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Abstract

CLAN (Collapsed LAN) is a high performance user-
level network targeted at the server room. It presents a
simple low-level interface to applications: connection-
oriented non-coherent shared memory for data transfer,
and Tripwire, a user-level programmable CAM for syn-
chronisation. This simple interface is implemented using
only hardware state machines on the NIC, yet is flexible
enough to support many different applications and com-
munications paradigms.

We show how CLAN is used to support a number of
standard transports and middleware: MPI, VIA, TCP/IP
and CORBA. In each case we demonstrate performance
that approaches the underlying network. For TCP/IP we
present our initial results using an in-kernel stack, and
describe the architecture of our prototype Gigabit Ether-
net/CLAN bridge, which demultiplexes Ethernet frames
directly to user-level TCP/IP stacks via the CLAN net-
work. For VIA we present a software implementation with
better latency than a commercial VIA NIC implemented
on ASIC technology.

Keywords: CLAN, high performance, user-level net-
works, network interface.

1. Introduction

As the line speed of local area networks reaches a gi-
gabit per second and beyond, the overhead of software
on the host system is increasingly becoming the limiting
factor for performance. At high message rates the pro-
cessing time is dominated by network overheads, at the
expense of the application, and can lead to performance
collapse.

The overhead is due to a number of factors[11] includ-
ing copying data between buffers, protocol processing,
demultiplexing, interrupts and system calls. In addition
to the processor time taken, these activities have a detri-
mental effect on the cache performance of the applica-
tion.

One solution that addresses these problems is user-
level networking, wherein applications communicate di-
rectly with the network interface controller (NIC), by-
passing the operating system altogether in the common

case. The NIC typically has direct access to application
buffers, eliminating unnecessary copies. In some cases
the network provides a reliable transport, which simpli-
fies protocol processing.

A variety of user-level network interfaces have been
developed[28, 8, 9], each supporting a particular com-
munications paradigm. For example, SCI has largely
been used to support shared-memory scientific clusters,
and Arsenic[24] supports processing of TCP and UDP
streams. Other communication interfaces can be built as
layers of software above the raw network, but this typi-
cally incurs significant additional overhead when the two
interfaces are dissimilar.

One approach to supporting multiple network inter-
faces is to use a programmable NIC. Myrinet[9] is a gi-
gabit class user-level accessible NIC which incorporates a
processor. A number of communications interfaces have
been built using Myrinet, including MPI[25], the Virtual
Interface Architecture (VIA)[7, 10], VMMC-2[13] and
TCP/IP[15]. However, at any one time all communicating
nodes must be programmed to support the same model.

The CLAN network presents a single, low-level net-
work interface that supports communication with low
overhead and latency, high bandwidth, and efficient and
flexible synchronisation. In this paper we show how this
interface supports a range of disparate styles of commu-
nication, without sacrificing the performance of the raw
network.

MPI, VIA and CORBA are implemented as user-level
libraries, requiring no privileged code or modifications to
the network. We present an in-kernel IP implementation,
and also describe the architecture of our Gigabit Ether-
net/CLAN bridge, which demultiplexes Ethernet frames
directly onto user-level TCP/IP stacks via the CLAN net-
work.

2. The CLAN Network

CLAN is a high performance user-level network de-
signed for the server room. Key aims of the project in-
clude support for general purpose multiprogrammed dis-
tributed systems, and scalability to large numbers of ap-
plications and endpoints. An overview of the key features
of the network follows:

At the lowest level the communications model is non-
coherent distributed shared memory (DSM). A portion



of the virtual address space of an application is logi-
cally mapped over the network onto physical memory
in another node. Data is transferred between applica-
tions by writing to the shared memory region using stan-
dard processor write instructions. A buffer in a remote
node is represented by an Remote Direct Memory Ac-
cess (RDMA) cookie, the possession of which implies
permission to access that buffer.

However, the CLAN network is not intended to sup-
port the traditional DSM communications model. In-
stead, the shared memory interface is used as the low-
level data transfer layer on which higher-level commu-
nications abstractions are built. The network supports
small datagram messages, which are currently used for
connection management. The NIC also provides a pro-
grammable DMA engine to off-load data transfer from
the CPU.

