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Training Gestural Interactive Systems

ABSTRACT
Entertainment and gaming systems such as the Wii and XBox
Kinect have brought touchless, body-movement based inter-
faces to the masses. Systems like these enable the estimation
of movements of various body parts from raw inertial mo-
tion or depth sensor data. However, the interface developer
is still left with the challenging task of creating a system
that recognizes these movements as embodying meaning.
The machine learning approach for tackling this problem re-
quires the collection of data sets that contain the relevant
body movements and their associated semantic labels. These
data sets directly impact the accuracy and performance of
the gesture recognition system and should ideally contain all
natural variations of the movements associated with a ges-
ture. This paper addresses the problem of collecting such
gesture datasets. In particular, we investigate the question of
what is the most appropriate semiotic modality of instruc-
tions for conveying to human subjects the movements the
system developer needs them to perform. The results of our
qualitative and quantitative analysis indicate that the choice
of modality has a significant impact on the performance of
the learnt gesture recognition system; particularly in terms
of correctness and coverage.
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INTRODUCTION
The last few years have seen a tremendous increase in the
popularity of body-movement based interfaces, which of-
fer a convenient and engaging experience of touchless inter-
action. Traditionally, touchless body movement interfaces
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Figure 1. Four collections of gestural performances (blue dots) that
illustrate desirable properties of training data sets.

were based on video cameras and were limited to use in ap-
plications targeted at a very specialized set of users [6]. The
availability of body movement sensing technology in com-
modity entertainment and gaming systems such as the Nin-
tendo Wii, Sony Playstation Move, and Microsoft Kinect has
now made such interfaces available to a much larger audi-
ence. Whilst popular for controlling entertainment consoles,
applications of such systems also exist in tutoring [6], secu-
rity [20] and healthcare [30].

These motion sensing systems enable the estimation of move-
ment of various body parts from raw inertial motion or depth
sensor data. However, the interface developer is still left
with the challenging task of creating a system that recog-
nizes these movements as embodying meaning.

During development of games driven by human movements,
developers generally tackle this problem using a trial and er-
ror approach. They start by defining a map from body part
movement to a set of gestures. This is generally done by
specifying a set of rules or conditions on the movements of
the body parts under which a particular gesture would be
deemed to have happened. An example of such rule would
be: ‘if both feet simultaneously move upwards, then a jump
gesture should be detected’. These initial rules are refined
by hand by testing their performance on a set of test sub-
jects [24]. This approach does not scale well to more com-
plex gestures and is also not guaranteed to lead to a continual
increase in system accuracy or performance.

The machine learning (ML) approach for the gesture recog-
nition problem requires the collection of data sets that con-
tain examples of movements and their associated gesture la-
bel. In essence, a machine learning algorithm tries to teach
the system what movements can represent a particular ges-
ture. The accuracy of the system is therefore influenced by
the anthropomorphic and behavioral kinematic variation in
the set of example gestures that are used to train it.



For an accurate and responsive form of interaction, not only
must the set of performers providing training data be repre-
sentative of the target population but the dataset of move-
ments used for training the system must reflect what is ide-
ally or most likely to occur during system deployment. In
other words, not only must there be examples of only de-
sired gestures (we refer to this property as correctness of the
dataset), but in order to cope with a wide array of users and
their corresponding abilities the dataset must include com-
mon, desired variants of the particular movements associated
with the gestures (referred to as coverage of the dataset).

We explain the desirable properties of a training dataset us-
ing Figure 1. The circle in the figure represents the space of a
movement that the system developer wants to recognize (e.g.
our jump example from before - both feet simultaneously
moving upwards). In the left-most picture, the movements
performed by eight human subjects lie outside the circle. In
other words they do not belong to a common space of move-
ments. In the center-left picture, the movements lie within
the circle but do not cover it (e.g. where ‘jump’ movements
are collected from only athletic subjects, and there were no
movements which would reflects the ‘jump’ gesture made by
less mobile users). Thus, they are correct, but with little cov-
erage. In the center-right picture, the movements cover the
space of movements, but some of them lie outside the circle
and are an inaccurate reflection of the gesture. They have
coverage, but some are outside of the space of movement
and, thus, would be perceived as incorrect. In the right-most
picture, the set of movements collected from the eight human
subjects are accurate and also cover a space of movements.
They are correct and have coverage.

Developers usually use human subjects to generate the data
used to train and test the machine learning system. To con-
vey the body movements a designer associates with each
gesture, they give the subjects some instructions. These in-
structions or signs can be of different semiotic modalities in-
cluding text, images, video, and combinations of the above
[11]. However, there has been no study of what biases are
introduced by these different modalities on correctness and
coverage. In this paper, we investigate the questions:

R1: Does the semiotic modality of instructions for col-
lecting training data affect the performance of the ges-
ture recognition system?

R2: In what way does semiotic modality of instructions
affect correctness and coverage?

