Revisiting the calculation of effective free distance of turbo codes

time step t_1 to time step t_2 , i.e.

$$d_{t_1 \to t_2}^{(i)} = \sum_{t=t_1}^{t_2-1} y^{(i)}(t)$$
(3)

I. Chatzigeorgiou and I.J. Wassell

The expression for the minimum Hamming weight of the output of a constituent convolutional encoder, when its input is a weight-2 sequence is revisited. The new expression particularly facilitates the calculation of the effective free distance of recently proposed schemes, namely non-systematic turbo codes and pseudo-randomly punctured turbo codes.

Introduction: Several authors [1, 2] have agreed that the performance of turbo codes [3] at the error floor region is largely determined by the weight-2 input minimum distance, which corresponds to the minimum Hamming weight among all codeword sequences generated by input sequences of weight two. If a turbo code *T* consists of *N* parallel concatenated convolutional codes separated by uniform interleavers, its weight-2 input minimum distance d_2^T , which is also referred to as the *effective free distance* of *T*, can be written as [4, 5]

$$d_2^T = \sum_{k=1}^N d_2^{(k)}$$
(1)

where $d_2^{(k)}$ is the weight-2 input minimum distance of the *k*th constituent code.

Bounds on the weight-2 input minimum distance d_2 of a convolutional code as well as exact expressions are provided in [1, 4, 6]. Nevertheless, the exact expressions are accurate only when either the impulse response of the code is known [6] or the structure of the code meets particular criteria [1, 4]. Recently, Banerjee *et al.* [5] demonstrated that non-systematic turbo codes using quick-look-in (QLI) convolutional codes as constituent codes, can achieve lower error floors than those of conventional systematic turbo codes. Unfortunately QLI codes do not always meet the conditions of [1, 4], hence the corresponding expressions cannot be used to determine their weight-2 input minimum distances. In this Letter we relax the conditions of [1, 4] and present expressions which allow the accurate calculation of d_2 for a wider set of convolutional codes.

Preliminaries: Let $(r, 1, \nu)$ represent a rate-1/r convolutional code of memory ν and $\mathbf{G}(D) = [\mathbf{P}^{(1)}(D)/\mathbf{Q}(D), \dots, \mathbf{P}^{(r)}(D)/\mathbf{Q}(D)]$ be the generator matrix of the recursive encoder for that code, where $\mathbf{P}^{(i)}(D) = p_{\nu}^{(i)}$ $D^{\nu} + \dots + p_1^{(i)} D + p_0^{(i)}$ denotes the *i*th feed-forward generator polynomial and $\mathbf{Q}(D) = q_{\nu} D^{\nu} + \dots + q_1 D + q_0$ corresponds to the feed-back generator polynomial, with coefficients $p_j^{(i)}, q_j \in \{0,1\}$. Note that none of the feed-forward polynomials is equal to $\mathbf{Q}(D)$, while $\mathbf{P}^{(1)}(D)/\mathbf{Q}(D) = 1$ only if the convolutional code is systematic.

It was shown in [1, 4] that the weight-2 input minimum distance of a $(r, 1, \nu)$ recursive convolutional code is given by $d_2 = r(2 + 2^{\nu-1})$ if the code is non-systematic and $d_2 = 2 + (r - 1)(2 + 2^{\nu-1})$ if the code is systematic. In both cases, it has been assumed that $\mathbf{Q}(D)$ is a primitive polynomial of order $\nu \ge 2$, i.e. deg $\mathbf{Q}(D) = \nu$, while $\mathbf{P}^{(i)}(D)$ is a monic polynomial with constant term 1, i.e. $p_{\nu}^{(i)} = p_0^{(i)} = 1$. Consequently, deg $\mathbf{P}^{(i)}(D) = \deg \mathbf{Q}(D) = \nu$.

