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Abstract 
 

Multiple-input multiple-output (MIMO) spatial multiplexing (SM) allows 

unprecedented spectral efficiencies at the cost of high detection complexity due to the 

fact that the underlying detection problem is equivalent to the closest vector problem 

(CVP) in a lattice. Finding better algorithms to deal with the problem has been a 

central topic in the last decade of research in MIMO SM. 

This work starts by introducing the most prominent detection techniques for MIMO, 

namely linear filtering, ordered successive interference cancellation (OSIC), lattice-

reduction-aided, and the sphere decoding concept, along with their geometrical 

interpretation. The geometric relation between the primal and the dual-lattice is 

clarified, leading to the proposal of a pre-processing technique that allows a number of 

candidate solutions to be efficiently selected. 

A sub-optimal quantisation-based technique that reduces the complexity associated 

with exhaustive search detection is presented. 

Many of the detection algorithms for MIMO have roots in the fields of algorithmic 

number theory, theoretical computer science and applied mathematics. This work takes 

some of those tools originally defined for integer lattices and investigates their 

suitability for application to the rational lattices encountered in MIMO channels. 

Looking at lattices from a group theory perspective, it is shown that it is possible to 

approximate the typical lattices encountered in MIMO by a lattice having a trellis 

representation. 

Finally, this dissertation presents an alternative technique to feedback channel state 

information to the transmitter that shifts some of the processing complexity from the 

receiver to the transmitter while also reducing the amount of data to be sent in the 

feedback link. 
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Chapter 1 – 

Introduction 
 

“The fundamental problem of communication is that of reproducing at one 

point either exactly or approximately a message selected at another point.” 

Claude Shannon, 1948. In [1], 2nd paragraph. 

 

1.1 – MIMO in Context 

The last ten years of research in communication theory have been characterised by 

extensive research in multiple-input multiple-output systems (MIMO). Reaching what 

Shannon’s mathematical theory of communication found to be possible for the white 

additive Gaussian channel was a research task spanning 45 years (from 1948 to 1993). 

On the other hand, the intense research on MIMO since in the late 1990’s achieved 

theoretical breakthroughs on MIMO rather more quickly. In fact, in the last ten years, 

the research community was able to put in practice many of the predictions of the 

theory, discover several nuances in the MIMO framework and develop them. Indeed, 

MIMO is making possible a new generation of wireless communication standards, both 

indoors and mobile. 

1.1.1 – From Shannon to Codes on Graphs 

When Claude Shannon presented his Master thesis in 1937 [2] showing that 

electronics could resolve logical (Boolean) statements, this was thought by many as 

something of little practical value. Shannon’s research on the transmission of discrete 

symbols was much ahead of the electronics of the time. Similarly, Alec Reeves’ pulse 
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coded modulation, presented in the same year, also had to wait a couple of decades for 

widespread implementation, after the invention of the transistor in 1947. Some criticism 

of the digital concept linked the new ideas to the then century-old telegraphy. Indeed, 

Nyquist’s papers in the 1920’s on sampled signals were linked to telegraphy in their 

titles. The advantages of digital communications would have to justify the need for 

more complicated circuitry than that required by analogue transmission [3]. 

Nevertheless, those advantages were very clear in Shannon’s 1948 paper: error-free 

binary transmission can be achieved despite the presence of additive white Gaussian 

noise (AWGN) added to the signal and despite a finite bandwidth, as long as the 

transmission rate, R, is kept below the capacity of the channel. The advantage that a 

signal could now be detected and regenerated is an immediate consequence of this. 

Shannon’s proof of the capacity of a channel is based on an argument involving the 

average performance of the ensemble of all possible codes; if the performance of the 

average is known, then there must be at least one code that performs better than the 

average of all of them (as it is trivial to show that many codes lead to worse 

performance than the average). Shannon’s clever proof was non-constructive and thus 

does not say anything about the code that would achieve the predicted capacity. This 

opened a race that included mathematicians, engineers, and computer scientists, 

looking for a family of capacity achieving codes for the AWGN channel. Most of the 

research was based on algebraic constructions of block codes that would maximise the 

minimum distance between codewords while keeping some structure that would limit 

the complexity of the decoder. Convolutional codes were developed alongside, falling 

into the so called category of probabilistic codes, differing from algebraic coding by 

maximizing the average distance between codewords, an idea that may be said to be 

closer to the initial ideas in Shannon’s work. Most coding applications favoured the use 

of convolutional codes instead of algebraic block codes, mostly because of the efficiency 

conveyed by the Viterbi algorithm (for sequence detection on a trellis), an algorithm 

which became pervasive in several applications [4]. Forney [5], and later Kschischang 

and Sorokine [6] eventually showed that block codes (also called group codes, as they 
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are best understood in the context of group theory in mathematics) could also be 

described by trellises and thus that they too can be decoded by means of the Viterbi 

algorithm. In fact, the famous 1974 paper presenting the Bahl-Cocke-Jelinek-Raviv 

(BCJR) algorithm [7] already contained (on p. 287) the tools to construct a trellis of a 

block code (using what later became known as construction A [5]). Biglieri gives a 

concise description of the construction of the minimal trellis of a block code in [8] and 

comprehensive analyses exist by Shu Lin [9] and Honary [10]). 

 It was only in 1993, with the discovery of turbo-codes, and later in 1995 with the 

re-discovery of the Gallager codes (or LDPCs - low density parity check codes) that the 

quest was over (a thorough historical account by two of the most preeminent coding 

theorists can be found in [11], along with significant technical details; a concise history 

was given by the author of the thesis in [12]). Ironically, the solutions were the outcome 

of very different approaches to code design. Turbo-codes applied ideas of feedback 

coming from electronics (in this case information feedback) and LDPCs are an instance 

of concepts matured in the discipline of machine learning. It is today well known that 

both turbo-codes and LDPCs, along with repeat-accumulate (RA) codes, can be 

described under the single umbrella of codes on graphs [13]. Their decoding uses belief 

propagation in factor graphs [14], also known as Bayesian networks [15]. These ideas 

are known in communications as iterative decoding [16] (note that these names vary 

throughout the research communities). 

The aforementioned codes are designed for the binary symmetric channel, as initially 

modelled by Shannon, and they all have a certain code rate. In the early 2000s a 

different family of codes emerged, said to be rateless codes, as one cannot define a fixed 

code rate for them. They have been discovered in the form of fountain codes or raptor 

codes and are specially designed for the erasure channel 1. They are also all defined and 

decoded as codes on graphs [15] (ch.6). It is worth mentioning that for the deletion 

                                        
1 In the erasure channel the receiver is unable to decide or does not receive some of the data 

symbols but is aware of that loss and where and how many symbols were lost. 
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channel 2 little is known. Its capacity is still an open problem and, to the best of our 

knowledge, no practical schemes exist to cope with the deletion channel.  

1.1.2 – The First Appearance of Lattices: Coding for The Band-limited Channel 

In bandwidth-limited channels, binary antipodal signalling is not a solution to the 

communication problem, whatever the channel code that is used. The capacity of a 

channel depends on the code rate of the channel code (i.e., a real number in [0 1]). 

When bandwidth is not a limitation, one can tolerate reducing the rate of the code. 

Such an approach is useful in space applications, where the bandwidth is less of a 

problem than the power constraints associated with receiving bits from a distant small 

probe.  In most other contexts, as spectrum is both limited and expensive, one needs to 

resort to multi-level modulations, such as quadrature amplitude modulation (QAM). 

Coding for these channels historically started with the design of lattice codes, 

characterised by the lattice they use to define the code words in a multidimensional 

space and a shaping region that limits the lattice, defining a finite point constellation 

[17], [18]. Selecting the lattice is a problem rather close to the seminal ideas in 

Shannon’s work, as it amounts to a multi-dimensional sphere packing problem, as 

mentioned previously [19] [20]. To minimize the average power of the code words, the 

shaping regions should be a hyper-sphere, which causes some technical problems while 

decoding. It should be noted that when changing from a hyper-cubic shaping region to 

an optimal one there is an associated coding gain of 1.53 dB (the sometimes famous 

/ 6eπ  gain in linear units, also well known in quantization problems), which can only 

be obtained by a proper shaping[21]. However, achieving this gain increases the 

complexity of the decoder and the selection of a particular lattice is a difficult task in 

itself [22]. 

                                        
2 In the deletion channel the receiver does not receive some of the data symbols, but the next 

ones are shifted filling that time gap and the receiver is unaware of the loss and does not know 

where and how many symbols are missing. Only some bounds to the capacity are know, mostly 

after Mitzenmacher’s work at Harvard University. 
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Ungerboeck’s trellis-coded modulation (TCM) [23] was the breakthrough that 

became the most popular technique for the band-limited channel in the 1980s, perhaps 

because decoding is based on the Viterbi algorithm, which was well understood by 

practicing engineers since its discovery predated TCM.  

Lattice-based channel coding also proved important for the Rayleigh fading channel 

in the 1990’s [24]. Authors such as Boutros, Viterbo and Belfiori later remained very 

active in the design of space-time codes for MIMO and seminal work by the first two 

authors for decoding of lattice codes later proved extremely important for optimum 

detection in MIMO. 

Eventually, lattice structures were also proven to be able to reach the capacity of 

the AWGN channel in seminal work by Erez and Zamir [25]. More recently, new 

capacity achieving codes for the AWGN channel put together ideas from LDPCs and 

lattices using a sparse generator for the dual lattice3 [26] 

1.1.3 – The Advent of MIMO 

The surprise of the discovery of the first capacity-achieving codes could have been 

seen as the end of communication theory by around 1995. Yet, at the same time new 

ideas by Foschini made room for unprecedented channel capacities for the wireless 

channel with multipath fading arising from rich scattering environments. Suddenly, 

Shannon’s famous formula was no longer the limit [27] as multipath could be seen not 

as an impediment but as enabling multiple parallel channels. In 1996 Foschini at Bell 

Labs proposed a concept for parallel transmission utilising layers [28] where several 

antennas are used at both the transmitter and the receiver. The idea of using multiple 

antennas for more than just maximal ratio combining (MRC is a spatial version of the 

matched filter and was well known and used in several systems) was not entirely new, 

but until then no scheme had been considered simple enough for any practical use. 

Paulraj and Kailath with a USA patent granted in 1994, which made use of spatial 

multiplexing (SM) for increased throughput in wireless digital video, are by many 

                                        
3 A detailed description of dual lattices will be given in Chapter 2. 
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credited as the pioneers in MIMO. The 1999 landmark paper by Telatar [29]4 showed 

that the capacity increases linearly with the minimum number of antennas used at each 

side of the communication link. It should be noted that Telatar’s paper was the first to 

connect the capacity of spatial vector communications with the singular values of the 

(matrix) transmission channel. 

However, the MIMO concept was not entirely new though. On the information 

theory side, the first analysis of the MIMO channel capacity was conducted by Wyner 

in the 1970’s. With a more engineering approach, Winters proposed several schemes for 

transmit diversity in mobile systems in the 1980’s. Nonetheless, these schemes were not 

yet space-time coding or spatial multiplexing, as they are defined today. In [30] (Ch. 1), 

the authors, now considered pioneer researchers in MIMO, credited several past 

researchers for some previous work on MIMO-related concepts. A quite comprehensive 

history of MIMO is given in the recent introduction of [31] but still, the authors do not 

go beyond 2003-2004 in the historical account they give. 

The explosion of publications in MIMO started 5 around 2003 (in conferences) or 

2004 (in journal papers), peaking to a maximum in 2009, but even now, the number of 

published remains high (the data is available in the introduction of [31], and was based 

on IEEE publication figures). In 2003 the first widely disseminated books focused on 

MIMO were published by Paulraj et al. [30], by Larsson and Stoica [32] and by Vucetic 

and Yuan[33]. In the next few years there was a burst of book publications: in 2004 by 

Barbarossa [34] and by Biglieri and Taricco [35]; in 2005 by Jafarkhani [36], and one 

(edited) by Gershman and Sidiropoulos [37]; in 2006 (edited) by Bölcskei, et al. [38] 

and also by Kühn [39], in 2007 (edited) by Biglieri et al. [40], by Giannakis et al. [41], 

and by Duman and Ghrayeb [42]. In 2007 the book by Oestges and Clerckx [43] 

analyses MIMO implementation in real channels (considering antenna correlation and 

                                        
4 The results were initially presented by Telatar in 1995 in an AT&T Bell Labs technical 

report. 
5 The start of the publication boom is being considered here as the year when the number of 

publications roughly doubled in comparison with the previous year. 
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departing from the flat Rayleygh fading assumption). It is worth mentioning that in 

the 2005 textbooks on wireless communications by Goldsmith [44] and by Tse and 

Viswanath [45] already included thorough analysis of several aspects of MIMO systems 

(the latter book in much detail). 

1.1.4 – MIMO in Wireless Standards 

Orthogonal frequency division multiplexing (OFDM) [46] and MIMO are the two 

technologies (along with larger channel bandwidth) underpinning the physical layer of 

the fourth generation (4G) wireless networks [47], [48], [49], such as IEEE 802.16 

(dubbed WiMAX [50]) and Long Term Evolution (LTE) [51], [52], [53]. 

In its first releases, LTE relied on MIMO mostly for the downlink (i.e., from the 

base station (BS) to user equipment) [54], using 4 layers in the downlink (DL). In the 

latest release 10 (known as LTE-Advanced6), the role of MIMO also became important 

in the uplink (UL). Indeed, MIMO is utilised in both uplink and downlink of the IEEE 

802.16m standard (WiMAX profile 2.0). The LTE-Advanced release considers DL with 

eight layers and uplinks with up to four layers, i.e., a BS with eight or more antennas 

and user terminals with each 4 antennas [55], [49], [56]. Improving the detection 

performance with affordable complexity in terminals with 8 layers (with 8×8 antennas) 

is still a very important problem [57] (p.181). With these configurations LTE-Advanced 

achieves spectral efficiencies of 30b/s/Hz in the DL and 15 b/s/Hz in the UL [58] 

(p.86), [53] (p. 40), [57] (p.181). 

Details on the role of MIMO in WiMAX are given in [59], [60], [61],[62], and an 

overview of its application in LTE is given in [63], [55], [58]. 

Presently, MIMO is entering the vast domestic market via 802.11n [64], [31] (ch.7), 

the latest generation of Wi-Fi, designed for a peak rate of 600 Mbps (using 40MHz 

bandwidth and 4×4 antennas), which is the first commercial product to be based in 

                                        
6 The numbering of LTE releases is a continuation of the numbering in the releases of UMTS 

and its enhancements (all under the 3GPPP project). 
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MIMO-OFDM. The same combination of MIMO-OFDM has also enabled other 

standards in the IEEE 802.11 universe [65], particularly those specifically designed for 

high throughput. Notably, the first wireless standards for data transmission rates over 

1Gbps are the 802.15.3c [66] (operating at millimetre waves and using beamforming 

with antenna arrays) and the 802.11ac [67] (using eight parallel layers in the 5GHz 

band), both incorporate multiple antennas (and LDPCs). These standards, which are 

scheduled to be concluded by early 2013 [65], will put in to practice the dream “gigabit 

wireless” anticipated by Paulraj et al. in 2004 [68]. 

Undoubtedly, MIMO research started within wireless communication and even 

today it remains the most prolific research community in the field. However, it is worth 

noting that the concept of SM has also started to be studied for communications via 

(multi-modal) optical fibres [69] and, more recently, the concept of taking advantage of 

mutual interference has also been extended to the traditional bundles of cables in wired 

telecommunication networks, turning crosstalk from a nuisance into an ally and so 

increasing transmission capacity [60], [70], [71]. 

1.2 – The Different Faces of MIMO 

The definition of the MIMO communication channel is clear: there is an input vector 

x (with NT elements) and an output y is, also a vector (with NR elements), which is 

obtained from x by means of a linear (matrix) transformation H. Furthermore, the 

detection of y is perturbed by some noise vector of the same size. 

 

 

 

Figure 1.1: Wireless MIMO link (single-user setup). 

 



1 − INTRODUCTION 

9 

 

One consequence of how fast research on MIMO developed was the emergence of a 

proliferation of names for the various research areas in MIMO. If sometimes the same 

concepts may be found disguised under different names, one may also encounter the 

same name associated with quite different concepts. Perhaps one important source of 

confusion is the existence of different terminology in academic papers and in the most 

important wireless standards (LTE, WiMAX and 802.11n).  

It is usual to encounter specific cases where the input or the output is a one-

dimensional vector; when both vectors are one-dimensional we revert to the traditional 

single-input single output case (SISO). Table 1.1 consists of the general taxonomy for 

MIMO configurations. 

 

Table 1.1: Configurations depending in the input and output.  

 SISO MIMO SIMO MISO 

T
N  =1 > 1 =1 > 1 

R
N  =1 > 1 > 1 =1 

1.2.1 – Diversity and Multiplexing 

From Shannon we know that, in the AWGN channel, a symbol error rate (SER) 

curve )(
s

P ρ  is a function of the signal to noise ratio (SNR), ρ , and can be as steep as 

one wants. In the limit, the curve )(
s

P ρ  can have an infinite negative slope. For the 

Rayleigh fading 7  channel it is well known that )(
s

P ρ  exhibits a 1−  slope in the 

                                        
7 This limiting behaviour is only characteristic for the Rayleigh fading assumption. Other 

fading statistics lead to different diversity orders [247]. For example, under Nakagami fading, 

the diversity order depends on a parameter of the fading distribution which may lead to higher 

or lower diversity orders [246] (ch. 14), [44] (ch.6). Goldsmith points out that some 

measurements point out to the latter case, i.e., leading to 1d < [44] (ch. 3). The existence of 

Rician fading (where some reflection components do not have zero mean, i.e., some dominant 

component exists) is usually taken as an unavoidable cause for a reduction in the diversity order. 

However, Lozano, Tulino and Verdú [38] (ch. 5), point out that as both NT and NR tend to 

infinity, the capacity is not changed. Note: the Rayleigh distribution is a particular case of the 

Rice distribution as well as of the Nakagami family. 
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uncoded SISO case, that is, one finds that 1)(
s

P ρ ρ−∝ . One door that MIMO opens is 

the possibility of increasing (in modulo) that slope, i.e., obtaining a faster reduction of 

the error rate as SNR increases. Formally, one defines the diversity order, 

corresponding to the slope  

 
SNR

log( ( ))
lim

log( )
s

P
d

ρ

ρ→∞
= − . (1.1) 

This diversity order measures how many statistically independent copies of the same 

symbol the receiver is able to receive. In brief, this amounts to the number of 

independent fading coefficients that the receiver can average in order to produce a 

reliable estimate of a transmitted symbol. Not surprisingly, the maximum available 

diversity that can be attained is max T R
d N N= , in the case of uncorrelated fading, as in 

the model that will be introduced in sec. 2.2.1. 

The benefits of vector communication with spatial diversity are not limited to this 

increased slope. Think of a SISO setup where one switches from a 4-PAM constellation 

(2 bit/s/Hz) to a 8-PAM constellation, in this case the same error rate can be obtained 

by increasing the SNR by 6dB while 1 more bit/s can be transmitted (now 3 b/s/Hz) 

using the same bandwidth. If one changes from a 16-QAM (4 b/s/Hz) to 64-QAM 

constellation, the same additional 6dB are required to achieve the same SER, though 

the spectral efficiency is increased by a factor of two. It is said that the multiplexing 

gain of the latter QAM constellation is higher than the one of PAM. In the MIMO 

general case, this gain is defined as 

 
SER

log( )
lim

log( )

R
g

ρ→∞
=  (1.2) 

When plotting the symbol error rate (SER) versus the signal to noise ratio (SNR), 

the existing diversity d in the communication link is simply the slope (in the 

asymptotic regime) of the SER curve. On the other hand, the interpretation of the 

multiplexing gain in a typical SER plot is not so straightforward. The metric g 

indicates how the capacity increases with the SNR, which is a common representation 

in information theory since Shannon but is less useful in practice. In terms of the SER, 
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the multiplexing gain g measures how fast spectral efficiency can increase with the 

increase of SNR while keeping the same error rate and corresponds to the maximum 

number of independent layers or parallel channels and is limited by 

 max min( , )
T R

g N N= . (1.3) 

In a theoretical breakthrough paper [72], Zheng and Tse showed that there is a 

trade-off between d and g, i.e., the famous diversity-multiplexing trade-off (DMT): 

increasing one leads to a decrease in the other. The only pairs ( , )d g  that are allowed lie 

on the following piecewise-linear function constructed by connecting the points defined 

by 

 max( ) ( )( ), for 0
R T

d k N k N k k g= − − ≤ ≤ .  (1.4) 

One interpretation of this trade-off is that some subset of the antennas provide for 

the existence of several layers, while the remaining ones assure the diversity, but they 

cannot all be contributing to both objectives. The operational information conveyed by 

the DMT curve is very often confusing and misleading in the literature. The 

operational meaning of the DMT curve lies in the extremities connected by each of the 

piecewise-linear segments. Each segment defines an operation “mode” with a pair ( , )d g

defined by the extremities of the segment, which then define the maximum value that 

each of the parameters can assume, as illustrated by Yao, Zhen and Wornell in [38] (ch. 

8). 

The practical relevance of the DMT has been much criticised though; for example, 

Burr in [31] (ch. 3) points out that it is only valid for the ideal (uncorrelated) Rayleigh 

channel and only at an impractically high SNR regime, while authors in the LTE 

literature rebuke the usefulness of DMT for ignoring other aspects of the transmission 

chain, which bring other sources of diversity for example from the frequency domain or 

from coding. The same argument is made by the authors of [55] and even also the 

authors of[53] (sec.5.6); Giannakis et al. argue that providing a physical interpretation 

of g in the finite SNR regions “is impossible”[41] (pp. 46-48) and recommend using an 

interpretation based on spectral efficiency. 
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Despite the connection between the two gains, there is a division in system design 

between either aiming at full diversity or aiming at maximising the multiplexing gain, 

which in practice has been measured by the spectral efficiency gain provided by the 

transmission over multiple layers. The development of space-time codes (STC) 

addresses the first objective, while the spatial multiplexing (SM) concept aims at the 

latter. These two concepts are presented in the following. 

1.2.2 – Space-time Codes (STC) 

The famous Alamouti 2×1 space-time code was presented in 1999 [73]. The scheme 

achieves the same diversity as MRC with two antennas at the transmitter while having 

only one antenna at the receiver, and transposing the burden of two antennas to the 

transmitter 8 . The structure of the Alamouti code permits a very simple decoding 

method. This advantage was extended to larger dimensions by Tarokh, Jafarkhani, and 

Calderbank [74], who discovered other orthogonal space-time block codes (OSTBC), 

which are also easy to decode owing to their structure. Interestingly, the Alamouti 

scheme realises the optimal trade-off for in 2×1 setup; the other OSTBC do not achieve 

that optimal DMT, nor does the Alamouti 2×2 configuration. 

The computational complexity for their decoding was recently analysed in depth 

[75]. Sadly, these constructions for STBCs were shown not to exist for configurations 

larger than 4×4. They are however instances of linear dispersion codes which, albeit 

not necessarily orthogonal, also spread the symbols in both space and time. The design 

and study of space-time codes constitutes a research field of its own [36], [41], [32]. 

Another family of codes, proposed earlier than STBC, are the space-time trellis codes 

(STTC) [76] where the symbols emanating from the antennas not only depend on the 

new data but also on the state of an encoder (as in convolutional codes). 

                                        
8 There is power penalty though, given that only half of the power is collected with one 

antenna at the receiver rather than two. This results in a SER curve translated by 3dB in 

respect to MRC performance curve. The extrapolation to a 2×2 configuration of the Alamouti 

space-time code is straightforward and that loss is recovered. 
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Lattices have been essential in coding for MIMO just as they had been for the 

AWGN channel and afterwards for the SISO flat Rayleigh channel. A fruitful line of 

research, mostly lead by Oggier, Viterbo, and Belfiori, uses algebraic number theory for 

finding good lattice codes for MIMO [77], [78], [79]. The 2×2 so called Golden Code, 

which simultaneously achieves full diversity ( 4)d =  and full multiplexing gain ( 2)g = , 

was created under that framework. One other example of STC with lattices was the 

discovery by Gamal, Caire and Damen [80] of the so called lattice space-time (LAST) 

codes, which realise the DMT. The codes are grounded in the (previously mentioned) 

Erez and Zamir constructions [25]. The optimum detection algorithm for LAST codes 

was proposed in [81]. 

1.2.3 – Spatial Multiplexing (SM) 

This technique focuses only on the objective of increasing the data rate, leaving 

behind rather than obtaining any spatial diversity in a 
T R

N N×  configuration. If the 

receiver is able to correctly estimate the channel matrix (even though that information 

is oblivious to the transmitter), signal processing at the receiver can extract the mutual 

interference and decouple maxg streams of independent data.  

The first spatial technique, proposed by Foschini (as mentioned in sec. 1.1.3), was 

D-BLAST (diagonal Bell Labs layered space-time). This technique uses error correcting 

codes and “rotates” over time the distribution of the different code streams (the layers) 

across the antennas. Considering two dimensional space-time frames, different layers 

end up associated with distinct diagonals of a space-time grid (or frame). This creates 

spatial diversity besides spatial multiplexing. However, owing to the detection 

complexity it incurred it was dropped very early in favour of a much simpler approach 

known as V-BLAST (vertical BLAST). One other downside with D-BLAST is that it 

wastes some space-time resources at the time extremities of a frame, although one can 

minimise that effect by appropriately dimensioning the frames [44] (sec. 10.6). It should 

be noted that, despite its impracticability, when the number of antennas approaches 

infinity, D-BLAST is able to approach the capacity of the MIMO channel [45] (sec. 
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8.5). Interestingly, the V-BLAST architecture is able to approach capacity by rate 

adaptation across the different layers, when there is channel state information at the 

transmitter (CSIT) [38] (ch. 5) (for a practical example see [82]). Near capacity MIMO 

open loop SM has been achieved using soft sphere decoding (see Chapter 2) 

concatenated with linear codes by means of an interleaver [83]. 

V-BLAST does not make use of all the spatial diversity that exists in the MIMO 

channel as D-BLAST is able to. In the vertical version there exists a fixed association 

between the parallel sub-channels and the antennas at both extremities of the link. 

Note that these sub-channels are also frequently called layers, even in uncoded systems, 

where each layer simply corresponds to the symbols from a particular transmit 

antenna. Consequently, the maximum spatial diversity V-BLAST offers is, at most, 

R
N , and even so, only if maximum likelihood detection (MLD) is used. In the case of 

the ordered successive interference cancellation (OSIC) detector, the diversity is only 

1
T R

N N− + , i.e., only one in the common case of symmetric configurations. This 

latter fact was conjectured about from very early on (e.g., [30] (p.158)) but has only 

very recently been proven [84] (this will be further commented on in Chapter 2). 

Unlike the Alamouti (and other OSTBCs), both V- and D- BLAST could be 

trivially extended to any number of antennas, as there is no structural constraint in 

their design. However, to optimally detect all layers (with an error performance curve 

that exhibits all the diversity that these schemes still provide and with no gain 

penalty), involves a computational complexity that grows exponentially with the 

number of antennas at the receiver. 

The predominance of the V-BLAST architecture made it almost synonymous with 

SM. Furthermore, as Golden, Foschini, et al. [85] presented a simple receiver based in 

interference cancelation for V-BLAST, the name became much associated to that 

particular detection technique. The name successive interference cancelation (SIC) will 

subsequently be used in this work for the concept that underlies the detection method 

first proposed for V-BLAST in [85]. The V-BLAST architecture will be simply referred 

to throughout this work as SM. 
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SM does not require CSIT (since it is an open loop architecture) and the capacity 

grows linearly with min( , )
T R

N N . In practice, the number of antennas in some 

equipment is not only limited by the signal processing complexity at the receiver, but 

also by the physical dimension the antenna array may have; one should bear in mind 

that as the spacing between antennas diminishes, they become increasingly correlated 

and the capacity of the system diminishes (e.g., [30] (sec. 4.6.1).  

The major limitation in SM is the large algorithmic complexity involved in the 

optimum detection applying the MLD principle to achieve optimum detection. MLD 

captures the spatial diversity of the architecture while removing all the mutual 

interference between layers. 

In the last decade there was a burst of research on this problem: how to detect the 

received vector with a performance as close as possible to the optimal yet having a 

reduced complexity compared with MLD? The most abstract and general description of 

this problem is the closest vector problem (CVP) in a lattice, the applications of which 

go far beyond the MIMO detection problem in SM. The detection of some STC is also 

a CVP in a lattice after vectorising the space-time matrix code words [77]. 

Other communication problems such as inter-symbol interference (ISI) channels [86], 

multi-user detection (MUD)[87] are formally the same, and may be encapsulated as a 

general equalisation problem (as proposed in [88]), that can be mapped as a CVP.  

Table 1.2 lists some terminology that is used in these different frameworks. Almost 

all topics in this thesis deal with several aspects of the CVP. 
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Table 1.2: Different names of analogous techniques. 

 MIMO 
Equalisation for 

 ISI channels 

Multi-user 

Communication 

Inversion 

(linear) 

• Zero-forcing (ZF) 

• Channel inversion 

• Decorrelation 

Zero-forcing (ZF) 

equalisation 
Decorrelating 

Minimum 

mean squared 

error (MMSE) 

MMSE MMSE filtering MMSE detection 

Interference 

cancellation 

•Nulling and cancelling 

• Successive interference 

cancellation (SIC) 

• V-BLAST detection 

Decision feedback 

equalisation (DFE) 

• Iterative multi-

user detection 

(MUD) 

• Successive 

interference 

cancellation (SIC) 

Optimum 

detection 

• Maximum likelihood 

detection (MLD) 

• Exhaustive search 

Maximum likelihood 

sequence detection 

(MLSD) 

• ML detection 

• Brute force 

• Sphere decoding 

(near optimum) 

Precoding 

• Multiuser-MIMO 

• Broadcast channel 

(BC) 

• ISI Precoding 

• Costas precoding 

• Tomlinson-Harashima 

precoding (THP) 

Dirty paper 

coding (DPC) 

Parallel 

sub-channels 

• Closed loop SU-MIMO 

• Singular value 

decomposition (SVD) 

and water filling 

• Communication over 

eigen- modes [89] 

• Eigen-beam spatial 

division multiplexing 

• Precoding [90] 

• Beamforming 

• OFDM 

• Multi-tone modulation 

• Filter bank multicarrier 

Not defined 
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1.2.4– Spatial Diversity Versus Spatial Multiplexing 

Physical layer designers face the problem of opting between STC and SM. Another 

attempt to match them under a unified system design was presented recently by El-

Hajjar and Hanzo [91]. A pragmatic approach for switching between them according to 

the channel conditions was considered in [92].  

This question was thoroughly investigated very recently by Lozano and Jindal [93]. 

They have looked into the problem of considering MIMO in systems that combine 

MIMO with interleaving and coding, wideband channelisations with OFDM, link 

adaptation (adaptive modulation and rate control), and automatic repeat request 

(ARQ). Their work addresses precisely some of the criticism aimed at the somewhat 

idealised conditions in which DMT was defined (as mentioned in section 1.2.1). The 

conclusion was that with all the diversity available in time and frequency (including 

carrier aggregation), spatial diversity becomes redundant and SM should be the only 

objective when designing the MIMO aspects of the physical layer, especially when the 

channel is wider than 10 MHz. Note that LTE release 8 defines channels bandwidths up 

to 20 MHz, LTE-Advanced (i.e., release 10) already defines a bandwidth up to 100 

MHz [58], and 100 MHz is possible in WiMAX by carrier aggregation [59], and 802.11n 

is defined up to 40 MHz [64]. 

1.2.5 – Multi-user MIMO 

The existence of multiple antennas on at least one side of the link is not limited to 

single-user systems (SU-MIMO); capacity gains and better complexity trade-offs also  

exist in multi-user MIMO (MU-MIMO) where a user terminal can have only one 

antenna. This becomes important when the terminal is too small to provide any room 

for spatial diversity or little capacity for signal processing, whist the BS can bear 

several antennas and handle demanding signal processing tasks. 

