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Abstract
In the future world of Ubiquitous Computing, tiny embedded networked computers will be
found in everything from mobile phones to microwave ovens. Thanks to improvements in tech-
nology and software engineering, these computers will be capable of running sophisticated new
applications constructed from mobile agents. Inevitably, many of these systems will contain
application-levelvulnerabilities; errors caused by either unanticipatedmobility or interface be-
haviour. Unfortunately existing methods for applying security policy – network firewalls – are
inadequate to control and protect the hordes of vulnerable mobile devices. As more and more
critical functions are handled by these systems, the potential for disaster is increasing rapidly.

To counter these new threats, this report champions the approach of using new application-
level security policy languages in combination to protect vulnerable applications. Policies are
abstracted from main application code, facilitating both analysis and future maintenance. As
well as protecting existing applications, such policy systems can help as part of a security-aware
design process when building new applications from scratch.

Three new application-level policy languages are contributed each addressing a different
kind of vulnerability. Firstly, the policy language MRPL allows the creation ofMobility Re-
striction Policies, based on a unified spatial model which represents both physical location of
objects as well as virtual location of mobile code. Secondly, the policy language SPDL-2 pro-
tects applications against a large number of common errors by allowing the specification of
per-request/response validation and transformation rules. Thirdly, the policy language SWIL
allows interfaces to be described as automata which may be analysed statically by a model-
checker before being checked dynamically in an application-level firewall. When combined
together, these three languages provide an effective means for preventing otherwise critical
application-level vulnerabilities.

Systems implementing these policy languages have been built; an implementation frame-
work is described and encouraging performance results and analysis are presented.
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Chapter 1

Introduction

Tiny embedded computers are found in a host of everyday items including wristwatches, alarm
clocks, mobile phones, network routers and washing machines. Very few of these devices are
networked. The situation is changing rapidly; the recent development of integrated on-chip
wireless network interfaces will soon drive the cost of networking these embedded computers
to almost nothing. Hordes of mobile embedded devices will soon be able to run the same
style of distributed programs found today on networked PCs. This is the world ofUbiquitous
Computing.

Many researchers believe that an environment permeated with powerful, invisible, net-
worked computers will be able to support whole new types of useful applications. However
as well as great potential for useful applications, there is also great potential for harmful ones.
Already figures from CERT (see Figure 1.1) show an alarmingly rapid rise in the number of
computer security incidents – typically infections with viruses and trojans – a situation bound
to get worse as networked computers proliferate. So-called “zero-day exploits” where mali-
cious code to exploit a vulnerability is released before the vendor is made aware of the flaw are
becoming common. Recently “Cabir” [19], the first mobile phone virus, has been observed by
anti-virus software firms. Although this particular virus contained no malicious payload, future
mobile viruses could do anything from sending vast numbers of premium-rate text messages
from the victim’s phone (incurring the relevant charges, as happened with the ill-fated copy
protection mechanism in the mobile gameMosquitos[109]) to spreading automatically through
the contact phone numbers stored in the handset. With only a few networked computers per
person (i.e. desktop, laptop, PDA, mobile phone) users can always exercise the ultimate sanc-
tion by pulling the plug on an aberrant machine. What sanction is left when there are thousands
of networked computers per person and some of them are safety or mission-critical?

Traditionally networks are secured by surrounding them with firewalls which filter network
packets depending on their source and destination. In a recent report [127], Gartner analyst
John Pescatore wrote that although firewalls have been effective so far at blunting network-
level attacks, the popularity of HTTP tunnelling and Web-Services will push future attacks up
to the application-level. In the near future old-style firewalls will likely cease to be effective.
Users need to protect and control their applications with new types ofapplication-levelsecurity
policies.

The thesis of this work is that abstracting application-level security policy (which
we define to be policy written to govern both themobility andinterface behaviour
of systems) is an effective technique for guarding against application-level vulner-
abilities which would otherwise plague future ubiquitous computing systems.
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Chapter 1. Introduction 1.1. Hardware Trends

This chapter begins with an outline of relevant hardware trends in Section 1.1 providing
the context for a description of the field of Ubiquitous Computing in Section 1.2. Section 1.3
describes some terminology useful for discussing distributed systems while Section 1.4 gives a
brief outline of research into policy systems. Section 1.5 describes the trend towards ever greater
software mobility which is followed by a discussion in Section 1.6 of how these factors have all
led to traditional network firewalls being unable to effectively protect vulnerable applications.
Abstracting application-level security policy is described in Section 1.7 and motivated as a
useful technique in Section 1.8. Section 1.9 describes the contribution and Section 1.10 the
structure of the rest of this thesis.

1.1 Hardware Trends

The Semiconductor Industry Association [146] predicted that around 1 billion transistors will
be manufactured for every man, woman and child on Earth in the year 2010. These transistors
will likely not be in conventional CPUs; Tennenhouse predicted [158] that the production of
microcontrollers – tiny embedded CPUs – will outnumber traditional desktop CPUs by 50 to 1
in the year 2000. These microcontrollers are found today in many products including network
routers, cellphones, alarm clocks, washing machines, vending machines, heating systems, car
engines, security systems and many others. These tiny machines are becoming increasingly
sophisticated (following Moore’s Law) and some now run Commercial Off-The Shelf (COTS)
operating systems like VxWorks [10] or ITRON [4]. Although many of the devices are not cur-
rently networked (except network routers) it seems likely that, with the falling cost of wireless
networking technologies like Bluetooth [2] and IEEE 802.11 [93] soon these devices will be
equipped to communicate with one-another and with the rest of the global Internet. Due to their
small size and weight, many of these devices will also be physically mobile, either carried by
people (in the form of a laptop), under their own power (in the form of a robot) or even drifting
on the wind (in the form of a “Smart Dust” [102] particle).

1.2 Ubiquitous Computing

The potential capabilities of a huge network of communicating, mobile, embedded devices are
truly staggering. In August 1999, Neil Gross published an article in Businessweek [78] which
contained the prediction:

Hundreds of thousands of PCs working in concert have already tackled complex
computing problems. In the future, some scientists expect spontaneous computer
networks to emerge, forming a “huge digital creature”.

In his seminal article in Scientific American Weiser described [171] a world in which computers
cease to be the focus of attention but instead fade into the background, “weaving themselves into
the fabric of everyday life until they are indistinguishable from it”. This vision ofUbiquitous
Computingis perhaps the one Licklider imagined [110] in his influential 1960 article titled
“Man-Computer Symbiosis”:

The hope is that, in not too many years, human brains and computing machines
will be coupled together very tightly, and that the resulting partnership will think as
no human brain has ever thought and process data in a way not approached by the
information-handling machines we know today.

11



1.3. Terminology: Software Layers, Levels and Protocols Chapter 1. Introduction

Unfortunately there are already signs that trouble is brewing with the first generation of net-
worked embedded devices: Arce discusses [15] how it may be possible to remotely compro-
mise and seize control of the computer within a Cisco router. Vulnerabilities in core network
elements are bad enough but worse could still be to come: Borriello and Want describe [27] how
in the future tiny ingested computers controlled by Web-Services may perform the time-release
of drugs into the bloodstream. Vulnerabilities in these systems would be devastating.

1.3 Terminology: Software Layers, Levels and Protocols
Many systems, particularly networked ones, are considered to be constructed inlayers, some-
times known aslevels, arranged in a stack. Each layer is a module which uses the interfaces of
the layer below in order to expose new interfaces to the layer above. Layers at the same level
in different systems communicate usingprotocols. Protocol messages emitted from a particular
layer in one system are routed through lower layers on their way to the same layer in peered
systems. Layers are intended to be abstract entities; their internal details are hidden and only
concrete interfaces are exposed.

The ISO Open Systems Interconnect (OSI) seven layer model is a famous reference de-
sign for networked systems1. The seven layers, from highest-level to lowest, are: application,
presentation, session, transport, network, datalink, physical. The physical layer considers is-
sues such as the voltages required in electrical transmission circuits and the rate at which bits
can be modulated. The datalink layer deals with the organisation of bits transmitted, including
error-checking and framing. The network layer takes care of message routing across nodes in
a network. The transport layer arranges for any necessary data retransmissions in the event
of messages being dropped. The session layer considers grouping messages into higher-level
structures such as byte streams or request/response messages. Finally the application layer per-
forms everything else, i.e. the “real work” of the application. In this thesis we consider the
application-level software to consist of two aspects: amobility aspect which controls the loca-
tion of code and aninterface behaviouraspect which controls how a component interacts with
other components.

1.4 Policy Systems
Policies are widely used throughout computer systems for many different purposes. In gen-
eral, a policy system usually consists of a set of high-level rules written in mathematical logic
which describe the way a system should behave in different circumstances. For example, an
access control policy [138] would describe how and when users may gain access to particular
resources. An example access control policy would be one which states (in some concrete math-
ematical form) that only users who have supplied the correct password and are in a particular
group may access the printer between 9am and 5pm on a tuesday. Access control policies are
eitherdiscretionaryor mandatory. A discretionary policy allows users control over who can ac-
cess the objects they “own” while a mandatory system is configured by the system administrator
and no-one else may change the permissions—not even the user who owns the objects.

Information flowpolicies are rules which constrain how data may move between applica-
tions and application components. Denning and Denning [50] designed a compile-time program
analysis phase which checks that information can only legally flow between variables (data may
flow by direct assignment or by indirectly influencing the value of another variable) if the vari-

1ISO defined a concrete set of protocols corresponding to their abstract model. Although these protocols never
became popular the model is still used today as a reference to compare other systems.

12



Chapter 1. Introduction 1.5. Mobile Agents

ables belong to certain security classes (e.g. data may flow from a variable of classpublic to a
variable of classtop secretbut not the other way around).

Role-based access control(RBAC) [73] introduced the concept of a role which is a associ-
ated with a particular position within an organisation and granted a set of access rights. Users
are assigned to roles either statically or dynamically (for example, after supplying supplemen-
tary passwords) rather than being granted access rights directly.

XACML[66] is a policy system which has recently been defined by an industrial consortium
to control access to parts of the XML documents. The process of exchanging XML documents
constitutes the core of the Web-Service protocols and together with XML encryption [94] and
XML signatures [18], XACML is a significant part of the Web-Service security model. XACML
is highly flexible; individual users or roles may be given access to read or write documents at
arbitrary granularity, down to individual document elements.

The Policy Description Language(PDL) [111] uses a paradigm calledevent-condition-
action (ECA) originally developed for active databases. Events (such as a login attempt) are
matched against the ECA rules to generate appropriate actions, which could include generating
further events. Simple event combinators are provided to allow rules to match combinators or
sequences of events.

Network Firewallpolicies are similar to ECA policies where events fire when packets are
received and the actions include: (i) drop the packet; (ii) reject the packet by sending back an
error; (iii) let the packet pass unmodified; or (iv) transmit the packet with some modification.

1.5 Mobile Agents

As networked computers proliferate there is not only a trend towards greaterphysicalmobil-
ity but also greaterlogical mobility. Over time, many different architectures for distributed
software have been proposed includingclient-server, remote execution, code on demandand
mobile agents. These architectures differ primarily in the amount of code mobility (i.e. logical
mobility) they support. Client-server is the most static — supporting no code movement at all;
client and server simply communicate via request and response messages. Remote execution
allows a client to send a program to the server while in a “code on demand” system a program is
downloaded from the server to a client. Mobile agent systems sport the most mobility and flex-
ibility; agents are autonomous programs which decide for themselves when to move between
hosts on the network and when to stay in one place and send messages instead.

Mobile Agents are attractive for many reasons [107] including overcoming effects of la-
tency, lowering bandwidth requirements, increasing fault-tolerance and maximising use of dis-
tributed resources. As time passes each of these aspects is becoming more important. Consider
latency: unlike bandwidth which can be increased through ever more sophisticated transmis-
sion schemes, communications latency has a hard lower-limit determined by the speed of light
and the distance between distributed nodes. As machines get faster individual communications
become increasingly expensive in terms of CPU cycles. Sending a whole program (as an agent)
is therefore more economical than sending multiple requests serially to a remote server. For
fault-tolerance, agents can replicate themselves and run on several nodes of a network simul-
taneously; this ability should be particularly useful as shrinking CMOS feature sizes is leading
to more unreliable chips [55]. At the present time data is being generated in vast quantities by
scientists (e.g. from genome sequencing and particle physics experiments) by businesses (e.g.
from customer profiling) by governments (e.g. from citizen profiling) and by individuals (e.g.
in the form of digital media). In many applications data is generated so quickly that it must be

13



1.6. Current Network Firewalls Insufficient Chapter 1. Introduction

processed by distributed nodes in a system known as a computationalGrid [67]. Autonomous
mobile agents are an attractive means of programming these Grid applications [105].

Unfortunately the increased flexibility of mobile agent systems comes with a cost; it is not
clear how best to control such a highly mobile, fluid system. There are many open security
challenges; for example it is not clear how best to protect hosts from malicious agents and
agents from malicious hosts (more details may be found in the literature [141, 41]). However
as time passes the lure of Mobile Agents will get ever stronger and more difficult to resist.

1.6 Current Network Firewalls Insufficient

A firewall is an entity which imposes policy at the network boundary between systems. The
original design of the Internet was based on theend-to-end[137] principle in which all in-
telligence is contained in the hosts while the network itself is dumb. The network consisted
entirely of simple packet routing engines corresponding to thenetwork-levelin the jargon of
the ISO/OSI model described in Section 1.3. This design has no explicit firewalls; each host is
responsible for its own security and may communicate with any other host. Explicit firewalls
were introduced later in an attempt to centralise security responsibilities rather than leaving se-
curity to individual hosts. Unfortunately this creates tension between two groups of users: those
charged with security who run the firewalls and those running the actual applications. In such a
situation an arms race can easily develop; a firewall blocking a particular protocol provides an
incentive to modify the application totunnelthe blocked protocol over some other still permit-
ted protocol. It is perhaps no surprise then that Web-Services [75], a new middleware platform,
sends all data over HTTP [22]: the same protocol used by the World Wide Web (WWW) and
which is almost universally permitted. Therefore as far as any application using Web-Services
is concerned, network firewalls are transparent.

Mobility is also a problem for current network firewalls. If mobile agents (possessing logi-
cal mobility) are allowed to migrate across a firewall then they are able to send traffic directly
to local machines without being subject to network security policy imposed by the firewall.
Similarly, programs running on physically mobile machines (e.g. on laptops) may also bypass
firewall policy when the machines move. Figure 1.2 shows graphically a representation of
a traditional networked environment in which fixed hosts are connected in small trusted net-
works separated by firewalls. Each isolated local network operates as anisland of trustand
the firewalls form naturaltrust boundaries, imposing policy on the traffic flowing between the
networks. Figure 1.3 shows the same diagram augmented with a multitude of mobile agents
and devices able to move both physically and logically. Clearly network-level firewalls are no
longer sufficient to protect vulnerable applications from mobile attack.

1.7 Abstracting Application-Level Policy

In this thesis the term “application-level policy” is used to refer to policy written to govern the
mobilityandinterface behaviourof systems. Application-level policy does not deal with lower-
level security issues such as the choice of encryption protocol used to prevent eavesdropping
or the nature of the packet filtering rules contained within a network firewall. Application-level
policy deals with issues such as (i) where can a program execute; (ii) where can it move to; and
(iii) what messages may it safely exchange with other programs.

“Abstracting” policy refers to a general technique for maintaining a single policy specifica-
tion separate from an entire application codebase. The policy is kept in one piece to facilitate
reasoning and analysis—a task which would be much more difficult if the policy was entwined
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Figure 1.2: Diagram represents traditional distributed computing; fixed hosts are connected in
small trusted networks joined together by firewalls.

firewall

fixed host

island of trust

mobile host

Figure 1.3: The same diagram from Figure 1.2 augmented with a host of mobile devices capable
of crossing between islands of trust.
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with the main application code.

1.8 Motivation for Abstracting Application-Level Policy
Application-level policy is required for three reasons. Firstly, the trend towards greater mobility
of both hardware devices and software agents is reducing the effectiveness of current firewall
policies written at the network or transport-level. Network-level policies necessarily base their
decisions only on the source or destination addresses of traffic while transport-level policies
(like those implemented by the OpenBSD stateful firewall [7]) are able to filter traffic based on
TCP-level flow information e.g. the presence or absence of aSYNflag indicating a connection
setup (more will be said about TCP connection setup later in Section 2.6.2). Secondly, mod-
ern middleware platforms like Web-Services are being designed specifically to work around
network-level firewalls, tunnelling through them by pretending to be normal HTTP traffic2. Fi-
nally, more and more vulnerabilities are being found and exploited at the application-level; a
trend which is predicted to get worse [127]. Application-level policy, rather than network-level
policy is required to protect applications.

Abstractingapplication-level policy affords us a number of advantages. It allows developers
to untangle security-related code from a large codebase, facilitating design, analysis and main-
tenance. In situations where an application is constructed from separate components (consider a
shopping cart component used in a web-application) it may be difficult to modify the individual
components since they may be written in different languages or only available in binary form..

Abstracting application-level policy can help mitigate the effects of zero-day exploits. When
a component vendor wishes to release a new version with a critical bug fixed, great care must
be taken to avoid accidentally creating additional problems—a difficult task when the vendor’s
customers have widely different setups and rely on different features of the component. The
vendor is placed in a very difficult position: release a fix early and possibly introduce more
problems with some customers or release late and leave all customers vulnerable to attacks for
longer. Abstracting policy offers a third way: customers can write policy, customised for and
tested by themselves on their individual configurations, allowing them to protect themselves in
the short-term while they wait for an official fix to come from the vendor.

A downside to the approach of abstracting policy is that it requires extra maintenance; i.e.
when the application is modified so too must the policy be modified. However this task need not
be as onerous as it might seem. Policy maintenance could be simplified using automatic tool
support. For example, a tool could be used to track changes to an application source and remind
the administrator to check particular parts of the policy when the source is changed. The task of
initially creating policy could also be simplified with a tool which passively monitors “normal”
application behaviour and produces a default policy which is permissive enough to allow all the
behaviour it observes. Such policy could then be customised by a human policy designer.

1.9 Contribution
This thesis explores policy languages and mechanisms to govern both themobilityandinterface
behaviourof software at the application-level. This thesis specifically contributes:

1. the Unified Spatial Model (USM): a spatial model capable of representing simultaneously
the physical locations of objects such as people and the virtual locations of mobile agents.
The USM is the foundation of the Mobility Restriction Policy Language (MRPL) – a

2“The Net interprets censorship as damage and routes around it.” – John Gilmore
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language which allows policies to be written to limit the movements of mobile agents
in an environment augmented with location sensors, like that displayed graphically in
Figure 1.3;

2. the language SPDL-2 which allows the expression of application-level interface security
policies in which per-request and response validation and transformation rules can be
written to protect web-applications from many kinds of common security vulnerabilities;
and

3. the language SWIL which allows the flow of control across an application interface to be
described as a sequence of operations accepted by a finite state automaton. The automaton
can be both analysed statically with a model-checker and dynamically checked with an
application-level firewall.

Together this model and these policy languages allow abstract application-level policy speci-
fications to be written to protect against many kinds of vulnerability. These application-level
policy systems have been implemented; implementation details and performance results are
provided.

1.10 Outline
The rest of this thesis is structured as follows: Chapter 2 provides technical background infor-
mation important for understanding the following chapters. The next four chapters are divided
into two groups of two; the first two chapters focus on themobility while the second two fo-
cus on theinterfacesof applications. Chapter 3 begins by describing the Unified Spatial Model
(USM) capable of representing both the physical location of computers and the logical locations
of mobile agents in the same framework. This model is used subsequently in Chapter 4 as the
basis of the Mobility Restriction Policy Language (MRPL) in which policies may be written
capable of limiting the movements of agents in both physical and virtual space.

The following two chapters deal with the interfaces of applications. Chapter 5 introduces
the policy language SPDL-2 (Security Policy Description Language version 2) which allows
the specification of per-request and response validation and transformation rules, protecting ap-
plications from many common forms of security vulnerabilities. Chapter 6 introduces SWIL
(Stateful Web Interface Language) which allows the flow of control across an application inter-
face to be described as a sequence of inputs accepted by a finite state automaton. SWIL secures
an application interface through a combination of up-front model-checking and dynamic policy
enforcement.

Chapter 7 describes the implementation of the systems described in Chapters 3 through 6
along with some encouraging performance results. Finally Chapter 8 discusses future work and
concludes. Related work and general discussion is provided in the relevant chapters.
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Chapter 2

Technical Background

This chapter provides detailed technical background information on a number of core concepts
used throughout the rest of this thesis, specifically Mobile Agents (in Section 2.1), Location
Sensing (in Section 2.2), Interfaces (in Section 2.3), Web Protocols (in Section 2.4), Computer
Security (in Section 2.5) and Model-Checking (in Section 2.6).

Previously Section 1.5 motivated the use of mobile agents as an increasingly useful and eco-
nomical way to structure distributed programs. With this in mind, this chapter begins in Sec-
tion 2.1 with a detailed description of key Mobile Agent concepts together with some simple
application examples. Section 1.1 argued thatphysicalmobility (as well as mobile agent-style
logical mobility) is set to increase significantly as devices continue to shrink and proliferate.
Mechanisms to control this physical mobility will necessarily rely on the ability to sense where
devices are in physical space. Therefore Section 2.2 describes a number of mechanisms for
location sensing and provides several political arguments for why these location sensing de-
vices will become commonplace. Later work in Chapter 3 builds upon this foundation, creating
the Unified Spatial Model (USM) capable of representing both the physical locations of ob-
jects and the logical locations of agents simultaneously. The model is used in Chapter 4 as
the basis for the Mobility Restriction Policy Language (MRPL) which allows the creation of
mobility restriction policiescapable of limiting the movement of mobile agents throughout an
environment augmented with location sensors. We observe that, just as early operating systems
had little need for file protections until they became multi-user, mobility policy only becomes
critical as systems become more mobile.

In addition to moving between hosts, Mobile Agents are also able to communicate across
points known generically asinterfaces. Section 2.3 describes a simple interface formalism ca-
pable of representing a number of common interface operations. The concepts of an interface
proxyand an interfacefirewall are both introduced. The policy languages SPDL-2 in Chapter 5
and SWIL in Chapter 6 are both implemented by an interface firewall system described in Chap-
ter 7. While the concept of an interface is generic, real-life systems necessarily will use some
concrete set of protocols. To facilitate a more interesting discussion (and without loss of gener-
ality) this thesis makes the simplifying assumption that future distributed, mobile applications
will opt to use the standard web protocols for communication. These protocols are described
in detail in Section 2.4. The termweb-applicationis introduced to mean any application us-
ing the web protocols (HTTP and URIs) for communication and the form of a web-application
interface is described using the formalism of Section 2.3. Web interfaces say nothing specific
about security and leave a number of crucial interface assumptions undocumented causing a
large number of application vulnerabilities; these problems are fixed by the policy languages
SPDL-2 in Chapter 5 and SWIL in Chapter 6.
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property description
reactive responds to external stimuli in the environment
autonomous takes its own decisions
goal-oriented has a purpose
continuous runs all the time
communicative communicates with other agents and/or people
learning changes its behaviour based on its previous experience
mobile able to migrate between hosts
flexible actions are not scripted
character believable “personality” and emotional state

Figure 2.1: Table of properties of mobile agents as proposed by Franklin et al [71].

Section 2.5 describes traditional security principles and outlines several reasons why en-
gineering secure systems is difficult in practice. A simple example is used to demonstrate
how security is not in general composable and how it is only ever as strong as the weakest
part of a system. Recall the thesis statement from Chapter 1 which talked aboutapplication-
levelsecurity vulnerabilities. As briefly described in Section 1.3, software is often constructed
in a layered fashion, with system software (e.g. network stacks) layered beneath application-
specific code. Application-level vulnerabilities are by definition vulnerabilities present only
in the application-specific code. Both the mobility restriction policies in Chapter 4 and the
interface policy languages in Chapters 5 and 6 are application-level security mechanisms.

Finally, Section 2.6 describesmodel-checking, a technique for the automatic verification of
communicating systems. The syntax of the PROcess MEta LAnguage (PROMELA) is described
and a simple example system is specified. Various properties of the system are mechanically
verified using the SPIN model checker. PROMELA and SPIN are revisited later in Chapter 6
where they are used to verify properties of interface security policies written in SWIL.

2.1 Mobile Agents
There is no general consensus amongst researchers or practitioners on what exactly constitutes
a mobile agent or how an agent is different from a normal software program. Rather than
providing a concrete definition, Franklin et al [71] propose a number of properties which they
believe an agent should have. These properties are displayed in the table in Figure 2.1. Some
of these properties (specifically character, learning, goal-orientation) are obviously inspired by
Artificial Intelligence (AI) research while others (mobility and communicativity) are lower-level
implementational properties.

This thesis adopts the simple definition:

A Mobile Agent is an autonomous program capable of moving between hosts on a
network and communicating with other agents.

The term “autonomous” is used to imply that mobile agent programs decide themselves when to
move unlikeprocess migrationsystems (e.g. SPRITE [54]) in which the hosts decide when pro-
cesses should move. The diagram in Figure 2.2 shows software running on two hosts labelled
“system A” and “system B”, each including a mobile agent server. The software on each host is
represented as a sequence of layers ranging from lowest-level and least abstract at the bottom to
highest-level and most abstract at the top. Each layer communicates conceptually with the cor-
responding layer in the peered system although in practice messages are routed through lower
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Figure 2.2: Diagram showing hosts, agent servers, agents and communication channels. Con-
ceptually agents communicate directly with other agents but in practice the communications are
routed via lower layers.

layers. In the system depicted the underlying network connecting the two systems is ethernet. In
the lowest level (corresponding with the ISO OSI physical layer) electrical signals are sent via
coax ethernet cables. The ethernet protocol adds framing and checksumming information and
corresponds to the OSI datalink layer. Both systems are using the internet protocol suite TCP/IP
which corresponds with the OSI session, transport and network layers combined together1.

Each mobile agent server provides an execution environment (sometimes described as a
place) for the agents running inside. Servers provide all the relevant APIs needed to allow
agents to operate and provide any necessary access to local resources. Agents exposeinterfaces
through which they may communicate with other agents. Two types of message are sent be-
tween agent servers: messages sent from one agent to another and messages co-ordinating the
transfer of agents. The message formats are handled by the mobile agent servers which corre-
spond to the OSI presentation layer. The agents themselves correspond to the OSI application
layer.

The security implications of representing software systems as a set of layers will be dis-
cussed later in Section 2.5.4. In this thesis we shall assume that all application-level communi-
cation is achieved through the web protocols, described later in Section 2.4.

In addition to communication primitives, mobile agent systems typically support the follow-
ing basic but not standardised operations:

create: creates a new agent from scratch

clone: duplicate the current agent (likefork() under Unix)

migrate: move the agent to a new host

recall: forcibly returns an agent to its initial location

terminate: kills a running agent

1TCP provides an error-free flow-controlled byte stream abstraction on top of IP which provides an unreliable
datagram service.
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Mobile agent implementations vary in many ways. Firstly, there is no standard mobile
agent security mechanism; each mobile agent system provides its own. A second point of
variation is the choice of implementation language. For interoperability, interpreted bytecode-
based systems are common e.g. Java Aglets [106] and interpreted C autonomous objects [25].
Other systems define their own languages e.g. Telescript [172] and Obliq [31].

Wojciechowski’s Nomadic Pict [173] is noteworthy in that it is a two-level agent program-
ming language; it has a low-level sublanguage which deals with agent migration and location-
dependent communication while a high-level language supports only location-independent
primitives. The high-level language is translated into (or implemented in terms of) the low-
level language by a mapping known as aninfrastructure. Applications can be recompiled with
different infrastructures to explore different migration and communication strategies—an in-
frastructure may be thought of as a kind of abstract mobility and communication policy. Later
work by Unyapoth [163] considered semantics in detail and demonstrated how it was possible to
prove the correctness of an infrastructure mapping for an arbitrary high-level source program.

Linked to the choice of implementation language, a third variation is the type of mobility
offered [87]. Some systems are said to offerfull mobility: the migration of all state including that
within the kernel (i.e. open files and network connections). Another variation isstrong mobility
in which a system is able to introspect and migrate running code. The remaining systems offer
weak mobility, insisting that agents perform manual shutdown and restart. For example, Java
based systems only offer weak mobility because Java does not allow the introspection of the
method call stack of running code. Even these distinctions are not very discriminating: Bettini
et al describe how strong mobility may be implemented on top of weak mobility with a syntax-
level translation [23].

Mobile agent code is handled in several different ways. Some systems transmit code along
with an agent’s state during migration. Alternative mechanisms include downloading the code
on-demand, perhaps on a class-by-class basis – a common technique if the agent system is based
in Java. A further alternative is to download the code from a third party server.

To give a flavour of how mobile agents may be used, the following four sections describe
simple example applications.

2.1.1 Example: Flight Booking

In this example a mobile agent is created by a user who wishes to travel somewhere by air. The
agent is written containing the user’s preferences (e.g. date of journey, class of ticket etc.) and
budget (i.e. how much they are willing to pay). The agent migrates to servers controlled by
airlines from where it can efficiently interrogate local flight databases. The agent can migrate
between airline servers to compare prices and find the most appropriate deal for their user. The
process is illustrated graphically in Figure 2.3. The user first creates an agent (represented
by a circle) which migrates between agent servers (rounded boxes) as indicated by the filled
arrows. In the illustration the agent migrates between three different airline agent servers in turn,
querying local databases (represented by the unfilled arrows) before returning to the original
agent server.

Provided the agent itself is small compared with the database data, this design requires less
overall network bandwidth than the traditional client/server design in which the databases are all
interrogated remotely from a fixed location. The main disadvantage is that a malicious airline
site may disassemble the agent to discover information the user would rather keep secret, for
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Figure 2.3: Use of a mobile agent to query remote databases.

example how much money the user is willing to pay.2 A malicious airline server has other
potential avenues of attack open to it. It might block the agent’s exit, particularly if it intends to
migrate to a competitor’s servers. Alternatively it might corrupt the agent, modifying any data
stored supplied by competitors. To address these problems the user must always assume the
worst3and send fresh copies of agents to each airline server and then only analyse the results on
the user’s own trusted computer.

2.1.2 Example: Secure Database Searching

Yannopoulis et al [176] proposed a system called PIVOTS: Private Information Viewing Of-
fering Total Safety. The system uses mobile agents to enable sophisticated searches to be per-
formed against private data collections while limiting the amount of possible data leakage.

Their running example is a bookstore which contains, but does not want to make freely
available, the full-text contents of books. In a situation where the full-textcanbe freely pub-
lished a user or a third-party search engine can easily perform arbitrary queries against the text.
However, this is not possible in the case where the data is private. In the PIVOTS system, users
can write agents (or have them written by a third-party) which analyse certain properties of the
text. The agents migrate to the bookstore servers from where they can run sophisticated search-
ing algorithms against the full-text contents. Crucially, agent communications are limited and
an agent can only send back simple responses such as, “you would like this book”. Therefore
they argue that the risk of data leakage is approximately the same as that experienced by a tra-
ditional book shop, in which people can wander in and physically thumb through the contents

2Advocates of price discrimination might claim such transparency is a good thing [124].
3Later on in Section 2.5 building secure systems is described as “programming Satan’s computer”.
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Figure 2.4: Use of a mobile agent to securely perform full-text searching on private data.

of books on the shelf.
The process is illustrated graphically in Figure 2.4. The user creates an agent which migrates

to an agent server running in the bookstore. The agent then enjoys unrestricted communication
with the back-end database which contains the full-text contents of the books. The agent cannot
leave the bookstore server (for it might take private data back with it) but it may send back a
simple message, represented by the light, dashed, unfilled arrow.

2.1.3 Example: Controlling ATM Networks

Halls and Rooney [80] describe how mobile agents within a system called the Tube [81] may
be used to control and monitor a network of ATM switches. The agent code and execution state
is transmitted between server processes in the form of continuations in the language Scheme.
Agents can query the state contained within network switches, specifically examining the tables
mapping input connection numbers (known as Virtual Channel Identifiers in ATM jargon) and
ports to output connection numbers and ports. The agents can detect inconsistencies and correct
the tables. The system proposed has two main benefits compared with a traditional centralised
approach: (i) the distribution ensures the system has no single point of failure; and (ii) the
overall amount of network traffic required is reduced.

2.1.4 Example: Location-Oriented Multimedia

In his thesis, Halls [81] describes how mobile code may be used in a “location-oriented multi-
media” system in which video and audio components follow the user as he/she moves around
the environment. Applications in the proposed system are able to monitor the physical locations
of users wearing Active Badges [168] and migrate multimedia streams and user interfaces ac-
cordingly. Possible applications include: a music playing application which always plays music
physically near the user; and a video conferencing system which is able to track a user and select
the most appropriate video camera feed as they walk around. The example of a mobile music
playing application will be revisited later, in Section 4.6.

2.2 Physical Location-Sensing
In addition to possessing logical mobility as exemplified by Mobile Agents, future systems are
likely to also be physically mobile. This section describes how and why such future devices
will be able to sense their location as they move around the environment,

There exist many devices which can be used to measure physical location information with
a variety of different accuracies, latency, levels of reliability and cost. A good taxonomy of
sensor systems has been written by Hightower and Boriello [84]. Sensors differ in the exact
physical characteristic they measure: some compute distance between objects (e.g. a measuring
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tape), some give a notion of proximity (e.g. an RFID tag), some measure 3D co-ordinates (e.g. a
Polyhemus tracker4) while others determine containment of objects (e.g. Active Badges [168]).
Some location-sensing techniques arise as a side-effect of other technologies (typically wireless
communication systems), for example IEEE 802.11 [93] as used in the RADAR [16] project and
GSM Location Based Services (LBS) [79]. Systems designed primarily for location-sensing
include the Global Positioning System (GPS) [86], Active Bats [169], Ultra Wide Band systems
like PAL650 [65] and Cricket [130].

Examples of location sensing systems are given in the following sections.

2.2.1 Example: GPS

The US Military’s Global Positioning System (GPS) uses a set of low earth orbit satellites
to transmit signals to passive ground receivers. Each receiver must have a clear line of sight
to several satellites; therefore the system only works well outdoors, away from trees and tall
buildings. The more satellites in view the more accurate the data can be. A minimum of 3
satellites is required for a 2-D position and 4 satellites for a 3-D position.

The GPS satellites transmit their positions (calculated from sophisticated orbit models com-
puted by ground stations) simultaneously, using on-board atomic clocks for accurate timing.
The signals are transmitted using a chipping code over a large frequency range making the sys-
tem very robust to jamming. Receivers correlate the incoming signals with the known chipping
sequence to recover the data and calculate the relative times of arrival of each signal. The posi-
tions of the satellites and the relative times of arrival are then used to calculate the position of
the receiver.

Standard inexpensive hand-held GPS units are accurate to 10-20m 95% of the time butdif-
ferential GPSwhich calibrates against a receiver at a well-known fixed location can be accurate
to 1m.

2.2.2 Example: Active Bat

The Active Bat system comprises a network of ceiling-mounted ultrasound receivers and small
battery-powered tags called “Bats”. Bats emit ultrasound signals over a small frequency range
when triggered over a radio channel. The ceiling-mounted receivers use time of flight measure-
ments to estimate the distance between receivers and individual Bats. Since the receivers are in
well-known positions, these distances can be used to multilaterate the absolute positions of the
bats. The bats can be located with an accuracy of 3cm 95% of the time at a maximum frequency
of 50Hz.

The diagram in Figure 2.5 shows an Active Bat emitting a narrowband ultrasound pulse
directed at ceiling-mounted receivers. In the scenario shown, the pulse is received by sensors
labelled 1,2,3,4 and 5. Each room has a temperature sensor allowing the system to accurately
calculate the speed of sound in air. Based on this calculation, the system can then calculate
the distances between the Bat and all five receivers and then use multilateration to compute the
absolute Bat position.

2.2.3 Example: Radio Received Signal Strength (RSS)

Radio communication systems such as IEEE 802.11 [93] (also known as WiFi) and Blue-
tooth [2] provide a means to monitor the strength of signals from other network nodes. The
signal strengths received from several fixed nodes can be fed into a radio propagation model to
estimate the position of the mobile receiver. For example, power received from a transmitter

4Polhemus tracker product information available fromhttp://www.polhemus.com/
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Ceiling-mounted sensors arranged in a grid

Active Bat

1 2

3 4 5

Ultrasound
Signal

Figure 2.5: Diagram showing how an ultrasound signal emitted by an Active Bat is received by
multiple ceiling-mounted receivers.
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Figure 2.6: Plot showing received signal strength (link quality) of a mobile Bluetooth receiver
relative to a fixed basestation. Picture courtesy of Alastair Tse and Kieran Mansley.

in free space using omnidirectional antennas is well known to be inversely proportional to the
square of the distance from the receiver.

Indoors the situation is more complicated. Walls, floors, doors, windows and furniture all
attenuate signal and cause reflections; the severity of these effects depend on the frequency
of the radio and the exact materials the objects are constructed from. Two objects may look
identical at visible wavelengths but may have vastly different effects on radio wavelengths.
The diagram in Figure 2.6 shows received signal strength from a class 1 Bluetooth device as
a function of position (measured with an Active Bat) in the Laboratory for Communication
Engineering in the University of Cambridge. The signal clearly drops over a range of about
10-15m but even samples quite close to the receiver vary unpredictably, probably due to the
placement of furniture and the movements of people5.

WiFi signal strength can be used to infer location outdoors as well as indoors. The PlaceLab
project6 uses a large user-created database mapping WiFi basestation identifiers to latitude and
longitudes. If a mobile receiver spots a known basestation (typically in a densely populated
urban environment) then it can infer its position is within 100m of base station.

2.2.4 In Future Many Devices Will Possess Location Information

In the US the Federal Communications Commission’s Enhanced 911 program [60] mandated
that mobile phones be locatableby the networkto within 100m 67% of the time and locatable
by the deviceto within 300m 95% of the time. The network can locate devices by multilater-
ating phone positions given the time of arrival of mobile signals while the devices can locate
themselves by incorporating GPS receivers. It has been suggested that adding GPS to a mobile
handset will cost no more than 10 dollars [164]. Economies of scale and similar pending initia-
tives by other governments (such as in the EU) strongly suggest that future mobile phones (and
perhaps all future mobile communications devices) will have some built in location-sensing
capability.

Without adding an explicit location system like GPS, any embedded device with a wireless
network interface will automatically be able to use signal strength measurements to infer at least
proximity to other wireless devices. If one of these nearby devices is a GPS-equipped mobile

5Note that organic tissue contains a large percentage of liquid water which readily absorbs 2.4GHz microwave
energy, an effect exploited by microwave ovens. This effect also means that humans attenuate WiFi and Bluetooth
signals.

6More information can be found athttp://www.placelab.org/
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phone then the embedded device will be able to infer its absolute position.
For these reasons, this thesis makes the assumption likely to hold in the near future that

location-sensing systems (whether explicit like GPS or implicit like Bluetooth RSS) are found
in most of the networked, embedded devices throughout the environment. This thesis makes
the further two related assumptions that (i) the resolution of the location sensors is sufficient to
distinguish between adjacent rooms in a building; and (ii) that user privacy concerns have been
properly addressed elsewhere (e.g. using Beresford and Stajano’s concept of amix-zone[21]
in which a trusted system deliberately mixes location sightings within defined physical areas,
obscuring the identities of the people involved).

2.3 Interfaces

An Interface is used to describe how one component (e.g. an agent) may communicate with an-
other. Earlier in Section 2.1 Mobile Agents were described as programs which could both move
and communicate, although the mechanism and style of communication was not discussed. In
this section a simple formalism for Interfaces is presented in the style of Remote Procedure
Calls (RPCs) [121] which is suitable to describe such agent communication.

A useful interface should specify what assumptions the component makes about its envi-
ronment (referred to asinput assumptions) as well as what guarantees it is prepared to make
about its output (referred to asoutput guarantees). These assumptions normally take the form
of type specifications for each interface operation. Informally, when the outputs of one inter-
face are connected to the inputs of another we require the output guarantee of the first to satisfy
the input assumptions of the second. In the case where the input assumptions and output guar-
antees only specify types, this corresponds to simple interface typechecking. However input
assumptions and output guarantees can be arbitrarily complicated e.g. they could describe the
acceptable order in which functions are called using automata [46]. They also correspond to the
use of preconditions (REQUIRES) and postconditions (ENSURES) in the SRC Extended Static
Checker (ESC) [51].

2.3.1 Formalism for Interfaces

This section describes the simple interface formalism including both a simple syntax and a set
of common interface operations.

Interface Syntax

An interfaceI is defined as a set of types (t1 . . . tk) and functions (f1 . . . fn) whose parameters
have direction (eitherin or out ), types and names. We allow the pre-defined typesint and
string , custom abstract types and the type constructorslist and× for constructing list and carte-
sian product types respectively. Valid interfaces satisfy the constraint that all types visible in
function signatures are either built-in or defined in the interface itself. Each function has a con-
junction of atomic formulae representing explicit assumptions and guarantees. Figure 2.7 shows
an example interface specification. Note that an interface specification does not say anything
about theimplementationof that interface; the implementation is considered as a black-box.

The input assumptions of the operationf1 are twofold. Firstly, the input has typeta and the
predicateP (a) holds. Similarly the output guarantees are that the output will have typetb and
the predicateQ(b) holds. Additionally we impose the constraint that all the types mentioned in
the functionsf1 . . . fn must be declared in the interface.

27



2.3. Interfaces Chapter 2. Technical Background

interface I {
type t1 = . . .
. . .
type tk = . . .
f1(in ta a, out tb b) assume { P (a) }

guarantee { Q(b) }
. . .
fn(in tc c, out td d) assume {. . . }

guarantee {. . . }
}

Figure 2.7: Example Interface consisting of typest1 . . . tk and functionsf1 . . . fn.

Operation: Hiding

Individual interface types and operations may be hidden so that they are no longer accessible
by callers. For example consider the following interfaceI ′:
interface I ′ inherits I {

hide f1

}
InterfaceI ′ inherits all the types and functions from interfaceI with the exception of the

operationf1 which becomes hidden. Note that this does not mean the implementation off1

cannot be called; only that interfaceI ′ no longer mentions it. If a client can access interfaceI
directly thenf1 will be available. Types can also be hidden provided the constraint – that all
types mentioned in operation signatures are visible – is not violated. Therefore in order to hide
a type used by a function it is first necessary to hide that function.

Operation: Extending

In the following example, interfaceI ′ inherits all the types and functions of interfaceI and adds
a typet and a functiong. It is assumed thatt andg do not already exist inI.
interface I ′ inherits I {

type t = . . .
g(in t arg) assume {. . . } guarantee {. . . }

}

Operation: Replacing

Operations and types can be replaced using the same syntax used to add operations and types
in Section 2.3.1. For example:
interface I ′ inherits I {

type t = . . .
f1(in t arg) assume {. . . } guarantee {. . . }

}
In this exampleI ′ inherits from interfaceI adding a new typet and redefining operationf1,

changing its type, assumptions and guarantees. Note that this operation is only valid if no other
function is visible which still references the old typet – when a type is replaced all functions
which reference it must also be replaced.
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Figure 2.8: Diagram showing four configurations. The first involves a client invoking an inter-
faceI on a server. The second case interposes an interface proxy between the client and server,
leaving the interface unchanged. The third case uses a firewall rather than a proxy causing the
client to see an interfaceI ′ rather thanI. The fourth case involves an interface firewall used to
convert the interfaceI ′ exposed by anupgradedserver into the original interfaceI expected by
an unmodified client.

2.3.2 Interface Proxies and Firewalls

The termproxy is used here to be an entity which intercepts requests for another entity and if
necessary7 forwards the request back to the original entity. Crucially, a proxy exposes exactly
the same interface as the original entity. The termfirewall, on the other hand, refers to a more
generic processing entity which is capable of changing the interface of an application.

The diagram in Figure 2.8 shows four cases which are referenced later in the thesis. The
first shows a client interacting with a server exposing interfaceI. The second case shows an
intermediate proxy between the client and the server. All requests and responses are processed
by this entity but crucially from the point of view of the client, the interface is not changed:
the client still interacts with the server through interfaceI. In the third case the client interacts
through a firewall, which changes the interface exposed by the application fromI to I ′; a
configuration which might represent an upgraded client interacting with a legacy server. In the
fourth case the client still uses interfaceI but the server now exposes interfaceI ′; a configuration
which might represent an upgraded server interacting with a legacy client.

2.4 The World Wide Web
This thesis describes application-level policy languages which address both the mobility and
interface behaviour of ubiquitous computing systems. The description of mobile agents in Sec-
tion 2.1 and location sensing systems in Section 2.2 provide all the necessary background for
understanding the Unified Spatial Model in Chapter 3 and the Mobility Restriction Policy Lan-
guage in Chapter 4. The interface behaviour policy systems SPDL-2 and SWIL described in
Chapters 5 and 6 are based upon the web protocol suite, described in this section. The use of a
concrete set of protocols simplifies the presentation while the specific use of the web protocols

7A caching proxymay be able to respond to the request itself with cached data and avoid contacting the original
server.
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permits the use of more compelling commercial examples. However the techniques presented
in this thesis are not limited to apply to only the web-protocols; rather they apply to any similar
distributed system.