2.1. Simple data transfer

By way of example, we present the implementation
of a simple message passing protocol. The Distributed
Message Queue is based on a circular buffer in mem-
ory local to the receiver, as illustrated in Figure 1. The
sender writes a message through its mapping onto the re-
ceive buffer, at the position indicated by the write pointer
(write_i). The write pointer is then incremented mod-
ulo the size of the buffer, and the new value copied to the
remote address-space (lazy_write_i).
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Figure 1. A Distributed Message Queue

The receiver compares its lazy copy of the write
pointer with the read pointer to determine whether or not
the queue is empty. Messages are dequeued by reading
them from the buffer, then incrementing the read pointer,
and copying its new value to the sender.

Transferring small messages in this way consists of
just a few processor write instructions, and hence has very
low overhead.

2.2. RDMA cookie-based communication

In some cases, it is possible to arrange for the appli-
cation to read received data directly from in the circular

buffer (in-place). Other programming interfaces require
data to be delivered to application-level receive buffers,
which requires an additional copy.
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Figure 2. RDMA cookie-based data transfer.

This copy can be avoided if the sender is informed of
the location of the receive buffers in advance. To achieve
this, the receiver sends RDMA cookies for its buffers to
the sender using a distributed message queue, known as
a cookie queue. The sender retrieves an RDMA cookie
from the cookie queue, and uses it as the target for a DMA
transfer. This is illustrated in Figure 2.

2.3. Synchronisation

On the receive path, data is placed in an application’s
buffers asynchronously, without the intervention of the
CPU. This minimises overhead, but means the applica-
tion has no way to determine that a message has arrived
other than by polling memory locations explicitly.

Other networks have solved this problem in one of two
ways: by being able to request that an interrupt be gen-
erated when a particular region of shared memory is ac-
cessed, or by using some form of out-of-band synchroni-
sation messages.

The CLAN NIC provides a novel solution: the trip-
wire[27]. A tripwire is an entry in a content addressable
memory (CAM) which matches a particular address in an
application’s address space. The address of each memory
location that is accessed via the network is looked-up in
the CAM, and when there is a match the application re-
ceives a notification. If the application is blocked waiting
for such a notification, an interrupt is generated and the
application is rescheduled.

Tripwires are programmed directly by user-level ap-
plications, and are set on locations that correspond to pro-
tocol specific events. For example, when using the dis-
tributed message queue above, the receiver sets a tripwire
on lazy_write_i, and receives a notification when-
ever a new message is placed in the queue. If the receiver
is blocked waiting for a new message, it will be resched-
uled. Similarly the sender can block waiting for space in
the queue by setting a tripwire on lazy_read_i.

This is a flexible and fine-grained solution to the syn-
chronisation problem. With tripwires, synchronisation is
orthogonal to data transfer, and decoupled from the trans-
mitter. This greatly simplifies the hardware implementa-
tion. A tripwire can be associated with control signals as
above, or alternatively with in-band data.



2.4. Event handling

The NIC generates a variety of events, including DMA
completion, out-of-band message arrival and tripwire
events. Any of these can be directed to an asynchronous
event queue[26]. This is a shared memory data structure,
which allows events to be dequeued at user-level with
very low overhead. Once an event has been enqueued
it is blocked, so the queue is not susceptible to overflow.
The CPU overhead of event delivery is O(1) with respect
to the number of events registered with the queue.

2.5. Prototype implementation

The prototype CLAN NICs are based on off-the-
shelf parts, including an Altera 10k50e FPGA clocked at
60 MHz, a V3 PCI bridge (32 bit, 33 MHz) and HP’s G-
Link optical transceivers with 1.5 Gbit/s link speed. We
have also built a five port worm-hole-routed switch, again
using FPGAs, and a non-blocking crossbar switch fabric.
A bridge to Gigabit Ethernet is at the debug stage.

The tripwire synchronisation primitive is implemented
by a content addressable memory, supporting 4096 trip-
wires in the current version. Tripwires are managed by
the device driver, and when an tripwire fires an interrupt
is generated. The interrupt service routine delivers an
event to the application, and wakes any processes wait-
ing for the event.

The V3 PCI bridge chip includes an integrated DMA
engine, which can only be programmed with a single
request at a time, and generates an interrupt after each
transfer. The interrupt service routine then starts the next
DMA request. This causes a large gap between each
DMA request, which severely limits DMA performance
for small and medium sized messages.

