
University of Cambridge
Department of Engineering

Performance Analysis and Design

of Punctured Turbo Codes

Ioannis Ap. Chatzigeorgiou

Clare Hall

A dissertation submitted for the degree of

Doctor of Philosophy

Michaelmas 2006

To my father, Apostolos, who taught me that reinventing the wheel is

sometimes necessary.

To my mother, Thalia, who taught me never to give up faith and hope.

To my partner, Eirini, who taught me to enjoy life as it comes, with its

good and bad moments.

Abstract

Turbo codes, formed by the parallel concatenation of two recursive systematic

convolutional component codes separated by an interleaver, have been proposed

for use in a variety of wireless applications, including mobile, satellite and fixed

wireless systems. Analysis of their performance requires knowledge of their transfer

function, which conveys their distance properties. Using the transfer function, a

tight upper bound on their bit error probability, averaged over all interleavers of

a given size, can be evaluated. The upper bound closely reflects the actual bit

error rate performance of a turbo code on additive white Gaussian noise (AWGN)

channels, if maximum-likelihood decoding is used. In practice, however, suboptimal

iterative decoding is employed, nevertheless the bit error rate performance of a

turbo code converges towards low bit error probabilities for an increasing number

of iterations and coincides with the upper bound, when the turbo code operates in

the error floor region.

This dissertation is concerned initially with the determination of the transfer

function of turbo codes. We first introduce the augmented state diagram, a novel

approach for the evaluation of the transfer function of rate-1/3 turbo codes. We then

extend the concept of the augmented state diagram to account for turbo codes, whose

output is periodically punctured according to a selected pattern, thus achieving rates

higher than 1/3. Furthermore, we demonstrate that our technique can be used not

only to determine the transfer function of turbo codes and, subsequently, compute

their performance upper bound, but also to identify good puncturing patterns that

lead to punctured turbo codes yielding a low error floor.

As the input block length, or equivalently, the size of the constituent interleaver

increases, computation of the full transfer function of a turbo code becomes inten-

sive. However, turbo codeword sequences generated by input information sequences

having small Hamming weight, start playing a significant role in the error rate per-

formance of the turbo code. Motivated by this observation, we present a simple

method to quickly enumerate only the codeword sequences having low information

weight, instead of all codeword sequences composing the full transfer function. Con-

sequently, we obtain an accurate approximation of the performance upper bound of

punctured and non-punctured turbo codes, when large interleavers are used.

ii

We use our proposed approximation technique to demonstrate that there exist

rate-1/2 punctured turbo codes that can achieve lower error floors than that of their

rate-1/3 parent codes. In particular, we show that a particular puncturing scheme

can be used to reduce the rate of a turbo code from 1/3 to 1/2 and at the same

time achieve a coding gain at low bit error probabilities, when suboptimal iterative

decoding is used.

iii

Acknowledgements

First and foremost I would like to thank my supervisor Dr. Ian J. Wassell

for his support throughout this project and for allowing me the freedom to carry

out a major part of my thesis in the way I thought most suitable. His door was

always open and he was always keen to proof-read my work and discuss my findings.

My thanks are also extended to Professor Rolando Carrasco at the University of

Newcastle for the insightful discussions that have extended my knowledge in the

field of communication theory.

I am especially grateful to Dr. Miguel R. D. Rodrigues, Senior Research Asso-

ciate at Cambridge University, for helping me along the path to the completion of

this thesis. His guidance, his encouragement and his belief in me were invaluable.

At times when I felt like loosing sight of my way, he was always there to motivate me

and point me in the right direction. But above all, I thank him for being a friend!

All the best, Miguel, and boa sorte!

My most sincere appreciation is extended to the Engineering and Physical Sci-

ences Research Council for sponsoring my work through a grant awarded to my

supervisor, Dr. Wassell, for a joint research project between the universities of

Cambridge and Newcastle. It is because of their support that I managed to pursue

research at one of the finest academic institutions. I am also grateful to the Engi-

neering Department and my college, Clare Hall, for the additional financial support.

I could never forget to mention my colleagues and friends in rooms SN21 and

SN27 for making my time in the Digital Technology Group so enjoyable: Ali, Elgan,

Evan, Francisco, Jaime, Kam, Min and Stavros, thank you all! I will always re-

member our long discussions, ranging from scientific and high-tech issues to Indian

history and Tanzanian customs!

As always, the last paragraph is reserved for the loved ones, my parents, Apos-

tolos and Thalia, and my partner, Eirini. I will always be obliged to my parents

for their trust and confidence on my decisions and their continuous emotional sup-

port and encouragement during the past years. I am indebted to Eirini, who by

now knows more about communication theory than I do about architecture and the

arts. I thank her for her patience and support and for sharing with me moments of

disappointment, inspiration and achievement.

iv

Declaration

As required by the University Statutes, I hereby declare that this dissertation

is not substantially the same as any that I have submitted for a degree or diploma

or other qualification at any other university. This dissertation is the result of my

own work and includes nothing which is the outcome of work done in collaboration,

except where specifically indicated in the text.

I also declare that the length of this dissertation does not exceed 65,000 words,

including footnotes and bibliography, and that the number of figures is less than

150.

Ioannis Chatzigeorgiou

Cambridge, 2006.

v

Publications

The work discussed in this dissertation inspired the following publications:

1. Ioannis A. Chatzigeorgiou, Miguel R.D. Rodrigues, Ian J. Wassell and Rolando

Carrasco, “A Union Bound Approximation for Rapid Performance Evaluation

of Punctured Turbo Codes”, submitted to the 2007 IEEE International Con-

ference on Communications (ICC’07), Glasgow, United Kingdom, June 2007.

2. Miguel R.D. Rodrigues, Ioannis A. Chatzigeorgiou, Ian J. Wassell and Rolando

Carrasco, “Performance Analysis of Turbo Codes in Quasi-static Fading Chan-

nels”, submitted to IEEE Transactions on Wireless Communications.

3. Ioannis A. Chatzigeorgiou, Miguel R.D. Rodrigues, Ian J. Wassell and Rolando

Carrasco, “Comparison of Convolutional and Turbo Coding for Broadband

FWA Systems”, submitted to IEEE Transactions on Broadcasting.

4. Ioannis A. Chatzigeorgiou, Miguel R.D. Rodrigues, Ian J. Wassell and Rolando

Carrasco, “Can Punctured Rate-1/2 Turbo Codes Achieve a Lower Error Floor

than their Rate-1/3 Parent Codes?”, 2006 IEEE Information Theory Work-

shop (ITW’06), Chengdu, China, October 2006.

5. Ioannis A. Chatzigeorgiou, Miguel R.D. Rodrigues, Ian J. Wassell and Rolando

Carrasco, “A Novel Technique To Evaluate the Transfer Function of Punc-

tured Turbo Codes”, 2006 IEEE International Conference on Communications

(ICC’06), Istanbul, Turkey, June 2006.

6. Ioannis A. Chatzigeorgiou, Miguel R.D. Rodrigues, Ian J. Wassell and Rolando

Carrasco, “A Novel Technique for the Evaluation of the Transfer Function of

Parallel Concatenated Convolutional Codes”, 4th International Symposium on

Turbo Codes and Related Topics (ISTC’06), Munich, Germany, April 2006.

7. Ioannis A. Chatzigeorgiou, Miguel R.D. Rodrigues, Ian J. Wassell and Rolando

Carrasco, “Punctured Binary Turbo-Codes with Optimized Performance”,

62nd IEEE Semi-annual Vehicular Technology Conference (VTC’05-Fall), Dal-

las, Texas, USA, September 2005.

vi

8. Miguel R.D. Rodrigues, Ioannis A. Chatzigeorgiou, Ian J. Wassell and Rolando

Carrasco, “On the Performance of Turbo Codes in Quasi-Static Fading Chan-

nels”, 2005 IEEE International Symposium on Information Theory (ISIT’05),

Adelaide, Australia, September 2005.

9. Ioannis A. Chatzigeorgiou, Miguel R.D. Rodrigues, Ian J. Wassell and Rolando

Carrasco, “A Comparison of Convolutional and Turbo Coding Schemes for

Broadband FWA Systems”, 12th International Conference on Telecommuni-

cations (ICT’05), Cape Town, South Africa, May 2005.

10. Ioannis A. Chatzigeorgiou, Miguel R.D. Rodrigues, Ian J. Wassell and Rolando

Carrasco, “Turbo Coded OFDM/SC-FDE Techniques for MIMO Broadband

FWA Channels”, 1st International Symposium on Broadband Communications

(ISBC’04), Harrogate, Yorkshire, UK, December 2004.

vii

Contents

List of Figures xiii

List of Tables xiv

Glossary xv

1 Introduction 1

1.1 A Brief History of Channel Coding 1

1.2 Performance Evaluation of Turbo Codes 3

1.3 Thesis Organization and Main Contributions 4

2 An Overview of Convolutional and Turbo Codes 6

2.1 Introduction . 6

2.2 The Convolutional Encoder . 6

2.2.1 Encoder State Diagram and Trellis Representation 9

2.3 The Convolutional Decoder . 10

2.3.1 Log-Likelihood Ratios . 12

2.3.2 Maximum-Likelihood Decoding 13

2.3.3 The Viterbi Algorithm . 14

2.4 Error Probability for Convolutional Codes 16

2.4.1 Pairwise and First-Event Error Probabilities 16

2.4.2 Transfer Function of a Convolutional Code 18

2.4.3 Bit Error Probability . 20

2.5 The Turbo Encoder . 23

2.6 The Turbo Decoder . 25

2.6.1 The BCJR Algorithm . 27

2.6.2 Decoding Algorithms used in Practice 29

2.7 Error Probability for Turbo Codes . 32

viii

CONTENTS

2.7.1 Performance Profile of Turbo Codes 32

2.7.2 Union Bound on the Bit Error Rate Performance 35

2.8 Chapter Summary . 38

3 Performance Analysis of Non-Punctured Convolutional and Turbo

Codes 40

3.1 Introduction . 40

3.2 The Augmented State Diagram . 41

3.2.1 Imposing Computational Constraints 45

3.3 Alternative Techniques to Derive the Transfer Function 47

3.3.1 Divsalar’s Technique . 48

3.3.2 Benedetto and Montorsi’s Technique 49

3.3.3 Comparison of the Transfer Function Methods 50

3.4 Evaluation of the Performance Upper Bound 52

3.5 Chapter Summary . 57

4 Punctured Convolutional and Turbo Codes on AWGN Channels 58

4.1 Introduction . 58

4.2 Punctured Convolutional Codes . 59

4.3 Transfer Function of Punctured Convolutional Block Codes 61

4.4 Handling Long Puncturing Patterns and Long Input Sequences 67

4.5 Performance Analysis . 72

4.5.1 Good Puncturing Patterns . 75

4.5.2 Performance Upper Bounds 78

4.6 Chapter Summary . 82

5 A Union Bound Approximation for Rapid Performance Evaluation 83

5.1 Introduction . 83

5.2 A Simple Approximation of the Union Bound on the Bit Error Prob-

ability . 84

5.3 Direct Computation of the Dominant Conditional Weight Enumerat-

ing Function of Non-Punctured Convolutional Block Codes 89

5.3.1 Revisiting the Structure of the RSC Encoder 89

5.3.2 Properties of Information Weight-2 Codeword Sequences . . . 90

5.3.3 Enumeration of Information Weight-2 Codeword Sequences . . 92

5.3.4 The Benefit of Primitive Feedback Vectors 94

5.4 Direct Computation of the Dominant Conditional Weight Enumerat-

ing Function of Punctured Convolutional Block Codes 97

ix

CONTENTS

5.5 Case Study: Pseudo-random Puncturing 101

5.6 Evaluation of the Bound Approximation for Non-Punctured and Punc-

tured Turbo Codes . 105

5.7 Chapter Summary . 109

6 Punctured Turbo Codes Exhibiting Low Error Floors 110

6.1 Introduction . 110

6.2 An Interesting Observation: Performance Improvement as a Conse-

quence of a Code Rate Increase . 111

6.3 Performance Evaluation using the Bound Approximation 112

6.3.1 Analysis of Rate-1/3 Parent PCCCs 115

6.3.2 Analysis of Rate-1/2 Non-Systematic PCCCs 116

6.3.3 Analysis of Rate-1/2 Pseudo-randomly Punctured PCCCs . . 118

6.4 Convergence Behavior Analysis using EXIT Charts 121

6.4.1 Convergence of Rate-1/3 Parent PCCCs 126

6.4.2 Convergence of Rate-1/2 Non-Systematic PCCCs 127

6.4.3 Convergence of Rate-1/2 Pseudo-randomly Punctured PCCCs 127

6.5 Comparison of Analytic to Simulation Results 128

6.6 Chapter Summary . 131

7 Conclusions 132

A Software Tools 136

A.1 Introduction . 136

A.2 System Modeling and BEP Measurement 137

A.3 Performance Bounds on the BEP . 139

A.3.1 Exact Union Bound Calculation 139

A.3.2 Calculation of a Union Bound Approximation 142

A.4 EXIT Chart Analysis . 143

A.5 Summary . 145

References 150

x

List of Figures

2.1 Schematic for a non-recursive non-systematic convolutional encoder. . 7

2.2 Schematic for a recursive systematic convolutional encoder. 8

2.3 Block diagrams of two convolutional encoders. 8

2.4 State diagram for the RSC(1,5/7) code. 10

2.5 Trellis diagram for the RSC(1,5/7) code. 10

2.6 Path metric calculation for Viterbi decoding. 15

2.7 Derivation of the modified state diagram of the RSC(1,5/7) code. . . 19

2.8 Example of a decoding decision (between x′ and x′′), after an initial

error event (x′′) has occurred. 21

2.9 Comparison between simulation results and upper bounds to the bit

error probability, for various RSC codes. 22

2.10 Generic block diagram of a rate-1/3 turbo code. 24

2.11 Schematic for the symmetric turbo code PCCC(1,5/7,5/7). 24

2.12 Iterative decoding of a turbo code. 27

2.13 Effect of various parameters (number of iterations, decoding algo-

rithm, interleaver size, memory size and constituent codes) on the bit

error rate performance of a turbo code. 33

2.14 Regions that characterize the bit error rate performance of a turbo

code. 34

3.1 Derivation of the augmented state diagram of the RSC(1,5/7) block

code from the modified state diagram of the RSC(1,5/7) code. 42

3.2 Augmented state diagram of the RSC(1,5/7) block code, where the

number of remergings into the zero state are considered. 51

3.3 Comparison between bounds and simulation results after 8 iterations

for PCCC(1,5/7,5/7) using interleaver sizes of 100, 1000 and 10000. . 54

xi

LIST OF FIGURES

3.4 Upper bounds and simulation results after 8 iterations for PCCCs

using various constituent codes. 54

4.1 Puncturing of the rate-1/2 RSC(1,5/7) code to obtain a code of rate

3/4. 60

4.2 Insertion of zeroes before decoding a punctured convolutional code. . 61

4.3 Augmented state diagram of the rate-2/3 RSC(1,5/7) block code. . . 63

4.4 Generic diagram of a punctured convolutional block code (M = 2). . 63

4.5 Generic diagram of a punctured convolutional block code. 63

4.6 Augmented state diagram of the rate-2/3 RSC(1,5/7) block code,

assuming that the input block length is an even number. 66

4.7 Generic diagram of a punctured convolutional block code having a

puncturing period M = 2. 66

4.8 Conversion of the time-variant trellis diagram of RSC(1,5/7) with

M =2 to a time-invariant trellis diagram. 68

4.9 Reduction of the augmented state diagram. 68

4.10 Collapsed augmented state diagram of the rate-2/3 RSC(1,5/7) block

code for a puncturing period of M =2. 70

4.11 Simplified augmented state diagram of the rate-2/3 RSC(1,5/7) block

code. 70

4.12 Simplified augmented state diagram of the rate-2/3 RSC(1,7/5) block

code. 71

4.13 Equivalent approaches for puncturing a rate-1/3 turbo encoder to

obtain a higher code rate. 73

4.14 Comparison between bounds and simulation results after 10 iterations

for various configurations of a PCCC(1,5/7,5/7) using an interleaver

size of 36 bits. 77

4.15 Simulation results after 10 iterations for various rate 1/2 and 2/3

configurations. 77

4.16 Comparison between bounds and simulation results after 8 iterations

for various interleaver sizes of a rate-1/2 Sys. PCCC(1,5/7,5/7) em-

ploying the exact log-MAP decoding algorithm. 80

4.17 Comparison between bounds and simulation results after 8 iterations

for various interleaver sizes of a rate-1/2 Sys. PCCC(1,17/15,17/15)

employing the exact log-MAP decoding algorithm. 80

xii

LIST OF FIGURES

5.1 Contributions to the union bound on the bit error probability of vari-

ous non-punctured turbo codes employing an interleaver of size either

N =1, 000 or N =10, 000 bits. 86

5.2 Contributions to the union bound on the bit error probability of var-

ious punctured turbo codes employing an interleaver of size either

N =1, 000 or N =10, 000 bits. 87

5.3 Block diagram of a rate-1/2 constituent RSC encoder. 89

5.4 Trellis diagram for codeword sequences of information weight 2. . . . 91

5.5 Weight calculation for a parity check sequence, generated by a weight-

2 input information sequence. 93

5.6 Trellis diagram for the parity check weight calculation of a punctured

RSC code (k=1). 98

5.7 Enumeration of information weight-2 codeword sequences having sys-

tematic weight u(1,m) and parity check weight z(1, m). 101

5.8 Exact union bounds and their approximation for various non-punctured

turbo codes employing an interleaver of size 100, 1,000 or 10,000 bits. 106

5.9 Exact union bounds and their approximation for various punctured

turbo codes employing an interleaver of size 100, 1,000 or 10,000 bits. 107

6.1 Bound approximations of rate-1/3 parent turbo codes and rate-1/2

punctured turbo codes. 112

6.2 Transfer characteristics of a soft-input soft-output decoder for a rate-

2/3 RSC(1,5/7,5/7) code. 125

6.3 EXIT chart for the rate-1/2 Sys. PCCC(1,5/7,5/7). 125

6.4 EXIT charts for rate-1/3 parent turbo codes. 126

6.5 EXIT charts for rate-1/2 non-systematic turbo codes. 128

6.6 EXIT charts for rate-1/2 pseudo-randomly punctured turbo codes. . . 129

6.7 Comparison of analytic bounds to simulation results. 130

A.1 Configuration for the measurement of the bit error probability of a

turbo-coded system. 138

A.2 Stages for obtaining the union bound on the BEP of a turbo code. . . 141

A.3 Stages for obtaining an approximate union bound on the BEP of a

PCCC. 143

A.4 Derivation of the transfer characteristics of a constituent convolu-

tional decoder. 144

xiii

List of Tables

3.1 Coefficients Dd for the calculation of the union bound for the rate-1/3

PCCC(1,5/7,5/7). Three interleaver sizes are considered. 55

3.2 Coefficients Dd for the calculation of the union bound of four rate-1/3

PCCCs. The size of the interleaver is N =1, 000. 56

4.1 Rate-1/2 and 2/3 configurations for PCCC(1,5/7,5/7). The inter-

leaver size N is 36 bits. 76

4.2 Puncturing pattern configurations that do not cause the formation

of unwanted loops of zero input and output weight in the augmented

state diagram of a punctured convolutional block code, for patterns

of period M =2, 3, 4. 79

4.3 Coefficients Dd for the calculation of the union bound for two rate-1/2

systematic PCCCs. Three interleaver sizes are considered. 81

5.1 Primitive feedback polynomials for various memory sizes. 97

5.2 Pseudo-random row vectors PZ for various RSC code configurations. 108

6.1 Puncturing patterns for various rate-1/2 PCCC configurations. 111

6.2 Coefficients B2,d for rate-1/2 punctured configurations of the rate-1/3

parent PCCC(1,5/7,5/7). 113

xiv

Glossary

Abbreviations

AWGN Additive White Gaussian Noise

BCJR Bahl, Cocke, Jelinek and Raviv [decoding algorithm]

CPV Column Puncturing Vector

EXIT EXtrinsic Information Transfer [chart]

IOWEF Input-Output Weight Enumerating Function

IRWEF Input-Redundancy Weight Enumerating Function

LDPC Low Density Parity Check [code]

LLR Log-Likelihood Ratio

MAP Maximum A-Posteriori

ML Maximum Likelihood

NRNSC Non-Recursive Non-Systematic Convolutional [code]

NS Non Systematic

PCCC Parallel Concatenated Convolutional Code

PN Pseudo Noise [sequence]

PS Partially Systematic

RSC Recursive Systematic Convolutional [code]

SiSo Soft-input Soft-output [decoder]

SOVA Soft-Output Viterbi Algorithm

Sys Systematic

WEF Weight Enumerating Function

xv

LIST OF TABLES

Symbols

bold Symbols in bold letters denote matrices, vectors and sequences

italics Symbols in italic letters denote variables, constants and functions

W ,U ,Z Indeterminate variables associated with the information sequence,

the systematic sequence and the parity check sequence, respectively

D Indeterminate variable associated with the codeword sequence

L Indeterminate variable associated with the trellis path length

w,u,z Hamming weight of an information sequence, a systematic sequence

and a parity check sequence, respectively

d Hamming weight of a codeword sequence

l Length of a trellis path

T (W,U,Z, L) Transfer function of a convolutional code

B(W,U,Z) Transfer function of a convolutional block code

G Generator vector

P Puncturing pattern

Pj j-th column puncturing vector

df Free distance

dfree,eff Free effective distance

Eb Energy per transmitted coded bit

G(D) Generator polynomial

L Period of a feedback generator polynomial

M Period of a puncturing pattern

N Input block size, or equivalently, interleaver size

N0 Noise density

R Code rate

Pb Bit error probability

P u
b Union bound on the bit error probability

P (w) Contribution to the union bound of codeword sequences having

information weight w

Λ(x) Log-likelihood ratio associated with a bit x

xvi

LIST OF TABLES

ν Memory size of an encoder

C A convolutional code

P A parallel concatenated convolutional code

dist(x,y) Hamming distance between codeword sequences x and y

rem(i,j) Remainder of the division between i and j

bξc Integer part of a real number ξ

xvii

Chapter 1
Introduction

This dissertation is concerned primarily with the development of techniques to ac-

curately evaluate the full transfer function of a turbo code, and alternatively, to

quickly compute the most significant terms of it. As a result, we can obtain tight

upper bounds, or bound approximations respectively, on the bit error probability of

turbo codes, operating in the error floor region. In particular, we concentrate on the

performance analysis of punctured turbo codes, owning to the increased bandwidth

efficiency they provide, which is attractive to wireless applications.

Although this brief description of our work may appear to be obscure at first,

the motivation and application of our work will hopefully become evident as the

thesis unfolds. However, before explaining the particulars of turbo codes and pre-

senting our contributions, we first give a very short overview of the history of channel

coding, from Shannon’s theorem on channel capacity to today’s dominant capacity-

approaching codes. Next, we stress the importance of bounding techniques to the

performance analysis and evaluation of turbo codes in particular, and we conclude

the introductory chapter by giving an outline of the thesis structure.

1.1 A Brief History of Channel Coding

The history of channel coding, also referred to as forward error correction, dates back

to Shannon’s pioneering work [1] in 1948, in which he showed that it is possible to

design codes with any desired small probability of error, whenever the transmission

rate is smaller than the capacity of the channel. Unfortunately, Shannon provided

no insights on how to actually design these codes.

Until the late 1940s, communication devices were equipped with error detection

capabilities only. Hamming was the first to propose a single-error correcting code [2]

1

1.1 A Brief History of Channel Coding

in 1950, while Golay developed a more efficient scheme able to correct up to three

erroneous bits [3]. Both Hamming and Golay codes group blocks of information bits

together with parity check bits, the latter being computed using a mathematical

combination of the information bits. Such codes are known as block codes. Popular

variations of block codes are the Reed-Muller and the cyclic redundancy codes. Sub-

classes of cyclic redundancy codes, such as the Bose-Chaudhuri-Hocquenghem and

Reed-Solomon codes, are still used in a wide variety of applications [4].

In 1955, Elias introduced the concept of convolutional coding [5]. The convo-

lutional encoder makes use of shift registers to generate output bits based on the

present input bit as well as past inputs. Contrary to block codes, partitioning of the

information sequence into blocks is not required. The main advantage of convolu-

tional codes over block codes is better error rate performance, owing to the optimal

exploitation of soft channel observations by the decoding algorithm. In particular,

Viterbi proposed a maximum likelihood sequence estimation algorithm [6] in 1967,

while a more efficient but more complex algorithm, based on maximum a-posteriori

decoding, was developed by Bahl et al. [7] in 1974. Convolutional coding was ini-

tially introduced in standards for satellite communication applications and deep

space missions, but was later also adopted in mobile communication systems.

Concatenation of codes was the next significant step that enabled better per-

formance of codes on communication channels that introduced burst errors. More

specifically, Forney showed [8] in 1966 that a concatenated coding system with a

powerful outer code can perform reasonably well, when its inner decoder is operated

in the high error probability region. In principle, block encoders can be combined

with convolutional encoders and interleavers, in parallel or serial schemes. A pop-

ular scheme, initially developed for NASA, combines a conventional convolutional

inner code with a powerful Reed-Solomon outer code [9].

For years to come, channel coding was considered to have limited applicability to

communications systems with bandwidth restrictions, hence research interest shifted

to joint coding and modulation, with Ungerböck proposing an efficient scheme in

1982, known as trellis-coded modulation [10]. However, in 1993, interest shifted

back to channel coding, when Berrou, Glavieux and Thitimajshima presented turbo

codes [11]. Traditionally, a turbo encoder is the parallel concatenation of two convo-

lutional codes separated by an interleaver. However, the name “turbo” comes from

the similarity in logic between the turbo engine and the iterative decoding process

between the two component soft-input soft-output (SiSo) convolutional decoders at

the receiver. Owing to their spectacular error rate performance on additive white

Gaussian (AWGN) channels as well as fast fading channels, turbo codes attracted

2

1.2 Performance Evaluation of Turbo Codes

intensive research in companies and universities all over the world, and they were

eventually standardized in third generation mobile systems for image, video and mail

transmissions, fixed wireless access systems, digital audio broadcasting and satellite

communications [12].

Turbo codes made researchers realize the importance of the turbo principle,

which can be extended to other concatenated schemes, such as modulation and

coding or equalization and coding. Furthermore, the belief that other capacity-

approaching codes existed was strengthened and, consequently, interest in channel

coding was reignited. As a result, a family of codes known as low-density parity check

(LDPC) codes, invented in the early 1960s by Gallager [13] and largely forgotten

since then, was rediscovered in the late 1990s [14]. Like turbo codes, they also attain

capacity by means of an iterative decoding process and they also get close to the

theoretical Shannon limit. Today, turbo codes and LDPC codes have proven to be

serious contenders for inclusion in next generation wireless network standards.

1.2 Performance Evaluation of Turbo Codes

Conventionally, the performance of a digital communication system consisting of a

transmitter, a communication channel and a receiver, is measured by evaluating the

probability of a bit error at the output of the receiver, over a range of signal-to-noise

ratio values at the input of the receiver [15]. The main tools for the performance

evaluation of a communication system is either computer simulation or the derivation

of analytic expressions for the bit error probability. Computer simulation generates

reliable error probability estimates as low as 10−6 for low signal-to-noise ratios.

Performance analysis at lower error probabilities and, subsequently, higher signal-

to-noise ratios, using computer simulation is time-consuming and impractical, hence

an analytic approach is the only alternative.

When a simple uncoded communication system is considered, such as a two-

level modulation scheme over a memoryless channel, a hard decision is made upon

reception of each individual modulated bit. In such cases, it is relatively simple to

derive an exact expression for the probability of error, provided that the probability

distribution of noise on the channel is known. When high order modulation schemes

are used, where bits are grouped into symbols, or when channel codes are employed,

where a decoding decision can only be made upon reception of a sequence of bits,

mathematical development of an exact expression for the probability of error is either

too complex or impractical. In such cases, the usual approach is to derive an upper

bound on the error probability.

3

1.3 Thesis Organization and Main Contributions

A standard approach to upper bound the error probability is by taking the

sum of the error probabilities for all possible erroneous events. In additive white

Gaussian noise channels this upper bound, known as the union bound, progressively

approaches and, at high values of signal-to-noise ratios, eventually merges with the

curve of the actual performance of a turbo code [16]. Nevertheless, improved bounds

that predict the performance at low signal-to-noise ratios [17] and on quasi-static

fading channels [18] have also been derived.

1.3 Thesis Organization and Main Contributions

We begin our journey by providing an overview of convolutional and turbo codes

in Chapter 2. We describe their structure, their representation and the optimal

and suboptimal decoding algorithms employed. We review the analytic expressions

for the evaluation of their bit error probability and we stress the significance of

the relationship between the transfer function of a turbo code and the transfer

functions of its constituent convolutional codes, when a uniform interleaver is used.

In particular, we explain that knowledge of the transfer function of each constituent

code allows the derivation of a union bound on the error rate performance of the

corresponding turbo code, which, in turn, gives an accurate estimate of the error

floor.

Chapter 3 reports on the first contribution, an efficient method to compute the

transfer function of a constituent code, based on the novel concept of the augmented

state diagram. Existing techniques are presented and compared to our proposed

approach, while the accuracy of our technique is validated by comparing simulation

results to theoretical bounds.

Our proposed method can be used to obtain the transfer functions of constituent

codes, when non-punctured rate-1/3 turbo codes are considered. In Chapter 4 we

extend the concept of the augmented state diagram to punctured convolutional

codes, which can be used to construct turbo codes having rates higher than 1/3. We

discuss the computational complexity of the modified method and we present ways

to reduce it. As expected, tight bounds on the average performance of punctured

turbo codes can be subsequently derived. Alternatively, we demonstrate that our

approach can also be used to identify puncturing patterns that lead to high-rate

turbo codes yielding low error floors.

Our technique can be used to derive the full transfer function of constituent codes

separated by an interleaver of small or moderate size. When long interleavers are

used though, computation becomes intensive and time-consuming. In Chapter 5 we

4

1.3 Thesis Organization and Main Contributions

invoke a property of turbo codes according to which, codeword sequences generated

by input information sequences having small Hamming weight play an increasingly

significant role in determining the error rate performance, as the interleaver becomes

larger. Motivated by this property, we present a simple method to quickly enumer-

ate only the codeword sequences having low information weight, instead of all the

codeword sequences comprising the full transfer function. Consequently, we can re-

strict ourselves to the methods based on the augmented state diagram when short

interleavers are used, while we can use the technique introduced in this chapter to

quickly obtain an accurate approximation of the performance upper bound of turbo

codes, when long interleavers are employed.

Chapter 6 opens by comparing the performance bound approximation of rate-1/2

punctured turbo codes using long interleavers to the bound approximation of their

rate-1/3 parent turbo codes. Surprisingly, we observe that certain configurations

of rate-1/2 punctured turbo codes yield a lower bound than that of their rate-1/3

parent codes. We perform an extensive analysis to demonstrate that a specific

family of rate-1/2 turbo codes, which we call pseudo-randomly punctured turbo

codes, always exhibit a lower error floor than that of their rate-1/3 parent codes,

while their performance always converges towards low bit error probabilities, for an

increasing number of iterations. This result reveals that certain puncturing patterns

can be used to reduce the rate of a turbo code from 1/3 to 1/2 and at the same time

improve the code performance at low bit error probabilities.

Chapter 7 concludes the dissertation summarizing the main contributions and

proposing future lines of work.

A brief description of the software tools we developed during the course of our

work, is given in the Appendix.

5

Chapter 2
An Overview of Convolutional and Turbo

Codes

2.1 Introduction

Block codes and convolutional codes are the two major classes of codes for error

correction. A turbo code, as it was originally conceived, is the parallel concatenation

of convolutional codes separated by interleavers. Hence, the focus of the first part

of this chapter is on convolutional codes. We give a brief account of their structure,

their most common types and their representation using graphs. The fundamentals

of the decoding operation are described in more detail, since they form the basis

for the computation of a tight upper bound on the error probability, which in turn

gives us insight into the performance of a convolutional code.

The second part of this chapter is concerned with the characteristics of turbo

codes. The generic structure of the encoder is presented and the concept of iterative

decoding is introduced. We briefly describe the optimal decoding algorithm as well

as suboptimal but more practical alternatives. The second part concludes, demon-

strating the dependency of the error probability of turbo codes on the properties of

their constituent convolutional codes.

Example cases for both convolutional and turbo codes are given throughout the

chapter.

2.2 The Convolutional Encoder

Convolutional codes, first introduced by Elias [5], are linear, time-invariant, finite-

memory systems that output a codeword sequence for every input information se-

6

2.2 The Convolutional Encoder

GF2

GF1

g1
(F1) g2

(F1) gv-1
(F1) gv

(F1)

g1
(F 2) g2

(F 2) gv-1
(F 2) gv

(F 2)

g0
(F1)

g0
(F 2)

Figure 2.1: Schematic for a non-recursive non-systematic convolutional encoder.

quence. Conceptually, information and codeword sequences are of infinite length.

The schematic of a binary convolutional encoder with one input, two outputs and

ν memory elements in the form of shift registers, is shown in Fig.2.1. It is assumed

that the encoder starts with all ν registers clear. In this case, we say that the en-

coder is in the zero state. At each time step, an input information bit is modulo-2

added to the stored values, depending upon the presence (or not) of connections

between the registers and the modulo-2 adders. As a consequence, two output bits

are generated and all bits stored in the registers are shifted to the right, while the

input bit is moved to the leftmost register.

A measure of the redundancy introduced by a code, is given by the ratio R of

the number of input information bits to the output coded bits and is known as the

code rate. In the case of convolutional codes, this is also equivalent to the ratio

of the number of inputs to the number of outputs of the encoder1. Our example

convolutional code has a code rate R=1/2.

The encoder in Fig.2.1, is also known as a non-systematic non-recursive con-

volutional (NRNSC) encoder. An encoder is said to be systematic, if the input

information sequence appears unchanged at one of its outputs. Furthermore, the

encoder is called recursive, when the input does not directly affect the memory state

of the encoder, due to the presence of a feedback loop. The schematic of a rate 1/2

recursive systematic convolutional (RSC) is shown in Fig.2.2.

A convolutional encoder can be described by the connections between the input

of the shift registers and the modulo-2 adders. To describe the NRNSC encoder of

Fig.2.1, we use two row-vectors, GF1 = [gF1
0 gF1

1 . . . gF1
ν] and GF2 = [gF2

0 gF2
1 . . . gF2

ν],

1Throughout this thesis a code rate of 1/2 is always assumed, unless otherwise stated.

7

2.2 The Convolutional Encoder

GF

GR

g1
(R) g2

(R) gv-1
(R) gv

(R)

g1
(F) g2

(F) gv-1
(F) gv

(F)

g0
(R)

g0
(F)

Figure 2.2: Schematic for a recursive systematic convolutional encoder.

which we call generator vectors. An element of a generator vector is set to “1” if

there is a connection between the encoder input or the output of the corresponding

shift register and the modulo-2 adder, otherwise it is set to “0”. In the case of the

RSC encoder of Fig.2.2, we need a generator vector GR to describe the connections

of the feedback loop and a generator vector GF to describe the connections of the

feed-forward path. In order to distinguish between NRNSC and RSC encoders, we

use the notation NRNSC(GF1,GF2) and RSC(1,GF /GR), where “1” corresponds

to the systematic output of the RSC encoder. Note that the generator vectors are

more conveniently represented as octal numbers. For example, the NRNSC encoder

of Fig.2.3(a) has generator vectors GF1 =[111]=78 and GF2 =[101]=58, whereas the

RSC encoder of Fig.2.3(b) can be described by GR =[111]=78 and GF =[101]=58.

A more compact representation of each encoder is NRNSC(7,5) and RSC(1,5/7),

respectively.

Other significant parameters that characterise a convolutional code are the mem-

ory size or memory order, which is equal to the number of shift registers ν used by

(a) NRNSC(7,5) (b) RSC(1,5/7)

Figure 2.3: Block diagrams of two convolutional encoders.

8

2.2 The Convolutional Encoder

the encoder, and the constraint length, which refers to the total number of bits in-

volved in the encoding operation at each time step. For our example cases of rate

1/2 convolutional codes, the constraint length is equal to ν + 1.

2.2.1 Encoder State Diagram and Trellis Representation

Generator vectors are an implementation-oriented way to describe convolutional

codes. However, other ways of representing a convolutional encoder are possible. A

convolutional encoder has a finite number of shift registers ν and therefore a finite

number of memory states 2ν . Hence, an encoder can be seen as a finite-state machine

and can also be described by a graph, known as the state diagram.

The state diagram of a binary convolutional encoder consists of nodes, that

represent the possible memory states of the encoder. A branch that interconnects

two nodes, corresponds to the transition from one state to another state, caused by

an input bit. Each branch is labeled by the input information bit and the output

coded bits generated during the state transition. The RSC encoder in Fig.2.3(b) with

ν = 2 registers, has 2ν = 4 possible memory states s ∈ {(00), (01), (10), (11)}. The

state diagram for this encoder is shown in Fig.2.4. There are two branches leaving

each state, since the encoder accepts only one input bit at a time, which can take

two possible values causing an equal number of state transitions. We have labeled

each branch with the input bit and the output bit generated by the feed-forward

path, known as parity check bit. Due to the systematic nature of the encoder, the

other output bit, which is called systematic bit, is identical to the input information

bit. As an example, consider the state transition (10) → (11), which is labeled with

0/1. We understand that if a “0” is input to the encoder when its memory is in

state (10), a transition to state (11) will occur, generating a parity check bit equal

to “1”. If we take into account the systematic bit as well, the coded output will be

“01”.

We can use the information bits of an input sequence to draw a path along

the state diagram and thus determine the state transitions and the corresponding

output codeword sequence. However, as the length of the input sequence increases,

it becomes difficult to trace the path, since the same states are visited multiple

times. It becomes evident that the state diagram needs to be modified, so as to take

time into account. Such a modified diagram is known as a trellis.

The nodes of a trellis diagram, which refer to the memory states of the encoder,

are drawn along the same vertical line and are replicated at each time step. The

nodes of two consecutive time steps are interconnected, using the same logic as in the

9

2.3 The Convolutional Decoder

10 01

11

1/0

0/1 0/1

0/0

1/0

00

1/1 1/1

0/0

Figure 2.4: State diagram for the RSC(1,5/7) code.

case of the state diagram. The state diagram in Fig.2.4 can be modified so as to give

the trellis diagram in Fig.2.5. For example, assume that the information sequence

“1-0-1-1” is input to the encoder, which is initially in the zero state. Looking

at the trellis diagram of the rate-1/2 RSC encoder in Fig.2.5, it is clear that the

input sequence causes the state transitions (00)→ (10)→ (11)→ (11)→ (11), or,

equivalently, 0 → 2 → 3 → 3 → 3 in decimal form, which in turn generates the

codeword sequence “11-01-10-10”. Note that each pair in the codeword sequence

consists of the systematic bit and the parity check bit.

0/0
00 (0)

01 (1)

10 (2)

11 (3)

0/0

1/1

1/1

1/0

0/1

0/1

1/0

0/0

1/1

1/1

1/0

0/1

0/1

0/0

1/1

1/1

1/0

0/1

0/1

0/0

1/1

1/1

1/0

0/1

0/1

0/0

1/0

0/0

1/0

0/0

1/0

Figure 2.5: Trellis diagram for the RSC(1,5/7) code.