Calculation of d_2 when deg $\mathbf{P}^{(i)}(D) \leq deg \mathbf{Q}(D)$: As previously, we assume that $\mathbf{Q}(D)$ is a primitive polynomial of order $\nu \geq 2$, since it has been shown that turbo codes using primitive feedback generator polynomials yield an excellent performance [1]. Let u(t) denote the input bit to the encoder at time step t and $r_m(t)$ represent the output of the *m*th memory element, where $m = 1, \ldots, \nu$. Initially, we focus on the *i*th non-systematic output of the encoder. The corresponding output bit $y^{(i)}(t)$ can be expressed as follows

$$y^{(i)}(t) = p_0^{(i)} u(t) \oplus (p_1^{(i)} \oplus q_1 p_0^{(i)}) r_1(t) \oplus \dots$$

$$\dots \oplus (p_{\nu-1}^{(i)} \oplus q_{\nu-1} p_0^{(i)}) r_{\nu-1}(t) \oplus (p_{\nu}^{(i)} \oplus p_0^{(i)}) r_{\nu}(t)$$
(2)

where the symbol \oplus denotes the mod-2 addition. We have also adopted the notation $d_{t_1}^{(i)} \rightarrow t_2$ to represent the weight of the sequence generated by the *i*-th non-systematic output of the encoder during the transition from

If *L* is the period of the primitive feedback polynomial $\mathbf{Q}(D)$, the two nonzero bits of a weight-2 input sequence should be separated by L - 1 zeroes such that the encoder returns to the zero state [7], i.e. $r_m(t) = 0$ for all *m*. Let u(0) = u(L) = 1, while $u(1) = \ldots = u(L - 1) = 0$. Note that the weight-2 input minimum distance of the *i*th non-systematic output of the encoder is quantified by $d_{0\rightarrow L+1}^{(i)}$. For convenience, we express $d_{0\rightarrow L+1}^{(i)}$ as $d_{0\rightarrow L+1}^{(i)} = d_{0\rightarrow 1}^{(i)} + d_{1\rightarrow L}^{(i)} + d_{L\rightarrow L+1}^{(i)}$ and compute each term separately:

• $t: 0 \to 1$ – Assuming that the encoder was initialised to the zero state, we obtain $d_{0\to 1}^{(i)} = y^{(i)}(0) = p_0^{(i)}$ from (2) and (3), since u(0) = 1 and r_1 (0) = ... = $r_v(0) = 0$.

• $t: 1 \to L - \text{Let}$ us first consider the case when $t: 1 \to L + 1$ and u(L) = 0. Owing to the properties of primitive polynomials, the output stream is a pseudo-noise sequence having weight $d_{1}^{(i)} = 2^{\nu-1}$, given that $\mathbf{P}^{(i)}(D) \neq \mathbf{Q}(D)$ [7]. Furthermore, when t = L, the encoder is in state 1 [7], i.e. $r_1(L) = \ldots = r_{\nu-1}(L) = 0$ and $r_{\nu}(L) = 1$. Hence, if u(L) = 0 is the input bit, the encoder outputs $\mathbf{y}^{(i)}(L) = p_{\nu}^{(i)} \oplus p_{0}^{(i)}$, which is also the value of $d_{L}^{(i)} = 1$. However, an equivalent and more convenient form of the previous expression for the output weight is $d_{L}^{(i)} = L + 1 = (p_{\nu}^{(i)} - p_{0}^{(i)})^{2}$. Consequently, we can compute the target quantity $d_{1}^{(i)} = L$ by subtracting $d_{L}^{(i)} = L + 1$ from $d_{1}^{(i)} = L + 1$ and obtain $d_{1}^{(i)} = 2^{\nu-1} - (p_{\nu}^{(i)} - p_{0}^{(i)})^{2}$, independently of the value of u(L).

• $t: L \to L + 1$ – We established that if t = L then $r_{\nu}(L) = 1$, while the output of the remaining memory elements is zero. That is when the second nonzero bit, namely u(L) = 1, of the weight-2 sequence is input to the encoder the bit forces the encoder to return to the zero state. Using (2) and (3), we find that $d_{L \to L+1}^{(i)} = y^{(i)}(L) = p_{\nu}^{(i)}$.

Thus, the weight of the *i*th non-systematic output sequence of the encoder for a weight-2 input sequence can be expressed as

$$\begin{aligned} d_{0 \to L+1}^{(i)} &= d_{0 \to 1}^{(i)} + d_{1 \to L}^{(i)} + d_{L \to L+1}^{(i)} \\ &= p_0^{(i)} + 2^{\nu - 1} - (p_{\nu}^{(i)} - 2p_0^{(i)}p_{\nu}^{(i)} + p_0^{(i)}) + p_{\nu}^{(i)} \\ &= 2^{\nu - 1} + 2p_0^{(i)}p_{\nu}^{(i)}, \end{aligned}$$
(4)