This section describes the web protocols in fine detail and describes anapproximationof
the interface exposed by a web-based application in terms of the formalism described earlier in
Section 2.3. The approximation is only needed to simplify the work presented in later chapters
and does not reduce the power of the policy systems described. Examples in later chapters will
assume knowledge of protocols and the interface details described here.

At a minimum all distributed systems must provide three things: (i) a protocol for transmit-
ting data between entities; (ii) a method for naming entities and resources; and (iii) a standard
data format. The WWW uses the HyperText Transfer Protocol (HTTP) to transfer typed data
objects; Uniform Resource Identifiers (URIs or URLs or URNs) to name objects; and the Hy-
perText Markup Language (HTML) to describe the the structure and content of hypertext doc-
uments. Note that HTTP and URIs may be used to transfer data other than hypertext (such as
sound or video files) but the following presentation will focus exclusively on HTML — this is
because HTML documents contain URIs pointing to further data objects while other files (such
as sound, graphics or videos) are simply ‘leaf’ nodes, containing no further links. Each of these
components is described in the following sections.

2.4.1 HTTP

According to RFC 2616 [64], HTTP is an “application-level protocol for a distributed, collabo-
rative, hypermedia information system”. HTTP is designed to run over a reliable transport pro-
tocol, typically the internet Transmission Control Protocol (TCP/IP). Messages are designed to
be self-describing; properties of the payload data are listed in messageheadersincluding cacha-
bility hints and content type indication. HTTP is a very flexible protocol which can be used to
interface with legacy systems such as File Transfer Protocol (FTP) servers and Network News
Transport Protocol (NNTP) servers, providing users with a common and consistent interface
across disparate systems.

As described earlier in Section 1.6 many current firewalls are configured to let HTTP
through and to block other traffic – a situation that has encouraged application writers delib-
erately to encapsulate their protocols within HTTP. IP itself can even be tunnelled over HTTP
creating the possibility of making Virtual Private Networks (VPNs) spanning multiple organi-
sations ignoring firewalls (and associated firewall policy).

Protocol Roles

HTTP defines a number of roles, including client, server and proxy. An HTTP client is any
entity which can create a request and send it somewhere. Correspondingly, an HTTP server
is any entity which can receive a request and reply with a response. Clients and servers need
not be distinct entities. For example, HTTP proxies are both clients and servers; they receive
requests from clients by acting as a server and then forward the requests by acting as a client.
Like the interface proxies described in Section 2.3.2, HTTP proxies may not change the inter-
face exposed by an application, performing only simple caching functions. Entities which can
perform interface transformations are also known as firewalls.

2.4.2 Naming Resources

Uniform Resource Identifiers (URIs) are the primary means by which objects on the web are
named. The general structure of a URI is as follows:
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scheme : scheme-specific-part

The first part,scheme , names a family of URIs. Example schemes includehttp , ftp and
mailto . Thescheme-specific-part is defined by the specification of the scheme. A
common set of URI schemes share a hierarchical syntax for the scheme-specific part:

// authority path ? query

Theauthority usually refers to a host by DNS name, thepath is an optional ’/’-separated
sequence of names analogous to a filesystem path and thequery is some optional, arbitrary
data relative to the named path. Examples of URIs include

mailto:dave@recoil.org
ftp://www.cl.cam.ac.uk/pub/
http://www-lce.eng.cam.ac.uk/

The optionalquery part of an HTTP URI contains ‘&’-separatedkey=value pairs
known asquery parameters. The URIhttp://www.example.com/foo?a=b&c=d has
two such parameters:a=b andc=d . Query parameters are used to pass information toWeb
Applications, described later in Section 2.4.4. For the rest of this thesis the term URI shall refer
to the scheme, authority and path of HTTP URIs (e.g. the parthttp://www.example.
com/foo ) without the parameters, which will be considered separately.

Many RFCs and technical documents refer to URLs and URNs as well as URIs. Uni-
form Resource Locators (URLs) are technically a subset of URIs, specifically those which
identify an object by the combination of its primary access mechanism and address (e.g.
ftp://www.cl.cam.ac.uk/pub ). Uniform Resource Names (URNs) are another sub-
set of URIs, specifically those which identify a document by apure namei.e. a name which
has no visible location information8 (e.g. a telephone number without the area code is a pure
name9).

Although classifying URIs into URLs and URNs seems appealing, many URIs found on the
Internet are neither strictly one nor the other. For example the URI corresponding to an entry
in a telephone directory might behttp://directory.org/phone/07771234567 , an
identifier which contains some location information (i.e. access hostdirectory.org via
HTTP) as well as a part which is more like a URN (i.e.07771234567 ). This confusion has
persisted, with the terms URI, URL and URN often used interchangeably. The general term
URI shall be used exclusively in this thesis to refer to all names: pure or impure.

Protocol Messages

HTTP messages come in two flavours: requests and responses, depicted graphically in Fig-
ure 2.9. Both request and response messages consist of a series of CR-LF terminated string
lines (the header) followed by a blank line and then an arbitrary payload. The first header line
is mandatory and indicates the message type (e.g. whether it is a request or response) while the
remaining header lines contain a series of key-value pairs. According to the HTTP RFC [22],
some headers are mandatory, some are encouraged while others are entirely optional. An im-
plementation will typically ignore unknown headers. The exact encoding used by the payload

8To quote Needham and Mullender [120]: “a pure name just identifies. An impure name guides.”
9Note that earlier implementations of the telephone system may have encoded some location information in

telephone numbers to aid call routing; now that it is possible for numbers to be ported between network operators
the names are pure.
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(blank line)

Payload

Mandatory request lineGET /foobar HTTP/1.1

Method URI path
and query

Protocol
Version

...
Host: 127.0.0.1:8000
Cookie: sessionid=1
...
...

...

...

...

...

...

Headers

(blank line)

HTTP/1.1 200 OK

...

...
Set-Cookie: sessionid=1
...
...

<!DOCTYPE HTML PUBLIC ...>
<html>
...
...
</html>

Protocol
Version

Status
Code

Human-readable
Message

Mandatory response line

Headers

Payload (HTML document)

HTTP Request Message

HTTP Response Message

Figure 2.9: HTTP message formats. Both request and responses consist of a number of CR-LF
terminated string lines followed by blank line then a payload.
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is specified in the header (using theContent-Encoding key) and may be anything from
straight ASCII text to the output of a compression program likegzip .

The mandatory first header line of both requests and responses have one feature in common:
they both contain the generating protocol version, albeit at different places in the first line. This
protocol version is intended to allow interoperability with future protocol versions. The general
features of requests and responses shall now be described in more detail.

The mandatory first line of a request consists of amethod(roughly speaking a type of
action to perform) and the path and query from a URI (URIs were described previously in
Section 2.4.2). The rest of the URI – the authority – is not in the first line but in theHost:
header. Applications are free to either invent their own custom method types or to use one of a
pre-defined set which includes the following:

GET : indicates the request is a simple data retrieval operation which should not have side-
effects on the server.

POST : invokes an action on the server (identified by the URI) with arguments supplied in the
payload.

By convention when a user presses the submit button on a form rendered by a web-browser, the
completed form values are uploaded to the server by the browser as either query parameters of a
GET message or as part of the payload of a POST message. For simplicity this thesis considers
the former – form parameters are uploaded as the URI query parameters – and hence the request
payload can be ignored.

The mandatory first line of a response message consists of the protocol version together
with a status code and a human-readable message. The human-readable message is intended to
help the user understand the message and is conventionally ignored by non human-controlled
web clients. There are predefined status codes for a number of common scenarios including:
(i) request was completed successfully; (ii) the URI was not found on the server; and (iii) the
object identified by the URI has moved to another place. As explained earlier, we assume here
that all response payloads contain only HTML data.

One type of header is especially important and appears in both requests and responses.
Originally invented by Netscape Communications Corporation, acookie is a key-value pair
sent to a client by a server in aSet-Cookie: response header. By convention a cookie-
compatible client will return this data to the server in future request headers. Cookies may
be used for any purpose but common uses include storing user preference information and to
associate together requests from the same client, providing the illusion of session state over the
HTTP protocol.

Example Request and Response Messages

This section describes examples of HTTP messages in the context of a simple series of interac-
tions between a client and a server. First, imagine the client invokes aGET request targeting
URI http://127.0.0.1:8000/first on the server. The headers of the HTTP request
message generated are displayed in Figure 2.10. The mandatory first header line indicates
that the message is aGET request using protocol version 1.1. By concatenating theHost:
header and rest of the mandatory first header line we can see the message is targeted at the URI
http://127.0.0.1:8000/first . TheConnection:keep-alive header is a hint
sent from the client that the underlying TCP connection stay open after the current transaction
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GET /first HTTP/1.1

Host: 127.0.0.1:8000

Connection: keep-alive

User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en-us)

Accept: */*

Accept-Language: en-us, ja;q=0.62, de-de;q=0.93, de;q=0.90

Figure 2.10: The headers of the first HTTP request message.

HTTP/1.1 200 OK

Date: Tue, 28 Oct 2003 11:57:57 GMT

Server: Apache/2.0.40 (Red Hat Linux)

Set-Cookie: sessionid=1

X-Powered-By: PHP/4.2.2

Transfer-Encoding: chunked

Content-Type: text/html; charset=ISO-8859-1

<html>

<body>

<a href="http://127.0.0.1:8000/second">

click here

</a>

</body>

</html>

Figure 2.11: The headers of an HTTP response message.

completes for efficiency reasons10. TheUser-Agent: line indicates the request was gener-
ated by an Apple Macintosh computer running the browser called “Safari” while theAccept:
andAccept-Language: headers describe which content types and languages are preferred
in the response.

Continuing the example, Figure 2.11 shows the the response sent back by the server. The
mandatory first line indicates the server is replying using protocol version 1.1 and the status
code is 200 with human-readable message “OK”. The rest of the headers indicate the server
type, type of content and content encoding type. TheSet-Cookie: header contains the key-
value pairsessionid=1 which the server expects the client to return in subsequent requests.
The payload of the response contains an HTML document (HTML is described in more detail
below in Section 2.4.3) which contains a single link with URIhttp://127.0.0.1:8000/
second .

Assuming the payload HTML is rendered by a web-browser and the user clicks the link,
the web-browser will produce a second HTTP request like that shown in Figure 2.12. The
second request differs from the first request in two respects: (i) the URI query has changed from
/first to /second ; and (ii) the second request has theCookie: header which returns the
datasessionid=1 to the server. The server will be able to use this cookie to customise the

10The TCP protocol uses aslow startalgorithm and it is therefore often faster to reuse the same connection once
it has increased its send window size rather than constantly opening and closing new connections.
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GET /second HTTP/1.1

Host: 127.0.0.1:8000

Connection: keep-alive

Cookie: sessionid=1

User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en-us)

Accept: */*

Accept-Language: en-us, ja;q=0.62, de-de;q=0.93, de;q=0.90

Figure 2.12: The headers of the second example HTTP request message.

next response to the user.

2.4.3 HyperText Markup Language

The HyperText Markup Language (HTML) is a language for creating structured hypertext doc-
uments defined by the W3C [175]. HTML documents are primarily intended to be viewed by
humans using graphical web-browser programs. HTML documents contain content, formatting
information11 and references to other documents. The language HTML is specified using the
Standard Generalised Markup Language12.

An example HTML document may be seen in Figure 2.13. The document is a tree ofele-
mentsof the form<name> ... </name> . The text<name> is known as anopening tag
and</name> is known as aclosing tag. Elements with no contents can be written in the short
form <name/> . Some elements haveattributeswhich are key-value pairs written as<name
key1=val1 key2=val2> where the elementname has two such pairs: (key1 ,val1 ) and
(key2 , val2 ). The example also contains ahyperlink– a reference to another document –
written using the syntax<a href="URI">label</a> wherelabel is human-readable
text to be displayed by the web-browser program andURI is the URI to be followed when the
user selects the hyperlink.

Users with graphical web-browsers can interact with servers through HTML forms as well
as hyperlinks. HTML forms allow the user to fill data into text fields, select items from drop
down lists and toggle checkboxes. Special submit buttons allow the form data to be uploaded to
the server using a POST request. In the example of Figure 2.13 there is a single form element.
The element has two attributes:target andonSubmit . The URI to which the data will be
sent is given by thetarget attribute and theonSubmit attribute allows the HTML author
to include some client-side Javascript code which is executed once the user presses the submit
button but before the data is uploaded to the server. Javascript code is commonly used to
prevalidate the contents of a form before incurring the latency of a full network round-trip to
the server. If a form fails the Javascript validation check then the error will be reported to the
user through a pop-up dialog and the HTTP request will be aborted.

Relation to XML

At first glance XML and HTML look very similar. In fact they are different both in terms of
syntax and in terms of purpose. XML has much simpler syntax than HTML and is therefore
much easier to parse. Every XML document must have properly nested elements and no tags
may ever be left out. In contrast, HTML is more flexible and in some circumstances tags may

11Presentation information can also be abstracted usingstyle sheets, not discussed further here.
12More information relating HTML and SGML can be found athttp://www.w3.org/TR/REC-html40/

intro/sgmltut.html
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<html>

<head>

<title> This is an example page </title>

</head>

<body>

<h1> This is a title </h1>

This is some ordinary text.

<a href="http://www.example.com/">hyperlink</a>

<form target="http://www.example.com/"

onSubmit="...">

<input type="text" name="foo" value="bar"/>

<input type="submit"/>

</form>

</body>

</html>

Figure 2.13: An example HTML document

be left out, their presence being inferred automatically by the parser. Due to the legacy of the
WWW and the many web-pages containing invalid HTML, many web-browsers accept invalid
HTML without complaints, parsing them using heuristics. XML parsers, by contrast, are much
stricter.

HTML and XML are meant for different purposes. HTML is designed specifically for
encoding hypertext documents whereas XML is a generic mechanism for encoding data for any
purpose. Each XML document is associated with a Document Type Definition (DTD) which
describes the set of acceptable element names, how the elements may nest and the attributes
each element should have. An XML parser which checks the XML document is valid with
respect to the DTD is known as avalidating parser.

2.4.4 Web-Applications

This thesis uses the following simple definition:

A Web-Application is any application which uses URIs to name remote procedures
and HTTP to transmit requests and responses.

Both web-application clients and servers can take many forms. A client can be anything
from a graphical user program to a command-line URI fetching tool. A server can be anything
from a web-server running a set of scripts to a graphical program presenting a remote con-
trol interface over HTTP. Some servers associate URIs with static HTML pages while others
dynamically generate responses at runtime. Some types of client will parse HTML received
in responses from the server. Aweb-spideris a type of client which will attempt to traverse
all links from a starting page either in search of a particular object or to build up a database
of reachable pages. Aweb-browseris another type of client which will parse and render the
HTML responses on the user’s screen. The web-browser invites the user to fill in forms and
click on links to generate further HTTP requests.

2.4.5 Web-Applications: Handling Application State

HTTP is a stateless protocol. Many applications are inherently stateful and need to create the
illusion of a coherent session between the application and the user. The only way to do this is
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to send session information to the client either as a cookies or as part of an HTML form. This
client-side state is then returned to the server (as either a cookie or URI parameter) when the
next URI is invoked. Such client-side state can take three different forms:

1. an opaque identifier referencing server-side state;

2. data cryptographically protected against modification; or

3. plaintext data.

Each of these options has advantages and disadvantages. The first — an opaque identifier
— has a security advantage: the client has no way of directly accessing the data pointed to
by the identifier since it exists only on the back-end server. However it also has two major
disadvantages. Firstly the machine storing the server-side state becomes a bottleneck; every
request involves consulting (and possibly updating) this shared state. This becomes especially
critical if the site is busy and the state is replicated and must be kept in sync across several
servers. Secondly the server must take responsibility for deleting the state at the right time – a
tricky operation since a user mightbookmarka session and attempt to return later, only to find
the session state has been deleted.

The second option listed involves sending application state to the client cryptographically
protected to guarantee itsintegrity (integrity is explained in detail later in Section 2.5.2). This
option has the advantage that it involves storing no state on the server (which otherwise might
limit how many clients the server can support), except any secret keys necessary to verify the
integrity of the data. The main disadvantage of this method is the state might be large and
therefore take significant time to protect and transmit.

Finally, the third option – keeping the data on the client side in plaintext – has the advantage
of simplicity. Indeed many kinds of session state can be stored safely on the client in this way
e.g. user preference data. However, this method is totally unsuitable for any data which, if
modified, could disrupt the workings of the application. More will be said about this problem
later in Chapter 5.

2.4.6 Interfaces of Web Applications

This section shows how an approximation of the interface of a Web Application may be de-
scribed using the formalism from Section 2.3. Section 2.4.4 defined a web-application to be
any application which uses URIs to name remote procedures and HTTP to transmit requests
and responses. HTTP requests and responses were described in detail in Section 2.4.2.

First consider an HTTP request. The request consists of four parts: (i) a method (i.e. GET,
PUT, POST or an application-defined custom method name); (ii) a URI; (iii) the rest of the
headers; and (iv) the payload. Application data can therefore be sent to the server as (i) names
of custom methods; (ii) URI query parameters; (iii) headers; or (iv) within the payloads. In-
dividual web-applications can use any arbitrary combination of these. Rather than include all
of these separately in our interface description we instead assume that, for simplicity, all ap-
plication data is contained solely within the URI query parameters and one particular header –
the Cookie: header (described earlier in Section 2.4.2 this header contains an arbitrary key
value pair which the server wishes the client to add to its future requests). This assumption
does not reduce the power of the policy systems described in later chapters; they could easily
be expanded to consider all these extra possibilities, treating them exactly the same way they do
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query parameters and cookies. Cookies shall be represented as key-value pairs using the type

type cookies = (string × string) list

We assume that user supplied data is encoded as part of the URIquery parameters. In the
URI http://www.example.com/foo?a=b&c=d the part after the? is the query string
containing the two parametersa=b andc=d . Query parameters are key-value pairs which may
be represented by the type:

type parameters = (string × string) list

The remainder of the URI (the non-query part) shall be considered as a simple type:

type uri = string

Therefore an HTTP request has the type

type request = uri × parameters × cookies

An HTTP response message may be broken down into three parts: (i) a status code; (ii) the
rest of the headers; and (iii) a payload. We shall ignore the status code (implicitly assuming
it to be 200 – success) and all the headers except theSet-Cookie: header. For the sake
of simplicity we consider the payload to contain an HTML document which contains a single
HTML form13. A form consists of a URI and a set of named controls, the contents of which are
uploaded to the server when the form is submitted. The form may be represented by the type:

type form = uri × parameters

Therefore the response may be represented by the type:

type response = uri × parameters × cookies

Note that, under our assumptions, aresponse is of the same type as arequest .
Figure 2.14 shows the interfaceI exposed by a web-application with URIs={U1 . . .Un},

each URI is represented by a function which expects a request and generates a response but oth-
erwise makes no assumptions or guarantees. The name of each URI in interfaces shall be com-
monly abbreviated using thepathof the URI. For example a URIhttp://www.example.
com/view would be represented using a function with nameview .

2.5 Security Principles
Chapter 1 provided statistics from CERT showing a large year on year increase in reported
security incidents and vulnerabilities. Arguments were presented that traditional approaches to
security – specifically network firewalls – are insufficient to deal with new threats arising due
to the increased logical and physical mobility of communicating entities. To better understand
these threats and the solutions proposed in later chapters this section provides some background
on the field of computer security.

First of all we attempt to define the word “security” itself. One definition of security taken
from the Oxford English Dictionary is as follows:

13A link may be considered a primitive type of form consisting of only a single submit button.
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interface I {
type cookies = string
type uri = string
type parameters = (string × string)list

type request = uri × parameters × cookies

type response = uri × parameters × cookies

U1(in request req, out response res) assume { }
guarantee { }

. . .
Un(in request req, out response res) assume { }

guarantee { }
}

Figure 2.14: Interface of a web-application with URIs={U1 . . .Un} using the formalism of
Section 2.3.

the condition of being protected from or not exposed to danger; safety.

How might someone or something be exposed to danger? Exposure to danger could arise in
one of two ways: (i) through a direct action; or (ii) through inaction. In the first case, the entity
whose action creates a dangerous situation is commonly known as anattacker. In the second
case there is no explicit attacker; the danger arises through lack of an preventative action. To un-
derstand how inaction might be dangerous, consider a nuclear power plant safety system which
reduces the reaction rate by lowering reaction-inhibiting control rods. If the system is prevented
from responding during an emergency then a reactor meltdown may become inevitable.

The definition of security above suggested that security is synonymous with safety. It is
worth noting that in computer science the term “safety” is used in other contexts. A program is
said to be “type-safe” or “memory-safe” if it does not violate any typing rules or perform illegal
(i.e. out of bounds) memory accesses. Systems which are “type-safe” or “memory-safe” are
free from certain classes of run-time error. A program which is not type-safe or memory-safe
may well exhibit unintended behaviour which could lead to security problems. For example
a program which is not memory-safe might be vulnerable to abuffer overflowattack in which
parts of the program’s code and data are overwritten with data supplied by an attacker effectively
subverting the process.

A more specific definition ofcomputer securitycomes from Bruce Schneier in the forward
to Ross Anderson’s book on Security Engineering [13]. The definition concentrates on the
properties of an attacker, the entity whose action leads to a dangerous situation:

Security involves making sure things work, not in the presence of random faults,
but in the face of an intelligent and malicious adversary trying to ensure that things
fail in the worst possible way at the worst possible time . . . again and again.

This idea – of constantly fighting against an intelligent and malicious adversary – is famously
described as “Programming Satan’s Computer” by Needham and Anderson [14].
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Core to computer security are the concepts ofconfidentiality, integrityandavailability (CIA)
which refer to keeping data secret, ensuring data remains intact and ensuring systems are re-
sponsive. These concepts are described in the following sections: confidentiality is described
in Section 2.5.1, integrity in Section 2.5.2 and availability in Section 2.5.3. We are usually
concerned with the security of complete systems rather than separate components. In particular
this thesis is focused on security of mobile communicating systems and so a brief introduc-
tion to distributed systems security is given in Section 2.5.4. Engineering secure systems is
difficult. Several reasons are suggested for this including (i) lack of composability (described
in Section 2.5.6); and (ii) the security of a system only being as strong as that of the least
secure subcomponent (described in Section 2.5.5). This section finishes with a discussion of
Application-Level Security in Section 2.5.7 and a brief note on the relation between security,
control and policy in Section 2.5.8.

2.5.1 Confidentiality

Confidentiality involves limiting the disclosure of data by ensuring that it only becomes known
to authorised users. A common method to ensure confidentiality is toencryptdata known as the
plaintextwith a secretkeyknown only to the authorised users to produce encrypted text known
as theciphertext. A good encryption scheme will make it difficult or impossible to recover the
original data from the encrypted data without knowledge of the key.

The split between the encryption algorithm and the key is somewhat arbitrary. In his article
on military cryptography [104] Kerckhoff put forward a number of security principles. The
most famous principle (summarised by Claude Shannon as “the enemy knows the system”) is
that one should assume the enemy already knows the workings of the security system (i.e. the
algorithm) and therefore overall security should only depend on the secrecy of thekey. The
usual assumption is that the key is some entirely arbitrary, application instance-specific, secret
piece of data whereas the rest of the system is fixed and well-known.

A very simple example of an encryption algorithm is theVernamcipher also known as the
one-time pad. The algorithm requires that the length of the key in bits is the same as the length
of the plaintext data. The ciphertext output of the algorithm is given by the bitwise exclusive OR
of the plaintext and the secret key. The decryption process is also trivial; the bitwise exclusive
OR of the ciphertext and the key yields back the plaintext. This cipher is is noteworthy in that it
is one of a small class of ciphers14for which it has been proved mathematically that the plaintext
can only be determined from the ciphertext through knowledge of the key.

Encryption by itself is not always enough to guarantee confidentiality. It is possible to
imagine a system in which simply the presence of an encrypted message implicitly conveys
information about the value of confidential data. In this situation an attacker may never need to
discover the key or break the encryption algorithm in order to attack the system.

2.5.2 Integrity

Integrity refers both to data having sensible values (e.g. a sensible date value would consist of a
valid combination of day, month and year fields) and the data not being corrupted. The definition
of the set of sensible data values entirely depends on the application concerned. Data corruption
can occur either naturally (e.g. as an error on a communication channel) or maliciously (e.g.
through the deliberate action of an attacker). Data can be protected from accidental corruption
by appending an error-detection code which has the property that errors in the source data are

14The ciphers vary in the function used to combine the data with the key. In addition to exclusive OR, the
groupwise addition and subtraction ofn bits modulo2n also works.
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very likely to require a change in the matching detection code. Data received with a non-
matching detection code are considered to have been corrupted. So-called hash functions (one-
way functions) are often used for this. A commonly-used hash function is MD5 [136].

Malicious data corruption is more difficult to counter. A simple hash like MD5 is insuffi-
cient because hash functions are assumed to be public knowledge (see Kerckhoff’s Principle in
Section 2.5.1) and easy to compute. An attacker would still be able to corrupt the data provided
they also recomputed the corresponding hash. An alternative is to encrypt the hash value with a
secret key to form aMessage Authentication Code(MAC). Only authorised parties possess the
key and can generate and verify matching MACs. It is possible to use a hash function to build
a MAC using an algorithm such as HMAC [20].

2.5.3 Availability

Availability refers to ensuring a system can respond to requests in a timely manner (recall the
example of the nuclear plant safety system described earlier). Note that having a system which
fails to respond may be even worse than having no system at all if the users have grown to rely
upon it. There are many reasons why a system may fail to respond. An accident or natural
disaster might disable a system by compromising its power supply. Alternatively, a malicious
user might launch aDenial of Service(DoS) attack, flooding a system with bogus requests and
causing it to become overloaded.

2.5.4 Distributed Systems from a Security Perspective

At the beginning of this chapter a diagram was drawn in Figure 2.2 depicting communicating
mobile agents. The system was drawn in layers, with agents at the highest layer and the phys-
ical hardware at the lowest layer. This section revisits this idea with a simple example of a
distributed system which is then used as a reference for subsequent security-related discussion.
A distributed system by definition consists of multiple components connected by a network.
The network providing the interconnect should properly also be considered a component with
properties determined by the network type; for example a trusted local area network has vastly
different performance and security characteristics to the untrusted global Internet. Each com-
ponent is structured in a number of layers from most abstract at the top to least abstract at the
bottom.

Figure 2.15 shows a simple distributed system containing 5 components: 2 endpoints, 1
network element and 2 encryption modules (labelled “E”). In this example the endpoints have
3 layers labelledapplication , network andphysical representing roughly the appli-
cation code, the OS network code and the physical network interface respectively. These layers
correspond to the ISO OSI layers (first introduced back in Section 1.3) of the same names, the
rest left out for simplicity. The network element has everything except the application code.
The solid arrows represent actual communication; vertically through each stack and horizon-
tally across the network. The dashed arrows indicate how layers conceptually communicate
with peer layers in other components, even though their messages are physically routed via
lower level layers. In this example the encryption modules are intended to protect the confiden-
tiality of the network communications. Both of the encryption modules are configured with the
same secret key:K1.

2.5.5 As Strong as the Weakest Link

The security of a system is only ever as strong as its weakest link. This follows from the as-
sumption that a sensible attacker will choose to attack the system where it is weakest i.e. where
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Figure 2.15: Diagram depicting a distributed system with 3 components: 2 endpoints and 1
network element. Each component consists of a number of software layers. Solid arrows in-
dicate actual communication between components. Dashed arrows indicate how layers within
components conceptually communicate with peer layers in other components.

the attack has the greatest chance of success. A corollary of this is that a system designer must
work to defendall parts of a system, making them equally hard to attack. An interesting exam-
ple of this principle in action is the case of the famous physicist Richard Feynman who noticed
a number of secret document safes containing top-secret nuclear information while working at
the Los Alamos research facility. In his book [63] Feynman describes how these safes, although
they lookedvery solid and secure were vulnerable to simple lock-picking attacks. A thief re-
quired only a small piece of metal to open the lock rather than the sophisticated cutting gear
required to break through the walls.

Consider the distributed system design from Figure 2.15. An attacker might try to break the
encryption algorithm being used by the encryption modules to gain access to the information
being transmitted across the network. However, if the cipher is strong and the key handled safely
then this attack is likely to be very difficult. Imagine the distributed system is a web-application
running over HTTPS (i.e. HTTP over SSL). SSL uses strong ciphers and handles session keys
securely: keys are transmitted protected by public key cryptography, where the public key of
the server is itself signed by a trusted third party. It is difficult to attack SSL directly. Instead, an
attacker may be able to find and exploit a vulnerability in the web-application software (many
examples of such vulnerabilities are given later in Chapters 5 and 6). Attacking the system at the
application layer completely avoids the need to break the cipher or guess the SSL session key.
More discussion of application-layer security vulnerabilities is presented later in Section 2.5.7.

2.5.6 Composability

Security is not composable. Consider the distributed system displayed in Figure 2.15. Imagine a
decision is taken to increase the security of the network-level encryption and so an extra pair of
crypto modules are purchased and installed in series with the existing modules. A fragment of
the resulting system is displayed in Figure 2.16. Furthermore, imagine the encryption modules
use the “one-time pad” cipher first mentioned in Section 2.5.1 in which the plaintext is bitwise
exclusive-ORed with a secret key. Recall that the “one-time pad” cipher is provably completely
secure in the sense that the plaintext cannot be recovered from the ciphertext without knowledge
of the key. Now imagine that, in a configuration error, the keys used by both encryption blocks
are the same i.e.K1 = K2. The net effect of both encryption blocks is to exclusive-OR the
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Figure 2.16: Diagram depicting part of the system from Figure 2.15 where an extra network-
layer encryption module has been added in series with the existing module.

plaintext twice which results in the secret data being output in the clear. Thus, albeit in a rather
contrived example we have managed to take two perfectly secure systems and compose them in
such a way as to form a perfectly insecure system.

2.5.7 Application-Level Security

Earlier in Section 2.5.5 it was argued that the security of a system is only ever as strong as that
of the weakest link. An example was described in which the messages sent on the network were
encrypted but the application running on top (a web-application) had anapplication-levelvul-
nerability. Rather than defeat the cryptography, an attacker only had to exploit the application-
level vulnerability.

Exact definitions of application-level security vulnerabilities vary. SPI Dynamics re-
port [132] define application-level security vulnerabilities as those weaknesses created when
the constituent components of an application are combined together. In Chapter 1 arguments
were presented that future systems are likely to be constructed out of communicating mobile
agents. Therefore for the rest of this thesis the following definition will be used:

An application-level vulnerability is a weaknesses in a system caused by unin-
tended component movement or interface communication.

In their report, “Application-Level Firewalls Required”, Gartner [127] describe how current
security measures are targeted at the network-level. They operate by blocking network packets
destined for vulnerable services. Gartner predict that in the future systems will be attacked
primarily at the application-level; i.e. rather than attack the system hosting the service (where
the system is protected by a network-firewall and security is the strongest) crackers will instead
attack the service itself.

There is much empirical evidence that current systems are vulnerable to application-level
attack. According to a ZD-NET survey [113] 30-40 percent of all e-commerce sites and accord-
ing to Internet Security Systems (ISS) [95] 11 widely-deployed shopping carts are vulnerable to
simple application-level attacks. The fact that so many vulnerabilities are being found in appli-
cations should not really be surprising. There are many more different applications in existence
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than there are operating systems or network stacks. Most web-applications are bespoke pieces
of software which deployed on commodity operating systems. Operating systems tend to be
heavily studied for security vulnerabilities; for example the OpenBSD Project [6] continually
performs security audits of its core operating system code. For the remainder of software which
is not so carefully scrutinised, this thesis advocates the use of application-level policy languages
to protect against many common kinds of vulnerability.

2.5.8 Security, Control and Policy

Control is an important aspect of security. Control can be considered as the ability to respond
to a threat or potentially unsafe situation. To control a system is to be able to exercise power
or authority over the system, to check that everything is working properly and to orchestrate
corrective action or impose a suitable restraint if necessary. Should a system develop a fault
(through either accident or malicious attack) an ability to control the system (e.g. to shut it
down cleanly) may permit a reduction in the amount of harm caused.

2.6 Model Checking using PROMELA and SPIN

Model checking [42] is a technique for the automated verification ofreactive systemswhere a
reactive system is one which consists of components communicating with each other and their
environment, like the layered systems described earlier in Section 2.5.4. In order to model
check a system one must first represent it by a suitable model. The models described here
are all finite, however there exist infinite-state model checking algorithms which explore the
state space lazily. The model must be detailed enough to exhibit the interesting behaviour faith-
fully while remaining as small as possible. Desirable properties are represented as temporal
logic15 formulae and therefore model checking corresponds to checking the truth of the formu-
lae with respect to the model. Model checker programs operate by exhaustively searching the
state-space of a model and may never terminate in a reasonable time if the model is too complex
and the state-space is too large.

The finite models used in model checking are based on Kripke structures defined as the
four-tuple:

M = (S, S0, R, L)

whereS is a finite set of states,S0 ⊆ S is a finite set of initial states,R ⊆ S × S is a
transition relation between states such that∀s ∈ S.∃s′ ∈ S.R(s, s′) andL : S → 2AP is
a function mapping every state to a set ofAtomic Propositions(APs) which are true in those
states. For a formulaf written in temporal logic, model checking corresponds to verifying that
M |= f . Common choices for temporal logics include Computation Tree Logic (CTL) and
Linear Temporal Logic (LTL).

2.6.1 PROMELA

PROMELA [89] (PROcess MEta LAnguage) is the language used by the SPIN (Simple Promela
INterpreter) model checker to specify models. In addition to checking LTL properties, SPIN can
also verify that PROMELA models are free of deadlocks, race conditions, assertion violations
and that liveness properties hold (i.e. “good” states happen eventually). The rest of this section
describes the main features of PROMELA needed for the rest of this thesis.

15Temporal logics are modal logics where each distinct universe corresponds to a system state at a particular
point in time.

44



Chapter 2. Technical Background 2.6. Model Checking using PROMELA and SPIN

Type Size in bits Signed or unsigned
bit 1 unsigned
bool 1 unsigned
byte 8 unsigned
short 16 signed
int 32 signed

Figure 2.17: Table describing basic PROMELA data types.

A PROMELA program consists of a finite number of processes, interconnected by channels.
Processes consist of blocks of individual atomic statements; the statements from two processes
running concurrently are interleaved arbitrarily. Multiple statements can be grouped together
into larger blocks using the keywordatomic ; such blocks are guaranteed, if executed, to be
executed atomically and not interleaved with other statements.

Variable declarations

Variable declarations are scoped and may appear either globally or inside individual process
specifications. Each declared variable has a type drawn from a set including (i) basic types; (ii)
structured types; and (iii) channel types. The basic types are:bit , bool , byte , short and
int . Details of the basic types may be found in Figure 2.17.

Variables associated with a special type calledmtype are associated with a global set of
symbolic constants. For example the following PROMELA program fragment:

mtype = { SYN, ACK, FIN }
mtype a = SYN;

declares a variablea of typemtype which has been assigned the valueSYN. Structured types
include records and arrays. Record types are declared using the keywordtypedef in the
following way:

typedef Structure {
bool flag;
int value;

}

In this example, a new record type namedStructure has been declared with fieldsflag
andvalue accessed using the syntaxx.flag andx.value on a variablex . An array type
can be declared using the C-like syntax:

bool flags[N];

whereN is the number of elements in the array.
Finally, channel types are represented by the typechan . In the following program fragment:

chan a;

the variablea has been declared as a channel type.
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Defining and running processes

Processes are declared using the keywordproctype . Processes have a list of formal param-
eters and a block of statements. Processes are instantiated through the keywordrun . The
same process specification may be instantiated several times with different parameters through
repeated calls torun within specialinit blocks, where theinit block is analogous to the
main function in a C program.

Blocking behaviour

Each individual atomic statement contained within a process specification may be either a com-
mand or an expression. Each has a notion of “executability”; being said to be either enabled
or blocked, depending on the state of the program. Assignments and unconditional branches
(using thegoto keyword) are always enabled. Expressions are enabled if they evaluate to true
e.g. the expression

x == 1;

blocks until the variablex has the value1. Conditions are written using the syntax:
if
:: ( stmt0) -> block 0

. . .
:: ( stmtn) -> blockn

fi
For each branch0 . . . n, the branch is enabled if the corresponding guard statement

(stmt0 . . . stmtn) is true. If more than one branch is enabled at the same time then one en-
abled branch is chosen non-deterministically.

Channel Communication

Channels are declared using syntax like the following:

chan c = [1] of { mtype, bit };

In this example, the channelc is declared as a channel with a buffer length of 1 accepting
messages which are pairs ofmtype andbit . Channels can be created with any finite buffer
length greater than or equal to zero. A buffer length of zero indicates the channel is synchronous
— i.e. a write to the channel blocks until another process simultaneously reads — while a buffer
length of greater than zero indicates the channel is asynchronous.

Sending and receiving are performed using the! and? operators respectively. The follow-
ing command:

c!SYN,1;

transmits the pair〈 SYN, 1 〉 on the channelc (recall the channelc was declared above to
accept pairs ofmtype andbit values). If the channel is empty then this command is enabled
and will not block. If the channel is full (i.e. in the case of channelc a full channel would
contain only one message) then the command is blocked. Note also that if more than one
write is blocked on a full channel and another process performs a read, one of the blocked write
commands is selected non-deterministically to complete i.e. there is no input queueing or notion
of fairness for blocked I/O commands.

Values can be read from the channelc using the following syntax:

46



Chapter 2. Technical Background 2.6. Model Checking using PROMELA and SPIN

c?a,b;

The variablesa andb should be of typemtype andbit respectively16. As well as a standard
receive operation, PROMELA supports a non-side-effecting receive operation which behaves like
a normal receive but without removing the message from the channel. The following command:

c?<a,b>;

copies the next message in the channel (a pair ofmtype andbit ) into the variablesa andb.
Future reads will read the same value.

Assertions

Assertions may be added to PROMELA programs using the syntax:

assert(e);

This assertion causes the program to abort if the expressione evaluates to true in the current
execution of the program.

2.6.2 Simple PROMELA example

This section demonstrates the capabilities and syntax of PROMELA via a simple example, based
on the Internet protocol TCP. TCP is a peer-to-peer protocol17 for establishing reliable stream-
based connections over datagram networks. TCP has many advanced features including error
recovery, flow and congestion control which will not be modelled here. Instead TCP shall
be modelled as a simple client-server system in which a client connects to a server and then
disconnects, transmitting no data.

Figure 2.18 shows an example PROMELA model of a system comprising two components: a
client and a server. The components are represented by processes started atomically usingrun
statements in theinit block at the bottom of the program text. The processes are connected
by two channels:c to s ands to c for client to server and server to client communication
respectively. The client proctype transmits aSYNbefore receiving from the channel. If the
client receives aRST(i.e. if the server rejects the connection) then the client jumps to the label
done and exits. If the client receives a superfluousSYNthen the assertionassert(false) is
triggered and the computation aborts. If the client receives anACKthen it transmits aSYNACK,
confirming the connection before transmitting aRST.

The server process blocks waiting for a client to attempt a connection by sending aSYN
message before non-deterministically choosing between two options: (i) rejecting the connec-
tion by sending aRST and jumping to the labeldone ; and (ii) accepting the connection by
transmitting anACKbefore receiving aSYNACK, at which point the connection is considered
open. The server then expects aRST18 from the client, closing the connection.

Figure 2.19 shows two examplemessage sequence chartscorresponding to potential exe-
cution paths through the PROMELA program from Figure 2.18. The topmost chart shows the
classic TCP 3-way handshake (SYN, ACK, SYNACK) before the connection is closed by the
client sending the server aRSTmessage. The bottommost chart shows the server rejecting the
client’s connection request by replying to theSYNwith aRST.

16Like C, PROMELA will perform automatic casts of types to other compatible types. This mechanism is ignored
to simplify the presentation.

17Although many people talk about “clients” and “servers” in the context of TCP it itself has no such concept.
Connections can be initiated by either party and even initiated simultaneously by both sides.

18Normally a TCP connection is put into a specialclosingstate first using aFIN message but that will not be
modelled here.
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mtype = { SYN, ACK, SYNACK, RST }

proctype client(chan input; chan output) {
output!SYN;
if
:: input?RST -> goto done; /* refused */
:: input?SYN -> assert(false); /* impossible */
:: input?ACK -> skip;
fi;
output!SYNACK;
/* established */
output!RST;

done:
skip;

}

proctype server(chan input; chan output) {
input?SYN;
if
:: true -> { output!RST; goto done }
:: true -> output!ACK;
fi;
input?SYNACK;
input?RST;

done:
skip;

}

chan c to s = [1] of {mtype }
chan s to c = [1] of {mtype }

init {
atomic {

run client(s to c, c to s);
run server(c to s, s to c);

}
}

Figure 2.18: A simple example PROMELA program consisting of two processes:client
andserver interconnected by two channels. The program models a small part of the TCP
protocol.
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Figure 2.19: Two message sequence charts corresponding to two possible runs of the program
in Figure 2.18. [Top] shows a connection created and then shut down; [Bottom] shows a rejected
connection.

49



2.7. Summary Chapter 2. Technical Background

2.6.3 Model checking with SPIN

Once a valid PROMELA program has been created it is possible to mechanically verify some
useful properties with the model checker SPIN. Three general techniques shall be covered here
but the list is by no means exhaustive. The techniques are:

• detecting invalid end states;

• detecting assertion violations; and

• detecting lack-of-progress cycles.

Invalid End States

An invalid end stateis one in which either (i) all spawned processes have exited leaving unread
data in a channel; or (ii) the system is deadlocked i.e. all processes are active but blocked.
Invalid end states often happen when a message arrives on a channel at an unexpected point; for
example, if the client process in Figure 2.18 were to send anything other than aSYNmessage
at the beginning then the server would remain blocked and the system would deadlock.

Assertion Violations

The client process in Figure 2.18 has the commandassert(false) which is triggered if
the client receives an unexpectedSYNwhen it is expecting either aACKor a RST. SPIN is
able to search through every possible execution sequence and verify that this assertion is never
triggered.

Lack-of-progress Cycles

SPIN can detect livelocks in programs as well as deadlocks and assertion failures. A livelock is
defined to be any infinite loop in the program (i.e. a cycle of states in the state machine) which
does not go through a specially markedprogressstate. In SPIN terminology a livelock is known
as a lack-of-progress cycle. A state is marked as a progress state by attaching a label with the
prefix progress . In the TCP example from Figure 2.18 the client and server could be made
more realistic by adding a labelstart: at the beginning and agoto start command at the
end. The modified processes would be able to loop forever, continually starting up and shutting
down connections. As well as being a closer approximation to reality, this would likely help
find bugs where messages from a previous connection prevent a new connection from being
successfully started. However now that the program contains infinite loops, SPIN has no way to
distinguish desirable looping (continually starting and stopping connections) from undesirable,
buggy loops where (for example) the server enters an infinite loop part-way through establishing
one particular connection. To resolve this difficulty we need to change the label at the beginning
from start: to progress start which signals to SPIN that the only valid infinite loops
must go through this state and any other loop represents livelock.

2.7 Summary
This chapter provided background on several topics essential for understanding the following
chapters. Mobile Agents – software programs which can move themselves between hosts on the
network – were described in detail. Since future applications are likely to be physically as well
as logically mobile, the ability for a device to sense its location is becoming more important.
Several possible location-sensing mechanisms were presented along with several arguments as
to why future devices are likely to be equipped with such mechanisms. A simple formalism
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for describing communication interfaces was presented and web-application were described as
a concrete example. Relevant topics within the field of computer security were discussed and
a brief introduction to model-checking – a technique for automatically verifying properties of
communicating systems – was presented.
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Chapter 3

A Spatial Model

This thesis argues that abstracting application-level security policy (policy written to govern
both themobility and interface behaviourof systems) is an effective technique for guarding
against application-level vulnerabilities which it was argued, would otherwise plague future
ubiquitous computing systems. This chapter and Chapter 4 concern the security issues involv-
ing the mobility aspect of systems; Chapters 5 and 6 focus on those involving theinterface
behaviour.

Two distinct types of mobility have been introduced already. Physical mobility, in which
entities running computer programs move in three-dimensional space was introduced first in
Section 1.1. It was argued that physical mobility will inevitably increase as hardware devices
proliferate and become ever smaller. Logical mobility, in which mobile agents running on
computers move themselves between hosts was introduced first in Section 1.5 and described in
more detail in Section 2.1. Both types of mobility are inherently related; the logical location
occupied by a running mobile agent must be associated with a particular CPU which itself
is a physical object with a defined physical location at a given point in time. The focus of
this chapter is to produce a unified representation of space known as the Unified Spatial Model
(USM) which allows users and applications to reason about both physical and logical movement
within the same framework. Users will be able to use this framework to write new kinds of
security policies, explored in more detail in Chapter 4, which combine elements of traditional
security policy (“no entry to unauthorised personnel”) with computer security policy (e.g. “ no
access to this resource”). Later in Chapter 7sentient mobile applicationsare introduced which
use this framework tosensetheir environment andreactaccordingly.

