
Scalable Inter-Vehicular Applications

Jonathan J. Davies and Alastair R. Beresford

Computer Laboratory, University of Cambridge,
15 JJ Thomson Avenue, Cambridge, CB3 0FD, UK

{jjd27,arb33}@cam.ac.uk

Abstract. Many pervasive inter-vehicular applications involve the col-
lation, processing and summarisation of sensor data originating from ve-
hicles. When and where such processing takes place is an explicit design-
stage decision. Often some processing occurs on vehicles, and some on
backend servers, but it is hard for the programmer to optimise this distri-
bution for feasibility or performance. This paper investigates automated
task assignment: we define a computational model which captures data
aggregation and summarisation explicitly, allowing a compiler to auto-
matically optimise the assignment of processing tasks to particular vehi-
cles and servers. Our model allows a compiler to apply program transfor-
mations to data processing, which can further improve task assignment.

Modern motor vehicles contain a plethora of on-board computing equipment.
Today’s cars have a variety of microprocessors governing diverse aspects of the
vehicle’s operation. We believe that trends in decreasing power requirements,
size, and cost of manufacture mean that in future we can expect vehicles to
provide embedded computing platforms supporting the execution of general ap-
plications. As cars become increasingly connected—to each other and to the
Internet—these applications will evolve beyond disconnected intra-vehicle ap-
plications and will help to improve the safety, efficiency and comfort of using
transport [1]. This vision of communicating vehicles will enable applications in-
volving multiple participants, such as:

Collection of vehicle position data. Known as floating car data, informa-
tion regarding the locations and velocities of vehicles using the road network
can be used to identify levels of road congestion and used as input to journey-
time prediction applications [2].

Real-time weather map. Most modern vehicles already contain thermome-
ters. If data from vehicles’ onboard weather sensors could be aggregated, a
real-time weather map of high resolution could be composed.

Real-time road map updates. Traditional techniques for updating road maps
involve manual surveying and data entry. Timely integration of changes to
the road network can instead be done automatically based on vehicles’ loca-
tion traces [3].

Road hazard detection. Acceleration data collected from vehicles containing
accelerometers can be used to build a map of road hazards by noting points
in the road network where many vehicles have been found to swerve or brake
sharply [4].



Such inter-vehicular applications collate, process and summarise raw sensor
data from a large number of vehicles, and typically the greater the number of
vehicles involved, the more useful the application becomes. A given application
might be written to execute in one of a variety of different architectural configu-
rations. At one end of the spectrum is the fully centralised approach, where all of
the source data is transferred to a single processing node. At the other end is the
fully decentralised, or peer-to-peer, approach, where there is no infrastructural
support. Vehicular applications are not readily-suited to a centralised model of
computation because this approach does not scale well and requires ubiquitous
network coverage. Fortunately, most applications are inherently parallelisable by
partitioning their input data into subsets which can be processed independently.
For example, the data set could be decomposed into geographical subsets, with
each containing data concerning a particular spatial region.

Today, a programmer writing an inter-vehicular application must manually
define where the processing of sensor data takes place. This paper describes an
alternative strategy, allowing programmers to write applications which can be
distributed automatically, therefore potentially at run-time and with a greater
degree of optimality because they do not need to rely on design-stage assump-
tions. More specifically, we devise a computational model which captures the
notion of data aggregation or summarisation in an application. This permits the
automation of program transformations, where the order in which data process-
ing and distribution takes place in an application can be rearranged by a com-
piler, thereby allowing the exploration of many different software architectures.
In addition, we take inspiration from work in parallel and distributed computing
and explore how, for a given application with a specific software architecture,
the application might be automatically distributed and executed across a het-
erogeneous network of on-board computers in vehicles and backend servers. We
also explore what optimality might mean in the context of vehicular networks,
and describe a few metrics on which we can measure and optimise the config-
uration of an application. Finally, we describe our experience implementing a
tool which applies program transformations to an application described in our
computational model and automatically simulates the distribution of such an
application across many computing resources.

1 Computational Model

It is necessary to be able to define an application and the topology of the network
in which it is to be executed at a given instant in time. We model the former
(the software) with a task graph and the latter (the hardware) with a compu-

tation resource graph. The task graph is weighted with values indicating the
application’s requirements, whilst the computation resource graph is weighted
with values indicating the hardware’s capabilities. We will describe how each is
modelled, in turn. We will then turn to the question of how to determine the
best computation resource on which to execute each task.