We investigate what is the most appropriate semiotic modal-
ity of instructions for conveying to human subjects the move-
ments the system developers want to associate with particu-
lar gestures in order to achieve (1) Correctness and (2) Cov-
erage (see Figure 1). We analyze the questions from both
the performers’ perspective and through the accuracy of the
trained gesture recognition system. We present our findings
on how different semiotic modalities affect the performers’
understanding, freedom of expression, and, ultimately, the
inter and intra modality generalization performance of the

trained gesture recognition system. This study is timely,
given the expanding market for gestural interactive applica-
tions; conventions will begin to be revealed and established
both for gestures and semiotic modalities of instruction.

RELATED WORK
The problems of detecting and recognizing gestures from
human body movements captured using videos or 3D skele-
tal data have been extensively studied in the computer vision
and machine learning communities [2, 31, 32, 23]. They
are primarily focused on the developments of mathematical
models that can generalize the semantics-kinematics map-
ping learned from a set of training examples to unseen data.
These studies have generally ignored the problem of how to
collect the set of movements associated with a gesture.

There is little work in the Human-Computer Interaction (HCI)
and Computer Vision (CV) literature on the problem of how
to specify which movements need to be performed by sub-
jects generating data for training a gesture recognition sys-
tem. A number of datasets of body movements correspond-
ing to different gestures have been collected by the Com-
puter Vision community; however, compared to the Cam-
bridge Gestural Performance Database 2012 (CGPD12) col-
lected for this study, they do not provide details on how the
performers were instructed, as shown in Table 1.

The primary meanings of instructions are to convey the kine-
matics (the features of motion of the body). We are inter-
ested in both the semiotic semantics and immediate pragmat-
ics of the different modalities. The effect they should have
on those who interpret them is to instruct these people in the
performance of kinematics signified while allowing for them
to perform the movement as they feel is most natural.

In the field of semiotics, Peirce [22] outlines three phenomeno-
logical categories of signs emphasizing the way it denotes
the object of reference: icon, index, and symbol. An icon
denotes its object by resembling or imitating its object (e.g.
diagrams). An index denotes its object through a connec-
tion (e.g. smoke is an index of fire). Finally, a symbol de-
notes its object solely through interpretation which are usu-
ally formed through social convention (e.g. alphanumeric
symbols).

There are examples of using iconic and symbolic instruc-
tions to convey kinematics pictures, movies, or text that aim
for correctness, but not coverage. For instance, methods
such as Labanotation provide a detailed approach of describ-
ing dance movements, but the complexity of the notation
puts it beyond the reach of novices [9]. Teaching dance
moves has been investigated [5], but only from the point of
view of correctness at deployment when they use correct-
ness. In addition, they only investigate differences in iconic
video instructions for sequences of iconic gestures.

In addition to correctness, coverage requires a mechanism
that supports the gathering of a wide assortment of perfor-
mances for each gesture. This has been far less addressed in
research as it has less importance in other areas of instruc-



Name Year Ref. Domain
(M=metaphoric,
I=iconic)

Classes Actors Instances Instructions Body parts Annotation
precision

CGPD12*†‡�
(this dataset)

2012 gaming, music,
dance (M+I)

12 30 6000 text/video/image
(single & composite)

full body frame

CGD2011*� 2011 [1] assorted (M+I) 15 NR 30,000 NR upper body performance
HMDB* 2011 [12] natural (M+I) 51 (6849) 6849 actors or none full/upper body performance
Keck military* 2009 [14] signalling (M) 14 3 294 Handbook pictograms hands frame-ranges
UCF YouTube* 2009 [15] sports (I) 11 (1168) 1168 none full body performance
Hollywood2* 2009 [16] cinema (M+I) 12 NR 884 actors full body performance
Hollywood* 2008 [13] cinema (M+I) 8 NR 430 actors full body performance
UCF Sports* 2008 [26] sports (I) 9 (200) 200 none full body performance
Weizmann Actions* 2007 [8] natural (M+I) 10 9 90 NR full body performance
KUG*†‡ 2006 [10] assorted (M+I) 54 20 NR NR full-body performance
KTH Actions* 2004 [28] natural (M+I) 6 25 2391 NR full body performance

Table 1. Popular benchmark datasets for gesture recognition (NR = Not reported, * = video, † = 2D stereo images, ‡ = 3D data, � = depth map data

tion. But in machine learning, gathering a variety of samples
for training data significantly improves the performance of a
recognition system during testing and deployment. For in-
stance, the importance of similarity between training and test
data has already been recognized for speech recognition. It
is understood that a speech recognition system trained us-
ing speech samples collected from people in a very nervous
or overly excited state would not have good performance
on speech samples obtained from people in a relaxed state.
Furrui et al. [7] show a larger training dataset is required
for recognition of spontaneous speech compared to speech
generated by reading a manuscript as the sound of sponta-
neous phonemes take up a smaller spectral space compared
to phonemes generated by ‘reading’. Other challenges that
arise in data collection for voice and speech recognition are
described in [21] where the authors tried to collect contin-
uous and spontaneous speech samples occurring in day-to-
day life. They asked human subjects to summarize a written
passage in their own words, rather than reading a passage or
using isolated words. They further characterise training data
in terms of whether there is a human audience or whether
the speaker gets feedback. These characteristics are perti-
nent to our task of detecting human body movements but
beyond this paper’s scope although collecting gestures tend
to be more contrived as it is harder to record them as they
occur in day-to-day life.

