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Abstract

This paper presents Cantag, an open source software
toolkit for building Marker-based Vision (MBV) systems
that can identify and accurately locate printed markers in
three dimensions. The extensibility of the system makes it
ideal for dynamic location and pose determination in perva-
sive computing systems. Unlike prior MBV systems, Cantag
supports multiple fiducial shapes, payload types, data sizes
and image processing algorithms in one framework. It al-
lows the application writer to generate a custom tag design
and associated optimised executable for any given applica-
tion. The system includes a test harness which can be used
to quantify, compare and contrast the performance of dif-
ferent designs. This paper explores the design space of tags
within the Cantag system, and describes the design param-
eters and performance characteristics which an application
writer can use to select the best tag system for any given sce-
nario. It presents quantitative analysis of different markers
and processing algorithms, which are compared fairly for
the first time.

1. Introduction

Developers of pervasive computing systems have long
recognised the utility of discovering location information
about system components, users and other entities in the
operating environment. Machine-based vision systems are
becoming an increasingly popular way of collecting these
data. Some vision systems locate objects by processing im-
ages of the natural environment. However, many vision sys-
tems are designed to recognisefiducial marker tags rather
than operating upon unconstrained images. This approach
provides improved performance in terms of runtime costs
and increased reliability in object identification and locali-
sation at the cost of requiring that specially designed tags
are attached to every object to be tracked. Fiducial mark-
ers can be thought of as advanced bar-codes (often printed
using commodity printing hardware) with the potential not

only to label an object but to position it accurately. The
field of Augmented Reality (AR) has been the traditional
development domain for such Marker-Based Vision (MBV)
systems[1, 11, 12], where they are favoured for their de-
pendence on commodity hardware (decreasing deployment
costs) and for their high degree of precision and accuracy
across six degrees of freedom (ideal for image-object reg-
istration). Most AR applications focus onvideo overlay
where three-dimensional models are rendered into the video
stream viewed by the user.

As pervasive computing systems emerge, MBV systems
also offer the potential to create large scale, ubiquitous
tracking environments with a multitude of novel applica-
tions. Different applications demand different properties
from an MBV system. A mobile user, for example, may
wish to trade-off accuracy in favour of extended battery life,
whilst another may only be interested in identifying objects
in the image without the need to locate them.

This paper introducesCantag, an open-source software
toolkit suitable for designing and deploying an MBV sys-
tem as part of a pervasive computing application. Cantag
differs from previous MBV systems, which we compare in
Section 7, in a number of important ways. In particular, it
allows an application writer to:

• select the most appropriate tag design from a wide va-
riety of fiducial types, or implement a custom marker;

• choose the most appropriate algorithm for each stage
of image processing, given the application require-
ments;

• characterise the MBV system through simulation be-
fore deployment;

• build a custom MBV system executable, optimised for
their particular application;

• efficiently track multiple tag types in the same video
stream by sharing common processing steps; and

• deploy their system design to use normal or high
frame-rate Firewire or Video4Linux cameras.



The remainder of this paper describes how pervasive
computing researchers can use the Cantag system to design,
build and integrate an MBV system with their application.
Section 2 describes in detail the types of accuracy and func-
tionality that different pervasive computing applications re-
quire, and motivates why different tag designs are suitable
for different applications. Section 3 provides an overviewof
the Cantag system and describes how various system com-
ponents can be composed with C++ templates to provide an
optimised executable. Section 4 summarises some results
generated using an OpenGL-based test harness to evaluate
the performance trade-offs available to application writers
when using different algorithms and tag designs. Section 5
analyses the results of using the Cantag system with real
world images. Section 7 contrasts the Cantag system with
related work and Section 8 describes the lessons learned and
reviews the salient design features an application designer
should consider when deploying an MBV system.

