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Abstract— Orthogonal Frequency Division Multiplexing
(OFDM) significantly reduces receiver complexity in wire-
less broadband systems and therefore has recently been pro-
posed for use in wireless broadband multi-antenna (MIMO)
systems. The performance of maximum likelihood detector
in MIMO-OFDM system is optimal, however, its complex-
ity, especially with higher order constellation is prohibitive.
A number of other detectors, both linear and non-linear,
may offer substantially lower complexity, however, their
performance is significantly lower. This paper proposes a
class of lattice-reduction-aided (LRA) receivers for MIMO-
OFDM systems that can achieve near maximum likelihood
detector performance with low complexity. Performance
comparisons between LRA receiver and other popular re-
ceivers, including linear receivers and V-BLAST in both in-
dependent and correlated channels, are provided. It will
be shown that the performance of LRA receiver is supe-
rior as compared to other sub-optimal detection methods,
especially when the channel is correlated.
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I. Introduction

Multiple-input multiple-output (MIMO) technology has
recently become very popular since it can improve link reli-
ability without sacrificing bandwidth efficiency. An appar-
ent disadvantage of single-carrier based MIMO systems is
the fact that the computational complexity of the receiver
(either a vector-MLSE or a multi-channel equalizer) will
in general be very high. The use of OFDM alleviates this
problem by turning the frequency-selective MIMO channel
into a set of parallel narrowband MIMO channels, which
will greatly simplify the equalization process. Only a con-
stant matrix has to be inverted for each OFDM tone.

For the detection process, although the performance of
maximum likelihood detector is optimal, its complexity is
very high. A number of other detectors, both linear and
non-linear, offer substantially lower complexity, but their
performance is significantly lower. This paper proposes a
class of lattice-reduction-aided (LRA) receivers in MIMO-
OFDM systems that can achieve near maximum likelihood
detector performance with low complexity. We extend the
LRA receiver technique proposed in [9], applicable for 2×2
system, to a general nR × nT system, where nR ≥ nT .
The complexity of LRA receivers is similar to the linear
receivers, but its performance is close to that of maxi-
mum likelihood (ML) receiver. Performance comparisons
between LRA receiver and other popular receivers, includ-

ing linear receivers and V-BLAST, will be provided. It will
be shown that especially with higher order constellation
and when the channel is correlated, LRA significantly out-
performs other suboptimal detectors in terms of BER. The
remainder of this paper is organized as follows: In Section
II, the MIMO-OFDM system model with traditional linear
receivers is described. In Section III, the proposed LRA
receivers for nR × nT , nR ≥ nT multi-antenna systems are
presented. To test the effectiveness of the proposed LRA
receivers, simulation results will be provided in Section IV.

II. Background

A. System Model

In an OFDM-based spatial multiplexing system the indi-
vidual data streams are first OFDM-modulated and then
transmitted simultaneously from nT antennas. Figure 1
shows an OFDM-based spatial multiplexing system. The
modulator applies an Nc-point IFFT to Nc data symbols
and prepends the cyclic prefix (CP) of length L, which is
a copy of the last L samples of the IFFT output. The
overall OFDM symbol length is therefore T = Nc + L.
Throughout this paper, we assume L ≤ T/2. The CP acts
as a guard space between consecutive OFDM symbols and
avoids intersymbol-interference (ISI) if the channel impulse
response length is less than or equal to the length of the CP.
At the receiver, the CP is removed and an Nc-point FFT
is applied. The signals received by the individual antennas
are first passed through OFDM demodulators, separated,
demultiplexed, and also potentially decoded.
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Fig. 1. The block diagram of MIMO-OFDM transceiver.

