VIA over the CLAN Network

David Riddoch, Steve Pope

{djr,slp}@uk.research.att.com

Laboratory for Communications Engineering, University of Cambridge, England

AT&T Laboratories - Cambridge
The CLAN Network

- *Not* related to Giganet cLAN!
- Non-coherent distributed shared memory
 - send-directed communication
- Out-of-band messages
- Programmable DMA
- Tripwires for synchronisation

- Very little per-endpoint resource in the NIC
CLAN Software Interface

- Out-of-band messages, tripwires and DMA are managed by the device-driver
 - good, reduces per-endpoint resources in NIC
- Want to avoid system calls on the data path
- Solution: Application and device-driver communicate using *shared memory*
- An asynchronous circular buffer allows messages to be passed between the application and device-driver without making system calls
Virtual Interface Architecture

- Industry standard U/L network interface
- Connection-oriented
- Lots of per-endpoint resource in the NIC
 - scalability, $$$$$$
CLAN VIA

- Message queue in shared memory used to pass:
 - receive buffer descriptors from receiver to sender
 - completion messages from sender to receiver
- DMA for data transfer
 - but can also use PIO for small messages!
Asynchronous Message Queue

- Based on circular buffer
- No ‘full’ flag, instead considered full when there is one free slot
- Avoid high latency reads with ‘lazy’ copies of queue pointers
- Tripwires for synchronisation
CLAN VIA Data Transfer

1. receiver posts buffer descriptor
2. converted to CLAN RDMA cookie & passed to sender
3. sender initiates DMA requests to transfer data
4. write completion message
5. tripwire at receiver provides synchronisation
Initial results

- 40 byte round-trip
- streaming bandwidth

<table>
<thead>
<tr>
<th></th>
<th>Bandwidth (µs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cLAN1000</td>
<td>19</td>
</tr>
<tr>
<td>CLAN / DMA</td>
<td>19</td>
</tr>
<tr>
<td>CLAN / PIO</td>
<td>11</td>
</tr>
</tbody>
</table>

![Graph showing bandwidth vs. message size](image)
Disadvantages …

- **Protection**
 - sender has direct access to receive buffers
 - proper protection will be possible with next revision of the NIC (under development), but will incur a cost

- **Poor DMA performance for small messages**
 - high overhead for DMA set-up
 - will be addressed with support for DMA chaining in the next revision of the NIC
What’s good about it?

• Low per-endpoint resource requirements in the NIC
• Flexible – software is easier to fix!
• Performance comparable with dedicated solutions
• VIA is not a good solution for all problems
 – can get better performance from raw CLAN network
• Extensions to VIA
 – flow control (never drop data)
 – more efficient buffer management