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Linear Precoding Versus Linear Multiuser Detection
in Downlink TDD-CDMA Systems

Inaki Berenguer, Xiaodong Wang, Manuel Donaire, Daryl Reynolds, and Anders Høst-Madsen

Abstract— In this paper, we compare two classes of linear
interference suppression techniques for downlink TDD-CDMA
systems, namely, linear multiuser detection methods (receiver
processing) and linear precoding methods (transmitter pro-
cessing). For the linear precoding schemes, we assume that
the channel state information (CSI) is available only at the
transmitter but not at the receiver (i.e., ultra simple receivers).
We propose several precoding techniques and the corresponding
power control algorithms. The performance metric used in the
comparisons is the total power required at the transmitter
to achieve a target SINR at the receiver. Our results reveal
that in general multiuser detection and precoding offer similar
performance; but in certain scenarios (e.g, low BER requirements
or use of random spreading sequences), precoding can bring
a substantial performance improvement. These results motivate
the use of precoding techniques to reduce the complexity of the
system and the mobile terminals (only a matched-filter to the
own spreading sequence is required without CSI). Moreover, it
is shown that the proposed chip-wise linear MMSE precoding
method is optimal in the sense that it requires the minimum total
transmitted power to meet a certain receiver SINR performance.

Index Terms— Downlink CDMA, linear multiuser detection,
linear precoding, power control.

I. INTRODUCTION

IN the uplink CDMA wireless systems, it is assumed that
the base station has access to all users’ channel state

information (CSI) and spreading signatures; and multiuser
detection (MUD) has been shown to be an effective way
to combat interference and increase data throughput [12].
For the downlink, on the other hand, one can transfer the
signal processing for interference suppression from the mobile
receiver to the transmit base station by using precoding
techniques. This is feasible if the base station has access
to the CSI of all active mobile units, e.g., in time-division
duplex (TDD) systems where the base station can exploit the
channel reciprocity if the time difference between uplink and
downlink transmission is shorter than the channel coherence
time, or by using channel prediction techniques [1]. The
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simplest precoding method is pre-RAKE [2], which mitigates
the multipath interference without considering the multiuser
interference (MUI). Linear precoding techniques to remove
the MUI and multipath interference were proposed in [13].
Nonlinear precoding techniques have been shown to offer
superior performance although they complicate the receiver
and the transmitter, since a modulo operation (which in general
depends on the CSI) has to be implemented at both sides of
the communication link [3], [9], [14]. Note that most work
on linear precoding assumes that each user implements a
RAKE receiver and hence assumes the knowledge of CSI at
the receiver [13], [14].

In this paper, we consider linear precoders with ultra-simple
receivers, i.e., only a fixed matched-filter to the spreading
sequence without CSI. We propose several bit-wise and chip-
wise linear precoders and the corresponding power control
algorithms to meet certain performance at the receiver. We
also consider the performance comparisons between linear
precoding and linear MUD. The comparison metric is the
total required power at the transmitter to achieve a minimum
SINR requirement at each of the receivers. Our results show
that linear precoding offers similar performance as linear
MUD in most cases; but in some specific cases (e.g., low
BER requirements, heavily loaded systems, or use of random
spreading sequences), linear precoding can be more effective.
Moreover, the proposed linear precoding techniques with only
the matched-filter (to the spreading sequence) at the receiver
can outperform the linear precoder with a RAKE receiver (i.e.,
with CSI at the receiver) proposed in [13]. These results moti-
vate the use of linear precoding techniques in the downlink of
TDD-CDMA systems. Among the advantages of using linear
precoding we have:

• Receiver terminals are limited to a fixed matched-filter
to the own spreading sequence. This translates into a
power consumption reduction and decrease in price of
the terminals. Note that variations in channel conditions
and number of active users in the network do not affect
the receiver operations.

• A reduced amount of control data is required in the
precoding solution. The reason is that in MUD, every
user requires to know the own channel response plus
the spreading sequences of all other active users in
the network. Moreover, mobile units do not need to be
informed when users are added to (or removed from) the
network.

• Power control is easy to implement with linear precoding
since the receiver has information about the quality of
each link and it does not require extra feedback informa-
tion. Note that MUD requires a feedback link to find the
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power loading value assigned to each user.
• Opportunistic user scheduling based on the knowledge

of CSI [7], [8] can be implemented jointly with linear
precoding to increase the system throughput.