This Chapter describes the Unified Spatial Model (USM) capable of representing simulta-
neously the disparate worlds of physical spaces (complete with notions of physical location,
containment and proximity of objects) andvirtual spaces i.e. those inhabited by mobile agents.
The Chapter is structured as follows: Section 3.1 describes the main features of the spatial
model. Section 3.2 describes how the model reacts to represent changes in the world and Sec-
tion 3.3 describes how this model relates to others from the literature.

3.1 Modelling the World
We model the world as a tree of nestedentities, analogous toambientsin the Ambient Cal-
culus [34]. The Ambient Calculus is described in the related work section at the end of this
chapter in Section 3.3.1. We begin our description by defining the following set of terms:

entity name: label used to name entities which may have further entities nested inside. Entities
form a nesting hierarchy and sequences of entity names describe a route through the
hierarchy. Examples of entity names include the names of physical places, computers
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and mobile agents. By convention we useη to range over all entity names and lower-case
lettersa, b, c, d, e to range over mobile agent entity names.

entity: description of a spatial location. Entities might consist of nested entities with an en-
tity name, sibling entities in parallel, special entityfactoriesor void (i.e. nothing). Note
that, in a similar fashion to the Ambient Calculus, we are not restricted to describing only
physical places but can represent any bounded region where activity happens. For exam-
ple an office containing people may be described as an entity, as can a virtual machine
containing mobile code. We use capital lettersX, Y, X ′, Y ′ to range over entities.

path: sequence of entity names describing a route through the entity hierarchy naming a spe-
cific entity. Paths are written in the form of a sequence〈η1, . . . , ηn〉 and are described
further in Section 3.1.3.

path expressions:regular expression-like facility to efficiently name a set of entities. Path
expressions are described further in Section 3.1.3.

We divide our entity names intosortseach representing a different kind of object. The sorts
provide a simple well-formedness constraint on the model by restricting how entities may nest.
The exact sorts used in any deployed system will depend on the kinds of things being modelled
(e.g. an aviation-based system may introduce the sort “aircraft”) but for expository purposes we
restrict ourselves to the following:

room: a physical volume of space corresponding to a building, office etc.

person: an autonomous physical entity able to move betweenrooms (a human or a robot)
perhaps able to carry other entities

workstation: an immovable physical object which can host computer processes

laptop: a mobile physical object which can host computer processes

context: a virtual (or physical) machine capable of running mobile code

agent: a piece of mobile code

We writee C s to mean entity namee is of sorts. The formulaSortContainable(s1, s2) holds
when entities of sorts2 may be nested inside entities of sorts1. This formula is defined graph-
ically in Figure 3.1. Intuitively, it says that physical objects may nest in the obvious way (e.g.
a workstation may nest inside aroom and alaptop may nest within — i.e. be carried by — a
person) and that computers (workstations andlaptops) host virtual machines (contexts) which
in turn hostagentprocesses. Note that agents do not contain any contents themselves; this is
an artifact of the prototype implementation described later. A future version could remove this
restriction.

A state of our world model may be written down with the following syntax (whereη ranges
over a set of entity names):

entity ← entity | entity (siblings)
entity ← η[entity ] (nesting in a placeη)
entity ← 0 (void)
entity ← !η[entity ] (entity factory)

model ← η[entity ] (spatial model)
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room workstation

person laptop context agent

fixed (infrastructural) sorts

mobile (dynamic) sorts

Figure 3.1: The relationSortContainable.

By convention we consider an entity factory!η[X] (whereη C agent) to be a special kind of
entity which can create other entities, i.e. the factory!η[X] can spawn the entityη[X]. Note that
every mobile agent which wishes to be created dynamically must be associated with at least one
of these factory entities.

A spatial model (represented bymodel ) consists of an entity name (theroot entity name)
plus entity contents. For the spatial modelM = y[X] with namey and contentsX we say that
M is well-sortedif y C room andWS (room,X ) where the predicateWS is defined informally
as follows:

WS (s, 0) ← true
WS (s, X | Y ) ← WS (s, X) ∧WS (s, Y )
WS (s, η[X]) ← ∃s′.η C s′ ∧ SortContainable(s, s′) ∧WS (s′, X)
WS (s, !η[X]) ← ∃s′.η C s′ ∧ SortContainable(s, s′) ∧WS (s′, X)

In particular note that an entity factory is only well-sorted if the entity it generates would also
be well-sorted in its place and that all entities can contain an empty entity0. Observe that the
syntax for entities is similar to the subset of the ambient calculus which has no active processes
and which describes only the structure of space, like that used in the semistructured data format
described in [33].

As is conventional in mobility theory we next define a congruence relation,≡, under which
entities are equal up to simple rearrangements of parts. In addition to reflexivity, symmetry,
transitivity and context (X ≡ Y =⇒ η[X] ≡ η[Y ]) this relation (often referred to as a
structural congruence relation) admits the following rules:

X | Y ≡ Y | X (commutativity)
X | 0≡ X (zero)
X | (Y | Z) ≡ (X | Y ) | Z (associativity)

X ≡ X ′, Y ≡ Y ′

X | Y ≡ X ′ | Y ′ (parallel)
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Figure 3.2: An example world configuration in graphical form.

3.1.1 Example

Consider a simple environment containing people, computers and several mobile agents. A
graphical depiction of the model corresponding to this world at a particular time is displayed as
follows:

World [ Bob’s office [ 0 ]
| Charlie’s office [

Charlie [ 0 ]
| Alice [ laptop [ default [ agent [ 0]]]]
| laptop [ default [ ! music player factory [ 0]]]
| PC [ default [ secret agent [ 0]]

| audio [ music player [ 0]]]
]

]

There are various things to note about this configuration:

1. Alice is carrying a laptop inside Charlie’s office. This laptop is currently running some
mobile agent code. This mobile agent might have arrived in this room by one of two
processes: (i) it may have been physically moved by Alice carrying the laptop; or (ii) it
may have migrated itself deliberately after the laptop arrived in the room.

2. The PC in Charlie’s office has been configured with an additionalcontext, calledaudio .

3.1.2 Naming

For simplicity entity names have been presented as short, flat identifiers written in english;
names such asAlice , laptop andmusic player . The actual names chosen are likely to
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be more complicated in practice. Policy systems like the one described in the following chapter
will likely need some mechanism to refer to individual objects, to either allow or disallow access
to protected resources1. Therefore it is important to be able to create and refer to unique and
unforgeable names to prevent the policy system being subverted.

On the other hand allowing non-unique names facilitates policies and conventions which
apply to whole groups of things at once. For example, we may like to write a policy governing
a particular class of mobile agent which is straightforward if all instances of the class of mobile
agent are represented by the same entity name.

Furthermore it may be useful to represent the same object with multiple entity names collo-
cated within the spatial model. For example, a music playing agent written by Alice might have
two names:Alice’s agent andmusic player representing two useful properties about
the agent, specifically that it was written by Alice and is capable of playing music. Policies may
then be written to govern either (i) all of Alice’s agents; or (ii) all music playing agents rather
than having one policy for each individual agent.

One possible implementation of such a flexible naming scheme would rely on digital sig-
natures. Imagine that an agent signed by a particular key is represented by a particular entity
name. If the secret part of the key is kept secret then the signature—and hence the name—is
unforgeable. If the secret part of the key is made public then anyone can create entities with that
particular name. A agent may be signed by multiple independent keys, reflected in the model
by multiple collocated entity names.

For simplicity in the rest of this chapter we will continue to use simple english names (like
music player ) to name entities which are assumed to be unique .

3.1.3 Paths and Path Expressions

We uniquely specify a single entity name by providing a path from the root entity name using
the nesting relation,↓M . We say thata ↓M b if b is a child ofa in the modelM , i.e.b is contained
within one level of nesting ofa. Therefore a path from the rootp = 〈η1 . . . ηn〉 selects an entity
name ifη1 ↓M η2 ∧ . . . ∧ ηn−1 ↓M ηn. For example, in the diagram in Figure 3.2 a sequence of
entity names uniquely specifying the entitymusic player could be written

〈 World , Charlie’s office , PC,
audio , music player 〉

Path expressions, similar to regular expressions, are used to quantify over a set of paths. We
first define the↓∗M operator as the reflexive transitive closure of↓M and then write the syntax of
path expressions as follows:

element ← η (entity name)
| {η, η} (disjunction)
| ∗ (any)

expression ← element
| • • •/ expression
| element / expression

1 Consider an agent calledsecret agent which is allowed access to some privileged resource by a policy
based on the model presented here. If an attacker could make another agent with the same name then they will be
able to access the resource illegally.
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Room

Person
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Bob
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World/Home/PC

Entities matching path expression
World/Office/*
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Key:

Figure 3.3: Graphical example of entities named by paths and path expressions.

We define thematching setof a path expressionexpression as a set of pathspaths using
the following rules:

• the trivial path elementη matchesan entity nameη;

• the element{η1, η2} matchesthe entity nameη if η1 = η or η2 = η;

• the element* matchesany entity name;

• an expression of the formelement matches a path〈η〉 if element matchesη;

• an expression of the form•••/ expression matches a path〈η1, . . . , ηk, ηk+1 . . . , ηn〉where
expression matches〈ηk+1 . . . , ηn〉 for some value ofk; and

• an expression of the formelement / expression matches a path〈η1, η2, . . . , ηn〉 where
element matchesη1 andexpression matches〈η2 . . . , ηn〉.

Figure 3.3 shows an example spatial model with some entities highlighted. High-
lighted group number 1 corresponds to the singleton entity nameWorld/Home/PC while
highlighted group number 2 corresponds to two names which match the path expression
World/Office/* .

Path expressions provide a similar function to that of XPath [174], used for naming elements
of XML documents. They allow us (i) to list concisely names whose paths diverge at a point
(using disjunction) e.g.a/ {b, c} matches the same names as those matched bya/b or a/c; (ii )
to have paths with dislocations (using/ • • • / ) e.g.a/ • • • / b can match the same entities
as those matched bya/b as well asa/ c/ d/ b; and (iii ) to quantify over names without directly
listing them e.g.a/* can match the same names asa/ b, a/ c anda/ d.

3.2 Updating the World Model
The model is updated dynamically to reflect the real-time configuration of the environment by
an implementation described in more detail in Chapter 7. The physical world is monitored by
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location sensors, a concept first introduced in Section 2.2. Changes in the physical world –
specifically the movements of objects – are then reflected by changes in the model (more details
of the implementation are forthcoming in Chapter 7). In addition we assume that mobile agents
may be programmatically created, killed or migrated, constrained only by the installed security
policies. We define legal updates to the world by a labelled transition relation,

γ→ over entities.
We use labels to represent the side-effects of transitions, in particular the emission (emit(γ))
and reception (receive(γ)) of an agent during migration. The absence of a label on a transition
indicates the lack of side-effects. A valid transition must have no labels at the top level – labels
must always be matched and cancelled by the rule (migrate) described below. For brevity we
write a↔ b if the transition is reversible i.e. if botha→ b andb→ a are legal transitions. The
implementation (described in more detail in Section 7) ensures that every event that occurs is
represented by a legal transition.

Now for agent creation with entitiesX,Y, Z and entity namesa, b, c wherea C person,
bC room andcC laptop (i.e.a is of sortperson, b of sortroom andc of sortlaptop) we define
the following rules:

a[X] | b[Y ] ↔ b[a[X] | Y ] (walk in/out)
a[X] | c[Y ] ↔ a[c[Y ] | X] (pick up/put down)

In plain terms these rules describe how a person may freely walk into and out of rooms and pick
up or drop any portable physical objects (represented by entities of sortlaptop).

For simplicity everything that can happen to a mobile agent (i.e. being created, killed, mi-
grated etc.) is considered as a sequence of primitive operations of the following two types: (i)
leaving a particular context; (ii ) entering a particular context. For example an agent creation
is considered a single event – the new agent entering its initial context, next to the factory that
created it. Killing an agent is a single leaving event. An agent migration froma to b is consid-
ered a sequence of two events: (i) leaving the source contexta; and (ii ) entering the destination
contextb directly afterwards.

With a view to defining mobility security policies we assume the existence of a pair of infix
predicates,canenterandcanleavewhich for a given agent with entity named and context with
entity namee behave as follows:

d canleave e holds if the policies allowd to leave the contexte
d canenter e holds if the policies allowd to enter the contexte

Mobility policies may be “plugged-in” to the model simply by defining these predicates.
For entity namesd C agent, ande C contextwe write the rule:

e[!d[Y ] | X] → e[d[Y ] |!d[Y ] | X] iff d canentere (agent created)

This rule asserts that agents may be created in those places containing an appropriate agent
factory (represented by!d[Y ]) provided the new agent is allowed to enter the surrounding con-
text. Similarly, intensional agent destruction (i.e. agent suicide) is only permitted if the agent is
allowed to leave the containing context, as described by this rule:

e[d[Y ] | X] → e[X] iff d canleavee (agent killed)

Agent migration between contexts is handled by the following rules:

e[d[Y ] | X]
emit(d[Y ])−→ e[X] iff d canleavee (agent leaves)

e[X]
receive(d[Y ])−→ e[d[Y ] | X] iff d canentere (agent enters)
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X
emit(W )−→ Y Y

receive(W )−→ Z

X → Z
(migrate)

Note that the act of migration is a compound operation where the side-effectemit(W ) must be
matched by a corresponding side-effectreceive(W ). Therefore migration may only happen if
the policies allow both the leaving step and the arriving step; it is impossible for the agent to
get stuck somewhere in between. It is important to emphasise that only the results of toplevel
transitions are visible to applications – applications cannot see any intermediate states of the
model. We get away with this because our work so far has focused on a trusted “intranet”-style
environment where complications due to unreliable network communication and partial failure
are minimised.

Agent migration could be represented differently if we allowed agents to simply climb the
entity hierarchy and then walk down again – the approach taken in the Ambient Calculus. This
would allow us to simplify our rules by removing the labels on our transition relation. However,
allowing an agent to move anywhere in the hierarchy could lead to violations of the sorting rules
(described in Section 3.1). Additionally there is a subtle semantic difference with respect to the
security policies: by using the “teleporting” approach described here, only the configurations
at the start (the leaving step) and at the end (the arriving step) are relevant. If the agent were
to have to walk from one place to another then the migration could potentially be blocked by
a policy attached to an entity somewhere in the middle. Sometimes this effect is desirable; for
example in the case of a firewall, agents would have to explicitly move through the firewall and
be subject to its policy, rather than teleport past it, avoiding its policy.

To complete our description of how the model can be updated we have the following rules
whereX ′ andY ′ are entities:

!η[X] → !η[X] | η[X] iff η C6 agent (non-agent entity created)

X
W→ Y

η[X]
W→ η[Y ]

(nested update)
X

W→ Y

X | Z W→ Y | Z
(parallel update)

X ′ ≡ X, X
W→ Y, Y ≡ Y ′

X ′ W→ Y ′
(update≡)

Informally the first rule states that non-agent entities may be created in entity factories (note
that agent entities may only be created if allowed by the security policies, using the rule (agent
created) described earlier). The other three rules state that transitions may occur anywhere in
the entity nesting hierarchy, in parallel with arbitrary other entities up to structural congruence.
Note that the labels on the transitions are preserved but must eventually be cancelled further up
the tree (by the rule (migrate)).

3.3 Other Modelling Techniques
Spatial models have been investigated within several research fields including mobility theory,
ubiquitous computing and spatial database theory. Mobility theorists are interested in models of
distributed computation in order to reason about distributed software in the presence of variable
network latency and partial failure. Ubiquitous computing researchers found they needed some
form of middleware to bridge the vast semantic gap between (often low-quality) location data
received from environmental sensors and the (high-quality, high-level) data required by their
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applications. Finally spatial databases have been studied at great length due to their usefulness
in fields as diverse as geography and electrical engineering.

Accordingly related work is divided into three sections: the first deals with recent models
of distributed computation involving explicit location, the second with ubiquitous computing
middleware and the third discusses spatial databases. Each section describes the related work
and contrasts it to the model presented here.

3.3.1 Theoretical Models

Many mobility models have been proposed in the literature, some of which are described in
this section. We begin with a general overview and then proceeed with detailed descriptions of
particular models in the following sections.

Theπ-calculus [117] is an early system created to help model distributed, communicating
systems. Theπ-calculus is aprocesscalculus in which concurrent active processes communi-
cate over named synchronous channels. Channel names are treated as first-class data items and
can be transmitted across other channels, providing a simple way to encode mobility. Theπ
calculus was the basis for the programming language Pict [129].

Many variants of theπ-calculus have been investigated, including the asynchronousπ-
calculus [90] and the distributedπ-calculus [135]. The latter added several new concepts in-
cluding migration, site failure, explicitly-located channels and channel names associated with
permissions. The nomadicπ-calculus [163], (on which the language nomadic Pict [173] is
based) separates communication primitives into two types:location-dependentand location-
independent. A mapping known as aninfrastructure is used to implement the location-
independent primitives in terms of the location-dependent ones.

Amadio et al [12] created a variation of theπ-calculus with located channels and allowed
location names to be treated as first-class data items and transmitted over channels. The calculus
was used to model the locality and failure behaviour of the distributed programming language
Facile [72].

The Seal calculus [37] is an extension of theπ-calculus with hierarchical locations (known
asseals), mobility and resource access control. Processes can only communicate if they are
collocated in the same seal or are in a parent-child relationship in the seal hierarchy.

The following sections describe a small sample of mobility models and contrasts them to
the approach taken here.

Mobadtl

Semprini et al [61] describe a model called Mobadtl used to design mobile, network-aware ap-
plications. They model the world as a flat (not hierarchical) list ofneighbourhoodseach under
the control of aguardian. Mobadtl neighbourhoods are home to agents which can communi-
cate with other agents and migrate to other neighbourhoods. All communication and migration
between neighbourhoods must be routed through guardians and guardians are not necessarily di-
rectly connected to each other by point-to-point links but rather form a directed graph of nodes.
Remote communication or migration may then be vetoed by any guardian on the path from
sender to receiver through the guardian network. Guardians are the primary means to impose
communication and mobility policy on the system. The diagram within Figure 3.4 graphically
depicts neighbourhoods, agents, guardians and a communication between two agents in differ-
ent neighbourhoods.

The Mobadtl system is specified formally using the Mark toolkit [62] written on top of the
theorem proving system Isabelle [126]. It supports designing applications by refinement starting
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neighbourhood neighbourhood

guardian guardian

network
agent

agent

Figure 3.4: The main components of the Mobadtlmodel. The large circles are neighbourhoods,
the small white circles are agents, the small black circles are guardians. The arrow shows a
communication path between a sender agent in one neighbourhood and a receiver in another.

with a specification of generic components (agents and guardians) together with aco-ordination
theory. The co-ordination theory contains a set of assertions written in the spatio-temporal logic
∆DSTL(x) [118] which talk about the possible states of the distributed system without requiring
a global clock. A typical formula might be:

m p LT n q ∧ m r (3.1)

which says that a propertyp holding in componentm causes propertiesq andr to hold in future
states of componentsn andm respectively. Each refinement step aims to reduce the complex-
ity of the co-ordination theory by distributing aspects of it across the individual components.
The eventual aim is to finish with the co-ordination theory containing only those assumptions
that can be guaranteed by the underlying network stack and middleware e.g. that messages are
delivered reliably and in the original order.

There are a number of differences between Mobadtl and the model described in this thesis.
Firstly the Mobadtl model uses a flat list of environments (called neighbourhoods) whereas the
model described in this chapter uses a tree of nested entities inspired by the Ambient Calculus.
Secondly the Mobadtl system is inherently generic whereas the system proposed here is targeted
towards environments which have pervasive location sensing systems (i.e. modernUbiComp
environments). Thirdly Mobadtl aims to formally develop applications through careful refine-
ment steps whereas this thesis proposes the abstraction of security policies (both for mobility
and communication properties) from the source code ofexistingapplications.

The Ambient Calculus

The Ambient Calculus [34] is a calculus for describing the movement of processes and devices
through and withinadministrative domainswhere an administrative domain may be considered
the granularity at which policy is applied. The concept of an administrative domain corresponds
to the termcontext horizonused by Shirky [150] to describe the boundary between “local”
and “remote” in the world of Web-Services. It is no coincidence that work on Ambients was
inspired initially by observations of the World Wide Web; Cardelli and Gordon claim [36] that
the primary problem with web-programming is neither mobility nor communication (for both
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have realisable technological solutions) but rather in specifying and enforcing suitable policy as
computations leave one domain and enter another.

In the Ambient Calculus an ambient is defined to be aboundedplace where computation
happens. Examples of possible ambients include web-pages, processes, address ranges of mem-
ory and computers, bounded by their physical cases and connectors. In the model, ambients may
be nested within other ambients, possess names which can be used for access control (as part of
capabilities), contain active threads or processes and may be migrated wholesale (i.e. including
contents) to other locations. A simple example of an ambient could be written

n[in m.P | Q] | m[R] (3.2)

wheren, m are the names of ambients, brackets are used to denote nesting and| denotes parallel
composition of ambients. The sub-expressionin m.P means “execute an action associated with
capabilityin m and then perform P”; in this case the capabilityin m denotes the capability to
cause the enclosing ambient to enter sibling ambientm. Therefore this ambient expression can
reduce to

m[n[P | Q] | R] (3.3)

The model proposed in this chapter is heavily inspired by but is a more restricted and
domain-specific version of the Ambient model. Entities, like ambients may be nested. Capabil-
ities in the ambient calculus include permission to enter, leave andopenan ambient; enter and
leave capabilities are similar to thecanenterandcanleavepredicates in the model presented
here. The main difference stems from a different underlying philosophy: the ambient calculus
is intended to be powerful enough to encode arbitrary computation while the model presented
here is intended only to represent configurations of the world for the purposes of writing and
dynamically checking policy.

Join Calculus

The join-calculus [68] is an asynchronous variant of theπ calculus [117] aiming to be im-
plementable in a distributed programming environment. The distributed join-calculus[69] is a
further variation which adds the notions of named locations, migratable agents and partial fail-
ure (the presence or absence of which they describe as the “litmus test” for models of distributed
computation).

The distributed join-calculus models agents as locations and allows locations to be nested
inside other locations forming a tree. Migration is modelled by atomically moving a location
(complete with contents) wholesale to another site. The notion of a location in the distributed
join-calculus therefore has much in common with the notion of an ambient in the ambient
calculus and therefore also with the entities in the model presented here.

As with the ambient calculus, the main difference is one of motivation: the distributed join-
calculus is intended to represent the core of a distributed programming language whereas the
focus here is to model configurations of the world for the purposes of writing and dynamically
checking policy.

3.3.2 UbiComp Middleware

Traditional middleware aims to abstract away low-level details of network communication (e.g.
choice of underlying protocol or naming of endpoints) from applications in order to make the
task of writing distributed applications simpler. Yau et al suggest [177] that UbiComp middle-
ware aims to exploit usercontextto foster dynamic integration between resource-poor devices
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and a resource-rich infrastructure in a way transparent to the application and hence make the
task of writing generic ubiquitous computing applications easier. Context is a nebulous concept,
reflected in the commonly-used definition from Dey and Abowd [52]:

any information which can be used to characterise the situation of an entity

Dey and Abowd propose four primary types of context: (i) identity (of the interacting entities);
(ii) location (in space); (iii) activity (i.e. actions being performed by entities); and (iv) time.
Two of these types – identity and time – predate the study of UbiComp and hence are the most
well understood. Activity inference is hard problem; Hull et al report [92] that even inferring
simple activity information from a mix of low-level sensor readings is difficult to make robust.
Perhaps unsurprisingly a lot of effort in the UbiComp community has therefore been focused
on monitoring and processing location i.e. spatial context.

3.3.3 The Location Stack

The Location Stack [85] is a “layered software engineering model for location-aware appli-
cations”, similar in spirit to the OSI reference model for networking. The stack aims to take
advantage of commercially available location systems and integrate research in sensor fusion
allowing applications to receive combined sensor input which is more accurate or has greater
coverage than any one sensor system can provide by itself. The system includes standard no-
tions of measurement (e.g. distances between objects, frames of reference), standard algorithms
for positional estimation (e.g. multilateration) and standard query types (e.g. containment and
proximity). The system aims to preserve estimates of uncertainty as measurements are pro-
cessed and to provide some kind of activity inference.

3.3.4 SPIRIT

The SPIRIT [11] system is a typical example of aspatial indexing systemdeveloped origi-
nally at AT&T Laboratories Cambridge. Primitives in the SPIRIT model are spatial containers
(three-dimensional volumes of space) represented as polyhedra which may be mobile or fixed
statically to the environment. The world is represented as a quad tree-like structure allowing
the system to efficiently compute dynamic intersections between containers. Users register in-
terest in these container intersection events (e.g. partial overlap) and receive notifications when
events of interest occur. The SPIRIT system receives events mainly from Active Badges [168]
(personal IR transmitters) and Active-Bats [170] (radio-triggered ultrasound-emitting tags) and
events are emitted by callbacks in the CORBA [123] middleware system.

At a higher-level, the SPIRIT system contains a sophisticated object database which knows
about many different types of physical object. Desks, chairs, walls, computers, telephones,
monitors, windows and doors are all represented in the SPIRIT model. A typical SPIRIT client
is the classic “active map” program which displays a top-down view of an office complete with
the positions and orientations of people and equipment, updated in real time. Figure 3.5 shows
an active bat on the left and a screenshot of the “active map” program on the right. Note that the
map is showing a zoomed-in view of an office in the Laboratory for Communication engineering
where 3 people are present, represented by usernames ofkjm25 , jpw20 andja316 . Desks,
computer terminals and telephones are also visible.

Relevance to this work

There are a number of differences between the model exposed by middleware like SPIRIT and
the Location Stack and that proposed in this chapter. The differences arise due a difference
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Figure 3.5: On the left: an example active bat. On the right: a screenshot of the “active map”
program.

in focus; both the SPIRIT model and Location Stack are intended to represent the physical
configuration of the world as accurately as possible. In contrast the model presented here is
intended to be an abstraction of reality where it is not necessary for the model to only represent
objects with physical presence; virtual objects like mobile agents are easily incorporated, along
side physical objects.

Both SPIRIT and the Location Stack are sophisticated systems. In SPIRIT sets of objects
may partially overlap with each other while the location Stack associates notions of uncertainty
with its measurements. These sophisticated features complicate the process of reasoning about
the models. In contrast the model presented here has been kept deliberately simple — support-
ing only simple nesting — to aid reasoning and analysis.

Both the Location Stack and SPIRIT model the world at a single level of granularity whereas
the model presented here can represent some parts of the model in high-detail while using more
coarse-grained representations for the rest. Coarse-grained representations have the advantage
that they change at a slower rate than fine-grained representations and hence increase application
scalability, by allowing a single server to support more clients. In this respect, the model
presented here is similar in intent to recent work by Katsiri and Mycroft [103] which proposed
building a two-layer logical representation where the lower layer contains accurate physical
information and the higher layer maintains logical inferences using rules registered by client
applications. The hope is that the higher level inferences will be more coarse-grained and hence
change less often than the low level data, permitting the system to scale. The system proposed
by Katsiri and Mycroft is intended to bridge the semantic gap between low-level sensor readings
and the high-level knowledge required by applications whereas the model presented here is
deliberately intended to be as simple as possible in order to act as a base for reasoning and
writing security policies.
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3.3.5 Spatial Databases

According to Shekhar et al [147] a Spatial Database Management System (SDBMS) aims to
manage effectively and efficiently any data related to space. Such systems have been stud-
ied for over 20 years and have found extensive uses in many disciplines including geography
(Geographical Information Systems), urban planning, astronomy, biology (mapping living or-
ganisms), pharmaceutical research and electrical engineering (e.g. VLSI and CAD).

Spatial databases primarily differ on the kinds of data they store. Some arefield-basedand
store information such as rainfall or temperature as a function of spatial position. Others are
object-basedand divide up spaces into discrete entities with notions of boundaries between
objects. The latter database type is evidently the most closely related to the entity-based world
model presented here.

Spatial databases support numerous query types; for example the OGIS system [125] adds
object intersection tests, distance calculations, convex hull calculations and calculations of spa-
tial unions, intersections and differences to SQL. Like the SPIRIT system described earlier in
Section 3.3.4, spatial databases employ sophisticated spatial indexing methods in order to pro-
cess queries efficiently. Many datastructures are used for spatial indexing, including BSP-trees,
R-Trees and Quad-trees [139] (as used in SPIRIT). Spatial databases are designed to be flexible
and generic, suitable for many types of applications. The model presented here is intended only
to allow simple reasoning about spatial security policies and does not aim for such wide ap-
plication. However by defining a suitable interface, a spatial database fed with accurate sensor
information could be used as a back-end for the model presented here.

3.4 Summary
This chapter described a spatial model which provides a unified representation of space, capable
of representing both the physical and logical movement of people, things and mobile agents.
The model allows users to write new kinds of security policies which combine elements of
traditional security policy (“no entry to unauthorised personnel”) with computer security policy
(e.g. “ no access to this resource”). The model itself if policy-agnostic; policies may be plugged-
in by defining the predicatescanenterandcanleave. A sophisticatedmobility restriction policy
is described in Chapter 4.

As well as providing hooks for implementing security policies, applications may also use
the model to monitor the environment in which they exist. A special type of application known
as asentient mobile applicationwill be described later in Chapter 7 which uses this framework
to sensetheir environment andreact accordingly. Implementation details for both the spatial
model and sentient applications are described later in Chapter 7.
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Mobility Restriction Policy Language

This chapter builds upon the spatial model described in Chapter 3 to definemobility restric-
tion policiesgoverning the permitted movements of mobile agents in an environment equipped
with physical location sensors (of the kind introduced in Section 2.2). Together with Chapter 3
this chapter contributes an application-level policy system governing themobility of applica-
tions. The following two chapters contribute application-level policy mechanisms governing
the interfacesof applications. Chapter 7 describes the implementation of the system described
here.

The structure of this chapter is as follows: Section 4.1 outlines why mobility restriction
policies are necessary and describes a number of scenarios in which mobility restriction poli-
cies would shield applications from attack. Section 4.2 outlines the threat model associated
with this chapter. Section 4.3 describes how physical location is already used to grant people
access to resources and how this technique can be extended seamlessly to mobile agents. Sec-
tion 4.4 describes the language for writing policies consisting of assertions about the state of
the spatial model and a corrective action executed upon assertion violation. Assertions can be
violated either through thephysical movementof a computational host or themigration of an
agent. It is recognised that, in a realistic environment, policies may be written by different peo-
ple, with different motivations and for different purposes. Accordingly Section 4.5 describes
a metapolicy for resolving conflicts between different users within a typical office scenario.
Finally Section 4.7 describes security mechanisms found in other mobile agent systems and
contrasts these with the system proposed here.

4.1 Motivation

The policies described in this chapter are motivated by three key trends and observations.
Firstly, as first explained in Section 1.1, improvements in device miniaturisation and cost are
leading to the proliferation of tiny, powerful embedded computers which can be found in every-
thing from digital watches to fridge freezers.

Secondly, computers are becoming increasinglyphysically mobile. Current users have
portable computers: laptops, PDAs and mobile phones which are mobile only by virtue of
beingdeliberatelycarried by people. As devices become smaller one can imagine tiny com-
puters which areaccidentallycarried by other entities (e.g. “smart dust” [102] – tiny sensor
particles carried by the wind). Fully autonomous mobile computer devices known as robots are
already commonplace today in factories and are likely to become more common as technology
improves.

Mobile Agents were motivated initially in Section 1.5 as a sensible and economical way to
structure distributed programs and then described in detail in Section 2.1. Mobile Agents are
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said to possesslogical mobility. Agents can programmatically move themselves (“migrate”)
independently of hosting computers.

Finally, modern ubiquitous computing environments equipped with location sensors (of the
kind described in Section 2.2) are capable of hosting new kinds of malicious applications not en-
countered before. The following subsections describe two possible new malicious applications
which highlight the need for new policy mechanisms.

4.1.1 Sentient Spy

A Sentientapplication is one which can perceive its environment and react accordingly [91].
The Sentient Spy application is defined to be one which perceives the current physical location
of a target person and reacts by migrating to a computer nearby. It then activates the micro-
phone on the computer, attempting to record any conversations which it then transmits over
the network back to its controller. As the target person moves so the spy application moves to
follow. Note that is it not sufficient to secure the physical workstations near potential targets to
protect against this attack. Another user carrying a PDA could become the unwitting host of the
sentient spy application by walking into the same room as the target and allowing it to migrate
onto the PDA.

4.1.2 Human Denial of Service

A Denial of Service attack is one which prevents legitimate users from being able to interact
with a particular service. Denial of Service attacks are commonplace on the Internet where it
is possible to block access to particular networks or machines by flooding them with unwanted
traffic, drowning out legitimate traffic. A Human Denial of Service attack is created by using a
number of mobile agents which constantly monitor the physical location of a target user. The
agents attempt to migrate to computers near the target user and deliberately allocate resources to
prevent1 the user from gaining access to them. For example an agent could use Bluetooth [2] in-
terfaces to prevent the user from being able to use local IEEE802.11 networks [93] or could play
lots of audio noise at high volume to prevent the user being able to talk to other people. Note
that such an attack relies on the computers within the environment being configured to allow
the free movement of agents. The earlier database searching example described in Section 2.1.2
relied on being able to prevent all agents from leaving their current execution environment;
this may be considered as a simple mobility restriction policy. In this chapter we expand upon
this idea, allowing the expression of more sophisticated mobility restriction policies suitable for
preventing unwanted agent migrations in an environment permeated with hosts, agents, people
and location sensors.

4.2 Threat Model
This section summarises the threat model behind the mobility restriction policies described in
this chapter. The model is based within a single organisation or company. The people within the
organisation are associated with physical resources: specifically offices and computers (laptops,
desktops, PDAs) etc. and are associated with computational resources in the form of mobile
agents. We make the assumptions that

• the hardware, operating system and support libraries on all the computers are trusted;

1While a Bluetooth interface is scanning for other nodes enough interference is generated to prevent any
IEEE802.11 nodes from successfully receiving any data. Therefore continuous scanning would cause a denial
of service.
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• an organisation-wide location system exists which is accurate and responsive and which
generates unforgeable location sighting events;

• all mobile hardware and personnel are tracked by the location system; and

• all mobile code runs in a Virtual Machine or sandbox under the control of the OS and
system libraries (i.e. the code cannot “break free” from system control).

We do not consider interface communication here, only mobility.
The threats addressed happen when:

1. a mobile agent is physically carried into a different room and gains access to the physical
space without any access control check e.g. such code can then access the “shared audio
channel” in the room by playing music or recording sound;

2. a user physically moves (presumably after passing an access control check by possessing a
key for a physical lock) into the same room as a computer on which an agent is running—
the agent now has access to the physical space near the user; and

3. a mobile agent explicitly migrates to a new host physically near a particular user.

All three cases are symptoms of the divide between two worlds: the physical world of people
under the control of locks and keys; and the ethereal world of agents with their traditional access
control systems. The aim of the mobility restriction policy language is to bridge this divide and
prevent threats like those listed above.

4.3 Location-based Access Control
In normal life humans are already familiar with access to resources being governed by phys-
ical location, a form oflocation-based access control. For example many physical security
arrangements work by creating a guarded perimeter which only authorised people may cross.
Once through the perimeter (and presumably after satisfying a security check), access to re-
sources is granted automatically without subsequent checks. This work allows this principle
to be extended seamlessly from the physical world of people to the ethereal world of mobile
agents.

In order to exploit this principle, the spatial model of Chapter 3 is extended with two extra
facilities: (i) the notion of sets ofprivilegesassociated with individual entities and inherited by
entities nested within; and (ii) the notions of an entity being “jailed” and “released”. Each of
these will be described in the following two sub-sections.

4.3.1 The privs function

Privileges are defined through a partial function,privs : entity name → privilege set , which
is only defined on names associated withcontext entities and gives the set of privileges which
are granted automatically to anyagentnested inside. Upon movement away from thecontext
(either through intentional movement or through eviction) the privileges are revoked.Note that,
in contrast to capability-based systems, it is not possible for an agent to delegate access rights
to anyone else. Examples of privileges include “canplaysound” and “canrecordsound” corre-
sponding to the ability to play and record audio respectively. Through creating appropriate new
contexts in the spatial model and assigning appropriate privileges we gain the ability to control
access to arbitrary resources. Note that we consider all agents to have permission to execute at
all times; even the most deprived agent can therefore use this ability to request to migrate to a
contextwhich is associated with more access.
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Figure 4.1: Diagram showing a PC with twocontextentities, one conferring the canplaysound
privilege on a music playing agent nested inside.

4.3.2 Jailing and Releasing

The act of jailing an agent is considered as a migration into a special context calledjail and
releasing is a migration out again. The specialjail contexts are created dynamically when
needed and associated with no privileges i.e.privs(jail) = {}. Note that although agents in
jail contexts lose all their privileges (by virtue of leaving the context where the privileges were
granted) they are still able to execute and in particular may request to be released again. The
acts of jailing and releasing are represented by the following two extra spatial model update
rules in addition to those defined in Section 3.2 and a single extra structural congruence rule:

e[d[Y ] | X] → e[jail [d[Y ]] | X] iff d canleavee (jailed)
e[jail [d[Y ]] | X] → e[d[Y ] | X] iff d canentere (released)

e[jail [X] | jail [Y ]] ≡ e[jail [X | Y ]]

Note that, to be jailed, an agent must be allowed by the security policies to leave its current
context. There is no guarantee the agent will ever be released again; release may only occur if
the agent has permission to reenter the original context. The extra structural congruence rule
asserts that multiple entities with namejail in the same place may be freely combined into a
single suchjail entity.

4.3.3 Example: Sound Playing

The diagram in Figure 4.1 depicts a fragment of a spatial model configuration. There is a PC
entity containing two sub-entities, one of which is associated with the privilege canplaysound
via theprivs function. Note that if the agent were to migrate to the other context, it would
lose this privilege. Later we will see how it can be forced to migrate by the application of
mobility restriction policy. The diagram in Figure 4.2 shows the same agent being jailed and
then released again.

4.4 Mobility Restriction Policies
A mobility restriction policy is defined as a 4-tuple

〈location, formula, times , onfail〉
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Figure 4.2: Diagram showing the agent from the example in Figure 4.1 may be jailed and
released.

where location is a path expression (see Section 3.1.3) designating a set of specific entities
where the assertion given byformula should hold. If, with respect to the time period described
by times, the assertion becomes violated (e.g. by the physical movement of an object) then the
system will attempt to execute the command described in the fieldonfail .

It is worth noting that policy is intended to be used in one of two ways: either (i) an agent
which is attempting to migrate to another host has its movement prevented; or (ii) a physical
movement (such as a person carrying a laptop from one room into another) results in the viola-
tion of a policy which is “patched up” by the execution of theonfail action. Theonfail action
may be thought of as a last-ditch attempt to fix an unpreventable and undesirable situation.2

Later in Section 4.5 it is described how policies may be written (probably by different users)
which conflict with each other in certain situations. Some mechanism is required which resolves
these conflicts and decides which policies should be enforced at the expense of which other poli-
cies. Of course this implies that not all policies can actually be enforced in practice. Although
outside the scope of this thesis, an automatic tool could be created to analyse policies and check
for nonsensical policies and also potential conflicts before they happen. For example, it is possi-
ble to write policies which make untrue assertions about the physical world (e.g. a policy could
insist that a certain office does not exist when it actually does). Knowing a little about how the
world model behaves (e.g. that rooms never move) a tool would be able to detect some nonsen-
sical policies up-front. A tool could also search through possible configurations of the world for
situations which cause policies to be in conflict (just as a model checker enumerates the state
space of a model searching for assertion violation). Potential problems could be flagged up and
users could then revise their policies accordingly.

The policy fieldtimes can contain one of two possible types of values:Always(∆t) and
Sometime(from, to, ∆t) (wherefrom,to and∆t are all in seconds and∆t > 0). In both cases
the parameter∆t specifies how much “reaction” time the system has before the policyonfail
action is executed. The valueAlways(∆t) indicates that the assertionformula should hold for
all time during which the system is running. The valueSometime(from, to, ∆t) states that

2One may imagine a system in which physical movements too may be prevented through automatic control of
door locks. However consider that, due to Health and Safety regulations, in the event of a fire (alarm) the door
controls would have to be disabled, enabling policy violations.
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formula should hold3 at some point in the time interval between the timesfrom andto. Note
that we do not rely on having global time synchronisation and allow individual agents to operate
on their own local clocks. Therefore agents (particularly those conserving battery power) need
to be given some time (represented by the∆t) to respond to policy violations.

To understand the necessity of having the “reaction” time,∆t, first consider a hypothetical
scenario in which an agent is running on a battery-powered PDA with intermittent wireless
network access (perhaps the PDA deliberately runs the network in a low-power mode or the
radio coverage is relatively poor). Imagine that a policy exists which insists that for all time
(i.e. theonfail field is set toAlways(∆t) for some∆t > 0) the agent currently running on the
PDA is not within a particular room. Furthermore consider that the database of installed policies
is running on a mains-powered high-performance server elsewhere in the building andnot on
the PDA. Imagine that a user carries the PDA into the room in which the agent is forbidden. It
is possible that the new location of the PDA will be sensed by the environment during a period
when the PDA’s network interface is inactive. Therefore the policy will be violated without the
software on the PDA realising. Assuming that the agent running on the PDA wishes to comply
with the policy in the first place, then it is polite to grant it a (hopefully short) grace period in
which to comply before theonfail action is activated. This grace period is represented by the
∆t.

The policy fieldonfail specifies an action to take should the policy be violated. The action
can be of the following types:

• Log(message) causes a message to be written to a log;

• Kill(pathexpr) asks the system to terminate agents identified by the path expression
pathexpr ;

• Jail(pathexpr) requests agents named bypathexpr be jailed; and

• Create(path) requests the agent factory named bypath create an agent.

For both theKill andJail values we adopt the convention that if the path expression has a
missing initial element (i.e. it starts with/ • • • / ) we automatically prepend the full path to
the specific entity the formula is currently being applied to. For example if the policylocation
field is a/* and the policy is violated at〈a, b〉 then theonfail expressionKill / c is expanded
to Kill a/ b/ c i.e. a request to terminateonly the entity named by〈a, b, c〉 and not any other
element (e.g.〈a, d, c〉). This ability to refer to previously matched data in a pattern is also found
in other systems using regular expressions, e.g. Perl [167].

The policy field formula contains an expression written in a simple spatial modal logic
similar to the Ambient Logic [35]. The core syntax is as follows, whereη ranges over entity

3This is similar to the concept ofobligation in traditional Role-Based Access Control (RBAC) systems i.e. it
states that someoneshouldperform some action during some time interval.
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names:
formula ← T (true)

| ¬formula (negation)
| formula ∨ formula (disjunction)
| 0 (void)
| η[formula] (named entity)
| !η (named agent factory)
| formula | formula (composition)
| ♦formula (somewhere modality)

For convenience the following additional syntax is defined in terms of the core:

F ≡ ¬T (false)
a ∧ b ≡ ¬(¬a ∨ ¬b) (conjunction)

�a ≡ ¬♦¬a (everywhere modality)

These constructs may be familiar to those versed in modal logics, but their meaning is
summarised in the following section.

4.4.1 Satisfaction

We say that an entityE satisfies the logical formulaf (i.e. the formulaf holds atE) by writing
E |= f . Intuitively, we may think of a formulaf asmatchingan entityE if e |= f . The relation,
|= is defined informally as follows:

• E |= T for any entitye

• E |= ¬f if E |= f does not hold

• E |= f ∨ g if eitherE |= f or E |= g

• E |= 0 if E ≡ 0 i.e. e is “nothing”

• E |=!η if E ≡!η

• E |= η[f ] if E ≡ n[M ] andη = n andM |= f

• E |= f | g if E ≡ N |M , N |= f andM |= g

• E |= ♦f if ∃e′.e ↓∗ e′, E ′ ≡ e′[Y ] andE ′ |= f

So the formulaT matches any entity (which may itself be a parallel composition of entities)
and the formula0 only matches “nothing” (or “void”) i.e. the absence of anything. The formula
f | g matchesE if e can be written as the composition of two expressionsN andM (remember
the equivalence relation≡) such thatf matchesN andg matchesM . The formula♦f matches
E if there is an entityE ′ somewhere in the tree rooted atE whereE ′ matchesf .
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4.5 Policy Conflict
If we allow individual users to write their own security policies then we must also provide a
mechanism to resolve policy conflicts when they arise. Conflicts between rules in our system
are similar to those found in Active Databases [45]. Many mechanisms have been proposed,
ranging from simple numeric priority schemes to more complex algorithms comparing rules
based on their generality [96] (e.g. the more general rule holds except when the less general
does not or the other way round). There is no single best strategy that works perfectly in all
circumstances. Therefore the scheme presented here is not claimed to be perfect, but rather
as an example of the kind of scheme possible in a system like this. Some implications (not
all of which are desirable) of the scheme presented here are outlined in the examples in the
following section. Our main goal is to make the system be intuitive enough for ordinary users
to understand. Security policies in our system are based on a spatial modal logic therefore we
also use a spatial mechanism for arbitrating between conflicting policies.