Broadcast channel (BC): given its information-theoretical roots, this is also 

sometimes called dirty paper coding, although in the 4G literature it appears under the 

name of space division multiple access (SDMA) or simply downlink MU-MIMO. The 
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advantage of BC is enormous given that several single antenna user terminals can 

receive (with very little processing) its own information “cleared” from any interference 

from the signals intended for another terminal located elsewhere. Moreover, this is 

accomplished while simultaneously using the same time-frequency resources in all the 

users that are being served by that BS. The technique is chiefly inspired by the 

precoding techniques for channels with inter-symbol interference (ISI) [94] such as 

Tomlinson-Harashima precoding, which has been extrapolated to more than the two 

dimensions (the QAM case) in order to be applied to MIMO. The techniques for the 

BC developed in the last decade are almost entirely based on the properties of lattices 

[95], [96]. It is important to notice that the error performance of the BC is highly 

sensitive to good knowledge at the BS of the channel (CSIT) for each user terminal 

that it serves. 

Multiple access channel (MAC): this can be seen as the dual of the broadcast 

scenario, where all user terminals (possibly with a single antenna) simultaneously 

transmit to the base station from their different locations. 

The collection of the dispersed antennas in the BC and MAC are sometimes called a 

virtual antenna array (which is itself is a broader concept related with co-operative 

networks). Both the 802.16 family of standards [61] and LTE [54], [52] (sec. 11.2.3)) 

allow BC and MAC. 

1.2.6 – Single-user Closed loop (Water-filling) 

When there is simultaneously perfect channel state information at the transmitter 

(CSIT) and perfect channel state information at the receiver (CSIR), the MIMO 

capacity can be reached by a simple technique, simultaneously achieving full diversity 

and full multiplexing gain. By computing the singular valued decomposition (SVD) of 

the channel and adding linear filters at both the transmitter and the receiver (both 

filters are unitary matrices), it is possible to convert the MIMO channel into a set of 

parallel SISO channels and achieve capacity applying a power adaptation based on 

water-filling, according to the singular values of H  (e.g., [35] (sec. 4.1)) (this will be 
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explained further in sec. 7.3). The number of channels available equals rank( )r = H , 

i.e., the number of non-zero singular values of the channel matrix.  

In fact when CSIT exists and the channels are decoupled via SVD, the optimal 

DMT can be achieved. By sending different symbols through each one of the parallel 

channels, a multiplexing gain min{ , }
T R

g r N N= ≤ , though no diversity is involved 

(each symbol travels in one and only one channel). The system can also be designed to 

operate in the other extreme of the DMT piece-wise curve, i.e., with full diversity 

=
R T

d N N . That can be achieved by “rotating” the symbols across the r  channels. 

However, because r  “channel uses” are necessary to transmit r  symbols, the 

multiplexing gain is zero in that case.  

1.2.7 – Beamforming 

This technique, which is well known in many areas such as antenna theory or 

remote sensing, amounts to steering the transmit beam of the BS to a particular user 

by dynamically controlling the weighting of the transmit power in each of the elements 

of the antenna array. Although less common, there is one other concept that is also 

dubbed beamforming. However, that technique is a particular case of water-filling, 

corresponding to the case when only one singular value of H is significant. In that case 

all the power is assigned to that singular value and it can be shown that it also 

amounts to transmitting the same symbol in all antennas at the same time, though 

with scaling gains in each of them. Notice that this is what happens in the low SNR 

regime, when spreading the power through more than one singular value leads to 

marginal gains [42] (p.53-54). 

1.2.8 – Channel Feedback 

It should be pointed out that for the cases of beamforming, water-filling, and for 

both MU configurations, the existence of a reverse link (from the receiver to the 

transmitter) is essential unless the UL and DL channels are reciprocal. While channel 

reciprocity may occur in time division multiplexing (TDM) systems, it does not exist in 
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frequency multiplexing (FDM) systems. The knowledge that either the Tx or the Rx 

may have of the channel may be complete or partial (for example, only the distribution 

of the channel coefficients may be known). 

A comprehensive overview of the capacities (or, the capacity regions in the case of 

MU scenarios) for most MIMO scenarios, including BC and MAC, was provided in 

2003 [97]. The paper analyses all cases when both CSIT and CSIR exist, when only 

CSIR exists, and also the cases when the exact channel is unknown but still its 

probability distribution p
θ
 is known (which is a particular case of Figure 1.2, when 

knowledge of H is absent at Tx, at Rx or from both). Yet, the capacity of the broadcast 

channel (not based on the duality with the BC as in [97]) was only fully characterised 

later by Weingarten, Steinberg, and Shamai in 2006 [98] 9.  

 

 

Figure 1.2: Single-user MIMO with channel state information at the receiver 

and at the transmitter (either full information or the distribution). 

 

In spite of the progresses made, the case of single-user MIMO still holds some open 

problems regarding the capacity (under various particular assumptions), which are 

listed in [40] (sec.2.3.4). 

Precoding for closed loop SU-MIMO with water-filing is only possible if the channel 

matrix is known at the transmitter. However, when for instance only the statistics is 

known, it is still possible to partially adapt the signal. The general techniques for all 

these situations were overviewed in [90]. 

                                        
9 The paper received the IEEE Information Theory Paper Award in 2007. 
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It is clear that the performance of closed loop techniques is dependent on the 

accuracy of the CSIT.  However, the volume of feedback information can be enormous, 

especially for fast changing channels, requiring many channel updates. Think of a 

system with a 4×4 MIMO-OFDM complex channel with 512 OFDM sub-channels, 8 bit 

quantisation per real value channel coefficient, 100 Hz Doppler frequency, and channel 

estimation at 10 times the Doppler rate. The total feedback is 16 × 2 × 512 × 8 × 100 

× 10 = 131.1 Mb/s, which, at the present time, is a totally unreasonable data rate to 

allocate to a control channel. 

The most common technique to reduce the transmission rate in the reverse channel 

is based on vector quantization and codebooks where the information transmitted 

identifies one element in the finite codebooks of possible channels (overviews can be 

found in [99] and [100]). One usual assumption is that the channel does not change 

during the delay involved in informing the transmitter [101]. In more recent literature, 

the effect of delay is also considered in the design of the feedback techniques (e.g., [89]). 

In the case of the  BC channel it was found by Jindal[102] that the quality of feedback 

provided by each (single antenna) user needs to improve as the SNR of the user 

increases in order still to achieve the multiplexing gain (which does not happen in SU 

MIMO). 

1.3 – Motivation and Scope 

Digital transmission has progressed during the last two decades of the 20th century 

aiming at higher data rates, less bandwidth for a fixed data rate (i.e., higher spectral 

efficiency), while spending the least possible amount of energy per bit, given a certain 

additive noise. There is, however, a fourth dimension to the problem: the complexity 

involved in the “construction” of the transmitted signal (i.e., the complexity associated 

with the modulation and the coding scheme), and the complexity involved in the 

detection and decoding of the signal at the receiver. Typically, progress towards 

Shannon capacity was achieved by means of channel coding concatenated with higher-

order modulation, eventually at the expense of higher complexity, mostly at the 
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receiver. Turbo-codes, LDPCs, and lattice-coded modulation are examples of the path 

of increasing complexity (mostly in detection and decoding). 

The rapid rise in the computing power available at the handset now permits rather 

complex baseband processing. In the last dozen of years we have witnessed the core 

problems in communication engineering being much less electronics-centric and much 

more algorithmic-centric. Modern communication theory is now largely entwined with 

problems traditionally in the domain of theoretical computer science (e.g., machine 

learning, data structures, algorithms and their complexity), or, more generally, in 

applied mathematics (related with matrix algebra, discrete mathematics, integer 

programming or combinatorics). Sometimes the separation is now only barely possible 

by looking at the application in mind and not by the nature of the problem itself. More 

generally, this can also be said of many of the aspects of information theory and coding 

theory. The fields of image communication or source coding (compression) always 

incorporated a wide variety of fundamental research. What is new is that this fusion 

propagated to the physical layer, once clearly within electrical engineering. 

The problem of detection in MIMO SM is the central one in this thesis and 

constitutes a clear example of an algorithmic problem at the physical layer. The 

problem is analogous to the (already mentioned) closest vector problem (CVP) in 

lattices (sometimes also called the nearest vector problem (e.g., [103]). The study of the 

problem began in the realms of computer science, cryptography, complexity theory, 

algorithmic number theory, and in some domains of applied mathematics. The thesis 

reflects that fact, and many approaches for the manipulation of lattices in MIMO 

presented in this work constitute an effort to extend the tools available for MIMO 

engineering. The reduction of the complexity of MIMO detection has been investigated 

throughout the last decade and entire special issues of leading journals [104] are 

devoted to the topic. 
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1.3.1– Limitations of Scope 

The channel model used in this thesis is the flat, independent, and ergodic Rayleigh 

channel. This is the model that is pervasive in the papers published on the topic of 

lattice detection for MIMO SM (and indeed for STC and also for the BC). However, 

this model implies that channel estimation is always perfect at the receiver. 

1.4 – Publications 

The research presented in this dissertation led to the following publications: 

• F. A. Monteiro, I. J. Wassell, “Efficient scalar quantization for MIMO spatial multiplexing 

receivers”, in Proc. of the 9th Inter. Symp. on Communication Theory and Applications 

(ISCTA), Ambleside, Lake District, UK, July 2007. 

• F. A. Monteiro, I. J. Wassell, “Euclidean distances in quantized spaces with pre-stored 

Components for MIMO detection”, in Proc. of the 10th European Conf. on Wireless 

Technology (ECWT) – 10th European Microwave Week, Munich, Germany, Oct. 2007. (Best 

Paper Award – Conference Prize) 

• F. A. Monteiro, I. J. Wassell, “Progressive hypercube decoding”, in Proc. of the 4th IEEE 

Inter. Symp. on Wireless Communication Systems 2007 (ISWCS), Trondheim, Norway, Oct. 

2007. 

• F. A. Monteiro, I. J. Wassell, “Recovery of a lattice generator matrix from its Gram matrix 

for feedback and precoding in MIMO”, in Proc. of the 4th Inter. Symp. on Communications, 

Control and Signal Processing (ISCCSP), Limassol, Cyprus, March 2010. 

• F. A. Monteiro, Frank R. Kschischang, Trellis detection for random lattices, in Proc. of the 

8th Inter. Symp. on Wireless Communications Systems (ISWCS), Aachen, Germany, Nov. 

2011. 

• F. A. Monteiro, I. J. Wassell, “Dual-lattice-aided MIMO detection for slow fading channels”, 

in Proc. of the 11th IEEE Inter. Symp. on Signal Processing and Information Technology 

(ISSPIT), Bilbao, Spain, December 2011. 

Other: 

• F. Monteiro, “Faster and faster: a look at the remarkable achievements in error-free digital 

communications”, BlueSci, Cambridge, April 2009. 

1.5 – Dissertation Outline 

The structure of this thesis is as follows: 
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Chapter 2 introduces the detection problem in spatial multiplexing as a closest 

vector problem (CVP) in a Gaussian lattice whose optimal solution (MLD) is NP-hard. 

It presents the simplest (largely sub-optimal) linear receivers and the two best solutions 

known: lattice reduction-based receivers and sphere decoding. 

Chapter 3 looks at the traditional linear receivers and at successive interference 

cancelation (SIC) receivers from a geometric perspective. In particular, an 

interpretation of the optimal ordering in SIC detection is given. The chapter makes a 

connection between the geometry of the primal and dual lattices and proposes a 

receiver exploring the information provided by the dual lattice. 

Chapter 4 presents a technique for reducing the implementation complexity of 

receivers that tackle lattice detection with MLD-inspired techniques when the 

dimensionality of the computational problem is still bearable for methods based on 

exhaustive search. 

Chapter 5 introduces some tools for the description and analysis of lattices under 

algorithmic number theory and group theory frameworks that allow different ways of 

defining a lattice. 

Chapter 6 argues that the CVP in random lattices can be near-optimally solved by 

linearly mapping the lattice onto a synthetic lattice that is constructed to be 

simultaneously “nearby” to the given lattice and also be a member of the family of 

lattices holding a trellis representation. It is shown how that representation of the 

synthetic lattices is associated with their group-based coset decomposition. 

Chapter 7 proposes the use of the LDLT decomposition for the purpose of delivering 

CSI to the receiver for closed loop architectures. 

Chapter 8 is an overview of the contributions in the dissertation and looks into 

other problems that may benefit from the analysis presented in this work. 
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Chapter 2 – 

Fundamentals on Lattices 

and Spatial Multiplexing 
 

“Lattices are everywhere.” 

Ram Zamir [105] 

 

“It is not known that these things can’t be solved in polynomial 

time. It is thought that’s the case.  And it may be that at some 

point, somebody will show that you can’t solve, these really are 

harder... However, I think there is an insurance policy (...). A 

ton of super smart people have worked on all these problems, 

and now all these things are banded together, as you would do 

with an insurance, so if tomorrow somebody, probably a Russian, 

proves P=NP (...) would indeed be embarrassing for a lot of 

people, however the embarrassment is amortised across a huge 

(...) a great swaff of people, basically people in computer science 

and stuff like that. So it is thought that they’re really hard. But 

if they’re not, then you’re in very good company with people who 

also thought they were hard.” 

Stephen Boyd, Convex Optimization Lectures, 

[Stanford University, online (1st lecture, 30’)] 

 

 

2.1 – Lattices 

This chapter begins with a description of lattices. After listing some of the problems 

they can be related to, they are defined along other useful concepts to this work. Later, 
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the detection problem in spatial multiplexing will be shown to be closely linked to a 

lattice problem. 

2.1.1 – Context 

The regularity of a lattice lends itself for the representation of problems where 

signals are interpreted as a point in a multidimensional space defined in some basis. 

One of the most important lattice problems is the closest vector problem (CVP) [106], 

which consists in finding the point that is the one at the shortest distance from a given 

off-lattice target point. 

The study of lattices began in the 1890s with Minkowski who created the then new 

field of geometry of numbers [107], [108]. Lattices are related with problems in the 

integer domain, such as: continued fractions, simultaneous Diophantine equations  

(systems of questions where one is solely interested in integer solutions) [109]; 

simultaneous Diophantine approximation [110], [103],  (finding the closest rational 

numbers to a set of  real numbers with the restriction that they all have the same 

denominator), and several other fundamental problems in number theory [103], [111], 

and in integer programming [109], [112]. These problems can usually be reduced to the 

CVP or to the shortest vector problem (SVP) in a lattice [113]. 

In the last three decades one could have found applications of lattices in vector 

quantization and image coding [114], [115], [116] and, as mentioned in Chapter 1, the 

application of lattices in SISO communications has a long history in coding for the 

bandwidth-limited AWGN channel [117] and in SISO fading channels [24]. Despite 

that, it was only during the boom of research in MIMO in the last decade that lattices 

started to be thoroughly  investigated in relation to communication problems as they 

are the mathematical object underlying problems such as the broadcast channel [118], 

the design of STCs [77], and, of course, the CVP in SM detection [119]. Interestingly, 

these MIMO communication problems triggered a series of re-discoveries and novel uses 

of ideas previously studied in algorithmic number theory. Examples of this are i) the V-

BLAST detection as proposed in [120], which turns out to be the Babai nearest plane 
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algorithm [121], [122]; ii) sphere decoding was already used in SISO [123] but improved 

ways for traversing a tree were rediscovered in [106] making use of the much earlier 

findings of Fincke and Pohst [124] and by Schnorr and Euchner [125] in number theory; 

iii) the use of lattice reduction techniques such as the Lenstra-Lenstra-Lovász (LLL or 

L3) algorithm or Seysen’s reduction remained unknown to the communications 

community until 2002 [126] and 2007 respectively (the advantages of Seysen’s reduction 

for MIMO were simultaneously indicated by [127] and [128]). However, in 2007 the 25th 

anniversary of the LLL algorithm was celebrated by the algorithmic number theory 

community with a special event and the publication of a book listing its profound 

implications in many problems [129]. 

Now that communication theory is evolving from point-to-point transmission 

problems to network coding ideas, lattices remain an essential tool [130], [131]. 

Even though lattices are simple to define mathematically, and have an apparent 

geometrical simplicity, they are, as already mentioned, closely related to many of the 

most difficult algorithmic problems with NP-hard complexity. As a natural 

consequence, lattice problems also assumed a central role in cryptography in the last 

decade [132], [113], given the complexity of the algorithms and the difficulty they pose 

to an attacker who does not possess a trapdoor to solve the problem (such as a “good” 

basis for the lattice). 

2.1.2 – Basic Definitions 

Lattice 

There are several ways of specifying a lattice 10  Λ . The most common method 

involves a set of linearly independent generator vectors 
i
h  [107], which constitute a 

basis for the lattice. A (real) lattice is then defined as the infinite set defined by  

                                        
10  The term lattice has two meanings in mathematics. The same name appears in order 

theory (in discrete mathematics and abstract algebra) [209], [248], a subject totally unrelated to 

the lattices in number theory and the geometry of numbers.  



2 − FUNDAMENTALS ON LATTICES AND SPATIAL MULTIPLEXING 

28 

 

 
1

: , ,
n

n n
i i i i

i

x x
=

   Λ = ∈ = = ⋅ ∈ ∈    
∑y y h H x hℝ ℤ ℝ . (2.1) 

The definition can be extended to complex lattices but, because it is possible to 

transform any complex lattice into a real lattice (as will be seen in section 2.2.2), one 

can settle for limiting the description to real lattices. 

The integer combination of real or complex n-dimensional vectors generates a 

discrete set of points with the properties of a group, namely: closure, associativity, 

identity and inversion [133] (ch.20). Indeed, the shortest possible definition of a (real) 

lattice is the following: a lattice is a discrete Abelian (i.e., additive or commutative) 

subgroup of nℝ . The two definitions are equivalent [134] (p. 44). 

A consequence of the last definition given for Λ  is that for any two elements 

, ∈ Λx y , then the difference − ∈Λx y  (i.e., a lattice is closed under subtraction). 

Notice that for a structure to be a lattice, the group property by itself does not suffice; 

the structure also needs to be discrete (i.e., for each lattice point there exists a hyper-

ball with radius 0ε>  which is centred at the lattice point, not containing any other 

lattice point inside; that is, the distance between lattice points is larger than ε ). This 

caveat is sometimes forgotten by some authors. For example, the group property is 

preserved the linear projection operator. However, that projection is not necessarily 

constituted by discrete structure [135] (p20). 

According to (2.1), a lattice is an infinite set of points resulting from integer 

combinations of the columns of the generator matrix H . It should be noted that some 

authors prefer to span the row space of a matrix, which then reflects algebraically in 

some of the definitions that follow. 

There are other ways of specifying a lattice that do not have a set of generator 

vectors (as it will be shown in Chapter 5); however, (2.1) is the most prevalent one 

while these other techniques remain largely unmentioned in the literature on lattices. In 

MIMO literature, (2.1) is the only way used for specifying a lattice, perhaps because it 

follows directly from the natural vector description of SM. In [103] (sec. 4), Hendrik 

Lenstra describes several alternative ways of specifying a lattice but comments that 
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some are recognisably difficult to convert into (2.1) or even to convert between 

themselves. None of the unconventional techniques seem to have played any role so far 

in the study of MIMO. 

One of the alternative techniques to define a lattice is only applicable to the so-

called cyclic lattices. These lattices are endowed with a specific structure that allows 

them to be defined by means of one modular equation (lattices with one cycle) [136] or 

by d  modular equations (said to have d -cycles) [137]. Interestingly, there is a 

connection to the field of numerical integration of multidimensional functions where 

cyclic lattices are closely related with the so-called lattice rules [138]. Chapter 5 will 

analyse how cyclic lattices relate to the lattices in the independent and identically 

distributed (i.i.d.) Rayleigh channel. 

Fundamental Region 

Given a certain basis of a lattice, the fundamental region that is associated to that 

basis is defined as 

 { }( ) : 0 1
i

x= < <H HxR . (2.2) 

 

 

Figure 2.1: A lattice in 2ℝ and the fundamental region associated with 

a particular basis. 

The fundamental region cannot contain any lattice point inside it. If there was at 

least one point inside, it could not be represented by an integer combination of 

generator vectors, which are precisely the sides defining that fundamental region (c.f. 

Figure 2.1). If that happens, then the set of vectors is not a basis of the lattice but a 
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basis of one of its sublattices. A sublattice ′Λ is also a lattice and the volume is 

vol( ) vol( )′Λ > Λ
 
(the technical definition of the volume of a lattice will shortly be 

given). 

Note that different sets of vectors may generate the same lattice. Indeed, the 

number of admissible bases for a lattice is infinite; it is easy to infer from Figure 2.1 

that it is always possible to select some point further distant from the origin to replace 

a generator and still have a fundamental region without including any lattice point in 

its interior. Moreover, all these different bases are related by unimodular 

transformations, as it will be described below. 

Voronoi Region 

The region of the space where the lattice is embedded that contains all the points in 

the span of the lattice (i.e., in the continuous Euclidian space where the lattice exists) 

which are closer to a given lattice point x  than to any other point in the lattice is 

called the Voronoi region and is defined by 

 { }( ) span( ) :Λ = ∈ Λ ∀ ∈ Λ − < −z y x z y zV . (2.3) 

This (open) region is a characteristic of the lattice and independent of any particular 

generating matrix, and is the most interesting fundamental region amid the infinite 

number of other possible fundamental regions one can define to tile the entire space as 

it constitutes the optimal decision region for the closest vector problem in a lattice. 

Gram Matrix 

The Gram matrix of a lattice defined by the columns of H ,
 
as in (2.1), is defined by 

(in the real case transposition replaces the Hermitian operator) 

 H=G H H . (2.4) 

By construction, the Gram Matrix contains all the possible inner products between 

all the generator vectors: ,
ij i j

g = h h ; in particular, the diagonal elements are the 

squared norms 
2

i
h . This fact implies that G is Hermitian and positive definite. 

Moreover, it defines a positive definite quadratic form (e.g. [139], sec. 7.6) because 
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2 2

1 1

( ) ( )

0,  for all ,

H H H

n m
H

ij i j
i j

g x x
= =

= = =

= = ≥ ≠∑∑

y Hx Hx Hx x H Hx

x Gx x 0
 (2.5) 

where 
i

x  denotes the conjugate of 
i

x  and 0  is the zero vector. Like the Voronoi region, 

the Gram matrix is another invariant of a lattice in respect to a particular basis. 

Volume 

When H  is non-singular, the lattice is full-rank. In that case the volume of the 

lattice (the volume of R ) is 

 vol( ) det( )Λ = H , (2.6) 

however, for rectangular H , the following more general definition is required: 

 vol( ) det( ) det( )HΛ = =H H G . (2.7) 

The volume of the lattice is also an invariant of the lattice, i.e., is independent of 

the choice of basis. 

Unitary, Orthogonal, and Unimodular Matrices 

An n×n unitary matrix U  has complex entries and H =U U I  (i.e., the identity 

matrix) and its determinant is det( ) 1= ±U  (positive values account for rotations and 

negative values account for the existence of reflections). An orthogonal matrix Q  has 

real entries and T =Q Q I . Both unitary and orthogonal matrices form a group[140]. A 

unimodular matrix M  is a square matrix with integer entries and with determinant 

det( ) 1= ±M  [141], [109] (sec. 4.3). The inverse of a unimodular matrix is also 

unimodular (this is because these matrices also form a group [134] (sec. XV, p. 148). 

Unimodular matrices can always be generated by starting from an identity matrix and 

successively applying any of the following elementary column operations (or row 

operations according to the convention): 

i) Change signs of all the elements in a column; 

ii) Swap two columns; 

iii) Add and integer multiple a  of one column to another columns. 

Examples for these three cases are, respectively: 
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i) 

1 0 0

0 1 0

0 0 1

    = −      

M ;      ii) 

0 1 0

1 0 0

0 0 1

    =      

M ;      iii) 

1 2 0

0 1 0

0 0 1

    =      

M , where 2a = . 

All these three elementary operations which can generate any unimodular matrix 

have clear geometric interpretations, but for that purpose the notion of lattice 

equivalence up to scaling, orthogonal and unimodular transformations will be first 

introduced. 

Equivalent lattices 

It has already been mentioned that a basis is not unique. Furthermore one can 

observe that a scaled or rotated version of a lattice is isomorphic to it, and therefore, in 

a geometric sense, is equivalent to it. One defines then the notion of lattice equivalence. 

A complex lattice generated by a basis H  is equivalent to a lattice defined by a matrix 

H
⌢
 if and only if  

 c ⋅ ⋅ ⋅H= U H M
⌢

, (2.8) 

where U  is a unitary matrix and M  is a unimodular matrix and .c ∈ R �By applying a 

real model (to be defined in section 2.2.2), one can henceforth deal instead with n×n 

orthogonal matrices Q  instead of unitaryU . 

As Agrell pointed out in [116], if U  is known and M  is not known, it is easy to 

show that the lattices are the same. One option is to compute the (unique) Hermite 

Normal Form (HNF) for both bases and verify if both HNF are the same (Chapter 5 

will detail these aspects). One alternative to this method would be to write each vector 

in one of the bases as an integer combination of the vectors in the other basis - as 

hinted by Micciancio in [113] (p.19). Knowing M , it is also possible to find which 

orthogonal (unitary, in the complex model) matrix Q  would transform one basis into 

the other by framing the problem as the Procrustes orthogonal problem [142], [143], 

[144]. Note that the QR decomposition is unique up to the sign of the elements in the 

diagonal (e.g., [106]). Hence, one alternative to the problem of finding Q  would be to 

compute the QR decomposition of both matrices (H  and H
⌢
) and verify that the R  

triangular matrix in both cases was the same up to the negation of its columns.  
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The Geometry of Unimodular Transformations 

While the first two kind of elementary unimodular operations, i) and ii), change the 

sign of the determinant of the lattice, they do not change its modulo. In other words, 

they can include reflections but the volume remains the same. The concept of operation 

iii) is illustrated in Figure 2.2 for a 2D case and with 2a = . 

 

 

Figure 2.2: The elementary operation that skews the fundamental region of a 

lattice preserves the determinant. The two shaded areas are the same. 

 

It is easy to see that the determinant of the lattice remains unchanged after the 

later type of elementary operation too. It should be noted that if the restriction on 

a ∈ ℤ  is dropped and a  is allowed to be real, the volume of the associated region also 

remains unchanged. In fact, the volume is solely dependent on the length of the Gram-

Schmidt orthogonalised vectors. However, it should be noted that when a ∉ ℤ , the new 

set of vectors no longer constitutes a basis for the lattice as the vector may no longer 

lie on the lattice. 

Shortest Vector and Successive Minima 

Lattices have a shortest vector (and at least its symmetrical with the same norm). 

Many times one is interested in finding the shortest vectors that are also linearly 

independent (so that a vector and its symmetrical cannot be both considered). Hence, 

i
λ
 
is the ith successive minimum of a lattice if 

i
λ is defined as the smallest real number 

which is the smallest radius of a sphere containing i pairwise independent vectors, all 

with norms smaller or equal to 
i
λ . The shortest vector clearly has norm 1λ . 
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2.1.3 – The Dual Lattice 

Every lattice has a dual lattice11 (the first being known as the primal lattice). The 

dual lattice is traditionally defined for real lattices, though the definition has also been 

extended to complex lattices [145]. Given the intuitive geometrical interpretation that 

is possible, in the real domain, given a primal lattice Λ with a basis H , the dual lattice 

is defined as 

 { }: , ,n
D

Λ = ∈ ∈ ∀ ∈ Λz z x xℝ ℤ . (2.9) 

The dual lattice can be expressed in terms of the dual basis ( )DH  as 

 ( )
( )

: ,

D

T
n n

D
+

     Λ = ∈ = ∈      H

z z H x xℝ ℤ
���	��


. (2.10) 

where ( )DH  involves the Moore-Penrose pseudo-inverse (to be defined in Chapter 3). 

 

( )
( ) ( )

1
( )

1
1

( )

( ) .

T

D T T T

T
T T

−
+

−
−

  = =    

= =

H H H H H

H H H H H H  

(2.11) 

Note that there is a unique dual lattice for each primal lattice. However, because a 

lattice holds an infinite number of bases, there is also an infinite number of bases for its 

dual, always observing ( ) ( )D T+=H H , in the case of real lattices, as given in (2.10). 

Consider the case of full rank real matrices. In fact, for 1 2, n∈x x ℤ , 

( ) �
( )

1 2 1 2 1 2, .

D

T
T T T+ +

∈Λ
∈Λ

= = = = ∈
y

z

z y z x H x Hx x H Hx x x ℤ
����	���


 
It is also possible to show that each point in the dual lattice can be written as an 

integer combination of the columns of ( )DH . Denoting the rows of 1−H by 1 2, , ,
n

r r r⋯ , 

for any point ( )D∈ Λz  it is possible to write 

                                        
11 The dual lattice appears in the literature also as the polar lattice or, more commonly, as 

the reciprocal lattice. All these names were already in use in 1971 [108] (p.24). Since then, the 

name polar fell into disuse, though reciprocal is a name that is still common to be found in the 

literature. 
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� � �

1

1 1 2 2( ) ( ) ( ) ,

T T

T T T
n n

−

∈ ∈ ∈

=

= + +

z z HH

z h r z h r z h r

ℤ ℤ ℤ

⋯  (2.12) 

which shows that the point in the dual lattice is defined by a linear combination of the 

rows of 1−H , i.e., a linear combination of the columns of 1( )T−H . These arguments can 

be extended to the cases where the Moore-Penrose inverse is required and also to 

complex lattices. 

One interesting relation between the two bases is that 

 ( )( )
T

D =H H I , (2.13) 

which is equivalent to saying that ( )
,, D

i j i j
δ=h h , using the Kronecker delta. 

The volumes of the primal and the dual lattice are related by 

 ( ) ( )
1

vol
volD

Λ =
Λ

, (2.14) 

and their Gram matrices are related by 

 
( ) ( ) ( )

( ) ( )

( ) ( ) ( ) 1 1

1 1
1 1.

T
T T T

D D D

T T

− −

− −
− −

  = =    

= = =

G H H H H

H H H H G

 (2.15) 

Obviously, the dual of the dual lattice is the primal lattice itself. The geometry of 

the dual lattice is closely related to the geometry of the primal lattice. The connection 

is that each point in the dual lattice defines a family of parallel (n−1) dimensional 

hyperplanes, where translates of an (n−1)-dimensional sublattice lie. The union of those 

planes captures all the points of the primal lattice. This means that the shortest vector 

in the dual lattice will define the most distant (n−1)-dimensional hyperplanes, whose 

union builds up the whole primal lattice. These hyperplanes can be interpreted as 

parallel layers and (as a consequence of being the ones farthest apart) are the densest 

ones in the lattice. In MIMO literature, the geometrical interpretation of the dual 

lattice as a tool for improving detection seems to have been first noted in [106] (p. 
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2207) for sphere decoding, and then in [145] for SIC,[146], though it is also implied in 

the detector in [147] (p. 1944). 

From the definition in (2.9), for both Λ and ( )DΛ  in n dimensions, the inner product 

between some given point z  in the dual lattice and any vector in the primal lattice is 

always an integer. Therefore,  

 

Figure 2.3: A primal lattice in n dimensions as the union of translates of a 

sublattice and these translates lie on ( 1)n− -dimensional hyperplanes. 

 

( ), , ,

cos( ) Proj ( ) ,
z

D

θ

∈ ∈ Λ ∈ Λ

⇔ = ∈
e

z x z x

z x z x

ℤ

ℤ

 (2.16) 

where /
z
=e z z .  

From (2.16), it is then possible to define a family of parallel hyperplanes ( )νP , for 

ν ∈ ℤ , such that 
1

Proj ( )
z

ν
−

=
e
x z . These are planes in dimension 1n−  with a 

distance  
1

D
−

= z  between them, as illustrated Figure 2.3. Note that vectors 1 2,a a , 

3a  all have the same projection onto the vector z  that defines the set of parallel 

hyperplanes that is shown. ν  is then the index of the hyperplane in respect to the 

distance between hyperplanes, i.e., 
1

D
−

= z . 

2a

( )D∈ Λz

1
D =

z

���
�	
��
�


cos( )

1
, ( 1)

k k

k

θ

ν= ∀ ∈ =

a

a
z

P

2θ 3θ

3
ν =

0
ν =

1
ν =

1
ν =

−

2
ν =

1a
1θ

O

3a
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Figure 2.4 shows an example of two different partitions (i.e. a family of parallel 

hyperplanes) of a lattice associated with two different choices of vectors of the dual 

lattice. The example is set for 

3 7 2 7

1 7 3 7

 − =  −  
H    and   ( ) 3 1

2 3
D

 
 =  
  

H . 

 

 
(a) Selection of (–2,1) in the dual lattice.  

 
(b) Selection of (–1,4) in the dual lattice. 

