
VIA over the CLAN Network

David Riddoch�

Laboratory for Communications Engineering
Department of Engineering, University of Cambridge, England

Steve Pope, Kieran Mansley
AT&T Laboratories-Cambridge,

24a Trumpington Street, Cambridge, England

fdjr,slp,kjmg@uk.research.att.com

Abstract

The Virtual Interface Architecture is an industry stan-
dard for high performance networking in system-area
networks, and the same model is proposed for Infini-
band. Existing implementations suffer from high com-
plexity, and scaling to higher bandwidths and large
numbers of endpoints is likely to be problematic.

We present a novel implementation of VIA that con-
sists of a thin software layer over the CLAN network.
Performance of CLAN VIA is comparable with native
solutions. The software implementation is highly flex-
ible: we show that performance optimisations and ex-
tensions to the standard are easy to add.

The CLAN network has a very simple network
model with very low overhead, that we believe scales
well to very high bandwidths and large numbers of
endpoints. These desirable properties are thus inher-
ited by CLAN VIA.

1 Introduction

The Virtual Interface Architecture is an industry stan-
dard for high performance networking. Its scope is to
describe an interface between the network hardware
and software on the host, and the expectation is that
vendors will implement new devices that conform to
the specification.

VIA describes auser-levelnetwork interface: a net-
work in which applications communicate directly with

�David Riddoch is jointly funded by a Royal Commission
for the Exhibition of 1851 Industrial Fellowship, and AT&T
Laboratories-Cambridge.

the network interface controller (NIC) without invok-
ing the operating system. Applications may have a
virtual memory mapping onto the NIC hardware, and
the NIC is able to access application-level buffers di-
rectly, without intervention by the CPU. By avoiding
system calls, complex protocol stacks and unnecessary
copying of data (and the damaging effect these have on
cache-performance), overhead and latency are signifi-
cantly reduced.

Existing implementations of the Virtual Interface
Architecture come in three flavours. Native implemen-
tations, such as Emulex’s cLAN VIA[1], potentially
offer the highest level of performance, but require cus-
tom NIC hardware. Cost of development is high and
these technologies usually do not inter-operate directly
with other networks.

The VIA programming interface can be provided on
existing traditional networks by using software emu-
lation. M-VIA[2] consists of a user-level library and
loadable kernel module for Linux, and supports VIA
over ethernet.1 Network access is managed by the op-
erating system, and so performance is less good than
for native implementations, but this approach is cheap
and highly flexible.

The third approach is to use an intelligent NIC. In-
tel’s proof-of-concept[3] implementation and Berke-
ley VIA[4] both make use of Myricom’s Myrinet[5]
— a gigabit-class, programmable, user-level accessi-
ble NIC. As with custom hardware implementations,
scalability is limited by the resources on the NIC.

Implementations that use specialised hardware can
certainly achieve significantly higher performance

1M-VIA also supports custom VIA hardware.

1



than those using software emulation on traditional net-
work architectures, but this comes at a cost: The VIA
model is complex, and a hardware implementation
correspondingly so. To manage this, part of the work
is typically done by a processor on the NIC, but it is
not clear whether this approach will scale to network
speeds of 10Gbps and above. Further, each application
and the endpoints within it require resource in the NIC,
and the number of active connections is limited by this
resource. Supporting large numbers of endpoints nec-
essarily becomes expensive.

The AT&T CLAN network is a high performance
user-level network that exhibits very low per-endpoint
resource requirements, and is highly scalable. It
presents a low-level network interface that supports a
wide range of communication styles efficiently. In this
paper we present an implementation of VIA built as a
software layer over CLAN, present some initial perfor-
mance results, and compare it with an existing native
hardware implementation.

2 Background

2.1 Virtual Interface Architecture

VIA is the result of an effort to standardise academic
research into user-level networks. The design is most
strongly influenced by the U-Net[6] project, but a
wide variety of other user-level networks have been
proposed[7, 8, 9]. The VIA network model has since
been adopted for the Infiniband switched fabric inter-
connect, which has wide and powerful industry sup-
port, and hence is likely to be widely adopted.