Recall that we model the state of the world as a nested tree of entities (see Section 3.1). We
observe that within a real life enterprise people too are often arranged into a hierarchy, with the
boss at the top, managers in the middle and normal employees at the leaf nodes. In such an
organisation, a manager would be able to set a policy which would override those of subordi-
nates but which could itself be overridden by the boss. These two hierarchies, one describing
the world and one describing the people, can be linked together by associating entities with a
set of people (“owners” or “administrators”) via a function

owners : entity name → person set

such that for an entity nameη we haveowners(η) = {person1, . . . , personk} whereperson1...k

are the direct “owners” ofη. In a typical configuration, the boss would “own” the root en-
tity while normal employees would “own” their individual offices. Our scheme for arbitrating
between conflicting policies may be informally described as:

For a proposed change to entity nameη, policies instituted by a useru′′ ∈
owners(η′′) override those policies instituted by a useru′ ∈ owners(η′) where
η′′ ↓∗ η′ andη′ ↓∗ η as long asη′′ 6= η′ andu′′ 6= u′.

Recall from Section 3.2 that the installed security policies may be represented by a pair of
predicates,canleaveandcanenterwhich, given an agent and a context hold precisely when an
agent is allowed to leave or enter the context respectively. Both of these predicates are computed
in the following way: For a proposed change in the configuration at context namedc (e.g. an
entity wishes to leavec) we first compute the set of users who “own” any of the entity names
on the path〈η1, . . . , ηn〉 from the “root” entity nameη1 which designatesc

users =
n⋃

k=1

owners(〈η1, . . . , ηk〉)

Each useru ∈ users is allocated a single vote on the proposed change. Note that this effectively
means that although users may write policies about entity names they do not “own” these poli-
cies will be easily overridden by other users whodo “own” these entity names. A useru votes
for the proposed change if the number of their policies which are in violation decreases or the
number remains the same but the agent requesting the migration is owned by them, votes against
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Figure 4.3: An example world configuration in graphical form.

if the number in violation increases and abstains otherwise. We define a functionvote(user) as
follows:

vote(user) =


−1 if user votes against the proposal
0 if user abstains
+1 if user votes for the proposal

We then compute the value of

overall vote =
n∑

i=1

∑
o∈owners(〈η1,...,ηi〉)

prio(i)vote(o)

where〈η1, . . . , ηi〉 refers to theith entity name on the pathp = 〈η1, . . . , ηn〉 and the function
prio(i) gives the priority of owners of this entity name. One possible priority function is given
by prio(i) = x−i wherex is a tunable vote weighting factor. The parameterx determines how
many people who “own” an entity nameηn are needed in order to equal the vote of a single
person who “owns” a “more important” entity nameηn−1. If x > max i (|owners(ηi)|) then
it is impossible for the owner of a more important entity name to be overridden by a group of
people who own a less important entity name. The system will allow the proposed change if
overall vote ≥ 0 and veto it otherwise.

4.6 Example
In this section we demonstrate the kinds of policies which are expressible in our system by
means of a series of examples set in a typical shared workplace environment. A snapshot of
the world configuration is presented in Figure 4.3. The top-level entity is namedWorld and
contains child entitiesBob’s office andCharlie’s office representing the offices
of users named Bob and Charlie respectively. We assume that ordinary employees by default
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“own” the entities corresponding to their offices and for the sake of an interesting example we
further assume that Bob is the boss and also “owns” the top-level entity,World .

A user, called Alice, deploys a “follow-me” music playing mobile agent which follows her
around, playing music where she goes. She is worried about the agent failing to follow her when
she moves between rooms and so writes the following policy to cause the system to monitor the
agent:

〈 location = World ,
formula = ♦(Alice[T] | ♦music player [T] | T),
times = Always(10 seconds),
onfail = Log 〉

(4.1)

“for all time, I am in theWorld and an agent calledmusic player should be
in the same space as me. If this is not true for more than 10 seconds, log the error”

The generous 10 second reaction time affords the agent an opportunity to notice Alice has
moved (by receiving an event from a networked location server), stop playing music, record
how much of the current track it has already played, find a new machine to migrate to and to
migrate itself to its new home. If the reaction time period is shortened then the probability
increases that a log entry is created even when the agent is working properly but fails to react
in time. Note that the agent may fail to react for many reasons, including: the task scheduler on
the hosting device may neglect to give the agent any CPU time; the network may temporarily
fail, delaying the arrival of the location sighting event; or perhaps Alice moves into a room in
which the agent simply cannot find a suitable host to run on.

Remember thatE |= f | g holds wheneverf andg match the two children ofE and thatT
matches anything, including0, the absence of anything. In the formula above the thirdT means
that the formula will hold irrespective of whatever else is in the same space as Alice.

The consequences of this policy are summarised as follows:

1. When themusic player attempts to migrate, the system prevents the agent fromleav-
ing the same room as the user. Recall from the beginning of Section 4.4 that the system is
assumed to be able to block agent migration requests which are judged to violate policies..
Note it does not directly force the agent to move properly (these are mobilityrestriction
policies), it just stops it from moving inappropriately.

2. Upon observing Alice move to a new room the system generates a new entry in the sys-
tem log if it has not followed her within 10 seconds. The log entry may help Alice in
debugging her errant agent.

3. If the agent is running on a portable device which is picked up by someone else and
moved to another room (recall that physical movements cannot be blocked unlike agent
migration requests and therefore must be “patched up” afterwards using theonfail action)
then a new entry will be generated in the system log if the agent has not migrated to a
machine in the same room as Alice within 10 seconds.

4. If Alice moves to a room which already has amusic player agent the system will not
complain even if Alice’s agent fails to follow her. Recall the earlier discussion about nam-
ing in Section 3.1.2; therefore it is important that only one agent calledmusic player
exists at a time.
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Consider a second user, Bob, who is Alice and Charlie’s boss. Bob prefers peace and quiet
where he works. To prevent wandering music playing agents disturbing him he writes a rule:

〈 location = World/* ,
formula = �¬Bob[T] ∨ (♦Bob[T] ∧�¬audio [¬0]) ,
times = Always(3 seconds),
onfail = Jail / • • • /audio/* 〉

(4.2)

“if ever I’m in an office with a music playing agent, jail the agent if it has not left
within 3 seconds”

The policy location field World/* causes the rule to be applied to all children of the
entity namedWorld , i.e. in the diagram in Section 3.2 this corresponds to all the offices,
〈World , Bob’s office 〉 and〈World , Charlie’s office 〉. The same formula is ap-
plied individually to each of these entities. The formula�¬Bob[T] holds if the entityBob is
nowhere inside the office; the formula♦Bob[T] holds if the entityBob is somewhereinside
the office and the formula�¬audio [¬0] holds if there is not a non-emptyaudio context
anywhere within the office. Taken together, the wholeformula may be read as

Either Bob is not inside the office concerned (in which case there is no violation)
or he is inside the office but there is no sound playing.

If the policy is violated in the office namedx then the onfail action is expanded to
Jail World/ x / • • • /audio/* causing audio playing agents inside officex to be jailed.

The consequences of this policy are summarised as follows:

1. If a music player agent attempts to migrate inside the same office as Bob the request
will be denied, assuming that his policy is not overridden by anyone more senior in the
company.

2. If a music player agent running on a laptop or PDA is physically moved inside his
office by someone else, that agent will be jailed.

Now consider what will happen when Alice enters Bob’s office. Clearly the two policies 4.1
and 4.2 now conflict. Alice’s mobile agent will attempt to migrate inside Bob’s office so the
system will apply the conflict resolution rules described in Section 4.5. Assuming the system
knows that Bob “owns” the entity namedWorld (since he is the boss) his policy will override
those belonging to Alice and the migration request will be blocked.

Imagine a third user, Charlie, with more malicious intent. This user attempts to lure hapless
agents into his domain and then trap them there forever. He decides to target Alice’s music
playing agent and writes the following:

〈 location = World/Charlie’s office ,
formula = ♦(music player [T]),
times = Always(3 seconds),
onfail = Log 〉

(4.3)

“for all time themusic player agent should remain inside my office.”
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Consider what happens when Alice is enticed into Charlie’s office for a coffee and biscuit. Ini-
tially Alice’s music player ’s request to migrate into Charlie’s office is accepted since it
does not violate any policy (in fact it causes rule 4.3 to no longer be in violation – an improve-
ment!) When Alice leaves the office the music player attempts to follow her. Charlie’s and
Alice’s rules are now in direct conflict; Alice’s rule is violated if the agent stays and Charlie’s
rule is violated if the agent goes. Note that both rules have an entirely passiveonfail action.
Unfortunately for Alice since Charlie “owns” his office his policies take priority and therefore
the agent’s request to leave is denied. What can Alice do? The only solution for Alice in
this situation is to appeal to a higher authority – in this case Bob – someone whose policies are
ranked higher than Charlie’s. Bob may write a policy to evict Alice’s agent, overriding Charlie’s
wishes.

4.7 Related Work

Many people have developed mobile-agent frameworks which included support for some
kind of mobility security policies. Dag Johansen, one of the developers of the influential
TACOMA [101] system recently wrote in a 10-year retrospective [99] that

more than 100 mobile agent systems have been built, where the majority, to be
modest, hardly provides any incremental contribution to the community as a whole.

Many of the systems Johansen referred to were developed independently, by different teams
and using different languages and tools. However they all implemented more-or-less the same
functionality. Johansen claims that the lack of a satisfactory solution to mobile-agent security
problems together with a general lack of akiller-appand not the lack of support for a particular
language or system prevented the large-scale deployment of mobile agent systems.

Rather than describe 100 near-identical mobile agent systems it suffices to mention only a
few classified into the following groups: (i) traditional mobile-agent systems as described by
Johansen; (ii) proposals for distributed programming languages; and (iii) middleware systems
supporting object migration. Each of these groups shall now be described and their support for
security policies contrasted with the mobility restriction policies presented here.

4.7.1 Traditional Mobile-Agent Systems

Traditional mobile-agent systems is the name used here for those systems which aim to create
generic mobile-agent middleware for writing agents in existing languages. They have many
features in common. They focus mainly on mechanism: how to transmit agents between sites
(running on different platforms); how to protect sites from aberrant agents; and how to specify
security policies to guard accesses to local resources. These systems are differentiated through
many subtle features. One such feature is the type of mobility offered [87] (first mentioned in
Section 2.1). Some systems are said to offerfull mobility: the migration of all state including
that within the kernel. Another variation isstrong mobilityin which a system is able to introspect
and migrate running code. The remaining systems offerweak mobility, insisting that agents
perform manual shutdown and restart. Even these distinctions are not very discriminating;
Bettini et al describe how strong mobility may be implemented on top of weak mobility with a
syntactic translation [23].

Two example systems shall be described, one academic system (TACOMA) and one indus-
trial system (Aglets).
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TACOMA

The TACOMA [101] (Tromsø And COrnell Moving Agents) project had several major revisions
over a 10 year period, the features of each version are summarised in a summary paper [100].
The most recent version allowed agents to be written in a variety of programming languages and
supported communication over TCP. TACOMA provided weak mobility; agents were charged
with handling their own serialisation rather than relying on runtime support for freezing running
code (which would prevent agents being written in many languages e.g. Java). Agent state
was handled through “briefcases” which could be left permanently on one site or transmitted
between sites. Briefcases contained nested “folders” containing application data.

Special “firewall agents” are used to enforce application-specific security policy on arriving
agents. Depending on the security policy in force, arriving agents might find themselves exe-
cuting in a private location (like a sandbox) where they cannot communicate with other agents
(in TACOMA agents must be in the same location in order to communicate). In the system de-
scribed here, a sandbox would correspond to a location with restricted privileges (via theprivs
function) and a mobility policy which prevented any agents contained inside from migrating out
of the sandbox.

Several aspects of TACOMA are shared with this work. The TACOMA project imagined
mobile agents running on PDAs [97] and mobile phones [98], equivalent to the portablelaptop
entities used in the USM described here. The hierarchical data stored in TACOMA briefcases
and transported between sites could be represented by creating a new sort of entity (“data”) and
allowing agents to have these entities nested inside. The TACOMA framework differed from
the system described here in three significant ways. Firstly, TACOMA considered only mobile
agents and agent servers; it had no access to physical sensor information and therefore made no
attempt to support a unified representation of both physical objects and mobile agents like that
described in Chapter 3. Secondly, TACOMA did not directly associate locations with access
to specific resources instead preferring to restrict access to resources depending on whether a
mobile agent has been signed. TACOMA has no equivalent to theprivs function described in
Section 4.3. Thirdly, TACOMA firewall agents would impose mobility policy by preventing
certain agents from migrating to specific locations. The mobility restriction policies described
in Section 4.4 also copes with unrestrictedphysicalmovement by triggering a corrective action
aftera policy has been violated.

Aglets

Aglets [106] (a portmanteau word derived from “agent” and “applet”) is a Java-based API
for building mobile agents released by IBM. The Aglet system has much in common with
TACOMA with the major difference that it is based entirely upon Java. Security policies in the
Aglet system are based upon the Java-2 security model [74] in which code is selectively trusted
or not depending on its origin and/or the presence of recognised signatures. This signature-
based scheme is totally different to that proposed here; it does not associate virtual locations
with privileges nor does it attempt to handle physical movement as well as agent migration,
a feature essential to cope with the expected hordes of networked mobile devices outlined in
Chapter 1.

4.7.2 Distributed Programming Languages

The termdistributed programming languageis used here for projects which aim to create al-
together new languages suitable for developing distributed (often agent-based) systems. The
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following sections describe three such systems and describes both how they approach security
and how the approaches taken differ from the system proposed here.

Telescript

The Telescript system [157] is an object-oriented programming language designed to support
a remote programming model offeringstrong mobility. Security in the system is addressed by
the use of safe language features such as the lack of pointers, types , automatic memory man-
agement, built-in authentication mechanisms and a system of capabilities known as “permits”.
Telescript has the concept of “regions” each of which can have their own security policy just as
context entities here are associated with sets of privilege. Both Telescript and the system de-
scribed here allow policy to be written to prevent agents migrating to particular places. However
unlike the system presented here, telescript does not directly support policies written in terms
of spaces and does not support physical regions – all regions in telescript are entirely virtual.

Obliq

Obliq [32] is a dynamically-typed language built on top of Modula-3 Network Objects at DEC
SRC. It aimed to exploit the existing Modula-3 middleware facilities including remote object
naming, invocation and garbage collection. Obliq introduced distributed lexical scoping: it al-
lows procedures to be sent to remote sites complete with free variables which remain bound to
their original definition sites. Issues involving security were delegated to the underlying net-
work objects middleware. The middleware supports security through (i) callee authentication;
(ii) access control lists for individual objects; and (iii) non-forgeability of references to secure
network objects. This very traditional approach to security is completely different from and
orthogonal to that proposed here. Chapter 1 argued that the environment will be filled with
physically and logically mobile programs necessitating mechanisms to limit the mobility of
software, hence the mobility restriction policy presented in this chapter. Agents will still need
to be able to authenticate each other and control access to their internal state and so a system
like that used by Obliq and secure network objects may run in parallel with the system proposed
here.

JoCAML

Conchon et al produced a mobile-agent system for Objective-Caml based on the Join Calcu-
lus [43] (the Join Calculus was described earlier in Section 3.3.1). Furthermore, on top of Jo-
CAML Fournet created a proof-of-concept implementation [70] of the Ambient Calculus. The
Ambient Calculus was described in detail in the previous chapter in Section 3.3.1. JoCAML
and the Ambient Calculus encoding are powerful tools for creating distributed systems.

Facile

Facile [72] is a high-level, higher-order programming language based on Standard ML [116]
with the addition of a model of concurrent processes based on Milner’s CCS [115]. Facile has
the concept of a node – effectively a virtual processor – on which processes may execute. Indi-
vidual processes communicate and synchronise using typed channels; any value may be trans-
mitted, including user-defined types, channel names and functions. In addition to possessing a
robust implementation, Facile (the first release of which was known as “Facile Antigua” [160])
has been studied extensively from a theoretical standpoint. As a programming language, Facile
does not include built-in support for security policies; however it could be used to create an
implementation of a system like that presented here.

79



4.7. Related Work Chapter 4. Mobility Restriction Policy Language

Distributed π

First mentioned in Section 3.3.1, the Distributedπ calculus (Dπ) incorporates notions of remote
execution, migration and site failure into theπ calculus. Channels in Dπ are explicitly located;
using a channel requires knowledge of both the name of the channel and name of the location.
All names (for both channels and locations) have permissions detailing what can be done with
the name. Defined permissions include:

snd : to send data along a channel

rcv : to receive data from a channel

run : to run a thread at a location

newc : to create new channels at a location

subl : to place sublocations at a location

mig : to move a location complete with all threads and sublocations

halt : to kill a location, stopping all threads from running

When names are communicated, certain permissions are communicated too. A type system
is employed to ensure that well-typed terms only use received names in a manner consistent
with the permissions received along with the name. Dπ and the system proposed here have
one obvious feature in common: both systems represent locations as trees. However unlike
Dπ in which all locations are under the control of the programmer, in the system presented
here some locations correspond with mobile physical objects and are simply observed, not
controlled. A major difference between the two systems is that Dπ programs are type-checked
at compile-time whereas MRPL policies are enforced dynamically at run-time against agents
whose program code may not be available to the system for any up-front analysis.

KLAIM

KLAIM (A Kernel Language for Agents, Interaction and Mobility) [49] is a mobile-agent for-
malism based upon Linda. KLAIM supports multiplelocatedtuple spaces and operators for
building processes. A KLAIM program (also called anet) consists of a collection ofnodes;
each of which has a process component and a tuple space component. In KLAIM terminology,
the concrete name of a node is asiteand alocality is the symbolic name of a node. Localities are
considered first-class data and can be dynamically created and communicated over the network.
Programs may be written using the X-KLAIM [24] tools and compiled into Java for execution.
Programs are written in terms of localities and are independent of the actual physical distribu-
tion of nodes. The net primitives address distribution and co-ordination issues, including the
visibility of localities and the mappings of localities onto sites.

KLAIM uses a simple type system to statically enforce security properties [122]. Type-
checking is a two phase process; the first phase deduces process intentions (e.g. read, write,
intention to migrate etc.) with respect to the various localities they may interact with; the
second phase checks whether each process actually has the necessary rights (granted by the
administrator) to perform the intended operations.

KLAIM has some similarities to the system proposed here. Both KLAIM and the MRPL
attempt to control access to localised resources and to prevent some process migrations (in
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KLAIM a migration would be blocked if the process had insufficient access to the intended
migration target whereas here migrations would be blocked if found to violate MRPL policies).
However KLAIM and the system proposed here have a number of philosophical differences.
The KLAIM system analyses a fixed network of sites up-front in a compile-time type-checking
phase whereas we take a more dynamic approach, enforcing policies at run-time. Rather than
only consider networks of sites, MRPL policies are written also in terms of physical spaces and
can react to the physical movements of people and computers.

4.7.3 Middleware-based Approaches

This section provides an example of a piece of middleware which supportsobjectmigration.
Object migration systems allow the state of an object to be moved from one host to another
and typically have some request redirect mechanism whereby requests sent to the old object
location get transparently rerouted to the new location. From the point of view of other objects
interacting with the migrating object, nothing has happened save a slight pause as the object
moved. Object migration systems can be used to implement mobile agents systems supporting
weak mobility; i.e. those which require agents to assist in their own shutdown and restart post-
move.

LocALE

The LocALE [47] (Location-Aware Lifecycle Environment) framework provides a
CORBA [123]-based mechanism to control the life-cycle (i.e. creation and destruction) and
location of software objects residing on a network. LocALE defines the notion of aLocation
Domain– a group of machines physically located in the same place. This aspect of the LocALE
system could be represented easily in the spatial model presented in Chapter 3; a Location Do-
main would correspond to a set ofworkstation entities with a common parent entity.

The LocALE project addressed two primary concerns: (i) providing the underlying
(CORBA-based) mechanism for causing objects to move seamlessly from one object server
to another; and (ii) using a vision-based environmental sensing system (called TRIP [48]) to
trigger objects to change location. The LocALE system made the simplifying assumption that
everything operates within the same trust domain and hence no specific support for security
was required. The system could use whatever CORBA security systems are available on the
hosts (such as transport-level encryption via SSL) in much the same way as Obliq could use
the underlying feature-set of the secure network object system. This thesis makes the different
assumption (outlined in Chapter 1) that many mobile programs will not be trusted – or equiva-
lently contain errors which cause them to act in an untrustworthy fashion – and hence we require
mechanisms like the mobility restriction policies described in this chapter to remain in control.

4.8 Summary
This chapter used the spatial model introduced in Chapter 3 as the basis for creatingmobility
restriction policieswhich allow the movements of mobile agents to be controlled in an environ-
ment augmented with physical location sensors. The spatial model was extended to associate
entities with access to resources (via the functionprivs defined in Section 4.3) allowing the
same policies to be used to govern both movement and resource access. Policies are intended to
be written by individual users with potentially conflicting goals. A metapolicy system to resolve
policy conflicts was presented in Section 4.5 and was demonstrated by means of a hypothetical
example in Section 4.6.

This thesis argues that application-level security policies governing the mobility and inter-
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face behaviour of applications are an effective technique to prevent vulnerabilities which would
otherwise plague future ubiquitous computing systems. Potential threats enabled by physical
and logical mobility were outlined in Section 4.1 and the mobility restriction policy language
was argued by means of a series of examples to be an effective mechanism to prevent this class
of attacks. A prototype implementation of the system described here has been created and de-
scribed in Chapter 7. This chapter concludes the study of the mobility aspect; the following two
chapters focus on theinterface behaviourof applications.
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Security Policy Description Language v 2

This thesis introduces new application-level security policy systems to govern both themobility
and interfacesof applications. Chapter 3 and Chapter 4 discussed the mobility aspect; this
chapter and Chapter 6 focus on the interface aspect.

Many contemporary web-applications possess application-level security vulnerabilities. Ac-
cording to a ZD-NET survey [113] 30-40 percent of all e-commerce sites and according to
Internet Security Systems (ISS) [95] 11 widely-deployed shopping carts are vulnerable to sim-
ple application-level attacks. These vulnerabilities may be classified into a small number of
categories, including client-side modification, SQL attacks, Cross-Site Scripting (XSS) and
Forceful Browsing attacks. Each type of vulnerability stems from an undocumented interface
assumption; an assumption that a malicious user can violate often to great effect and which this
thesis addresses in a systematic manner.

Unfortunately, although each vulnerability is simple in nature it is nevertheless difficult to fix
all the errors scattered across a large codebase. A realistic application is likely to be constructed
of multiple components, each written by different people in different languages. Additional
difficulties arise when components have been bought and are only available in binary form,
preventing any analysis of the sourcecode.

This chapter introduces a language called SPDL-2 which allows security policy to be created
to protect an entire web-application interface. SPDL-2 allows the specification of per-request
and response validation and transformation rules which can protect applications from all of the
vulnerabilities listed above with the exception of Forceful Browsing, the subject of the follow-
ing chapter. SPDL-2 policies are kept separate from the main application codebase and can be
enforced against applications even without access to the original sourcecode and irrespective of
programming language(s) used. Using SPDL-2 application integrators and installers can proac-
tively fix bugs in third-party components without waiting for the original vendors to produce a
fix1.

The structure of this Chapter is as follows: Section 5.1 describes the threat model used
by Chapters 5 and 6. Section 5.2 describes the common security vulnerabilities addressed
by SPDL-2: namely Client-side Modification, SQL Attacks and XSS. It is argued that these
vulnerabilities are evidence of the existence offorgotten assumptionswithin the apparently
simple interfaces exposed by these applications. Using the interface framework described in
Section 2.3 the general-form of interface modification required to fix these problems is de-
scribed in Section 5.3. The language SPDL-2 is introduced in Section 5.4 and the capabilities

1Vendors have to produce fixes that work on all installations without needlessly breaking functionality. It is
often easier to fix the bug locally because (i) some functionality may be unused and breaking it does not matter;
and (ii) the application with the fix can be tested readily.
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Figure 5.1: Block diagram showing the structure of a hypothetical system highlighting the users
responsible for each component. Arrows indicate interface communication.

are demonstrated through a case study in Section 5.5. Section 5.6 finishes with a discussion of
alternative security mechanisms.

5.1 Threat Model
This section summarises the threat model behind the interface security policies described here
and in the following chapter. We begin by classifying and describing the people involved in the
production, maintenance and use of an e-commerce system on the Internet:

component vendorswho sell black-box components (e.g. an e-commerce shopping cart);

application integrators who create sites by connecting components together with custom ap-
plication logic;

system administrators who configure and run machines in a corporate environment;

network operators who run the public network; and

users who access the application over HTTP.

We assume that the application integrators and system administrators work for the same
company—the company who wish to run the application—and are therefore fully trusted. The
component vendors are assumed to be semi-trusted third-parties who—although they cannot
guarantee to write perfectly secure software—nevertheless do not deliberately introduce trojans
into their products. The network operators and users are completely untrusted and it is assumed
that they are prepared to act maliciously to gain any advantage by exploiting vulnerabilities in
the application. The diagram in Figure 5.1 shows the structure of the system and highlights
which group of users is responsible for each part. Note that we do not consider mobility in
this description; we only consider interface behaviour. Note further that in the diagram, re-
sponsibility for the application-level policies has been split between the application integrators
and the system integrators to reflect the fact that the policies are of interest to both groups: the
system adminstrators who have traditionally been responsible for security and the application
integrators whose application the policies are written specifically for.
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We assume that transport-level security (e.g. SSL) is used to protect communications be-
tween the users and the servers and therefore that the network operators are not able to eaves-
drop on traffic. We do not consider Denial-of-Service attacks where legitimate users are blocked
from accessing the servers by floods of bogus network traffic. We assume the system admin-
istrators stay on top of the relevant OS and server software patches and manage their network
firewall rules so that the server machines may not be exploited directly. We do not consider
the security of the users’ machines to be important; the worst case scenario is that an attacker
takes over computers belonging to other people and acts on their behalf. We do not distinguish
attacks coming this way from attacks coming directly from the attackers’ own machines2. We
assume that physical attacks are not possible because the servers are locked away. Therefore
the remaining threats are due to:

• vulnerabilities in the third-party components; and

• vulnerabilities in the custom logic glueing the components together.

We assume that these application-level vulnerabilities can be used to subvert the application and
leave it under the complete control of an attacker, even if all else in the system is secure. The
two policy languages, SPDL-2 and SWIL described in this and the following chapter aim to
address these remaining interface vulnerabilities. Note that policy enforcement is always done
on the application-level firewall on the server-side. Some additional policy enforcement may
be done on the client-side too—to save the cost of a round-trip to the server—but in all cases,
policy is always checked on the server sideas well.

5.2 Common Security Vulnerabilities
This section contains a set of example web-application security vulnerabilities found in many
applications today. This set is not exhaustive; for a more exhaustive list the reader is referred
to the Open Web-Application Security Project (OWASP) “top 10” vulnerabilities list [9]. The
examples presented here are intended to provide a flavour of the problem and motivate the
subsequent discussion.

5.2.1 Client-side Modification

Section 2.4.5 described the need to store application state on the client-side to provide the
illusion of a coherent session over the inherently stateless protocol HTTP. Application state
can either be stored as a cookie or within a component on an HTML form. HTML forms
contain several types of stateful components including textboxes, list selections, checkboxes,
press buttons and even specialhiddenelements, designed specifically for storing client-side state
invisibly. All of these may be changed. Many online e-commerce applications are vulnerable to
so-called “hidden price field”’ attacks [113] where users are able to modify the prices of goods
stored in hidden fields on the client-side.

In addition to client-side state some applications use client-sidecodewritten in the language
Javascript. Such code is commonly used to prevalidate user input by checking all the input fields
have appropriate values before sending the data to the server; useful to avoid unnecessary and
slow round-trips to the server. However, it is unsafe to rely on this code catching errors as
it can also be changed by a malicious user, neutralising whichever checks it performs. Any
application which does rely on client-side code may be vulnerable to attack.

2Of course the difference between these two cases is in the potential forcatchingthose responsible; an attacker
using someone else’s machine is presumably much harder to catch than an attacker using their own machine.
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Defence

Client-side Modification attacks happen when application-developers mistakenly assume that
code and data on the client side will not be modified. These attacks can be defended against by
carefully checking all data (even hidden data) on the server-side; the server should never rely
on the honesty of the client.

5.2.2 SQL Attacks

SQL Attacks are sometimes known as “metacharacter attacks” or “quoting attacks”. Web-
applications often include database components. For example, in an e-commerce application
a database would be used to store the shop catalogue, inventory and a list of customer orders.
Database interfaces are often written in terms of Structured Query Language (SQL) statements
which are dynamically interpreted by the database engine. Applications construct these SQL
queries, transmit them to the database which responds with a table of records which match the
query. In a web-application the queries often involve data obtained from the user, for example
the password supplied by the user to log into their account. Consider an application which
contains code like the following:

$query =
"SELECT * FROM users WHERE username=’"+$username+"’"+

" AND password=’"+$password+"’;";

where the variables$username and$password are bound to the user’s username and pass-
word as entered on a login HTML form. Imagine a malicious user types their username as

Administrator’; \#

and leaves their password blank. After minor textual reformatting the SQL query constructed
by the system will be

SELECT * FROM users WHERE username=’Administrator’;
# ’ AND password = ’’;

In SQL the character# indicates the following data up to the end of line is a comment. Therefore
this SQL query is equivalent to

SELECT * FROM users WHERE username=’Administrator’;

which will successfully retrieve the system administrator’s user account from the database,
without checking the password.

Defence

SQL attacks happen when developers fail to safely incorporate user data with SQL queries.
They can be defended against by carefully separating all SQL metacharacters (" , ’ etc.) from
user input through careful escaping or changes to the database interface (e.g. using precompiled
SQL statements rather than relying on dynamic interpretation).
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5.2.3 Cross-Site Scripting

Section 5.2.1 described how client-side Javascript code is often used to enhance applications
by pre-validating form input thus avoiding a costly round-trip to the server to catch simple type
errors. The Javascript security model is based upon thesame origin policy. This policy states
that Javascript code from a particular site can only access private state belonging to the same
site. The intention is to prevent Javascript written by a malicious user from stealing another
application’s session state.

The web was intended to be an interactive medium which encourages everyone to publish
their own information. This is exemplified by the proliferation of bulletin-board applications
which invite users to post messages in various discussion threads. Unfortunately if a malicious
user is able to publish a message containing Javascript code then when a normal user views
the message the malicious Javascript will appear to have come from the bulletin-board site and
the same origin policy will allow the Javascript to access the session state of the bulletin-board
application.

The termsession hijackingrefers to a technique for impersonating another user by stealing
their session information somehow. As discussed in Section 2.4.5, such session data is often
stored on the client-side due to the stateless nature of HTTP.3

Once Javascript code can access the session information it can be trivially sent to an attacker,
for example by fetching a URI with the secret information as a query parameter. This subversion
of the same-origin policy is known as Cross-Site Scripting (XSS).

Note that XSS attacks can be used in conjunction with client-side modification attacks:
consider an application which requires users to register before being granted access by entering
personal details such as their full name and address. A typical HTML form for this purpose
would contain separate HTML text boxes for forenames, surnames, title and address. Many
sites impose length restrictions on fields like the title field; after all, most titles are quite short
e.g. Mr. Mrs. Rev. Dr. Prof. etc. It seems superficially unlikely that much malicious Javascript
code would physically fit in such a short field. Correspondingly a web-application designer
might decide not to bother filtering that particular field. However, if the length restriction is only
imposed on the client-side then it will be possible to modify the form, remove the restriction and
use the changed form to upload a much larger than expected title field, containing the malicious
code. If successful, anyone who views the malicious user’s title on screen may also accidentally
(and transparently) execute the malicious Javascript.

Defence

XSS attacks result from improper filtering of input data. Avoiding XSS attacks involves care-
fully filtering every piece of data submitted by a user removing all suspect code and HTML
tags which might be displayed by the application.4 The application server must remove all data
received from a clientA which, if sent to another clientB, would be interpreted by clientB’s
browser as something other than “normal” content.

3Some websites tie sessions to IP addresses, avoiding the need to store any additional client-side state (note
the IP address is another form of client-side state). Unfortunately the use of web-proxies, Network Address Trans-
lation (NAT) and load-balancers render this technique almost useless in practice. Additionally, IP addresses (and
therefore sessions) can be forged.

4A difficult task because the server must filter everything the client may interpret as a script. Many different
browsers exist, each of which has its own set of bugs and undocumented features.
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5.2.4 Forgotten Assumptions: the root cause of vulnerabilities

The vulnerabilities described here are all caused by application developers making unwarranted
assumptions about client behaviour. Within a single organisation it may be safe to assume
that clients always behave in a predicable way but on the Internet where clients and servers
normally run within different organisations a secure server should never trust a client or make
any assumptions about its behaviour.

The assumptions made by developers in the above vulnerabilities fall into three groups:

1. query parameters (as entered on forms) are transmitted as text but often represent higher-
level types (e.g. a credit card numbers) which need to be checked;

2. freeform textual data is often assumed to be free of special metacharacters (like# in
SQL);

3. data stored on the client-side (as cookies or hidden form fields) is modifiable.

A client-side modification attack (Section 5.2.1) is possible when developers either forget to
check the types of form parameters (item 1) or forget that data on the client-side is modified,
even if it has been marked as hidden (item 3). SQL attacks (Section 5.2.2) and XSS attacks
(Section 5.2.3) occur when developers forget that users can enter special characters (item 2) –
fragments of SQL or Javascript – which cause code to be executed either on the back-end server
or third-party clients.

5.3 Formalising interface assumptions
Previously in Section 2.4.6 an interface exposed by a web-application was described consisting
of a set of functions of the form:

URI (in request req, out response res) assume { }
guarantee { }

This interface is very generic, insisting only that clients send valid HTTP requests (represented
by the argument of typerequest) and guaranteeing only that the application will generate valid
HTTP responses (represented by the typeresponse). The existence of the vulnerabilities de-
scribed in Section 5.2 is evidence that many real applications have more complicated interfaces
with additional and unchecked assumptions about client behaviour.

In this Section we make web-application interface assumptions explicit by creating a new
interface which acts as an interface firewall, checking the assumptions before up-calling to the
original interface. We define the following predicates:

Typecheck(u, req) holds iff the parameters and cookies within requestreq are valid with respect
to the SPDL-2 policy associated with URIu

Statecheck(u, req) holds iff all MAC-protected client-side state within requestreq mentioned
in the SPDL-2 policy associated with URIu is intact

Escaped(u, req) holds iff all metacharacter escaping has been performed on the requestreq as
specified by the SPDL-2 policy associated with URIu

Protected(u, res) holds iff the client-side state mentioned in the SPDL-2 policy associated
with URI u and stored within the HTML form in the responseres has been protected by
a MAC.
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interface I {
type cookies = string
type uri = string
type parameters = (string × string)list

type request = uri × parameters × cookies

type response = uri × parameters × cookies

U1(in request req, out response res)
assume { Typecheck(U1, req),

Statecheck(U1, req),
Escaped(U1, req)}

guarantee {Protected(U1, res)}
. . .
Un(in request req, out response res)

assume { Typecheck(Un, req),
Statecheck(Un, req),
Escaped(Un, req)}

guarantee {Protected(Un, res)}
}

Figure 5.2: A web-application firewall interface with URIs={U1 . . .Un} using the formalism
of Section 2.3.

The generic interface for a web-application was displayed in Figure 2.14. The new interface
with additional assumptions and guarantees is displayed in Figure 5.2. Each of the assumptions
(Typecheck(U1, req), Statecheck(U1, req), Escaped(U1, req) corresponds to an explicit check
made by the application-level firewall. If any of the assumptions do not hold (i.e. the corre-
sponding check fails) then the request is blocked and the application is protected. Similarly, the
guarantee made about the response (Protected(U1, res)) corresponds to a transformation ap-
plied to the response – annotating client-side state with MACs – before returning to the caller.

5.3.1 Example

Consider part of an e-commerce application consisting of 2 URIs whose paths5 are
viewdetails and commit . The URI viewdetails displays details of a transaction,
prompting the user for confirmation while the URIcommit finalises the transaction by debiting
the user’s credit card and storing the order in a back-end database. The raw generic interface
would have the following form:

interface Application{
viewdetails(in request req, out response res)
commit(in request req, out response res)

}

Imagine the application stores all session data on the client-side as hidden form fields. The form
returned byviewdetails will look something like the following:

5A URI http://www.example.com/view has pathview .
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<form target="commit">
<input type="hidden" name="productID" value="1234"/>
<input type="hidden" name="price" value="19.99"/>
...
<input type="submit">Submit order</input>

</form>

The formtarget field indicates that the values contained within the form should be sent to the
URI commit when the user presses the submit button. Notice the two hidden text fields; one
stores the integer ID of the product being purchased and the other stores the price as a floating
point number.

The application is potentially vulnerable in the following ways:

• it may not check the types of theproductID andprice fields, leading to undefined
behaviour in the event the user changes the types of these values; and

• theprice field (representing the price of an item in a shopping cart) is left on the client-
side and may be modified by a user keen to get an unauthorised discount.

We may protect the application by creating an interface firewall with an interface like that shown
in Figure 5.2 and producing suitable definitions for the predicates:

• Typecheck(commit, req),

• Statecheck(commit, req),

• Escaped(commit, req) and

• Protected(viewdetails, res).

The predicateProtected(viewdetails, res) should guarantee the hidden field data returned
by theviewdetails URI is protected by a MAC. TheTypecheck(commit, req) predicate
should guarantee the types of the parameters:productID is an integer andprice is a floating
point number.Statecheck(commit, req) verifies the client-side state protected by a MAC (i.e.
by theProtected(viewdetails, res) predicate) is still intact. This example does not contain
an SQL Attack (Section 5.2.2) or XSS (Section 5.2.3) vulnerability and so we require

∀req .Escaped(commit, req) = T

MACs allow servers to verify that state stored on the client-side (in the form of hidden
fields) is returned unmodified. A well-written server would be expected to store well-typed
data in such MAC-protected fields; returning to the previous example, one can see that the
productID field was an integer while theprice field was a floating-point number. However,
it is possible to imagine a buggy server which accidentally generates badly-typed hidden form
data. Such badly-typed data might lead to an application-level error when the data is returned
unmodified to the server. Therefore it is still useful to typecheck all data, even though some is
MAC-protected and cannot be modified by malicious users. Typechecking therefore serves two
purposes: (i) it prevents users entering badly-typed data into form fields; and (ii) it prevents a
buggy application from sending itself badly-typed data through hidden form fields.

The next section describes the language SPDL-2 – Security Policy Description Language
version 2 – which is used to define concretely the request/response validation constraints and
transformations represented by the predicates mentioned above.
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5.4 SPDL-2 Overview
The language SPDL-2 (Security Policy Description Language version 2) allows the spec-
ification of both per-URI validation constraints and data transformation rules. The first
version of SPDL was presented at the Eleventh International World Wide Web conference
(WWW2002) [144] and had several deficiencies which have been addressed by the design of
version 2. In particular SPDL-2

• allows policies to be defined hierarchically, factoring out common elements and leading
to more readable specifications;

• allows fine-grained control over expensive HTML-modification operations specifically
the use of Javascript (see Section 5.4.1) and MAC insertion (see Section 5.4.1); and

• uses the same language for both validation and transformation (see Section 5.3 expres-
sions for consistency.

SPDL-2 descriptions may be written by hand or with the aid of automatic tools. Once written,
policies can be compiled into executable code and dynamically loaded into an application-level
firewall which sits between the Internet and the back-end web-server. The following sections
describe the SPDL-2 language in detail.

5.4.1 Security Policy Description Language Version 2

At the top level, an SPDL-2 specification is an XML document (XML and HTML were briefly
compared in Section 2.4.3). The full DTD for SPDL-2 may be found in Appendix A. The doc-
ument consists of a single<site> element which in turn contains a collection of<policy>
elements. Each<policy> element contains a group of related<uri> and<cookie> ele-
ments and optionally<parameter> and further nested<policy> elements.

For each<uri> element a number of<parameter> elements are declared. The attributes
of a<parameter> element with attributename = p place constraints on data passed via URI
parameterp:

• The maxlength andminlength attributes specify maximum and minimum length
constraints.

• Settingrequired to “Y” specifies thatp must always contain a (non-zero length) value;

• SettingMACto “Y” specifies that the value ofp must be accompanied by a Message Au-
thentication Code (MAC) [143] generated by the server. This provides assurance of data
integrity; i.e. the user is prevented from changing the value of the parameter to arbitrary
values .

• The type attribute specifies the data-type ofp (currently eitherint , float , bool or
string ).

Themethod attribute determines whether the specified constraints apply top passed as a GET-
parameter (i.e. a URI argument) or a POST-parameter (i.e. returned from a form).

For example, consider the following policy fragment:
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e ← x (variables)
| c (constants)
| f(e1, . . . , ek) (function calls)
| getparam .c (value of GET parameters)
| postparam .c (value of POST parameters)
| this (value of this field)
| e1 〈op〉 e2 (binary infix operators)
| if e1 then e2 else e3 (conditionals)
| let d . . . d in e end (local declarations)

d ← val x : t = e (immutable bindings)
| fun f(x1 : t, . . . , xk : t) : t = e (function definitions)

t ← int | float | string | bool (types)

Figure 5.3: The Abstract Syntax of the Validation Language.

<policy name="example" description="...">
<uri prefix="http://www.example.com/foo">

<parameter name="p1" maxlength="4"
type="int" required="Y"
MAC="N" />

<parameter name="p2" method="POST"
maxlength="3" type="string" />

</uri>
</policy>

This example specifies constraints on parameters passed to URIs with prefix “http://www.
example.com/foo ”. The first<parameter> element defines constraints to be applied to
a parameter namedp1 passed by either GET or POST; the second<parameter> element
defines constraints to be applied to a POST parameter namedp2 . A larger example of a policy
definition can be found in the case study of Section 5.5. The case study explicitly demonstrates
how policies can be nested within each other in order to abstract common parameters (e.g.
Session IDs etc.) from a group of related URIs.

The attributes of the<parameter> element are intended to cover the majority of valida-
tion constraints required in practice. However one can imagine some circumstances in which
more flexible constraints are required; this is the purpose of the<validation> element.
Within <validation> elementsvalidation expressionsmay be written in a general purpose
validation language. SPDL-2 uses a simple, call-by-value, applicative language which is essen-
tially a simply-typed subset of Standard ML [116] to express validation expressions. Note that
the exact details of the language are not important and a commercial version of the system may
choose to replace ML with a more mainstream industrial language, like Java.

The abstract syntax of the validation language is displayed in Figure 5.3. All well-formed
expressions have typebool ; this restriction is enforced by a compile-time type-checking phase
in which all badly typed expressions are rejected. If the expression evaluates at run-time to
true then this signifies that the parameter contains valid data. Invalid data should cause the
validation expression to evaluate tofalse. Validation expressions are executed in an environment
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in which all HTTP GET parameters namedx may be referenced asgetparam.x , HTTP POST
parameters namedx aspostparam.x and the value of the enclosing parameter is referred to
by the special namethis .

The SPDL-2 system contains a simple standard library of convenience functions including:

• Arithmetic operators+, - , * and / which can be applied to both integers and floating
point values. String concatenation is represented by the infix operator++.

• Relational operatorslt , gt , le andge can be applied to integers, floating point numbers
and strings (under the standard lexicographic ordering).

• The functionString.length(s) returns the length in characters of strings .

• The functionString.format(s,regexp) returns true iffs matches the form spec-
ified by regular expression,regexp .

• The functionString.mid(s,l,r) returns the substring ofs which starts at character
l and finishes at characterr inclusively. (Characters ofs are numbered from 1).

• Functions are provided to convert between different types. For example,String.
fromInt(i) returns the string representation of integeri .

• Functionisdefined(p) takes a parameter (e.g.getparam.p or postparam.p )
and returns a boolean indicating whetherp is defined (i.e. has been passed to the URI in
the HTTP request). Using an undefined parameter as an argument to any other function
or operator leads to a dynamically generated error message.

