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Abstract only to label an object but to position it accurately. The
field of Augmented Reality (AR) has been the traditional
This paper presents Cantag, an open source softwaredevelopment domain for such Marker-Based Vision (MBV)
toolkit for building Marker-based Vision (MBV) systems systems[1, 11, 12], where they are favoured for their de-
that can identify and accurately locate printed markers in pendence on commodity hardware (decreasing deployment
three dimensions. The extensibility of the system makes itosts) and for their high degree of precision and accuracy
ideal for dynamic location and pose determination in perva- across six degrees of freedom (ideal for image-object reg-
sive computing systems. Unlike prior MBV systems, Cantagistration). Most AR applications focus orideo overlay
supports multiple fiducial shapes, payload types, datasize where three-dimensional models are rendered into the video
and image processing algorithms in one framework. It al- stream viewed by the user.
lows the application writer to generate a custom tag design  As pervasive computing systems emerge, MBV systems
and associated optimised executable for any given applica-also offer the potential to create large scale, ubiquitous
tion. The system includes a test harness which can be usettacking environments with a multitude of novel applica-
to quantify, compare and contrast the performance of dif- tions. Different applications demand different propestie
ferent designs. This paper explores the design space of tagérom an MBV system. A mobile user, for example, may
within the Cantag system, and describes the design param-wish to trade-off accuracy in favour of extended battewy, lif
eters and performance characteristics which an applicatio whilst another may only be interested in identifying obgect
writer can use to select the best tag system for any given scein the image without the need to locate them.
nario. It presents quantitative analysis of different nmeask This paper introduce€antag an open-source software
and processing algorithms, which are compared fairly for toolkit suitable for designing and deploying an MBV sys-
the first time. tem as part of a pervasive computing application. Cantag
differs from previous MBV systems, which we compare in
Section 7, in a number of important ways. In particular, it

1. Introduction allows an application writer to:

e select the most appropriate tag design from a wide va-

Developers of pervasive computing systems have long
recognised the utility of discovering location informatio
about system components, users and other entities in the
operating environment. Machine-based vision systems are
becoming an increasingly popular way of collecting these
data. Some vision systems locate objects by processing im-
ages of the natural environment. However, many vision sys-
tems are designed to recognisucial marker tags rather
than operating upon unconstrained images. This approach
provides improved performance in terms of runtime costs
and increased reliability in object identification and libca
sation at the cost of requiring that specially designed tags
are attached to every object to be tracked. Fiducial mark-
ers can be thought of as advanced bar-codes (often printed
using commaodity printing hardware) with the potential not

riety of fiducial types, or implement a custom marker;

choose the most appropriate algorithm for each stage
of image processing, given the application require-
ments;

characterise the MBV system through simulation be-
fore deployment;

build a custom MBV system executable, optimised for
their particular application;

efficiently track multiple tag types in the same video
stream by sharing common processing steps; and

deploy their system design to use normal or high
frame-rate Firewire or Video4Linux cameras.



The remainder of this paper describes how pervasivehandheld PDA and thus may be prepared to accept reduced
computing researchers can use the Cantag system to desigaccuracy in order to decrease power consumption or achieve
build and integrate an MBV system with their application. real-time performance.

Section 2 describes in detail the types of accuracy and func- Payload typecan be either symbolic or template-based.
tionality that different pervasive computing applicasae- Template codes provide visual feedback to the user regard-
quire, and motivates why different tag designs are suitableing the functionality provided by a particular tag. This can
for different applications. Section 3 providesan overvidw  be useful if tags are used for applications which use the
the Cantag system and describes how various system comphysical juxtaposition of objects to trigger an action;sthi
ponents can be composed with C++ templates to provide arform of interaction is particularly common in augmented
optimised executable. Section 4 summarises some resultseality applications. Symbolic codes have a number of ad-
generated using an OpenGL-based test harness to evaluateantages over template-based systems since they define a
the performance trade-offs available to application wsite quantifiable address space. In particular, varying the size
when using different algorithms and tag designs. Section 50f the data-cells and the use of error-correcting or error-
analyses the results of using the Cantag system with realdetecting codes provides a tag designer with trade-offs be-
world images. Section 7 contrasts the Cantag system withtween resilience and data rate[13].