The VIA Specification[10] defines the network in-
terface’s architectural model, including the division of
functionality between hardware, application software
and system software. The physical layer, on-wire for-
mat and application programmer’s interface (API) are
not defined. We believe this only serves to limit the im-
plementation designer’s choices, without even provid-
ing interoperability between implementations or appli-
cation portability. However, a de facto standard API
has emerged based on the specification and has been
adopted by most existing implementations.

A schematic of the architectural model is given in
Figure 1, and the software emulation approach in Fig-
ure 2. A Virtual Interface (VI) represents an appli-
cation endpoint, and connects to another VI in a re-
mote process. The VI has a send queue and a receive

VI CQ
Device driver

VI VI

interface
System call

memory mapping
Virtual

Application

VIA communication library

VIA NIC

Figure 1: VIA Architectural Model.

queue, onto which the application posts descriptors
that describe send and receive buffers. The specifi-
cation also describes doorbells, which are needed for
a native hardware implementation to inform the NIC
that a descriptor has been placed on a work queue.
These are not exposed in the API, and are not needed
for all implementations.

interface
System call

Application

VIA communication library

VI VI VI CQ

Traditional NIC

Device driver

VIA module

OS

Figure 2: Emulation of VIA on traditional networks.

In the standard send/receive model the sending pro-
cess specifies the location of the source data, and the
receiving process specifies where the data should be
delivered. The sending process posts a descriptor to
the send queue by callingVipPostSend() , which
returns immediately. The send operation completes
asynchronously, and the application can poll for com-
pletion by callingVipSendDone() , or block wait-
ing for completion withVipSendWait() .

Similarly the receiving process posts descriptors de-
scribing receive buffers to the receive queue using
VipPostRecv() . These descriptors are completed
when data is delivered into the buffers, and the ap-
plication synchronises usingVipRecvDone() and

2



VipRecvWait() . Applications are responsible for
flow control, and if data arrives at a VI and no receive
descriptors are available, the data is dropped.

Send and receive buffers must be registered before
they can be used. This is necessary for user-level
implementations to ensure that the pages of physical
memory are pinned in memory, so they can be ac-
cessed directly by the NIC.

Three reliability levels are provided. Withunreli-
able deliverydata is delivered at most once, errors are
detected, but packets may be lost.Reliable delivery
andreliable receptionguarantee that data is delivered
exactly once or not at all. If data is dropped due to er-
rors or buffer overrun, the connection is closed and an
error indicated.

To support applications that manage multiple con-
nections, notifications of completed requests from
a number of VIs can be directed to acompletion
queue. The application can poll the completion
queue (VipCQDone() ), or block waiting for events
(VipCQWait() ). The returned value indicates which
VI the descriptor completed on, and whether it was a
send or receive event.

The VIA model also has support for Remote Direct
Memory Access (RDMA), where the initiator specifies
both the source and destination buffers. This is not
discussed further in this paper.

2.2 The CLAN Network

As part of the CLAN2 project at AT&T Laboratories-
Cambridge we have developed a high performance
user-level network for the local area. Key aims of the
project include support for general purpose multipro-
grammed distributed systems, and scalability to large
numbers of applications and endpoints. The network
is described in detail elsewhere[11], but an overview
of the key features follows:

At the lowest level the communications model
provided is non-coherent distributed shared memory
(DSM). A portion of the virtual address space of an
application is logically mapped over the network onto
physical memory in another node. Data is transferred
between applications by writing to the shared memory
region using standard processor write cycles. A buffer
in a remote node is represented by an RDMA cookie,
the possession of which implies permission to access

2Unrelated to the Emulex cLAN product range.

that buffer.

The NIC provides a number of additional resources
to support efficient communication: Small out-of-band
messages are used for connection set up and tear down,
and a DMA engine reduces the overhead of data trans-
fer for larger messages.

2.2.1 Synchronisation: Tripwires

On the receive path, data is transferred into an applica-
tion’s buffers asynchronously without the intervention
of the CPU. This minimises overhead, but makes ef-
ficient synchronisation difficult, as the application re-
ceives no notification that a message has arrived.