STUDY METHODOLOGY

Gestures
In addition to investigating the effect of instruction modality,
we are also looking at whether the type of gesture makes a
difference in the affect of modality. We introduced two ges-
ture types based on McNeil [17] categorize of gesticulation.
The first was Iconic gestures - those that imbue a correspon-
dence between the gesture and the reference. The second
was Metaphoric gestures - those that represent an abstract
content. For the former, we borrowed six gestures from a
first person shooter game (Table 2) and for the latter, we bor-
rowed six gestures for a music player (Table 3).

Instructions Tested
We chose to provide participants with three familiar, easy-
to-prepare instruction modalities and their combinations that

Gesture Out-
come

Descriptive Text Static Images

Crouch or
hide

Squat down or crouch

Shoot with a
pistol

Stretching your arms
out in front of you and
holding your hands
together to form a
pistol, make a recoil
movement

Throw an ob-
ject such as a
grenade

Using your right arm,
make an overarm
throwing movement

Change
weapon

Reach over your left
shoulder with your
right hand and then
bring both hands in
front of your body
as if you are holding
something

Kick to at-
tack an en-
emy

Karate kick forwards
with your right leg

Put on
night vision
goggles to
change the
game mode

Bring your hands up
to your eyes as if they
were goggles

Table 2. Descriptive Text and Static Image Instructions for Iconic Ges-
tures.

did not require the participant to have any sophisticated knowl-
edge. The three were (1) descriptive text breaking down the
performance kinematics, (2) an ordered series of static im-
ages of a person performing the gesture with arrows anno-
tating as appropriate, and (3) video (dynamic images) of a
person performing the gesture. We wanted mediums to be
transparent so they fulfill their primary function of convey-
ing the kinematics. Text is analogous to someone explaining



Gesture Outcome Descriptive Text Static Images
Start music / raise volume Raise outstretched arms

Navigate to next menu Slide right hand, palm down in front of you,
from left to right

Wind up the music Make circular movements with both arms, in
front of your body, clockwise with right hand
and counter-clockwise with left hand

Take a bow to end the ses-
sion

Bend forward at the waist, pause and come
back up again

Protest the music Pause and rest your hands on your head

Lay down the tempo of a
song

Beat the air with both your hands

Table 3. Descriptive Text and Static Image Instructions for Metaphoric Gestures.

Figure 2. Example of Dynamic Video Capture for Wind up the Music

a gesture verbally without a bias of a speaker with an accent.
Static images correspond with any static drawings and video
is also analogous to live demonstration; although these pic-
torial modalities may again be biased by the performer they
depict. The two combinations of modalities were the simul-
taneous juxtaposition of descriptive text with each pictorial
modality.

Textual descriptions with varying degrees of verbosity were
possible over all gestures and each description was deter-
mined by the authors. The videos were all of the first author
performing the gestures as defined by each application’s de-
signer and started and stopped with the beginning and end of
the gesture. They were filmed in front of a white background
ensuring all body movements were within frame (Figure 2
shows an extreme example).

For the static images, individual video frames were extracted
at points the designer considered necessary to fully define
the gesture. For clarity, the background was removed and

arrows sometimes added indicating direction of movement
at the designer’s discretion. The frames were presented hor-
izontally and chronologically.

Data Collection Materials
Two types of structured questionnaires (an after-instruction
questionnaire and a final ranking questionnaire) and an open-
ended final interview were used to gather participant subjec-
tive data. The former was administered after every gesture
was performed. It consisted of 11 psychometric questions
on how well the participant felt they understood the instruc-
tions (7 questions) and if the participant felt they were able
to perform the gesture freely (4 questions) - all questions
were rated on a 4-point Likert scale from Strongly Disagree
to Strongly Agree. The latter was administered at the end of
the study and consisted of 11 questions on the same concerns
as the after-instruction questionnaire; however, the partici-
pants were asked to rank the instruction methods (1-5) for
each question.

Questions regarding participants’ understanding of instruc-
tions were posed in terms of the clarity of the movements,
importance of body parts, amount of information about de-
sired movements, effort required for their interpretation, their
ambiguity, the correctness of performances they allowed,
and the amount of practice they required.



Questions regarding participants’ feeling of freedom were
posed in terms of feeling of confident whilst performing,
feeling inhibited, being in control, and feeling odd.

The performances and final interview was also recorded us-
ing a normal video camera for later review and transcription.
A markerless motion capture system was used (Microsoft
Kinect) to record the 3D position of skeletal joints at 30Hz
to within approximately 10cm accuracy [29].

