Dynamically Reconfiguring Multimedia Components: A Model-based Approach

Scott Mitchell,Hani Naguib, George Coulourind TimKindberd
Department of Computer Science
Queen Mary aniVestfieldCollege
University of London

Distributed multimedia systems are potentialbjet to frequent and ongoing evolution of
application structures. In such systeiniss often unacceptablerfoeconfigurations to fail or to
only partially suwcceal. This paper describes the reconfiguration architecture of then D
multimedia programming framework. We introduce thncept ofmultimedia transactionor
structuring changes into atomic units that preserve application congiatehextend these with
the smoothness conditicl maintain temporal as well as data intggaitross reconfigurations.
We present a technique for scheduling configuration changetrdidas & the perceived level
of smoothness against the aabile resources and the desired timeliness of tranfiguration.

1. Introduction

The applications of distributiemultimedia systems include complex and mission-critical domains such as digital
television production, security and medical systeifisese applications are potentially long-lived and are subject
to frequent reconfiguration and long-term evolution of application structure. There is a clear requirement for
support frameworkto manage the complexity of building and maintaining such sgstem

This paper describes thenfik multimedia programming framewofKMNCK97], which is designed to support the
construction and dynamic reconfiguration of distributed multimedia applicatiamsy applications have the

novel property that they consist, seamlessly, of not only the components that perform media processing for the
application itself, but also a model of these components. The model facilitates the construction of complex
component structures; it allows us to perform QoS calculations conveniently; and it provides a vehicle for
reconfiguring the application at run-time without breaking the applicatintegrity.

Dainn uses a split-level component architecture to model the structur&@® configuration of distributed
applications. High-level application structuringpesedaroundhierarclic composition of components.

Composite components use class-specific reconfiguration programs to modify the structural and QoS
configurations of applications within constraints set by the component programmer. Configuration changes are
performed on thapplication model, then passed through admissantrol and consistency checks before the
changes are mapped onto the active peer component layer. This paper is primarily concerned with oustechnique
for achieving ‘smoothness’: maintaining the fmoral consistencgf media streams during reconfiguration by
placing boundsn timing“glitches’ that users may experience aman application ireconfigured. For example,
consider a “tele-medicinesystem where surgeons remotely conduct and observe a surgical procedure—it is
clearly unacceptable for the video stream to break up whathemobserver joins the system. Smoothigess

realised by imposing a schedule on component updates during reconfigutaorg jntoaccount application-

and system-imposed constraints on resource usage and trading these off against theade&ve @ timely and
glitch-free reconfiguration.

The remainder of this paper is organised as follows: Section 2 introduces the fundamental coboepts of
Section 3 expands upon these and describes the basic mechanisms of reconfigubation ur algorithm for
smooth reconfiguration is presented in Section 4 and sisclin Section 5. Section 6 briefly reviews related
work and Section 7 contains our conclusions aadgfor further research.

2. Building Distributed Multimedia Applications with D JinN

Dainn applications are constructed from networkactive componentsonsuming, producing anchnsforming

media data streanandinterconnectedia theirports in a similar fashion to o#r distributed multimedia
programming frameworks sues [Gib95, Bar96, FoSI96]However, Dinn components come in two different
flavours:modelandpeercomponents. Peer components are the familiar active objects that produce, process and
consume media data streams. They are distributed according to the media-flow requirements of the application
and generally have temporal constraints on their operation. Model components, on the other hand, are located
wherever convenient for the application programmer or configuration management sys&npurpose is to

model the configuration an@oScharacteristics of the underlying peemponents whilst hiding the details of

Yscott,hanin,geage, timR@dcs.qgmw.ac.uk

media processing (transport protocols, medidecs,
device drivers, etcfrom application programmers and
users. Every peer component has a corresponding
model component that knows about its configuration,

.. g+ QoSand mediehandling behaviour. Additionally,
composite componengsicapsulate sets of
sub-components, for reasons of abstraction, modularity
and reusability, and to provide high-level behaviours to
applications.