The CLAN NIC provides a novel solution: thetrip-
wire. This provides a means to synchronise with ac-
cesses to arbitrary locations in the shared memory. A
tripwire is associated with a particular memory loca-
tion, andfireswhen that location is read or written via
the network. In response to a tripwire firing, the ap-
plication may receive a notification of the event, and if
blocked may be rescheduled.

Tripwire notifications from any number of tripwires
can be directed into anasynchronous event queue[12],
which can also receive DMA and out-of-band mes-
sage events. This shared memory data structure allows
events to be dequeued at user-level with very low over-
head. The cost of event delivery isO(1), and so scales
well as the number of endpoints increases.

3 Implementation

3.1 The CLAN Network

Our prototype CLAN NICs are based on off-the-shelf
parts, including an Altera FPGA, V3 PCI bridge (32
bit, 33 MHz) and HP’s G-Link optical transceivers,
with 1.5Gbit/s link speed. The tripwire synchronisa-
tion primitive is implemented by a content addressable
memory, supporting 4096 tripwires in the current ver-
sion. We have also built a five port worm-hole-routed
switch, again using FPGAs, and a non-blocking cross-
bar switch fabric.

Application to application latency through the net-
work is 2:6�s, and maximum throughput960Mbps

(limited by the PCI bridge).

3



3.2 VIA over CLAN

We have implemented the VIA API as a user-space
software library over CLAN, as illustrated in Fig-
ure 3. The functionality we have so far includes the
send/receive data transfer model, polling and blocking
modes of synchronisation, completion queues and all
three reliability levels.

Device driver

A
perture

A
perture

A
perture

A
perture

A
perture

A
perture

VI VI VI CQ

interface
System call

Application

CLAN library

VIA communication library

CLAN NIC

Distributed
shared memory

Figure 3: CLAN VIA Architecture.

Two properties of the CLAN network interface are
key to the design of the VIA implementation that fol-
lows:

� Programmed I/O (PIO) writes have significantly
lower overhead and latency than reads.

� The CLAN network issend-directed. That is, the
sender has to know the location (RDMA cookie)
of the receive buffers before it can transmit any
data. A major advantage of this is that receive
buffer overrun can never happen.

3.3 Data Transfer

The send-directed property of the CLAN network
leads to two choices for transferring application data:

� Transfer the data to a known location in the re-
ceiving VI’s address space, from where it can be
copied into the application’s receive buffers.

� Pass RDMA cookies for the application’s receive
buffers to the sender, so the data can be trans-
ferred directly.

The latter is clearly superior, since it avoids an unnec-
essary copy, but means that RDMA cookies have to
be passed from the receiving VI to the sender. This is

done at the time that a VIA receive descriptor is posted
by an application: the receive descriptor is mapped to
one or more RDMA cookies, which are transferred to
the remote VI via thecookie queue.

3.3.1 Distributed Message Queues

The cookie queue is a lightweight fixed-size message
queue, based on a distributed circular buffer. This is il-
lustrated in Figure 4. A message is copied through the
network into the next free slot in the remote buffer, in-
dicated by the write pointer (write_i ). The write
pointer is then incremented modulo the size of the
buffer, and the new value copied to the remote address-
space (lazy_write_i ).

read_iwrite_i

lazy_write_i

Q
ueue entries

lazy_read_i

Remote
aperture

TripwireHost
memory

ReceiveSend

Figure 4: A Distributed Message Queue

The receiver compares its lazy copy of the write
pointer with the read pointer to determine whether or
not the queue is empty. Messages are dequeued by
reading them from the buffer, then incrementing the
read pointer, and copying its new value to the sender.
Transferring small messages consists of just a few pro-
cessor write instructions, and hence has very low over-
head.