related work and Section 8 describes the lessons learned and Data capacityof a tag measures the amount of data that
reviews the salient design features an application designea given design can encode; different applications place dif

should consider when deploying an MBV system. ferent requirements upon this capacity. For example, The
MagicBook[2] application overlays active content onto the
2. Design principles pages of a book and therefore we would hope for a large

number of recognisable tags—or have a very short book!
However, increasing the number of recognisable tags nec-
essarily reduces the code distance between each tag and so
applications requiring a small number of tags might choose
e Source image typewhether the system operates on |ow capacity tags in return for increased robustness.
colour, greyscale or 1-bit (binary) images; 3D accuracydescribes how accurately the system can
transform between the object co-ordinate frame (in 3D with
its z-axis perpendicular to the tag) relative to the 3D cam-
era co-ordinate frame. This information is required for-spa
tial reasoning: calculating the relative relationshipsisen
objects relative to one another. Techniques for recovering
e Marker coding schemeEach marker incorporates a full 3D transformation information from circular and sqaar
unigue element to facilitate identification. This may be tags require expensive computation.
template-based (i.e. a unique shape that is recognised Projective accuracgescribes how accurately the system
through pattern matching) or symbolic (e.g. incorpo- can project 3D object points into the image. This is the
rating a binary code that is read through image sam-typical mode of operation for visual overlay whereby 3D
pling). Symbolic codes allow for quantifiable analysis models are rendered over the scene.
and arbitrary coding schemes. 2D accuracyrefers to how accurately the system can pre-
- . . dict points in the image that lie on the same plane as the
Systems utilising colour or greyscale information should tag itself. This information is used for decoding the tag but

z_etable totﬁrowdethlgher gccura;:ylag_(il .be read ?_} greateFnight also be used for simple labelling of items in the scene.
Istances than Systems using only 1-bit IMages. HOWEVET, - g an applications require different payload types,

the p_ncetrp]) a'.d fOfthI?/\}S [[r;]cre?sedfexecqtlgip ﬁOSt when P10 jata capacities, transformation capabilities and exewguti
cessing the iImage. Ve theretore focus initially on process- ., - e Cantag system has been built to allow the ap-

Inéijl 1-l|3|ttf|mage_s n otr_delr to_:_r;:prove applicability to wear- plication writer to design or select, build, test and deploy
able platforms in particular. There are many pervasive Com-y, .+ o jitable tag design for the job.

puting applications with different needs from an MBV sys-
tem. We have identified a number of high-level properties
that express these requirements and the inherent trage-off 3- Cantag

Execution costs a key issue for many pervasive com-
puting applications. Thus, it is important to investigdte t Cantag is an open-source computer vision framework
trade-off between computational cost and algorithm accu-written in C++. It makes extensive use of tienplatepro-
racy and robustness. For example, projects such as Handgramming metaphor, enabling the compiler to generate an
held Augmented Reality[16] perform video overlay on a optimised executable for any particular set of tag desigh an

There are several fundamental design decisions that a de
signer of an MBV system must make:

e Fundamental tag shapehe shape must provide pro-
jective invariants which can be utilised to recover the
transformation information necessary for interacting
with the tag;



algorithm options. This is important since the use of tem- phone close to the tag will ensure that the image is evenly

plates allows us to deliver a flexible tag framework, whilst illuminated.

still providing real-time processing of image data, even fo TheAdaptive threshold algorithm utilises a moving av-

high frame-rate cameras. Since Cantag is written in C++, it erage across the image to choose the threshold value[17].

can easily be integrated with existing C or C++ code. Systems recognising images with varying light conditions
Our system currently implements two fundamental tag will need to accept the higher computational cost required

types: theCircleTag describes tags based around a circular to maintain a moving average.

