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Abstract. A Sentient Computing environment is one in which the system is able
to perceive the state of the physical world and use this information to customise
its behaviour. Mobile agents are a promising new programming methodology for
building distributed applications with many advantages over traditional client-
server designs. We believe that properly controlled mobile agents provide a good
foundation on which to build Sentient applications.
The aims of this work are threefold: (i) to provide a simple location-based mecha-
nism for the creation of security policies to control mobile agents; (ii) to simplify
the task of producing applications for a pervasive computing environment through
the constrained use of mobile agents; and (iii) to demonstrate the applicability of
recent theoretical work using ambients to model mobility.

1 Introduction

The goal of pervasive computing is to create systems that disappear [18]—systems that
fade into the background leaving users free to concentrate on their own tasks rather than
explicitly “using the computer”. Sentient Computing works towards this goal by adding
perception to software; applications become more responsive and useful by observing
and reacting to their physical environment [7]. The ability to sense the location of people
and objects is an important building-block of such sentient systems. One of the most
natural ways a program can react to user movement is to move itself around the network
(e.g. consider a desktop “teleportation” program which moves a user’s screen, mouse
and keyboard to the computer nearest their current physical location). Mobile code opens
up a number of tantalising possibilities, including: (i) exploiting resources near to the
user’s current location (e.g. multimedia hardware, keyboards and mice); (ii) supporting
the illusion that user applications and their state is omnipresent—allowing a user to
use any application from any location; and (iii) maximising efficiency by spreading
resource-intensive tasks to where resources are under-used.

Unfortunately the use of mobile code has severe security implications [14].Aiming to
deploy mobile agent-based applications on the global Internet, the research community
has concentrated on solving two difficult problems: (i) preventing malicious mobile code
from gaining unauthorised access to resources controlled by the hosting machine; and (ii)
stopping a malicious virtual machine learning secret information such as cryptographic
keys by disassembling mobile agents. There is a third critical problem which is less
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well-studied: user control. How do we allow users to control the activities of mobile
agents in an intuitive way, providing just enough security whilst still reaping the benefits
of mobile code? How can users trust agents, written by other people, to respect their
wishes when they enter their space and use their resources?

Clearly users need an understandable mechanism to constrain the behaviour of
agents. They need a way to control what happens with things that matter to them in
their world i.e. their data and their computers. Without this ability users will never fully
trust mobile code technology and will never allow it to be used in practice.

To address this need, we propose a framework for creating spatial (i.e. location-
based) security policies for mobile agents. This framework provides users with an easy
to comprehend way to restrict and monitor the activities of agents within a Sentient
Computing environment. By using location-based policies we hope to exploit structure
which users are already familiar with. People are used to security policies governing
physical spaces (e.g. “no unauthorised personnel are allowed in this area”); we extend
this idea seamlessly into the ethereal world of mobile agents.

We believe that our framework will (i) promote the development of mobile-code
based Sentient Computing applications; (ii) allow users fine-grained control over where
agents are allowed to run, bypassing problems associated with situations where the
agent does not trust the machine or vice-versa; and (iii) provide a demonstration of the
applicability of recent theoretical work in the research community modelling mobility.

The remainder of this paper is structured as follows: Sect. 2 describes the design
of our framework in detail. Examples of possible policies are found in Sect. 3. Related
work may be found in Sect. 4, and Sect. 5 concludes.

2 Spatial Policy Framework

In this section we describe (i) how we model the world incorporating both physical
objects and mobile agents; (ii) our language for expressing mobility security policies;
and (iii) our proposal for an arbitration scheme to reconcile conflicting policies. Imple-
mentation details are omitted for brevity; they may be found elsewhere [15].

2.1 Overview

Users write security policies to influence both their own agents and any objects in which
they have an interest (e.g. the computers in their office). Examples of policies might be
“this agent should never leave my office” or “never let any agent enter this zone”. The
system continuously monitors the locations of both physical objects and mobile agents,
keeping track of which policies are being violated. Since the system has no physical
presence, it cannot act to block the movements of physical objects. Therefore the system
cannot guarantee that policies will never be violated; instead policies are associated with
an action, a command to be executed if and when a policy is violated (e.g. a command
to kill the offending agent).