The cookie queue resides in a small buffer in each
VI. The RDMAs cookies for these buffers are passed
to the other VI as part of the connection set up mes-
sages, thus allowing them to create a memory map-
ping. The cookie queue is used to transfer receive
buffer descriptors from the receiver to the sender. Mes-
sages are arranged in groups, the first message giving
the amount of buffer space given by the descriptor, and
the number of segments. The messages that follow

4



represent segments, each mapped to RDMA cookies.
A similar queue, thetransfer queue, is used to pass

meta-data in the other direction: from sender to re-
ceiver. Each message corresponds to a completed VIA
send descriptor, and includes the amount of data sent
and immediate data.3 Alternatively a message may in-
dicate an error condition.

3.3.2 Receiving

Basic data transfer is illustrated in Figure 5. The re-
ceiving application posts a receive descriptor to a VI
using VipPostRecv() . The segments within the
descriptor are mapped to RDMA cookies, and passed
to the remote VI via the cookie queue, and control is
returned to the application immediately.

Queue
Cookie

Transfer
Queue VI

VI

Send Receive

Control

Receive
descriptors

Data

Figure 5: Basic VIA data transfer.

3.3.3 Sending

Some time after the receive descriptor is posted, the
sending application posts a send descriptor. The
cookie queue is interrogated to find the corresponding
receive descriptor, and one or more DMA requests are
submitted to transfer the application data directly from
the send buffers to the receive buffers. A message is
placed in the transfer queue to pass information in the
send descriptor to the receiver, and control is returned
to the application.

Data transfer itself happens asynchronously when
the DMA requests reach the front of the DMA queue.
However, the message placed in the transfer queue is

3Four bytes of application data that are passed from a send
descriptor to the receive descriptor.

used to indicate that the application data transfer has
completed, and so must not arrive until that is true. To
achieve this efficiently, the body of the transfer queue
message is written using PIO at the time the send de-
scriptor is processed, but the transfer queue’s write
pointer update is done by an asynchronous DMA re-
quest after the application data transfer has completed.

3.3.4 Buffer overrun

If the cookie queue is found to be empty when a send
descriptor is posted, then the receive buffers have been
overrun, and VIA specifies that the data should be
dropped. In this case the send descriptor is completed
without any data being transmitted onto the network.
Whether or not an error is indicated on either side de-
pends on the reliability level of the connection. It is
a general advantage of send-directed communication
that in the case of receive buffer overrun, no data is
transferred, and so the network is not loaded unneces-
sarily with data that cannot be delivered.

3.4 Synchronisation

Send synchronisation is trivial, and merely involves
determining whether the DMA requests associated
with a descriptor have completed. This information
is provided by the CLAN DMA interface.

Receive synchronisation is more difficult. As de-
scribed so far, this implementation of VIA will work
on any PRAM[13] consistent shared memory imple-
mentation. However, the completion of an incom-
ing message is signalled by a message arriving in
the transfer queue, which is simply an asynchronous
change to data in memory (specifically the message
queue’s write pointer). An application can detect
this change by inspecting the relevant memory loca-
tions, which is enough to support the non-blocking
VipRecvDone() method. To support blocking re-
ceives (VipRecvWait() ) a hook into the process
scheduling mechanism of the operating system is
needed.

Our solution is the CLAN tripwire. As shown
in Figure 4, a tripwire is associated with the mes-
sage queue’s write pointer, and fires whenever a
message is placed in the queue. When the trip-
wire fires the application receives a notification, and
a thread can be rescheduled if currently blocked in
VipRecvWait() .

5



3.5 Programmed I/O

As an optimisation, it is possible to configure a VI to
transfer application data using PIO rather than DMA.
Although the CPU now has to do work to transfer data,
this has lower overhead and latency than DMA for
small messages because of the DMA set up cost. Us-
ing PIO requires a virtual memory mapping onto the
remote memory region, which is relatively expensive
to set up. A cache of such mappings is thus main-
tained, with least-recently-used for eviction. Note that
these mappings correspond to regions of registered
memory, not individual receive buffers, and a small
cache of mappings can cover a much larger number of
buffers.