bullseye; and th&quareTag describes tags based around

a square border. Th@ircleTag can be further configured 3.2 CircleTag

to control the relative proportions of the tag that are oc-

cupied by the bullseye and data rings, giving rise to four  The perspective transformation of a circle is an ellipse[5]

tag shapes which may contain either template or symbolicwhich contains (almost) enough information to deduce the

payloads. The symbolic payload can be configured to storeprojective mapping (known as back-projection) between

an arbitrary amount of data using theational invariance  the real-world position of the tag and the resulting image.

abstraction[13]. Figure 1 shows four example tags. Therefore the first stage of recognisingacleTag is that
Once the user has selected the basic tag design, the Carsf fitting ellipses to contours in the image. Theast

tag system then allows a number of different algorithm squares algorithm performs a least-squares ellipse fit to

choices for the image processing. The programming ab-the contour points[8]. This algorithm requires numerous

straction used by Cantag models a tag processing pipelinenon-trivial floating point algorithmis However, the quality

by a sequence aflgorithms(C++ function objects) operat-  of the position and pose information produced by the sys-

ing onentities Examples of entities include contours, el- tem is directly dependent upon the quality of the ellipse fit

lipses, quadrilaterals and payload data. The system is exand so systems requiring accurate positioning information

tended by adding additional algorithms which explicitly in  might consider this a necessary expense.

dicate the types of entity used as argument and result types. The Simple fit algorithm provides a low cost alternative

For example, a simple processing pipeline could use severto least-squares fitting of an ellipse. This algorithm calcu

processing stages to build a fully-functional MBV system: lates the central point of the ellipse as centre of gravity of

image capture, thresholding, building a tree of contours, the contour and then finds the major and minor axes as the

correcting camera lens distortion, testing and fitting tag longest and shortest distances from the centre. Low power

shapes to contours in the image, calculating each cameraer high-speed applications may be prepared to accept the

to-tag transform, and finally decoding the tags in the scene.reduced accuracy in return for a simple, fast algorithm.

This process is shown visually in Figure 2—in this exam-  Once the ellipse has been fitted the perspective transfor-

ple the application designer would write approximately one mation may then be be derived. TB® transform algo-

line of C++ code for each stage in this pipeline. rithm implements an adaption of the Forsyth's ellipse back
The Cantag framework allows the construction of more projection algorithm[7] to recover a general 3D transforma

complex processing pipelines. For example, we can buildtion from object co-ordinates to camera co-ordinates. This

pipelines which process multiple tag types within the same algorithm is computationally complex but produces accu-

scene (and share common processing steps), or dynamirate 3D information for the tag’s position and pose.

cally change processing algorithms depending on the cur- Alternatively, theLinear transform algorithm simply

rent needs of the application. The remainder of this Sectionscales the located ellipse linearly within the image. This

briefly describes the various algorithms currently avddab requires little computational overhead but provides astran

within Cantag and summarises their performance. form which is only valid when projected into the image—
and so overlay of 3D models and 3D position information
3.1 Thresholding are unavailable. This transform also makes assumptions

about the perspective transform which are invalid under

The thresholding algorithms are used to convert an inputIarge perspective distortion.

image to a 1-bit image. Th&lobal threshold algorithm
takes a fixed threshold value. Every pixel in the image is
converted to black or white depending on whether its inten- o o
sity is greater or less than the threshold. This algoritheha  ReécognisingSquareTags follows a similar process to

a very low cost per pixel and is suitable for images where _the circular tags. P_erspectlve projection of a square tesul
the lighting intensity is uniform across all areas of ingre N @ general quadrilateral and hence the contour follower

in the image- Tag recognisers ona mOb”e ph_o-ne.might of- 1in particular, it is necessary to solve a 3x3 eigensystemafaon-
ten be able to assume that the required positioning of thesymmetric matrix.

