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The expression for the minimum Hamming weight of the output of a
constituent convolutional encoder, when its input is a weight-2
sequence is revisited. The new expression particularly facilitates the
calculation of the effective free distance of recently proposed
schemes, namely non-systematic turbo codes and pseudo-randomly
punctured turbo codes.

Introduction: Several authors [1, 2] have agreed that the performance of
turbo codes [3] at the error floor region is largely determined by the
weight-2 input minimum distance, which corresponds to the minimum
Hamming weight among all codeword sequences generated by input
sequences of weight two. If a turbo code T consists of N parallel conca-
tenated convolutional codes separated by uniform interleavers, its
weight-2 input minimum distance d2

T, which is also referred to as the
effective free distance of T, can be written as [4, 5]

dT2 ¼
PN
k¼1

dðkÞ2 ð1Þ

where d2
(k) is the weight-2 input minimum distance of the kth constituent

code.
Bounds on the weight-2 input minimum distance d2 of a convolu-

tional code as well as exact expressions are provided in [1, 4, 6].
Nevertheless, the exact expressions are accurate only when either the
impulse response of the code is known [6] or the structure of the code
meets particular criteria [1, 4]. Recently, Banerjee et al. [5] demonstrated
that non-systematic turbo codes using quick-look-in (QLI) convolutional
codes as constituent codes, can achieve lower error floors than those of
conventional systematic turbo codes. Unfortunately QLI codes do not
always meet the conditions of [1, 4], hence the corresponding
expressions cannot be used to determine their weight-2 input
minimum distances. In this Letter we relax the conditions of [1, 4]
and present expressions which allow the accurate calculation of d2 for
a wider set of convolutional codes.

Preliminaries: Let (r, 1, n) represent a rate-1/r convolutional code of
memory n andG(D) ¼ [P (1) (D)/Q(D), . . . , P (r) (D)/Q(D)] be the gen-
erator matrix of the recursive encoder for that code, where P (i) (D) ¼ pn

(i)

D n
þ . . . þ p1

(i) Dþ p0
(i) denotes the ith feed-forward generator poly-

nomial and Q(D) ¼ qn D
n
þ . . . þ q1 Dþ q0 corresponds to the feed-

back generator polynomial, with coefficients pj
(i), qj [f 0,1g. Note that

none of the feed-forward polynomials is equal to Q(D), while P (1)

(D)/Q(D) ¼ 1 only if the convolutional code is systematic.
It was shown in [1, 4] that the weight-2 input minimum distance of a

(r, 1, n) recursive convolutional code is given by d2 ¼ r(2þ 2n21) if the
code is non-systematic and d2 ¼ 2þ (r2 1)(2þ 2n21) if the code is
systematic. In both cases, it has been assumed that Q(D) is a primitive
polynomial of order n � 2, i.e. deg Q(D) ¼ n, while P (i) (D) is a
monic polynomial with constant term 1, i.e. pn

(i) ¼ p0
(i) ¼ 1.

Consequently, deg P (i) (D) ¼ deg Q(D) ¼ n.

Calculation of d2 when deg P (i) (D) � deg Q(D): As previously, we
assume that Q(D) is a primitive polynomial of order n � 2, since it
has been shown that turbo codes using primitive feedback generator
polynomials yield an excellent performance [1]. Let u(t) denote the
input bit to the encoder at time step t and rm(t) represent the output of
the mth memory element, where m ¼ 1, . . . ,n. Initially, we focus on
the ith non-systematic output of the encoder. The corresponding
output bit y (i) (t) can be expressed as follows

yðiÞðtÞ ¼ pðiÞ0 uðtÞ � ð pðiÞ1 � q1p
ðiÞ
0 Þr1ðtÞ � . . .

. . .� ð pðiÞn�1 � qn�1p
ðiÞ
0 Þrn�1ðtÞ � ð pðiÞn � pðiÞ0 ÞrnðtÞ

ð2Þ

where the symbol � denotes the mod-2 addition. We have also adopted
the notation d (i)

t1 !t2 to represent the weight of the sequence generated by
the i-th non-systematic output of the encoder during the transition from
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time step t1 to time step t2, i.e.

dðiÞt1!t2 ¼
Pt2�1

t¼t1

yðiÞðtÞ ð3Þ

If L is the period of the primitive feedback polynomial Q(D), the two
nonzero bits of a weight-2 input sequence should be separated by L2 1
zeroes such that the encoder returns to the zero state [7], i.e. rm(t) ¼ 0
for all m. Let u(0) ¼ u(L) ¼ 1, while u(1) ¼ . . . ¼ u(L2 1) ¼ 0. Note
that the weight-2 input minimum distance of the ith non-systematic
output of the encoder is quantified by d0 !L þ 1

