
Knowledge-Representation and Scalable Abstract Reasoning for
Sentient Computing using First-Order Logic

Eleftheria Katsiri
�

and Alan Mycroft
�

�
Laboratory for Communication Engineering, University of Cambridge,�

Computer Laboratory, University of Cambridge
William Gates Building, 15 JJ Thompson Avenue, Cambridge CB3 0FD, UK

ek236@eng.cam.ac.uk am@cl.cam.ac.uk

Abstract. We present a dynamic knowledge-base maintenance system for representing and reasoning
with knowledge about the Sentient Computing environment. Sentient Computing has the property that
it constantly monitors a rapidly-changing environment, thus introducing the need for abstract mod-
elling of the physical world which is at the same time computationally efficient. Our approach uses
deductive systems in a relatively unusual way, namely, in order to allow applications to register infer-
ence rules that generate abstract knowledge from low-level, sensor-derived knowledge. Scalability is
achieved by maintaining a dual-layer knowledge representation mechanism for reasoning about the
Sentient Environment that functions in a similar way to a two-level cache. The lower layer maintains
knowledge about the current state of the Sentient Environment at sensor level by continually process-
ing a high rate of events produced by environmental sensors, e.g. it knows of the position of a user
in space, in terms of his coordinates x,y,z. The higher layer maintains easily-retrievable, user-defined
abstract knowledge about current and historical states of the Sentient Environment along with tempo-
ral properties such as the time of occurrence and their duration e.g. it knows of the room a user is in
and for how long he has been there. Such abstract knowledge has the property that it is updated much
less frequently than knowledge in the lower layer, namely only when certain threshold-events happen.
Knowledge is retrieved mainly by accessing the higher layer, which entails a significantly lower com-
putational cost than accessing the lower layer, thus ensuring that the lower-level can be replicated for
distribution reasons maintaining the overall system scalability. This is demonstrated through a proto-
type implementation.

1 Introduction

Our research is focused on Sentient Computing [11] applications. Sentient computing is the proposition
that applications can be made more responsive and useful by observing and reacting to the physical world.
Awareness comes through sensing and a sensor infrastructure (Fig. 1(a)), distributed in the environment,
provides information about the spatial properties of users and objects, i.e. their position in space, their
containment within a region such as a room or their proximity to a known physical location. Sentient
Applications make it possible for the user to perform easily complex computations involving spatial and
temporal notions of a dynamic changing environment. E.g. when a user walks into his study at home, it is
possible for his PC to automatically and seamlessly display the desktop from his office environment. Or,
whenever two people are co-located in a single space, the system can make this information graphically
available to an Active Map, or deliver a relevant reminder. e.g. “You asked me to remind you, to give Tom
his book back, when you meet him.” Sentient Computing applications can be viewed as a logical layer,
namely, the Application Layer in the Sentient Applications layered architecture (Fig. 1(a)).

However, there is a significant gap between the level of abstraction in the knowledge about the Sentient
World that Sentient Computing applications require for their functionality and the actual low-level data
that get produced by the sensors and which constitute a low-level, precise, knowledge layer. To illustrate
this using the previous example, the sensor that dispatches information about a user’s position, only knows
who the user is and his coordinates in space. An application that displays the user’s screen in response
to his proximity to his PC, needs to know when a more abstract situation has occurred, that is, when the
user is close to his PC. The information about the user’s proximity to his PC is a logical abstraction of his
position in space and it is expressed in relation to the position of another physical object, namely his PC.

To make matters worse, the above system will need to monitor a large number of users distributed among
a number of distinct locations at the same time. Even so, it needs to react to the perceived changes with no
perceptible delay.

We propose that the gap between the application-layer abstraction and the sensor-derived precision be
bridged by using a deductive component that reasons with low-level, sensor-derived knowledge in order to
deduce high-level, abstract knowledge, which can in turn be used easily by the application layer. Further-
more, we believe that the proposed deductive reasoning does not compromise computational efficiency and
performance even for very large distributed environments.

Deductive Knowledge Base Layer

Sensor Infrastructure Layer

Application Layer

RegisterRecurringQuery()

RunQuery()

DefineDALPredicate()
notify()

Deductive Abstract Layer

Sensor Abstract Layer

monitor() callback()

sensor events

(a)

P1 P2

monitor P1 monitor P2

 event rate λL

rate λrate λH1 H2

Sensor Abstract Layer

Deductive Abstract Layer

API

(b)

Fig. 1. The Sentient Applications layered architecture and its API (a) andthe dual-level architecture (b) .

This work tackles the above issue of scalable, system-level, computationally-efficient abstract mod-
elling of the physical world. Its contributions are a formal definition of a knowledge representation as well
as a mechanism for reasoning with such knowledge using logical deduction that combines expressiveness,
scalability and performance.

1.1 Layered Interfaces

For the abstract model of the Sentient world we chose to design a dual-layer knowledge representation
architecture. Our design approach is inspired by the OSI paradigm [14] for layered network architecture
where each layer incorporates a set of similar functions and hides lower-level problems from the layer
above it thus achieving simplicity, abstraction and ease of implementation.

1.2 API

The application Layer communicates with the dual Deductive Knowledge base layer via an API consisting
of a DefineDALPredicate(), RunQuery() and RegisterRecurringQuery() interfaces (see Fig. 1(a)). The
DefineDALPredicate() interface, takes as arguments the predicate name along with its parameters, and
creates the necessary representation in the Distributed Abstract Layer (DAL) for this piece of knowledge.

2

The RunQuery() command is similar to an SQL SELECT statement in that it returns the current stored state
of the Sentient world by first trying to obtain the information of interest from the Deductive Abstract Layer.
If that piece of information is not contained there, a communication process between the two knowledge
layers is triggered so that this piece of knowledge is generated from the low-level Sensor Abstract Layer
and maintained dynamically in DAL before it is returned to the application layer. In this way, it will be
available for future queries.