A

B

C D

(a) Resource
topology graph

x1 x2 x3

M1

M2

P1

P2

R1

y1 y2

(b) Task graph

A B C

D

x1y1

M1

x2 x3

P1

M2

y2

P2

R1

(c) Tasks assigned to re-
sources

Fig. 1. Example graphs

1.1 Modelling the Network Topology

At any point in time, the topology of the network of available computation
resources is static. It can be modelled by a weighted graph Gp = (Ep, Vp). The
set of vertices, Vp, model the processing nodes; the edges, Ep, model direct
communication links between nodes. An example is shown in Fig. 1(a). The
processing nodes, which have local memory, are not assumed to be homogeneous
in their processing power.

If we assume that all the communication links are symmetric, the graph can
be undirected. The transitive closure of the graph indicates which nodes can
directly or indirectly communicate with any other nodes.

The resource graph’s vertices are weighted with values describing their com-
putational characteristics, such as processor speed. The edges are weighted with
values characterising the link, such as maximum throughput or latency.

1.2 Modelling the Algorithm

An application’s algorithm can be described by a directed weighted graph Gt =
(Et, Vt) called the task graph. The set of vertices, Vt, are the tasks and the
edges, Et, indicate the direction of data flow between tasks. A task is a set of
instructions which must be executed sequentially on a single processor. An edge
(v1, v2) indicates that task v2 receives the output of task v1, and that v2 cannot
commence execution until the execution of v1 is complete. An example is shown
in Fig. 1(b).

We express algorithms in terms of five types of task nodes:

Source nodes are points where data is produced. These can be thought of as
functions of type unit → α, for some type α.



Sink nodes are points where data is consumed. These can be thought of as
functions of type α → unit, for some type α.

Processing tasks are functions which transform a tuple of inputs into a tuple
of outputs. In general, they have type α × β × . . . → γ × δ × . . ..

Merge tasks are a special type of processing task which are commutative, as-
sociative, binary functions with type α × α → α, for some α.

Replication tasks are a special type of processing task which have type α →

α×α and additionally where the two outputs are each identical to the input.
Hence, it is not possible to modify the data in a replication task.

Identifying merge tasks as a special class of processing tasks is particularly
important in applications involving large numbers of inputs, such as those which
are the focus of this paper. Because of the wealth of input data, it is usually
necessary to be able to aggregate data into a significantly smaller amount of
information to make their processing computationally feasible.

Some examples of simple merge tasks are set union, addition and maximi-
sation. In order to express an arithmetic mean of multiple values in terms of a
binary function, we must keep track of both the numerator and denominator in
the calculation, otherwise we will lose track of the number of items which have
contributed to the mean. The merge task is therefore an operation on a pair
of values of type real × int and can be expressed as M((an, ad), (bn, bd)) =
(an + bn, ad + bd). The value of the mean is yielded by a subsequent processing
task with type real× int → real, P (an, ad) = an

ad
.

The vertices of the task graph are weighted with values relating to the com-
putational requirements of the application. The graph’s edges are weighted with
values relating to the characteristics of the data flow between tasks.

2 Program Transformations

For some programs, it is possible to express the graph of tasks in a variety of
semantically-equivalent ways. For example, an algorithm to compute the ex-
ponential of the sum of three numbers could be equivalently expressed as the
product of exponentials: ex+y+z = exeyez. The formula ex+y+z is an additive
merge of the three numbers x, y and z followed by an exponentiation processing

task; a transformation of the formula gives exeyez which is three exponentiation
processing tasks followed by a multiplicative merge of the resulting numbers.

We have defined four transformations which can be applied on any sub-graph
of a task graph. After the application of one or more of these transformations,
the task graph may be better suited to efficient execution by processors in a par-
ticular network. Section 3 will describe the ways in which this can be measured.

2.1 Exchange of Merge and Processing Tasks Transformation

The exponentiation example is an instance of a program transformation in-
volving the exchange of merge and processing tasks which preserves semantic



Mα

P

x1 x2

y

αα

α

β

←→

P P

Mβ

x2x1

y

α α

β

β β

(a) Exchange of merge
and processing tasks

P

Rβ

x

y1 y2

α

ββ

β ←→

PP

Rα

x

y1 y2

α

αα

ββ

(b) Exchange of process-
ing and replication tasks

Mα

Mα

x1 x2x3

y

α

αα

α

α ←→

Mα

Mα

x1 x2 x3

y

αα

α

α

α

(c) Associativity of merge tasks

Fig. 2. Three program transformations (task graph edges labelled with types)

equivalence. Rather than merging some inputs and processing the result, we can
process each input individually and merge the results. Figure 2(a) depicts this
transformation for a unary processing function of type α → β.