2. Design principles

There are several fundamental design decisions that a de-
signer of an MBV system must make:

• Source image type: whether the system operates on
colour, greyscale or 1-bit (binary) images;

• Fundamental tag shape: the shape must provide pro-
jective invariants which can be utilised to recover the
transformation information necessary for interacting
with the tag;

• Marker coding scheme: Each marker incorporates a
unique element to facilitate identification. This may be
template-based (i.e. a unique shape that is recognised
through pattern matching) or symbolic (e.g. incorpo-
rating a binary code that is read through image sam-
pling). Symbolic codes allow for quantifiable analysis
and arbitrary coding schemes.

Systems utilising colour or greyscale information should
be able to provide higher accuracy and be read at greater
distances than systems using only 1-bit images. However,
the price paid for this is increased execution cost when pro-
cessing the image. We therefore focus initially on process-
ing 1-bit images in order to improve applicability to wear-
able platforms in particular. There are many pervasive com-
puting applications with different needs from an MBV sys-
tem. We have identified a number of high-level properties
that express these requirements and the inherent trade-offs.

Execution costis a key issue for many pervasive com-
puting applications. Thus, it is important to investigate the
trade-off between computational cost and algorithm accu-
racy and robustness. For example, projects such as Hand-
held Augmented Reality[16] perform video overlay on a

handheld PDA and thus may be prepared to accept reduced
accuracy in order to decrease power consumption or achieve
real-time performance.

Payload typecan be either symbolic or template-based.
Template codes provide visual feedback to the user regard-
ing the functionality provided by a particular tag. This can
be useful if tags are used for applications which use the
physical juxtaposition of objects to trigger an action; this
form of interaction is particularly common in augmented
reality applications. Symbolic codes have a number of ad-
vantages over template-based systems since they define a
quantifiable address space. In particular, varying the size
of the data-cells and the use of error-correcting or error-
detecting codes provides a tag designer with trade-offs be-
tween resilience and data rate[13].

Data capacityof a tag measures the amount of data that
a given design can encode; different applications place dif-
ferent requirements upon this capacity. For example, The
MagicBook[2] application overlays active content onto the
pages of a book and therefore we would hope for a large
number of recognisable tags—or have a very short book!
However, increasing the number of recognisable tags nec-
essarily reduces the code distance between each tag and so
applications requiring a small number of tags might choose
low capacity tags in return for increased robustness.

3D accuracydescribes how accurately the system can
transform between the object co-ordinate frame (in 3D with
its z-axis perpendicular to the tag) relative to the 3D cam-
era co-ordinate frame. This information is required for spa-
tial reasoning: calculating the relative relationships between
objects relative to one another. Techniques for recovering
full 3D transformation information from circular and square
tags require expensive computation.

Projective accuracydescribes how accurately the system
can project 3D object points into the image. This is the
typical mode of operation for visual overlay whereby 3D
models are rendered over the scene.

2D accuracyrefers to how accurately the system can pre-
dict points in the image that lie on the same plane as the
tag itself. This information is used for decoding the tag but
might also be used for simple labelling of items in the scene.

Different applications require different payload types,
data capacities, transformation capabilities and execution
cost. The Cantag system has been built to allow the ap-
plication writer to design or select, build, test and deploy
the most suitable tag design for the job.

3. Cantag

Cantag is an open-source computer vision framework
written in C++. It makes extensive use of thetemplatepro-
gramming metaphor, enabling the compiler to generate an
optimised executable for any particular set of tag design and



algorithm options. This is important since the use of tem-
plates allows us to deliver a flexible tag framework, whilst
still providing real-time processing of image data, even for
high frame-rate cameras. Since Cantag is written in C++, it
can easily be integrated with existing C or C++ code.

Our system currently implements two fundamental tag
types: theCircleTag describes tags based around a circular
bullseye; and theSquareTag describes tags based around
a square border. TheCircleTag can be further configured
to control the relative proportions of the tag that are oc-
cupied by the bullseye and data rings, giving rise to four
tag shapes which may contain either template or symbolic
payloads. The symbolic payload can be configured to store
an arbitrary amount of data using therotational invariance
abstraction[13]. Figure 1 shows four example tags.