A further benefit of PIO for small messages is that
data transfer happens during the application’s schedul-
ing time slice, rather than when the NIC chooses to
schedule the DMA transfer. Applications that have
delay sensitive traffic can use PIO to ensure timely
delivery of messages, even when competing with
large transfers. Thus the operating system’s process
scheduling policy also manages network access. QoS
support in the network would also be desirable, but is
not yet supported.

3.6 Completion Queues

The VIA completion queue is implemented using the
CLAN asynchronous event queue. When a VI’s re-
ceive queue is associated with a completion queue, the
tripwire associated with its transfer queue is associated
with the event queue. To associate a VI’s send queue
with a completion queue, DMA completion events are
directed to the event queue.

3.7 Extensions to VIA

The VIA API is designed to provide the facilities
needed to develop distributed applications. However,
it leaves out a number of desirable features, which are
thus implemented over and again by developers above
the level of VIA. The flexibility of our software design
makes it simple to implement extensions to VIA, and
two examples are given here:

3.7.1 Flow Control

As discussed in Section 3.3.4, the sending application
knows whether there are buffers available in the re-

ceiver at the time the send descriptor is posted. If it
finds that no receive buffers are currently available, the
default behaviour is to drop the data, as prescribed by
the VIA standard. As an extension, the application can
configure a VI to defer sending until receive buffers are
posted. This simple modification adds flow control to
VIA, and no change is needed to the standard API.

3.7.2 Request Splitting at Receiver

This extension permits an incoming message that is
larger than the space available in the first receive de-
scriptor, to be split over a number of receive descrip-
tors. Applications typically post a number of receive
buffers on each endpoint, in order to allow streaming,
and each has to be at least as large as the maximum
message size. Where message sizes vary substantially,
this extension saves buffer space by allowing the re-
ceiver to post smaller buffers. A small modification to
the standard API is needed to indicate that the message
continues in the following descriptor(s).

3.8 Protection

Our prototype NIC hardware currently lacks full pro-
tection on the receive path, and having given a remote
process access to a buffer it is not possible to revoke
access. This means that a faulty or malicious node that
goes in below the level of VIA can overwrite data in an
application’s receive buffers after the receive descrip-
tor has completed.

Proper protection will be available in a future revi-
sion of the NIC. Implementing strict protection will
have a small performance impact, and so will likely be
offered as a configuration option, since it is not always
needed in a trusted network environment.

4 Performance

In this section we present a number of synthetic bench-
mark results in order to evaluate the performance po-
tential of this implementation of VIA, and compare it
with an existing native hardware implementation: the
Emulex cLAN 1000.

The test nodes were a pair of 650 MHz Pentium III
systems running an unmodified Linux 2.2 kernel. Each
machine contained an AT&T MkIII CLAN NIC, and
an Emulex cLAN 1000. The Emulex cLAN 1000 is
based around a single chip design, in a PCI card (64

6



bit, 33 MHz) with 1.25Gbit/s link speed. The results
given below were obtained using identical benchmark
software on each system. Fine grained timing was per-
formed using the processors’ free running cycle coun-
ters. Because we did not have an Emulex switch, both
networks were arranged in back-to-back configuration.

Because many distributed applications require reli-
able communications, the reliability level used in these
tests wasreliable delivery. To prevent receive buffer
overrun, the test applications used credit-based flow
control. For CLAN VIA we present separate results
for PIO and DMA data transfer for clarity (although
by default it is able to switch dynamically between the
two).

4.1 Latency

The latency for small messages was measured by tim-
ing a large number of round-trips and halving the re-
sult. This value includes the time taken to post a send
descriptor, process that descriptor, transfer the data
and synchronise with completion on the receive side.
The results are given in Table 1.

Bytes CLAN CLAN Emulex
transferred (DMA) (PIO) cLAN 1000

0 4.4 3.4 6.6
4 6.4 4.6 7.5
40 6.8 4.7 9.5

Table 1: Half round-trip latency (�s) for small mes-
sages.

The small message latency for CLAN VIA (PIO)
is the lowest by some margin. This reflects the very
low overhead of PIO for small messages on the CLAN
network. For comparison, M-VIA report latency over
gigabit ethernet of19�s[14], and Berkeley VIA report
23�s[4].