The RegisterRecurringQuery() command is used by the Application Layer in order to register interest
in a particular, recurring situation in a way that the application layer is notified whenever the situation
occurs, starting with its next occurrence. The RegisterRecurringQuery() command together with the notify()
command, behave similarly to the publish-subscribe protocol.

The interface between the two layers, used by both API commands, is based on a monitor-callback
mechanism similar to an asynchronous invocation between a consumer and a publisher. Nomenclature
here is taken from the theory of Distributed Systems [2]. The monitor mechanism in the Sensor Abstract
Layer watches all changes in the environment reported by the Sensor Infrastructure for certain threshold
events, as specified in the RunQuery() and RegisterRecurringQuery() statements. The callback mechanism
ensures that such threshold events, when they occur, trigger an update in the Deductive Abstract Layer
accordingly, creating instances of the predicates that hold and destroying these that are no-longer true, as
the case may be.

In this way, the two knowledge layers behave as a two-level cache for the Application Layer, enabling
scalability.

1.3 Paper Outline

The rest of the paper is organised as follows: First, significant work in related areas is discussed and then,
the architecture of the proposed system is described. Section 4 presents a formal definition of the knowledge
representation architecture using first-order logic. Sentient Applications reason about the available knowl-
edge through an interface which is described in Section 5. Next, a prototype implementation, discussed in
Section 6, confirms the achieved scalability. Last, some conclusions and future work are discussed.

1.4 What is Not a Goal of this Paper.

We have chosen to describe the deductive component of the proposed architecture by using first-order
logic. We believe first-order logic to be a very powerful and general tool for representing and reasoning
with knowledge and we have found it to be appropriate and sufficient for the needs of Sentient Computing
as is demonstrated in later sections. It is not our goal to provide a comparative study between first-order
logic and other reasoning schemes such as planning and description logics, however a concise survey of
literature related to planning and description logics can be found in section 2.

2 Related work

Having an efficient and scalable data model is of great importance for Sentient Computing, not only because
of the dynamic and rapidly changing nature of the processed data in this paradigm, but also because of the
heterogeneity of it. In this section we chose to survey literature in systems that are faced with similar
concerns.

SPIRIT [10] is the most influential system in this area and is also the only system which tries to address
scalability as an issue which is inherently linked with processing sensor-derived data. SPIRIT is a sophis-
ticated system that provides a platform for maintaining spatial context, based on raw location information,
derived from the Active Bat location system. SPIRIT has a similar goal to our proposed architecture in that
it offers applications the ability to express relative spatial statements in terms of geometric containment
statements. However, its approach towards both data-modelling and scalability is quite different from ours.
SPIRIT models the physical world in a bottom-up manner, translating absolute location events for objects
into relative location events, associating a set of spaces with a given object and calculating containment

3

and overlap relationships among such spaces, by means of a scalable, spatial indexing algorithm. The in-
dexing algorithm uses a quadtree for indexing spaces of arbitrary sizes and geometries and provides fast
and predictable insertion, updating and query of spaces.

Since we believe scalability to be an enabler for distribution, it is useful to discuss the potential of
efficiently distributing an architecture in order to cater for larger sizes of the physical world. In this as-
pect, although SPIRIT supports parallelism in the level of the storage of the world model objects [25], the
distribution capabilities of the above mentioned spatial indexing algorithm are unclear. In fact, calculating
relationships between spaces which are not stored on the same computer suggests a high communication
overhead between the distributed elements which may affect significantly the response time of the algo-
rithm.

Hence, SPIRIT uses a bottom-up, engineering approach in order to address scalability in calculating
spatial updates in the world model.

FLAME [13, 3] is a development platform [13, 3] providing middleware support for applications by
modelling location information. FLAME uses a Spatial Relation Model to assign regions to location events
and generate events that denote region containment and overlapping.

Apart from the above mentioned development platforms, context-aware [24] applications include Tele-
porting [23], ComMotion [19], CyberMinder [1] and Proem [17]. The Teleporting System developed at
Olivetti Research Laboratory is a tool for experiencing mobile X sessions. It provides a familiar, person-
alised way of making temporary use of X displays as the user moves from place to place. ComMotion is
a GPS-based [4] system [19] which uses location and time information in order to deliver location-related
information such as a grocery list, when the user is close to a super-market. CyberMinder is a system that
delivers context-aware reminders, based on a specific set of contextual information such as location, time
and agenda items. Proem is a peer-to-peer system, which matches pairs of mobile users according to their
given profile of preferences. Last, Narayanan [20] presents the notion of grouping together locations that
share spatial or logical features.

Our approach differs in that it tackles scalability in a top-down manner. It looks at the stored data
through a knowledge perspective, and uses logical deduction in order to produce a mapping from the
heterogenous data to different levels of abstract knowledge and exploiting the latter property in order to
ensure efficient allocation of resources. By separating concerns between three key areas, namely, the sensor
infrastructure that instruments the physical world, precise and abstract knowledge about the physical world
and the application layer, we achieve a clearer view of abstract knowledge and provide good grounds
for scalability in terms of knowledge queries as well as the creation of efficient interfaces. Furthermore,
although our work is focused on the Sentient Computing environment, it is modelled in a formal way,
which can be reapplied to all the above-described development platforms, independent of the underlying
sensor technology, accommodating at the same time application systems such as [19], [1], [17] as users
of the proposed architecture. For this reason, we adopted the formalism of first-order logic, as we believe
this to be a powerful mechanism for reasoning. First-order logic, provides the desired expressiveness that
applications need in order to define their requirements in knowledge. Several other alternatives, that may
be applicable to knowledge-representation and reasoning in this area, are discussed briefly below:

Planning Systems [22] are systems that given a formula that represents a goal � they attempt to find a
sequence of actions that produces a world state described by some state description � such that ��� �	� . We
say then that the state description satisfies the goal. Although the state-space approach of planning systems
looks promising for Sentient Computing, the goals pursued by planning systems are different and a lot of
work needs to be done in this direction to determine any potential contributions in this area.

