
http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Everything* you wanted to know 
about revision control but never 

dared to ask
*OK, most things I think are useful and that I 

can (try to) fit into a 20 minute talk

David Cottingham
david.cottingham@cl.cam.ac.uk



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

What is Revision Control?

Poor man’s version:
Keep multiple copies of the same file, one for each 
change ever made, and some notes

Keep track of changes to a file
Roll back (undo) changes if needed
Merge multiple changes together to create the 
next revision



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Where to Use Revision Control?

Your own software projects (return to a stable 
version when necessary)
Documents (particularly papers, where you are 
likely to re-write sections)
Working collaboratively on either of these (can 
merge in changes from multiple reviewers, keep 
track of original version)



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Concurrent vs. Strict Locking

Version control exists in many applications
Simplest form is an undo log!
MS Word has “Track Changes” feature

These are great for keeping track of changes to a 
document that is passed around between users (i.e. only 
one person edits at once)
Revision Control Systems (a.k.a. Software Configuration 
Management [SCM] systems) allow concurrent editing of 
files by multiple users



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Contents & “Non-Contents”

We will cover:
Basic revision control (import, check out, commit, 
update, diff, merge, revert/rollback)
Advanced revision control (branching)
Different revision control paradigms (centralised vs. 
distributed)

We will not cover:
In depth command line options of any one system 
(though there are some reference slides)



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Quick Comparison I

RCS: not network-aware, only files (not 
projects), strict locking rather than optimistic 
concurrency, useful for single config files
CVS: built on RCS, but fixes above, widely used, 
non-atomic commits, no directory versioning, no 
binary files
SVN: fixes above, but uses Berkeley DB, so you 
can’t view metadata with a text editor. Allows 
property sets (text, binary files…) for all objects 
in repository



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Quick Comparison II

Mercurial: great for giving each developer their 
own repository, slightly confusing first time 
round, lots of hooks, bisect to find bugs, patch 
queues, various extensions
Git (not mentioned here): also distributed, used 
for Linux kernel source management
Many others…



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

(Very Basic) Terminology

Revision: a set of changes to a project. A 
revision is a snapshot of a project

Repository: master copy of a project’s 
revision history (on a “server”)

Working Copy: your own “workstation”
copy of the project (you can mess this up 
as much as you like)



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Importing (a.k.a. Starting a New Repository)

1

New Repo.
Create a 
repository for 
this project

1 1
Import 
existing files

11
Delete 
(backup) 
existing files



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Creating a Repository & Importing in SVN

foss:~$ mkdir –p ~/svn/testRepo
foss:~$ svnadmin create –fs-type fsfs ~/svn/testRepo
foss:~$ ls ~/svn/testRepo
conf dav db format hooks locks README.txt
foss:~$ svn import ~/scripts \

file:///filer/dnc25/unix_home/svn/testRepo/trunk/\
-m “Project import.”

Adding scripts/colour.pl
Adding scripts/readme.txt

Committed revision 1.
foss:~$ mv ~/scripts ~/scripts-old
foss:~$ svn list file://~/svn/testRepo/trunk/
colour.pl
readme.txt



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Checking Out & Committing

11
Check out 
working copy 
at revision 1

2

A-1 A-2 Do work on 
file A

Commit 
changes to 
repository

1

1

1

2 2
Resolve 
conflicts, 
store new 
revision

1

OK



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Checking Out in SVN

foss:~$ mkdir ~/workingCopy; cd ~/workingCopy
foss:workingCopy$ svn co 

file://~/svn/testRepo/trunk/
A trunk/colour.pl
A trunk/readme.txt
Checked out revision 1.
foss:workingCopy$ cd trunk; cat colour.pl
#! /bin/perl
print “The following colours are available:\n”;
my $colours = `showrgb`;
print $colours;
foss:trunk$ perl colour.pl
The following colours are available:
255 250 250 snow
248 248 255         ghost white



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Committing in SVN

foss:trunk$ perl colour.pl
The following colours are available:
255 250 250 snow
248 248 255         ghost white
foss:trunk$ vi colour.pl
foss:trunk$ perl colour.pl
The following colours are available:
snow
ghost white
foss:trunk$ svn commit –m “Made colour listing only\

names.”
Sending   colour.pl
Transmitting file data .
Committed revision 2.