4.2 Bandwidth

To measure bandwidth a large number of messages
were sent across the network, with flow control cred-
its passing in the opposite direction. Each measure-
ment was made with a10MB transfer, and using four
buffers at the receiver (we found that this was the point
at which adding additional receive buffers gave little
improvement). The results are given in Figure 6.

0

200

400

600

800

4 16 64 256 1024 4096 16384

B
an

dw
id

th
 (

M
bi

t/s
)

Message size (bytes)

Emulex VIA
CLAN VIA (DMA)
CLAN VIA (PIO)

Figure 6: Bandwidth vs. message size.

CLAN VIA (PIO) gives the best performance for
very small messages, due to its very low overhead.
However, throughput in this mode is limited by the
pattern of traffic generated on the PCI bus to about
370Mbit/s. Comparing Emulex VIA with CLAN VIA
(DMA), Emulex does significantly better except for
large messages. This is due to the high overhead and
turn around time of CLAN’s DMA implementation.
The dip at 128 bytes occurs when the DMA scheduler
switches from PIO to DMA mode.

CLAN’s DMA engine uses a single DMA controller
which is integrated with the PCI bridge, and only ac-
cepts a single request at a time. An interrupt is gener-
ated at the end each request, and the interrupt service
routine then schedules the next. The interrupt pro-
cessing overhead and high turn-around time leads to
poor performance for small and medium sized mes-
sages. We will be improving on this with our own
DMA engine in the next revision of the CLAN NIC,
which should substantially improve performance.

4.3 Completion Queues

The final benchmark aims to test the performance and
scalability of completion queues. A server process ac-
cepts new connections, and associates each VI with a
completion queue. Incoming message events are taken
from the completion queue, and the message echoed to
the sender.

Because the network configuration is limited to two
nodes, multiple clients are simulated by a single client
process on the other node. Small messages are sent to
the server on random connections as quickly as pos-
sible, but with only one outstanding request on each

7



40000

60000

80000

100000

120000

140000

160000

180000

0 20 40 60 80 100

R
eq

ue
st

s 
pe

r 
se

co
nd

Number of clients

Emulex VIA
CLAN VIA (DMA)
CLAN VIA (PIO)

Figure 7: Throughput vs. offered load.

connection. The client application knows which con-
nections it has sent messages out on, and so does less
work than the server, ensuring that performance is lim-
ited by the server. The results are shown in Figure 7.

Although both implementations show good perfor-
mance with no degradation under load, CLAN VIA
has lower throughput. In the case of CLAN VIA
(PIO), this is because the CLAN event queue is driven
by an interrupt per message, and hence has high over-
head. CLAN VIA (DMA) also suffers from this prob-
lem, and the poor performance of the DMA engine for
small messages makes the overall result even worse. A
revision of the NIC that delivers CLAN events to the
application at user-level without interrupts is currently
under development, and we project will bring perfor-
mance to at least the level of Emulex VIA.

We have found that by tailoring the communication
abstraction to the application, and implementing it di-
rectly over the CLAN network, we get significantly
better performance for a range of applications. For ex-
ample, using a lightweight message-based protocol, a
server similar to the one presented above can process
over 400,000 requests per second. These results are
presented in [11].

4.4 Analysis

The result that our software emulation of VIA over
CLAN out-performs a dedicated hardware solution in
some tests is surprising. In principle it should always
be possible to design a dedicated solution that gives
the best possible performance for a particular API. We
conclude that there is room for improvement in the im-
plementation of Emulex VIA.

We suspect that the complexity of the protocols has
lead to some of the work being done by an embedded
processor on the Emulex NIC. In contrast, the CLAN
NIC is implemented entirely as hardware state ma-
chines, which we believe has better potential to scale
to higher bandwidths. Those parts of the protocol
we leave to software run on the host CPU, and ben-
efit from performance increases according to Moore’s
Law.