The remainder of this paper is organized as follows. In
Section 2 we briefly summarize two well-known linear MUD
methods and the corresponding power control algorithms.
In Section 3 we propose several forms of linear precoding
schemes and discuss their properties. In Section 4 we present
simulation comparisons between linear MUD and linear pre-
coding. Finally, Section 5 concludes the paper.

II. LINEAR MUD METHODS

In this section, we give a short overview of two basic MUD
solutions. We consider a K-user discrete-time synchronous
multipath CDMA system. Define bk[i] from a constellation A
as the symbol of the k-th user transmitted during the i-th sym-
bol interval with E{|bk[i]|2} = 1 and b[i] = [b1[i], ..., bK [i]]T .
Denote N as the spreading factor and sk = [sk,1, ..., sk,N ]T

as the normalized spreading waveform of the k-th user. Then,
the signal transmitted from the base station during the i-th
symbol interval can be written as p[i] = SAb[i], where
S = [s1, s2, ..., sK ] is the matrix of spreading waveforms; and
A = diag(A1, ..., AK) contains the user signal amplitudes.
The vector p[i] is passed through a parallel-to-serial converter
and transmitted over the multipath channel. The path delays
are assumed to be an integral number of chip periods. De-
note the multipath channel seen by the k-th user as fk =
[fk,1, fk,2, ..., fk,L]T , where L is the number of resolvable
paths and fk,l is the complex fading gain corresponding to
the l-th path of the k-th user. We assume that L < N . At
the k-th user’s receiver, the N × 1 received signal during N
consecutive chip intervals corresponding to b[i] is given by

rk[i] = F kS︸ ︷︷ ︸
Hk

Ab[i] + nk[i] with

bFk =




fk,1 0 · · · · · · 0
...

. . . . . .
...

fk,L
. . . fk,1

. . .

0
. . . . . . 0

0 · · · fk,L · · · fk,1




N×N

, (1)

where rk[i] = [rk,1[i], ..., rk,N [i]]T is the received signal,
nk[i] ∼ Nc

(
0, σ2IN

)
is the complex white Gaussian noise

vector at the k-th receiver, and Hk = F kS. Notice that we
have assumed that ISI can be ignored either by being truncated
or by inserting a guard interval. At the k-th receiver, a linear
detector to recuperate the signal bk[i] can be represented by
an N -dimensional vector wk ∈ CN , which is correlated with
the received signal rk[i] in (1) to obtain zk[i] = wH

k rk[i], and
the k-th mobile unit makes a decision b̂k[i] = Q(zk[i]), where
Q rounds to the closest point in the constellation.

Linear Decorrelating Detector: The decorrelating detector
completely eliminates the multiuser interference (MUI) and
interchip interference (ICI), at the expense of enhancing the

noise. The linear decorrelating detector for user k is given by
[12]

wk = H†H
k ek = Hk(HH

k Hk)−1ek, (2)

where ek denotes a K-dimensional vector with all entries
zeros, except for the k-th entry, which is 1. The output of
this detector is given by

zk[i] = wH
k rk[i] = Akbk[i] + wH

k nk[i]

=⇒ SINRk =
A2

k

σ2‖wk‖2 , (3)

where SINRk is the signal-to-interference-plus-noise ratio for
the k-th user. Suppose that the SINR requirement for user k is
such that SINRk ≥ γk, where γk is the minimum acceptable
SINR value for user k. Hence we have A2

k = σ2γk‖wk‖2.
And the total required transmit power is given by

PT =
K∑

k=1

A2
k =

K∑

k=1

σ2γk eH
k (SHF H

k F kS)−Hek. (4)

Linear MMSE Detector: The linear MMSE detector for user
k is given by [12]

wk = arg min
wk∈CN

E
{|bk[i]−wH

k rk[i]|2}

= Ak(HkA2HH
k + σ2IN )−1Hkek. (5)

The SINR for this detector is given by

SINRk =
A2

k‖wH
k Hkek‖2∑

j 6=k A2
j‖wH

k Hkej‖2 + σ2‖wk‖2
. (6)

We seek to minimize the total power PT such that SINRk ≥
γk. The iterative power control algorithm for linear MMSE
MUD proposed in [11] can be extended to the downlink
scenario, as we show in Algorithm 1. At the (n+1)-th iteration,
the MMSE filter wk(n + 1) is constructed using the current
power matrix A(n). Then, the power matrix A(n + 1) is
updated using the new filter coefficients wk(n + 1).