In contrast to physical objects, the system has full control over the life-cycle of
mobile agents. Agents requesting permission to migrate between hosts will have their
requests blocked if the movement would violate a policy. Agents which are physically
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moved (typically by being carried on a laptop by a user) in violation of a policy may
find themselves being suspended or killed.

Policies written by different people may conflict with each other. The system imple-
ments an arbitration scheme which exploits the natural structure of the spatial model to
resolve these conflicts when they arise.

2.2 Modelling the World

We model the world as a tree of nested entities, analogous to ambients in the Ambient
Calculus [2]. We begin our description by defining the following set of terms:

entity name: label used to name entities, equivalent to an entity minus any contents.
Examples include the names of physical places, computers and mobile agents. By
convention we use η to range over all entity names and a to range over mobile agent
entity names.

entity: description of a particular location (given by an entity name) along with its
contents. Note that, in a similar fashion to theAmbient Calculus, we are not restricted
to describing only physical places but can represent any bounded region where
activity happens. For example an office containing people may be described as an
entity, as can a virtual machine containing mobile code. By convention we say that
e ranges over entities.

path: sequence of entity names describing a route through the entity hierarchy naming
a specific entity. Paths are written in the form η1 ↓ . . . ↓ ηn and are described
further in Sect. 2.4.

path expressions: regular expression-like facility to efficiently name a set of entities.
Path expressions are described further in Sect. 2.4.

We divide our entity names into sorts each representing a different kind of object.
The exact sorts used in any deployed system will depend on the kinds of things being
modelled (e.g. an aviation-based system may introduce the sort “aircraft”). Here we
restrict ourselves to use the following sorts:

room: a physical volume of space corresponding to buildings, offices etc.
person: an autonomous physical entity able to move between rooms
workstation: an immovable physical object which can host computer processes
laptop: a mobile physical object which can host computer processes
context: a virtual machine capable of running mobile code
agent: a piece of mobile code

We write e � s to mean entity e is of sort s. The formula SortContainable(s1, s2)
holds when entities of sort s2 may be nested inside entities of sort s1. This formula
is defined graphically in Fig. 1. Intuitively, physical objects may nest in the obvious
way (e.g. a workstation may nest inside a room). For convenience we define a relation
Containable(e1, e2) which indicates that entity e2 is permitted to nest inside e1. These
relations are related as follows:

Containable(e1, e2)⇔ e1 � s1 ∧ e2 � s2 ∧ SortContainable(s1, s2)
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fixed sorts

mobile sortsperson laptop context agent

room workstation

Fig. 1. The relation SortContainable

We define a partial function, privs : entity → permission set , which is only
defined on context entities and gives the set of permissions which are granted automati-
cally to any agent nested inside. Examples of permissions include “can play sound” and
“can record sound”. This association between entities and sets of permissions allows us
to use our spatial security policies to control more than simply the location of mobile
agents; by creating appropriate contexts we can control access to arbitrary resources.
By convention, every computer (workstation or laptop) has at least one default context
with an empty permission set.

A state of our world model may be written down with the following syntax (where
η ranges over a set of entity names):

entity ← entity | entity (siblings)
entity ← η[entity ] (nesting in a place η)
entity ← 0 (void)
entity ← !η (entity factory)

By convention we consider an entity factory !η to be a special kind of entity which
can create other entities, i.e. the factory !η can spawn the entity η[0], an empty entity
ready for population. Note that every mobile agent which wishes to be created must be
associated with at least one of these factory entities.

The entity e = η[e1 | . . . | en] is well-sorted if Containable(e, e1) ∧ . . . ∧
Containable(e, en). The case n = 0 corresponds to the entity being empty i.e. η[0].
Observe that this syntax is similar to the subset of the ambient calculus which has no
active processes and which describes only the structure of space, like that used in the
semistructured data format described in [1].