Transformation rules for parameters and cookies are written in the same language as valida-
tion expressions but are often much simpler. The standard library contains a number of functions
covering some of the common cases. For example, if it was necessary to remove all spaces from
a parameterp and then SQL-escape the result the specification would look something like:

<transformation>
let fun filter(s: string, char: string):string =

let val first:string = String.mid(s, 1, 1)
val rest:string = String.mid(s, 2,

String.length(s) - 1)
in if (fst = char) then filter(rest, char)

else first ++ (filter(rest, char))
end

in Transform.SQL( filter( this, " " ) )
end

</transformation>

The standard library contains the following functions:

• The functionTransform.EscapeSingle(s) returns a copy of the strings where
all single quotes have been replaced with their HTML character encoding.
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• The functionTransform.EscapeDouble(s) returns a copy of the strings where
all double quotes have been replaced with their HTML character encoding.

• The functionTransform.HTML(s) returns a full HTML-encoding of strings where
every meta-character has been replaced by an HTML character encoding.

• The functionTransform.HTMLpartial(s) returns a copy of the strings where all
meta-characters have been replaced by character encodings (likeTransform.HTML )
with the exception of those associated with a small number of allowed tags (including
simple style tags,<b>, <u>, <i> and anchors of the form<a href="..."> ...
</a> ).

• The functionTransform.SQL(s) returns a copy of the strings where all SQL meta-
characters such as ‘; ’ are escaped.

HTML-encoding is a particularly important transformation since inadvertently forgetting
to HTML-encode user-input leads directly to XSS vulnerabilities, described earlier in Sec-
tion 5.2.3. In recognition of the importance of this transformation, the convention is thatall
parameters are HTML-encoded unless explicitly specified otherwise in the security policy. To
turn off HTML-encoding one must set thehtmlencode attribute of thetransformation
element toN. For example one may write:

<transformation htmlencode="N" /transformation>

The DTD in Appendix A specifies that policies within an SPDL-2 document consist of a
series of<uri> and<cookie> elements.<uri> elements have already been discussed in
detail; in a similar fashion,<cookie> elements allow designers to place validation constraints
on cookies returned from clients’ machines. Earlier in Section 2.4.2 the assumption was made
that cookies are global across entire applications i.e. all cookies are returned to the application
in every request. This allows MACs to be generated for all state together.

Client-side Form Validation

Whenever requested by the policy (through the policy attributejavascript="Y" ), the fire-
wall inserts Javascript code to perform client-side validation checks. (Recall that the insertion of
Javascript is only intended to enhance usability – data is always rechecked by server-side code
to avoid the kind of Client-side Modification attacks described in Section 5.2.1). The inserted
code checks most of the SPDL-2 constraints: types, lengths and all custom constraints written
in the validation language. The resulting program is inserted into theonSubmit attribute of a
<form> tag (described earlier in Section 2.4.3) unless such an attribute is already present – in
which case an error is generated.

Message Authentication Codes

Recall that SPDL-2 policies allow URI parameters to be marked indicating that they must only
receive data which is accompanied by aMessage Authentication Code(MAC) [143] to ensure
the integrity of state stored on the client-side. This corresponds to the predicateProtected
described in Section 5.3.

The implementation (discussed further in Chapter 7) uses the HMAC [20] algorithm to
generate MACs by securely combining the protected data with a secret key and a timestamp.
In this way an attacker is unable to generate new MACs without first finding out the secret key.
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A major danger still facing this system is avoidingreplay attacks[154] where clients replay
messages already annotated with MACs in unexpected contexts. Two steps are taken to avoid
such attacks:

1. A time-stamp is included in the MAC to guarantee messagefreshness.

2. Rather than generating separate MACs for each individual protected field, a single MAC
is generated for all protected client-side state bundled together. This protects the integrity
of the whole message, protecting against cut-and-splice attacks (in which MAC-annotated
fields are swapped into other messages).

Despite these preventative measures, the responsibility for ensuring that replay attacks are not
damaging ultimately rests with the security policy designer. For example, in the case study of
Section 5.5 a MAC is generated forboth theproductID and Price fields. Although users
can replay such messages this results in multiple purchases of the same product for thecorrect
price. The intention is that the MAC prevents thePrice andproductID being modified
independently.

SPDL-2 requires that HTML pages fetched from URIs that are contained in a single
<policy> block may only contain links to MAC-protected URIs6 which are found in the same
<policy> block (or in a nested<policy> block). By forcing the application’s URIs to be
partitioned in this way an important performance optimisation is facilitated which is discussed
later in Chapter 7.

Server-side State

The previous section described how client-side state may be protected using a MAC generated
from a secret key and a timestamp. The secret key used is a piece of state stored on the server-
side (strictly-speaking the state is stored within the interface-transforming firewall, rather than
the application process itself). One may wonder whetherall state should be stored in this way,
rather than transmitted to the client at all.

The primary difference between the state represented by the secret key and the state stored
in the hidden form fields is that the secret key is considered to be a constant shared across a
lot of independent user sessions, whereas the state found in hidden form fields is application
and session-specific. Consider the example described earlier in Section 5.3.1 which had two
hidden fields:price andproductID representing the price of a good and a database key
respectively. If two users are purchasing different goods from the application at the same time
then they will have differentprice andproductID fields in their respective requests but,
crucially, the MACs will be generated with thesamesecret key.

A single shared secret key for MACs allows us to build a scalable implementation. A cluster
of interface-transforming firewalls can be used, all pre-configured with the same key. Since the
key is shared it will not matter that logically related interactions (e.g. those pertaining to the
same session) could be handled by different firewall nodes. By contrast, if all application state
(like theprice andproductID ) were stored within the firewalls then this state would have
to be shared dynamically between the firewall nodes. Accessing the state would be a bottleneck,
inhibiting the scalability of the system.

The timestamp stored within the MAC is intended to guarantee messagefreshnessand to
limit the scope for replay attacks. The timestamp can be implemented in one of two different
ways. It may be used to contain

6A MAC-protected URI has at least one<parameter> with its MACattribute set to ‘Y’.
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e-commerce 
application

static HTML 
pages

dynamic pages

3rd-party 
component

in-house PHP 
component

Policy enforced dynamically by 
Application-Level Firewall

No policy enforcement
necessary

Figure 5.4: High-level structure of a simple e-Commerce web-site.

1. the exact time the MAC was generated (assuming clocks are synchronised across the
firewalls); or

2. a message sequence number.

The former approach allows the firewalls to reject replayed requests that are more than a certain
number of seconds old. This obviously does not prevent all replays but it has the advantage of
scalability—no extra state is required in the firewalls. The second approach allows firewalls to
reject all duplicate responses, completely preventing all replays but at the cost of requiring extra
state in the firewalls. The implementation of the system described in Chapter 7 uses the former,
stateless approach. It must be emphasised therefore that the primary function of the MACs is to
prevent hidden fields changing separately (e.g. allowing a differentproductID for the same
price ) and not to prevent all replays.

5.5 Case Study

To illustrate the methodology presented in this Chapter a hypothetical e-commerce system is
considered. The hypothetical application is first partitioned into groups of URIs (see Figure
5.4) corresponding to:
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• static HTML pagesincluding “welcome” pages, an “about” page and all static multimedia
content (e.g. images, videos, music);

• a group ofdynamic pagesfurther subdivided into

– an off-the-shelf 3rd party shopping cart component capable of credit card transac-
tions;

– an in-house PHP component.

To make a more realistic example let us assume that:

• both the in-house components and the 3rd party component are configured to set a cookie,
sessionKey , to monitor user movement through the site for marketing research pur-
poses;

• the off-the-shelf shopping cart component is supplied in a binary-only form and therefore
cannot be modified.

Let us further assume that the site in question is vulnerable in the following ways:

1. The in-house PHP code (used to view an online shopping catalogue) has missing input
validation code and can be used to execute arbitrary SQL against the back-end database
using the attack described in Section 5.2.2.

2. ThesessionKey cookie is predictable since it is created using a time-seeded random
number generator; clients can spoof other active sessions by modifying the value of the
cookie in their browser.

3. Javascript can be embedded in thesurname field of the shopping cart login page which,
when viewed on the company’s intranet, leads to XSS vulnerabilities.

4. The Client-side Modification attack (described earlier in Section 5.2.1) can be used to
reduce the price of items in the shopping cart component.

5.5.1 Designing the Security Policy

The static pages can be described simply with a single<policy> block containing a straight-
forward list of URIs; no processing is required for these pages.7 The dynamic pages, on the
other hand, necessitate a more complex policy description. In the example application described
above, the dynamic pages may be subdivided into two sets of pages: those corresponding to the
3rd party component and the in-house PHP code. Each of these sets should be mapped onto its
own<policy> block and then if either component is upgraded the policy changes required are
limited to a single block.<policy> blocks may be nested and inner blocks inherit the param-
eter and cookie specifications from outer blocks. Since thesessionKey cookie is common
to all the dynamic pages it is desirable to nest the policy specifications for the dynamic pages
within a parent<policy> block which declares this shared cookie. The resulting SPDL-2
XML document has the following high-level structure:

7Note that these pages will also silently ignore thesessionKey cookie.
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<site name="e-Commerce website" ...>
<policy name="Static pages" javascript="N">

<uri prefix="About.html" />
<uri prefix="Contact.html" />
...

</policy>
<policy name="Dynamic pages" ...>

<cookie name="sessionKey" MAC="Y" maxlength="16"
type="int"/>

<policy name="dynamic enforcement">
<policy name="3rd party component">

<uri prefix="CreditCard.asp" />
...

</policy>
<policy name="in-house PHP">

<uri prefix="ViewShoppingCart.asp" />
...

</policy>
</policy>
<policy name="static enforcement">

<uri prefix="Login.asp" />
<uri prefix="Buy.asp" />
...

</policy>
</policy

</site>

All that remains is to fill in the individual<uri> elements by writing the appropriate vali-
dation and transformation code. To see how this is done, consider the final step in the purchasing
process in the shopping cart, a continuation of the example first used in Section 5.3.1. Imagine
that users are sent an HTML form requesting their surname, credit-card number and its expiry
date. The price and product-ID are stored in hidden form fields on the form. For example, when
purchasing a product withproductID = 1234, the form sent to the client might be as follows:

<form method="POST" target="commit">

<input type="hidden" name="productID" value="1234">
<input type="hidden" name="price" value="19.11">

<input type="text" name="surname">
<input type="text" name="CCnumber">
<input type="text" name="expires">

<input type="submit">Submit order</input>
</form>
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Once purchases have been made, an order record is entered into the company’s back-end
database which can be subsequently viewed on their local intranet.

The SPDL-2 fragment corresponding to the form’s target URI (commit ) is presented in
Appendix B. Each of the parameters shown in the form above are declared and a number
of validation and transformation rules specified. A typical validation element looks like the
following:

<parameter name="productID" method="POST"
maxlength="10" minlength="1"
required="Y" type="int" />

This fragment indicates that the fieldproductID should be between 1 and 10 characters long,
should always be present and should be a valid integer. Most of the rest of the SPDL-2 specifi-
cation is self-explanatory although a few points are worth noting. Firstly the<validation>
element for theprice field simply states that negative prices are not allowed. Secondly the
more complicated validation expression for theCCnumber field is an implementation of the
Luhn-formula commonly used as a simple validation check for credit-card numbers. Thirdly
the validation expression for theexpires field ensures that it is of the formmm/yyand also
checks that the month is in the range 1–12.

Through repeating this process for all<uri> elements all of the system’s vulnerabilities
(described above) may be fixed without modifying any of the application code:

1. The form- and cookie-manipulation attacks can no longer be used since theprice and
productID fields along with thesessionKey cookie can all be protected by having
theirMACattributes set to “Y”.

2. Thesurname field can be HTML-encoded, preventing XSS attacks.

3. SQL attacks are prevented by applying the transformation,SQLEncode (see Section
5.4.1), to escape quotes in all relevant fields.

If specified in the SPDL-2 specification (by settingjavascript="Y" ), Javascript code
will be inserted to check validation rules on the client-side. In this example Javascript is gen-
erated to ensure that credit-card numbers satisfy the Luhn-formula, that expiry dates are of the
form mm/yy, that thesurname field contains a non-zero-length value etc. Note that if extra
validation constraints are required, they can simply be added once to the policy specification.
Using conventional tools and techniques, the addition of extra validation constraints may require
them to be coded multiple times (once in Javascript for client-side validation and certainly at
least once in the web application’s source code).

5.6 Related Work

Related work is divided into two categories. The first category comprises proposals for new
methods for developing web-applications from scratch which attempt to abstract away many
of the difficulties of traditional web-programming. The second category comprises tools for
analysing and protectingexistingapplications. SPDL-2 falls into the second category.
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5.6.1 New Application Frameworks

Graunke et al

Graunke et al [77] describe a model of web interactions in which each application consists of a
set of URIs, each of which is a function which takes a request and produces a result containing a
single form. This is the same model of web interactions presented earlier in Chapter 2. Graunke
use this model to propose a type system for a new web-scripting language in which each form
is associated with a record type and the server prevents the execution of any program which
might generate a form which violates this typing. Their focus is on preventing run-time errors
caused by programming errors, not on preventing run-time errors caused by malicious users
modifying otherwise-correct forms. As a side-effect of their different focus they also purposely
ignore issues arising from the use of client-side storage, which is an important part of the system
proposed here.

BigWig

The <bigwig> project [1] consists of domain-specific languages and tools for the develop-
ment of web services. A part of the<bigwig> project,PowerForms[28], allows constraints
(expressed as regular expressions) to be attached to form fields. A compiler generates both
client-side Javascript and code for server-side checks.

There are several key differences between<bigwig> and the system proposed here. Firstly
<bigwig> is intended for the development of new web-applications whereas the system here
is able to retrospectively attach security policy to existing applications.<bigwig> lacks a
general-purpose validation language using instead a system of regular expressions. Validation
constraints in<bigwig> and SPDL-2 can both be compiled to Javascript for client-side execu-
tion but<bigwig> only supports server-side validation when the application itself is written in
<bigwig> . SPDL-2 policies can be applied no matter what language the application is written
in.

WASH/CGI

WASH/CGI [159] is a system for building web-applications entirely in Haskell. It is structured
into sub-languageseach handling a different aspect of application development. The document
sub-language handles creating valid XHTML documents, the session sub-language provides a
session abstraction, the widget sub-language allows forms to be typed (in a similar manner to
Graunke at al [77]) and the persistence sub-language handles server-side and client-side storage.
WASH/CGI therefore provides all the facilities needed to develop sophisticated applications
and has no obvious security problems itself. However creating secure distributed application
is still difficult (as argued in Chapter 2). It is still possible to compose together individually
secure components to produce an application with vulnerabilities. For example it would still be
possible to use WASH/CGI to produce an application which uses client-side state insecurely,
like in the earlier e-commerce example of Section 5.3.1. Systems like SPDL-2 are therefore
still useful even when such advanced tools are used to construct systems.

5.6.2 Dynamic approaches

Sanctum AppShield

Sanctum Inc. produce a product called AppShield [140] which, like the system described here,
protects a system by interposing an interface firewall. However, despite this apparent similarity,
there are significant differences between the two systems: we take theprogrammatic approach
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of specifying a security policy explicitly; in contrast AppShield has no policy description lan-
guage or compiler and attempts to infer a security policy dynamically. Whilst this allows App-
Shield to be installed quickly, it limits the tasks it can perform. In particular, since there is no
policy description language for describing validation or transformation rules, AppShield knows
very little about what constitutes valid parameter values in HTTP-requests and can only per-
form simple checks on data returned from clients. AppShield is intended as a plug-and-play
tool which provides a limited degree of protection forexisting websites with application-level
security problems. In contrast, we envisage our approach as also being useful in the design
process of new applications i.e. when components are being composed together to make new
systems.

WebScarab

WebScarab is a freely available Java-based application penetration-testing framework. It is
complementary to the system described here: where SPDL-2 is intended to define the behaviour
of an interface firewall toprotectan application, WebScarab is intended to locate the errors in an
application so they can be fixed. It contains an HTTP proxy, web-spider and a set of predefined
application security tests. WebScarab is not intended to be fully-automatic (the developers say,
“There is no shiny red button in WebScarab”) but rather as a base on top of which developers
can write application-specific tests. WebScarab is used for off-line analysis, not as a permanent
application-protecting firewall like AppShield.

5.7 Summary
This chapter introduced SPDL-2, a language for writing expressive security policies govern-
ing web-application interfaces. SPDL-2 allows the specification of per-request and response
validation constraints and transformation rules which protect web-applications from client-side
modification attacks, SQL attacks and cross-site scripting (XSS) attacks. As justified by the
extended case study, policies written in SPDL-2 are effective even when an application is con-
structed from multiple components, written in different languages and when components are
only available in binary form. Implementation details are presented later in Chapter 7.

One attack, “forceful browsing” was mentioned briefly at the start of this chapter but not
elaborated. This attack and its prevention are the subject of the following chapter.
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Chapter 6

Stateful Web-application Interface Language

This chapter is the second and final chapter dealing withinterfacesof applications. The previous
chapter introduced the policy language SPDL-2 which allows stateless per-request and response
validation and transformation rules to be specified for web-applications. SPDL-2 policies are
able to protect applications from several common forms of application-level vulnerabilities,
including client-side modification, SQL attacks and XSS. Mentioned briefly in the previous
chapter,forceful browsingattacks involve submitting legitimate, well-typed1 requests to an ap-
plication in an unexpected order, causing the application state to become invalid. This chapter
describes this class of attack in detail and presents a new policy language called the Stateful
Web-application Interface Language (SWIL) designed specifically to thwart this kind of attack.

At the most basic level, SWIL describes the acceptable order of operation invocations as
that accepted by a deterministic finite state automaton. SWIL is designed to be both easily
translatable into PROMELA – the input language of the SPIN model-checker – as well as directly
executable by an application-level firewall. Using SPIN, policies in SWIL are readily analysed
before being installed, enabling policy designers to verify the system is free from important
classes of error like deadlocks, livelocks and assertion violations.

Built on top of SWIL, the SWIL Meta-programming System (SMS) provides a high-level
mechanism to automatically generate low-level SWIL programs. SMS consists of an embedding
of SWIL in Objective-Caml (O’Caml)2 [108] together with a library of useful functions which
generate common application control sequences.

SWIL programs can do more than simply block erroneous HTTP requests; they can also be
used to guide the actions of an HTML-based user interface transcoder. The transcoder is capable
of removing all HTML elements (i.e. links and forms) whose normal use3 would always violate
the installed security policy. Finally, to demonstrate the complete SWIL-based system, a series
of examples involving a hypothetical e-commerce site are presented and discussed.

The structure of this Chapter is as follows: Section 6.1 begins with a detailed discussion of
forceful browsing attacks leading into an overview of the SWIL system contained in Section 6.2.
Technical details of both SWIL and SMS are described in Section 6.3, followed by a description
of the translation into PROMELA in Section 6.4 and the dynamic user interface transformation
procedure in Section 6.5. The system is demonstrated by means of an extended example in
Section 6.6. Related work is found in Section 6.7 while section 6.8 concludes this chapter.

1The requests are well-typed in the sense that they pass SPDL-2 parameter validation checks.
2Standard ML (on which SPDL-2 validation expressions are based) and O’Caml are very similar, differing in

minor syntax and library support.
3Normal use is discussed later but specifically excludes activities such as modifying application HTML in a

text editor and generating custom HTTP requests.
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6.1 Motivation
Earlier in Section 2.4.6 the interface for a web-application was described as a collection of
URIs, each of which is represented as a function which takes a single input of typerequest
(representing HTTP requests) and returns a single output of typeresponse (representing HTTP
responses):

URI (in request req, out response res) assume { }
guarantee { }

No other assumptions (represented by the keywordassume) or guarantees (represented by the
keywordguarantee ) were documented in the default web interface description. Chapter 5
described how many assumptions about what constitutes valid input values typically remain
undocumented in real applications. These assumptions often manifest themselves in the form
of application-level vulnerabilities which an attacker can exploit. The policy language SPDL-
2 was designed to allow the specification of stateless per-request and response validation and
transformation rules and when enforced by a special application-level firewall (described later
in Chapter 7) is able to prevent many of these common attacks.

SPDL-2 only deals with argument (parameter) validation. In the description in Chapter 5
nothing was said about the acceptable order of execution of the interface functions; rather it was
assumed that a user could invoke the operations in an arbitrary order with arbitrary parameters,
provided they satisfied the validation constraints.

Unfortunately some application designersdo make assumptions about the acceptable order
of function invocation. When a user invokes a function from the interface, the response typically
contains an HTML document comprising links and forms pointing to further interface functions.
Usersnormally click on these links to continue their session with the application. It is easy
to forget that users can manually type in URIs at any time, open new windows or click on
their browser’s “back” button, potentially confusing the application4. Many current stateful
applications attempt to detect when the client and the server get out of synchronisation and
return an error message. However, as is the case with the other vulnerabilities discussed in
Chapter 5 it is difficult to ensure this potential error case is handled properly everywhere inside
a large application. An attacker need only find one vulnerability in the application to mount a
forceful-browsingattack.

6.1.1 Forceful Browsing Examples

Imagine a hypothetical e-commerce website which has a three stage checkout procedure, dis-
played diagrammatically in Figure 6.1. The first stage (labelled “Step 1”) displays the contents
of the user’s shopping cart and offers the user the chance to make a purchase. The next stage
(“Step 2”) asks the user to enter credit card details while the last stage (“Step 3”) asks for a de-
livery address. The normal path through the application (from “Step 1” to “Step 2” to “Step 3”)
is illustrated with the solid arrows. The web-site designer intends that goods are only dispatched
once both payment and delivery details are confirmed.

Imagine a scenario where a user manages to guess the URI pointing to the delivery address
page. Such a user will be able to request the delivery address page without having filled in the
credit card details first. This alternate path through the application (from “Step 1” to “Step 3”

4It should be noted that a fully stateless application – one in which all application state is stored on the client-
side – is less likely to be confused than an application which possesses mutable server-side state which cannot be
rolled back to a previous configuration. It should also be recognised that not every application can be stateless e.g.
a flight booking application will need to commit a transaction to a database at some point.
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CCNumber:

Expires:

Delivery
Address

Shopping Basket Contents:

Buy

Next

Confirm

1. ...
2. ...

Step 1

Step 2

Step 3

Displays shopping basket
and offers user the 
chance to make a 
purchase

Prompts user for credit
card details

Prompts user for their
delivery address

Figure 6.1: A hypothetical e-commerce website with a three stage checkout procedure. Each
step has a form which points to the following step. The intended path through the procedure is
displayed using the solid arrows. An alternate path, which may constitute a forceful browsing
attack is displayed using a dashed arrow.

bypassing “Step 2”) is illustrated in Figure 6.1 by the dashed arrow. If the application has been
written securely then the unexpected request (“Step 3”) will be rejected and the user forced to
go back and enter their payment details. However, if the application developer has assumed that
the only way to reach the delivery address page (“Step 3”) is by pressing the button on the credit
card page (“Step 2”) and the code contains no explicit check then the application is vulnerable to
a forceful-browsing attack. In this example the forceful-browsing attack may allow a malicious
user to receive goods without paying for them.

It is worth noting that forceful browsing attacks are not always malicious. Many web-
applications use client-side Javascript code to open new web-browser windows, a particularly
common technique in the travel industry. Consider a hypothetical travel booking application
which opens a new window displaying flight details every time a user performs a database
search. Furthermore imagine the application designer intends that each search result is either
accepted (by clicking on a “buy” button) or discarded (by closing the window) before any further
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Search Criteria

Search

Search Criteria

Search

Search Criteria

Search

Confirm Flight

Confirm

Flight Details 1
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Buy
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time

Figure 6.2: A sequence of interactions with a hypothetical travel-booking web-application.
Time runs horizontally left to right. At each point in time a number of windows are open,
displayed vertically.

searches are made. A possible sequence of events is shown diagrammatically in Figure 6.2,
with time running horizontally from left to right. At the first stage (“Step 1”) the user enters
some search criteria and presses the button marked “search”. The second stage (“Step 2”) a new
window has been opened containing the details of a flight (labelled “Flight Details 1”) alongside
the original application window. Rather than discarding this window or accepting the flight, the
user returns to the original application window and enters different search criteria. The results
of the second query appear in another new window (labelled “Flight Details 2”) at the third stage
(“Step 3”). Imagine the user prefers the first result to the second and so discards the window
“Flight Details 2” and presses the button marked “Buy” on the window “Flight Details 1”. At
the final stage (“Step 4”) the user has to confirm the transaction and pay for the flight. The
question is: which flight has the application booked? From the point of view of the user the first
flight has been booked. However if the application contained server-side state relating to the
current search results then it might misinterpret the request and accidentally book the second
flight. In effect, the application has suffered a forceful browsing attack simply because a user
has clicked onlegitimatelinks (i.e. those provided by an application) in an unexpected order –
no guessing of URIs or other dubious behaviour was required on the user’s part.
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Defence

Forceful-browsing attacks occur when developers forget that users can invoke interface func-
tions at any time, with any arguments (provided they satisfy whatever parameter validation
scheme is in force). They are a direct consequence of the mismatch between the stateful nature
of many applications and the statelessness of the HTTP protocol, a problem exacerbated by the
the flexibility of web-browsers (specifically the ability to open new windows, use bookmarks
and type URIs at will). The attacks can be prevented by ensuring that the requests received
from the user are consistent with the internal state of the application. In the three stage check-
out procedure example above, the application should reject requests for the delivery address
stage (“Step 3”) without first receiving the payment details (“Step 2”). In the travel-booking
example, the application shouldeither reject requests which correspond to stale search results
i.e. once the window “Flight Details 2” is opened, all requests related to the window “Flight
Details 1” should be rejectedor it should use enough client-side state (protected as necessary
with MACs as in Chapter 5) to book the flight the user actually chose.

6.2 Overview
This chapter introduces a form of web-application security policy based on Alfaro and Hen-
zinger’s Interface Automata [46] which allows developers to define the acceptable order of URI
invocations as that accepted by a deterministic finite state automaton. A simple language called
Stateful Web-application Interface Language (SWIL) for defining such automata is presented
and the language is embedded in O’Caml — a variant of ML. The embedding facilitatesmeta-
programming; high-level ML programs can be written which generate complete low-level SWIL
programs. To demonstrate the usefulness of this technique, a small library of functions has been
created each of which represents a common application control sequence. The functions in the
library can be easily composed together to generate sophisticated SWIL programs.

SWIL has special-purpose features intended for web-applications interacting over HTTP:
specifically an HTTP request type and manipulation functions. The language has been de-
signed to be easy to translate directly into PROMELA, the language accepted by the SPIN model-
checker as well as simple to execute dynamically on an application-level firewall.

A high-level overview of the system is presented graphically in Figure 6.3. After gener-
ation using the O’Caml embedding, SWIL policy is compiled first to PROMELA for off-line
analysis with the SPIN model checker. PROMELA is used to verify a number of useful proper-
ties including: (i) the error state (encountered when an unexpected HTTP request is received)
is unrecoverable; (ii) the automaton does not suffer from livelock or deadlock; and (iii) key
steps (such as authentication) cannot be bypassed by forging a URI. Once the policy has been
analysed in sufficient detail and the relevant properties verified it is compiled into an O’Caml
program for dynamic execution on an application-level firewall, alongside any desired SPDL-2
policies.

Policies can be designed at different levels of granularity and installed in parallel. Such
a compound policy ensures that only HTTP requests accepted byall policy automata will be
allowed through to the application. Policies can be activated and deactivated at run-time in
response to external demands. Finally, policies executed by the application-level firewall are
not only passive monitors of application behaviour but take a more active role. A strength of
the design presented here is that policies may be used to dynamically transform the appearance
of graphical user interfaces expressed in HTML, removing interface elements (links and forms)
whose use correspond to transitions inevitably leading to future error states.
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SWIL policy

/* One #define for each used string constant: */

#define stage_3 0
#define stage_2 1
#define stage_1 2
#define logout 3
#define checkout 4
#define menu 5
#define browse_3 6
#define browse_2 7
#define browse_1 8
#define preform_auth 9
#define show_login_page 10

/* Useful proctype to select a URI at random */
chan rchan = [0] of {byte};
proctype random(){
        do
        :: true -> atomic {printf("MSC: stage_3\n");  rchan!stage_3;}
        :: true -> atomic {printf("MSC: stage_2\n");  rchan!stage_2;}
        :: true -> atomic {printf("MSC: stage_1\n");  rchan!stage_1;}
        :: true -> atomic {printf("MSC: logout\n");  rchan!logout;}
        :: true -> atomic {printf("MSC: checkout\n");  rchan!checkout;}
        :: true -> atomic {printf("MSC: menu\n");  rchan!menu;}
        :: true -> atomic {printf("MSC: browse_3\n");  rchan!browse_3;}
        :: true -> atomic {printf("MSC: browse_2\n");  rchan!browse_2;}
        :: true -> atomic {printf("MSC: browse_1\n");  rchan!browse_1;}
        :: true -> atomic {printf("MSC: preform_auth\n");  rchan!preform_auth;}
        :: true -> atomic {printf("MSC: show_login_page\n");  rchan!show_login_page;}
        od
}

SPDL-2 policy
(Chapter 5)

/* One #define for each used string constant: */

#define stage_3 0
#define stage_2 1
#define stage_1 2
#define logout 3
#define checkout 4
#define menu 5
#define browse_3 6
#define browse_2 7
#define browse_1 8
#define preform_auth 9
#define show_login_page 10

/* Useful proctype to select a URI at random */
chan rchan = [0] of {byte};
proctype random(){
        do
        :: true -> atomic {printf("MSC: stage_3\n");  rchan!stage_3;}
        :: true -> atomic {printf("MSC: stage_2\n");  rchan!stage_2;}
        :: true -> atomic {printf("MSC: stage_1\n");  rchan!stage_1;}
        :: true -> atomic {printf("MSC: logout\n");  rchan!logout;}
        :: true -> atomic {printf("MSC: checkout\n");  rchan!checkout;}
        :: true -> atomic {printf("MSC: menu\n");  rchan!menu;}
        :: true -> atomic {printf("MSC: browse_3\n");  rchan!browse_3;}
        :: true -> atomic {printf("MSC: browse_2\n");  rchan!browse_2;}
        :: true -> atomic {printf("MSC: browse_1\n");  rchan!browse_1;}
        :: true -> atomic {printf("MSC: preform_auth\n");  rchan!preform_auth;}
        :: true -> atomic {printf("MSC: show_login_page\n");  rchan!show_login_page;}
        od
}

SWIL  metaprogram
(Chapter 6)

/* One #define for each used string constant: */

#define stage_3 0
#define stage_2 1
#define stage_1 2
#define logout 3
#define checkout 4
#define menu 5
#define browse_3 6
#define browse_2 7
#define browse_1 8
#define preform_auth 9
#define show_login_page 10

/* Useful proctype to select a URI at random */
chan rchan = [0] of {byte};
proctype random(){
        do
        :: true -> atomic {printf("MSC: stage_3\n");  rchan!stage_3;}
        :: true -> atomic {printf("MSC: stage_2\n");  rchan!stage_2;}
        :: true -> atomic {printf("MSC: stage_1\n");  rchan!stage_1;}
        :: true -> atomic {printf("MSC: logout\n");  rchan!logout;}
        :: true -> atomic {printf("MSC: checkout\n");  rchan!checkout;}
        :: true -> atomic {printf("MSC: menu\n");  rchan!menu;}
        :: true -> atomic {printf("MSC: browse_3\n");  rchan!browse_3;}
        :: true -> atomic {printf("MSC: browse_2\n");  rchan!browse_2;}
        :: true -> atomic {printf("MSC: browse_1\n");  rchan!browse_1;}
        :: true -> atomic {printf("MSC: preform_auth\n");  rchan!preform_auth;}
        :: true -> atomic {printf("MSC: show_login_page\n");  rchan!show_login_page;}
        od
}

O'Caml
interpreter

PROMELA
program

/* One #define for each used string constant: */

#define stage_3 0
#define stage_2 1
#define stage_1 2
#define logout 3
#define checkout 4
#define menu 5
#define browse_3 6
#define browse_2 7
#define browse_1 8
#define preform_auth 9
#define show_login_page 10

/* Useful proctype to select a URI at random */
chan rchan = [0] of {byte};
proctype random(){
        do
        :: true -> atomic {printf("MSC: stage_3\n");  rchan!stage_3;}
        :: true -> atomic {printf("MSC: stage_2\n");  rchan!stage_2;}
        :: true -> atomic {printf("MSC: stage_1\n");  rchan!stage_1;}
        :: true -> atomic {printf("MSC: logout\n");  rchan!logout;}
        :: true -> atomic {printf("MSC: checkout\n");  rchan!checkout;}
        :: true -> atomic {printf("MSC: menu\n");  rchan!menu;}
        :: true -> atomic {printf("MSC: browse_3\n");  rchan!browse_3;}
        :: true -> atomic {printf("MSC: browse_2\n");  rchan!browse_2;}
        :: true -> atomic {printf("MSC: browse_1\n");  rchan!browse_1;}
        :: true -> atomic {printf("MSC: preform_auth\n");  rchan!preform_auth;}
        :: true -> atomic {printf("MSC: show_login_page\n");  rchan!show_login_page;}
        od
}

SWIL
compiler Verification

Result

SPIN
modelchecker

If verification failed, edit 
original SWIL metaprogram
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Interface
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Figure 6.3: Overview of the system outlined in Chapters 5, 6 and 7. Note that the bottom part
of the diagram describes offline policy creation and maintenance while the upper part shows the
main application datapath.
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6.2.1 As Interface Modification

Recall that the interface exposed by a web-application was described in Section 2.4.6 as a set
of functions of the form:

URI (in request req, out response res) assume { }
guarantee { }

This interface is very generic, insisting only that clients send valid HTTP requests and guaran-
teeing only that the application will generate valid HTTP responses. Section 5.3 described how
a number of common attacks resulted from hidden assumptions not documented in the inter-
face and how the attacks could be prevented by programming a suitable interface firewall. This
section shows how the forgotten assumption behind forceful browsing attacks – that users can
invoke interface operations at any time – can be expressed using the same interface formalism.

Valid sequences of interface invocations are represented by a policy based on a finite state
automaton. Transitions between states of the automaton are triggered by HTTP requests; the
lack of a valid transition from a state indicates an error condition. Input HTTP requests are
represented as elements drawn from a finite alphabetΣ using anabstraction functionof type
request → Σ. The exact form of the alphabet and the abstraction function are policy-specific.
More will be said about this later in Section 6.5.

Note that the input of the automaton is taken entirely from HTTP requests, ignoring HTTP
responses. The reason for this is convenience; it is much easier to parse HTTP requests and
extract useful information (e.g. the target URI, query parameters and cookies) than it is to parse
and extract useful content from the HTML payload contained within the HTTP responses. How-
ever, it is possible to imagine a more complicated system which possesses a series of templates
or XPath queries which are matched against the HTML payload data and the results of which
are fed into the automaton, but for the sake of simplicity the remainder of this presentation will
ignore this possibility.

A policy is represented by an automaton(Q, q0, A, T ) whereQ is a set of states,q0 ∈ Q is a
special initial state,A : request → Σ is the abstraction function andT : Q×Σ→ Q is a partial
function which returns the next state given the current state and the abstract representation of a
request. For each combination of state and possible input there is either no successor state or
one single successor state.

The policy can be imposed by an interface firewall in the style of Section 5.3 by first defining
a number of types, functions and prolog-style predicates. First of all we require a mechanism
to associate HTTP requests originating from the same session. There are several concrete tech-
niques used in practice to achieve this but we represent the process abstractly by a function
getsession : request → N which maps individual HTTP requests onto sessions represented
by natural numbers. Several possible methods to track user sessions were described earlier in
Section 2.4.5 and a concrete implementation will be discussed later in Chapter 7. Each ac-
tive session is associated with a mutable state value stored on the firewall which is updated
as valid transitions occur. This updating is treated as a special side-effect of the predicate
UpdateState(s , q ′) which updates the state value of sessions to valueq′.

Note that the sessions and their associated policy automata are maintained on the firewall
and not directly accessible by the user or their browser. A user only possesses an unforgeable
reference to a session which is obtained when they first access the application and which is
stored in a cookie. Users cannot clone their sessions, since the session state is not stored on
their computer. They can copy the session reference by sharing their cookie with others with
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the effect that multiple browsers would interact with the same session at the same time. Note
that this requirement to store per-session state is a major point of difference with the SPDL-2
system described in the previous chapter. In practice sessions are likely to be timed out after
periods of inactivity and their state garbage-collected with the effect that subsequent requests
from the same user will cause a fresh session to be created. More will be said about session
management later in Section 7.2.3.

The full list of predicates used in the interface firewall definition are summarised below:

SessionID(req , s) holds iff s is a valid session corresponding to the HTTP request objectreq
i.e.s = getsession(req)

CurrentState(s, q) holds iff q is the current automaton state corresponding to the session
named bys

Abstract(req , σ) holds iff σ = A req i.e.σ ∈ Σ is the abstract representation of the requestreq

Valid(q, σ) holds iff (q, σ) ∈ dom(T ) i.e. a valid transition exists in the transition function5

NextState(q, σ, q′) holds iff q′ = T (q, σ) i.e. q′ is the new state of the automaton

UpdateState(s, q′) holds always with the side-effect that the state of the automaton state cor-
responding to sessions is updated toq′.

Figure 6.4 shows the general form of a firewall interface with URIs{ U1, . . . , Un } using
the predicates defined above, necessary to protect applications from forceful browsing attacks.
Two points are worth noting about the specification:

1. the identifiersq, q,′ , σ are bound locally in eachassume block; and

2. to avoid concurrency issues, eachassume block is evaluated in isolation, to prevent two
near-simultaneous requests reading the same initial state valueq.

6.3 SWIL Technical Details
This section describes SWIL policies in detail. This section assumes knowledge of PROMELA

and SPIN, first described back in Section 2.6. Section 6.3.1 describes the core language syntax
and is followed by Section 6.3.2 which introduces the notion of a well-formedprogram fragment
andprogram. Since SWIL is a low-level language, Section 6.3.3 introduces the high-level SWIL
Meta-programming System (SMS) based on an O’Caml embedding which greatly eases the
production of SWIL policies. SMS comes complete with a library of common control sequence
abstractions which may be easily combined together to create complex SWIL programs.

6.3.1 SWIL

The abstract syntax of the language SWIL is shown in Figure 6.5. The language is derived
from PROMELA as used in the SPIN model checker with a few simple adjustments including (i)
the removal of features in PROMELA allowing the expression of non-determinism; and (ii) the
addition of built-in primitives for handling HTTP request messages.

The main syntactic categories are commandsc and side-effect free expressionse. A program
p consists of a set of global variable declarationsd, a set of labelled command blocksb and an

5The automaton is deterministic as indicated by the fact thatNextState is a function.
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interface I {
type request = . . .
type response = . . .

U1(in request req, out response res)
assume {

CurrentState(getsession(req), q),
Abstract(req, σ),Valid(q, σ),
NextState(q, σ, q′),UpdateState(getsession(req), q′)

}
guarantee {}

. . .
Un(in request req, out response res)

assume {
CurrentState(getsession(req), q),
Abstract(req, σ),Valid(q, σ),
NextState(q, σ, q′),UpdateState(getsession(req), q′)

}
guarantee {}

}

Figure 6.4: A web-application firewall interface with a URIs{ U1, . . . , Un } written using the
formalism of Section 2.3. The identifiersq, q′, σ are considered to be bound locally in each
assume block.
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initial command. All variables are initialised with a constant literal (either an integer, string,
boolean or a special null request) and further assignments are restricted to values of the same
type. The infix binary operators+, - , * and / are defined on integers6, and and or on
booleans and the equality operator= is defined on all built-in types: integers, strings, booleans
and requests.

The special commandx := NextRequest() assigns to the variablex the next re-
quest sent by the user, directly corresponding to reading from a synchronous channel in
PROMELA. The commandx := PeekRequest() is similar except it does notconsumethe
request; subsequent calls toPeekRequest() or NextRequest() will receive the same
data again. These two commands are similar to PROMELA commandsc?x andc?<x> de-
scribed in Section 2.6.1. Request objects are also treated specially in SWIL. They can be as-
signed to other variables and introspected with the specialGetField function. The expression
GetField( var , "x") wherevar is an identifier containing data of typerequest and"x" is
a constant string returns the field namedx from var . By convention we say that every request
object has a field calleduri which is the URI of the request. We also say that a request pa-
rameter calledy can be accessed byGetField( var , "param.y") . Note that strings are
constant and immutable and can only be compared against other strings. In the translation into
PROMELA described later in Section 6.4, each unique string (including field names) is translated
into a unique integer.

The commandx := native f( e1, . . . , ek) assigns to variablex the result of calling
native functionf with arguments given by expressionse1, . . . , ek. The implementation of the
functionf must be written in every language targeted by the system; e.g. if targeting PROMELA

then the implementation will be written as a PROMELA proctype and if targeting O’Caml
then the implementation will be written as an O’Caml function. Typically a function imple-
mented in PROMELA would employ non-determinism and be much simpler than the determin-
istic O’Caml equivalent. Theproctype in PROMELA would likely be an abstraction of the
corresponding code written in O’Caml.

To understand the usefulness of this mechanism, consider a web-application which requires
users to authenticate before accessing the rest of the application. Checking the username and
password could be performed by a call to a native function taking two strings, representing the
username and password, and returning a boolean value, true if the credentials are valid and false
otherwise. In a PROMELA model we may represent this by a non-deterministic choice: either
the credentials match or they do not. In O’Caml we represent this as a deterministic concrete
function which looks up the username and password in the accounts database.

The rest of the commands are: (i) assignments of the formx := e which assign the re-
sult of evaluating expressione to variablex ; (ii) sequencing with ‘; ’; (iii) conditionals with
if then else ; (iv) skip which does nothing; (v)error which jumps to a built-in error
state; and (vi)goto which jumps to another labelled block. The special error state jumped to
by theerror command is equivalent to jumping to the following program fragment:

error_state:
skip;
goto error_state;

Note that no further requests are read (viaPeekRequest() or NextRequest() ), prevent-

6Note that should a divide-by-zero error occur, the program behaves as if theerror command has been
executed.
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const ← integer | string | boolean | null (constant literals)

e ← x (variables)
| const (constants)
| not (e) (logical negation)
| e1 〈op〉 e2 (binary infix operators)
| GetField (x, string) (request field access)

c ← x := e (assignment)
| x := NextRequest() (next)
| x := PeekRequest() (peek)
| x := native string(e1, . . . , ek) (native)
| c1 ; c2 (sequencing)
| if e then c1 else c2 (conditionals)
| error (error)
| skip (skip)
| goto label (goto)

b ← label : c (block)

d ← val x = e (variable declaration)

p ← let d1 . . . dn and b1 . . . bn in c (program)

Figure 6.5: The Abstract Syntax of the Language SWIL.

ing the application from processing any further HTTP requests. There is no way to recover from
this state except deleting the current automaton state and restarting from the beginning.

6.3.2 Well-formed Programs

Before describing a well-formed program we first introduce the concept of a well-formedpro-
gram fragmentwhere a program fragment is defined to be a pair of variable declarations and
blocks:

type fragment = d list × b list

A program fragment is said to be well-formed if the following constraints are met:

1. each variable is defined at most once;

2. each label is defined at most once;

3. every variable is associated with a single static type: one of integer, string, boolean or
request;

4. every variable of type request (initialised tonull ) must be assigned to by a
NextRequest() or PeekRequest() before aGetField in every possible exe-
cution path within every block; and

112



Chapter 6. Stateful Web-application Interface Language 6.3. SWIL Technical Details

5. every call to a native functionf must have the same number of arguments, same argument
types and same result type.

A program consisting of a program fragment and a command is said to be well-formed if the
fragment is well-formed and also:

1. each variable is defined exactly once;

2. each label is defined exactly once; and

3. each label referenced by agoto is defined.

Rather than use a set of well-formedness rules, an alternative approach would be to employ a
type system to achieve the same effect. A type system could be created which would allow pro-
gram fragments to be combined together if their associated typing environments are compatible
(e.g. enforcing the constraint that each variable has at most one definition).

6.3.3 The SWIL Meta-programming System

SWIL is a simple low-level language which does not directly support sophisticated mechanisms
for code-reuse. However rather than always writing programs entirely by hand it is possible to
combine together existing fragments of SWIL programs using a meta-program in a higher-level
programming language. This technique allows common interface patterns to be abstracted and
easily shared across applications. To achieve this goal, the SWIL Meta-programming System
consists of an embedding of the language SWIL in O’Caml allowing program fragments to be
generated and composed together to create complex SWIL programs. SWIL syntax is available
as a set of recursive disjoint union types and there are typeslabel , fragment and program
corresponding to label names, well-formed fragments and programs respectively.

The utility of this mechanism is demonstrated by way of examples. The rest of this section
describes two functions which can be used to generate SWIL program fragments. Each function
is intended to capture the essence of (or ‘abstract out’) a common pattern of interaction with a
web-application.