In Figure 1, the wireless channel for each OFDM carrier
can be assumed to be quasi-static and flat, and therefore
can be represented by an nR×nT matrix H whose element



hij represents the complex gain of the channel between the
j-th transmit antenna and the i-th receive antenna. The
signal received at the m-th antenna can now be written as

rm(i) =
nT∑
v=1

L−1∑

l=0

hm,v(l)sv(i− l) + nm(t), (1)

where nm(t), (m = 1, . . . , nT ) is stationary additive (poten-
tially coloured) noise observed at the m-th receive antenna
during the ith symbol period. Each signal transmitted by
the transmit antenna v to receive antenna m is scaled by
the L-tap multipath channel represented its gains hm,v.
Using the following notation

r[i] = [r1[i], r2[i], . . . , rnR
[i]]T , (2)

s[i] = [s1[i], s2[i], . . . , snT [i]]T ,

n[i] = [n1[i], n2[i], . . . , nnR
[i]]T ,

we can rewrite Eq.(1) in vector-matrix form as

r(i) =
L−1∑

l=0

H ls(i− l) + n(t), (3)

where [H l]m,v = hm,v(l), m = 1, 2, . . . , nR, v =
1, 2, . . . , nT is the l-th path between the transmit antenna
v and receive antenna m. Assuming that the channel is of
length L taps, the channel response for the k-th carrier can
be written as:

H(ej2πk/Nc) =
1√
Nc

L−1∑

l=0

H le
−j2πlk/Nc , (4)

for k = 0, . . . , Nc − 1 and Nc is the number of OFDM
carriers. For notational convenience, in the remainder of
this paper we will denote the channel response for the k-th
carrier, H(ej2πk/Nc) as H(k). The received signal, trans-
mitted signal, and noise for the k-th carrier will be denoted
as y(k), s(k), and n(k), respectively.

Therefore the received signal for the k-th carrier can be
expressed as:

y(k) =
√

ρ

nT
H(k)s(k) + n(k), (5)

where s(k) =
[
s
(k)
1 , s

(k)
2 , . . . , s

(k)
nT

]T

is the transmitted signal

vector, n(k) is the nR×1 received noise vector, and ρ is the
signal to noise ratio independent of the transmit antennas.
The entries of n(k) are i.i.d. circularly symmetric complex
Gaussian variables with unit variance, i.e. n

(k)
i ∼ Nc(0, 1).

B. Correlated Channel Model

The capacity of MIMO systems depend on the spa-
tial properties of the MIMO channel. Partial correlation
of channel coefficients affects the capacity of the system.
With OFDM structure, for each carrier, the MIMO-OFDM
channel can be seen as having multipath flat fading charac-
teristics. It is well known that insufficient antenna spacing
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Fig. 2. Geometry of the scattering scenario.

and lack of scattering objects cause the antennas to be
correlated. When the channels are correlated at both the
transmitter and receiver sides, the channel response for the
lth transmission path can be written as [4]

H l = A
1/2
l HwB

1/2
l , (6)

where Hw is an uncorrelated nR × nT matrix with i.i.d.
Nc(0, 1) entries, Bl is an nT ×nT transmit covariance ma-
trix for the lth path, and Al is an nR×nR receive covariance
matrix for the lth path. Note that when the lth path is un-
correlated at the transmitter(receiver), Bl = I(Al = I).

Assuming that there is no line of sight between the trans-
mit and receive antennas, the signal at the receive antenna
can be seen as originating from a number of clusters or
scattering objects. Large values of angular spread fRx

0 and
sufficient antenna separation d result in uncorrelated sig-
nals at each of the antennas. In this paper, simulations
were conducted in both uncorrelated and correlated chan-
nels. In particular, the channel model used is based on
modifications of the models in COST-259 [2], [4].

C. Basic Linear Receivers

r(k)y(k)

H(k) G(k)
Q(r(k))+s(k)

n(k)

  s(k)

Fig. 3. Traditional linear receiver.

An important feature of linear receivers is their low com-
plexity. With linear receivers, the received signal vector
y(k) is linearly transformed by a matrix equalizer G(k) as

r(k) = G(k)y(k) =
√

ρ

nT
G(k)H(k)s(k) + G(k)n(k), (7)

which is later quantized to obtain an estimate of the
transmitted symbol vector ŝ(k) = Q(r(k)). This process
is described in Figure 3. For the zero-forcing (ZF) cri-

terion, the equalizer is given by G(k) =
√

nT

ρ

(
H(k)

)†

where
(
H(k)

)†
denotes the pseudo-inverse of H(k). The

ZF criterion suffers from noise enhancement if at one or
several OFDM carriers k the matrices H(k) are rank-
deficient or ill-conditioned. On the other hand, the mini-
mum mean-square error (MMSE) linear equalizer, G(k) =



σ2
√

ρ
nT

(
H(k)

)H
(

σ2ρ
nT

(
H(k)

)(
H(k)

)H

+ σ2
nInR

)−1

min-

imizes the error due to both the noise and interference.
There are nonlinear receivers that offer better performance
than linear receivers with moderate complexity, such as the
BLAST receivers [5], however, in the remainder of this pa-
per we will show that the proposed LRA-receivers are still
superior as compared to BLAST.