The format of data packets on the wire resembles that
of write bursts on a memory bus. The header identifies
the target node and address of the first word of data. The
amount of data in the packet is not encoded in the header,
but is implicit in the data which follows. The packet can
thus be split at any point, and a new header generated
for the trailing portion. Conversely, consecutive packets
that represent a contiguous transfer can be merged into a
single packet by a switch or receiving NIC.

Because the packet length is not encoded in the header,
the NICs and switches can begin to emit packets as soon
as data is available, rather than waiting for an entire
packet. This contributes to the low latency of the CLAN
network. The switch exploits the ability to split packets
to prevent large packets from hogging an output port un-
fairly. No maximum packet size is enforced, so the net-
work operates as efficiently as the traffic patterns allow. If
congestion is encountered, small packets are likely to be
merged, leading to larger packets and higher efficiency.

Flow control is rate-based on a per-hop basis, with
flow control information passed in-band with the data.
This ensures that the source rate can be adjusted in a
timely fashion to prevent buffer overruns in the receiver.
The NICs and each switch port have just 512 bytes of
buffer space.
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Figure 3. Raw bandwidth vs. message size.

2.6. Scalability

The data path in the CLAN NICs and switches is sim-
ple compared with other technologies which run at the
same line speed. It is implemented entirely as hard-
ware combinatorials and state machines, and runs at full
speed on three year old FPGA technology. We have re-
cently completed a design to run at 3 Gbit/s, also using an
FPGA. These factors indicate that the network model is
likely to scale to significantly higher line speeds, if nec-
essary with integration.

The maximum number of endpoints that can be sup-
ported in a user-level network is usually limited by per-
endpoint resource in the NIC. In CLAN NICs, per-
endpoint resource just consists of incoming and outgo-
ing aperture mappings and tripwires, so a large number
of endpoints can be supported relatively cheaply.

3. Baseline Performance

3.1. Test configuration

The test system consisted of a pair of off-the-shelf
PC systems connected through a CLAN switch. Each
node was a 650 MHz Intel Pentium III system with
256 MB SDRAM and 256 KB cache, running an unmod-
ified Linux 2.4.6 kernel. Except where otherwise stated,
all performance results given in this paper were measured
using this configuration. The error in the graphs is too
small to represent with error bars.

3.2. Latency and bandwidth

Application to application latency for single word
programmed I/O (PIO) writes was measured by timing
a large number of ping-pongs (100000). The median
round-trip time was 5.6 µs, with 98.6% below 5.7 µs.
Measurement with a logic analyser showed that the
switch contributed .8 µs in each direction.

The bandwidth was measured by streaming a large
amount of data through the distributed message queue de-
scribed in Section 2.1, using a 50 KB buffer. The results



are shown in Figure 3. All data is touched on both the
transmit and receive side.

For small messages DMA performance is limited by
the V3 bridge’s DMA engine – which has high overhead
and a high turn-around time between requests. The kink
between 64 and 128 bytes is due to an optimisation in the
DMA driver, where PIO is used for small messages.

PIO gives excellent performance with low overhead
for small messages, but is limited by the PC I/O sys-
tem to less than 400 Mbit/s. Using an Alpha 21264 sys-
tem are we able to saturate the network, achieving up
to 960 Mbit/s with PIO, and half bandwidth is available
with messages of just 100 bytes. An improved DMA en-
gine with a user-level interface and pre-fetching ought to
achieve performance that is much closer to this curve.

4. MPI

MPI is the defacto-standard communications interface
for parallel scientific computing, and is widely imple-
mented and used. It has been designed to be efficient
on a variety of architectures, from shared-memory mul-
tiprocessors to networks of workstations. The interface
is based on message passing, and includes primitives for
both point-to-point communications and a variety of col-
lective operations, including multicast.

4.1. Implementation

Our port of MPI is based on the LAM[3] implemen-
tation, which runs over the standard BSD socket inter-
face. All collective operations are implemented in terms
of point-to-point connections. We have replaced the stan-
dard socket calls with a user-level socket library that pro-
vides the same semantics. Our socket library is based on
the distributed message queue described in Section 2.1.
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Application

D/driver
mapping
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CLAN NIC

Figure 4. The architecture of CLAN MPI.