Participants
Thirty participants were recruited from a multicultural, in-
dustry research lab and a university computer science de-
partment in the UK. Although some of the participants were
familiar with the domain of machine learning and computer
vision, none of the participants were privy to the workings
of the machine learning algorithm of the study we were con-
ducting. The demographics of the participants were 60%
male, 93% right-handed, 5’0”-6’6” tall with an average of
5’8”, and 22-65 with an average of 31 years of age.

Each participant performed each gesture based on at least
one semiotic modality. Since two of our conditions were
combinations of other modalities, we had participants do
some gestures in two conditions. For example, a participant
would shoot a pistol instructed by descriptive text first and
then, after completing an after-instruction questionnaire, be
instructed to shoot a pistol with descriptive text plus static
images. We ensured that participants did not receive a multi-
modal instruction followed by a unimodal instruction for the
same gesture in order to handle any significant learning ef-
fect. In addition, the two-step condition provided us with an
opportunity to investigate the ordering of sequentially pre-
sented pairs of instruction that increased in modalities used
(i.e. we could investigate if text followed by text plus images
was a preferential order for eliciting appropriate gestures).

Procedure
The experiment was conducted in a large private space with
one experimenter. Participants were told that we were in-
vestigating instructions for performing gestures for the sole
purpose of training a gestural interaction system.

They then were asked to stand and face a 30” LCD TV with
a Kinect sensor in front of it. When they indicated they were
ready, the first gesture’s instructions appeared on the screen
in a PowerPoint slideshow. At the top of each slide, the ap-
plication category (e.g. music player) and gesture outcome
were displayed (see Table 2 and 3) and below that the in-
struction was placed using the appropriate modality. The
participants had as much time as they desired to read or
watch the instructions. Questions were not addressed by the
experimenter and instead the participants were told to ’do
what they wanted’.

When they indicated they were ready to begin, they were
instructed to perform the gesture ten times and to ensure that
there was a pause between each repetition of the gesture.
When all ten repetitions of the gesture were completed, the
participant returned to sit at the table and completed an after-

instruction questionnaire. They repeated this process for 20
gesture instructions.

At the end of the study, they were asked to complete the
ranking questionnaires and then the participants were inter-
viewed by the experimenter with open-ended questions re-
garding their experience and their opinions of the different
semiotic modalities.

DATA ANALYSIS

Questionnaire and Interview Data Analysis
The 11 post-action questions were grouped in two clusters,
one for understanding and one for freedom. The reliability
analysis shows that the items in each cluster were highly in-
tercorrelated: the Cronbach’s alpha values were .92 for Un-
derstanding and .86 for Freedom. For high reliability, Nun-
nally and Bernstein [19] suggest to use a cut-off of .7, thus,
we could compute aggregated scores for each factor.

ML-based Recognition of Gestures and Analysis
The long history of automatically recognising gestures from
visual or kinematic measurements is reviewed in [23] [32]
[31] [2]. We address only the recognition of relatively simple
human gestures of a few seconds, not activities of minutes or
hours. For these short gestures, Schindler and van Gool [27]
have shown that short windows of measurements are suffi-
cient to obtain state-of-the-art recognition performance. (For
a more extensive of the method used, refer to [18]).

Mathematical Notation
We assume a small vocabulary of gestures A is given. Each
gesture a ∈ A has associated to it an action point that is
characteristic for the gesture. As an example, for a punch
we can define the action point as the first point in time at
which the arm is straight out in front. We further denote by
xt ∈ Rq an observation vector at discrete time t, and by xs:t
the sequence (xs, xs+1, . . . , xt) of observations.

Performance Measure: F-score@∆
The performance of the system is measured in terms of pre-
cision and recall. To achieve a high precision, the train-
ing data should only contain movements that users of the
deployed system will associate with the gesture (earlier re-
ferred to as correctness of the dataset in Figure 1). To achieve
a high recall, the training data should contain all movements
that the designer wants to associate with a gesture (earlier
referred to as coverage).

We assess the quality of our predictions using ground truth
annotations. To this end, we define a performance measure
that captures the characteristics of the system in an online
setting. These are, its precision—how often is the gesture
actually present when the system claims it is, its recall—
how many true gestures are recognized by the system, and
its latency—how large is the delay between the true action
point and the systems prediction.

For a specified amount of tolerated latency (∆ms) we mea-
sure the precision and recall for each gesture a ∈ A, as



Time

∆ ∆

Figure 3. Latency-aware measure of predictive performance for a sin-
gle gesture: a fixed time window of size 2∆ is centered around the
ground truth (marked •) and used to partition the three predicted fir-
ing events into correct (marked ◦) and incorrect predictions (marked
×); precision = 0.5, recall = 1.

shown in Figure 3. A balanced F-score between 0 and 1 [25]
combines precision and recall. In the experiments we will
examine the performance measure for a fixed ∆ = 333ms.

Gesture Recognition using Random Forests
We now show how random forest classifiers [3] can be straight-
forwardly adapted to the problem of recognizing gestures.
Our approach is similar to that of Yao et al. [33] but allows
online gesture recognition.