Once the user has selected the basic tag design, the Can-
tag system then allows a number of different algorithm
choices for the image processing. The programming ab-
straction used by Cantag models a tag processing pipeline
by a sequence ofalgorithms(C++ function objects) operat-
ing on entities. Examples of entities include contours, el-
lipses, quadrilaterals and payload data. The system is ex-
tended by adding additional algorithms which explicitly in-
dicate the types of entity used as argument and result types.
For example, a simple processing pipeline could use seven
processing stages to build a fully-functional MBV system:
image capture, thresholding, building a tree of contours,
correcting camera lens distortion, testing and fitting tag
shapes to contours in the image, calculating each camera-
to-tag transform, and finally decoding the tags in the scene.
This process is shown visually in Figure 2—in this exam-
ple the application designer would write approximately one
line of C++ code for each stage in this pipeline.

The Cantag framework allows the construction of more
complex processing pipelines. For example, we can build
pipelines which process multiple tag types within the same
scene (and share common processing steps), or dynami-
cally change processing algorithms depending on the cur-
rent needs of the application. The remainder of this Section
briefly describes the various algorithms currently available
within Cantag and summarises their performance.

3.1 Thresholding

The thresholding algorithms are used to convert an input
image to a 1-bit image. TheGlobal threshold algorithm
takes a fixed threshold value. Every pixel in the image is
converted to black or white depending on whether its inten-
sity is greater or less than the threshold. This algorithm has
a very low cost per pixel and is suitable for images where
the lighting intensity is uniform across all areas of interest
in the image. Tag recognisers on a mobile phone might of-
ten be able to assume that the required positioning of the

phone close to the tag will ensure that the image is evenly
illuminated.

TheAdaptive threshold algorithm utilises a moving av-
erage across the image to choose the threshold value[17].
Systems recognising images with varying light conditions
will need to accept the higher computational cost required
to maintain a moving average.

3.2 CircleTag

The perspective transformation of a circle is an ellipse[5]
which contains (almost) enough information to deduce the
projective mapping (known as back-projection) between
the real-world position of the tag and the resulting image.
Therefore the first stage of recognising aCircleTag is that
of fitting ellipses to contours in the image. TheLeast
squares algorithm performs a least-squares ellipse fit to
the contour points[8]. This algorithm requires numerous
non-trivial floating point algorithms1. However, the quality
of the position and pose information produced by the sys-
tem is directly dependent upon the quality of the ellipse fit
and so systems requiring accurate positioning information
might consider this a necessary expense.

TheSimple fit algorithm provides a low cost alternative
to least-squares fitting of an ellipse. This algorithm calcu-
lates the central point of the ellipse as centre of gravity of
the contour and then finds the major and minor axes as the
longest and shortest distances from the centre. Low power
or high-speed applications may be prepared to accept the
reduced accuracy in return for a simple, fast algorithm.

Once the ellipse has been fitted the perspective transfor-
mation may then be be derived. The3D transform algo-
rithm implements an adaption of the Forsyth’s ellipse back
projection algorithm[7] to recover a general 3D transforma-
tion from object co-ordinates to camera co-ordinates. This
algorithm is computationally complex but produces accu-
rate 3D information for the tag’s position and pose.

Alternatively, theLinear transform algorithm simply
scales the located ellipse linearly within the image. This
requires little computational overhead but provides a trans-
form which is only valid when projected into the image—
and so overlay of 3D models and 3D position information
are unavailable. This transform also makes assumptions
about the perspective transform which are invalid under
large perspective distortion.

3.3 SquareTag

RecognisingSquareTags follows a similar process to
the circular tags. Perspective projection of a square results
in a general quadrilateral and hence the contour follower

1In particular, it is necessary to solve a 3x3 eigensystem fora non-
symmetric matrix.



(a) CircleInner (b) CircleSplit (c) CircleOuter (d) Square

Figure 1. Four example tag types in the Cantag system.