2.3 The Convolutional Decoder

In order to discuss the decoding of convolutional codes, we first briefly review the

underlying transmission system and the fundamental probabilistic concepts applied

by the decoding algorithm.

10

2.3 The Convolutional Decoder

A binary information sequence u=(u1, u2, . . . , ut, . . .) is input to a convolutional

encoder. Polar signalling, which is the baseband equivalent of binary phase shift

keying (BPSK), is used to map the output coded bits to antipodal symbols. We

assume that each coded bit equal to “0” is mapped to “+1”, otherwise it is mapped

to “−1”. The transmitted modulated codeword sequence x = (x1,x2, . . . ,xt, . . .)

has the same length as the input sequence v. A codeword xt in x, where t > 0,

consists of the modulated coded bits generated by the convolutional encoder, when

ut was the input bit. For example, if one of the rate-1/2 encoders of Fig.2.3 was

used, an input bit ut would cause the generation of the codeword xt = (x
(1)
t , x

(2)
t),

where x
(1)
t and x

(2)
t are the modulated coded bits. The received codeword sequence

y=(y1,y2, . . . ,yt, . . .), which is impaired by the channel noise, needs to be decoded

so as to obtain an estimate x̂ of the transmitted sequence x.

Decoding of the received sequence y is an inverse probability problem, since it

involves computing the conditional probability of the transmitted sequence x, given

the received sequence y, i.e., P (x | y). We can obtain P (x | y), using Bayes’

theorem

P (x | y) =
P (y | x)P (x)

P (y)
. (2.1)

We refer to P (x | y) as a-posteriori probability, whereas P (x) is known as a-priori or

intrinsic probability. The conditional probability density function P (y | x) depends

on the communication channel and is called the likelihood of x.

The goal of the convolutional decoder is to find the codeword sequence x̂ for

which the a-posteriori probability P (x | y) is maximized. The normalizing factor

P (y) is a constant and can be neglected when finding the optimal decoding decision,

therefore

x̂ = arg max
x

(P (x | y)) = arg max
x

(P (y | x)P (x)) . (2.2)

This approach is known as maximum a-posteriori (MAP) decoding. It is common

practice to assume that all codeword sequences are equally likely, thus P (x) is also

a constant and need not be computed, i.e.,

x̂ = arg max
x

(P (y | x)) . (2.3)

This method is called maximum-likelihood (ML) decoding.

Probabilities usually describe frequencies of outcomes in random experiments.

However, probabilities can also be used to quantify a belief in a proposition. Decod-

ing can be seen as a process that makes decisions based on the observation of the

received sequence and provides degrees of belief, or else reliability values, associated

11

2.3 The Convolutional Decoder

with those decisions. In order to distinguish between probabilities and reliability

values, we need to introduce the concept of the log-likelihood ratio.

2.3.1 Log-Likelihood Ratios

A coded bit x
(i)
t in codeword xt of the output sequence x is a random variable, which

takes on a value from the set {−1, +1} with probability P (x
(i)
t). The log-likelihood

ratio (LLR) associated with the coded bit x
(i)
t is defined as

Λ(x
(i)
t) = ln

P (x
(i)
t = +1)

P (x
(i)
t = −1)

. (2.4)

The sign of Λ(x
(i)
t) is the hard decision on the coded bit, whereas the magnitude

|Λ(x
(i)
t)| is the reliability of this decision. For example, if Λ(x

(i)
t) > 0, then x

(i)
t

should be equal to “+1”, with reliability |Λ(x
(i)
t)|. We refer to Λ(x

(i)
t) as the LLR,

or the soft value, of the coded bit x
(i)
t . Hagenauer et al. [19] presented an extensive

analysis of the properties and the algebra of log-likelihood ratios.

If the LLR value Λ(x
(i)
t) is known, expressions for the probabilities P (x

(i)
t =+1)

and P (x
(i)
t =−1) can be derived from (2.4), as follows

P
(
x

(i)
t = +1

)
=

exp
(
Λ(x

(i)
t)

)

1 + exp
(
Λ(x

(i)
t)

) ,

P
(
x

(i)
t = −1

)
=

1

1 + exp
(
Λ(x

(i)
t)

) ,

(2.5)

and can be merged into a single compact expression

P
(
x

(i)
t

)
=

exp
(
0.5Λ(x

(i)
t)

)

1 + exp
(
Λ(x

(i)
t)

) · exp
(
0.5x

(i)
t Λ(x

(i)
t)

)
. (2.6)

Based on the definition of the log-likelihood ratio, the LLR of the received coded

bit y
(i)
t given the transmitted coded bit x

(i)
t , is equal to

Λ(y
(i)
t | x(i)

t) = ln

(
P (y

(i)
t | x(i)

t = +1)

P (y
(i)
t | x(i)

t = −1)

)
. (2.7)

The output of a discrete memoryless fading channel with additive white Gaussian

noise, can be described statistically by the probability density function

P (y
(i)
t | x(i)

t) =
1

σ
√

2π
exp

(
− Ec

2σ2
(y

(i)
t − x

(i)
t)2

)
, (2.8)

12

2.3 The Convolutional Decoder

where σ2 =N0/2 is the noise variance and Ec is the transmitted energy per coded bit.

If Eb is the energy per input information bit and R is the rate of the convolutional

code, then Ec =EbR. Substituting (2.8) in (2.7), we obtain

Λ(y
(i)
t | x(i)

t) = ln

exp

(
−EbR

2σ2 (y
(i)
t − 1)2

)

exp
(
−EbR

2σ2 (y
(i)
t + 1)2

)

 , (2.9)

which can be further reduced to

Λ(y
(i)
t | x(i)

t) = Λcy
(i)
t , (2.10)

where

Λc = 4EbR/N0, (2.11)

is known as the channel reliability. A relation between P (y
(i)
t | x(i)

t) and Λ(y
(i)
t | x(i)

t)

can be found in a similar manner to (2.6), i.e.,

P (y
(i)
t | x(i)

t) =
exp

(
0.5Λcy

(i)
t

)

1 + exp
(
Λcy

(i)
t

) · exp
(
0.5Λcx

(i)
t y

(i)
t

)
. (2.12)

2.3.2 Maximum-Likelihood Decoding

If we assume that the coded bits in the output sequence x are independent random

variables, expression (2.2) can be rewritten for the case of an AWGN communication

channel, as follows

x̂ = arg max
x

(∏
t

∏
i

P (y
(i)
t | x(i)

t)P (x
(i)
t)

)
. (2.13)

We introduce the LLR values associated with P (x
(i)
t) and P (y

(i)
t | x

(i)
t) using (2.6)

and (2.12), respectively, but we neglect all terms that remain constant during the

decoding operation. The estimated codeword sequence x̂ can be obtained as follows

x̂ = arg max
x

(
0.5Λc

∑
t

∑
i

x
(i)
t y

(i)
t + 0.5

∑
t

∑
i

x
(i)
t Λ(x

(i)
t)

)
. (2.14)

Since in ML decoding there is no knowledge of the a-priori LLR, Λ(x
(i)
t), it is assumed

that the coded bits are uniformly distributed, hence P (x
(i)
t =+1)=P (x

(i)
t =−1)=0.5

and, consequently, Λ(x
(i)
t)=0. The scaling factor 0.5Λc can be ignored, so the ML

decoding rule reduces to

x̂ = arg max
x

(∑
t

∑
i

x
(i)
t y

(i)
t

)
. (2.15)

13

2.3 The Convolutional Decoder

Although, conceptually, both the transmitted and the received codeword se-

quence are of infinite length, we assume for practical reasons that t = 1, . . . , N ,

where N is a large number. If the rate-1/2 convolutional decoder makes a hard de-

cision on the received sequence y before performing the ML decoding operation, i.e.,

each received coded bit y
(i)
t is set to “+1” if its value is greater than zero, otherwise

it is set to “−1”, the ML decoding rule reduces to

x̂ = arg max
x

(N − dist(x,y)) (2.16)

or, equivalently,

x̂ = arg min
x

(dist(x,y)) , (2.17)

where dist(x,y) denotes the number of coded bits that sequences x and y differ,

known as Hamming distance. Consequently, the estimated codeword sequence x̂

is the sequence among all valid codeword sequences with the smallest Hamming

distance from the received codeword sequence. The minimum Hamming distance

between any two codeword sequences x′ and x′′ of a convolutional code is known as

free distance and is defined as

df = min
x′ 6=x′′

dist(x′,x′′). (2.18)

We conclude from (2.17) and (2.18) that the free distance plays an important role

in the error rate performance of a convolutional code; the larger its free distance is,

the more resilient to errors the codeword sequences are.

2.3.3 The Viterbi Algorithm

Maximization of the sum of inner products (2.15) between the received coded bits

in sequence y and the coded bits in a codeword sequence x, can be achieved by

means of an exhaustive search among all valid codeword sequences generated by the

convolutional encoder. This operation can be simplified considerably, if we observe

that any valid codeword sequence x forms a path along the trellis diagram and a

number of paths merge to a particular memory state at every time step.

For simplicity, we continue to pursue the example of rate-1/2 convolutional codes.

The trellis diagram for a convolutional code of memory ν, has a total of 2ν states.

If after T time steps, where T is an arbitrary number, the paths of two codeword

sequences x′ and x′′ merge in state s ∈ [0, . . . , 2ν−1], we can apply the ML decoding

rule to x′ and x′′ for t = 1, . . . , T only, no matter what the subsequent received

coded bits are. If the sum of the inner products achieved by the first T codewords

of sequence x′ is greater than that achieved by sequence x′′, we can eliminate from

14

2.3 The Convolutional Decoder

0

1

2

3
t-1 t

PMt-1

PMt-1 BMt

(0)

(1)
(0,2)

BMt
(1,2)

PMt = max(PMt-1 +BMt , PMt-1 +BMt)
(2) (0) (0,2) (1) (1,2)

Figure 2.6: Path metric calculation for Viterbi decoding.

the exhaustive search all sequences whose first T codewords are identical to those

of x′′. In order to materialize this observation, Viterbi proposed in [20] an efficient

algorithm based on metrics comparison and path elimination.

For each branch of the trellis of a rate-1/2 convolutional code that interconnects

two states s′, s ∈ [0, . . . , 2ν−1] at a time step t, the Viterbi algorithm assigns a

metric given by

BM
(s′,s)
t =

2∑
i=1

x
(i)
t y

(i)
t (2.19)

where xt =(x
(1)
t , x

(2)
t) is the codeword associated with the branch and yt =(y

(1)
t , y

(2)
t)

is the received codeword at time step t. This metric is called the branch metric.

A path is composed of a series of interconnected branches and the sum of their

metrics composes the path metric, denoted as PM. As the path progresses in the

trellis, subsequent branches become part of it and its metric changes accordingly. If

two paths merge to a state s at a time step t, the Viterbi algorithm selects the path

with the higher metric, which is called the survivor path, and disregards the other.

The path metric of the survivor path at a time step t for a state s is given by

PM
(s)
t = max

(
PM

(s′)
t−1 + BM

(s′,s)
t , PM

(s′′)
t−1 + BM

(s′′,s)
t

)
(2.20)

where s′ and s′′ are the states occupied by the competing paths at time step t−1,

before they merge to state s at time step t. The add-compare-and-select process is

illustrated in Fig.2.6, for the case of a memory size 2 convolutional code.

In general, 2ν paths survive at each time step, i.e., one path per state, while all

others are neglected. The corresponding 2ν path metrics are stored and updated at

each time step. The most likely sequence of codewords, from time step t=0 to an

arbitrary time step t = T , can be obtained by selecting the survivor path with the

15

2.4 Error Probability for Convolutional Codes

highest path metric, called the ML path. The algorithm stores the state sequence

for each survivor path, so as to trace back the ML path and derive the estimated

codeword sequence. The computational complexity of the Viterbi algorithm grows

only linearly with the length of the input sequence, as opposed to conventional ML

decoding, where computational complexity grows exponentially.

Alternative decoding methods include sequential decoding, developed by Wozen-

craft [21] and optimized by Fano [22], and threshold decoding, proposed by Massey

[23]. Omura showed in [24] that the Viterbi algorithm, which emerged from the

sequential decoding principles, yields ML decisions. Bahl et al. proposed a MAP

decoding algorithm [7], but received little attention, because its complexity exceeded

that of the Viterbi algorithm, while the advantage in bit error rate performance was

small. Eventually, the Viterbi algorithm dominated and found numerous applica-

tions in high data rate communication systems.

2.4 Error Probability for Convolutional Codes

A thorough analysis of the performance of convolutional codes on the AWGN channel

was performed by Viterbi in [20]. In this section, we shall briefly present the concepts

described in [20] that lead to the derivation of upper bounds to the the bit error

probability of convolutional codes.

2.4.1 Pairwise and First-Event Error Probabilities

For convenience, we assume that a convolutional encoder transmits a polar codeword

sequence x, with x
(i)
t =+1 for every value of i and t, which corresponds to an all-zero

binary input sequence. Performance analysis does not depend on the transmitted

codeword sequence, due to the linearity of convolutional codes. The decoder receives

a sequence y, where each coded bit y
(i)
t is an independent Gaussian variable with

variance N0/2 and zero mean.

If the path that corresponds to the correct codeword sequence x merges with a

path that corresponds to an incorrect sequence x′, the incorrect sequence will be

selected only if ∑
t

∑
i

x
′(i)
t y

(i)
t ≥

∑
t

∑
i

x
(i)
t y

(i)
t , (2.21)

or equivalently, ∑
t

∑
i

(
x
′(i)
t − x

(i)
t

)
y

(i)
t ≥ 0, (2.22)

16

2.4 Error Probability for Convolutional Codes

based on the ML decoding rule. If d is the Hamming distance between x and x′,

i.e., d=dist(x,x′), expression (2.22) reduces to

2
d∑

j=1

yj ≤ 0. (2.23)

Indices t and i were replaced by j, which runs over the d coded bits wherein paths

x and x′ differ.

The probability that the decoder will eventually select an incorrect sequence x′

with d coded bits in error, is known as pairwise error probability and is given by

Pd = Pr

{
d∑

j=1

yj ≤ 0

}
. (2.24)

Recalling that the sum of independent Gaussian variables is also a Gaussian variable,

the pairwise error probability assumes the form

Pd = Q

(√
2EbR

N0

d

)
, (2.25)

where Eb is the energy per transmitted coded bit, R is the code rate and Q(ξ) is

defined as follows

Q(ξ) =
1√
2π

∫ ∞

ξ

exp

(
−r2

2

)
dr. (2.26)

The probability that a decision error will occur and an incorrect sequence will

be selected at a certain time step, independently of the number of erroneous coded

bits, is called first-event error probability and is denoted as PE. The first-event error

probability can be upper bounded by the sum of the pairwise error probabilities for

all possible incorrect sequences, whose paths merge with the path of the correct

sequence at that specific time step, i.e.,

PE ≤
∞∑

d=df

TdPd

=
∞∑

d=df

TdQ

(√
2EbR

N0

d

)
,

(2.27)

where Td refers to the number of incorrect sequences that have the same Hamming

distance d to the correct sequence. Calculation of the coefficients Td requires knowl-

edge of the transfer function of the underlying convolutional code, which is the

theme of the following subsection.

17

2.4 Error Probability for Convolutional Codes

2.4.2 Transfer Function of a Convolutional Code

The transfer function of a convolutional code enumerates all codeword sequences,

other than the transmitted codeword sequence, that correspond to trellis paths which

diverge from the path of the transmitted codeword sequence and re-merge with it

at a later stage. For simplicity, it is assumed that the all-zero sequence is input

to the convolutional encoder and, consequently, the all-zero codeword sequence is

generated and transmitted. A codeword sequence is described by a monomial of the

form WwUuZzLl, where W , U , Z and L are indeterminate variables. The exponent

of W denotes the Hamming distance between the input sequence, that generated

the codeword sequence in question, and the all-zero input sequence. In this case,

the Hamming distance between the two binary sequences is the number of “1”s in

the input sequence, also known as the the Hamming weight or, simply, the weight

of the input sequence. Similarly, the exponents of U and Z denote the weight of

the systematic and parity check output sequences, respectively. If the code is not

systematic, U can be omitted. Furthermore, if the output of a systematic code is

not punctured, the exponents of W and U are identical. Finally, the exponent of L

corresponds to the length of the associated path in the trellis diagram. A generic

form for the transfer function T (W,U,Z, L) of a convolutional code is:

T (W,U,Z, L) =
∑

w

∑
u

∑
z

∑

l

Tw,u,z,lW
wUuZzLl, (2.28)

where Tw,u,z,l denotes the number of codeword sequences having systematic weight

u and parity check weight z, which were generated by an input sequence of weight

w, and correspond to paths of length l.

The transfer function can be obtained by modifying the state diagram of the

code. We shall demonstrate the method by means of an example. The conventional

state diagram of the RSC(1,5/7) code is illustrated in Fig.2.7. The label of each

branch is updated so as to convey the associated input, systematic and parity check

weights rather than the input and parity check bits. For example if the label of a

branch was “1/0”, the updated label would be “WUL”, since both the input and

the systematic bits have weight 1, whereas the parity check bit has weight 0, i.e.,

W 1U1Z0L1 =WUL. Term L is present in each branch, since it represents a single

time step. The paths of all incorrect codeword sequences start from the zero state

and re-merge to it, at some later stage, thus the self-loop at the zero state can be

removed. Furthermore, we split the zero state into two separate states, namely the

start state XS and the end state XE, as depicted in Fig.2.7. We then express each

18

2.4 Error Probability for Convolutional Codes

10 01

11

1/0

0/1 0/1

0/0

1/0

00

1/1 1/1

0/0

10 01

11

WUL

ZL ZL

L

WUL

00

WUZL WUZL

L

10 01

11

WUL

ZL ZL

L

WUL

00 WUZL WUZL 00

XS X2 X1 XE

X3

Figure 2.7: Derivation of the modified state diagram of the RSC(1,5/7) code. Top

left: state diagram, top right: weight-labeled state diagram, bottom: modified state

diagram.

state of the diagram as a function of the other states, so as to obtain the state

equations

X1 = WUL ·X2 + ZL ·X3

X2 = WUZL ·XS + L ·X1

X3 = ZL ·X2 + WUL ·X3

XE = WUZL ·X1,

(2.29)

Upon solving these equations for the ratio XE/XS, we obtain the transfer function

for RSC(1,5/7)

T (W,U,Z, L) = XE/XS = W 3U3Z2L3 + W 2U2Z4L4

+ W 3U3Z4L5 + W 4U4Z2L5 + . . . ,
(2.30)

which tells us that there is a codeword sequence of systematic weight 3 and parity

check weight 2, which was generated by an input sequence of weight 3 and corre-

sponds to a path of length 3, i.e., W 3U3Z2L3, and so on.

19

2.4 Error Probability for Convolutional Codes

Although the transfer function provides detailed information about all incorrect

codeword sequences, there are more compact variations of the transfer function that

provide specific information. For example, if the systematic code is not punctured

and the path length of each codeword sequence is not of interest, the indeterminate

variables U and L can be eliminated. The modified transfer function assumes the

form

T (W,Z) = T (W,U =1, Z, L=1) =
∑

w

∑
z

Tw,zW
wZz, (2.31)

and is often called [16] the input-redundancy weight enumerating function (IRWEF)

of the convolutional code. If we are interested in the overall output weight of

each codeword sequence, we can use the input-output weight enumerating function

(IOWEF), which is defined as

T (W,D) = T (W,U =D, Z =D, L=1) =
∑

w

∑

d

Tw,dW
wDd. (2.32)

Variables U and Z have been replaced by D, allowing the addition of their exponents

and, hence, conveying the overall codeword weight of a sequence. Finally, the weight

enumerating function (WEF) yields the distance spectrum of the convolutional code,

i.e., the number of codeword sequences Td having specific weight d. It is defined as

T (D) = T (W =1, U =D,Z =D,L=1) =
∑

d

TdD
d. (2.33)

The weight enumerating function, T (D), depends upon the code and influences

the first-event error probability, as was demonstrated in the previous subsection,

whereas the input-output weight enumerating function, T (W,D), depends upon the

encoder and influences the bit error probability [16,20], as it will become evident in

the next subsection.

2.4.3 Bit Error Probability

Whenever an erroneous decision is made, one or more information bits will be in-

correctly decoded. Assume that we obtain only one incorrect sequence from the

transfer function T (W,U,Z, L) of the convolutional code, described by a monomial

WwUuZzLl, which corresponds to a path of length l, with input weight w and overall

output weight d=u+z. If only one decoding error was ever made, and a sequence

x′ was selected, there would be w erroneous bits in the l decoded information bits,

due to the error event of length l. The probability of a bit error, given that x′ was

selected, is

P (bit error | x′) =
w

l
. (2.34)

20

2.4 Error Probability for Convolutional Codes

0

1

...

2v-1
j j+lj+l-1j+1

x
x'x''

PMj+l-1[x''] > PMj+l-1[x](0) (0)

PMj+l [x'],(0)

PMj+l [x''] > PMj+l [x](0) (0)

Figure 2.8: Example of a decoding decision (between x′ and x′′), after an initial

error event (x′′) has occurred.

In order to calculate the probability of a bit error Pb, we first need to derive the

probability P (x′) that the path related to sequence x′ survived for l−1 time steps

and was selected at the l-th time step, since Pb is given by

Pb = P (bit error | x′) P (x′). (2.35)

The path of the selected codeword sequence x′ spans from a time step j to time

step j + l, as shown in Fig.2.8. Assume that at time step j + l− 1, a sequence x′′ is

selected because its path metric is greater than that of the correct sequence x, i.e.,

PM
(0)
j+l−1[x

′′] > PM
(0)
j+l−1[x]. At the next time step, it is also the case that

PM
(0)
j+l[x

′′] > PM
(0)
j+l[x], (2.36)

since both paths share the same branch from time step j + l−1 to j + l. In order for

x′ to be selected at time step j + l, the metric of the corresponding path PM
(0)
j+l[x

′]

has to be greater than not only the path metric of the correct sequence PM
(0)
j+l[x],

but also the path metric of the previously selected sequence PM
(0)
j+l[x

′′]. Owing to

(2.36), the probability of x′ outlasting x′′ is bounded by the the probability of x′

outlasting the correct sequence x, i.e.,

Pr{PM
(0)
j+l[x

′] > PM
(0)
j+l[x

′′]} ≤ Pr{PM
(0)
j+l[x

′] > PM
(0)
j+l[x]}. (2.37)

The right hand side of the inequality is the pairwise probability Pd between the

codeword sequence x′ and the correct sequence x, whereas the left hand side is the

probability P (x′ : (j + l − 1) → (j + l)) that sequence x′ survived from time step

j + l − 1 to time step j + l. We can rewrite (2.37) as follows

P (x′ : (j + l − 1) → (j + l)) ≤ Pd. (2.38)

21

2.4 Error Probability for Convolutional Codes

0 1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

RSC(1,2/3), Upper Bound
RSC(1,2/3), Simulation
RSC(1,5/7), Upper Bound
RSC(1,5/7), Simulation
RSC(1,17/15), Upper Bound
RSC(1,17/15), Simulation

Figure 2.9: Comparison between simulation results and upper bounds to the bit

error probability, for various RSC codes.

Hence, the probability of the incorrect sequence x′ being selected after a previous

decision error has occurred, is upper bounded by the pairwise error probability at

that time step [20]. Consequently, the probability of the incorrect sequence x′ being

selected after l decision errors have occurred, i.e., one decision error per time step,

is upper bounded by the sum of the pairwise error probabilities for each time step,

i.e.,

P (x′) =
l−1∑
i=0

P (x′ : (j + i) → (j + l)) ≤
l−1∑
i=0

Pd = lPd. (2.39)

From (2.35), we find that the upper bound on the bit error probability for the

special case of a code with a single codeword sequence x′, other than the correct

codeword sequence x, only depends on the input weight w and output weight d of

x′

Pb ≤ w

l
lPd = wPd. (2.40)

If the transfer function of a code consists of several codeword sequences having

the same input and output weights, we can use the input-output weight enumer-

ating function T (W,D) to derive the exact number Tw,d of all available codeword

sequences. The bit error probability for this case is upper bounded by

Pb ≤ wTw,dPd. (2.41)

For the generic case where the transfer function of a convolutional code consists of

codeword sequences of various input and output weights, the upper bound on the

22

2.5 The Turbo Encoder

bit error probability can be found if we take the sum of wTw,dPd over all possible

values of w and d, i.e.,

Pb ≤
∞∑

d=df

∞∑
w=1

wTw,dPd

=
∞∑

d=df

∞∑
w=1

wTw,dQ

(√
2EbR

N0

d

)
.

(2.42)

A sufficient approximation for the bit error probability is obtained even if the range

of values for w and d is truncated and only the first terms of the input-output weight

enumerating function T (W,D) are taken into account [25].

As an example, a comparison between upper bounds and simulation results for

RSC codes with memory size of 1, 2 and 3, is presented in Fig.2.9. In all three cases,

only terms with an input and output weight of up to 40, i.e., w ≤ 40 and d ≤ 40, are

considered. It can be observed that this truncation yields a sufficient and accurate

approximation.

2.5 The Turbo Encoder

In 1993, Berrou, Glavieux and Thitimajshima first introduced turbo codes to the

communication theory community as a new class of convolutional codes [11]. The

schematic of a turbo encoder is shown in Fig.2.10. An information sequence of length

N is input to the first constituent systematic convolutional encoder of rate 1/2 and

memory size ν1, as well as the interleaver Π of size N . The interleaved information

sequence is then input to the second convolutional encoder of rate 1 and memory

size ν2. If the two constituent encoders are identical, the turbo encoder is called

symmetric, otherwise it is known as asymmetric. The output of the rate 1/3 turbo

encoder consists of the systematic sequence of the first encoder, the parity check

sequence of the first encoder and the parity check sequence of the second encoder.

The constituent convolutional encoders could be either recursive or non-recursive.

However, Benedetto and Montorsi showed in [16, 26] that the bit error rate perfor-

mance of turbo codes using recursive encoders significantly improves as the size of the

interleaver increases, an attribute known as interleaving gain. When non-recursive

constituent encoders are used, no interleaving gain is achieved, thus it is necessary

that turbo codes always use recursive encoders to attain exceptional performance.

The two constituent encoders are usually terminated, i.e., a number of tail bits

are appended at the end of the information sequence that drive the encoders to the

zero state. The length of the tail is equal to the memory size of the constituent

23

2.5 The Turbo Encoder

Memory
Size v1

Memory
Size v2

Convolutional Encoder C1

Convolutional Encoder C2

Input
Information
Sequence

Output
Systematic
Sequence

Output
Parity Check
Sequence (1)

Output
Parity Check
Sequence (2)

Figure 2.10: Generic block diagram of a

rate-1/3 turbo code.

Figure 2.11: Schematic for the symmet-

ric turbo code PCCC(1,5/7,5/7).

encoders. Termination facilitates the decoding procedure at the receiving side, since

the final state is predetermined, and, effectively, transforms a linear convolutional

code into a linear block code, since the input and output sequences have finite length.

As a consequence, the turbo code is always seen as a linear block code.

The interleaver is usually assumed to be pseudo-random. The bits of the infor-

mation sequence are stored sequentially and a pseudo-random generator determines

the order they are read out. For short information sequences, a semi-random in-

terleaver known as an S-random interleaver is found to perform better than most

pseudo-random interleavers [27]. The purpose of the interleaver is to de-correlate

the parity check output sequences of the turbo encoder but, more importantly, to

increase the weight of the output codeword sequences. Its objective is to shuffle

the stored information bits in such a way that most of the low-weight codeword

sequences of the first constituent encoder are matched with high-weight codeword

sequences of the second constituent encoder, and vice versa. When this is achieved,

the turbo code exhibits codeword sequences with minimum weight much higher than

the minimum weight codeword sequences generated by each individual constituent

code.

A turbo encoder is generally described by the generator vectors of each con-

stituent convolutional encoder. If GF1 and GR1 are the generator vectors for the

feedforward and feedback connections of the first constituent encoder, and GF2 and

GR2 are the generator vectors for the second constituent encoder, we use the no-

tation PCCC(1,GF1/GR1,GF2/GR2) to describe the parallel concatenation of the

two convolutional codes. As in the case of systematic convolutional codes, “1”

corresponds to the systematic output of the turbo encoder. For example, both

24

2.6 The Turbo Decoder

constituent encoders in Fig.2.11 have generator vectors GF1 = GF2 = [101] = 58

and GR1 = GR2 = [111] = 78, hence the symmetric turbo encoder is denoted as

PCCC(1,5/7,5/7).

2.6 The Turbo Decoder

For linear constituent terminated convolutional codes with memories ν1 and ν2, the

turbo encoder could also be seen as a linear terminated convolutional code [28],

hence ML decoding and, more specifically, the Viterbi algorithm could be used to

decode the received sequences. However, due to the presence of the interleaver, the

number of memory states in the trellis could reach values on the order of 2ν1+ν2+N ,

where N is the interleaver size. For a large interleaver size or, equivalently, a long

input information sequence, the computational decoding complexity is intolerable.

In a similar manner to the turbo encoder, a turbo decoder uses two component

decoders that work together to derive a good estimate of the transmitted information

sequence, thus achieving a computational complexity on the order of 2ν1 +2ν2 , which

is independent of the interleaver size. As Berrou noted [12], another way of thinking

about the turbo decoding process is in terms of a crossword puzzle; you transmit

not only the solution to the crossword, i.e., the systematic sequence, over a noisy

channel, but also the clues for the horizontal and vertical words, i.e., the two parity

check sequences. The first component decoder uses the constraints imposed by

the horizontal words to solve the crossword and gives hints to the second decoder,

which uses the constraints imposed by the vertical words. By exchanging hints in an

iterative manner, the two decoders help each other find a solution to the crossword.

The hints, as well as the received solution and the clues for the horizontal and

vertical words, are all in the form of log-likelihood ratios, the native language of the

component decoders. Before describing in more detail the operation of the soft-input

soft-output (SiSo) decoders, we give a brief outline of the communication system.

A binary information sequence u=(u1, u2, . . . , uN) is input to a turbo encoder,

employing an interleaver of size N . The output coded bits are mapped to polar sym-

bols and the transmitted codeword sequence assumes the form x=(x(u),x(p1),x(p2)),

where sequences x(u), x(p1) and x(p2) have length N each and correspond to the sys-

tematic output sequence, the parity check output sequence from the first constituent

encoder and the parity check output sequence from the second constituent encoder,

respectively. For simplicity, we keep referring to the polar symbols as coded bits.

A codeword xt = (x
(u)
t , x

(p1)
t , x

(p2)
t) generated by the input information bit ut, is a

25

2.6 The Turbo Decoder

snapshot of x at a time step t ∈ [1 . . . N]. The turbo decoder receives the code-

word sequence y = (y(u),y(p1),y(p2)), which is impaired by the channel noise, and

distributes it to the component SiSo decoders.

The objective of the first component decoder is to produce an estimate of each

information bit or, equivalently, an estimate of each systematic bit x
(u)
t by process-

ing sequences y(u) and y(p1), which correspond to the impaired output of the first

encoder. The estimate, in the form of an LLR, is given by

Λ(x
(u)
t | y(u),y(p1)) = ln

P (x
(u)
t = +1 | y(u),y(p1))

P (x
(u)
t = −1 | y(u),y(p1))

. (2.43)

If we assume independency between the received sequences y(u) and y(p1), and recall

that the t-th decoded systematic bit x
(u)
t only depends on the t-th received systematic

bit y
(u)
t in sequence y(u), the above expression can be written as

Λ(x
(u)
t | y(u),y(p1)) = ln

P (x
(u)
t = +1 | y(u)

t)P (x
(u)
t = +1 | y(p1))

P (x
(u)
t = −1 | y(u)

t)P (x
(u)
t = −1 | y(p1))

= ln
P (y

(u)
t | x(u)

t = +1)P (x
(u)
t = +1 | y(p1))P (x

(u)
t = +1)

P (y
(u)
t | x(u)

t = −1)P (x
(u)
t = −1 | y(p1))P (x

(u)
t = −1)

= Λcy
(u)
t + Λ(x

(u)
t | y(p1)) + Λ(x

(u)
t).

(2.44)

Therefore, the a-posteriori LLR of a decoded bit x
(u)
t computed by the first SiSo

decoder is the sum of the soft output of the channel Λcy
(u)
t for the systematic bit

x
(u)
t , indirect information about x

(u)
t derived from the received parity check sequence

y(p1) [19], and a-priori information about x
(u)
t obtained from the second encoder. For

convenience, we use the compact notation Λ
(1)
d (x

(u)
t), Λ

(1)
e (x

(u)
t) and Λ(1)(x

(u)
t) to refer

to the LLRs Λ(x
(u)
t | y(u),y(p1)), Λ(x

(u)
t | y(p1)) and Λ(x

(u)
t), respectively, associated

with the first component decoder. Consequently, expression (2.44) assumes the form

Λ
(1)
d (x

(u)
t) = Λcy

(u)
t + Λ(1)

e (x
(u)
t) + Λ(1)(x

(u)
t). (2.45)

The indirect information Λ
(1)
e (x

(u)
t) about x

(u)
t is called extrinsic information, whereas

the a-priori LLR Λ(1)(x
(u)
t) is sometimes also referred to as intrinsic information.

Initially, there is no a-priori knowledge, thus Λ(1)(x
(u)
t)=0, corresponding to a prob-

ability P (x
(u)
t =+1)=P (x

(u)
t =−1)=0.5.

Whereas the a-posteriori LLR is the marriage of all available information about

a decoded bit and provides an estimate of its value, the extrinsic LLR offers the

“personal” opinion of the first component decoder about the bit in question, by

26

2.6 The Turbo Decoder

SiSo
(1)

cy(u)

y(p1)

(1)
d

-

-
(1)
e

y(p2)

(2)
dSiSo

(2)

(2)
e

-

-

-1

(1)

(2)

Figure 2.12: Iterative decoding of a turbo code.

examining only the received parity check sequence y(p1), generated by the first con-

stituent encoder. Subtracting both the received systematic sequence and the a-priori

information from the output of the SiSo decoder, yields the extrinsic information,

as shown in Fig.2.12.

The second component decoder takes into account the extrinsic information

Λ
(1)
e (x

(u)
t) from the first decoder and uses it as a-priori information Λ(2)(x

(u)
t), while

processing the received interleaved systematic sequence together with the received

parity check sequence y(p2), generated by the second encoder, as depicted in Fig.2.12.

Note that the two interleavers (Π), which convert the received systematic sequence

and the a-priori information into the interleaved domain, are identical to the one

used in the turbo encoder. Similarly, the output of the second SiSo decoder in the

non-interleaved domain (Π−1) is given by

Λ
(2)
d (x

(u)
t) = Λcy

(u)
t + Λ(2)

e (x
(u)
t) + Λ(2)(x

(u)
t), (2.46)

where Λ(2)(x
(u)
t) = Λ

(1)
e (x

(u)
t). In a similar manner, the extrinsic information from

the second decoder is used as a-priori information by the first encoder, during the

next iteration, i.e., Λ(1)(x
(u)
t)=Λ

(2)
e (x

(u)
t).

As the iterative process continues, the bit error rate of the decoded bits, measured

at the output of the second SiSo decoder, is reduced. Depending on the application,

the number of iterations varies between six to eight, since no significant improvement

in performance is obtained with a higher number of iterations [29]. A hard decision

on the decoded bits is made at the end of the last iteration.

2.6.1 The BCJR Algorithm

Although the Viterbi algorithm is optimal for ML decoding, it only provides a

sequence of decoded bits but it does not assign reliability values, in the form of LLRs,

27

2.6 The Turbo Decoder

to the decoded bits. This is essential for the constructive information exchange

between the component SiSo decoders and the successful iterative decoding of turbo

codes. Berrou et al. [11] have implemented a MAP decoding algorithm, based on

the widely known BCJR algorithm, which was proposed by Bahl, Cocke, Jelinek

and Raviv [7] in 1974. In this subsection we give a short description of the BCJR

algorithm, as used by each individual component SiSo decoder of a turbo code.

We denote as ỹ the received sequence of systematic and parity check soft values,

processed by a SiSo decoder. In the case of the first SiSo decoder, ỹ consists of the

systematic sequence y(u) and the parity check sequence y(p1), whereas in the case

of the second SiSo decoder, ỹ is composed of the interleaved systematic sequence

and the parity check sequence y(p2). Similarly, we use the notation x̃ to denote the

input sequence to the communication channel, for which the soft output sequence ỹ

is produced.

The conditional probability P (x
(u)
t = +1 | ỹ) can be expanded, if we consider

that an information bit x
(u)
t causes a transition from state s′ to state s, at a time

step t. Since the pair (s′,s) determines x
(u)
t , we obtain

P (x
(u)
t =+1 | ỹ) =

∑

(s′,s):
x
(u)
t =+1

P ((s′, s) | ỹ)

=
∑

(s′,s):
x
(u)
t =+1

P (s′, s, ỹ)

P (ỹ)
.

(2.47)

from the definition of conditional probability. The received sequence ỹ can be split

up into three sequences; the received codeword ỹt associated with the state transition

from s′ to s, the received sequence ỹj<t from the beginning of the trellis up to time

step t− 1 and the received sequence ỹj>t from time step t + 1 up to the end of the

trellis. Assuming a memoryless channel, the joint probability P (s′, s, ỹ) can be also

partitioned into the following independent probabilities

P (s′, s, ỹ) = P (s′, ỹj<t)︸ ︷︷ ︸ ·P (ỹt | x̃t)P (x
(u)
t)︸ ︷︷ ︸ ·P (ỹj>t | s)︸ ︷︷ ︸ .

αt−1(s
′) γt(s

′, s) βt(s)
(2.48)

The values of αt−1(s
′) and βt(s) can be derived by means of a forward and a backward

recursion, respectively, based on

αt(s) =
∑

∀s′
αt−1(s

′)γt(s
′, s)

βt−1(s
′) =

∑

∀s
βt(s)γt(s

′, s),
(2.49)

28

2.6 The Turbo Decoder

where α0(0) = 1 and βN(0) = 1, since all incorrect codewords correspond to paths

of length N that start from and end in the zero state, due to the trellis termination.

During the forward recursion, the decoder also calculates the branch metrics γt(s
′, s),

utilizing the a-priori probability P (x
(u)
t) received from the previous SiSo decoder and

the probability density function P (y
(i)
t | x(i)

t) of the memoryless channel, from which

we can compute the conditional probability P (ỹt | x̃t) as follows

P (ỹt | x̃t) =
∏

i

P (y
(i)
t | x(i)

t). (2.50)

Note that index i runs over the coded bits composing a codeword at time step t.

For the case of an AWGN channel, P (y
(i)
t | x(i)

t) is given by (2.8).

The conditional probability P (x
(u)
t =−1 | ỹ) can be also expanded, if we follow

the same steps, hence the a-posteriori LLR at the output of a SiSo decoder assumes

the form

Λd(x
(u)
t) = Λ(x

(u)
t | ỹ) = ln

P (x
(u)
t = +1 | ỹ)

P (x
(u)
t = −1 | ỹ)

= ln
∑

(s′,s):
x
(u)
t =+1

αt−1(s
′)γt(s

′, s)βt(s)

− ln
∑

(s′,s):
x
(u)
t =−1

αt−1(s
′)γt(s

′, s)βt(s).