using the fact that the value of a binary number, such as $p_j^{(i)}$, does not alter when it is raised to a power (e.g., $(p_j^{(i)})^2 = p_j^{(i)})$. The overall weight-2 input minimum distance of the rate-1/r recursive convolutional encoder can be obtained as follows

$$d_{2} = \sum_{i=1}^{r} d_{0 \to L+1}^{(i)}$$

$$= \begin{cases} r 2^{\nu-1} + 2\sum_{i=1}^{r} p_{0}^{(i)} p_{\nu}^{(i)}, & \text{if the code is non-systematic} \\ 2 + (r-1) 2^{\nu-1} + 2\sum_{i=2}^{r} p_{0}^{(i)} p_{\nu}^{(i)}, & \text{if the code is systematic,} \end{cases}$$
(5)

Extension to pseudorandomly punctured codes: Pseudorandom (PR) puncturing, initially introduced in [7], is a method to increase the rate of a constituent recursive systematic convolutional code with generator matrix $\mathbf{G}(D) = [1, \mathbf{P}(D)/\mathbf{Q}(D)]$ from 1/2 to 1 by periodically eliminating particular bits from its output. Note that $\mathbf{Q}(D)$ should be primitive. It has been shown [8] that a rate-1/2 turbo code consisting of a rate-1 PR-punctured convolutional code and a rate-1 non-systematic convolutional code. Following a similar reasoning as in the precoding section, we can express (the proof has been omitted) the weight-2 input minimum distance of a PR-punctured convolutional code (1, 1, ν) as

$$d_2 = 2^{\nu - 2} + 2p_0 p_\nu. \tag{6}$$

Conclusion: In this Letter we expressed the weight-2 input minimum distance of a rate-1/r convolutional code as a function of the coefficients of its feed-forward generator polynomials $\mathbf{P}^{(i)}(D)$, with i = 1, ..., r, for a primitive feedback generator polynomial $\mathbf{Q}(D)$. This expression can be

ELECTRONICS LETTERS 3rd January 2008 Vol. 44 No. 1

used to accurately compute the effective free distance of both conventional systematic turbo codes as well as non-systematic turbo codes [5, 8] that consist of convolutional codes with deg $\mathbf{P}^{(i)}(D) \leq \deg \mathbf{Q}(D)$.

Acknowledgment: This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/ E012108/1.

© The Institution of Engineering and Technology 2008 1 October 2007 Electronics Letters online no: 20082781 doi: 10.1049/el:20082781

I. Chatzigeorgiou and I.J. Wassell (Computer Laboratory, University of Cambridge, 15 J.J. Thomson Avenue, Cambridge CB3 0FD, United Kingdom)

E-mail: ic231@cam.ac.uk

References

 Benedetto, S., and Montorsi, G.: 'Design of parallel concatenated convolutional codes', *IEEE Trans. Commun.*, 1996, COM-44, pp. 591-600

- 2 Perez, L.C., Seghers, J., and Costello, D.J. Jr.: 'A distance spectrum interpretation of turbo codes', *IEEE Trans. Inf. Theory.*, 1996, **IT-42**, pp. 1698–1709
- 3 Berrou, C., Glavieux, A., and Thitimajshima, P.: 'Near Shannon limit error-correcting coding and decoding: turbo-codes'. Proc. ICC, Geneva, Switzerland, May 1993
- 4 Divsalar, D., and McEliece, R.J.: 'The effective free distance of turbo codes', *Electron. Lett.*, 1996, **32**, (5), pp. 445–446
- 5 Banerjee, A., Vatta, F., Scanavino, B., and Costello, D.J. Jr.: 'Nonsystematic turbo codes', *IEEE Trans. Commun.*, 2005, COM-53, pp. 1841–1849
- 6 Yoscovich, I., and Snyders, J.: 'On the effective free distance of turbo codes'. Proc. ITW, Killarney, Ireland, June 1998
- 7 Chatzigeorgiou, I., Rodrigues, M.R.D., Wassell, I.J., and Carrasco, R.: 'A union bound approximation for rapid performance evaluation of punctured turbo codes'. Proc. CISS, Baltimore, MD, USA, March 2007
- 8 Chatzigeorgiou, I., Rodrigues, M.R.D., Wassell, I.J., and Carrasco, R.: 'Pseudo-random puncturing: a technique to lower the error floor of turbo codes'. Proc. ISIT, Nice, France, June 2007