 1 (good).

Classifiers. Each stroke from a population is automaticallgred using a linear
combination of a weighted bias and the weightetufes. The weights of the model
are learnt using one of two different methods: Thet solves the system of
simultaneous equations formed from the featureorsadf each stroke as rows of a
matrix multiplied by a column vector of weights, i is made equal to a
corresponding column vector of labeled scores &mhestroke. It is solved using the
Moore-Penrose pseudo-inverse of the feature matrbhe second method uses
gradient descent to adjust the weights, which aitally set to zero after each
iteration through the whole training set. A leairate of 0.001 is used for 750
iterations to minimize the sum of the square of difeerences between the labeled
and machine scores of the training set. The trgiis repeated for a number of times
using different training sets formed by leaving autifferent set of strokes from the
whole original population. These unseen strokafs) classified using the trained
model and their scores recorded. Each stroke fisolgt exactly once. When
considering multiple performers all strokes fronequerformer are left out at once.
This “leave-one-out” validation (whether it be os&roke or one athlete) gives
machine scores for each stroke in the populatiosyng it hasn’'t been used to train
the classifier that scores it. The scores are sanaed using Pearson's coefficient for
the correlation between the coach and the maclkimes and by using the percentage



of strokes misclassified. The latter is computgdhresholding the two classes for
the machine scores at a point which minimizes theclassification. This value is
calculated exhaustively.

Sensitivity Analysis. For the second training method the optimum numkfer o
iterations is chosen by repeatedly calculatingpgreentage of misclassified strokes,
having trained using a different number of itemasipincreasing by 50 each time from
50 to 750. For both methods, an optimum featutéssehosen that minimizes the
percentage of misclassified strokes by repeatirgy gbnsitivity analysis for the
number of iterations, for different feature setSach set is formed using exhaustive
backwards-selection by removing the least imporfastures until only 1 is left. The
initial set is all the features and importance sasured by summing the weights over
all training sets when using the optimum numbeitarfations. The class threshold,
number of iterations and feature set that givestinallest misclassification error are
assumed when presenting the results for diffeptasented populations of strokes.

4 Empirical Validation of System

These experiments gave an indication of the systerapabilities in real-world
coaching scenarios. Each stroke was scored by tisinscore a single amateur coach
gave to the whole performance it was from and hwewing the videos the coach
considers at least 95% of the strokes of a perfocmao be representative of the
quality they assigned to the whole performance.e €bach (lead author) has been
rowing for 2 years and was confident of assessagichtechnique in novice rowers.
Strokes by different rowers are differentiated gsesson’s physique and skill level
effect the set of strokes recorded as does thasaious decisions for how to row and
how much attention to pay the coach. Six novicalennowers in their mid-twenties,
between 60kg and 90kg were used with very littlenorrowing experience. They
were not initially fatigued and rowed at a comfobttarate in an uncontrived manner.
The amount of input from the coach during a perfomoe affects the consistency of a
the technique during a performance and can increasemuch of the stroke must be
ignored or generalized over when only interestestoring one aspect.

Each rower was given a basic explanation of howotw and gave an initial
performance. A number of things were usually wravith this performance so a
coaching process was then repeated until no obVaults existed or the rower was
exhausted: the coach evaluated the last performandetaught the rower how to
improve an aspect. The rower then gave anotheopeaihce during which the coach
helped them to maintain the improved technique tfo¥ increasing number of
corrected aspects. Each performance lasted foromippately 30 strokes and the
corrected aspects were maintained for at least &5#e strokes.

The final features chosen for each experiment aoerded to investigate their
usefulness. For either training method all featae used in at least 60% of the final



features sets. Shape and speed moméhts®® u % andp®® were the only four used
in at least 90% of the final feature sets for baltjorithms.

4.1 Coaching Single Aspectsfor Individuals

Coaches often try to improve a single aspect ofrtigpie at a time in order to
simplify the training process. This requires tleach to judge the quality of this
aspect and issue prompts to the rower when negeasdhey try to correct only this
aspect. As only one aspect was focused on for eacbecutive performance during
the data collection, the system effectiveness iatttsk is shown by using pairs of
consecutive performances from each novice as sguoplelations, see Table 1.