3.3 SguareTag
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(a) Circlelnner (b) CircleSplit (c) CircleOuter (d) Square

Figure 1. Four example tag types in the Cantag system.

Square8 tag;

Source | GreyImage* i = fgs.Next();

MonochromeImage m(i->GetWidth(),i->GetHeight());

Threshold | Apply (*1i,m, ThresholdGlobal<GreyImage> (180)) ;

Tree<ComposedEntity<TL4 (ContourEntity, ShapeEntity<QuadTangle>,

TransformEntity,DecodeEntity<64>) > > tree;

Contour Follower Apply (m, tree, ContourFollowerTree (tag)) ;

Distortion Correctio ApplyTree (tree,DistortionCorrection (camera)) ;

Refine Fit ApplyTree (tree, FitQuadTangleRegression()) ;

Derive Transform ApplyTree (tree, TransformQuadTangleSpaceSearch()) ;

Sample Code ApplyTree (tree,Bind (SampleTagSquare (tag, camera) ,m)) ;

FAVATATATATAV SN

n |
Fit Quadrilateral | ApplyTree (tree, FitQuadTanglePolygon () ) ;
| ApplyTree (tree, Decode<CRCSymbolChunkCoder> () ) ;

Decode Payload

ApplyTree (tree, TransformRotateToPayload(tag)) ;

Figure 2. A sample Cantag pipeline with example code.



must identify the four corners of the quadrilateral. Twa- tag name (as shown in Figure 1), shape fitting algorithm,
ner fitting algorithm slides a window around the contour back-projection algorithm, and payload size. For example,
and returns all points with discrete curvature above a ahose an Circlelnner tag, using thd_east squares shape fitting
threshold. This algorithm is fast, efficient and easy to eapl  algorithm, followed by th&D transform algorithm, with a
ment but is susceptible to noise on the contour. Its resiien payload of 36 bits is namedirclelnnerLS3D-36.

can be increased by simplifying the polygon of points using

a convex hull algorithm and identifying corners based on 4. Evaluating Tag Designs

maximal local curvature: this has been implemented within
the Convex hull simplification algorithm. ThePolygon
simplification algorithm([4] repeatedly hypothesises poly-
gon approximations to the contour and adds additional ver-
texes in order to reduce the contour’s deviation from the
polygon. It has a high cost but is better able to withstand
contour noise.

A further option is to apply théinear regression al-
gorithm to fit each set of points corresponding to a side of
the quadrilateral to best estimate the infinite line passing

through the set. The _four intersections of the |r!f|n|te I|r_les containing a variety of tag orientations to be systemdjical
representthe best estimate of the true corner points. This a simulated

gorithm ignores the samples near the corners and bases the The images produced by the test harness can be consid-

corner determination on the more reliable body of points ON ered ideal: there is no camera distortion, lighting artisfac
the contour. Note that regression needs the contour points

i . .or measurement error: the only source of error is derived
to be segmented into the four edges of the quadrilateral, im-

licitl = timate of th Such estizgat from the pixelation of the image. Hence this harness can
plicitly requiring an esumate oTIn€ corners. such estenat -, g0 1o place a quantitatiupper boundon the capa-

can ze detrlved l;smg any of t_hetr?fct)rt(ra]mentmned ?.Igort'thmszgilities of a specific tag. Thus, in addition to providing
an advantage ot regression IS that Ihe corner estimale Neeg ., for comparing two possible configurations of the

not be highly accurate, merely sufficient to partition the Cantag system, we can also answer questions as to whether
dataset. o ] some performance needs are actually possible with current
The Projective transform algorithm may then be ap-  5gorithms. The remainder of this section summarises the
plied to the recognised quadrilateral to recover the 3D pro-yagy|ts from profiling the performance of the various algo-
jection. This algorithm returns a 3D transformation suit- rithm choices before we relate these findings to the real-
able for 3D model overlay but is susceptible to noise in the \yr1d behaviour of the system.
image, making 3D position information unreliable. The al-  \ye begin by providing some insight into how the per-
gorithm solves a set of linear equations for the four point {5y mance of a system will change as the payload size of
correspondence between the corners of the tag in object COthe chosen tag is altered. In the following graphs all dis-
ordinates and in image co-ordinates. These constraints dGgnces are measured in unitless dimensiontggfwidths

notrequire that the tag remain a square and so noise in therpe reader may prefer to interpret this as: if the tagris
image produces a warping of the vertical and horizontal ob- 5055 then all distances are in metres.