(2.51)

Summarizing, as the soft values from the output of the channel are received,

a SiSo decoder performs a forward recursion to calculate the αt(s) values, during

which a-priori knowledge about the decoded bits is exploited to obtain the γt(s
′, s)

values. Once all the channel values are received, a backward recursion is used to

calculate the βt(s) values and derive the reliability, Λd(x
(u)
t), of each decoded bit.

2.6.2 Decoding Algorithms used in Practice

The BCJR algorithm is considered extremely complex owing to the multiplications

needed and the logarithmic operations required to compute the a-posteriori LLR

for each decoded bit. Due to its high complexity, the BCJR algorithm was ignored

for many years but interest was renewed when two modifications were proposed to

reduce its complexity, while maintaining its performance.

The Max-Log-MAP algorithm, proposed by Koch and Baier [30] in 1990, simpli-

fies the calculation of the a-posteriori LLRs by using the approximation

ln (exp(χ1) + exp(χ2)) ≈ max(χ1, χ2). (2.52)

29

2.6 The Turbo Decoder

Expression (2.51) can be written as

Λd(x
(u)
t) ≈ max

(s′,s):
x
(u)
t =+1

(At−1(s
′) + Γt(s

′, s) + Bt(s))

− max
(s′,s):

x
(u)
t =−1

(At−1(s
′) + Γt(s

′, s) + Bt(s)) ,
(2.53)

with At(s), Γt(s
′, s) and Bt(s) defined as follows

At(s) , ln(αt(s)),

Γt(s
′, s) , ln(γt(s

′, s)),

Bt(s) , ln(βt(s)).

(2.54)

Instead of recursively calculating αt(s) and βt(s) and then applying the logarithmic

operation to derive At(s) and Bt(s), respectively, we can use (2.49) and (2.52) to

directly approximate their values, as follows

At(s) ≈ max
∀s′

(At−1(s
′) + Γt(s

′, s))

Bt−1(s
′) ≈ max

∀s
(Bt(s) + Γt(s

′, s)) .
(2.55)

For the case of an AWGN channel, the expression for the branch metric, Γt(s
′, s),

assumes the form

Γt(s
′, s) = 0.5Λc

∑
i

x
(i)
t y

(i)
t + 0.5x

(u)
t Λ(x

(u)
t) (2.56)

in a manner similar to (2.14).

All expressions have been considerably simplified, since multiplications have been

transformed into additions in the log-domain, and the number of operations has been

reduced. However, because of these approximations, only the ML path through

an examined state is considered, rather than any path through the trellis to this

state [31]. Therefore the performance is sub-optimal compared to that of the BCJR

algorithm.

In 1995, Robertson et al. [31] corrected the approximation by using the Jacobian

logarithm and presented the Log-MAP algorithm. Approximation (2.52) can be

made exact as follows

ln (exp(χ1) + exp(χ2)) = max(χ1, χ2) + ln (1 + exp(−|χ1 − χ2|))
= max ∗(χ1, χ2).

(2.57)

The correction term ln (1 + exp(−|χ1 − χ2|)) takes a limited number of values and

can be stored in a look-up table, reducing the complexity of the computation. Oth-

erwise, if the correction term is computed exactly and no look-up table is used, the

30

2.6 The Turbo Decoder

algorithm is known as exact Log-MAP and achieves the same performance as BCJR.

Log-MAP is slightly more complex than Max-Log-MAP but achieves a performance

almost identical to that of the optimal BCJR algorithm. The expressions for either

Log-MAP or exact Log-MAP can be obtained from those of Max-Log-MAP, if the

max(.) operation is replaced by the max ∗(.) operation.

A different approach to MAP decoding was proposed by Hagenauer and Ho-

her [32] in 1989. The so-called soft-output Viterbi algorithm (SOVA) proceeds by

executing the conventional Viterbi algorithm, although the branch metric calcula-

tion also takes into account a-priori information Λ(x
(u)
t) about the decoded bit x

(u)
t ,

hence (2.19) becomes

BM
(s′,s)
t = 0.5Λc

∑
i

x
(i)
t y

(i)
t + 0.5x

(u)
t Λ(x

(u)
t), (2.58)

which is identical to the branch metric expression used in the BCJR-based algo-

rithms. At each time step t, there will be two paths that reach a state s; the

survivor path, which goes through state s′ at time step t − 1, and the competing

path, which goes through another state s′′ at time step t−1. Information concerning

the competing path that was pruned at time step t is maintained by storing the path

metric difference between the two paths

∆(s, t) = PM
(s′,s)
t − PM

(s′′,s)
t ≥ 0, (2.59)

which corresponds to the LLR of the survivor path. When the end of the trellis

is reached and the ML path is identified, SOVA traces it back and examines all

competing paths from t=N to t=1. If a competing path merges with the ML path

at time step t in state s, SOVA compares one by one the estimated decoded bits of

the survivor path with the respective ones of the competing path, from time t when

the paths merge, back to t − δ when the paths diverge. When two bits are found

different at time τ ∈ (t − δ, t], the respective element Λd(x
(u)
τ) of the sequence of

LLR values is updated, according to the expression

Λd(x
(u)
τ) ≈ min

(
Λd(x

(u)
τ), ∆(s, t)

)
. (2.60)

The LLR values Λd(x
(u)
t) with t ∈ [1, . . . , N], are initialized to a large number.

As in the case of Max-Log-MAP, SOVA also compares two paths per time step.

However, Max-Log-MAP looks at the best path with x
(u)
t = +1 and the best path

with x
(u)
t = −1, at time t. One of them will always be the ML path [31]. SOVA

correctly finds the ML path but not necessarily the other best path, since it may

have been eliminated at an earlier time step. Concluding, Log-MAP and Max-Log-

MAP are superior to SOVA in terms of bit error rate performance, however the

31

2.7 Error Probability for Turbo Codes

number of operations for Max-Log-MAP is about twice the number of operations

required by SOVA, assuming a memory size ν ≤ 4 [31].

2.7 Error Probability for Turbo Codes

The bit error rate performance of a turbo code depends on various parameters,

such as the number of iterations, the decoding algorithm, the interleaver size, the

memory size and the generator vectors of the constituent codes. In Fig.2.13, we

present simulation results for turbo codes using BPSK over AWGN channels.

Performance improves considerably as the number of iterations increases, how-

ever the additional coding gain achieved at the end of each consecutive iteration

is constantly reduced [11, 33]. This trend is clearly illustrated in Fig.2.13(a). In

Fig.2.13(b) we see that the exact log-MAP algorithm is optimal, at the expense of

increased computational complexity. In agreement with [31], a trade-off between

performance and complexity can be achieved if the iterative decoder uses a subop-

timal algorithm, like log-MAP, max-log-MAP or SOVA. The interleaver size of a

PCCC using recursive convolutional codes as constituent codes, also plays a signifi-

cant role on the bit error rate performance, as depicted in Fig.2.13(c). The coding

gain considerably increases with the size of the interleaver, at the cost of higher la-

tency [16]. Finally, turbo codes employing constituent encoders with large memory

size achieve better performance, but add to the computational burden of the iter-

ative decoder. Nevertheless, we observe in Fig.2.13(d) that careful selection of the

generator vectors of the constituent convolutional codes may result in turbo codes

that achieve better performance than that of other turbo codes using constituent

codes of the same memory size [26].

The design of a good code for a specific application is not always a quest for the

identification of the best “ingredients” that contribute to an astonishing bit error

rate performance. The candidate codes should comply with the requirements im-

posed by the application, such as hardware complexity and latency. Turbo codes

are highly configurable due to the numerous parameters that determine their per-

formance, hence they are attractive for use in a wide range of applications.

2.7.1 Performance Profile of Turbo Codes

A generic representation of the bit error rate performance of a turbo code is shown

in Fig.2.14. Iterative decoding is used and eight or more iterations are assumed.

32

2.7 Error Probability for Turbo Codes

0 0.5 1 1.5 2
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

#1
#4
#8

(a) Performance of PCCC(1,5/7,5/7) with N =
1, 000, after 1,4 and 8 iterations, using the exact
Log-MAP algorithm.

0 0.5 1 1.5 2
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

SOVA
Max−Log−MAP
Log−MAP
Exact Log−MAP

(b) Performance of PCCC(1,5/7,5/7) with N =
1, 000, after 8 iterations, employing different de-
coding algorithms.

0 0.5 1 1.5 2
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

 N=100
 N=1,000
 N=10,000

(c) Performance of PCCC(1,5/7,5/7) after 8 it-
erations, using the exact Log-MAP algorithm,
for various interleaver sizes.

0 0.4 0.8 1.2 1.6 2
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

PCCC(1,2/3,2/3), Mem.1
PCCC(1,7/5,7/5), Mem.2
PCCC(1,5/7,5/7), Mem.2
PCCC(1,17/15,17/15), Mem.3

(d) Performance of various PCCC configura-
tions with N = 1, 000, after 8 iterations. The
exact Log-MAP is used.

Figure 2.13: Effect of various parameters (number of iterations, decoding algorithm,

interleaver size, memory size and constituent codes) on the bit error rate performance

of a turbo code.

33

2.7 Error Probability for Turbo Codes

0 0.4 0.8 1.2 1.6 2
10

−6

10
−4

10
−2

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

Waterfall
Region

Error Floor
Region

Non−convergence
Region

Convergence
Threshold

Figure 2.14: Regions that characterize the bit error rate performance of a turbo

code.

For low Eb/N0 values, the performance curve goes through the non-convergence re-

gion, where the bit error probability decreases slowly until a specific value of Eb/N0,

known as the convergence threshold, is reached. At the convergence threshold, which

is determined by the constituent codes, the decoding algorithm and the interleaver

size, the slope of the curve changes abruptly. The curve enters the waterfall or

turbo-cliff region, where an increase in the transmit energy causes significant per-

formance improvement. The performance of the turbo code in the waterfall region

is dominated by the interleaver size. Eventually, the curve “hits” the error floor

region, where the expenditure of additional energy does not achieve a marked im-

provement in the error rate performance. The error floor of a turbo code depends

on the distance properties of the constituent codes, when large interleavers are used.

For small interleaver sizes, the type of the interleaver also plays a dominant role [28].

Depending on the system requirements, two techniques are widely used for the

performance evaluation of a turbo code or the design of turbo codes under specific

constraints. The first approach, proposed by ten Brink [34], uses extrinsic informa-

tion transfer (EXIT) chart analysis, which can accurately predict the convergence

behavior of the iterative decoder for very large interleaver sizes (e.g., N =106 bits)

by performing separate simulations of the component decoders. It takes into account

the structure of the constituent codes and depicts the effect of each iteration on the

overall error rate performance.

The second approach, presented by Benedetto and Montorsi [16,26], relies on ML

soft decoding. A tight upper bound on the bit error probability is derived, which

34

2.7 Error Probability for Turbo Codes

provides an accurate estimate of the suboptimal iterative decoder performance at

high Eb/N0 values and successfully predicts the error floor of a turbo code. Since

an optimal ML decoder is assumed, the performance bound is a function of only the

interleaver size and the characteristics, i.e., memory size and distance properties, of

each constituent encoder. Nevertheless, the performance of the actual suboptimal

iterative decoder, employing the exact log-MAP algorithm, quickly converges to the

upper bound, for an increasing number of iterations.

Concluding, the first technique is adopted when designing turbo codes that ex-

hibit low convergence thresholds, whereas the second method is used for the design

of turbo codes that exhibit low error floors. Initially we concentrate on the second

approach, since rate-1/3 turbo codes exhibit quick convergence on AWGN channels,

but we will combine both approaches when we consider punctured turbo codes of

rates higher than 1/3.

2.7.2 Union Bound on the Bit Error Rate Performance

We have mentioned that trellis termination transforms the constituent convolutional

codes into linear convolutional block codes. The trellis of a convolutional block

code, whose input is a block of N bits, is the truncation at step N of the infinite

length trellis of the original convolutional code. Furthermore, the transfer function

T C(W,U,Z, L) of a convolutional code C provides all single-error events, i.e., all

paths that start from the zero state, diverge from the all-zero path at step one and

at some point remerge with the zero state and remain at it. The transfer function

BC(W,U,Z) of the corresponding convolutional block code provides all single and

multiple-error events, i.e., all paths of length N that start from the zero state, can

remerge with and diverge from the zero state more than once and terminate at the

zero state.

Maximum-likelihood soft decoding of a convolutional block code, which has a

finite trellis length, follows the same principles as ML soft decoding of the original

convolutional code, which has an infinite trellis length. Thus, the pairwise error

probability Pd is also given by (2.25), whereas the first-event error probability, which

is the sum of all pairwise probabilities, is renamed to frame error probability or word

error probability, since a decision error that occurs while decoding a sequence of

finite length is equivalent to a frame error. The frame error probability on an

35

2.7 Error Probability for Turbo Codes

AWGN channel is upper bounded by

Pw ≤
∑

d

BC
dPd

=
∑

d

BC
dQ

(√
2EbRC

N0

d

)
,

(2.61)

where Eb is the energy per transmitted coded bit, RC is the code rate and BC
d are the

coefficients of the weight enumerating function BC(D)=BC(W =1, U =D,Z =D).

The output weight d takes values in the range from 1 to 2N since we have assumed

a rate-1/2 convolutional block code, thus an input sequence of N bits generates an

output sequence of length 2N .

The probability of a bit error is more straightforward to derive when codeword

sequences of finite length are considered [35]. We assume that the all-zero sequence

was transmitted and the decoder made an erroneous decision. A specific incorrect

codeword sequence x′ was selected with probability P (x′) = Pd, described by a

monomial WwUuZz having an input weight of w and an overall output weight of

d=u + z. The probability of a bit error, given that x′ was selected, is

P (bit error | x′) =
w

N
, (2.62)

since N is the length of the decoded sequence. Therefore, the probability of a bit

error Pb is given by

Pb = P (bit error | x′) P (x′)

=
w

N
Pd

=
w

N
Q

(√
2EbRC

N0

d

)
.

(2.63)

However, we need to take into account the set of all possible incorrect codeword

sequences that could be selected in the case of an erroneous decision. Using the

union bound argument, in a similar manner to (2.42), we obtain

Pb ≤ 1

N

∑

d

∑
w

wBC
w,dQ

(√
2EbRC

N0

d

)
, (2.64)

where BC
w,d are the coefficients of the input-output weight enumerating function

BC(W,D) = BC(W,U = D, Z = D). A rate-1/3 turbo code P using an interleaver

of size N is also a convolutional block code, hence the bit error probability is also

bounded by [35,36]

Pb ≤ 1

N

∑

d

∑
w

wBP
w,dQ

(√
2EbRP

N0

d

)
. (2.65)

36

2.7 Error Probability for Turbo Codes

Similarly, BP
w,d are the coefficients of the weight enumerating function of the turbo

code, BP(W,D) = BP(W,U = D, Z = D). For RP = 1/3, the output weight d takes

values in the range from 1 to 3N .

If C1 and C2 are the constituent codes of the turbo code P , we need to obtain the

transfer function BP(W,U,Z) of the turbo code in order to upper bound the bit error

probability, that is assuming knowledge of the transfer functions BC1(W,U,Z) and

BC2(W,U,Z) of the constituent codes. However, the transfer function of the turbo

code also depends on the permutation scheme employed by the interleaver, since

the weight of the parity check output sequence of the second constituent encoder

depends on the sequence of input bits that have been previously permuted by the

interleaver. The transfer function of the turbo code could, in principle, be derived

by means of an exhaustive enumeration of all possible permutation cases, but the

computational complexity would be overwhelming.

In 1996, Benedetto and Montorsi [16] introduced the concept of the uniform

interleaver, an abstract probabilistic interleaver of size N that maps an input se-

quence of weight w to all possible permutations, with equal probability. The number

of permutations is given by
(

N

w

)
=

N !

(N − w)!w!
, (2.66)

thus the probability of a specific permutation being selected is 1/
(

N
w

)
. In order to

exploit the properties of the uniform interleaver, we need to decompose the transfer

function BP(W,U,Z) of the turbo code into a sum of conditional weight enumerating

functions BP(w, U, Z) that correspond to codeword sequences of specific weight w,

i.e.,

BP(W,U,Z) =
∑

w

BP(w,U, Z)Ww, (2.67)

where

BP(w, U, Z) =
∑

u

∑
z

BP
w,u,zU

uZz. (2.68)

Owing to the uniformly random permutations, the conditional weight enumerating

function of the turbo code can be obtained from [16]

BP(w, U, Z) =
BC1(w, U, Z) ·BC2(w, U =1, Z)(

N

w

) . (2.69)

The product BC1(w, U, Z) ·BC2(w,U =1, Z) gives a polynomial, which is essentially

the sum of all turbo codeword sequences, generated by an input sequence of infor-

mation weight w, for all possible interleaver permutations. This sum is then normal-

ized, using the exact number of possible permutations
(

N
w

)
, where N is the size of

37

2.8 Chapter Summary

the interleaver. Note that the systematic output sequence of the second constituent

encoder is not transmitted, so it is eliminated by setting U=1 in BC2(w, U, Z).

The assumption of a uniform interleaver leads to the calculation of the transfer

function of a turbo code, as the average of all transfer functions that correspond to

turbo codes employing the same constituent codes and using all possible interleavers

of a given size [16, 28]. Consequently, the upper bound to the bit error probabil-

ity of a turbo code using a uniform interleaver coincides with the average of the

upper bounds obtainable with the set of all turbo codes employing every possible

interleaving scheme [16].

Nevertheless, derivation of the transfer function of a turbo code, requires knowl-

edge of the conditional weight enumerating functions of the constituent convolutional

block codes, which in turn, are derived from their transfer functions, according to

the expression

BC(W,U,Z) =
∑

w

BC(w, U, Z)Ww. (2.70)

where C refers to either C1 or C2. The conventional approaches as well as a novel

technique for the computation of the transfer function BC(W,U,Z) of a convolutional

block code will be presented in detail in Chapter 3.

2.8 Chapter Summary

The objective of this chapter was to present an overview of convolutional coding

and introduce the concept of turbo coding, which is the main theme of this thesis.

We presented the structure of convolutional encoders as well as their representa-

tion, using trellis and state diagrams. In particular, we gave examples of recursive

systematic convolutional codes, which are the building blocks of turbo codes. Fur-

thermore, we introduced the concept of the log-likelihood ratio, we presented the

theory behind ML decoding and we described the Viterbi algorithm, which yields

ML decisions. Next, the derivation of the transfer function of a convolutional code

was described, from which the weight enumerating functions can be obtained and,

consequently, upper bounds to the bit error performance can be computed.

The second part of the chapter focused on turbo codes. The turbo encoder was

presented and the significance of its components, namely the constituent codes and

the interleaver, was discussed. A schematic of the turbo decoder was given and

the operation of the component soft-input soft-output decoders was explained. The

“ingredients” of the iterative process, namely the channel reliability as well as the a-

priori, extrinsic and a-posteriori information, were introduced. Next, we emphasized

38

2.8 Chapter Summary

the necessity of the decoding algorithm to produce a-posteriori soft values rather

than hard estimates of the decoded bits, which dictates either the adoption of a MAP

decoding algorithm, such as the BCJR algorithm, or the modification of the Viterbi

algorithm, which gives rise to the SOVA algorithm. Although BCJR is more efficient

than SOVA, it suffers from a high computational complexity. Algorithms such as

the exact log-MAP, log-MAP and max-log-MAP, which perform MAP decoding in

the log-domain and thus achieve a complexity lower than that of BCJR, were also

described.

We demonstrated that the bit error rate performance of a turbo code depends

on the interleaver size, the type and memory size of the constituent encoders. In

addition, performance also depends on the configuration of the iterative decoder; the

number of iterations and the decoding algorithm determine the slope of the curve,

which represents the error rate performance. The significance of the relationship

between the transfer function of a turbo code and the transfer function of its con-

stituent convolutional block codes was stressed, since it allows the derivation of a

union bound on the error rate performance, if ML soft decoding is assumed. The

bound gives an accurate estimate of the error floor of a turbo code, hence it is a

useful tool for designing codes required to satisfy particular specifications.

It is imperative to evaluate the transfer function of each constituent convolutional

block code of a turbo code, in order to compute the union bound on its error rate

performance. A novel technique for the evaluation of the transfer function of a

convolutional block code, as well as conventional methods, will be presented and

compared in the following chapter.

39

Chapter 3
Performance Analysis of Non-Punctured

Convolutional and Turbo Codes

3.1 Introduction

A tight upper bound on the bit error probability of a turbo code can be readily

computed, if the distance properties of the code, conveyed by its transfer function,

are known. Calculation of the transfer function of a turbo code is computationally

intensive for deterministic interleavers but the assumption of a uniform interleaver

drastically simplifies the calculations and reduces the computational burden. Nev-

ertheless, calculation of the transfer function of a turbo code requires knowledge of

the transfer functions of its constituent convolutional block codes. Consequently,

it is imperative to devise an efficient method to compute the transfer function of a

convolutional block code, accurately and rapidly.

In this chapter we introduce a new technique, based on the concept of the “aug-

mented” state diagram, for the evaluation of the transfer function of a convolutional

block code, and also compare it with existing approaches. We then use our tech-

nique to derive theoretical upper bounds on the average ML performance of turbo

codes and we compare them with results obtained through the simulation of turbo

codes using pseudo-random interleavers. We conclude by emphasizing that our novel

method can be extended in a straightforward manner to punctured turbo codes,

which is a subject studied and detailed in the following chapter.

40

3.2 The Augmented State Diagram

3.2 The Augmented State Diagram

In this section we present a novel approach, according to which the modified state

diagram of a convolutional code is “augmented”, enabling derivation of the transfer

function of the respective convolutional block code.

We demonstrated in Chapter 2 that the transfer function T (W,U,Z, L) of a

convolutional code can be obtained by splitting the zero state of the state diagram

into two separate states, XS and XE, properly labeling the branches using monomials

so as to reflect the input, systematic and parity check weight of the associated

codeword, and solving the state equations for the ratio XE/XS. Assuming that

the all-zero sequence is transmitted, the transfer function essentially provides those

codeword sequences that correspond to single-error events, represented by paths in

the trellis diagram that start from the zero state, diverge from it and later re-merge

with it only once.

The transfer function B(W,U,Z) of the respective convolutional block code, pro-

vides all codeword sequences, related to both single-error and multiple-error events.

Multiple-error events can be seen as the concatenation of single-error events, hence

they correspond to paths that re-merge with the zero state more than once, and can

stay at it for a consecutive number of time steps. In order to consider paths that

re-visit the zero state and remain at it for an indefinite number of time steps, we

need to modify the state diagram of the convolutional code, accordingly.

We consider, without loss of generality, the case of the binary RSC(1,5/7) code

to demonstrate the method for obtaining the augmented state diagram of a convo-

lutional block code from the state diagram of the original convolutional code. In

order to allow a path to revisit the zero state, we insert a node X0, which is different

to the states XS and XE, as illustrated in Fig.3.1. States which are interconnected

to XS or XE, are also interconnected to this ‘intermediate” zero state X0 in a sim-

ilar manner. The self-loop is appended to X0, since a path can remain at X0 for

an indefinite period of time. Furthermore, two branches, both with zero input and

output weight, are added to interconnect XS with X0 and X0 with XE, so as to per-

mit paths to diverge from the all-zero sequence at a time step other than the very

first, or re-merge with the all-zero sequence at a time step other than the very last.

The resultant augmented state diagram of the RSC(1,5/7) block code, depicted in

41

3.2 The Augmented State Diagram

10 01

11

WUL

ZL ZL

L

WUL

00 WUZL WUZL 00

00

WUZL WUZL

L

10 01

11

WUL

ZL ZL

L

WUL

00 WUZL WUZL 00

XS

X2 X1

XE

X3

LL

X0

XS

X2 X1

XE

X3

Figure 3.1: Derivation of the augmented state diagram of the RSC(1,5/7) block code

from the modified state diagram of the RSC(1,5/7) code.

Fig.3.1, is used to derive the system of state equations

X0 = L ·XS + L ·X0 + WUZL ·X1

X1 = WUL ·X2 + ZL ·X3

X2 = WUZL ·XS + WUZL ·X0 + L ·X1

X3 = ZL ·X2 + WUL ·X3

XE = L ·X0 + WUZL ·X1.

(3.1)

Upon solving the state equations for the ratio XE/XS, we obtain

XE

XS

=
L2

1− L
+

y′(W,U,Z, L)

1− x′(W,U,Z, L)
· L2

1− L
(3.2)

42

3.2 The Augmented State Diagram

where

y′(W,U,Z, L) = W 3U3Z2L + W 2U2Z4L2 −W 4U4Z2L2,

x′(W,U,Z, L) = L + WUL + Z2L3 −WUL3 −W 2U2L3 + W 3U3Z2L3

− Z2L4 + W 2U2L4 + W 2U2Z4L4 −W 4U4Z2L4,

(3.3)

for the case of the RSC(1,5/7) block code.

The first term on the right hand side of (3.2) is a function of L only and can be

expanded, exploiting the property of the binomial series, i.e.,

L2

1− L
= L2 ·

∞∑

k=0

Lk = L2 + L3 + L4 + . . . , (3.4)

which gives a sum of all-zero codeword sequences for various path lengths. These

sequences correspond to paths that start from XS, stay at X0 for an indefinite

number of steps by circulating around the self-loop, and finally terminate at XE.

The all-zero codeword sequences are not of interest in the computation of the transfer

function, since only erroneous codeword sequences are considered, hence they are

ignored.

The second term on the right hand side of (3.2) represents the set of all single-

error and multiple-error events that correspond to paths of various lengths. This

term, which we call the extended transfer function of a convolutional block code and

denote as f(W,U,Z, L), may be expressed as

f(W,U,Z, L) =
y′(W,U,Z, L)

1− x′(W,U,Z, L)
· L2

1− L

=
y(W,U,Z, L)

1− x(W,U,Z, L)

(3.5)

where

y(W,U,Z, L) = L2 · y′(W,U,Z, L),

x(W,U,Z, L) = x′(W,U,Z, L)− L · x′(W,U,Z, L) + L.
(3.6)

Using the property of binomial series, the extended transfer function can be written

as

f(W,U,Z, L) = y(W,U,Z, L) ·
∞∑

k=0

xk(W,U,Z, L). (3.7)

43

3.2 The Augmented State Diagram

In our example, polynomials y(W,U,Z, L) and x(W,U,Z, L) assume the form

y(W,U,Z, L) = W 3U3Z2L3 + W 2U2Z4L4 −W 4U4Z2L4,

x(W,U,Z, L) = 2L + WUL− L2 −WUL2

+ Z2L3 −WUL3 −W 2U2L3 + W 3U3Z2L3

− 2Z2L4 + WUL4 + 2W 2U2L4 + W 2U2Z4L4

−W 3U3Z2L4 −W 4U4Z2L4

+ Z2L5 −W 2U2L5 −W 2U2Z4L5 + W 4U4Z2L5.

(3.8)

Substituting (3.8) into (3.7), we obtain the extended transfer function f(W,U,Z, L)

of the RSC(1,5/7) block code

f(W,U,Z, L) = W 3U3Z2L3

+ W 2U2Z4L4 + 2W 3U3Z2L4

+ 2W 2U2Z4L5 + 3W 3U3Z2L5 + W 3U3Z4L5 + W 4U4Z2L5

+ . . .

(3.9)

If we define as the conditional extended transfer function, f(W,U,Z, l), the sum

of all codeword sequences of a specific path length l, i.e.,

f(W,U,Z, l) =
∑

w

∑
u

∑
z

Bw,u,z,lW
wUuZz. (3.10)

we observe that, in general, the extended transfer function f(W,U,Z, L) is given by

f(W,U,Z, L) =
∞∑

l=1

f(W,U,Z, l)Ll. (3.11)

We can identify in (3.9) the conditional extended transfer functions for path lengths,

or equivalently input block lengths, of l =3, 4 and 5. For example, the conditional

extended transfer function f(W,U,Z, l=4) of RSC(1,5/7) is W 2U2Z4 + 2W 3U3Z2.

Consequently, for an input information sequence of length N , the transfer func-

tion B(W,U,Z) of the convolutional block code is, by definition, equivalent to the

conditional extended transfer function f(W,U,Z, l=N), i.e,

B(W,U,Z) , f(W,U,Z, l=N). (3.12)

Concluding, the proposed augmented state diagram can be used to derive the

extended transfer function f(W,U,Z, L) of a convolutional block code, which leads

to the wanted transfer function B(W,U,Z) for a specific input block length N , if

we isolate the conditional extended transfer function f(W,U,Z, l) for l=N .

44

3.2 The Augmented State Diagram

3.2.1 Imposing Computational Constraints

After the evaluation of the polynomials y(W,U,Z, L) and x(W,U,Z, L), we can

use (3.7) to derive the extended transfer function f(W,U,Z, L). However, for

an input sequence of length N , evaluation of the conditional transfer function

f(W,U,Z, l = N) is sufficient, which is equivalent to computing only those terms

of f(W,U,Z, L) that contain LN rather than computing all terms that contain Ll,

up to an arbitrary high l, and then isolating the terms with exponent l=N . In or-

der to avoid calculating unnecessary terms, and consequently achieve a reduction

of the computational complexity for obtaining f(W,U,Z, l = N), we can identify a

set of exponents k for x(W,U,Z, L) in (3.7), which result in codeword sequences of

path length N .

Similarly to the definition of f(W,U,Z, L) as a function of f(W,U,Z, l), polyno-

mials y(W,U,Z, L) and x(W,U,Z, L) can also be expressed as

y(W,U,Z, L) =
∑

l

y(W,U,Z, l)Ll,

x(W,U,Z, L) =
∑

l

x(W,U,Z, l)Ll,
(3.13)

where y(W,U,Z, l) and x(W,U,Z, l) are defined as

y(W,U,Z, l) =
∑

w

∑
u

∑
z

B
(x)
w,u,z,lW

wUuZz,

x(W,U,Z, l) =
∑

w

∑
u

∑
z

B
(y)
w,u,z,lW

wUuZz.
(3.14)

Note that B
(x)
w,u,z,l and B

(y)
w,u,z,l can assume a zero, positive or negative integer value.

For the sake of clarity, we drop the indeterminate variables W , U and Z from (3.13),

since only the exponents of L are of significance for our analysis. Therefore, (3.13)

can be written as

y(L) =

lyQ∑

l=ly1

y(l)Ll,

x(L) =

lxP∑

l=lx1

x(l)Ll,

(3.15)

where l assumes values from the set {ly1 , . . . , lyQ
} in the case of y(L), and {lx1 , . . . , lxP

}
in the case of x(L).

45

3.2 The Augmented State Diagram

In order to obtain xk(L), as required by (3.7), we invoke the multinomial theorem

as follows

lxP∑

l=lx1

x(l)Ll

k

=
[
x(lx1)L

lx1 + x(lx2)L
lx2 + . . . + x(lxP

)LlxP

]k

=
∑

k1,...,kP
k1+...+kP =k

[
k!

k1! . . . kP !

(
x(lx1)L

lx1

)k1 · . . . · (x(lxP
)LlxP

)kP

] (3.16)

where the summation is taken over all combinations of the nonnegative indices k1

through kP such that k1 +k2 + . . .+kP = k. Consequently, expression (3.7) assumes

the form

f(L) = y(L) ·
∞∑

k=0

xk(L), (3.17)

where

y(L) = y(ly1)L
ly1 + y(ly2)L

ly2 + . . . + y(lyQ
)LlyQ , (3.18)

and

xk(L) =
∑

k1,...,kP
k1+...+kP =k

[
k!

k1! . . . kP !

(
xk1(lx1) · · · xkP (lxP

)
)
L(lx1k1+...+lxP

kP)

]
. (3.19)

For an input block sequence of length N , we can compute only those terms of

f(L) that contain LN , and thus directly obtain the conditional extended transfer

function f(l = N). The required terms can be determined iteratively based on

(3.17)-(3.19), as follows:

1. We focus on those terms of y(L) that contain Llyi , where lyi
is selected from

the set {ly1 , ly2 , . . . , lyQ
}, with ly1 < ly2 < . . . < lyQ

. If lyi
> N , all required

terms have been derived, hence the procedure terminates. Initially, i=1.

2. Since we are interested in those terms of f(L) containing LN and we initially

consider only those terms of y(L) containing Llyi , it is clear that we need to

determine the terms in xk(L) that contain L(N−lyi). These terms can be found

by setting the exponent of L in (3.19) equal to N− lyi
and solving the equation

lx1k1 + lx2k2 + . . . + lxP
kP = (N − lyi

) (3.20)

for k1, k2, . . . , kP . Such indeterminate polynomial equations, which allow only

integer solutions, are known as Diophantine equations [37]. To solve this type

of equation, we simply try every combination of possible values for each one of

the unknowns. In our case, due to the restriction of the multinomial theorem

46

3.3 Alternative Techniques to Derive the Transfer Function

(3.16), it is kj ≥ 0, with j = 1, . . . , P , whereas lxj
≥ 0 always, since paths

having a negative length do not exist. Furthermore, since both lxj
and kj are

nonnegative integers, each product lxj
kj is upper bounded by N − lyi

, i.e.,

lxj
kj ≤ (N − lyi

), according to (3.20). Consequently, the range of possible

integer values for each unknown kj is

0 ≤ kj ≤
⌊

N − lyi

lxj

⌋
, (3.21)

where b(N − lyi
)/lxj

c denotes the integer part of (N − lyi
)/lxj

.

3. For a set K= {k1, k2, . . . , kP} of nonnegative solutions, we add the elements

k1, k2, . . . , kP to obtain the wanted exponent of x(L), i.e.,

k = k1 + k2 + . . . + kP , for a set K={k1, k2, . . . , kP} (3.22)

4. We substitute the set of solutions K as well as the corresponding sum k in

(3.19) and we compute the product between y(lyi
)Llyi and the terms of xk(L),

for the given value of lyi
.

5. We repeat steps 3 and 4 for every possible set of solutions K obtained from

equation (3.20).

6. We set i ← i + 1 and we repeat the procedure, provided that i ≤ Q, where Q

is the total number of values for lyi
.

When the end of the procedure is reached, all terms that correspond to codeword

sequences having information, systematic and parity check weight less than or equal

to N , as well as a path length equal to N , will have been identified. These terms

compose the transfer function B(W,U,Z) of the convolutional block code. Recalling

expression (2.64), terms of low output weight mainly determine the upper bound on

the bit error rate performance of the convolutional block code. If we are interested

in these “most significant” terms, we can introduce additional constraints to the

afore-mentioned procedure, so as to confine the search to terms having weights less

than or equal to a pre-defined value, smaller than N .

3.3 Alternative Techniques to Derive the Transfer

Function

Two alternative approaches for the evaluation of the transfer function of a con-

volutional block code are briefly described in the following subsections. The first

47

3.3 Alternative Techniques to Derive the Transfer Function

approach, presented in 1995 by Divsalar et al. [27], builds upon the method de-

scribed in [38]. The second technique, proposed by Benedetto and Montorsi [16] in

1996, is based on an algorithm developed by the same authors for the performance

evaluation of trellis-coded modulation schemes [39].

3.3.1 Divsalar’s Technique

The branches of the original state diagram of a convolutional code with memory

size ν are properly labeled using the W , U , Z and L indeterminate variables. The

updated state diagram for the case of the RSC(1,5/7) code can be seen at the top

right of Fig.2.7 in Chapter 2. The information conveyed by the state diagram can be

summarized by the 2ν×2ν state transition matrix A(W,U,Z, L)=
[
a

(1)
ij (W,U,Z, L)

]
,

where a
(1)
ij (W,U,Z, L) is the monomial associated with the transition from state i

to state j and corresponds to paths of length l=1. The state transition matrix for

the RSC(1,5/7) code assumes the form

A(W,U,Z, L) =

L 0 WUZL 0
WUZL 0 L 0

0 WUL 0 ZL
0 ZL 0 WUL

 . (3.23)

Raising the state transition matrix A(W,U,Z, L) to an arbitrary power N leads

to a matrix AN(W,U,Z, L)=
[
a

(N)
ij (W,U,Z, L)

]
, where a

(N)
ij (W,U,Z, L) is the poly-

nomial associated with all paths of length l=N , originating from state i and termi-

nating at state j. However the transfer function B(W,U,Z) of a convolutional block

encoder that accepts input sequences of length N , only comprises of codeword se-

quences associated with paths of length N that originate from the zero state and

terminate at the zero state. Such paths are given by the (0,0) element of the matrix

AN(W,U,Z, L), denoted as a
(N)
00 (W,U,Z, L). All terms of a

(N)
00 (W,U,Z, L) contain

LN owing to the fixed path length N . Hence, the indeterminate variable L can be

eliminated by setting L=1. The outcome contains all codeword sequences of path

length N , including the all-zero sequence, which can be discarded by subtracting 1.

Consequently, the transfer function B(W,U,Z) of a convolutional block encoder for

input sequences of length N is given by

B(W,U,Z) =
(

a
(N)
00 (W,U,Z, L)

∣∣∣
L=1

)
− 1. (3.24)

For large values of N , computation of AN(W,U,Z, L) becomes increasingly com-

plex. Instead of calculating AN(W,U,Z, L), we compute the sum of all Ak(W,U,Z, L)

associated with all possible block sizes, i.e., k=0, 1, . . . ,∞, invoking the equality

I + A(W,U,Z, L) + A2(W,U,Z, L) + . . . = (I−A(W,U,Z, L))−1 (3.25)

48

3.3 Alternative Techniques to Derive the Transfer Function

where I is the unity matrix and (I−A(W,U,Z, L))−1 =[gij(W,U,Z, L)]. Based on

(3.25), we find that the (0,0) element, g00(W,U,Z, L), is

g00(W,U,Z, L) = 1 + a
(1)
00 (W,U,Z, L) + a

(2)
00 (W,U,Z, L) + . . .

= 1 +
∞∑

k=1

a
(k)
00 (W,U,Z, L),

(3.26)

which refers to all paths, starting from the zero state and terminating at the zero

state, including the path of the all-zero codeword sequence, for all possible input

block lengths.

Polynomial g00(W,U,Z, L) is equivalent to the ratio XE/XS obtained after imple-

menting our technique, based on use of the augmented state diagram. The transfer

function B(W,U,Z) of the convolutional block code for a specific input length N

can be derived from g00(W,U,Z, L) using the approach presented in Section 3.2.1,

or by means of a recursion, as described in [27].

3.3.2 Benedetto and Montorsi’s Technique

Benedetto and Montorsi proposed a different approach [16,39] to derive a modified

version of the transfer function of a convolutional code block code, defined as

T (W,U,Z, L, Ω) =
∑

w

∑
u

∑
z

∑

l

∑
n

Tw,u,z,l,nW
wUuZzLlΩn. (3.27)

Exponent n of the new indeterminate variable Ω denotes the number of remergings

with the zero state of a path corresponding to an incorrect codeword sequence. The

transfer function T (W,U,Z, L, Ω) of a convolutional block code, that accepts an

input block of length N , enumerates all paths having length equal to or less than N ,

that leave the zero state at step one, re-visit it one or more times but never remain

at it, and eventually terminate at the zero state.