Firstly, it is notable that there are more tasks on the right side of the trans-
formation than on the left. This means that the total amount of work required
may be different after the transformation is applied, depending on the sizes of
tasks Mα and Mβ. Moreover, there is one processing task P : α → β on the left
and there are two such tasks on the right. Furthermore, the merge task required
on the left deals with values of type α and the merge task required on the right
deals with values of type β. In the exponentiation example, these functions were
addition and multiplication.

Depending on the relative sizes of values of types α and β, the volume of data
flow may be affected by this transformation. If values of type β are significantly
smaller than values of type α then early processing to β is most favourable, so
the volume of data flow is smaller on the right.

2.2 Exchange of Processing and Replication Tasks Transformation

Similarly, rather than performing some processing and then replicating the re-
sult, we can replicate the input and process each replica individually. This trans-
formation is depicted in Fig. 2(b).

As above, there is a difference in the number of processing tasks before and
after the transformation. On the right, there are two such tasks. As before,
depending on the relative sizes of values of types α and β, the volume of data
flow may be affected by the transform. If values of type α are significantly smaller
than values of type β then late processing to β is most favourable, so the volume
of data flow is smaller on the right.

2.3 Merge and Replication Transformations

Two transformations follow directly from the associativity of merge functions
and the equivalence of outputs from replication tasks. These transformations



are useful to alter how the merging or replication of a large number of values
takes place in a distributed manner. Figure 2(c) depicts the transformation for
merge tasks; the transformation for replication tasks is analogous.

3 Execution Strategy

Once we have a model of the application in terms of its constituent tasks and
flow of data, and a model of the topology of the network of processors that could
execute the application, it remains to define where each task is to be executed.

An assignment function A : Vt → Vp maps tasks to processing nodes, indicat-
ing where in the network each task should be executed. Source and sink vertices
in the task graph must be mapped to the particular nodes in the network where
data is produced and consumed, respectively. Other tasks can be mapped to net-
work nodes which are reachable from source nodes and from which sink nodes
are reachable via communication links. An example of an assignment function is
shown pictorially in Fig. 1(c), where M1 is mapped to processor A, P1 and M2

are mapped to processor C, and P2 and R1 are mapped to processor D.
The decision about which nodes to use affects the efficacy of the assign-

ment. It impacts on the duration of execution of the algorithm; the privacy
of the originators of the data; the amount of network bandwidth consumed;
and a variety of other factors. The efficacy of the assignment can be described
quantitatively by a cost function specific to each application. A cost function
C : Gt ×Gp × (Vt → Vp) → R is a function of an assignment function yielding a
real number indicating the cost of the assignment. Applications will use a cost
function which embodies the trade-offs they desire between relevant metrics. For
example, one application may express in its cost function the policy that only a
total execution time of less than two minutes is acceptable, and that minimising
the use of network bandwidth is the next most important concern. Another ap-
plication may seek to minimise total execution time at the expense of all other
metrics.

Several candidate metrics for evaluating an assignment function are relevant
to many applications:

Total execution time. The duration of time elapsed from the start of the
algorithm’s execution to the result being delivered to the final recipient.

Quality of result. Thus far, we have assumed that any transformations ap-
plied will maintain semantic equivalence of the algorithm. In the exponentia-
tion example, we required the merge functions—addition and multiplication—
to be appropriate to maintain this equivalence. But, in the case that a merge
function for one data type is not an exact analogue of the one used for the
other, the exchange of merge and processing tasks transformation (Sect. 2.1)
no longer maintains semantic equivalence, and the algorithm’s output ap-
proximates the true result. For example, a merge task which sums values
followed by a processing task which quantises the sum is approximated by
summing quantised values. The value of this metric will relate to the accu-
racy of the approximation.



Privacy. The level to which the privacy of the originators of the input data is
respected is important in applications where personally-identifiable data is
processed. The value of this metric could relate to an observer’s view of the
number of individuals who could have a particular identity.

Energy consumption. Another useful metric is the energy consumption caused
by the execution of particular tasks. By associating with each processor a
value indicating its power consumption, the total energy consumption for a
given assignment function can be calculated.