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

What Changed? diff In Action

foss:trunk$ svn diff -r PREV
Index: colour.pl
====================================================
--- colour.pl (revision 1)
+++ colour.pl (working copy)
@@ -1,4 +1,8 @@
#! /bin/perl
print "The following colours are available:\n";
my $colours = `showrgb`;
-print $colours;
+while ($colours) {
+ if ($colours =~ 

s/^\s*\d{1,3}\s*\d{1,3}\s*\d{1,3}\s*(.*?)\n//x) {
+    print "$1\n";
+ }
+}



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

foss:trunk$ svn diff -r PREV
Index: colour.pl
====================================================
--- colour.pl (revision 1)
+++ colour.pl (working copy)
@@ -1,4 +1,8 @@
#! /bin/perl
print "The following colours are available:\n";
my $colours = `showrgb`;

-print $colours;
+while ($colours) {
+ if ($colours =~ 

s/^\s*\d{1,3}\s*\d{1,3}\s*\d{1,3}\s*(.*?)\n//x) {
+    print "$1\n";
+ }
+}

diff in Action Explained

Removed line

Original lines 1-4 

Showing new 1-8 

Inserted 5 lines 



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Collaboration & Conflict

11

A-1 A-2

1 11

A-1 A-3

2

3

2

B-1 B-3

David Jon

?



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

What a Conflict Looks Like

foss:trunk$ vi readme.txt
foss:trunk$ svn commit
Sending        readme.txt
svn svn: Commit failed (details follow):
svn: Out of date: '/trunk/readme.txt' in transaction 

'3-1'
svn: Your commit message was left in a temporary 

file:
svn: '/filer/dnc25/unix_home/workingCopy/trunk/svn-

commit.tmp‘
foss:trunk$ svn update
C  readme.txt
Updated to revision 3.



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Update: What Changed?

The update command will compare your 
working copy to the repository
Reports which files have changed, and merges 
them if possible, but does nothing further (i.e. 
conflicts are your problem)
(Note: commit only pushes your changes to 
repository; you probably then want to update)



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Merging Conflicts I

The revision control system can work out simple 
“conflicts” itself (e.g. two separate portions of a 
file)
A conflict occurs if there have been concurrent 
edits to the same line of a file
If this happens, your commit will fail, and you will 
need to update, [rack your brains], [write upset 
e-mail to co-worker], sort it out manually
Then tell SVN that the conflict is resolved, and 
commit the fix back to the repository



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Merging Conflicts II

foss:trunk$ cat readme.txt
<<<<<<< .mine
This is a readme file for colour.pl!
=======
This is a useless readme file for colour.pl.
>>>>>>> .r3
Don't ever modify this code!



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

foss:trunk$ cat readme.txt
<<<<<<< .mine
This is a readme file for colour.pl!
=======
This is a useless readme file for colour.pl.
>>>>>>> .r3
Don't ever modify this code!

Merging Conflicts II Explained

Working copy 
change 

Repo. change 

Contextual line 

Repo. Revision # 



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Resolving the Conflict

foss:trunk$ vi readme.txt
foss:trunk$ cat readme.txt
This is a useless readme file for colour.pl!
Don't ever modify this code!
foss:trunk$ svn resolved readme.txt
Resolved conflicted state of 'readme.txt'
foss:trunk$ svn commit -m "Merged xyz12's change of 

first sentence with mine."
Sending        readme.txt
Transmitting file data .
Committed revision 4.
foss:trunk$ svn commit –m “Merged xyz12’s change of 

first sentence with mine.”



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Revision/Version Numbers & Change Log I

SVN has a single revision number for the entire 
repository
CVS keeps version numbers on a per-file basis
Each commit increments the revision/version 
number
Every commit should have a comment from the 
committer explaining what the change is; the 
change log contains all of these



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Revision/Version Numbers & Change Log II

foss:trunk$ svn log readme.txt
----------------------------------------------------------------
r4 | dnc25 | 2008-02-01 14:23:45 +0000 (Fri, 01 Feb 2008) | 1 

line

Merged xyz12's change of first sentence with mine.
----------------------------------------------------------------
r3 | xyz12 | 2008-02-01 13:59:58 +0000 (Fri, 01 Feb 2008) | 2 

lines

Told everyone that the readme file was useless

----------------------------------------------------------------
r1 | dnc25 | 2008-02-01 13:24:52 +0000 (Fri, 01 Feb 2008) | 1 

line

Project import.
----------------------------------------------------------------



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Rolling Back (Reverting)

2 2Roll Back!