A codeword sequence, whose trellis path re-merges n times with the path of the

transmitted all-zero codeword sequence, can be seen as the succession of n error

events. However, T (W,U,Z, L, Ω) does not account for those codeword sequences

with zeroes before, after or between the error events. It was shown in [16] that

the total number K[l, n] of codeword sequences having path length N , with zeroes

before, after or between the n error events, can be obtained from a single codeword

sequence of path length l ≤ N associated with n successive errors, as follows

K[l, n] =

(
N − l + n

n

)
=

(N − l + n)!

(N − l)!n!
. (3.28)

49

3.3 Alternative Techniques to Derive the Transfer Function

Consequently, if there are Tw,u,z,l,n codeword sequences that correspond to n succes-

sive error events of length l, the total number of codeword sequences that correspond

to n error events of length N , with zeroes before, after or between the errors, is given

by the product K[l, n] ·Tw,u,z,l,n. The coefficients Bw,u,z and, ultimately, the transfer

function B(W,U,Z) of the convolutional block code, can be obtained from

Bw,u,z =
∑

l

∑
n

K[l, n]Tw,u,z,l,n, (3.29)

where the sum is taken over all valid values of l and n.

3.3.3 Comparison of the Transfer Function Methods

In this section we demonstrate that our approach has similar complexity to Di-

vsalar’s method but it can be modified so as to achieve reduced complexity, similar

to Benedetto and Montorsi’s method. Nevertheless, the augmented state diagram

which is the cornerstone of our technique, offers the benefit of simplicity, since it is

a straightforward extension of the ordinary state diagram of a convolutional code.

Furthermore, as it will become evident in the following chapter, the underlying

advantage of our approach over the two alternative techniques is that it can be ex-

tended to punctured convolutional block codes, thus offering the means to evaluate

the performance of PCCCs having code rates higher than 1/3.

We first compare our proposed technique to Divsalar’s approach, which requires

construction of the state diagram of the convolutional code, derivation of the state

transition matrix A(W,U,Z, L) and computation of g00(W,U,Z, L), which is the

(0,0) element of the 2ν ×2ν parametric matrix (I−A(W,U,Z, L))−1, where ν is the

memory size of the code. A single element of an inverse matrix can be obtained using

an inversion method, such as Gaussian elimination. The computational complexity

of this approach is comparable to the complexity of our proposed technique, where

we solve a system of 2ν + 1 equations only for the ratio XE/XS, which corresponds

to g00(W,U,Z, L).

Benedetto and Montorsi’s method consists of two stages. At the end of the first

stage an intermediate transfer function T (W,U,Z, L, Ω) is algorithmically evaluated,

whereas at the end of the second stage the transfer function B(W,U,Z) of the con-

volutional block code is calculated using combinatorial logic. Although it is not

obvious, direct calculation of B(W,U,Z) using our approach is computationally in-

tensive for medium interleaver sizes (N < 1000) and becomes intolerable for large

interleaver sizes. Partitioning the procedure into two stages, as in Benedetto and

50

3.3 Alternative Techniques to Derive the Transfer Function

00

WUZL WUZL

10 01

11

WUL

ZL ZL

L

WUL

00 WUZL WUZL 00

XS

X2 X1

XE

X3

X0

Figure 3.2: Augmented state diagram of the RSC(1,5/7) block code, where the

number of remergings into the zero state are considered.

Montorsi’s method, increases the memory requirements of the computational algo-

rithm, owing to the introduction of the indeterminate variable Ω, but dramatically

reduces complexity.

Fortunately, the augmented state diagram can be easily modified to give the

less computationally intensive intermediate transfer function T (W,U,Z, L, Ω), as is

illustrated in Fig.3.2. The branch that connects XS with X0 has been removed,

since paths must leave the zero state at step one. The self-loop at X0, as well as the

branch that connects X0 with XE, have also been removed in order to force paths

that re-visit the zero state to leave it at the following time step. Finally, the labels

of those branches that lead to a remerging into the zero state, either X0 or XE, have

been updated to include variable Ω, as well. Upon solving the state equations for

the ratio XE/XS we obtain

XE

XS

= T (W,U,Z, L, Ω). (3.30)

The steps for obtaining the required terms described in Section 3.2.1 still apply,

with the exception of expression 3.20 which assumes the form

lx1k1 + lx2k2 + . . . + lxP
kP ≤ (N − lyi

) (3.31)

since we are interested in all paths of length N or less. These paths are padded to

a length of N and compose the transfer function B(W,U,Z) of the convolutional

block code, using (3.29) as in the case of Benedetto and Montorsi’s technique.

Summarizing, the technique we propose has similar complexity to Divsalar’s

method. Benedetto and Montorsi’s approach is considerably less complex and can

51

3.4 Evaluation of the Performance Upper Bound

be efficiently used for turbo codes employing large interleaver sizes. Nevertheless,

our proposed technique can be easily modified to offer similar functionality and

computational complexity as Benedetto and Montorsi’s approach. The main advan-

tage of the augmented state diagram technique is that it can be easily extended to

punctured convolutional block codes. Subsequently, we can accurately evaluate the

performance of punctured turbo codes and identify puncturing patterns that result

in good high rate turbo codes, in terms of error rate performance. A detailed de-

scription of our extended technique and its applications, is given in the following

chapter.

3.4 Evaluation of the Performance Upper Bound

In order to calculate an upper bound on the ML average performance of a turbo code

P using a uniform interleaver of size N and two constituent RSC block codes, C1 and

C2, we developed a configurable algorithm, which constructs the augmented state

diagrams, obtains the state equations and eventually derives the transfer functions,

namely BC1(W,U,Z) and BC2(W,U,Z), of the constituent convolutional block codes.

The transfer function BP(W,U,Z) of the turbo code can then be computed using

the transfer functions of its constituent codes, as described in Chapter 2. The

union bound requires knowledge of the input-output weight enumerating function

BP(W,D) of the turbo code, which can be obtained from BP(W,U,Z) by setting

U = Z = D. Based on (2.65), the union bound is an upper bound on the bit error

probability Pb, and can be re-written as

Pb ≤ 1

N

3N∑

d=1

N∑
w=1

wBP
w,dQ

(√
2EbRP

N0

d

)

=
3N∑

d=1

DdQ

(√
2EbRP

N0

d

)
,

(3.32)

with

Dd =
N∑

w=1

w

N
BP

w,d, (3.33)

where Eb is the energy per transmitted coded bit, RP is the code rate, which in

our case is 1/3, and BP
w,d are the coefficients of the weight enumerating function

BP(W,D). Note that BP
w,d denotes the number, also known as multiplicity, of the

output turbo codeword sequences having overall weight d, generated by input se-

quences of information weight w.

52

3.4 Evaluation of the Performance Upper Bound

As suggested in both [27] and [16], computational complexity of the upper bound

can be considerably reduced without compromising its accuracy, if only the most

significant coefficients BP
w,d are calculated, i.e., those having low input and output

weights, w and d, respectively. Consequently, the range of values for w and d can

be truncated, such that w≤wT and d≤dT , where wT and dT are called truncation

weights and their typical values fall in the range between 25 and 38 [16]. Having

obtained coefficients Dd using (3.33) for 1 < d ≤ dT , we estimate the remaining

coefficients for dT <d≤3N by means of an extrapolation, based on the exponential

law

Dd = exp(κ1 + κ2d). (3.34)

Parameters κ1 and κ2 are derived through a mean-square optimization over the

known values of Dd [16].

A comparison between theoretical upper bounds, obtained for various PCCC

configurations, and simulation results are presented in Fig. 3.3 and Fig. 3.4. We

note that, in all cases, suboptimal iterative decoding employing the exact Log-MAP

algorithm, converges to ML decoding for medium to large Eb/N0 values, after only

8 iterations. For an increasing number of iterations, the iterative decoder converges

to the ML performance at low values of Eb/N0 [16]. Small deviations from the

upper bound curve indicate that the simulated performance achieved by a PCCC

configuration using a selected pseudo-random interleaver is slightly better or worse

than the average performance of a PCCC using a uniform interleaver. The bounds

derived using our novel approach were also compared to those computed using either

Divsalar’s technique [27] or Benedetto and Montorsi’s method [16]. In all cases, the

bounds were identical.

In Fig.3.3 the effect of the interleaver gain is illustrated. The slope of the upper

bound, which identifies the error floor region of PCCC(1,5/7,5/7), can be lowered

by increasing the size of the interleaver. In Table 3.1 the first 20 coefficients Dd,

which were derived based on our proposed technique and used in the union bound

calculation of the PCCC in question, are presented. Note that the free distance

dfree of the turbo code, which is the the smallest value of d for which Dd is non-

zero, does not depend on the interleaver size. The main effect of the interleaver is

to markedly reduce the value of each coefficient Dd. As David Forney stressed in

his 1995 Shannon Lecture [40], “rather than attacking error exponents, they [turbo

codes] attack multiplicities, turning conventional wisdom on its head”.

In Fig.3.4 we compare the bit error rate performance of turbo codes using con-

stituent convolutional codes of memory size 1, 2 and 3, separated by an interleaver

of size 1,000 bits. Constituent codes described by generator vectors 2/3 and 17/15

53

3.4 Evaluation of the Performance Upper Bound

0 1 2 3 4 5 6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

Upper bound, N=100
Simulation, N=100
Upper bound, N=1,000
Simulation, N=1,000
Upper bound, N=10,000
Simulation, N=10,000

Figure 3.3: Comparison between bounds and simulation results after 8 iterations

for PCCC(1,5/7,5/7) using interleaver sizes of 100, 1000 and 10000 bits. The

exact log-MAP decoding algorithm is used.

0 1 2 3 4 5 6 7 8 9
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

Upper bound, PCCC(1,2/3,2/3)
Simulation, PCCC(1,2/3,2/3)
Upper bound, PCCC(1,7/5,7/5)
Simulation, PCCC(1,7/5,7/5)
Upper bound, PCCC(1,5/7,5/7)
Simulation, PCCC(1,5/7,5/7)
Upper bound, PCCC(1,17/15,17/15)
Simulation, PCCC(1,17/15,17/15)

Figure 3.4: Upper bounds and simulation results after 8 iterations for PCCCs

using various constituent codes. The interleaver size is 1000 bits. As in the

previous figure, the exact log-MAP algorithm is applied.

54

3.4 Evaluation of the Performance Upper Bound

Table 3.1: Coefficients Dd for the calculation of the union bound for the rate-1/3

PCCC(1,5/7,5/7). Three interleaver sizes are considered.

d N =100 N =1, 000 N =10, 000

1-6 0 0 0
7 1.782 · 10−3 1.798 · 10−5 1.800 · 10−7

8 9.401 · 10−5 9.581 · 10−8 9.597 · 10−11

9 1.041 · 10−2 1.076 · 10−4 1.080 · 10−6

10 3.912 · 10−2 3.981 · 10−3 3.998 · 10−4

11 3.209 · 10−2 3.398 · 10−4 3.418 · 10−4

12 7.963 · 10−2 7.942 · 10−3 7.994 · 10−4

13 7.387 · 10−2 7.859 · 10−4 7.914 · 10−4

14 0.1382 1.199 · 10−2 1.200 · 10−3

15 0.1547 1.528 · 10−3 1.530 · 10−5

16 0.2845 1.661 · 10−2 1.606 · 10−3

17 0.3894 3.283 · 10−3 3.233 · 10−5

18 0.7064 2.278 · 10−2 2.026 · 10−3

19 1.1972 9.201 · 10−3 8.982 · 10−5

20 2.1205 5.562 · 10−2 4.868 · 10−3

have memory sizes of 1 and 3, respectively, while both generator vectors 5/7 and

7/5 correspond to a memory size of 2. As in the case of convolutional codes, con-

stituent codes with an increasing memory order lead to turbo codes with better

performance in terms of bit error probability. However, contrary to convolutional

codes, maximization of the free distance of a turbo code by properly selecting the

generator vectors, does not necessarily lead to minimization of the bit error proba-

bility. In Table 3.2, we note that dfree =8 for PCCC(1,7/5,7/5) whereas dfree =7 for

PCCC(1,5/7,5/7), nevertheless the latter code performs better than the first, as is

shown in Fig.3.4.

Benedetto and Montorsi showed in [26] that the most significant parameter

through which a constituent code influences the performance of the PCCC, is the

minimum weight of the parity check sequences, namely zmin, generated by informa-

tion sequences of weight 2. The minimum weights zC1min and zC2min of the constituent

codes C1 and C2 respectively, compose the free effective distance dfree,eff of the PCCC

given by

dfree,eff = 2 + zC1min + zC2min. (3.35)

The effective free distance for PCCC(1,7/5,7/5) is found to be 8 as opposed to 10 for

55

3.4 Evaluation of the Performance Upper Bound

Table 3.2: Coefficients Dd for the calculation of the union bound of four rate-1/3

PCCCs. The size of the interleaver is N =1, 000.

d (1,2/3,2/3) (1,7/5,7/5) (1,5/7,5/7) (1,17/15,17/15)

1-3 0 0 0 0
4 3.996 · 10−3 0 0 0
5 7.984 · 10−3 0 0 0
6 1.196 · 10−2 0 0 0
7 1.594 · 10−2 0 1.798 · 10−5 0
8 4.380 · 10−2 3.988 · 10−3 9.581 · 10−8 9.581 · 10−8

9 0.1193 7.961 · 10−3 1.076 · 10−4 0
10 0.2659 1.192 · 10−2 3.981 · 10−3 5.735 · 10−7

11 0.5070 1.586 · 10−2 3.398 · 10−4 1.610 · 10−4

12 0.9846 1.989 · 10−2 7.942 · 10−3 3.526 · 10−6

13 2.0762 2.419 · 10−2 7.859 · 10−4 2.139 · 10−4

14 4.5098 2.905 · 10−2 1.199 · 10−2 3.960 · 10−3

15 9.4755 3.485 · 10−2 1.528 · 10−3 7.107 · 10−4

16 19.2880 6.577 · 10−2 1.661 · 10−2 3.888 · 10−5

17 39.1300 0.1457 3.283 · 10−3 9.573 · 10−4

18 80.3950 0.2984 2.278 · 10−2 8.026 · 10−3

19 166.1300 0.5473 9.201 · 10−3 1.977 · 10−3

20 341.4900 0.9172 5.562 · 10−2 4.914 · 10−4

PCCC(1,5/7,5/7), which gives us an indication that the latter code will outperform

the first. Therefore, the generator vectors of the constituent codes should be chosen

to maximize the free effective distance of the turbo code.

Concluding, we demonstrated that our proposed technique can be used to ac-

curately derive upper bounds on the average ML performance of turbo codes. We

compared theoretical bounds to simulation results in order to illustrate that an up-

per bound correctly predicts the error floor of a suboptimal iterative decoder. For

an increasing number of iterations, the performance of a turbo code converges to

the ML bound for medium to high Eb/N0 values, provided that the component de-

coders employ optimal MAP decoding. The parameters that affect the performance

ML bound on the bit error probability are the interleaver size, the memory order

and the generator vectors of the constituent codes.

56

3.5 Chapter Summary

3.5 Chapter Summary

In this chapter we introduced a novel approach for the evaluation of the transfer

function of a convolutional block code. A tight upper bound on the average ML

performance of a turbo code, which uses convolutional block codes as constituent

codes, can be then computed and accurately predict the error floor of the suboptimal

iterative decoder.

We compared our approach with two conventional techniques and we demon-

strated that our proposed method exhibits identical complexity to that of Benedetto

and Montorsi’s technique, while it surpasses Divsalar’s approach. Nevertheless, as

we describe in detail in the following chapter, our method offers the advantage of

being extendable to punctured turbo codes in a straightforward manner. Hence,

it will enable us to both derive upper bounds on their error rate performance and

identify puncturing patterns that can lower their error floor.

57

Chapter 4
Punctured Convolutional and Turbo

Codes on AWGN Channels

4.1 Introduction

The augmented state diagram can be used to obtain the transfer function of convo-

lutional block codes, which is required for the computation of a tight upper bound

on the average ML performance of a rate-1/3 turbo code that uses convolutional

block codes as constituent codes. Higher rate turbo codes can be obtained by pe-

riodically deleting selected bits from the output of the turbo encoder. As a result,

the trellis diagram of each constituent code also varies periodically with time.

In this chapter we extend the concept of the augmented state diagram, introduced

in Chapter 3, to high-rate convolutional block codes with a periodically time-varying

state diagram, known as punctured convolutional block codes. A punctured turbo

code can be seen as the parallel concatenation of two punctured convolutional block

codes separated by an interleaver. Hence, we can apply the same principles used

previously in non-punctured turbo codes to derive the transfer function of the corre-

sponding punctured turbo code from the transfer functions of its constituent codes.

We demonstrate that our approach can be used to identify puncturing strategies

leading to punctured turbo codes with a low error floor and compute tight bounds

on the average ML performance of punctured turbo codes employing short inter-

leavers. Furthermore, we show that, if certain conditions are met, our approach

can be extended, in a straightforward manner, to punctured turbo codes using long

interleavers.

58

4.2 Punctured Convolutional Codes

4.2 Punctured Convolutional Codes

A convolutional encoder having k0 inputs and n0 outputs, achieves a code rate of

R = k0/n0. When the number of outputs is much greater than the number of in-

puts, i.e., n0 À k0, the reliability of the decoded information sequence is increased

at the expense of bandwidth efficiency, defined as the number of information bits

per second per Hz (bits ·sec−1 ·Hz−1). In many practical applications, bandwidth ef-

ficiency is of critical importance, hence the use of high rate codes, where k0/n0 → 1,

is imperative. However, complexity of the Viterbi decoder in high rate codes can be

overwhelming, since the existence of 2k0 branches leaving or entering a state in the

trellis diagram requires 2k0 branch metric calculations per state per time step. Con-

sequently, computational complexity of the decoder algorithm grows exponentially

with the number of inputs k0 to the convolutional encoder.

A high-rate convolutional code can be obtained by periodic elimination, known

as puncturing, of specific codeword bits from the output of a parent low-rate con-

volutional encoder, which has the benefit of not compromising the computational

complexity of the decoder. If the parent convolutional encoder generates n0 output

sequences, we define which output bits are eliminated at each time-step by means

of a puncturing pattern P. The puncturing pattern, which is repeated periodically

every M time steps, is represented by a n0 ×M matrix

P =

p1,1 . . . p1,M
...

. . .
...

pn0,1 . . . pn0,M

 , (4.1)

where pi,j ∈ {0, 1}, with i = 1, . . . , n0 and j = 1, . . . , M . For pi,j =0 the correspond-

ing output bit is punctured, while for pi,j =1 the output bit is transmitted.

For the case of a punctured RSC encoder having two outputs, i.e., n0 = 2,

the puncturing pattern P of the code consists of the puncturing vector PU for

the systematic output sequence and the puncturing vector PZ for the parity check

output sequence

P =

[
PU

PZ

]
=

[
p1,1 p1,2 . . . p1,M

p2,1 p2,2 . . . p2,M

]
. (4.2)

As an example, the output of the rate-1/2 RSC(1,5/7) code in Fig.4.1 is punctured

using the pattern

P =

[
1 0 1
0 1 1

]
. (4.3)

According to the puncturing pattern, the second bit in each group of 3 output

systematic bits is punctured. Similarly, the first bit in each group of 3 output parity

59

4.2 Punctured Convolutional Codes

101011

101011

Puncturing
pattern

110

101

110111

1101101011

110111 1011

11100111

8 bits

6 bits

Puncture MultiplexEncode (rate 1/2) Map

(-1)(-1)(-1)(+1)...0 (+1)
1 (-1)

Figure 4.1: Puncturing of the rate-1/2 RSC(1,5/7) code to obtain a code of rate

3/4.

check bits is removed. Since 4 in every 6 codeword bits survive puncturing, an

overall code rate of (1/2)(6/4)=3/4 is achieved.

The puncturing pattern P can also be seen as a matrix that consists of column

vectors, namely column puncturing vectors (CPVs) Pj, with j = 1, . . . ,M , that de-

termine which bits will be punctured at each time-step. Accordingly, the puncturing

pattern P can be expressed as:

P =
[
P1 P2 . . . PM

]
=

[
p1,1 p1,2 . . . p1,M

p2,1 p2,2 . . . p2,M

]
. (4.4)

We use the latter representation throughout the following section, where we in-

troduce the modified augmented state diagram for punctured convolutional block

codes.

Soft decoding of punctured convolutional codes is performed in the same manner

as the soft decoding of non-punctured convolutional codes, described in Chapter 2.

However, when one or more bits in a branch of the trellis diagram are punctured,

they do not contribute to the corresponding branch metric. In practice, a zero is

inserted in each position of the received sequences, where a bit was punctured at

the transmitter. Consequently, the decoding algorithm treats each inserted zero as

a soft bit having an LLR of zero, meaning that a hard decision on that bit would

give a “-1” or “+1” with equal probability. During the decoding process, zero LLRs

do not contribute to the branch metrics, hence the decoded information sequence is

computed based on the non-punctured received bits.

A decoder for the punctured RSC(1,5/7) code presented in Fig. 4.1, is illustrated

in Fig.4.2. For clarity and simplicity, we assume that the channel output is noise-

less. The puncturing pattern is used to identify the positions where bits have been

punctured. Zeroes are inserted at the identified positions and the updated received

60

4.3 Transfer Function of Punctured Convolutional Block Codes

(-1)(-1)(-1)(+1)...

(-1)(-1)

(-1)(+1)

Puncturing
pattern

(-1) (-1)

(0)

(-1)(+1)

(0)

(-1)(0)(-1)

(0)(-1)(+1)

110

101

De-multiplex Insert Zeroes

Viterbi
Decoder

Decode

101...

Figure 4.2: Insertion of zeroes before decoding a punctured convolutional code.

sequences are input to the convolutional decoder, which employs the conventional

Viterbi algorithm described previously in Chapter 2.

4.3 Transfer Function of Punctured Convolutional

Block Codes

In this section we extend the concept of the augmented state diagram to include the

case of punctured convolutional block codes. For consistency, we continue to consider

the rate-1/2 RSC(1,5/7) code, having a memory size of ν = 2 and, consequently,

2ν = 4 available states. In order to construct the augmented state diagram of the

punctured RSC(1,5/7) block code, we need to introduce the CPV into the labeling

procedure of each branch. Recall that a transition from a state Xi to a state Xk,

where {i, k} ∈ {0, 1, 2, 3}, is labeled WwUuZzL, where w is the weight of the input

sequence that caused a transition, which in turn generated a systematic output

sequence with weight u and a parity check output sequence with weight z. Let

us concentrate on the same transition from Xi to Xk when puncturing occurs. If

Pj = [p1,j p2,j]
T, where j = 1, . . . , M , is the active CPV at a specific time-step,

the label of the branch will change to Ww′Uu′Zz′L, where w′, u′ and z′ are related

to w, u, z as well as the elements of Pj, i.e., p1,j and p2,j, as follows:

w′ = w, u′ = u · p1,j, z′ = z · p2,j. (4.5)

The values of u′ and z′ depend upon the active CPV, therefore the label of the

branch that connects Xi with Xk cannot be a constant term, since it can assume up

to M different values due to the M available CPVs.

To overcome this problem, we introduce M sets of states. Each set Yj contains

all possible states of the convolutional encoder. When Pj is the active CPV, a

61

4.3 Transfer Function of Punctured Convolutional Block Codes

transition from state Xi to state Xk in the conventional state diagram corresponds

to a transition from state Xi in set Yj−1, denoted as X
(j−1)
i in the modified aug-

mented state diagram, to state Xk in set Yj, denoted as X
(j)
k . At the next time-step,

Pj+1 becomes the active CPV and as time progresses, CPVs are repeated period-

ically, i.e., P1,P2,. . . ,PM ,P1,. . . , resulting in transitions to states that belong to

sets Y1,Y2,. . . ,YM ,Y1,. . . , respectively. Therefore, the problem of having M different

terms associated with a branch that connects state Xi with state Xk, is overcome

by having M branches, each one of which pairs state Xi of a set with state Xk of a

different set.

So as to better understand the concept of the augmented state diagram of a

punctured convolutional block code, we give an example for a puncturing period of

M =2. In order to increase the code rate of RSC(1,5/7) from 1/2 to 2/3, we use the

following puncturing pattern:

P =

[
1 1
1 0

]
, with P1 =

[
1
1

]
and P2 =

[
1
0

]
, (4.6)

where P1 and P2 are CPVs. Since 1 in 4 codeword bits is punctured, 3 codeword

bits are transmitted for every M =2 information bits, therefore the code rate of the

punctured convolutional code is 2/3.The augmented state diagram of the rate-2/3

RSC(1,5/7) block code is presented in Fig.4.3. Blue colored lines, originating from

states in set Y2 and terminating at states in set Y1, represent transitions during

which P1 is the active CPV. Since both elements of P1 are equal to 1, the outputs

of the encoder are not punctured, therefore the labels of the branches that connect

the states of set Y2 with the states of set Y1 are identical to the labels of the corre-

sponding branches of the augmented diagram in Fig.3.1 in Chapter 3. Red colored

lines, originating from states in set Y1 and terminating at states in set Y2, repre-

sent transitions during which P2 is the active CPV. In this case, the parity check

output of the encoder is punctured, therefore term Z does not appear in any of the

branch labels. To complete the augmented diagram, states XS and XE have been

included. Since the encoder starts from state XS, P1 is the active CPV during the

transition from XS to a state in set Y1 at the first time-step. At the last time-step,

the encoder returns to the zero state, i.e., a transition to state XE occurs. In order

to terminate the code, those states of each set which are connected to state X0 of

a different set, must also be connected to state XE. We see in Fig.3.1 that states

X
(1)
0 and X

(1)
1 , as well as X

(2)
0 and X

(2)
1 are connected to states X

(2)
0 and X

(1)
0 , re-

spectively. Hence, these four states should also be connected to state XE, as shown

in Fig.3.1 using dashed lines.

62

4.3 Transfer Function of Punctured Convolutional Block Codes

10

01

11

00 WUZL

XS

10

01

11

WUL

LZL

WUL

WUL

WUL

L ZL

LL

00 00
WUZLWUL

L

L

WUL WUZL
00WUZL

L

L

XE

X3

X2

X1

X0

X3

X2

X1

X0

L
WUL

Y1 Y2

(1)

(1)

(1)

(1)

(2)

(2)

(2)

(2)

Figure 4.3: Augmented state diagram of the rate-2/3 RSC(1,5/7) block code.

00

XS XE

Y1
P1 P2 Y2

P1

P2

P1

Figure 4.4: Generic diagram of a punctured convolutional block code (M = 2).

00

XS XE

Y1
P1 P2

P2

Y2 Y3
P3

YM

P1

P3 P 4

P 1

YM-1
PM

PM

Figure 4.5: Generic diagram of a punctured convolutional block code.

63

4.3 Transfer Function of Punctured Convolutional Block Codes

A generic representation of the augmented state diagram of a convolutional block

code, which is punctured using a pattern of period M =2, is shown in Fig.4.4. Both

sets Y1 and Y2 contain all possible states of the convolutional encoder. A link between

two sets represents the collection of branches of the augmented diagram that connect

the states of the two different sets. Each link is labeled with the associated CPV.

The same logic applies to the link that connects the start state XS with Y1 as well

as the links that connect all sets to the end state XE.

The general case of a convolutional block code, which is punctured using a pat-

tern of period M , is shown in Fig.4.5. Upon deriving the (2ν×M)+1 state equations,

we solve them for the ratio XE/XS and, similarly to the case of non-punctured con-

volutional codes, we obtain a sum of two terms. The first term enumerates the

all-zero codeword sequences and can be ignored, whereas the second term is the ex-

tended transfer function of the punctured convolutional block code. We have shown

in Chapter 3 that the extended transfer function f(W,U,Z, L) is the sum of the

conditional extended transfer functions f(W,U,Z, l), each one of which enumerates

all codeword sequences of path length l, where l = 1, 2, . . .∞. Consequently, for

an input information sequence of length N , the transfer function B(W,U,Z) of the

punctured convolutional block code is given by the conditional extended transfer

function f(W,U,Z, l=N), according to 3.12.

Nevertheless, it is worthwhile to associate the various CPVs and the puncturing

period M with the conditional extended transfer functions. If we link the path

length l to the puncturing period M using the expression l = κM + j, where κ

and j are non-negative integers, the extended transfer function f(W,U,Z, L) can be

written as

f(W,U,Z, L) =
∞∑

l=1

f(W,U,Z, l)Ll

=
∞∑

κM+j=1

f(W,U,Z, κM + j)LκM+j

=
∞∑

κ=0

M∑
j=1

f(W,U,Z, κM + j)LκM+j

(4.7)

or, equivalently,

f(W,U,Z, L) =
M∑

j=1

(∞∑
κ=0

f(W,U,Z, κM + j)LκM+j

)
. (4.8)

We denote the sum

fPj(W,U,Z, L) =
∞∑

κ=0

f(W,U,Z, κM + j)LκM+j, (4.9)

64

4.3 Transfer Function of Punctured Convolutional Block Codes

as the extended transfer function of the j-th CPV, which enumerates all trellis paths

of lengths j, (M + j), (2M + j), etc. We see in Fig.4.5 that these paths terminate

at state XE when Pj is the active CPV. Taking into account (4.9), the extended

transfer function assumes the form

f(W,U,Z, L) =
M∑

j=1

fPj(W,U,Z, L). (4.10)

In order to compute the transfer function of the punctured convolutional block

code for a specific input block length N , we only need to consider the conditional

extended transfer function f(W,U,Z, l = N), which is a component of a particu-

lar extended transfer function fPj(W,U,Z, L). The importance of this observation

is made clear, if we revisit Fig.4.5. We notice that each set of states is intercon-

nected with the end state XE through a link, shown with a dashed line in Fig.4.5,

which is associated with the extended transfer function of a unique CPV. Hence,

a total of M links terminate at state XE and the extended transfer functions of

all CPVs are considered. However, we can determine the j-th CPV, being active

when the paths of length N terminate at state XE, retain the associated link and

remove all others. Consequently, the terms in the state equation for XE are reduced

from 2M to only 2, and the ratio XE/XS no longer provides the extended trans-

fer function f(W,U,Z, L) but the extended transfer function of the j-th CPV, i.e.,

fPj(W,U,Z, L). The conditional extended transfer function f(W,U,Z, l=N) can be

obtained from fPj(W,U,Z, L) by imposing the computational constraints described

in Chapter 3.

If we wish to derive the transfer function of the rate-2/3 RSC(1,5/7) block code,

obtained after puncturing the rate-1/2 original code using the pattern in (4.6), we

need to simplify the augmented state diagram in Fig.4.3 by removing the appropriate

terminating branches. For an input information sequence of length N =100, we can

compute the active CPV at the 100-th time-step using the expression

κM + j = 100, (4.11)

where κ and j are both non-negative integers with κ ≥ 0 and 1 ≤ j ≤ M . The

puncturing period M in our example is equal to 2. The unique solution to the above

equation is κ=49 and j =2. Consequently, P2 is the active CPV at the 100-th time-

step, hence the branches originating from states X
(1)
0 , X

(1)
1 and terminating at state

XE need only be retained. The updated augmented diagram is shown in Fig.4.6,

while the generic representation is shown in Fig.4.7. Note that, according to 4.9,

both diagrams are valid for any input sequence having an even number of information

65

4.3 Transfer Function of Punctured Convolutional Block Codes

10

01

11

00 WUZL

XS

10

01

11

WUL

LZL

WUL

WUL

WUL

L ZL

LL

00 00
WUZLWUL

L

L

WUL WUZL
00

L

XE

Y1 Y2

L

WUL

X3

X2

X1

X0

X3

X2

X1

X0

(1)

(1)

(1)

(1)

(2)

(2)

(2)

(2)

Figure 4.6: Augmented state diagram of the rate-2/3 RSC(1,5/7) block code, as-

suming that the input block length is an even number.

00

XS XE

Y1
P1 Y2

P2

P2

P1

Figure 4.7: Generic diagram of a punctured convolutional block code having a punc-

turing period M = 2. The input sequence is assumed to have an even number of

information bits.

66

4.4 Handling Long Puncturing Patterns and Long Input Sequences

bits, i.e., N =2, 4, 6, . . . etc. Upon solving the state equations for the ratio XE/XS,

we obtain the extended transfer function of the 2nd CPV, i.e., fP2(W,U,Z, L), from

which we can derive the conditional extended transfer function f(W,U,Z, l =100),

and, ultimately, the transfer function of the punctured convolutional block code,

B(W,U,Z), for an input information sequence of length N =100.

4.4 Handling Long Puncturing Patterns and Long

Input Sequences

Computation of the transfer function of a punctured convolutional block code based

on the augmented state diagram requires the solution of (2ν ×M) + 1 state equa-

tions for the ratio XE/XS, where ν is the memory size of the encoder and M is

the puncturing period. Consequently, the computational complexity of the transfer

function of the code depends upon the period of the puncturing pattern. Further-

more, similarly to the case of non-punctured convolutional block codes, the inherent

loop of zero input and output weight at the zero state introduces a computational

burden in the calculation of the ratio XE/XS, which becomes intolerable when long

information sequences are input to the punctured convolutional block encoder.

The augmented state diagram of a punctured convolutional block code is an al-

ternative representation to the trellis diagram of length N , obtained after puncturing

the outputs of a parent convolutional block code, using a pattern of period M . The

puncturing pattern essentially converts the trellis diagram from time-invariant to

time-variant with a period of M time-steps. However, if the length of the trellis

diagram or, equivalently, the length of the input sequence is a multiple of the punc-

turing period, i.e., N =κM , time variability can be overcome. More specifically, it

is valid to say that the input sequence of length N consists of κ groups of M bits

each, and thus causes κ composite transitions. A composite transition between two

states, e.g., Xi and Xk, is caused by a group of M information bits and essentially

breaks down into a sequence of M transitions starting from state Xi and terminat-

ing at state Xk, M time-steps later. Consequently, the time-variant trellis diagram

of length N and period M can be replaced by a time-invariant trellis diagram of

length κ, where 2M branches emerge from each state instead of 2. In Fig.4.8 we see

that the two CPVs of the puncturing pattern act differently upon the systematic

and parity check outputs of the RSC(1,5/7) code, causing the trellis diagram to pe-

riodically vary with time. However, the time-variant trellis with period M =2 and

67

4.4 Handling Long Puncturing Patterns and Long Input Sequences

X1

X3

P1

X0

X2

P1P2 P2

X1

X3

X0

X2

time step: 1 2 3 4 time step: 2 4

Figure 4.8: Conversion of the time-variant trellis diagram of RSC(1,5/7) with M =2

to a time-invariant trellis diagram. Each composite transition in the time-invariant

trellis (right) breaks down to a sequence of two transitions in the time-variant trellis

(left).

00

XS XE

Y1
P1 P2

P2

Y2 Y3
P3

YM

P1

P3 P 4

P 1

YM-1
PM

PM

00

XS XE

Y1
P1

P2

Y2 Y3
P3

YM

P1

YM-1
PM

PM

Figure 4.9: In the general case (left diagram), states from sets Y1 to YM are consid-

ered in the state equations. However, for input sequences of length N = κM , only

the states from set YM need to be considered (right diagram).

length N can collapse to an equivalent time-invariant trellis of length N/2. Note

that 2 time-steps are required for the completion of a composite transition.

In general, M time-steps are required for each composite transition, hence the

states participating in the time-invariant trellis diagram are the states which belong

in set YM of the augmented state diagram. These states, as well as the start state XS

and the end state XE, are the only ones that need to be considered when deriving

the state equations. The reduction of the augmented state diagram for the general

case of a puncturing pattern having a period of M is depicted in Fig.4.9. Note that,

although each set Yj, with j ∈ {1, . . . , M}, of the modified diagram consists of 2ν

states, variables Xi with i ∈ {0, . . . , 2ν − 1} are only allocated to the states in set

YM . Effectively, the augmented state diagram of (2ν × M) + 2 states collapses to

an augmented state diagram of only 2ν + 2 states, where each branch represents a

68

4.4 Handling Long Puncturing Patterns and Long Input Sequences

composite transition of M time-steps. For example, the augmented state diagram

of the rate-2/3 punctured RSC(1,5/7) block code shown in Fig.4.6, is reduced to the

augmented state diagram illustrated in Fig.4.10. Consequently, the initial system of

(2ν×M)+1 state equations is also reduced to a system of only 2ν +1 state equations.

Upon solving the equations for the ratio XE/XS, we obtain the extended transfer

function of the M -th CPV, i.e., fPM (W,U,Z, L), which enumerates all paths whose

length is a multiple of the puncturing period.

For long input sequences and relatively short puncturing patterns, i.e., N À M ,

we can approximate N to the nearest multiple of M , when N 6= κM . Such an

approximation does not yield an accurate expression for the transfer function of

the punctured convolutional block code, however simulation results show that the

bit error performance of turbo codes using punctured convolutional block codes as

constituent codes, is not dramatically changed by small variations in the length of

the input sequence or equivalently, the interleaver size. Nevertheless, as the length

of the input sequence increases, enumeration of all paths having length N becomes

computationally intensive, due to the inherent loop of zero input and output weight

at the zero state. We described in Chapter 3 that if no puncturing is applied,

complexity is considerably reduced when we remove the inherent self-loop at state

X0, remove the branches that interconnect states XS and XE through state X0 and

introduce the indeterminate variable Ω to the label of those branches that lead to a

re-merging into the zero state, either X0 or XE. The transfer function B(W,U,Z) of

the convolutional block code is then derived from the intermediate transfer function

T (W,U,Z, L, Ω) obtained from the modified augmented state diagram. The same

modifications can be performed on the collapsed augmented state diagram of a

punctured convolutional block code to make computation of its transfer function

feasible for long input sequences. For the case of the rate-2/3 punctured RSC(1,5/7)

block code, the simplified augmented state diagram shown in Fig.4.11 has been

obtained from the collapsed augmented state diagram depicted in Fig.4.10.

We explained in Chapter 3 that T (W,U,Z, L, Ω), the intermediate transfer func-

tion obtained from the simplified augmented state diagram, is a sum of monomials of

the form WwUuZzLlΩn, each one of which corresponds to a codeword sequence rep-

resented by a path in the trellis diagram. However, the path length l only assumes

values that are multiples of the puncturing period M , whereas the n re-mergings

with the path of the all-zero codeword sequence occur at time intervals which are

also multiples of the puncturing period M . From each monomial WwUuZzLlΩn,

we can derive the total number K ′[l, n] of codeword sequences having an overall

69

4.4 Handling Long Puncturing Patterns and Long Input Sequences

00

WUL2

10 01

11

ZL2

W2U2ZL2

00

XS

X2 X1

XE

X3

X0

WUL2

W2U2L2

L2

WUL2WUZL2

L2

W2U2ZL2

WUZL2

WUL2WUL2

W2U2ZL2

WUL2

WUZL2

00

WUZL2

W2U2L2

WUL2

WUZL2

L2 L2

W2U2L2

L2

Figure 4.10: Collapsed augmented state diagram of the rate-2/3 RSC(1,5/7) block

code for a puncturing period of M =2.

00

WUL2

10 01

11

ZL2

W2U2ZL2

00

XS

X2 X1

XE

X3

X0

WUL2

W2U2L2

L2

WUL2WUZL2

L2

W2U2ZL2

WUZL2

W2U2L2

WUL2WUL2

W2U2ZL2

WUL2

WUZL2

00

WUZL2

W2U2L2

WUL2

WUZL2

Figure 4.11: Simplified augmented state diagram of the rate-2/3 RSC(1,5/7) block

code. No loops of zero input and output weight exist.

