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Abstract- High rate MIMO-OFDM systems can be adapted
to improve symbol error rate (SER) by employing effective
Lattice Aided Space Frequency (LASF) codes. Such high rate
systems boasts high parametric dimensions to an extent that
analytical formulation becomes restrictive, and in most cases
impossible. The design of LASF codes have recently been studied
under gradient-based stochastic methods. In this paper a low
latency and low complexity novel stochastic method to design
LASF codes is proposed. This is achieved by simultaneously
perturbing the LASF generator matrix G and, from the noisy
empirical measurements of the objective function, estimating the
gradient. Algorithm convergence, in terms of the number of
iterations, is faster than any other known stochastic methods.
In fact, it is five times faster than the gradient based schemes.
Comparing with an average randomly generated LASF matrix
Gr, it is demonstrated that in quasi-static frequency selective
channels the SER is observed to halve at a SNR of 30dB. While
having significantly lower computational complexity, simulations
confirm that the novel stochastic method achieves improved SER
performance across the entire SNR range. Furthermore, latency
is significantly reduced since each computation requires a single
pair of noisy measurements of the SER per iteration irrespective
of the dimension of the system.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Signal Model

Suppose A C 1R is an n-dimensional lattice defined as

A = {c= Gz: z CEn} (1)

where G C 1R'k X is the lattice generator matrix.
With a Shaping Region S C 1R and a translation vector

u C R' [1], a lattice code specified by the generator matrix
G is defined as

C = (A + u) nS. (2)

Note that, in this work we have assumed a spherical shaping
region. A maximum of 1.6dB SNR gain has been reported in
the literature.

Considering an OFDM based signal model with QAM
modulation. For an Ith carrier we have

rc = \/MHcl + nc 1 < I < L (3)

High rate MIMO-OFDM systems can be adapted to im-
prove symbol error rate (SER) by employing effective Lattice
Aided Space Frequency (LASF) codes. Such high rate systems
boasts high parametric dimensions to an extent that analytical
formulation becomes restrictive, and in most cases impractical.
The design of LASF codes have recently been studied under
gradient-based stochastic methods. In this paper we propose a
novel application of stochastic methods to design an optimal
generator matrix G applicable across OFDM carriers. The
generator matrix is designed to minimize the average SER at a
given SNR. The method is based on simultaneous perturbation
stochastic approximation. While having significantly lower
computational complexity, simulations confirm that the novel
stochastic method achieves improved SER performance across
the entire SNR range. Furthermore, latency is significantly
reduced since each computation requires a single pair of noisy
measurements of the SER per iteration irrespective of the
dimension of the system.

where I denotes the carrier index, p is signal to noise ratio,
L is the total number of carriers, cl e CAlMX is the coded
transmitted vector on the l-th carrier, H' e C NXM is complex
channel matrix for the carrier 1. M is the number of transmit
antennas.
A real coefficient channel matrix can equivalently be given

as

= R{Hl} -a{Hl

which give rise to Real signal model as

r = -I7QHc+n
M (5)

where c C R2ML, and the global Frequency Domain
channel matrix is given as

(4)
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H1 0 0 0

0 H2 0 0 0

H= 0 0 . 0 0

0 0 . HL-1 0

0 0 0 0 HL_

where H E R2NLX2ML

B. SER as the Objective Function

Recalling equation (5) and without loss of generality omit-
ting the scaling factors and making appropriate substitution
for c we have,

r = HG(z + u) + n. (7)

Now, we desire to minimize the average symbol error
rate SER given r, H, G, z and u. This can be expressed
mathematically as min (G). Where 9(.) is the average
symbol error rate defined as

9(G) S{O(G)} (8)

I I I 0(r, H, z, G)p(r, z, H/G)drdzdH.

Where S{.} is the expectation operator, p(r, z, H/G) is the
joint probability density function of (r, z, H) given code
generator matrix G, and 0(.) is the empirical symbol error
rate.

Optimization of 9 (.) is a minimization process if 9 (.) is a
convex function, or positive definite if discrete. Furthermore,
we restrict the total transmit power to L per OFDM block. This
is achieved by ensuring that each Gl is appropriately scaled by
dividing by its Frobenius norm. Therefore, while minimizing
(8), this power constraint has to be satisfied simultaneously.
This restriction on average total power can be expressed as

L

ZS[IGiz112] < PT
1=1

L

S tr(GlzlzTGT) < L
1=1

tr(ccT) <L, (9)

where PT is the power in units of energy per OFDM-block
transmission, and S[zl] = 1. tr(.) is trace of a matrix.

Minimization of the expression in (8) has no analytical
solution, and moreover an optimal generator matrix G depends
on the receiver structure. However, given the receiver scheme,
H, z and r statistics, an optimal G can be found by using
stochastic methods. Recent stochastic approximation methods
in [2], [3], and [4] are gradient based. A new gradient-free
simultaneous perturbation stochastic approximation method,
applied to OFDM-MIMO systems, is discussed next.