At test-time, for a time t, we derive a feature vector φt =
φ(xt:(t−`+1)) ∈ Rd from the last ` observations xt to xt−`+1.
We use 35 skeletal joint angles, 35 joint angle velocities,
and 60 xyz-velocities of joints for a 130-dimensional fea-
ture vector at each frame. We use ` = 35 frames, obtaining
d = 4550. The feature vector φt is evaluated by a set of M
decision trees, where simple tests fω : Rd → {left, right}
are performed recursively at each node until a leaf node is
reached. The parameters ω ∈ Ω of each test are determined
separately during the training phase, to be described below.
Each tree m = 1, . . . ,M produces one class decision y(m)

t
and the posterior class distribution

p(yt = a|x(t−`+1):t) :=
1

M

M∑
m=1

I(y
(m)
t = a) (1)

over gesture classesA and a background class “None” deter-
mines whether a gesture is recognized. If for a gesture class
a ∈ A we have p(yt = a|x(t−`+1):t) ≥ δ, we fire the ges-
ture as being detected at the current time t. We use a fixed
value of δ = 0.16 for all experiments. This value has been
determined from previous runs.

For training we use the full observations and action point an-
notations for a set of N sequences, where the n’th sequence
is an ordered list (x

(n)
t , y

(n)
t )t=1,...,Tn

. Our goal is to learn a
set ofM decision trees that classify the action points in these
sequences correctly by means of (1). We use simple “deci-
sion stump” tests [3] with ω = (i, h), 1 ≤ i ≤ d, h ∈ R,

f(i,h)(φt) =

{
left if [φt]i ≤ h,

right otherwise.

We use the standard information gain criterion and training
procedure [3]. Hence, we greedily select a split function
f(i,h) for each node in each decision tree from a set of ran-
domly generated proposal split functions. The tree is grown
until the node is pure, that is, all training samples assigned
to that node have the same label.

Instr. Modality All Metaphoric Iconic
Text 0.479± 0.104 0.432± 0.089 0.708± 0.103

Images 0.549± 0.102 0.462± 0.132 0.742± 0.088
Video 0.627± 0.053 0.612± 0.056 0.683± 0.123

Images+Text 0.563± 0.045 0.506± 0.095 0.750± 0.079
Video+Text 0.679± 0.035 0.651± 0.099 0.765± 0.070

Table 4. F-Score at ∆ = 333ms for correctness by training and testing
on the same modality. We show the average and standard deviations
over ten leave-persons-out runs.

Text Images Video Images+Text Video+Text
T .621 ± .041 .537 ± .020 .602 ± .034 .611 ± .048 .644 ± .070
I .504 ± .048 .561 ± .034 .700 ± .034 .646 ± .093 .611 ± .060
V .524 ± .032 .551 ± .041 .673 ± .020 .588 ± .070 .707 ± .069
IT .651 ± .020 .582 ± .023 .647 ± .042 .629 ± .051 .680 ± .074
VT .583 ± .051 .571 ± .038 .702 ± .021 .607 ± .065 .709 ± .047

Table 5. F-Score at ∆ = 333ms for coverage, using all combinations of
training and testing modalities for all gestures (metaphoric and iconic).
Rows correspond to a single training modalities, columns to the test
modality.

Recognition Model Performance Assessment
We are interested in measuring the inter-person generaliza-
tion performance of our gesture recognition system. To this
end, we follow a “leave-persons-out” protocol: for each in-
struction modality we remove a set of people from the full
data set (of 30 people) to obtain the minimum test set that
contains performances of all gestures. The remaining larger
set constitute the training set. After training on this set the
generalization performance is assessed on the people in the
test set. This is repeated ten times for fixed disjoint sets of
test persons. The average test performance over the ten runs
is a good estimator of the generalization performance of the
system trained on this instruction modality. We perform two
separate experiments as follows.

Test 1. We assess the intra-modality generalization perfor-
mance: training and testing using the same instruction modal-
ity. Hence we take only those sequences for training and
testing that originate from performances with the respective
instructions. As results we obtain five F-scores, one for each
modality, and each being an average over all 10 repetitions
and 12 gestures (see Table 4). We also report separately the
F-scores achieved on the first-person-shooter gestures (six
gestures) and the music player gestures (six gestures).

Test 2. We assess the inter-modality generalization perfor-
mance: training on one modality, for example text, but test-
ing on a different modality, for example videos. We evaluate
all possible training-testing combinations where training and
testing modalities differ. As a results we report there sets of
5-by-5 average F-scores, one for each gesture set: all (Table
5), music (Table 6), and first-person-shooter (Table 7). The
five rows correspond to the training modalities, and the five
columns correspond to the testing modalities.

RESULTS

Correctness of Gestures
In the following analyses, the F-scores from 10 runs were
compared with one-way, between subjects ANOVAs between
the five conditions: Text, Images, Video, Images+Text, and
Video+Text.