III. LINEAR PRECODING SCHEMES

In this section we consider different approaches to imple-
ment linear precoding assuming that the transmitter has perfect
CSI.

A. Bit-Wise Linear Precoding

We assume that each mobile unit employs only a filter
matched to its own spreading sequence, and it does not need
to know other users’ spreading sequences or to estimate the
channel. Denote the symbol by symbol bit-wise precoding
operation as x[i] = M bAb[i], where x[i] is the precoded
symbol vector and M b ∈ CK×K is the bit-wise linear
precoding matrix. Then, after spreading the precoded data,
the signal transmitted from the base station during the i-th
symbol interval can be written as p[i] = Sx[i] = SM bAb[i].
The vector p[i] is passed through a parallel-to-serial converter
and transmitted through the channel. The signal received by
the k-th user is then given by

rk[i] = F kSM bAb[i] + nk[i], (8)
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Algorithm 1 Power Control Algorithm for Linear MMSE MUD in the Downlink
INPUT: Hk, γk, σ2.
FOR n = 0, 1, 2, ... DO
FOR k = 1, 2, ..., K DO

wk(n + 1) = (HkA2(n)HH
k + σ2I)−1Ak(n)Hkek

A2
k(n + 1) = γk

∑K
j=1,j 6=k A2

j (n)‖wH
k (n + 1)Hkej‖2 + σ2(wH

k (n + 1)wk(n + 1))

‖wH
k (n + 1)Hkek‖2

(7)

END FOR;
END FOR;
OUTPUT: assigned powers Ak and linear MMSE filters wk, k = 1, ..., K.

where F k is given in (1). Then the corresponding matched
filter sk is applied to rk[i]. Stacking the outputs of the K
matched-filters we obtain
2
6664

sH
1 r1[i]

sH
2 r2[i]

...
sH

KrK [i]

3
7775

| {z }
y[i]

=

2
6664

sH
1 F 1S

sH
1 F 2S

...
sH

KF KS

3
7775

| {z }
Hb

M bAb[i] +

2
6664

sH
1 n1[i]

sH
2 n2[i]

...
sH

KnK [i]

3
7775

| {z }
v[i]

. (9)

The k-th receiver makes a decision b̂k[i] = Q(yk[i]). There-
fore the precoder design problem involves designing the
precoding matrix M b such that r[i] is as close to b[i] as
possible.

Bit-wise Linear MMSE Precoder: Assuming that the spread-
ing sequences are normalized, the linear MMSE precoder
chooses the precoding matrix M b to minimize E{‖b −
y‖2}, and is given by M b = βH−1

b [10], [13], where
β =

√
PT

tr
“
SH−1

b A2H−H

b SH
” is introduced to guarantee the

power constraint at the transmitter PT . Note that such a linear
MMSE precoder also zero-forces the interference. When the
constraint becomes the minimum SINR requirement at each
receiver γk instead of the available power PT , we obtain the
unconstrained precoding solution M b = H−1

b with SINRk =
A2

k

σ2 ; and therefore the power assigned to the k-th user becomes
A2

k = σ2γk. Then the total power required at the transmitter
becomes PT = E{‖SM bAb[i]‖2} = tr(SM bA

2MH
b SH).

Bit-wise Wiener Precoder: The bit-wise Wiener precoder is
proposed in [5], [6] as the matrix M b and constant β that min-
imize E

{‖b[i]− β−1y[i]‖2}, subject to E{‖M bAb[i]‖2} =
PT . Given the total transmit power PT , the Wiener precoder
is given by

M b = βF−1HH
b , with β =

√
PT

tr
“
F−2HH

b A2Hb

”

and F = HH
b Hb + Kσ2

PT
IN . (10)

Optimal Transmit Spreading Sequences: Besides optimizing
the precoding matrix M b for a given channel realization, we
can also optimize the transmit spreading sequences. Denote
s1, ..., sK as the fixed spreading sequences used at the mobile
units (i.e., the matched -filters) and s̃1, ..., s̃K as the optimized
spreading sequences used at the transmitter. Denote S̃ =
[s̃1, ..., s̃K ]. Similarly to (9), the received signal can be written

as
2
6664

sH
1 r1[i]

sH
2 r2[i]

...
sH

KrK [i]

3
7775

| {z }
y[i]

=

2
6664

sH
1 F 1

sH
1 F 2

...
sH

KF K

3
7775

| {z }
Hc

S̃M bAb[i] +

2
6664

sH
1 n1[i]

sH
2 n2[i]