The round-trip time for small messages using
MPI_Send() and MPI_Recv() is 15 µs. This com-
pares with 19 µs for MPI-BIP[25] using Myrinet hard-
ware, and 33 µs for MPI over FM over the Emulex cLAN
1000[21].

To demonstrate a real application, we chose a standard
n-body problem. It is representative of the applications
that can be solved with loosely coupled networks of pro-
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Figure 5. MPI n-body calculation speed-up
using two nodes.

cessors, yet is not perfectly parallelisable (so is a good
indicator of network performance).

Figure 5 shows the speed-up achieved using two
nodes. We compare MPI over Fast Ethernet, Gigabit Eth-
ernet (3c985), CLAN kernel-level IP (see Section 6.1)
and CLAN MPI. This problem is latency constrained for
small numbers of particles, so MPI over CLAN at user-
level does substantially better than MPI over TCP/IP.
CLAN MPI has very low overhead, so will also give im-
proved performance to applications that are not sensitive
to latency.

5. Virtual Interface Architecture

The Virtual Interface Architecture is an industry
standard[6] for user-level networking. Its scope is to de-
scribe an interface between the NIC and software on the
host, and an application programming interface[2]. The
intention is that vendors develop and market devices that
implement this specification, such as Emulex’s cLAN
1000[1].

Alternatively, VIA can be provided on existing net-
works by emulating the API in software. M-VIA[5] con-
sists of a user-level library and loadable kernel module for
Linux, and supports VIA over Ethernet. A third approach
is to use an intelligent NIC. Intel’s proof-of-concept[7]
implementation and Berkeley VIA[10] both use Myrinet.

5.1. VIA data transfer

In the standard send/receive data transfer model, a
sending process enqueues descriptors for source buffers
by calling VipPostSend(), which returns immedi-
ately. The send operation completes asynchronously,
and the application can poll for completion by calling
VipSendDone(), or block waiting for completion with
VipSendWait().

Similarly the receiving process posts descrip-
tors describing buffers to the receive queue using
VipPostRecv(). These descriptors are completed
when data is delivered into the buffers, and the ap-



plication synchronises using VipRecvDone() and
VipRecvWait().

To support applications that manage multiple connec-
tions, notifications of completed requests from a num-
ber of VIA endpoints can be directed to a comple-
tion queue. The application can poll the completion
queue (VipCQDone()), or block waiting for events
(VipCQWait()). The returned value indicates which
endpoint the descriptor completed on, and whether it was
a send or receive event.

5.2. Implementation

We have implemented the VIA API as a user-space
software library over CLAN. The architecture is similar
to that of our MPI implementation, shown in Figure 4.
The functionality we have so far includes the send/receive
data transfer model, polling and blocking modes of syn-
chronisation, completion queues and all three reliability
levels. This is sufficient to provide source-level compata-
bility for many VIA applications.

5.2.1 Data transfer. Basic data transfer is illustrated
in Figure 6. The receiving application posts a receive
descriptor to an endpoint (1) using VipPostRecv().
The segments within the descriptor are mapped to CLAN
RDMA cookies, and passed to the remote endpoint via
a cookie queue, as described in Section 2.2. Control is
returned to the application immediately.

Transfer
Queue

Queue
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Send Receive

Control
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Figure 6. VIA data transfer.

Some time later (2), the sending application posts a
send descriptor. The cookie queue is interrogated to find
the RDMA cookies for the receive buffers, and one or
more DMA requests are made to transfer the application
data directly from the send buffers to the receive buffers
(3). A second message queue, the transfer queue, is used
to pass meta-data (including the size of the message) and
control from the sender to the receiver (4).

Data transfer itself happens asynchronously when the
DMA requests reach the front of the DMA queue. Alter-
natively, the data can be transferred by PIO, which has
lower overhead and latency for small messages. This re-
quires a memory mapping onto the remote receive buffer,
which is relatively expensive to set up, and so a cache of
such mappings is maintained.

A further benefit of PIO for small messages is that
data transfer happens during the application’s scheduling
time slice, rather than when the NIC chooses to sched-
ule the transfer, as for DMA. Applications that have de-
lay sensitive traffic can use PIO to ensure timely deliv-
ery of messages, even when competing with large trans-
fers. Thus the operating system’s process scheduling pol-
icy also manages network access. Jitter introduced by the
network is very small (at most 20.5 µs per hop), so good
quality of service can be achieved with a real-time sched-
uler.