 

Figure 2.4: Identification of the hyperplanes in the primal lattice (on the left 

side) associated with a certain point in the dual lattice (on the right side). 
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2.2– MIMO Spatial Multiplexing 

2.2.1 – System Model 

In MIMO SM with NT transmit antennas and NR receive antennas (with R T
N N≥ ), 

the relation between the transmitted (input) vector
c
=x  ,1 ,2 ,, , ,

T

T

c c c N
x x x …  

1
T

N ×∈ ℂ  

and the received (output) vector ,1 ,2 ,, , ,
R

T

c c c c N
y y y = …  

y
1

R
N ×∈ ℂ  is modelled in the 

baseband as 

 
c c c c
= +y H x n , (2.17) 

where R T
N N

c

×∈H ℂ  is the channel matrix, with its entries 
ij

h  representing the 

complex coefficient associated with the SISO link between he ith Rx antenna and the jth 

Tx antenna, and with  , (0,1)
i j c

h ∼ N , i.e., taken from a zero-mean circularly 

symmetric complex Gaussian distribution with unitary variance (i.e., variance 1/2 in 

both the real and imaginary components). The phase of these elements is uniformly 

distributed in [0 2π], and their amplitude has a Rayleigh distribution. This corresponds 

to the i.i.d. (independent and identically distributed) Rayleigh fading channel model. 

The subscripts denote that the elements in the vectors and the entries in 
c

H  are all 

complex variables. Furthermore, there is noise added to each entry of the received 

vector, modelled by the column vector 1
,1 ,2 ,, , , R

R

T
N

c c c c N
n n n

× = … ∈  
n ℂ  with 

independent circularly symmetric complex Gaussian random variables taken from 

2(0, )
c n
σN  , i.e., with zero average and variance 2

n
σ  (corresponding to a variance 2 / 2

n
σ  

in both real and imaginary components). This noise model is often dubbed in MIMO 

literature as zero-mean spatially white (ZMSW) noise (e.g., [44]). For independent 

input data, its covariance is 
x
=R  { }H

c c
E =x x

2
x n
σ I . Similarly, the covariance of the 

independent noise vector is 
n
=R { }H

c c
E =n n

2
n n
σ I . Henceforth the subscript in 

n
I  will 

be abandoned. 
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It should now be clear that with integer input symbols x , any of these possible 

vectors is a point on the nℤ  lattice. The effect of the channel is that of warping nℤ  

according to the linear transformation
c

H .  

 

Figure 2.5: Spatial multiplexing with real inputs. nℤ  is transmitted 

and then skewed by the effect of the channel. 

 

Both PSK (phase shift keying) or QAM (quadrature amplitude modulation) 

constellations cam be used in MIMO, however, only the later lends itself for a lattice 

interpretation and most of the literature on MIMO SM concentrates on QAM, which is 

also the modulation that is considered in this dissertation. Consequently, the input 

symbols in each transmit antenna are taken from a finite complex constellation
c
A , 

which is some M-ary QAM (quadrature amplitude modulation). The symbols have zero 

mean, so that { } 0
c

E =x . This complex constellation is constructed from the Cartesian 

product
c
= ×A A A , where A  is the real alphabet  

 { }( 1) , , 5 , 3 , , , 3 , 5 , ( 1)M a a a a a a a M a= − − − − − + + + + −⋯ ⋯A . (2.18) 

Traditionally, 1a= , and the alphabet in each real dimension is 

 { }( 1), , 5, 3, 1, 1, 3, 5, ( 1)M M= − − − − − + + + + −⋯ ⋯A . (2.19) 

Without loss of generality, one can assume Rx filters with impulse response ( )h t  

normalised to 
2

( ) 1h t dt =∫ , and therefore, the average energy of the complex symbols 

inA  is given by 
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, ,

2 2 2 2
, , , ,

1 1
| | | | ( ) ( )

c i c i

s c i c i c i c i
x x

E E x x x x
M M∈ ∈

 = = = ℜ + ℑ   ∑ ∑
A A

, (2.20) 

which coincides with their average power ( 2
s x

E σ= ). Table 2.1 lists the values of 
s

E for 

the modulations used later in this work. 

 

Table 2.1: Symbol energy for the used modulations.  

 QPSK 16-QAM 64-QAM 

s
E  2 10 42 

 

The “overall” SNR at the receiver (Rx) is 

 
{ }
{ }

{ }
{ }

2
2 2

, , 2 2
1 1

2 22 2
2

1

R T

R

N N

c i j j
c i j T R x x

TN
R n n

c
i

E h x
E E

N N
N

NE E
E n

σ σ
ρ

σ σ

= =

=

 
 
 
  = = = =

 
 
 
  

∑∑

∑

y H x

n n

≜ . (2.21) 

which is actually the same as 
T

N  times the SNR of a SISO (single-input single-output 

channel). This comes from the fact that each antenna receives the incoming power from 

T
N  antennas, while each receive antenna perceives the same amount of noise as in 

SISO. The result is valid on average and only when , (0,1)
i j c

h ∼ N , i.e., each 
i

y  

receives the sum of 
T

N  symbols weighted by unit power random variables

2( [| | ] 1)
ij

E h = . Particular channel realisations will lead to different instantaneous 

SNRs. In this dissertation, when assessing the performance of a receiver, the SER will 

be plotted against the SNR as defined in (2.21). One other important metric that will 

appear in the capacity formula is the SNR per transmit antenna, which is 

 

2

2
x

a
T n

N

σρ
ρ

σ
= = . (2.22) 

This latter normalised SNR is in fact the same as 0s
E N  (where 0N  is the 

unilateral power spectral density of the noise) because, assuming the Nyquist 

bandwidth and a raised-cosine filter, 
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2

2
0 0 0

/ sx s s

n

E RE T E

N B N B N

σ

σ
= = =

⋅
. (2.23) 

Unlike what happens in SISO systems, in MIMO most performance results are given 

as a function of the SNR. However, some literature uses the average energy per bit12, 

2/ log ( )
b s

E E M= , and the unilateral spectral density of noise, 0N . Accordingly the 

SNR given by (2.21) is the same as 

 2
0 0

log ( )s b
T T

E E
N N M

N N
ρ = = , (2.24) 

which allows comparisons across the two different approaches seen in the literature. 

It is also worth mentioning that an equivalent model for SM assuming unit noise 

variance and unit 
s

E is also often found in the literature. Maintaining all that was said 

for the SNR, this model must be written as  

 
c c c c

T
N

ρ
= +y H x n

   

or also as   
2
s

c c c c

n

E

σ
= +y H x n , (2.25) 

where now the real alphabets in each dimension is 

 { }3
( 1), , 5, 3, 1, 1, 3, 5, ( 1)

2( 1)
M M

M
= − − − − − + + + + −

−
⋯ ⋯A , (2.26) 

to assure that *{ } 1
i i

E x x =  and { }H
T

E N=x x . 

The norms in (2.21) are the Euclidian norm. Notice that for the case of matrices 

several norms may be defined [148] (ch. 4). The Frobenius norm 

 ( ) ( ) 2trace traceH H
ijF

i j

a= = = = ∑∑A A A AA  (2.27) 

 is the matrix norm that is adopted throughout this thesis whenever a matrix norm is 

necessary (mostly to define metrics of similarity for matrices). It is not difficult to see 

that in this norm 

                                        
12 The error rate is also sometimes given in the MIMO literature in terms of the bit error 

rate (BER), which is obtained from the SER taking in consideration the number of bits per 

complex symbol. 
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  { }2

c T RF
E N N=H . (2.28) 

In this dissertation, the uncorrelated channel is considered, as seen in the definition 

of 
c

H . When correlation exists between the multipath components, a more general 

model is necessary and that implies a full characterization of the correlation matrix 

involving the cumbersome vectorisation of 
c

H  (see, e.g., [43] (sec. 3.1.1)). The 

Kronecker model is a popular way of avoiding this, by decoupling the effect of 

correlation at the transmit side (characterised by ,Txc
R ) from effects at the receive side 

(characterised by ,Rxc
R ). Then, the model consists only of matrix multiplications13 

  1/2 1/2
,Rx c,ind ,Txc c c

R H R=H . (2.29) 

The separation of Tx and Rx effects can be interpreted as if the multipath 

components at the receiver had “forgotten” about the effects of antenna coupling and 

scattering close to the Tx, which can be considered as separate from what happens in 

terms of antenna coupling and scattering close to the Rx. 

For signals with symbol time T  and bandwidth B , as a rule of thumb, the coherence 

time and the coherence bandwidth are given by: 

 1
rms delay spreadcoh

B ≈    ,   1
Doppler spreadcoh

τ ≈ . (2.30) 

When assessing the performance of SM systems, this work will consider the channel 

to be i) flat (nonselective in the frequency domain), i.e., 
coh

B B< , and ii) slow 

(nonselective in time for a transmit vector), that is, 
coh

T τ< . For typical values for the 

coherence time in different mobility scenarios in LTE see [53] (sec. 2.4). Typical 

descriptions of the wireless channels can be found in, e.g., [53] (sec. 2.4), [41] (sec. 1.3) 

and a deeper discussion is offered by [43]. 

                                        
13  The square is root of a matrix defined as 1/2 1/2 H= ΣA U V , where U and V are the 

unitary matrices of the SVD of A, with Σ the diagonal matrix made of the singular values of 

A [35](p.18). 
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2.2.2 – The Real Equivalent Model 

The model for spatial multiplexing was described in (2.17) in terms of complex 

vector spaces, however it is not difficult to prove that, by stacking the real and 

complex parts of the vectors (respectively denoted by ℜ and ℑ ), and by appropriate 

construction of a modified channel matrix, the problem can equivalently be described 

by means of real variables as 

 
( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )
c cc c c

cc c cc

      ℜ −ℑℜ ℜ ℜ      = + ⇔ = +      ℑ ℜℑ ℑ ℑ            

H Hy x n
y Hx n

H Hy x n
 (2.31) 

with 1 2 2, , ,
R

T

N
y y y = …  

y
1

R
N ×∈ ℝ , 1 2 2, , ,

T

T

N
x x x = …  

x
1

T
N ×∈ ℝ , 1 2 2, , ,

R

T

N
n n n = …  

n

1
R

N ×∈ ℝ , and R T
N N×∈H ℝ (notice that the “c” subscripts in the variables will be 

dropped from now on). Expanding (2.31), each component of y is  

 

,1 1 ,

,1 1 ,

,1 1 ,

,1 1 ,

,

,

2

T T

T T

R R T T

R R T T R

i i i N N

i i N N i R

i i N i N N N

i N i N N N i N

R R

y h x h x

h x h x n i N

y h x h x

h x h x n

N i N

− −

− − −

 = ℜ ⋅ℜ + +ℜ ⋅ℜ −ℑ ⋅ℑ − −ℑ ⋅ℑ + ℜ ≤ = ℑ ⋅ℜ + +ℑ ⋅ℜ +ℜ ⋅ℑ + +ℜ ⋅ℑ + ℑ < ≤

⋯

⋯

⋯

⋯

 (2.32) 

and therefore these components have a 2χ distribution with 2
T

N degrees of freedom, , 

before the noise is added. 

The equivalent real model is the one that will be used throughout this work and 

therefore the transposition operator, T, will replace the Hermitian operator, H, 

(conjugation followed by transposition). Moreover, orthogonal matrices play the role of 

singular matrices, for instance in the singular value decomposition (SVD) or for 

performing orthogonal rotations on lattices. In this model, the discrete inputs in the 

elements of x  that are considered in this dissertation are taken from the real alphabet 

A , as defined in (2.19). In this model, both real and imaginary components of 

( ) ( )
c c c

j= ℜ + ℑn n n  have variance 

 2 1

2
T s

n

N E
σ

ρ
= . (2.33) 
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Another consequence of this model is that, henceforth, full rank real lattices will be 

considered to have n  dimensions. 

2.2.3 – Capacity with CSIR 

Assuming that there is perfect channel state information at the receiver (CSIR), i.e., 

perfect knowledge of H , it can be proven that the maximization of the mutual 

information between the input and output in MIMO amounts to maximising 

( )2log det( )
y

eπ R . The output covariance is { } 2

R

H H
y x n N

E σ= = +R yy HR H I  and 

therefore the capacity is 

 2max log det
x

H
x

T

C
N

ρ  = +   R
I HR H , (2.34) 

where trace( ) { } 1H
x

E= <R x x  is the transmit power constraint in the optimization 

problem. When the channel is known at the transmitter (Tx), i.e., there is CSIT, the 

input covariance can be built to match the channel. When CSIT does not exist, the 

input is made to have 2

T
x x N
σ=R I , leading to a capacity 

 2log det H

T

C
N

ρ  = +   
I HH , (2.35) 

where CSIR is assumed. This implies that the receiver is able to accurately estimate 

the channel matrix. 

The matrix HHH can be interpreted as the Gram matrix associated with the lattice 

generated by the rows of H. Therefore, as shown in section 2.1.2, HHH is a semidefinite 

positive matrix with rank( )r = H  eigenvalues, whose values are 2
i i

sλ = , i.e., they are 

the square of corresponding r singular values 
i
s . Applying the singular value 

decomposition to HHH , and remembering that a Gram matrix is symmetric, its left and 

right unitary matrices in the SVD are the same. Hence, (2.34) becomes 

 2 2log det log detH H

T T
N N

ρ ρ           + = +            
I U U U I UΣ Σ , (2.36) 

and 
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 2
1

log 1
r

i
k T

C
N

ρ
λ

=

  = +   
∑ . (2.37) 

As known from section 2.2.1, H  is not deterministic but a random matrix. One 

should note that in the case of slow fading (when a codeword does not span more than 

one coherence period of the channel), regardless the choice of rate and coding scheme, 

there will always be a non-zero probability that the rate is higher than the capacity of 

the channel. Hence, the capacity that the channel can commit to is zero [45] (p.188). 

Even in that case, one can speak of the instantaneous capacity ( )C H , as a function of 

the current channel. 

This work will assume a channel with a block fading model (i.e., when a codeword 

goes through many different and independent channel instances [45] (p.199)). In this 

model the channel remains constant over a certain duration (the duration of a block), 

only changing from block to block. In this case, by taking the average of over many 

instances of the channel coefficients, a channel capacity can be obtained by applying an 

expectation to (2.37): 

 erg 2
1

log 1
i

r

i
k T

C E
Nλ

ρ
λ

=

     = +       
∑ . (2.38) 

This expectation depends on the eigenvalues 
i
λ , which are independent random 

variables, each with a Wishart distribution [149], [43] (Apx.B), as Teletar first noted in 

[29]. While the number of receive antennas is not explicit in the capacity formula, its 

effect is hidden in the rank r of HHH , which is 

 r = min( , )
t R

N N . (2.39) 

It is not difficult to show ([51] (pp. 148-149), [45] (sec. 8.2)) that for low SNR, using 

the approximation 2 2log (1 ) logx x e+ ≈  valid for small x, and noting that 

{ } Trace( )H
i

E λ = HH , as seen in (2.35)-(2.36), then the capacity in (2.38) is 

 2log
erg R

C N eρ≈ . (2.40) 

This result shows that, for the low SNR, the number of transmit antennas does not 

play any role, because what is important is the fact that 
R

N  receive antennas can 
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coherently combine the incoming signals working as a “spatial matched filter”. This 

result will be revisited in Chapter 3, when both linear receivers are shown to approach 

the matched filter when noise is high compared to the mutual interference between 

layers. In the high SNR regime, it is also not difficult to conclude that expression (2.38) 

becomes  

 ( ){ }erg 2 2
1

log log
i

r

i
iT

C r E
N λ

ρ
λ

=

  ≈ +  
∑ , (2.41) 

which, remembering (2.39), shows the famous linear increase of the ergodic capacity 

with the minimum number of antennas on each side.  

In STC a codeword spans more than one transmit vector, as a matrix assumes the 

role of 
c
x  in the model (2.17) and several vectors may experience different channel 

realizations
i

H over time. Moreover, using outer-codes the codewords may experience 

enough channel realisations and the average of the capacities of the channels may be 

close to the ergodic capacity. In the case of uncoded SM, those situations do not exist 

and therefore the outage capacity and the outage probability are the concepts best 

suited to describe these systems. 

In 2004, Guo, Verdú and Shamai made a breakthrough in information theory, 

finding a very simple relation between mutual information and the minimum mean 

square error at a receiver. Debbah in [31] (Ch.2) shows how that approach eventually 

leads to a pleasing (average) geometrical interpretation for the capacity of a MIMO 

system, much similar to that of the traditional geometrical interpretation of capacity of 

the binary symmetric channel, as first observed by Shannon. The determinant of the 

auto-correlation matrix of the transmitted symbols measures the volume of space 

associated with a MIMO code word. The determinant of the covariance matrix of the 

MMSE estimate measures the small volume around the received vector, where the 

signal is expected to lie with high probability. It can be proven that the MIMO 

capacity is  

 
( )

( )2
MMSE

det
log

det
xx

C =
R

R
, (2.42) 
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which amounts to the sphere packing problem in lattices [19],[20]. It is worth noting 

that Stoica et al. have independently arrived at the exact same lattice interpretation 

solely by signal processing considerations [150]. 

2.3 – Detection in MIMO SM 

While in STC the central research problem is finding codes that maximise the 

codeword pairwise distance and thus that minimises pairwise error probability (e.g., 

[77]), the main research problem in spatial multiplexing in the last ten years has been 

detecting x  given the noisy observation y . For that problem, the maximum a posterior 

probability (MAP) of x  is 

 ( ) ( )
( )

( )
argmax argmax

P P
P

P∈ ∈
= =

x x

x y x
x x y

yA A
 (2.43) 

As all vectors x  are equiprobable, ( )P x y  is a sufficient statistics for the detection 

process. Therefore, MAP detection can be reduced to maximum likelihood (ML) 

without any performance loss. For the i.i.d. Rayleigh channel with i.i.d. transmitted 

symbols with 2
x x n
σ=R I

 
and 2

n n n
σ=R I

 
, one has the N-dimensional probability 

distribution 

 ( )
( ) ( )

2

/2 2 /2 2
2 2

( ) ( )1 1
exp exp

2 22 2

T

N N
n n

n n

P
σ σπσ πσ

    −  − −    = − = −         

y Hxy Hx y Hx
x y , (2.44) 

and therefore the detection problem becomes that of minimizing the exponent of (2.44): 

 { }2ˆ arg max
ML

∈
= −

x
x y Hx

A

. (2.45) 

This problem now has a clear geometrical interpretation: the optimal x  (the one 

that best explains the observation y) is the one that, among all possible input vectors, 

and after the linear transformation, generates the closest vector Hx  (in the Euclidian 

sense) to the received vector y . This problem is known in integer optimisation as 

integer least squares and in lattice theory as CVP (as mentioned above): “given a 

target vector off the lattice, y , which point in the lattice is the closest one?”. The 
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problem is exemplified in Figure 2.6 for the simple cases of ℤ , 2ℤ , and 3ℤ  lattices (the 

CVP in these lattices is not NP-hard; it will be seen in Chapter 3 that for nℤ  lattices 

the algorithmic detection complexity of the optimal detector is actually polynomial 

3( )nO , due to the orthogonal structure). 

The solution of the CVP is equivalent to drawing a Voronoi cell around the target 

point and finding which single lattice point lies inside the region. Conversely, this is 

equivalent to having the lattice tiled by the Voronoi region and in selecting which 

region the target is. Obviously, computing the Voronoi region is also NP-hard. 

Notice that the complex-valued lattice in a MIMO link with NT transmit antennas 

and a M-QAM modulation will have T
N

M  complex points within its border. In the 

equivalent real model the number is obviously the same,( )
2

T
N

M . 

 

 
   (a) 

 
  (b) (c) 

Figure 2.6: The closest vector problem in one, two and three 

dimensions, given an off-lattice target point. 

 

2.3.1 – The Complexity of Optimal Detection 

The algorithmic complexity of the CVP is proven to be NP-hard, which, in the 

current state of understanding of the complexity of algorithms, places it in the worst 
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tier in the hierarchy of complexity classes. One should not conclude from this that any 

hope of finding accurate solutions should be deemed unrealistic. In fact, it will be seen 

throughout this work that very good approximations to the optimal solution can be 

found, especially when the number of dimensions is small [151]. As the number of 

dimensions grows, the complexity of the problem, measured as the number of 

operations, grows exponentially (this is what is known as “the curse of dimensionality” 

[152]); however, the complexity of some approximate detection techniques grows only 

polynomially. Usually, the number of operations (flops or algebraic operations) required 

by an algorithm is expressed in the “big O” notation14 and in practice this suffices for 

comparing the complexity of algorithms, when it is feasible to test them. However, the 

complexity theory of algorithms is a vast and convoluted topic (e.g., [153]), and the 

precise definition of each of the complexity classes falls beyond the scope of this work. 

Nonetheless, there are simpler and insightful working definitions describing these 

classes, e.g., [154], [155], [112] (Apx. B). The most broad complexity classes are P, NP, 

NP-complete and NP-hard and, according to what is known today, are related as 

shown in Figure 2.7 (if P NP≠ , as is believed to be the most likely case). 

 

 

Figure 2.7: Complexity classes. 

                                        
14 For an input data of size n (e.g., n bits are necessary to represent the data, or, in the 

particular case of MIMO, n is the number of dimensions of the lattice), complexity ( ( ))f nO  

means that the function ( )f n  is an upper bound, up to a constant multiple factor, for the 

function of the number of operations as a function of n (a detailed description of this and other 

notations is given in [242]). 



2 − FUNDAMENTALS ON LATTICES AND SPATIAL MULTIPLEXING 

50 

 

The P class encompasses the problems that can be solved in polynomial time 

(making a correspondence between the number of operations and time). NP stands for 

non deterministic polynomial complexity. It means that, if a certain certificate is 

provided (i.e., a possible “solution” to the problem), it is then possible to verify in 

polynomial time if that certificate is a valid solution to the problem or not. This 

involves a mere yes/no answer because the problem is formulated as a decision 

problem. As every problem in P can also be posed as a decision problem (one just needs 

to use the solution as a certificate), then P NP⊂ .The problems in the NP-complete 

class all share the property that if one of them is proven to be in P, then all the other 

problems in the class would also be in P, unless the polynomial hierarchy collapses. (It 

is worth mentioning that the vast majority of NP problems are in fact NP-complete). 

Technically, these “entanglements” are proven through a “P time” reduction of one 

problem to the other. A simple definition of the NP-hard class unavoidably ends up 

vague: it consists of the problems that are “at least as hard as the NP-complete ones”. 

NP-hard problems hold some property that, if solved in “P time”, would make any 

problem in class NP-complete to be solvable in “P time”, though they cannot be 

included in the NP-complete family. Obviously, given the definition, all problems in the 

NP-complete class are also NP-hard, however there exist problems that are in the NP-

hard class but not in NP-complete. A useful theorem states that: if an optimization 

problem has a decision version that is NP-complete, then the optimization version is 

NP-hard. In the CVP one can think of the following decision version: “is there a lattice 

point at a distance shorter than some distance d from the target point?”; given a 

certificate, it is trivial to compute the distance and verify that such a point exists. The 

optimization version is the CVP itself: “what is the point at the shortest distance from 

the target point?”. There are thousands of NP-hard problems [112] (Apx. B), such as 

the subset sum problem (an example of a decision problem), the knapsack problem (a 

problem of combinatorial optimization [156], [112]), the binary optimization problem, 

the travelling salesman or the CVP. 
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The CVP was first proven NP-Hard by van Emde Boas in 1981, but the 

technicalities of that proof are considered cumbersome. In 2001 [157], Micciancio was 

able to show a reduction from the subset sum problem (known to be NP-hard) to a 

CVP in a lattice, which finally proved, in a very simple and elegant way, the NP-

hardness of the CVP. 

As is the case of many problems in the class NP-hard, being in this class does not 

mean that the problem cannot ever be solved in an optimal manner. When both the 

number of dimensions n and the modulation order M are low, a “brute force” approach 

is affordable. Furthermore, when ML-type detection is no longer possible, the challenge 

of finding sub-optimal affordable solutions can be quite successful. The next chapter 

will describe how the geometry of lattice is closely related with the detection strategies 

used in MIMO. 

2.4 – Summary 

This chapter introduced many of the definitions and concepts that will be used later 

on in this dissertation. The first half of this chapter described basic concepts on lattices 

and explained the geometric connection between a lattice and its dual. In the second 

part of the chapter MIMO was framed as a lattice problem and the complexity of the 

underlying CVP has been addressed.  
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Chapter 3 – 

Geometry and Detection in 

Spatial Multiplexing 
 

 

As we know, lattices are good for almost everything.” 

Giuseppe Caire, 2007 

[Question time after a talk at ISIT, Nice, France] 

 

 

 

This chapter starts by introducing the most important type of MIMO receivers and 

the geometric concepts associated with them, which explain their performance loss in 

respect to the optimum detector. The linear receivers, which are the simplest ones, but 

also the ones having the worst SER, are the first ones to be geometrically interpreted. 

Then, the ordered successive interference cancelation (OSIC) technique is described, 

followed by the lattice-reduction-aided (LRA) approach, and finally the sphere-

decoding concept is introduced. 

The last part of this chapter capitalises on the geometric relation between primal 

and dual lattices and proposes a receiver, for slow fading channels, that samples some 

points nearby the received vector and makes them candidate solutions to the CVP. 

This sampling makes use of projections onto distinct families of parallel hyperplanes 

where the density of lattice points is maximised. 
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3.1 – Linear Receivers 

Linear receivers consists of i) a linear transformation W  of the received vector 

which then followed by ii) a quantisation to the symbol alphabet (also known as 

slicing). The linear transformation is a filter that can be designed with two different 

criteria, leading to the zero-forcing (ZF) detector or to the minimum mean square error 

(MMSE) detector. These receivers constitute the simplest set of (non optimal) receivers 

to be widely used for MIMO receivers. The detected solution x̂  given by these 

techniques is obtained by applying 

 
W

=x Wy , (3.1) 

 
ˆ
W W

Q  =   x x
ℤ

, (3.2) 

where [ ]Q ⋅
ℤ

 denotes rounding to the nearest integer and the subscript W in 
Ŵ
x  

indicates the filter design criterion: ZF or MMSE. 

D-BLAST was the first technique to be proposed [28], followed by the more practical 

OSIC [85], but, as will be seen below, OSIC includes a linear inversion (either ZF or 

MMSE). As mentioned in section 1.2.3, both ZF and MMSE techniques are well known 

in other contexts of detection and equalisation in SISO (c.f. Table 1.2), but the 

formalism that is used in MIMO is the one that was first developed for multiuser 

detection [87].  

In both types of linear receivers the linear transformation W  can be seen as a 

focusing process of the points in the received lattice back onto nℤ  (or nℂ ). This 

“backwards transformation” is of interest because it maps the received lattice back 

onto nℤ , which lends itself to simple orthogonal slicing. This is the primary motivation 

for this particular design. In 0 the concept of a having a linear transformation as the 

first stage of a detection technique will be generalised to the concept of focusing a 

received lattice onto some other given lattice, whose geometric structure is also of 

interest.  
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Noticeably, despite the early use of both ZF and MMSE detectors, a thorough 

theoretical understanding of their performance seems not to have been pursued until 

very recently [84]. 

3.1.1 – Zero-forcing Detection 

It is natural to think first of a solution to (2.45)  involving the linear transformation 

that undoes the linear transformation, which is obviously the inverse matrix.  

The inversion of H  is a trivial operation (e.g., by applying Gauss elimination to an 

extended matrix), but can only be defined for matrices with non-zero determinant (i.e., 

invertible or non-singular matrices). Hence the need for 
T R

N N< . A geometrical 

interpretation for the cases with singular matrices is simple. A singular matrix that 

defines a lattice in nℝ  (the extension to 
nℂ is always implied) performs a linear 

transformation whose outcome is a “flat” lattice that lies on a “flat subspace” of that 

space, that is, a lattice that does not fill all the dimensions in nℝ  and consequently 

can be fully described in a smaller dimensional space. For example, think of lattices 

that lie on a 2D plane or on a straight line embedded in an n-dimensional real space. In 

the space in which they are defined, these lattices have zero volume (i.e., zero 

determinant). Even so, an inverse correspondence to the original lattice seems still 

impossible. This would only not be possible if 
R T

N N< , since the higher dimensional 

transmit lattice in 
T

N  cannot, in general, be captured in a lower dimensional space. 

The algebraic interpretation of the channel inversion problem of an n n× singular 

channel matrix H  is related to its singular value decomposition T=H U VΣ , where U

and V  are unitary matrices and ( )1 2diag , , ,
r

λ λ λ= ⋯Σ , the diagonal matrix with the 

singular values of H . The inverse is 1 1 1( )T − − −=H V UΣ , or 1 T−=H V UΣ , as both U

and V are unitary. Since the inverse of the diagonal matrix is 

( )1 2diag 1 ,1 , ,1
r

λ λ λ= ⋯Σ , when there are only r n<  non-zero singular values (i.e., 

the rank is r), then n r−  singular values cannot be inverted in a finite domain. 



3 − GEOMETRY AND DETECTION IN SPATIAL MULTIPLEXING 

56 

 

The pseudo-inverse matrix, also known as the Moore-Penrose15 (inverse) matrix, is 

the solution to the normal equation H H=H y H Hx , obtained from (2.31). The 

straightforward solution to this equation is to make 1( )H H− =H H H y x , where HH H  is 

invertible because it is positive definite (indeed, it corresponds to the Gram matrix of 

the lattice). The Moore-Penrose inverse of R T
N N×∈H ℂ , when 

R T
N N> , always exists 

and is defined as  

 1( )H H+ −=H H H H . (3.3) 

From (3.1) and (3.2), the ZF receiver is, formed by the pseudo-inverse matrix (the 

linear filter) followed by a quantisation to the symbol alphabet by threshold decision, 

i.e., 

 1( )H H
ZF

−=W H H H    ,  
ZF ZF

=x W y    ,   ˆ
ZF ZF

Q  =   x x
A

 (3.4) 

and therefore 

 
ˆ ( ) .
ZF ZF ZF

Q Q   = + = +      x W Hx n x W n
A A   (3.5) 

The filtered noise is transformed by 
ZF

W += H , which constitutes a noise 

enhancement factor. The receiver structure is shown in Figure 3.1. 

 

 

Figure 3.1: Zero-forcing receiver. 

 

The detected vector ˆ
ZF
x , as obtained from (3.5), is in fact the solution to 

 { }ˆ arg min
N
T

ZF
∈

= −
x

x y Hx
ℂ

. (3.6) 

Comparing (3.6) with (2.45) one should note how the search is now made in the 

continuous domain nℝ  (or in nℂ , for complex lattices) instead of the discrete complex 

                                        
15 Discovered first by E. H. Moore in 1920 and later re-discovered by Roger Penrose in 1955 

(published in the Proceedings of the Cambridge Philosophical Society, vol. 51, pp. 406-413, 

1955). 

x̂y
ZF

W H+=



3 − GEOMETRY AND DETECTION IN SPATIAL MULTIPLEXING 

57 

 

alphabet A  (or 
c
A ). This is the origin of the sub-optimality of the ZF receiver. As 

mentioned previously after the inverse transformation, all the points in the lattice are 

matched to the initial nℤ . The orthogonal geometry of nℤ  eliminates all the 

interference between the dimensions of the lattice, i.e., between the MIMO layers; in a 

system with 
T R

N N= , the ith antenna at the receiver “sees” the transmission from the 

corresponding ith antenna at the transmitter cleared from any interference from the 

other 1
T

N −  antennas. If 
T R

N N<  the same happens in the appropriate sub-

dimensions of y . The name zero-forcing is due to the fact that the interference in each 

antenna is forced to zero. In a Euclidian signal space, the geometrical interpretation is 

that ZF projects the received vector onto the space that is orthogonal to space where 

all the interferers lie (as illustrated in Figure 3.2). 

 

 

Figure 3.2: Geometric interpretation of ZF filtering in a signal space. 

 

This generalised pseudo-inverse transformation for singular matrices holds properties 

that are similar to the properties of the “true” inverse matrix of a non-singular matrix 

(for an extensive description of the properties see [158] (sec. 4.4)). 

Any solution to (2.45) involving the inversion of H  will imply a number of 

operations that depends on the inversion methods used. The number of those 

operations is given in [158] (p. 170) and are listed in Table 3.1. The common 

assumption in MIMO literature is that the number of operations involved in ZF (or in 

any stage involving channel inversion) is 3( )nO  and Table 3.1 corroborates that this is 

the case for all the inversion methods listed. 
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Table 3.1: Number of operations involved in solving =y Hx  by 

several methods based on channel inversion (with a squareH ). 