Text Images Video Images+Text Video+Text
T .621 ± .059 .387 ± .024 .488 ± .031 .573 ± .079 .619 ± .090
I .461 ± .074 .441 ± .069 .684 ± .058 .566 ± .120 .521 ± .122
V .461 ± .029 .382 ± .037 .552 ± .025 .494 ± .076 .696 ± .094
IT .673 ± .041 .423 ± .049 .558 ± .032 .574 ± .096 .607 ± .097
VT .622 ± .038 .404 ± .042 .583 ± .040 .571 ± .089 .698 ± .092

Table 6. F-Score at ∆ = 333ms for coverage using all combinations
of training and testing modalities for the metaphoric gestures. Rows
correspond to a single training modalities, columns to the test modality.

Text Images Video Images+Text Video+Text
T .756 ± .053 .838 ± .041 .843 ± .033 .807 ± .075 .807 ± .083
I .663 ± .035 .810 ± .020 .861 ± .037 .812 ± .090 .805 ± .076
V .711 ± .015 .821 ± .061 .825 ± .050 .808 ± .090 .842 ± .074
IT .682 ± .025 .899 ± .030 .858 ± .021 .808 ± .069 .833 ± .064
VT .685 ± .023 .857 ± .037 .883 ± .034 .778 ± .091 .783 ± .060

Table 7. F-Score at ∆ = 333ms for coverage, using all combinations
of training and testing modalities for the iconic gestures. Rows corre-
spond to a single training modalities, columns to the test modality.

For all gestures, there was a significant difference between
the five condition means, F(4, 45)=10.768, p≤.01 (see Fig-
ure 4 and Table 4). Tukey’s HSD post-hoc analyses revealed
that Video alone was more effective than Text alone, and
Video+Text was more effective than Text alone, Images alone,
or Images+ Text (all at p≤.01). In addition, for the metaphoric
gestures, there was a significant difference between the five
condition means, F(4, 45)=9.643, p≤.01. A post-hoc anal-
ysis revealed that Video alone was more effective than Text
or Images and Video+Text was more effective than Text, Im-
ages, or Images+Text (all at p≤.01). However, for the iconic
gestures, there was no significant difference between the five
condition means. Thus, although the instructions’ semiotic
modality made a difference in F-scores for the metaphoric
gestures, it made no difference in the F-scores for the iconic
gestures.

A series of 2x2 ANOVAs between Static vs. Dynamic (Im-
ages vs. Videos) and Text Added vs. No Text Added further
shows that Dynamic Images (Videos) were better than Static
Images (Images) despite whether any text was added for All
Gestures (p≤.01) and metaphoric gestures (p≤.01). How-
ever, there was no difference for the iconic gestures.

Thus, Video alone and Video+Text were better than the other
semiotic modalities in terms of achieving correctness in per-
forming the metaphoric gestures. However, Video alone was
statistically just as effective as Video+Text. On the other
hand, there is no discernible difference between the instruc-
tions’ semiotic modality for the iconic gestures.

In the analysis of the questionnaire data on Understanding
the instructions, a series of one-way within subjects ANOVAs
were performed on All gestures, metaphoric gestures, and
iconic gestures. All Gestures showed that the means are sig-
nificantly different between the five conditions (F(4,116) =
18.866, p≤.01) (Figure 5). A series of paired t-tests with a
Bonferroni correction confirmed this in that it showed that
Video alone was better understood than Images or Text; Im-
ages+Text was better understood than Images or Text; and
Video+Text was better understood than Images or Text (all
at p≤.01). Furthermore, a one-way within subjects ANOVA

on Understanding of only metaphoric gestures showed that
the means are significantly different between the five condi-
tions (F(4,56)=4.466, p≤.01). A series of paired t-tests with
a Bonferroni correction showed that Video+Text was bet-
ter understood than Text and Images+Text, Video was better
than Images and Text, and Images+Text was better than just
Text (all at p≤.01). In addition, a one-way within subjects
ANOVA on Understanding of iconic gestures showed that
the means are significantly different between the five con-
ditions (F(4,56) = 3.439, p≤.01). A series of paired t-tests
with a Bonferroni correction showed that Video+Text was
better understood than Images and Text, Images+Text was
better understood than Text, and Videos were better under-
stood than Text (all at p≤.01).

A series of 2x2 repeated measures ANOVAs on Understand-
ing further showed that the means are different for Text vs.
No Text and Static vs. Dynamic for All Gestures (both at
p≤.01) and metaphoric gestures (both at p≤.05), but there
were no significant differences to report for the iconic ges-
tures (both at p≤.05). Thus, like the F-score analysis, we
see that the modality of Video (plus Text) yielded a better
understanding of what was to be performed.

This analysis is corroborated by a review of the interviews.
Participants generally related that the videos were the clear-
est and one knew exactly what to do. In addition, many of
the participants appreciated that the addition of text specified
exactly what was the important aspect of the gesture for the
system recognition.

“I would say the video [is the clearest] because the text
really wasn’t necessary because then we got all the in-
formation throughout the video.”
“The text provided a specific of what the sensor was go-
ing to pick up, so if I saw a video it was not always clear
what was important in the video but once I had a text to
go with it, it seems much clearer.”