ject axes. However, the warping is exactly cancelled out  Theminimum sample distanée defined, for a given tag
when projecting from the surface of the tag in object co- |ocation and pose, as minimum distance between the pro-
ordma_tes into image co—ordlna_tes. Fu_rthermore, th(_e €101 jected sample point for any cell and its edges. This mini-
resulyng 3D _prOje_ctlon co-ordln_ates is often sub-pixedan ,um sample distance gives a measure of how hard the tag
so this algorithm is a good choice for systems that do notg (4 sample at this position—the smaller the value the less
require 3D position or pose information. margin for error in picking the sample point. For a par-
Better 3D transform results are possible usingoa- ticular orientation of the tag this value varies linearlytiwi
linear transform algorithm since this can be used to in- the size of the tag in the image. The size of the tag is in-
corporate (the inherently non-linear) constraints reato  versly proportional to the distance from the camera projec-
a square into the four-point correspondence problem. Thistion plane (i.e. along the axis) along a particular ray. A
algorithm requires multiple iterations to find a non-linear Jinear interpolation was applied to these values to find the
solution and is therefore computationally expensive te exe distance from the camera where the minimum sample dis-
cute and time consuming to implement. tance is one pixel. Figure 3 shows the distance from the
We systematically name tags according to the algorithmscamera such that the minimum sample distance is one pixel
selected for their decoding based on the concatenation offor a Square-36 andCirclelnner-36 tag. Both halves of

The Cantag system incorporates an image source for pro-
cessing artificial images produced by OpenGL. Tags may
be rendered with arbitrary positions and poses, processed
by the system, and the resulting data compared against the
ground-truth input data. This mechanism provides a vi-
tal means to ensure that the algorithms offered by the sys-
tem are correctly implemented. However, it also provides
a means to understand the relative performance of different
tags and algorithms since it allows huge numbers of images
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Figure 3. Maximum distances from the camera such that the min imum sample distance is one pixel
for Square (left) and Circular (right) tags.