 Additions and subtractions Multiplications and divisions 

Gauss elimination with 

back substitution 
3 21 1 5

3 2 6
n n n+ −  3 21 1

3 3
n n n+ −  

Gauss-Jordan 

elimination (reduced 

Echelon form) 

3 21 1 5

3 2 6
n n n+ −  3 21 1

3 3
n n n+ −  

Cramer’s rule[159] ( 1)!n +  ( 1)!n +  

Inversion of H , when it 

is  non-singular 
3 2n n−   3 2n n+  

 

3.1.2 – The Geometry of ZF Detection 

As is mentioned in the previous section, ZF solves the CVP by relaxing it to a 

search in a continuous neighbourhood instead of computing the distance between the 

received vector (also called the target) and every point in the lattice. The geometrical 

implication can be better understood thinking of the linear transformation of the 

hypercubic Voronoi regions of nℤ by H . The resulting regions are called the ZF 

decision regions and correspond to the space where a lattice point will be interpreted as 

being close to the lattice point associated with that region.  

The decision regions associated with ZF criterion are simple to obtain as they are 

the fundamental region ( )HR , as defined in (2.2). Because the lattices in MIMO are 

the Gaussian lattices defined in section 2.2.1, the basis generated by a channel may 

have some highly correlated vectors. Geometrically, this corresponds to lattices with 

very narrow fundamental regions, which are generated by ill-conditioned matrices, i.e., 

when one or more singular values are close to zero, and consequently the volume of the 

lattice vanishes. Figure 3.3 shows the ZF decision regions associated with the following 

equivalent bases: 

 1

6 2

1 5

 
 =  
  

H    and   2

6 8

1 6

 
 =  
  

H . (3.7) 
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 (a) 1.H

 
(b) 2.H  

Figure 3.3: Decision regions associated with the two different bases of the same lattice. 

 

Let us concentrate in the case where the transmit point was the origin. The shaded 

areas indicate regions which will lead to wrong decisions when using the ZF technique: 

either because the point is inside the Voronoi region and outside the ZF decision region 

or because the closest lattice point would be decided as being the origin while the 

Voronoi region shows that to be false. It is possible to observe in Figure 3.3 that 

different bases will output different decisions given a target point. For the examples at 

a given SNR, the SER with 1H  
will be always lower, because the coverage of the MLD 

(i.e., Voronoi) regions is larger than in the case of basis 2H . The notion of coverage is 

essential to understand MIMO detection [147]. In order to simplify the operational 

meaning of coverage, Ling [160] introduced the notion of proximity factors dependent 

on the notion of the largest sphere that can be fitted inside the region of coverage. 

These spheres are also shown in Figure 3.3 for the two basis, having decoding radii 1ξ  

and 2ξ  respectively. 

A receiver with a better performance is the one whose decision regions better 

approximate the shape of the regions associated with MLD. The receiver to be 
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presented in Chapter 6 aims to maximise this matching between its decision regions 

and the ones of MLD. 

3.1.3 – Algebraic Analysis of ZF 

It is also possible to explain the behaviour of ZF analytically. One starts by noticing 

that the covariance matrix of the noise affecting the decisions after any linear 

transformation W  is (for complex lattices) 

 
{ } { }, ( )( )

.

H H H
n

H
n

E E= =

=
W

R Wn Wn Wnn W

WR W
 (3.8) 

The output SNR of ZF detected vector (before slicing) at the ith layer is 

 
2

,
, , ,

, 1x x
ZF i H

n ZF ZF n ZFi i i i

i n
σ

ρ

  
  = =   
     

≤ ≤
R I

R W R W
. (3.9) 

For 
ZF

W  given by (3.3) and for the model with 2
x x
σ=R I  and with 2

n n
σ=R I , this 

SNR becomes 

( ) ( )

( )

,
1 1 1 1

, ,

1 1 1

1 1 1
,

,

1

,

1 1

( ) ( ) ( ) ( )

1 1

( ) ( )
( ) ( )

1
, 1

( )

ZF i H H
H H H H H H H

i i i i

H
H H H

H H H
i i

i i

a a

a a

i

aH

i

i

ρ ρ ρ

ρ ρ

ρ

− − − −

− − −

− − −

−

= =
   
   
      

=
   
   
      

 
 
  

=
 
 

=

≤



≤

I

I

H H H H H H H H H H H H

H H H H H H
H H H HH H

H H

���	��

��������	�������


.n

 (3.10) 

 

This expression relates the input SNR per transmit antenna with the output SNR at 

each receive antenna and quantifies the noise enhancement that explains the poor 

performance of ZF detection when deciding for ˆ
ZF
x . One may note in (3.10) that the 

denominator 1( )H −H H  is the inverse of the Gram matrix G , i.e., is the Gram matrix of 

the dual lattice, according to (2.15). When this Gram matrix is close to the identity 
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matrix, that means the lattice is generated by some unitary matrix U  (orthonormal in 

the real model), with H H= =UU U U I . In this case, the interference between all 

layers is zero, and no noise enhancement will happen in ZF detection. However, when 

the lattice is not orthogonal, 1 ( )

,
( )H D

ii
i i

−  =  
H H G  corresponds to the quadratic norm of 

the generators of the dual vector. According to the interpretation given in section 2.1.3, 

when these generators of the dual are large, the lattice will have a narrow separation 

between the parallel hyperplanes where the lattice points lie, and so have a small 

decoding radius. This brings together the algebraic analysis and the geometrical 

interpretation. 

The diversity order collected by the ZF is 1
R T

N N− + , as known since the early 

papers on MIMO. The analytical proof of that was later given by Ma and Zhang in 

[161] 

3.1.4 – Minimum Mean Squared Error Detection 

The other (and more sophisticated) linear receiver aims at finding the filter that 

minimises the mean squared error between the estimated vector and the original vector, 

i.e., the filter should be   

 { }2argmin
MMSE

E= −
W

W Wy x . (3.11) 

This criterion does not aim at cancelling all the interference between layers as  does 

ZF. Instead, the MMSE criterion takes into consideration both the interference and the 

noise in order to minimise the expected error. This minimization implies finding the 

point where the gradient of the objective function in (3.11) is zero. There is however a 

fast track to finding this estimator by applying the orthogonality principle, well known 

in estimation theory and widely used in equalisation problems in the ISI channel [94] 

(secs. 2.2.3, 2.3.4), [162] (sec. 5.2), [163] (sec. 5.6)16. The optimum estimator for (3.11) 

                                        
16 The principle is valid for in general estimation theory and can be derived in a Bayesian 

framework for linear estimation, [164] (ch. 12), [250] (Secs. V-C, VII-C1). 
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is the one that produces an error vector 
MMSE

∆= −W y x  that is orthogonal to 

received signal, i.e., the two vectors are uncorrelated (as illustrated in Figure 3.4). 

  

Figure 3.4: Orthogonality principle: the expected error is made orthogonal 

between the receive vector and the space where the best solution is searched. 

 

The minimum norm ∆  occurs when
MMSE

⊥∆W y , that is 

 { }( ) 0H
MMSE

E − =W y x y . (3.12) 

Applying this principle, 
MMSE

W  can be obtained from (using complex vectors) 

 

{ } { }
( ) { }
( )

( )
1

0

( ) 0

0

.

H H
MMSE

H H
MMSE x n

H H
MMSE n x x

H H
MMSE x n x

E E

E

−

− =

⇔ + − =

⇔ + − =

⇔ = +

W yy xy

W HR H R x Hx

W R HR H R H

W R H R HR H

 (3.13) 

At this point most authors commonly invoke the matrix inversion lemma17 [164] (p. 

571), [162] (pp. 565-566), and immediately obtain from it one of the two possible 

formulas of the MMMSE filter. That path is cumbersome and eventually ends with an 

expression for 
MMSE

W  that is not even the expression that is concluded from that 

derivation (although it will be proven later on that they are equivalent). In the 

following is presented a derivation of the filter involving much simpler algebra18: 

                                        
17 The matrix inversion lemma states, ( ) 1 1 1 1 1 1 1 ( )

− − − − − − −+ = −A BCD A A B DA C DA , is actually 

one of the several variants of the Woodbury’s identity [243] (p.17). Moreover, the lemma is a 

particular case of the Hendersson-Searle formulas [158] (sec. 1.2.1). 
18  The steps taken here are mostly used when proving several of the Hendersson-Searle 

formulas.  

y

x

MMSE
W y

MMSE
∆ = −x W y
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( )
( )
( )

1

1
1

1 1 1

( )

( )

H H
MMSE x n x

H H
x n n x

H H
x n x n

−

−
−

− − −

= +

= +

= +

W R H R HR H

R H R I R HR H

R H I R HR H R

 (3.14) 

For the correlation models that were considered, (3.14) is reduced to 

 

( )
1

2 2 2

1 12

2

1

H H
MMSE x n x

H H H Hn

x

σ σ σ

σ

ρσ

−

− −

= ⋅ + ⋅ ⋅ ⋅

      = + = +       

W I H I H I H

H HH I H HH I

 (3.15) 

It should be highlighted that the final expression in (3.15) is not the only one that 

appears in the literature. Just as often, one may encounter the following distinct 

version for the MMSE filter: 

 
1

1H H
MMSE ρ

−  = +   
W H H I H . (3.16) 

Expressions (3.15) and (3.16) are equivalent, although this is rarely mentioned in 

the literature. The equivalence is a consequence of the following matrix identity: 

 

Theorem: 1 1( ) ( )− −+ = +AB I A A BA I . 

Proof: The identity19  ( ) ( )+ = +A BA I AB I A  holds because  

 
new term new term

1 1

1 1 1

new new
1 1

( ) ( )

( )( ) ( ) ( )

( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( )

− −

− − −

− −

+ = + = +
⇔ + + = + +

⇔ = + + + +

⇔ + = + + +

⇔ + = +

A BA I ABA A AB I A

A BA I BA I AB I A BA I

A AB I A BA I BA I BA I

AB I A AB I AB I A BA I

AB I A A BA I

����	���
 ����	���


�����	����
 �����	����


■

 (3.17) 

 

Similarly to (3.4), the filtering matrix 
MMSE

W  is given by (3.15) or by (3.16)20, and 

so the MMSE receiver can be described by: 

                                        
19 This identity can be seen as a particular case of one of the Searle identities [243] (p.18). 
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MMSE MMSE

=x W y    ,   ˆ
MMSE MMSE

Q  =   x x , (3.18) 

with the block diagram as the one in Figure 3.5. 

 

 

Figure 3.5: MMSE receiver. 

 

It should be mentioned that, as shown by Hassibi in [165], (3.18) is in fact 

equivalent to (3.4) if H  is replaced by the extended matrix 

 2
n
σ

 
 =  
  

H
H

I
ɶ . (3.19) 

As it is often mentioned in the literature, a careful comparison of (3.15) or (3.16) 

with (3.4), allows one to conclude that the MMSE filter tends to the ZF filter at high 

SNR. Therefore, one could expect a similar performance for both of them in the high 

SNR regime. However, it is well known (from very early on) that this is not true and 

this fact seems to be forgotten whenever such comment is made. It was only in 2011 

that the existing gap between ZF and MMSE detection was characterised in [84]. The 

authors finally proved (for the ideal Rayleigh channel) several other assertions taken for 

granted in the last decade for the ZF, MMSE and SIC receivers based on ZF or MMSE 

filters. Furthermore, analytical expressions for the BER for the correlated channel have 

been devised in [166]. In [167] the MMSE receiver had already been analytically studied 

but only for low number of antennas (and also for the ideal Rayleigh fading channel). 

For low SNR the effect of interference is less important than the effect of the 

Gaussian noise, hence the MMSE filter tends to HH , which corresponds to the matched 

filter to that channel. In this case the detection is treated as a maximum correlation 

problem. 

                                                                                                                    
20  The simulations for the performance of the MMSE receivers to be presented in this 

dissertation all make use of (3.16) adapted for the real equivalent model (or directly applied to 

the complex model, in the case of Chapter 4). 

( )
1

1

T

H H

MMSE N
W H H I Hρ

−
−= + x̂y
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The covariance matrix of the noise after the MMSE transformation is 

 
,

H
n MMSE MMSE n MMSE

=R W R W , (3.20) 

and, similarly to (3.8)-(3.10), 

 

{ }
( )( )

{ }
{ }

,

1 1 1 1

1 1 1 1

1 1 1 1

( )( )

( ) ( )

( ) ( ) )

( ) ( ) ) .

H
n MMSE MMSE MMSE

H
H H H H

H H H H H

H H H H H

E

E

E

E

ρ ρ

ρ ρ

ρ ρ

− − − −

− − − −

− − − −

= =
   = + +    

= + +

= + +

R W n W n

H H I H n H H I H n

H H I H nn H H H I

H H I H nn H H H I

 (3.21) 

It is possible to show that the output SNRs at the ith layer after the MMSE filter 

becomes 

 

( )
, 1

1

,

, 1
1

aMMSE i
H

a
i i

i nρ

ρ

ρ
−

−

=
 
 + 

≤



≤
H H I

. (3.22) 

 

It was seen before that the detection based in ZF is extremely problematic when its 

decision regions become too long and narrow. This happens for channels that are ill 

conditioned, with one or several of the eigenvalues very small in comparison to the 

others. This means that the (hyper-) ellipse associated with the linear transformation of 

an (hyper-) sphere is highly eccentric. In these cases one may consider penalising the 

solutions to the problem that would imply large a norm for the detected x̂ . One other 

way of interpreting the MMME solution is in the context of the optimization problem 

generated from a relaxation of (2.45). Following the proposal of Jaldén and Ottersten 

in [168], one may generalise the problem for binary symbols, to the problem with M  

symbols per dimension. In doing this, the problem becomes equivalent to 

 
2 21

arg min
a

T
S

a

s
MM E

N E

ρ ρ∈

   = − + −    x
y y Hx x

A
, (3.23) 
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noting that for { }21 1( ) 0
a a T s

E N Eρ ρ− −∈ ⇒ − =x xA . The MMSE criterion in (3.23) 

is attained by relaxing the search in A∈x  to a search in the continuous space where 

n∈x ℂ . As the last term in (3.23) does not involve x , the minimisation is also  

 
2 22

penalisation(Squared) Euclidean
  on longer        distance
  solutions

arg min { }
nMMSE n

σ
∈

= − +
x

y y Hx x
ℂ ����	���
 ���	��


, (3.24) 

corresponding to the solution of the typical CVP but with a term that penalises large  

x and is proportional to the energy of the the noise. This explains why MMSE 

performs better than ZF for ill-conditioned channel realizations. 

3.1.5 – Projection Matrices 

Denoting 
j

H  as the matrix obtained from H  by deleting the (column) generator 

,
j
h  it is indicated in [84] that (3.10) can also be written as 

 ( )

1
,

1

( )

(

( ) .
j

H H H H
ZF j j j j j j j j j a

H H H
j j j j j j a

H
j j a

ρ ρ

ρ

ρ⊥

−

−

 = −  
  = −   

=
H

h h h H H H H h

h I H H H H h

h P h

 (3.25) 

This expression can be better interpreted evoking the notion of projection matrices. 

A projection matrix is always i) symmetric, ii) idempotent (i.e., the successive 

application of a projection twice or more times, does not change the result), iii) positive 

semidefinite (e.g., [139] (p.386)). 

Consider a linear space spanned by the columns of H , i.e., span( )H . The projection 

of a vector a  onto that space is denoted as Proj ( )
H
a , the projection onto the space 

orthogonal to span( )H  is denoted as Proj ( )⊥H
a , and they are given by [158] (sec. 8.3) 

 Proj ( ) ,+= =
H H
a P a HH a  (3.26) 

 Proj ( ) ( ) .⊥ ⊥
+= = −

H H
a P a I HH a  (3.27) 

From (3.26) and (3.27), the projection onto the span( )
j

H  is 
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j

j j
+=

H
P H H  (3.28) 

and the projection onto its orthogonal complement is 

 
( )

1
j

j j

H H
j j j j

⊥
+

−

= −

= −

H
P I H H

I H H H H
 (3.29) 

where the Moore-Penrose pseudo-inverse was used in the last line. 

The factor 
j

H
j j⊥H
h P h  that appears in (3.25) is a quadratic form, as defined in (2.5), 

hence, 0
j

H
j j⊥ ≥

H
h P h  as it corresponds to the norm of the projection of generator 

j
h  

onto space spanned by the remaining generators in the basis 
j

H . 

Figure 3.6 shows the geometry of these projections in the same bidimensional 

example of Figure 3.3, with basis 2H , given in (3.7). One can observe that the factor 

j

H
j j⊥H
h P h  corresponds to the distance between parallel layers where the lattice points 

lie and it measures the separation between the decision thresholds for the jth layer, 

associated with 
j
h . When that distance is 1≥ , there is a SNR gain in that layer in 

respect to the SNR in the expected average layer.  

It is worth mentioning that in the case with ZF, 
j

H
j j⊥H
h P h  has a 2χ  distribution 

with 2( 1)
R

N N− +  degrees of freedom [84]. A similar expression to (3.25) can be 

obtained for MMSE if the factor ( )
1

H
j j

−
H H  is replaces by ( )

1
1H

j j
ρ

−
−+H H I  in (3.25). 
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Figure 3.6: Geometry of the SNR relation factor in (3.25). Includes the Voronoi 

regions and the ZF decision regions of the lattice 
2( )Λ H , as given in (3.7). 

 

3.2– Ordered Successive Interference Cancellation 

3.2.1 – The Geometry of Optimal Ordering 

As mentioned in Chapter 1, D-BLAST was the first scheme to be proposed by 

Foschini. Given its detection complexity, V-BLAST ended up being the standard 

architecture for SM. The detection algorithm first proposed in [120], [85], uses the 

principles of SIC, already known in ISI control and MUD and is known as the V-

BLAST detector (as mentioned, in this thesis the name V-BLAST is identified with 

that particular detection method). The general principle of SIC is that an initial “best” 

layer is detected and then, assuming that the symbol was correctly detected, the 

interference caused by that symbol is replicated and subtracted from all the other 

layers. The procedure is then applied to the “next best” layer: one symbol more is 

detected, its interference recreated and then subtracted from the remaining ones. 

One important question that arises is the one of determining the order of detection 

of the 
R

N antennas. For a MIMO n n× system one has to find the optimum 
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permutation ( )kΠ  of the column indexes { }1,2, ,n⋯  that minimises the SER amid all 

the !n  possible permutations. An exhaustive search over all the permutations would 

rapidly become unbearable asn  increases. The optimal solution to this problem was 

found early on in [120], [85], in the first implementations of the V-BLAST detector. 

The optimal criterion at each stage is to select the layer that less emphasises the 

noise power after a ZF or a MMSE filter. Consider the following example with input 

data [1 1 1]T=x  and a noise vector that does not induce an error in the MLD sense, 

i.e., that does not take the point out of its Voronoi region: 

 
1

2

2

0.3 0.50.97 0.48 0.31

2.4 1.35 0.12 1.43 0.5

1.04 1.2 1.941.28 0.5

x

x

x

      − −      
      = = + −      
      − −−            

nH

y

����������	���������
 ���	��


. (3.30) 

Considering that ZF is used, 

 

2

1
2(1)

1
2

1

(1,:) 1.29361.0296 0.2954 0.3823

0.5980 0.8239 0.5118 (2,:) 1.2983

0.9219  0.3512 0.4039 (3,:) 1.1363 ,

ZF
+

 
← =− 

 
 = = ← = 
 
 − ← =  

w

W H w

w

 

where the energy of each row in the filtering matrix is indicated on the right.  

The lowest noise enhancement factor is the one associated with the third row (i.e., 

the third layer), so this third symbol is decided via a decision threshold to the alphabet 

as21 (1)ˆ(3) [ ] 1
ZF

Q W= =x y
A

. Next, the effect of that symbol, after, is subtracted from the 

other layers: 

(2)

0.31 0.01

ˆ(:, 3) (3) 1.43 1 0.97

1.94 0.66

   
   
   = − = − =   
   −      

y y H x y . 

The third generator vector in the channel matrix is now nulled: 

(2)

0.97 0.48 0

1.35 0.12 0

1.04 1.2 0

 − 
 =  
 −  

H , 

                                        

21 The notation is slightly abused, as the quantisation is made on the third element of (1)
ZF

W y . 
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and the associated ZF matrix is now 

2

2
2(2)

2

(1,:) 0.4139  0.2185 0.6045 0.0270

0.0837 0.6279 0.7371 (2,:)  0.9446.

0  0 0

ZF

 
← =− 

 
 = ← = 
 
 
  

w

W w  

At this stage one observes that the first row is the one that less enhances the noise 

and thus (1)x  (element transmitted in the first layer) is now decided as 

(2) (2)ˆ(1) [ ] 1
ZF

QW= =x y
 
and its interference subtracted from (2)y :  

(3) (2)

0.01 0.97 0.98

ˆ(:,1) (1) 0.97 1.35 1 0.38

0.66 1.04 1.70

     −     
     = − = − = −     
     −          

y y H x . 

Now, the first generator of H  is zeroed 

(3)

0 048 0

0 0.12 0

0 1.2 0

 
 
 =  
 
  

H , 

 and the corresponding pseudo-inverse is 

2(3)
2

0 0 0

0.2849 0.0712 0.7123 (2,:)  0.5936

0  0 0

ZF

 
 
 
 = ← = 
 
 
  

W w . 

Finally, (3) (3)ˆ(2) [ ] 1
ZF

QW= =x y , that is once again a correctly detected symbol. 

 

The ordering strategy described in this example makes use of algebraic arguments 

and is a direct application of what until [120] was a rule of thumb in MUD, but whose 

optimality had not been proven. The rule consists of selecting at each step the vector 

that minimises noise enhancement and in [120] the authors pointed out that the SNR 

at layer i is   

 
2 2

,OSIC 22
2 2

1

[ ] [ ]

T

i i
i N

n i
n i
l

E x E x

w

ρ

σ
σ

=

= =

∑ w
, (3.31) 

and use (3.31) to justify the optimality of the criterion. 
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In the following it is shown that further insight concerning this optimisation process 

can be enlightened, and indeed proven to be optimal, if a geometric perspective is 

applied using the projection tools introduced in section 3.1.5 and using the geometric 

ideas of the Babai’s nearest plane algorithm [169], [113] (ch.2) in algorithmic number 

theory, which corresponds to SIC in MIMO, as first noticed by [106], [121]. 

In order to minimise the error probability when deciding layer j,  the generator 

vector 
j
h  to be selected at any given decision step k, with { }1,2, ,k n∈ ⋯ , should be 

the vector that maximises the projection onto the orthogonal space to the space 

spanned by the matrix that remains after that same vector is taken out from H . 

The initial step is to find the column vector 1h  that, when removed from H , 

transforms H  into 1H  (as 
j

H  denotes the matrix that is obtained from H  after 

removing column j). 1H  is the generator of an ( 1)n − -dimensional lattice 1n−Λ . 

Hence, the original lattice can be written in the form 

  1 1n
i−Λ = Λ + h , i ∈ ℤ , (3.32) 

signifying that Λ  can be created from the union of translates of the 1n−Λ sublattice. 

Once a decision is produced for one layer, the subsequent step is to repeat the 

process, now in the sublattice with basis 
j

H , i.e., by removing generator 
j
h  from the 

set. The process repeats itself until a decision is made in a one-dimensional lattice, 

corresponding to the decision of the last layer to be detected. 

Figure 3.7 depicts SIC applied to a lattice partitioned as in (3.32). In a first stage 

the nearest hyperplane is found and a decision for the layer associated to 
j
h  is 

produced. In a second stage, depicted at the bottom of Figure 3.7, the same procedure 

is applied but now conducted in the sublattice 1n−Λ . 

Figure 3.8 shows the SIC decision region for the origin of the lattice with basis 

 
3 1

1 3

 
 =  
  

H . (3.33) 
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Figure 3.7: The nearest plane algorithm with sorting. Choosing the 

jth generator vector that maximises the distance between parallel 

hyperplanes. The lattice is the union of such translates. 

 

The example shows a target point located in a region where SIC outputs an 

erroneous decision. The first SIC step in the example in Figure 3.8 is to select which 

plane is the nearest one to the target point. In the example, SIC would decide for plane 

1 while the Voronoi region indicates that the correct point lies in plane 2. 

The diversity attained by SIC is 1
R T

N N− +  and sorting the layers does not 

contribute to any improvement in this respect, as recently proven in [84]. Sorting can 

only yield a power gain in SM detection. 

span( )
j
⊥H

span( )
j

H

j
h

j
−h

( 1)-dimensionaln −

1j+h

Proj ( )
j

j⊥H
h
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The decision regions associated to SIC are hyper-rectangular and it is not difficult to 

perceive (e.g., from figures 3.7 and 3.8) that these decision regions are unequivocally 

defined by the Gram-Schmidt vectors of the basis of the lattice (e.g.,[160]). 

 
Figure 3.8: Errors events in SIC. Plane 1 is selected because it is the 

closest plane, however, the closest lattice point lies in plane 2. The 

SIC decision region for the origin is shown.  

 

The fastest implementation of the original OSIC idea was provided in [170] and was 

made cubic in n , i.e., with complexity O(n3), nevertheless other O(n3) algorithms were 

known for OSIC much before (c.f. [95] (p.39) and references therein). Ling et al. also 

proposed an OSIC algorithm with O(n3) complexity based on the geometric insights 

offered by the dual lattice [145], [171]. In doing that, the same optimal ordering known 

for OSIC [85] is proven and the same performance is attained without needing a matrix 

inversion for each layer to be detected. This approach makes use of the shortest vector 

in the dual basis at each detection step. 
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One can now formalise SIC in a very concise manner; the kth index for the 

permutation is then selected from 

 Proj( ) argmax ( ),
k

j
j

T
j

j
k ⊥

∈

   Π =     
H

h h
A

. (3.34) 

where 
k
A  is the set of columns that have not been chosen yet. From section 3.1.5, 

(3.34) becomes 

  ( ){ }1
, , , ,( ) argmax ( )

k

T T T T
j k j k j k j k j j

j

k h h−

∈
Π = −I H H H H

A

, (3.35) 

which is a very concise expression that summarises the entire OSIC with optimal 

ordering [172]. Starting with { }1 1,2, ,A n= ⋯  (i.e., with all the columns of H ), the set 

k
A  is reduced by one element each time a column is selected, and continues until only 

one is left. Although concise, this formulation for finding the permutation ( )kΠ  does 

not lead to a practical implementation. 

There is however a very elegant way of finding ( )kΠ  remembering that the distance 

between hyperplanes in the primal lattice is established by the lattice points in the dual 

(as proved in Chapter 2). Selecting the smallest basis vector in the dual basis ensures 

that the decision for that layer will be made from selecting between the most distant 

hyperplanes associated to that basis. Nonetheless, it is important to highlight that 

these are not necessarily the most distant hyperplanes in the lattice. This observation 

confirms why there is room for improving a receiver based on the OSIC principle. 

It is thus natural to look for short vectors in the dual lattice other than the 

generators constituting the basis. Shorter vectors in the dual lattice would maximise 

the distance between the parallel hyperplanes and thus minimise erroneous decisions. 

Finding shorter vectors in the dual lattice is accomplished by means of lattice-

reduction-aided (LRA) techniques, which will be presented next. Lattice reduction 

provides an equivalent basis with shorter (and more orthogonal) generator vectors. 

It is noteworthy that the geometric interpretation presented in this section also 

sheds light onto the finding by Taherzadeh et al.  that reducing the dual matrix is 

preferable to reducing the primal basis [173], [96]. 
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3.3 – Gram-Schmidt Orthogonalisation and QR Decomposition 

The Gram-Schmidt (GS) orthogonalisation (Algorithm 3.1) is a well known method 

that takes one set of generating vectors of space and obtains another set of vectors that 

span the same space but which are all mutually orthogonal. Notice that although the 

new basis spans the same continuous real (or complex) space, it does not span the 

lattice. In general, the GS vectors are not members of the lattice and therefore cannot 

be members of any of its bases. Finding a basis that is close to orthogonal while still 

spanning the same discrete space is the much more difficult problem of lattice 

reduction, which will be described in section 3.4. 

The Gram-Schmidt vectors process can create a matrix Q , with all columns 

mutually orthogonal, i.e., H =Q Q 1 1diag( , , )H H
n n

q q q q⋯ . However, it is possible to make 

its column vectors orthonormal, i.e., H =Q Q I  and 1
i
=q . The two sets of vectors of 

the two versions are obviously related by the respective norms. The matrices that 

perform the transformation of the original matrices to the orthogonal or orthonormal 

forms are triangular in each of the two cases. The relation between the two triangular 

matrices is less obvious, though important in the MIMO context. 

The orthogonal version is i) relevant in lattice reduction techniques such as the LLL 

algorithm, and ii) an essential tool in the interpretation of SIC. On the other hand, the 

orthonormal form of GS orthogonalisation corresponds to the QR decomposition and is 

i) much used in sorted or unsorted OSIC detection, and ii) central to sphere decoding. 

Algorithm 3.1 computes the set of orthogonal vectors as 

 
1 1

,
1 1

,

,

j j
j k

j j k j j k k
k kk k

h h
h

h h
µ

− −

= =

= − = −∑ ∑h h h h . (3.36) 

In matrix form, the original column vectors can be related with the GS vectors by 
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2,1 3,1 ,1

3,2 ,2

,31 2 3 1 2 3

Orthogonal but
not orthonormal
columns

1

0 1

0 0 1

0 0 0

0 0 0 0 1

n

n

nn n

µ µ µ

µ µ

µ

 
 
 
 
    =          
 
 
  

h h h h h h h h ⋯⋯ ⋯
�������	������


⋱ ⋮

. (3.37) 

Note that det( ) det( )=H H , as the the upper triangular (u.t.) matrix has unit 

determinant. 

An orthonormal basis can also be constructed from the GS vectors if they are 

normalised: 

 , 1,2, ,j
j

j

j n= =
h

q
h

⋯ . (3.38) 

GS orthogonalisation can also be used to compute the QR decomposition of a 

channel matrix as 

 =H QR , (3.39) 

with Q  orthogonal and R  u.t. 

 

 

ALGORITHM 3.1: GRAM-SCHMIDT ORTHOGONALISATION 

Input : linearly independent vectors 1 2, , , n
n
∈h h h⋯ ℝ  

Output: Orthogonal basis 1 2[ , , , ] n
n

= ∈H h h h⋯ ℝ  and coefficients ,j kµ ∈ ℝ  

1 1=h h  

for j = 2 : n 

 
j j
=h h  

 for k =1 : j –1 

  ,
j k

j k
k k

h h

h h
µ

⋅
=

⋅
 

  ,
1

n

j j j k k
k

µ
=

= − ⋅∑h h h  

 end 

end 
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To compute (3.39) one starts by computing the GS vectors using 

 1

, , 1,2, ,
N

j j j k
k

j n
=

= − =∑h h h q ⋯ . (3.40) 

Moreover, each of the n vectors of the original basis H can be expressed in terms of 

the orthonormal vectors 
j
q  as  

 1 1 1 1, ,
j j j j j j j− −= + + +h h q q h q q h q⋯ . (3.41) 

This relation can be conveniently written in matrix form as 

 

1 2 1 3 1 1

2 3 2 2

1 2 3 1 2 3 3 3

 with
orthonormal columns

, , ,

0 , ,

0 0 ,

0 0 0

0 0 0 0

n

n

n n n

n

 
 
 
 
    =          
 
 
   

Q

h h q h q h q

h h q h q

h h h h q q q q h h q

h

⋯ ⋯ ⋯
�������	������


⋱ ⋮

. (3.42) 

Since det( ) 1=Q , the volume of the lattice is the product of the orthogonal vectors 

 
1

ˆvol( )
n

i
i=

=Λ ∏ h , (3.43) 

which corresponds to the volume of the hyper-rectangular decision regions in SIC. 

 

A comparison of (3.36) with (3.40) reveals that 

 , , Proj ( )
k

j k k j k j
hµ = =

q
h q h , (3.44) 

each of which is the projection of the original generator vector onto the one-

dimensional space spanned either by 
k
q  or 

k
h . 

3.4 – Lattice-Reduction-Aided Detection 

As was exemplified in Figure 3.3, the two bases given by (3.7) generate the same 

lattice but their fundamental regions have different coverage. In order to maximise the 

coverage of the MLD region, one is interested in bases with vectors that are both short 

and close to orthogonal, which is called a reduced basis. Figure 3.9 shows a lattice with 

a rather “skewed” basis and a reduced basis. 
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Figure 3.9: A reduced basis (green) and a skewed basis (red) for the same lattice. 