(i) . For convenience, we
express d0!L þ 1

(i) as d0!L þ 1
(i) ¼ d0!1

(i)
þ d1!L

(i)
þ dL!L þ 1

(i) and compute
each term separately:

† t: 0 ! 1 – Assuming that the encoder was initialised to the zero state,
we obtain d0!1

(i) ¼ y(i) (0) ¼ p0
(i) from (2) and (3), since u(0) ¼ 1 and r1

(0) ¼ . . . ¼ rn (0) ¼ 0.
† t: 1 ! L – Let us first consider the case when t: 1 ! Lþ 1 and
u(L) ¼ 0. Owing to the properties of primitive polynomials, the output
stream is a pseudo-noise sequence having weight d1!L þ 1

(i) ¼ 2n21,
given that P (i) (D) = Q(D) [7]. Furthermore, when t ¼ L, the encoder
is in state 1 [7], i.e. r1 (L) ¼ . . . ¼ rn21(L) ¼ 0 and rn (L) ¼ 1. Hence,
if u(L) ¼ 0 is the input bit, the encoder outputs y(i) (L) ¼ pn

(i)
� p0

(i),
which is also the value of dL!L þ 1

(i) . However, an equivalent and more
convenient form of the previous expression for the output weight is
dL!L þ 1
(i) ¼ ( pn

(i)2 p0
(i) )2. Consequently, we can compute the target

quantity d1!L
(i) by subtracting dL!L þ 1

(i) from d1!L þ 1
(i) and obtain

d1!L
(i) ¼ 2n212 ( pn

(i) 2 p0
(i))2, independently of the value of u(L).

† t: L ! Lþ 1 – We established that if t ¼ L then rn (L) ¼ 1, while the
output of the remaining memory elements is zero. That is when the
second nonzero bit, namely u(L) ¼ 1, of the weight-2 sequence is
input to the encoder the bit forces the encoder to return to the zero
state. Using (2) and (3), we find that dL!L þ 1

(i) ¼ y (i) (L) ¼ pn
(i).

Thus, the weight of the ith non-systematic output sequence of the
encoder for a weight-2 input sequence can be expressed as

dðiÞ0!Lþ1 ¼ dðiÞ0!1 þ dðiÞ1!L þ dðiÞL!Lþ1

¼ pðiÞ0 þ 2n�1 � ð pðiÞn � 2pðiÞ0 pðiÞn þ pðiÞ0 Þ þ pðiÞn

¼ 2n�1 þ 2pðiÞ0 pðiÞn ;

ð4Þ

using the fact that the value of a binary number, such as pj
(i), does not

alter when it is raised to a power (e.g., ( pj
(i))2 ¼ pj

(i)). The overall
weight-2 input minimum distance of the rate-1/r recursive convolutional
encoder can be obtained as follows

d2 ¼
Pr
i¼1

d ðiÞ
0!Lþ1

¼

r2n�1þ2
Pr
i¼1

pðiÞ0 pðiÞn ; if the code is non-systematic

2þðr�1Þ2n�1þ2
Pr
i¼2

pðiÞ0 p ðiÞ
n ; if the code is systematic,

8>><
>>:

ð5Þ

Extension to pseudorandomly punctured codes: Pseudorandom (PR)
puncturing, initially introduced in [7], is a method to increase the rate
of a constituent recursive systematic convolutional code with generator
matrix G(D) ¼ [1, P(D)/Q(D)] from 1/2 to 1 by periodically eliminat-
ing particular bits from its output. Note that Q(D) should be primitive. It
has been shown [8] that a rate-1/2 turbo code consisting of a rate-1 PR-
punctured convolutional code and a rate-1 non-systematic convolutional
code, yields a lower error floor than that of its rate-1/3 parent code.
Following a similar reasoning as in the precoding section, we can
express (the proof has been omitted) the weight-2 input minimum
distance of a PR-punctured convolutional code (1, 1, n) as

d2 ¼ 2n�2 þ 2p0pn: ð6Þ

Conclusion: In this Letter we expressed the weight-2 input minimum
distance of a rate-1/r convolutional code as a function of the coefficients
of its feed-forward generator polynomials P (i) (D), with i ¼ 1, . . . , r, for
a primitive feedback generator polynomial Q(D). This expression can be
No. 1



used to accurately compute the effective free distance of both conven-
tional systematic turbo codes as well as non-systematic turbo codes [5,
8] that consist of convolutional codes with deg P (i) (D) � deg Q(D).
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