Figure 2. A sample Cantag pipeline with example code.



must identify the four corners of the quadrilateral. TheCor-
ner fitting algorithm slides a window around the contour
and returns all points with discrete curvature above a chosen
threshold. This algorithm is fast, efficient and easy to imple-
ment but is susceptible to noise on the contour. Its resilience
can be increased by simplifying the polygon of points using
a convex hull algorithm and identifying corners based on
maximal local curvature: this has been implemented within
the Convex hull simplification algorithm. ThePolygon
simplification algorithm[4] repeatedly hypothesises poly-
gon approximations to the contour and adds additional ver-
texes in order to reduce the contour’s deviation from the
polygon. It has a high cost but is better able to withstand
contour noise.

A further option is to apply theLinear regression al-
gorithm to fit each set of points corresponding to a side of
the quadrilateral to best estimate the infinite line passing
through the set. The four intersections of the infinite lines
represent the best estimate of the true corner points. This al-
gorithm ignores the samples near the corners and bases the
corner determination on the more reliable body of points on
the contour. Note that regression needs the contour points
to be segmented into the four edges of the quadrilateral, im-
plicitly requiring an estimate of the corners. Such estimates
can be derived using any of the aforementioned algorithms:
an advantage of regression is that the corner estimate need
not be highly accurate, merely sufficient to partition the
dataset.

The Projective transform algorithm may then be ap-
plied to the recognised quadrilateral to recover the 3D pro-
jection. This algorithm returns a 3D transformation suit-
able for 3D model overlay but is susceptible to noise in the
image, making 3D position information unreliable. The al-
gorithm solves a set of linear equations for the four point
correspondence between the corners of the tag in object co-
ordinates and in image co-ordinates. These constraints do
not require that the tag remain a square and so noise in the
image produces a warping of the vertical and horizontal ob-
ject axes. However, the warping is exactly cancelled out
when projecting from the surface of the tag in object co-
ordinates into image co-ordinates. Furthermore, the errorin
resulting 3D projection co-ordinates is often sub-pixel and
so this algorithm is a good choice for systems that do not
require 3D position or pose information.

Better 3D transform results are possible using anon-
linear transform algorithm since this can be used to in-
corporate (the inherently non-linear) constraints relating to
a square into the four-point correspondence problem. This
algorithm requires multiple iterations to find a non-linear
solution and is therefore computationally expensive to exe-
cute and time consuming to implement.

We systematically name tags according to the algorithms
selected for their decoding based on the concatenation of

tag name (as shown in Figure 1), shape fitting algorithm,
back-projection algorithm, and payload size. For example,
anCircleInner tag, using theLeast squares shape fitting
algorithm, followed by the3D transform algorithm, with a
payload of 36 bits is namedCircleInnerLS3D-36.

4. Evaluating Tag Designs

The Cantag system incorporates an image source for pro-
cessing artificial images produced by OpenGL. Tags may
be rendered with arbitrary positions and poses, processed
by the system, and the resulting data compared against the
ground-truth input data. This mechanism provides a vi-
tal means to ensure that the algorithms offered by the sys-
tem are correctly implemented. However, it also provides
a means to understand the relative performance of different
tags and algorithms since it allows huge numbers of images
containing a variety of tag orientations to be systematically
simulated.

The images produced by the test harness can be consid-
ered ideal: there is no camera distortion, lighting artefacts,
or measurement error: the only source of error is derived
from the pixelation of the image. Hence this harness can
be used to place a quantitativeupper boundon the capa-
bilities of a specific tag. Thus, in addition to providing
a means for comparing two possible configurations of the
Cantag system, we can also answer questions as to whether
some performance needs are actually possible with current
algorithms. The remainder of this section summarises the
results from profiling the performance of the various algo-
rithm choices before we relate these findings to the real-
world behaviour of the system.