  

It was seen in Chapter 2 that two different bases of a lattice are related by a 

unimodular transformation M . In particular, the two basis in (3.7) are related by 

 1 2

6 2 6 8 1 1

1 5 1 6 0 1

     
     = ⇔ =     
          

H H M , (3.45) 

and in this case it is easy to see that det( ) 1=M . 

As observed in section 3.1.2, it is preferable to invert a well-conditioned channel 

matrix, and therefore having a more orthogonal basis contributes to a smaller noise 

enhancement factor whenever a ZF or a MMSE filter are applied (standalone or 

included in the OSIC stages). In LRA receivers a pre-processing stage is introduced 

before the detection algorithm, as shown in Figure 3.10.  

 

 

Figure 3.10: MIMO detection with lattice-reduction pre-processing. 

 

The application of lattice-reduction-aided (LRA) techniques to MIMO detection was 

pioneered by Yao and Wornell in 2002 [126],[174] and since then the research in LR 

applications to MIMO has boomed not only for the detection but also for precoding in 

the BC (as mentioned in Chapter 1). These authors applied the Lenstra Lenstra Lovász 

reduction (LLL, also sometimes denoted as L3) [129] to reduce the channel matrix. In 

2007, Seysen’s reduction was simultaneously re-discovered for MIMO in [127] and in 

[128]. This technique is based on the simultaneous reduction of both the primal and 

x̂Λ
Λ
red
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dual basis. One other important lattice reduction approach (LR) that delivers a more 

reduced basis than the others is the Korkin-Zolotarev reduction (e.g., [135] (ch. 3)), 

however it is not used in communication applications because of its higher complexity. 

The quality of the output of a LR algorithm can be measured by the orthogonality 

defect, defined as [113] (p. 131) 

 1( )
det( )

n

i
iOD ==
∏ h

H
H

. (3.46) 

Shorter generator vectors correspond to a lower orthogonality defect. Clearly, 

( ) 1OD ≥H , with equality attained only by the nℤ  lattice. 

An overview of the applications of lattice reduction techniques in MIMO (including 

SM and BC) exists in [175]. LRA detection achieves the maximum diversity available 

in SM, as proved by Taherzadeh et al. [173]22 for the case of LLL reduction (Seysen’s 

algorithm and Korkin-Zolotarev also achieve that maximum diversity since, on average, 

they output bases even closer to orthogonal bases). 

The idea is that the system model can be re-written as 

 ��
red

1
red

−= + ⇔ + ⇔ +
H z

y Hx n HMM x n H z n  (3.47) 

In this model, z  is a modified data vector that can be detected with a lower SER 

than would x without LR. This is true regardless the type of receiver that follows the 

LR pre-processing (usually ZF, MMSE or OSIC). The original data vector can then be 

recovered from z  noting that 

 1−= ⇒ =z M x x Mz  (3.48) 

Because M-QAM constellations and their PAM equivalent alphabets are defined 

without the origin and have non unitary distance between the symbols (c.f. section 

                                        
22  The same result was also proved by Ma and Zhang in [244] for the Complex-LLL 

algorithm (CLLL), where the real equivalent model is not used and LLL is applied directly to 

the complex lattice. 
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2.2.1), in order to apply the lattice tools as in (3.47)-(3.48), it is necessary to make a 

translation of the constellation, creating the modified received vector 

 ( ) ( )1 1

2 2
= + ⋅ = + + ⋅

red
y y H 1 Hx n H 1 , (3.49) 

where 1 is the column vector of n elements all equal to 1. 

Now, in the case of a ZF criterion, 

 red
+=
red

z H y , (3.50) 

and in performing  

 
�

ˆ 2 ( )

ˆ

Q= −x M z 1

z
ℤ

, (3.51) 

the symbol ẑ  is detected and put back in the alphabet A . 

The LLL algorithm was first derived for integer lattices and then applied to real 

lattices. It has also been shown that a complex LLL algorithm can be defined and that 

by applying it directly to 
c

H , the complexity becomes half of the one involved in the 

application of Algorithm 3.2 to the real equivalent lattice [176]. 

The LLL algorithm can be seen as an extension to higher dimensions of Gauss’s 

algorithm [113] (p. 28), which operates in two dimensions only (c.f. example in Figure 

3.11). It is also noteworthy that the LLL algorithm can be derived by making 

appropriate changes to the GS orthogonalisation (Algorithm 3.1), as recently shown by 

Fischer [177] and is also closely related to sorting in OSIC [178]. 

 

 

Figure 3.11: The Gauss’ algorithm (i.e., LLL in 2D). 
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Ling et al. recently proved that the complexity of the LLL reduction is 4( log )n nO  

not only for integer lattices (e.g., [179]) but also proved that for Gaussian lattices [180]. 

They further proposed a change to the algorithm that maintains a similar performance 

while having complexity 3( log )n nO . It was shown in [181] that for some instances of 

lattices, the complexity of the LLL algorithm for non-integer matrices is not polynomial 

but that probability tends to zero. 

 

 

ALGORITHM 3.2: LENSTRA LENSTRA LOVÁSZ (LLL) 

Input : a basis H  with generator vectors  1 2, , , n
n
∈h h h⋯ ℝ  in its columns 

Output: a ζ-LLL reduced basis redH , a unimodular matrix M  

1: (Preliminaries) 

 Compute the GS orthogonal vectors 1 2, , ,
n

h h h⋯  using Algorithm 3.1 

 Set 
n

=M I  

2: (Reduction step) 

 for 2i =  to n  

  for 1j i= −   down to 1 

  
,

,

i j

i i j

j j

 
 

= −  
 
  

h h
h h h

h h
 

  
,

,

i j

i i j

j j

 
 

= −  
 
  

h h
m m m

h h
 

 end 

 recompute the GS orthogonal vectors 1 2, , ,
n

h h h⋯  using Algorithm 3.1 

3: (Swap step) 

 if there is i  such that 
22

1 1,i i i i i
ζ µ+ +> +h h h  then 

  swap columns 
i
h  and 1i+h  

  swap columns 
i

m  and 1i+m  

  go to 1 

 end 

4: return 1 2, ,
n

h h h⋯  and M  
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3.5– Sphere Decoding 

Sphere decoding (SD) is an exact detection method (i.e., it achieves the same 

performance as MLD) with a complexity that, on average, is much lower than MLD. 

The idea is that a rigid rotation Q  can be applied to the ensemble { , }Λ y , for which 

the CVP needs to be solved, so that the lattice can be described by an equivalent 

lattice in u.t form. The u.t. property allows describing the norm of any lattice point to 

be detected as a sum that can be computed incrementally, taking in consideration the 

cumulative effect of each vector components. Consider now that an upper bound (UB) 

on the norms is established. The u.t. property of the basis allows all the possible values 

in the last component of the data vector, ( )x n , to be detected. As the norm can be 

computed as a sum of “ordered” contributions, if some of the tested values in ( )x n  

generates a total vector norm that is larger than the UB, then those values of ( )x n  

need not to be considered further as possible values in the solution. This procedure can 

extended to the next layer ( 1)x n − , where only the possible values of ( )x n  are 

considered. In conclusion, finding vectors with norm smaller then the UB is a problem 

that can be solved by expanding and pruning a tree that represents the lattice points. 

All these ideas can be converted to the CVP, if the lattice is shifted to the target y . 

 

 

Figure 3.12: Receiver based on sphere decoding. 

 

A sphere decoder has the structure shown in Figure 3.12. After traversing the tree 

with a particular symbol enumeration, the MLD solution is always found if the initial 

radius that is chosen is large enough to contain a lattice point inside the hypersphere. 

Figure 3.13 gives an example tree associated with 3 3×  antenna and 4-PAM, showing 

the branches that have been expanded at each tree level. 

 

x̂y =H QR
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Figure 3.13: Tree exploration of a tree with 3 layers, considering a 4-PAM alphabet. 

 

As mentioned previously, one can define an UB for the radius (or, equivalently, for 

the squared radius) of the sphere around the received point, i.e., 

 
2 2ξ− ≤y Hx  (3.52) 

 

2

2
1 2[ ]

0
ξ

 
 − ≤ 
  

R
y Q Q x . (3.53) 

Applying the inverse rotation HQ  (remembering that Q  is unitary, or orthogonal in 

the real case), 

 

2

21

2

2 2
2

1 2

0

H

H

H HQ

ξ

ξ

      − ≤        

⇔ − + ≤

Q R
y x

Q

y Rx Q y

 (3.54) 

If one defines 1
HQ′ =y y  and 

2
2 2

2
Hξ ξ′ = − Q y , then the CVP can be written as 

 
2 2ξ′ ′− ≤y Rx . (3.55) 

Finally, remembering that R  is u.t., the problem can be written as the sum 

 

2

2

1

( )
m m

i ij
i j i

y r x j ξ
= =

   ′ ′− ≤   
∑ ∑ . (3.56) 

The complexity of sphere decoding is usually measured by the number of nodes that 

need to be visited in the tree until the MLD solution is found. The fact that the 

complexity is a random variable is a limitation of SD. To circumvent this problem, it is 

3− 3+
1− 1+

1+

1+
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possible to expand only say, K branches at each level of the tree, as is the case in the 

K-best receivers and its variations [182], [183], [184]. Nonetheless there are different 

approaches as to how the tree should be traversed. Historically, the Fincke-Pohst 

method [185] was the first to be used, followed by the more efficient Schnorr-Euchner 

node enumeration [106], which attains the same performance, while expanding a smaller 

number of tree branches. Su showed in [186], [185], that a dramatically more efficient 

exploration of the tree could be made if not only the channel is taken in to 

consideration when enumerating the symbols in the alphabet, but also the particular 

target point was also taken into account during that sorting process. Furthermore, Su’s 

ordered traversal of the tree also eliminated the need for an initial radius and provides 

automatic boundary control for spherical lattice codes [81]. Recently, simplifications to 

the Fincke-Pohst and Schnorr-Euchner’s enumerations  have been proposed, 

eliminating about 75% of the operations previously required [187].  

The average complexity of SD is exponential [188], given by ( )T
N

M
α

O  with 

0 1α≤ ≤  [189], however, for low dimensional lattices, that number is affordable. A 

celebrated improvement to SD was the development of fixed complexity sphere 

decoding (FCSD) by Barbero and Thompson [190]. FCSD splits the tree exploration in 

to two: one where all valid branches are further expanded, and a second phase, 

conducted for the remaining layers, where only one branch is expanded from any node. 

Recently, an automatic adjustment of the switching point was proposed in [191]. The 

performance of FCSD was described analytically in [192]. 

The SD principle will be applied in the next section as part of a pre-processing stage 

of a new receiver not to solve CVP but instead to find a set of short vectors around the 

origin. SD is also used in this dissertation to obtain the MLD performance curves for 

the more challenging configurations such as 4×4 with 64-QAM, however its complexity 

is not a concern in this work. For these reasons, the SD that was chosen is a simple 

implementation of Fincke-Pohst enumeration, such as the one given in [188],[38] (ch15) 

where the output of the algorithm is not just one point but the set of all points inside 

the defined sphere. The implementation of this SD is given in Algorithm 3.3. 
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ALGORITHM 3.3: SPHERE DECODING (FINCKE-POHST) 

Input : Q , orthogonal, R , upper triangular, a target vector 1=y Q x , radius ξ  

Output: a MLD solution to the CVP, ˆ
SD
x  

1: Set k n= , 
22 2

2
1
2m

Qξ ξ′ = − x , | 1m m m+ =y y  

2: (Bounds for 
k
s ) Set 

| 1UB( ) k k k

k
kk

y
x

r

ξ +
 ′ ′+ =  
  

,
| 1 1k k k

k
kk

y
x

r

ξ +
 ′ ′− + = − 
  

 

3: (Increase 
k

x ) 1
k k

x x= + ,  

4: (Increase k ) 1k k= +  

 if 1k m= +  

  Terminate (no lattice point found) 

 else go to 3 

5: (Decrease k ) 

 if 1k =  

  go to 6 

 else  

  1k k= −  

  | 1
1

m

k k k kj j
j k

y y r x+
= +

′ ′= − ∑  

  2 2 2
1 1| 2 1, 1 1( )

k k k k k k k
y r xξ ξ + + + + + +

′ ′= − −  

  go to 2 

6: (Solution found) 

 return ˆ
SD

=x x  

 go to 3 

 

The algorithm starts by detection the last element in .  Note that the subscript in 

| 1k k
y +
′  denotes the symbol 

k
y ′ , in the kth  layer, incorporating the effect of the layers 

already detected, in agreement with (3.56). In this algorithm the option was made to 

denote the elements in a vector by 
n

x  instead of ( )x n , in order to accommodate 

notation such as | 1k k
y +
′  that also reflects the updates of a vector over time or the 

updates of the radius over time. 

x
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3.6– Dual-Lattice-Aided Detection 

The ith successive minimum of a lattice, 
i
λ , has been defined at the end of section 

2.1.2. Then in section 2.1.3, it was concluded that the shortest vectors in the dual 

lattice define families of hyperplanes in the primal lattice that maximise the density of 

lattice points lying on those hyperplanes. This elegant geometric relationship between 

the primal and the dual lattices is often overlooked in MIMO literature. This section 

proposes a receiver that takes advantage of this relationship in order to obtain a list of 

candidate solutions to the CVP. This new receiver makes simultaneous use of several 

hyperplanes, however, in addition to the family of hyperplanes that are furthest apart, 

some other families of hyperplanes associated with some of the successive minima of the 

dual lattice are also brought into use. 

Consider the hyperplanes selected by the first L successive minima in ( )DΛ , i.e., λ1,⋅⋅⋅ 

λL. Finding the shortest vector in a lattice is itself a NP-hard problem, which implies 

the same complexity for obtaining the L shortest ones. Nevertheless, if this is only 

required at a pre-processing stage, and not needed for each received vector, then using 

a sphere decoder is acceptable. While its complexity is exponential in the dimension of 

the lattice, this cost is only necessary whenever the channel changes, which is 

appropriate for slow fading channels.  

3.6.1 – Successive Minima in the Dual Lattice 

The receiver consists of a pre-processing stage applying a “true” sphere decoder, not 

to solve the CVP, but rather to capture all the vectors of the dual lattice that are 

inside a hypersphere centred at the origin of the lattice (hence the reference to a “true” 

SD process, because it applies SD in its simplest conception, as was described in section 

3.5). 

Because one is interested in planes with different distances, not all the lattice points 

with ξ<y
 
are in the set of successive minima and they need to be expunged from the 
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list. Because Algorithm 3.3 is being applied around the origin, it always outputs a list 

of (column) vectors arranged as 

 1 2 /2 1 1 /2 1

/2 1 /2 1

[ , , , , , ]
N N N

N N

− +

− −

s s s 0 s s⋯ ⋯
�������	������
 ������	�����


, (3.57) 

where 0 denotes the origin, which is always captured in the set for any ξ  >0 and N is 

the number of lattice points inside the sphere of radius ξ . The two “sides” of the list of 

points output around 0 (in the form (3.57)) include the same vectors up to sign changes 

and therefore the selection of the first N/2−1 suffices. In addition to that selection, one 

will just take one vector for each distinctive norm, even if they correspond to linearly 

independent vectors. This widens the range of different distances between hyperplanes. 

The resulting set of vectors in the dual will be dubbed unique successive minima 

(USM). This concept is depicted in Figure 3.14, where the number of USM that are 

found inside the sphere is L=7. 

 

Figure 3.14: Points inside a sphere centred at the origin of the dual lattice 

and containing 7L =  USM (denoted by dots with circles around). 

 

3.6.2– Projections Onto Hyperplanes 

The L USM in the dual lattice are denoted by ( ) ( ) ( )
1 2, , ,D D D

L
v v v⋯ . Naturally, the unit 

vectors which are orthogonal to the families of hyperplanes are 
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 ( ) ( ) ( )D D D
i i i

=v v v . (3.58) 

Now, one further defines the vectors 1 2, , ,
L

v v v⋯  , such that each one is respectively 

collinear with ( )D
i
v , but forced to have norm d=

1
( )D
i

−
v , as has been suggested in 

Figure 2.3. Hence, from (3.58), these vectors should be 

 
2

( ) ( )D D
i i i
=v v v . (3.59) 

The projections of the received vector (i.e., the target in the CVP) onto a family of 

( )
i
ν

v
P  hyperplanes generates the set of projection points 

 
, ,

( , ) i i

p i i i

i i

Qν ν

    = + − +       

y v y v
y v y v v

v v
ℤ

, (3.60) 

where max1, 2, ,ν ν= ± ± ±⋯ , and ()Q ⋅
ℤ denotes rounding to Z. It is preferable to 

quantify the projections in terms of 
i
v . Hence, the projection of the target point y  

onto the hyperplane defined by a vector 
i
v  and also by the translation index ν  is 

given by 

 

( )

2 2

, ,
( , )

( , ) .

i i

p i i i

i i

i i

Qν ν

ν

Ω

      = + − +        

= + Ω +

y v y v
y v y v v

v v

y y v v

ℤ

����������	���������


 (3.61) 

Notice that, in the case of a zero noise vector, the index Ω will be always an integer, 

indicating in which hyperplane the lattice lies, for each family 
i
v
P . 

3.6.3 – List of Candidate Solutions 

Fixing L as the number of USM, and setting maxν as the maximum value of | |ν  

that will be explored, it is possible to obtain a set C  consisting of the candidate vectors 

obtained from  

 ( )( )
max( , ) , 1,2, , 2 ,C

i p i
Q i Lν ν+= =y H H y v ⋯
A

 (3.62) 
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where ()Q
A  

denotes quantization to the alphabet A  used in each dimension. This 

amounts to performing zero-forcing detection not only to y but to the set of all 

projections onto ( )
i
ν

v
P . Note tha there are L  families of hyperplanes being considered 

and that in each of them one generates max2ν  projections. 

This concept is depicted in Figure 3.15, which shows the projections of the target 

point onto the three densest families of hyperplanes with lattice points. The projections 

are made through the dark black segments, and for this example where 1,0, 1ν =− + , 

there are three projections along each black segment. The circle lines in Figure 3.15 

correspond to the nine projections that are generated, i.e., three projections in each 

family of hyperplanes. 

 

Figure 3.15: Dual-lattice-aided generation of candidate solutions considering 

νmax=1 and considering L=3 families of hyperplanes: the two families in 

Figure 3.14 and also the family associated with the dual vector ( )
2 (1, 3)Dh = . 

 

The solution to CVP is then obtained by applying the ML principle to all the vectors 

in the set of candidates C  
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2
( )ˆ argmin

C
i

i
C∈

   = −    y

y y y C . (3.63) 
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While OSIC requires a matrix inversion when detecting each layer, the proposed 

receiver generates this list of candidates through a one-shot matrix product that 

projects the target point onto families of hyperplanes surrounding that point. 

Subsequently, the best candidate is selected via ZF. 

The total number of candidates considered in (3.63) is given by the number of the 

families of hyperplanes considered (i.e., the number of USM inside a sphere) multiplied 

by the number parallel of hyperplanes considered (the closest one and the next ones 

with non-zero index ν ): 

 max| | (2 1)L ν= ⋅ +C . (3.64) 

Table 3.2 shows the number of candidates, | |C , generated when the number of USM 

is set to 4L n=  and the maximum index of the hyperplanes in each family is max 2ν =  

or max 4ν = . 

In this dual-lattice-aided (DLA) receiver, the received vector y does not need to be 

inside the (possibly narrow) fundamental ZF decision region associated with the basis 

for a correct decision to occur; in fact, it suffices that at least one of the projections in 

the set generated by (3.61) lies inside that ZF region. 

Table 3.2: Number of candidates in DLA. 

 4n =  6n =  8n =  12n =  

max4 , 2L n ν= =  80 120 160 240 

max4 , 4L n ν= =  144 216 288 432 

3.7 – Performance Comparison 

The performance of the proposed receiver is now compared with ZF, MMSE, OSIC, 

LRA using LLL pre-processing with ZF and also with OSIC-ZF, and finally with MLD. 

Note that the MLD results are obtained by means of a SD owing to the difficulty in 

implementing exhaustive search for configurations with large alphabets such as 64-

QAM (remembering that there are nM  possible points in the finite underlying lattice). 

Performance is assessed in terms of the (complex) symbol error rate (SER) versus the 
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overall SNR, ρ. Comparison are presented for 2×2, 3×3, 4×4 and 6×6 antenna systems, 

i.e., for real lattices with n=4, 6, 8 and 12 dimensions, in Figures 3.16 to 3.19, 

respectively. 

It is important to note that the SER curves presented in this section, and elsewhere 

in this work, were obtained via Monte Carlo simulation in Matlab. All the presented 

results have been obtained taking in consideration the analysis for the confidence 

intervals available in Jeruchim et al. [193]. These authors derived the analytical 

expressions for the 100 (1 )%ε⋅ −  confidence intervals of the SER. Those expressions 

have also been derived and graphically represented in [194] (Annex H). For an expected 

SER 10 p−= , a number of symbols 210pN +=  was simulated. In the cases when 

running such a long sequence of symbols would not be feasible (i.e., for 5SER 10−≈  

with MLD), no point was plotted, unless at last an absolute number of 10 errors had 

been counted23. 

Additionally, the distribution functions generated in Matlab for the Gaussian, 

Rayleigh and uniform random variables have been validated in [194] (Annex I) by 

plotting the evolution of the mean square error between the histograms generated and 

each one of the theoretical distribution functions. 

Figures 3.16 to 3.19 allows us to observe several facts known in the literature: 

• ZF, MMSE and OSIC are all shown to have the same diversity order,  

(since ); 

• The gain provided by MMSE in respect to ZF is minimal for 64-QAM in all 

tested configurations (in Chapter 6 it will be seen that that is not the case for 

QPSK and 16-QAM); 

• OSIC provides a large gain in respect to both ZF and MMSE detection; 

• LLL-based LRA receivers capture the same diversity as does MLD, i.e., ;  

• LLL pre-processing followed by OSIC provides a large gain in comparison to 

using ZF after the pre-processing stage. 

                                        
23  This corresponds to a usual rule of thumb when obtaining a BER via Monte Carlo 

simulation, and which has been recently put to proof in [251]. 

1d =

T R
N N=

d n=



3 − GEOMETRY AND DETECTION IN SPATIAL MULTIPLEXING 

92 

 

 

 

Figure 3.16: Detection in n=4 real dimensions (2×2 antennas) with 64-QAM. 

 

 

 

Figure 3.17: Detection in n=6 real dimensions (3×3 antennas) with 64-QAM. 
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Figure 3.18: Detection in n=8 real dimensions (4×4 antennas) with 64-QAM. 

 

 

 

Figure 3.19: Detection in n=12 real dimensions (6×6 antennas) with 64-QAM. 
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The proposed DLA receiver was tested for several values of L  and maxν . A general 

rule was sought for expressing L  as a (linear) function of the number of dimensions n  

and it was found that 4L n= was the minimum scaling factor in order to offer a 

performance gain with respect to OSIC. One can observe that DLA detection 

outperforms OSIC using a reasonable number of candidates, | |C , obtained from the 

projections (3.61) and listed in Table 3.2. At 3SER 10−= , the gain in respect to OSIC 

amounts to 5 dB with 2×2 and 3×3 antennas, and is 4dB with 4×4 antennas. The DLA 

receiver also exhibits better performance than LRA in the low SNR regime, which is 

more obvious in the case of LLL-reduction with ZF. However, because LRA achieves 

the full diversity of the channel [173], the error rate in LRA eventually drops below 

that of the proposed algorithm. As expected, when the number hyperplanes that are 

explored decreases (i.e., smaller value of maxν ), the performance is degraded. However, 

the degradation is not significant for 2×2, 3×3, or even for 4×4 antennas when maxν  is 

halved from max 4ν =  to max 2ν = . In Figure 3.17 it is seen that for 3×3 antennas, the 

SNR penalty only becomes noticeable when max 1ν = . 

The complexity involved in DLA is concentrated in the pre-processing stage that is 

only required each time the CSI is updated at the Rx. This involves solving a SVP via 

SD, which has complexity ( )T
N

M
α

O , as mentioned in section 3.5. However, once the 

USM are determined, DLA detection amounts to first computing the projections 

according to (3.61), and perform afterwards the matrix multiplications in (3.62), 

involving the Moore-Penrose inverse of the channel. Therefore, given that matrix 

multiplications have a number of operations (i.e., complexity) 3( )nO  [195], which is the 

same as the complexity to compute the pseudo-inverse, the total number of operations 

is then bound by 3
max2 ( )L nν O , with 2

T
n N= , because there are max2Lν  candidates in 

(3.62) . 
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3.8 – Summary 

This chapter began by providing some geometric and algebraic interpretations of the 

linear and SIC detection strategies. Then, the LRA receivers and the SD were 

introduced. Capitalising on some of the geometrical ideas shown previously, the chapter 

ends with the proposal of a receiver that takes advantage of a pre-processing stage 

based on the geometric relationships between the points in the primal lattice and the 

ones in the dual lattice. The receiver outperforms OSIC-ZF for the SER of interest and, 

in the very low SNR regime, outperforms LRA receivers. The proposed detection 

technique makes use of a “true sphere-decoder” that finds a set of successive minima in 

the dual lattice at the pre-processing stage. After that pre-processing, the subsequent 

symbol detection algorithm exclusively involves a linear transformation (using the 

pseudo-inverse matrix) in order to generate a list of candidate solutions for the 

underlying CVP. Because this computational burden is only needed when the channel 

changes, the receiver is suited for slow fading channels. This approach leads to 

significant gains in respect to OSIC for a reasonable number of candidates. 
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Chapter 4 − 

Exhaustive Search in 

Quantised Spaces  
 

 

 

The optimal detection of symbols transmitted over a MIMO SM link was seen to be 

NP-hard in Chapter 2, and in Chapter 3 several sub-optimal approaches to the problem 

have been introduced. While MLD involves computing a number of Euclidean distances 

that grows exponentially with the dimension of a lattice, this does not restrain the use 

of exhaustive search when the number of points in the finite lattice is not too large. 

This chapter proposes dividing the multidimensional Euclidean space into 

hypercubes by means of per-component quantisation, which enables a multiplication-

free computation of the components of the squared Euclidean distances by means of a 

look-up table.  

The proposed technique is particularly suitable for VLSI (very large scale 

integration) architectures and is inspired by similar problems in computer graphics and 

image processing where approximations24 for the Euclidean distance have been used in 

[196] and [197] (although not for the squared Euclidean distance). The application of 

completely multiplication-free computation of Euclidean distances has been used in 

                                        
24  The approximation is also inspired by the type of simplifications that transform the 

forward-backward MAP algorithm into a max-log MAP algorithm in order to simplify 

implementation [249]. 
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MIMO with minimum penalty [198], which applied approximations in the 

bidimensional space of the transmit constellation. Instead, this chapter shows the 

simplification of the evaluation of the Euclidean distances at the receiver. The key 

element in the proposed detection technique is a look-up table which was originally 

proposed to speed up the calculation of squared Euclidean distances in vector 

quantisation [199], [200]. 

4.1 – Quantised Spaces 

Consider that y  is the result of stacking the real and imaginary components of the 

received vector, according to the real equivalent model described in section 2.2.2. 

Denoting the quantisation process as ()Q
θ

, the resulting quantised vector is 

 1 2 2, , ,
R

T

N
y y y 
  
ɶ ɶ ɶ⋯ = 1 2 2, , ,

R

T

N
Q y y y
θ

           
⋯ . (4.1) 

In doing this, each one of these component { }1 2 3, , , , ,
i L

y c c c c∈ɶ ⋯ , which correspond 

to the 2bΘ =  possible quantisation levels (i.e., described by b bits) with a uniform step 

size 

 1i i
q c c += − , { }1, 2, ,i ∈ Θ⋯ . (4.2) 

Now, one may denote as ( ) ( )l l=y Hx  each one of the points in the real finite lattice. 

The Euclidean distances needed to solve (2.47) are then of the form 

 
2

( )l−y y = ( )2( )

1

n
l

i i
i

y y
=

−∑ ɶ ɶ , l=1, 2, ⋅⋅⋅, nM . (4.3) 

For a particular lattice point ( )lyɶ , and defining 
i

∆ =  ( )( )l
i i

y y−ɶ ɶ , each particular 

squared Euclidean distance is 

 2 2

1

n

i
i

d
=

= ∆∑ . (4.4) 

In [199] the authors considered a unitary increment, 1q = , and positive 
i
c , but in 

MIMO it is preferable to use 
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 { }1 2 3, , , , ,c c c cΘ⋯ ={ }( 1), , 3, 1, 1, 3, ,( 1)− Θ− − − + + Θ−⋯ ⋯ , (4.5) 

since each component of ( )ly  can be either positive or negative, and ()Q
θ

 needs to deal 

with both cases. Figure 4.1 (a) depicts the appropriate bipolar quantiser to be used in 

MIMO. It should be noted that both the received signal and the lattice itself can be 

bounded to , ,[ , ]
i sat i sat

y y− +  in the ith real dimension, corresponding to the clipping 

imposed by ()Q
θ

. This maximum value could be { }( )
, max l
i sat i

y y=  in each component 

and updated in each channel realization, however it is more convenient to make them 

all equal to { }( )max l
sat i

y y=  taken over all the real lattice points, i.e., l=1, 2, ⋅⋅⋅, nM . 

This creates an hypercubic finite domain with edges having length 2
sat
y . 

The look-up technique that will be presented in section 4.3 has been originally 

proposed in [199] for vector quantisation for the quantiser shown in Figure 4.1 (b). The 

use of such quantiser would require shifting all the lattice points by / 2
sat

y . 

           

(a) Bipolar                                                (b) Unipolar 

Figure 4.1: Quantiser with 8Θ =  levels ( 3b = bits) in each dimension 

normalising the input to sat
y . 

4.2 – Quantisation Error 

This section quantifies the effect of the quantisation described in section 4.1. The 

next sub-sections comment on the assumptions made in order to simplify the analysis 

and allow us to apply the analysis of scalar quantisers (e.g., [201]) to MIMO detection. 
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4.2.1 – Uncorrelated Noise and Uncorrelated Data 

According to the system model in section 2.2.1, all data symbols are uncorrelated. 

Moreover, we assume that the quantisation noise, 
q
n , is component-wise independent. 

These two assumptions allow the total variance (or power) of the total noise in a 

quantised vector to be written as 

 2 2 2 2 2
,1 ,2 , ,

t q q q q R
n n n n i n N
σ σ σ σ σ= + + + + +⋯ ⋯ . (4.6) 

where 2
,

q
n i
σ  is the variance of the quantisation noise in the ith (complex) dimension. 

4.2.2 – Saturation Does not Impair Detection 

The complex lattice of possible points in each receive antenna is a combination of NT 

constellation symbols drawn from 
c
A weighted by the complex Gaussian channel 

matrix. If the hypercube with sides of length 
sat
y  contains all the lattice points, then 

the saturation noise does not introduce any degradation in the ML problem. Consider 

the example in Figure 4.2, which shows the complex points received in each antenna of 

a 2 × 2 system using a traditional QPSK constellation and with the channel given by 

 
0 3 0 5    0.3 0.2

0.6 2 1 2

. . i i

i i

 − + − =  − + +  
H . (4.7) 

The effect of saturation will give rise to a quantised point in one of the faces of the 

hypercube. As can be seen in the 4 (real) dimensional case depicted in Figure 4.2, the 

closest lattice point can only lie at the intersection of the bounded subspace and the 

hypersphere D which is the projection of y in the side of the hypercube that is closer to 

it. So, the original kth distance can be expressed in terms of the distance to the 

projection and the remaining kth distance bk: k ( )
k

= − +d y y bɶ . Because ( )−y yɶ  is fixed 

and it is impossible to have a lattice point inside region C, then minimizing dk or bk 

yields the same solution. 
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Figure 4.2: The two components of the complex lattice of a 2 × 2 

system with QPSK symbols ( 16T
N

M = ). 

 

4.2.3 – Uniform Error Per Component 

Considering that errors coming from saturation are negligible (assumption 4.2.2), the 

only cause of degradation in the performance will be the granular noise. Considering 

that the quantisation in each dimension is described by a uniform error distribution, it 

is straightforward to obtain the well known expression for the quantisation noise power 

(e.g., [201]) 

 
2/22 2

/2

1
12

q

q q

q
x dx

q
σ

−
= =∫ . (4.8) 

Independently of the number of dimensions, n, the mean error per dimension was 

obtained by simulation using 

 { }
2 2

( ) ( )

2[%] ( )
1 100

l l

q
l

E n E

   − − −   = − ⋅   −    

y y y y

y y

ɶ ɶ
 (4.9) 

and the result is shown in Figure 4.3. 
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Figure 4.3: Quantisation error for the squared Euclidean distance as a function 

of the number of quantisation bits, b , obtained by simulation. 