III. Lattice-Reduction-Aided Linear Receivers

A. Constellation, Lattices, and Basis Change

Let us consider a real-valued MIMO-OFDM system with
nT =nR=2, where the transmitted symbols s1 and s2 be-
long to a 2N + 1-PAM constellation, i.e. si ∈ {−N,−N +
1, . . . , 0, . . . , N − 1, N}. Assume that the channel matrix

for the k-th OFDM carrier is H(k) =
[
2 3
1 2

]
. There-

fore, the received constellation will consist of H(k)s(k) =
s
(k)
1 [2, 1]T + s

(k)
2 [3, 2]T . Due to the equalizing operation

and the direction of the basis vectors, the decision regions
can be seen as parallelograms described by the columns of
H(k). In this case, it can be seen that the angle between
h

(k)
1 and h

(k)
2 is very narrow and thus a small amount of

noise samples can cause the decoder to make a wrong de-
tection.
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Fig. 4. Original and new bases.

To generalize, the problem with linear receivers is that
the decision regions are very narrow when the bases of the
lattice are highly correlated. One solution is to find more
orthogonal bases for the same lattice to make the decision
regions more robust against noise and interference. For ex-
ample, as can be seen in Figure 4, the new bases, h

′(k)
1 and

h
′(k)
2 are more orthogonal to each other as compared to h

(k)
1

and h
(k)
2 . While a basis change does not always lead to an

optimum performance, a change towards more orthogonal
bases will, in general, improve the performance. The more
correlated the columns of H(k) are, the more significant
the improvement in performance is. In this paper, we pro-
pose an extension of a reduction technique, firstly appear
in [9] for 2× 2 systems, to a general nm × nt systems.

Theorem [9]: If H is a basis of a lattice, H ′ = HP is
also a basis of the same lattice if P and P−1 have integer
(possibly complex) entries.
For the problem in hand, the objective is to find a change
of basis P (k) which transforms the H(k) into H ′(k), for

k = 0, . . . , Nc−1 such that the decision regions for a specific
lattice and decoder are optimized.

B. LRA Receiver

An input symbol vector of the k-th OFDM carrier rep-
resented by s(k) in the original basis with elements in
ZC, where ZC is set of complex integer, is represented by

z(k) =
(
P (k)

)−1

s(k) in the reduced basis. Assuming the

received vector y(k) in Eq.(5) is already in the reduced ba-
sis,

y(k) =
√

ρ

nT
H ′(k)z(k) + n(k). (8)

Since H ′(k) = H(k)P (k), with the ZF receiver where

G(k) =
√

nT

ρ

(
H(k)P (k)

)†
, Eq. (7) can be written as

r(k) =
√

ρ

nT
G(k)H(k)P (k)z(k) + G(k)n(k). (9)

The estimate of z(k) is ẑ(k) = Q(r(k)). Since the lattice
points consist of elements in ZC, the quantization consist
of a rounding operation whereby the real and imaginary
parts are rounded separately.

To use the lattice theory, the original points in the con-
stellation are required to consist of symbols in ZC. Note
that the origin [0, . . . , 0]T also belongs to the lattice. Or-
dinary QAM constellations neither consist of contiguous
integers nor contain the origin, and thus, it is necessary to
scale and shift the original constellation.