...
sH

KnK [i]

3
7775

| {z }
v[i]

. (11)

Following [10], it can be easily shown that the linear MMSE
precoding matrix is given by M b = (HcS̃)−1, and A2

k =
σ2γk, k = 1, . . . , K. Next we show that for any given
propagation channel F 1, ..., F K , original spreading sequences
S, and minimum SINR requirements, we can explicitly find
the optimal spreading matrix S̃

∗ ∈ CN×K such that the total
transmit power PT is minimized. Assume that the K × N
matrix Hc has rank K, where N ≥ K. Define the SVD
Hc = U cΣcV

H
c , where U c is a K×K unitary matrix, V H

c

is an N × N unitary matrix and Σc is a K × N diagonal
matrix with [Σc]i,i = λc,i being the positive square root of
the i-th eigenvalue of HcH

H
c .

Proposition 1: Given the channels F 1, . . . , F K , the re-
ceiver matched-filters s1, . . . , sK , and the target SINR
γ1, . . . , γK of all users, by optimizing the transmit spreading
matrix S̃ used in the bit-wise linear MMSE precoder, the
minimum achievable transmit power is given by

P ∗T = min
˜S∈CN×K

tr(S̃M bA
2MH

b S̃
H

) =
K∑

k=1

A2
kλ−2

c,k, (12)

where A2
k = σ2γk, k = 1, ..., K are the assigned powers.

One solution to the optimization problem in (12) (i.e., the
optimal transmit spreading matrix) is given by the N × K
matrix S̃

∗
= HH

c .

Proof: Note that M b = (HcS̃)−1 and therefore the transmit-
ted vector is given by p[i] = S̃M bAb[i] = S̃(HcS̃)−1Ab[i].
Denote the SVDs of Hc and S̃ by Hc = U cΣcV

H
c and

S̃ = U s̃Σs̃V
H
s̃ , respectively. Then the total transmit power

is shown in (13), where T = ΣcV
H
c U sΣs is a K×K matrix;

Σ2
s̃ = ΣH

s̃ Σs̃ is a K ×K diagonal matrix; and we used the
fact that U s̃, U c,V c and V s are unitary.

Consider T expressed in terms of the matrices obtained with
the thin SVD [4], T = Σ(t)

c CΣ
(t)
s̃ , where Σ(t)

c and Σ
(t)
s̃

are the K-th leading submatrix of Σc and Σs̃, respectively;
and C = V (t)H

c U (t)
s is a K × K matrix (where V (t)

c and
U (t)

s denote the matrices consisting of the first K columns
of U s̃ and V c, respectively). Denoting {vc,1, ..., vc,K} and
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PT = E{pH [i]p[i]} = tr(S̃(HcS̃)−1A2(HcS̃)−HS̃
H

)
= tr(U s̃Σs̃V

H
s̃ (U c ΣcV

H
c U s̃Σs̃︸ ︷︷ ︸
T

V H
s )−1A2(U cΣcV

H
c U s̃Σs̃V

H
s̃ )−HV s̃Σ

H
s̃ UH

s̃ )

= tr(Σs̃V
H
s̃ V s̃T

−1UH
c A2U cT

−HV H
s̃ V s̃Σ

H
s̃ )

= tr(Σs̃T
−1A2T−HΣH

s̃ ) = tr(A2Σ2
s̃T

−1T−H), (13)

{us̃,1, ..., us̃,K} as the first K columns of V c and U s̃,
respectively, we have [C]ij = 〈vc,i, us̃,j〉, i, j = 1, ..., K.
Next we show that the eigenvalues of C denoted as φi, i =
1, .., K, always satisfy |φi| ≤ 1.

Denote {e1, ..., eK} as the orthogonal basis of the K-
dimensional space. Then the l-th component of the C trans-
form of the j-th basis is given by [e′j ]l = [Cej ]l = [C]l,j =
〈vc,l, us̃,j〉, where 〈·, ·〉 denotes the inner product. Hence
‖e′j‖2 =

∑K
l=1 |〈vc,l, us̃,j〉|2. Notice that since V c and U s̃ ∈

SU(N ) (i.e., special unitary group), then V H
c U s̃ also belongs

to the SU(N); and therefore the L2 norm of each column
vector of the N × N matrix V H

c U s̃ equals to one, i.e.,∑N
l=1 |〈vc,l, us̃,j〉|2 = 1, j = 1, ..., N. Since N ≥ K, we

have ‖e′j‖2 =
∑K

l=1 |〈vc,l, us̃,j〉|2 ≤ 1, j = 1, ..., K. This is,
the L2 norm of the transformation by C of every basis vector
is always less or equal to 1. Every vector in the K-dimensional
space can be written as a linear combination of the basis and
therefore, the C transform applied to any vector reduces the
norm. In particular, it reduces the norm of the eigenvectors of
C. Therefore, we conclude that the eigenvalues of C satisfy
|φi| ≤ 1,∀i.