 

Using (4.6) and (4.8), the signal to total quantisation noise ratio is obtained by 

 

( )

2 2 2 2 2 2

2 2 2 2
2

, ,
11

1

3

2
12

12

total q

x x x x x

nn
nn n i

i sat i sat
ii

i

q y y

σ σ σ σ σ

σ σ

==
=

Θ
= = = =

Θ ∑∑ ∑

. (4.10) 

4.2.4 – Equal Saturation in the Dimensions (hypercube) 

When ,i saty  is set to the same value in all of the n dimensions, (4.10) yields 

 

22 2 2 2

2 2

3 (2 )
3

q

b
x x x

satn sat
n yny

σ σ σ

σ

 Θ  = = ⋅ ⋅   
. (4.11) 

or, equivalently, 

 
�

2

10 102
4.77 6.02 10 log (2 ) 20 log

q

x x
R

satn
dB

n

b N
y

σ σ

σ =

       = + − +        

. (4.12) 

Expression (4.12) shows that when 
R

N  doubles the quantisation noise increases by 3 

dB. On the other hand, every extra bit used in the quantisation of each component 

improves the signal-to-quantisation noise on that real component by 6 dB. Thus, when 

increasing the number of antennas from 2 to 4, only 0.5 extra bits would be necessary 

to compensate the loss. Figure 4.4 shows the trade-off arising from ( )6.02 10 logb n= . 
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A second outcome from (4.12) is that its final term implies that use of an equal 

value of 
sat
y  will lead to, as expected, a poor performance in the antennas having a 

“more compact” received constellation. Indeed, Figure 4.2 shows an example of that: 

the total power in the first row of (4.7) leads to a much more geometrically “compact” 

received constellation in first receive antenna, i.e., { } { }( ) 2 ( ) 2
1 2( ) ( )l lE y E y<< . 

 

 
Figure 4.4: Additional bits required to compensate the loss associated with 

more dimensions in the lattice. 

 

4.3 – The Look-Up Table Technique 

All the possible values of the distance components 2
i

∆  in (4.4) correspond to one 

particular element of the matrix 

 

2 2 2 2
1 1 1 2 1 3 1

2 2 2 2
2 1 2 2 2 3 2

2 2 2 2
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


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⋯

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋱ ⋮

⋯






. (4.13) 

An inspection of (1)Ξ  allows us to notice its expected symmetry and, furthermore, 

that it is possible to re-write it as 
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2 2 2
1 2 1

2 2 2
1 1 2

2 2 2
(2) 2 1 3

2 2 2 2
3 2 1 4

2 2 2
1 2 3

0 ( ) ( ) ( )

( ) 0 ( ) ( )

( ) ( ) 0 ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) 0

c c c

c c c

c c c

c c c c

c c c

Θ−

Θ−

Θ−

Θ−

Θ− Θ− Θ−

 
 
 
 
 
 
 Ξ =  
 
 
 
 
   

⋯

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋱ ⋮

⋯

. (4.14) 

The elements of this matrix can be seen to be associated with the values of the 

quantisation levels by (2) 2
, ( )

m n m n
c

−
Ξ = . Moreover, all the entries in (2)Ξ  (i.e., all the 

squared distance components) belong to the ordered set 

 2 2 2 2 2
1 2 3 2 10, ( ) , ( ) , ( ) , , ( ) , ( )

T

c c c c cΘ− Θ−
 Ξ =   

⋯ . (4.15) 

Using the following rule, 

 (1) (2)
, , ( )

m n m n
aΞ = Ξ = Ξ ,    with 1m n

c c
a

q

 −   = +    
, (4.16) 

it is possible to locate and read the value of the distance component 2
i

∆  from the 

values pre-stored in Ξ . Observe also that the division by q in (4.16) converts the 

absolute separation between components to the integer number of intervals between the 

two of them.  

The use of this non-truncated look-up table does not introduce any errors in 

addition to the ones described in section 4.2 because it is an exact method in the 

quantised space. The authors of [199] and [200], proposed a truncated table to replace 

Ξ , however this would not be useful in the context of MIMO detection. 

4.4 – Simulation Results 

Simulation results for the receiver using maximum likelihood in a quantised space 

(MLQS) are presented in Figures 4.5 to 4.8 for different systems using the low order 

modulations QPSK and 16-QAM in the various symmetric antenna configurations (i.e., 

with 
T R

N N= ). All figures include the performance of the proposed receiver for 

different values of the number of bits per component and also the performances 
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obtained using ZF, MMSE and OSIC (with ZF or MMSE criterion) as well as the 

performance of MLD. It is worth mentioning that, contrary to all the results presented 

in other chapters, the OSIC receiver implemented in this chapter works directly with 

the complex constellations and not with the real equivalent model presented in section 

2.2.2 and for that reason its performance is slightly degraded in comparison to those. 

This last effect is known in the literature [95] (sec. 4.3.3), and is related with the fact 

that in the real model SIC is performed independently in the real and imaginary 

components. This de-coupling (which doubles the lattice dimension) leads to less error 

propagation when deciding for complex symbols. 

 

 
Figure 4.5: Performance for standard receivers and detection in a 

quantised space for different levels of quantisation per dimension in a 

2 × 2 system using QPSK modulation. 
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Figure 4.6: Performance for standard receivers and detection in a 

quantised space for different levels of quantisation per dimension in a 

3 × 3 system using QPSK modulation. 

 
Figure 4.7: Performance for standard receivers and detection in a 

quantised space for different levels of quantisation per dimension in a 

4 × 4 system using QPSK modulation. 
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Figure 4.8: Performance for standard receivers and detection in a 

quantised space for different levels of quantisation per dimension in a 

2 × 2 system using 16-QAM. 

 

The results of the simulations for the traditional receivers (ZF, MMSE, OSIC-ZF, 

OSIC-MMSE, and ML) were validated against other results available in the literature: 

for QPSK with 2 × 2 antennas, the traditional receivers and ML can be compared with 

the ones in [68]; for QPSK with 4 × 4 antennas results can be found in [95] ; and the 

results for 16-QAM with 2 × 2 antennas are available in [202]. 

The effect of Gaussian noise should be added to the quantisation noise. As they are 

independent, the effective noise power is given by summing the respective noise powers. 

Consequently, the overall SNR is 
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 (4.17) 
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A consequence of this relationship is that the overall SNR is always limited by the 

partial SNRs: 

 
2 2 2

2 2 2
min ,

t g q

x x x

n n n

σ σ σ

σ σ σ

                     ≤                            

. (4.18) 

For this reason, this effective SNR may be limited by the quantisation error, which 

is a function of both the lattice and of the number of bits per dimension, b, as seen in 

(4.12). On average, and independently of the transmission scheme, one can observe that 

as the number of quantisation levels b  increases, the SER converges to its lower bound, 

limited by the existence of the Gaussian noise. 

The results with QPSK show that for b=2 the SER is worse than that for any other 

receiver analysed; for b=3 it is close to the performance of ZF; for b=4 it is similar to 

the performance of OSIC-MMSE; for b=5 it is always within 1 dB of ML; and for b=6 

it always coincides with ML. These results show that the total number of bits needed 

to accurately represent the n-dimensional received vector is 5×(2×NR), i.e., for the 

most demanding case considered (4 × 4, where there are 44=256 possible points in the 

lattice), 40 bits are needed to obtain near ML performance. 

The number of bits needed to represent both the received vectors and the lattice 

associated with each channel realization is shown to be small, however it could be 

further reduced by quantising with independent saturation limits for each component. 

Additionally, the number of required pre-stored components constitutes a very small 

table with only Θ  positions. 

Note that the simplified analysis that has been presented suffices to understand the 

impact of the quantisation shown in the simulations: doubling the number of antennas 

from 2 to 4 imposes a power loss that can be more than compensated by increasing the 

number of bits per dimension from 5 to 6. Indeed, inspecting the cases depicted in 

Figures 4.5 and 4.6, and measuring the difference of energy at an SER=10-3, the correct 

number of additional bits required to maintain performance can be seen to be the 

predicted “half bit”. In MIMO systems that do not go beyond 4 antennas at each side, 
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the need for a 6th quantisation with QPSK should not be required. However, for an 

identical number of lattice points in each dimension (162=256), the use of 16-QAM 

requires a greater number of quantisation bits than does QPSK because there are more 

coordinates to be distinguished per dimension. The benefits of quantisation are more 

clear when low order modulations are used, i.e., QPSK and 16-QAM (or their one-

dimensional counterparts with amplitude shift keying: 2-ASK and 4-ASK). 

4.5 – Summary 

This chapter presents a technique to simplify the calculation of the squared 

Euclidean distances required when a MLD-based approach to CVP is still possible (i.e., 

for low order modulations with a small number of antennas). The detection problem is 

sub-optimally solved after quantising the received vector. Then, a look-up table with 

pre-stored components provides the distance metrics. The number of pre-stored 

elements can be made as small as the number of quantisation levels per dimension. 

This procedure eliminates the multiplications involved in the calculation of the squared 

Euclidean distances. The number of comparisons needed remains exponential with the 

number of transmits antennas; however, the total complexity required is reduced by 

replacing multiplications [198] with readings from a look-up table [199], [200]. 
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Chapter 5 − 

Alternative 

Representations of Lattices 
 

“At one time they thought that the travelling salesman problem might 

fit the bill, since they were told by mathematicians that it was NP 

complete. However, it turned out that algorithms exist which yield 

approximate solutions of sufficient accuracy for all practical purposes. 

Non-mathematicians should be careful how they interpret what 

mathematicians tell them!” 

Sir Maurice V. Wilkes, Moore’s law and the future, 

Computer Laboratory Seminar, Oct. 2002, transcript in [203]. 

 

 

 

This chapter is an intermezzo that focuses on alternative representations of lattices 

that permit us to specify a lattice using less bits than are required in the conventional 

representation using a n n× matrix. Such representations could be beneficial to the 

reduction of the amount of data needed to be fedback from the receiver to the 

transmitter in order to provide CSIT in closed loop links. Two different representations 

of lattices will be presented, which have been developed in the field of algorithmic 

number theory and which have application in cryptography, while remaining largely 

ignored in the MIMO literature. 

Since the Hermite normal form (HNF) is upper triangular (u.t.) and is often sparse, 

some authors have questioned if the use of the HNF could be used as a means to 
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simplify the traversal of the tree in SD [204], [205] (p.26). That question has not yet 

been answered until now, probably owing to the problems related with the 

implementation of the HNF. 

5.1 − The Hermit Normal Form 

As was mentioned in Chapter 2, there are an infinite number of different bases 

representing the same lattice. The literature on cryptography traditionally highlights 

that any lattice basis can be changed into the Hermite normal form (HNF) by means of 

unimodular transformations. A lattice generator matrix can be brought to a triangular 

form, with all entries positive and strictly smaller than the diagonal. The HNF form 

exists for both integer and rational matrices [109], and is obtained by means of 

elementary operations on the lattice, that is: 

 HNF = ⋅H H M , (5.1) 

with M  unimodular. Most importantly, the HNF of a basis of a lattice is unique (not 

considering rotations of the lattice). 

Some literature on algorithmic number theory reminds us that HNF also exists and 

is unique for rational lattices as well. However, the computation in the rational case is 

always said to be the same as for an integer matrix, if one previously scales the rational 

basis by the greatest common divisor of all elements in the generator matrix. The 

argument is true, however one must be aware that this method may easily lead to very 

large numbers in practical applications, even for a moderate number of dimensions. 

Sadly, the computation of HNF has not yet been properly dealt with in the literature, 

as Sims warns his readers in the preface to his book [206]: “It is not usual for an author 

of a mathematics text to make evaluative judgments concerning the works in the 

Bibliography, and I have agonized over my decision to break with this practice. 

However, I feel an obligation to the reader to state my opinion that the quality of the 

papers dealing with the computation of Hermite and Smith normal forms is on average 

noticeably below the level in the other works cited. In a significant number of these 
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papers there are deficiencies in the exposition and even in the validity of the 

arguments.” 

In addition to that, even the definition and the name itself of the HNF is not 

consistent across the literature (e.g., [136]), as it is sometimes called (row or column) 

echelon form or even integer normal form [112]. 

Ironically, Sims presentation of the algorithm in [206] (sec. 8.5) is also much 

criticised in [207] (p.23). The author included a section entitled “obscurity in the 

algorithm”, commenting on Sims’s presentation of HNF. Some of the comments are: 

“Sims just adumbrated a method to compute Hermite normal form. There are certain 

areas in the algorithm that needs some light to be  thrown on. (...) The algorithm does 

not throw light on how the pivots must be chosen. (...) Lines 6 and 12 of the algorithm 

describe a division operation but again the algorithm does not describe what the division 

is. The algorithm nonplusses the reader on obtaining the quotient of a non-positive 

division or even a normal division with a non-zero remainder”. 

Despite the criticism, The Kannan-Bachen algorithm [208], in the form given by 

Sims in [206] (sec. 8.5) is the most simple and detailed algorithm available in the 

literature. The problems that it raises have been solved and it was implemented in 

MATLAB as given in Algorithm 5.1. 

Notice that the algorithm given by Sims requires full-rank matrices. Algorithm 5.1 is 

also applicable to rank-deficient matrices, such as the one in the following example,  

 

HNF M

2 2 1 0 1 0 0 0 1 2 0 1

2 2 1 0 3 4 0 0 1 1 0 0

2 0 2 2 0 0 2 0 1 2 0 2

1 1 0 1 2 3 1 0 0 0 1 1

     − − −     
     −     = ⋅     − − − −     
     − − −          �������	������
 ��������	�������


, (5.2) 

where the zero element in the diagonal denotes implies that the determinant is zero and 

therefore the matrix in indeed rank-deficient. Indeed, the fact that the HNF includes 

one column containing just zeros, indicates that the remaining three non-zero 

generators suffice to span the whole lattice. 
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ALGORITHM 5.1: HNF ALGORITHM (KANNAN-BACHEN)  

function [A_hnf M]=HNF(A) 

  
A_orig=A; 
m=size(A,1); 
n=size(A,2); 

 
s=n; % s is the index of the last non-zero column of A 

 
j=1; 
sigma=1:n; 
M=eye(n); % sets the unimodular matrix to identity 

  
while j<=s 
    %This if is for the square part, so the column index only  

    % increases towards the row index 
     

    for i=1:j-1 
        [g c d]=gcd(A(i,i),A(i,j)); 
        MM=[c, -A(i,j)/g;... 
            d, A(i,i)/g]; % updating the unimodular matrix 
        A_aux=A(:,[i j])*MM; 

         
        M_aux=eye(n); 
        M_aux(i,i)=c; 
        M_aux(j,i)=d; 
        M_aux(i,j)=-A(i,j)/g; 
        M_aux(j,j)=A(i,i)/g; 

         
        M=M*M_aux; 

         
        %Copy the 2-columns into the appropriate columns of A 
        A(:,[i j])=A_aux; 
        reduce(i); %Reduces all the elements to the left of A_ii 
    end 

     
    col_with_nonzero=min(find(A(:,j))); 
     

    if isequal(A(:,j),zeros(size(A(:,j)))) 
        %Swap last non-zero column with the one found to be zero 
        A(:,[j,s])=A(:,[s,j]); 
        M(:,[j,s])=M(:,[s,j]); 
        s=s-1 
    elseif col_with_nonzero~=j 
        row_with_nonzero=min(find(A(j,j+1:end)))+j 
        if isempty(row_with_nonzero) 
          %Find in the "minor to the right of row j" one column with 

          %at least one non-zero element 
          row_with_nonzero=find(sum(abs(A(1:j,j+1:end))))+j 
          A(:,[j,row_with_nonzero])=A(:,[row_with_nonzero,j]); 
          M(:,[j,row_with_nonzero])=M(:,[row_with_nonzero,j]); 
        else 
            A(:,[j,row_with_nonzero])=A(:,[row_with_nonzero,j]); 
            M(:,[j,row_with_nonzero])=M(:,[row_with_nonzero,j]); 
        end 
    else 
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    reduce(j); 
    j=j+1; 
    end     
end 

  
A_hnf=A; 

  
    function reduce (k) % (a nested function) 

         
        if A(k,k)<0 
            A(:,k)=-A(:,k); 
            M(:,k)=-M(:,k); 
        end 
        for z=1:k-1 
            reduction=floor(A(k,z)/A(k,k)); 
            M_aux=eye(n); 
            M_aux(k,z)=-reduction; 
            M=M*M_aux; 
            A(:,z)=A(:,z)-reduction*A(:,k); 
        end 
     end 

end 

 

 

The computation of the HNF using Algorithm 5.1 was tested for numerous Gaussian 

random matrices and it was concluded that the HNF for matrices larger than 4 4×  

almost always leads to matrices with too large entries, which makes the storage of the 

HNF impracticable.  This is not a feature dependent on the algorithm used to compute 

the HNF, but is rather related with the definition of the HNF itself. 

5.2 − Representation by a Modular Equation 

Since lattices are additive (or Abelian) groups [206] (p. 320), their study is closely 

related with group theory, [109], [209]. One starts by noting that particular integer 

lattices have a coset structure, which means that they can be written in the form 

 
 Λ ′Λ = Λ +  ′Λ 

, (5.3) 

where / ′Λ Λ    is a system of coset representatives for the elements of the quotient 

group / ′Λ Λ . The underlying geometry is that ′Λ  is a sublattice of Λ  and that 

sublattice defines its own fundamental region, which is not restricted to being of any 

particular shape. The number of lattice points lying inside the fundamental region of 
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the sublattice is called the index of the sublattice. The term / ′Λ Λ    consists of a finite 

set of lattice points, each one representing family of lattice points that constitute an 

equivalent class defined by an equivalence relation [206] (p.7) . The lattice points in 

each of those families all share the same property: any point is related with another 

member of family by adding some particular vector of the sublattice ′Λ . This 

constitutes a generalisation of the concept of the modulo operation defined in ℤ . In 

fact, members of an equivalent class are said to be equivalent modulo ′Λ . 

Because nℤ is also a lattice, one can define the quotient group /n Λℤ  for some 

integer lattice Λ . Some of these quotient groups have the so called cycle property and 

therefore can be written in the form [137] 

 
1 2

/
t

n
k k k

Λ × × ×ℤ ∼ ℤ ℤ ⋯ ℤ  (5.4) 

and 
i
k  divides 1i

k +  for 1,2, , 1i t= −… . t  is called the number of cycles of the lattice. 

Expression (5.4) indicates that each point in Λ can be written as a Cartesian 

product of coordinates that, in each dimension i belong to an equivalence class of ℤ

modulo 
i
k . In other words, there is just a finite number of non-equivalent coordinates 

that any point in Λ  can take. It is important to note that, for simplification, it is usual 

to take as coset representatives the points inside the fundamental region of Λ , as 

defined in (2.2) in Chapter 2. 

Moreover, it is can be proven that a lattice with cycles can be entirely defined by a 

set of d  modular linear equations and all points in the lattice constitute the solutions 

to those equations: 

 { }1 1 2 2: , 0mod , 0mod , 0mod
d m

k k kΛ = = ∧ = ∧ =y u y u y u y⋯  (5.5) 

Trolin has shown in [137] that any lattice can be well approximated by a lattice 

possessing a cycle structure such as the one of (5.4). The limit case where 1t =  is of 

most interest because it implies that an n-dimensional lattice can be entirely specified 

by just one modular equation. Those lattices are called cyclic lattices. 

Intuitively, a lattice ′Λ is geometrically close to the lattice Λ  if their points are 

close to each other in a one to one correspondence. However, notice that a lattice with 
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a small offset added to all its points is no longer a lattice as it would not contain the 

origin. It is useful to define the concept in terms of the generator matrix of the two 

lattices: 

A ( , )εH -neighbourhood of a lattice defined by the matrix generator H  consists of 

the lattices generated by the matrices ′H  for which [210] (p.11) 

 
,

, max{| |}
ij iji j

h hε ε′− <H ≜ , (5.6) 

where ε  is an arbitrary positive real number. 

One other interesting result, proven by Paz and Schnorr in [136], is that any integer 

lattice can be approximated by a cyclic lattice, i.e., be specified by a single modular 

equation. This could be of much interest to represent the lattice associated to a 

particular channel realisation and therefore eliminate the need to feedback all the 

complex coefficients of the channel matrix. That would do away with the omnipresent 

generator matrix in the MIMO literature. 

As defined in [136], let : nσ Λ → ℤ  be a linear transformation and k  an integer 

scaling factor k . It can be shown that these two properties hold: 

i)
( )
k

σ
ε− ≤

y
y x , for all ∈Λy ; 

ii) the quotient group 
( )

n

σ Λ
ℤ

 is cyclic. 

Then, given some integer lattice Λ , the construction of a nearby cyclic lattice takes 

the generator matrix of Λ  and slightly perturbs its generator vectors by the linear 

mapping ( )σ Λ . The procedure is split into two different cases but in both the type of 

operations encountered is similar. For the purpose of the argument here, it suffices to 

show just one of the cases.  In the simplest case, each element of H  must be perturbed 

according to  

 1 1

( )
, , ,i

i i i ink

σ  = =   
h

h h h hɶ ⋯  (5.7) 

 
, if i j

1
, , if i j .

ij

ij
ii

h

h
h

k

 ≠=  − =

ɶ  (5.8) 
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Hence, the approximation takes place in the integer domain, after having scaled 

( )Λ H  by k. Paz and Schnorr prove that this scaling factor should be 

 
1
2n

ii jj
i j

k h h
ε ≠

 
  − 
 

∏≜ . (5.9) 

Even for a moderate number of dimensions (in the real equivalent model), (5.9) 

leads to extremely large values of k. 

 The approach by Trolin [137] to prove that any lattice can be approximated in a 

similar manner by a lattice with  t  cycles provides an alternative way for constructing 

a cyclic lattice. It can be proven that all cyclic lattices have a basis whose HNF is of 

the form 

 HNF

,1 ,2 , 1

1 0 0 0 0

0 1 0 0 0

0 0

0 0 0 1 0

n n n n
h h h t−

 
 
 
 
 =  
 
 
 
  

H ⋱ ⋮ ⋮

⋯

. (5.10) 

 Moreover, it is not difficult to prove that any basis that has already been brought 

to HNF can also be reduced to the form of (5.10). For this purpose, consider a matrix 

in HNF, 

 

1,1

2,2 2,2

3,3 3,2 3,3
HNF

1,1 1,2 1,3 1, 1

,1 ,2 ,3 , 1 ,

0

n n n n n

n n n n n n n

h

h h

h h h

h h h h

h h h h h
− − − − −

−

 
 
 
 
 
 

=  
 
 
 
 
 
  

H
⋮ ⋮ ⋮ ⋱

…

, (5.11) 

and now (5.11) is perturbed inserting 1n −  ones in the following positions: 

 

1,1

2,2 2,2

3,3 3,2 3,3
HNF

1,1 1,2 1,3 1, 1

,1 ,2 ,3 , 1 ,

1

1

1

1

1

0

n n n n n

n n n n n n n

h

h h

h h h

h h h h

h h h h h
− − − − −

−

 
 
 
 
 
 

=  
 
 
 
 
 
  

Hɶ
⋮ ⋮ ⋮ ⋱

…

. (5.12) 
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If one takes the leftmost column and place it at the right of the remaining matrix, 

the matrix immediately becomes u.t except for the last column on the right. Then, one 

can cancel all the elements in that rightmost column with the ones in the main 

diagonal. Finally, all the off-diagonal elements can also be brought to zero taking 

advantage of the ones in the diagonal. Note that all these operations are elementary 

matrix transformations as the ones in section 2.1.2, and therefore the underlying lattice 

remains unchanged. The end result is a matrix in the form (5.10), where the only non 

zero elements are the ones in the diagonal and the last row (which are last coordinates 

of the generator vectors). 

This result is of enormous practical relevance as it provides a tool not only to 

discover if a lattice has one cycle (i.e., is a cyclic lattice) but also construct a synthetic 

cyclic lattice nearby any given lattice, just by perturbing its HNF in a straightforward 

manner. 

Notice that the solution to the CVP when the lattice is written in the from (5.10), 

can be calculated in one-shot by 

 

,1 ,2 , 1

(1) (1)

(2) (2)

( 2) ( 2)

( 1) ( 1)

( ) (1) (2) ( 1)
.n n n n

n

x y

x y

y x n y n

x n y n

y n h y h y y n h
y

t

−

 = = − = − − = − − − − − − =

⋮

⋯

 (5.13) 

Such a receiver has been implemented and its performance accessed with MIMO 

Gaussian matrices previously scaled so that the change from 0 to 1 in (5.12) would not 

significantly change the lattice. However, one should notice that a basis in HNF (such 

as the one in (5.10)), provides an extremely poor coverage of the Voronoi region. 

Several simulations have been run for the technique described in (5.13) and the 

performance was seen to be coincident with that of the ZF receiver. The reason for that 

is the error propagation in the first 1n −  layers in (5.13). 
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5.3 − Summary 

This semitutorial chapter described how some particular geometrical and algebraic 

structures in some families of lattices enable a shorter presentation of a lattice than the 

one provided by the traditional generator matrix. The chapter shows that the nature of 

these representations favours the representation of intege lattices and huge numerical 

difficulties are encountered when they are applied to rational lattices, such as the ones 

arising in MIMO radio channels. Even though rational lattices can always be scaled to 

integers ones, some of its algebraic properties are deeply connected with the 

determinant of the lattice or with the magnitude of the coordinates and scaling rational 

lattices to integers brings up severe numerical problems. 

The HNF  of a lattice was first presented. Then, it was shown that integer lattices 

may be well defined by a single modular equation. 

One important idea introduced in this chapter is that of approximating one lattice 

by another lattice in its neighbourhood while that second lattice has some specific 

property. This idea will be further explored in the next chapter. 
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Chapter 6 − 

Focusing Onto Orthogonal 

Quotient Groups 
 

 

In the previous chapter it was shown that some properties, representations or tools 

that are useful for integer lattices, unfortunately face tremendous limitations if applied 

in the MIMO context. The reason is that the lattices in MIMO neither have integer 

entries nor have determinants exceptionally small (in which case the computation of 

the HNF would not be troublesome). This chapter explores an idea, rooted in group 

theory, that opens doors to a new type of receiver by slightly relaxing the accuracy of 

the representation of the lattices. The idea is to linearly transform (to focus) the 

received lattice onto another lattice, which can be expressed as the union of translates 

of a rectangular sublattice. This allows mapping the detection problem onto a trellis. 

6.1 − Lattices with a Trellis Representation 

It has been known since the late 80’s that some lattices have a trellis representation 

and this fact was not forgotten by Agrell et al. in their semi-tutorial paper [106]. 

Nevertheless they dismiss the practicality of that representation because the complexity 

of the trellis (usually measured as the number of paths) is known to grow exponentially 

with the number of dimensions [211], [212]. While that argument is valid, it could also 

be applied to sphere decoding. Even so, because the typical number of antennas in 

MIMO is rather small (in comparison to hundreds of dimensions required in 
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cryptographic applications, e.g., [213]), sphere decoding is considered a practicable 

quasi-optimum detection algorithm. One more important difficulty is that lattices with 

a trellis representation require very particular geometries that are not found in lattices 

randomly generated. In this chapter we show that for the typical number of dimensions 

used in MIMO communication, with high probability, there exists a “synthetic” lattice 

that is a member of the family of lattices that have a trellis representation and which is 

sufficiently close to any given random lattice. For this purpose a method will be 

presented to find a trellis-oriented basis for a given random lattice. 

The pioneering work by Forney [117], [214], and by Calderbank and Sloan [215], 

showed that some lattices can be described by a trellis, where each segment of the 

trellis is associated with the coordinates of the lattice points in each dimension of the 

space. This work was related with that on group codes or (codes on groups) and was 

fundamental to the development of trellises for block codes [6], [216], [9], [10]. Soon, 

practical implementations for lattice decoding using trellises emerged [217] (and 

references therein). 

The lattices for which a trellis exists, can be said to constitute a family of lattices, 

denoted by LR. Unfortunately, the existence of a trellis representation requires a rather 

restricted type of lattice. Some well known lattices belong to LR; examples of these are 

the hexagonal lattice in 2D, the Schläfli lattice in 4D, the Gosset lattice in 8D 

(respectively denoted by A2, D4, and E8), or the Leech lattice in R
24 [20]. Many others 

exist and can be constructed by imposing a specific geometrical structure during the 

design of the code (perhaps the most comprehensive description is the one in [210]). In 

those cases MLD can be attained by means of trellis detection, and therefore the CVP 

in these cases can be solved with the Viterbi algorithm. By performing the detection on 

a trellis one may circumvent the exponential complexity of MLD (measuring the 

distance from the given point to all the points in the lattice), while keeping its 

performance. 

Clearly, the trellis detection approach cannot be extended to any random lattice. 

However, one may ask the question, for any given lattice, can one find a lattice that is 
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sufficiently “similar” or “close” to it, and yet is simultaneously a member of the family 

of lattices with a trellis representation, LR? This is the main question dealt with in this 

chapter. As lattices are defined by generator matrices, the problem can be seen as a 

matrix nearness problem [144]; as in many other matrix nearness problems, the one we 

formulate also does not seem to have an analytical solution and therefore we take an 

algorithmic approach. 

The approximation of a random lattice by a lattice in LR is a novel approach to 

MIMO detection. While the use of a trellis structure appears in [218], that approach is 

clearly sub-optimal, as it is based on a transformation of a tree structure into a trellis 

structure, by “folding” and merging branches onto other branches, and eventually 

losing information to distinguish lattice points. 

6.2 − Focusing Onto Lattice Sets 

We call M the set of all possible lattices in nℝ . Hence, n
Z  is just one particular 

lattice in M (see Figure 6.1). Moreover, all lattices with a trellis representation are also 

members of that M  and, as mentioned in section 6.1, we say that they constitute the 

LR family of lattices. 

As it was described in Chapter 3, the simplest way of solving the CVP amounts to 

the least-squares solution given by the Moore-Penrose pseudo-inverse of the generator 

matrix, i.e., the ZF solution. Geometrically, this type of linear receiver applies a linear 

transformation that takes the received lattice Λ  and transforms it back into the 

original n
Z . One may generalise this concept and call this procedure a focusing of the 

received lattice Λ  onto 
n
Z . One may generalize this concept of focusing one lattice 

onto some other lattice by means of some linear transformation F. The ZF focusing 

approach presents the lowest complexity among all sub-optimal receivers but also 

results in the poorest performance (in terms of erroneous decisions). The poor 

performance is a direct consequence of the potentially huge mismatch between the 

optimal decision regions in MLD and the decision regions associated with focusing onto 
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n
Z . These decision regions are nothing but linear transformations of n-dimensional 

hypercubes. Note that the convenience of the ZF receiver comes from the fact that the 

destination lattice is n
Z , which allows detection by means of a simple slicer. 

We argue that it is possible to perform a linear transformation from any received 

lattice Λ  onto other lattices in M which also lend themselves to another convenient 

detection method, namely, the Viterbi algorithm. Figure 6.1 depicts the set of all 

lattices, including the particular LR family. Any given lattice may be closer to one 

particular lattice in LR than to 
n
Z , as there are infinitely many more in LR. Again, 

notice that ZF will alwasy focus any received lattice onto n
Z , regardless of the 

distance to it. 

 

Figure 6.1: The set of lattices and the focusing operator. A received 

lattice Λ  can be focused onto the nearest member of LR or onto 
nℤ . 

When the distance between lattices is reduced, then the matching (or coverage 

[147]) between their decision regions is maximized, which minimises the distortion 

created by linearly transforming one lattice onto another one. If there is a member of 

LR near to Λ  (i.e., very “similar” to Λ ), then i) its MLD regions will closely match the 

ones of the original lattice and ii) the distortion involved in the focusing  operation will 

be small. This concept opens doors to a new type of receiver comprising the blocks 

shown in Figure 6.2. 