It is important to understand that all application-level
programming in Dinn takes placat the model layer
that is, application programmers interact only with the
model components of an application. Peer components
are created, configured and destroyed as required under
Figure 1. Model Components. the control of the application model. Figures 1 and 2
respectively show the model and peer companehan
example “news studio” system that is part of a larger
“TV studio” application. Note that while the peer
Camera components are distributed across several hosts
Switch according to the location of the necessary resources, the
application model is located entirely on another host.
Although the usual situation is for the complete model
to be held on a single host our architecture does allow it
to be distributed. This allows situations where parts of
the system are controlldry differentorganisations; it
also allows model components to be located close to
Figure 2. Peer Components. their peers, for the sake of efficiency.

Our primary motivation for the use of an application
model is to clearly separate ttesignof an application m itsrealisationat run-timefMNCK97]. The model is
largely independent of location, hardware platfooperating system and the various technologies used to process
and transport media data; it enables programmers to build and evolve applications at a high level of abstraction
Peer components, on the other hand, have no notion of their place in theyglgetion—they simply carry out
their tasks of producing, processing, transporting and consuming multimedia data.

Components are controlled through a combination of remateations and inter-component events. Events can
be transferred between components across the model-peer boundary and additionally may flow along the same
paths as media streams, interleaved with media data elements.

MultiCamera)

"""""""""" Graphics
Gen.

3. Reconfiguring Duinn Applications

Composite components are théngipal structuringmechanism for @nn applications. These components
encapsulate groups of sub-components that perform some higher level activity; this allows such groups to be
replicated andnstantiatecelsewhere, even in a commét different hardware or network environment. The
“MultiCamera” and“NewsStudio”components in Figure 1 are examples of composite components. As well as
their encapsulation function, composite components can define their own class-specific behaviours on top of the
basic “components and connections” model, permitting the creation of complex reconfigurations independent of
the physical realisation of the model. Each composite component provides methods for managing its structural
and Qo<onfiguration, i.e. for manipulating the connectivity and per-component stasesobitomponergraph.

Application configuation—andreconfiguration—is expressed in terms of paths: end-torenthgement

constructs descrilhg the media datflow between a pair of endpoints chosen by the appliéatidypath

encapsulates an arbitrary sequence of ports and intervening components that carry its data; it also declares the
end-to-end QoS properties of that seqeeimcluding latencyjjtter and error ratelt is up toeach individual
application to identify the end-to-end flows that are of interest to it and specify paths accordingly. Flows that are
not part of a path do no¢ceiveany end-to-end guarantees either for their normal operation or during
reconfiguration.

We have identified a set of requirements for configuring distributed multimedia systems, of which the following
are the most important in the context of this paper:

?To represent 1-N configations, a “bundle” of paths with a common source endpoint is used.

Atomicity. Often multiple related configuration changes must be carried out as a single operation, for
example when adding a participant to a video conference. Atomic reconfiguration ensures that either all
of the changes occur, or none of them do.

Consistency Every reconfiguration should take the application fromanresistent statt another. The
properties of a consistent state are componentapplitation-specific—foexample, the news studio
system might specify that at least one input to the mixer must always be active.

3.1.Multimedia Transactions

The requirements for atomic and castent reconfiguration have led us to the development of a
transaction-oriented model of reconfiguration inn®. However, conventional database-oriented transaction
mechanisms supporting theCID’ properties [HaRe83lhave some shortcomings in the context of multimedia
applications. Specifically, traditional transactions do not take account of the real-time, interactive nature of
multimedia systems and the need to maintain temporal constraide&gan-animportant aspect of keeping the
application in a consistent state.

Therefore, we introduce the notion of timelltimedia transactiofiMit98] for managing the reconfiguration of
multimedia applications. Multimedia transactions are an extension of the traditional transaction semantics. They
continue to maintain theCiD propertiesexcept for ‘D’ (durability) which is largely orthogonal to the aims of our
currentwork®. Toaddress the time-sensitive nature oftimgdia, our transactions extend tigial notion of the

‘C’ property to include the temporal as well as daiasistencyf media streamsWe have informally named this
requirement to maintain temporal constraints across reconfiguration boundage®titaness condition:

“The execution of a multimedia transaction on a live system must not break any temporal
constraint of any active path.”