Substituting T−1 = [Σ(t)
s̃ ]−1C−1[Σ(t)

c ]−1 and the eigen-
value decomposition of C = WΦW−1 (where Φ =
diag(φ1, . . . , φK)) in (13) we obtain

PT = tr(A2Σ2
s̃T

−1T−H) = tr(A2C−1C−HΣ−2
c )

= tr(A2Φ−1Φ−HΣ−2
c )

=
K∑

i=1

A2
i λ
−2
c,i |φi|−2 ≥

K∑

i=1

A2
i λ
−2
c,i . (14)

Denote the thin SVD of S̃ = U
(t)
s̃ Σ

(t)
s̃ V

(t)
s̃ . Finally, with

S̃
∗

= HH
c , the thin SVD decomposition becomes S̃

∗
=

(U (t)
c Σ(t)

c V (t)H
c )H = V (t)

c Σ(t)H
c U (t)H

c , i.e., U
(t)
s̃ = V (t)

c .
Therefore C = V (t)H

c U
(t)
s̃ = IK , and C has unit eigenvalues.

Hence we have equality in (14) and S̃
∗

= HH
c is an optimal

spreading matrix for linear MMSE precoding. ¥

Remark: There are many other forms of the optimal spreading
matrix S̃

∗
such that C = V (t)H

c U
(t)
s̃ has unit eigenvalues.

Specifically, we need to construct an N × N matrix U s̃

that rotates the first K columns vectors of V c in the same
K-dimensional subspace and keep invariant the N − K-
dimensional subspace spanned by the N −K remaining vec-
tors. Consider first the real case. The constraints on the K first
columns of U s̃ are: (a)

∑K
l=1 |〈vc,l, us̃,j〉|2 = 1, j = 1, ..., K.

[K equations.] (b) 〈us̃,i, vc,m〉 = 0, i = 1, ...,K; m = K +
1, ..., N. [K · (N −K) equations.] (c) 〈us̃,i, u,̃j〉 = δij , i, j =
1, ..., K. [(K−1)+(K−2)+ ...+(K−K +1)+(K−K) =
K2 − 1

2K(K + 1) equations.] To construct U s̃, there are

NK variables in the K first columns of U s̃. After subtracting
the number of constraints, we have (K2 − K)/2 degrees of
freedom, which is nothing more than the dimension of the
O(K) (i.e., orthogonal group) as expected. In the complex
case, there are 2NK variables in the first K columns of U s̃

and it can be shown that the solution generalizes to (K2− 1)
degrees of freedom that is the number of free parameters of
the SU(K). To summarize, to construct the optimal spreading
matrix with SVD decomposition S̃ = U s̃Σs̃V

H
s̃ , we only

have to find the unitary matrix U s̃ satisfying the above
constraints on its K first column vectors (i.e., range of S̃).
Moreover, there are (K2− 1) degrees of freedom to select it.

B. Chip-Wise Linear Precoding

In chip-wise precoding, we do not explicitly use any spread-
ing matrix at the transmitter. This is, the precoder takes K
symbols and outputs the spread vector of length N . Hence the
spreading and precoding operations are effectively combined.
The received signal at the kth receiver is given by

rk[i] = F kAM cb[i] + nk[i], (15)

where M c ∈ CN×K is the chip-wise precoding matrix. At
each receiver k, the matched-filter sk is applied to rk[i]. By
stacking the outputs of all K matched-filters we obtain



sH
1 r1[i]

sH
2 r2[i]

...
sH

KrK [i]




︸ ︷︷ ︸
y[i]

=




sH
1 F 1

sH
2 F 2

...
sH

KF K




︸ ︷︷ ︸
Hc

M cAb[i] +




sH
1 n1[i]

sH
2 n2[i]

...
sH

KnK [i]




︸ ︷︷ ︸
v[i]

. (16)

Differently from the bit-wise system model, here the channel
matrix Hc is not a square matrix but has dimension K ×N
with N ≥ K.