70

4.4 Handling Long Puncturing Patterns and Long Input Sequences

00

WUL2

10 01

11

W2U2L2

W2U2ZL2

00

XS

X2 X1

XE

X3

X0

W2U2L2

WUZL2

WUL2

WUZL2WUL2

WUL2

WUZL2

WUZL2

ZL2

L2ZL2

WUZL2

WUL2

W2U2ZL2

00

WUZL2

WUZL2

W2U2L2

W2U2ZL2

Figure 4.12: Simplified augmented state diagram of the rate-2/3 RSC(1,7/5) block

code. There is a self-loop of zero input and output weight at state X1.

path length N , with zeroes before, after or between the n re-mergings, by modifying

(3.28) as follows

K ′[l, n] =

(
N−l
M

+ n

n

)
=

(
N−l
M

+ n
)
!(

N−l
M

)
!n!

. (4.12)

As described in Chapter 3, the coefficients Bw,u,z and, ultimately, the transfer func-

tion B(W,U,Z) of the punctured convolutional block code, can be obtained from

Bw,u,z =
∑

l

∑
n

K ′[l, n]Tw,u,z,l,n, (4.13)

where Tw,u,z,l,n are the coefficients of the intermediate function T (W,U,Z, L, Ω).

Computation of the transfer function B(W,U,Z) is speeded up by simplifying

the augmented state diagram of the punctured convolutional block code, only if

there are no loops of zero input and output weight besides the self-loop at the zero

state. We observe in Fig.4.11 that although branches having zero input and output

weight exist, they do not form loops, hence computation of the transfer function

can be speeded up. If the same pattern (4.6) is used to puncture the output of

the RSC(1,7/5) encoder, we obtain the simplified augmented diagram depicted in

Fig.4.12. We see that, even though the unwanted inherent loop has been removed,

a loop of zero input and zero output weight still remains at state X1. Expression

4.12 does not account for loops other than the inherent loop at the zero state, hence

it will only compute a fraction of the total number of codeword sequences, corre-

sponding to paths of length N . As a result, the transfer function of the punctured

71

4.5 Performance Analysis

convolutional block code will not be successfully derived. Concluding, simplification

of the augmented state diagram does result in computational complexity reduction

and hence, permits the accurate and rapid calculation of the transfer function of a

punctured convolutional block code for long input sequences, provided that there

exist no loops of zero input and output weight in the simplified augmented state

diagram.

4.5 Performance Analysis

We demonstrated in Chapter 2 that in the case of a non-punctured rate-1/3 turbo

encoder, P , composed of two RSC encoders, C1 and C2, a tight upper bound can

be found when the transfer function BP(W,U,Z) of the turbo code is computed.

The assumption of a uniform interleaver of size N , allows us the straightforward

calculation of the transfer function BP(W,U,Z) of the turbo code, based on the

transfer functions, BC1(W,U,Z) and BC2(W,U,Z), of the constituent codes. The

union bound obtained from (2.65), provides an accurate upper bound on the average

ML performance of the turbo code.

As depicted in Fig.4.13 and in a similar manner to that for punctured convo-

lutional codes, a high-rate turbo code can be obtained by puncturing the three

outputs of a rate-1/3 turbo encoder P , that is the systematic output and the two

parity check outputs, using a pattern of the form

P =

PU

PZ1

PZ2

 =

p1,1 . . . p1,M

p2,1 . . . p2,M

p3,1 . . . p3,M

 (4.14)

where M is the puncturing period. The pattern can be decomposed into three

puncturing vectors; one for the systematic output, PU , and two for the parity check

outputs, PZ1 and PZ2 . Vectors PU and PZ1 form a pattern, which is used to puncture

the outputs of the first constituent RSC encoder, C1, and is denoted as

PC1 =

[
PU

PZ1

]
=

[
p1,1 . . . p1,M

p2,1 . . . p2,M

]
, (4.15)

whereas the outputs of the second constituent RSC encoder, C2, are punctured

according to the pattern

PC2 =

[
0

PZ2

]
=

[
0 . . . 0

p3,1 . . . p3,M

]
. (4.16)

Hence, the turbo encoder P ′, obtained after puncturing the outputs of the rate-1/3

turbo encoder P using pattern P, can also be seen as the parallel concatenation

72

4.5 Performance Analysis

RSC encoder
C1

RSC encoder
C2

Turbo Encoder P

sys.

par.

par.

sys.

Puncturing
Pattern

Turbo Encoder P'

2

1

Z

Z

U

P

P

P

P =

RSC encoder
C1

RSC encoder
C2

sys.

par.

par.

sys.

1Z

U

P

PC1

2

0

ZP
C2

Convolutional Encoder C1
'

Convolutional Encoder C2
'

Turbo Encoder P'

P =

P =

(a) (b)

Figure 4.13: Equivalent approaches for puncturing a rate-1/3 turbo encoder to ob-

tain a higher code rate.

of two punctured constituent convolutional codes, C ′1 and C ′2, each one of which is

obtained by puncturing the outputs of a rate-1/2 RSC code, C1 or C2 accordingly,

using the puncturing pattern PC1 or PC2 , respectively. This equivalent representation

of the punctured turbo encoder P ′ is presented in Fig.4.13.

Based on the latter representation, we can safely conclude that under the assump-

tion of a uniform interleaver of size N , the transfer function of a punctured turbo

code can be derived in a similar manner to that of the transfer function of a rate-

1/3 turbo code. More specifically, we first obtain the transfer functions BC′1(W,U,Z)

and BC′2(W,U,Z) of the constituent punctured convolutional block codes from their

augmented state diagrams for input sequences of length N , and then we derive their

conditional weight enumerating functions BC′1(w, U, Z) and BC′2(w,U, Z), respec-

tively. The conditional weight enumerating function BP ′(w, U, Z) of the punctured

turbo code can be obtained from

BP ′(w, U, Z) =
BC′1(w,U, Z) ·BC′2(w, U =1, Z)(

N

w

) , (4.17)

elaborating on (2.69), initially proposed in [16] for non-punctured rate-1/3 turbo

codes. The sum of the conditional weight enumerating functions BP′(w, U, Z) over

all values of input weight w, where w = 1, 2, . . . , N , provides the transfer function

BP′(W,U,Z) of the punctured turbo code. From the transfer function, we can obtain

the input-output weight enumerating function BP′(W,D) and use its coefficients

73

4.5 Performance Analysis

BP′
w,d to compute the union bound

Pb ≤ 1

N

∑

d

∑
w

wBP′
w,dQ

(√
2EbRP ′

N0

d

)

=
∑

d

DdQ

(√
2EbRP′

N0

d

)
,

(4.18)

which is an upper bound on the average bit error probability of the punctured turbo

code. Note that RP ′ is the rate of the turbo code after puncturing, while coefficients

Dd can be obtained from the coefficients BP ′
w,d, as described previously in Chapter

3, i.e.,

Dd =
∑

w

w

N
BP′

w,d. (4.19)

Based on the research carried out by Hagenauer [41] on rate-compatible punc-

tured convolutional codes in 1988 and the work of Haccoun and Bégin [42] in 1989 on

punctured convolutional codes, design criteria for punctured turbo codes were pro-

posed by Barbulescu and Pietrobon [43] in 1995, Fan Mo et al. [44] in 1999, Açikel

and Ryan [45] also in 1999, and Babich et al. [46] in 2002. Simulation-based anal-

yses to identify a relationship between the structure of a puncturing pattern and

the performance of the corresponding punctured turbo code were also carried out

by Land and Hoeher [47] in 2000, Blazek et al. [48] in 2002 and Crozier et al. [49]

in 2005. However, an analytic approach to evaluate the performance of punctured

turbo codes was developed by Kousa and Mugaibel [45] in 1999. The authors pro-

posed a technique based on Divsalar’s approach, presented in Chapter 3, which they

modified so as to take the puncturing pattern into account. Although elegant, the

proposed approach can only be implemented when very short interleavers are con-

sidered and, consequently, the authors fail to compare theoretical bounds with sim-

ulation results. Furthermore, the authors draw conclusions on rate-1/2 turbo codes

assuming that only the parity check outputs of the turbo encoders are punctured.

In the following subsections, we use our proposed method to investigate the

impact on the bit error rate performance of puncturing both the systematic and

the parity check outputs of a turbo encoder. In addition, we demonstrate that

accurate bounds on the bit error probability of punctured turbo codes can be derived

unconditionally, if short interleavers are used, or conditionally, if long interleavers

are employed.

74

4.5 Performance Analysis

4.5.1 Good Puncturing Patterns

When a punctured turbo code uses a short interleaver, we can directly apply our

technique to obtain the transfer function of each constituent code and compute the

upper bound on the average bit error probability of the corresponding punctured

turbo code, using (4.18.) For large interleaver sizes, and thus long input sequences,

our technique is computationally feasible only if the puncturing pattern does not

create loops of zero input and output weight in the augmented state diagrams of

the constituent encoders. However, we can use our technique assuming a short

interleaver, to identify patterns that generate good, in terms of bit error probability,

punctured turbo codes, and extend our results to turbo codes using long interleavers.

More specifically, we set as our objective the design of a good punctured turbo

code P ′ of rate RP ′ , obtained by puncturing the output of a rate-1/3 turbo code,

using a pattern of period M . We need to consider every possible puncturing pattern

of period M and rate RP′ , compute the transfer function of the corresponding punc-

tured turbo code and use the union bound expression (4.18) to derive the required

Eb/N0 for a targeted bit error probability, or vice-versa. We then perform an ex-

haustive search to identify those punctured turbo codes that meet our performance

requirements.

When a puncturing pattern of period M is used at the output of a rate-1/3 turbo

code to achieve a rate of RP ′ , an input sequence of M information bits generates

M/RP ′ codeword bits. Hence, M/RP′ out of the 3M elements of the puncturing

pattern are set to 1, while the rest are set to 0. Consequently, there are

(
3M

M/RP′

)
=

(3M)!(
3M − M

RP′

)
!
(

M
RP′

)
!

(4.20)

permutations of 0’s and 1’s, giving an equal number of patterns leading to a rate

of RP′ . For instance, there are 495 different patterns having a puncturing period

of M = 4 that achieve a code rate of RP ′ = 1/2. For a code rate of RP′ = 2/3, the

number of patterns increases to 924.

As an example, we consider the rate-1/3 PCCC(1,5/7,5/7) to be the parent code,

a puncturing pattern of period M = 4 is assumed and a code rate of RP′ = 1/2 is

targeted. In order to identify good puncturing patterns, we consider a short pseudo-

random interleaver of size N = 36 and we compute the transfer function of the

punctured turbo code for all 495 possible patterns. We use the transfer function to

obtain the free effective distance dfree,eff as well as the required Eb/N0 value for a

specific bit error probability, e.g., 10−6, exploiting (4.18). Finally, we order all 495

configurations according to their free effective distances and Eb/N0 values.

75

4.5 Performance Analysis

Table 4.1: Rate-1/2 and 2/3 configurations for PCCC(1,5/7,5/7). The interleaver

size N is 36 bits.

Configuration PU PZ1 PZ2 dfree,eff Eb/N0 for Pb≤10−6

Rate-1/2 Sys. [1 1 1 1] [1 0 1 0] [0 1 0 1] 6 6.438 dB

Rate-1/2 PS(3) [1 1 1 0] [1 0 1 1] [0 1 1 0] 6 6.243 dB

Rate-1/2 PS(2) [0 1 0 1] [1 1 1 0] [1 1 0 1] 7 6.291 dB

Rate-1/2 PS(1) [0 0 1 0] [1 1 0 1] [1 1 1 1] 7 5.959 dB

Rate-2/3 Sys. [1 1 1 1] [1 0 0 0] [0 0 1 0] 2 7.313 dB

Rate-2/3 PS(3) [1 0 1 1] [0 1 0 0] [0 1 1 0] 4 7.168 dB

Rate-2/3 PS(2) [1 1 0 0] [0 0 1 1] [0 1 1 0] 4 6.786 dB

Traditionally, punctured codes are classified as systematic (Sys), partially sys-

tematic (PS) or non-systematic (NS), depending on whether all, some or none of

their systematic bits are transmitted [47]. In Table 4.1, we have included four con-

figurations that lead to good rate-1/2 punctured turbo codes. The first one is a

systematic turbo code, since PU allows all 4 systematic bits to be transmitted,

while the remaining three configurations are partially systematic with a decreasing

number of transmitted systematic bits. The upper bound for each rate-1/2 punc-

tured turbo code is compared to simulation results, in Fig.4.14. We observe that

all three partially systematic turbo codes achieve a lower ML bound and, conse-

quently, a lower error floor than that of the systematic turbo code. However, we

also observe that as the number of systematic bits is reduced, performance of the

simulated suboptimal iterative decoder, after 10 iterations applying the BCJR de-

coding algorithm, does not quickly converge to the upper bound. These results

emphasize the importance of the systematic sequence, which is used by both com-

ponent decoders of the turbo decoder. In accordance with the findings of Blazek

et al. [48] and Crozier et al. [49], puncturing of the systematic sequence expands

the non-convergence region, hence performance converges to the ML bound only for

high Eb/N0 values. Therefore, our method can identify punctured turbo codes that

exhibit low error floors, however convergence towards the error floor can be inves-

tigated using extrinsic information transfer (EXIT) chart analysis, proposed by ten

Brink in [34]. A brief description of EXIT charts is provided in Chapter 6.

According to Table 4.1 and Fig.4.14, for a code rate of 1/2, configuration “PS(1)”

76

4.5 Performance Analysis

2 4 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
it

E
rr

or
 P

ro
ba

bi
lit

y

E
b
/N

0
 (dB)

Simulation
Upper Bound

2 4 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

Simulation
Upper Bound

2 4 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

Simulation
Upper Bound

2 4 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

Simulation
Upper Bound

(a) (b) (c) (d)

Figure 4.14: Comparison between bounds and simulation results after 10 iterations

for various configurations of a PCCC(1,5/7,5/7) using an interleaver size of 36 bits:

(a) Rate-1/2 Sys., (b) Rate-1/2 PS(3), (c) Rate-1/2 PS(2), (d) Rate-1/2 PS(1).

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

Rate−1/2 Sys.
Rate−1/2 PS(3)
Rate−1/2 PS(2)
Rate−1/2 PS(1)
Rate−2/3 Sys.
Rate−2/3 PS(3)
Rate−2/3 PS(2)

Figure 4.15: Simulation results after 10 iterations for various rate 1/2 and 2/3

configurations. An interleaver size of 1,000 bits is used.

77

4.5 Performance Analysis

achieves the lowest error floor, whereas “PS(2)” and “PS(3)” achieve comparable

performances for an interleaver size of N =36. However, the free effective distance

of “PS(2)” is higher than that of “PS(3)”, thus “PS(2)” exhibits a lower error floor

than “PS(3)”, for an increasing interleaver size [26]. The systematic punctured turbo

code exhibits the worst error floor but the matching suboptimal iterative decoder

is expected to converge quickly to it. Taking into account that the free effective

distance of a turbo code does not depend on the interleaver size, a study of the

performance behavior of punctured turbo codes for small interleaver sizes can lead to

conclusions, which also apply to punctured turbo codes using large interleaver sizes.

In Fig.4.15, we have plotted the performance of various rate-1/2 PCCC(1,5/7,5/7)

codes using pseudo-random interleavers of size N =1, 000 bits. The rate-1/2 codes

have been also obtained by puncturing the rate-1/3 PCCC(1,5/7,5/7) using the

patterns provided in Table 4.1. We observe that the exact same trends, derived

from Table 4.1 and presented in Fig.4.14, still apply.

An investigation for puncturing patterns having the same period, i.e., M = 4,

but generate good rate-2/3 PCCC(1,5/7,5/7) codes was also performed. Three

representative patterns, one systematic and two partially systematic, have been

included in Table 4.1. As expected, conclusions drawn from theoretical results for

a small interleaver size concur with simulation results for a large interleaver size,

as we demonstrate in Fig.4.15. Furthermore, we observe in Fig.4.15 that, as in the

previous case, puncturing the systematic sequence lowers the error floor of the turbo

code at the expense of an expanded non-convergence region.

These results confirm the observation by Land and Hoeher [47] that “it is ad-

vantageous to put more puncturing to the systematic [sequence] than to the parity

check [sequences]” and Blazek et al. [48] who claimed that “the performance bene-

fits of the partially systematic turbo codes are mainly for higher signal-to-noise ratio

values and number of iterations”.

4.5.2 Performance Upper Bounds

Computation of the transfer function of punctured convolutional block codes for

long input sequences, and hence calculation of the transfer function of punctured

turbo codes using long interleavers, can be accelerated only if the puncturing pattern

does not cause the formation of loops having zero input and output weight in their

augmented state diagram. Consequently, before proceeding with the derivation of

the state equations, we need to examine the weights of each loop, either formed

78

4.5 Performance Analysis

Table 4.2: Puncturing pattern configurations that do not cause the formation of

unwanted loops of zero input and output weight in the augmented state diagram of

a punctured convolutional block code, for patterns of period M =2, 3, 4.

Parent Code: PCCC(1,5/7,5/7)

No restrictions, for M = 2 and M = 4.

At least two 1’s in PZ1 and two 1’s in PZ2 , for M = 3.

Parent Code: PCCC(1,7/5,7/5)

All elements in PZ1 and PZ2 should be equal to 1, for M = 2.

At least one 1 in PZ1 and one 1 in PZ2 , for M = 3.

At least two consecutive 1’s in PZ1 and two consecutive 1’s in PZ2 , for M = 4.

Parent Code: PCCC(1,17/15,17/15)

No restrictions, for M = 2, 3, 4.

from individual branches interconnecting two or more states, or formed by a single

branch which originates and terminates at the same state.

If unwanted loops are formed, the puncturing pattern used to configure the

branch metrics of the augmented state diagram, is excluded from the list of pat-

terns that allow simplification of the augmented state diagram and quick computa-

tion of the transfer function for long input sequences. Assessment of such a list of

patterns leads to a number of design criteria, which are summarized in Table 4.2.

For example, if we wished to obtain the transfer function of a rate-1/2 systematic

PCCC(1,5/7,5/7) using a long interleaver, we could consider any pattern configura-

tion of period M =4, since there are no restrictions according to Table 4.2. However,

if we used a puncturing pattern with PU = [1111], PZ1 = [1010] and PZ2 = [0101],

to obtain a rate-1/2 systematic PCCC(1,7/5,7/5), we would not be able to simplify

the augmented state diagram, because the selected pattern does not comply with

the design criteria. Nevertheless, we could change the puncturing vectors of the par-

ity check sequences to PZ1 = [1100] and PZ2 = [0011], which are in accordance with

the design rules.

A comparison between theoretical upper bounds and simulation results for the

rate-1/2 systematic PCCC(1,5/7,5/7) is presented in Fig.4.16. The same comparison

for a punctured turbo code having a greater memory size, namely the rate-1/2

systematic PCCC(1,17/15,17/15), is performed in Fig.4.17. In addition, the first 15

79

4.5 Performance Analysis

0 1 2 3 4 5 6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

Upper bound, N=100
Simulation, N=100
Upper bound, N=1,000
Simulation, N=1,000
Upper bound, N=10,000
Simulation, N=10,000

Figure 4.16: Comparison between bounds and simulation results after 8 iterations

for various interleaver sizes of a rate-1/2 Sys. PCCC(1,5/7,5/7) employing the exact

log-MAP decoding algorithm.

0 1 2 3 4 5 6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

Upper bound, N=100
Simulation, N=100
Upper bound, N=1,000
Simulation, N=1,000
Upper bound, N=10,000
Simulation, N=10,000

Figure 4.17: Comparison between bounds and simulation results after 8 iterations

for various interleaver sizes of a rate-1/2 Sys. PCCC(1,17/15,17/15) employing the

exact log-MAP decoding algorithm.

80

4.5 Performance Analysis

Table 4.3: Coefficients Dd for the calculation of the union bound for two rate-1/2

systematic PCCCs. Three interleaver sizes are considered.

PCCC(1,5/7,5/7) PCCC(1,17/15,17/15)

d N =100 N =1, 000 N =10, 000 N =100 N =1, 000 N =10, 000

1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 4.45 · 10−4 4.49 · 10−6 4.49 · 10−8 0 0 0
4 2.35 · 10−5 2.39 · 10−8 2.39 · 10−11 9.20 · 10−5 9.56 · 10−8 9.59 · 10−11

5 1.11 · 10−2 1.16 · 10−4 1.16 · 10−6 0 0 0
6 8.54 · 10−2 8.93 · 10−3 8.99 · 10−4 1.13 · 10−2 9.91 · 10−4 9.98 · 10−5

7 9.23 · 10−2 1.00 · 10−3 1.01 · 10−5 4.84 · 10−2 5.38 · 10−4 5.43 · 10−6

8 0.257 2.38 · 10−2 2.39 · 10−3 6.18 · 10−2 3.98 · 10−3 3.99 · 10−4

9 0.394 3.99 · 10−3 4.00 · 10−5 0.143 1.55 · 10−3 1.58 · 10−5

10 0.995 4.36 · 10−2 4.03 · 10−3 0.259 8.43 · 10−3 8.02 · 10−4

11 2.303 1.92 · 10−2 1.89 · 10−4 0.606 4.58 · 10−3 4.52 · 10−5

12 6.178 0.199 1.795 · 10−2 1.247 1.68 · 10−2 1.37 · 10−3

13 15.471 0.121 1.198 · 10−3 3.134 1.44 · 10−2 1.34 · 10−4

14 37.189 0.820 7.280 · 10−2 7.591 4.31 · 10−2 2.91 · 10−3

15 91.838 0.582 5.653 · 10−3 18.195 5.37 · 10−2 4.85 · 10−4

coefficients Dd, which were derived based on our proposed method and are required

for the union bound calculation of both PCCCs, as described in Chapter 3, are shown

in Table 4.3. In both cases, the parity check outputs of the respective turbo encoder

are punctured alternately, as indicated by the puncturing pattern of the “Rate-1/2

Sys.” configuration in Table 4.1. Furthermore, no restrictions apply on patterns

of period M = 4, according to Table 4.2. Performance of punctured systematic

turbo codes, originally used by Berrou et al. [11] as well as Hagenauer et al. [19],

quickly converges to the corresponding upper bound on the average ML performance,

provided that puncturing is distributed equally between parity check bits and is

well scattered, as suggested by Kousa and Mugaibel in [50]. As in the case of non-

punctured turbo codes, we observe that suboptimal iterative decoding, employing

the exact log-MAP algorithm, converges to ML decoding for medium to large Eb/N0

values, after 8 iterations. Small deviations from the upper bound curve indicate

that the simulated performance achieved by a punctured PCCC configuration using

a selected pseudo-random interleaver is slightly better or worse than the average

performance of a PCCC, which uses the same puncturing pattern and constituent

81

4.6 Chapter Summary

codes but employs a uniform interleaver.

4.6 Chapter Summary

Whereas in Chapter 3 we introduced a novel approach for the evaluation of the

transfer function of a convolutional block code, in this chapter we extended our ap-

proach to punctured convolutional block codes. In particular, we demonstrated how

puncturing patterns can be incorporated into the structure of the augmented state

diagram, in order to derive the transfer function of the corresponding punctured con-

volutional block code. Consequently, tight bounds on the average ML performance

of high-rate turbo codes, which employ punctured convolutional block codes as con-

stituent codes, can be derived. Nevertheless complexity becomes overwhelming as

the interleaver size increases. Provided that specific conditions are met, a simpli-

fication process can take place, which considerably reduces complexity and makes

computation of the transfer function feasible, even when a long input sequence or,

equivalently, a long interleaver is considered. If those conditions are not met, our

approach can still be used to identify puncturing patterns that lead to high-rate

turbo codes, which exhibit low error floors.

Although it is not always feasible to derive an accurate expression for the aver-

age ML performance union bound of a turbo code, due to the limitations imposed

by the structure of the augmented state diagram, we can derive a good approxima-

tion when long pseudo-random interleavers are used. In the following chapter, we

demonstrate that the approximation technique does not rely on the transfer func-

tions of the constituent codes, hence construction of their augmented state diagrams

is not required. We then use our proposed approximation technique to show that

rate-1/2 turbo codes, obtained by puncturing the output of a rate-1/3 parent turbo

code, can achieve lower error floors than their parent code, provided that perfor-

mance of their corresponding suboptimal iterative decoder converges towards the

error floor region.

82

Chapter 5
A Union Bound Approximation for Rapid

Performance Evaluation

5.1 Introduction

The transfer function and, consequently, an upper bound on the bit error probability

of a turbo code can be readily derived when short interleavers are considered. How-

ever, computation of the transfer function becomes intensive as the interleaver size

increases and, although the complexity of the process can be reduced, simplification

is not always possible in the case of punctured turbo codes.

In this chapter we demonstrate that as the interleaver becomes larger, codeword

sequences yielding an information weight of two start to play an increasingly signif-

icant role in determining the bit error probability of a turbo code, provided that a

uniform interleaver is used. We take into account this property of turbo codes and

we propose an approximation of the upper bound on the bit error probability, which

is accurate when long interleavers are employed. The bound approximation exploits

only those terms of the transfer function that have a major impact on the overall

performance. We revisit the structure of a constituent RSC encoder and we develop

a rapid method to calculate the most significant terms of the transfer function of a

turbo encoder. Contrary to the approach presented in the previous chapters, which

is based on the augmented state diagram, this method does not impose restrictions

on the code generator vectors, or the puncturing pattern. We apply our proposed

method to a family of punctured codes, which we call pseudo-randomly punctured

codes, and we conclude the chapter by evaluating the accuracy of the bound approx-

imation for a variety of interleaver sizes for various non-punctured and punctured

turbo codes.

83

5.2 A Simple Approximation of the Union Bound on the Bit Error
Probability

5.2 A Simple Approximation of the Union Bound

on the Bit Error Probability

In Chapter 2, we explained that the input-output weight enumerating function

BP(W,D) of a turbo code P , obtained from the transfer function BP(W,U,Z) by

setting U = Z = D, enumerates every codeword sequence of information weight w

and codeword weight d, which has been incorrectly decoded due to an erroneous de-

coding decision. Based on the union bound argument, the probability Pb of a bit

error is upper bounded as follows

Pb ≤ P u
b (5.1)

where the union bound P u
b considers all codeword sequences provided by the input-

output weight enumerating function, and is defined as

P u
b =

∑
w

P (w). (5.2)

Here, the sum runs over all possible values of w, with P (w) being the contribution to

the union bound P u
b of only those codeword sequences having a specific information

weight w. An individual contribution P (w) is given by

P (w) =
∑

d

w

N
BP

w,dQ

(√
2R · Eb

N0

· d
)

, (5.3)

where BP
w,d are the coefficients of the input-output weight enumerating function, N

is the interleaver size and R is the code rate of the turbo encoder.

In [26], Benedetto et al. investigated the performance of rate-1/3 turbo codes

having the form of a parallel concatenation of convolutional codes separated by

a uniform interleaver. The authors showed that interleaver gain can be achieved

only if the constituent encoders are recursive. Furthermore, they observed that

codeword sequences having the minimum possible information weight wmin are the

main contributors to the bit error performance, as the interleaver size N increases.

Owing to the structure of the constituent encoders, the minimum information weight

of an input sequence to a PCCC, which uses recursive constituent encoders, is always

equal to two, i.e., wmin =2. Consequently, P (2) is the dominant contribution to the

union bound P u
b on the bit error probability, when a large interleaver size is used.

The contribution of P (2) to the union bound is depicted in Fig.5.1 as a per-

centage, where it is also compared to that of P (3). Two symmetric turbo codes,

PCCC(1, 5/7, 5/7) and PCCC(1, 17/15, 17/15) using uniform interleavers are con-

sidered. For both codes, P (2) significantly contributes to the union bound for a

84

5.2 A Simple Approximation of the Union Bound on the Bit Error
Probability

narrow range of moderate bit error probabilities, when an interleaver size of 1, 000

bits is used. An increase of the interleaver size from N = 1, 000 to N = 10, 000 es-

tablishes P (2) as the most significant contribution over a much broader range of bit

error probabilities. More specifically, we observe in Fig.5.1(a) that the value of P (2)

is greater than 0.8P u
b , when P u

b assumes values between 10−5 and 10−8 and the in-

terleaver size is N =1, 000. An increase of the interleaver size to N =10, 000, causes

P (2) to assume the same range of values for bit error probabilities ranging from

10−6 to 10−12. Furthermore, the value of P (2) in Fig.5.1(b) reaches a maximum

of 0.69P u
b when an interleaver size N =1, 000 is considered, whereas the maximum

value of P (2) increases to 0.96P u
b if an interleaver of size N =10, 000 is used.

Therefore, the overall union bound on the bit error probability of a turbo code

employing a long uniform interleaver, or equivalently, the overall union bound on

the average bit error probability of a turbo code using a long random interleaver,

can be approximated by the probability of all erroneous codeword sequences with

information weight two

P u
b ≈ P (2). (5.4)

Note that the union bound is not necessarily accurate when short interleavers are

used, owing to the fact that turbo codes using specific deterministic interleaver

designs can achieve a superior performance than the average performance of turbo

codes using random interleavers. However, when long interleavers are considered,

turbo codes using random interleavers perform similarly or better than turbo codes

using deterministic interleavers [51]. Hence, both the union bound P u
b and P (2),

which is a close approximation of P u
b , provide a good indication of the error floor of

a turbo code.

Although in certain applications, such as satellite communications, link reliability

is of essence and low rate codes are used to support it, bandwidth occupancy is

more important in wireless communications, therefore high rate codes are preferred.

Depending on the required quality of service and the radio channel, various code

rates are offered. Half rate, i.e., rate-1/2, codes are usually included in standards

as a counter measure for poor channel conditions, whereas higher rates are used in

better channel conditions. A half rate turbo code can be obtained by puncturing the

outputs of a rate-1/3 turbo code, often referred to as parent code, as we described

in Chapter 4.

Fig.5.2 shows the contribution of P (2) to the union bound P u
b on the average bit

error probability of various punctured rate-1/2 turbo codes. The rate-1/3 parent

codes considered are PCCC(1, 5/7, 5/7) and PCCC(1, 17/15, 17/15). Although

85

5.2 A Simple Approximation of the Union Bound on the Bit Error
Probability

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

0

10

20

30

40

50

60

70

80

90

100

Bit Error Probability

%
 o

f o
ve

ra
ll

un
io

n
bo

un
d

 P(2), N=1,000
 P(3), N=1,000
 P(2), N=10,000
 P(3), N=10,000

(a) Rate-1/3 PCCC(1,5/7,5/7)

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

0

10

20

30

40

50

60

70

80

90

100

Bit Error Probability

%
 o

f o
ve

ra
ll

un
io

n
bo

un
d

 P(2), N=1,000
 P(3), N=1,000
 P(2), N=10,000
 P(3), N=10,000

(b) Rate-1/3 PCCC(1,17/15,17/15)

Figure 5.1: Contributions to the union bound on the bit error probability of various

non-punctured turbo codes employing an interleaver of size either N = 1, 000 or

N =10, 000 bits.

86

5.2 A Simple Approximation of the Union Bound on the Bit Error
Probability

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

0

10

20

30

40

50

60

70

80

90

100

Bit Error Probability

%
 o

f o
ve

ra
ll

un
io

n
bo

un
d

 P(2), N=1,000
 P(3), N=1,000
 P(2), N=10,000
 P(3), N=10,000

(a) Rate-1/2 NS-PCCC(1,5/7,5/7)

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

0

10

20

30

40

50

60

70

80

90

100

Bit Error Probability

%
 o

f o
ve

ra
ll

un
io

n
bo

un
d

 P(2), N=1,000
 P(3), N=1,000
 P(2), N=10,000
 P(3), N=10,000

(b) Rate-1/2 NS-PCCC(1,17/15,17/15)

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

0

10

20

30

40

50

60

70

80

90

100

Bit Error Probability

%
 o

f o
ve

ra
ll

un
io

n
bo

un
d

 P(2), N=1,000
 P(3), N=1,000
 P(2), N=10,000
 P(3), N=10,000

(c) Rate-1/2 Sys. PCCC(1,5/7,5/7)

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

0

10

20

30

40

50

60

70

80

90

100

Bit Error Probability

%
 o

f o
ve

ra
ll

un
io

n
bo

un
d

 P(2), N=1,000
 P(3), N=1,000
 P(2), N=10,000
 P(3), N=10,000

(d) Rate-1/2 Sys. PCCC(1,17/15,17/15)

Figure 5.2: Contributions to the union bound on the bit error probability of various

punctured turbo codes employing an interleaver of size either N = 1, 000 or N =

10, 000 bits.

87

5.2 A Simple Approximation of the Union Bound on the Bit Error
Probability

there are a plethora of puncturing patterns leading to rate-1/2 systematic, partially-

systematic and non-systematic turbo codes, we have selected two specific patterns

to demonstrate that the same trend, observed previously in rate-1/3 turbo codes,

is also observed in half rate punctured turbo codes. The first pattern, with vectors

PU = [00], PZ1 = [11] and PZ2 = [11] creates a rate-1/2 non-systematic turbo

code, denoted as rate-1/2 NS-PCCC for brevity, whereas the second pattern, with

PU = [11], PZ1 = [10] and PZ2 = [01], is often used [11, 19] to generate rate-1/2

systematic turbo codes, which we refer to as rate-1/2 Sys. PCCCs. In all four cases,

as the interleaver size increases, P (2) becomes the most significant contribution over

a broad range of bit error probabilities. Consequently, P (2) can be used as a close

approximation of the union bound P u
b on the average bit error probability of a rate-

1/2 punctured turbo code using a random interleaver, for medium to low bit error

probabilities.

Concluding, P (2) can be used to predict the error floor of either rate-1/2 punc-

tured turbo codes or their rate-1/3 parent codes, hence only coefficients BP
2,d need

to be calculated using (5.3), which assumes the form

P (2) =
∑

d

2

N
BP

2,dQ

(√
2R · Eb

N0

· d
)

, (5.5)

for w=2. The coefficients BP
2,d can be derived from the transfer function BP(W,U,Z)

of the turbo code, however the conditional weight enumerating function for w = 2,

denoted as BP(w=2, U, Z) and referred to as dominant conditional weight enumer-

ating function, is sufficient to extract the same necessary information. Based on

the expression derived by Benedetto and Montorsi [16] that relates the conditional

weight enumerating function of a turbo code P to the conditional weight enumer-

ating functions of the constituent codes, C1 and C2, we obtain BP(w = 2, U, Z) as

follows

BP(w=2, U, Z) =
BC1(w=2, U, Z) ·BC2(w=2, U =1, Z)(

N

2

) . (5.6)

Therefore, in order to compute BP(w=2, U, Z), and ultimately P (2), we only need to

calculate the dominant conditional weight enumerating function of each constituent

convolutional block code, rather than their complete transfer function.

In Chapters 3 and 4, we demonstrated that computation of the transfer function

is a computationally intensive process that involves construction of the augmented

state diagram of the convolutional block code, solution of the state equations and

derivation of the appropriate conditional extended transfer function. In this chap-

ter, we exploit the structure of the convolutional encoder to devise a simple method

88

5.3 Direct Computation of the Dominant Conditional Weight
Enumerating Function of Non-Punctured Convolutional Block Codes

to compute the less computationally demanding dominant conditional weight enu-

merating function.

5.3 Direct Computation of the Dominant Condi-

tional Weight Enumerating Function of Non-

Punctured Convolutional Block Codes

The dominant conditional weight enumerating function B(w = 2, U, Z) of a convo-

lutional block code could be obtained by brute-force, i.e., input all valid sequences

of weight two to the encoder and group the output codeword sequences according

to their systematic and parity check weights. Although this approach is conceptu-

ally simple, it is extremely time-consuming, especially when a long input sequence

is considered. Note that the length of the input sequence is equivalent to the size

of the interleaver of a turbo code, when the convolutional block code in question is

used as a constituent code.

In this section we use the properties of the trellis diagram of non-punctured re-

cursive convolutional codes to express the dominant conditional weight enumerating

function as a function of their memory size and generator vectors.

5.3.1 Revisiting the Structure of the RSC Encoder

The schematic of a constituent rate-1/2 non-punctured RSC(1,GF /GR) encoder

is illustrated in Fig.5.3. As was explained previously in Chapter 2, the generator

vectors GR =[gR
0 gR

1 . . . gR
ν] and GF =[gF

0 gF
1 . . . gF

ν] describe the connections between

the encoder input, the output of the ν shift registers, r1, r2 . . . rν , and the modulo-

2 adders. Coefficients g
(R)
0 and g

(R)
ν are always set to “1” for the encoder to be

r1 r2 rv

r0

uj

xj
GF

GR

g1
(R) g2

(R) gv-1
(R)

g1
(F) g2

(F) gv-1
(F)

Figure 5.3: Block diagram of a rate-1/2 constituent RSC encoder.

89

5.3 Direct Computation of the Dominant Conditional Weight
Enumerating Function of Non-Punctured Convolutional Block Codes

recursive. A hypothesis commonly made [26, 33] so as to facilitate analysis of RSC

codes, is that g
(F)
0 and g

(F)
ν are also set to “1”. Furthermore, it is assumed that the

encoder starts with all ν registers clear, i.e., r1 = r2 = . . .= rν =0. For convenience,

we sometimes use the decimal representation of the memory state, denoted as s,

with r1 being the most significant bit. Therefore at time step j = 0, the memory

state of the encoder is sj=0 =0.

At time step j, the input information bit to the RSC encoder is uj, while the

memory state is sj. The input r0 to the first register, depicted in Fig.5.3, assumes

the value

r0 = uj ⊕ (g
(R)
1 · r1)⊕ . . .⊕ (g

(R)
ν−1 · rν−1)⊕ rν . (5.7)

Symbols ⊕ and · denote the exclusive OR (i.e., modulo-2 addition) and the AND

operation, respectively. Due to the systematic nature of the code, the output of the

encoder consists of the input bit uj and a parity check bit xj, given by

xj = r0 ⊕ (g
(F)
1 · r1)⊕ . . .⊕ (g

(F)
ν−1 · rν−1)⊕ rν , (5.8)

based on the structure of the encoder in Fig.5.3. Substituting (5.7) into (5.8) and

invoking boolean algebra, we obtain

xj = uj ⊕
[
(g

(F)
1 ⊕ g

(R)
1) · r1

]
⊕ . . .⊕

[
(g

(F)
ν−1 ⊕ g

(R)
ν−1) · rν−1

]
. (5.9)

At the end of time step j, the content of each register has been shifted to the

successive register, i.e.,

r1 ← r0, r2 ← r1, . . . , rν ← rν−1, (5.10)

and subsequently, the state of the encoder has changed from sj to sj+1.

5.3.2 Properties of Information Weight-2 Codeword Sequences

Input sequences having the minimum information weight, which is two when recur-

sive encoders are considered [26], correspond to paths in the trellis diagram that

diverge from the zero state and re-merge with it only once, after a number of time-

steps.

The zeroes preceding the two non-zero bits in an information sequence of weight

two, do not change the state of the encoder, according to (5.7) and (5.10). For

convenience, we assume that at time step j =0, the first non-zero bit u0 =1 is input

to the encoder. Based on (5.7), (5.9) and (5.10), we find that the input r0 to the

first register becomes “1”, parity check bit x0 =1 is produced and the memory state

90

5.3 Direct Computation of the Dominant Conditional Weight
Enumerating Function of Non-Punctured Convolutional Block Codes

0

1

2(v-1)

2

2v-1

...
...