5.2.2 Synchronisation. Send synchronisation is triv-
ial, and merely involves determining whether the DMA
requests associated with a descriptor have completed.
This information is provided by the CLAN DMA inter-
face.

The completion of an incoming message is indicated
by the arrival of a message in the transfer queue. For the
non-blocking VipRecvDone() method this can be de-
tected by inspecting the transfer queue. To support block-
ing receives (VipRecvWait()) a tripwire on the trans-
fer queue is used as described in Section 2.3.

The VIA completion queue is implemented using the
CLAN asynchronous event queue. When an endpoint’s
receive queue is associated with a completion queue, a
tripwire is attached to the transfer queue, and configured
to deliver events to the event queue. To associate an end-
point’s send queue with a completion queue, DMA com-
pletion events are directed to the event queue.

5.2.3 Flow control. If the cookie queue is found to be
empty when a send descriptor is posted, then the receive
buffers have been overrun, and VIA specifies that the data
should be dropped. This condition is detected without
any data being transmitted across the network, so the net-
work is not loaded with data that cannot be delivered.

To avoid packet loss, applications have to build flow
control on top of VIA. To get good performance, flow
control information must be timely, and this cannot be
achieved if it is being multiplexed over the same chan-
nel as bulk data. To address this, Emulex VIA provides
non-standard interfaces for communicating out-of-band
information with low latency.

In our implementation, an application may configure
an endpoint to queue-up send descriptors until corre-
sponding receive buffers are posted. This is possible be-
cause the sending application receives a notification when
a message is placed in the cookie queue. This extension
to the standard improves performance, simplifies appli-
cation code considerably, and requires no additional non-
standard primitives.

5.2.4 Protection. Due to lack of space on the FPGA,
our prototype NIC hardware currently lacks full protec-
tion on the receive path. Having given a remote process
access to a buffer it is not possible to revoke access. This
means that a faulty or malicious node that goes in below
the level of VIA can overwrite data in an application’s re-
ceive buffers after the receive descriptor has completed,
which could cause the application to misbehave. Proper



protection will be available in a future revision of the
NIC.

5.3. Performance

In this section we compare the performance of our im-
plementation of VIA with that of an existing commercial
implementation: the Emulex cLAN 1000. The Emulex
NIC is a 64 bit, 33 MHz PCI card, with a single chip im-
plementation and 1.25 Gbit/s link speed. We did not have
access to an Emulex switch for these tests, so the Emulex
NICs were connected back-to-back. The system setup
and benchmark programs for the two systems were iden-
tical.

Since many distributed applications require reliable
communications, the reliability level used in these tests
was reliable delivery. To prevent receive buffer overrun,
the test applications used credit-based flow control. For
CLAN VIA we present separate results for PIO and DMA
data transfer for clarity (although by default we switch
between the two dynamically).

The latency for small messages was measured by tim-
ing a large number of round-trips. This value includes
the time taken to post a send descriptor, process that de-
scriptor, transfer the data, synchronise with completion
on the receive side and make the return trip. The results
are given in Table 1.

Table 1. Round-trip time for VIA (µs).

Bytes CLAN CLAN Emulex
transferred (DMA) (PIO) cLAN 1000

0 10.7 8.5 12.6
4 14.5 11.6 14.5

40 15.5 12.1 18.3

The small message latency for CLAN VIA (PIO) is the
lowest by some margin, despite the fact that the CLAN
NICs are connected by a switch, whereas the Emulex
NICs are connected back-to-back. Without a switch, the
CLAN VIA (PIO) round-trip time is just 6.7 µs. For
comparison, M-VIA report latency over Gigabit Ether-
net of 38 µs[4], and Berkeley VIA over Myrinet report
46 µs[10].

The bandwidth achieved for various message sizes is
given in Figure 7. Data is ‘touched’ on both the send and
receive side. For messages up to 128 bytes, CLAN VIA
(PIO) has the highest throughput. CLAN VIA (DMA)
performs poorly for small messages due to the high over-
head of the V3’s DMA engine. The kink between 64 and
128 bytes is due the DMA optimisation described in Sec-
tion 3.2.