As is conventional in mobility theory we next define a congruence relation,≡, under
which entities are equal up to simple rearrangements of parts. In addition to reflexivity,
symmetry, transitivity and context (X ≡ Y =⇒ η[X] ≡ η[Y ]) this relation (often
referred to as a structural congruence relation) is also commutative (X | Y ≡ Y | X),
associative (X | (Y | Z) ≡ (X | Y ) | Z) and “ignores zeros” (X | 0 ≡ X).

2.3 Example

Consider a simple environment containing people, computers and several mobile agents.
A graphical depiction of the model corresponding to this world at a particular time is
displayed as follows:
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vm

World
Charlie’s office

Bob’s office

Alice

Charlie

PC

laptop

music playeraudio

agent

vm

vm

default

default

agent

vm

Room

Person

Workstation

Laptop

Context

Agent

Key:

Permissions:

privs =
{

audio −→ {can play sound}
default −→ {}

There are various things to note about this configuration:

1. Alice is carrying a laptop inside Charlie’s office. This laptop is currently running
some mobile agent code. Note that such agents have potentially entered the room
without having to migrate to a different host.

2. The PC in Charlie’s office has been configured with an additional context, called
audio. This context has been associated with a permission, can play sound , al-
lowing agents to play sounds on a set of attached speakers. Therefore the agent,
music player is able to play music in the office.

Although we have presented entity names as flat identifiers, they are likely to be more
complicated in practice. For example they could contain secret data or be protected by a
digital signature – possible benefits of such schemes include: (i) policies could be applied
to whole classes of agents (e.g. all those signed by a particular key); or (ii) only people
possessing the secret data would be able to successfully name an agent in a policy. For
simplicity in the rest of this paper we will continue to use simple english names (like
music player) for mobile agents.

2.4 Paths and Path Expressions

We uniquely name a single specific entity by providing a path from the root entity using
the nesting relation, ↓. We say that a ↓ b if b is a child of a, i.e. b is contained within one
level of nesting of a. A path to an entity will therefore have the form η1 ↓ η2 ↓ . . . ↓ ηn.
For example, in the diagram in Sect. 2.3 an expression for the location of the entity music
player would be World ↓ Charlie’s office ↓ PC ↓ audio ↓ music player.

Path expressions, similar to regular expressions, are used to quantify over a set of
paths. We first define the ↓∗ operator as the reflexive transitive closure of ↓ and then
write the syntax of location expressions as follows:

element ← η (entity name)
| {η, η} (alternation)
| ∗ (any)

expression ← element (root)
| expression/element (direct nesting)
| expression/.../element (transitive nesting)
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We define the matching set of a path expression exp as the set of paths paths where
∀p ∈ paths (with p = p1 ↓ . . . ↓ pn)

– every step e1/e2 in exp corresponds with a step p1 ↓ p2 in p where the element e1
matches p1 and e2 matches p2;

– every step e1/.../e2 in exp corresponds to a sequence of steps p1 ↓ . . . ↓ pn for
some n where the element e1 matches p1 and e2 matches pn;

– the element {η1, η2} matches the entity with name η if η1 = η or η2 = η;
– the element * matches any entity name; and
– the trivial path element η matches an entity with name η.

Path expressions provide a similar function to that of XPath [4], used for naming elements
of XML documents.

2.5 Updating the Model

The model is updated dynamically to reflect the real-time configuration of the environ-
ment. Location sensors register changes in the physical configuration of the world (e.g.
the movements of objects) which are then reflected by changes in the model. In addition,
mobile agents may be programmatically created, frozen, killed or migrated, constrained
only by the installed security policies. We define legal updates to the world by a labelled
transition relation,

γ→. We use labels to represent the side-effects of transitions, in par-
ticular the emission (emit(γ)) and reception (receive(γ)) of an agent during migration.
The absence of a label on a transition indicates the lack of side-effects. A valid transition
must have no labels at the top level – labels must always be matched and cancelled by the
rule (migrate) described below. For brevity we write a↔ b if the transition is reversible
i.e. if both a → b and b → a are legal transitions. The runtime system (described in
a companion paper [15]) ensures that every event that occurs is represented by a legal
transition.