Description Logics [21] are logic-based approaches for knowledge-representation systems. Description
logics represent entities using a “UML”-like language called DL Language. The logic used for reasoning
with such entities is derived from first-order logic but is much less powerful and expressive than first-order
logic. Description Logics have the advantage that they allow for the specification of logical constraints.
Similarly to planning, any potential contribution of Description Logics to Sentient Computing is yet to be
determined.

4

3 Knowledge Representation

This section describes the architecture (Fig. 1(b)) of the two logically distinct layers of knowledge repre-
sentation and discusses their functionality as a two-layered cache for the Sentient application layer.

We use a definition introduced by Samani and Sloman in [18], according to which an event is a happen-
ing of interest that occurs instantaneously at a specific time. Furthermore, we define the Sentient environ-
ment to be the physical environment and the current logical state of the Sentient environment to be the set
of all known facts about the Sentient environment between an initial event and a terminal event. Initial and
terminal events can be any events that are of interest to the Sentient application layer. Based on the above,
we can say that the Sensor Abstract Layer maintains a low-level but precise view of the current logical
state of the Sentient environment, as produced by sensors that are distributed throughout the environment
and continually updated through events. Equally, we can say that the Deductive Abstract Layer maintains
an abstract view of the current logical state of the Sentient environment.

A particularly interesting source of events are the ones that characterise the location of an object. These
are generated by a location system such as the Active BAT [10] where the position of users in 3-D space is
tracked typically once per second, by means of an ultrasonic transmitter called BAT. The Sensor Abstract
Layer processes all the generated events and thus knows of the last position of all users in the system in
terms of their co-ordinates.

A more abstract view about the state of the Sentient environment can easily be inferred from the knowl-
edge stored in the Sensor Abstract Layer. E.g. from a user’s position (
�������) and from a set of known
polyhedra that represent regions, the room the user is in follows logically. Furthermore, from a known set
of nested polyhedra, additional locations that the user is present in, can also be inferred. 1

The Deductive Abstract Layer (DAL) through its interaction with the Sensor Abstract Layer (SAL)
maintains such abstract knowledge about the current and past states of the Sentient Environment together
with temporal information about the initial events that triggered them, the duration of each state, as well as
when they stopped holding. Such data can be used by statistical models in order to generate a likelihood
estimation of situations that may occur in the future, based on their past occurrences [16].

The two layers interact through a monitor-callback communication scheme. A monitor call initiated
by the Application Layer, causes the Sensor Abstract layer to filter through to DAL only those low-level
changes that affect the abstract knowledge stored in the Deductive Abstract Layer, thus alleviating the
Deductive Abstract Layer from the cost of continually monitoring all the data that are produced by the
sensors. Consequently, knowledge in DAL is updated in a significantly lower rate (���� ������) than it does
in SAL (���) ensuring in this way that any large amount of physical data can be processed by replicated
SALs, maintaining at the same time the overall system scalability.

Example. In order to illustrate the functionality of the dual-layer architecture in more detail, let us consider
the case where the Application layer is interested in receiving notification whenever two or more users are
co-located. Through a RunQuery() statement initiated by the Sentient Application Layer, unless it already
knows about co-located users, DAL will register a Monitor() call to SAL in order for the latter to start
monitoring the sensor data that signify co-location occurrences. As a result, the Sensor Abstract Layer
monitors the incoming events in order to determine from the users’ positions whether two or more users
are contained in the same room. When this occurs, the respective knowledge about the user’s co-location
will be generated in the Deductive Abstract Layer through a callback() call. All further changes in the
position of these users in the Sensor Abstract Layer are monitored in order to determine whether the two
users are still co-located. If any of the co-located users exits the containing region, the change in the users’
location in combination with the co-location predicate instance in the current, abstract state (DAL), signals
an inconsistency. As a result, another callback() call is triggered from SAL to DAL, invalidating the current
state, logging it as a historical state and generating a new current state. In practice, not the whole state of
the Sentient Environment is changed, as most of abstract knowledge remain unaltered. Our approach in
generating a new current state is similar to updating a table in a traditional database.

1 The query: “Is user X in Cambridge?” needs to answer positively even if User X is in FC15, which is in the William
Gates Building in Cambridge.’

5

3.1 Scalability concerns

The main benefit of the proposed architecture is that it maintains a consistent, abstract state of the Sentient
environment in the Deductive Abstract Layer which can be made available to the application layer at a
significantly low cost than if it would be generated directly from the Sensor Abstract Layer. There are three
key reasons that enable DAL to act similarly to a fast cache for the application layer: The availability of
the abstract knowledge in DAL, the fact that this knowledge changes at a lower rate than it does in SAL
make DAL more computationally efficient at keeping its stored knowledge consistent. Figure 1(b) depicts
the different rates with which knowledge is updated in each layer. Section 5.2 discusses in more detail,
computational concerns associated with the functionality of the two layers.

4 Formal definition

This section presents a formal definition of the proposed scalable knowledge representation architecture
for Sentient Computing. The concepts of the dual-layer architecture that were discussed in the previous
section are now formally defined using first-order logic.

4.1 First order logic

First order logic [6] or predicate calculus, was chosen as being appropriate and sufficient for the descrip-
tion of the two knowledge layers as they both maintain either current knowledge only (Sensor Abstract
Layer) or a combination of current and historical knowledge (Deductive Abstract Layer) about the Sen-
tient Environment. Time is implicit in SAL and explicit in DAL. However, when describing the monitoring
mechanism that establishes the links between the two layers, temporal aspects of the described predicates
are addressed by realising that as the Sensor Abstract Layer is updated first, until the changes are updated
to the Deductive Abstract Layer, this will contain the last known abstract state of the world.