However, participants also explained that the videos were
not as necessary for the iconic gestures since they felt they
could understand what was being requested of them from
previous experiences.

“The kicking was alright, the throwing was fine, they are
gestures you do in everyday life, in sports for example.”

Coverage of Gestures
In the following F-score analyses, the algorithm was trained
on one modality (e.g. Text) and then tested on a set of data
from each of the five modalities ten times each. Thus, we
present the analyses from the F-scores averaged across the
five testing modalities.

For All gestures, a one-way, between subjects ANOVA showed
a significant difference between the five condition means,
F(4, 45)=7.327, p≤.01 (see Figure 6 and Table 5). Tukey’s
HSD post-hoc analyses revealed that training on Videos+Text
was more effective than Text alone (p≤.01), Images (p=.01),



Figure 4. Correctness F-Scores between all
modalities and their combinations for all,
metaphoric and iconic gestures

Figure 5. Means for Understanding Questions
between the three modalities and their combina-
tions for all, metaphoric and iconic gestures

Figure 6. Coverage F-Scores between all
modalities and their combinations for all,
metaphoric and iconic gestures

Figure 7. Means for Freedom Questions be-
tween the three modalities and their combina-
tions for all, metaphoric and iconic gestures

Figure 8. Average ranking of modalities for Un-
derstanding and Freedom, retrospectively over
all gestures

Figure 9. Average ranking of order of modalities
for multimodal instructions for Understanding
and Freedom, retrospectively over all gestures.

or Videos alone (p=.04) and Images+Text was more effec-
tive than Text (p≤.01), Images alone (p≤.01), or Videos
(p=.02). In addition, for the metaphoric gestures, a one-
way, between subjects ANOVA showed a significant dif-
ference between the five condition means, F(4, 45)=6.604,
p≤.01 (Table 6). Tukey’s HSD post-hoc analyses revealed
that Video+Text was more effective than Video (p≤.01), Im-
ages (p=.03), or Text (p=.05) and Images+Text was more ef-
fective than Videos alone (p≤.01). However, for the iconic
gestures, there was no significant difference between the five
condition means (Table 7).

If we look at each testing modality separately we see that
some training modalities are better than others for covering
the variation. For instance, for All gestures, testing on a
data set instructed through Text or Images, we found that Im-
ages+Text yielded a significantly better result (both at p≤.01).
However, testing on a data set instructed on Videos, we found
that Videos+Text yielded a significantly better results (p≤.01).
If we specifically look at Text as an instruction modality for
testing with the assumption that it is most representative of
executed gestures in actual system use (i.e. the most vari-
ation), then we see that, for the metaphoric gestures, test-
ing on a data set instructed through Text we found that Im-
ages+Text yielded a significantly better results (p≤.01) and,
for the iconic gestures, we found that when testing on a data
set instructed through Text the trend signifies that the best
results came from training on Text (n.s.). Thus, we see that
in terms of capturing natural variation less information was
optimal.

In the analysis of the questionnaire data, a one-way within
subjects ANOVA on Freedom Questions showed that the
means are significantly different between the five conditions
(F(4,116) = 5.390, p≤.01) (Figure 7). A series of paired t-

tests with a Bonferroni correction showed that Images+Text
are significantly less inhibiting than Text (p≤.01), and Video
+Text provides a greater sense of freedom than Text (both
at p≤.01). Although not a strong difference between in-
struction methods, the general trend is that as more infor-
mation was provided, the sense of inhibition lowered. But
the instructions’ semiotic modality with the most informa-
tion, Video+Text, yielded a slightly less sense of freedom
than Images+Text. Freedom Questions for the metaphoric
gestures showed that the means are significantly different
between the five conditions (F(4,56) = 3.469, p=.013) and a
series of paired t-tests with a Bonferroni correction showed
that Images+Text are significantly less inhibiting than Text
(p≤.01). Again, not a very strong difference, but Images+
Text provide a sense of more freedom than the other semiotic
modalities. Finally, Freedom Questions for iconic gestures
showed that the means are the same between the five con-
ditions. However, if one looks at the graph, again, we can
see the trend is for Images+Text to be providing a greater
sense of freedom. A 2x2 repeated measures ANOVA on
Freedom for All, metaphoric, and iconic gestures showed
that the means are the same for Text vs. No Text Added,
Static vs. Dynamic, and the interaction between dynamicity
and text-added.

From the interviews, we start to understand what was occur-
ring: Participants asked about Freedom were referring less
to an ability to improvise than to not feeling apprehensive or
embarrassed from potentially misunderstanding or disagree-
ing with what was being asked of them. In this latter case
feeling more free would retract undesirable coverage from
awkward gestural performances and may even instill confi-
dence that encourages more controlled improvisation.



“Some of them I felt I had prior knowledge of what you
were conveying so then you can add a little bit of embel-
lishment.”

When the discussion turned to doing the gesture as they saw
fit to give better coverage, then they generally agreed that
less information allowed this more effectively for metaphoric
gestures. This is primarily as a reaction to the videos, which
prescribed exactly what to do whereas other mechanisms
were seen as being more open for interpretation.