For entities X, Y, Z and entity names a, b, c where a � person , b � room and
c � laptop we define the following rules:

a[X] | b[Y ] ↔ b[a[X] | Y ] (walk in/out)
a[X] | c[Y ] ↔ a[c[Y ] | X] (pick up/put down)

In plain terms these rules describe how a person may freely walk into and out of rooms
and pick up or drop any portable physical objects (represented by entities of sort laptop).

For simplicity everything that can happen to a mobile agent (i.e. being created, frozen,
defrosted, killed or migrated) is considered as a sequence of primitive operations of the
following two types: (i) leaving a particular context; (ii) entering a particular context.
For example an agent creation is considered a single event – the new agent entering its
initial context. Killing an agent is a single leaving event. An agent migration from a to b
is considered a sequence of two events: (i) leaving the source context a; and (ii) entering
the destination context b. Freezing an agent is considered as a migration into a special
context called frozen and defrosting is a migration out again.
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To represent the installed security policies, we assume a pair of infix predicates,
can enter and can leave, defined later in Sect. 2.8, which for a given agent d and context
e behave as follows:

d can leave e holds if the policies allow d to leave the context e
d can enter e holds if the policies allow d to enter the context e

For entities d � agent , and e � context we write the rule:

e[!d | X] → e[d[0] |!d | X] iff d can enter e (agent created)

This rule asserts that agents may be created in those places containing an appropriate
agent factory (represented by !d) provided the new agent is allowed to enter the surro-
unding context. Similarly, agent destruction is only permitted if the agent is allowed to
leave the containing context, as described by this rule:

e[d | X] → e[X] iff d can leave e (agent killed)

Agents are frozen by moving them into specially created frozen contexts, created dy-
namically. These contexts are associated with no permissions i.e. privs(frozen) is {}.
Consider the example in Sect. 2.3 – if the music player agent were frozen then it
would lose the ability to play sound. The acts of freezing and defrosting are described
by the following rules:

e[d | X] → e[frozen[d] | X] iff d can leave e (agent frozen)
e[frozen[d] | X] → e[d | X] iff d can enter e (agent defrosted)

Note that, to be frozen, an agent must be allowed by the security policies to leave its
current context. There is no guarantee the agent will ever be unfrozen again; unfreezing
may only occur if the agent has permission to reenter the original context.

Agent migration between contexts is handled by the following rules:

e[d | X]
emit(d)−→ e[X] iff d can leave e (agent leaves)

e[X]
receive(d)−→ e[d | X] iff d can enter e (agent enters)

X
emit(γ)−→ Y Y

receive(γ)−→ Z

X → Z
(migrate)

Note that the act of migration is a compound operation where the side-effect emit(γ)
must be matched by a corresponding side-effect receive(γ). Therefore migration may
only happen if the policies allow both the leaving step and the arriving step; it is impos-
sible for the agent to get stuck somewhere in between. It is important to emphasise that
only the results of toplevel transitions are visible to applications – applications cannot
see any intermediate states of the model. We get away with this because our work so
far has focused on a trusted “intranet”-style environment where complications due to
unreliable network communication and partial failure are minimised.
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Agent migration could be represented differently if we allowed agents to simply climb
the entity hierarchy and then walk down again – the approach taken in the Ambient
Calculus. This would allow us to simplify our rules by removing the labels on our
transition relation. However, allowing an agent to move anywhere in the hierarchy could
lead to violations of the sorting rules (described in Sect. 2.2). Additionally there is a
subtle semantic difference with respect to the security policies: by using the “teleporting”
approach described here, only the configurations at the start (the leaving step) and at the
end (the arriving step) are relevant. If the agent were to have to walk from one place to
another then the migration could potentially be blocked by a policy attached to an entity
somewhere in the middle.

To complete our description of how the model can be updated we have the following
rules where X ′ and Y ′ are entities:

!η → !η|η[0] iff η[0] �� agent (non-agent entity created)

X
γ→ Y

η[X]
γ→ η[Y ]

(nested update)
X

γ→ Y

X | Z γ→ Y | Z
(parallel update)

X ′ ≡ X, X
γ→ Y, Y ≡ Y ′

X ′ γ→ Y ′
(update ≡)

Informally the first rule states that non-agent entities may be created in entity factories
(note that agent entities may only be created if allowed by the security policies, using
the rule (agent created) described earlier). The other three rules state that transitions may
occur anywhere in the entity nesting hierarchy, in parallel with arbitrary other entities up
to structural congruence. Note that the labels on the transitions are preserved but must
eventually be cancelled further up the tree (by the rule (migrate)).