We have also measured maximum transaction rates
with a server application that simply acknowledges each
message it receives. With about 15 clients Emulex VIA
saturates at 150,000 requests per second. The same appli-
cation implemented over the raw CLAN network is able
to process 1,030,000 requests per second – a seven-fold
improvement.
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Figure 7. VIA bandwidth vs. message size.

5.4. Analysis

That CLAN VIA has lower latency (and compara-
ble bandwidth) than an ASIC implementation designed
specifically for VIA is suprising. Profiling shows that
posting send and receive buffers has very low overhead
for the Emulex cLAN 1000: about .6 µs. This suggests
that performance is limited by high overhead in the NIC.
We suspect that the NIC has an embedded processor,
which may be limiting performance for small messages.

6. TCP/IP

Although an increasing number of applications are
making use of high performance interfaces such as MPI
and VIA, the vast majority of distributed applications
continue to use TCP sockets.

6.1. Kernel level IP

The simplest way to support IP networking is to use
existing support in the operating system. We have writ-
ten a low-level network device driver for the Linux ker-
nel that works in a similar manner to classical IP over
ATM[17]. In our case, IP packets are tunneled over a
CLAN connection.

When an IP packet is first sent to a particular host,
a CLAN connection is established and used to transmit
subsequent packets. Our initial implementation used a
distributed message queue (Section 2.1) to transfer the
data. When data arrives in the receiving host, a tripwire
generates an interrupt, and the interrupt service routine
schedules a ‘bottom half’ which passes the data down
into the standard networking subsystem.

The use of the distributed message queue has two dis-
advantages: (1) the receive buffer has a fixed size and (2)
data has to be copied from the receive buffer into the ker-
nel’s socket buffers. This was improved upon by using
RDMA cookie-based data transfer, as described in Sec-
tion 2.2. Each host allocates a pool of socket buffers, and
sends RDMA cookies for these buffers through a cookie
queue to the other host. Data is transferred by DMA di-
rectly from socket buffers in the sender to socket buffers
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in the receiver in a similar manner to our VIA implemen-
tation. In Figure 6 the send and receive buffers are now
kernel socket buffers.

6.1.1 Performance. We have measured the perfor-
mance of this implementation using the standard TTCP
benchmark. Figure 8 shows the results for CLAN IP
and a Gigabit Ethernet network using the 3Com 3c985
adapter. The 3c985 is a programmable NIC with two
on-board processors. Interrupt coalescing and check-sum
offload are used to reduce overhead on the host proces-
sor. For both networks, the Linux kernel was configured
to allow large receive windows, and 256 KB of socket
buffers were used. The 3c985 results were obtained with
9 KB (jumbo) frames, and the CLAN results with an 8 KB
MTU.

This configuration exposes the weaknesses of our pro-
totype NIC. Performance is limited by the high overhead
of DMA transfers, and we take many more interrupts on
the receive side than the 3c985. The 3c985 also bene-
fits from check-sum offload. Despite this, performance
for the two networks is very similar up to about 512 byte
messages, above which both saturate with CLAN IP
slightly faster.

Table 2. Round-trip time for ping over CLAN
IP and Gigabit Ethernet.

Network Test Ping RTT (µs) Error (µs)

CLAN IP normal 78 10
flood 54 10

3c985 normal 196 37
flood 216 19

We measured the round-trip time using the standard
‘ping’ command. The results given in Table 2 are aver-
aged over 100 pings for ‘normal’ pings (with one second
gaps), and over many thousands of pings for the flood
ping.

6.2. Accelerating TCP/IP

The performance of the in-kernel TCP/IP support de-
scribed above is limited by the high overhead of the TCP
stack. One solution is to offload some of the protocol
onto the NIC, as is done by the 3c985. In the Arsenic[24]
project, the NIC demultiplexes incoming data directly
into application-level buffers, and the TCP stack is ex-
ecuted at user-level. Overhead is substantially reduced,
and a further improvement is gained by using a zero-
copy interface. Trapeze/IP[15] also offloads the check-
sum calculation and provides a zero-copy socket inter-
face.

Within a local area network, an alternative is to pro-
vide a fast path for TCP/IP traffic with a simplified
stack that does not duplicate functionality in the network.
For example, the CLAN network is reliable and guaran-
tees in-order delivery, so check-sums, sequence numbers,
timers and re-transmission are not needed. The use of
RDMA cookies for data transfer provides implicit flow
control, so management of the TCP receive window could
also be removed.