1/1 0/0

1/1 1/1

0/0

1 L+1... ...

1/1

0/0

...

Time Step, j

State
sj

2L+1 3L+13L2LL0

...
0 /xj

...
0 /xj

...
0 /xj

Figure 5.4: Trellis diagram for codeword sequences of information weight 2. The

paths plotted in red are generated when the rate-1/2 RSC encoder operates as a

pseudo-random generator. A pair uj/xj next to a branch originating from a state at

time step j, corresponds to the input bit uj at time j and the output parity check

bit xj generated at the end of the state transition.

changes from s0 = 0 to s1 = 2ν−1, as is illustrated in the trellis diagram of Fig.5.4.

We understand from (5.7) that the zeroes following the first non-zero input bit do

not affect the value of r0, which depends solely on the feedback generator vector GR

and the bits stored in the shift registers. Therefore, for as long as a trail of zeroes

follows the first non-zero input bit, the RSC encoder behaves like a pseudo-random

generator.

A wealth of papers address the topic of pseudo-random sequences and pseudo-

random generators. In 1976, MacWilliams and Sloane wrote a primer [52], describing

their properties in detail. More specifically, it is stated that a pseudo-random gener-

ator can periodically revisit all distinct states except for the zero state. The period,

denoted as L depends on the feedback vector GR and it is L ≤ 2ν − 1. Thus, the

path of the information weight-2 codeword sequence, depicted in red in the trellis

diagram shown in Fig.5.4, will not re-merge with the zero state, for as long as zeroes

follow the first non-zero bit.

Due to the memory state periodicity, the initial state of the pseudo-random

generator, s1 =2ν−1, is also repeated every L time-steps, i.e., skL+1 =s1, where k is a

positive integer. When the encoder is in state skL+1 =2ν−1, the first register is set,

i.e., r1 =1, while all other registers are clear, i.e., r2 = . . .= rν =0. Bearing in mind

that the input bit is zero, the bits stored in the shift registers at the immediately

preceding time step should have been r1 = . . . = rν−1 = 0 and rν = 1, according to

(5.7) and (5.10), independently of the feedback generator vector GR. Therefore, the

state previous to skL+1 =2ν−1 is always skL =1, whereas the generated parity check

91

5.3 Direct Computation of the Dominant Conditional Weight
Enumerating Function of Non-Punctured Convolutional Block Codes

bit is xkL =0, as we observe in Fig.5.4.

The RSC encoder stops behaving like a pseudo-random generator, going through

non-zero states, only when the second non-zero bit of the weight-2 information

sequence is input to the encoder, forcing a return to the zero state. To achieve this,

the second non-zero bit can be input to the encoder only when a particular state

sj, that precedes the zero state sj+1 =0, is reached. Using (5.7) and (5.10), we can

show that when uj = 1, the state of the encoder goes to zero only if the preceding

state is sj =1. Only then is the logical “1”, stored in rν , canceled out with the input

bit giving r0 =0 and, consequently, forcing the encoder to return to the zero state.

We have already demonstrated that sj =1, when j =kL. Therefore, when the second

non-zero bit ukL = 1 is input to the encoder, parity check bit xkL = 1 is generated

while the memory state changes to skL+1 =0, as depicted in Fig.5.4.

Summarizing, weight-2 information sequences, which are input to an RSC en-

coder with generator vectors GF , GR and memory size ν, form paths in the trellis

diagram that diverge from the all-zero path for kL+1 consecutive time-steps, where

k is a positive integer and L ≤ 2ν − 1 is a constant, dependent on the feedback vec-

tor GR. For input sequences of length N , we can confine the value of k between

1 and b(N−1)/Lc, where bξc denotes the integer part of ξ. Furthermore, the first

non-zero information bit in the input sequence forces the path to leave the zero

state, whereas the second non-zero information bit forces the path to return to the

zero state, kL + 1 time steps later. In both cases, the encoder outputs a non-zero

parity check bit.

5.3.3 Enumeration of Information Weight-2 Codeword Se-

quences

When the outputs of an RSC encoder are not punctured, a systematic sequence of

weight u is identical to the input information sequence of weight w, hence u = w.

We denote as umin and zmin the minimum weight of the systematic and parity check

output sequences, respectively, when a weight-2 information sequence is input to

the RSC encoder. In this case w=2, therefore the weight of a systematic sequence

is always u=umin =2.

The weight z of a parity check sequence is at least 2, i.e., z ≥ 2, since non-zero

parity check bits are generated during the state transitions of the encoder from 0

to 2ν−1 and from 1 back to 0, as we explained in the previous subsection. If the

trellis path of the sequence diverges from the all-zero path for kL + 1 consecutive

time-steps, the state of the encoder transitions k times from state 2ν−1 to 1, as

92

5.3 Direct Computation of the Dominant Conditional Weight
Enumerating Function of Non-Punctured Convolutional Block Codes

0

1

2(v-1)

2

2v-1

...
...

1/1 0/0

1/1 1/1

0/0

1 L+1... ...

Time Step, j

State
sj

2L+12LL0

zcore
C zcore

C

z(k =1)

z(k =2)

...
0 /xj

...
0 /xj

Figure 5.5: Weight calculation for a parity check sequence, generated by a weight-2

input information sequence.

is illustrated in Fig.5.5. Each time, the generated stream of parity check bits has

the same weight, which we call the core parity check weight and denote as zcore.

Consequently, the overall weight z of a parity check sequence can be expressed as a

function of k, i.e., z(k), given by

z(k) = kzcore + 2, for k=1, 2, . . . , b(N − 1)/Lc. (5.11)

The minimum parity check weight zmin can be derived from z(k) by setting k = 1,

hence

zmin = z(1) = zcore + 2. (5.12)

The overall minimum weight of the output codeword sequence, denoted as dmin,

is also a useful metric when the RSC encoder is used in a parallel concatenation

scheme, since it affects its free effective distance. It is defined as

dmin = min
w=2

{u + z}, (5.13)

which in the case of non-punctured RSC codes assumes the form

dmin = umin + zmin

= zcore + 4.
(5.14)

The objective of analyzing the structure of RSC encoders was to identify the

properties of codeword sequences generated by weight-2 information sequences and

facilitate the computation of the dominant conditional weight enumerating function,

B(w = 2, U, Z). As we have already seen, any codeword sequence can be written

93

5.3 Direct Computation of the Dominant Conditional Weight
Enumerating Function of Non-Punctured Convolutional Block Codes

as a monomial, which assumes the form W 2U2Zz when an information weight 2 is

considered. We have demonstrated that the trellis path of such a codeword sequence

diverges from the all-zero path for kL + 1 consecutive time steps and that its parity

check weight is a function of k, hence its monomial can be written as W 2U2Zz(k), for

a given k. If the codeword sequence of parity check weight z(k) is generated by an

input information sequence of length N , the length of the corresponding trellis path

will also be N . However, depending on the positions of the two non-zero bits in the

input sequence, the trellis path could diverge from the all-zero path at any time step

and re-merge with it kL + 1 time steps later. In particular, there are N−(kL+1)+1

time steps when the path could diverge, thus there are an equal number of codeword

sequences having the same parity check weight z(k), for a given k.

The dominant conditional weight enumerating function B(w=2, U, Z) is the sum

of all codeword sequences having parity check weight z(k), over all valid values of

k, hence

B(w=2, U, Z) =

b(N−1)/Lc∑

k=1

(N − kL) U2Zz(k). (5.15)

If we substitute z(k) into the above expression, using (5.11), we obtain

B(w=2, U, Z) =

b(N−1)/Lc∑

k=1

(N − kL) U2Zkzcore+2. (5.16)

The values of both L and zcore depend upon the selection of the feedback generator

vector GR and can be determined numerically, by initializing the state of the encoder

to 2ν−1 and inserting a zero information bit at each time step, until the same state

is reached again. The number of time steps between the two states determines L,

whereas the weight of the generated parity check stream determines zcore.

5.3.4 The Benefit of Primitive Feedback Vectors

The feedback vector GR can be defined in such a way that the RSC encoder visits

all possible 2ν−1 non-zero states during a period L. Inevitably, the period L will

reach its maximum value of 2ν − 1 time steps, i.e., L = 2ν − 1. As Perez et al.

point out in [53], maximization of L increases the path length of the shortest weight-

2 information sequence, therefore increasing the chance of generating a codeword

sequence that achieves a high minimum parity check weight zmin. When such RSC

codes are used in parallel concatenated turbo schemes, their free effective distance

is maximized [26], hence their error floor is lowered.

94

5.3 Direct Computation of the Dominant Conditional Weight
Enumerating Function of Non-Punctured Convolutional Block Codes

A generator vector, in our case GR =[g
(R)
0 g

(R)
1 . . . g

(R)
ν], of an RSC encoder having

memory size ν can also be expressed as a polynomial GR(D), known as a generator

polynomial, of the form

GR(D) = 1⊕ (g
(R)
1 ·D)⊕ (g

(R)
2 ·D2)⊕ . . .⊕ (g

(R)
ν−1 ·Dν−1)⊕Dν , (5.17)

since g
(R)
0 = g

(R)
ν = 1, owing to the recursive nature of the encoder. Addition and

multiplication have been replaced by modulo-2 addition and the AND operation,

respectively. The degree or order of the polynomial is the largest power of D, which

in our case is always equal to the memory size ν.

A polynomial, such as GR(D), is said to be irreducible if it cannot be factorized

into first order polynomials, otherwise it is said to be reducible. In the following ex-

amples,

D2 ⊕ 1 is a reducible polynomial, since D2 ⊕ 1 = (D ⊕ 1) · (D ⊕ 1).

D2 ⊕D ⊕ 1 is an irreducible polynomial, since it cannot be factorized.

All irreducible polynomials of degree ν divide into D% ⊕ 1 exactly, for a value of %

lying in the range 1 ≤ % ≤ 2ν−1. If %=2ν−1, the irreducible polynomial is called

primitive. For ν = 4 we find that % = 24 − 1 = 15, thus a primitive polynomial of

degree ν =4 would only divide into D15⊕ 1 without remainder. In the following ex-

amples,

D4 ⊕D3 ⊕D2 ⊕D ⊕ 1 divides into D5 ⊕ 1 as well.
Hence, it is not a primitive polynomial.

D4 ⊕D ⊕ 1 only divides into D15 ⊕ 1, thus it is a primitive polynomial.

If the feedback generator polynomial GR(D) of an RSC encoder is selected to be

primitive, the encoder revisits all possible 2ν − 1 non-zero states when it operates

as a pseudo-random generator, during a period of

L = 2ν − 1 (5.18)

time steps [52]. During this period, register rν has generated a sequence of 2ν−1 bits,

known as a pseudo-random sequence or pseudo-noise (PN) sequence [52]. Effectively,

every register ri, where i=1, . . . , ν−1, outputs a copy of the PN sequence generated

by rν , cyclicly shifted to the left by ν−i positions. A cyclic shift of a PN sequence is

also a PN sequence [52], hence all ν registers generate PN sequences of period 2ν−1.

According to the modulo-2 addition property of PN sequences, the sum of two or

more PN sequences is another PN sequence. Therefore, each input bit r0 to the first

register, as well as each output parity check bit xj, also form PN sequences during

a period of 2ν−1 time steps, based on (5.7) and (5.9). Consequently, a parity check

95

5.3 Direct Computation of the Dominant Conditional Weight
Enumerating Function of Non-Punctured Convolutional Block Codes

stream generated during the transition from state 2ν−1 at time step j =(k−1)L+1 to

state 2ν−1 at time step j =kL+1, as shown in Fig.5.5, is a PN sequence consisting of

2ν−1 bits. Out of these 2ν−1 bits, 2ν−1 are non-zero, according to another property

of PN sequences quoted in [52]. Hence, the weight of the parity check stream is

2ν−1. However, the last bit of the parity stream, generated during the transition

from state 1 at time step j =kL to state 2ν−1 at time step j =kL + 1, is always zero,

as we demonstrated previously. For this reason, the weight of the first 2ν−2 bits of

the parity check stream, which we called core parity check weight zcore, is also

zcore = 2ν−1. (5.19)

Note that this outcome is valid only if the two generator polynomials (or vectors) are

different, i.e., GF (D) 6= GR(D). Otherwise, xj is always zero when uj =0, according

to (5.9), thus zcore =0.

Substituting (5.19) into (5.12), (5.14) and (5.16), we find that when a primitive

feedback generator polynomial GR(D) is selected and a feedforward generator poly-

nomial GF (D) different than GR(D) is used, the minimum parity check weight zmin

of the corresponding RSC encoder is given by

zmin = 2ν−1 + 2, (5.20)

the overall minimum weight dmin assumes the form

dmin = 2ν−1 + 4, (5.21)

and the dominant conditional weight enumerating function B(w = 2, U, Z) is ex-

pressed as

B(w=2, U, Z) =

b(N−1)/(2ν−1)c∑

k=1

[N − k(2ν − 1)] U2Zk2ν−1+2. (5.22)

We conclude that the minimum weights, zmin and dmin, as well as the dominant

conditional weight enumerating function B(w = 2, U, Z) depend upon the memory

size of the RSC encoder and not the underlying code, when the feedforward poly-

nomial of the RSC encoder is different from the primitive feedback polynomial. A

list of primitive feedback polynomials for various memory sizes [4], represented as

binary vectors or octal numbers, the period L and the minimum weights zmin and

dmin achieved by the RSC encoder, is provided in Table 5.1.

96

5.4 Direct Computation of the Dominant Conditional Weight
Enumerating Function of Punctured Convolutional Block Codes

Table 5.1: Primitive feedback polynomials for various memory sizes [4].

Memory size, ν Binary GR Octal GR L zmin dmin

1 [1 1] 3 0 3 5

2 [1 1 1] 7 3 4 6

3 [1 0 1 1] 13 7 6 8
[1 1 0 1] 15

4 [1 0 0 1 1] 23 15 10 12
[1 1 0 0 1] 31

5 [1 0 0 1 0 1] 45 31 18 20
[1 0 1 0 0 1] 51
[1 0 1 1 1 1] 57
[1 1 0 1 1 1] 67
[1 1 1 0 1 1] 73
[1 1 1 1 0 1] 75

5.4 Direct Computation of the Dominant Condi-

tional Weight Enumerating Function of Punc-

tured Convolutional Block Codes

Rates higher than 1/2 can be achieved using a 2 ×M puncturing pattern P on a

parent rate-1/2 RSC encoder. At a time step j, the systematic and parity check

output bits of the punctured RSC encoder will be uj ·p1,m and xj ·p2,m, respectively,

where uj, xj are the output bits of the parent rate-1/2 encoder and p1,m, p2,m are

the elements of the m-th column of the puncturing pattern P, where 1≤m≤M .

The elements of pattern P are circularly repeated every M time steps, in such a way

that p1,m =p1,(m+jM) and p2,m =p2,(m+jM). Hence, the active puncturing column m

at time step j can be found from

m = rem(j + 1, M), (5.23)

where rem(j + 1,M) denotes the remainder of the division of (j + 1) by M .

In order to compute the dominant conditional weight enumerating function

B(w = 2, U, Z) of the punctured RSC encoder, we need to express the weights,

u(k, m) and z(k, m), of the two output sequences of the punctured RSC encoder,

as a function of the puncturing elements, p1,m and p2,m, and the output bits uj and

xj of the parent RSC encoder. Although input sequences with information weight

w = 2 generate paths of length kL+1, we first consider paths of length L+1, i.e.,

97

5.4 Direct Computation of the Dominant Conditional Weight
Enumerating Function of Punctured Convolutional Block Codes

0

1

2(v-1)

2

2v-1

...
...

1 ...

[p2,m

State
sj

L+12

p2,(m+1) p2,(m+L)]

1.p2,m

x1.p2,(m+1)

1.p2,(m+L)

z(1,m)

zcore
m+1

L0

...

Figure 5.6: Trellis diagram for the parity check weight calculation of a punctured

RSC code (k=1).

k = 1, for simplicity. The systematic weight u(k = 1,m) of a codeword sequence,

whose path diverges from the zero state when p1,m is active, is given by

u(k=1,m) =
L∑

j=0

(uj · p1,m+j) , (5.24)

which is reduced to

u(k=1,m) = p1,m + p1,(m+L), (5.25)

since the two only non-zero bits occur at the very beginning and at the very end of

the path, i.e., uj =1 for j =0 and j =L, otherwise uj =0.

Similarly, the weight z(k = 1,m) of the parity check sequence, whose path di-

verges from the zero state when p2,m is active, assumes the form

z(k=1,m) =
L∑

j=0

(xj · p2,m+j) . (5.26)

Although the core parity check weight zcore has a fixed value when a non-punctured

code is considered, a puncturing pattern of period M creates M variants of zcore,

denoted as z1
core, . . ., zm

core, . . ., zM
core, where index m indicates that the m-th column

of the puncturing pattern is active at time step j =1, when the RSC encoder starts

behaving as a pseudo-random generator. Consequently, the weight z(k = 1,m) of

the parity check sequence can be written as

z(k=1,m) = p2,m + zm+1
core + p2,(m+L), (5.27)

98

5.4 Direct Computation of the Dominant Conditional Weight
Enumerating Function of Punctured Convolutional Block Codes

since the parity check bits, x0 and xL, at the beginning and at the end of the path

respectively, are non-zero, as illustrated in Fig.5.6. In order to calculate z(k=1, m)

for every value of m, we need to first derive the M variants of zcore by applying the

M circularly shifted versions of the puncturing row vector PZ =[p2,1 . . . p2,M] to the

corresponding output parity check bits of the parent rate-1/2 RSC encoder, i.e,

zm
core =

L−1∑
j=1

(
xj · p2,(m+j−1)

)
. (5.28)

If we extend our analysis to codeword sequences associated with paths of length

kL+1, we need to include the variable k into (5.25) and (5.27) to obtain the generic

expressions for u(k, m) and z(k, m). The systematic weight u(k, m) of a punctured

codeword sequence still depends on the systematic puncturing elements, which are

active at the very beginning and the very end of the input sequence, hence

u(k,m) = p1,m + p1,(m+kL). (5.29)

On the other hand, in order to compute the parity check weight z(k, m) of a punc-

tured codeword sequence corresponding to a path of length kL + 1, we need to

take into account the core weights zm+1
core , zm+L+1

core , . . . , z
m+(k−1)L+1
core of the k consecu-

tive parity check streams composing the parity check output sequence. Therefore,

z(k,m) can be expressed as

z(k, m) = p2,m +
k−1∑
j=0

zm+jL+1
core + p2,(m+kL), (5.30)

where zm+jM
core =zm

core, due to the periodicity of the puncturing pattern.

The minimum weight umin of the punctured systematic output sequence can be

found numerically by storing the M values of u(k, m), for k =1 and m =1, . . . , M ,

comparing them and selecting the minimum value, i.e.,

umin = min
m=1...M

{u(k=1, m)}. (5.31)

The minimum weight zmin of the punctured parity check output sequence is found

in a similar manner

zmin = min
m=1...M

{z(k=1,m)}, (5.32)

while the overall minimum weight dmin of the output codeword sequence is the

minimum of the sum, u(k=1,m) + z(k=1,m), for all possible values of m, thus

dmin = min
m=1...M

{u(k=1, m) + z(k=1,m)}. (5.33)

99

5.4 Direct Computation of the Dominant Conditional Weight
Enumerating Function of Punctured Convolutional Block Codes

Before proceeding with the calculation of the dominant conditional weight enu-

merating function, we first revisit the properties of information weight-2 codeword

sequences, described in detail in the previous section. The trellis path of an infor-

mation weight-2 codeword sequence, generated by a parent rate-1/2 RSC encoder

and expressed as W 2U2Zz(k), diverges from the all-zero path for kL + 1 consecu-

tive time steps, where L is the period of the feedback generator polynomial. If an

information sequence of length N is input to the encoder, the length of the corre-

sponding trellis path will also be N , thus kL + 1 ≤ N , from which we find that the

values of k lie in the range from 1 to b(N − 1)/Lc. Furthermore, we have shown

that there are N−kL codeword sequences W 2U2Zz(k) sharing the same parity check

weight z(k), for a given k.

When a puncturing pattern of period M is used to increase the rate of the code,

each codeword sequence of the form W 2U2Zz(k) becomes W 2Uu(k,m)Zz(k,m) after

puncturing, where m is the column of the puncturing pattern, which is active when

the trellis path of the codeword sequence diverges from the all-zero path. The value

of m lies in the range from 1 to M . For a given k, all the original N−kL non-

punctured codeword sequences, having parity check weight z(k), are mapped to an

equal number of punctured codeword sequences. Owing to the puncturing period M ,

the N−kL punctured codeword sequences can be divided into M groups. The group

m comprises of codeword sequences having the same weights u(k, m) and z(k,m).

The number of sequences in group m, denoted as Bk,m, is either b(N − kL)/Mc or

b(N−kL)/Mc+1, depending on whether the remainder of the division (N−kL)/M

is less than m or not. As expected, the sum of Bk,m over all values of m is N−kL,

i.e.,
M∑

m=1

Bk,m = N−kL. (5.34)

For example, consider a weight-2 information sequence of length N = 8, input

to a rate-1/2 RSC(1,5/7) encoder with memory size ν = 2. A primitive feedback

polynomial is used, hence a period of L = 22 − 1 = 3 time-steps is achieved. The

output of the encoder is punctured using a pattern of period M =3. For simplicity,

we consider codeword sequences of length kL + 1 = 4, i.e., we assume that k = 1.

Therefore, there are N−kL = 5 punctured codeword sequences having systematic

weight u(1,m) and parity check weight z(1,m), for m = 1, 2, 3, as it is depicted in

Fig.5.7. Owing to the three different values of m, the 5 codeword sequences can be

divided into 3 groups, each one of which contains B1,m codeword sequences having

the same weights u(1,m) and z(1, m), for a given m. We observe that the quotient

and the remainder of the division (N − kL)/M = 5/3 are 1 and 2, respectively,

100

5.5 Case Study: Pseudo-random Puncturing

0

1

2

1

p2,1

20

p2,2 p2,3

3 4 5 6

3

7 8

p2,1 p2,2 p2,3 p2,1 p2,2

M=3, L=3

kL+1=4

Trellis paths of codeword sequences
having weights:

u(1,1) and z(1,1)
u(1,2) and z(1,2)
u(1,3) and z(1,3)

Figure 5.7: Enumeration of information weight-2 codeword sequences having sys-

tematic weight u(1,m) and parity check weight z(1, m).

therefore B1,m =1 if m > 2, otherwise it is B1,m =2. We see in Fig.5.7 that, indeed,

there are two codeword sequences having weights u(1, 1), z(1, 1), two codeword

sequences having weights u(1, 2), z(1, 2) and only one codeword sequence having

weights u(1, 3), z(1, 3).

From the above, we conclude that a group of information weight-2 puncturing

codeword sequences sharing the same weights u(k, m) and z(k, m) consists of Bk,m

members, where Bk,m is given by

Bk,m =

{ ⌊
N−kL

M

⌋
, if rem ((N − kL),M) < m⌊

N−kL
M

⌋
+ 1, otherwise.

(5.35)

The dominant conditional weight enumerating function B(w=2, U, Z) needs to take

into account the Bk,m codeword sequences W 2Uu(k,m)Zz(k,m) in every group, for all

possible values of k and m. Consequently, B(w=2, U, Z) can be written as

B(w=2, U, Z) =

b(N−1)/Lc∑

k=1

M∑
m=1

Bk,mUu(k,m)Zz(k,m), (5.36)

where u(k, m), z(k,m) and Bk,m were defined in (5.29), (5.30) and (5.35), respec-

tively.

5.5 Case Study: Pseudo-random Puncturing

In this section we study RSC encoders employing primitive feedback polynomials,

therefore the period L assumes the maximum value of 2ν−1. Furthermore, we assume

101

5.5 Case Study: Pseudo-random Puncturing

that the parity check output of an RSC encoder is pseudo-randomly punctured, i.e.,

the elements of the puncturing row vector PZ =[p2,1 . . . p2,M] form a PN sequence,

which has been generated by the same primitive polynomial employed by the RSC

encoder. Consequently, the puncturing period of PZ is M =2ν − 1. Periods M and

L can be used interchangeably, since M =L.

Expression (5.29) is reduced to

u(k,m) = u(m) = 2p1,m, (5.37)

since p1,m+kM =p1,m. Similarly, we can write (5.30) as follows

z(k, m) = kzm+1
core + 2p2,m, (5.38)

since zm+jL
core =zm

core and p2,m+kM =p2,m, due to the periodicity of the puncturing pat-

tern. Computation of z(k, m) and, consequently, B(w=2, U, Z), requires numerical

calculation of the L values of zm+1
core . However, the assumption of pseudo-random

puncturing can further simplify the computation of zm+1
core .

In order to express zm+1
core in a close-form, we first need to consider the auto-

correlation function φ(i) of a polar sequence of length L, which is defined as [15]

φ(i) =
L∑

j=1

(2xj − 1)(2xj+i − 1) (5.39)

where xj ={0, 1} is the parity check output of the parent rate-1/2 RSC encoder at

time-step j for an input sequence of information weight two, and i is a non-negative

integer with values lying in the range 0 ≤ i < L. In event of the parity check output

sequence being a PN sequence, the autocorrelation function reduces to [52,54]

φ(i) =

{
2ν − 1, if i = 0
−1, if 1 ≤ i < L.

(5.40)

If we expand (5.39), we obtain

φ(i) =
L∑

j=1

(4xjxj+i − 2xj − 2xj+i + 1)

= 4
L∑

j=1

xjxj+i − 2
L∑

j=1

xj − 2
L∑

j=1

xj+i + L

= 4
L∑

j=1

xjxj+i − 2(2ν−1)− 2(2ν−1) + (2ν − 1)

= 4
L∑

j=1

xjxj+i − 2ν − 1,

(5.41)

102

5.5 Case Study: Pseudo-random Puncturing

since there are 2ν−1 non-zero bits in a PN sequence of length L = 2ν − 1, as we

described in Section 5.3, thus

L∑
j=1

xj+i = 2ν−1, (5.42)

for 0 ≤ i < L. Combining (5.40) and (5.41), we find that

L∑
j=1

xjxj+i =

{
2ν−1, if i = 0
2ν−2, if 1 ≤ i < 2ν − 1.

(5.43)

The operation of multiplication on binary numbers, i.e., xjxj+i, is equivalent to the

AND operation, i.e., xj · xj+i, hence (5.43) can be re-written as

L∑
j=1

(xj · xj+i) =

{
2ν−1, if i = 0
2ν−2, if 1 ≤ i < 2ν − 1.

(5.44)

We observe that the AND operation between two different PN sequences, generates

a third sequence having weight 2ν−2. When the two PN sequences are identical, the

weight of the generated sequence is 2ν−1.

If one of the PN sequences in (5.44) is the parity check output stream of the

parent rate-1/2 RSC encoder, generated during a sequence of state transitions from

state 2ν−1 back to state 2ν−1, while the other PN sequence comprises of the elements

of the puncturing row vector PZ , we can use the autocorrelation function to derive

the weight of the punctured parity check sequence. More specifically, we first ensure

that the elements of PZ =[p2,1 . . . p2,M] form a PN sequence of period M =L=2ν−1

by setting the (j +1)-th element, p2,j+1, equal to the j-th bit of the parity check

stream, xj, i.e., p2,j+1 = xj, for 1 ≤ j ≤ L. We then replace xj+i in (5.44) with its

equivalent, p2,j+i+1, to obtain

L∑
j=1

(xj · p2,(j+i+1)) =

{
2ν−1, if i = 0
2ν−2, if 1 ≤ i < 2ν − 1,

(5.45)

or
L∑

j=1

(xj · p2,(m+j)) =

{
2ν−1, if m = 1
2ν−2, if 2 ≤ m ≤ 2ν − 1,

(5.46)

if i+1 is replaced by variable m, which assumes values in the range 1 ≤ m ≤ 2ν − 1.

We have shown that the last bit xL of the parity check stream x1, x2, . . . , xL, is

always zero, subsequently xL · p2,m+L = 0. From this observation, we deduce that

all non-zero bits of the generated sequence xj · p2,m+j lie in the first L−1 positions,

103

5.5 Case Study: Pseudo-random Puncturing

hence the weight of the generated sequence remains unchanged if we take the sum

of only the first L−1 digits

L−1∑
j=1

(xj · p2,(m+j)) =

{
2ν−1, if m = 1
2ν−2, if 2 ≤ m ≤ 2ν − 1.

(5.47)

The quantity on the left hand side of (5.47) corresponds to zm+1
core according to (5.28),

therefore

zm+1
core =

{
2ν−1, if m = 1
2ν−2, if 2 ≤ m ≤ 2ν − 1,

(5.48)

which leads us to the conclusion that when the parity check output sequence of

an RSC encoder, employing a primitive feedback polynomial, is punctured using

a pseudo-randomly generated puncturing vector PZ , the core weight zm+1
core can be

expressed in a close-form as a function of the memory ν of the RSC encoder only.

If we update (5.38) accordingly, we find that the weight z(k, m) of the parity

check output sequence of the RSC encoder is

z(k, m) =

{
k2ν−1 + 2p2,m , if m = 1
k2ν−2 + 2p2,m , if 2 ≤ m ≤ 2ν − 1.

(5.49)

We explained earlier that the elements of the puncturing vector PZ were assigned

values according to the rule p2,j+1 = xj, so as to ensure that a PN sequence would

emerge. Since the parity check bit xL is zero, we deduce that p2,L+1 is also zero and

so is p2,1, owing to the periodicity M of the puncturing pattern which we take to be

equal to L. Thus, the expression for the weight z(k, m) assumes the final form

z(k, m) =

{
k2ν−1 , if m = 1
k2ν−2 + 2p2,m , if 2 ≤ m ≤ 2ν − 1.

(5.50)

We observe that z(k, m) can assume three distinct values, namely k2ν−2, k2ν−2+2,

and k2ν−1, in order of magnitude, but only when ν > 2. Invoking the properties of

PN sequences [52], we note that only 2ν−1−1 out of the 2ν−1 elements p2,m of the

puncturing vector PZ are equal to 0. If the memory size is ν =2, we find that p2,m

assumes the zero value only once, and according to (5.50) this happens when m=1.

Consequently, the value of z(k, m) for a memory size of 2 can either be 2k if m=1,

or k + 2 if m > 1.

The minimum weight zmin of the parity check output sequences can be derived

from z(k,m), if we set k=1 and select the minimum valid value. In particular,

zmin =

{
2, for ν = 2
2ν−2, for ν > 2,

(5.51)

104

5.6 Evaluation of the Bound Approximation for Non-Punctured and
Punctured Turbo Codes

since we cannot obtain a minimum weight of 2ν−2 = 1 when ν = 2, based on the

explanation given in the previous paragraph.

The rate of a punctured RSC encoder depends upon the number of codeword

bits, both systematic and parity check, transmitted during the puncturing period

M . We know that in the case of pseudo-randomly punctured RSC codes, vector

PZ = [p2,1 . . . p2,M] contains 2ν−1 non-zero elements, hence 2ν−1 parity check bits

evade puncturing and, consequently, at least 2ν−1 codeword bits are transmitted for

every M = 2ν−1 input information bits. The rate of the code can be reduced by

increasing the number of non-zero elements in the vector PU =[p1,1 . . . p1,M], which

determines which systematic bits are eliminated during the puncturing period M .

The dominant conditional weight enumerating function B(w = 2, U, Z) can be

obtained from (5.36), as follows

B(w=2, U, Z) =

b(N−1)/(2ν−1)c∑

k=1

2ν−1∑
m=1

Bk,mUu(m)Zz(k,m), (5.52)

where Bk,m, defined in (5.35), assumes the form

Bk,m =

{ ⌊
N

2ν−1

⌋− k, if rem (N, 2ν−1) < m⌊
N

2ν−1

⌋− k + 1, otherwise,
(5.53)

for M =L=2ν−1, while u(m) and z(k, m) have been defined for the case of pseudo-

randomly punctured RSC codes in (5.37) and (5.50), respectively.

The dominant conditional weight enumerating function of a higher rate RSC

encoder, obtained after puncturing the parity check output of the rate-1/2 RSC

encoder using a pseudo-randomly generated vector, mainly depends upon the mem-

ory size of the RSC encoder and not the underlying code, as observed for a rate-

1/2 RSC encoder employing a primitive feedback polynomial. A list of example

pseudo-random row vectors PZ , appropriate for puncturing RSC encoders employ-

ing primitive feedback vectors GR and feedforward vectors GF , is provided in Table

5.2.

5.6 Evaluation of the Bound Approximation for

Non-Punctured and Punctured Turbo Codes

In Section 5.3, we derived expression (5.16) which we can straightforwardly use as

the basis for numerically computing the dominant conditional weight enumerating

function B(w=2, U, Z) of a non-punctured rate-1/2 RSC encoder. Furthermore, we

105

5.6 Evaluation of the Bound Approximation for Non-Punctured and
Punctured Turbo Codes

0 1 2 3 4 5 6 7 8 9 10
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

Union bound P, N=100
Bound approximation P(2), N=100
Union bound P, N=1,000
Bound approximation P(2), N=1,000
Union bound P, N=10,000
Bound approximation P(2), N=10,000

(a) Rate-1/3 PCCC(1,5/7,5/7)

0 1 2 3 4 5 6 7 8 9 10
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

Union bound P, N=100
Bound approximation P(2), N=100
Union bound P, N=1,000
Bound approximation P(2), N=1,000
Union bound P, N=10,000
Bound approximation P(2), N=10,000

(b) Rate-1/3 PCCC(1,17/15,17/15)

Figure 5.8: Exact union bounds and their approximation for various non-punctured

turbo codes employing an interleaver of size 100, 1,000 or 10,000 bits.

106

5.6 Evaluation of the Bound Approximation for Non-Punctured and
Punctured Turbo Codes

0 1 2 3 4 5 6 7 8 9 10
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

Union bound P, N=100
Bound approximation P(2), N=100
Union bound P, N=1,000
Bound approximation P(2), N=1,000
Union bound P, N=10,000
Bound approximation P(2), N=10,000

(a) Rate-1/2 NS-PCCC(1,5/7,5/7)

0 1 2 3 4 5 6 7 8 9 10
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

Union bound P, N=100
Bound approximation P(2), N=100
Union bound P, N=1,000
Bound approximation P(2), N=1,000
Union bound P, N=10,000
Bound approximation P(2), N=10,000

(b) Rate-1/2 NS-PCCC(1,17/15,17/15)

0 1 2 3 4 5 6 7 8 9 10
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

Union bound P, N=100
Bound approximation P(2), N=100
Union bound P, N=1,000
Bound approximation P(2), N=1,000
Union bound P, N=10,000
Bound approximation P(2), N=10,000

(c) Rate-1/2 Sys. PCCC(1,5/7,5/7)

0 1 2 3 4 5 6 7 8 9 10
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

Union bound P, N=100
Bound approximation P(2), N=100
Union bound P, N=1,000
Bound approximation P(2), N=1,000
Union bound P, N=10,000
Bound approximation P(2), N=10,000

(d) Rate-1/2 Sys. PCCC(1,17/15,17/15)

Figure 5.9: Exact union bounds and their approximation for various punctured

turbo codes employing an interleaver of size 100, 1,000 or 10,000 bits.

107

5.6 Evaluation of the Bound Approximation for Non-Punctured and
Punctured Turbo Codes

Table 5.2: Pseudo-random row vectors PZ for various RSC code configurations.

Memory size, ν Octal GR Octal GF PZ zmin

2 7 5 [0 1 1] 2

3 15 17 [0 0 1 1 1 0 1] 2

4 31 33 [0 0 0 1 1 1 1 0 1 0 1 1 0 0 1] 4
31 27 [0 1 0 1 1 0 0 1 0 0 0 1 1 1 1]

demonstrated that when the feedback generator vector of the RSC encoder is prim-

itive, B(w = 2, U, Z) reduces to (5.22) and becomes a function of the memory size

of the encoder, only. The effect of puncturing the information weight-2 codeword

sequences, generated by a rate-1/2 RSC encoder, was studied in Section 5.4. In

a similar manner, we obtained expression (5.36), which accurately enumerates the

information weight-2 codeword sequences comprising B(w = 2, U, Z), when punc-

tured RSC codes are considered. In addition, we presented a case study, according

to which the dominant conditional weight enumerating function of an RSC encoder

employing a primitive feedback polynomial, can be expressed in a close-form, if the

parity check output sequence of the encoder is punctured by a pseudo-randomly

generated row vector. In particular, we can observe in (5.52) that B(w = 2, U, Z)

becomes a function of the puncturing pattern and the memory size of the encoder.

Therefore, if C1 and C2 are constituent RSC codes of a turbo encoder P , punc-

tured or non-punctured, we can use (5.16), (5.22), (5.36) or (5.52), depending on

the case, to calculate BC1(w = 2, U, Z) and BC2(w = 2, U, Z), respectively. Subse-

quently, the dominant conditional weight enumerating function BP(w = 2, U, Z) of

the turbo encoder can be obtained from (5.6), under the assumption that a uniform

interleaver of size N is used. Knowledge of BP(w=2, U, Z) allows us to compute the

probability P (2) of all error events with information weight 2, which is a good ap-

proximation of the union bound P u
b when long interleavers are used, as we explained

in Section 5.2.

In Fig.5.8 and Fig.5.9, we compare the union bound P u
b with its approxima-

tion P (2), for the same turbo code configurations considered in Fig.5.1 and Fig.5.2,

respectively. As expected, P (2) deviates from P u
b , when short interleavers are con-

sidered. However, for interleaver sizes of N = 10, 000 bits or larger, the bound

approximation P (2) closely matches the union bound P u
b , for medium to low bit er-

ror probabilities. Hence, when ML soft decoding of rate-1/3 turbo codes or rate-1/2

punctured turbo codes is considered, P (2) is indeed a good approximation of the

108

5.7 Chapter Summary

union bound P u
b . If, on the other hand, suboptimal iterative decoding is investi-

gated, P (2) is a good indication of the error floor, provided that the performance of

the decoder eventually converges towards the error floor at medium to high Eb/N0

values. The convergence behavior of iterative decoding of rate-1/2 punctured turbo

codes is studied in the following chapter.

5.7 Chapter Summary

In Chapter 3 and Chapter 4, we proposed techniques to evaluate the transfer function

of constituent RSC codes and, ultimately, compute the transfer function of a turbo

code, punctured or non-punctured. As a result, a tight upper bound on the bit error

probability of the turbo code can be derived.

In this chapter, we proposed a rapid method, which exploits the properties of

constituent RSC encoders, to obtain their dominant conditional weight enumerat-

ing functions, which only enumerate codeword sequences having information weight

two. This is in contrast to their transfer functions, which enumerate all codeword se-

quences having non-zero information weight. We demonstrated that the dominant

conditional weight enumerating function of a rate-1/3 turbo code, or a rate-1/2

punctured turbo code, significantly contributes to the upper bound on the bit error

probability, as the interleaver size increases. Consequently, we proposed a bound

approximation, which only takes into account the dominant conditional weight enu-

merating function rather than the full transfer function. The bound approximation

is accurate when long interleavers are employed, thus it can give us insight concern-

ing the ML decoding performance of rate-1/3 and rate-1/2 turbo codes.