 

 

Figure 6.2: Detection on an approximated trellis representation. 
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6.3 − The L
R
 Family of Lattices 

A lattice has a trellis if it can be written as the union of a rectangular sublattice R
Λ  

and translated versions of it. A rectangular lattice is a lattice whose orthogonality 

defect is one, i.e., all its generator vectors mutually are orthogonal. As noticed by 

Forney [214], in the language of group theory, such a lattice is described as 

 R
R

 Λ Λ = Λ +  Λ  
, (6.1) 

where [Λ/ΛR] is a system of coset representatives for the cosets of ΛR in Λ or, 

equivalently, for the elements of the quotient group Λ/ΛR (as it was introduced in 

section 6.1). As ΛR is a rectangular lattice, by definition it can be expressed by a 

Cartesian product, i.e., 1R n
r rΛ = × ×ℤ ⋯ ℤ . Geometrically, the fundamental region of 

the rectangular sublattice is an hyper-rectangle whose sides have lengths 1 2, , , .
n

r r r⋯  

Figure 6.3 shows an example of a lattice in 2
Z  and its representation by a trellis. It 

is possible to observe the rectangular quotient group and its translated versions. The 

lattice is then the union of the cosets of ΛR in Λ . For the case in Figure 6.3, the 

number of cosets (or the index) of ΛR in Λ is Φ=|Λ/ΛR |=5. In general, the number of 

cosets is 

 
det( )

det( )
R

R

ΛΛ
Φ = =

Λ Λ
. (6.2) 

The trellis is characterised by an infinite number of paths connecting the root state 

to the goal state, however, the infinite number of paths only reflects the fact that a 

lattice has an infinite number of paths. The representation of the trellis can be made 

finite by describing a set of coset representatives. Other points in a particular coset are 

obtained by summing integer multiples of its coset representative, denoted in the trellis 

by ℤ . Each point of the lattice that is a coset representative is defined by one of the 

paths connecting the root to the goal state. In Figure 6.3 (a) it is possible to observe an 

example of a partition of a lattice into its five cosets (i.e., 5Φ = ). Inside each 

rectangular region there is one representative of each one of the cosets. The trellis 
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representation of that lattice is shown in Figure 6.3 (b), where each coset 

representative has coordinates 1 2( , )
i i

c c , 1,2, ,i = Φ⋯ . The finite set of possible 

coordinates that can exist at the ith trellis step (i.e., the set of possible coordinates of 

coset representatives in dimension i<n) is called the label group in dimension i. Note 

that the origin of the lattice corresponds to the zero path. 

 
(a) Rectangular sub-lattice in a lattice that has a trellis representation. 

 

 
(b) Trellis of the 2D lattice. 

Figure 6.3: A rectangular sub-lattice in a random lattice and the trellis 

representation of the lattice. 
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Using the origin as a representative of the rectangular sublattice ΛR, the set 

constituted by the origin together with all the other points with coordinates 1 2( , )
i i

c c , 

1,2, ,i = Φ⋯ , that are inside the central rectangular region constitute then the coset 

representatives of the quotient group. The whole lattice can now be seen as a tiling of 

the space using that fundamental region, i.e., tiling with the hyper-rectangles of volume

1 2 n
r r r× × ×⋯ . This is also illustrated for the hexagonal lattice 2A  in Figure 6.4. 
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Figure 6.4: The rectangular quotient group of the 
2A  lattice, exhibiting two cosets. 

 

Figure 6.5 and Figure 6.6 respectively show possible trellises for the Schläfli lattice, 

D4, and for the Gosset lattice, E8 [20], [210]. Notice that some lattices may have several 

different trellis representations if they possess several different orthogonal sublattices 

(below each trellis the label groups in each dimension are indicated). 

The n-dimensional orthogonal sublattice has its basis vectors along one-dimensional 

subspaces
i

W , i=1,...,n.  From these we can define the sequence of spaces {0} ⊂ V0 ⊂V1 

⊂ ⋅⋅⋅ ⊂ Vn=
n
R and each 

i
W , is the 1D orthogonal complement of 1i

V −  to 
i

V . The 

projections onto 
i

V  and 
i

W  are respectively denoted by 
i
P and 

i
W
P . One must also 

define the intersection lattices, 
i i

VΛ = Λ∩  , and also the one-dimensional lattices, 
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i
W i

WΛ = Λ∩ . Using these definitions, the state space of a trellis of a lattice in the 

coordinate system 1{ }n
i i

W =  is defined by the quotient group ( )/
i i

P Λ Λ  and the label 

group for the trellis branches is given by ( ) /
i i

W W
P Λ Λ . This construction is best 

described in [219], [220], [219], and more recently in [221]. However, applying this 

method to non-integer lattices (or those without an unusually small determinant) faces 

numerical challenges. Indeed, the cited works deal with lattices whose HNF is simple to 

compute and therefore obtaining the projection lattices becomes a simple task. That is 

not the case for random Gaussian lattices and finding a suitable trellis construction 

method is left as an open problem in this dissertation. 

 

Figure 6.5: One of the possible trellises of the Schläfli lattice, D4 (with 6 paths). 

 

 

 

Figure 6.6: One of the possible trellises of the Gosset lattice, E8 (with 16 paths). 

/ 2

2

ℤ ℤ / 6

6

ℤ ℤ / 6

3

ℤ ℤ / 2ℤ ℤ

/ 2ℤ ℤ / 2ℤ ℤ/ 2ℤ ℤ/ 2ℤ ℤ/ 2ℤ ℤ/ 2ℤ ℤ/ 2ℤ ℤ/ 2ℤ ℤ



6- FOCUSING ONTO ORTHOGONAL QUOTIENT GROUPS 

129 

 

6.4 – Lattices with Orthogonal Sublattices 

In order to be able to create lattices that are members of the LR family, one first 

needs to understand what properties a generator matrix must hold. The second step 

will be devising an algorithm that creates a lattice
R

Λ ∈ L , which is geometrically 

“similar” to a certain given Gaussian lattice. 

6.4.1 – The Quasi Orthogonal Sublattice Problem 

A lattice can only be written in the form (6.1) if and only if it contains a rectangular 

sublattice. Given a lattice, to find a rectangular sublattice within it is believed to be 

itself an NP-hard problem, even if it is known that at least one such sublattice exists. 

The problem is NP-hard even if the search is relaxed to finding a quasi-orthogonal 

sublattice. Micciancio calls this problem the quasi orthogonal set problem in [222] 

(ch.7), and one may also appropriately call this the quasi orthogonal sublattice problem 

(QOSP). This problem has received virtually no attention in the literature, apparently 

owing to a lack of applications. 

In addition to the problem of discovering a rectangular sublattice we add an 

additional constraint: one wants to find the rectangular sublattice that minimises the 

index number of the quotient group in order to minimise the number of trellis paths. 

Instead of looking for an orthogonal sublattice (which may not even exist), a fruitful 

approach is to look for a near lattice that well approximates the first one, while having 

an orthogonal sublattice. For this purpose one needs to recall the definition of a ( , )εH -

neighbourhood of a lattice, given in Chapter 5. 

A Frobenius distance between the two matrices provides a continuous metric that 

measures how close two lattices are from each other: 

 ( )2

1 1

| | Trace ( ) ( )
m n

T
ij ijF

i j

h h
= =

′ ′ ′ ′− = − = − −∑∑H H H H H H . (6.3) 

Expression (5.6) is a sufficient but not necessary condition for two lattices to be 

similar, or indeed the same. Notice that, as seen in Chapter 2, two lattices can be the 
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same if their generator matrices are related by right-side multiplication by a 

unimodular matrix. Moreover, any basis of a rational lattice can be brought to a unique 

canonical form using the Hermite Normal Form (HNF), as mentioned in Chapter 5. 

However, a lattice can also be geometrically equivalent up to orthogonal rotations (and 

scaling). If one takes a certain lattice and scale it by a real number, it is not difficult to 

accept that the lattice is, “in a certain way”, the same. The same argument holds if one 

simply rotates the lattice around any set of axes or concatenates several of these scaling 

and rotation operations; the resulting lattice is also the same. A complex lattice 

generated by a basis H  is equivalent to a lattice defined by a matrix H
⌢
 if and only if  

 

1

vol( )

vol( )

d   ⋅ ⋅ ⋅   

H
H = U H M

H

⌢
⌢

, (6.4) 

where U and M are respectively a unitary (or orthogonal for real lattices) and a 

unimodular matrix and the term involving the volumes is the appropriate scaling 

factor. 

This geometric equivalence is chiefly overlooked in the lattice literature, as Agrell 

pointed out in [116]. To the best of our knowledge, the lattice distinguishing problem 

(LDP), i.e., deciding if two given lattices are the same still remains an open problem. 

Some work has been conducted on a limited version of this general problem: the 

authors of [223] and [224] dealt with the LDP for lattices isomorphic to n
Z  given their 

Gram matrix but more work in this field is necessary.  Expression (6.4) defines an 

equivalence relation  (e.g., [206]) between pairs of bases. 

It is not difficult to see that the LDP is closely related the problem of finding a 

lattice in LR. Consider a lattice with basis 

 
6 3.6

0 2

 
 =  
  

H . (6.5) 

This lattice has a rectangular sublattice with 1 6r =  and 2 10r = , as can be seen in 

Figure 6.7 (lattice with “*” inside squares). Now, consider the basis 
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5.98 3.41

0.52 2.30

 
 = =  
  

H QHɶ , (6.6) 

obtained from H  with a rotation matrix Q that rotates the generators of H  by 5 

degrees anticlockwise. The resulting lattice is also plotted in Figure 6.7 (lattice with 

simple “*”). Consider now the reverse case, where one starts with basis Hɶ . a slight 

rotation of the lattice would allow a simple coset partition. However, there is no 

algebraic method to discover that. If, in addition to the rotation, the two bases are also 

related by a unimodular transformation, then the problem is even harder. 

Finding a lattice that is a member of LR and which simultaneously lies in a certain 

( , )εH -neighbourhood of Λ is a problem without an analytical solution unless the 

hierarchy of the complexity classes described in section 1.3.1 collapses; consequently, 

one resorts to an algorithmic approach, which will be presented in the next sub-section. 

 

 

Figure 6.7: A lattice given by 
1 2( , )h h  with a rectangular sublattice (with its points 

“*” inside squares) and a near lattice generated by 
1 2( , )h hɶ ɶ , obtained from 

1 2( , )h h  

rotated by 5 degrees anticlockwise (depicted by “*”). 
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The seminal work by Paz and Schnorr [136] (later generalised by Trolin [137]) 

proved that there is always a lattice with one-cycle in any neighbourhood of any 

integer lattice. Moreover, those lattices have a trellis structure because a cyclic lattice 

always has nℤ as a sublattice, and nℤ  is just a particular case of a rectangular 

sublattice. Unfortunately, the two methods provided by [136] and [137] are only valid 

for integer lattices and scaling a rational H  to yield integer entries makes the 

application of both methods numerically impracticable.  

Furthermore, some lattices are known to have the cubic sublattice nℤ  embedded in 

them. The work by Oggier and Viterbo used methods from algebraic number theory to 

construct such lattices [77], [79]. However, given the LDP, deciding if one of these 

lattices can well approximate any random lattice seems an intractable problem. 

6.4.2 − Properties of the Generator Matrix 

Let us consider a random rational lattice defined by a rational H  with entries 

/
ij ij ij

h n d= and whose inverse is the rational matrix W=H−1 with entries /
ij ij

p q . The 

existence of a rectangular sublattice 
R

Λ  imposes the existence of lattice points 

1 2[ , , ]T
n

y y y y= ⋯
 
whose coordinates are a multiple of the length of the respective 

dimension of the hyper-rectangle, that is, each coordinate 
i
y  must be of the form 

i
kr , 

for k ∈ℤ  and 1,2, ,i n= ⋯ . Now, because 1−=x H y  (without noise), this imposes 

 

11 12 1 11
1

1 111 12 1 11

21 22 2 21
1

21 22 2 21

1 2 1
1

1 2 1

0

0

0

n

n

n

i n

n n nn nn

n n nn n

p p p p
kr

x krq q q q

p p p p
kr

x q q q q

p p p px
kr

q q q q

   
   

      
     
     
     
     = ⋅ =     
     
     
     
          

     

⋯

⋮
⋯

⋮ ⋮ ⋱ ⋮ ⋮⋮ ⋮

⋯













 (6.7) 

for k ∈ Z . By definition of a lattice , 1 2, ,
n

x x x∈ ∈ ∈ℤ ℤ ⋯ ℤ ,  and  therefore one has 
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11 1
1

11 11
11 1

21 1
21 11

21 21

1 1
1 1

1
1 1

n
n

n n

p r
kr

q q
q r

p r
q rkr

q q

q r
p r

kr
q q

   ∈ ∈            ∈ ∈   ⇒ ⇔                ∈ ∈    

ℤ ℤ

ℤ ℤ

⋮
⋮ ⋮

ℤ ℤ

 
(6.8) 

In general, 1 1
1

1 1

i

i i

p r
kr

q q
∈ ⇒ ∈ℤ ℤ  and thus 1 1i

q r , where 1iq r  denotes that 1iq  

divides r . Hence, 

 ( )1 11 21 1lcm , , ,
n

r q q q= ⋯ . (6.9) 

where lcm stands for lowest common multiple. 

Applying the same reasoning to each dimension one concludes the following rule for 

the lengths of each side of the fundamental region of the rectangular sublattice 

 ( )1 2lcm , , ,
i i i ni
r q q q= ⋯ . (6.10) 

Finally, because (6.10) is associated with the rows of 1−H in (6.7), and remembering 

that the dual matrix is ( ) 1( )D T−=H H , it is equivalent to say that (6.10) sets a 

property for the (column) generator vectors of the generator matrix of the dual lattice.  

In conclusion, the sublattice 
R

Λ
 
of 

R
Λ ∈ L  in the original system of coordinates is 

completely specified by the lowest common multiple of the denominators 
ij

q  of its dual 

matrix, i.e., 

 ( )1 2lcm , , ,
i i i in
r q q q= ⋯ ,

 
1,2,i n= … . (6.11) 

Later, in section 6.4.4, an algorithm will be presented to generate lattices in R
L  by 

imposing that all the denominators 
ij

q  are identical within a particular row i. 

6.4.3 − Geometrical Interpretation: Distortion vs Number of Cosets 

The number of cosets in a quotient group (i.e., the index of the sublattice 
R

Λ ) is  

 

( )
( ) ( ) ( )( )1

1

Vol
det

detVol

n
n

R i Di
i

iR

r
r=

=

ΛΛ
Φ = = = = ⋅

Λ Λ

∏ ∏ H
H

ɶ
ɶ

ɶ ɶ
. (6.12) 
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In order to calculate ( )det( )DHɶ  one may notice that the approximated dual lattice in 

(6.17) is uniquely defined by two matrices: one is P , comprising the denominators, and 

the other is R , constituted by the numerators of ( )DHɶ , and both matrixes are u.t.: 

 

11 12 1 1 1 1

22 21 2 20 0
,

0 0 0 0

n

nn n

p p p r r r

p p r r

p q

   
   
   
   = =   
   
   
      

P R

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

⋯ ⋯

. (6.13) 

Note that the non-zero elements of R  in each row are forced to be equal. 

Consequently, the determinant of 
D
Hɶ  can be obtained as 

 ( )
� �1 1 1

product diagonal volume of
numerators quantization grid

1
det

n n n
ii

D ii
i i ii i

p
p

r r= = =

= = ⋅∏ ∏ ∏Hɶ , (6.14) 

and (6.12) becomes 

 
1 1 1 1

1n n n n

i i i
i i i iR i

r p p
r= = = =

Λ
Φ = = ⋅ ⋅ =

Λ ∏ ∏ ∏ ∏
ɶ

. (6.15) 

The number of cosets is thus solely determined by the diagonal of P. It is possible to 

obtain a geometrical insight into the problem by expressing the number of cosets as 

( )
( )

( ) ( )
Vol

Vol Vol
Vol

R

R D
R

ΛΛ
Φ = = = Λ Λ

Λ Λ

ɶ
ɶ

ɶ
 

  ( ) ( ) ( )
1

1

Vol1
Vol Vol

Vol( )

n
D

i D D n
i q

i
i

r

r
ε=

=

Λ
= ⋅ Λ = Λ =∏

∏

ɶ
ɶ ɶ . (6.16) 

In section 6.4.4 an algorithm will be presented that forces the coordinates of the 

basis of (DΛɶ  in dimension i to all be expressed with the same denominator 
i
r . Hence, 

the denominator 

1

1

n

i
i

r

−

=

      
∏  in (6.16) corresponds to the volume of what can be 

interpreted as a “quantisation grid”, with quantisation steps 1
i
r−  in dimension i.  

The following dilemma can be identified: on the one hand, a good approximation of 

a dual lattice requires a large 
i
r  in each dimension, i.e., a small “quantisation step”. On 
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the other hand, because each entry in ( )DHɶ  is in the rational form /
ij i

p r  , a larger 
i
r  

implies a larger ij
p ; in particular, the numerators in the diagonal,

ii
p , would also 

become larger and, from (6.15), the number of cosets Φ  grows, contrary to what is 

desired. This is illustrated in Figure 6.8 where both the volume of the dual lattice and 

the volume of the quantization grid are shown. Note that, according to (6.16), the ratio 

of these two volumes gives Φ , which one wants to minimise. 

 

 

Figure 6.8: Approximation versus number of cosets: the dilemma of 

the approximation in the dual lattice (example in a 3D space). 

In order to reduce the number of paths in the trellis of a lattice in LR , one wants  

to keep low value entries in diag( )P , while at the same time, a good approximation 

that minimises ( ) ( )D D

F
−H Hɶ , implies having large i

r  values (as these ratios are fixed, 

this constitutes another constraint for the problem). 
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6.4.4 − Lattice Construction Algorithm 

In view of (6.11), and remembering that the lattice equivalence problem is 

intractable, instead of searching for a lattice in the neighbourhood by means of 

orthogonal or unimodular transformations, the problem will be reduced to finding a 

close (in the Frobenius sense) dual generator matrix. For that purpose, one starts by 

applying a QR decomposition to the dual matrix, reducing it to the upper triangular 

(u.t.) form via a rigid rotation of the lattice, Q . To make the elements in this matrix 

shorter, we i) LLL-reduce this rotated dual lattice and then ii) find rational 

approximations for the matrix elements via a greedy algorithm. (Notice that the 

Diophantine approximation problem is itself a NP-hard problem, solvable by mapping 

it onto another CVP [110]). Algorithm 3.1, presented bellow, finds an approximated (or 

“synthetic”) dual lattice of the form 

 ( )

11 12 1

1 1 1

22 2
( ) ( ) ( ) ( )

1 2 2 2

0

0 0 0

n

n
D D D D

n

nn

n

p p p

r r r

p p

r r

p

r

           = =            

H h h h

⋯

⋯ɶ ⋯

⋮ ⋮ ⋱ ⋮

. (6.17) 

The core of Algorithm 3.1 is carried out on the dual matrix ( )DH . The algorithm 

starts by shortening the generator vectors of ( )DH  and then sorts them in ascendant 

order of their norm from the leftmost column to the rightmost one. This procedure 

minimises 11p  and therefore constitutes a first step towards minimising Φ, from (6.15). 

The algorithm then enters a search mode where in each step the largest numerator 
ii

p  

is found and its accuracy relaxed so that 
ii

p  may diminish. Then, all the remaining off-

diagonal elements in that row are written with the denominator that has just been 

found, so that 
i ii
r q= , as seen in (6.17). The rational approximation of the diagonal 

elements is relaxed by means of a continuous fraction algorithm. 

Figure 6.9 and Figure 6.10 show two examples of how the number of cosets 

evolves as the error tolerance δ increases. At the same time, it is also possible to 
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see the corresponding increase of the Frobenius distance between the synthetic 

dual lattice and the original dual lattice, ( ) ( )D D

F
−H Hɶ  (this metric is shown in 

both figures as a percentage of ( )D

F
H ). Notice that this is the distance between 

the dual lattices and not the distance between the primal lattices (as matrix 

inversion changes the Frobenius norm). 

 

 

ALGORITHM 6.1: SYNTHESIS OF A LATTICE IN LR 

Input: Generator H , Admissible numb. of paths Γ . 

Output: Approximation 
R

∈Hɶ L ; number of cosets |C|. 

1: ( ) 1
red , LLL{( ) }D T−←H M H , M  is unimodular 

2: ( )( ) ( )
red red, , sort( )D DQR←U H J H
⌢

; J  is a permutation, ( )
red
DH
⌢

 is upper triangular and 

  U  is orthogonal. 

3: ( ), D←P Q H , such that ( ) /D
ij ij ij

h p q=  

4: Calculate Φ  from (6.15)  

5: Do until Φ<Γ   

6:  Find argmax{ }
iii

l p=  and approximate /
ll ll

p q  by another rational 

having smaller 
ll
p  and smaller 

ll
q . 

7:  
i ii
r q←  

8:  Obtain ( )
red
DHɶ : for row l, write the off-diagonal /

lj lj
p q  using a common 

denominator 
i
r  and with maximum error δ. 

9:  ( )
red, D←P R Hɶ  ; as in (6.13) 

10:  
1

n

i
i

C p
=

=∏  , as in (6.15) 

11:  increment δ 

12:  end loop  

13: ( )( ) 1 1 1
red( )

T
T D − − −= ⋅H U H J Mɶ ɶ  
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Figure 6.9: Evolution of the number of cosets and Frobenius distance in Algorithm 

3.1 for a n=4 dimensional random lattice as the error tolerance increases. 

 

Figure 6.10: Evolution of the number of cosets and Frobenius distance in Algorithm 

3.1 for a n=8 dimensional random lattice as the error tolerance increases. 

 

In Figure 6.9 the algorithm was set to run in n=4 dimensions, with 100Γ = ; it 

terminated after 43 iterations, returning a lattice in LR with 75Φ =  cosets. Figure 6.10 
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shows an example for n=8, with 5 0 0Γ = ; the algorithm found a lattice with Φ=324 

after 144 iterations. 

The complexity of Algorithm 1 is dominated by the LLL reduction, O(n4). In 

addition, the QR decomposition is O(n3), sorting is O(nlogn) [225] (sec. 6.5), and the 

iterations for rational approximation is dominated by a continued fractions algorithm, 

having O(n3) [226] . Sphere decoding is well known to have a random number of branch 

expansions during the exploration of the tree (unless fixed complexity sphere decoding 

is used [190]). That number varies each time a received vector is decoded, and is highly 

dependent upon the noise power. We note that, while in the proposed detector the 

number of cosets is also a random variable, it only affects the pre-processing stage. 

Then, the complexity remains constant over the coherence time of that lattice instance. 

6.5 − Number of Cosets 

As the decoding complexity is strictly associated with the number of cosets, it is 

necessary to investigate the number of cosets, Φ , in the lattices output by Algorithm 

6.1. Note that Φ  depends only on the channel realisation and not on the modulation 

that is chosen. Hence, it is possible to study the number of cosets per se. 

In Algorithm 6.1 there is a trade-off between the maximum admissible number of 

cosets, Γ , the increment δ  in the error tolerated in each element of the channel matrix, 

and the number of iterations required to find a lattice that satisfies the limit. A smaller 

error increment increases the probability of finding a suitable lattice (with Φ < Γ ) that 

is closer to the original one than if a lattice is found latter on, having a much larger 

value of δ . It was found that there is a probability that Algorithm 6.1 has to perform 

many iterations to find a suitable lattice. Consequently, a limit was imposed on the 

number of iterations. It was found heuristically that, regardless of the number of 

dimensions, a good option was to limit the number of iterations to 1,000 while using an 

error tolerance increment 0 .0 0 1δ = . In the last possible iteration, this choice of 

parameters leads to a maximum error tolerance of 1.0 in the rational approximation of 

each element in the diagonal of Hɶ  (obtained via a continued fraction method). 



6- FOCUSING ONTO ORTHOGONAL QUOTIENT GROUPS 

140 

 

However, owing to step 8 in Algorithm 6.1 , the errors in the off-diagonal elements may 

be larger. 

The procedure used to search for the value of Γ  to be set in the algorithm was to 

find the lowest value that would still lead to a quasi-optimum performance (the results 

of which will be presented in the next section) or, when that becomes too difficult to 

achieve (namely, in the cases of 8 and 12 dimensions), find the value of Γ  that achieves 

the best possible performance. 

The average number of cosets in the lattice returned by the algorithm is always 

{ }E Φ <Γ , however, there are particular instances when a lattice cannot be found with 

a number of cosets Φ < Γ . Those instances are counted in the rightmost bin in the 

histograms shown in Figures 6.11 to 6.16, and are indicated by “*” above the bin. The 

visible domain of each probability distribution function (pdf) depicted in this section is 

chosen for “*”to represent not more than 1 per cent of the lattices. Moreover, the 

histograms are presented with an area normalised to 1, so that they can be a good 

approximation to pdfs. The total number of lattices taken into account corresponds to 

the sum of all the instances considered to obtain each of the points in the SER curves 

(which will be presented in section 6.6). When that information is meaningful, the 

figures also include a graphical representation of the standard deviation as a bar on top 

of the pdf and centred at the average. Because the pdf are wide, the standard deviation 

bar sometimes extends beyond the domain that is plotted, and thus the bar is omitted 

in these cases.  

As expected, as the dimensionality goes up, the average number of cosets, { }E Φ , 

required for quasi-optimal detection, also grows, however it is found that { }E Φ  is still 

affordable up to 8 dimensions (4×4), which includes the most important scenarios in 

MIMO. 
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Figure 6.11: Probability density function of the number of cosets in 

n=4 real dimensions (2×2 configurations), limiting to Γ=50. 

 

One surprising result is that the pdfs showing the number of cosets present in the 

various dimension sizes analysed are far from being uniform. Indeed, for all the 

dimension sizes investigated, and regardless of the limit Γ , the number of cosets tends 

to cluster around some particular numbers and the resulting probability density 

functions (pdfs) are “almost discrete” and “almost periodic”, though they cannot 

strictly be considered as such. This fact is difficult to explain and can only be justified 

by the existence of an underlying number theoretic property governing the possible 

number of coset groups in n dimensions, which is a mathematical problem beyond the 

scope of this engineering approach. This property can be observed throughout the 

entire domain of the various pdfs. For example, in Figure 6.11 the maximum number of 

cosets tolerated was set to 5 0Γ = , but the same effect is visible if one sets 1 0 0Γ = , 

allowing us to observe a larger domain for Φ , as shown in Figure 6.12. Moreover, the 

same behaviour is found in all the other dimensions analysed: 6, 8 and 12 dimensions 

(i.e., 3×3, 4×4 and 6×6 antenna arrangements), as shown in Figures 6.9 to 6.14. 
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Figure 6.12: Probability density function of the number of cosets in 

n=4 real dimensions (2×2 configurations), limiting to Γ=100. 

 

 

Figure 6.13: Probability density function of the number of cosets in 

n=6 real dimensions (3×3 configurations), limiting to Γ=200. 
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Figure 6.14: Probability density function of the number of cosets in 

n=8 real dimensions (4×4 configurations), limiting to Γ=100. 

 

 

 
Figure 6.15: Probability density function of the number of cosets in 

n=8 real dimensions (4×4 configurations), limiting to Γ=500. 
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Figure 6.16: Probability density function of the number of cosets in 

n=12 real dimensions (6×6 configurations) , limiting to Γ=10,000. 

Despite typical configurations in wireless MIMO having no more than 4 antennas, it 

is known that the standards such as LTE-A or 802.11ac are defined up to eight layers. 

Therefore, the case in 12 dimensions (6×6 antennas) was also investigated (Figure 6.16) 

so that a better assessment of how the number of cosets grows with the number of 

dimensions could be obtained. 

6.6 − Performance Comparison 

The Algorithm 6.1 outputs the approximated lattice Λɶ , which, by construction, 

should have Voronoi regions similar to the ones of the original Λ . Using the concept 

introduced in Section 6.2, the focusing linear transformation is 

 1( , ) −= ⋅H H H Hɶ ɶF , (6.18) 

with F close to the identity matrix, i.e., 
F

ε− <IF . By allowing an increasing 

number of cosets, ε  can be brought close to zero.  

This section presents the detection performance by Algorithm 3.1, after applying the 

linear transformation ( , )H HɶF , given in (6.18). The exact performance is obtained using 
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a sphere decoder of the type previously described in Chapter 3. In doing this it is 

possible to assess the performance of applying the Viterbi algorithm to the trellis 

associated with the synthetic lattices. 

For a proper comparison with other detection techniques, simulations have been run 

in a Rayleigh flat fading channel and, as in Chapter 3, the results are compared with 

the following detection techniques: ZF and MMSE, OSIC (i.e., the typical V-BLAST), 

and LLL-based lattice reduction pre-processing followed either by ZF or by OSIC. In 

order to assess the power penalty in respect to MLD, its performance is also shown, 

obtained with a SD of the type described in Chapter 3. Note that the reason for the use 

of the SD here is to obtain the optimal performance of the SM schemes considered, and 

for that reason more sophisticated (and with lower complexity) SD algorithms are not 

necessary. The results will now be presented for the typical M-QAM alphabets and are 

grouped according to the number of dimensions. 

 

6.6.1 − 2×2 Antennas 

 

Figure 6.17: Detection in n=4 real dimensions (2×2 antennas) with QPSK. 
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Figure 6.18: Detection in n=4 real dimensions (2×2 antennas) with 16-QAM. 

 

 

 

Figure 6.19: Detection in n=4 real dimensions (2×2 antennas) with 64-QAM. 
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6.6.2 − 3×3 Antennas 

 

Figure 6.20: Detection in n=6 real dimensions (3×3 antennas) with QPSK. 

 

 

 

Figure 6.21: Detection in n=6 real dimensions (3×3 antennas) with 16-QAM. 
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Figure 6.22: Detection in n=6 real dimensions (3×3 antennas) with 64-QAM. 

 

6.6.3 − 4×4 Antennas 

 

Figure 6.23: Detection in n=8 real dimensions (4×4 antennas) with QPSK. 
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Figure 6.24: Detection in n=8 real dimensions (4×4 antennas) with 16-QAM. 

 

 

Figure 6.25: Detection in n=8 real dimensions (4×4 antennas) with 64-QAM. 
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6.6.4 − 6×6 Antennas 

 

Figure 6.26: Detection in n=12 real dimensions (6×6 antennas) with 64-QAM. 

6.7 − Discussion of the Results 
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coinciding with the performance of LLL-OSIC-ZF. With an average of 506 cosets, the 

gap to MLD reduces to 0.6 dB. 

For the 2×2 setup (from Figure 6.17 to Figure 6.19) quasi-optimum performance is 

always reached with a very low number of cosets (less than 50 for all modulations). In 

the 3×3 configuration, 106 cosets guarantees a quasi-optimum performance with all the 

modulations tested, although a small degradation can be noticed as the order of the 

modulation increases. 

In the case of 12 real dimensions, the number of cosets required to outperform 

lattice-reduction with OSIC rises to over 5,000 (which is something that should be 

expected from the pdf shown in Figure 6.16). 

In the simulations it was also observed that, in all cases when the performance 

approached the one of MLD, then the focusing transformation is ≈ IF , which shows 

that the synthetic lattices in LR are close to the given lattice. Indeed, the distance 

F
− IF  constitutes a metric for the similarity between the lattices. This observation 

was verified graphically by visualising superimposed 2-dimensional slices of the original 

and the created synthetic lattices. This can be achieved by selecting a 2-dimensional 

sublattice generated by any pair of generator vectors and then plot the resulting 2D 

sublattice using a QR rotation to place the pair of generators onto the span of the first 

two dimensions of the space. Figure 6.27 shows an example of doing just this. 

The number of cosets needed for near-optimal performance diminishes for smaller 

alphabets (smaller M). This happens because the distortion between the received lattice 

and the approximated lattice in 
R
L  increases as one gets further away from the origin 

(as observed in Figure 6.27). It should also be noticed that, by construction, the 

number of trellis paths is an upper bound on the number of trellis states.  Finally, note 

that the length of the trellises (number of segments) is determined by the 

dimensionality of the lattice ( 2 )
T

n N=  and therefore, for the typical number of 

antennas in MIMO, these trellises are rather short. 
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Figure 6.27: Slice of dimensions 3 and 4 of a 4-dimensional lattice overlapped with 

the nearest synthetic lattice found (with Φ=495 cosets). Both lattices are depicted 

together with their Voronoi regions. 

 

6.8 − Focusing Onto Fixed Lattices in L
R
 

It is known that the optimal decision region for the cubic lattices nℤ  coincide with 

the ones of ZF. However, for other lattices, the coverage of the MLD region that a 

linearly transformed hyper-cube achieves is very poor. One may ask if focusing onto a 

fixed lattice with a decision region with a shape closer to the n-hypersphere could, on 

average, result in a better coverage of the Voronoi regions. In that case, instead of 

creating a similar lattice with Algorithm 3.1 for every channel instance, the focusing 

operation could remain fixed and the linear transformation could focus, for example, 

onto the Schläfli lattice when working in 4D, or onto the Gosset lattice when working 

in 8D. They both have well known trellises and are denser than the cubic lattice in 

their respective dimensions, thus with Voronoi regions geometrically closer to an 

hypersphere than the cubic regions are [20]. 
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 In order to assess this conjecture, simulations were conducted using the lattices D4 

and E8 respectively for 2×2 and 4×4 configurations, and it was found that the 

performance results were no better than the one obtained with ZF. It is possible to 

shed light on the reason for this performance by visualising an example in 2D using the 

A2 lattice (with an hexagonal fundamental region, as depicted in Figure 6.28).  