Chip-wise MMSE Precoding: Using an argument similar to
[10], the linear MMSE chip-wise precoder is given by

M c = H†
c = HH

c (HcH
H
c )−1. (17)

It is easily seen that the SINR for each user is given by

SINRk =
A2

k

σ2
, k = 1, ..., K. (18)

As before, if we assume that the required SINR for user k
is γk, the required power assigned to the k-th user becomes
A2

k = σ2γk. Due to the precoding matrix, the required total
transmit power becomes

PT = tr(H†
cA

2H†H
c ) = tr(A2(HcH

H
c )−1). (19)
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Remark: Note that under a fixed transmit power budget PT ,
the linear MMSE precoder is given by M c = βH†

c with

β =
√

PT /tr(A2(HcH
H
c )−1) and SINRk = (βAk)2

σ2 .
Proposition 2: The above chip-wise linear MMSE pre-

coding method is equivalent to the bit-wise linear MMSE
precoding method with the optimal spreading matrix at the
transmitter S̃

∗
.

Proof: Using the SVD of Hc = U cΣcV
H
c , the total transmit

power required in the linear MMSE chip-wise precoder is
given by

PT = tr(H†
cA

2H†H
c ) = tr(V cΣ

−1
c UH

c A2U sΣ
−1
c V H

c )

= tr
(
A2Σ−2

c

)
=

K∑

i=1

A2
i λ
−2
c,i . (20)

Hence the transmit power with the chip-wise linear MMSE
precoder is equal to the minimum transmit power in the bit-
wise solution given in (12). ¥
Remark: The above result shows that it is not necessary to
optimize the spreading operation at the transmitter. That is,
by applying the simple chip-wise precoding operation we can
obtain the optimal performance.

Chip-wise Wiener Precoding: The Wiener precoder given in
(10) can be used in our chip-wise scheme by subsituting Hb

by Hc, resulting in the precoding matrix M c ∈ CN×K . Next
we propose a power loading algorithm that can be applied to
both the bit-wise and chip-wise Wiener precoders. Consider
the signal model (16). Define G = HcM c. Then we can
write yk[i] = AkGkkbk[i] +

∑K
i=1,i 6=k AiGkibi[i] + vk[i], k =

1, ..., K. In the Wiener precoder M c is not the pseudo-inverse
of Hc and therefore G is not a diagonal matrix. Hence, for
a fixed loading matrix A, the received SINR is given by

SINRk =
A2

k‖Gkk‖2
σ2 +

∑K
i=1,i6=k A2

i ‖Gki‖2
. (21)

To achieve the target SINR γk for each user k, we need to
find the optimal powers A2

k, k = 1, ...,K. Now, different from
the linear MMSE precoding, the power allocation problem is
coupled with the problem of finding the optimal precoding
matrix. Following the ideas of [11], in Algorithm 2 we propose
the following iterative algorithm to solve the joint problem. In
the algorithm we first fix the power loading values A(n) to
find the precoding matrix and then, based on the precoding
matrix, the power loading values are updated. Simulations
show that the algorithm converges in about two or three
iterations.

IV. SIMULATION RESULTS

Chip-wise precoding with matched-filter vs. bit-wise pre-
coding with RAKE receiver: The bit-wise linear MMSE
precoding with a RAKE receiver was proposed in [13]. The
difference with the linear MMSE precoder considered in the
Section III-A is that the receiver must also estimate the channel
and apply a RAKE receiver, consequently, increasing the
number of pilot symbols and the complexity of the receiver.
We discuss this method only for comparison since we seek
precoding solutions with simple receivers with no receiver

Algorithm 2 Power Control Algorithm for Wiener Precoder
INPUT: Hc, σ

2 and γk, k = 1, ...,K;
FOR n = 1, 2, ... DO

F (n + 1) = HH
c Hc + Kσ2

PT (n)IN

β(n + 1) =
√

PT (n)

tr(F−2
(n+1)HH

c A2
(n)Hc)

M c(n + 1) = β(n + 1)F−1(n + 1)HH
c ;

G(n + 1) = HcM c(n + 1);
FOR k = 1 : K DO

A2
k(n + 1) = γk

PK
i=1,i 6=k A2

i (n)‖Gki(n+1)‖2+σ2

‖Gkk(n+1)‖2 ;
END;
PT (n + 1) = E{‖M c(n + 1)A(n + 1)b‖2} =

tr(M c(n + 1)A2(n + 1)MH
c (n + 1));