We begin by providing some insight into how the per-
formance of a system will change as the payload size of
the chosen tag is altered. In the following graphs all dis-
tances are measured in unitless dimensions oftag widths.
The reader may prefer to interpret this as: if the tag is1m
across then all distances are in metres.

Theminimum sample distanceis defined, for a given tag
location and pose, as minimum distance between the pro-
jected sample point for any cell and its edges. This mini-
mum sample distance gives a measure of how hard the tag
is to sample at this position—the smaller the value the less
margin for error in picking the sample point. For a par-
ticular orientation of the tag this value varies linearly with
the size of the tag in the image. The size of the tag is in-
versly proportional to the distance from the camera projec-
tion plane (i.e. along thez axis) along a particular ray. A
linear interpolation was applied to these values to find the
distance from the camera where the minimum sample dis-
tance is one pixel. Figure 3 shows the distance from the
camera such that the minimum sample distance is one pixel
for a Square-36 andCircleInner-36 tag. Both halves of
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Figure 3. Maximum distances from the camera such that the min imum sample distance is one pixel
for Square (left) and Circular (right) tags.

the figure contains nine sub-plots corresponding to one of
nine equally sized regions in the image. For example, the
top-left sub-plot (on both sides of the figure) corresponds to
a ray that goes through a point in the top left corner of the
image. The axes of each sub-plot represent thex andy com-
ponents of the tag’s normal vector. For example, the centre
of each sub-plot corresponds to a fully facing tag and the
bottom-right of each sub-plot corresponds to a tag facing
down and to the right. The value at each point on a sub-plot
shows the distance from the camera such that the minimum
sample distance was one pixel. The white regions around
the edges of each sub-plot indicate orientations where it is
not possible to make the minimum distance one pixel no
matter how close the tag is brought towards the camera. As
expected, a tag positioned at the top of the image (above
the camera) is more easily read when facing downwards in
the image rather than upwards–this explains the truncation
of the circular plot pattern for the sub-plots corresponding
to the edges of the image. We also note that the square tag
achieves longer read distances than the circular tag for small
angles of inclination. However, under more extreme angles
of inclination the performance of the two designs converge.

Figure 4 shows the effect of increasing payload size on
the minimum sample distance. The tag size in the im-
age such that the miniumum sample distance is one pixel
was found for increasing payload sizes. We expect that the
square tag will experience a decrease in read performance
in proportion to the square of the payload size. This is be-
cause going from annxn tag to an(n+1)x(n+1) tag adds

one data cell along the edge causing a linear decrease in the
minimum sample distance for a quadratic increase in pay-
load size. The curved line on the graph (which has the same
shape asy =

√
x) for the square tag is due to this effect. We

also see that the circular tags show no loss in performance
when increasing payload size by adding to a small number
of sectors—this is because the distance between the data
rings is less than the distance between sectors and so is the
limit on performance. This graph also shows the benefit of
adding additional data rings to the tag once the payload size
increases. For example, a four ring tag with 37 sectors (148
bits) has a better minimum distance value than a smaller
capacity tag with 3 rings and 49 sectors (147 bits).

The minimum sample distance describes how amenable
a particular position and pose is to data decoding. However,
there is also the issue of how accurately the sample points
are estimated from the image of the tag. To investigate these
effects we compute themaximum sample errorby measur-
ing the distance between the estimated sample point and the
actual sample point for each data cell on the tag. A simple
check of the simulated data shows that if the maximum sam-
ple error is less than the minimum sample distance then we
experience no data errors when reading the tag. We refer to
the difference between the maximum sample error and min-
imum sample distance as thesample strength. If the sample
strength is positive then we have successfully read the tag
because the maximum error is less than the minimum error
tolerance.