23 1

You broke 
revision 2…

Roll back 
working copy 
to revision 1

Get earlier revision, then commit it as a change
Roll back as far as you wish
CVS Works on individual files, entire repository more complex

3
Commit: Rev. 
3 now same 
as 1

3



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Reverting to a Previous Revision
foss:trunk$ foss:trunk$ svn diff -r 2
Index: readme.txt

================================================================
--- readme.txt (revision 2)

+++ readme.txt (working copy)
@@ -1,2 +1,2 @@

-This is a readme file for colour.pl.
+This is a useless readme file for colour.pl!
Don't ever modify this code!

foss:trunk$ svn cat -r 2 
file://~/svn/testRepo/trunk/readme.txt > readme.txt

foss:trunk$ svn commit -m "Reverted readme text to before 
'useless' was added."

Sending        readme.txt

Transmitting file data .
Committed revision 5.



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Reverting an Entire Repository

For SVN this is the same as for a single file, as a 
revision number is for the entire repository
Remember: in CVS every file has its own
revision number
Hence, when you release version 1.0 of your 
programme, you may well have some files that 
are at revision 2.5, 1.4, 0.9…
To revert a repository, can do so by date (latest 
revision of all files up to that date)
Or: tag (give a useful name to) a set containing 
one revision of each file. Revert to a tagged set
(SVN also supports tag and date reversion)



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Branching Timelines

Consider a time machine… (Think of Doc. 
Brown from “Back to the Future” here)
A timeline can split into two (or more) versions at 
a particular event (the root)
For example, you could choose to listen or not 
listen to this talk
In one timeline, I would get upset and walk out, 
in the other I will be generally happy



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Branching Repositories

When you release a version of your software project, 
you may still have to supply updates for it, whilst 
developing a completely new (currently unstable) 
version
So: when beginning on the new version, make a copy of 
the repository’s contents: a branch
Leave this branch intact, so you can work on it 
separately if needed, whilst you continue to work on the 
“main” repository
The root of the branch is the release event, which is 
contained within the main development tree, the trunk



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Trunk, Branches, Tips I

Time

1 2

2

1

3
Start of
project

Release

Tip

HEAD



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Trunk, Branches, Tips II

Generally, your repository will be tree-like in structure
Your trunk will be the new release of the software you’re 
working on
Older releases will each have branches, rooted at 
particular points on the trunk
Each branch will have a tip: the latest commit made to 
that branch (confusingly, git calls these heads)
Example: bug fix needed for release 1.0 of the software, 
whilst you’re working on release 3.0
The trunk has a tip (called the HEAD in CVS and SVN): 
the most recent commit to release 3.0
In SVN, the trunk is no different from any other branch. 
In CVS the trunk is special



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Merging From a Branch Into the Trunk

It may be that you need to apply all the bug fixes 
that you made to the 1.0 branch to release 3.0 
(the trunk) as well
When merging a branch into the trunk, the 
system calculates the diff between the root of 
that branch, and its tip
That diff is then applied to the trunk’s tip
(Note: this is not the same as reverting the 
entire trunk to the previous release!)
You can also merge from the trunk into a branch 
(e.g. cvs update –j HEAD)



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Caution: Multiple Merges => Conflict

If you merge a branch into the trunk, then later do further 
work on the branch, (i.e. create a new tip), then re-
merge, this generates a conflict
This is because the diff (that is attempted) to be applied 
to the trunk is of the branch root and its tip (i.e. including 
the contents of your first merge)
Fix: tag the branch before every merge. Then on 
merging, elect to merge in the changes that were 
committed to the branch after the last tag. Or use svn
merge which is clever.
(If you don’t tag, you can use dates instead)
Caution: if you merge in someone else’s branch, make 
sure the tip of that branch is then tagged!