END FOR;
OUTPUT: precoding matrix M c(n + 1), and
assigned powers A(n + 1)

CSI. The RAKE receiver can be implemented with a matched
filter using the effective spreading sequence (i.e., the k-th
effective spreading sequence is s̄k = fk ? sk) instead of
the original spreading sequence. With our notation, the k-
th effective spreading sequence is given by the convolution
s̄k = F kSek = F ksk, where we have limited the convolution
to N chip samples. Then, with the RAKE receiver the system
model can be written as




sH
1 F H

1 r1[i]
sH
2 F H

2 r2[i]
...

sH
KF H

KrK [i]




︸ ︷︷ ︸
y[i]

=




sH
1 F H

1 F 1S

sH
1 F H

2 F 2S
...

sH
KF H

KF KS




︸ ︷︷ ︸
Hb

M bAb[i]

+




sH
1 F H

1 n1[i]
sH
2 F H

2 n2[i]
...

sH
KF H

KnK [i]




︸ ︷︷ ︸
v[i]

. (22)

It is easily seen that the linear MMSE precoding solution still
yields M b = H−1

b , where Hb is defined in (22). The signal
to noise ratio for user k is

SINRk =
A2

k

σ2‖F ksk‖2 , k = 1, . . . , K, (23)

and the required power to achieve an SINR value γk becomes
A2

k = σ2γksH
k F H

k F ksk. Therefore, the total transmitted
power is given by

PT = E{‖SH−1
b Ab[i]‖2} = tr(SH−1

b A2H−H
b SH). (24)

Notice that the Wiener precoding solution can also be applied
to the system in (22).

Next we compare the chip-wise linear MMSE precoder
given in Section III-B (which is equivalent to the optimal bit-
wise linear MMSE precoder) with the above bit-wise precoder
with a RAKE receiver. We assume that the target SINR per
user is constant for all users, γk = 13dB, k = 1, . . . , K. We
consider random codes and Gold codes with spreading gain



6 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 1, JANUARY 2007

28 30 32 34 36 38 40 42 44 46 48 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

total transmit power P
T
 (dB) to achieve QoS = 13dB

C
D

F

Gold/random sequences − K = 22, N = 31

: chip−wise MMSE prec − random
: bit−wise MMSE prec + RAKE − random
: chip−wise MMSE prec − Gold
: bit−wise MMSE prec + RAKE − Gold

chip−wise prec
   with Gold 

bit−wise prec 
  + RAKE     
  with Gold  

chip−wise prec
 with random 

bit−wise prec 
  + RAKE     
with random  

Fig. 1. Chip-wise precoding with matched-filter vs. bit-wise precoding with
RAKE receiver: CDF of the required power PT at the transmitter to achieve
γk = 13dB, ∀k. Spreading gain N = 31, K = 22 users.

N = 31 and the total number of users K = 22. We assume
that each mobile user experiences an independent multipath
channel fk = [fk,1, ..., fk,L]T with L = 3 resolvable paths,
and the transmitter has perfect CSI of all users. The path
gains are generated according to fk,i ∼ Nc(0, 1

L ). The
results are averaged over 1000 different channel realizations.
The cumulative distribution function (CDF) of the required
power at the transmitter to achieve the minimum SINR at the
receivers is shown in Fig. 1. With Gold sequences the RAKE
receiver brings 0.5dB gain on average (i.e., CDF = 50%)
compared with the simple chip-wise precoder with matched-
filter receiver. Note that the performance of a communication
system is dominated by the outage events. Given an outage
probability pout, we define the corresponding outage power
Pout as pout = Pr{PT ≥ Pout}. It is seen that although
on average the RAKE receiver is slightly better, it is more
prone to outage. For instance, consider in the plot the 5%
outage probability (i.e., CDF = 95%) for which the chip-wise
precoder requires around 34.5 dB whereas the RAKE receiver
requires around 35.5dB. When considering the 1% outage
probability (i.e., CDF = 99%), this effect is more pronounced
and the RAKE receiver requires 5 dB more than the chip-wise
precoder to achieve the same performance. This effect will be
more clear in the BER simulation results [cf. Fig. 5 and Fig.
6]. Interestingly, the performance of the precoder with RAKE
receiver decays considerably when random sequences are used
although it only has a minimum effect in performance of the
chip-wise precoder. Therefore, the chip-wise precoder is not
only simpler (and it makes the receiver simpler since no CSI is
required at the receiver) but it also has excellent performance.
From the above simulation results we can conclude that the
bit-wise precoder with RAKE receiver makes the mobile units
more complex and does not bring much improvements with
Gold sequences and it can be very detrimental with random
spreading sequences.