In the next chapter we will use the bound approximation to evaluate the per-

formance of rate-1/2 punctured turbo codes and investigate whether they can yield

lower bounds on the bit error probability than those of their rate-1/3 parent turbo

codes.

109

Chapter 6
Punctured Turbo Codes Exhibiting Low

Error Floors

6.1 Introduction

Having developed the tools to obtain a bound approximation, which is an accurate

estimate of the union bound on the error probability of turbo codes, we put them

into practice so as to evaluate the performance of punctured turbo codes using long

interleavers.

In particular, we observe that certain configurations of rate-1/2 punctured turbo

codes yield a lower approximate bound than that of their rate-1/3 parent codes.

Specifically we show that this is the case, when the rate of a turbo code is increased

from 1/3 to 1/2 using particular puncturing patterns. Although we can draw im-

mediate conclusions from that result about the ML decoding performance of those

rate-1/2 punctured turbo codes, we cannot be conclusive when suboptimal iterative

decoding is used. Consequently, we study the convergence behavior of iterative de-

coding using the widely accepted EXIT chart analysis and we investigate whether

the performance of the proposed rate-1/2 punctured turbo codes converges towards

their union bound, or equivalently the bound approximation, at high signal-to-noise

ratios.

We conclude the chapter by comparing analytic to simulation results and pre-

senting a summary of our findings.

110

6.2 An Interesting Observation: Performance Improvement as a
Consequence of a Code Rate Increase

6.2 An Interesting Observation: Performance Im-

provement as a Consequence of a Code Rate

Increase

In the previous chapter, we established that the probability P (2) of all error events

with information weight 2 is a good approximation of the union bound on the average

bit error probability of turbo codes using long random interleavers, when ML soft

decoding is employed. In Fig.6.1, we compare the bound approximations of rate-1/2

punctured turbo codes, namely the systematic (Sys) and the non-systematic (NS)

schemes presented in the previous chapter, with the bound approximation of their

rate-1/3 parent turbo code. For consistency, the rate-1/3 parent codes considered

are PCCC(1,5/7,5/7) and PCCC(1,17/15,17/15). In all cases, a long interleaver of

size N =10, 000 is used.

In both Fig.6.1(a) and Fig.6.1(b), we have also included a partially systematic

scheme, denoted as PS, and a pseudo-randomly punctured scheme, which we refer

to as “Pseudo”. Note that, the puncturing pattern for PS, which leads to rate-

1/2 turbo codes exhibiting low ML performance bounds, has been obtained by

means of an exhaustive search among all available patterns of period M = 4, as

we described in Chapter 4. In the case of each “Pseudo” PCCC scheme, we use a

pseudo-randomly generated row vector PZ1 to puncture the first parity check output

of the parent PCCC. The second parity check output is not punctured, thus every

element of the corresponding row vector PZ2 is set to 1. Finally, we choose the

puncturing row vector PU for the systematic output to be the complement of PZ1.

Subsequently, the puncturing pattern composed of the three row vectors, PU , PZ1

and PZ2, increases the rate of the code from 1/3 to 1/2. The puncturing patterns

for the afore-mentioned rate-1/2 turbo codes, are presented in Table 6.1.

As in the case of convolutional codes, it would be reasonable to expect that

puncturing a turbo code is a trade-off between bandwidth efficiency and channel

Table 6.1: Puncturing patterns for various rate-1/2 PCCC configurations.

Pseudo
Sys PCCC(1,5/7,5/7) PCCC(1,17/15,17/15) PS NS

1 1
1 0
0 1

1 0 0
0 1 1
1 1 1

1 1 0 0 0 1 0
0 0 1 1 1 0 1
1 1 1 1 1 1 1

0 0 1 0
1 1 0 1
1 1 1 1

0
1
1

111

6.3 Performance Evaluation using the Bound Approximation

0 1 2 3 4 5 6 7 8
10

−12

10
−10

10
−8

10
−6

10
−4

E
b
/N

0
 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y
Rate−1/3 Parent
Rate−1/2 Sys
Rate−1/2 Pseudo
Rate−1/2 PS
Rate−1/2 NS

(a) PCCC(1,5/7,5/7)

0 1 2 3 4 5 6 7 8
10

−12

10
−10

10
−8

10
−6

10
−4

E
b
/N

0
 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

Rate−1/3 Parent
Rate−1/2 Sys
Rate−1/2 Pseudo
Rate−1/2 PS
Rate−1/2 NS

(b) PCCC(1,17/15,17/15)

Figure 6.1: Bound approximations of rate-1/3 parent turbo codes and rate-1/2

punctured turbo codes. The size of the interleaver is N =10, 000 bits.

reliability. Thus, an increase in the code rate from 1/3 to 1/2 would improve band-

width efficiency at the expense of channel reliability. Indeed, we observe in Fig.6.1

that the bound approximation of rate-1/2 systematic turbo codes is higher than the

bound approximation of their rate-1/3 parent codes. From that, we deduce that

rate-1/3 turbo codes achieve a better performance, in terms of bit error probability,

than rate-1/2 punctured systematic turbo codes, hence channel reliability degrades

when the code rate is increased from 1/3 to 1/2, as expected. However, we see

that the remaining three rate-1/2 configurations exhibit lower bound approxima-

tions than their parent code, with the non-systematic scheme achieving the lowest.

Inevitably, the following question arises: “Under what conditions, do rate-1/2 punc-

tured turbo codes achieve a superior performance to that of their rate-1/3 parent

codes?”. In the following sections, we try to answer this question using the bound

approximation, when ML soft decoding is assumed, and EXIT charts, when subop-

timal iterative decoding is considered.

6.3 Performance Evaluation using the Bound Ap-

proximation

Under the assumption of ML soft decoding, accurate identification of turbo codes

that yield low bit error probability, for a given Eb/N0 value, is performed by evalu-

ating and comparing their analytical bounds on the bit error probability. Thus, if P
and P ′ are two PCCCs, we say that P outperforms P ′, if their union bounds, P u,P

b

112

6.3 Performance Evaluation using the Bound Approximation

Table 6.2: Coefficients B2,d for the calculation of the bound approximation P (2),

for rate-1/2 punctured configurations of the rate-1/3 parent PCCC(1,5/7,5/7).

d Parent Sys Pseudo PS NS

1-5 0 0 0 0 0
6 0 4.4969 0 0 0
7 0 0 1.3325 0.9996 0
8 0 11.986 1.9986 1.4991 1.9990
9 0 0 2.6639 1.9985 0

10 1.9990 19.965 3.9956 2.9972 3.9968
11 0 0 3.9940 2.9967 0
12 3.9968 27.934 5.9910 4.9935 5.9934
13 0 0 5.3229 3.9942 0
14 5.9934 35.895 7.9848 6.4893 7.9888
15 0 0 6.6507 4.9910 0
16 7.9888 43.845 9.9770 7.9840 9.9830
17 0 0 7.9772 5.9871 0
18 9.9830 51.786 11.968 9.9764 11.976
19 0 0 9.3025 6.9825 0
20 11.976 59.717 13.957 11.469 13.968

and P u,P ′
b respectively, satisfy

P u,P
b < P u,P ′

b , (6.1)

which reduces to

PP(2) < PP′(2), (6.2)

when long interleavers are considered. If the interleavers used by the two PCCCs

have identical size, we can expand (6.2) as follows

∑

d

BP
2,dQ

√
2RP Eb

N0

d

 <

∑

d

BP ′
2,dQ

√
2RP ′ Eb

N0

d

 . (6.3)

As we mentioned in Chapter 2, Benedetto and Montorsi demonstrated in [26]

that the most significant parameter of a turbo code is its free effective distance,

dfree,eff, which conveys the minimum weight of a codeword sequence for an input

sequence of information weight 2. Furthermore, the authors suggested that the

simplest form of performance optimization is the design of generator polynomials

that maximize the free effective distance of a PCCC. Therefore, if dPfree,eff and dP
′

free,eff

113

6.3 Performance Evaluation using the Bound Approximation

denote the free effective distances of P and P ′ respectively, condition (6.2) collapses

to

BP
2,dfree,eff

Q

√
2RP Eb

N0

dPfree,eff

 < BP′

2,dfree,eff
Q

√
2RP ′ Eb

N0

dP ′free,eff

 , (6.4)

which only considers the first non-zero, that is the most significant term of each sum.

When the code rates are equal, i.e., RP = RP ′ , the free effective distance of turbo

codes plays a role similar to that of the free distance of convolutional codes [26].

Hence, the performance criterion can be simplified to

dPfree,eff > dP
′

free,eff. (6.5)

In the case that the two codes yield the same free effective distance, we compare coef-

ficients BP
2,dfree,eff

and BP′
2,dfree,eff

. Turbo code P achieves a slightly better performance

than P ′, only if BP
2,dfree,eff

is lower than BP ′
2,dfree,eff

.

In Table 6.2, the first 20 coefficients B2,d of the bound approximation P (2) for

the rate-1/3 parent PCCC(1,5/7,5/7), as well as the “Sys”, “Pseudo”, “PS” and

“NS” configurations of rate 1/2, are presented. All coefficients were obtained using

the method we described in Chapter 5. Recall that a uniform interleaver is assumed,

hence a coefficient B2,d represents the average number of turbo codeword sequences

having overall output weight d, which were generated by input sequences of infor-

mation weight 2. The smallest value of d for which B2,d is non-zero, corresponds

to the free effective distance dfree,eff of the turbo code. We focus on the rate-1/2

schemes and we observe that the systematic PCCC yields a lower free effective dis-

tance (dSys
free,eff = 6) than the non-systematic PCCC (dNS

free,eff = 8). Subsequently, the

bound of the non-systematic PCCC is expected to be lower than that of the sys-

tematic PCCC, while the bounds of the pseudo-randomly punctured and partially

systematic turbo codes are expected to lie in between, since dPseudo
free,eff = dPS

free,eff = 7.

However, the partially systematic PCCC yields a lower coefficient, hence that code

is anticipated to perform better than the pseudo-randomly punctured PCCC. Our

conjectures, based on the simple criterion (6.5), are supported by the bound approx-

imation curves presented in Fig.6.1(a).

Turbo codes using interleavers of the same size, but achieving different rates,

can be evaluated using (6.4). Our objective in this section, is to perform an analyti-

cal performance comparison between rate-1/2 turbo codes and their parent rate-1/3

turbo codes. Based on the observations in Fig.6.1, we use criterion (6.4) to investi-

gate when rate-1/2 non-systematic PCCCs and pseudo-randomly punctured PCCCs

exhibit a lower bound approximation than that of their parent turbo codes. We do

114

6.3 Performance Evaluation using the Bound Approximation

not consider the whole set of partially systematic turbo codes in our investigation,

since their free effective distance and coefficients depend entirely upon their punc-

turing patterns. Consequently, particular partially systematic turbo codes yielding

low bit error probabilities can be found only by means of an exhaustive search, for a

given parent turbo code. Although pseudo-random punctured PCCCs form a sub-

set of partially systematic PCCCs, we will demonstrate that their characteristics

depend only upon the memory size of the constituent encoders.

Inevitably, we make references to Chapter 5 throughout our investigation, since

we use the concepts and expressions, derived in that chapter, to identify the rela-

tionship between parameters that influence the performance of a turbo code, such

as its free effective distance, and parameters associated with the structure of the

constituent encoders, such as their memory size.

6.3.1 Analysis of Rate-1/3 Parent PCCCs

Criterion (6.4) requires knowledge of the free effective distance dParent
free,eff and the co-

efficient BParent
2,dfree,eff

. In general, the free effective distance dParent
free,eff of a PCCC can be

expressed as the sum of the minimum weight dmin of the codeword sequence gen-

erated by the first constituent encoder and the minimum weight zmin of the parity

check sequence generated by the second constituent encoder. The result is the over-

all codeword weight of the output sequence for an input sequence of information

weight 2. Observing that the turbo codes to be considered here are symmetric,

i.e., the constituent encoders are identical, and the weight of the systematic output

sequence is always 2, i.e., umin =2, we can write

dParent
free,eff = dmin + zmin

= (umin + zmin) + zmin

= 2 + 2zmin.

(6.6)

From this relationship, we deduce that a turbo codeword sequence of weight

dfree,eff can only be obtained, when the weight of the systematic output sequence is

2 and the weight of each parity check output sequence is zmin. Therefore, if BParent
2,dfree,eff

denotes the number of turbo codeword sequences having weight dfree,eff, it follows

from (6.6) that BParent
2,dfree,eff

matches the number BParent
2,2,2zmin

of turbo codeword sequences

having systematic weight 2 and overall parity check weight 2zmin,

BParent
2,dfree,eff

= BParent
2,2,2zmin

. (6.7)

Note that, in both notations, the first index refers to the input information weight,

which is 2. The number BParent
2,2,2zmin

of codeword sequences, generated by a turbo

115

6.3 Performance Evaluation using the Bound Approximation

encoder using a uniform interleaver of size N , can be associated with the number

B2,2,zmin
of codeword sequences having systematic weight 2 and parity check weight

zmin, generated by the first constituent encoder, and the number B2,0,zmin
of parity

check sequences having weight zmin, generated by the second constituent encoder, if

we elaborate on (2.69). In particular, we obtain

BParent
2,2,2zmin

=
B2,2,zmin

B2,0,zmin(
N

2

) , (6.8)

where B2,2,zmin
and B2,0,zmin

return the same value, since they both consider the same

trellis paths, as we can deduce from our discussion in Chapter 5. If L is the period

of the feedback generator polynomial used by the turbo encoder, we find from (5.15)

that

B2,2,zmin
= B2,0,zmin

= N − L. (6.9)

Combining (6.7), (6.8) and (6.9), we can express BParent
2,dfree,eff

as a function of the intler-

leaver size N and the period L

BParent
2,dfree,eff

=
2(N − L)2

N(N − 1)
. (6.10)

If a primitive feedback generator polynomial is used, the minimum weight zmin

can be expressed in terms of the memory size ν, i.e., zmin = 2ν−1 + 2, as we have

shown in (5.20). Consequently, expression (6.6) assumes the form

dParent
free,eff = 6 + 2ν . (6.11)

In the special case when the size N of the interleaver is an integer multiple of the

period L of the feedback generator polynomial used by a constituent encoder, i.e.,

N =µL, we can rewrite expression (6.10) as

BParent
2,dfree,eff

=
2L(µ− 1)2

µ(µL− 1)
. (6.12)

6.3.2 Analysis of Rate-1/2 Non-Systematic PCCCs

A rate-1/2 non-systematic turbo code is obtained from a rate-1/3 turbo code, when

the systematic output sequence is not transmitted. Therefore, the main parameters

of the non-systematic turbo code, namely the free effective distance dNS
free,eff and the

coefficient BNS
2,dfree,eff

, can be derived from the equivalent expressions of the parent

turbo code, if we eliminate the contributions of the systematic output. Subsequently,

116

6.3 Performance Evaluation using the Bound Approximation

we take the weight of the systematic output to be always zero, thus u′min =0. If we

update (6.6) accordingly, we obtain the free effective distance

dNS
free,eff = d′min + zmin

= (u′min + zmin) + zmin

= 2zmin.

(6.13)

Note that symbols umin, zmin and dmin, have been reserved for the minimum weight of

the non-punctured systematic sequence, the minimum weight of the non-punctured

parity check sequence and the overall minimum weight of the non-punctured code-

word sequence, generated by a constituent encoder. When one or both output

sequences are punctured, we use different symbols to denote their weights.

In a similar manner to rate-1/3 turbo codes, the number BNS
2,dfree,eff

of codeword

sequences having weight dNS
free,eff, generated by a rate-1/2 non-systematic PCCC, is

related to the number B2,0,zmin
of parity check sequences having weight zmin, gener-

ated by each constituent encoder, as follows

BNS
2,dfree,eff

=
B2,0,zmin

B2,0,zmin(
N

2

)

=
2(N − L)2

N(N − 1)
.

(6.14)

Note that B2,0,zmin
=N−L, according to (6.9).

Based on condition (6.4), a rate-1/2 non-systematic PCCC yields a lower bound

on the bit error probability than that of its rate-1/3 parent PCCC, if

BNS
2,dfree,eff

Q

√
2(1/2) Eb

N0

dNS
free,eff

 < BParent

2,dfree,eff
Q

√
2(1/3) Eb

N0

dParent
free,eff

 . (6.15)

Taking into account (6.6) and (6.10), we observe that parameters dNS
free,eff and BNS

2,dfree,eff

of the non-systematic PCCC can be represented in terms of the parameters dParent
free,eff

and BParent
2,dfree,eff

of the parent PCCC, i.e.,

dNS
free,eff = dParent

free,eff − 2,

BNS
2,dfree,eff

= BParent
2,dfree,eff

.
(6.16)

Subsequently, condition (6.15) reduces to

Q

(√
Eb

N0

(
dParent

free,eff − 2
)
)

< Q

(√
2Eb

3N0

dParent
free,eff

)
. (6.17)

117

6.3 Performance Evaluation using the Bound Approximation

Function Q(ξ), defined in Chapter 2, is a monotonically decreasing function of ξ,

where ξ is a real number. Therefore, if ξ1 and ξ2 are real numbers, with ξ1 > ξ2, we

deduce that Q(ξ1) < Q(ξ2), and vice versa, i.e,

Q(ξ1) < Q(ξ2) ⇔ ξ1 > ξ2. (6.18)

So, inequality (6.17) is satisfied, when

√
Eb

N0

(
dParent

free,eff − 2
)

>

√
2Eb

3N0

dParent
free,eff, (6.19)

or simply,

dParent
free,eff − 2 >

2

3
dParent

free,eff. (6.20)

Rearranging (6.20), we reach the conclusion that a rate-1/2 non-systematic turbo

code achieves a lower bound on the bit error probability than that of its rate-1/3

parent code, only if the free effective distance of the parent code meets the condition

dParent
free,eff > 6. (6.21)

When primitive feedback generator polynomials are considered, condition (6.21) is

always satisfied, since

6 + 2ν > 6 (6.22)

holds true for any value of memory size ν.

6.3.3 Analysis of Rate-1/2 Pseudo-randomly Punctured PC-

CCs

In Chapter 5 we established that an RSC encoder can be pseudo-randomly punctured

only when its feedback generator polynomial is primitive. In a similar fashion, a

rate-1/2 pseudo-randomly punctured turbo code can be obtained from a rate-1/3

symmetric turbo code, only if the feedback generator polynomial of each constituent

encoder is primitive. In that case, the period M of the puncturing pattern matches

the period L of the generator polynomial, i.e., M =L=2ν−1. In order to facilitate

our analysis, and without loss of generality, we assume that the interleaver size N

is an integer multiple of the puncturing period M , i.e., N =µM =µL, where µ is a

positive integer.

In order to compute the free effective distance of a pseudo-randomly punctured

turbo code, we first need to obtain the minimum weights of the output sequences,

produced by the constituent codes. We denote as d′′min the minimum weight of the

punctured codeword sequence, generated by a first constituent encoder. The parity

118

6.3 Performance Evaluation using the Bound Approximation

check sequence generated by the second encoder is not punctured, thus its weight

remains zmin. An expression for d′′min can be obtained if we combine (5.37) and (5.50)

from Chapter 5. In particular, we find that d′′min is either

d′′min = 2ν−1 + 2p1,1 , when m = 1, (6.23)

or

d′′min = 2ν−2 + 2p1,m + 2p2,m , when 2 ≤ m ≤ M, (6.24)

depending on which expression returns the minimum value. Remember, that we

set the puncturing row vector PU = [p1,1 . . . p1,M] to be the complement of the

puncturing row vector PZ1 = [p2,1 . . . p2,M], thus p1,m = 1−p2,m. Furthermore, we

know that the elements of PZ1 form a PN sequence and that the first element is

zero, i.e., p2,1 =0. As a result, p1,1 =1 always. If we update expressions (6.23) and

(6.24) accordingly, we observe that the output codeword weight is either 2ν−1 +2

or 2ν−2+2, depending on the value of m. Subsequently, the minimum weight d′′min

assumes the value

d′′min = 2ν−2 + 2 , when 2 ≤ m ≤ M. (6.25)

Having obtained d′′min, we compute the free effective distance dPseudo
free,eff of a pseudo-

randomly punctured turbo code, as follows

dPseudo
free,eff = d′′min + zmin

= (2ν−2 + 2) + 2ν−1 + 2

= 4 + 3(2ν−2),

(6.26)

since zmin =2ν−1 + 2, when primitive feedback generator polynomials are used.

When a particular puncturing column m 6= 1 is active, we deduce from (5.53)

that the first constituent encoder can generate a total of (µ−1) codeword sequences

having weight d′′min, since N = µ(2ν − 1) and rem(N, 2ν−1) = 0 < m, for all valid

values of m. We observe in (6.25) that m can assume (M−1) possible values in the

range between 2 and M , where d′′min is defined, hence the total number of codeword

sequences having weight d′′min, independently of which puncturing column is active,

is given by the product (M−1)(µ−1). Alternatively, we can adopt the equivalent

expression (L−1)(µ−1), since we have assumed that M and L are equal quantities,

thus they can be used interchangeably. Similarly to the second constituent encoder

of the parent turbo code, the second constituent encoder of the pseudo-randomly

punctured turbo code also generates a total of (N−L) parity check sequences having

weight zmin, which is equivalent to L(µ−1) since N =µL.

119

6.3 Performance Evaluation using the Bound Approximation

Based on these deductions, we can compute the number BPseudo
2,dfree,eff

of codeword

sequences having weight dPseudo
free,eff , generated by a rate-1/2 pseudo-randomly punctured

PCCC, as follows

BPseudo
2,dfree,eff

=
[(L− 1)(µ− 1)] L(µ− 1)(

N

2

) , (6.27)

which collapses to

BPseudo
2,dfree,eff

=
2(L− 1)(µ− 1)2

µ(µL− 1)
. (6.28)

The free effective distance dPseudo
free,eff can be expressed in terms of the free effective

dParent
free,eff, if we subtract (6.26) from (6.11)

dPseudo
free,eff = dParent

free,eff − (2 + 2ν−2). (6.29)

Parameter BPseudo
2,dfree,eff

can also be represented in terms of BParent
2,dfree,eff

, if we divide (6.28)

with (6.12)

BPseudo
2,dfree,eff

=

(
L− 1

L

)
BParent

2,dfree,eff

=

(
2ν − 2

2ν − 1

)
BParent

2,dfree,eff

< BParent
2,dfree,eff

.

(6.30)

We are now in the position to investigate when a rate-1/2 pseudo-randomly

punctured PCCC exhibits a lower bound than its rate-1/3 parent PCCC, invoking

condition (6.4)

BPseudo
2,dfree,eff

Q

√
2(1/2) Eb

N0

dPseudo
free,eff

 < BParent

2,dfree,eff
Q

√
2(1/3) Eb

N0

dParent
free,eff

 . (6.31)

We proved in (6.30) that BPseudo
2,dfree,eff

< BParent
2,dfree,eff

, thus both terms can be removed from

inequality (6.31). If we substitute dPseudo
free,eff with its equivalent, based on (6.29), the

condition becomes

Q

(√
Eb

N0

(
dParent

free,eff − 2− 2ν−2
)
)

< Q

(√
2Eb

3N0

dParent
free,eff

)
. (6.32)

Using property (6.18) of monotonic decreasing functions, we conclude that (6.32)

holds true, only if inequality

dParent
free,eff − 2− 2ν−2 >

2

3
dParent

free,eff, (6.33)

120

6.4 Convergence Behavior Analysis using EXIT Charts

which is equivalent to

dParent
free,eff > 6 + 3(2ν−2), (6.34)

is satisfied. However, we have shown in (6.11) that dParent
free,eff = 6 + 2ν , which can be

rewritten as dParent
free,eff =6 + 4(2ν−2), thus dParent

free,eff is always greater than 6 + 3(2ν−2).

The outcome of this investigation instructs us that a rate-1/2 pseudo-randomly

punctured turbo code will always be expected to yield a lower bound on the bit

error probability than that of its rate-1/3 parent turbo code, hence it will achieve a

superior performance, provided that ML soft decoding is used.

6.4 Convergence Behavior Analysis using EXIT

Charts

For an increasing number of iterations, the union bound on the bit error probability

for ML soft decoding provides an accurate estimate of the suboptimal iterative

decoder performance in the error floor region, as we demonstrated in Chapters 3

and 4. The error floor can also be estimated by the union bound approximation

presented in Chapter 5, when the turbo code under consideration employs a long

interleaver. However, when puncturing occurs, we need to explore whether the

performance of the iterative decoder will eventually converge towards the union

bound. For this reason, we use extrinsic information transfer charts, or EXIT charts

for brevity, introduced by ten Brink [34] in 2001. EXIT chart analysis investigates

the performance of a turbo code in the waterfall region and accurately predicts the

convergence behavior of the iterative decoder for very large interleaver sizes (e.g.,

N =106 bits).

In [34], ten Brink uses the concept of mutual information to describe the flow of

extrinsic information through each component soft-input soft-output decoder of the

iterative decoder. For this reason, we first review the concept of mutual information,

before proceeding to EXIT chart analysis. In general, if X and Y are two random

variables with possible outcomes xi, i=1, 2, . . . nx and yj, j =1, 2, . . . ny, respectively,

the information content provided by the occurrence of the event Y = yj about the

event X =xi is called mutual information between xi and yj [15], and is defined as

I(xi; yj) = log2

P (xi|yj)

P (xi)

= log2

P (xi, yj)

P (xi)P (yj)
.

(6.35)

121

6.4 Convergence Behavior Analysis using EXIT Charts

The average mutual information between random variables X and Y can be obtained

by weighting I(xi; yj) by the probability of occurrence of the joint event and summing

over all possible joint events [15], i.e.,

I(X; Y) =
nx∑
i=1

ny∑
j=1

P (xi, yj) I(xi; yj)

=
nx∑
i=1

ny∑
j=1

P (xi, yj) log2

P (xi, yj)

P (xi)P (yj)
.

(6.36)

When X is a discrete random variable with two possible outcomes, xi = −1 or

xi = +1, while Y is a continuous random variable described by the probability

density function p(y), the mutual information provided about the event X = xi by

the occurrence of event Y =y is

I(xi; y) = log2

p(xi|y)

P (xi)

= log2

p(y|xi)

p(y)
.

(6.37)

Subsequently, the average mutual information between X and Y assumes the form

I(X; Y) =
2∑

i=1

+∞∫

−∞

p(xi, y) log2

p(xi, y)

P (xi)p(y)
dy

=
2∑

i=1

+∞∫

−∞

p(y|xi)P (xi) log2

p(y|xi)

p(y)
dy.

(6.38)

If the outcomes of the discrete random variable X are equiprobable, it follows

that the probability of occurrence P (xi) of each outcome is 1/2. Furthermore, if

the conditional probability density function p(y|xi) is Gaussian with mean xi and

variance σ2, we may express p(y) as 0.5 [p(y|X =−1) + p(y|X =+1)] [15]. Thus, the

average mutual information obtained from (6.38) becomes

I(X; Y) =
1

2

2∑
i=1

+∞∫

−∞

p(y|xi) log2

2p(y|xi)

p(y|X =−1) + p(y|X =+1)
dy. (6.39)

When the random variables X and Y are statistically independent, we obtain

I(X; Y)=0. On the other hand, if the occurrence of an event Y uniquely determines

the occurrence of an event X, then I(X; Y)=1. In general, 0≤I(X; Y)≤1.

As we explained in Chapter 2, each component SiSo decoder of the iterative

decoder processes the channel observations, namely the received systematic and

122

6.4 Convergence Behavior Analysis using EXIT Charts

parity check bits of the corresponding constituent encoder, together with a-priori

knowledge to produce extrinsic information on the systematic bits. The channel

observations as well as the a-priori knowledge and the extrinsic information are all

expressed in log-likelihood ratios. To this end, the information content of the a-

priori knowledge, input to a certain SiSo decoder, is measured using the mutual

information IA between the transmitted systematic bits and the a-priori input LLR

values to the SiSo decoder. For very long interleavers, the a-priori LLRs remain

fairly uncorrelated from the respective channel observations, over many iterations

[34]. Thus, the a-priori LLR values can be modeled by a Gaussian random variable

A, while the transmitted systematic bits can be modeled by a discrete random

variable X. Subsequently, we can use (6.39) to compute IA = I(X; A), where Y

has been replaced by A. Mutual information is also used to quantify the extrinsic

output information. The probability density functions of the extrinsic LLR values

approach Gaussian-like distributions with an increasing number of iterations [34].

For this reason, we can also use a Gaussian random variable E to model the extrinsic

LLR values, while X still denotes the transmitted bits. The mutual information

IE = I(X; E) between the transmitted systematic bits and the extrinsic output

LLRs of a particular SiSo decoder can be computed elaborating on (6.39).

Although separate expressions for the a-priori input IA and the extrinsic output

IE were obtained for a particular SiSo decoder, it is of interest to express IE as a

function of IA, i.e.,

IE = T (IA), (6.40)

for a fixed Eb/N0 value. Unfortunately, T (IA) cannot be expressed in closed form

but can be determined by Monte Carlo simulations, as described in [34]. Transfer

characteristics IE = T (IA) for various Eb/N0 values are given in Fig.6.2. In this

example, the exact log-MAP decoding algorithm is applied to a rate-2/3 punctured

systematic RSC(1,5/7) code of memory 2, which is a constituent code of the rate-1/2

punctured systematic PCCC(1,5/7,5/7). We observe that, as the value of the mutual

information IA at the input of the component decoder increases, the confidence of the

decoder on the known transmitted bits becomes higher, the decoder generates more

accurate estimates of the transmitted sequence, which in turn, lead to a growing

mutual information IE.

To account for both component decoders of a suboptimal iterative decoder, we

need to consider the mutual information IA1 and IE1 at the input and the output,

respectively, of the first SiSo decoder, as well as the mutual information IA2 and

IE2 of the second SiSo decoder. Both decoder characteristics are plotted in a sin-

gle diagram, referred to as EXIT chart. In Fig.6.3, the EXIT chart for the rate-1/2

123

6.4 Convergence Behavior Analysis using EXIT Charts

punctured systematic PCCC(1,5/7,5/7) using an interleaver size of 106 bits is de-

picted. Note, that the axes for the transfer characteristics of the second component

decoder have been swapped. The exchange of extrinsic information between the two

SiSo decoders can be visualized as a decoding trajectory, if we fix the value of Eb/N0

and we let n to be the iteration index. Initially, the first decoder does not have any

a-priori knowledge, thus IA1,1 = 0, while the second decoder uses the extrinsic out-

put IE1,1 =T (IA1,1) of the first decoder as a-priori knowledge, i.e., IA2,1 =IE1,1. The

extrinsic output of the second decoder, IE2,1 =T (IA2,1), is forwarded to the first de-

coder to become a-priori knowledge during the next iteration, i.e., IA1,2 =IE2,1, and

so on. Convergence to the (IA, IE) = (1, 1) point, which corresponds to low values

of bit error probability, occurs if the transfer characteristics do not intersect. Thus,

the iteration process proceeds as long as IE2,n+1 >IE2,n [34].

In Fig.6.3 we observe that for Eb/N0 values between 0 dB and 0.6 dB, the transfer

characteristics of the two component decoders intersect, thus an increasing number

of iterations does not improve the bit error probability. However, for Eb/N0 = 0.8

dB, the decoder characteristics do not cross and the decoding trajectory manages to

go through a narrow tunnel. The minimum value of Eb/N0 for which convergence

to low values of bit error probability is possible over many iterations, is known as

convergence threshold, γth [34]. Consequently, the convergence threshold, which for

the case of the rate-1/2 punctured systematic PCCC(1,5/7,5/7) is γth = 0.8 dB,

marks the beginning of the waterfall region. For Eb/N0 values higher than γth, the

bit error rate performance of a turbo code starts converging towards the error floor,

which is indicated by the union bound on the bit error probability.

In the previous section we demonstrated that rate-1/2 non-systematic or pseudo-

randomly punctured turbo codes exhibit a lower bound on the bit error probability

than that of their rate-1/3 parent turbo codes. When ML decoding is used, this is

equivalent to saying that certain configurations of rate-1/2 turbo codes can achieve

a better bit error rate performance than that of their rate-1/3 parent codes. How-

ever, when suboptimal iterative decoding is used, convergence towards the union

bound at low bit error probabilities needs to be investigated using EXIT charts. In

the following subsections, we use EXIT chart analysis to explore whether rate-1/2

non-systematic turbo codes and rate-1/2 pseudo-randomly punctured turbo codes

eventually converge towards their union bound, when iterative decoding is applied.

For comparison purposes, we have also explored the convergence behavior of the

corresponding rate-1/3 parent turbo codes.

124

6.4 Convergence Behavior Analysis using EXIT Charts

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

mutual information I
A
 at input of decoder

m
ut

ua
l i

nf
or

m
at

io
n

I E
 a

t o
ut

pu
t o

f d
ec

od
er

E
b
/N

0
=0 dB

E
b
/N

0
=1 dB

Figure 6.2: Transfer characteristics of a soft-input soft-output decoder for a rate-

2/3 RSC(1,5/7,5/7) code. The value of Eb/N0 ranges from 0 dB to 1 dB, with step

0.2 dB.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Input I
A1

 to first decoder (Output I
E2

 of second decoder)

O
ut

pu
t I

E
1 o

f f
irs

t d
ec

od
er

 (
In

pu
t I

A
2 to

 s
ec

on
d

de
co

de
r)

E
b
/N

0
=0.8 dB, N=106

E
b
/N

0
=1 dB

E
b
/N

0
=1 dB

0 dB

Figure 6.3: EXIT chart for the rate-1/2 Sys. PCCC(1,5/7,5/7). Transfer charac-

teristics that intersect are plotted with dashed lines. A decoding trajectory at 0.8

dB is depicted. The exact log-MAP algorithm is applied and an interleaver size of

106 bits is used.

125

6.4 Convergence Behavior Analysis using EXIT Charts

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Input I
A1

 to first decoder (Output I
E2

 of second decoder)

O
ut

pu
t I

E
1 o

f f
irs

t d
ec

od
er

 (
In

pu
t I

A
2 to

 s
ec

on
d

de
co

de
r)

E
b
/N

0
=0.2 dB, N=106

E
b
/N

0
=1.5 dB, N=104

(a) Rate-1/3 PCCC(1,5/7,5/7)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Input I
A1

 to first decoder (Output I
E2

 of second decoder)

O
ut

pu
t I

E
1 o

f f
irs

t d
ec

od
er

 (
In

pu
t I

A
2 to

 s
ec

on
d

de
co

de
r)

E
b
/N

0
=0.0 dB, N=106

E
b
/N

0
=1.5 dB, N=104

(b) Rate-1/3 PCCC(1,17/15,17/15)

Figure 6.4: EXIT charts for rate-1/3 parent turbo codes.

6.4.1 Convergence of Rate-1/3 Parent PCCCs

EXIT charts for the two rate-1/3 parent turbo codes, employing constituent RSC

codes of memory size 2 or 3, are presented in Figs 6.4(a) and 6.4(b), respectively.

In Fig.6.4(a), we observe that the transfer characteristics of the SiSo decoders, for

the memory 2 constituent RSC codes, create an opening for the decoding trajectory

at 0.2 dB. Hence, when an interleaver of size N = 106 is used, convergence of the

rate-1/3 PCCC(1,5/7,5/7) towards low bit error probabilities is slow but possible,

since the curves do not intersect. At 1.5 dB, the decoding characteristics are wide

apart and convergence is fast, hence the iterative decoder has entered the error

floor region. We have plotted the decoding trajectory at 1.5 dB for an interleaver

size of N = 10, 000 to illustrate that even for an interleaver shorter than 106 bits,

the trajectory matches fairly well with the transfer characteristics, therefore quick

convergence is possible.

In Fig.6.4(b), the convergence threshold of the rate-1/3 PCCC(1,17/15,17/15) is

0 dB. A bottleneck region appears for medium values of mutual information, however

the decoding trajectory manages to go through a tunnel. As in the previous case,

fast convergence towards low bit error probabilities is achieved at 1.5 dB. Again,

the use of a shorter interleaver, i.e., N = 10, 000 bits, still drives the bit error rate

performance of the suboptimal iterative decoder to the error floor region.

126

6.4 Convergence Behavior Analysis using EXIT Charts

6.4.2 Convergence of Rate-1/2 Non-Systematic PCCCs

When the systematic output of the parent turbo code is not transmitted, so as to

increase the code rate from 1/3 to 1/2, the convergence threshold rises markedly, as

we see in Fig.6.5. In particular, at Eb/N0 =1 dB, the decoding trajectory of the rate-

1/2 non-systematic PCCC(1,5/7,5/7), using an interleaver size of N =106, manages

to pass through a narrow opening, which appears close to the starting point (0, 0) as

it is illustrated in Fig.6.5(a). Low bit error probabilities are eventually achieved after

30 iterations. For comparison, iterative decoding of the rate-1/3 parent code yields

a convergence threshold of 0.2 dB, while no more than 15 iterations are required to

reach the error floor region. Similarly, we see in Fig.6.5(b) that iterative decoding of

the rate-1/2 non-systematic PCCC(1,17/15,17/15) converges towards low bit error

probabilities at a higher Eb/N0 value and a larger number of iterations is required,

compared with iterative decoding of the corresponding rate-1/3 parent turbo code.

We demonstrated that at Eb/N0 values higher than the convergence threshold,

the decoding trajectory of a rate-1/3 parent turbo code is in agreement with the

transfer characteristics of the component decoders, even when an interleaver size

smaller than 106 bits is considered. We observe in Fig.6.5 that, contrary to their

rate-1/3 parent codes, the decoding trajectories of both rate-1/2 non-systematic

turbo codes die away after a few iterations, even for an Eb/N0 value of 4.5 dB. We

attribute this problem to the increasing correlation of extrinsic information passed

between the component decoders, due to the absence of received systematic bits,

which causes erroneous decisions. Thus, for small and more practical interleaver

sizes, error propagation prohibits the performance of both rate-1/2 non-systematic

turbo codes from converging towards the error floor, defined by the union bound.

6.4.3 Convergence of Rate-1/2 Pseudo-randomly Punctured

PCCCs

The transmitted systematic bits of rate-1/2 pseudo-randomly punctured turbo codes

assist the iterative decoder to converge earlier than rate-1/2 non-systematic turbo

codes, as we observe in Fig.6.6. A comparison between the EXIT charts of pseudo-

randomly punctured turbo codes and non-systematic turbo codes, reveals that the

former codes require a lower Eb/N0 value and less iterations in order to converge

towards low bit error probabilities. Furthermore, for an increasing number of itera-

tions, the iterative decoder quickly converges to the error floor region at Eb/N0 =1.5

dB, even when an interleaver of size 10, 000 bits is used. Thus, contrary to the

127

6.5 Comparison of Analytic to Simulation Results

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Input I
A1

 to first decoder (Output I
E2

 of second decoder)

O
ut

pu
t I

E
1 o

f f
irs

t d
ec

od
er

 (
In

pu
t I

A
2 to

 s
ec

on
d

de
co

de
r)

E
b
/N

0
=1.0 dB, N=106

E
b
/N

0
=4.5 dB, N=104

(a) Rate-1/2 NS-PCCC(1,5/7,5/7)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Input I
A1

 to first decoder (Output I
E2

 of second decoder)

O
ut

pu
t I

E
1 o

f f
irs

t d
ec

od
er

 (
In

pu
t I

A
2 to

 s
ec

on
d

de
co

de
r)

E
b
/N

0
=2.4 dB, N=106

E
b
/N

0
=4.5 dB, N=104

(b) Rate-1/2 NS-PCCC(1,17/15,17/15)

Figure 6.5: EXIT charts for rate-1/2 non-systematic turbo codes.

case of non-systematic turbo codes, iterative decoding of pseudo-randomly punc-

tured turbo codes using medium to large size interleavers eventually approaches the

union bound on the bit error probability.