Temporal costraints are application-dependent, but an application might specify, for example, that a new stream
must have started to play out witt#80msof the old stream being stopped. We must be careful to distinguish
between failures of temporal integrity and failures of data integrity. For instance, if the inpwtPEamecoder

is switched to a new stream at the wrong time, a sequence of garbled frames may be output. viduslisab

failure of data integritysince the application has generated corrupt data. If, however, the badly-timed switch
caused the decoder to pader longer than an application-defined bound, then the smoothness property has been
broken. Smoothness violationsmyalso occur when an existing stream is stopped beforeptacement has been
started, or if two streams briefly run simultaneously when resources have been reserved for one stream only.
Although the smoothness condition specifies that no temporal constraints should be brdiedieweehat users

will be prepared to accept a certain amount of degradation in sguatity—equivalent to a temporary relaxation

of constraints—around the time of a reconfigurati®ior example, it is generally acceptable when switching
between two video streams, for the interval between the last frame of the old stream and the first frame of the new
to be longer than the inter-frame interval of either stream individ(thly is, thgitter bound can be relaxed

across the reconfiguration). The exact amount of degradation that taaraeed—and for how long—wiill

depend on the application and the preferences of the user.

Like all configuration-related activity in I, transactions are carried out at the model component level, with
their effects made visible at the peer layer when a transatamessfulllcommits. For dransaction to commit
involves checking the consistency of the new configuraidmission control, with possible re-negotiation of QoS
parameters; resource reservation; and updating of the affected peer compbteamtiisg the smoothness

condition requiregomputing a schedule for the update operations on peer components; the derivation and
execution of this schedule is described in detail in Section 4.

3.2.The Anatomy of a Reconfiguration

The actions needed to complete a reconfiguration can be quite time-dogsespecially if new components

must be deployed and activated (this may involve setting up hardware devices as well as a considerable amount of
remot invocation). However, in many reconfigurations there is a requirement that the transition between old and
new configurations takes place either at an absolute real time or within some interval of someone “pushing the
button"—bothare difficult to achieve if there is an indeténate amount afetupactivity to perform before the

switch can take place. Our solution to ghisblem is to divide the peer componeptates performed by a

multimedia transaction into two phases:

“Setup” phase. This phase is begins immediately when the transaction program is started. It encompasses
all changes to the application model; structarad QoSchecks on the new configuration; plus creation
of new peer components and reservation ofraspurces they might require. The new peer components

3t would, however, be possible in principle to irmarate durability support intoJddn by using a persistent runtinsgpport systensuch as PJama
[Atk96].

arenot connected into the running application and no existing components are stopped or deleted.
Depending upon the smoothness requirements of the reconfiguration, some new components may be
started running during theetup phase.

“Integrate” phase. This phase runs at some point aftergbtip phase has completaturesponse to an
event which may be generated at a particular time, by a user interacting with the apjdicatior by a
peer componentThe integrate phase completes the peer component updatarigg up” (instructing
a component to begin processiggusing it to actuallysethe resources reserved for it) new components,
connectingthe new configuration into the running system and removing any components that are no
longer needed, while ensuring that smoothness boundsedreTheevent thafctivates the imtgrate
phase of a transaction is spémif when the transaction is started, along witimaout value. If this
timeoutexpires before the transaction has been integrated the effects of the trangidimmnndone
and the integrate event will be ignored if it ever does arrive.

This is obviously not a perfect solution, as applications still need to know approximately when reconfigurations
will be occurring. In the fairly common case when this information is known, however, the technique greatly
reduces the apparent time required to complete the reconfiguration.

Figure 3 below graphs an abstract “quality” metric for a single path against time, during a reconfiguration of that
path. The value of the quality metric is an aggregation of the end-to-end properties of the pathjitteency,

error rate. Obviously, in an actual reconfiguration the tramsitbetween the different phases are unlikely to be

as clearly deéfied. However, we biglve that this graph is a good first approgiion to the generalised behaviour

of a path under reconfiguration.

Quality
Qnornnal
Old Setup Integrate New
Configuration Phase Phase Configuration

I
|
: Asmoothness
I

Qinlegrate"""' Tt : I R
I I I
: : Tiead :
I [} I
: Treconf : :
| | |
1 1 1

0 tsetup tintegrale tdone Time

Figure 3. The anatomy of a reconfiguration.