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Branching & Merging Example (SVN) I

Do some work on an existing trunk
Commit your changes (becomes revision 13)
Do some more, commit (revision 14)
Oh… Actually:

Revision 14 was bug fixes to trunk
Revision 13 should have been a branch

Problems:
How to make a branch containing changes from 13, and the bug 
fixes?
How to get trunk back to revision 12 + the bug fixes from 14?



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Branching & Merging Example (SVN) II

How to make a branch containing changes from 13, and 
the bug fixes?

Create a branch at revision 12 (i.e. the point before you 
committed the changes that should be on the branch)
Switch your working copy to point to the branch
Merge changes from revisions 13 to 14 of the trunk into your 
working copy
Commit your working copy to the branch

Notes:
If you have no working copy, just check out the branch
Switching is preferable because it doesn’t download the entire 
repository (just the differences)



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Branching & Merging Example (SVN) III

How to get trunk back to revision 12 + the bug fixes from 
14?

EITHER: Check out revision 12 of the trunk to a scratch space 
(“working copy”)
Merge in (only) changeset 14 (the bug fixes) to your working 
copy
OR: use merge to reverse changeset 13 only (rather than revert)
Commit your working copy to the trunk (revision 15)

Notes:
You never actually delete anything from the history: revision 14 
stays as 13 + the bug fixes.
You can specify a range of changesets (rather than just a single 
one) that you want to apply to your working copy



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

CVS: Watchers & Notifications

Useful if you want to know by e-mail/SMS when 
someone begins to edit (or commits) on a file 
you’re interested in
For edit notification, requires you to tell the 
system that you are about to edit (e.g. cvs
edit fileName)
Very cumbersome. SVN and Mercurial provide 
hooks which require much less effort to use



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

CVS: Branching Commands

Create a tagged branch (drop -b to tag without 
branching) 
cvs tag –b branchName

Checkout the tip of a branch
cvs checkout -r branchName

Update working copy to trunk (remove stickiness)
cvs update -A

Update working copy with diffs from a specified tagged 
branch
cvs update -j tagName

Merge a branch’s changes after a specified tagged 
commit to that branch
cvs update -j tagName -j branchName



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

SVN: Properties

Every object in the repository can have 
metadata associated with it
This can be textual (e.g. copyright notice, bug 
ID) or binary (e.g. a thumbnail image)
Use svn propset to set, then svn proplist
to get the property names, svn propget to 
obtain the actual property value
Properties can be versioned or unversioned
SVN provides language bindings to easily 
access properties



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

SVN: Unique Commands

View log of changes to a file or directory
svn log [fileName] [-r revisionNumber]

Revert to the last repository copy of a file
svn revert fileName

See a particular revision of a given file
svn cat -r revisionNumber fileName

See files in a given directory without downloading
svn list [-v] URL

Use journal to restore working copy to consistent state
svn cleanup

To copy, rename, or move files, use
svn copy, svn rename, svn move



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

SVN  Branching Commands

Create a branch (just copy to elsewhere in the repo.)
svn copy trunkURL branchURL

Download another branch into your working copy
svn switch [-r revisionNo] branchURL

Merge changes from trunk into branch (as many times 
as you like), optionally specify trunk revision number
svn merge [-c revisionNo] trunkURL

Track what changes from trunk have been merged into 
your current branch (using properties, only in 1.5)
svn mergeinfo .

Merge branch into a working copy of trunk
svn merge --reintegrate branchURL



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Making Life Easier: Utilities

Integrate SVN into Eclipse for DTG use:
http://www.cl.cam.ac.uk/research/dtg/research/wiki/local/
SharingCodeInDTG
Tortoise: Graphical front end
for SVN under MS Windows
http://tortoisesvn.tigris.org/
Kidff3 is brilliant for comparing
files in a graphical interface
and working out what change
to keep
http://kdiff3.sourceforge.net/

http://www.cl.cam.ac.uk/research/dtg/research/wiki/local/SharingCodeInDTG
http://www.cl.cam.ac.uk/research/dtg/research/wiki/local/SharingCodeInDTG
http://tortoisesvn.tigris.org/
http://kdiff3.sourceforge.net/


http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Distributed Version Control

RCS, CVS and SVN are all centralised, i.e. there 
is one “most up-to-date” repository that 
everyone commits to
Mercurial and Git have the idea that all 
repositories are equal, and contain the entire 
change history
Note that you’ll still probably want one central 
backup and up-to-date repository anyway, but 
you don’t have to.



