Hard Drive Power Consumption Uncovered

Anthony Hylick, Andrew Rice, Brian Jones, Ripduman Sohan

Motivation

Attempts to reduce power consumption have mainly focused on maximizing standby periods. This approach is based on the assumption that the mechanics of a drive dominate the electronics in terms of power consumed. Our fine-grained measurements indicate a more complex situation. We present results which show the importance of a detailed understanding of power consumption and identify the need for a more expressive API between the OS and hardware devices to maximize power efficiency.

Experimental Setup & Results

We have developed a measurement platform (Figure 1) to provide direct, online measurements of individual PC components. The platform provides twenty-four, 12-bit inputs, each sampled at 98 Hz. We have begun our investigation with hard drives and examined three drive states—read, write, and standby.

Table 1. Drive details and energy consumption

<table>
<thead>
<tr>
<th>Make & Model</th>
<th>Capacity (GB)</th>
<th>Read 1 GB</th>
<th>Write 1 GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Seagate ST34310A</td>
<td>4.311</td>
<td>578 J</td>
<td>255 J</td>
</tr>
<tr>
<td>2 Maxtor 8648006</td>
<td>6.4</td>
<td>610 J</td>
<td>305 J</td>
</tr>
<tr>
<td>3 Fujitsu MPE3084AE</td>
<td>8.45</td>
<td>630 J</td>
<td>320 J</td>
</tr>
<tr>
<td>4 Quantum MQL1000LD-A</td>
<td>10.2</td>
<td>529 J</td>
<td>211 J</td>
</tr>
<tr>
<td>5 IBM 07N6655</td>
<td>61.5</td>
<td>817 J</td>
<td>267 J</td>
</tr>
<tr>
<td>6 Seagate ST380011A</td>
<td>80</td>
<td>933 J</td>
<td>473 J</td>
</tr>
<tr>
<td>7 Seagate ST3200824A</td>
<td>250</td>
<td>778 J</td>
<td>276 J</td>
</tr>
<tr>
<td>8 Seagate ST96812A (Laptop)</td>
<td>60</td>
<td>202 J</td>
<td>187 J</td>
</tr>
</tbody>
</table>

We have begun our investigation with hard drives and examined three drive states—read, write, and standby.

Region A and F Device negotiation quietly consumes a significant amount of power even though no work on the disk is being done.

Region C and G The power consumption of reads and writes are noticeably asymmetric. For 1 GB of data, reads cost at least twice as much as writes in 75% of our tested drives.

Region I Transitioning to standby significantly reduces the power consumption, however, the electronics continue to consume 1.5 W.

Region J The amount of energy required to spin-up a drive is fixed, regardless of the amount of time spent in standby.

R/W Asymmetry
- reads cost more than writes
- new power-saving possibilities

Newer vs. Older Drives
- newer ⇒ more energy efficient
- capacity and RPM propel industry
 (what about power efficiency?)

More Expressive API
- power model is more complex
- all drives are different
- more expressive API is needed

Figure 1. Measurement environment

Figure 2. Test Sequence for Figure 3

Figure 3. Power Consumed by Drive 6