the figure contains nine sub-plots corresponding to one ofone data cell along the edge causing a linear decrease in the
nine equally sized regions in the image. For example, theminimum sample distance for a quadratic increase in pay-
top-left sub-plot (on both sides of the figure) correspondst load size. The curved line on the graph (which has the same
a ray that goes through a point in the top left corner of the shape ag = /z) for the square tag is due to this effect. We
image. The axes of each sub-plot representthedy com- also see that the circular tags show no loss in performance
ponents of the tag’s normal vector. For example, the centrewhen increasing payload size by adding to a small number
of each sub-plot corresponds to a fully facing tag and the of sectors—this is because the distance between the data
bottom-right of each sub-plot corresponds to a tag facing rings is less than the distance between sectors and so is the
down and to the right. The value at each point on a sub-plotlimit on performance. This graph also shows the benefit of
shows the distance from the camera such that the minimumadding additional data rings to the tag once the payload size
sample distance was one pixel. The white regions aroundincreases. For example, a four ring tag with 37 sectors (148
the edges of each sub-plot indicate orientations where it isbits) has a better minimum distance value than a smaller
not possible to make the minimum distance one pixel no capacity tag with 3 rings and 49 sectors (147 bits).
matter how close the tag is brought towards the camera. As  The minimum sample distance describes how amenable
expected, a tag positioned at the top of the image (abovea particular position and pose is to data decoding. However,
the camera) is more easily read when facing downwards inthere is also the issue of how accurately the sample points
the image rather than upwards—this explains the truncationare estimated from the image of the tag. To investigate these
of the circular plot pattern for the sub-plots correspogdin effects we compute theaximum sample errdsy measur-
to the edges of the image. We also note that the square taghg the distance between the estimated sample point and the
achieves longer read distances than the circular tag fdl sma actual sample point for each data cell on the tag. A simple
angles of inclination. However, under more extreme anglescheck of the simulated data shows that if the maximum sam-
of inclination the performance of the two designs converge. ple error is less than the minimum sample distance then we
Figure 4 shows the effect of increasing payload size on experience no data errors when reading the tag. We refer to
the minimum sample distance. The tag size in the im- the difference between the maximum sample error and min-
age such that the miniumum sample distance is one pixelimum sample distance as thample strengthif the sample
was found for increasing payload sizes. We expect that thestrength is positive then we have successfully read the tag
square tag will experience a decrease in read performancéecause the maximum error is less than the minimum error
in proportion to the square of the payload size. This is be- tolerance.
cause going from anxn tag to an(n + 1)x(n + 1) tag adds Figure 5 shows the effect of using the less com3&r-
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2 Ring e w w w pixel size in the image.
i Ring Crdle Figure 6 shows 3D location error for tiBguareNL and
35 | Square s . . . . .
// CircleSplit3D tags for selected tag inclinations. We no-
w0} pd | tice that as predicted by the test harnessShmaple fit al-
e gorithm is more succeptible to image noise that ltkast
s e 1 squares algorithm particularly when the target tag is fully
ol //' | facing the camera. We also see thatltieear regression
7 .1 algorithm performs more reliably than the sim@arva-
st L e { ture algorithm. These results suggest that the algorithms
e making use of the entire contour are more robust than the
or 7 1 simple algorithms but the effect on the location accuracy is
surprisingly small. We note that tHerojective transform
produced errors at least an order of magnitude worse that

theNon-linear square transform for the smaller tags

Tag Width (pixels)

L L
50 100 150 200

Payload Size (bits) It is important to note that the actual errors reported by
Cantag (of the order gi—10cm) are not significantly bigger
Figure 4. Minimum tag size for varying pay- than the possible measurement error in our experiment and
load size. so further work is needed with more precise equipment to

be sure of the absolute performance of the system. We limit
ourselves here to examining trends and relative performanc

ple fit ellipse fitting algorithm for various angles of inclina-  of different tags and algorithms.
tion for the tag and distance from the camera (shown here The test harness results generally suggest that a square-
as the size of the tag in the image). The large variations inbased fiducial marker is superior to a circular design. The
sample strength shown by tsémple fit algorithm confirm square-based markers scale better to large data payloéds an
that it is more succeptible to noise in the shape contour. Wethe algorithms for detecting and reading them are simpler to
also see that the algorithm performs badly for tags which implement than for circular tags. A number of trends pre-
fully face the camera since the contour is circular in shape, dicted in the test harness are borne out in the real-world
making the identification of the longest and shortest axes andata but the effects of image noise amplify any algorithmic
i||-posed pr0b|em_ Théeast squares a|gorithm shows a instabilities. We see that Shape fitting algorithms are in-
much less noisy trace suggesting it is better at withstandin creasingly robust as more contour points contribute to the
contour noise caused by pixel truncation in the image. fitted shape.

Measurement of the sample strength is problematic in
real-worldimages. However, the sample strengthis aftecte 6, Summary
by the accuracy of the transform used to recognise the tag

and so we expect t_hat atag reading at a position Wi_th a large The data produced by the OpenGL test harness and the
sample strength will generate more accurate location4infor real-world results suggest a number of high-level rules for
mation than a position with small sample strength. designers to bear in mind