Concepts and Definitions We assume that the physical world contains � individual values that represent
autonomously mobile objects such as people that work in a building. We also assume that the physical
environment contains � individual values which represent known physical locations of interest. Locations
can be classified into atomic locations and nested locations. Atomic locations will typically be polyhedral
named regions, such as “the coffee-area”, “mike’s desk”and rooms. Via a process of nesting we produce
a set of aggregated polyhedral regions such as floors and buildings (each floor may contain a specific
set of rooms and each building a particular set of floors) as well as logically aggregated spaces such as
departments (each department may contain a number of floors, or buildings).

We call a knowledge base � a system that stores knowledge about the Sentient environment. A knowl-
edge base represents predicates that are true by storing an instance of each of these predicates. We refer
to this instance as a fact. The assertion of a fact in the knowledge-base is equivalent to it being stored in
the knowledge base as a true statement. A fact being retracted from the knowledge base has as a result the
removal of the fact from the knowledge base. In fact, the assert command is similar to a database ADD,
whereas the retract command is equivalent to a database DELETE. When a fact is asserted in the knowl-
edge base, this signifies that the predicate that the fact corresponds to has the value TRUE. When the fact
is retracted from the knowledge base, this signifies that the corresponding predicate has the value FALSE.
Nomenclature is taken from logic programming.

4.2 Naming convention for predicates

For reasons of clarity and simplicity, we adopt the following naming convention for logical predicates
throughout this document:

L � SAL predicate name � ((argument name ?argument value) ����� (argument name ?argument value) �
H � DAL predicate name � ((argument name ?argument value) ����� (argument name ?argument value) �

The main difference is that DAL predicates have additional time parameters which represent the beginning
and wherever appropriate, the end of the situation they refer to. For the description of the predicates we

6

have used a named parameter notation based on the CLIPS [26, 9] syntax. Table 1 portrays some significant
predicates. Each predicate argument has an associated value which is denoted with ?argument-value. The
predicates and their arguments are discussed in detail in sections 4.3 and 4.4.

Current Predicates Historical Predicates
DAL (H UserAtLocation(uid �!#"%$)(rid �&�"%$) (H UserAtLocationHistoric(uid �!#"%$)(x �')(y �()

(start-time start-time)) (z *))(start-time start-time)(end-time end-time))
(H UserColocation(uid-list *!+",$ ��-*-�- �!#"%$/.) (H UserColocationHistoric(uid-list �!#"%$ �0-�-�- �!#"%$/.)

(rid region-id)(start-time time-value)) (rid ?region-id)(start-time ?time-value)
(end-time time-value))

(H UserIsPresent(uid �!#"%$)(start-time ?time-value)) (H UserIsPresentHistoric(uid �!#"%$)
(start-time ?time-value)(end-time end-time))

SAL (L UserAtLocation(uid �!#"%$)(x �')(y �()(z 1))) -

Table 1. Naming convention for logical predicates

4.3 Sensor Abstract Layer (SAL)

The knowledge base of this layer contains upto � facts of type L UserAtLocation(uid,x,y,z) 2 that represent
an object’s last known position in 3-D space in terms of its Cartesian coordinates
������� . 2 354�6�798;:<2�=�>�?/:A@,=/B
is the most precise location known to the system for each user. The variable ?uid represents the unique user
identification for that particular user. In examples we use users’ full names as identifiers. The variables x,y,z
represent the user’s last known co-ordinates. In this way, each user is associated with a position in space.

Apart from these positions, the knowledge base also contains � � facts of type L AtomicLocation each
corresponding to the � � known atomic regions of physical space (e.g. rooms and polyhedral areas of
space) and � � nested regions (floors, larger areas, buildings, neighbourhoods). There are therefore four
distinct type of predicates represented in this layer.

(L UserAtLocation (uid ?uid)(x ?x)(y ?y) (z ?z))
(L AtomicLocation (rid ?region-id) (polyhedra C�D � C�D � �����EC�D0F))
(L NestedLocation (rid ?region-id) (site-list CHG�IKJML � ����� CHG�IKJMLHN))
(L InRegion (x ?x)(y ?y)(z ?z)(rid ?region-id))

As the people move in space, a location system generates in average ��� L UserAtLocation facts/sec
per mobile user and asserts them in the knowledge base. For each new fact of type L UserAtLocation the
fact that represented the previous known position for that user is retracted, so that the knowledge base only
contains the most recent known location for that.

The predicate L AtomicLocation associates a named location such as ”Room 5” characterised by a
unique identifier, the region-id, with a set of O points, D � �����9D0F , which form the nodes of a polyhedral
region that defines that area.3 The predicate L NestedLocation associates a nested location such as “The
Computer Laboratory” with a list of nested and atomic locations that are directly contained in it. The
predicate L InRegion is created as a result of a spatial indexing algorithm, which determines the smallest
region that contains the given co-ordinates, as expressed in the L UserAtLocation predicate.

4.4 Deductive Abstract Layer (DAL)

The higher level is logically distinct from the lower level in that it maintains a complete view of the Sentient
world. Although it lacks the knowledge of the accuracy of the exact user position (as this is only known

2 The positional parameters notation L UserAtLocation(uid,x,y,z) is used interchangeably throughout this paper with
the named parameter notation L UserAtLocation(uid ?uid)(x ?x)(y ?y) (z ?z)) for simplicity reasons.

3 We assume a co-ordinate system that assigns a set of co-ordinate values x,y,z to each position in space.

7

to the Sensor Abstract Layer), it knows of high-level situations seen from a user-perspective as well as
their temporal properties i.e. whether they hold at the current instant, or whether they happened in the past,
when they first occurred and what was their duration. Such dynamic knowledge is modelled in the form of
current and historic predicates. Current predicates represent a dynamic situation that still holds. Historic
predicates represent a situation that occurred for a certain interval, beginning at a certain point in time and
ending at a later point in time. As a consequence of the above modelling technique, the Deductive Abstract
Layer has the important property that it accumulates gradually information about what has happened in the
Sentient world. Now, the format of the DAL predicates is discussed in detail.