Linear precoding vs. linear MUD – total transmit power:
Next we compare linear MUD with linear precoding assuming
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Fig. 2. Linear precoding vs. linear MUD: CDF of the required power PT at
the transmitter to achieve γk = 13dB, ∀k. Spreading gain N = 31, K = 15
users.

30 32 34 36 38 40 42 44 46 48
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

total transmit power P
T
 (dB) to achieve QoS = 13dB

C
D

F
Gold/random sequences − K = 27, N = 31

: Decorrelating MUD − Gold
: MMSE precoding − Gold
: MMSE MUD − Gold
: Wiener precoding − Gold
: Decorrelating MUD − random
: MMSE precoding − random
: MMSE MUD − random
: Wiener precoding − random

MMSE MUD − Gold

Decorr MUD − Gold

Wiener prec − Gold

MMSE prec − Gold

MMSE MUD − rand

Decorr MUD − rand

Wiener prec − rand

MMSE prec − rand

Fig. 3. Linear precoding vs. linear MUD: CDF of the required power PT at
the transmitter to achieve γk = 10dB, ∀k. Spreading gain N = 31, K = 27
users.

similar simulations parameters. We compare the CDF of the
required total power PT at the transmitter to achieve a target
SINR γk = 13dB, ∀k, in each of the four following schemes:
(a) linear decorrelating MUD [cf. Eq.(4)]; (b) linear MMSE
MUD [cf. Alg. 1]; (c) chip-wise linear MMSE precoder, [cf.
Eq.(19)]; and (d) chip-wise Wiener precoder [cf. Alg. 2].
Simulations are performed for spreading gain N = 31, with
Gold and random spreading sequences. Fig. 2 shows the
results with K = 15 users and Fig. 3 shows the results
with K = 27 users. It is seen that with Gold codes, MUD
is slightly better (although only 0.5dB of difference with
linear precoding when 15 users are considered), whereas with
random codes linear precoding largely outperforms MUD.
Notice that the Wiener precoder is slightly better than the
MMSE precoder. It is also seen that the total power required
in the precoding solutions is almost independent of the chosen
spreading sequences and therefore, an outage event is less
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likely to occur. Although the linear MMSE MUD solution
seems to be quite effective with Gold codes, we recall that it is
unlikely to be implemented in the downlinks of most wireless
systems due to the amount of required feedback information
to implement perfect power control and other issues discussed
in Section I. Also notice that the linear decorrelator offers very
poor performance in heavily loaded systems, which does not
occur to the linear MMSE linear precoder.

Linear precoding vs. linear MUD – BER performance: Fig. 4
(random spreading sequences) and Fig. 5 (Gold spreading
sequences) show the BER performance of the various linear
MUD and linear precoding methods. The results are averaged
over 100 channel realizations and QPSK modulation is em-
ployed. Recall that the linear MMSE precoder is equivalent
to the transmitter counterpart of the decorrelator. For the
decorrelating MUD we consider perfect power loading to
achieve the same SNR across the users. It is seen that the
linear MMSE precoder with RAKE only performs slightly

better with Gold sequences in the very low SNR region. In all
the other cases, the chip-wise linear MMSE precoder obtains
much better results. On the other hand, the chip-wise MMSE
precoder obtains much better results than the decorrelating
MUD, especially in heavily loaded systems. These results are
due to the outage events of the decorrelating MUD observed in
Fig. 2 and Fig. 3. Again, it is seen that the BER performance
of the chip-wise precoding solution is almost independent of
the chosen spreading sequence.

V. CONCLUSIONS

In this work we have compared the performance of linear
precoding and linear MUD in the downlink of TDD-CDMA
systems. We have proposed different linear precoding schemes
and our results reveal that precoding can outperform the more
complex MUD. Moreover, we have shown that the proposed
chip-wise linear MMSE precoding method is optimal in the
sense that it requires the minimum total transmitted power to
meet a certain receiver SINR target. These results strongly mo-
tivate the use of transmit precoding in the downlink of TDD-
CDMA systems due to the multiple advantages over MUD,
including the simple implementation of power control and user
scheduling, and the reduction of the power consumption and
complexity at the mobile unit.
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