2.6 Expressing Policies

A security policy is defined as a 4-tuple 〈location, formula, times, onfail〉 where
location is a path expression (see Sect. 2.4) designating a set of specific entities where
the assertion given by formula should hold. If, with respect to the time period described
by times , the assertion becomes violated (e.g. by the physical movement of an object)
then the system will attempt to execute the command described in the field onfail .

The policy field times can contain one of two possible types of values: Always(t)
and Sometime(from, to, t). In both cases the parameter t specifies how much “reaction”
time the system has before the policy onfail action is executed. The value Always(t)
indicates that the assertion formula should hold for all time during which the system
is running. The value Sometime(from, to, t) states that formula should hold1 at some
point in the time interval between the times from and to.

The policy field onfail specifies an action to take should the policy be violated. The
action can be of the following types:

1 This is similar to the concept of obligation in traditional Role-Based Access Control (RBAC)
systems i.e. it states that someone should perform some action during some time interval.
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– Log(message) causes a message to be written to a log;
– Kill(pathexpr) asks the system to terminate agents identified by the path expression

pathexpr ;
– Freeze(pathexpr) requests agents named by pathexpr be frozen; and
– Create(path) requests the agent factory named by path create an agent.

For both the Kill and Freeze values we adopt the convention that if the path expression
has a missing initial element (i.e. it starts with / or /../) we automatically prepend the
full path to the specific entity the formula is currently being applied to. For example if the
policy location field is a/* and the policy is violated at a ↓ b then the onfail expression
Kill /c is expanded to Kill a/b/c i.e. a request to terminate only the entity named by
a ↓ b ↓ c and not any other element (e.g. a ↓ d ↓ c). This ability to refer to previously
matched data in a pattern is also found in other systems using regular expressions, e.g.
perl [17].

The policy field formula contains an expression written in a simple spatial modal
logic similar to the Ambient Logic [3]. The core syntax is as follows, where η ranges
over entity names:

formula ← T (true)
| ¬formula (negation)
| formula ∨ formula (disjunction)
| 0 (void)
| η[formula] (named entity)
| !η (named agent factory)
| formula | formula (composition)
| �e (somewhere modality)

F (false), a ∧ b and �a (everywhere modality) may be written using the core syntax as
¬T, ¬(¬a ∨ ¬v) and (¬�¬a) respectively. These constructs may be familiar to those
versed in modal logics, but we summarise their meaning in the following section.

2.7 Satisfaction

We say that an entity e satisfies the logical formula f (i.e. the formula f holds at e) by
writing e |= f . Intuitively, we may think of a formula f as matching an entity e if e |= f .
The relation, |= is defined informally as follows:

– e |= T for any entity e
– e |= ¬f if e |= f does not hold
– e |= f ∨ g if either e |= f or e |= g
– e |= 0 if e is “nothing”
– e |=!η if e ≡!η

– e |= η[f ] if e ≡ n[M ] and η = n and
M |= f

– e |= f | g if e ≡ N | M , f |= N and
g |= M

– e |= �f if ∃e′.e ↓∗ e′ and e′ |= f
For example, the formula 0 only matches “nothing” (or “void”) i.e. the absence of
anything. The formula f | g matches e if e can be written as the composition of two
expressions N and M (remember the equivalence relation ≡) such that f matches N
and g matches M . The formula �f matches e if there is an entity e′ somewhere in the
tree rooted at e where e′ matches f .
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2.8 Reasoning about Policies

If we allow individual users to write their own security policies then we must also provide
a mechanism to resolve policy conflicts when they arise. Conflicts between rules in our
system are similar to those found in Active Databases [5]. Many mechanisms have been
proposed, ranging from a simple numeric priority schemes to more complex algorithms
comparing rules based on their generality [8] (e.g. the more general rule holds except
when the less general does not or v.v.). There is no single best strategy that works
perfectly in all circumstances. Our main goal is to make the system be intuitive enough
for ordinary users to understand. Security policies in our system are based on a spatial
modal logic therefore we also use a spatial mechanism for arbitrating between conflicting
policies.