The DAL Current predicates. DAL current predicates describe a situation which occurred at an instant J�P
and which still holds at the current instant which is represented with the value now. Such predicates have
the general format:

(predicate name (Q+RTS � CTQ+R�S �) ����� (QURTSWV ? QURTSWV) (start-time ?time-value))

Arguments QURTS � to Q+R�S V represent the parameters of the situation that is described by the predicate and
the variables CTQURTS � to C�Q+RTS V their respective values. The argument named “start-time” represents the time
when the situation described by the above predicate became first known to the system.

An important current predicate is the one used to describe a high-level location, e.g. Mary being in the
proximity of the coffee-machine, or James being on floor 4.

(H UserAtLocation(uid ”Mary”) (rid ”coffee-machine-area”) (start-time 11:02))

(H UserAtLocation(uid ”James”) (rid ”floor-4”) (start-time 13:05))

where ?uid represents the user’s unique identification and ?region-id is the value of the named parameter
rid which represents the name of the smallest region that contains the user.

Similarly, applications can request through the API for the SAL to register their interest in situations
where two or more users are co-located in the same high-level region by using the predicate H UserCoLocation.

(H UserCoLocation(uid-list C�X0IKY � �����EC�X0IZY V)(rid ?region-id)(start-time ?time-value))

This process is explained in more detail in section 5.2.In the above formula, uid-list is the list of users
that are co-located in a region with name 7*@,[. The variables C�X0IKY � to X0IZY V represent the unique identifica-
tion of these users.

The DAL historical predicates. The DAL historical predicates describe a situation which occurred at a time
instance JZP , remained holding for a duration Y and ceased holding at a time instance J � . Such predicates are
expressed in the following general format:

(predicate name (Q+R�S � CTQURTS �) ����� (Q+RTSWV ? Q+RTSWV) (start-time time-value) (end-time ?time-value))

The argument ”start-time” represents the time when the situation described by the above predicate
became first known to the system. The argument ”end-time” represents the time when the situation stopped
being true e.g. when the user left the room he was in. E.g. the DAL historical predicate that describes the
situation where Jane and Mike move into the meeting room in their office building at 12.46 pm, remain in
the same room for 9 minutes and Jane leaves the meeting room at 12.55 pm, is expressed below: It is worth
noting that there can be multiple instances of historic predicates for the same user.

(H UserLocationHistoric (uid-list ”Jane Hunter”)(rid “Meeting Room”)(start-time 12.46) (end-time 12.55))

(H UserCoLocationHistoric (uid-list “Mike Smith” “Jane Hunter”)(rid “Meeting Room”)
(start-time 12.46) (end-time 12.55))

8

4.5 User-Defined DAL Predicates

It is worth noting that whereas all SAL predicates are predefined, all predicates in DAL are user-defined.
This means that in the initial state, DAL contains no predicates. DAL predicates get created through the
DefineDALPredicate() API call (see section 1.2) and instances of these predicates (facts) get generated
from the Sensor Abstract Layer by the monitor() and callback() calls (see Section 1.2).

5 Queries

Queries are used by the application layer in order to capture and return the current instance of the stored
knowledge about the Sentient World. Queries are similar to SQL [5] SELECT statements in the theory of
relational databases. We can view a query as a first-order logical expression \^],_ � ��_ � �����9_�V`� which has the
property that upon the satisfaction of a set of atomic formulae _ � �9_ � �����9_1V , an answer is triggered.

\^]A_ � ��_ � �����a_ V �cbedfD5G�ghLTR
where \ is any first-order formula involving the formulae],_ � �9_ � ������_ V � .

Answer can have a value of ”yes”, ”no”, ”I don’t know” or a value extracted from a stored fact such as
the user id. The interface through which the answer is returned to the user is subject to the application layer
and can be implemented in various ways, e.g.by using a print function, by publishing a structured event or
through an API. We have chosen to adopt the structured event approach where the answer is encoded as a
structured event and is returned to the application layer via a notify() call (see Section 1.2).

Examples of logical queries are “Who is present in the building now ?” and “Which users are co-
located now?” The first query may be useful in the case of an application that delivers reminders to anybody
who is present in the building late in the evening in order to remind them to lock their door on the way
out. The second query may be useful for the same application, delivering a reminder to one party which
is semantically associated with the second e.g. the reminder: “Remember to ask Jane to return your book”
will be delivered when the user is in the same room with Jane [1]. Equally interesting as an example is the
case where a user enters a conference site and is interested to know if there is somebody present from the
University of Cambridge.

The number of conditions in the queries depends on the underlying knowledge base model. E.g. if the
above mentioned query ”Who is present in the building?” was to be executed at a knowledge-base with
a single layer of knowledge (i.e. the Sensor Abstract Layer), it could then be written as a query of the
following form:

Query 1 Return All Present Users (Sensor Abstract Layer).

X�IZYi� (L UserAtLocation(uid ?uid) (x ?x) (y ?y) (z ?z)) j
(L AtomicLocation(rid ?region-id) (polyhedron C�D � C�D � ����� C�D0F)) j
(L InRegion(x ?x) (y ?y)(z ?z) (rid ?region-id))

The “ � ” operator is similar to an SQL SELECT operator in that it returns the values for the associated
variables. In this case, uid represent the information that will be returned in the answer. Query 1 expresses
the logical statement that in order for a user to be present in the building, three conditions need to hold
simultaneously:

– He or she needs to be seen by the location system at a position which can be characterised by the
co-ordinates x,y,z.

– The system must know of at least one region with id RTIZY which can be characterised by a known
polyhedral shape, and

– The system is able to determine that the coordinates of the user’s position belong to a known region,
such as the one described above.

If all of the above hold simultaneously, than the user is deduced to be present.
The same query, should it be applied on DAL it would assume a simpler form:

9

Query 2 Return All Present Users (Deductive Abstract Layer).