We make several observations about the shape of théyqusaltime graph, which wilead us to a useful
parameterisationf the reconfiguration in terms of smoothness, timeliness and maintenance of guaranteed service
levels:

e The redudbn in quality across the iegrate phase of the reconfigurati@Aemal - Qnregrate determines the
perceived smoothness of the transition between the old and new configurations. We definetthis quan
asAsmothness NOte that the service level delivered by the path is also potentially lowered dursegupe
phase, but the difference reaches a maximum during the integrate phase.

* The total time to complete the reconfiguration is givernyh = taone - tsewp This corresporglto the
total period of potentially reduced quality for the existing path. If the repmation is being set up
ahead of time, for integration at some point in the futuresehi® phase may be obérary duration.

* The elapsed time between requesting the integration of the reconfiguration and the path reaching its new
final state (i.e.the length of the imgrate phase) is given Biyag = taone - tintegrate-

For a given reconfiguration, a range of different schedules faetiupand integrate lpases can be computed.

These schedulesatile offthethree “reconfiguration quality” paramet&fson;, Tieas aNAAsmoothness aS Well as
resourceavailability, to determine the schedule that comes closest to meeting the applications’ requirements with
the least disruption to the rest of the system. In general, schedules providing ‘better’ smoothness (shorter lead
time, or greater quality during the reconfiguration) will require more free resources to adBigea.a particular

set of availableesources, there are also “interntafideoffsamongst the smoothness parametersgfample, a

shorter lead time will almost invariably result in an increased valde-efinnesOver the integration period.

4. Achieving Smoothness

Consider the genalised two-switch-point reconfiguration shown in Figure 4, where an arbitrary path sdgment
...Q in the middle of the path is replaced by another arbitrary path set¢ne®’ . The remainder of the path is
completely unchanged by the reconfigtion. We will assume that none of the components indtgath

segment exist before the reconfiguration begins. For this example we will define thegigymugasure in

terms of latency and jittesuch that the latency between input p@hd output port or the path is given bly; =

Ai + &j, whereh is the average latency adds thejitter. For a given piaof ports in either the old or new
configuration,L; is the latency value guaranteed by the §@bma in Figure 3) wherasL’; is the latency

achieved whilst thether configuration is running simultaneoug@inegrae in Figure 3). We do not believe that it

is feasible to calculate the effect over time of starting up some arbitrary set of components on the performance of
the rest of the system. However, as a first approximation we can make the following two assumptions:

* In the case where the quiy of unallocated resources available is sufficient to meet the needs of the
component being started, there will be no effect on already running components.

¢ In the case where there are insufficient unallocated resources available, we can determine a worst-case
upper bound for the effect on already running components.

Thereforel'j represents thevorst-casdatency on the path segment when the other configuration is running.

Switch point :" Cis1 - »- G \ Switch point

“"New configuration

Old configuration

Figure 4. Generalgl two-switch-point reconfiguration.

Components participating in the reconfiguration are ‘primed’ duringe¢hgphase with a set of actions that

each must perform during the intatgr phase. Each compman will carry out these actions upon receipt of an
integrate event-eitherfrom an external source or on one of its inpoitt—and optionally propagate the event
downstream through one or more of its output ports. Integration is thus performed by scheduled delivery of
integrate events to the farthest upstream points of the reconfiguration; the events will move ahead of the first
new—orbehind the lasbld—mediadata, triggering reconfiguration of downstream components as they go. The
advantage of this approach is that we do not have to schedule the iotegi@ach component individually,

whilst still ensuring that the new configuration is integrated in time to deliver data to the rest of the application.
In the reconfiguration of Figure 4, we have toestile the starting of the new path segment, the stopping of the
old, and switching to the new segmen@atindl;. Ok will be switched when the old path segment is stopped and
I; will be switched when the first new data arrives flofm Thus, the schedule will consist of two evertgstop

old segment) and, (start new segment), delivered®p at timest; andt, respectively.

We now present a typical schedule for this reconfiguratioat attempts to strike a conamise between resource

usage and improved smoothness and lead time. We assume that the new path segment is created at the start of the
setupphase and that its post-integration resourcesvatons have succeeded

4.1.A Typical Reconfiguration Schedule.