However, this approach is not an option where appli-
cations require TCP or the other end of the connection is
not in the local network.

6.3. Gigabit Ethernet/CLAN bridge

SwitchBridge

CLAN

Gigabit
ethernet

Figure 9. CLAN server room architecture.

Although we can already bridge IP traffic between
Ethernet and the CLAN network by configuring a PC ap-
propriately, this solution does not scale well to the high
line rates experienced by large server clusters. The Gi-
gabit Ethernet/CLAN bridge connects a CLAN network
to the outside world, as shown in Figure 9. Prototype
hardware for the bridge has recently been assembled, and
is currently in the debug stage. We briefly describe the
architecture here.

The main function of the bridge is to demultiplex in-
coming TCP streams onto CLAN streams which termi-
nate in user-level applications. The IP and TCP/UDP
headers of incoming Ethernet frames will be looked up in
a CAM to identify the associated CLAN stream. For TCP
streams, the sequence number is inspected to determine
where the packet data should be delivered in the receive
buffer. IP packets that are not associated with a partic-
ular CLAN stream will be delivered via a distinguished



Figure 10. The prototype Gigabit Ethernet
bridge.

stream to the operating system.

The TCP protocol stack is executed at user-level. We
have selected the lwIP[14] stack as the starting point for
our implementation, which is currently able to exchange
packets between CLAN hosts. On the transmit side, com-
plete IP packets are assembled in the application and de-
livered via a CLAN stream to a staging buffer in the
bridge. The bridge will verify key fields in the IP and
TCP header, and then emit the Ethernet frames.

7. CORBA

The Common Object Request Broker Architecture[20]
is a standard for object-oriented remote procedure call. It
simplifies distributed computing by presenting applica-
tions with a very high level abstraction of the network.
CORBA specifies a language independent object model,
a network protocol for invoking requests on objects, and
bindings to a variety of programming languages.

The ORB is responsible for providing reliable com-
munication, managing resources such as connections and
threads, and providing a number of services. These in-
clude management of objects’ life cycle, naming, loca-
tion (including transparent forwarding of requests) and
flow control.

7.1. omniORB

omniORB is a CORBA implementation with bindings
for the C++ and Python programming languages, devel-
oped at AT&T Laboratories-Cambridge. It has been cer-
tified compliant with version 2.1 of the specification.

The ORB uses a thread-per-connection model on the
server side, which avoids context switches on the call
path. The transport interface[18] is flexible and effi-
cient, and transports over TCP/IP, ATM[23], SCI[22] and
HTTP (for tunneling through firewalls) have been imple-
mented. The architecture of an omniORB server with the
CLAN transport is shown in Figure 11.

GIOP (un)marshalling

Object impl

Interface skel

D/driver D/driver

Operating system
mapping
User−level

transport
TCP/IP

transport
CLAN

CLAN NICEthernet

runtime
ORB

Figure 11. The architecture of omniORB.

7.2. CLAN transport

Data transfer is based on the distributed message
queue described in Section 2.1, with tripwires for syn-
chronisation. On the transmit side, the CLAN transport
provides a buffer which the marshalling layer marshals a
message into. When that buffer fills or the request is com-
pleted, it is passed back to the transport layer, where it is
transferred into the remote circular buffer either by PIO
or DMA. Large chunks of data are passed directly to the
CLAN transport, and can be transferred directly to the
receiver without first being copied into the marshalling
buffer.

On the receive side the unmarshalling layer makes re-
quests to the transport layer for buffers containing re-
ceived data, specifying a minimum size. The CLAN
transport provides direct access to the receive buffer,
hence eliminating unnecessary copies. It is possible that
the data requested is non-contiguous in the circular re-
ceive buffer, so a small amount of space is reserved im-
mediately before and after the buffer, and data copied
there as necessary to provide a contiguous chunk to the
unmarshalling layer.

7.3. Threads and demultiplexing

omniORB’s thread-per-connection model has a num-
ber of drawbacks. The principle problem is that a single
connection may be serviced repeatedly at the expense of
others, until its thread’s time slice is exhausted. In ad-
dition, a large number of threads are needed if there are
many connections, and a thread switch is always needed
between requests on different connections. As the cost
of the network transport decreases, the impact of these
defects becomes more apparent.