X0IZY0� (H UserIsPresent(uid ?user-id) (start-time ?t))

Query 1 and Query2 are defined to be equivalent directly by the application layer through the Register-
RecurringQuery interface and its arguments. E.g. for the case of the (H UserIsPresent(uid ?uid) (start-time ?t))
predicate, an application would have to issue the following statement:

RegisterRecurringQuery(application identity, (H UserIsPresent(uid ?uid) (start-time ?start-time)), Query 1, Query 2)

In the above statement, the argument application identity describes an identification for the application
that has issued the statement and to which the answer will be returned to. The H UserIsPresent predicate
is similar in content to the H UserAtLocation one and it is useful as an abstraction of the user’s location,
where the actual location is of no interest to the application.

Similarly, the query ”Which users are co-located now?” can be viewed as:

Query 3 Return All Co-Located Users (Sensor Abstract Layer).

],X�IZY � �9X�IZY � ��� (L UserAtLocation(uid C�X�IZY �)(x C�k �)(y C�l �) (z CTm �) j
(L UserAtLocation(uid C�X0IKY �)(x C�k �)(y C�l �) (z CTm �)) j
(L AtomicLocation(rid ?region-id) (polyhedron C�D � C�D � �����EC�D F)) j
(L InRegion(x C�k �)(y C�l �)(z CTm �) (rid ?region-id)) j
(L InRegion(x C�k �)(y C�l �)(z CTm �)(rid ?region-id))j
(L InRegion(k � �al � �9m � �9RHIKY)) j
(X0IKY �on�pX0IZY �)

The same query, should it be applied on the Deductive Abstract Layer instead of the Sensor Abstract
Layer, assumes a simpler form.

Query 4 Return All Co-Located Users (Deductive Abstract Layer).

]%X0IKY � �9X�IZY � ��� (H UserCoLocation(uid-list C�X�IZY � C�X0IKY �)(rid ?rid)(start-time ?t))

Similarly, Queries 3 and 4 are declared to be equivalent through the RegisterRecurringQuery interface:

RegisterRecurringQuery(application identity, (H UserCoLocation (uid-list C�X�IZY � C�X0IZY �)(rid ?rid)
(start-time ?t)), Query 3, Query 4)

Based on the RegisterRecurringQuery definitions, Queries 1 and 3 are equivalent to Queries 2 and 4
respectively. However, Queries 2 and 4 have in average fewer conditions than their equivalent Queries 1
and 3. This is due to the fact that the information of the users’ presence and co-location is available in the
Deductive Abstract layer in the form of the logical predicates, H UserIsPresent and H UserCoLocation re-
spectively. Section 6 discusses in detail the effect of the above observation to the computational complexity
involved in the execution of queries in the proposed reasoning system, demonstrating that queries executed
in the Deductive Abstract Layer such as Queries 2 and 4, entail the use of significantly fewer computational
resources than queries executed in the Sensor Abstract Layer (Queries 1 and 3).

5.1 Recurring queries

A second approach for the application layer to derive information from the knowledge base is by registering
interest to a recurring situation that gets triggered by periodic timing events. Whenever such a situation
occurs, a notify() call, returns a structured event that represents the predicate of interest to the application
layer. Contrary to queries, recurring queries do not examine the current state of the Sentient World in order
to establish whether the situation of interest holds at the current instance. Rather, they act similarly to

10

a subscribe call in the publish-notify protocol for distributed systems, in registering interest in receiving
information about the future occurrences of the situation in question.

E.g. an application may be interested in a regularly recurring event such as ”Whenever any two people
are co-located update the GUI so that co-located people are portrayed as being enclosed in a rectangular
area.” We can view a recurring query as a first-order logical expression \^],_ � �9_ � �����9_ V � which has the
property that upon the satisfaction of a set of atomic formulae _ � �9_ � �����9_ V , a set of actions are triggered.

\^],_ � �9_ � ������_ V �cbqDsrHJZIM\0l�],LTt+LTD�Ja�

The notify(event) call passes on to the application layer a structured event that contains the queried
information. Such an event can be a Supervisor Alert event which is defined elsewhere in the system.
When it is received by the application, the latter sends an appropriate e-mail message to the user. In fact,
a particular case of recurring queries, is that, where upon satisfaction of the query, a notification action
is being performed. E.g. “Whenever my supervisor enters the lab, notify me.” Recurring queries can be
expressed as logical implications, in which the left-hand-side is a simple query and the right-hand-side is a
notify(event) predicate.

Query 5 Whenever my supervisor enters the lab, notify me by email.(Deductive Abstract Layer)

X�IZYi� (H UserIsPresent(uid “Andy Hopper”) b notify(Supervisor Alert))

The application layer, on receipt of the Supervisor Alert event, is responsible for issuing an appropri-
ate e-mail notification. Note that this is equivalent to a high-level query, as it assumes that the predicateu 354�6�7av�49wx79614�61B�: is already available in the knowledge-base.

5.2 Analysis

Having discussed queries and recurring queries, we can now look into how the two-layer knowledge scheme
ensures scalability .

In order to illustrate this, we consider a prototype implementation, where queries and recurring queries
are implemented in each layer by means of a CLIPS [26] inference engine. Each query is mapped to a
CLIPS rule. CLIPS implements a forward chaining rule interpreter that given a set of rules applied on a set
of stored facts, cycles through a process of matching rules to available facts thus determining which queries
are satisfied by the stored state of the Sentient environment. The process by which CLIPS determines
which facts satisfy the conditions of each query or recurring query, is called pattern matching and the Rete
algorithm [8] is used for this purpose.

The advantage of the proposed architecture is due to three important factors:

– First, as can be seen from Sections 5, 5.1, queries that are executed in the Deductive Abstract Layer
such as Query 3, assume a much simpler form than those executed in the Sensor Abstract Layer (Query
1), as the latter have more conditions in average and therefore require more computational resources
for pattern matching.