“I think when you have the visual description or the vi-
sual images, you really try to do what is on the picture,
really. Video. So I wasn’t thinking of any creativity at
all.”
“For the hand slide [instructed by the Video+Text] I re-
ally tried to match the speed you did it with. I tried to
match the violent movement you had. Whereas for the ...
in the text [only], the gesture I had for the slide was sort
of clear but I could still do it my way and I felt confident.”
“I think just the words on themselves are a lot more am-
biguous in a way that allowed you to do how you feel.”

Correctness and Coverage of Gestures
Using Video+Text modalities promotes correctness but Im-
ages+Text does seem to be a good modality for coverage.
The ranking questionnaire allows us further investigation of
the best recommendation by forcing performers to give a
preference over modalities whilst recalling their performances
of all gestures. Taking the median of all questions relating
to understanding or all questions relating to Freedom and
then taking the median of the rankings of modalities over
all participants gives a final, non-gesture specific ranking of
modalities (see Figure 8). For both Understanding and to a
less extent for Freedom, Video+Text is preferred. One rea-
son for this could be the appeasing nature of the participants
to accept being told what to do and their lack of a desire or
ability to improvise.

Additionally, the participants suggested providing a two tier
instruction, no doubt as an outcome of the way we ran the
study. Participants experienced, for example, Text alone fol-
lowed by Video+Text or Images alone and then with added
Text for the same gesture. They felt their performances changed
with the addition of a modality but were divided over which
should come first during the interviews. Some preferred ini-
tial room for interpretation, others preferred constraints to be
relaxed.

“When you have all the good texts that started, you do,
you understand what to do and then when you add the
image or the video, you try to do exactly what you are
saying rather than what you understand from the de-
scription.”
“You get the general picture from the text and then you
can fill in the things you are not certain about from the
video.”

“Just because there is more interpretation in it for the
image, it makes you feel like I have to be like the image
is or like the video is so it breaks you. It breaks you in
your freedom and text is more free ...”

However, in the overall ranking analysis, Video followed by
Text was preferred on average by the participants with re-
spect to both Understanding and Freedom, as shown in Fig-
ure 9. Unfortunately, we can not speak to whether this rank-
ing differs for metaphoric or iconic gestures.

DISCUSSION
This study aimed to shed light on how the importance of us-
ing a particular semiotic modality to instruct participants can
play a significant part in the development of gestural inter-
action applications. Namely, to understand the robustness of
different ways of eliciting movements based on correctness
and coverage requirements of a corpora of machine learn-
ing training data that must be collected. Such understand-
ing allows developers to choose a training data collection
methodology that suits their needs, without having to empir-
ically justify their chosen kinematics. We investigated three
different semiotic modalities - Descriptive Text, Static Im-
ages, and Dynamic Video - as well as combinations of Im-
ages with Text and Video with Text.

We have shown that different semiotic modalities of an in-
struction alter the amount of variation in a set of training
performances. That this factor has not been addressed in any
prior literature now questions the precision of all their results
to date and future data sets should include this characterisa-
tion. For a robust system, it is necessary to balance accurate
recognition with a need to generalise recognition over an un-
known population whilst matching the degree of flexibility
the application designer’s gestural definitions’ allow.

Our analysis revealed considerations for developers on how
and when instructions’ semiotic modality makes a differ-
ence. Intra-modality F-scores show Video (with or without
Text) is best for correctness and Understanding is promoted
most by Video + Text. Inter-modality F-scores show Image +
Text is best for coverage and it also gives the strongest feel-
ing of Freedom. We also learned a bit regarding sequences of
instructions. Overall, Video followed by Text was preferred
in ranking, but this was only for All Gestures. In addition,
multimodal instructions are favored over unimodal, which is
supported by [5]. Although we still think the two-step pro-
cess yielded interesting results, we also realize that the learn-
ing method of enaction may also have had an effect on the
improvements under both combinations [4]. In other word,
the process of enacting the gesture the first time provided a
learning advantage to enacting the gesture the second time -
despite our lack of giving feedback as to the correctness of
the first gestural enactment.

In addition to these general findings we learned more regard-
ing the difference in effect of modality on different types of
gestures. Few significant differences existed for the Iconic
gestures for which people possessed a priori associations of
kinematics. This familiarity from real-life experience could



have increased clarity and confidence so it dominated any
differences between modalities. Correctness and coverage
of performances of metaphoric gestures whose semantics-
kinematics mapping had to be ’taught’ benefited from be-
ing able to read the description as well as see an example.
However, our results reflect our societies current conven-
tions based on a moderate number of participants with wide
demographics. They may not be applicable in 20 years.

We also saw evidence of a performer’s tolerance of ambi-
guity as playing a roll. Those with initially high inhibitions
could be more apprehensive and effort should be made to
lower them for good coverage; this is encouraged by [5]
who discourages using mirrors. It may be sensible to let
the performer choose the order of a sequential, multimodal
instruction. This would be an area of further investigation,
though.
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