Our solution is to adopt a hybrid thread-pool model. A
single asynchronous event queue gathers tripwire events
from multiple connections, and demultiplexes active con-
nections onto available threads. When more than one
connection is active, it is necessary to ensure that suffi-
cient threads are runnable to ensure concurrency is not
limited if a thread blocks in the up-call to the object im-
plementation. However, if a thread does not block, it is
able to serve many requests before a thread switch occurs.



7.4. Performance

In this section we present some early performance re-
sults. The round-trip time for small requests is given
in Table 3. The lowest latency reported to date is
for Padico[12] on Myrinet-2000 (a 2 Gbit/s technology),
which also uses omniORB. We also give results for
DCOM (object-oriented RPC for Microsoft platforms)
over VIA, taken from [19].

Table 3. Round-trip time for small messages
using CORBA and DCOM.

Hardware and interface RTT (µs)

CORBA Fast Ethernet 128
Gigabit Ethernet (3c985) 180
CLAN 20
Padico (Myrinet-2000) 20

DCOM Emulex cLAN 1000 VIA ≈ 70
Emulex VIA (polling) ≈ 40

For omniORB we have also measured the maximum
request rate when serving multiple clients. The results
are given in Table 4. For Fast and Gigabit Ethernet, the
ORB was saturated with six clients. The request rate for
omniORB over CLAN was greater than 105,000 requests
per second with just three clients. Since each request does
no useful work, this provides a measure of the total over-
head of the ORB and network transport on the server side,
which is just 9.5 µs per request.

Table 4. Maximum request rate for om-
niORB.

Transport Requests per second

Fast Ethernet 19100
Gigabit Ethernet (3c985) 21600
CLAN 105900

Previous studies have found that ORB overhead is
very high[16]. However, the results presented here in-
dicate that ORB overhead can be very low, and consider-
able improvements are achieved with high performance
transports.

8. Future work

Due to the recent closure of AT&T Laboratories-
Cambridge, the NIC and Gigabit Ethernet/CLAN bridge
are not being developed further. In light of this, the func-
tion of the bridge will be emulated on a PC, so that devel-
opment of CLAN user-level TCP can continue.

MPI performance could be substantially improved by
implementing it directly over the raw network, rather than
the user-level socket interface. This would allow zero-
copy optimisations and reduce overhead.

A number of improvements are being considered for
our CORBA implementation, including marshalling mes-

sages directly into the receive buffer in the remote appli-
cation, and using DMA for large messages. The use of an
tailored marshalling protocol might also provide an im-
provement.

9. Conclusions

In this paper we have described the CLAN network,
and shown that it’s simple, low-level interface supports a
wide range of communications paradigms. Each higher-
level abstraction is built as a layer of software, without
additional support in the network, and without sacrificing
performance.

We have found that technologies with more complex
network interfaces and protocols are limited to relatively
low message rates by the processing requirements on the
NIC. We expect the simple hardware model of CLAN to
scale more easily to high line rates.

Our MPI implementation has lower latency than com-
parable interconnects, despite its simplicity. Further im-
provements can be expected if MPI is implemented di-
rectly over the raw network interface rather than user-
level sockets.

For both CLAN VIA and in-kernel TCP our imple-
mentations give comparable performance to ASIC solu-
tions that have been designed specifically for these pro-
tocols. In each case the latency of the CLAN implemen-
tation is significantly lower. Further, the CLAN perfor-
mance would be expected to improve significantly with a
proper implementation of the DMA engine.

We have also shown that a fully featured CORBA
ORB need not incur the high overhead that has often been
associated with it. omniORB over CLAN achieves trans-
action rates of 105,000 requests per second on our test
system, without any modifications to applications.

There has been a trend away from PIO in user-level
networks (for example SHRIMP moved to a DMA only
model on Myrinet). This is likely to be because it is diffi-
cult to manage in the NIC, due to data being pushed rather
than pulled. However, we have found that the low latency
and overhead of PIO for small messages has been invalu-
able in the implementation of application level protocols.
The combination of PIO for small messages, DMA to of-
fload bulk data transfer and tripwires for synchronisation
is a very flexible and efficient model, with a simple scal-
able hardware implementation.
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