– Secondly, pattern matching is triggered repeatedly every time the stored knowledge changes by an
assert or retract command. Therefore, the lower the rate of knowledge updates, the lower the compu-
tational load required (see figure 1(b)). Since the knowledge update rate in DAL is significantly lower
than the one in SAL (produced by the regular updates of the sensor infrastructure), DAL is computa-
tionally more efficient.

– Finally, the machine that hosts DAL has fewer real-time constraints, introduced by the interruptions
caused by the assert and retract statements that control knowledge updates.

The next session discusses the computational complexity associated with queries in more detail by
analysing the Rete algorithm.

11

6 Prototype implementation

This section aims to give a quantitative evaluation of the proposed scheme and its algorithm by discussing
an implementation of the proposed system and by comparing Query 3 (see Section 5) which is executed at
the Sensor Abstract Layer to the same query (Query 4) which is executed at the Deductive Abstract Layer
and demonstrate that the latter entails a significantly lower number of computational steps.

We have implemented the proposed architecture using the Jess[12] production system. Jess is a java-
based implementation of CLIPS. For the acquisition of real-time location information, we have built a
middleware component [15] that interfaces the Active BAT system using CORBA structured events, and
translating them into Jess facts.

6.1 Sensor Abstract Layer.

A model was created in Jess for the LCE [7] based on location data produced by the Active BAT. The
experiment involved 15 members of the lab moving around 21 known locations in the LCE. An instance of
the lower-layer was captured and the following query “Return All Co-Located Users” was executed in the
Sensor Abstract Layer.

Query 6 Return All Co-Located Users (Sensor Abstract Layer).

]%X0IZY � �aX0IKY � ��� (L UserAtLocation(uid C�X0IKY �)(rid ?rid)) j
(L UserAtLocation(uid C�X0IZY �)(rid ?rid)) j
(L AtomicLocation(rid ?region-id) (polyhedron C�D � C�D � ����� C�D0F)) j
(X0IZY �on�yX�IZY �)

The Rete Algorithm Our implementation uses the Rete Algorithm [8] for pattern matching. In the Rete
algorithm, the pattern compiler creates a network by linking together nodes that test query elements. This
network functions similarly to a finite state machine whenever a query is added in the knowledge base, or
whenever a new fact s asserted or retracted. More specifically, for each predicate included in the query,
the network creates a one-input node, portrayed in red in Fig 2. Node D � corresponds to the predicate
L UserAtLocation and node D � to the predicate L AtomicLocation. Node D�z corresponds to the condition
(X�IZY �{n�yX0IKY �). Also portrayed in red is the root node of the network, D�P . A two-input (green) node is
created for each conjunction of predicates. Node D�| corresponds to the conjunction:

(L UserAtLocation(uid C�X0IZY �)(rid C�RHIZY)) j (L UserAtLocation(uid C�X0IZY �)(rid C�RHIZY)) Node D5} corresponds
to the conjunction:

(L UserAtLocation(uid C�X�IZY �)(rid C�RHIZY)) j
(L UserAtLocation(uid C�X�IZY �)(rid C�RHIZY)) j
(L AtomicLocation(rid ?region-id)(polyhedron C�D � �����EC�D F))

Node D5~ is also a two-input node, that represents the conjunction of the above predicates with the condition
(X�IZY � n�yX0IKY �). Finally, node D5� is a terminal node that determines whether the query is satisfied or not.

The Rete algorithm proceeds as follows: When the query is added to the Sensor Abstract Layer, for
each stored fact, a token is created. Each token is an ordered pair of a tag which in this case has the value
“UPDATE” and a description of the stored fact. All these tokens are passed to node D�P which is the root
node in the network. Node D5P passes all the generated tokens to each of its successor nodes. Node D �
checks whether any of the received tokens correspond to facts of type L UserAtLocation4 and passes all
such tokens to node D | . Node D | checks all UserAtPosition tokens against each other, in order to determine
which pairs satisfy the conjunction:

(L UserAtLocation(uid C�X0IZY �)(rid C�RHIZY)) j (L UserAtLocation(uid C�X0IZY �)(rid C�RHIZY))

4 In this prototype implementation the SPIRIT system was used to provide L UserAtLocation predicates from the
Active BAT positions.

12

Fig. 2. The Rete Network for the Return All Co-Located Users query (Sensor Abstract Layer)

For each of the pairs that satisfy the conjunction, it creates a new token and forwards this on to node
D } . Node D � tests for tokens that are of type 2 8;:Z=���@,>�2�=�>�?/:A@,=/B and passes these on to node D } too. Node
D } joins the pairs that represent the conjunction :

(L UserAtLocation(uid C�X�IZY �)(rid C�RHIZY)) j
(L UserAtLocation(uid C�X�IZY �)(rid C�RHIZY)) j
(L AtomicLocation(rid ?region-id)(polyhedron C�D � �����EC�D0F))

into bigger tokens and forwards them on to D�~ . Node D5~ tests that X0IZY � n��X�IZY � thus excluding trivial co-
locations of the same person. It forwards the eligible tokens to D � , the success node. These tokens satisfy
the whole query. For each token, D � creates an instantiation of the query.

In order to get an measure of the computational complexity that the implemented scheme entails, we
chose to look at the number of node activations and the number of tests performed in total by the nodes on
the network. The results are shown in Table 2 (SAL).

Sensor Abstract Layer (SAL) Deductive Abstract Layer (DAL)
total of node activations 317 200
total of tests on nodes 1611 0

Table 2. Pattern Matching Costs.

6.2 Deductive Abstract Layer

Repeating the previous experiment, with the same initial state, we now consider Query 4 (see Section 5)
which is executed in the Deductive Abstract Layer. The network for this query is portrayed in Fig. 3.