The first function, calledsequence , has the following O’Caml signature:

sequence : uri list → label → label → fragment

The function abstracts a sequential interaction pattern in which a list of URIs ({U1 . . . Un})
represented by the first parameter of typeuri list must be visited essentially in order (i.e.U1

beforeU2. . . ) but with limited support for backtracking. An example of the scheme is depicted
graphically in Figure 6.6. In the figure time runs horizontally and 4 application URIs labelled
URI1, URI2, URI3, URI4 are represented vertically. As time progresses, the user browses
between the URIs in the sequence URI1, URI2, URI1, URI3, URI4, URI2, URI3, URI1, URI4
represented by the arrows.

The code generated by thesequence function enforces the following rule: If the user has
visited at some point during the current run of the sequence the URIUk wherek < n then
revisiting any URI within the rangeU1 . . . Uk is permitted. However any attempt to visitUk+1

before a visit toUk will be blocked. To understand how this kind of interaction sequence might
be useful, consider the e-commerce payment example first described in Section 6.1.1. The
user has to fill in several pages of information (including payment and shipping details) before
being able to complete a purchase. The security policy created by thesequence function
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URI1

URI2

URI3

URI4

time

Figure 6.6: Graphical depiction of a browsing pattern allowed by the program fragment gen-
erated by the O’Camlsequence function. Four application URIs are represented vertically,
time runs horizontally and the arrows indicate a path taken through the application by a user
.

will prevent the user from skipping the payment stage and going straight for the dispatch of
goods, preventing a possible forceful browsing attack. However the policy generated by the
sequence function still allows the user to backtrack (through either links explicitly included
on the pages, entering URIs by hand, recalling bookmarks or using the browser back button)
between already-visited pages in the payment procedure, useful to correct mistakes. The policy
also blocks any attempt to fetch a URI not mentioned in theuri list as this would also be
ambiguous i.e. should the application cancel the transaction or simply postpone it?

The two parameters of typelabel represent the entry and exit labels respectively. The se-
quence is activated by an explicitgoto to the entry label and the fragment finishes by jumping
to the exit label when the final URI is successfully called. When composing together program
fragments in the policy creation system, the system verifies that the resulting program is well-
formed (i.e. the labels match up correctly etc.) using the rules described above in Section 6.3.2.

In SMS evaluating the expression

sequence [ "one"; "two"; "three" ] "entry" "exit"

generates a program fragment like the following, where the two variablestmp and req are
fresh:

entry:
tmp := 0;
goto loop;

loop:
req := ReadNext;
if (GetField (req, "uri") = "one"){

tmp := 1;
goto loop;

} else { skip };

114



Chapter 6. Stateful Web-application Interface Language 6.3. SWIL Technical Details

tmp=3tmp=2tmp=1tmp=0

one

one

two

one
two

three

error

else
else else

"entry" "exit"

Figure 6.7: Automaton representing program fragmentsequence [ "one"; "two";
"three"] "entry" "exit" . States are represented by circles and labelled arrows in-
dicate state transitions where the label is the name of the consumed URI. Arrows without labels
indicate a transition which consumes no URI. Two conventions are used to preserve determin-
ism. Firstly we insist that all the labelled arrows from each individual state must have distinct
labels and secondly we insist that if the source state has arrows with labels, these transitions are
followed in preference before any unlabelled arrow transition.

if (GetField (req, "uri") = "two"){
if (tmp < 1) { error } else { skip };
tmp := 2;
goto loop;

} else { skip };

if (GetField (req, "uri") = "three"){
if (tmp < 2) { error } else { skip };
tmp := 3;
goto exit;

} else { skip };
error

The implementation uses the integer counter variabletmp to store the highest URI index visited
so far. The labelentry marks the entrypoint to the fragment and the fragment is left either by
theerror command or a jump to the labelexit . Attempts to access forbidden URIs invoke
the error command. The diagram in Figure 6.7 displays graphically an automaton which
corresponds to this program fragment. Each state (represented by a circle) is associated with a
particular value of the variabletmp . State transitions (represented by the directed edges) are
labelled with the URI expected. The special labelelse signifies a transition that occurs when
a URI appears which is not associated with any other edge. In every state (except the final
state where the sequence is exiting) there is anelse label pointing to a special error state (in
the program fragment this corresponds with the commanderror ). Once inside the error state
there is no transition out again7.

7A user-friendly system might opt instead to allow the user to backtrack out of the error state.
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one
two

"entry" "exit"

Figure 6.8: Automaton representing program fragmentbrowse [ "one"; "two"]
"entry" "exit" .

The second O’Caml function, calledbrowse , has the same signature assequence i.e.

browse : uri list → label → label → fragment

This function represents a free-form browsing pattern in which the user is allowed to visit
any URI from the list specified in the first parameter. Like thesequence example, the two
arguments of typelabel specify entry and exit labels respectively. Control passes to the exit label
if the user fetches any URI not in the set specified by the first argument of typeuri list . The
final URI is handled specially; rather than being consumed by the generated program fragment
(as all URIs discussed so far have been) it is deliberately left unconsumed, available for the
following program fragment.

The program fragment generated by evaluating the following expression in O’Caml:

browse [ "one"; "two" ] "entry" "exit"

looks like the following, where the variablereq is fresh:

entry:
req := PeekRequest();
if (GetField (req, "uri") = "one"){

req := ReadNext();
goto entry;

} else { skip };
if (GetField (req, "uri") = "two"){

req := ReadNext();
goto entry;

} else { skip };
goto exit;

It operates by first peeking to see if the next request has a URI of eitherone or two . If it
has, the request is discarded by callingReadNext() . Otherwise the request is left and control
passes to the labelexit . The associated (and very simple) automaton is displayed graphically
in the diagram within Figure 6.8. It has only a single state and all labelled edges (corresponding
to the URIs within the URI list) point back to this single state.
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machine

user

fnf1

input output

f_n_outputf_1_output

f_1_input f_n_input

Figure 6.9: General structure of the translation of an automaton into PROMELA. Circles rep-
resent PROMELA proctypes while labelled arrows represent channels: the arrow indicates
direction while the label gives the channel name.

6.4 Translation into PROMELA

This section describes how a SWIL policy may be translated into PROMELA for analysis by the
SPIN model checker. An introduction to PROMELA and SPIN was given earlier in Section 2.6.1
and knowledge of both shall be assumed throughout this section.

Recall that a PROMELA model consists of a finite number of processes (defined through
the proctype keyword) connected together by simply-typed channels with optional buffer-
ing. Each process body may be thought of as a set of labelled blocks with control-flow han-
dled using thegoto keyword. The features and syntax of SWIL are intentionally similar to
PROMELA with only a few specific differences notably (i) SWIL policies are deterministic
whereas PROMELA models may be non-deterministic; and (ii) models described here have
support for HTTP request types and native functions, examples of the use of which will be
described later in Section 6.6.

After translation into PROMELA the general structure of the automaton produced is depicted
graphically in Figure 6.9. Each PROMELA proctype (process) is represented by a circle.
Circles are connected by labelled arrows: the arrow gives the channel name and the arrow-head
indicates the direction of flow of data; i.e. it points from sender to receiver. The bulk of the
code (i.e. all the labelled blocks) is contained within theproctype namedmachine . The
user is represented by an emptyproctype labelleduser with two channels: one for sending
requests to the application and the other for receiving a boolean result:true indicating the
request was accepted by the policy andfalse indicating the program has entered an error state.
Each native function called by the automaton becomes an emptyproctype , labelledf1 . . . fn

in the diagram. Each of these native functions must be implemented, perhaps by a process
which reads its inputs, ignores them and non-deterministically generates a random output. The
exact implementation depends on the nature of the analysis being performed, an example is
provided later in Section 6.6.1.

The mechanical translation into PROMELA requires two passes. The first pass computes the
following:

1. the types of all variables used in the program

2. the set of all request fields accessed by calls toGetField

allfields = {field 1, . . . , field k}
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3. prototypes for all native functions (f1 . . . fn)

allnatives = { f1(a11 : t11, . . . , a1q1 : t1q1) : t1qreturn ,
. . . ,
fn(an1 : tn1, . . . , anqn : tnqn) : tnqreturn }

4. a unique integer for each string used in the program

hash : string → integer

Since PROMELA is conventionally fed through the C pre-processor a#define is created for
each string e.g. the string “foo” may be represented by the following:

#define FOO 0

The request fields are computed because PROMELA HTTP requests areflattenedinto individual
variables, one for each field. PROMELA does not support a string type; the functionhash maps
constant strings onto simple integers (in the above example “foo” was mapped onto 0).

The second phase performs the actual translation via the set of recursive functions:
T [[−]],D[[−]], E [[−]],O[[−]], C[[−]],X [[−]],P [[−]] over types, declarations, expressions, operators,
commands, native functions and programs respectively. The first five of these are displayed in
Figure 6.10.

The first functionT [[−]] translates simple (i.e. not HTTP request) types (Figure 6.10). Sim-
ple PROMELA types were first described in Section 2.6.1. As previously noted, HTTP mes-
sages are translated into PROMELA by flattening them into individual fields. The first transla-
tion pass computed the complete set of HTTP request fields accessed throughout the program:
allfields = {field 1, . . . , field k}. This information is used by the translation of variable decla-
rations through the functionD[[−]] (Figure 6.10). Note that each field is assumed to have type
string and defaults to the translation of the constant string “”. Also note that a request called
x with a field calledf is transformed intox f ; and it is assumed that variablex f does not
already exist. Violations of this rule must cause a translation error. Expressions are translated
straightforwardly into PROMELA via the functionE [[−]] (Figure 6.10) where the functionO[[−]]
converts binary operators. Commands are translated via the functionC[[−]].

Notice in particular how variables of type request are decomposed into a set of variables,
one for each individual possible field access. This affects both the assignment, next and peek
rules. In theNextRequest rule the individual fields are read from a channel labelledinput
(displayed graphically in Figure 6.9) which is a unit-length buffered channel. The processes rep-
resenting the user (user ) and the policy (machine ) are kept in lock-step using synchronous
communication over theoutput channel. Calling a native function requires two operations: a
marshalling step where the arguments are evaluated and sent over a request channel (for func-
tion f namedf input ) and secondly a boolean result is read from a result channel (namedf -
output ). Theerror command is implemented by jumping to a special block callederror
described later.

Labelled blocks are translated trivially via the functionB[[−]]:

B[[label: c]] → label: C[[c]]
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T [[integer ]] → byte
T [[string ]] → byte
T [[boolean]] → bool

D[[val x = e : request ]] → T [[string ]] x field 1 = E [[“”]];
. . .
T [[string ]] x field k = E [[“”]];

D[[val x = e : t]] → T [[t]] x = E [[e]]

E [[x]] → x
E [[string x]] → hash(x)
E [[not(e)]] → ! (E [[e]])
E [[e1 op e2]] → (E [[e1]] O[[op]] E [[e2]])
E [[GetField (x, string y)]] → x y

O[[and ]] → && O[[or ]] → ||
O[[+]] → + O[[−]] → −
O[[<]] → < O[[>]] → >
O[[=]] → ==

C[[x := y : request ]] → x field 1 := y field 1; ...
C[[x := e]] → x = E [[e]]
C[[x := NextRequest() ]] → input?x field 1, ..., x field k
C[[x := PeekRequest() ]] → input?<x field 1, ..., x field k>
C[[x := native f(e1, . . . , en)]] → f input! E [[e1]], ..., E [[en]];

f output?x
C[[c1; c2]] → C[[c1]]; C[[c2]]
C[[if e then c1 else c2]] → if

:: ( E [[e]]) -> {C[[c1]]}
:: else -> {C[[c2]]}
fi

C[[error ]] → goto error
C[[skip ]] → skip
C[[goto label ]] → goto label

Figure 6.10: The PROMELA translation functionsT [[−]],D[[−]], E [[−]],O[[−]], C[[−]].
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Every native function is translated into a skeletonproctype via the functionX [[−]]:

X [[native f(a1, . . . , an)]]→
proctype f(chan input; chan output) {
loop:

input?arg 1, ..., arg n;
...
output!true;
goto loop;

}

This skeleton does nothing except unmarshal its input arguments and return the single result
true . When analysing a realistic system it is expected that this skeleton will be replaced with
something more useful; an example of this will be described later in Section 6.6.1.

Finally the functionP [[−]] completes the translation and is displayed in Figure 6.11. This
final translation mostly adds necessary boilerplate: the definition of the globalerror label, all
theproctype and channel definitions and finally theatomic block which instantiates each
proctype with the appropriate channels. Theinit block is a PROMELA idiom similar to the
main function in the C programming language.

At this point a syntactically correct PROMELA model is available, albeit one which exhibits
no interesting behaviour whatsoever; if executed themachine proctype would block on the
first attempt to read a request from theuser proctype . To make the system more useful the
following steps must now be performed:

1. theuser proctype should be completed with a model of user behaviour to analyse;

2. each native functionproctype should be filled in with some logic specific to the appli-
cation domain;

3. properties of interest should be devised and then analysed with SPIN.

In many cases the model of the user will be completely non-deterministic i.e. the user can do
anything. This allows us to check properties of the form “this can never happen, nomatter what
the user does”. Other models of the user can be written in order to check that “this is still
possible if the user acts sensibly” i.e. the policy has not needlessly broken the application.

6.5 Dynamic Execution
SWIL programs are designed to be easy to translate into PROMELA for off-line analysis and easy
to be interpreted by an O’Caml program running on an application-level firewall. The O’Caml
translation is broadly similar to the PROMELA one; each (deterministic) PROMELA proctype
simply becomes an O’CamlThread communicating viaEvent channels (O’Caml’sThread
andEvent handling is based on Reppy’s Concurrent-ML [133]). Since all non-determinism in
SWIL programs must be contained within native function calls, only these need to be written
manually in O’Caml. We make the additional restriction that the O’Caml implementations of
the native functions are purely functional (i.e. free of side-effects). Purely functional native
functions allow speculative execution by cloning the state and then feeding the automaton addi-
tional inputs to see how it behaves, without worrying about unintended side-effects. More will
be said about this in the next section.
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P[[let d1, . . . , dn and b1, . . . , bm in c]]→
D[[d1]]; . . . ; D[[dn]];
proctype user(chan output) {

do :: true -> skip; od
}
proctype machine(chan input;

chan f 1 input; chan f 1 output;
...
chan f n input; chan f n output) {

T [[string ]]scratch field 1, ... scratch field k;
C[[c]]

error:
output!false;
input?scratch field 1, ... , scratch field k;
goto error;
B[[b1]]... B[[bn]]

}
X [[f1(a11 : t11, . . . , a1q1 : t1q1) : t1qreturn ]]
...
X [[fn(an1 : tn1, . . . , anqn : tnan) : tnqreturn ]]
chan input = [1] of {T [[string ]], ..., T [[string ]]};
chan f 1 input = [0] of {T [[t11]], ..., T [[t1q1 ]]};
chan f 1 output = [0] of {T [[t1qreturn ]]};
...
chan f n input = [0] of {T [[tn1]], ..., T [[tnqn ]]};
chan f n output = [0] of {T [[tnqreturn ]]};

init {
atomic {

run f 1(f 1 input, f 1 output);
...
run f n(f n input, f n output);
run user(input);
run machine(input,

f 1 input, f 1 output,
...,
f n input, f n output);

}
}

Figure 6.11: The definition of the functionP [[−]].
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Program state is represented by the simple type

type state = (id , id expr) Hashtbl .t

whereid is the type of identifiers,id expr the type of expressions andHashtbl .t is a hashtable
type constructor.

As with the PROMELA translation, user behaviour (proctype user in PROMELA) and
all native functions need to be defined by hand. The thread running the user code looks like the
following:

let rec user_thread () =
let request = read_from_user () in
let request’ = make_request_object request in
Event.sync(Event.send output request’);
match (Event.sync (Event.receive input)) with
| OK -> begin

send_to_webserver request;
let response = read_from_webserver()
in
send_to_user (transform response);
user_thread();

end
| Error -> raise Error_Exception

The functionread from user reads a raw HTTP request from the user and converts the
result into a special request object – containing only those fields accessed by calls toGetField
– before sending it on the channeloutput connected to the main program thread. This step
corresponds directly to using the abstraction function mentioned back in Section 6.2.1.

The result (read from channelinput ) is eitherOKif the request was accepted orError
if the program entered the error state. If an error occurs an exception is thrown which halts
the program. Otherwise, the request is forwarded to the back-end webserver viasend -
to webserver . The response is read back throughread from webserver and filtered
through a special functiontransform (described in the following section) before being sent
to the user viasend to user .

6.5.1 Dynamic Response Transformation

Recall how an interaction between a user and a web-application consists of a series of HTTP
requests and HTTP responses, requests containing parameters and responses containing HTML
documents. Although the user can generate any HTTP request at any time (e.g. by recalling
a bookmark or simply entering a URI by hand) the HTML within the response contains hints
for further HTTP requests as links and forms. There is an unwritten contract between the
application and the user which states that the user is allowed to invoke any of these operations;
otherwise, why would they be present? Unfortunately if a SWIL policy is being imposed by a
firewall then it is possible for the application to generate links and forms whose use would be
rejected by the firewall.

In the generated O’Caml code described above in Section 6.5, the special function
transform parses HTTP response messages containing HTML and filters all those forms
and links which, if clicked on, would definitely be rejected by the installed security policy.
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The result is that the user sees a restricted view of the application, where links and forms are
deleted if selecting them would certainly fail. As a side-effect, this makes SWIL policies useful
for more than simply enforcing security properties; for example, parts of web-sites may be se-
lectively disabled in a user-friendly manner by installing simple policies which block requests
corresponding to those parts of the site.

A very simple conservative analysis can be used to determine whether a particular link or
form should be removed, using the information known when the page is generated (i.e. before
any extra information is filled in by the user). Links and forms were first described back in
Section 2.4.6. In both cases they may be represented by a type

type link = form = uri × parameters

where

type parameters = (string × string) list

The primary difference between links and forms is the origin and purpose of theparameters.
In the case of a link the parameters are all contained within the HTML and not displayed at all
when the page is rendered. In normal operation (i.e. assuming the user is not examining the
HTML in a text editor) the only opportunity the user gets to see the parameters is when the user
clicks on the link. When a link is clicked, a web-browser typically copies the link to the URI
bar8 as the new page is loaded. Like links, forms contain some parameters which are invisible
and not intended to be edited (the “hidden” form elements) but they also contain parameters
which the user is supposed to modify, through text input controls. Therefore when a page is
being transformed by the application-level firewall each link and form may be considered to be
an instance of type

uri × (string × (string option))list

where the parameters are key-value pairs, the keys are of typestring while the values are of
typestring option where the valueNone indicates the user is supposed to fill this value in and
the valueSome x indicates the value is known already.

The analysis is performed by duplicating the current state of the firewall and speculatively
executing the program as if the request had been sent as-is by the user. The speculation aborts
immediately if aGetField command attempts to access any part of the request which is
unknown (i.e. aNone) value. Therefore the result of the speculation can be any one of three
possibilities: (i) the request was accepted; (ii) the request was rejected; or (iii) insufficient
information is known to decide between (i) and (ii). In the case of both (i) and (iii) the link or
form is left intact; only if the request was definitely rejected is the link or form deleted from the
page.

It should be noted that removing links or forms using this technique might lead to user
confusion if some of the remaining text or images on the page refer to the deleted elements. If
this happens then either the technique should not be used or a more application-specific user
interface transform – which also removes these remaining problematic elements – should be
applied instead.

8Some web-browsers allow the URI bar to be hidden from view using Javascript code. Sometimes web-
browsers are embedded into other applications as components without the URI bar. For simplicity we ignore
these cases.
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authentication

menu

checkoutbrowse

auth_l:

menu_l:

brwse_l: chkout_l:

Module URIs
authentication show login

do auth
logout

menu menu
checkout checkout

checkout {1,2,3 }
browse browse

browse {1,2,3 }

Figure 6.12: General structure of the e-commerce application described in Section 6.6. [Left]:
the application consists of 4 modules displayed along with entrypoint labels. [Right]: table lists
the URIs which logically belong in each module.

6.6 Example
In this section a simple e-commerce application is described and a fine-grained SWIL policy
is built which represents the acceptable order of URI invocations within the application. The
application has the following characteristics:

1. users are required to login at the very beginning;

2. once authenticated, users are presented with a menu of further options;

3. users can choose to browse around the site adding items to their shopping cart; and

4. when finished shopping, there is a 3-step checkout scheme, similar to that mentioned back
in Section 6.1.1.

The general structure of the application is described in Figure 6.12. The leftmost part of the
figure shows how the application may be divided into four logical modules, labelled “authenti-
cation”, “menu”, “browse” and “checkout”. Each module will correspond to a SWIL program
fragment with entrypoint labelsauth l , menu l , brwse l andchkout l respectively. The
rightmost part of the figure contains a table which lists the URIs contained within each module.
The syntaxcheckout {1,2,3 } is used as a compact way of representing the three strings
checkout1 , checkout2 andcheckout3 . Note that, as explained in Section 2.4 URIs are
of the formscheme://authority/path?query ; for brevity single words are used for
URIs in the examples.

The first application module, authentication, involves three URIs:show login , do -
auth and logout . For the user to log into the application, the first two of these URIs are
required: the first to return an HTML login page to the user and the second to process the user-
supplied username and password. This procedure can be modelled with a SWIL fragment like
the following:

auth_l:
x := ReadNext;
if (GetField(x, "uri") <> "show_login")

then { error } else { skip };
x := ReadNext;

124

scheme://authority/path?query


Chapter 6. Stateful Web-application Interface Language 6.6. Example

if (GetField(x, "uri") <> "do_auth")
then { error } else { skip };

t := native("check_authentication",
GetField(x, "param.username"),
GetField(x, "param.password"));

if (t) { goto menu_l; } else { error }

This program fragment expects two requests in order with URIsshow login anddo auth
respectively. The first corresponds to the user fetching the page with the login window while
the second is fetched when the user enters their username and password and presses the login
button. The second request assumes the existence of parametersusername andpassword
which are sent to the native functioncheck authentication . If this native function re-
turns false then the application enters the error state, otherwise it jumps to the labelmenu l ,
representing the menu module.

The menu module is very simple. It presents a list of options to the user and can be modelled
with the following short program fragment:

menu:
x := ReadNext; uri := GetField(x, "uri");
if (uri = "menu") then { skip } else { error };

x := ReadNext; uri := GetField(x, "uri");
if (uri = "logout") then { goto auth_l }

else { skip };
if (uri = "checkout") then { goto checkout_l }

else { skip };
if ( (uri = "browse1") or

(uri = "browse2") or
(uri = "browse3") ) then { goto brwse_l }

else { skip };
error

The user is first expected to request themenu URI which displays the menu HTML itself.
Afterwards if the user fetches the URIlogout then control jumps to the labelauth l , the
authentication module. If the user fetches the URIcheckout then control jumps to the label
checkout l in the checkout module. The last option is to browse the product catalogue; if
the user requests any of the URIsbrowse 1, browse 2 or browse 3 then control jumps to
the labelbrowse l in the browse module.

The browse module, corresponding to labelbrwse l is easily handled using thebrowse
SWIL generating function described earlier in Section 6.3.3. Unlike the specific example dis-
played graphically in Figure 6.8, this application allows the user to browse around pages named
by URIsbrowse_1 , browse_2 andbrowse_3 . In the meta-programming system the ex-
pression:

browse [ "browse_1"; "browse_2"; "browse_3" ]
"brwse_l" "menu_l"

generates a program fragment with entrypointbrwse l which allows the user to move between
the URIsbrowse 1, browse 2, browse 3 at random. When the user requests a different
URI, control jumps to the labelmenu l defined above.
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show_login

do_auth

browse{1,2,3}

menu

checkout

checkout1

checkout2

checkout3
menu

logout

checkout2

checkout1

checkout1

browse{1,2,3}

1. authentication

2. checkout

3. menu
4. browse

Figure 6.13: Graphical depiction of the automaton described in Section 6.6. Each state is
represented by a circle. The start state is marked by a double circle. The state with the cross
represents the call to the native functioncheck authentication . For clarity the error state
is not represented on the diagram.

The final module of the application is the checkout module which can be handled by the
program fragment generated by evaluating the following expression in the meta-programming
system:

sequence [ "checkout_1"; "checkout_2"; "checkout_3" ]
"checkout_l" "menu_l"

This expression evaluates to a program fragment which has a similar form to the example in
Figure 6.7, with different URIs and label names. A detailed diagram of the resulting automaton
can be seen in Figure 6.13. The states in the diagram (represented by circles) are divided
into 4 groups corresponding to the 4 modules of the system. The start state is highlighted
with a double circle. Each transition is signified by a labelled edge, the label being the URI
expected. The state marked with the cross represents the call to the native functioncheck_
authentication . Not shown on the diagram is the error state which the machine jumps to if
it receives an unexpected URI or if thecheck_authentication function returnsfalse .
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6.6.1 Analysis with SPIN

The translation of the SWIL program into PROMELA results in a skeleton; leaving the processes
check authentication anduser undefined. The functioncheck authentication
represents the process for determining whether a particular username and password is valid
while user represents the behaviour of a user interacting with the system. This section de-
scribes how interesting properties of the automaton can be mechanically verified using the SPIN

model checker by implementing theseproctypes and writing some auxiliary code.
Recall how the PROMELA translation in Section 6.4 flattened requests into a set of variables,

one for each distinct request field access via calls toGetField . In the following sections
requests are therefore triples ofusername , password anduri . Each of these is a string in
SWIL mapped onto byte constants in PROMELA (T [[string ]] → byte). Although URIs within
the program become unique integers, a series of#define s are created allowing the use of
symbolic names throughout the examples in this section.

For convenience, a specialproctype and channel are introduced using the following code:

chan rchan = [0] of {byte};
proctype random(){

do
:: true -> rchan!menu;
:: true -> rchan!logout;
...
od;

}

This process runs forever in a loop, non-deterministically selecting a URI (represented by sym-
bolic namesmenu, logout , . . . ) and sending it on the channelrchan . This can then be used
as the basis for a general model of a user, capable of invoking interface functions at random.

1. Error state is non-recoverable and absence of livelock

This section describes how to simultaneously verify two desirable properties: the inability to
recover from the error state and the absence of livelock. Entering the error state is intended
to be a non-recoverable operation that happens when the user sends a request not anticipated
by the policy. The error indicates a mismatch between the user’s model of the application
and the policy designer’s model of the application. For safety it is important that the user
session is not continued. Livelock occurs in the shopping application example if the automaton
enters an infinite loop ignoring all requests sent by the user. The consequences of livelock are
severe: from the point of view of the user the application would appear to halt while in fact the
automaton would waste all available CPU-cycles on the application-level firewall.

To check for livelock with SPIN it is first necessary to mark a set of program states as
progressstates where infinite loops are only allowed if they go through at least one of these spe-
cial states. Figure 6.6.1 shows PROMELA code representing a non-deterministic user process
in which the first state in the main loop of theuser proctype is marked as a progress state.
Note that the variableuri holds a single byte value representing a constant string in the original
SWIL program (recall that in SWIL all strings are static and constant). Thisproctype loops
forever sending random URIs (read from the channelrchan ) on its output channel. The user-
name and password are left as0 and subsequently ignored by thecheck authentication
proctype described below. The variableresult keeps track of whether themachine has
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proctype user(chan input; chan output){
bool result = true;
byte uri;

progress_loop:
if
:: result -> input?result;
:: else -> input?false;
fi;
rchan?uri;
output!0, 0, uri;
goto progress_loop;

}

Figure 6.14: A PROMELA representation of a user which loops forever reading random URIs
and writing them to the output channel. The main loop is marked as aprogressstate indicating
that infinite loops are only allowed if they pass through this state.

entered an error state. If it has then all future results (read from theinput channel) are ex-
pected to befalse , since it should not be possible to recover from the error state. If the
machine is able to recover from an error state then this process will be able to halt in anin-
valid end-state(in SPIN terminology) i.e. one blocked attempting to read afalse value from
the input channel when it contains atrue value. Invalid end-states were first described in
Section 2.6.3.

Thecheck authentication proctype is written as follows:

proctype check_authentication(chan input; chan output){
byte username, password;

loop:
input?username,password;
if
:: true -> output!true;
:: true -> output!false;
fi;
goto loop;

}

This proctype loops forever reading usernames and passwords, ignoring them and non-
deterministically choosing whether the authentication succeeded or failed.

Once theseproctype s have been defined the two properties can be verified by SPIN by

1. checking for the absence of invalid end-states which confirms the special SWIL error
state is non-recoverable (i.e. nomatter what actions the user takes and whether or not they
ever properly authenticate); and

2. checking for the absence of non-progress cycles (non-progress cycles were first described
in Section 2.6.3) which confirms the policy never gets stuck in a loop, ignoring user input.
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2. Authentication cannot be bypassed

It is useful to verify that users must properly authenticate (i.e. have a valid username and pass-
word) before being able to use the application. Put another way we desire that users who do not
properly authenticate cannot do anything other than attempt to log in.

The first step is to write thecheck_authentication proctype as follows:

proctype check_authentication(chan input; chan output){
do
:: input?username,password -> { output!false; }
od;

}

This process reads in a username and password and always outputs the valuefalse , as if the
username and password are always wrong. The second step is to write theuser proctype
to represent possible user behaviour. Theuser proctype may be written as follows, where
SHOWLOGIN, DOAUTH, CHECKOUT, CHECKOUT2, CHECKOUT3correspond to the strings
“show login”, “do auth”, “checkout”, “checkout2”, “checkout3” mapped to unique integers
using#defines by the PROMELA translation described earlier in Section 6.4:

bool failure = false;
proctype user(chan output; chan input){

bool scratch;
input?scratch;
do
:: true -> output!0,0, SHOW_LOGIN; input?scratch;
:: true -> output!0,0, DO_AUTH; input?scratch;
...
:: true -> output!0,0, CHECKOUT; input?false;
:: true -> output!0,0, CHECKOUT2; input?false;
:: true -> output!0,0, CHECKOUT3; input?false;
od;

}

The two0 parameters represent the username and password which are totally ignored by the
check_authentication process. The input channel returns a boolean value:true if the
request is valid andfalse otherwise. Note how thisproctype uses non-determinism to
model every possible sequence of URIs sent to the application. The two URIsSHOW_LOGIN,
DO_AUTHare the only ones thatmay succeed, since neither requires authentication. Note
however that if the user has already caused the system to enter an error state then they should
fail. For the rest of the URIs, we require theyalwaysreturnfalse . If any of these URIs ever
returnedtrue it would indicate the user managed to access the application without properly
authenticating first.

The property we set out to prove can now be verified by mechanically checking the resulting
program has no invalid end-states.

3. Checkout must be completed once begun

Once a user has added items to the shopping cart they may begin the checkout sequence, arrang-
ing payment and delivery details before finally confirming the transaction. The SWIL program
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described in Section 6.6 aimed to ensure this sequence could not be interrupted i.e. the user
should be prevented from leaving the sequence partly completed.

To verify this, the user is represented by the same code used in Section 6.6.1, in Figure 6.6.1.
The code non-deterministically chooses URIs (from therchan channel) and fires them at the
automaton, keeping track of whether the system has entered the error state.

Theproctype machine needs to be modified, with the following snippet of code added
at the beginning of the checkout procedure:

assert(!in_checkout);
in_checkout = true;

At the end of the checkout routine the following snippet is added:

assert(in_checkout);
in_checkout = false;

Finally, the variablein checkout is declared at the beginning of the program:

bool in_checkout = false;

The desired property – that the checkout sequence is non-interruptible once begun – can now
be verified by asking SPIN to check the assertions always hold. Note we are partially depending
on the structure of the application to justify this claim. If the user leaves the sequence part of the
way through then we rely on the fact that the user will always be able to return to the menu and
restart the sequence. Therefore if the sequence is interruptible SPIN will be able to find an error
trace where the user enters the sequence again, after interrupting it the first time, triggering the
assertion failure.

6.6.2 Scalability

This section discusses the applicability of the techniques described in this Chapter to larger e-
commerce websites. For expository purposes the example application described in this Chapter
was kept small and simple and used only 12 distinct URIs; a realistic commercial site is likely
to use many more.

In the example described here, users were required to log on before being able to access any
part of the site (apart from the login screen). A realistic commercial site is likely to allow users
quite a lot of freedom to browse the site before being forced to log in. Not only is this more
convenient for the user but it also allows third-party search engines to index the site freely.
Rather than forcing users to log on when it becomes strictly necessary (e.g. when about to
make a purchase), commercial sites oftenencourageusers to log on earlier in order to receive
personalised recommendations. A realistic policy has to cope with all of these eventualities.
Since the authentication step can happen (almost) at any time, the effect is to multiply up the
number of states in the final machine. However, the effect of this on the policy document itself
is mitigated using the metaprogramming system– the authentication steps can be wrapped up in
a function in a similar way to the example functionsbrowse andsequence .

As already indicated, a realistic e-commerce site is likely to be much larger than the toy
example described here. Much of this size difference is likely to stem from the size of the
product catalogue: the in the example here there were only three product URIs. However the
effect of this expansion can be mitigated by grouping all the product URIs together and treating
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them as a single automaton input. This avoids having to maintain a manual list of all the
products in the policy specification and reduces the number of states in the policy automaton.

A realistic site is likely to have a set of sub-applications dealing with issues such as (i)
managing account details; (ii) creating a wish-list; and (iii) writing reviews of products. It is
envisaged that each of these could be represented by small a automaton in a similar manner to
the “checkout” procedure in the example of this Chapter.

In summary, a realistic site will certainly require a larger, more complicated policy specifi-
cation than that presented here. However, provided that chunks of the application’s URI-space
can be grouped together (e.g. an entire product catalogue) and provided that good use is made
of the metaprogramming system, it should still be possible to have a reasonably concise policy
covering a large application.9

6.7 Related Work

Our work directly exploits five strands of research; the main novelty is in their combination. The
strands are: (i) model-based approaches to software development and analysis; (ii) describing
interfaces using automata; (iii) enforcing security policies dynamically on web-applications;
(iv) meta-programming techniques; and (v) dynamic user interface transformation. Each of
these will be discussed in the following sections. Additionally, Graunke et al [76] proposed a
system for automatically restructuring programs for the web; this will also be discussed.

6.7.1 Model-based approaches to software development and analysis

A model is a finite abstraction which is intended to capture some of the essential properties of
a system. Described earlier in Section 2.6, model-checking [42] – the process of automatically
verifying properties of such a model – is gaining in popularity as a software verification method.
However, creating a useful model of a software system is a difficult task. Software systems
often have large numbers of states and an abstraction must be carefully chosen to minimise the
resulting number of states in the model (in the worst case the number of states is proportional to
the time taken to verify) while still remaining faithful enough to be able to verify the properties
of interest.

Producing models from software

There have been many attempts to automatically translate source languages into models, a pro-
cess known asmodel-extraction. Systems have been built for languages including Java [83],
Ada [56] and C [88]. Compiler techniques such as partial evaluation and program slicing are
commonly used to reduce the complexity of the models created by removing aspects of the
application behaviour unrelated to the property of interest.

Systems vary by how much the user is involved in the model extraction and checking pro-
cess. Two systems shall be described: Bandera and SLAM. Bandera [44] is a generic software
model-checking tool for Java code. Bandera contains an abstraction library which the user
must use to select appropriate abstractions for individual program variables. For example a
JavaVector object (a dynamic array) may be modelled by various lengths of finite buffer.
The simpler the model chosen the faster the model-checking process will be. However, if the
model-checker fails to verify the desired property it might be necessary to refine the model
using some longer length buffers at the cost of a slower model-checking process.

9One may argue that, if the resulting policy is too big, then the application is fundamentally too complex
anyway.
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In contrast to Bandera which attempts to verify whole Java programs, the SLAM [17] project
at Microsoft aims to mechanically check that library interfaces are correctly used by C pro-
grams. SLAM operates by first translating a C program and a library-related safety property
into a finite-state C program with the same control-flow but only boolean variables, related to
the property being checked. The program has a special error state which corresponds to a vi-
olation of the safety property (like that triggered by the SWIL commanderror ). Once the
abstract program has been created, a model-checker determines if the error state can be reached
through any possible path through the program. If an error path is found it is related back to the
original C code. Symbolic computation and a theorem prover are used to determine whether
this path corresponds to an actual error (i.e. a bug) or whether the path is an artifact of the ab-
straction process. If the latter than the model is refined and SLAM is executed again. Therefore
using SLAM is an iterative process which continues until one of three things happen (i) the
automatic refinement step fails (requiring user input); (ii) an actual error is discovered; or (iii)
the code is pronounced safe, with respect to the specified safety property.

Producing software from models

Rather than starting with complicated software and attempting to extract a suitable model from
it, some researchers have approached the problem from the other direction and attempted to
translate models into implementations. Early work in this area includes a system [112] which
allows PROMELA specifications to be transformed directly into a C program, with the addi-
tion of a scheduler, random number generator (to handle non-determinism), timeout and I/O
mechanisms.

Model-Carrying Code

Model-Carrying Code [145] (MCC), inspired by earlier work on Proof-Carrying Code
(PCC) [119] is a proposal where the code producer pairs the implementation (in binary form)
with a high-level model of its “security-relevant” behaviour. The code consumer can statically
check (at install-time) the model against its security requirements (perhaps through model-
checking) and then execute the code while dynamically checking it against the model in the
manner of Schneider et al [142].

A similar approach was taken by Madhavapeddy et al [114] who proposed a special-purpose
policy language called Stateful Syscall Policy Language (SSPL) which described a high-level
model of the acceptable system calls made by a Unix process. Models written in SSPL could
be analysed statically and were enforced dynamically through Unix system call monitoring and
interception.

Relevance to this work

SWIL policies are abstract models written in a language similar to PROMELA, the input lan-
guage of the SPIN model checker. There are a few key differences between PROMELA and
SWIL notably that SWIL has built-in types and functions for processing HTTP requests and
SWIL programs are essentially deterministic, with all non-determinism pushed into calls to na-
tive functions. SWIL is designed to be a half-way house between a modelling language like
PROMELA used to create abstract, non-deterministic models and an implementation language
like O’Caml which is used to create concrete, deterministic code. No attempt is made here to
generate SWIL code automatically; rather we take the view that manually specifying the pol-
icy is both useful for documentation and often inevitable, especially when the source code to
applications is not available.
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The system proposed here is closest in spirit to Model-Carrying Code: SWIL policies model
“security-relevant” behaviour insofar as they relate to forceful-browsing attacks. Policies are
statically analysed before ultimately being dynamically enforced. The primary difference is the
context of use; MCC is intended to bridge a gap of understanding between distrusting code pro-
ducers and consumers who may have conflicting goals. In contrast, the goals of web-application
code producers and SWIL policy writers are assumed to be the same; neither wishes an appli-
cation to be vulnerable to forceful-browsing attacks.

6.7.2 Describing Interfaces with Automata

Alfero and Henzinger propose describing interfaces as automata [46] in order to capture the
temporal behaviour of interfaces. They use automata both to specify theinput assumptions
and theoutput guaranteesof an interface. They define interface compatibility optimistically:
interfaces are said to be compatible if there is a possible environment in which they can work
successfully together.

In a similar theme to Interface Automata, typestate checking [152] is

a compile time program analysis technique which enhances program reliability by
detecting type-correct applications of operations which are non-sensical in their
current context

A typestate analysis associates each program object with an automaton which describes the
order in which operations can be invoked. The state of the automaton is thecontextmentioned
in the quote above. For example a file object supporting operationsopen, read andclosemight
be described using the regular expression

open read? close

i.e. the file must be opened first before it may be read and it must be closed eventually. Typestate
analysis can be used to check a variety of interface rules, from security properties to detecting
when data structures can be successfully freed as an alternative to garbage collection.

Interface Automata and typestate checking have much in common with this work. How-
ever there are several major differences. Firstly, interface automata and typestate checking are
compile-time procedures which aim to check the compatibility of software modules statically.
In contrast, although SWIL policies may be generated and analysed statically they are nonethe-
less intended to be enforced at run-time against an unmodified application. Unlike the other
approaches SWIL policies are not checked against the application source-code and so may be
applied even when source-code is not present. Additionally multiple SWIL policies may be
in force at any one time, each running in parallel. Finally, SWIL policies are not simply pas-
sive monitors of application behaviour but can be used to dynamically transform interfaces, by
removing links and forms associated with future error states in the SWIL model.

6.7.3 Sanctum AppShield

Sanctum AppShield was first mentioned in Section 5.6.2 and its ability to protect web-form
parameters was discussed. AppShield is also claimed to protect applications from forceful-
browsing attacks, through a component called aDynamic Policy Recognition Enginewhich
monitors live HTTP traffic and infers a policy dynamically. While it has a low installation over-
head and does not require expert users to write a policy, a purely dynamic approach like this is
inherently much less powerful than the manually specified approach specified here. Without an

133



6.7. Related Work Chapter 6. Stateful Web-application Interface Language

up-front policy specification, the system must either be taught, by example, which sequences
of requests are valid or it must be conservative and dynamically track all links and forms gen-
erated by the application across every session10. The former approach (training the system)
suffers from problems if the examples presented to the system do not cover all valid application
behaviour. The latter approach (tracking all generated forms) may betoo permissive and allow
attacks like the travel-booking example of Section 6.1.1.

The systems presented in this thesis all support policy abstraction: the ability to keep a con-
crete security policy document separate from main application code. Two of the advantages of
having a concrete abstract policy are (i) the policy is a valuable form of interface documentation
(and can be viewed as an interface transformation); and (ii) the policy can be analysed statically
enabling the verification of important properties. These benefits are not conferred by an auto-
matic, hidden-policy, Sanctum-like solution. In essence the system presented here combines
static and dynamic checking in a novel way.

6.7.4 Meta-programming

The SWIL Meta-programming System used an O’Caml embedding of SWIL to generate and
combine SWIL program fragments into more complicated SWIL programs. Although not
the main focus of this chapter, this section describes a number of other approaches to meta-
programming and compares them to the SWIL Meta-programming System.

A traditional programming language is said to have twostages: compile-time and run-time.
Multi-stage programming [155] (also known as generative programming or meta-programming)
adds extra stages. At a minimum a multi-stage system would have: generation-time, compile-
time and run-time where the code run at generation-time creates further code which is subse-
quently compiled at compile-time.

Multi-stage systems are surprisingly common. Systems tend to vary in two aspects: firstly
they vary in how they manipulate generated code (some using strings while others may use
syntax trees) and they vary in how many guarantees they are prepared to make about the gener-
ated code (i.e. whether it definitely typechecks). The parser generatoryacc generates C code
by bashing together strings containing fragments of syntax. There is no guarantee that output
generated in this way will successfully parse. Described in this chapter, SMS produces SWIL
code by bashing together trees of concrete syntax (known asprogram fragments). Although
guaranteed to parse, output generated in this way may fail to typecheck or may fail the well-
formed program tests, resulting in an O’Caml exception being thrown. Recent research into
meta-programming has resulted in systems like Meta-ML (described below) which can guar-
antee that well-typed generator programs generate well-typed output programs11. A couple of
interesting meta-programming systems are described in the following few sections.

Meta-ML/ MetaOCaml

Based on the ML language family, Meta-ML [156] and now MetaOCaml [3] allow programs
to have an arbitrary number of stages. Meta-ML adds extra syntax for staged computations:<
e > is a staged computation which will evaluate the expressione in the next stage. Brackets
may be nested:< < e > > indicates an expression will be evaluated in the next stage but
one. Staged computations have types which indicate both their result (when finally evaluated)
and their context. A staged computation can be immediately evaluated using the operatorrun

10Consider that a user may bookmark a URI in one session and recall the bookmark from a second session.
11A difficult property when variable bindings can be generated, possibly shadowing existing bindings of different

type.
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which behaves like a type-safeeval operator. As mentioned in the previous section above,
Meta-ML and MetaOCaml both perform static type checking guaranteeing that code will not be
generated which contains a type error.

If the SWIL Meta-programming System were implemented in MetaOCaml then we could
use Taha’s observation [155] that a staged interpreter is a program translator. The SWIL inter-
preter combined with a generated SWIL AST could be used to directly generate native O’Caml
code in a type-safe manner.

C++

C++ [153] created by Bjarne Stroustroup is an extension of C with accidental [166] support
for meta-programming usingtemplates. Templates were intended for generic programming;
creating classes and functions parameterised over types. For example a class which implements
a linked list might be written

template<class T>
class List {

T *head;
List<T> *rest;
...

}

where theT is a type variable. A linked list of integers would have typeList<int> .
However as well as providing type parameters to templates C++ allows templates to accept

integer value parameters. A template may be defined recursively as follows:

template<int X>
class c {

static const int result = X * c< X-1 >
...

}

When the program is compiled, the compiler will expand the nested templates completely (pos-
sibly with a maximum recursion depth). C++ is therefore a three-stage programming language
where template evaluation generates code which is compiled and then executed.

Meta-programming using templates has been exploited by several projects. The MTL li-
brary [151] uses templates to generate fixed-size kernels for linear algebra routines while the
Blitz++ library [165] generates specialised algorithms, unrolling loops where possible for fast
vector and matrix computation.