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Mercurial (hg)

To “checkout” a project, you hg clone the 
entire repository
You then have your own local repository (not 
just a working copy!)
Can hg commit to your repository
Get changes from other repos using hg pull
Merge your repo. with the result of the pull using 
hg update plus hg merge
Push the result to other repos using hg push



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Why Bother With Mercurial?

Having your own repository allows you to commit 
intermediate code states regularly, but not publish them 
to anyone else
Bisect extension: allows you to mark earliest changeset
you know of where a bug is present, and the latest 
where it is not. Then bisect iterates through changesets, 
updating your working copy. For each, you inform it 
whether your binary bug test fails. This then enables you 
to find the exact changeset that introduced the bug
Lots of hooks (even more than SVN) that allow actions 
to be run in response to repository events
Patch queues



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Links for Reference

CVS Book: http://cvsbook.red-
bean.com/OSDevWithCVS_3E.pdf
SVN Book: http://svnbook.red-
bean.com/nightly/en/svn-book.pdf
Mercurial Book: http://hgbook.red-
bean.com/hgbook.pdf
Git User Manual: 
http://www.kernel.org/pub/software/scm/git/docs/
user-manual.html

http://cvsbook.red-bean.com/OSDevWithCVS_3E.pdf
http://cvsbook.red-bean.com/OSDevWithCVS_3E.pdf
http://svnbook.red-bean.com/nightly/en/svn-book.pdf
http://svnbook.red-bean.com/nightly/en/svn-book.pdf
http://hgbook.red-bean.com/hgbook.pdf
http://hgbook.red-bean.com/hgbook.pdf
http://www.kernel.org/pub/software/scm/git/docs/user-manual.html
http://www.kernel.org/pub/software/scm/git/docs/user-manual.html


http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Conclusions

There are a huge number of revision control 
systems out there
We have examined CVS and SVN in detail 
(centralised approach)
Briefly looked at Mercurial (distributed)
Personally: CVS is OK, SVN far better but 
database locks up (use fsfs instead). Mercurial 
(thus far) has been great



http://www.cl.cam.ac.uk/research/dtg/

Computer Laboratory

Everything* you wanted to know 
about revision control but never 

dared to ask
Thanks for listening!

David Cottingham
david.cottingham@cl.cam.ac.uk


	Everything* you wanted to know about revision control but never dared to ask
	What is Revision Control?
	Where to Use Revision Control?
	Concurrent vs. Strict Locking
	Contents & “Non-Contents”
	Quick Comparison I
	Quick Comparison II
	(Very Basic) Terminology
	Importing (a.k.a. Starting a New Repository)
	Creating a Repository & Importing in SVN
	Checking Out & Committing
	Checking Out in SVN
	Committing in SVN
	What Changed? diff In Action
	diff in Action Explained
	Collaboration & Conflict
	What a Conflict Looks Like
	Update: What Changed?
	Merging Conflicts I
	Merging Conflicts II
	Merging Conflicts II Explained
	Resolving the Conflict
	Revision/Version Numbers & Change Log I
	Revision/Version Numbers & Change Log II
	Rolling Back (Reverting)
	Reverting to a Previous Revision
	Reverting an Entire Repository
	Branching Timelines
	Branching Repositories
	Trunk, Branches, Tips I
	Trunk, Branches, Tips II
	Merging From a Branch Into the Trunk
	Caution: Multiple Merges => Conflict
	Branching & Merging Example (SVN) I
	Branching & Merging Example (SVN) II
	Branching & Merging Example (SVN) III
	CVS: Watchers & Notifications
	CVS: Branching Commands
	SVN: Properties
	SVN: Unique Commands
	SVN  Branching Commands
	Making Life Easier: Utilities
	Distributed Version Control
	Mercurial (hg)
	Why Bother With Mercurial?
	Links for Reference
	Conclusions
	Everything* you wanted to know about revision control but never dared to ask