6.5 Comparison of Analytic to Simulation Results

The objective of this section is to validate the results obtained from the bound

approximation technique and the EXIT chart analysis by comparing them to simu-

lation results.

Fig.6.7(a) compares bound approximations to simulation results of rate-1/3 and

rate-1/2 PCCC(1,5/7,5/7) configurations in AWGN channels using iterative decod-

ing. The component SiSo decoders employ the conventional exact log-MAP algo-

rithm. A moderate interleaver size of 1, 000 bits was chosen, so as to allow the bit

error rate performance of the turbo coding schemes to approach the corresponding

bound approximations at bit error probabilities in the region of 10−6 to 10−7.

From the EXIT chart analysis, we know that the convergence thresholds for

the parent PCCC, the pseudo-randomly punctured PCCC and the non-systematic

PCCC are 0.2 dB, 0.8 dB and 1 dB, respectively. Subsequently, the waterfall region

of the rate-1/3 parent turbo code is expected to begin first, while the waterfall re-

gion of the rate-1/2 non-systematic turbo code is expected to begin last. However,

we observed that for interleavers shorter than 106 bits, iterative decoding of the

128

6.5 Comparison of Analytic to Simulation Results

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Input I
A1

 to first decoder (Output I
E2

 of second decoder)

O
ut

pu
t I

E
1 o

f f
irs

t d
ec

od
er

 (
In

pu
t I

A
2 to

 s
ec

on
d

de
co

de
r)

E
b
/N

0
=0.8 dB, N=106

E
b
/N

0
=1.5 dB, N=104

(a) Rate-1/2 Pseudo PCCC(1,5/7,5/7)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Input I
A1

 to first decoder (Output I
E2

 of second decoder)

O
ut

pu
t I

E
1 o

f f
irs

t d
ec

od
er

 (
In

pu
t I

A
2 to

 s
ec

on
d

de
co

de
r)

E
b
/N

0
=1.0 dB, N=106

E
b
/N

0
=1.5 dB, N=104

(b) Rate-1/2 Pseudo PCCC(1,17/15,17/15)

Figure 6.6: EXIT charts for rate-1/2 pseudo-randomly punctured turbo codes.

non-systematic PCCC(1,5/7,5/7) does not approach the error floor region, even for

Eb/N0 values much higher than the convergence threshold. We observe in Fig.6.7(a)

that, indeed, performance of the rate-1/3 parent code converges to the bound ap-

proximation at low Eb/N0 values, after only 8 iterations . For the same number of

iterations but at higher values of Eb/N0, the performance of the rate-1/2 pseudo-

randomly punctured PCCC also converges towards the error floor. As expected,

iterative decoding of the non-systematic PCCC, employing an interleaver of 1, 000

bits, cannot cope with the increasing correlation of extrinsic information caused by

the absence of systematic bits, and eventually hits an error floor, which is much

higher than that defined by the bound approximation.

From the performance analysis based on ML decoding, we showed that rate-

1/2 pseudo-randomly punctured turbo codes are always expected to yield a lower

union bound than that of their rate-1/3 parent codes. For an increasing number

of iterations, the performance of iterative decoding approaches the union bound, if

the EXIT chart of the turbo code indicates that the exchange of extrinsic informa-

tion between the component decoders gradually reduces the bit error probability.

Fig.6.7(a) confirms that, for Eb/N0 values higher than 2.5 dB, the bit error proba-

bility of the rate-1/2 pseudo-randomly punctured turbo code is indeed lower than

that of the rate-1/3 parent code, while the performance curves of both turbo codes

closely follow the respective bound approximation curves.

Fig.6.7(b) explores the same trends, when PCCC(1,17/15,17/15) is used as a

129

6.5 Comparison of Analytic to Simulation Results

0 1 2 3 4 5 6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

Simulation, Rate−1/3 Parent
Bound Approx., Rate−1/3 Parent
Simulation, Rate−1/2 Sys
Bound Approx., Rate−1/2 Sys
Simulation, Rate−1/2 Pseudo
Bound Approx., Rate−1/2 Pseudo
Simulation, Rate−1/2 NS
Bound Approx., Rate−1/2 NS

(a) PCCC(1,5/7,5/7)

0 1 2 3 4 5 6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

Simulation, Rate−1/3 Parent
Bound Approx., Rate−1/3 Parent
Simulation, Rate−1/2 Sys
Bound Approx., Rate−1/2 Sys
Simulation, Rate−1/2 Pseudo
Bound Approx., Rate−1/2 Pseudo
Simulation, Rate−1/2 NS
Bound Approx., Rate−1/2 NS

(b) PCCC(1,17/15,17/15)

Figure 6.7: Comparison of analytic bounds to simulation results. The exact log-

MAP algorithm is applied over 8 iterations and an interleaver size of 1, 000 bits is

used.

130

6.6 Chapter Summary

parent code. As in the previous case, performance of the rate-1/2 pseudo-randomly

punctured PCCC converges towards low bit error probabilities and eventually hits an

error floor, which is lower than that of the rate-1/3 parent code. On the other hand,

iterative decoding of the non-systematic PCCC does not approach the theoretical

error floor and its error performance remains poor, despite any increase in Eb/N0.

For comparison purposes, we have also included the performance of rate-1/2 sys-

tematic turbo codes in Fig.6.7. We observe that transmission of the systematic bits

helps the iterative decoder to start converging to the error floor region at low val-

ues of Eb/N0. However, rate-1/2 systematic turbo codes exhibit a higher error floor

than that of their rate-1/3 parent codes or that of the rate-1/2 pseudo-randomly

punctured turbo codes. As Blazek et al. [48] and Crozier et al. [49] reported, sys-

tematic turbo codes offer better error rate performance than partially systematic

turbo codes, when they operate in the waterfall region. However, we have shown

that rate-1/2 partially systematic turbo codes exist, obtained either by means of an

exhaustive search or by using pseudo-random puncturing patterns, that outperform

even their rate-1/3 parent codes, when they operate in the error floor region.

6.6 Chapter Summary

Using the bound approximation, we showed that rate-1/2 punctured turbo codes,

that yield a lower union bound on the bit error probability than that of their rate-

1/3 parent codes, exist. In particular, we demonstrated that rate-1/2 non-systematic

turbo codes and rate-1/2 pseudo-randomly punctured turbo codes are always ex-

pected to outperform their rate-1/3 parent codes, if ML soft decoding is used.

In practice, however, suboptimal iterative decoding is employed. Using EXIT

chart analysis, we showed that in a complete absence of systematic bits very long

interleavers and an impractical number of decoding iterations are required to drive

the bit error rate performance of a rate-1/2 non-systematic turbo code into the

error floor region. On the other hand, the performance of iteratively decoded rate-

1/2 partially systematic turbo codes eventually converges towards low bit error

probabilities, over many iterations. Bearing this into mind, we established that

rate-1/2 pseudo-randomly punctured turbo codes, which form a subset of rate-1/2

partially systematic turbo codes, not only approach the error floor region for an

increasing number of iterations but yield a lower error floor than that of their rate-

1/3 parent codes. Consequently, pseudo-random puncturing can be used to reduce

the rate of a turbo code from 1/3 to 1/2 and at the same time achieve a coding gain

at low bit error probabilities.

131

Chapter 7
Conclusions

In this dissertation a number of contributions concerning turbo codes and their

performance evaluation, have been made. Specifically,

• a novel approach to evaluate the transfer function of punctured and non-

punctured convolutional block codes has been introduced, which is essential

for the computation of an upper bound on the error rate performance of turbo

codes,

• a rapid method to evaluate the most significant terms of the transfer function

of punctured and non-punctured convolutional block codes has been proposed,

which can be used to evaluate an accurate bound approximation on the error

rate performance of turbo codes employing long interleavers,

• it has been demonstrated that rate-1/2 punctured turbo codes can achieve

lower performance bounds on AWGN channels than those of their rate-1/3

parent codes. Furthermore, it has been shown that pseudo-random puncturing

ensures that the error rate performance of the corresponding rate-1/2 turbo

code converges towards the upper bound, at low bit error probabilities.

In particular, we introduced the concept of the augmented state diagram, based

on which the full transfer function of a convolutional block code can be derived. We

showed that when we puncture the output of a convolutional block encoder in order

to improve bandwidth efficiency, the augmented state diagram can be modified so

as to incorporate the puncturing pattern into its structure and, hence, allow compu-

tation of the transfer function of the corresponding punctured convolutional block

code. Consequently, tight bounds on the average performance of ML soft decod-

ing of turbo codes, which employ non-punctured or punctured convolutional block

132

codes as constituent codes, can be derived. These bounds accurately predict the

performance error floors of suboptimal iterative decoding, which is used in practice.

We observed that computation complexity of the transfer function may become

overwhelming as the interleaver size increases, when punctured turbo codes are

considered. To alleviate this problem, we proposed a rapid technique, which exploits

the structural properties of constituent RSC encoders, to obtain only those terms

of the transfer function that significantly contribute to the performance bound on

the bit error probability, when long interleavers are employed. Hence, a bound

approximation can be used, instead of the exact union bound, to give us insight on

the ML decoding performance of turbo codes using long interleavers.

Using the bound approximation, we demonstrated that, when ML soft decod-

ing is used, there exist rate-1/2 punctured turbo codes yielding a lower bound on

the bit error probability than that of their rate-1/3 parent codes. However, when

suboptimal iterative decoding is employed, puncturing the systematic output of a

turbo encoder increases the convergence threshold. Moreover, a complete absence of

systematic bits requires very long interleavers and an impractical number of decod-

ing iterations to drive the bit error rate performance of a rate-1/2 non-systematic

turbo code into the error floor region. Nevertheless, we showed that iterative de-

coding of a family of rate-1/2 partially systematic turbo codes, which we named

pseudo-randomly punctured turbo codes, does approach the error floor region for

an increasing but practical number of iterations and does yield a lower error floor

than that of their rate-1/3 parent codes. Therefore, we established that it is possi-

ble to reduce the rate of a turbo code from 1/3 to 1/2 and at the same time achieve

a coding gain at low bit error probabilities.

Looking forward, a number of themes emerge from this work as well as from the

ever-growing body of literature.

• An investigation concerning the puncturing patterns employed at the output of

a convolutional or turbo encoder and computation of the performance bound

on the bit error probability, could help us identify coded bits that have a major

impact on the decoding performance. Hence, development of efficient mapping

techniques according to which coded bits, considered to be more important

than others to the decoding process, would be mapped to constellation symbols

that offer improved noise protection, would offer a performance gain to coded-

modulation schemes.

• As in the case of iterative decoding of turbo codes, we expect that an upper

bound on the error probability of soft ML decoding of a coded-modulation

133

scheme, would give us insight on the error floor of suboptimal iterative decod-

ing/demapping of the same scheme. Our proposed technique could be used

to compute the transfer function of the outer code, which could be a con-

volutional or turbo code, punctured or non-punctured. Derivation of a tight

bound on the bit error rate performance of iterative decoding-demapping of

the complete coded-modulation scheme, composed of an outer code, a random

interleaver and an inner mapper, would be a valuable topic of research.

• Although the main concern of this dissertation was the performance evalua-

tion of punctured turbo codes on AWGN channels, investigation of their per-

formance on quasi-static fading channels would be essential for fixed wireless

access systems. It is expected that the performance of systems characterized

by high spatial diversity would depend on the transfer function of the turbo

encoder, since the turbo-coded multiple-input multiple-output system would

effectively collapse into a single-input single-output system and the underlying

channel would approach the classical AWGN channel. However, the contribu-

tion of the convergence characteristics of the iterative decoder to the overall

error rate performance of systems characterized by low spatial diversity needs

to be explored.

• Cooperative networks, a new diversity method to provide spectral efficiency

and link reliability in multi-user wireless environments, is another area which

would benefit from puncturing schemes. In a cooperative network, a user

transmits data to a destination as well as to adjacent users, who relay their

partner’s data. In the case of regenerative relaying, each cooperating user de-

codes, re-encodes and retransmits the received data. Effectively, two or more

cooperative users could be seen as constituent encoders of a parallel concate-

nated scheme. Puncturing could be used to reduce the power and bandwidth

required to forward a partner’s frame. Furthermore, design of puncturing pat-

terns based on our proposed approach, could fine-tune the performance of a

link, for a given range of signal-to-noise ratios.

• Another interesting area of research would be the investigation of performance

vs. complexity trade-offs in coded systems on quasi-static fading channels. A

complete framework for the analysis of the computational complexity of vari-

ous decoding algorithms and performance comparison of low-diversity systems

using either convolutional codes or turbo codes of similar decoding complexity,

134

needs to be explored. Future work in this direction would unveil whether con-

volutional codes are potentially better candidates than turbo codes on quasi-

static fading channels with limited antenna diversity.

135

Appendix A
Software Tools

A.1 Introduction

In this appendix, we provide a brief description of the software tools developed

during the course of our research. The tools can be divided into three main packages,

depending on their functionality:

• System modeling and measurement of the bit error probability: Col-

lection of libraries used to simulate a turbo-coded communication system, in-

cluding the AWGN channel. The bits in error at the output of the receiver

are counted and the actual bit error probability (BEP) is calculated.

• Computation of Performance Bounds on the BEP: Group of pro-

grammes to compute the exact and approximate theoretical bounds on the

BEP of PCCCs. These bounds coincide with the performance error-floor,

when ML decoding is used.

• EXIT Chart Analysis: A package that investigates whether the perfor-

mance of iterative decoding of a PCCC converges towards low bit error prob-

abilities and thus, approaches the theoretical ML bound.

The first collection of libraries form a stand-alone package, entirely developed

in ANSI C. Although C is a powerful programming language, it cannot match the

user friendliness and the wealth of mathematical libraries that Matlab provides. For

this reason, the second and third packages require the Matlab programming envi-

ronment. However, Matlab programmes are not optimum from a speed of execution

perspective, hence simulation time could be very long. In order to achieve a trade-

off between performance and complexity, part of the code of the second and third

136

A.2 System Modeling and BEP Measurement

packages has been developed in C and then converted to Matlab libraries, using

the “mex” internal command. Note that all packages can be executed in machines

running the UNIX, LINUX or WINDOWS operating system.

A.2 System Modeling and BEP Measurement

The system model that we have used throughout this thesis consists of a turbo

encoder, an AWGN channel and an iterative (turbo) decoder. The nominal rate of

the turbo code is 1/3, however higher rates can be obtained if puncturing is applied.

Each component of the system model has been developed entirely in C. Below, we

briefly describe the inputs, outputs and functionality of each component:

1. Turbo Encoder

Implements the parallel concatenation of two rate-1/2 convolutional encoders

separated by a pseudo-random interleaver. The generator vectors are manually

set. A puncturing pattern also needs to be provided, if the user aims for a rate

higher than 1/3. The turbo encoder processes the input information bits and

generates a sequence of coded polar symbols.

2. Channel Realization

This function impairs the transmitted polar symbols by adding white Gaus-

sian noise to them, based on the given code rate and desired Eb/N0 value.

The white Gaussian noise is generated using the Box-Muller transform. This

method, described in [55], transforms uniformly distributed random numbers

into normally distributed random numbers.

3. Iterative Decoder

The received sequence of polar symbols is iteratively decoded and a sequence

of bits, which are estimates of the transmitted information bits, is generated.

The user should provide the generator polynomials and define the number of

iterations as well as the decoding algorithm to be used by the SiSo component

decoders (i.e., exact log-MAP, log-MAP, max-log-MAP or SOVA). If the rate

of the code is higher than 1/3, the puncturing pattern should also be made

available to this function, so it can insert zeros in the correct positions of the

received sequence.

137

A.2 System Modeling and BEP Measurement

Turbo
Encoder

AWGN
Channel

Iterative
Decoder

Yes

Define:
Eb/N0 , Nch

BEP Calculation
Ne / (N x Nch)

i < Nch

i = 0
Ne = 0

End

Find Bits
in Error (ni)

Input Sequence of
length N

Ne Ne + ni
i i + 1

No

Figure A.1: Configuration for the measurement of the bit error probability of a

turbo-coded system. It is assumed that all variables, such as the generator polyno-

mials of the encoder or the number of decoding iterations, have been defined.

In order to measure the bit error probability of a turbo-coded system, we use

the configuration presented in Fig.A.1. In particular, we transmit a fixed frame of

symbols over a large number of different channel realizations, denoted as Nch. At

the end of the i-th realization, where i = 1, . . . , Nch, we compare the decoded bits

at the output of the iterative decoder to the information bits at the input of the

turbo encoder, and we store the number of decoded bits in error, ni. At the end

of all realizations, we divide the total number of erroneous bits, Ne =
∑

i ni, by the

length N of the input information sequence multiplied by the number of channel

realizations, i.e.,

BEP =
Ne

N ×Nch

.

138

A.3 Performance Bounds on the BEP

If we want to obtain the BEP for a range of Eb/N0 values, we repeat the same

process for each value of Eb/N0.

A.3 Performance Bounds on the BEP

The collection of programmes for computing bounds on the BEP of a turbo code

can be divided into two separate software packages; the first package determines the

exact union bound on the BEP of a turbo code, whilst the second package computes

an approximation to the union bound.

A.3.1 Exact Union Bound Calculation

It is assumed that the reader is familiar with the content of Chapters 3 and 4, in

which the derivation of the transfer function of a constituent convolutional block

encoder, either non-punctured or punctured, respectively, is described. The process

of obtaining the union bound on the BEP of a PCCC can be divided into six stages,

each one of which corresponds to a programme. The functionality of each programme

can be summarized as follows:

1. State Equations Solver (developed in Matlab)

This programme constructs the augmented state diagram of a convolutional

block code based on its memory size, its feedback generator vector and its

feedforward generator vector. The self-loop at the zero state is eliminated

and the number of remergings into the zero state are taken into account (see

Sections 3.3.2 and 3.3.3). If the code is punctured, the puncturing pattern

should also be provided to allow proper simplification of the augmented state

diagram (see Section 4.4). The state equations are solved for the ratio XE/XS

and two polynomials, y(W,U,Z, L, Ω) and x(W,U,Z, L, Ω) that represent the

numerator and denominator, respectively, of the intermediate transfer function

T (W,U,Z, L, Ω), are produced.

2. Polynomial Division (developed in Matlab)

Returns the most significant terms of a polynomial division. Terms having

an output weight less than the truncation output weight dT , which is manu-

ally defined, are considered significant. Here, the polynomials to be divided

are y(W,U,Z, L, Ω) and x(W,U,Z, L, Ω). As a consequence, the intermediate

transfer function T (W,U,Z, L, Ω) is obtained in polynomial form.

139

A.3 Performance Bounds on the BEP

3. Derivation of the Transfer Function of a Convolutional Block Code

(developed in C)

Given the intermediate transfer function T (W,U,Z, L, Ω), this script computes

the transfer function BC(W,U,Z) of the convolutional block code for a spe-

cific input block length N (see Section 3.3.2). If the code is punctured, the

puncturing period should also be provided (see Section 4.4).

4. Computation of the Transfer Function of a PCCC (developed in C)

The transfer functions of two convolutional block codes are combined to gen-

erate the average transfer function of a PCCC, BP(W,U,Z), which uses the

two convolutional block codes as constituent codes and employs a uniform

interleaver of size N (see Section 2.7.2).

5. Derivation of the Union Bound Coefficients (developed in Matlab)

The union bound coefficients Dd are derived from BP(W,U,Z), the transfer

function of the PCCC. Those coefficients that correspond to an output weight

d < dT are directly computed, whilst the remaining coefficients are estimated

by means of an extrapolation (see Section 3.4).

6. Union Bound Calculation (developed in Matlab)

Having obtained coefficients Dd for every allowable value of the output weight

d, the union bound is calculated and plotted for a range of Eb/N0 values.

In stages 1 to 4, we have used k-dimensional (k-D) arrays to represent polyno-

mials using k indeterminate variables. For example, if a polynomial is a function of

two indeterminate variables, namely W and Z, and αW iZj is a term in the polyno-

mial, the element in position (i+1, j+1) of the equivalent 2-D array will assume the

value of coefficient α. Hence, if 3 + 2W + WZ is the polynomial in question, coef-

ficients 3, 2 and 1 will be mapped to positions (1, 1), (2, 1) and (2, 2), respectively,

thus the equivalent 2-D array will assume the form

[
3 0
2 1

]
.

Polynomial arithmetic has also been defined accordingly.

Calculation of the transfer functions of both constituent convolutional block

codes and PCCCs, requires computation of factorials of very big integers. For this

reason, stages 3 and 4 have been developed in C to facilitate the representation and

140

A.3 Performance Bounds on the BEP

State Equations
Solver

Polynomial
Division

Derivation of the
Transfer Function

of the
Convolutional
Block Code

Memory Size,
Generator Vectors,
(Puncturing Pattern)

Truncation Output
Weight (dT)

Computation of
the Transfer

Function of the
PCCC

Derivation of the
Union Bound
Coefficients

Union Bound
Calculation

Parallel
Concatenated
Convolutional

Code

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

State Equations
Solver

Derivation of the
Transfer Function

of the
Convolutional
Block Code

Polynomial
Division

Memory Size,
Generator Vectors,
(Puncturing Pattern)

y(), x()

T()

BC1()

y(), x()

T()

BC2()

BP()

Dd

Input Block
Length (N)

Truncation Output
Weight (dT)

Constituent
Code 1

Constituent
Code 2

(Puncturing Period) (Puncturing Period)

Figure A.2: Stages for obtaining the union bound on the BEP of a turbo code.

handling of numbers that cannot be stored in the conventional 32-bit buffers. Such

non-negative integers are larger than (232 − 1) = 4, 294, 967, 295. In particular, we

have used a non-decimal notation with a manually-set base. A total of 8 bits are

allocated to the base, hence bases larger than 255 are not permitted. The number

of digits in each non-decimal integer is manually defined but remains fixed during

the execution of the C programmes. In the following example,

4, 560, 252, 22710 = (0)(17)(67)(34)(25)(108)127,

a decimal integer longer than 32 bits has been expressed as a 6-digit base-127 integer.

Consequently, a total of 6×8=48 bits have been allocated to the non-decimal integer.

Functions that enable basic operations, such as addition, subtraction, multiplication

and division, between non-decimal numbers have also been developed.

A flow chart depicting the six stages for obtaining the union bound on the BEP

of a turbo code is presented in Fig.A.2. Note that stages 1 to 3 need to be executed

twice, i.e., once for each constituent convolutional block code, unless the PCCC is

symmetric.

141

A.3 Performance Bounds on the BEP

A.3.2 Calculation of a Union Bound Approximation

Computation of the exact union bound on the BEP could be a time consuming pro-

cess, especially when the memory size of the encoder is large and the period of the

puncturing pattern is long. In Chapter 5 we demonstrated that, for large interleaver

sizes, the union bound on the BEP of a turbo code can be approximated by the prob-

ability of all erroneous codeword sequences with information weight two. The union

bound approximation, denoted as P (2), is not a function of the complete transfer

function of each constituent encoder, hence construction of their augmented state di-

agrams and solution of their respective state equations is not required. Calculation

of P (2) only requires knowledge of the dominant conditional weight enumerating

function (CWEF) of each constituent encoder, which is not a computationally in-

tensive process since it neither involves division of polynomials nor generates very

big integers. Consequently, the package for obtaining an approximate union bound

on the BEP of a PCCC has been divided into only three stages, which have been

entirely developed in Matlab. A short description of each stage is given below:

1. Derivation of the Dominant CWEF of a Convolutional Block Code

Given the length of the input information sequence as well as the memory size

and generator vectors of the convolutional block code, this function implements

the methodology described in Chapter 5 to compute and return the dominant

CWEF of the code (see Section 5.3 for non-punctured codes or Section 5.4 for

punctured codes). If puncturing is applied, the puncturing pattern should also

be provided.

2. Derivation of the Dominant CWEF of a PCCC

At this stage, the dominant CWEFs of two constituent convolutional block en-

coders are combined to generate the average dominant CWEF of the respective

PCCC (see Section 5.2).

3. Calculation of the Union Bound Approximation

The last stage of this package uses the coefficients of the dominant CWEF of

the PCCC under consideration, and computes P (2) for a particular value of

Eb/N0 (see Section 5.2). If the PCCC is punctured, its code rate is derived

from the puncturing pattern.

The three stages for obtaining an approximate union bound on the BEP of a

turbo code are presented in Fig.A.3. Note that stage 1 is repeated twice, i.e., once

for each constituent convolutional block code, unless the PCCC is symmetric.

142

A.4 EXIT Chart Analysis

Memory Size,
Generator Vectors,
(Puncturing Pattern)

Derivation of the
Dominant CWEF

of the PCCC

Calculation of the
Union Bound

Approximation

Parallel
Concatenated
Convolutional

Code

Stage 1

Stage 2

Stage 3

Input Block
Length

Constituent
Code 1

Constituent
Code 2

Derivation of the
Dominant CWEF

of the Convolutional
Block Code

Derivation of the
Dominant CWEF

of the Convolutional
Block Code

Memory Size,
Generator Vectors,
(Puncturing Pattern)

Figure A.3: Stages for obtaining an approximate union bound on the BEP of a

PCCC.

A.4 EXIT Chart Analysis

EXIT charts analysis investigates the convergence behavior of an iterative decoder

in the waterfall region, as we described in Chapter 6. In particular, the transfer

characteristics of each SiSo decoder, conveyed by the relation between the mutual

information IA at the input the decoder and the mutual information IE at the

output of the decoder, are obtained separately and plotted in a single diagram. In

this section we describe the configuration that we have implemented, in order to

obtain the transfer characteristics of a constituent SiSo convolutional decoder. The

components of the configuration, which is presented in Fig.A.4, are as follows:

1. Convolutional Encoder (developed in C)

Implements a rate-1/2 encoder, which processes the input information bits

and generates a coded sequence of polar symbols. The generator polynomials

are manually defined. Rates higher than 1/2 can be obtained, if a puncturing

pattern is provided.

2. Gaussian Noise Generator (developed in Matlab)

143

A.4 EXIT Chart Analysis

Convolutional
Encoder

Convolutional
Decoder

End

Mutual
Information
Calculator

(IE)

Gaussian
Noise

Is the
Eb/N0 range
exhausted?

Input Sequnce
of Information Bits

Mutual
Information
Calculator

(IA)

Gaussian
Noise

Coded Sequence
of Polar Symbols

Soft Channel
Observations

Soft a-priori
Values

Soft Extrinsic
Values

IE = T(IA)

Define:
channel

Eb/N0

Define:
range

of Eb/N0
values

Yes

No

Information Sequence
of Polar Symbols

Figure A.4: Derivation of the transfer characteristics of a constituent convolutional

decoder.

Impairs a sequence of polar symbols by adding normally distributed Gaussian

noise, based on the given code rate and desired Eb/N0 value.

3. Convolutional Decoder (developed in C)

Considers the a-priori information and implements the exact log-MAP de-

coding algorithm on the received sequence of soft channel observations. This

function generates a sequence of soft extrinsic values.

4. Mutual Information Calculator (developed in Matlab)

Uses the soft values of a Gaussian random variable (i.e., either the a-priori

values or the extrinsic values) and combines them with the input information

144

A.5 Summary

bits to derive their mutual information (i.e., IA or IE), based on the expressions

presented in Chapter 6 (see Section 6.4).

Let us now concentrate on the left branch of the diagram in Fig.A.4. The input

sequence of information bits is encoded and transmitted over an AWGN channel.

The Eb/N0 at the input of the convolutional decoder is fixed to a desired value.

Initially, we assume that no a-priori information is available. The convolutional

decoder processes the received sequence of channel observations and generates a

sequence of soft extrinsic values, which is input to a mutual information calculator. A

particular value of mutual information IE is obtained at the output of the calculator.

The right branch of the diagram is used to provide a-priori knowledge of the

original information sequence to the convolutional decoder. The quality of the a-

priori information at the input of the decoder is improved by gradually increasing

its Eb/N0 value, and, as a consequence, the value of the mutual information IA also

increases. The impact of the soft a-priori values at the input of the decoder on

the soft extrinsic values at the input of the decoder, or equivalently, the relation

between the mutual information IA and the mutual information IE, is recorded.

Consequently, for a range of Eb/N0 values, a range of IA values is obtained and,

in turn, each IA value is mapped to a particular IE value. Hence, when all Eb/N0

values in the desired range are tried, our objective to express IE as a function of IA,

i.e., IE =T (IA), is achieved.

The same process needs to be repeated for the second component SiSo decoder,

baring in mind that it operates in the interleaved domain. When the transfer charac-

teristics of both constituent decoders are obtained and plotted in the same diagram

to give the EXIT chart of the iterative decoder, convergence towards low bit error

probabilities can be investigated.

A.5 Summary

In this appendix, we classified and briefly described the software tools we devel-

oped in Matlab and C, so as to analyze and evaluate the bit error performance of

punctured and non-punctured turbo codes.

145

References

[1] C. E. Shannon, “A mathematical theory of communication,” Bell System Tech-

nical Journal, pp. 379–427, 1948.

[2] R. Hamming, “Error detecting and error correcting codes,” Bell System Tech-

nical Journal, pp. 147–160, 1950.

[3] M. Golay, “Notes on digital coding,” Proc. IEEE, vol. 37, p. 657, 1949.

[4] P. Sweeney, Error Control Coding: An Introduction. New York: Prentice Hall,

1991.

[5] P. Ellias, “Coding for noisy channels,” IRE Nat. Conv. Record, vol. 3, no. 4,

pp. 37–46, 1955.

[6] A. J. Viterbi, “Error bound for convolutional codes and asymptotically opti-

mum decoding algorithm,” IEEE Trans. Inform. Theory, vol. IT-13, pp. 260–

269, Apr. 1967.

[7] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear

codes for minimising symbol error rate,” IEEE Trans. Inform. Theory, vol.

IT-20, pp. 284–287, Mar. 1974.

[8] G. D. Forney, Concatenated Codes. Cambridge, Mass.: MIT Press, 1966.

[9] S. Wicker, Error Control Systems for Digital Communications and Storage.

Englewood Cliffs, NJ: Prentice Hall, 1995.

[10] G. Ungerböck, “Channel coding with multilevel/phase signals,” IEEE Trans.

Inform. Theory, vol. IT-28, no. 1, pp. 55–67, Jan. 1982.

146

REFERENCES

[11] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-

correcting coding and decoding: Turbo-codes,” in Proc. IEEE International

Conference on Communications (ICC’93), Geneva, Switzerland, May 1993, pp.

1064–1070.

[12] E. Guizzo, “Closing in on the perfect code,” IEEE Spectrum, pp. 28–34, Mar.

2004.

[13] R. Gallager, “Low-density parity check codes,” Ph.D. dissertation, Mas-

sachusetts Institute of Technology, Cambridge, US, 1963.

[14] D. J. C. MacKay and R. M. Neal, “Good codes based on very sparse matrices,”

in Proc. 5th IMA Conference on Cryptography and Coding, Cirencester, UK,

Dec. 1995, p. 100111.

[15] J. G. Proakis, Digital Communications, 4th ed.

[16] S. Benedetto and G. Montorsi, “Unveiling turbo codes: Some results on parallel

concatenated coding schemes,” IEEE Trans. Inform. Theory, vol. 42, no. 2, pp.

409–429, Mar. 1996.

[17] T. M. Duman and M. Salehi, “New performance bounds for turbo codes,” IEEE

Trans. Commun., vol. 46, no. 6, pp. 717–723, June 1998.

[18] H. Bouzekri and S. L. Miller, “An upper bound on turbo codes performance over

quasi-static fading channels,” IEEE Commun. Lett., vol. 7, no. 7, pp. 302–304,

July 2003.

[19] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and

convolutional codes,” IEEE Trans. Inform. Theory, vol. 42, no. 2, pp. 429–445,

Mar. 1996.

[20] A. J. Viterbi, “Convolutional codes and their performance in communication

systems,” IEEE Trans. Commun. Technol., vol. 19, no. 5, pp. 751–772, Oct.

1971.

[21] J. M. Wozencraft, “Sequential decoding for reliable communication,” IRE Nat.

Conv. Record, vol. 5, no. 2, pp. 11–25, 1957.

[22] R. M. Fano, “A heuristic discussion of probabilistic decoding,” IEEE Trans.

Inform. Theory, vol. IT-9, pp. 64–74, Apr. 1963.

[23] J. L. Massey, Threshold Decoding. Cambridge, Mass.: MIT Press, 1963.

147

REFERENCES

[24] J. K. Omura, “On the Viterbi decoding algorithm,” IEEE Trans. Inform. The-

ory, vol. IT-15, pp. 177–179, Jan. 1969.

[25] M. Bossert, Channel Coding for Telecommunications. John Wiley & Sons,

1999.

[26] S. Benedetto and G. Montorsi, “Design of parallel concatenated convolutional

codes,” IEEE Trans. Commun., vol. 44, no. 5, pp. 591–600, May 1996.

[27] D. Divsalar, S. Dolinar, R. J. McEliece, and F. Pollara, “Transfer function

bounds on the performance of turbo codes,” JPL, Cal. Tech., TDA Progr. Rep.

42-121, Aug. 1995.

[28] S. Benedetto, G. Montorsi, and D. Divsalar, “Concatenated convolutional codes

with interleavers,” IEEE Communications Magazine, vol. 41, no. 8, pp. 102–

109, Aug. 2003.

[29] J. P. Woodard and L. Hanzo, “Comparative study of turbo decoding techniques:

An overview,” IEEE Trans. Veh. Technol., vol. 49, no. 6, pp. 2208–2233, Nov.

2000.

[30] W. Koch and A. Baier, “Optimum and sub-optimum detection of coded data

distributed by time-varying inter-symbol interference,” in Proc. IEEE Confer-

ence on Global Communications (Globecom’90), San Diego, CA, Dec. 1990, pp.

1679–1684.

[31] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and

sub-optimal map decoding algorithms operating in the log domain,” in Proc.

IEEE International Conference on Communications (ICC’95), Seattle, WA,

June 1995, pp. 1009–1013.

[32] J. Hagenauer and P. Hoeher, “A viterbi algorithm with soft-decision outputs

and its applications,” in Proc. IEEE Conference on Global Communications

(Globecom’89), Dallas, TX, Nov. 1989, pp. 1680–1686.

[33] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decod-

ing: Turbo codes,” IEEE Trans. Commun., vol. 44, no. 2, pp. 1261–1271, Oct.

1996.

[34] S. ten Brink, “Convergence behavior of iteratively decoded parallel concate-

nated codes,” IEEE Trans. Commun., vol. 49, no. 10, pp. 1727–1737, Oct.

2001.

148

REFERENCES

[35] W. E. Ryan, “Concatenated convolutional codes and iterative decoding,” in

Wiley Encyclopedia on Telecommunications, J. G. Proakis, Ed. Hoboken,

New Jersey: Wiley-Interscience, 2003, pp. 556–570.

[36] S. Benedetto and E. Biglieri, Principles of Digital Transmission with Wireless

Applications. New York: Kluwer Academic/Plenum Publishers, 1999.

[37] I. G. Bashmakova, Diophantus and Diophantine Equations. Washington DC:

The Mathematical Association of America, 1998.

[38] R. P. Stanley, Enumerative Combinatorics. Monterey, California: Wadsworth

& Brooks/Cole, 1986.

[39] S. Benedetto, M. Mondin, and G. Montorsi, “Performance evaluation of trellis-

coded modulation schemes,” Proc. IEEE, vol. 82, no. 6, pp. 833–855, June

1994.

[40] G. D. Forney, “Shannon lecture,” in Proc. IEEE International Symposium on

Information Theory (ISIT’95), Whistler, CA, 1995.

[41] J. Hagenauer, “Rate compatible punctured convolutional codes and their ap-

plications,” IEEE Trans. Commun., vol. 36, no. 4, pp. 389–400, Apr. 1988.

[42] D. Haccoun and G. Bégin, “High-rate punctured convolutional codes for Viterbi

and sequential decoding,” IEEE Trans. Commun., vol. 37, no. 11, pp. 1113–

1125, Nov. 1989.

[43] A. S. Barbulescu and S. S. Pietrobon, “Rate compatible turbo codes,” IEE

Electronics Letters, vol. 31, no. 7, pp. 535–536, Mar. 1995.

[44] M. Fan, S. C. Kwatra, and K. Junghwan, “Analysis of puncturing pattern for

high rate turbo codes,” in Proc. Military Comm. Conf. (MILCOM’99), New

Jersey, USA, Oct. 1999, pp. 547–550.

[45] Ö. Açikel and W. E. Ryan, “Punctured turbo-codes for BPSK/QPSK chan-

nels,” IEEE Trans. Commun., vol. 47, no. 9, pp. 1315–1323, Sept. 1999.

[46] F. Babich, G. Montorsi, and F. Vatta, “Design of rate-compatible punctured

turbo (RCPT) codes,” in Proc. Int. Conf. Comm. (ICC’02), New York, USA,

Apr. 2002, pp. 1701–1705.

[47] I. Land and P. Hoeher, “Partially systematic rate 1/2 turbo codes,” in Proc.

Int. Symp. Turbo Codes, Brest, France, Sept. 2000, pp. 287–290.

149

REFERENCES

[48] Z. Blazek, V. K. Bhargava, and T. A. Gulliver, “Some results on partially

systematic turbo codes,” in Proc. Vehicular Tech. Conf. (VTC-Fall’02), Van-

couver, Canada, Sept. 2002, pp. 981–984.

[49] S. Crozier, P. Guinand, and A. Hunt, “On designing turbo-codes with data

puncturing,” in Proc. Canadian Workshop on Inf. Theory, Montreal, Canada,

2005.

[50] M. A. Kousa and A. H. Mugaibel, “Puncturing effects on turbo codes,” Proc.

IEE Comm., vol. 149, no. 3, pp. 132–138, June 2002.

[51] E. K. Hall and S. G. Wilson, “Design and analysis of turbo codes on rayleigh

fading channels,” IEEE J. Select. Areas Commun., vol. 16, pp. 160–174, Feb.

1998.

[52] F. J. MacWilliams and N. J. A. Sloane, “Pseudo-random sequences and arrays,”

Proc. IEEE, vol. 64, no. 12, pp. 1715–1729, Dec. 1976.

[53] L. C. Perez, J. Seghers, and D. J. Costello, “A distance spectrum interpretation

of turbo codes,” IEEE Trans. Inform. Theory, vol. 42, no. 6, pp. 1698–1709,

Nov. 1996.

[54] D. V. Sarwate and M. B. Pursley, “Crosscorrelation properties of pseudorandom

and related sequences,” Proc. IEEE, vol. 68, no. 5, pp. 593–618, May 1980.

[55] S. M. Ross, A First Course in Probability, 5th ed. Prentice Hall, 1997.

150