In this schedule & overlap the shutting down of the old path segment and the starting up of the new segment
according to the difference between their latencies, as follows:

I (tz + L,z) - (tl + L,l) |S Asmoothness

Whethere, or e; is delivered first will depend on whetHeris larger tharL.. In any case, the interval between
the two events will be:

Itl -t | = |L,1 -L2 | t Asmoothness
and the lead time will be:
tiead = Max('1, L'2)

Note that we have uséd; andL’, in the equatins alove to reflect the fact that both path segments are running
simultaneously for timet] -t |. L’1 andL’; are worst-case values so we may in fact achieve better smoothness
and lead time than is implied by the equations. The graph below shows the quality vs. time trace for this
reconfiguration in the style of Figure 3.

Quality

Qnor mal

Qintegrate"""' T

|
I
I
I
I
I
I
|
|
|
|
|
|
|
1
|
|
|
I
I
I
I
1
1 1
0 tsetup tintegrale tdone Time

Figure 5. Quality vs. tima graph for a typical reconfiguration schedule.

4.2 Alternative Schedules

A variety of alternative schedules are possible. Foants, the'Vv studio or a security monitoring system

probably requires near-instantaneous switching between camera(impiss0). This requirement can be mat

the expense of a large over-allocation of resources and potentially reduced smoothness if those resources are not
available. To rduce the lead time, the new path segment is creagdtartedduring thesetup phase. This

means that the new data is being deliveratbat to its destination even before the integration phase begins; the
only action remaining is to switch from the old to the new path atijpofhe schedule equations are similar to

the previous schedule, except thatltheterm reduces to zero:

I t - (tl + L,l) | < Asmoothness
The lead time in this case is effectively zero.

In an environment where resources are scarce and penagssive—suchs thenternet—wemight wish to
minimise resource usage by starting the new path segmerdftarithe old segment has been completely shut
down. This means that there is no simultaneous operation of the two configurations and thus no possibility of
resource clashes. The disadvantage is, of course, that the reconfiguration will probably have very poor
smoothness; all dfecons, tieas aNdAsmootnnesare likely to be large. The schedule is as follows:

Lb=ti+Ls

That is,t; is unconstraiad other than having to occur before the transattioeoutexpires. The first new data
will be delivered at:

taone=t1 + L1 + L2
The lead time will therefore be:
tiead = L1 + L2
and the perceived smoothness; atill be:

Agmootnes™ L1 + Lo, assuming thak, >> 0, andA, >> &,.

5. Discussion

The reconfiguration schedules lngd in the previous section deal only with the reconfiguration of a siagje p
Obviously, mat real-world applications will consist of many interdependent paths artdecasfigurations will
affect more than one of these paths. We believe that our techniques can be extended to workiplétpathl
reconfigurations—thigs a subject of ongoing research. The two most important issues to be considered in
performing a mliiple-path reconfiguration are:

1. Dependencies or constraints between the affected paths.
2. Shaing available resources amongst the paths dugognfiguration.

A common nter-path dependends synchronisation, such as lip-syncing of audio and video paths. We assume
that a conventional end-&nd jitter control and intestream synchronisation algorithm [Refs.] is in operation.
We mustensure that the reconfiguration does altiw the paths tarift out of sync with each other by an amount
greaterthanthe synchronisation mechanism can handle. This implies schedulicgathgs to each path so that
the reconfigurations complete at the same time. For instance, Ppatiste.s = X and pathP; hastieas =y < X

we would inject the integrate event ferat timet and that folP; at timet + (x - y). This calculation can be
extended to an arbitrary number of paths needing to be synchronised.

When resources are scarce the effects of a multiple-path reconfiguration on existing media flows are likely to be
even more severe than in the single-path case desatibee. Given that there is a limited quantity of resources
available for maintaining smoothness, we must decide how to distribute these amongst the paths that are being
reconfigured. This is a decision that should ideally be made by the individual application, since only itis in a
position to say which paths are more “important” than others and should be given phmftgrin terms of

resource allocation. For instance, incaferencingapplication it is more important to have glitch-free audio
switching at the expense of a few dropped video frames; the opposite may be true for a security camera monitoring
system. Therefore, in addition to specifying thigisred smoothness and lead time for a reconfiguration,
applications should be able to sifg a “resource priority” for each of the paths involved. Further experimentation
is necessary to determine whether this prioritisation should be performed on a per-resource basis or globally per
path and to develop an appropriate algorithm relating priority to eventual resource allocation.