Assuming the shifted and scaled constellation is trans-
mitted, the received signal vector is

y′(k) =
√

ρ

nT
H(k)s′(k) =

√
ρ

nT
H(k) 1

2

[
s(k) + d

]
. (10)

In terms of the signal received when the data bits are trans-
mitted using the original constellation, y, Eq.(10) can be
rewritten as:

y′(k) =
1
2
y(k) +

1
2

√
ρ

nT
H(k)d. (11)

To summarize, the operations at the receiver consist of
scaling, shifting, and equalizing in the new basis.

r(k) =

√
nT

ρ

(
H(k)P (k)

)† 1

2

[√
ρ

nT
H(k)P (k)(

(
P (k)

)−1
s(k))

+n(k) +

√
ρ

nT
H(k)P (k)

(
P (k)

)−1
d

]
(12)

As a special case, when nT = nR and the channel is of
full rank, Equation (12) can be rewritten as

r(k) =
(
P (k)

)−1

s′(k) +
1
2

√
nT

ρ

(
H(k)P (k)

)†
n(k). (13)

The next subsequent steps at the receiver are slicing,
returning to the original basis, and undoing the scaling
and shifting.

ŝ = 2P (k)Q
(
r(k)

)
− d (14)



Note that the slicing Q(.) is a rounding operation since
the symbols in the lattice belong to ZC. In general, LRA
receivers are expected have better performance than tradi-
tional linear receivers, especially in realistic communication
systems scenarios, where the channel is correlated to some
degree. In such scenarios, there will be significant gain
in performance using LRA linear receivers as compared to
traditional linear receivers and V-BLAST.

C. Basis Reduction Algorithm

Assume that h
(k)
1 ,h(k)

2 ∈ vec
(
H(k)

)
are the bases of

the lattice for the k-th OFDM carrier. The ideal Gram-
Schmidt orthogonalization will yield Gram-Schmidt coef-

ficient µ′ =

〈
h(k)

1 ,h(k)
2

〉
〈
h(k)

2 ,h(k)
2

〉 , however, this operation would

change the lattice since µ′ might not belong to ZC [6].
The weakly reduced Gram-Schmidt orthogonalization

rounds the real and imaginary parts of the ideal Gram-
Schmidt coefficients separately, i.e. µ = bµ′e. This weak
reduction method does not change the lattice. An exam-
ple of basis reduction based on this algorithm is shown in
Figure 4.

A notion of lattice reduction for a lattice basis
h

(k)
1 , . . . , h(k)

nT
was proposed by Lenstra, Lenstra, and Lo-

vasz (LLL) [6]. It uses similar ideas to the Gauss reduction
algorithm. For a given δ, 1

4 < δ < 1, the LLL reduction
algorithm modifies an input basis h

(k)
1 , . . . , h(k)

nT
such that

the resulting basis satisfies the δ-reduction properties

µi,j ≤ 1
2

for 1 ≤ j < i ≤ nT (15)

and

δ
∥∥∥ĥ

(k)

j + µj,j−1ĥ
(k)

j−1

∥∥∥
2

, (16)

where the vectors ĥ
(k)

1 , . . . , ĥ
(k)

nT
denote the Gram-Schmidt

orthogonalization of the input basis that can be calculated
recursively as

ĥ
(k)

1 = h
(k)
1 ,

ĥ
(k)

j = h
(k)
j −

j−1∑

i=1

µj,iĥ
(k)

i for j = 2, . . . , nT , (17)

and the Gram-Schmidt coefficients, are equal to

µj,i =

〈
ĥ

(k)

i , h
(k)
j

〉

〈
ĥ

(k)

i , ĥ
(k)

i

〉 . (18)

The original LLL algorithm as proposed in [6] can be
used to reduce the bases of real vectors. In Algorithm 1,
we extend the LLL algorithm in [6] to reduce the bases of
general complex vectors.