For short-range applications the expected performance
5. Real World Results of the system is directly determined by the number of pix-
els visible for the tag. This is evidenced by the OpenGL
In order to validate the predicted trends from the test har- test harness which produces the same results for a high res-
ness data we produced a plate containing a number of dif-olution camera picturing a distant tag as for a low resolu-
ferent tags of different sizes. We photographed the plate attion picture of a nearby tag. We expect atmospheric effects
distances betweeh5 and4.5 metres from the camera with  to become significant only over large distances—perhaps
intervals ofl0cm and at inclinations df, 30 and45 degrees  affecting applications using high magnification telephoto
to the camera. We then mapped the distance measurementenses.
on to tag size (in pixels) in the image (the camera’s vertical  The performance of tags with a cell based payload struc-
field of view is approximately0 degrees). ture is governed by the minimum distance between the sam-
Our earlier statement concerning the relation betweenple point and the edge of the cell. The result of this is that
the tag’s pixel size in the image and its distance from the circular tags should balance sector radius against setor a
camera and actual size is validated in the data whereby regle.
sults from different sized versions of the same tag design Circular tags provide more robust location information
produce similar results when they appear with the samethan square tags especially when using the more simple
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Figure 5. The sample strength of the ellipse fitting algorith ms for the Circlelnner tag.

shape fitting techniques. This can be seen in Figure 6 where Matrix[11], CyberCode[12] and Rohs’ mobile phone-
the traces for the circular tags show less jitter and noige th  based tag reader[14] also make use of a square-based tag
those for the square tags. Square tags are, however, capabiesign. However, the use of symbolic codes (as opposed to
of carrying larger payloads than circular tags. a template-based system) allows the number of distinct tags

There are numerous combinations of algorithms and de-to be quantified. ARToolKit and Matrix tags use a solid
signs producing different behaviour. Selection of thesetmu black border around the entire tag and so shape recognition
be done carefully to optimize the trade-off between func- follows from detecting a quadrilateral in the image. In con-
tionality and performance. For example, use of the expen-trast, the CyberCode and Rohs systems use a combination
sive Least squares ellipse fitting algorithm provides little ~ of marker bars and points detected using region-growing
advantage over thgimple fit algorithm if theLinear trans- and computing a second-order moment. These algorithms
form algorithm is used later in the pipeline. are not currently implemented in Cantag but can be straight-
forwardly integrated into the framework and make use of
common steps such as recovering the tag position and de-
coding the binary payload. The ARTag system[6] also
makes use of a square tag design but detection is done based

Numerous MBV systems exist, particularly in the field ©On the results of multi-resolution edge detection rathanth
of Augmented Reality. These systems display huge heteroimage thresholding. Again, extension of Cantag to support
geneity in tag design and implementation. Cantag currently this system design requires only the implementation of edge
implements the processing pipeline of a number of thesedetection and segment linking algorithms because the re-
systems and we note the additional implementation requiredmainder of the image processing pipeline reuses existing
for support of the remainder. algorithms.

Arguably the most popular system for video overlay Examples of circular fiducial tags also exist in the liter-
is ARToolKit[1]. ARToolKit utilises square tags which ature. The TRIP location system[3] uses circular tags with
are detected and read from black and white images. Thea symbolic code arranged around the outside of a circular
four corner points in the image serve to compute the pro- bullseye. Naimark and Foxlin’s tracker[9] also utilises a
jective transform and a template-based scheme is used teircular tag with additional asymmetric eyelets to oridv t
recognise specific tags from a database of issued templatetag. The Free-D camera tracking system[15] uses circular
within the perspective-corrected image. Owetral. pre- tags to determine the position of a mobile camera within a
sented a scheme for selecting template images which maxTV studio. Bundle adjustment is used to derive an estimate
imises the distance between tags (before projective distor of the camera position from the angulation measurements
tion effects)[10]. The addition of a template matching al- to a set of sighted tags whose identifiers are encoded using
gorithm for decoding the tag data would be sufficient for up to nine concentric circles. Support for this tag design in
Cantag to implement the ARToolKit pipeline. Cantag requires the implementation of a radial sampling al-

7. Related Work
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