Figure 5 shows the effect of using the less complexSim-
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ple fit ellipse fitting algorithm for various angles of inclina-
tion for the tag and distance from the camera (shown here
as the size of the tag in the image). The large variations in
sample strength shown by theSimple fit algorithm confirm
that it is more succeptible to noise in the shape contour. We
also see that the algorithm performs badly for tags which
fully face the camera since the contour is circular in shape,
making the identification of the longest and shortest axes an
ill-posed problem. TheLeast squares algorithm shows a
much less noisy trace suggesting it is better at withstanding
contour noise caused by pixel truncation in the image.

Measurement of the sample strength is problematic in
real-world images. However, the sample strength is affected
by the accuracy of the transform used to recognise the tag
and so we expect that a tag reading at a position with a large
sample strength will generate more accurate location infor-
mation than a position with small sample strength.

5. Real World Results

In order to validate the predicted trends from the test har-
ness data we produced a plate containing a number of dif-
ferent tags of different sizes. We photographed the plate at
distances between1.5 and4.5 metres from the camera with
intervals of10cm and at inclinations of0, 30 and45 degrees
to the camera. We then mapped the distance measurements
on to tag size (in pixels) in the image (the camera’s vertical
field of view is approximately40 degrees).

Our earlier statement concerning the relation between
the tag’s pixel size in the image and its distance from the
camera and actual size is validated in the data whereby re-
sults from different sized versions of the same tag design
produce similar results when they appear with the same

pixel size in the image.
Figure 6 shows 3D location error for theSquareNL and

CircleSplit3D tags for selected tag inclinations. We no-
tice that as predicted by the test harness theSimple fit al-
gorithm is more succeptible to image noise that theLeast
squares algorithm particularly when the target tag is fully
facing the camera. We also see that theLinear regression
algorithm performs more reliably than the simpleCurva-
ture algorithm. These results suggest that the algorithms
making use of the entire contour are more robust than the
simple algorithms but the effect on the location accuracy is
surprisingly small. We note that theProjective transform
produced errors at least an order of magnitude worse that
theNon-linear square transform for the smaller tags

It is important to note that the actual errors reported by
Cantag (of the order of5–10cm) are not significantly bigger
than the possible measurement error in our experiment and
so further work is needed with more precise equipment to
be sure of the absolute performance of the system. We limit
ourselves here to examining trends and relative performance
of different tags and algorithms.

The test harness results generally suggest that a square-
based fiducial marker is superior to a circular design. The
square-based markers scale better to large data payloads and
the algorithms for detecting and reading them are simpler to
implement than for circular tags. A number of trends pre-
dicted in the test harness are borne out in the real-world
data but the effects of image noise amplify any algorithmic
instabilities. We see that shape fitting algorithms are in-
creasingly robust as more contour points contribute to the
fitted shape.

6. Summary

The data produced by the OpenGL test harness and the
real-world results suggest a number of high-level rules for
designers to bear in mind.

For short-range applications the expected performance
of the system is directly determined by the number of pix-
els visible for the tag. This is evidenced by the OpenGL
test harness which produces the same results for a high res-
olution camera picturing a distant tag as for a low resolu-
tion picture of a nearby tag. We expect atmospheric effects
to become significant only over large distances—perhaps
affecting applications using high magnification telephoto
lenses.

The performance of tags with a cell based payload struc-
ture is governed by the minimum distance between the sam-
ple point and the edge of the cell. The result of this is that
circular tags should balance sector radius against sector an-
gle.

Circular tags provide more robust location information
than square tags especially when using the more simple
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Figure 5. The sample strength of the ellipse fitting algorith ms for the CircleInner tag.

shape fitting techniques. This can be seen in Figure 6 where
the traces for the circular tags show less jitter and noise than
those for the square tags. Square tags are, however, capable
of carrying larger payloads than circular tags.

There are numerous combinations of algorithms and de-
signs producing different behaviour. Selection of these must
be done carefully to optimize the trade-off between func-
tionality and performance. For example, use of the expen-
siveLeast squares ellipse fitting algorithm provides little
advantage over theSimple fit algorithm if theLinear trans-
form algorithm is used later in the pipeline.