Node D P is the root node. Node D � tests whether the received token is of type H UserCoLocation. Node
D � passes on the tokens with the correct number of arguments and D�� creates an instantiation of the query
and adds it to the conflict set.

Performing the same analysis as before, the results are presented in Table 2. It is worth noting that
the number of computational steps executed by the Rete algorithm for pattern matching each query are

13

Fig. 3. The Rete Network for the Return All Co-Located Users query (Deductive Abstract Layer)

significantly lower for the DAL query. Taking into consideration that both networks (see Fig. 2, Fig.3)
behave similarly to acyclic finite automata, which are triggered repeatedly each time a fact is asserted or
retracted in each knowledge layer respectively, we can easily infer that the overall number of computational
steps required for DAL is smaller than that required for SAL, as knowledge in DAL changes much less
frequently. Last, SAL is continually interrupted by a very high event rate which has an immediate effect
on the machine that hosts that layer.

7 Conclusions and future work

A scalable knowledge representation and abstract reasoning system for Sentient Computing was presented
where knowledge was modelled formally using first-order logic. First-order logic proved suitable for Sen-
tient Computing, especially in the context of the proposed architecture which is based on a cache-like,
dual-layer scheme which maintains abstract knowledge in the higher Deductive Abstract layer as opposed
to rapidly-changing low-level knowledge in the lower, Sensor Abstract layer. Abstract knowledge remains
consistent with the rapidly changing state of the Sentient world by closely monitoring associated, low-level
predicates as requested by the application layer through an API interface. Such predicates are contained in
the Sensor Abstract Layer and by having only threshold changes reflected at the Deductive Abstract Layer.
Maintaining abstract knowledge is a requirement of the Sentient Application layer and it is made available
to Sentient Applications through a mechanism of queries which are mainly executed at the Deductive Ab-
stract layer. Experiments with a prototype implementation confirm that the two-layered architecture is more
efficient than a single-layered one. Future work will involve designing and implementing a large-scale, fully
distributed architecture based on the proposed system.

8 Acknowledgements

We are grateful to Andy Hopper and Mike Gordon for discussion and encouragement.

References

1. Dey K Anind and Gregory D.Abowd. CyberMinder: A Context-aware System for Supporting Reminders. In
Proceeding of CHI 2000. CHI2000, 2000.

2. George Coulouris, Tim Kindberg, and Jean Dollimore. Distributed Systems: Concepts and Design. Addison-
Wesley, 2001.

14

3. George Coulouris, Hani Naguib, and Scott Mitchell. Middleware Support for Context Aware Multimedia Appli-
cations.

4. P. Dana. Global Posioning System Overview”, Department of Geography University of Texas at Austin.
http://www.colorado.Edu/geography/gcraft/notes/gps/gps.html, 1998.

5. C. J. Date and Hugh Darwen. A Guide to the SQL Standard, Third Edition. Addison-Wesley Publishing Company,
Inc., 1993.

6. Elliott Mendelson. Introduction to Mathematical Logic. Wadsworth and Brooks Cole Advanced Books Software,
1990.

7. Laboratory for Communications Engineering (LCE). http:://www-lce.eng.cam.ac.uk.
8. Charles L. Forgy. Rete: A fast Algorithm for the Many Pattern/many Object Pattern Match Problem. Artificial

Intelligence, 19:17–37, 1982.
9. Joseph C. Giarratano. CLIPS User’s Guide, Version 6.10, chapter ch. 8. unknown, 1998.

10. Andy Harter, Andy Hopper, Pete Steggles, Andy Ward, and Paul Webster. The Anatomy of a Context-Aware
Application. Proceedings of the fifth annual ACM/IEEE international conference on Mobile computing and net-
working August 15-19,1999, Seattle, 1999.

11. Andy Hopper. The Royal Society Clifford Paterson Lecture: Sentient Computing, 1999.
12. http://herzberg.ca.sandia.gov/jess. Jess, the Java Expert System Shell.
13. http://www lce.eng.cam.ac.uk/qosdream/. QoSDREAM: Quality of Service for Distributed REconfigurable Adap-

tive Multimedia.
14. http://www.acm.org/sigcomm/standards/iso stds/OSI MODEL. OSI 7498, open System Interconnection Model.
15. D. Ipina and E. Katsiri. A Rule-Matching Service for Simpler Develpment of Reactive Applications. In Middle-

ware 2001. http://computer.org/dsonline/0107/features/lop0107.htm, November 2001.
16. E Katsiri. Principles of Context Inferences. In Ubicomp 2002 Additional Proceedings, 2002.
17. G. Korteum, Z. Segall, and T.G. Thomson. Close Encounters: Supporting Mobile Collaboration through Inter-

change of User Profiles. In HUC’99, pages 171–185, 1999.
18. Masoud Mansouri-Samani and Morris Sloman. Gem: A Generalised Event Monitoring Language for Distributed

Systems. Distributed Systems Engineering Journal, Vol. 4(No. 2), June 1997.
19. N. Marmasse. comMotion. In CHI’99, pages 320,321, 1999.
20. Ajith K. Narayanan. Realms and States: A Framework for Location Aware Mobile Computing. In Workshop on

Mobile Commerce (MOBICOM), 2001.
21. Danielle Nardi and Ronald J. Brachman. An Introduction to Description Logics. Published on the Internet.
22. Nils J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufmann, 1998.
23. Tristan Richardson. Teleporting - Mobile X Sessions. In Proceedings Ninth Annual X Technical Conference,

Boston MA, Technical Report 95.7, 1995.
24. Bill Schilt, Norman Adams, and Roy Want. Context-Aware Computing Applications. tbd, 1994.
25. Pete Steggles, Paul Webster, and Andy Harter. The Implementation of a Distributed Framework to Support Dis-

tributed Applications. Technical report, The Olivetti and Oracle Research Laboratory, 1998.
26. www.ghg.net/clips/CLIPS.html. CLIPS: A Tool for Designing Expert Systems.

15