A potentialdifficulty that was ignored in the previossction arisefrom the fact that some media data streams

cannot be switched @bmpletelyarbitrary points. The frames of anlPEG video stream, for example, are only
meaningful in the context of the precedirfjame thus such a stream should only be switched to a new

destination if an-frame is the next eleemt to be produce@BH97]. This obviously affects our scheduling

equations, since a path’s response to the receiptiofegration event may have to be delayed until an

appropriate point in the media stream is reached. The effect will be an increased lead time for the reconfiguration
and a possible loss of synchronisation if more than one stream is involved.

Our examples so far have dealt with live rather than pre-recorded media streams. Inammnevialg glitch-free
reconfiguration for live streams d@ten considerably more difficult, because the length of the stream is not known
in advance or because the latency requirements for an interactive application limit the amount of buffering that
can be used to “smooth over” potential glitches. If, however, we are switching betweestséams we can start

the new configuratiomunning duringthe setugphase, at a reduceate—requiringvery fewresources—and

draining into a buffer close to its eventual destination. At integration time, the new stream can start playing
immediatelyfrom the buffer, while we reconfigure according to the minimum resource usage schedule described
earlier. The onlgonstrant is that the buffer hold sufficient data to completely mask the lead time of the
reconfiguration. Similar optimisations are possible in most situations utilising stored streams.

6. Related Work

The component-based approach to application construction is used by a variety of multimedia programming
frameworks, such as G&T [Gib95], MedUu¥dGH94] andCINEMA [Hel94]. CINEMA is in many ways quite
similar toDuinn, as it makes use of composite components and a separate ‘model’ of the application—quite
separate from the media handliegmponents—that is used for canitand reconfiguratiofBar96]. CINEMA's

idea of what condtites a reconfiguration is quite limited and cefaiot transactional. It has no equivalent of
the ‘smoothness’ property for ensuring clean fitaorss between consistent states. The need for smoothness
support in the real-world domain of digital televisjpmoduction—wheréehere is a requirement to “splice”
togetheMPEG streams within the resource constraints of hardware decodess stlilmeetingQoS

guarantees— is illustrated §BH97].

In [SKB98], Sztipanovitz, KarsaandBaptypresent a similar two-level approach to compoitesed application
composition in the context of a signal-processing system whose applécstiare many of the real-time
requrements of multimedia. Their system perforrdative reconfiguration by having several alteitreat
configurations embedded in the model, which is also associated with a finite state machine whose states are
assigned to the different structural alternatives.

Reconfigurablaistributed systems have been an active area of redeanmore than a decade, with the

Distributed Systems Engineering group at Imperial College London at the forefront of this field. Work produced
by members of this groJiKrMa90, FoSI96]has tackled many of the issues relevarian: consistency
maintenance via transactional reconfiguration; dynamic reconfignratimfiguration of large-scale, long-lived
sysems; and thé&radeoffsbetween programmed and interactive reconfiguration. HowevebSagroup’s

research has primayidealt with general-purpose distributed applications and does not explicitly address the
real-time requirements of multimedia systems. Non real-time systems can afford taardgnpbut down the

parts of an application undergoimgconfigurationr—by moving them to guiescenbr passive state [GoCr96,
Kin93]—without breaking any integrity constints. Central to the Imperial College waskthe notion of a
configuration languagéor speifying the allowable configurations and reconfigurations for an application.
Configuration languages are also an important aspexthef research, such as that conducted bgiteC
project[BeRi95, BABR96].

7. Conclusions and Future Research

This paper has concentrated on the calculation of schedulgsdating per components in order to achieve a
glitch-free and timely recorduration of multimediapplications withinthe resource constraints of the underlying
system. Our main contribution is the addition to thenn framework ofmultimedia transactions, which take
applications from one configuration to another while maintaining their temporal consistency as well as their
structural and data consistendyainn's useof model components is crucial to the succesauwfimedia
transactions—beyond its existing benefits [MNCK97] a model altbesystem to validate proposed
reconfigurations without affectinginning components and to integrate changes in a principled way that trades off
QoS guarantees, resource availability and time constraints according to application preferences.