Algorithm 1: LRA lattice-reduction algorithm
——————————————————————-

Input: Lattice basis h
(u)
1 = H(u)[:, 1], ..., h(u)

nT
=

H(u)[:, nT ] ∈ CnT, for u = 0, . . . , Nc− 1 and 1
4 < δ <

1
k = 2

for u = 1, . . . , Nc do % for each carrier
while k ≤ nT do

for i = k − 1, ..., 1 do
hk = hk −

⌊
µk,i

⌉
hi; % round real and imag

% separately
end for
Compute ĥk as in (17)
if δ‖ĥk−1‖2 > ‖ĥk + µk,k−1ĥk−1‖2 then
hk−1 ↔ hk (exchange)

k = max(k − 1, 2)
else k = k + 1

end while
end for
Output: Reduced lattice basis H ′(u) = [h(u)

1 , ..., h(u)
nT

]
and P (u) defined as H ′(u) = H(u)P (u)

When the rank, which is equal to the number of transmit
antenna, nT = 2 and δ = 1, the algorithm above reduces
to the Gauss reduction algorithm as proposed in [9]. More
orthogonal reduced bases can be obtained by increasing δ
to one, however, this may increase the number of iterations
required.

Other basis reduction techniques such as the Korkin-
Kolotarev reduction [3], Minkowski basis [1], Seysen basis
[8] and hybrids [7] have different reduction criteria. These
bases may have better reduction properties, however, re-
quire more computational effort.

IV. Simulation Results

The simulations presented in this section were conducted
with the following parameters: Number of OFDM sub-
carriers, Nc=16, number of symbols transmitted per car-
rier=1000, number of transmit antenna nT =3, number of
receive antenna nR=3, δ = 1, and the FIR channel is of
length, L=3 with 3 resolvable paths. Transmission noise
was of complex AWGN N (0, 1). Uncoded system was con-
sidered. Gray coding was used for all cases. The multipath
channel model used was a modification of SUI-5 model [2].
For correlated channel case, scattering scenario was similar
to the ones in COST-259 model. For both the transmitter
and receiver side, the mean angle of arrival (AOA)=45o

and the rms angular spread=20o. 50 independent realiza-
tions were simulated for different SNR and the results were
averaged.
Remarks:
• Comparing Figure 5- 8, it can be seen that the perfor-
mance of the LRA receivers approaches the ML receiver
as the size of the QAM constellation is increased. This
occurs because LRA treats finite constellations as infinite
and therefore, data points at the constellation boundary
that originally have less neighbours end up having the
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Fig. 5. BER performance of a 3× 3 system with QPSK modulation
in uncorrelated channel
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Fig. 6. BER performance of a 3× 3 system with QPSK modulation
in correlated channel
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Fig. 7. BER performance of a 3×3 system with 16-QAM modulation
in uncorrelated channel

10 12 14 16 18 20 22 24 26 28 30
10

−3

10
−2

10
−1

10
0

B
it 

er
ro

r 
ra

te

SNR

linear ZF
Linear MMSE
Traditional ZF−VBLAST
ZF−LRA
Maximum Likelihood

Fig. 8. BER performance of a 3×3 system with 16-QAM modulation
in correlated channel

same number of neighbours as the internal constellation
points. This performance loss will be smaller if the ratio
between boundary constellation points and internal points
is smaller, which is the case with higher order constellations
such as 64-QAM and 256-QAM. Since the computational
complexity of the ML decoder in high order constellation
systems is very high, LRA decoder is a promising alterna-
tive, especially if a large number of transmit antennas is
used.
• From Figure 6 and 8, it is observed that as the correla-
tion of the channel increases, the performance of the LRA
receiver will approach the ML receiver. Also, with high
channel correlation, the performance of ZF and MMSE lin-
ear receiver are very poor. Since LRA receivers use more
orthogonal bases, there are less correlations between the
columns of H ′(k), k = 0, . . . , Nc − 1, as compared to the
original H(k), therefore it performs much better than lin-
ear receiver in correlated channel. Therefore, LRA is an
alternative method to improve bit error rate performance
when the channel correlation is high.
• The two sources of complexity in LRA receivers are in
computing the reduced basis of a lattice and to implement
the linear equalizer. In quasi-static channels, the lattice
is fixed during a block period of data, therefore the basis
reduction only has to be performed once for each block
period.

V. Conclusion

This paper proposes a low complexity receiver struc-
ture, based on lattice reduction theory, for nT × nR

MIMO-OFDM system. Simulation results show that the
proposed LRA receiver outperforms traditional linear re-
ceivers, whereas their complexity are similar. LRA receiver
performance approaches ML decoder in higher order con-
stellation system, where the computational complexity of
ML decoder is extra orbitant.
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