4 Automatic Task Assignment

In a system where the available resources change dynamically, such as when
vehicular resources are utilised, the particular resources which are available for
an application to use are not known until run-time. Thus, the assignment of
tasks to processors cannot take place at the same time that the application is
defined. Automatic task assignment is thus required, and this implies a need for
a programming language and compiler which can perform this when the program
is about to be run.

The compiler must be able to split the program into constituent tasks; deter-
mine the optimal mapping with respect to the program’s cost function (which
may involve the use of some program transformations); distribute the tasks to
their processors, ensuring that they can communicate with each other and are
able to deal with failures.

4.1 Implementation

We have developed a prototype framework to investigate the feasibility of au-
tomatic task assignment. As input, it accepts a description of the computation
resource graph and an application’s task graph in text format, along with a cost
function. The weights of the graphs’ nodes and edges that are used by the cost
function are also specified.

The framework can automatically derive an optimal assignment function us-
ing an exhaustive search, or find a near-optimal assignment function in poly-
nomial time using an approach which involves choosing a reasonable initial as-
signment and then improving it incrementally by changing the assignment of
the tasks until no improvement can be found. The transformations described in
Sect. 2 are also applied automatically and the cost of assigning the resulting task
graph is compared with that of original graph. The framework also allows a user
to assign tasks to processors manually through a graphical front-end, depicted
in Fig. 3, which uses Graphviz graph layout software to visualise the graphs. It
does not execute the application, but merely simulates the effect of the chosen
assignment function.

The implementation has highlighted the necessity of adopting a sub-optimal
search technique: the sheer size of the search space renders the search for an opti-
mal assignment infeasible for even very small task and resource graphs. However,



Fig. 3. Prototype framework interface

it has also become clear that implementing a suitable heuristic on which to base
the search is challenging. It is difficult to model the effect on the cost of either
applying a transformation or modifying the assignment since there are so many
variables; this means that traditional techniques for solving the global optimisa-
tion problem, such as branch-and-bound and simulated annealing, are hard to
apply.

5 Related Work

In recent years, with the emergence of grid computing, the advent of network pro-
cessors, and the amount of processing possible in wireless sensor networks, there
has been a considerable rise in the level of interest in task assignment. In its usual
form, grid computing differs from computation in vehicular networks in several
characteristics. For example, it is usually the case that the processors comprising
a grid, or the data that is processed, are owned by a single entity, so privacy is of
no concern. Furthermore, grids may have different priorities regarding the desire
to balance load evenly across available processors. Multi-core network processors
can be thought of as distributed systems on a single chip, consisting of a matrix
of independent processors, each with local memory, sharing a communication
bus. The challenges faced in designing compilers for these systems are similar
to those examined in this paper. The problems associated with using a global,
shared address space have led to suggestions such as the use of linear types [5].
Ennals et al. have devised a set of program transformations which exploit lin-
ear types as the programmer expresses the task assignment function [6]. Major
differences between network processors and the large-scale distributed systems



considered in this paper are that the processors are arranged systematically, are
powered and controlled by a single entity, and have predictable communication
links and network behaviour.

Various research has been undertaken into automatically off-loading com-
putation from resource-constrained devices with a view to minimising energy
consumption. Several frameworks for off-loading the processing of expensive
functions have been devised [7, 8]. Ou et al. have implemented an automatic
task partitioning at Java bytecode level to achieve similar goals [9]. Kumar et
al. present work in (non-automatic) task assignment [10] in a sensor network en-
vironment containing two classes of processor. J-Orchestra [11] is an automatic
partitioning system used for splitting up ubiquitous computing applications; the
Titan framework [12] has been developed to aid in dynamically reconfiguring
which task is allocated to which sensor node.

Traditional approaches to task assignment make use of directed task graphs.
Kwok and Ahmad’s extensive survey of static task assignment algorithms [13]
describes 27 algorithms for scheduling directed task graphs on homogeneous
multi-processor systems, but the authors highlight that little work has been
done in task assignment for heterogeneous systems, the subject of this paper.
Casavant and Kuhl have produced a taxonomy and classify various algorithms
against it [14]. Algorithms for task assignment are NP-complete in all but a few
restricted cases [15] meaning that it is infeasible to computationally determine
the optimal assignment.