Table 1. Percentages of misclassified strokes for all erpamts when coaching single and
multiple aspects of the technique of individual epsv

Coached aspect M oor.eL.Penrose Gradier)t p@cent
Rower (chronological : training : training
order) Single All Single All
aspect aspects | aspect aspects
1 Separate arms/legs 0 0 0 0
Overreaching 0 0 0 1
2 Separate arms/legs 0 - 3 -
3 Separate arms/legs 0 0 0 0
Overreaching 0 0 2 1
Overreaching 0 0 0 0
4 Shins vertical 0 0 0 0
Early open back 0 0 2 1
Leaning back 0 3 0 6
5 Quick hands 0 4 0 7
Rushing slide 0 2 0 6
Early open back 3 0 5 0
Overreaching 0 0 0 0
6 Separate arms/legs 0 0 1 3
Quick hands 0 0 1 1

4.2 Coaching Multiple Aspects Simultaneoudly for Individuals

It can be more efficient to issue coaching callsmaiitiple aspects depending on what
the rower does wrong. This requires a coach toemadgments about one aspect, no
matter what the qualities of other aspects are.d#a were collected on each rower
whilst several aspects of the stroke were performedifferent qualities, realistic
combinations of different qualities for several esjs were observed as were realistic
amounts of variation in strokes with the same |efejuality for one aspect. Using
all performances from each individual, results loé system judging the quality of
each coached aspect for strokes where multiplectspee changing are shown in
Table 1.



4.3 Coaching Single Aspects across Different Individuals

In order to coach a new athlete who has not beem Isefore the system can only base
a decision of how well they row on performance®ibfer people. Being able to do
this would provide more evidence of being ableaoognize the quality of an aspect
when other parts of the stroke are performed diffdy as in 84.2. By having enough
examples, representative populations of strokedednrmed using consecutive pairs
of performances form multiple people, all of whone amproving the same aspect.
Table 2 shows the recognition results and the numbewers used for each aspect.

Table 2. Percentages of misclassified strokes for aspectss a number of different athletes.

Rowers Aspect M oore-Penrosetraining | Gradient Descent training
2 Quick hands 9 5
2 Early open back 33 29
3 Separate arms/legs 21 21
4 QOverreaching 12 12

5 Discussion, Conclusions and Further Work

Analysis of the final feature sets shows it is wisenake use of all the features. The
common choice of the four moment features sugdbets may capture fundamental
and important characteristics of quality of teclugicand analysis of relative weights
would confirm their suitability as good candidatesrecognizing other sports.
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Fig. 3. Judging strokes from unseen people for the as@rdtk Hands”: machine score (left),
correlation values using gradient descent up td2&0ations, for different feature sets (right).

Given the small amount of evidence for coachindhéighumbers of aspects, when
coaching up to four, for an single athletes, very misclassification was found. The
Moore-Penrose solution gave slightly better resulifie minimum possible training



error does minimize the generalized misclassificatiesults and gradient descent
does not find it in time at this learning rate. cBgnition of strokes from unseen
people gave quite low (5-21%) misclassification floree of the experiments. The
fourth training set was only one person. The gmaiddescent method was slightly
better this time: Tightening the model to fit ttraining data too closely by using
Moore-Penrose had adverse effects on the gendiafiz@ unseen performances as
shown in Fig. 3 where too many iterations causedhilyhest correlating feature sets
to correlate less well, even though the trainingrewas observed never to increase.
Inter-variation of data from different athletesoisserved to be generally greater than
an athlete’s intra-variation, suggesting why theutes are significantly worse for
unseen athletes. Further work including scorinchestroke separately, using more
markers and estimating the weights differently sing other widespread classifiers.
Semantically sophisticated analysis of physicalfggerance would be possible if
ontological elements from a domain of sports teghes were identifiable.
Encouraging classification results are achieveddigalitative assessment of rowing
technique but the limits of the recognition algamits are not yet fully characterized.
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