We have implemented tH2inn modelframework in Java, and are targeting a real-time distributed system
running the Chorus kernel and supporting peer components written in C++. We are camgadggd in
instrumentingthe peers to track their resource usage and real-time performaneceassof validating our
approacheso QoS management anetonfiguration. Future research planned with respearnmothness
includes extending anghlidating the approach described herenfiitiple paths with inter-patbonstraints and
further exploration of theradeoffsbetween resource usage and reconfiguragjaality in larger, real-world
applications.

References

[Atk96] M.P. Atkinson, L. DaynésM.J. Jordan, TPrintezis& S.Spence “An OrthogonallyPersistent Java.ACM SIGMOD Recor@5(4),
December 1996.

[BABR96] Luc Bellissard Slim BenAttallah, FabienneBoyer & Michel Riveill. “Distributed Application Configuration.Proc. 16th Interna
tional Conference on Distributed Computing Systetusmg Kong, pp 579-5858)ay 1996.

[Bar96] Ingo Barth. “Configuring Distributed Multimedia Applications Usit@ NEMA.” Proc. IEEE Workshop on Multimedia Software
Developmen{MMSD’96), Berlin, Germany, 25 March 1996

[BBHI7] BhaveshBhatt, David Birks & DavidHermreck. “Digital Television: Making it Work.” IEEE Spectrun84(10), pp 19-28, October
1997.

[BeRi95] LucBellissard& Michel Riveil. “Olan: A Language and Runtime Support for Distributgablicaion Configuration.” Journées du
GDR du ProgrammatiorGrenoble France, November 1995.

[BISt98] Gordon Blair& Jean-Bernar&tefani Open Distributed Processing and Multimediaddison-WesleyHarrow, England, 1998.
[FoSI96] HalldorFoss & Morris Sloman. “Implementing Interactive Configuration Management for Distributed Systeisc. 4th Interna
tional Conference on Configurable Distributed Systé@i3S’'96),Annapmlis, Maryland, USApp 44-51, May 1996.

[Gib95] SimonJ. Gibbs & DiongiosC. Tsichritzis. Multimedia Programming: Objects, Frameworks and EnvironmeAtilison-Wesley,
Wokingham England, 1995.

[GoCro96] Kaveh Moazami Goudar&i Jeff Kramer. “Maintaining NodeConsistacy in the Face of Dynamic Change?toc. 4th International
Conference on Configurable Distributed Systé@I3S’'96) Anmapolis, Maryland, USA, pp 659, May 1996.

[HaRe83] T. Harde& A. Reuter. “Principles of Transaction-Oriented Database Recovei®zM Computing Surveys5(4), 1983.

[Hel94] Tobias Helbig.“Development an€ontmol of Distributed Multimedia Applications.Proc. 4th Open Workshop on High-Speed
Networks Brest,France, 7-9 September 1994.

[KaPu9l1] Gail E. Kaiser &Calton Pu.“Dynamic Restructuring ofransactions.” IlhmedK. Elmagarmid (ed.)Database Transaction
Models for Advanced ApplicationShapter 8.MorganKaufmann,1991.

[Kin93] Tim Kindberg. ‘Reconfiguring Client-Server Systerh®roc. Intenational Workshop on Configurable Distributed ®ys$
(IWCDS'94), 1994.

[KrMa90] JeffKramer& Jeff Magee. “The Evolving Philosophers Problem: Dynamic Change ManagemitEE Transactions on Software
Engineeringl6(11), pp 1293-1306, November 1990.

[Mit98] Scott Mitchell. “Multimedia Transactions in theiih Framework.” Technical RepoQueen Mary &WestfieldCollege, Department
of Computer Science (in progress).

[MNCK97] Scott Mitchell,Hani Naguib,GeorgeCoulouris & TimKindberg “A Framework for Configurable Distributed Multimedia Apphca
tions.” 3rd Cabernet Plenary WorkshoRennesFrance, 16—18 April 1997.

[SKB88] JanosSztipanovits Gabor Karsai & Ted Bapty.Self-Adaptive Software for Signal Processing: Evolving Systems in Changing
Environments Without Growing PainsCommunications of thekCM 41(5), pp 66—73, May 1998.

[WGH94] Stuart Wray, Tim Glaue& Andy Hopper. “The Medsa Applications Environment.” Technical Report 9@Myetti Research
Limited, Cambridge, England 994.