FreshML/ Fresh O’Caml

Although not strictly meta-programming languages, FreshML [148] and Fresh O’Caml [149]
are derivatives of the ML family with extra facilities for matching and generating syntax. Orig-
inally ML (which stands for Meta-Language) was intended for manipulating logic expressions
and accordingly supports sophisticated pattern matching and datatypes useful for this purpose.
However when performing operations over syntax trees it is often difficult to handle variable
binding properly. Syntax trees should be treated as equivalent if they differ only in the names
of bound variables. Furthermore care must be taken when generating new names to manage
freshnesscorrectly i.e. to respect the naming and scoping rules of the language and not acciden-
tally confuse names that should be distinct. FreshML and Fresh O’Caml are specially designed
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to make syntax manipulation tasks easy and safe. It would be promising to try implementing
future versions of the SWIL meta-programming system using these tools.

6.7.5 User Interface Transformation

Dynamically changing (or transforming) interfaces has been studied in several different con-
texts. Firstly, many applications deal with and must be able to display dynamically-generated
data. Therefore interfaces must transform themselves at run-time to cope with this generated
data. Secondly, in the highly mobile world of UbiComp, applications may be called upon to
adapt and run on devices ranging from large wall-sized displays to small PDAs. Thirdly some
application transformations are motivated by security. Each type of transformation is described
in the following sections.

Pre-programming transformations

User interfaces typically comprise a static part known at application-design time and a dynamic
part which depends on data only available at run-time. Traditional user interface builders (e.g.
Cardelli’s direct manipulation interface builder [30]) focus on the static part. As part of the
influential MASTERMIND project, Castells et al [38] propose a declarative language which
uses constraints to specify how the application should respond to dynamically changing data.

Rather than using a traditional user interface builder program, an alternative is to generate
the whole interface from scratch. For example one approach, taken by Engelson et al [58], is
to automatically generate interfaces from the datastructures used by applications; for example
a structure might become a table and a string value might correspond to a text box. This has
the advantage that if the code is updated (perhaps by dynamically loading a module) then the
interface can change to match.

Transformations for UbiComp

Ubiquitous Computing applications pose a difficult challenge for user interface designers. Pier
and Landay [128] outline how future applications will be expected to be highly mobile and
able to cope with a wide range of display sizes, from wall-sized displays down to small PDA
devices. They propose the idea of alocation-independent interface: an abstract entity which
may take multiple physical forms; anything from a stylus-based interface on one device to a
voice recognition system on another.

One attempt at making a location-independent interface was made by Todd and Glinert
who proposed a system called POLYGLOT [161]. In POLYGLOT interfaces written in an ab-
stract form (similar to HTML form controls) are rendered on specific devices bypresenter
objects connected using a CORBA [123] middleware to the back-end applications. Presenters
are device-specific; they choose the style of the interface and can render it using whatever fa-
cilities are present on the device. Presenters can be connected and disconnect at will; multiple
presenters can control the same application simultaneously.

Perhaps due to the popularity of the devices, adapting interfaces to work on PDAs has
been studied in detail. One approach is to transcode images contained within web-pages, e.g.
by reducing the quality and size of JPEGs with a custom web-server [39, 82]. Alternatively
HTML pages themselves may be parsed and summarised such that they better bit onto PDA
screens [29].
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Transformations for Security

Some interfaces adapt their appearance in response to security requirements. When untrusted
Java applets spawn top-level windows they are specially marked to warn the user that they are
not local applications. The Trusted Computing Group initiative [162]12places each application
into one of two groups: a low-security group and a high-security group. The high-security
applications are trusted to access resources like encryption keys used to secure digital content.
High-security applications needing to ask the user for sensitive details (e.g. passwords) are
able to establish atrusted pathto the screen and keyboard. The aim is to prevent low-security
applications from being able to fool the user by forging convincing-looking password dialogs
or simply record key-presses. Whereas Java applets are marked with words like “untrusted”
to warn the user, a TPCA high-security application will be marked with some special marking
known only to the user to provide some reassurance that the application is genuine. Effectively
the marking would be a shared secret between the application and the user.

User Interface transformations are common on existing web-sites. Some bulletin-boards
transform the appearance of links, specially marking those which are written by users. This
prevents users unknowingly clicking on links of the form:

<a href="http://malicious.com/">http://good.com/</a>

which causes the texthttp://good.com/ to be displayed on the page but when the link is
clicked the actual URI fetched ishttp://malicious.com/ . When combined with client-
side Javascript code capable of hiding the real URI bar (containing the give-away URIhttp:
//www.malicious.com/ ) and HTML designs which mimic the appearance of the browser,
a user might be tricked into thinking that the page loaded fromhttp://www.malicious.
com/ really ishttp://good.com/ .

Finally, it is important that any security-related interface transformations are never relied
upon in isolation. A user of a program with a visible security marking will inevitably grow to
trust that feature, increasing the potential for disaster should that feature be subverted. A case
in point is the typical web-browser “padlock” icon displayed on the screen when the browser is
using HTTPS i.e. HTTP over SSL. The padlock is intended to convey the fact to the user that the
site can be trusted; that its identity was confirmed and all communication is encrypted. However
the SSL specification [53] allows ciphers to be renegotiated at any time and the NULL cipher is
always supported13. It is possible for an HTTPS server to request the NULL encryption cipher
at any point — with the result that the data is not protected but the padlock icon is displayed.

Comparison with other UI transformation schemes

The dynamic response transformation described in Section 6.5.1 exists in a different niche to
most of the interface transformations presented in this section. It is not intended to be exclu-
sively used as part of the application design process; rather it is intended both to be used to help
design new applications as well as to be externally imposed to fix pre-existing applications.

The transformation system proposed in this chapter is built on top of HTML transforma-
tions, similar to those needed to make web-applications usable on small screen devices like
PDAs. However, rather than removeunnecessaryfeatures (which do not fit on screen) we re-
moveillegal features which would lead to a security policy violation.

12Also known as “Trusted computing”, “trustworthy computing”, “safer computing”, “TPCA”, “Palladium” and
even “treacherous computing” depending on who you talk to.

13It is needed at the beginning before another cipher has been negotiated.
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The security related transformations are similar in spirit to the transformation scheme pro-
posed in this chapter. However there are a number of key differences: (i) the system described
here abstracts policy from the application code rather than entangling the two together; (ii) the
transformation system does not need to be foolproof – even if a bad link is selected the request
will still be blocked by the application-level firewall; and (iii) the policy here is dynamic and
may be adjusted according to demand (e.g. it is possible to disable temporarily a part of an
application while maintenance is being performed on it14).

6.7.6 Building web-applications using continuations

Several people have suggested making use of continuations to structure web programs [76, 131].
For example, Graunke et al [76] propose a system where, whenever an application wishes to
interact with a user it stores its current execution context as a continuation—encrypted and
protected with a MAC (to prevent tampering)—on the client-side in a form. Users are free
to save the continuation-carrying forms to disk and revisit them at any arbitrary time in the
future. Users can effectivelybacktrackto any interaction point as if they were running the
whole application within atimetravel debugger[26]. In the system proposed by Graunke et al
even application mutable state is stored on the client-side within cookies.

Such a scheme works well provided applications are fundamentally free of server-side side-
effects; i.e. they must not rely on any mutable state on the server. Once some server state has
been introduced (e.g. in the form of an e-commerce transaction log) then the user needs to be
prevented from backtracking to a point before the state was last updated, otherwise they might
see a stale view of the application and become confused. The strength of the work presented
in this chapter is that nomatter which languages – recall a web-application might consist of
multiple components written in different languages – are used to create the actual application,
control over backtracking can be implemented using a SWIL policy and server-state can be
protected.

6.8 Summary
This chapter presented SWIL, a language intended to protect applications fromforceful-
browsingattacks. SWIL specifies the acceptable order of web-application interface function
invocations as that accepted by a deterministic finite state automaton. A translation from SWIL
into PROMELA was presented allowing SWIL policies to be analysed statically by the SPIN

model-checker before being dynamically interpreted by an application-level firewall. More im-
plementation details are forthcoming in the following chapter.

To facilitate creating complex SWIL policies, an embedding of SWIL into O’Caml was
created, called the SWIL Meta-programming System. This system allows the generation, ma-
nipulation and combination of SWILprogram fragmentsforming complete SWIL programs.

As well as simply blocking requests in violation of the installed policy, the system proposed
here is able to perform dynamic interfacetransformation. Links and forms contained within
application HTML responses may be analysed and those which are determined to inevitably
lead to a future policy error state are removed.

Finally, to demonstrate the utility of the system described in this chapter, an extended case
study was presented based on a hypothetical e-commerce web-site. Suitable policy to protect
the application was created and a number of useful properties statically checked with SPIN.

14Although a realistic system would likely need some mechanism for telling userswhy the interface elements
are disabled and for how long the restriction might last.
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Implementation

This chapter describes the implementation of the application-level policy systems described in
this thesis. The policies described here fall into two categories: policies governing applica-
tion mobility and applicationinterfaces. Chapter 3 and Chapter 4 described the Unified Spatial
Model (USM) and the Mobility Restriction Policy Language respectively. Chapter 5 and Chap-
ter 6 described SPDL-2 and SWIL, two policy languages for securing vulnerable application
interfaces. Mirroring this split, this chapter is also divided into two parts: Section 7.1 addresses
mobility and Section 7.2 addresses interface policies. This chapter also includes details of a
new policy mechanism known asmobility enforcement policies. These policies are written as
simple Java classes and embody a particular movement strategy (e.g. “the agent should always
run in the same room as person X”). Object instances of the classes are associated with indi-
vidualsentient mobile applications– applications which automatically sense their environment
and react accordingly. Like the other policy systems described in this thesis, these new policies
are abstract specifications which may be placed in a library and shared between multiple clients.

7.1 Mobility

Earlier Chapter 3 described a spatial model capable of simultaneously representing the loca-
tions of physical entities such as people and virtual entities such as mobile agents. The model
was used as the basis for a new kind of policy: the mobility restriction policies described in
Chapter 4.

This section describes a Java-based implementation framework comprising of (i) a spatial
middleware system maintaining a world model in the style of Chapter 3; (ii) client and server-
side support for implementing the security policies of Chapter 4; and (iii) a new kind of mobile
agent policy known asmobility enforcement policyused tocausean agent to move in response
to external stimuli. The structure of the framework is depicted graphically in Figure 7.1.

The implementation is described in two parts. First, Section 7.1.1 begins the descrip-
tion of the spatial middleware system known as the WOrld Reaction and Modelling Service
(WORMS). The model supports a plug-in architecture. Plug-in modules are used to connect the
middleware to external location systems and to help implement mobility restriction policies.
The middleware is designed to be location-system agnostic; adding support for a new location-
system simply involves writing a new plug-in module. As well as passively monitoring the state
of the world, the middleware is capable of taking action to programmatically create, destroy
and move certain kinds of entities. This facility is used by a mobility policy plug-in to enforce
the mobility restriction policies of Chapter 4.

Section 7.1.2 continues the discussion with a description of the software running inside the
mobile agent servers. This code is divided into three parts, drawn separately on the diagram in
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Figure 7.1: The structure of the system designed to implement mobility security policies. Note
in particular the react interface of the SPIRIT plugin is greyed out (i.e. disabled); this is ex-
plained later in the text.

Figure 7.1:

1. aManagermodule which communicates directly with the WORMS Aglet plug-in;

2. aMobility Policymodule which implements the new mobility enforcement policies; and

3. Untrusted Agent Codecomprising the rest of the agent code written by the user.

Recall from Chapter 4 that the mobility restriction policies were designed to influence the move-
ments of mobile agents by either (i) blocking migration requests; or (ii) taking corrective action
(e.g. killing or jailing an agent) afterwards if the policy violation cannot be avoided (i.e. it
was caused by physical movement). TheManagermodule is responsible for co-ordinating the
client-side part of both of these functions. It actively filters migration requests, checking for po-
tential policy violations and also responds to commands (e.g. jail, kill) received from the Aglet
plugin.

The policies of Chapter 4 were intended torestrict the movements of agents; nothing was
said about how tocauseagents to move in the first place. It was assumed that mobile agents
would contain code to decide when to migrate and would call the appropriate migration APIs.
This chapter introduces a new kind of policy known as anmobility enforcement policywhich
describes using the Unified Spatial Modelwhenan agent should move andwherean agent
should move to. An application using these policies is factored into two parts: (i) a mobility
policy object; and (ii) the rest of the code, which would contain no mobility-related behaviour.

Mobility enforcement policies areproactivepolicies and may be considered as the dual of
thereactivemobility restriction polices described previously. Enforcement policies are written
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abstractly as Java classes and each mobile agent is associated with a concrete object instance.
Structuring applications in this way ensures that mobility behaviour is kept separate from the
main agent code, allowing patterns of behaviour to be packaged into code libraries facilitating
the sharing of mobility policies between applications.

The rest of this section is structured as follows: Section 7.1.1 describes the WORMS system
in more detail together with information about several plug-in modules. Section 7.1.2 describes
the code running in the mobile agent servers followed by a description of the mobility en-
forcement policies in Section 7.1.3. A number of issues arose during the development of this
prototype system, these are discussed in Section 7.1.4.

7.1.1 Policy-Enforcing Spatial Middleware

This section describes the implementation of a spatial middleware system called the WOrld
Modelling and Reaction Service (WORMS) which implements the spatial model of Chapter 3.
The Java-based WORMS system bridges the gap between real-life sensor and reaction systems
and spatially-aware mobile agents. The service constitutes a core and a set of plug-in modules.
The core maintains the world model, making sure the entities in the model are well-sorted.
Clients can register themselves to receive update events whenever parts of the world-model
change i.e. events are generated whenever entities are created, destroyed or moved.

Plugins exist for two purposes: (i) to connect the WORMS system to individual location
systems; and (ii) to impose policy on the system. The system uses a publish/subscribe mecha-
nism; policy modules register themselves with the core, receiving events whenever any updates
to the world model happen. The policy modules continually monitor for any policy violations.
If any breach is observed then they take the appropriate corrective action (e.g. in the policies
described in Chapter 4 this might involve killing, creating or jailing an agent).

Location plugins expose two interfaces: a passivemodellinginterface and an activereaction
interface. The modelling interface is used by modules which monitor the outside world (the
“real-world”) and feed updates into the world model. The reaction interface is used to effect
changes in the outside world being modelled. For example, it is through the reaction interface
that mobile agents may be frozen or destroyed.

As mentioned above, the Service is not specialised to one particular location system but
rather is designed to be location-technology agnostic. Each particular location technology is
associated with a plugin module which implements either or both of the interfaces (modelling
and reaction). Currently the system has two such plugins: aSPIRITplugin and anAgletplugin.

SPIRIT Plugin

The SPIRIT [11] system first mentioned in Section 3.3.4 is a piece of location-monitoring mid-
dleware developed originally at AT&T Laboratories Cambridge. Its primary function is to take a
stream of raw location events received from a network of ceiling-mounted sensors and combine
these with a spatial database to produce and disseminate high-level location events concerning
people and objects within the lab. Objects to be tracked are equipped with Active-Bat [169]
devices — radio-triggered ultrasound-emitting location tags described earlier in Section 2.2.2.
The clients of the system are location-aware applications, for example the “active map” pro-
gram which displays a top-down view of an office complete with the positions and orientations
of people and equipment, updated in real time. Figure 7.2 shows an active bat on the left and a
screenshot of the “active map” program on the right. Note that the map is showing a zoomed-in
view of an office in the Laboratory for Communication engineering where 3 people are present,
represented by usernames ofkjm25 , jpw20 and ja316 . Desks, computer terminals and
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Figure 7.2: On the left: an example active bat. On the right: a screenshot of the “active map”
program.

phones are also visible.
SPIRIT is aspatial indexing system. Primitives in SPIRIT are spatial regions (shaped vol-

umes of space) which are allowed to move freely with respect to one-another. SPIRIT generates
events whenever a region overlaps, ceases to overlap, contains another or ceases to contain an-
other region. The functionality of the SPIRIT system is best explained by means of an example.
The “desktop teleporting” [134] application is a commonly-used program which automatically
moves a user’s desktop to the terminal nearest their current physical location. The teleporting
application exploits SPIRIT in the following way: every computer monitor is associated with
a region of space placed in front. Roughly speaking, the region of space corresponds to the
space from which the monitor would normally be used. Therefore a smaller monitor would be
associated with a smaller region than a bigger monitor. Similarly, users are associated with a
volume of space representing the region in which an object has to be located for them to interact
effectively with it. When a person turns to face a monitor the two regions overlap, generating an
event which causes the teleport application to display the user’s desktop on the screen. When
the user moves away, another SPIRIT event is generated which removes the teleported desktop.

The SPIRIT plugin1provides a mapping between the spatial regions understood by SPIRIT
and specific entities in the entity hierarchy. An example of such a mapping is shown in Figure
7.3. The bottom half of the figure shows the output of the active map application monitoring two
rooms — “Room 9” and “Room 10”. The SPIRIT plugin has associated these rooms, two people
(useridkjm25 andacr31 ) and a pair of workstations with entities inside the Service. Once
the mapping is established, the plugin listens for high-level containment events from SPIRIT
(such as “userkjm25 has left Room 9”) and makes the corresponding changes in the world

1The low-level interface between the native SPIRIT C++ libraries and Java was written by Alastair Beresford
using the Java Native Interface (JNI) facility. This small piece of code generates a continuous stream of location
events which are filtered and processed by the rest of the plugin code.
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model. Note in the earlier diagram in Figure 7.1 how the “React” part of the SPIRIT plugin was
greyed out. This is because SPIRIT is an entirely passive system; it is not possible to command
SPIRIT to physically move objects around. It is possible to imagine a modified SPIRIT system
which can influence its environment. This might be used, for example, to command robots to
move around the building.

Aglet Plugin

The Aglet system – a Java-based mobile agent system from IBM – was first described in Sec-
tion 4.7.1. Aglets (calledagentsin the terminology of Section 2.1) execute in a “context” –
represented by an instance of the classAgletContext (called locationsin the terminology
of Section 2.1). A single computer can run multiple Aglet VMs (calledmobile agent serversin
the terminology of Section 2.1), each associated with a unique TCP port number. Each Aglet
VM can contain multiple contexts. Individual Aglet contexts are named globally by URIs of
the formatp://host:port/context where the URI schemeatp indicates the “Aglet
Transport Protocol”. Aglets exploit the conventional Java event model: events are generated
when agents are created, destroyed or move between contexts. Interested parties can register
themselves (as eventlisteners) with the Aglet system and receive callbacks when the events are
generated.

Like the SPIRIT plugin described above, the Aglet plugin is responsible for maintaining a
mapping from hostnames, context names and Aglet names to entities in the world model. Such
a mapping for a fragment of a world model is displayed in Figure 7.4. The diagram depicts
a path of entities from the root to an agent called “music player”. The first two entities in
the path (“World” and “Charlie’s Office”) represent physical objects and are therefore ignored
by the Aglet plugin. The remaining four entities have some meaning in the Aglet universe:
the “laptop” entity is a piece of hardware with a hostname (”laptop”); the context “main-123”
corresponds to an Aglet process with process ID (PID) 123; the context “context” corresponds
to anAgletContext within the java VM called “context” while the entity “music player”
corresponds to a running Aglet called “music player”.

Unlike the SPIRIT plugin described earlier, the Aglet plugin supports thereact interface,
to control the runtime behaviour of agents. Ideally it would be possible to completely control
(migrate, jail or kill) untrusted agents running in the system without their consent. However,
in the prototype described here there are a number of limitations inherited from Java which
make this impossible. Therefore in the current implementation, the Aglet plugin sends control
messages to the individual agents and trusts them to respond correctly to the control messages.
More details and discussion of the limitations inherent to the design of the prototype system are
presented later in Section 7.1.4.

Mobility Restriction Policy Plugin

Recall the mobility restriction policies introduced in Chapter 4 which consisted of 4-tuples:

〈location, formula, times , onfail〉

where location is a path expression (see Section 3.1.3) designating a set of specific entities
where the assertion given byformula should hold. If, with respect to the time period described
by times, the assertion becomes violated (e.g. by the physical movement of an object) then the
system will attempt to execute the command described in the fieldonfail .

In any realistic system, policies written by different users are likely to come into conflict
with each other. Section 4.5 outlined one possible conflict resolution strategy in which each
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kjm25

Figure 7.3: An example of the mapping between SPIRIT objects as displayed by the program
smap (bottom) and entities in the WORMS world model (top).
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Figure 7.4: Diagram showing how entities along a path in the world model are realised by the
Aglet plugin.

145



7.1. Mobility Chapter 7. Implementation

entity is associated with anowner, who has a say in the outcome of anyonfail action (e.g. the
killing or jailing of an agent) involving that entity.

Therefore the mobility restriction policy plugin must maintain a database of users, entities,
active policies and keep track of which user owns each entity. The plugin performs two func-
tions: (i) it receives migration requests from deployed mobile agents and either confirms or
rejects the requests; and (ii) it observes other movement (e.g. physical movements) and deter-
mines when a policy violation has occurred and what corrective action should be taken (if any).
These two functions are now explained with an example.

Example

Consider a simple office environment containing two people: Alice and Bob, both of whom
have one office and one PC each. An example world model is displayed graphically in the upper
part of Figure 7.5. The world model is similar to the example originally used in Section 4.3.
Note that dashed boxes and arrows are used to indicate the owners of each entity. There are
three owners in the diagram: Alice, Bob and a user called “The Boss” who is not physically
present in the model. In the example there are two policies installed in the WORMS system,
one belonging to Alice and one to Bob. Alice’s policy is as follows:

〈 location = World ,
formula = �¬music player [T] | (♦(Alice[T]

| ♦music player [T] | T)),
times = Always(10 seconds),
onfail = Kill World// • • • //music player 〉

(7.1)

“for all time, either themusic player is absent (not running) or it is running in
a place next to me. If this remains false for 10 seconds, kill themusic player
(wherever it is)”

Note that in the upper part of Figure 7.5 the formula in the policy is holding because Alice
and her agent are both within her office. The second active policy written by Bob is the same as
that given back in Chapter 4 i.e.:

〈 location = World/* ,
formula = �¬Bob[T] ∨ (♦Bob[T] ∧�¬audio [¬0]) ,
times = Always(3 seconds),
onfail = Jail / • • • /audio/* 〉

(7.2)

“if ever I’m in an office with a music playing agent, jail the agent if it has not left
within 3 seconds”

Note that in the upper part of Figure 7.5 the formula in the policy is holding because Alice
and her agent are in one office and Bob is in another.

Now, consider what happens when Alice walks into Bob’s office. First of all the location
system senses Alice’s new location and sends this information to all registered applications,
including the WORMS service. The WORMS service updates the authoritative copy of the
world model resulting in the configuration displayed in the lower part of Figure 7.5. Note that
Alice’s policy is now being violated but Bob’s is not. Since the WORMS service itself acts as
a location system, it sends location update events to all registered clients: specifically all the
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Figure 7.5: [1]: initial state of the WORMS system; the dashed arrows and dashed boxes
indicate the owners of each entity. The table on the right indicates that two users’ policies are
both satisfied. [2]: the state of the WORMS system after Alice has been sensed moving into
Bob’s Office. Note her music playing agent has not moved and her policy is now being Violated.
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registered mobile agent servers running on all the PCs. Observe that Alice’s policy had atimes
field containingAlways(10 seconds); this indicates that Alice’s agent has 10 seconds to take
an action which fixes the policy violation before theonfail clause is executed. The WORMS
system sets an internal timer for 10 seconds and waits for the agent to respond, if it can.

There are now several possibilities, including:

1. Alice walks back into her office, her policy is nolonger in violation and the timer is
cancelled;

2. the music playing agent quits (or crashes), it is removed from the model, the policy is
nolonger in violation and the timer is cancelled; or

3. the music playing agent attempts to migrate to a PC in Bob’s office.

The last case is particularly interesting and worth considering in detail. Figure 7.6 shows the
sequence of events starting with the initial message from the location system to the WORMS
service triggered when Alice switches room. We have already considered up to the time marked
with the asterisk, just after the WORMS service has set a timer and sent an update message to
all the registered clients. We assume that the music player is a “follow-me” music player and
therefore it decides to follow Alice by migrating into Bob’s office. It sends a request to the
WORMS system asking for permission to migrate there. The centralised WORMS system
considers all agent migration requests. The WORMS system computes that, should it allow the
agent to move, it would satisfy Alice’s policy but place Bob’s in violation and therefore it must
apply the conflict resolution policy to decide which policy should take priority.2

The default conflict resolution strategy was outlined back in Section 4.5. Each user is con-
sidered to “vote”3 on a proposed change to the world model. A user is said to either befor the
change,againstagainst the change or said toabstainin the following circumstances:

for: either the change results in fewer of the users policies being violatedor it results in no
change to the number of the users policies being violated and the request happens to
come from an agent they own;

against: if the change results in more of the users policies being violated; and

abstain: if the change results in no change to the number of the users policies being violated
and the request comes from an agent they do not own.

A migration is considered to consist of two phases: the first when the agent leaves its old context
and the second when it arrives at its new context. The request is only allowed if both phases
are allowed. For the case of Alice’s music player attempting to migrate into Bob’s office, each
phase will be considered separately.

Consider the first phase of the migration; i.e. when Alice’s agent leaves Bob’s office. Alice’s
single policy is violated if the agent stays where it is and holds if the agent disappears; therefore
Alice votes for the change. Consider Bob: his policy is not violated before or after this change
and since the agent does not belong to him he abstains. Since there is one vote for and one
abstention there is no need to deliberate any further and the change is accepted.

2The conflict resolution is needed because Bob’s policy would be violated by the proposed move. If Bob’s
policy was agnostic then the conflict resolution would not be needed.

3Of course no actual user polling takes place, just an examination of their policies
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Figure 7.6: Chart showing the sequence of events which happen when Alice walks into Bob’s
office and remains there. Time runs vertically downwards. There are three components in-
volved, from left-to-right: the music playing agent running on a PC in Alice’s office; the
WORMS system running on a centralised server; and the location system running on a cen-
tralised server.
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Consider the second phase of the migration; i.e. when Alice’s agent arrives in Bob’s office.
Alice’s single policy holds if the agent is absent and holds if the agent is in Bob’s office; there-
fore since the number of policies in violation is unchanged she votes for the change, because
the request comes from her agent. Bob’s policy, however, is not violated before the change
and would be violated afterwards; therefore he votes against the change. For this phase of the
migration there is one vote for (from Alice) and one vote against (from Bob) and therefore we
must consider the owners of the relevant spaces.

Recall that the conflict resolution strategy adds weights to votes depending on the owners
of the space where the proposed change will occur. Since the proposed change is Alice’s agent
arriving on Bob’s PC the WORMS system examines who owns the entities on the path between
the root and Bob’s PC’saudio context. There are two relevant owners: “The Boss” who owns
the root entity and Bob who owns his office and the equipment inside. Since “The Boss” has not
entered any policies into the system he is ignored. Bob, of course, votes against the migration.
Alice’s votes are ignored because she does not own any of the relevant entities. Therefore the
conflict resolution system decides that Bob’s wishes take precedence and the migration request
is to be blocked.

Returning to the chart in Figure 7.6, a message is sent back to the agent from the WORMS
system telling it that its migration request has been rejected. At this point we assume the agent
continues to monitor Alice’s location and if she moves somewhere else it will attempt another
migration. Assuming Alice stays where she is, a short time later the 10 second timer expires
and theonfail action is triggered and the WORMS system considers executing the command
to kill the music player agent. Recall that a kill consists of only one phase: removing the entity
from the model. The WORMS system evaluates this change in the same way as the previous
migration proposal and concludes that it will be accepted—this is due to the fact that Alice’s
policy will cease to be in violation and Bob’s policy holds regardless. Therefore the WORMS
system issues a command to kill the music player entity. This request is translated by the Aglet
plugin into a request to the mobile agent server on Alice’s PC to terminate the music playing
aglet. The last step in the chart of Figure 7.6 shows this message being received and the resulting
agent termination.

7.1.2 Mobile Agent Servers

This section describes the code running inside the client-side mobile agent servers. In the
diagram of Figure 7.1 three modules were displayed: (i) theManager; (ii) the Mobility Policy;
and (iii) theUntrusted Agent Code. Each of these shall be described in turn.

TheManagermodule talks directly to the Aglet plugin. On startup its first task is to register
entities in the model which correspond with instances ofAgletContext in the local virtual
machine. Whenever an agent wishes to migrate, the Manager sends the request to the Aglet
plugin. The installed policy in the middleware service is queried to determine whether the
request should be accepted or not. The Aglet plugin can also send requests to the Manager,
telling it to destroy or jail an agent in response to a policy violation (recall that policy violations
can result from unrestrained physical movement).

The policies in Chapter 4 are mobilityrestriction policies designed to limit the physical
movements of mobile agents. TheMobility Policy in Figure 7.1 refers to another kind of policy:
themobility enforcement policy. These policies are written directly as Java classes and a number
of example policies are described in the following section.

The rest of the code is labelledUntrusted Agent Codein Figure 7.1 and comprises the
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application-specific part of the mobile agent code. This code is standard Java Aglet code except
it has access to additional APIs (notably the Manager module) and is unable to use the standard
Aglet migration commands directly; all migration requests must be filtered through the Manager
first.

7.1.3 Mobility Enforcement Policy

The mobility enforcement policiesare the dual of the mobilityrestriction policies outlined in
Chapter 4. The enforcement policies decidewhenan agent should move andwherethe agent
should move to. The policies are represented as Java classes using a few simple APIs as exhib-
ited by the following pseudo-code fragment:

public class SimplePolicy
implements EntityChangeListener{

...
public SimplePolicy(WORMS spatial_model,

Manager manager,
Entity me) {

spatial_model.addCallback(this);
...

}
public entityDeparted(who, where){ ... }
public entityArrived(who, where){ ... }
...

}

where spatial model represents a reference to the WORMS system and
the addCallback method registers the SimplePolicy instance as an
EntityChangeListener . When the world model changes, the system invokes the
entityDeparted andentityArrived methods when entities leave a place and arrive at
a new place respectively. Note these correspond to the two primitive events described earlier
in Section 3.2. Note also that although this API causes the agent to receiveall change events
in the model an API could be added to request only events within a particular subtree of the
model to enhance scalability.

Since the policies are abstract, a library of common patterns can be created to encourage
code sharing between applications. The following two sections provide examples of how such
common mobility policies might look.

Example: The Follow-Me Policy

The “Follow-Me” policy instructs the application to physically follow a particular user around.
Whenever the user leaves a room, the application stops running. Whenever the user enters a
new room, the application migrates to a host in the new room and continues where it left off.
This mobility policy is useful in a number of contexts, for example

• migrating a user’s desktop to a terminal near their current physical location (recall the
teleporting example in Section 7.1.1) to ensure that user applications are always easily
accessible; and

• ensuring that a music playing program is always playing music that the user can physi-
cally hear, by migrating to a computer in the same room.
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Java-like pseudocode for the Follow-Me policy may be written as follows:

public class FollowMe{
...
public FollowMe(WORMS spatial_model,

Manager manager,
Entity me) {

spatial_model.addCallback(this);
...

}

Entity findNearbyComputer(Entity x){
// returns an entity near "x"
// capable of running the
// application

}

public entityDeparted(who, where){
if (who.equals(me)){

manager.stop();
}

}
public entityArrived(who, where){

if (who.equals(me)){
Entity x=findNearbyComputer(where);
manager.migrate(x);

}
}

}

In the constructor theFollowMe object registers itself with the WORMS. When entities
change location in the spatial model the two callback methodsentityDeparted and
entityArrived are executed on the policy object. Note that in the Follow-Me policy only
events relating to the user being tracked are relevant and all other events are silently ignored.
When the tracked user leaves his/her current room, theentityDeparted method calls the
manager.stop() method which requests that the application stop executing. When the
tracked user enters another room, theentityArrived method attempts to migrate the appli-
cation to a new computer, located inside the user’s new room.

Example: The When-No-one’s-Here Policy

This policy is useful for running long-term non-interactive tasks on otherwise idle computers.
Whenever a user enters a room with one of these applications, the application is paused to
prevent any possible degradation of the quality of service to the user. Only when the last person
leaves the room is it safe for all such background tasks to be restarted.

Java-like pseudocode for this policy may be written as follows:

public class WhenNooneHere{
...
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public WhenNooneHere(WORMS spatial_model,
Manager manager,
Entity where) {

spatial_model.addCallback(this);
...
}

int countPeopleHere() {
// return number of people in
// same room as me

}

public entityDeparted(who, where){
if ( (manager.amStopped()) &&

(countPeopleHere() == 0) )
manager.start();

}
public entityArrived(who, where){

if ( (manager.amRunning()) &&
(countPeopleHere() > 0) )

manager.stop();
}

}

The utility functioncountPeopleHere returns the number of people in the same room as
the application. TheentityDeparted andentityArrived methods use this information
to decide whether or not to let the application execute.

7.1.4 Issues

In the prototype system described in this section there are several outstanding issues which
should to be addressed before the system is widely deployed. The first issue concerns the size
of the trusted computing base(TCB). In computer security terminology, the TCB is defined
to be the set of hardware and software components which enforce the security policy. In this
implementation, the TCB comprises

1. the location system;

2. the servers running both the WORMS middleware system and the mobile agent servers;

3. the network connecting the hardware components together;

4. the code running in the WORMS middleware system;

5. the Java virtual machine; and

6. the Manager module in the mobile agent servers.

Some of these dependencies are hard to avoid; for example it is difficult not to rely on the phys-
ical security of server machines and difficult not to rely on the software (Java VM, WORMS
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middleware, Aglet libraries and the Manager module) being written in a secure fashion, free of
application-level vulnerabilities. However, the two remaining dependencies, namely the loca-
tion system and the network, are particularly problematic.

The design of the Active Bat system, described earlier in Section 2.2.2, was focused on
achieving maximum performance in terms of location accuracy and update latency in a shared,
trusted environment. In particular it was not designed for high integrity and availability in the
security sense (integrity and availability were first discussed in Sections 2.5.2 and 2.5.3 respec-
tively) and there are a number of possible attacks. A simple method to prevent an object being
tracked (assuming the Active Bat is physically attached to the object) is to cover the ultrasound
emitters on the top of the bat, preventing any signal getting through. Another possible attack
relies on the fact that the ultrasound signals are narrowband – it is possible to prevent any sight-
ings in a room by flooding the room with ultrasound continuously4. Neither the radio channel
nor the ultrasound channel use any kind of integrity checking and therefore it is possible for a
more sophisticated attacker to forge false sightings, completely manipulating the system. These
problems can only be solved properly by redesigning the location system with measures to
ensure integrity and availability. A move to wide-band (e.g. spread spectrum) signals would
increase the difficulty of jamming the signals and cryptography could be used to guarantee the
integrity of messages.

As well as relying on the Active Bat, the network connecting the components together is
also part of the TCB. In the prototype system, the network is a shared ethernet network. The
components can use standard cryptography to guarantee the secrecy and authenticity of mes-
sages but, due to the properties of the underlying ethernet network. the system cannot guarantee
the messages are ever delivered. In the same way an attacker can prevent Active Bat sightings
by flooding the ultrasound channel with noise, an attacker can prevent messages being deliv-
ered by flooding the network with data. There are two approaches which would ameliorate the
situation. The first approach is to redesign the network so that it can make some reliability
guarantees – a form of Quality of Service (QoS). Alternatively the set of policies allowed in
the system could be changed. Rather than assuming that the movements of entities which lead
to a policy violation are observed, we could instead assume that we needproof that the policy
has not been violated, otherwise corrective action is taken. Such proof could take the form
of a message generated and signed by the location system saying “entity X was seen in entity
Y at time T”. The absence of any such guarantee within a certain time period could result in
corrective action being taken, such as the termination of an active agent. Applications could be
constructed in a robust fashion so that loosing an agent does not unduly affect the task being
performed. In such a scenario, unnecessarily killing agents might be an acceptable solution.

There are a number of additional issues stemming from the choice of implementation lan-
guage: Java. Java has the following (mis-)features:

• the inability to introspect the call stack of a running thread;

• the inability to kill (sometimes known ascancel) a running thread; and

• the security model for governing access to resources.

The first feature – the inability to introspect the call stack of a running thread – leads Java to
only support weak mobility (see Section 2.1). All agents must supportstop() andstart()

4Jangling keys or using a hoover are both proven techniques for jamming Active Bat ultrasound signals.
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methods which provoke them to voluntarily serialise and deserialise their own execution state.
It is not possible to freeze another thread and read its method call stack. The second feature
– the inability to cancel a running thread – is a deliberate limitation to prevent threads being
terminated while still holding locked resources, which would then become permanently locked.
The consequence is that agents must respond to commands to shut themselves down and an
aberrant agent cannot be forcibly killed, without restarting the virtual machine. The last feature
concerns the standard Java security model for controlling access to resources. Java APIs grant
permissions to resources by withholding or transmitting references to otherwise hidden objects.
Once a reference is given it cannot be taken back or cancelled. If a music playing agent is frozen
and the system wishes to prevent the agent from playing sound, there are two implementational
possibilities. Either the agent should voluntarily give up the reference to the sound playing
object or the system should interpose a proxy object which checks access permissions for every
call. Both options have drawbacks; the first relies on cooperative agents while the second alters
the semantics of APIs by adding extra failure modes (e.g. the command to play a sound might
fail during theplay() call but after the sound device is opened successfully).

7.2 Interfaces
The previous section dealt with enforcingmobility policies on applications while this section
focuses on imposing policy on applicationinterfaces. The policies are implemented by means
of a web-based firewall called SPECTRE, the design of which is described in Section 7.2.1.
SPECTRE is a sophisticated and modular firewall which allows policy modules for SPDL-2
(described in Section 7.2.2) and SWIL (described in Section 7.2.4) to be loaded dynamically.
Although the implementation of SPECTRE is a research prototype, encouraging performance
results are provided which demonstrate that the approach described here is feasible.

The rest of this section is structured as follows: Section 7.2.1 describes the structure of
SPECTRE followed by details of the SPDL-2 implementation in Section 7.2.2. SPDL-2 poli-
cies are stateless whereas SWIL policies are inherently stateful and require state tracking. Sec-
tion 7.2.3 describes how SPECTRE can be used to track sessions and Section 7.2.4 describes
the implementation of SWIL policies. Finally, some results and discussion are presented in
Section 7.2.5.

7.2.1 SPECTRE: A Policy-Enforcing Firewall

SPECTRE is an application-level firewall used to enforce interface policies dynamically.
SPECTRE is written in O’Caml on top of a custom HTTP processing library. It receives HTTP
requests intended for the back-end application server and parses the headers, including parame-
ters and cookies. Once the request has been parsed, the firewall reads the URI and decides which
module the request should be directed to. In the diagram of Figure 7.7, requests are initially
directed towards both modulem1and modulem3 in turn. Each module may choose one of the
following three actions: (i) accept the request for processing; (ii) reject the message as invalid;
or (iii) opt not to process the request. A rejection from a module terminates the processing of
the request. If the request is accepted for further processing then it may be modified before
being passed on to further modules. For example, in Figure 7.7, if modulem1accepts a request
it may be modified before being passed on to modulem2. A module may opt not to process a
request e.g. in Figure 7.7 the modulem3may opt not to process a request in which case it will
be offered to modulem1. If no module accepts the request then the request is rejected, even if
no module explicitly rejected it.

The firewall is intended to befailsafe– if a request is not explicitly accepted with an installed
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Figure 7.7: Structure of the SPECTRE Policy-Enforcing Firewall with three modules loaded:
m1, m2andm3.

policy module then it will be rejected (i.e. the firewall operates adefault-denybase policy).
By forbidding all URIs that do not match those explicitly in the installed policies the firewall
prevents an attacker from using obscure, non-standard URI encoding techniques to circumvent
the protection (thus avoiding attacks of the kind recently used on Cisco’s Intrusion Detection
System [57]).

Once requests have been successfully processed by all relevant modules the request is for-
warded to the back-end application server. HTTP response messages received are again filtered
through the policy modules which perform any necessary transformations before the response
is finally returned to the original user.

7.2.2 SPDL-2

TheSPDL-2 Compilertakes an SPDL-2 specification (as described in Section 5.4.1) and com-
piles it into a policy module for execution on the firewall. Validation rules and constraints are
compiled into both O’Caml for dynamic execution and Javascript which can be embedded into
forms and executed on clients. Generating client-side form validation Javascript code is not al-
ways desirable – many applications already have their own, custom Javascript for this purpose
– and therefore Javascript generation can be turned off on a<policy> -wide basis (by setting
the javascript attribute of the<policy> tag to ‘N’). The SPDL-2 DTD may be found in
Appendix A.

The policy module operates as follows: Once a valid URI has been detected in the HTTP-
Request, the module examines the names of all parameters and cookies present. If unexpected
data is present, or expected data is absent then the error is logged, the request is blocked and a
message returned to the user indicating the request was rejected. The next step is the checking
of parameter type and length constraints. Assuming those tests pass, any required message
authentication code is verified and the validation and transformation code is applied.

Transformations should betotal functions on strings. A badly-written transformation which
generates an exception will cause the request to be aborted and an error message to be returned
to the client. Additionally, observe that if the policy document requires the insertion of client-
side Javascript or if the policy indicates that it might contain a link to a MAC-protected URI
then the firewall must process the HTTP response returned from the web-server. The HTML is
parsed and rewritten in order for the appropriate validation code (pre-generated by the policy
compiler) to be added to forms (see Section 7.2.2). Message authentication codes are also
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inserted to protect form fields and URI-parameters from malicious client-side tampering (see
Section 7.2.2).

Client-side Form Validation

Whenever requested by the policy document, the module inserts Javascript code to perform
client-side validation checks. (Recall that the insertion of Javascript is only intended to enhance
usability – data is always rechecked by server-side code to avoid the kind of Form Modification
attacks described in Section 5.2.1). The inserted code checks most of the SPDL-2 constraints:
types, lengths and all custom constraints written in the validation language. The resulting pro-
gram is inserted into theonSubmit attribute of a<form> tag unless such an attribute is
already present – any already present validation code is considered to take priority over the
generated code.

Message Authentication Codes

Recall that SPDL-2 policies allow URI parameters to be marked indicating that they must only
receive data which is accompanied by aMessage Authentication Code(MAC) [143] generated
by the firewall. As HTML is sent to the client, the firewall annotates the appropriate parts with
MACs; these MACs are checked when the form data is submitted. This mechanism is used to
prevent the Form Modification attacks described in Section 5.2.1.

The implementation uses the HMAC [20] algorithm to generate MACs by securely com-
bining the protected data with a secret key and a timestamp. In this way an attacker is unable
to generate new MACs without first finding out the secret key. A major danger still facing this
system is avoidingreplay attacks[154] where clients replay messages already annotated with
MACs in unexpected contexts. Two steps are taken to avoid such attacks:

1. A time-stamp is included in the MAC to guarantee messagefreshness.

2. Rather than generating separate MACs for each individual protected field, a single MAC
is generated for all protected client-side state bundled together. This protects the integrity
of the whole message, protecting against cut-and-splice attacks (in which MAC-annotated
fields are swapped into other messages).

Both steps are SPDL-2 mechanisms which require storing no session state in the application-
level firewall. However these mechanisms are not foolproof. For example, in the case study
originally presented in Section 5.5 a MAC is generated forboth theproductID andPrice
fields. Although users can replay such messages this results in multiple purchases of the
same product for thecorrect price. The intention is that the MAC prevents thePrice and
productID being modified independently.

In this example the problem of multiple identical purchases can be partially rectified by
using a SWIL policy in addition to a SPDL-2 one. Such a policy could take many different
forms. At one extreme, a very simple SWIL policy could prevent the user submitting two
consecutive requests to the same sensitive URI by accident. A more complicated policy could
use a native function call to check the request against a database containing previous requests, to
prevent duplicates. Note this second case may require large amounts of storage space; however
applications like the hypothetical e-commerce application would probably already store the
required information anyway (e.g. in a transaction log).

SPDL-2 requires that HTML pages fetched from URIs that are contained in a single
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<policy> block may only contain links to MAC-protected URIs5 which are found in the
same<policy> block (or in a nested<policy> block). By forcing the application’s URIs
to be partitioned in this way an important performance optimisation is facilitated which is dis-
cussed in Section 7.2.5 as well as encouraging the policy designer to structure their policy for
ease of future maintenance.

7.2.3 Tracking Session State

The SPDL-2 policies described in Section 7.2.2 may be consideredstateless policiesbecause
they can always be implemented by a stateless firewall. In contrast, SWIL policies which de-
scribe the acceptable order of URI invocations have an implicit notion of state and therefore
cannot be implemented by a stateless firewall6. This section describes a firewall module which
provides the necessary state handling.

Since HTTP is itself a stateless protocol, it is necessary to manually create a session on top
of the HTTP protocol using one of the techniques discussed in Section 2.4.5. Once a session
is established, state associated with the policy can be associated with it. When processing
requests and responses, the session information can be retrieved from the HTTP messages and
any associated state (stored within the firewall) can be modified.