 

 

(a) Lattice 2ℤ  before the channel and the fundamental region of A2 (blue). 

 

(b) Case with 
1H .                                        (c) Case with 

2H . 

Figure 6.28: Comparison of the ZF decision region with the one corresponding to a 

focusing onto A2. ML (thin blue), Zero forcing (black) and image of the hexagonal 

fundamental region of A2 
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In Figure 6.28  it is possible to observe the deformation of the fundamental hexagon 

on A2 when it undergoes the linear transformations  

 
1

3 2 1 2

1 10 3 2

 
 =  
  

H      and    
2

5 6 1 5

1 2 6 5

 
 =  
  

H . (6.19) 

With this example, it can be perceived that having a decision region with six sides 

instead of four does not necessarily result in a better coverage of the Voronoi region. In 

fact, the coverage may become reduced and the ZF region may offer better coverage of 

the MLD region. 

6.9 − Summary 

In this chapter a new detection concept was proposed for MIMO. The concept 

revisits the channel inversion technique and generalises it to the concept of focusing the 

received lattice onto a lattice geometrically similar to it, but whose special structure 

allows a simple detection technique. It was shown that it is possible to well 

approximate typical lattices in MIMO by lattices with an orthogonal quotient group, 

which allow a trellis representation.  

Detection on these lattices attains quasi-optimal performance while maintaining a 

reasonably low complexity for systems up to 4×4 utilising 64QAM, however a 6×6 

system again using 64QAM is probably beyond the practical limit for the proposed 

technique. The receiver also captures the full diversity that exists in the SM channel, 

which is a much sought property. Moreover, it exhibits a performance gain in 

comparison to LRA.  

The results presented are non-constructive, meaning that even though the existence 

of those lattices is proven and their performance is assessed, the construction of the 

trellis remains an open problem for rational lattices owning to the numerical problems 

when computing their Hermite normal form. 

 

 



 

155 

 

 

 

Chapter 7 − 

Closed Loop Spatial 

Multiplexing 
 

 

While the previous chapters dealt with open loop SM, i.e., when the transmitter has 

no information about the matrix channel H . In contrast, this chapter proposes a close 

loop system that is an alternative to the traditional one base on the singular value 

decomposition. 

As it was seen in Chapter 2, to obtain the Gram matrix associated with a given 

generator matrix is a trivial operation, the converse is not obvious for non-square 

matrices and is a research topic in algorithmic number theory. This chapter proposes a 

method to execute such a conversion and applies it to a feedback technique that 

removes some of the complexity from the receiver to the transmit side. 

7.1 − Feedback in MIMO 

As seen in chapters 5 and 6, there are several ways of describing a lattice (e.g., via 

modular equations [136] or by trellis structures [227]). Nevertheless, the two most 

common forms of specifying a lattice in engineering applications are i) the generator 

matrix and ii) the Gram matrix. While the computation of the latter given the former 

is trivial, the reverse operation is not, and an efficient algorithm for this conversion 

remains an open problem in lattice theory. 
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It should be noted that if efficient algorithm for this reverse operation existed, the 

lattice could be described using only about half the number of elements of H , since the 

Gram matrix is always symmetric. For example, in MIMO communications with CSIT, 

this means that about half the number of coefficients would need to be sent to the Tx 

when compared with that in traditional feedback [99]. Using the traditional example in 

[99] , while in a single-input single-output configuration (with BPSK modulation) the 

channel state information is conveyed by one coefficient only, in a 4×4 antenna system 

one has 16 complex variables describing the channel, or equivalently 32 real coefficients, 

that need to be periodically fedback to the transmitter. In fact, the number of 

coefficients to be fedback is the product of the number of antennas at the transmitter, 

at the Rx, the delay spread and, in multi-user environments, also proportional to the 

product with the number of users. 

The chapter proposes a technique to obtain a close approximation for a generator 

matrix given a Gram matrix of a lattice. The algorithm is based on an exact technique 

recently proposed by Lenstra [103] (an historical figure in the fields of lattice 

algorithms).  

7.2 − The Matrix Conversion Method 

Given a rational Gram matrix G  it is possible to diagonalise the quadratic form as 

 T= ⋅ ⋅G L D L , (7.1) 

where L is a rational n×n lower triangular matrix with ones in the diagonal (i.e., is a 

unit matrix) and D is a n×n diagonal matrix with rational diagonal entries 0
jj

d > . 

The first step is to expand these 
jj

d ∈ Q  into a sum of a fixed number of squares of 

R rational numbers, that is, 

 2 2 2
,1 ,2 ,jj j j j R

d z z z= + +ɶ ⋯ . (7.2) 

An exact expansion of these djj can be accomplished by applying a naive greedy 

algorithm as proposed for the first time by Lenstra in [103]. Imposing an exact 

expansion for each 
jj

d
 
often leads to a large number of terms in the sum (7.2) and for 
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that reason Lenstra also proposed the use of a randomized algorithm given in [228], 

which assures the bound 4R≤ . 

In this section one proposes to replace an exact conversion from G to H  by an 

approximate conversion (leading to a Hɶ ) using a fixed complexity algorithm that can 

be applied in a real time communication system. Based on the results in [228], a simple 

greedy algorithm is used for the expansion and truncate the number of terms to 4R≤  

leading to a truncated Lenstra algorithm. One way of achieving this is by using R equal 

terms in (7.2). One may notice that when R=1, the algorithm resorts to an 

approximated Cholesky decomposition. 

One starts by constructing a tall matrix B with R n⋅  rows and n columns. For the 

case with R=4 terms for each of the djj, B has the form 

 

1,1 1,2 1,3 1,4

,1 ,2 ,3 ,4

,3 ,4

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0
j j j j

n n

T
z z z z

z z z z

z z

 
 
 
 =  
 
 
  

B
⋱

⋱
 (7.3)

 

 

where each row has one and only one non-zero entry. Now, one can re-construct the 

diagonal matrix D  from B using 

 T=D B Bɶ . 

This matrix multiplication was made explicit to emphasise how this ensures that 

each djj is a sum of squares as defined in (7.2). Finally, the approximated generator 

matrix can be seen to be  

 T= ⋅H B Lɶ , (7.4) 

because 

 
( ) ,

T T T

T
T T T

= ⋅ ⋅ = ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ = ⋅

G L D L L B B L

B L B L H H

ɶ ɶ

ɶ ɶ
 (7.5) 

which verifies (2.4) (defined in Chapter 2). 

The complexity of this technique is cubic in the dimension n, due to the LDLT steps, 

to which one should add ( )nO for the rational approximation steps. The overall 
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complexity is ( )3n n+O , however, as it will be shown later in Table 7.1, as the LDLT 

decomposition will be reused, only the n term will add to the complexity of the 

technique to be presented. 

It should be noted that, unlike Cholesky decomposition, this technique is applicable 

to both square and non-square matrices, allowing us to retrieve a rectangular H  from 

G . 

7.3 − Closed Loop Technique 

Using traditional singular value decomposition (SVD), [148], [229] one has 

 ( )
d

T

T T T T T

= Σ +

= Σ + = Σ ⋅ +
H

y

y U V x n

U y U U V Vx U n x U n

����

���
 (7.6) 

where Σis a diagonal matrix and U and V are unitary matrices or orthogonal, if the 

real equivalent model is used. It should be emphasised that, as these rigid 

transformations are norm-preserving rotations, the term TU n  preserves the statistics of 

the noise term n . The traditional SVD-based scheme implies one SVD decomposition 

(requiring at least 3(6 )nO  flops [229]) at the Rx in addition to matrix multiplications 

both at the Rx and at the Tx (each multiplication requiring 3( )nO  flops).  As it was 

mentioned in Chapter 1, this technique achieves capacity when using the water filling 

power allocation technique, which allocates more power to the streams associated with 

larger singular values of H  [35]. 

It has been shown in [230] that the LDLT decomposition achieves better performance 

than standard SVD, while being slightly less complex. Most importantly, that new 

approach takes advantage of having a precoding matrix with 2( )/ 2n n−  zero elements. 

In fact, it requires lower triangular precoder instead of the unitary V  in (7.6). That 

lower triangular matrix is fedback from the Rx to the Tx, saving bandwidth in the 

feedback channel. 
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This chapter proposes a technique with similar performance to the one in [230] but 

that removes most of the complexity from the Rx side to the Tx side, which is relevant 

in scenarios where the Tx is a BS and the Rx should be made simple. 

Remark: since the objective in this chapter is not to assess the capacity-achieving 

regime so, for simplicity, uniform power is allocated to the transmit antennas. 

Both the contribution in this chapter and the one in[230] have a pre-processing stage 

at Rx consisting of the generation of a definite positive matrix G , that is the Gram 

matrix of the lattice defined by the columns of H . 

In this proposal it is mandatory that CSIT exists so that the Tx is able to construct 

the precoding matrix P. This chapter shows that his can be achieved with the feedback 

of a lower triangular matrix only. Given the symmetry of G , the Tx only needs to 

receive 2( ) / 2n n+  coefficients and from them is able to reconstruct the entire matrix, 

achieving the same bandwidth savings seen in [230] for the feedback channel. After 

reconstructing the entire G  (by symmetry), the Tx can use the truncated Lenstra 

algorithm described in Section 7.2 to obtain an equivalent generator matrix for the 

lattice. This matrix, Hɶ , is not the same as H  but rather an equivalent generator 

matrix for the lattice, holding the same Gram matrix.  However, it is possible to obtain 

from them both the unique generator matrix resulting from QR decompositions 

remembering that a QR decomposition is unique when imposing the positiveness of 

elements in the main diagonal. Thus 

 =H QR  and =H QRɶ ɶ ɶ  (7.7) 

lead to R  and Rɶ , which would be the same matrix (up signs in main diagonal) if there 

was no distortion associated with Hɶ  in the truncated Lenstra algorithm. A key aspect 

is that the same Gram matrix is also obtainable from R  alone, Rɶ  alone or even a 

mixture of both, given their closeness: 

 T T T= ≅ ≅G R R R R R Rɶ ɶ ɶ . (7.8) 
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As seen previously, G  has an LDLT decomposition, which can be calculated not only 

given H  or Hɶ  but also given R , or Rɶ , or both. However, this is not the matrix that is 

to be LDLT decomposed. One starts by applying a QR decomposition, so that  

 = +y Q R x n . (7.9) 

Then, defining the precoding matrix 1 1/2( )T T − −=P R L Dɶ ɶ ɶ , 

 1 1/2( ( ) )T T − −′ = +

′

y QR R L D x n

G

ɶ ɶ ɶ
���	��


. (7.10) 

The matrices used in (7.10) will be presented and justified in the following. First, 

notice that this caused a matrix T′ =G RRɶ  to appear (a permutation matrix may be 

needed together with Rɶ  to have a unique QR), which, despite not being the Gram 

matrix of the underlying lattice, it is the (approximate) Gram matrix of the lattice 

spanned by the row lattice. This matrix ′G also has an LDLT decomposition and thus 

(7.10) can equivalently be written as 

 1 1/2( )T T − −

′

′ = +

G

y QLDL L D x nɶ ɶ ɶ ɶ ɶ
���	��


. (7.11) 

Finally, after the detection filter at the receiver, the entire chain becomes 

 

( ) ( ) ( )

( ) ( )

1 1 1 1 1 1/2 1 1

1/2 1 1

( )

d

T T

T T
d eq

dn

− − − − − − − −

′

− − −

′ = +

′ = ⋅ + = ⋅ +
y

L Q y L Q QLDL L D x L Q n

y DD x L Q n D x L Q n

ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ
�������

ɶ ɶ ɶ ɶ
�����	����


 (7.12) 

It should be noted that, since Q is orthogonal (unitary if considering complex 

models), then 1 T− =Q Q , which further simplifies the computations at the Rx, which 

now only has to apply the filtering 1 T−=F L Qɶ  to the incoming precoded signal (i.e., 

the unavoidable filtering multiplications that are present in all detectors). Besides that, 

the Rx only needs to compute G and (given its symmetry) send back to the Tx only 

the lower or the upper parts of G, which will be denoted by 1/2G . Moreover, both 1−Lɶ  

and TQ  are computed and sent from the Tx to the Rx. 
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The resulting transmission chain (7.12) can be interpreted in two ways: i) 

algebraically it corresponds to a set of independent transmission channels and ii) 

geometrically it corresponds to a communication problem over a rectangular lattice as 

the diagonal matrix 
eq

D  corresponds to a set of orthogonal generating vectors. The 

better performance can be geometrically interpreted from this insight. A rectangular 

lattice is obtained from a deformation of a cubic lattice n
Z  by stretching each 

dimension according to each 
jj

d . Its decision regions are hyper-rectangles and for that 

reason even a ZF detection experiences no performance penalty. 

The right multiplication of the channel matrix by TRɶ in (7.9) changes the power at 

the transmitter. The geometric interpretation is also useful on this matter. The “row 

lattice” ( )THL  has volume 

 ( ) ( )Vol ( ) detT T=R RRɶ ɶ ɶL . (7.13) 

At the same time, because Lɶ  and TLɶ  are unit matrices, 

 ( ) ( ) ( )Vol ( ) det det T= =D D LDLɶ ɶ ɶ ɶ ɶL  

 ( ) ( )det det T′= =G RRɶ ɶ ɶ . (7.14) 

Subsequently, one also needs the insertion of a diagonal scaling 1/2−D  at the 

precoding stage so that the volume of both lattices underlying the transmission scheme 

becomes the same. 

Figure 7.1 depicts the overall transmission scheme that is proposed while in Figure 

7.2 and in Figure 7.3 one can observe in detail the processing required respectively at 

the Tx and at the Rx as well as the fluxes of CSI between both of them. 

At the Rx it is important to highlight that there are two parallel operations running 

simultaneously, each one associated with a different fading block: i) obtain G that will 

be sent back to Tx in the form of a triangular matrix and ii) construct the receive filter 

from a received strictly upper triangular matrix and Q. In fact, 1−Lɶ  is not only a lower 

triangular but also a unit lower triangular (ones in the diagonal). This saves the 

transmission of the diagonal and thus only the 2( ) / 2n n−  coefficients of 1−Lɶ are needed 
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to be forwarded to the Rx. These coefficients are denoted by 
1

u
−Lɶ . The process is 

summarised in Algorithm 1. (The channel is assumed to remain unchanged between 

adjacent symbols as it is common in the slow fading assumption.) 

 

 
 

Figure 7.1: Proposed closed loop transmission scheme. 

 

 

 
 

Figure 7.2: Processing at the transmitter. 

 

 

 
 

Figure 7.3: Processing at the receiver. 
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ALGORITHM 7.1 CLOSED LOOP TECHNIQUE 

1: Channel estimation at Rx : H 

2: Gram matrix of the lattice at Rx : T=G H H  

3: Lower triangular matrix is fedback: 1/2G  (Rx→ Tx) 

4: Gram matrix is reconstructed at Tx: 

( ) ( )1/2 1/2 1/2diag
T

= + −G G G G  

5: Obtain approximate Hɶ  from G  using the algorithm      in Section 7.2 

(which encompasses a TLDL  for G ) 

6: Compute QR decomposition of  Hɶ : =H QRɶ ɶ ɶ  

7: Compute the Gram matrix of the “row lattice” at Tx: T′ =G RRɶ ɶ ɶ  

8: Decomposition of ′G  at Tx: T′ =G LDLɶ ɶ ɶ ɶ  

9: Precoding at Tx: 1 1/2( )T T − −=P R L Dɶ ɶ ɶ ; s  is sent (note: for a non-squared Rɶ

the non-zero rows must be deleted) 

10: Strictly lower triangular matrix is sent: 1
u
−Lɶ (Tx→ Rx) 

11: Compute QR decomposition of  H : =H QR  (note: can be computed at the 

same time as steps 4-10) 

12: 1−Lɶ  is reconstructed at Rx: 
1 1

u n n
− −

×= +L L Iɶ ɶ  

13: Receiver filter 1 T−=F L Qɶ  multiplies the received chain and the received vector 

becomes 1/2
d d
= +y D x nɶ  

 

 

The number of flops required by the LDLT decomposition is 3( /3)nO , which is half of 

the number of flops needed in Gaussian elimination, the number of flops of QR 

decomposition is 3(2 )nO , and for the standard matrix multiplication one has 3( )nO

[148], [229] (however, there are more efficient algorithms for matrix multiplication). 

Table 7.1 contains a comparison of the proposed technique with SVD and with [230] in 

terms of the number of flops and number of coefficients flowing in both the uplink and 

downlink. The number of operations in Table 7.1 is presented in a way that shows the 

contribution of each individual processing stage to the total number of operations of 

the Rx or Tx (matrix multiplications are counted as only one 3( )nO though). The 

complexity at the receiver comes from a QR decomposition and two matrix 



7 – CLOSED LOOP SPATIAL MULTIPLEXING 

164 

 

multiplications: one to initially obtain G  (similar to [230]) and then the unavoidable 

filtering multiplication by F . One should remember that this last multiplication is 

common to all types of receivers in both closed or open-loop configurations. 

 
 

Table 7.1: Comparison of the complexities of the schemes 

 SVD [230] Proposal 

# flops at Rx ( )3 34n n+O  ( )3 3 33n n n+ +O  ( )3 32O n n+
 

# flops at Tx ( )3nO  ( )3nO  

3

3 3

2

3

n n
O

n n

 + +    +  
 

Coefficients 

in feedback 
2n  ( )2 2n n+  ( )2 2n n+  

Coefficients 

in downlink 
− − ( )2 2n n−  

Total of 

coefficients 
2n  ( )2 2n n+  2n  

 

7.4 − Assessment of the Approximation 

In order to access the approximation one first computes the error matrix of the 

Gram matrix involved (i.e., the Gram matrix associated with the “row lattice”, as 

indicated in Section 7.3) 

 ′ ′= −E G G  (7.15) 

and one applies to it the squared Frobenius matrix norm [229] 

 ( )22

,
,

Trace H
i jF

i j

e= =∑E E E  (7.16) 

as the evaluation metric. 

Figure 7.4 shows the distribution of this error for three example cases having the 

number of real dimensions most common in MIMO wireless communications (and with 

variance 0.5 per real component). 

Notice that despite the Gram matrix of the “row lattice” and the one of “column 

lattice” being different, they hold the same distribution because H  and HH  exhibit the 

same statistics and consequently they are interchangeable in expression (2.4). 
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Figure 7.4: Probability distribution of the squared Frobenius norm of 

the error matrix for Gɶ  (or ′Gɶ ). 

 

For a NT =4, NR =4 configuration (i.e., n=8 dimensions) under a Rayleigh fading 

channel and using 16-QAM modulation, the proposed LDLT decomposition leads to the 

error shown in Figure 7.4, which contributes to negligible performance penalty in 

respect to the results presented in [230] for the same configuration and using the same 

MMSE receiver. 

7.5 − Summary 

This chapter starts by proposing a method to reconstruct a generator matrix of a 

lattice from one given Gram matrix of the same lattice for non-square matrices. Notice 

that for square matrixes one may use the Cholesky decompositions. Subsequently, the 

chapter presented a technique for channel diagonalisation of MIMO systems. With this 

technique: i) LDLT decomposition takes place at the transmit side; ii) the number of 

elements to be fedback to Tx is 2( ) 2n n+ , as in [230]; iii) the filtering matrix at Rx is 

build from a unit lower triangular and an orthogonal matrix, which further reduces the 
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complexity of the filtering matrix multiplication at Rx. The extra cost to bear is a QR 

decomposition at the Rx. However, a QR module would have to exist at Rx if typical 

open-loop spatial multiplexing schemes are also to be supported. For large number of 

antennas, the presented closed loop architecture (i.e., with CSIT) for MIMO 

communications nearly halves the number of coefficients traditionally needed to 

represent the channel. 
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Chapter 8 − 

Conclusions 
 

In the past few years, we have witnessed a period of vibrant new discoveries. 

Decades-long open problems have been solved, either exactly or via good 

engineering approximations. The mathematical techniques that form the 

foundation of our discipline, such as random coding, superposition coding, 

successive interference cancellation, lattice coding and quantization, binning (or 

hashing), linear and non-linear precoding, opportunistic scheduling and many 

more, are now at the heart of core technology developments, and are migrating 

into new systems and communication standards. (...) It is by now clear that the 

single-source single-link problem has arrived at a point where the marginal 

improvement, in most settings of engineering significance, is relatively small. In 

contrast, as soon as the problems are enriched with network aspects, such as 

distributed and correlated sources, interference and intermediate nodes that are 

neither sources nor destinations, the distance between theory and practice is still 

large, and the margins for dramatic improvements are potentially huge. 

Furthermore, even the theory offers plenty of long-standing or new open 

problems that will keep generations of information theorists busy for a long time. 

(...) there is still a lot of work to do! 

Giuseppe Caire, 2011 

In the president’s column of [231] 

 

8.1 − Research Contributions 

In general, lattice problems are simple to describe but rather hard to solve 

optimally. In this dissertation several suboptimal solutions have been described for the 

closest vector problem, which is central in MIMO communication systems. This thesis 

started by placing SM in the context of MIMO in Chapter 1. Then, in Chapter 2, the 
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detection problem was framed as a CVP in real lattices. When describing the 

fundamental properties of lattices, this dissertation clarified the geometric relation 

between a lattice and its dual lattice, often overlooked in the literature. Capitalising on 

that relation, a technique was devised in Chapter 3 that samples points lying on sets of 

hyperplanes that have the highest density of lattice points on them. Those samples are 

then quantised to the lattice via zero forcing and the best candidate is declared. The 

technique exhibits a considerable gain (up to 7 dB in the 4×4 / 64-QAM case) in 

comparison to OSIC with ZF.   

In Chapter 4 it was shown that, whenever exhaustive search is still affordable, it is 

possible to reduce the number of computations by quantising the whole problem. In 

doing this, it becomes possible using a lookup-table technique that eliminates many of 

intermediate operations involved in computing Euclidean distances while still 

outperforming the traditional receivers. 

Many of the now most widely adopted techniques to deal with the CVP were first 

discovered in the fields of algorithmic number theory. Some authors have conjectured 

that the Hermite normal form could greatly reduce the number of operations in tree-

exploration-based techniques. From the algorithmic point of view, the HNF is not 

presented in sufficient clarity in the literature. In Chapter 5 an algorithm was given for 

the HNF and some conclusions drawn regarding the numerical problems that the HNF 

faces when dealing with random rational lattices. The problems prevent the application 

of the HNF beyond 4×4 real lattices (i.e., 2×2 antennas only). In the same chapter a 

technique was presented that permits the approximation of a random lattice by one 

with having one cycle, with a very sparse and triangular generator matrix. However, 

the numerical problems caused by the very nature of the HNF are directly related with 

the difficulty of representing the Gaussian lattices of MIMO with a one with one cycle, 

also defined by a single modular equation.  

Chapter 6 derived the property that makes a lattice a member of the family of 

lattices with a trellis structure and an algorithm was given to create one of those 

lattices “nearby” the typical Gaussian lattices in MIMO. The basis vectors of the 
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synthetic lattice and the basis vectors of the original lattice are close and for finite 

alphabets the two lattices are roughly the same in the region of interest. Given this 

geometric similarity, the Voronoi regions of both lattices chiefly overlap. A linear 

transformation then focuses the original lattice onto the synthetic one, known to have a 

trellis representation. This minimizes the distortion of the Voronoi regions associated 

with maximum-likelihood detection and therefore the performance attained in the 

MIMO-CVP is close to optimal. 

The distortion between the two lattices is closed by a liner transformation that 

generalises the concept of zero-forcing. For 2×2, 3×3, 4×4 and 6×6 configurations, 

decoding on the synthetic lattice outperforms all sub-optimal techniques with or 

without pre-processing and attains the same diversity as MLD. As expected, the 

number of cosets necessary for near-optimum performance increases with the dimension 

of the lattices, just as does the complexity of sphere decoding. However, while the 

number of nodes to explore in traditional SD is random and dependent on both the 

lattice and on the received vector itself [186], decoding in a trellis has fixed-complexity 

during the time that a particular lattice represents the channel.  

The last chapter delved into closed loop SM. Using the LDLT decomposition, an 

architecture was proposed that removes complexity from the receiver to the transmitter 

(often a BS), where it may be more affordable. Additionally, the number of elements 

required in the feedback channel is about half the one of traditional SVD. 

8.2 − Further Work 

Lattices continue playing a central role in state-of-the-art research in communication 

theory. Additionally, because so many problems can be expressed in the language of 

lattices, techniques to solve open problems in lattice theory always bear a potentially 

large impact. The following subsections provide a list of open questions bridging some 

new theories and old problems with aspects of the research presented in this thesis. 
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8.2.1 − Randomised Projections 

As noted at the end of Chapter 3, sampling candidate points near the target vector 

led to a receiver with a reasonable number of candidates from which to select the best 

candidate via an exhaustive search. The planes onto which the received point is 

projected are defined by the dual lattice and therefore, for a given lattice, the planes 

are deterministic. On the other hand, it has been found very recently that a 

randomised version of an OSIC-like algorithm achieves full diversity at little 

complexity, even for large MIMO configurations [232]. The idea is that at each SIC 

iteration, quantization to the nearest hyperplanes (as in the Babai algorithm) is 

substituted by a randomised choice 25  of the hyperplane. Several candidates are 

generated this way by running this randomised SIC several times (the Babai point is 

forced to be included in the final list of candidates). The idea is then to sample lattice 

points that, with high probability, are close to the target point, and then select the 

closest among them. Recently, since the breakthroughs in compressed sampling (CS) 

[233], [234]26, the study of projections of signals onto random subspaces has become a 

prominent research topic in signal processing. The concept can also be adapted to assist 

in the nearest neighbour problem, even if there is not a lattice structure in the point set 

[235]. It is then natural to ask for a theoretical framework to understand why random 

projection methods work so well and if they can be put in the context of compressed 

sampling methods (even though CVP is inherently a l2-norm problem and CS uses l1-

norm to process sparse data) 

                                        
25 The underlying idea is the application of Klein’s algorithm, proposed in 2000. Interestingly, 

the existence of this algorithm had already been noticed by Agrell et al. in the seminal paper 

[106]. 
26 Both papers received ex aequo the IEEE Information Theory Paper Award in 2008. An 

introduction to the topic of CS can be found in[245]. The field is also sometimes called 

compressed sensing. 
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8.2.2 − The Orthogonal Sublattice Problem 

As seen in 0, the problem of finding a lattice with a trellis structure is equivalent to 

searching for an orthogonal sublattice for which no research exists in the literature, 

probably due to the lack of an application. Moreover, one is also interested in finding a 

sublattice with the smallest possible index (i.e., number of cosets). Finding the best 

sublattice in polynomial time would make the hierarchy of complexity classes collapse. 

Indeed, it is not difficult to show that it encompasses the lattice distinguishing problem 

(LDP), which itself is believed to be NP-hard [224],[106]. A rotated version of a lattice 

with a very lower number of cosets should lead to the discovery of that same partition. 

However, as it is not known that if the lattices are the same up to rotation and 

unimodular transformation, consequently, finding that partition becomes 

algorithmically unbearable. Nonetheless, devising faster and non-greedy algorithms to 

replace the one in 0 must be a research objective. One line of possible starting point 

should be the LLL algorithm which could be relaxed to finding lattice vectors that are 

orthogonal to all the others but which are not forced to still constitute a basis. In other 

words, the right-side matrix M  should remain integer but not necessarily unimodular; 

its determinant should be relaxed to the integer domain instead of being restricted to 

det( ) 1±M . The change of determinant corresponds to a finding sublattice with a 

certain index. 

One other research path should be to find tools for the lattice distinguishing problem 

itself. 

8.2.3 − The Lattice Distinguishing Problem 

A promising approach to the LDP is to limit the problem to a finite set of points, 

instead of considering the infinite lattice. This would involve applying a sphere decoder 

(similar to the one used in Chapter 3) to capture the points in a certain spherical 

vicinity of the origin. By doing this, the problem becomes equivalent to the matching 

point clouds problem (MPCP). If only rotations are considered, then the problem 

becomes the traditional Procrustes problem [236], [142], [143]. However, as in general a 
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unimodular transformation of the basis exists simultaneously with the rotation, the 

problem is a two-sided Procrustes problem, where the right multiplication is a 

permutation matrix that rearranges the order of the points. Although this is also an 

open problem, it is simpler than dealing with the infinite lattice. Moreover, MPC is a 

problem where some research exists given that the problem arises in many applications 

(medical imaging, robotics, and others). An important contribution to this problem 

appeared in[237], where the author proposed a technique that iteratively minimizes the 

rotation (via the well-known Procrustes solution) and permutation matrices (using the 

Hungarian algorithm 27  [225]). Unfortunately this flip-flop approach almost never 

converges to a global minimum (i.e., finding the correct rotation and the correct 

permutation matrices). If a good method is found to the MPCP, then the lattice 

distinguishing problem can be solved within the limits of the numerical precision of the 

cloud of points, but, if needed, more points, with larger distances from the origin, can 

be added to the set to increase numerical precision. 

8.2.4 − Trellis Construction Methods 

The research presented in Chapter 6 concerned the existence of lattices in LR 

sufficiently close to a given MIMO lattice. Those lattices do have a trellis, though, their 

explicit construction was not given. The obstacle is the practical impossibility of using 

the HNF that greatly simplifies the projections onto lower dimensional spaces. 

Therefore, the traditional construction of a trellis as done in [214], [6], [135], [216], 

[219], [221], is not possible. Devising an efficient method to generate the trellis of a 

rational lattice, when the lattice is known to have one, is perhaps the most important 

open question in this thesis. 

                                        
27 The Hungarian algorithm solves the assignment problem, i.e., finds the optimal assignment 

between the elements of two sets by minimising the sums of all assignment costs between the 

elements in the first set and the elements in the second set. The algorithm is also known as the 

Munkres algorithm.  
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8.2.5 − Interference Alignment over Lattices 

This thesis only considered the case of SM with one Tx and one Rx. In a network 

environment, in addition to noise and intra-user interference, the receiver is also 

affected by interference from other users. In a recent theoretical development, Cadambe 

and Jafar28 [238], [239] pioneered the idea of interference alignment (IA) in multiuser 

systems. In MIMO, IA lends itself to the lattice perspective [240] and using specific 

subspaces to separate users, considering the system as an “expanded” lattice in more 

dimensions than just 
R T

N N× . Assessing the performance of IA methods for different 

types of MIMO detection algorithms is a research task of high practical importance. 

8.2.6 − Physical Layer Network Coding 

Physical layer network (PLNC) coding for wireless channels has emerged recently a 

new way of distributing information between the nodes of a network using fewer 

physical resources (i.e., channel resources). Lattices also play a key role in these ideas; 

a prominent approach is based on the properties of nested lattices, as in the pioneering 

work by Nazer and Gastpar [130], [241], while other approaches to PLNC take 

advantage of the lattice group property [131]. The structure of the nested lattices 

greatly simplifies the search for an orthogonal sublattice in them, and therefore they 

are candidates to have a simple trellis structure. Research in PLNC is very recent and 

is just in its infancy and most work is still focused on the information theoretical 

aspects. Mapping nested lattices onto a trellis representation may be an important step 

for practical implementation of PLNC. 

 

 

                                        
28The paper received the IEEE Information Theory Paper Award in 2009. The second 

reference is a simpler explanation of the key ideas in interference alignment. 
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Appendix A– 

Determinant of a 

Triangular Matrix 
 

 

This property is used in several chapters of the dissertation. 

 

Theorem: The determinant of a triangular matrix T corresponds to the product of the 

elements in the diagonal. 

 

Proof: Consider an upper triangular matrix  
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By induction, one gets at the end the product 
1
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t
=

=∏T . A similar procedure 

also proves the theorem for the case of lower triangular matrixes.  ■ 
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Appendix B– 

Lattice Geometry Tool 
 

 

This annex shows the graphical interface (Figure B.1) of a software tool developed 

in MATLAB whose aim was to assist the research shown in Chapter 6. 

 

  

         

 

Figure B.1: Command window and generated lattice with a coset partitioning. 
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