The use of program transformations for optimising performance is well-
established. For example, compilers typically optimise for execution time or
memory footprint by performing semantics-preserving transformations. In data-
bases, there are often many different ways of processing data to formulate the
result of a query; it is the job of a query optimiser to choose the optimal approach,
which involves rewriting the query into a more efficient form [16]. However, to
the best of our knowledge, there is no prior work in compiler theory which makes
use of transformations which do not preserve semantics.

6 Conclusions

Traditionally, when designing an application to collate, process and summarise
sensor data from a large number of vehicles, a programmer must manually define
where these tasks will be executed. We have proposed a strategy whereby the
assignment of program tasks to processors is done automatically. The expression
of a program in terms of merge, process and replication tasks mean that certain
program transformations can be applied automatically by a compiler to allow a
more optimal assignment.

Whilst this work was motivated by the problems faced in the implementa-
tion of applications involving vehicles, it has a broader applicability to other
ubiquitous computing scenarios, in particular to wireless sensor networks.

Further work will examine how the movement of vehicles can be represented
in the model, perhaps by defining several vehicles in a spatial area as a single



processing unit. We will also consider whether the optimisation of task assign-
ment can be effected on a local scale rather than globally. We plan to continue
to explore the ideas described in this paper by implementing a task partitioning
and assignment engine to distribute and execute applications described in an
augmented version of the Java programming language.

7 Acknowledgments

The authors thank Samuel Kounev, Andrew Rice, David Cottingham, Tom Craig
and Ripduman Sohan for their helpful comments and suggestions; and in par-
ticular Andy Hopper for his financial support and Alan Mycroft for the expo-
nentiation example.

References

1. Cottingham, D.N., Davies, J.J.: A vision for wireless access on the road network.
In: Proc. WIT 2007, Technische Universität Hamburg-Harburg (2007) 25–30

2. Day, P., Wu, J., Poulton, N.: Beyond real time. ITS International 12(6) (2006)
55–56

3. Davies, J.J., Beresford, A.R., Hopper, A.: Scalable, distributed, real-time map
generation. IEEE Pervasive Computing 5(4) (2006) 47–54

4. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through
spatial and temporal cloaking. In: Proc. MobiSys 2003, ACM Press (2003) 31–42

5. Ennals, R., Sharp, R., Mycroft, A.: Linear types for packet processing. In: Proc.
ESOP 2004. Volume 2986 of LNCS. (2004) 204–218

6. Ennals, R., Sharp, R., Mycroft, A.: Task partitioning for multi-core network pro-
cessors. In: Proc. CC ’05. Volume 3443 of LNCS. (2005) 76–90

7. Kremer, U., Hicks, J., Rehg, J.H.: A compilation framework for power and en-
ergy management on mobile computers. Technical Report DCS-TR-446, Rutgers
University (2001)

8. Li, Z., Wang, C., Xu, R.: Computation offloading to save energy on handheld
devices: A partition scheme. In: Proc. CASES ’01, ACM Press (2001) 238–246

9. Ou, S., Yang, K., Liotta, A.: An adaptive multi-constraint partitioning algorithm
for offloading in pervasive systems. In: Proc. PERCOM 2006. (2006) 116–125

10. Kumar, R., Tsiatsis, V., Srivastava, M.B.: Computation hierarchy for in-network
processing. In: Proc. WSNA ’03, ACM Press (2003) 68–77

11. Liogkas, N., MacIntyre, B., Mynatt, E.D., Smaragdakis, Y., Tilevich, E., Voida, S.:
Automatic partitioning for prototyping ubiquitous computing applications. IEEE
Pervasive Computing 3(3) (2004) 40–47

12. Lombriser, C., Roggen, D., Stäger, M., Tröster, G.: Titan: A tiny task network for
dynamically reconfigurable heterogeneous sensor networks. In: Kommunikation in
Verteilten Systemen (KiVS), Springer Berlin Heidelberg (2007) 127–138

13. Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM CSUR 31(4) (1999) 406–471

14. Casavant, T.L., Kuhl, J.G.: A taxonomy of scheduling in general-purpose dis-
tributed computing systems. IEEE Trans. on Soft. Eng. 14(2) (1988) 141–154

15. Fernández-Baca, D.: Allocating modules to processors in a distributed system.
IEEE Transactions on Software Engineering 15(11) (1989) 1427–1436

16. Ioannidis, Y.E.: Query optimization. ACM CSUR 28(1) (1996) 121–123