Recall that we model the state of the world as a nested tree of entities (see Sect. 2.2).
We observe that within a real life enterprise people too are often arranged into a hierarchy,
with the boss at the top, managers in the middle and normal employees at the leaf
nodes. In such an organisation, a manager would be able to set a policy which would
override those of subordinates but which could itself be overridden by the boss. These
two hierarchies, one describing the world and one describing the people, can be linked
together by associating entities with a set of people (“owners” or “administrators”) via
a function

owners : entity → person set

such that for an entity e we have owners(e) = {person1, . . . , personk} where
person1, . . . , personk are the direct “owners” of e. In a typical configuration, the boss
would “own” the root entity while normal employees would “own” their individual offi-
ces. Our scheme for arbitrating between conflicting policies may be informally described
as:

For a proposed change to entity e, policies instituted by a user u′′ ∈
owners(e′′) override those policies instituted by a user u′ ∈ owners(e′) where
e′′ ↓∗ e′ and e′ ↓∗ e as long as e′′ �= e′ and u′′ �= u′.

Recall from Sect. 2.5 that the installed security policies may be represented by a
pair of predicates, can leave and can enter which, given an agent and a context hold
precisely when an agent is allowed to leave or enter the context respectively. Both
of these predicates are computed in the following way: For a proposed change in the
configuration at context c (e.g. an entity wishes to leave c) we first compute the set of
users who “own” any of the entities on the path p1 ↓ . . . ↓ pn from the “root” entity p1
which designates c

users =
n⋃

k=1

owners(p1 ↓ . . . ↓ pk)

Each user u ∈ users is allocated a single vote on the proposed change. Note that this
effectively means that although users may write policies about entities they do not “own”
these policies will be easily overridden by other users who do “own” these entities. A



112 D. Scott, A. Beresford, and A. Mycroft

user u votes for the proposed change if the number of their policies which are in violation
decreases, votes against if the number in violation increases and abstains otherwise. We
define a function vote(user) as follows:

vote(user) =



−1 if user votes against the proposal
0 if user abstains
+1 if user votes for the proposal

We then compute the value of

overall vote =
n∑

i=1

∑
o∈owners(p1↓...↓pi)

prio(i)vote(o)

where p1 ↓ . . . ↓ pi refers to the ith entity on the path p = p1 ↓ . . . ↓ pn and the function
prio(i) gives the priority of owners of this entity. One possible priority function is given
by prio(i) = x−i where x is a tunable vote weighting factor. The parameter x determines
how many people who “own” an entity pn are needed in order to equal the vote of a
single person who “owns” a “more important” entity pn−1. If x > max i (|owners(pi)|)
then it is impossible for the owner of a more important entity to be overridden by a group
of people who own a less important entity. The system will allow the proposed change
if overall vote ≥ 0 and veto it otherwise.

3 Policy Examples

In this section we demonstrate the kinds of policies which are expressible in our system
by means of a series of examples set in a typical shared workplace environment. A snaps-
hot of the world configuration is presented in Sect. 2.3. The top-level entity is named
World and contains child entities Bob’s office and Charlie’s office represen-
ting the offices of users named Bob and Charlie respectively. We assume that ordinary
employees by default “own” the entities corresponding to their offices and for the sake
of an interesting example we further assume that Bob is the boss and also “owns” the
top-level entity, World.

A user, called Alice, writes and deploys a “follow-me” music playing mobile agent
which follows her around, playing music where she goes. She is worried about the agent
running amok and so writes the following policy to enable the system to monitor the
agent:

〈 location = World,
formula = �(Alice[T] | �music player[T] | T),
times = Always(10 seconds),
onfail = Log 〉

(1)

“for all time, wherever in the World I am, an agent called music player should
be in the same space as me. If this is not true for more than 10 seconds, log the
error”
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Remember that e |= f | g holds whenever f and g are children of e and that T matches
anything, including 0, the absence of anything. In the formula above the third T means
that the formula will hold irrespective of whatever else is in the same space as Alice.