The session state tracking module creates a session over HTTP using client-side state via
specially-named cookies. The module does not impose any policy of its own in the sense that
it never rejectsany requests or responses; it onlytransformsresponses by adding the special
session tracking cookies. Note that the session established by the session tracking module is
completely orthogonal to any sessions established by the application itself. Each such session
would use a different cookie name.

The session tracking module operates in the following way. Upon receiving a request the
session tracking module examines all cookies within the HTTP message. If the specially-named
session tracking cookie is absent (indicating the need for a new session) then a new session
identifier is created and the cookie added to the request. This modified request is then passed
to other policy modules which can use the session cookie to store state associated with the
session. When the session tracking module receives the response back from the application
(possibly after being transformed by other policy modules) the session cookie is added again to
the response. This scheme relies on the user to have cookies enabled in their browser; if a user
does not have cookies enabled then every request will cause a new session to start.

Session lifetimes

Sessions are not eternal; the maximum lifetime of an idle session is a configurable parameter of
the tracking module. The time of the last request is stored with every session and those older
than the maximum lifetime are culled. If a user attempts to restart a deleted session then a
new session is created for them and they must restart their interaction with the application from
the beginning. This is a similar tactic used by many web-applications and by other systems
such as NAT routers. The exact choice of maximum lifetime value depends on the nature of
the application and reflects a trade-off between convenience and security. A long lifetime is
convenient for a user who can return to the application after a lengthy period of absence while
a short lifetime guards against a user forgetting to logout, leaving a terminal and allowing a
malicious user to continue their session.

5A MAC-protected URI has at least one<parameter> with its MACattribute set to ‘Y’.
6Unless the policy was so simple it only had a single state, in which case it could be implemented on a stateless

firewall.
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Auditing

Tracking user sessions in an application-level firewall allows the firewall to performauditing
in which it records each user’s interactions with the application. The audit log can be used
to answer the question, “how did the user get here” by displaying the user’s path through the
application. This is especially important since a user will likely not be able to simply bookmark
their current place in the application and expect it to work indefinitely; once their session times
out they will have to re-enter the application from the beginning.

Many web-applications already individually contain code to display “breadcrumbs” – visual
hints of the path taken by the user through the application. This function may be offloaded to
the application-level firewall and the code shared across multiple applications. Auditing is also
very useful in the case of error conditions. A user can be told how they managed to trigger the
error so that hopefully they will not repeat their mistake again.

7.2.4 SWIL

The SWIL language, described in Chapter 6 allows the acceptable order of URI invocations to
be defined as a sequence accepted by a deterministic finite state automaton. The implementation
consists of a firewall policy module stub which communicates with a SWIL interpreter running
in a separate O’Caml thread. The diagram in Figure 7.8 shows a typical configuration of the
firewall. Notice that the session tracking module must be on the data-path before the SWIL
interpreter since the SWIL interpreter relies on having access to user session state informa-
tion. The SWIL policy module is connected to the interpreter thread by a pair of synchronous
O’Caml channels represented by arrows and external functions (mapped to O’Caml functions)
are represented by a set of square boxes. More details of the SWIL interpreter functionality
were given back in Section 6.5.

On receiving a request the policy module creates a SWIL request object: a record consisting
of every field mentioned by a call toGetField in the SWIL program. This data is sent via the
synchronous channel to the interpreter thread which responds by sending back a boolean value
on the output channel: true if the request was accepted and false if the machine has entered the
error state.

If the module has been configured to perform dynamic response transformation (described
in Section 6.5.1) then, on receiving a response message the module parses the HTML docu-
ment to extract all the links and forms. These are then communicated to the interpreter thread
which decides if any should be deleted or greyed out. The HTML is then rewritten with all the
offending links and forms modified.

7.2.5 Raw Performance

In this section basic performance results of the prototype SPECTRE system are presented fo-
cusing mainly on measurements of latency and throughput.

Figure 7.9 shows the worst-case latency of the firewall prototype and compares it to the
latency of other common types of HTTP processing. The results were measured by fetching
the homepage of the Laboratory for Communication Engineering (University of Cambridge)7

augmented with the web-form described in the case-study of Section 5.5. The leftmost bar
shows the latency added by a Squid [8] proxy cache when fetching a statically compiled version
of the page; the middle bar shows the added latency of dynamically generating the page using
PHP and a MySQL [5] back-end; the rightmost bar shows the latency of using the firewall to

7http://www-lce.eng.cam.ac.uk/
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Figure 7.8: A configuration of the application-level firewall with two modules arranged in a
pipeline. The first module is the state tracking module from Section 7.2.3 while the second is
the SWIL module from Section 7.2.4.
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Figure 7.9: A comparison of the latency of the system with latencies incurred in common
types of HTTP processing. Note the third bar has been subdivided into two parts; the lower
bar represents latency due to message buffering while the upper bar represents latency due to
parsing and rewriting HTML.
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Request Validation and Transformation

Response HTML parsing
Response HTML rewriting

Figure 7.10: A breakdown showing the relative cost of HTTP processing stages within the
application-level firewall.
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Figure 7.11: Total throughput of a single firewall as the number of concurrently connected
clients varies.

enforce the security policy found in Appendix B. The final bar is divided into two sections:
the (lower) solid black section represents the latency due to buffering the HTTP messages; the
(upper) striped section shows the latency due to parsing the HTTP messages and annotating
the HTML with MACs. Figure 7.10 shows the relative cost of processing HTTP requests and
HTTP responses in the case of the example web-form. Note that the total processing time is
dominated by the HTML parsing stage.

The latency of the system appears large compared with the latencies incurred in proxy
caching and dynamic page generation. To some extent this is due to the fact that the naı̈ve
implementation is a proof-of-concept prototype which is completely unoptimised, based upon
an inefficient non-pipelined HTTP 1.0 library. However, it is recognised that the complexity of
the application-level tasks performed by the firewall will necessarily incur more latency than the
lower level manipulation performed by proxies such as Squid. Future potential optimisations
include (i) using a specialised HTML parser to concentrate only on relevant parts of HTML
syntax (currently a general HTML parser is used which performs a great deal of unnecessary
work); (ii ) reducing latency by streaming the HTTP messages and processing them on-the-fly
whenever possible; (iii ) writing speed critical parts of the firewall directly in C or implementing
in hardware.
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Figure 7.12: Total throughput of a cluster of firewalls as the number of concurrently connected
clients varies.

Figure 7.11 shows how the total throughput of a single firewall varies as the number of con-
currently connected clients increases. Each client is running a single threaded application con-
tinuously requesting the test URI. The machines are all connected on a fast 100Mbit/s switched
network and the measurements were taken running the firewall on a dual Intel P-III 500 MHz
during an off-peak time when the network was idle. The throughput quickly reaches a max-
imum value as the CPUs become saturated. Note that it took 3 clients to saturate 2 CPUs
probably because of lack of support for persistent connections in the HTTP library used. Again,
it is claimed that optimising the code for performance and running the filter on a higher spec
machine would yield a significantly higher maximum throughput.

In the case of policies like SPDL-2 which are inherently stateless one may increase through-
put linearly simply by deploying multiple replicas and using a load balancing scheme8 to dis-
tribute work between them (see Figure 7.12). (Note that stateful systems do not scale linearly
in this way since, ultimately, the centralised state becomes a bottleneck across the cluster.)

The measurements presented areworst casein the sense that the test policy and the test
HTML were both complicated and required extensive processing within the firewall. Both
SPDL-2 and SWIL have features which are particularly expensive. SPDL-2 has a number of ex-
pensive features like MAC annotation and insertion of client-side Javascript. In the first version
of SPDL [144] turning on the MAC facility foranyURI would have necessitated processing the
HTML output of everypage. By requiring that URIs within a single<policy> block do not
reference MAC-protected URIs outside that block (see Section 5.4.1), the new system allows
the developer to specify the set of application URIs which make use of MAC-protected client-
side state and, critically,those which do not. URIs with no MAC or Javascript requirements can
be processed much more efficiently by the firewall as the HTTP response from the web-server
can be streamed to the client directly: it does not have to be parsed or re-written. Given that
processing the HTTP response is by far the dominant performance cost incurred by the firewall
(see Figure 7.10) significant speedups are achieved.

Similarly SWIL policies comprise both an expensive part: response transformation (see
Section 6.5.1) and a cheap part: request filtering. Only the request filtering is necessary for
security; the response transformation exists solely to improve the user interface. Therefore if

8This assumes that load balancing can be achieved cheaply, e.g. by round-robin DNS.

162



Chapter 7. Implementation 7.3. Summary

performance is a problem the expensive response transformation can be disabled.
Furthermore, it is believed that many HTML pages are simpler than the contrived example

and have fewer security constraints (i.e. shorter pages without form parameters), leading to
betteraverage caseperformance. For example consider that many of the HTTP messages would
contain graphics and hence would not require any processing at all. A performance-optimised
firewall could examine the content-type header of HTTP responses, using streaming instead of
buffering if no HTML processing is required.

In summary, the performance figures presented in this section relate to an unoptimised pro-
totype under worst-case conditions. The system is designed to be scalable and optimisable and
therefore the techniques represented are claimed to be applicable in practice.

7.3 Summary
This chapter described the implementations of the two important types of policy described in
this thesis: mobility policy and interface policy. Mobility policy consisted of both restriction
policy and enforcement policy, limiting and directing the movements of agents within an en-
vironment permeated with location-sensors. The mobility policy system comprised two main
elements: (i) a new form of spatial middleware designed to be independent of the underlying
choice of location-system and policy type; and (ii) client-side support code based upon the Java
Aglet mobile agent system. The system was implemented and a number of issues discussed.

The interface policies were implemented through a modular application-level firewall called
SPECTRE. SPECTRE supports both stateless policies like SPDL-2 policies as well as stateful
policies such as SWIL policies. SPECTRE was written in O’Caml on top of a custom HTTP
processing library. The SPECTRE system was implemented and a number of encouraging
performance results were presented.
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Chapter 8

Conclusions and Further Work

Chapter 1 stated that:

The thesis of this work is that abstracting application-level security policy (which
we defined to be policy written to govern both themobilityandinterface behaviour
of systems) is an effective technique for guarding against application-level vulner-
abilities which would otherwise plague future ubiquitous computing systems.

It is time to critically evaluate this statement. We proceed by breaking down this thesis
statement into two sub-claims:

1. Abstracting application-level security policy is an effective technique for guarding against
application-level vulnerabilities; and

2. The application-level vulnerabilities referred to in (1) above would otherwise plague fu-
ture ubiquitous computing systems.

We begin by addressing claim number 1: that the policy systems presented in this thesis are an
“effective technique for guarding against application-level vulnerabilities”. Each of the policy
systems presented in this thesis in Chapters 4 through 6 were presented along with realistic
examples, many of which are based on actual vulnerabilities found “in the wild” and reported in
the IT press. As each policy language was presented it was demonstrated exactly how it could be
used to prevent particular vulnerabilities. Details of a prototype implementation complete with
encouraging performance results was presented in Chapter 7. Since the technique of abstracting
application-level policy was shown to be workable both in theory and in practice we claim the
technique iseffectiveand that sub-claim 1 holds.

Furthermore we argue thatabstractingsecurity policy is a important concept in itself. Keep-
ing policy specifications separate from implementation code allows the policies to be easily
analysed (c.f. the use of SPIN in Section 6) and also serve as valuable de-facto documentation.
In many cases software is built from a mixture of “off the shelf” and custom components, some
only available in binary form. It may not be possible or feasible in such systems to modify the
source code directly; in these cases abstracting security policy is the only option.

Sub-claim number 2 above claims that the application-level vulnerabilities addressed by
Chapters 5 through 6 would otherwise “plague future ubiquitous computing systems”. This
claim is justified in two further sub-claims:

1. Future ubiquitous computing systems will be constructed from large numbers of physi-
cally and logically mobile processes (agents) which will make existing protection mech-
anisms – network and transport-level firewalls which together form theMaginot Lineof
Internet security – completely redundant.

164



Chapter 8. Conclusions and Further Work

2. The application-level vulnerabilities addressed by the policy languages presented in this
thesis will be present in future systems irrespective of the exact choice of underlying
protocols.

Consider the first claim that existing protection mechanisms will become redundant. This
claim is justified with arguments from Chapter 1, specifically that

• code will become more mobile as the gulf between processing speed of individual nodes
and latency of inter-node communication widens;

• more devices will be physically mobile as manufacturing processes improve and embed-
ded devices become networked;

• higher-level protocols (like Web Services) tunnel over other protocols, enabling them to
penetrate network-level firewalls;

• the bulk of code in a system – and hence the majority of bugs – is at the application-level.

Section 1.6 argued that current firewalls are inadequate because (i) increasing mobility and
protocol tunnelling allows code to bypass the points at which the firewall rules are applied; and
(ii) increasingly vulnerabilities will be discovered and exploited at the application-level, where
network and transport-level firewalls have no effect.

Consider the second claim that the application-level vulnerabilities addressed by policy lan-
guages described in this thesis are independent of the exact choice of underlying protocol. This
claim shall now be justified separately for the mobility and interface policy languages.

The mobility policy language in Chapter 4 was implemented on top of Java Aglets but only
relied upon two features which are present in all existing mobile agent systems. The first fea-
ture is the ability to have multiple named locations co-existing on the same host, either as part
of the same agent server or by running multiple servers on different ports. The second feature
is the ability to interpose a policy checking module between mobile agents and their running
environment. We claim that these abilities are core features that will be present in all future
mobile agent systems. The enforcement mechanism described in Chapter 7 was built in a
centralised fashion: one server machine maintained the authoritative model of the world and
the database of policies. This server, which is a client of the SPIRIT location service which is
also centralised, was used to authorise all agent migration requests and to take corrective action
against agents which were in violation of policies. This centralised security policy enforcement
service is similar to existing access control mechanisms such as NIS under Unix and Active
Directory under Windows. None of these systems are designed to be used over the open In-
ternet but rather within individual organisations or companies. Further work would be needed
to investigate ways of sensibly distributing the enforcement mechanism if operation over the
Internet was required.

The interface policy languages SPDL-2 in Chapter 5 and SWIL in Chapter 6 are both lan-
guages designed to protect vulnerable web-applications i.e. applications running over HTTP.
However, the vulnerabilities they serve to protect against – specifically validating requests with
respect to type specifications and temporal automata – are general concepts which apply to any
RPC-based distributed system. Although the concrete details of the protocols may change (e.g.
to Web-Services, XML-RPC or even CORBA), provided the same types of applications are in
use, the vulnerabilities will remain and languages like SPDL-2 and SWIL will still be useful.
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To justify this claim, we now describe the applicability of these techniques first to CORBA and
then to Web-Services.

CORBA [123] allows application interfaces to be specified in an Interface Definition Lan-
guage (IDL) which is then compiled into client and server code. CORBA IDL has many built-in
types includingint , string , bool andfloat . It also has support for record types, arrays
and disjoint union types. CORBA has the concept of a requestContext which is similar to
the HTTP concept of a cookie. CORBA’s built-in types negate the need for the simpler SPDL-2
typechecking. However it lacks anything as sophisticated as the arbitrary validation and trans-
formation expressions of SPDL-2 and has no support for any kind of stateful interface checking.
Support for a variant of SPDL-2 and SWIL could be added to a CORBA IDL compiler and used
to generate “proxy classes” to enforce these policies dynamically.

“Web-Services” is the name given to a suite of protocols based around exchanging XML
documents. The Web Service Description Language (WSDL) [40] allows the specification of
application interfaces in a similar fashion to CORBA IDL. The XML documents exchanged are
typed (e.g. by XML-Schemas [59]) and, like in the case of CORBA, this typing subsumes the
simpler SPDL-2 typechecking. However, also like CORBA, there are no arbitrary validation or
transformation expressions and there is no support for any kind of stateful interface checking—
therefore SPDL-2 and SWIL are still useful to applications written in a Web-Services world.

8.1 Contributions
In summary this thesis provided the following contributions:

1. the Unified Spatial Model (USM): a spatial model capable of representing simultaneously
the physical locations of objects such as people and the virtual locations of mobile agents.
The USM is the foundation of the Mobility Restriction Policy Language (MRPL) – a
language which allows policies to be written to limit the movements of mobile agents in
an environment augmented with location sensors;

2. the language SPDL-2 which allows the expression of application-level interface security
policies in which per-request and response validation and transformation rules can be
written to protect web-applications from many kinds of common security vulnerabilities;
and

3. the language SWIL which allows the flow of control across an application interface to be
described as a sequence of operations accepted by a finite state automaton. The automaton
can be both analysed statically with a model-checker and dynamically checked with an
application-level firewall.

Together this model and these policy languages allow abstract application-level policy specifica-
tions to be written to protect against many important kinds of vulnerability. These application-
level policy systems have been implemented; implementation details and performance results
were provided.

8.2 Further Work
The systems presented in this thesis were intended to investigate ways of imposing policy to
protect vulnerable future ubiquitous computer systems. Simple prototypes were constructed
and analysed. In the real world things are more complex and much more effort would need to
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be expended to make the systems robust enough to deploy. Unfortunately this would require
considerably more implementation time than is available during a PhD.

However there are a number of opportunities for future research based on this thesis:

• Using a location system as part of a security mechanism places a lot of emphasis on the
reliability and integrity of the location system itself. It would be interesting to consider
what could be done to make such a system more dependable, perhaps by creating a whole
new location system or by changing the types of policy which can be expressed (e.g. rather
than saying “delete the data on this device if the device is locatedoutsidethe building”
we might say “delete the data on this device if we have not been seeninsidethe building
for 10 minutes”).

• Spatial models like that described in Chapter 3 could be used to model non-physical
entities like network configurations (e.g. a secure network might be a separate entity from
an insecure network) as well as more physical entities (e.g. the model could include door
locks and other physical access controls).

• Although we argue that maintaining separate security policy specifications is a good
thing, it would nevertheless be useful to have a means of generating automatically at
least part of a policy for an application. Perhaps the simpler part of an SPDL-2 policy
could be generated leaving the more complicated part to human policy designers.

• The prototype implementation described in Chapter 7 had encouraging performance char-
acteristics. However we recognise that some applications demand extremely high perfor-
mance. A major overhead of the current mechanism is the need to parse HTTP messages
and HTML responses. These overheads could be eliminated if the policy could be auto-
matically “woven” (in the sense of Aspect-Oriented Programming) into the application
source code using an automatic tool. The resulting program would have the security code
inserted where the HTTP and HTML messages are first generated, obviating the need to
parse the messages later.

• The mobility restriction policies make use of a central server with an authoritative model
of the world. It would be useful to investigate to what extent this can be distributed and
combined with a distributed location-sensing system.

167



Bibliography

[1] The<bigwig> project.http://www.brics.dk/bigwig/ . (Ref: p. 100.)

[2] The Bluetooth Specification version 1.1.http://www.bluetooth.com/ . (Ref: p. 11,
24, 67.)

[3] The Meta-O’Caml project.http://www.metaocaml.org/ . (Ref: p. 134.)

[4] µitron4.0 specification version 4.00.00. http://www.ertl.jp/ITRON/SPEC/

mitron4-e.html . ITRON Committee, TRON Association. Edited by Hiroaki Takada.
(Ref: p. 11.)

[5] MySQL database server. http://www.mysql.com/ . (Ref: p. 159.)

[6] The OpenBSD project.http://www.openbsd.org/ . (Ref: p. 44.)

[7] PF: The OpenBSD Packet Filter.http://www.openbsd.org/faq/pf/ . (Ref: p. 16.)

[8] Squid web proxy cache.http://www.squid-cache.org/ . (Ref: p. 159.)

[9] The Open Web Application Security Project Top Ten.http://www.owasp.org/ . (Ref:
p. 85.)

[10] VxworksR©. http://www.windriver.com/ . Wind River Systems. (Ref: p. 11.)

[11] N. Adly, P. Steggles, and A. Harter. SPIRIT: a Resource Database for Mobile Users.
In Proceedings of ACM CHI’97 Workshop on Ubiquitous Computing, Atlanta, Georgia,
March 1997.http://citeseer.ist.psu.edu/adly97spirit.html . (Ref: p. 63,
141.)

[12] Roberto M. Amadio and Sanjiva Prasad. Localities and failures (extended ab-
stract). In FSTTCS, pages 205–216, 1994.http://citeseer.ist.psu.edu/

amadio95localities.html . (Ref: p. 60.)

[13] Ross J. Anderson.Security Engineering. John Wiley & Sons Inc, April 2001.http:

//www.cl.cam.ac.uk/˜rja14/book.html . (Ref: p. 39.)

[14] Ross J. Anderson and Roger M. Needham. Programming Satan’s Computer.Computer
Science Today - Recent Trends and Developments, 1000:426–440.http://citeseer.

ist.psu.edu/22376.html . (Ref: p. 39.)

[15] Ivan Arce. The rise of the gadgets.IEEE Security and Privacy, 1(5):78–81, September
2003. http://csdl.computer.org/comp/mags/sp/2003/05/j5078abs.htm .
(Ref: p. 11.)

168

http://www.brics.dk/bigwig/
http://www.bluetooth.com/
http://www.metaocaml.org/
http://www.ertl.jp/ITRON/SPEC/mitron4-e.html
http://www.ertl.jp/ITRON/SPEC/mitron4-e.html
http://www.mysql.com/
http://www.openbsd.org/
http://www.openbsd.org/faq/pf/
http://www.squid-cache.org/
http://www.owasp.org/
http://www.windriver.com/
http://citeseer.ist.psu.edu/adly97spirit.html
http://citeseer.ist.psu.edu/amadio95localities.html
http://citeseer.ist.psu.edu/amadio95localities.html
http://www.cl.cam.ac.uk/~rja14/book.html
http://www.cl.cam.ac.uk/~rja14/book.html
http://citeseer.ist.psu.edu/22376.html
http://citeseer.ist.psu.edu/22376.html
http://csdl.computer.org/comp/mags/sp/2003/05/j5078abs.htm


BIBLIOGRAPHY BIBLIOGRAPHY

[16] P. Bahl, A. Balachandran, and V. Padmanabhan. Enhancements to the RADAR User Lo-
cation and Tracking System. Technical Report MSR-TR-2000-12, Microsoft Research,
February 2000.http://citeseer.ist.psu.edu/291324.html . (Ref: p. 24.)

[17] Thomas Ball and Sriram K. Rajamani. Automatically validating temporal safety prop-
erties of interfaces. InProceedings of the 8th international SPIN workshop on Model
checking of software, pages 103–122. Springer-Verlag New York, Inc., 2001.http:

//citeseer.ist.psu.edu/ball01automatically.html . (Ref: p. 132.)

[18] Mark Bartel, John Boyer, Barb Fox, Brian LaMacchia, and Ed Simon.
Xml-signature syntax and processing. http://www.w3.org/TR/2002/

REC-xmldsig-core-20020212/ . W3C Recommendation. 12 February 2002.
(Ref: p. 13.)

[19] BBC News. First mobile phone virus created.http://news.bbc.co.uk/1/hi/

technology/3809855.stm . (Ref: p. 9.)

[20] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentica-
tion. In Advances of Cryptology – Crypto ’96 Proceedings, volume 1109 of LNCS.
Springer-Verlag, 1996. http://citeseer.ist.psu.edu/bellare96keying.

html . (Ref: p. 41, 94, 157.)

[21] Alastair R. Beresford and Frank Stajano. Location privacy in pervasive computing.IEEE
Pervasive Computing, 2(1):46–55, 2003. http://dx.doi.org/10.1109/MPRV.

2003.1186725 . (Ref: p. 27.)

[22] T. Berners-Lee, R. Fielding, and H. Frystyk. RFC 1945: Hypertext Transfer Protocol
— HTTP/1.0, May 1996.ftp://ftp.internic.net/rfc/rfc1945.txt,ftp://

ftp.math.utah.edu/pub/rfc/rfc1945.txt . Status: INFORMATIONAL. (Ref:
p. 14, 31.)

[23] Lorenzo Bettini and Rocco De Nicola. Translating strong mobility into weak
mobility. In Proceedings of the 5th International Conference on Mobile
Agents, pages 182–197. Springer-Verlag, 2002.http://citeseer.ist.psu.edu/

bettini01translating.html . (Ref: p. 21, 77.)

[24] Lorenzo Bettini, Rocco De Nicola, Rosario Pugliese, and Gian Luigi Ferrari. Interactive
mobile agents in x-klaim. InProceedings of the 7th Workshop on Enabling Technologies,
pages 110–117. IEEE Computer Society, 1998.http://citeseer.ist.psu.edu/

bettini98interactive.html . (Ref: p. 80.)

[25] Lubomir F. Bic, Munehiro Fukuda, and Michael B. Dillencourt. Distributed computing
using autonomous objects.IEEE Computer, 29(8):55–61, August 1996.http://dx.

doi.org/10.1109/2.532046 . (Ref: p. 21.)

[26] Simon P. Booth and Simon B. Jones. Walk backwards to happiness - debugging by
time travel. In Automated and Algorithmic Debugging, pages 171–183, 1997.http:

//citeseer.ist.psu.edu/booth97walk.html . (Ref: p. 138.)

169

http://citeseer.ist.psu.edu/291324.html
http://citeseer.ist.psu.edu/ball01automatically.html
http://citeseer.ist.psu.edu/ball01automatically.html
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://news.bbc.co.uk/1/hi/technology/3809855.stm
http://news.bbc.co.uk/1/hi/technology/3809855.stm
http://citeseer.ist.psu.edu/bellare96keying.html
http://citeseer.ist.psu.edu/bellare96keying.html
http://dx.doi.org/10.1109/MPRV.2003.1186725
http://dx.doi.org/10.1109/MPRV.2003.1186725
ftp://ftp.internic.net/rfc/rfc1945.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc1945.txt
ftp://ftp.internic.net/rfc/rfc1945.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc1945.txt
http://citeseer.ist.psu.edu/bettini01translating.html
http://citeseer.ist.psu.edu/bettini01translating.html
http://citeseer.ist.psu.edu/bettini98interactive.html
http://citeseer.ist.psu.edu/bettini98interactive.html
http://dx.doi.org/10.1109/2.532046
http://dx.doi.org/10.1109/2.532046
http://citeseer.ist.psu.edu/booth97walk.html
http://citeseer.ist.psu.edu/booth97walk.html


BIBLIOGRAPHY BIBLIOGRAPHY

[27] Gaetano Borriello and Roy Want. Embedded computation meets the world wide web.
Communications of the ACM, 43(5):59–66, 2000.http://doi.acm.org/10.1145/

332833.332839 . (Ref: p. 12.)

[28] Claus Brabrand, Anders M̈oller, Mikkel Ricky, and Michael I. Schwartzbach. Power-
forms: Declarative client-side form field validation.World Wide Web, 3(4):205–214,
2000.http://dx.doi.org/10.1023/A:1018772405468 . (Ref: p. 100.)

[29] Orkut Buyukkokten, Hector Garcia-Molina, and Andreas Paepcke. Seeing the whole in
parts: Text summarization for web browsing on handheld devices.Tenth International
World Wide Web Conference, 5 2001. http://doi.acm.org/10.1145/371920.

372178 . (Ref: p. 136.)

[30] Luca Cardelli. Building user interfaces by direct manipulation. InProceedings of the 1st
annual ACM SIGGRAPH symposium on User Interface Software, pages 152–166. ACM
Press, 1988.http://doi.acm.org/10.1145/62402.62428 . (Ref: p. 136.)

[31] Luca Cardelli. Obliq: A language with distributed scope. Technical Report SRC-
RR-122, Digital Equipment Corporation, June 1994.http://www.hpl.hp.com/

techreports/Compaq-DEC/SRC-RR-122.html . (Ref: p. 21.)

[32] Luca Cardelli. A language with distributed scope. InConference Record of POPL
’95: 22nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, San Francisco, Calif., pages 286–297, New York, NY, 1995.http:

//citeseer.ist.psu.edu/cardelli95language.html . (Ref: p. 79.)

[33] Luca Cardelli. Semistructured computation. InRevised Papers from the
7th International Workshop on Database Programming Languages, pages 1–
16. Springer-Verlag, 2000. http://research.microsoft.com/Users/luca/

Papers/SemistructuredComputation.A4.pdf . (Ref: p. 54.)

[34] Luca Cardelli and Andrew D. Gordon. Mobile Ambients. In M. Nivat, editor,Proceed-
ings of Foundations of Software Science and Computation Structures (FoSSaCS), volume
1378, pages 140–155. Springer-Verlag, Berlin, Germany, 1998.http://citeseer.

ist.psu.edu/cardelli98mobile.html . (Ref: p. 52, 61.)

[35] Luca Cardelli and Andrew D. Gordon. Anytime, anywhere: modal logics for mobile
ambients. InProceedings of the 27th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 365–377. ACM Press, 2000.http://doi.acm.

org/10.1145/325694.325742 . (Ref: p. 71.)

[36] Luca Cardelli and Andrew D. Gordon. Mobile ambients.Theoretical Computer
Science, 240(1):177–213, 2000.http://dx.doi.org/10.1016/S0304-3975(99)

00231-5 . (Ref: p. 61.)

[37] G. Castagna and J. Vitek. Seal: A framework for secure mobile computations. In
H. Bal, B. Belkhouche, and L. Cardelli, editors,Internet Programming Languages,
number 1686 in Lecture Notes in Computer Science, pages 47–77. Springer, 1999.
http://citeseer.ist.psu.edu/vitek99seal.html . (Ref: p. 60.)

170

http://doi.acm.org/10.1145/332833.332839
http://doi.acm.org/10.1145/332833.332839
http://dx.doi.org/10.1023/A:1018772405468
http://doi.acm.org/10.1145/371920.372178
http://doi.acm.org/10.1145/371920.372178
http://doi.acm.org/10.1145/62402.62428
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-122.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-122.html
http://citeseer.ist.psu.edu/cardelli95language.html
http://citeseer.ist.psu.edu/cardelli95language.html
http://research.microsoft.com/Users/luca/Papers/Semistructured Computation.A4.pdf
http://research.microsoft.com/Users/luca/Papers/Semistructured Computation.A4.pdf
http://citeseer.ist.psu.edu/cardelli98mobile.html
http://citeseer.ist.psu.edu/cardelli98mobile.html
http://doi.acm.org/10.1145/325694.325742
http://doi.acm.org/10.1145/325694.325742
http://dx.doi.org/10.1016/S0304-3975(99)00231-5
http://dx.doi.org/10.1016/S0304-3975(99)00231-5
http://citeseer.ist.psu.edu/vitek99seal.html


BIBLIOGRAPHY BIBLIOGRAPHY

[38] Pablo Castells, Pedro Szekely, and Ewald Salcher. Declarative models of presentation.
In Proceedings of the 2nd international conference on Intelligent user interfaces, pages
137–144. ACM Press, 1997.http://doi.acm.org/10.1145/238218.238315 .
(Ref: p. 136.)

[39] Surendar Chandra, Carla Schlatter Ellis, and Amin Vahdat. Differentiated multimedia
web services using quality aware transcoding. InINFOCOM - Nineteenth Annual Joint
Conference Of The IEEE Computer And Communications Societies, Tel Aviv, Israel,
2000.citeseer.nj.nec.com/chandra00differentiated.html . (Ref: p. 136.)

[40] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web
Services Description Language (WSDL) 1.1.http://www.w3.org/TR/2001/

NOTE-wsdl-20010315 . W3C Note. 15 March 2001. (Ref: p. 166.)

[41] Joris Claessens, Bart Preneel, and Joos Vandewalle. (How) can mobile agents do secure
electronic transactions on untrusted hosts? A survey of the security issues and the current
solutions. ACM Transactions on Internet Technology, 3(1):28–48, 2003.http://doi.

acm.org/10.1145/643477.643479 . (Ref: p. 14.)

[42] E.M. Clarke, O. Grumberg, and D. Peled.Model Checking. Cambridge, MA: MIT
Press, 1999.http://mitpress.mit.edu/catalog/item/default.asp?ttype=

2&tid=3730 . (Ref: p. 44, 131.)

[43] Sylvain Conchon and Fabrice Le Fessant. Jocaml: Mobile Agents for Objective-Caml.
In First International Symposium on Agent Systems and Applications (ASA’99)/Third
International Symposium on Mobile Agents (MA’99), Palm Springs, CA, USA, 1999.
http://citeseer.ist.psu.edu/conchon99jocaml.html . (Ref: p. 79.)

[44] James C. Corbett, Matthew B. Dwyer, John Hatcliff, and Roby. Bandera: a source-level
interface for model checking java programs. InProceedings of the 22nd international
conference on Software engineering, pages 762–765. ACM Press, 2000.http://doi.

acm.org/10.1145/337180.337625 . (Ref: p. 131.)

[45] Umeshwar Dayal, Eric N. Hanson, and Jennifer Widom. Active database systems. In
Modern Database Systems, pages 434–456. 1995.http://citeseer.ist.psu.edu/

dayal94active.html . (Ref: p. 73.)

[46] Luca de Alfaro and Thomas A. Henzinger. Interface automata. InProceedings of the 8th
European software engineering conference held jointly with 9th ACM SIGSOFT interna-
tional symposium on Foundations of software engineering, pages 109–120. ACM Press,
2001.http://doi.acm.org/10.1145/503209.503226 . (Ref: p. 27, 106, 133.)

[47] Diego Lopez de Ipina and Sai-Lai Lo. LocALE: a Location-Aware Lifecycle Environ-
ment for Ubiquitous Computing. In15th International Conference on Information Net-
working (ICOIN’01), 1 2001.http://www-lce.eng.cam.ac.uk/publications/

files/tr.2001.9.pdf . (Ref: p. 81.)

[48] Diego Lpez de Ipia and Sai Lai Lo. Sentient Computing for Everyone. InThird IFIP
WG 6.1 International Working Conference on Distributed Applications and Interopera-
ble Systems (DAIS’2001), pages 41–54, 09 2001.http://citeseer.ist.psu.edu/

513263.html . (Ref: p. 81.)

171

http://doi.acm.org/10.1145/238218.238315
citeseer.nj.nec.com/chandra00differentiated.html
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://doi.acm.org/10.1145/643477.643479
http://doi.acm.org/10.1145/643477.643479
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3730
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3730
http://citeseer.ist.psu.edu/conchon99jocaml.html
http://doi.acm.org/10.1145/337180.337625
http://doi.acm.org/10.1145/337180.337625
http://citeseer.ist.psu.edu/dayal94active.html
http://citeseer.ist.psu.edu/dayal94active.html
http://doi.acm.org/10.1145/503209.503226
http://www-lce.eng.cam.ac.uk/publications/files/tr.2001.9.pdf
http://www-lce.eng.cam.ac.uk/publications/files/tr.2001.9.pdf
http://citeseer.ist.psu.edu/513263.html
http://citeseer.ist.psu.edu/513263.html


BIBLIOGRAPHY BIBLIOGRAPHY

[49] Rocco de Nicola, Gian Luigi Ferrari, and Rosario Pugliese. Klaim: A kernel language
for agents interaction and mobility. IEEE Trans. Softw. Eng., 24(5):315–330, 1998.
http://dx.doi.org/10.1109/32.685256 . (Ref: p. 80.)

[50] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure in-
formation flow. Communications of the ACM, 20(7):504–513, July 1977.http:

//doi.acm.org/10.1145/359636.359712 . (Ref: p. 12.)

[51] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended static
checking. Technical Report 159, Compaq SRC, December 1998.http://www.hpl.

hp.com/techreports/Compaq-DEC/SRC-RR-159.html . (Ref: p. 27.)

[52] Anind K. Dey and Gregory D.Abowd. Towards a better understanding of context and
context-awareness. InProceedings of the CHI 2000 Workshop on ”The What, Who,
Where, When, Why and How of Context-Awareness”, 2000.http://www.cc.gatech.

edu/fce/ctk/pubs/HUC99-panel.pdf . (Ref: p. 63.)

[53] T. Dierks and C. Allen. RFC 2246: The TLS protocol version 1, January
1999. ftp://ftp.internic.net/rfc/rfc2246.txt,ftp://ftp.math.utah.

edu/pub/rfc/rfc2246.txt . Status: PROPOSED STANDARD. (Ref: p. 137.)

[54] Fred Douglis and John K. Ousterhout. Transparent process migration: Design alterna-
tives and the sprite implementation.Software - Practice and Experience, 21(8):757–785,
1991.http://citeseer.ist.psu.edu/douglis91transparent.html . (Ref: p.
19.)

[55] Tudor Dumitras, Sam Kerner, and Radu Marculescu. Towards on-chip fault-tolerant
communication. InProc. Asia & South Pacific Design Automation Conf. (ASP-DAC),
January 2003.http://www.gigascale.org/pubs/410.html . (Ref: p. 13.)

[56] Matthew B. Dwyer and Corina S. Pasareanu. Filter-based model checking of par-
tial systems. In Proceedings of the 6th ACM SIGSOFT international symposium
on Foundations of software engineering, pages 189–202. ACM Press, 1998.http:

//doi.acm.org/10.1145/288195.288307 . (Ref: p. 131.)

[57] eEye Digital Security. %u-encoding IDS bypass vulnerability.http://www.eeye.

com/html/Research/Advisories/AD20010705.html . Advisory AD20010705.
(Ref: p. 156.)

[58] Vadim Engelson, Dag Fritzson, and Peter Fritzson. Automatic generation
of user interfaces from data structure specifications and object-oriented applica-
tion models. In P. Cointe, editor, Proceedings ECOOP ’96, pages 114–
141, Linz, Austria, 1996. Springer-Verlag. http://citeseer.ist.psu.edu/

engelson96automatic.html . (Ref: p. 136.)

[59] David C. Fallside and Priscilla Walmsley. XML Schema Part 0: Primer Secnd Edition,
October 2004.http://www.w3c.org/TR/2004/REC-xmlschema-0-20041028/ .
W3C Recommendation. (Ref: p. 166.)

172

http://dx.doi.org/10.1109/32.685256
http://doi.acm.org/10.1145/359636.359712
http://doi.acm.org/10.1145/359636.359712
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-159.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-159.html
http://www.cc.gatech.edu/fce/ctk/pubs/HUC99-panel.pdf
http://www.cc.gatech.edu/fce/ctk/pubs/HUC99-panel.pdf
ftp://ftp.internic.net/rfc/rfc2246.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc2246.txt
ftp://ftp.internic.net/rfc/rfc2246.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc2246.txt
http://citeseer.ist.psu.edu/douglis91transparent.html
http://www.gigascale.org/pubs/410.html
http://doi.acm.org/10.1145/288195.288307
http://doi.acm.org/10.1145/288195.288307
http://www.eeye.com/html/Research/Advisories/AD20010705.html
http://www.eeye.com/html/Research/Advisories/AD20010705.html
http://citeseer.ist.psu.edu/engelson96automatic.html
http://citeseer.ist.psu.edu/engelson96automatic.html
http://www.w3c.org/TR/2004/REC-xmlschema-0-20041028/


BIBLIOGRAPHY BIBLIOGRAPHY

[60] Federal Communications Commission. Enhanced 911.http://www.fcc.gov/911/

enhanced/ . (Ref: p. 26.)

[61] G. Ferrari, C. Montangero, L. Semini, and S. Semprini. The Mobadtl model and method
to design network aware applications. Technical Report TR-03-08, University of Pisa,
Computer Science Dept, June 2003.ftp://ftp.di.unipi.it/pub/techreports/

TR-03-08.ps.Z . (Ref: p. 60.)

[62] Gianluigi Ferrari, C. Montangero, L. Semini, and S. Semprini. Mark, a reasoning kit for
mobility. Automated Software Eng., 9(2):137–150, 2002.http://dx.doi.org/10.

1023/A:1014530313153 . (Ref: p. 60.)

[63] Richard Phillips Feynman. ”Surely you’re joking, Mr. Feynman!”: Adventures
of a curious character (Reprint Edition). W. W. Norton and Company, April
1997. http://www.amazon.com/exec/obidos/tg/detail/-/0393316041/

102-8071009-6672113?v=glance . (Ref: p. 42.)

[64] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. RFC 2616: Hypertext Transfer Protocol — HTTP/1.1, June
1999. ftp://ftp.internic.net/rfc/rfc2616.txt,ftp://ftp.math.utah.

edu/pub/rfc/rfc2616.txt . Status: DRAFT STANDARD. (Ref: p. 30.)

[65] R.J. Fontana, E. Richley, and J. Barney. Commercialization of an ultra wideband preci-
sion asset location system. InIEEE Conference on Ultra Wideband Systems and Tech-
nologies, November 2003.http://ieeexplore.ieee.org/xpl/abs_free.jsp?

arNumber=1267866 . (Ref: p. 24.)

[66] OASIS (Organization for the Advancement of Structured Information Standards). Xacml
language proposal, January 2002.http://www.oasis-open.org/committees/

xacml . version 0.8. (Ref: p. 13.)

[67] Ian T. Foster. The anatomy of the grid: Enabling scalable virtual organizations.
In Proceedings of the 7th International Euro-Par Conference Manchester on Parallel
Processing, pages 1–4. Springer-Verlag, 2001.http://citeseer.ist.psu.edu/

foster01anatomy.html . (Ref: p. 13.)

[68] Cédric Fournet and Georges Gonthier. The reflexive chemical abstract machine and
the join-calculus. In Proceedings of the 23rd ACM Symposium on Principles of Pro-
gramming Languages (POPL’96), Jan 1996.http://research.microsoft.com/

˜fournet/papers/reflexive-cham-join-calculus.ps . (Ref: p. 62.)

[69] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier Ŕemy.
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Appendix A

SPDL-2 DTD

<!ELEMENT site (policy*)>
<!ATTLIST site name CDATA #REQUIRED>
<!ATTLIST site policy_author_name CDATA #REQUIRED>
<!ATTLIST site policy_author_email CDATA #REQUIRED>
<!ATTLIST site description CDATA "unspecified">
<!ATTLIST site base_uri CDATA #REQUIRED>

<!ELEMENT policy (parameter*, uri*, cookie*, policy*)>
<!ATTLIST policy name CDATA #REQUIRED>
<!ATTLIST policy description CDATA "unspecified">
<!ATTLIST policy javascript (Y | N) "N">

<!ELEMENT parameter (validation*, transformation*)>
<!ATTLIST parameter method (GET | POST |

GETandPOST)
"GETandPOST">

<!ATTLIST parameter name CDATA #REQUIRED>
<!ATTLIST parameter maxlength CDATA #REQUIRED>
<!ATTLIST parameter minlength CDATA "0">
<!ATTLIST parameter required (Y | N) "N">
<!ATTLIST parameter MAC (Y | N) "Y">
<!ATTLIST parameter type (int

| float
| bool
| string) #REQUIRED>

<!ELEMENT cookie (validation*, transformation*)>
<!ATTLIST cookie name CDATA #REQUIRED>
<!ATTLIST cookie maxlength CDATA #REQUIRED>
<!ATTLIST cookie minlength CDATA "0">
<!ATTLIST cookie required (Y | N) "N">
<!ATTLIST cookie MAC (Y | N) "Y">
<!ATTLIST cookie type (int

| float
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| bool
| string) #REQUIRED>

<!ELEMENT uri (parameter*)>
<!ATTLIST uri prefix CDATA #REQUIRED>

<!ELEMENT transformation (#PCDATA)>
<!ATTLIST transformation htmlencode (Y | N) "Y">

<!ELEMENT validation (#PCDATA)>
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Appendix B

Case Study SPDL-2

...
<policy ...>

<uri prefix="Buy.asp"
description="Do CreditCard transaction"
javascript="Y">

<parameter name="price" method="POST" maxlength="10"
minlength="1" required="Y" type="float" >

<validation> this gt 0.0 </validation>
</parameter>

<parameter name="productID" method="POST"
maxlength="10" minlength="1"
required="Y" type="int" />

<parameter name="surname" method="POST"
maxlength="30" minlength="2"
required="Y" MAC="N" type="string">

<transformation>
Transform.EscapeSingle

(Transform.EscapeDouble(this))
</transformation>

</parameter>

<parameter name="CCnumber" method="POST"
maxlength="16" minlength="16"
MAC="N" required="Y" type="int">

<validation>
let

fun first(s:string):string =
String.mid(s,1,1)

fun rest(s:string):string =
String.mid(s,2,String.length(s)-1)

fun double(s:string,a:bool):string =
if s="" then ""
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else
(if a then first(s)

else String.fromInt
(Int.fromString(first(s))*2))

++ (double (rest (s), not a))

fun sum(s:string):int =
if s="" then 0

else (Int.fromString (first(s)))
+ (sum (rest(s)))

in sum(double(this,false)) % 10 = 0
end

</validation>
</parameter>

<parameter name="expires" method="POST"
maxlength="5" minlength="5"
MAC="N" required="Y" type="string">

<validation> String.format(this,"\d\d/\d\d") and
Int.fromString(mid(s,1,2))<=12 and
Int.fromString(mid(s,1,2))> 0

</validation>
</parameter>

</uri>
</policy>
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