III. SIMULTANEOUS PERTURBATION STOCHASTIC
APPROXIMATION (SPSA)

A recursive procedure to iterate towards an optimal gener-
(6) ator matrix G can be represented as

Gk±1 = Gk -akg(Gk), (10)

ak is a gain which satisfies ak > 0, El1 ak = oc and
1 ak < oc for (10) to converge [5]. We need the estimate of

the SER, g(Gk). In contrast to the recent work on stochastic
code designs [3], [4], or the use of standard method of
partial derivatives-which operates on every element individ-
ually, SPSA gradient approximation randomly perturbs all the
elements of G simultaneously to obtain two measurements of
8(.). Such that, each g(Gk) is computed as,

g(Gk) -(S9(G + CkAk)- 9(G-ckAk)
g(Gk) ~2CkAk (1 1)

where, ck is a function of -y, and Ak is a 2ML x 2ML ma-
trix. Elements in Ak are independent and randomly generated
from a zero mean probability distribution. A typical choice
is the use of Bernoulli ±1 (i.e., the set (-1,1)) distribution
each with probability 0.5. Normal and Uniform probability
distributions are not allowed since they have infinite inverse
moments. Note that, the division in (11) is an element-wise,
Hadamard division.
The algorithm to implement this procedure is given in

Algorithm 1 and the function serr fxrn in Algorithm 2.
Other parametric inputs, such as a, -y, etc, in Algorithm
1 are obtained heuristically, by finding values that ensures
convergence of the algorithm and also results in a fewer
number of iteration per solution i.e., faster convergence.

Algorithm 1 SPSA Pseud
INPUT: K,A,c,agy.

Require: a, a, c > 0,
G < randn(n)
for k = I to K do

ak al(k + A)
Ck <- c/(k + 1I)
G <- nG/||G|F

Frobenius norm
A <- 2round(rand
Gp/m < G ± CkAl

normalize as above
p/m <- serr fxrn(4

and Gm
g (Op m)./(2'
G <- G- akg

end for
OUTPUT: G.

> Initialize, random nxn G matrix

> Normalize G, .- F if the

1
> Find GP and Gm and

> Obtain avrg SER for GP

The Underlying feature of SPSA which contrasts it from
other stochastic approximation methods (e.g., Finite Differ-
ence) is that it requires only two measurements per iteration
regardless of dimension. This scheme distinguishes this work



Algorithm 2 serr fxn; QAM and ZF detection
INPUT: G, SNR = 20dB

Require: TxDatageneration
Dset [-7, -5, -3, -1, 1, 3, 5, 7] > 64-QAM
Ps <' E Dset.2/size(Dset) > 64-QAM sig power
u <-- 0 D>Setu =0
serrt <- 0 > Initialize counter
errr,uns <- 500000 > Number of independent Txs
for er =1 to errruns do

z <- z/2rtP5 > Normlz z C R2ntL;Pwr=.25 per Real
Dim.

r <- snrH(Gz + u) + noise > Received vector r
Zest <- 2 P/gssnrG1GH 1r > ZF Detection
Zest <- 2round(zest)
[number, ratio] <- symerr(zo, Zest) > count errors
serrt <- serrt + number

end for
emprSER <- serrt/(nt X errruns)
OUTPUT: emprSER

Simulation Parameters Values
Channel Model 2 x I SUI- 3
Frames Transmitted 500, 000
No.ofcarriers L 256
at0,1 , 1,.5,1
Modulation 64 -QAM

TABLE I
SIMULATION PARAMETERS
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from such work as [3], [4] which further requires explicit
function-gradient relationship. Moreover, SPSA is particularly
useful when considering high dimensions or a large band of
frequency subcarriers over which LASF coding can be applied
as it will be observed in the next section.

Performance results of the implementation of the SPSA
algorithm across OFDM-MIMO systems are discussed next.

IV. RESULTS AND DISCUSSIONS

Preliminary results which shows an improvement in SER
performance are shown in Figure 1. Parameters for this imple-
mentation are given in Table I. With appropriate values for the
parameters the algorithm as shown in Figure 2 converges. This
figure illustrates the rate of convergence, and most importantly
whether the algorithm converges, at all, given various values
of -y. An optimal value, in this case, I=1 has been found
heuristically.

V. CONCLUSIONS

Algorithms presented and implemented in this work are

based on faster approximations of the gradient, which is
obtained from noisy empirical measurements of the Symbol
Error Probability. This optimization is aimed at achieving
the best error rate performance at the lowest computational
cost. Even with relatively large size of OFDM blocks, in
terms of the number of carriers, computational complexity

Fig. 2. The impact of the values of ay on the convergence of the SPSA
Algorithm

remains low. Although there may be global evolutionary search
techniques such Genetic Algorithms and Simulated Annealing,
their significantly higher requirements for resources such as

power (computational complexity) and latency questions their
suitability for on line applications limited in both power and
size.
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