5 Conclusions

We have shown how it is possible to implement the
VIA API as a thin software layer over distributed
shared memory with tripwires for synchronisation.
Our implementation, using the CLAN network, ex-
hibits performance that is comparable with, and in
some cases exceeds, an existing native hardware solu-
tion. Where the performance currently lags that of the
hardware implementation, we believe it is due to lim-
itations of the CLAN prototype hardware rather than
an intrinsic limitation of the CLAN network model.

The software approach is highly flexible, and has
allowed us to add optimisations and extensions. The
use of programmed I/O for small messages signifi-
cantly reduces overhead and latency. With the send-
directed property of the CLAN network, flow con-
trol comes naturally with almost no additional perfor-
mance penalty.

We have argued elsewhere that the CLAN network
presents a very powerful low-level model, on which a
wide range of communications paradigms have been
implemented efficiently. These include TCP/IP, MPI,
CORBA and NFS. Here we have shown that it also
supports the VIA interface, and because they are all
implemented solely as software on the host, they can
all be used together on the same network. This is in
contrast with programmable NICs, in which the net-
work is programmed to support a single protocol.

Acknowledgements

The authors would like to thank all of the members of
the Laboratory for Communications Engineering, and
AT&T Laboratories-Cambridge, particularly members
of the CLAN team.

8



References

[1] Emulex cLAN. http://wwwip.emulex.
com/ip/products/clan1000.html .

[2] M-VIA Project. http://www.nersc.gov/
research/FTG/via/ .

[3] Frank Berry, Ellen Deleganes, and Anne Marie
Merritt. The Virtual Interface Architecture
Proof-of-Concept Performance Results. Techni-
cal report, Intel Corporation.

[4] Philip Buonadonna. An Implementation and
Analysis of the Virtual Interface Architecture.
Master’s thesis, University of California, Berke-
ley, May 1999.

[5] Nanette Boden, Danny Cohen, Robert Fel-
derman, Alan Kulawik, Charles Seitz, Javoc
Seizovic, and Wen-King Su. Myrinet — A
Gigabit-per-Second Local-Area Network.IEEE
Micro, 15(1), 1995.

[6] Thorsten von Eicken, Anindya Basu, Vineet
Buch, and Werner Vogels. U-Net: A User-Level
Network Interface for Parallel and Distributed
Computing. In15th ACM Symposium on Oper-
ating Systems Principles, December 1995.

[7] Matthias Blumrich, Kai Li, Richard Alpert,
Cezary Dubnicki, Edward Felten, and Jonathan
Sandberg. Virtual Memory Mapped Network In-
terface for the SHRIMP Multicomputer. In21st
Annual Symposium on Computer Architecture,
pages 142–153, April 1994.

[8] Gary Delp, Adarshpal Sethi, and David Far-
ber. An Analysis of Memnet: An Experiment in
High-Speed Shared-Memory Local Networking.
In ACM Symposium on Communications Archi-
tectures and Protocols, 1988.

[9] Greg Buzzard, David Jacobson, Milon Mackey,
Scott Marovich, and John Wilkes. An implemen-
tation of the Hamlyn sender-managed interface
architecture. In2nd Symposium on Operating
Systems Design and Implementation, pages 245–
259, October 1996.

[10] The Virtual Interface Architecture. http://
www.viarch.org/ .

[11] David Riddoch, Steve Pope, Derek Roberts,
Glenford Mapp, David Clarke, David Ingram,
Kieran Mansley, and Andy Hopper. Tripwire:
A Synchronisation Primitive for Virtual Memory
Mapped Communication.Journal of Intercon-
nection Networks, JOIN, 2(3):345–364, Septem-
ber 2001.

[12] David Riddoch and Steve Pope. A Low Overhead
Application/Device-driver Interface for User-
level Networking. InInternational Conference
on Parallel and Distributed Processing Tech-
niques and Applications, June 2001.

[13] Richard Lipton and Jonathan Sandberg. PRAM:
A Scalable Shared Memory. Technical Report
CS-TR-180-88, Princeton University, 1988.

[14] M-VIA Performance. http://www.
nersc.gov/research/FTG/via/faq.
html#q14 .

9