The consequences of this policy are summarised as follows:

1. When the music player attempts to migrate, the system prevents the agent from
leaving the same room as the user. Note it does not directly force the agent to move
properly, it just stops it from moving inappropriately.

2. Upon observing Alice move to a new room the system assumes the agent is broken
if it has not followed her within 10 seconds. The system will log the error for Alice
to use in debugging her errant agent.

3. If Alice moves to a room which already has a music player agent the system will
not complain even if Alice’s agent fails to follow her.

Consider a second user, Bob, who is Alice and Charlie’s boss. Bob prefers peace
and quiet where he works. To prevent wandering music playing agents disturbing him
he writes a rule:

〈 location = World/*,
formula = �¬Bob[T] ∨ (�Bob[T] ∧�¬audio[¬0]) ,
times = Always(3 seconds),
onfail = Freeze /.../audio/* 〉

(2)

“if ever I’m in an office with a music playing agent, freeze the agent if it has
not left within 3 seconds”

The policy location field World/* causes the rule to be applied to all children of
the entity named World, i.e. in the diagram in Sect. 2.3 this corresponds to all the
offices, World ↓ Bob’s office and World ↓ Charlie’s office. The same formula
is applied individually to each of these entities. The formula �¬Bob[T] holds if the
entity Bob is nowhere inside the office; the formula �Bob[T] holds if the entity Bob is
somewhere inside the office and the formula �¬audio[¬0] holds if there is not a non-
empty audio context anywhere within the office. Taken together, the whole formula
may be read as

Either Bob is not inside the office concerned (in which case there is no violation)
or he is inside the office but there is no sound playing.

If the policy is violated in the office named x then the onfail action is expanded to
Freeze World/x/.../audio/* causing audio playing agents inside office x to be
frozen.

The consequences of this policy are summarised as follows:

1. If a music player agent attempts to migrate inside the same office as Bob the
request will be denied, assuming that his policy is not overridden by anyone more
senior in the company.

2. If a music player agent running on a laptop or PDA is physically moved inside
his office by someone else, that agent will be frozen.
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Now consider what will happen when Alice enters Bob’s office. Clearly the two poli-
cies 1 and 2 now conflict.Alice’s mobile agent will attempt to migrate inside Bob’s office
so the system will apply the conflict resolution rules described in Sect. 2.8. Assuming
the system knows that Bob “owns” the entity named World (since he is the boss) his
policy will override those belonging to Alice and the migration request will be blocked.

Imagine a third user, Charlie, with more malicious intent. This user attempts to lure
hapless agents into his domain and then trap them there forever. He decides to go after
Alice’s music playing agent and writes the following:

〈 location = World/Charlie’s office,
formula = �(music player[T]),
times = Always(0 seconds),
onfail = Log 〉

(3)

“for all time the music player agent should remain inside my office.”

Consider what happens when Alice is enticed into Charlie’s office for a coffee and
biscuit. Initially Alice’s music player’s request to migrate into Charlie’s office is
accepted since it does not violate any policy (in fact it causes rule 3 to no longer be in
violation – an improvement!) When Alice leaves the office the music player attempts to
follow her. Charlie’s and Alice’s rules are now in direct conflict. Unfortunately for Alice
since Charlie “owns” his office his policies take priority and therefore the agent’s request
to leave is denied. What can Alice do? The only solution for Alice in this situation is
to appeal to a higher authority – in this case Bob – someone whose policies are ranked
higher than Charlie’s. Bob may write a policy to evice Alice’s agent, overriding Charlie’s
wishes.

4 Related Work

There have been many proposed mobile agent systems, e.g. TACOMA [12] (Tromsø
And COrnell Moving Agents), Agent-TCL [6] and Telescript [16]. Similarities with our
work include: mobile agents on mobile devices (PDAs [9] and mobile phones [10]) in
TACOMA and the concept of regions (similar to our entities) in Telescript. Unlike our
work, none of these previous systems attempted to exploit spatial modal logic to bridge
the gulf between the physical world of people and the virtual worlds of mobile agents.