7. Related Work

Numerous MBV systems exist, particularly in the field
of Augmented Reality. These systems display huge hetero-
geneity in tag design and implementation. Cantag currently
implements the processing pipeline of a number of these
systems and we note the additional implementation required
for support of the remainder.

Arguably the most popular system for video overlay
is ARToolKit[1]. ARToolKit utilises square tags which
are detected and read from black and white images. The
four corner points in the image serve to compute the pro-
jective transform and a template-based scheme is used to
recognise specific tags from a database of issued templates
within the perspective-corrected image. Owenet al. pre-
sented a scheme for selecting template images which max-
imises the distance between tags (before projective distor-
tion effects)[10]. The addition of a template matching al-
gorithm for decoding the tag data would be sufficient for
Cantag to implement the ARToolKit pipeline.

Matrix[11], CyberCode[12] and Rohs’ mobile phone-
based tag reader[14] also make use of a square-based tag
design. However, the use of symbolic codes (as opposed to
a template-based system) allows the number of distinct tags
to be quantified. ARToolKit and Matrix tags use a solid
black border around the entire tag and so shape recognition
follows from detecting a quadrilateral in the image. In con-
trast, the CyberCode and Rohs systems use a combination
of marker bars and points detected using region-growing
and computing a second-order moment. These algorithms
are not currently implemented in Cantag but can be straight-
forwardly integrated into the framework and make use of
common steps such as recovering the tag position and de-
coding the binary payload. The ARTag system[6] also
makes use of a square tag design but detection is done based
on the results of multi-resolution edge detection rather than
image thresholding. Again, extension of Cantag to support
this system design requires only the implementation of edge
detection and segment linking algorithms because the re-
mainder of the image processing pipeline reuses existing
algorithms.

Examples of circular fiducial tags also exist in the liter-
ature. The TRIP location system[3] uses circular tags with
a symbolic code arranged around the outside of a circular
bullseye. Naimark and Foxlin’s tracker[9] also utilises a
circular tag with additional asymmetric eyelets to orient the
tag. The Free-D camera tracking system[15] uses circular
tags to determine the position of a mobile camera within a
TV studio. Bundle adjustment is used to derive an estimate
of the camera position from the angulation measurements
to a set of sighted tags whose identifiers are encoded using
up to nine concentric circles. Support for this tag design in
Cantag requires the implementation of a radial sampling al-
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(b) CircleSplit:SimpleFit
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(c) Square:Convex Hull with Linear Regression
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Figure 6. The effect of the shape fitting algorithms on the rea l-world location error for the Square and
CircleSplit tags.



gorithm to read the tag and a bundle adjustment algorithm
to estimate position over the set of sighted tags.

8. Conclusion

This paper presented Cantag, an open source toolkit for
programmers building pervasive computing applications.
The toolkit differs from previous image processing libraries
by allowing application writers to customise their tag design
based on application needs.

We have demonstrated how the Cantag system can be
used to select the most appropriate tag design for a given
application. Important results have been derived by using
the OpenGL test harness to compare the performance of dif-
ferent tag designs. For example, the choice of fiducial shape
provides a performance trade-off for a tag designer: square
tags carry a larger symbolic data payload than a circular tag
of the same size, whereas circular tags offer better location
and pose accuracy. The test harness can also be used by tag
designers to determine whether their particular application
idea will function at all, or whether their design is overly
optimistic.

The design space for fiducial marker tags is large and
currently poorly understood. Previous investigations into
the performance of tag tracking systems have compared im-
plementations rather than fundamental properties. The Can-
tag framework enables the direct comparison of different
tag designs, providing benefit to fiducial tag designers and
application developers alike: new designs may be system-
atically profiled against each other and the most suitable
design for a chosen application can be selected and used
without requiring in-depth knowledge of system operation.

We have discussed how the Cantag system can be ex-
tended to support tag recognition based on techniques other
than contour following in a thresholded image. In future
work we hope to implement these additional tag designs and
assist others in doing the same.
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