Jiang and Landay [11] consider risks to privacy in context-aware systems. They
base their work on the abstraction of information spaces, similar to our entities. They
envisage a system where documents have associated privacy tags which are used to
prevent the unwanted leakage of data. IBM Aglets [13] provide a Java-based API for
building mobile agents. Their security mechanism is based on the Java-2 security model:
code is selectively trusted or not depending on its origin and/or the presence or absence of
signatures. The LocALE (Location-Aware Lifecycle Environment) framework provides
a CORBA-based mechanism to control the life-cycle (i.e. creation and destruction) and
location of software objects residing on a network. LocALE defines the notion of a
Location Domain – a group of machines physically located in the same place. The
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difference between all three of these systems and our work is that none of them allow
the specification of spatial mobility security policies.

Our work is inspired by the theoretical work on the Ambient Calculus [2] and the
Ambient Logic [3]. Although our model is a great deal simpler than that proposed in the
Ambient Calculus, it still allows us to combine together the physical world of people
and the virtual world of mobile agents into a single, unified representation. The subset
of the Ambient Logic used in our policy definitions remains computationally decidable
and simple for humans to understand while still allowing the a great deal of flexibility
and expressiveness.

5 Conclusion and Future Work

We have presented a technique for expressing spatial (i.e. location-based) security po-
licies for mobile agents. These policies can be used to make both positive and negative
assertions about the dynamic location of agents. Assertions may refer to the location
of both physical and virtual objects in the world, a feature useful for location-aware
Sentient applications. This technique provides a useful way to constrain the mobility of
agents, to use mobile agent technology safely and to simplify the development process
of future Sentient applications.

Our work was inspired by recent theoretical work on mobile computation, specifically
theAmbient Calculus [2] and theAmbient Logic [3]. In future we would like to investigate
how we could enhance our model of the world by adding in Ambient Calculus-style
process expressions representing agents. Entities like people could be represented by
mobile agents which have the capability to move anywhere at any time. The process
expression associated with a mobile agent could be considered a characterisation of its
behaviour – a contract with the system – which could be checked for consistency with
global policy before the agent is allowed to run.

It is currently possible to do a small amount of up-front static checking of security
policies: policies about locations which are known to be fixed can be checked at policy-
install time. However, since we only have limited control over the physical environment
we cannot do much about a policy which says, “the company laptop never leaves the
building”. Clearly this policy could be violated by an individual picking up the laptop
and walking home with it.2 Additionally, some agents may wish to perform limited
checking of policies at runtime. For example Alice’s music player agent from Sect. 3
may pose the question “if I enter Charlie’s office, will I definitely be allowed to leave?”
in an attempt to avoid being trapped.

Perhaps the most interesting avenue for future work is to investigate how to scale
the system up beyond one organisation. Our model of the world assumes that everything
can be arranged in a single hierarchy, with a world controller in absolute control of
everything. This approach might work adequately for a small organisation but to scale
any further we need to cope with a multitude of problems: unreliable wide-area network
communication, mutual distrust between organisations etc. One possibility is to employ

2 We could envisage a system in which the doors are under our control and can be locked to
prevent the laptop leaving. However consider that Health and Safety legislation would require
the doors to automatically unlock if there was a fire!
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a two-level approach where within an “intranet” agents are managed using this system
while the “internet” case is handled differently.

A further enhancement to this work is to provide support for multiple simultaneous
parallel hierarchies, allowing the same object to exist in several places at once. This
facility could be used to represent different “views” of the same environment (for an
analogy consider that a user may be present and active in more than one Internet “chat-
room” simultaneously). When an object moves in one world they may also have to move
in another. Reconciling these parallel views is an interesting topic of future work.

In summary, based on the research described in this paper we claim that our work
provides a strong foundation for the building of Sentient, location-aware applications
with a basis in theory. We believe that Sentient environments are an interesting niche
for applications developed using mobile agent technology and our models help design
these applications in a less ad-hoc manner.
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